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Abstract

Fashion retailers must decide on the best strategy to deliver products from warehouses to stores,
maximizing the fulfillment of demand and keeping costs low, while simultaneously dealing with
short life cycle products, a high risk of lost sales caused by stock-outs and backrooms with limited
capacity. This industry’s specific challenges have not yet been fully researched regarding the
definition of an ideal delivery pattern, which is capable of quickly replenishing sales and deliver
new products to the stores, filling up shelves after the weekend demand peak.

The simulation-optimization method proposed leans on simulation to generate sales and ship-
ping data, providing inputs for optimization which are not tied to past conditions. This requires
a prior step where demand is estimated for days where its complete fulfillment was not possible,
and, therefore, not recorded, due to stock-outs. Owing to the inherent complexity of fathoming
the impact on sales of different delivery days, and in order to avoid the computationally intensive
simulation of the entire solution search field, a metamodel is introduced to predict the impact on
store profits of different replenishment speeds. Afterwards, the linear programming problem is
solved generating the delivery pattern which better balances service level and logistic costs. The
holistic integration needed for processing in the distribution center is assured by including con-
straints tackling operational limitations. The best alternative is then tested at the SKU-store-day
level on the simulator and a detailed solution is obtained for each store, allowing validation.

By introducing a case study on an Iberian fashion retailer, the methodology is implemented
and results show a 3,0% decrease in overall costs, which incorporates a contributing increase
in profits when comparing to the currently implemented policy. Additionally, simulator features
allowed experimentation with emergency shipments for stocked-out products, which resulted in
an expected 6,9% reduction in costs.
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Resumo

Empresas que operam na indústria da moda encaram a definição da melhor estratégia para entregar
produtos às lojas, através de armazéns centralizados, maximizando a concretização da procura e
mantendo custos controlados. Isto é amplificado pelos desafios que enfrentam como o facto de
se tratarem de produtos com um reduzido ciclo de vida, para os quais há um grande impacto
em vendas quando surgem ruturas, e ainda limitados pelo espaço de armazenamento em loja.
As características específicas desta involvência ainda não foram investigadas em profundidade na
definição de um modelo de abastecimento capaz de restabelecer rapidamente vendas e entregar
novas coleções nas lojas, enchendo prateleiras após o pico da procura do fim de semana.

O método de simulação-otimização proposto utiliza a simulação para gerar dados de vendas
e de expedição, fornecendo inputs para otimização que não estão presos a condições passadas.
Isto requer uma etapa anterior em que a procura é estimada para os dias em que seu cumprimento
total não foi possível, não sendo, portanto, registada, devido à inexistência do produto na loja.
Devido à complexidade inerente de avaliar o impacto nas vendas de diferentes dias de entrega, e
para evitar a simulação computacionalmente intensiva de todo o espaço de pesquisa da solução,
um metamodelo é introduzido para prever o impacto nos lucros da loja de diferentes velocidades
de reabastecimento. Posteriormente, o problema de programação linear obtem as combinações de
dias de entrega que melhor equilibram nível de serviço e custos logísticos. A integração holística
necessária para o processamento no armazém é assegurada pela inclusão de restrições que lidam
com as limitações operacionais. Posteriormente, a melhor alternativa é testada ao nível do SKU-
loja-dia no simulador e uma solução detalhada é obtida para cada loja, permitindo validação.

Através da introdução de um caso de estudo num retalhista ibérico de moda, a metodologia é
implementada e os resultados mostram uma redução de 3,0% nos custos globais, o que incorpora
uma diminuição da margem perdida, quando comparado com a política implementada atualmente.
Além disso, o simulador desenvolvido permitiu o teste da implementação de um fluxo de urgência
para produtos sem stock em loja, o que resultou numa redução esperada de 6,9% nos custos.
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Chapter 1

Introduction

1.1 Motivation

The importance of the fashion industry in the global economy is indisputable, with growth hap-

pening every year (Amed et al., 2018) and players becoming increasingly competitive. The large

dimension comes with extra layers of complexity, as the market is characterized by short product

life-cycles, high volatility, low predictability and a high amount of impulse buying, creating the

need for strong availability (Christopher et al., 2004). The capacity to present the right product,

at the right time, at the right place represents a greater fulfillment of demand, in line with less

stock-outs and, consequently, higher sales and profits, with fewer markdowns happening at the

end of the season.

In the last years, these challenges have been reflecting on a change from a pure push model to

one pulled by demand, as fast-fashion concepts arose leading to the definition of multiple periods

within a season and the constant introduction of new products in stores. This creates the need for

a paradigm shift in the way stores are supplied, as permanent collections become scarcer and the

need for replenishment of sales needs to be balanced by the delivery of new products. Postpone-

ment, by the use of a central warehouse to delay the distribution of stock, allows for a shorter

time-frame for forecasted demand at the store dimension, mitigating errors on the predictions

made at the SKU level when the product orders were made to the supplier. Having a warehouse

also goes in hand with the limited backroom capacity some stores possess. Understanding the ideal

store delivery frequency can provide cost reduction possibilities by finding the accurate trade-off

between demand fulfillment and associated costs.

The latest report presented by McKinsey&Company (Amed et al., 2018) states that as eco-

nomic conditions are predicted to worsen in 2019, companies are more than ever focused on

reducing costs and increasing efficiency. To do so in a longer time period, analytic-based decision-

making is recommended for optimized results. The present project builds on this call, attempting

the redefinition of replenishment strategies, by leveraging data-backed models to support strategic

business decisions. The challenge of analyzing the complete impacts of different measures can

then be undertaken without a trial-and-error methodology.
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2 Introduction

Motivated by a case study of an Iberian fashion retailer, the current delivery patterns fixed by

long-term empirical tweaking can be questioned by the use of analytic tools, enabling the holistic

assessment of supply chain implications and demand satisfaction.

1.2 Project description

The stakeholders’ awareness of the potential implications of redesigning replenishment practices

led to the present study ventured as a consulting project. The company at stake has been consis-

tently expanding by opening new shops and entering new markets to spread its successful business.

Since tighter restrictions are posed by shipment possibilities for farther away locations, the scope

was limited to centrally-controlled stores within Portugal and Spain, accounting for more than a

hundred different facilities.

The project was overseen by a team of entities responsible for all the major dynamics in-

volved, from warehouse processes and day-to-day operations to overall strategy definition. This

tight relationship enabled smooth access to information and knowledge gathering, as well as the

understanding of the expected outcomes and validity assessment, within predefined business con-

straints.

As presented in Figure 1.1, the first stage was targeted at collecting all the relevant data, es-

tablishing the As-Is process and the degrees of freedom provided. With a strong baseline formed,

a strategy was formulated to tackle the problem, by analytically modelling demand and beginning

the definition of the simulation model. The overlap between stages allowed the clarification of

eventual lacks and undetermined restrictions. The four main elements of the approach were tack-

led as needs arose, as firstly, demand was estimated to provide clear inputs for the simulation,

which then proved incapable of microscopically attempting every combination of delivery days

for all the stores, issuing the need for a metamodel and an optimization module. Throughout the

formulation of these models, validation was performed, ensuring adherence to reality and reliable

results. The last step gathered conclusions and elaborated on the recommendations proposed for

implementation.

Figure 1.1: Project’s timeline.
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1.3 Dissertation structure

The organization of this dissertation aims at providing a logical sequence of topics, guiding the

reader throughout the formulation of the proposed approach. Chapter 2 elaborates on the current

literature of the matter at hand, providing an in-depth contextualization of the problem. Rele-

vant contributions are summarized, establishing the potential for knowledge extension. The third

chapter underlines the characteristics of the case study, creating an improvement opportunity that

accounts for holistic effects. The following chapter structures the methodology used to tackle the

challenge, explicitly covering the reasoning used to elaborate it. It is separated in the four main

blocks of the approach: Demand estimation, Simulation, Metamodel and Optimization. The re-

sults obtained are presented in Chapter 5 and, additionally, an experimentation with emergency

shipments is introduced, made possible by the feature introduced in the Simulator. Lastly, conclu-

sions are drawn, and the limitations of the present work are stated, along with the possibilities to

enhance it.
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Chapter 2

Theoretical background

This chapter aims at presenting a complete overview of the relevant concepts and proposed method-

ologies that steered the development of the project. The first section provides the reader with an

understanding of the characteristics that distinguish the fashion industry and introduce causality

to the methods presented for dealing with the associated complexity. Section 2.2 elaborates on

the holistic supply chain definition and trends, with particular attention given to the elements with

interdependence between logistic subsystems. In Section 2.3, demand estimation approaches are

briefly introduced, as a data precedent for the explored analysis. Finally, in Section 2.4, simulation

and optimization techniques are explored as well as hybrid methods that combine advantages of

both, along with the presentation of published case studies on pertinent research questions.

2.1 Fashion Industry

Each industry’s supply chain presents unique challenges that must be taken into account when

establishing adequate strategic and tactical planning. Fashion & Apparel is no exception, and

increasing competition has been shaping the way players operate. Christopher and Peck (1997)

summarized four key defining characteristics: short product life-cycles, high volatility, low pre-

dictability and high amount of impulse buying.

2.1.1 Short life-cycles

Clothing items can be divided in basic (selling all year), seasonal (two or three seasons per year)

and fashion, with shelf lives of 8–12 weeks (Nuttle et al., 2000). By definition, fashion items

represent current, short-term demand, which means that in order to keep up with customers’ ex-

pectations, stores must present new products frequently (Caro and Gallien, 2010), leading to the

creation of multiple collections within one selling season (Christopher et al., 2004). Fast-fashion

retailers introduce around 2000-4000 items per year (resulting in thousands of SKUs when we

consider different color and size variations) (Nueno and Ghemawat, 2003). The inability to sell

the product within its lifetime leads to markdowns at the end of the season (and the consequent

5



6 Theoretical background

reduction of profits) in order to clear the stores for new collections. This puts extra pressure to

quickly and correctly allocate stocks to stores while maintaining limited inventories.

2.1.2 High Volatility

Through large scale surveys and interviews, Amed et al. (2018) consistently report volatility as the

main challenge for fashion players, as purchase desires can be shifted based on multiple factors,

such as weather or celebrity influences. For instance, Portuguese players reported lower than av-

erage sales during the Spring-Summer collection of 2018 due to uncharacteristically cold months

that delayed consumer shopping trips for warmer weather clothing.

2.1.3 Low Predictability

Additional strain comes from the impossibility to correctly predict demand at the SKU level, due

to the very low average sales per item per store per day. Although product group (e.g. dresses)

demand is relatively stable, due to substitution effects, the personal nature of the products makes

it hard to predict whether a specific pink t-shirt will sell (Collado and Martínez-de Albéniz, 2017).

Extra complexity is added by the store dimension, which can have unique selling patterns and

clients (Correa, 2007; Collado and Martínez-de Albéniz, 2017), as is typified by the case of holi-

day locations’ stores whose demand skyrockets during the holiday season. Christopher and Peck

(1997) state this uncertainty should be counteracted by short lead times, making the supply chain

more agile to cope with demand fluctuations.

