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Abstract 

Described for the first time in 1950 as a “sudden increase of ICP”, plateau waves are complex 

phenomena that consists in a sudden rise of ICP above 40 mmHg for a minimum period of five minutes. 

Along with the rise of ICP, there are changes in signals such CPP and HR. Triggered by a vasodilation 

cascade loop, plateau waves can end naturally or in response to treatment, activating the cerebral 

vasoconstrictive mechanism to decrease the amount of blood present in the brain, and thus decrease 

the intracranial pressure. 

Plateau waves are very common phenomena observed in acute brain lesion patients. Traumatic 

brain injury, subarachnoid haemorrhage, acute hydrocephalus and benign intracranial hypertension 

are some of the reasons that may cause plateau waves and thus an increase in ICP. TBI patients are 

admitted in Intensive Care Units to be managed under continuous multimodal monitoring to avoid 

secondary brain injury, namely due to long periods of increased ICP and impaired cerebral autoregu-

lation. In addition, this continuous monitoring is not only important to target management but also 

to trail. Therefore, an algorithm for automatic detection of plateau waves, that also may help to 

preview their appearance and eventually avoid them, would be a very helpful clinical tool. 

The present project consisted in the development of an algorithm for automatic detection of 

plateau waves, that demonstrated a very good performance and computational analyses of monitoring 

data that may generate a pattern that may help clinicians to predict their appearance. The data used 

was anonymously provided by the Unidade Cuidados Neurocríticos do Centro Hospitalar S. João 

(UCNC) and it was pre-processed. In addition, since machine learning is associated with the develop-

ment of models that can better describe the provided data based on artificial intelligence, some 

techniques were applied to assess the existence of a relationship between the EEG signal and the 

beginning of a plateau waves. Among the set of available techniques, some of them use the label to 

supervise the learning process, designated supervised learning techniques, which is the case of logistic 

regression, support vector machine and neural network. On the other hand, the techniques that do 

not require the label are designated as unsupervised learning techniques and the data is grouped in 

classes according to the similarities between data points. 

Based on the results obtained in the first phase of this project, computed in Weka software, some 

machine learning techniques were trained. Despite the high performance values they present, most 

of the results obtained were not satisfactory. However, there is a gaussian process model with a good 
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accuracy, which may indicate the presence of the mentioned relationship between EEG signal and the 

beginning of plateau waves. 
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Resumo 

Descritas pela primeira vez em 1950 como “aumentos repentinos da pressão intracraniana”, as 

ondas plateau são fenómenos complexos que consistem num aumento abrupto da pressão intracrani-

ana (PIC) para valores superiores a 40 mmHg por um período mínimo de cinco minutos. Em conjunto 

com o aumento na PIC, há alterações noutros sinais, nomeadamente na pressão de perfusão cerebral 

(PPC) e a frequência cardíaca (FC). Acionado pelo ciclo de cascada de vasodilatação, as ondas plateau 

podem terminar de forma natural ou em resposta a tratamento, ativando o mecanismo de vasocons-

trição cerebral para diminuir a quantidade de sangue presente no cérebro e, deste modo, diminuir a 

PIC. 

As ondas plateau são fenómenos muitos comuns observados em pacientes com lesão cerebral 

aguda. Traumatismo crânio-encefálico (TCE), hemorragia subaracnoide, hidrocefalia aguda e hiper-

tensão intracraniana benigna são algumas das razões que podem causar ondas plateau. Pacientes com 

TCE são admitidos nas Unidades de Cuidados Intensivos para manuseamento sob monitorização contí-

nua para evitar lesão secundária, nomeadamente por longos períodos de PIC aumentada e ausência 

de autorregulação cerebral. A monitorização multimodal contínua é importante não só para a orien-

tação clínica do manuseamento do doente, mas também como ferramenta de previsão de prognóstico. 

Assim, o desenvolvimento de um algoritmo para a deteção automática das ondas plateau, que possa 

ajudar a prever o seu aparecimento e eventualmente evitá-las, será, sem dúvida um importante ins-

trumento de apoio clínico. uma ferramenta útil. 

Nesse sentido, o presente projeto consiste no desenvolvimento de um algoritmo para deteção 

automática das ondas plateau, que demonstre um bom desempenho e na análise computacional dos 

dados de monitorização multimodal, de modo a encontrar um padrão que ajude os clínicos a prever 

o seu aparecimento. Os dados usados foram anonimamente fornecidos pela Unidade de Cuidados Neu-

rocríticos do Centro Hospitalar São João (UCNC) e foi pré-processada. Para além disso, uma vez que 

machine learning está associada ao desenvolvimento de modelos que podem descrever melhor os 

dados fornecidos baseados em inteligência artificial, algumas técnicas foram aplicadas para avaliar a 

existência de uma relação entre o sinal de eletroencefalograma (EEG) e o início das ondas plateau. 

Do conjunto de técnicas disponíveis, algumas usam as etiquetas para supervisionar o processo de 

aprendizagem, como é o caso da regressão logística, a máquina de vetores de suporte e as redes 

neuronais. Por outro lado, as técnicas que não requerem as etiquetas são designadas de técnicas de 
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aprendizagem não-supervisionada e os dados são agrupados em classes conforme as similaridades 

entre os pontos de dados. 

Baseados nos resultados obtidos na primeira fase deste projeto, analisados com o programa Weka, 

foram treinadas algumas técnicas de aprendizagem de máquinas. Apesar dos altos valores de desem-

penho conseguidos, a maior parte dos resultados obtidos não foram satisfatórios. Contudo, salienta-

se um modelo de processamento gaussiano com uma boa precisão o que pode indicar a presença da 

referida relação entre o sinal de EEG e o início das ondas plateau. 
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Chapter 1 

Introduction 

1.1 - Context 

The skull provides support to the brain and protection against falls and accidents. As a closed box 

that contains the brain, the blood vessels and the cerebrospinal fluid (CSF), an increase in the volume 

of one of the mentioned components will require changes in the volume of the other to restore the 

pressure. However some events, such as brain tumour, acute hydrocephalus and benign intracranial, 

may result in a more permanent increase in the pressure inside the skull, and originate physiological 

events. Designated as plateau waves or A-waves, these episodes are characterised by the rise in in-

tracranial pressure (ICP) signal to values above 40 mmHg, accomplished with changes in other signals, 

namely a constant ABP and consequently a decrease in cerebral perfusion pressure (CPP). 

These episodes are typically developed in traumatic brain injury (TBI) patients, with low compen-

satory reserve and good autoregulation. Nevertheless, during the top of ICP wave the autoregulation 

mechanism becomes impaired and does not hinges the activation of the vasoconstriction mechanism 

to decrease the quantity of blood in the brain and thus reverse the increased ICP value triggered by 

the vasodilation cascade loop. This vasoconstrictive mechanism can be activated naturally or in re-

sponse to active treatment. 

Patients with severe TBI are frequently admitted in neurocritical care units to be managed tar-

geted by continuous multimodal monitoring and avoid the development of a secondary brain injury. 

The Unidade de Cuidados Neurocríticos do Centro Hospitalar S. João (UCNC) uses the ICM+ software 

developed by the Cambridge University, which is a software that not only displays in a screen in real 

time at bedside all patient signals, but also records the raw data signals collected allowing offline 

analysis. The online analysis has two possibilities, namely time-domain analysis looking at the time 

series of the waveforms and trends or frequency-domain analysis looking at the frequency distribution 
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of biosignals and their relationship (Figure 1.1). Furthermore, it incorporates toolboxes of statistical 

analysis of data already collected from patients.