As consumer habits shape the demand curve, it is expected for seasonality effects to become

clear when purchases are analyzed at the aggregate level. The peak found on the weekend puts

pressure on the replenishment activities performed on the days after to fill shelves and bring stock

levels to stable values. This effect has been accounted for in studies by Collado and Martínez-de

Albéniz (2017). Moreover, special days and holidays are linked to an increase in customers as was

proved by Nieves-Rodríguez et al. (2015), which concluded that Mother’s Day and Christmas had

a positive impact on sales in a Puerto Rican women’s apparel retailer.

Forecast errors result in two main consequences (Mattila et al., 2002): stock-outs implying

lost sales (by underestimation of demand) and end-of-season markdowns (by overestimation).

2.1.4 High impulse purchase

In order to maximize the fulfillment of demand, availability becomes of utmost importance to in-

crease profits (Fernie and Grant, 2014), however, Corsten and Gruen (2003) reported worldwide

overall retail out-of-stock rate of, approximately, 8%. According to empirical evidence collected

by Zinn and Liu (2008), clothing stock-outs result in the majority of the cases in a lost sale, with

44% giving up on the purchase, 39% leaving and going to a competitor and only 17% delaying

and coming back. These findings differ from previous studies by Corsten and Gruen (2003) in

consumer goods, which, although in line for delayed purchases, recorded 9% probability of lost
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sales and substitution becoming the most common response. Apparel specific factors might be un-

derlying the gap, with more frequent misplacement of inventory (for instance, in changing rooms),

creating the need for reprocessing for placement on the shelf and lowering availability (Fernie and

Grant, 2014). More recent research presented by Ovezmyradov and Kurata (2019) highlights the

importance that omnichannel strategies have on active responses, as customers now have different

options and, for instance, delaying the purchase might mean "order in-store, deliver home".

Collado and Martínez-de Albéniz (2017) analyzed the relationship between higher inventory

levels (resulting in better presented displays) and higher sales, which were found to be positively

correlated. However, new models of fast-fashion now leverage stockouts as a way to promote ex-

clusivity and rush customers to stores (Fernie and Grant, 2014), leading to more frequent visits, as

best evidenced by Zara, which declares 17 visits per customer per year on average, in comparison

to three or four for non-fast-fashion competitors (Fraiman et al., 2010). This strategy is dependent

on a responsive supply chain, capable of reading this customer surge and ordering quick produc-

tion of more items. On the other hand, an availability mindset becomes unavoidable when dealing

with fixed, pre-ordered quantities, which is elaborated on in the following section.

2.2 Supply Chain

2.2.1 Procurement

Cost reduction measures have created a trend for off-shore production in low-cost labor countries

(Mattila et al., 2002; Nueno and Ghemawat, 2003), extending the supply chain and creating long

lead-times between design and retail, which reduces agility and increases response times (Christo-

pher et al., 2004). Collections need to be fixed months prior to the selling season and extra orders

are not possible in useful time, which places unrealistic expectations on accurate long-term fore-

casts (Mattila et al., 2002).

As a consequence, and considering the specific challenges that are posed by the industry, new

strategies have been shaping apparel supply chains, searching for better adaptability to demand and

higher product assortment refreshment, as is presented in Figure 2.1. By separating basic products

with stable demands, which can be manufactured in advance, from fashion, trending ones, fulfilled

quicker by the use of local production, it is possible to obtain additional flexibility while keeping

in mind cost concerns (Nueno and Ghemawat, 2003). Quick response (QR) techniques, leveraging

information sharing between supply chain participants, to allow for quicker reactions to changes

in demand and mid-season production, have been implemented in several industries with high

volatility (Christopher et al., 2004). More recently though, Fast-Fashion concepts were born, and

retailers redefined "seasons" by being able to quickly design, manufacture and put in stores new

products throughout the year, with Zara becoming the first example of just how successful this

strategy can be (Christopher et al., 2004). In an attempt to follow this trend, most players with less

ability to restructure have opted for semi-planned management approaches (Martino, 2015), creat-

ing the illusion of constant redefinition of collections by manufacturing in advance multiple items
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in small batches, which they consecutively introduce in stores. Procurement activities, related to

the relationships between suppliers and the company, are then simplified and the retailer becomes

focused on the positioning (and corresponding timings) of its inventory. This type of strategy

will be the core of this project and the one used by the case study presented, notwithstanding the

possibility of implementation in other supply chains.

Figure 2.1: Fashion management approaches. Source: Martino (2015).

2.2.2 Distribution

Martins (2018) summarize the types of delivery modes that can be used to fulfill brick-and-mortar

stores’ demand from suppliers: warehousing, direct-shipment, cross-docking and milk-run. Ac-

cording to Kuhn and Sternbeck (2013), retail distribution via distribution center represents the

clear majority of situations and is predicted to keep its hegemony. Aftab et al. (2018) refer as com-

mon practice for Zara competitors to ship products from distribution centers (where orders from

suppliers are received) to regional warehouses and finally to stores, in contrast with direct ship-

ment from a central warehouse in Zara’s case. The last chain of these networks, where decisions

of allocation and consolidation of orders are done, is the focus of this project. This postponement

strategy optimizes the "time utility" by delaying shipments and the "place utility" by choosing the

most adequate point-of-sale (Yang and Burns, 2003). Three main logistics subsystems are found

(Kuhn and Sternbeck, 2013): distribution center (DC), transportation and store (see Figure 2.2).

Figure 2.2: Retail logistics subsystems. Adapted from Kuhn and Sternbeck (2013).
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For the first dimension, Rouwenhorst et al. (2000) divided warehousing processes in receiving,

storing, orderpicking/consolidating and shipping. These are, in broad terms, not industry specific,

although some products could require some additional handling, as, for instance, putting tags in

clothes.

As for the store subsystem, Pires et al. (2017) devised a general definition of grocery retail

stores based on the works of Kotzab and Teller (2005) and Reiner et al. (2013), presented on

Figure 2.3.

Figure 2.3: Breakdown of store operations. Source: Pires et al. (2017).

Some points of contact can clearly be found to apparel retail, as inventory is identically kept

on shelves (or hangers) on the sales floor and in backroom spaces. This storage facility acts mainly

as a buffer between deliveries and limited shelf space (Mou et al., 2018), taking on additional re-

sponsibilities on the case of fashion retail, such as strategic delay of presentation of new products

or storing collections that had missing key sizes, a common practice in Zara (Correa, 2007). Ton

et al. (2010) divide the in-store logistics of Zara in four processes: processing deliveries, managing

product flows between backroom and selling floor, managing display areas and fitting rooms and

performing physical audits of inventory. Although these can be fairly generic, Pettinger (2004)

stresses the importance that targeted brand image and organizational goals have on the combina-

tion offered of self-service (involving preparing the merchandise), routine service (like receiving

payments) and personal service (as giving advice and searching for sizes), as the three variations

of customer service. This means that companies might aim at increasing the free time of store

personnel to allow more interaction with customers or, on the other hand, increase task efficiency

and personnel occupation.

Kuhn and Sternbeck (2013) identify five critical tactical elements that have inter-dependencies

between logistic subsystems: store delivery pattern, store replenishment lead time, order pack-

aging unit, store delivery arrival times and roll-cage sequencing and loading carriers. A deeper

explanation based on their work is presented for the first two, keeping the others as exogenous

variables, although further studies could implement improvements on those dimensions.

Delivery Patterns

Delivery patterns represent the combination of days (number and timing) in which a store receives

inventory from distribution centers (Sternbeck and Kuhn, 2014), in a fixed weekly schedule. Re-

ceiving items steadily on the same days has been defended by researchers as a preferred prac-

tice, allowing for a fixed scheduling of the workforce, known routes and unloading conditions for

trucks and overall operational stability (Holzapfel et al., 2016; Sternbeck and Kuhn, 2014; Gaur
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and Fisher, 2004). Moreover, it allows for periodic reviews of inventory at predefined times, in a

consistent matter. Equidistant deliveries are also supported by Kuhn and Sternbeck (2013).

The frequency at which these deliveries need to happen is highly dependent on the type of

products considered, as perishable goods or unpredictable demands will result in an increased

number of shipments. Moreover, other store-related constraints might define frequencies, such

as the size of the backroom, receiving capacity and sales volumes (Kuhn and Sternbeck, 2013).

The major impact that differing order spacing will have is in order volumes, that is, if orders are

placed less frequently, bigger quantities will be delivered each time. Martins (2018) mention that

having larger orders allows for efficiency in transportation by reaching full-truckloads, however,

this is hardly the case in fashion retail, as average weekly orders consolidate at around 3 pallets

per store for the case study analyzed. Nonetheless, when considering outsourced transportation,

it is advantageous to be able to maximize pallet occupancy, which might not be the case for daily

deliveries to low rotation stores.

In terms of the specific days chosen, one effect that cannot be forgotten has to do with the

seasonality of the demand. This translates into some days being better suited to avoid additional

backroom storage and handling, as more items will be missing from the shelves at the beginning

of the week, due to the cumulative effects of higher demand and, usually, no weekend deliveries

(Kuhn and Sternbeck, 2013). The effects on the DC depend on the holistic integration of all the

stores supplied, as an adequate intertwining will lead to smoother picking requirements and avoid

requiring extra capacity (Sternbeck and Kuhn, 2014).

Replenishment Lead Time

The amount of time a store needs to submit an order before receiving the items represents flex-

ibility that is shared between the store and the distribution center: if shorter, retailers are more

capable of dealing with demand fluctuations and more reactive in orders. However, it comes at

a price for the DC which must be able to prepare and ship items quicker, reducing opportuni-

ties for smoothing operations throughout the defined lead time. Transportation can also be af-

fected by this just-in-time approach, reducing order consolidation opportunities or, depending on

the contracts established with third-party logistics, become affected by higher tariffs (Kuhn and

Sternbeck, 2013).

The possibility of emergency shipments (with consequently shorter lead times) under specific

conditions has been studied in multiple variations in literature. In spite of it, most focus on the

relationships between suppliers and company facilities, disregarding the entropy created and limit-

ing the resulting effect to more expensive transportation or ordering costs (for instance, in Tagaras

and Vlachos (2001)). Transshipments between stores are also evaluated as an alternative option to

urgent deliveries in Chartniyom et al. (2007) and Liao et al. (2014).
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2.2.3 Replenishment methods

Replenishment methods have been widely researched to find the optimal stock policy, with earlier

publications dating back to the beginning of the 20th century (Bartmann and Beckmann, 1992).

Although several variations can be mentioned, the ones tackling uncertain demand can be divided

in fixed ordering quantity methods and periodic review methods (Waters, 1992). For the first ap-

proach, a constant amount of product is requested whenever a certain level is reached, assuming a

continuous review of the inventory. On the other hand, periodic reviews assume checking stock at

fixed time intervals, meaning that variable quantities will be ordered in response to the observed

level. When considering multi-items (which is the case for a fashion retailer), a coordinated re-

plenishment has been defended as cost-saving (Jayaraman and Tabucanon, 1984) and enabler of

the definition of delivery patterns (Cardós and García-Sabater, 2006). Waters (1992) mentions

how a periodic review can provide a simple routine of ordering, delivering and receiving inven-

tory. This is usually done by ordering each R periods until an order up-to level S, which leads to

the definition of a (R,S) inventory control system. Hybrid approaches combine advantages of time

and quantity focus, which is the case of the (R,s,S) where an s level is established and only if stock

levels are below s, will an order be placed for the cycle.

2.3 Demand estimation

As analyzed by Garro (2011), captured demand by sales data might not represent the full extent

of real demand, if affected by stock-outs (Mou et al., 2018) or non-routine closure of stores (for

instance, closing down for a holiday). The ability to correctly evaluate sales potential is extremely

important for forecasting methods (Wecker, 1978), as the failure to do so could introduce an under-

estimation bias in predictions, and, more relevantly to the matter at hand, for simulation purposes,

as a way to detach historical data from the occurred scenario and allow for the testing of others.

Garro (2011) used the case study of Zara to test several options for determining weekly aggre-

gated demand, from simple extrapolation from days with full demand fulfillment (that is, without

stock-outs), to more complex combinations of inputs from size dependencies (of the same product)

and weekly seasonality. Huang and Liu (2017) used a variation of one of the methods presented,

creating a weighted average of the overall weekly sales weight of the days without stock-out.

However, substitution effects are disregarded on these approaches. As fashion products’ demand

is highly correlated with availability, the fact that one product is not on the shelf might lead the

customer towards buying other (for instance, by buying a green t-shirt instead of a blue one). Al-

though methods have been presented for estimating these effects (Vulcano et al., 2012; Musalem

et al., 2010), the complexity added to the methodology did not justify the approach over simplistic

ones. Moreover, sets of substitutable products had to be defined, which can be highly debatable

when talking about fashion products.
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2.4 Simulation-Optimization

2.4.1 Optimization

Optimization techniques lean on mathematical programming to reach the best solution, as evalu-

ated by objective functions, within the limits of problem constraints (Snyman and Wilke, 2018).

They have been used on a multitude of applications and further extensions and adaptations are still

being implemented.

In the fashion industry context, researchers have mostly focused on the allocation of fixed

quantities of inventory from DCs to stores. Gallien et al. (2015) provided insights into the distri-

bution of limited stock, deciding on first shipment quantities while maintaining enough warehouse

stock for replenishment flexibility. This second phase of distribution was addressed by Caro and

Gallien (2012), using an optimization model to increase sales. Both papers have used Zara as a

case study, where shipment decisions are made simultaneously for all stores, aiming at increasing

overall profits. More recently, Martino (2015) used the bees algorithm to solve the replenishment

problem, assuming four fixed deliveries during the season.

Although extensive research has been published on the transportation optimization dimension,

through attempts at solving the periodic vehicle routing problem, only a few articles were found

that tried to find interdependence between the logistic subsystems of a retail supply chain for the

problem of delivery patterns definition, which are presented below in chronological order.

A heuristic approach was used by Gaur and Fisher (2004), determining delivery routes, allocat-

ing trucks to them and readjusting departure times to balance DC workload. Cardós and García-

Sabater (2006) analyzed the dependencies between inventory and transportation costs, defining

ideal frequencies which are combined into delivery routes, in a search for cost minimization.

Although the store dimension was considered and integration was introduced for transportation

purposes, the authors failed to consider upstream logistics.

The first system to tackle interactions between the store, transportation and DC on this problem

was developed by Ronen and Goodhart (2008), by incorporating limited backroom storage and

DC constraints on the periodic vehicle routing problem of both dedicated and contract carriers.

One important limitation of this research has to do with assuming equal distribution of demand

throughout the week, neglecting seasonality effects and associated volume differences.

Kuhn and Sternbeck (2013) provided a theoretical framework for developing holistic models

that encapsulate effects that certain decisions have on logistic subsystems of the supply chain.

This allowed Sternbeck and Kuhn (2014) to present the closest approach to the one chosen for this

research, minimizing overall supply chain costs in the definition of ideal delivery patterns for a

network of stores. However, certain simplifications are considered, such as the assumption of full

availability of products at the store, made possible by deterministic aggregate demands.

Further research by Holzapfel et al. (2016) included store bundling for transportation opti-

mization when considering company owned trucks. This effect will not be taken into account

in the model presented, as the case study analyzed outsources this service and possesses fixed

destination-pallet costs.
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Our methodology adds to the field, by including lost sales incurred by higher demand response

times. This becomes of greater importance in the fashion context considered, as forecasts are

extremely unreliable. The inability to correctly predict the relationship between delivery patterns

and fulfillment of demand leads us to the use of simulation.

2.4.2 Simulation

Simulation has been extensively used as a tool to replicate the functioning of a real system, in

order to obtain insights into how it operates or experiment with alternative scenarios (Shannon,

1975). To do so, a representative and simplified model is created, with its inherent relationships

between agents relevant to the analysis. Banks et al. (2010) classified models into static or dy-

namic, deterministic or stochastic and discrete or continuous. A dynamic, deterministic and dis-

crete simulation represents a system evolving through time, in a fixed relationship between inputs

and outputs (without random influences) and in which variables change states in a set of moments

in time. Through discrete-event system simulation, one can model such system, creating the state

evolution through event triggers, while tracking individual items. Duong and Wood (2018) men-

tion how this makes it the ideal methodology for inventory management simulation, where a set

of rules will create specific effects for each product.

A decision support system based on a supply chain simulation tool is proposed in Longo and

Mirabelli (2008), making clear the benefits that this approach has in understanding the effects of

different demand pattern, inventory policies or lead times on a multi-echelon network.

Cerda and Monteros (1997) used a weekly simulation approach to experiment different c ("can

order") parameters on a (R,s,Q,c) multi-item replenishment policy between retailer and warehouse

for a cardboard box marketing firm with lot size Q. Although this case study presented different

goals and tested variables, the main events are in their core similar to the present research objective,

as inventory levels, arrivals of products, sales and requests to the warehouse are computed for each

period.

In the fashion industry, simulation has been mostly used to model store dynamics and customer

responses, which is the case of De Marco et al. (2012), where RFID technology was analyzed

through system dynamics, and Al-Zubaidi and Tyler (2004), who modeled client behaviour to

evaluate the impact of different QR replenishment policies on lost sales. On a different subject,

Garro (2011) provided a simulation approach to experiment with new allocation definitions at Zara

and Iannone et al. (2013) used simulation to introduce a push-pull strategy to product allocation

based on forecasts. However, the simplistic shipment policy adopted in both cases (once at the

beginning of every period) turned the design quite straightforward, although demand estimation

was implemented on the first one.

2.4.3 Metamodel-Based Simulation Optimization

The logical consequence of the identification of the benefits of simulation and optimization ap-

proaches separately is to leverage strengths in new methodologies, reaching the fine detail of
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simulation for an optimized solution. Problems with interrelated decisions and complex causal

effects are hard-to-model but can be dealt with in simulation without much mathematical sophisti-

cation (Figueira and Almada-Lobo, 2014). Although simulation experiments can try out different

combinations of inputs to reach insights into the detailed results they provide, in numerous cases,

the extensive enumeration of all possibilities is computationally prohibitive (Carson and Maria,

1997) or even impossible due to infinite search space. Optimization techniques can tackle this

shortcoming by limiting scenarios and providing solutions in useful time.

Figueira and Almada-Lobo (2014) performed an extensive review and classification of hybrid

Simulation-Optimization (S-O) methods, distinguishing between Solution Evaluation, Analytical

Model Enhancement and Solution Generation approaches.

One particularly relevant method to overcome expensive simulation tests is the use of meta-

models (Wang and Shan, 2007), defined as models of models (Jalal et al., 2013). After running

the simulation for several points, an approximated and simplified relationship between inputs and

outputs can be defined, which is used for deterministic optimization (Figueira and Almada-Lobo,

2014). Kleijnen (2005) proposed a 10-step methodology for correctly implementing metamodels.

Related to validation, coefficient of determination (R²) and cross-validation are presented as alter-

natives. Despite the immensity of options which deal with specific challenges, April et al. (2003)

state that standard linear regression is still the most commonly used technique.

There is not extensive published research incorporating simulation-optimization methods on

case studies of retail inventory problems. Duong and Wood (2018) focused on the benefits of sim-

ulation for finding consequences of chosen inventory policies for perishable products when used

in a recursive manner with optimization techniques. A case study using this methodology is pre-

sented by Myers (2009). Moreover, Hachicha et al. (2013) used a metamodel-based optimization

simulation approach to define ideal values of s and S in a (s,S) continuous replenishment policy.

Using a factorial Design of Experiment, they perform simulation runs for different combinations

of factor levels whose estimated relation with the observed response is used for optimization. Al-

though not completely related to the problem analyzed, the mentioned examples provide insights

into the potential of the methodology.
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Problem description

As has become clear from the presented research, the definition of delivery patterns has to account

for the different consequences originated throughout the logistics subsystems. In order to do so,

the fashion retailer’s relevant characteristics are presented in Section 3.1, including operational

details. Section 3.2 builds on this to define the challenge that is to be tackled, as well as the

shortcomings of the present approach used by the retailer.

3.1 Case study context

The fashion retailer that motivated the case study operates a centralized distribution center that

supplies around 150 company-owned stores in Portugal and Spain, with a total of 9 business

units (ranging from Baby Apparel to Adult Non-apparel). Using a semi-planned management

approach, where designs are completed months before the selling season and manufactured in low-

cost countries, the company manages to mimic fast-fashion practices by constantly introducing

new collections in stores. Each combination of color-size product is defined as a Stock Keeping

Unit (SKU), possessing a unique identifier. Every week, close to half of the SKUs shipped to

stores constitute first shipments of new products, not unlike what is practiced by Zara (Gallien

et al., 2015). This fact provides additional complexity to the problem but at the same time more

flexibility to smooth operations.

Assuming upstream processes of procurement as exogenous to the analysis and consequently

fixed quantities of each product, the three relevant logistics subsystems are store, transportation

and distribution center (DC). An in-depth breakdown of the retailer processes and constraints

for each dimension creates awareness of their holistic integration and is presented on the next

subsections. It is important to mention that in order to provide a general approach to the problem,

certain specific details and practices were simplified when, although implemented, they do not

significantly alter the methodology or the results obtained.

15
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3.1.1 Store

The last chain of the supply chain is where customer demand is realized. Mainly, store personnel is

focused on adequately presenting products (with the former processes it entails) and giving atten-

tion to the client. Following this customer-oriented principle, this fashion retailer’s staff allocation

is usually established with some redundancies, allowing better interactions with customers, when

necessary.

Three main in-store processes were identified and detailed below: processing deliveries, sell-

ing and ordering.

Processing deliveries

The products arrive at their destination in the designated delivery days (from Monday until Friday)

inside boxes in pallets, after replenishment orders issued by the store or new product introductions

governed by centralized decision-makers. The latter case mostly occurs at the beginning of the

week (Monday or Tuesday), as it is fixed that, since the demand peak of the weekend is burdened

by the absence of deliveries, all clothing items must be pushed to refill shelves.

The personnel retrieve the pallets from the predefined location (in some cases in front of the

entrance of the store, others from a centralized unloading area), and remove the protection film

wrapping them. Afterwards, boxes are checked into the system one by one, and the shipment

is verified. Clerks open and remove the products, while separating them by business unit and

by the type of products (new item or replenishment). After preparation is completed (removing

plastics, applying tags or putting in hangers), products are either carried to the sales floor or left

in the backroom for when needed. On average, around 20% of the stock is kept in this temporary

storage, consisting mostly of new products that do not yet fit with appropriate visibility on the

racks. Depending on the delivery time, most of this process can happen while the store is still

closed, allowing full dedication to it.

When shipping from the DC, some capacity constraints need to be accounted for, since the

area for receiving pallets and backroom storage capacity is limited and different among stores.

Selling

In customer-oriented fashion retail stores, as is the case, employees are expected to dedicate a

fairly large part of their time to direct contact with clients facilitating purchases, be it by giving

advice or helping find a missing size. When demand is fulfilled, the clerk will realize the transac-

tion, receiving payment and recording the sale. In this high impulse buying context, availability

becomes extremely important, as stock-outs will (to some extent) create lost sales. Inability to

find a size or color for the desired product might create a cost to the retailer by missing out on the

opportunity for a full-priced purchase and being obliged to use markdowns to clear inventory at

the end of the season.
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Ordering

Depending on the delivery pattern and on the lead time, automatic systems will place orders,

accounting for inventory position (on-hand added to on-order) and an order up-to level (OUTL).

This periodic review system (in contrast to a continuous option) allows for the consolidation of

shipments in the defined delivery days and is known as a (R,S) replenishment policy, where every

R periods, inventory will be ordered to bring stock up to S units.

OUT L = dµ× (LT +RP)weighted +σe+1 (3.1)

The generic equation 3.1 defines the OUTL, which is specific per SKU and per store. The

average daily sales of (up to) the last 4 weeks (µ) is computed and multiplied by the lead time (LT )

and review period (RP). This store-fixed value is calculated considering the weekly seasonality

presented in Table 3.1, which weights each day’s time until replenishment: if a store orders on

Tuesday to receive on Thursday, three (days) is multiplied by Monday’s 12%, accounting for the

time this share of the sales take to be restocked. Adding the standard deviation of the period (σ )

provides safety stock for variations of demand. The resulting amount is rounded-up and 1 unit is

added to define the maximum level. Every Monday, these parameters are recalculated to include

newly available data. Accounting for the large number of SKUs carried, and the consequent low

daily average sales per each one, usually only 2 pieces are in stock for most items.

Table 3.1: Weekly seasonality of global chain sales for 2018.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

12% 11% 12% 13% 15% 19% 16%

3.1.2 Transportation

The analyzed retailer outsources all transportation to a third-party logistics provider (3PL), which

presents benefits and disadvantages worth considering. On one hand, there is a considerable sim-

plification to the distribution process as all routing optimization decisions are out of scope. Lim-

itations on capacity are also disregarded, as the service provider operates a large fleet of vehicles

for multiple companies, being able to cope with variations on shipment quantities. However, the

enabled flexibility comes at a price, since the cost of shipping a pallet becomes higher and fixed per

destination, putting extra pressure on guaranteeing efficient deliveries in terms of timing (reaching

the store when most needed) and pallet consolidation (increasing volume per pallet transported by

combining replenishment needs from several days). Moreover, since orders need to be consoli-

dated with other shipments of the 3PL to reach competitive pricing, longer lead times are imposed,

meaning that for a product to arrive at a Portuguese store in the morning, it must leave the distri-

bution center in the evening of the previous day. Spanish stores are also included in the analysis

with one extra distribution day.
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3.1.3 Distribution center

The centralized distribution center is responsible for the processing and allocation of the inven-

tory received from manufacturers, being operational only from Monday until Friday. After initial

reception activities, the items are organized and placed on a designated spot. Every day, ship-

ment orders are consolidated, and picking takes place, collecting the total units from each SKU

necessary to fulfill all store requests. Afterwards, a product sorting machine (sorter) is fed with

these products and begins distributing them into boxes, which will only contain items going to the

same store. This process constitutes the bottleneck of the operation, limiting the number of units

dispatched from the DC to the pieces it can separate multiplied by the time it is operating. After-

wards, boxes are prepared for shipment by being placed on a pallet and wrapped with protection

film, getting loaded into the 3PL trucks.

The analyzed DC operates large volumes per day for multiple end retailers with limited ca-

pacity, which means that, in order to efficiently use resources, setup times must be minimized and

picking consolidated, allowing the sorter to run full courses, usually from the beginning of the

afternoon until midnight. Considering the transportation shipping time (starting from around 5

p.m.), loads will only be shipped the next day, accounting for the usual 48 hours of lead time for

national stores.

3.1.4 Costs overview

In order to provide a clear definition of the costs for the methodology to be presented, Table 3.2

summarizes each activity with the corresponding measuring unit. To allow generalization, these

have been grouped into broad definitions.

Table 3.2: Costs per subsystem

Subsystem Dimension Units

Store
Receiving Pallet
Processing Item
Lost sales Item

Transportation Delivery Pallet

Distribution center
Picking Item
Sorter Item

Shipping Pallet

3.1.5 Seasonality

Apart from the weekly seasonality already mentioned, it is quite straightforward to understand

that different periods will have different demand patterns throughout the year. Figure 3.1 depicts

the landscape of sales quantities (in units) and profits (selling price minus acquisition costs) per
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average store (accounting for opening and closing of spaces) for each week of the year 2018, for

the retailer under analysis. The values are presented as the weekly percentage over the year total,

and a dotted line is included to represent the average value if all weeks had the same weight.

Figure 3.1: Sales quantities and profits per week for the year 2018.

Although sales volumes show higher volatility, profit distinctively peaks in April (explained

by Easter) and at the end of the year, which includes Christmas and Black Friday. One effect

which can be observed is how markdown periods (typically after Christmas through February and

during July and August) result on the lines crossing, representing that, though larger volumes are

being sold, the lower prices practiced lead to lower profits. In other words, although markdown

periods are strong in units purchased, they are less relevant for global profit. On the other hand, the

months from October on show a clear trend towards high returns, and above average importance.

This long-period seasonal consumer demand might create the need for specific delivery policies,

as higher transportation costs can be offset by higher profit margins.

3.2 The challenge

Keeping operational practices stable, the challenge undertaken aims at establishing the ideal de-

livery days per store, and consequent delivery frequency, while accounting for the impacts in

all supply chain dimensions. Having described the main activities involved in the replenishment

process, one can now portray the definition of individual delivery patterns as the ideal trade-off

between the service level provided and related fulfillment costs.

On one hand, should products be shipped less frequently, pallet occupation can be maximized,

which will, in most cases, diminish the total number of weekly pallets, decreasing expedition costs

at the DC and avoiding trips that deliver only a few boxes. Conversely, a higher delivery frequency

(with added benefits if the specific days chosen are optimized) means that sales can be replenished

faster and turn stock-outs less frequent, which can lead to increased profits if the item ends up in

markdowns or does not sell in stores.
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Most store operations are dependent on the number of units delivered, but not on whether

they are shipped together. Moreover, for the case study at hand, we are considering a certain

idleness percentage by the store personnel, which is capable of absorbing variations in the number

of delivery days. This assumption is an accepted belief by company stakeholders, but could easily

be considered in the model for different conditions. Regarding store space constraints, a higher

delivery frequency can be imposed.

The problem gains an additional degree of complexity when taking into account operational

restrictions at the DC, as ideal scenarios per store must be balanced to find a global optimum.

Smooth sorter utilization (as the bottleneck of the operation) requires that stores are efficiently

intertwined in the specific days chosen for shipment. This process must also consider new product

deliveries, which provide flexibility as they can be distributed throughout the planned introduction

week (while complying with business rules).

Since stability is valued for routine operational details, the delivery patterns introduced should

be stable for several weeks. However, as holiday season variations were identified, different poli-

cies for this period should be evaluated, splitting the year in two.

It is important to mention that inventory costs are not considered (unlike the methodology

presented by Sternbeck and Kuhn (2014)) since they are deemed as fixed and unrelated to the

timing and placement of the previously bought products.

3.2.1 Current approach

Until this moment, the retailer relied on years of experience to perform an ad hoc approach to

solve this problem. Store delivery frequency was mostly dependent on sales volume, where ’best’

stores were assigned with daily deliveries, and adjustments took place whenever peak periods were

expected or stores expressed lack of storing space. This accounted for an average of 3.3 weekly

deliveries per store. When comparing to Zara’s twice per week global shipments (Nueno and

Ghemawat, 2003), an improvement opportunity was found, as this fast-fashion giant has proved to

be a role model of industry’s good practices. Furthermore, the distribution center often reported

inability to comply with requests, as capacity constraints were exceeded, leading to close to 10%

of units leaving later than they were scheduled to. This provided additional motivation for better

balancing and synchronization through intertwined delivery patterns.
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Methodology

The present chapter details the main steps of the methodology undertaken to overcome the problem

of finding fitting delivery patterns for the challenges posed by a fashion supply chain. Invoking

the categorization proposed by Jalali and Nieuwenhuyse (2015), the problem can be described as

single-echelon, multi-item and finite horizon with deterministic lead time and an (R,S) replenish-

ment policy. Following a summary of the proposed approach disclosed in Section 4.1, the demand

estimation technique is explained. An in-depth description of the simulation model is provided

afterwards, as well as of the validation procedure. In order to reduce the need for simulation runs,

a metamodel is defined in Section 4.4, ending with the optimization model implemented.

4.1 Proposed approach

The proposed approach to address the definition of delivery patterns is summarized in Figure 4.1.

Figure 4.1: Main steps of the methodology presented.

The first phase encapsulates all steps taken towards gathering unbiased data for simulation.

Historical sales, transfers and stocks were provided for each store, which were extremely depen-

dent on allocation decisions and timings. In order to keep strategic store-specific policies fixed,

each product’s lifetime at each store was traced, setting the date for the first shipment and only

allowing sales until the last recorded purchase. However, as stock-outs accounted for around 5%

of total day-SKU-store entries, there was the need to estimate demand for this information blanks.

For the second step, a simulator was constructed, capable of reading data inputs and, following

business rules in regard to shipments and SKU parameters, recreating sales, stocks and transfers

from the DC, while accounting for fixed quantities of total products. Variable delivery patterns

21
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were fed, creating results for several scenarios tested. The use of simulation allows perceptions

on how lost sales at the beginning of the collection can result in lower profits by higher markdown

quantities.

As simulation runs are computationally expensive and combinations of possibilities extensive,

a metamodel-based approach was used to estimate store profits for differing replenishment speeds.

Using simulation outputs, an average week was defined for the two periods considered (until

September and from then on), which associated weighted replenishment lead time to each delivery

pattern. Through linear regression, this independent variable determined profit per store.

The steps undertaken so far provide all inputs needed to perform optimization, considering the

cost-benefit trade-off, incorporating store and DC capacity constraints and new product shipments

with higher flexibility in the delivery day. After enumerating all the combinations of store-delivery

pattern, a holistic solution is found maximizing overall profit, for the time frame of one week.

The last phase of the methodology tests the configuration found, validating constraints and

finding detailed costs for an entire year of operation. An additional optimization module was

introduced beforehand to distribute new product shipments throughout the week, the need for

which will become clear after the definition of the simulator in Section 4.3. These last steps will

not be detailed further due to the simplicity of the approaches used.

4.2 Demand estimation

One of the inputs needed for simulation is a complete assessment of the demand for each combi-

nation SKU-day-store. Using historical sales data for this end is possible if all potential purchases

were fulfilled, which is not the case in days in which a stock-out occurred.

First of all, for the analysis at hand, a stock-out is identified only in days that fall between the

first and last sale of a specific item in a specific store, keeping strategic timing decisions fixed.

Moreover, it was observed that for most days (∼99%) in which inventory is present at the store,

at most one unit is sold, which goes in line with the low stock kept for each SKU. This led to

the definition that only occurrences where no products were stored at the beginning of the day

should be corrected for demand. This specific detail means that when returns to the store happen,

resulting in a positive stock at the end of the day, that day should also be evaluated for potential

sales. An added reason for this is the common practice of not processing a product back to the

sales floor immediately afterwards.

The core of the methodology used to build the model is based on the one presented by Huang

and Liu (2017), extended to incorporate specific characteristics of the problem at hand. Table 4.1

summarizes all the following used notation.

In order to include weekly seasonality, the first step is the definition of the weight each day

d ∈ D carries on global weekly sales, presented on equation 4.1. Since we are considering nine

different business units u ∈ U , with possibly distinct sales patterns, the weights were defined for

each one. Moreover, to account for a whole year of data, this calculation was done per week,

catching non-regular volumes, caused by factors such as mid-week holidays. W udw then defines
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Table 4.1: Table of notation for demand estimation.

Sets and indices

m ∈M SKUs
u ∈U Business units
m ∈Mu Subset of M for the SKUs that belong to business unit u
d ∈ D Days = {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday}
w ∈W Weeks
s ∈ S Stores

Parameters

Sudw Sales quantity of business unit u on day d of week w
Sm

dws Sales quantity of product m on day d of week w for store s
V m

dws Binary variable that indicates whether product m was not on stock-out on the
beginning of day d of week w for store s

Variables

Wudw Weight on sales of business unit u on day d for week w
Dm

ws Demand for product m on week w for store s
Dm

w Demand for product m on week w
SFuws Store factor for business unit u on week w for store s

the weight of day d for business unit u on week w, by dividing the sales quantity of u on day d of

week w, Sudw, by the sum of the whole week.

Wudw =
Sudw

7
∑

d=1
Sudw

u ∈U,d ∈ D,w ∈W (4.1)

Afterwards, estimated demand of each SKU (m ∈ M) was found for each week w ∈W , using

the relation in equation 4.2 (which is based on the notation of Huang and Liu (2017)), by adding,

for all stores, the sales for the days in which no stock-out occurred and dividing the result by the

sum of the weights those days possess for the specific business unit u to which the m product

belongs. A binary variable, V m
dws, was introduced to represent each day with sales possibility (that

is, when there was inventory at the opening of the store).

Dm
w = ∑

s∈S
Dm

ws = ∑
s∈S

7
∑

d=1
Sm

dws

7
∑

d=1
Wudw ·V m

dws

m ∈Mu,w ∈W (4.2)

The store dimension, SFuws, is introduced at u level (reducing instability of low selling SKUs),

by creating a factor that represents how much the sales volume for each specific s store represents

to the global amount, in a certain week (summarized in equation 4.3). It is calculated by accounting

for full demand at the store level for that w and u, divided by global demand for the same week and
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business unit. The definition of this variable allows capturing different store rankings throughout

the year, caused, for instance, by increased influx to stores by the coast during the Summer or

specific Portuguese or Spanish holidays that result in country-located peaks.

SFuws =
∑

m∈u
Dm

ws

∑
m∈u

Dm
w

u ∈U,w ∈W,s ∈ S (4.3)

As introduced in Chapter 2, fashion items are highly availability-dependent, meaning that if

a specific item is not on the shelf, the customer will (with a certain probability) replace it with

an adequate substitute or, to some extent, delay the purchase and wait for stock to be refilled.

That said, an additional step was incorporated to avoid overestimating demand when another item

was purchased instead, by multiplying the average demand calculated by the estimated probability

of actual lost sale. According to Zinn and Liu (2008), quitting or going to a competitor after a

clothing stock-out happens for 82% of cases (with "delay" closing the gap to 100%). However, the

analysis disregards substitution for other products inside the store, as the behaviour is measured

after the client exits. Average European consumer responses (for several retail categories) found

by Corsten and Gruen (2003) was 36% for the same behaviours, 17% for delayed purchases and

the remaining substituting the stocked-out item. As company stakeholders, for the case study

considered, believed that customers’ trips were too infrequent for delaying the purchase, a value

of 53% was implemented. This approach is meant to avoid altering selling quantities of other

SKUs that were sold as a substitution but that are much harder to identify. The final formulation

is stated in Equation 4.4, finding the demand for each m product, in day d of week w and store s.

Dm
dws = Dm

w ·Wudw ·SFuws ·0.53 m ∈Mu,d ∈ D,w ∈W,s ∈ S (4.4)

This decimal value was discretized using a Poisson distribution and fixed for each entry, avoid-

ing a stochastic simulation since the additional benefits did not outweigh its complexity.

The global results found for demand represented a 5.5% increase in comparison to recorded

sales, which was considered adequate taking into account the out-of-stock total percentages and

the business insights of company stakeholders involved in the project.

4.3 Simulation

The following section focuses on the specification of the logic incorporated for simulation. Through

exogenous DC inventory quantities, the model takes as input initial conditions and is able to per-

form replenishment to stores for multiple scenarios. It is prepared to deal with multiple delivery

patterns throughout the year and allows activation of ’emergency’ quicker shipments for stock-out

items. Detailed, SKU-level results are obtained, allowing experimentation of different measures

and understanding of their consequences.
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4.3.1 Model

The model was built using the general-purpose C# programming language, through the Visual

Studio software. The deterministic nature of the simulation allowed this flexible approach to

become a suitable option, fully replicating practices and enabling complete creation from scratch.

Interactions with databases were incorporated, in order to read data and output solutions.

In order to turn the sequencing more understandable, the lines of code that reproduced the

system can be illustrated using the blocks presented in Figure 4.2.

Figure 4.2: Main blocks of the simulation model.

In a macroscopic overview, after user inputs are introduced, the program starts by connecting

to the database and initializing the variables, after which it enters a loop that runs for each day of

the year (starting in February to allow some historical data). This loop encloses periodic, store and

DC operations, exiting for a data output code block. Each relevant process will be detailed further.

Initialization

Before the simulation itself can begin, parameters need to be fixed for the run. Firstly, the number

of different simulations to be performed is defined, in order to eliminate the need for waiting to in-

troduce new parameters to be tested. Next, for each scenario, the user specifies whether to split the

year in two (following the year seasonality identified in 3.1.5), and which set of delivery patterns

to use (from the ones previously available in the database). One interesting feature implemented

in the simulator is the possibility to override these delivery days for stock-out items, creating an

emergency shipment to the store, with a shorter lead time by one day (that is, Portuguese stores

are supplied in 24h, and Spanish ones in 48h). The activation of this policy is established also by

user input.

Afterwards, code modules communicate with the database to establish:

• Store data: for each store, initial stock is defined for each SKU, along with the timing each

product is to be on the shelf (first and last date);

• DC data: initial inventory (and arrivals from suppliers) and first shipment time and quanti-

ties;

• Client data: demand per store per SKU per day and store returns;

• Historical data: sales of the previous month and previous requests for shipments (for the

first days of simulation).
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This information is stored in dictionaries, relating unique keys with the correspondent values.

These variables can be then accessed throughout the code for reading and writing purposes. Two

cases where relevance and complexity are distinguishable require a more elaborate description.

The ’Timings’ dictionary establishes when a certain SKU is available for selling at a cer-

tain store, fixing the first and last date, that is, <Sku,Store>→ <FirstDate,LastDate>. One clear

disadvantage of this rigid replication (which is necessary to avoid estimating demand for other

periods/stores) is the fact that misalignments with allocation decisions taken in terms of quantities

can seize products in stores that will never be able to sell them. Since we are dealing with fixed

overall inventories, this will reduce global sales. In order to limit this effect, an additional steering

variable was introduced in the model: the ’MaxDemand’ dictionary. This acts as a ceiling for

quantities to be requested by stores at each point in time, being defined at the beginning of the

simulation for each SKU-Store (with the equivalent of a crystal ball) and decreased as demand is

evaluated each day. It is easy to understand that replenishment flows will become much more fitted

to historical ones, although first shipments could, nonetheless, introduce unsalable inventory.

Due to data availability limitations, the simulation was performed from the first of February,

in order to include 4 weeks of sales transactions to calculate OUTLs, which is done for the first

time in this initialization phase. Moreover, as DC inventory is to be shared with other channels

(wholesale and other markets), transactions made to stores within scope were used as a proxy for

the total quantity available to be shipped so that availability overestimation is avoided. In order to

capture shipments from suppliers for permanent products (which can happen throughout the year),

this method only considered data for one month ahead.

Periodic operations

Upon entering the simulation loop, the day variable is incremented to represent the present day,

followed by the definition of the day of the week it refers to and of the demand per item per store

(which is read from the database). Afterwards, several condition-based methods can be executed.

Firstly, as already mentioned, at the beginning of each week (that is, if the day represents

a Monday), DC stocks are updated to include new historical transactions for one extra week,

accounting for a full month. Furthermore, OUTL need to be redefined to include new sales trans-

actions, representing potential increases or decreases on target inventory levels. This process is

also done every Monday, replicating the policy introduced in 3.1.1, as reproduced in Algorithm 1.

In order to provide stability to the parameter, a week is taken as a trial period where no changes

are made to the predefined quantities shipped on the first introduction.

Additionally, if two yearly partitions are considered for delivery patterns, a function is acti-

vated on the day defined for the change, reading new shipment days per store from the database.

Store operations

The store dimension possesses a central role in the operations performed in the simulation, as

most outputs to be observed depend directly on the interactions happening at this stage. After
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Algorithm 1: Pseudo-Code for calculation of OUTL for each SKU-Store combination.
foreach timing in dictionaryTimings do

if first shipment happened more than 1 week ago then
total = Min{28;days on sale}
aux = 0
while aux < total do

aux = aux + 1
check sales for (total - aux) days ago

end
if there were sales then

calculates OUTL
else

OUTL = 1
end

else
OUTL = First shipment quantity

end
end

initialization, each store is already paired with SKUs, identifying timings for each, and initial

stocks are stored in a dictionary variable for each SKU, as well as the parameters for the OUTL.

Every weekday, the first step is updating inventory to include shipments that arrive on that day.

For each one, the dictionaryStocks is either updated or a new entry is included, if that SKU was

not yet present in the store. Additionally, the request that originated the delivery is eliminated.

"Virtual" shipments are scheduled for Sundays for new introductions, so the same process is re-

peated on this day, with the exception of finding a request (the reasoning for this is explained in

’DC operations’). Afterwards, variables containing shipments data are dumped to an external file

and cleared.

Next, in-store processes need to be replicated through logical sequences. Since OUTL are

reevaluated every week and ordering can take place whenever there is a request window (or every

weekday for emergency shipments), the obvious methodology would be to iterate through every

combination of SKU-store to find if it was relevant for purchases or ordering. Exactly to avoid

this time-consuming process (since fictional associations would be extremely common), the dic-

tionaryTimings is used for looping purposes. This simplifies the computational effort, by limiting

the field to pairs that are or will be pertinent. That said, every time an evaluated entry is on its

last day, it is flagged for elimination. Algorithm 2 summarizes the activities performed for each

combination.

After assessing that the SKU-store duo is active, the code starts by reading stock, demand,

returns, maxDemand and the OUTL. MaxDemand is updated to reduce the demand of the present

day and the ordering processes begin, to mimic the fact that this is usually done at the beginning

of the day before clients enter the store.

The request creation is fulfilled after specific conditions tackling OUTL, maxDemand and
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Algorithm 2: Pseudo-Code for Store operations per timing.
foreach timing in dictionaryTimings do

if current day is between timing interval then
reads stock
reads OUTL
reads demand
update maxDemand
if conditions are met then

creates request
end
if stock > 0 then

sells
end
performs returns
updates stock

end
end

Timing dates are checked, depending on the lead time type examined (a summary is provided in

Table 4.2). Firstly, two shared filters are applied: it cannot be the last day of the timing (as, oth-

erwise, stock would arrive after it is useless) and maxDemand has to be positive. After that, the

two shipping modes are evaluated, starting by assessing the need for the quicker one, conditioned

by whether it was configured for the current simulation run. Emergency requests are only permit-

ted on weekdays (to always allow 24h for preparation) and if inventory position is equal to zero,

which requires checking requests for on-order quantities. Moreover, the maxDemand should be

larger than inventory position minus demand for the day to justify ordering more of that product

for that store, in an allocation sense. At this stage, a new concept was introduced: considering that

regular replenishment happens at least once per week, there was not a need to order aiming for

maximum inventory, but only for enough to wait until the next scheduled delivery. After prelimi-

nary testing of more complex alternatives, 30% of the OUTL was established as a good trade-off

between amounts transferred and sales potential, as recommended by company stakeholders. An

additional limit is imposed before ordering to guarantee that the quantity is at most equal to the

maxDemand, after which DC stocks are checked and reduced (if possible) to create a request. The

request is stored with the date and quantity, as well as two boolean variables that state the urgency

and whether it has already been shipped. An identical process is implemented to generate regu-

lar requests on ’request days’ (established with sufficient lead time from the delivery day), being

worth mentioning that on-order quantities are checked again to avoid double requests, when not

needed. One important feature that is implemented is the ability that emergency requests have to

’steal’ inventory from non-urgent ones from the same day, whenever the inventory at the DC is not

enough to fulfill all orders.

After the completion of the ordering process, client interactions begin. Demand is compared

with store stocks and the maximum value between the two is recorded as a sale. Afterwards,

returns from that day are added to available inventory, in line with the practice of not processing
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Table 4.2: Conditions for each type of shipment request.

Regular Emergency

When
Request window Weekday & Activated

Not last day of timing

Conditions

OUTL > inventory position Inventory position = 0

maxDemand > inventory position - demand

maxDemand > 0

Quantity OUTL - inventory position OUTL × 30%

the inventory beforehand. A final stock update is performed and the loop continues to the next

SKU-store combination.

DC operations

The DC code processes requests from stores, creating shipments to be received by them, act-

ing, essentially, as a delay module. Each weekday, unfulfilled requests are checked for shipping

possibility, which means, both lead time compliance (at least two weekdays for Spain and one

for Portugal) and delivery window existence (for that store) on the next weekday. Depending on

whether emergency shipments were allowed, an attribute can identify these cases, which will be

verified only for a more recent request date. If conditions are met, a shipment will be added (see

Algorithm 3).

Algorithm 3: Pseudo-Code for DC Operations.
if weekday then

foreach request in dictionaryRequests do
if request not yet fulfilled then

if emergency shipment then
check if request was made at least yesterday for Spanish stores

else
check if request has predefined lead time and if the store has a delivery
window on the next weekday

end
if valid check then

add shipment with appropriate flag
end

end
end

end



30 Methodology

At the beginning of the run, first shipment quantities per store per SKU are fixed to replicate

strategic decisions, meaning available inventory must be limited accordingly. Since demand series

were fixed to historical timings, it is important to guarantee that products reach the stores at least

on the day they did on reality, so as not to miss the first days of purchases. However, we aim to

use the flexibility of setting the specific date of the shipment for new introductions to balance DC

workload over replenishment necessities. The resulting approach leads to the "virtual" distribution

of inventory on the Sunday before the introduction week (even though sales will only be possible

from the first day of the timing for each SKU-store) and an additional optimization engine is used

after simulation to allocate them to the "real" shipment. This means that shipments might be

happening after simulated sales, but it was considered that they would simply be delayed in reality

(instead of Tuesday, happening Wednesday, for instance), not affecting global profits.

Output

After the simulation has run until the end of the year, the calculated data is sent into appropriate

databases for analysis. This step includes writing sales records from the temporary variable used

so far and uploading the files with shipments data.

Additionally, the CPLEX optimization module is run to distribute first shipments appropriately

throughout the week and final results are exported. This last phase is performed merely for vali-

dation purposes so capacity limitations can be identified and shipment costs calculated correctly.

4.3.2 Validation

As defended by Banks et al. (2010), the validation of a simulation model is of utmost impor-

tance for increasing confidence in its ability to closely reproduce the system’s behaviour, enabling

experimentation, and for increasing credibility on the recommendations originated.

For the model produced, two main outputs are generated after the run: sales and shipments.

Since we aim to get higher profits and more consolidated deliveries after experimentation, it should

be guaranteed that by using historical delivery patterns we obtain an approximation of historical

sales and pallets transported.

For the first dimension, a slight overall reduction of 2.5% was found when comparing units

sold, and less 2.2% regarding profits. In order to investigate the underlying reasons for the dif-

ference, the simulated sold quantities per week were plotted against expected values, which is

depicted in Figure 4.3.

A quick look at the graph immediately shows that the main variation seems to be located during

the summer markdowns (that is, around July and August) and Christmas season, where quantities

peak. In fact, removing these three months from the calculation lowers the deviation to 1.3%,

for the remaining eight. However, after carefully analyzing the data provided, one can account

most of this effect to errors in records during these chaotic periods of inventory push. Since not

all leftover stock shipped to stores for end-of-season clearance is present on the database, the

simulator is unaware of these products’ existence to be sold. Moreover, by this date, allocation
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Figure 4.3: Comparison of sales quantities per week between simulation results and reality.

decisions that were not completely guided by the maxDemand variable add up, and inventory

could be stuck in stores for which selling periods have ended. This is allowed by calculating the

remaining demand for the time of the request and not for the time of the arrival of the product,

which would completely fix shipments to perfect forecast conditions and is, therefore, avoided.

It is important to mention that due to the lower prices practiced during these markdown periods,

the global profit does not take as big a toll, and a plot for comparison would show two close to

overlapping curves.

The second aspect to evaluate is concerned with the shipments between DC and stores. Overall

results showed that 5.8% were not shipped on the simulation, which issued the need for further

scrutiny. Figure 4.4 shows the comparison between the total number of pallets shipped per week

on the simulation and on real data.

Figure 4.4: Comparison of number of pallets shipped per week between simulation results and
reality.

For the majority of the period considered, the simulator does a reasonable job of mimicking

reality, as the curves follow the same patterns. However, as the year gets close to the end, the
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gap widens, and a considerable amount of products seem to be missing from the deliveries. Two

different factors were believed to be behind it. Firstly, since available DC inventory is constantly

one month ahead, the last month could suffer from too tight restrictions on availability. This

argument does not seem too strong when considering that sales do not seem to suffer much during

this period. That being said, the fitting of inventory made possible by maxDemand could be to

blame for this deviation, as no data for the year 2019 is considered, leading stores to end the

year without considering keeping inventory to fulfill upcoming demand. As an extension for this

model, final inventory levels could be implemented to decrease this terminating effect.

Besides the shortcomings provided, and after suitable causality was found, the simulation

model is capable of establishing microscopic interactions that still make sense at an aggregate

level. One important factor to bear in mind is that after credibility is established for the results,

all comparisons can be done between simulation outputs, eliminating the effects aforementioned.

Consequently, the model can be labeled as validated as all major relationships are correctly repre-

sented and experimentation can take place.

4.4 Metamodel

Although simulation provides extremely detailed outputs for each configuration tested, it comes

with the drawback of being a computationally expensive method for experimentation of an exten-

sive number of possibilities. In order to obtain interesting solutions in a timely manner, a meta-

model was introduced which provides an estimation for the sales made possible by each delivery

pattern, that is, how efficient a certain combination of shipment days is at reducing stock-outs for

that specific store.

4.4.1 Model

Numerous methods are presented in the literature for this end but, undoubtedly, the most elemen-

tary one is by establishing a relationship between variables using a simple linear regression, so it

should be evaluated if it is applicable in this case. Choosing to tackle a multitude of small prob-

lems instead of a single large one, each store was considered independent from the others, and a

function was approximated per store. Although this is not entirely true due to limited centralized

inventory (for instance, if a store only receives on Fridays it could always end up missing items

that were already shipped to other stores), the simulation runs were defined in ways that balance

equality through the stores, diminishing these effects which are assumed to be irrelevant.

The first step in the methodology is to choose a continuous variable that can effectively sub-

stitute discrete days enumeration on the classification of each scenario, that is, replace a Monday-

Wednesday combination with a number: the weighted replenishment speed. Using an average

week of deliveries for a scenario in which stores can receive inventory every weekday, one can

estimate the effect that different delivery windows have, by delaying deliveries which are not pos-

sible on the current combination to the next shipment day. To turn this idea more comprehensible

consider a Portuguese store that receives inventory every day except on Thursdays. This will result



4.4 Metamodel 33

in the quantities scheduled for this day being pushed until Friday, as when OUTLs are checked

with 48h lead time on Wednesday, they will already incorporate two days of sales since the last

order was placed. The reasoning behind this logic becomes a bit trickier when talking about week-

end replenishments, as there is the need to separate the quantities to correctly assess the days until

inventory returned to a store after the purchase. That said, using the information in Table 3.1, one

can estimate which percentage of the delivery quantity is related to each day, arriving at average

quantities sold and replenished per day. By multiplying these quantities with each day’s time until

delivery, a global value is found for weighted replenishment speed for that combination of de-

livery days, for that store. It is important to mention that using shipment data instead of sales is

extremely relevant due to the fact that not all items are replenished in a fast-fashion context, where

collections are always changing. The described heuristic was used to find this characteristic for

the two periods of the year under analysis.

After this independent variable is defined, simulated data was used for five different scenarios,

with all stores possessing the same delivery frequency that ranged from two times to all days of

the week (always not including the weekend) and for the current varied delivery patterns. These

five data points were used to fit the model and find the relationship between replenishment speed

and profit (meaning, the difference between the selling price and buying cost), for each store.

The calculation of the parameters for the linear regression was done with Microsoft Excel. As an

example, Figure 4.5 illustrates the data points obtained and the estimated trend for one store.

Figure 4.5: Example of the relationship between replenishment speed and obtained profit for one
store.

4.4.2 Validation

In order to prove the linear regression’s capability of providing a good substitution for the sim-

ulation model, a validation step must be performed (Wang and Shan, 2007). Predictive models

can be tested for accuracy using metrics that compare the forecast values with real data, being the
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two most used ones (due to an easier evaluation of results) the Mean Average Percentage Error

(MAPE) and Mean Percentage Error (MPE or Bias) (Schuller, 2018).

The most straightforward and first approach when using linear regression models is to de-

termine the R², which averaged 86% for all stores and could be considered reasonable. MAPE

averaged 0.07% for all data points, which seems a pretty small error, and Bias calculations were

approximately 0%.

Since limited data is available, no extensive test and train methodologies can be used to reach

better precision. However, the leave-one-out approach was used to provide insights into the va-

lidity of the model. Since common delivery frequency data points provide a strong base for the

model by incorporating extreme values, the As-Is configuration was chosen to be only used as

testing data. R² increased by 2% (which was expected as it is a measure that strongly depends on

the number of points), and MAPE stayed below 0.1% for both test and training data.

It is clear that the low variation found between each scenario and the high absolute values are

behind this apparently strong model. However, this makes this simplified approach suitable for the

problem at hand and optimization can lean on these results to provide an approximation that will

prioritize higher selling stores.

4.5 Optimization

The optimization module concludes the definition of improved delivery patterns, relying on the

previous analysis to provide needed inputs. The main goal is to choose the best shipment days for

each store while maintaining holistic integration. For the proposed methodology, we assume fixed

total number of units shipped per week per store which, when considering the costs introduced in

Table 3.2, means that only the ones varying with pallet number are affected by shipping policies.

Keeping in mind that aggregating more days can potentially reduce the total number of pallets

shipped per week for that store, a higher frequency is expected to yield higher logistic costs and

higher sales (as it becomes more responsive to replenishment needs). As already mentioned, we

chose not to include store operations, since employees are believed to have enough idle time to

process receptions, meaning that changes do not directly impact expenses. The notation used is

summarized in Table 4.3.

Firstly, all different scenarios per store s ∈ S were listed, enabling the use of OpenSolver®, an

Excel add-in for optimization. For each delivery pattern n ∈ N and each weekday d ∈ D (from

Monday until Friday), a binary variable ydn defined whether a shipment was allowed. Using an

average week for a scenario with the highest delivery frequency, the approach introduced in the

previous section was replicated for each store-delivery days combination (that is, each row), find-

ing shipment quantities per day, qR
sdn. This allowed each row to be evaluated for expected direct

product profits Psn, using the metamodel introduced in the previous section, transportation costs

T sn and expedition costs Esn, by transforming number of products into number of pallets. The

general equation for the calculation of Psn using the already-defined linear regression is presented

in equation 4.5, which takes as input the replenishment speed for each scenario and the αs and βs
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parameters estimated by the metamodel.

Psn = αs +βs ·RVelsn s ∈ S,n ∈ N (4.5)

The incorporation of first shipments must not be forgotten, as they provide extra flexibility for

the solution though with extra complexity to the model. Hence, two sets of decision variables are

found: xsn, which is a binary variable that states whether a delivery pattern was chosen for that a

store, and NIsd , as the percentage of new introductions to be shipped each weekday for each store.

Let qNI
s be the average quantity of new products sent every week to each store, λ the average

number of units that fit into a box and ψ the number of boxes in a pallet, it is possible to define

the number of pallets shipped each day for each store for every delivery pattern, Qsdn, as:

Qsdn =

⌈
qNI

s ·NIsd +qR
sdn

λ ·ψ

⌉
s ∈ S,d ∈ D,n ∈ N (4.6)

A ceiling needs to be implemented as even one box will be charged as a pallet in transportation

and incur similar costs in expedition. Equations 4.7 and 4.8 provide the explicit calculation, being

e the expedition costs per pallet and ts the transportation costs per pallet for store s.

Tsn = ∑
d∈D

Qsdn · ts s ∈ S,n ∈ N (4.7)

Esn = ∑
d∈D

Qsdn · e s ∈ S,n ∈ N (4.8)

Altogether, the objective function can be described by equation 4.9, where we aim to maximize

overall profits, accounting for costs of shipping, adding the individual estimation for each store,

for the chosen delivery days.

Maximize ∑
s∈S

∑
n∈N

(Psn−Tsn−Esn) · xsn (4.9)

Certain constraints need to be added to the formulation to align the problem with reality.

Firstly, capacity at the DC must be assured for each day CAPDC
d , meaning that shipped quantities

for all stores should be below the threshold, as described in 4.10. Moreover, due to space lim-

itations at the stores, the number of pallets received must fit in the store receiving area CAPRec
s

(equation 4.11).

∑
s∈S

(
qNI

s ·NIsd + ∑
n∈N

qR
sdn · xsn

)
≤CAPDC

d ∀d ∈ D (4.10)

∑
n∈N

Qsdn · xsn ≤CAPRec
s ∀s ∈ S,d ∈ D (4.11)

In order to align first introductions with business strategies, each store’s percentage of clothing
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(apparel) items on new introductions Apps (that is, excluding accessories and shoes, for instance)

must be guaranteed to reach the stores within the first two days of the week. This business restric-

tion was included as defined in 4.12.

∑
d∈{Monday,Tuesday}

NIsd ≥ Apps ∀s ∈ S (4.12)

At last, to keep decision variables within expected bounds, constraints 4.13 through 4.17 were

included in the formulation, starting by limiting new introductions to days were the chosen policy

has a delivery, forcing 100% of new introductions to be allocated per store and only defining one

delivery pattern for each store. Additionally, NIsd was made non-negative and xsn binary.

NIsd ≤ ∑
n∈N

ydn · xsn ∀s ∈ S,d ∈ D (4.13)

∑
d∈D

NIsd = 1 ∀s ∈ S (4.14)

∑
n∈N

xsn = 1 ∀s ∈ S (4.15)

NIsd ≥ 0 ∀s ∈ S,d ∈ D (4.16)

xsn ∈ {0,1} ∀s ∈ S,n ∈ N (4.17)
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Table 4.3: Table of notation for optimization.

Sets and indices

s ∈ S Stores
d ∈ D Weekdays = {Monday, Tuesday, Wednesday, Thursday, Friday}
n ∈ N Delivery patterns

Parameters

ts Transportation costs per pallet for store s
e Expedition costs per pallet
qR

sdn Replenishment quantities for store s on day d with delivery pattern n
qNI

s New introduction quantities for store s
CAPDC

d DC processing capacity (in items) on day d
CAPRec

s Receiving capacity (in pallets) for store s
Apps Apparel percentage on new introductions for store s
ydn Binary parameter that indicates whether delivery pattern n has delivery on day d
λ Number of units per box
ψ Number of boxes per pallet
αs Intercept of the sales profit regression for store s
βs Slope of the sales profit regression for store s
RVelsn Replenishment speed for store s and delivery pattern n
Psn Sales profit for store s and delivery pattern n

Auxiliary variables

Qsdn Number of pallets delivered to store s on day d for delivery pattern n
Tsn Transportation costs per week for store s and delivery pattern n
Esn Expedition costs per week for store s and delivery pattern n

Decision variables

xsn Binary variable that indicates whether delivery pattern n is chosen for store s
NIsd Percentage of New Introduction quantities to be shipped on day d for store s
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Chapter 5

Case Study Results

This chapter presents the results of applying the described methodology to the fashion retailer

under analysis. Since no implementation was performed by the end of the study, a comparison

basis will be used. Through simulation of one year with historical data, the policy currently in

place is replicated and a baseline As-Is scenario is established.

A detailed solution was found for the optimization of delivery patterns, compiled in Section

5.1. Several validation approaches were used to evaluate scenarios. Additionally, in Section 5.2,

the accomplished simulation model was used to experiment with an emergency shipment policy.

5.1 Delivery Pattern optimization

In order to provide a better understanding of the effects resulting from various delivery frequen-

cies, Figure 5.1 illustrates the differences between costs in the 3 dimensions considered: DC,

transportation and lost profits.

Figure 5.1: Comparison of the costs obtained for multiple scenarios tested.

In the ’5x’ scenario, all stores were supplied five times per week, corresponding to the highest

delivery frequency possible, which was used as a threshold for the sales the current logistics and

procurement structure is capable of capturing. An extremely high transportation expenditure is

observed, in contrast with the one enabled by the ’2x’ option, where only two delivery windows

were allowed per store and shipments become more efficient. However, the slower reaction to

39
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Table 5.1: Comparison of the distribution of delivery frequencies for the As-Is and the Optimized
scenario.

Delivery frequency As-Is
Optimized

1st partition 2nd partition

2 21% 26% 4%
3 45% 50% 46%
4 19% 14% 37%
5 15% 10% 13%

Average 3.3 3.1 3.6

purchases and resulting amounts of lost sales (and consequently, lost profit) clearly outweigh the

benefits. This result immediately leads to the conclusion that much lower delivery frequencies

than the ones currently implemented will not be suited for the specific circumstances.

As a way to provide a theoretical target for the best case, the ’Minimum*’ costs were defined

by assuming the possibility to fulfill all the sales of the ’5x’ scenario by a single delivery to each

store per week. It is clear that this might not feasible due to store or DC capacity constraints (and

would represent a better ability to forecast demand), yet it provides the awareness that even in the

best case scenario there is a considerable fixed cost structure required.

Following the methodology presented in the previous chapter, an ’Optimized’ set of delivery

patterns was found, splitting the year into two partitions divided at the beginning of November.

When comparing global costs to the As-Is configuration, a 3.0% decrease was found (with reduc-

tions in all dimensions considered), in addition to a 0.1% reduction in inventory left unsold at the

end of the simulation. The fact that sales were increased and shipment costs lowered indicates that

better allocation of delivery windows for each store was obtained. Similarly to the 3.3 average de-

livery frequency currently used, the solution reached 3.1 for the first part of the year and 3.6 for the

peak period afterwards. This goes in line with expectations that higher availability during this time

might be worth the extra costs incurred. The shift to increasing trips to stores is noticeable in Table

5.1, as very few stores get deliveries only two times per week at the end of the year (only 4%). It

is interesting to notice how As-Is values are always higher for the maximum delivery frequency,

which by itself could steer company stakeholders towards a smaller number of shipments.

It is important to guarantee that capacity requirements for preparing shipments at the DC and

at the receiving end, in the store, are within acceptable bounds. Since additional workforce can be

scheduled for peak periods (such as new store openings or Christmas shopping sprees) and stores

can occasionally create room when really needed, the As-Is situation was used as a proxy for the

acceptable amount of irregular situations. Figure 5.2 presents the percentage of products that were

over theoretical capacity at the store, CAPRec
s , and at the DC, CAPDC

d .

For the first dimension, all scenarios perform similarly low, with the exception of the lowest de-

livery frequency, ’2x’, which could potentially cause problems due to repeated pressure on storage

space. The ’Optimized’ alternative stayed close to the results for the ’As-Is’ configuration, proving



5.2 Emergency shipments simulation 41

Figure 5.2: Comparison of the percentage of units over capacity at store reception and DC prepa-
ration for multiple scenarios tested.

itself as acceptable. However, a more strenuous landscape is shown at the DC, where the sorter

capacity is not capable of fulfilling shipments of 9,1% of the units for the ’2x’, when considering

current timetables, dismissing this scenario completely. The results for the comparison between

the other three lead to an interesting conclusion: since store delivery patterns were aimed at im-

proving replenishment velocity, most stores got delivery windows on ’important’ days, that is, the

quicker possibility of restocking weekend purchases (which makes the ’5x’ and the ’Optimized’

solutions so similar). Although this did not prove problematic for the average week considered in

the optimization module, an increase in the percentage of units over-capacity is evidenced for the

full year run. It is not straightforward that this would block this scenario, as alternative solutions

could be found such as increasing sorter hours, better allocation of first shipments, manual sort-

ing, among others. Nevertheless, the extra entropy should weight on the decision to implement

the changes.

Taking into consideration the mentioned limitations, the cost reduction obtained for the ’Op-

timized’ scenario was, however, not considered enough to justify the necessary adjustments by

company stakeholders, due to the proximity to current practices. A positive note still originated

from the experimentation, as confidence in the current empirical method was increased and the

need for implementing changes demystified.

5.2 Emergency shipments simulation

As presented in Section 4.3, an important feature was added to the simulator, enabling experimen-

tation with a shorter lead time. Since current practices hold inventory in the DC for around one day

and a half between store ordering and shipment (which takes place at the end of the afternoon), the

impact of being more agile in this preparation, and shipping within the day of ordering, showed
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potential for assessment. Following, a further explanation of the reasoning behind the approach

and the results obtained from simulation are presented.

5.2.1 Contextualization

The DC starts processing store orders in the morning of the requests, and after consolidated pick-

ing, the sorter begins separating products per store. However, due to the large volume to be pro-

cessed, this process ends after carrier’s departure time, meaning shipment will only take place on

the following day (refer back to Section 3.1 for more details). In order to allow ending preparation

in time, a smaller subset of products can be chosen to be prioritized and rushed through operations,

which, in line with the availability mindset, were defined as stock-out products at each store.

The current replenishment policy is merely responsive to the OUTL, which is checked for

every product whenever there is a ’request’ window, in line with the lead time required to comply

with the delivery days defined. However, for the testing hypotheses at hand, and to increment

possibilities of sales, all items were checked every day for zero inventory. This results in shipments

happening most days for every store, increasing transportation costs. A new carrier was considered

for these trips, which presented tariffs based on box quantities instead of pallets.

This operational change came at the expense of some activities previously done at the DC

(and for that reason, until this point, out of scope for the analysis), which now need to be pushed

to the store, such as tagging individual products. This important adjustment means that costs at

this dimension should be evaluated for holistic calculation, as well as some extra entropy at the

DC from reducing economies of scale.

The main goal of the analysis is then to understand whether the extra sales made possible

by quicker replenishment velocities are enough to outweigh the bigger operational costs while

keeping current delivery patterns.

5.2.2 Results

The final results for the simulation run allowing Emergency Shipments (ES) are depicted in Figure

5.3, in comparison to the As-Is scenario. As mentioned, new dimensions were incorporated in the

analysis to fully evaluate the consequences of the alternative.

Reducing replenishment lead time of critical SKUs did, as expected, increase sales, creating

a new baseline for possible purchases and putting in perspective previously obtained values for

lost profits. A closer examination of the decomposition of the bars reveals how costs shift from

the DC dimension to store operations, due to customization activities happening partially at this

stage. The consequent reduction in DC expenses is, however, neutralized by the expected increase

in shipments preparation, whose number is now substantially higher. Transportation also takes a

toll due to this fact. Nevertheless, it was possible to determine that additional captured demand is

indeed sufficient to outweigh these extra logistic expenses, leading to a 6.9% overall decrease in

the considered costs for a year of simulation. Moreover, 1.1% less inventory was remaining after

the simulation run.



5.2 Emergency shipments simulation 43

Figure 5.3: Comparison of the costs obtained with or without emergency shipments.

In order to validate the results obtained, received quantities (at the store) per weekday were

plotted against current ones, differentiating between emergency (in white) and regular (in blue)

requests, which is presented in Figure 5.4.

Figure 5.4: Comparison of the average quantities received for each day of the week with or without
emergency shipments.

As would be expected, a large proportion of these priority products is received on Tuesdays,

resulting from stock-outs reported on Monday, after weekend sales. This reduces the number of

products arriving in stores Wednesday since some are sped up through DC processes. Overall, ES

account for 19% of units delivered, which issues further investigation into the feasibility of the

scenario. Out of the 332 days simulated, 14 were marked as over-capacity for the special sorter

configuration needed to include emergency shipments. To evaluate the impact of this constraint, a

sensitivity analysis is pictured in Figure 5.5 with regard to hour variations in operation time.

An initial remark should be done on how the ’+0’ available time was defined in a conservative

manner, ensuring possibility of execution. Consequently, reducing one hour would represent an
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Figure 5.5: Sensitivity analysis of the impact of changing sorter operating time for the emergency
shipments scenario.

extremely unlikely scenario, although with the duplication of complicated days. However, if two

additional hours are allocated to sorting products, the value drops to half.

As for the store dimension, no additional strain is incurred in relation to the As-Is configuration

as shipments are performed in boxes for days without scheduled deliveries and per-store quantities

are small and mostly do not impose changes in pallet number for the remaining days.

The relative simplicity of implementation of this policy attracted company decision-makers to

the pursuit of this path, which should be ongoing in the near future.



Chapter 6

Conclusions and Future Research

This dissertation focused on establishing store delivery patterns within the context of a fashion

retailer in an integrative approach. To do so, dependencies between supply chain dimensions

were analyzed, reaching a verdict on relevant restrictions and costs for the distribution center,

transportation and store subsystems. By mapping these impacts, a holistic analysis is obtained and

recommendations can be confidently introduced.

The proposed methodology comes as a consequence of the inherent characteristics of the ap-

parel industry, where short product life-cycles lead to a constant change in assortment, with new

items being sent to stores weekly. Moreover, the availability-driven demand weights on the need

for assuring a quick replenishment of shelves, in order to avoid stock-outs. A product not sold in a

customer trip can end up in markdowns or be left unsold at the end of the season, with a reduction

of profits. Moreover, very low predictability requires a fast reaction to sales, as forecasts come

with a high error margin at the SKU-store level.

Although complex methods have been proposed for the optimization of grocery delivery days

(which include modelling effects of order sizes on various activities), none have yet tackled the in-

fluence these might have on stock-outs. This represents the main addition to the research field, and

the negative consequence to balance with lower expedition costs. To do so, a microscopic approach

becomes necessary as, otherwise, the relationship between lost profits and decision variables could

not be assessed. After estimating demand for days where it was not recorded, a simulator is intro-

duced, detailing the impacts of distinct replenishment policies on store sales. However, it would

be an extremely time-consuming process to aim for experimenting with all the possible combina-

tions of store-delivery patterns, so a shortcut is brought on by incorporating a metamodel. With

this tool, the optimization module could present reasonable results and arrive at ideal solutions for

an average week. Validating the scenario then required the simulation run of the policy.

For the case study analyzed, a 3% cost improvement to current practices was found, though at

the expense of slightly tighter logistic operations. Despite a substantial gain not being clear, com-

pany stakeholders believed the study still provided important insights for evaluating established

systems. In order to leverage the development of the simulation model, an emergency shipments

policy, which added to current delivery patterns, was tested and results were remarkably promising
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for implementation possibility, with 6.9% of savings in costs incurred.

The simulation-optimization sequence suggested should not be interpreted as a solution for a

specific retailer problem but rather as a generic tool with the potential to answer a complex analytic

challenge of any supply chain facing identical interactions. Significant improvement opportunities

could be estimated for a less established player, which has not yet been able to tweak operations

into an equilibrium, since the methodology did, in fact, propose a solution close to minimum costs.

Several limitations on the assumptions made were mentioned throughout the dissertation and

could instigate further research. For one, the approach used for steering of inventory could be

substituted by a more reasonable one, such as fitting a last delivery date. It is clear, however,

that being able to estimate demand out of historical periods could be enough to eliminate the

correction completely. Additionally, the simplistic metamodel incorporated could be made more

reliable by more sophisticated prediction techniques. Moreover, for the customer-centric approach

considered, store costs were mainly disregarded in optimization, which could prove not to be

the path for all cases. The transportation was also straightforward due to outsourcing to a 3PL.

Additional research could combine a routing problem to the methodology, reaching efficient costs

for a company-owned fleet of trucks.

The power of simulation for impact assessment was only slightly harnessed and additional

features could be added for evaluation of alternatives. For instance, lateral transshipments between

stores could represent a more efficient way of performing emergency deliveries. Furthermore,

OUTL calculations could be redefined and even fully questioned, as they have been defended as

far from optimal for lost sales models (Bijvank et al., 2015). Allocation decisions could also be

incorporated in the simulator, in contrast to the pure first-come, first-served approach used.

Finally, as a closing remark, it is important to stress the relevance of the research on the

ever-growing fashion industry. It should not be seen as a pure consequence of success that Zara

outscores any other company on the number of published articles, but rather as a contributing

factor to it. Pertinent studies on this unexplored field can set the difference between winning or

losing a purchase, a client or the market itself.
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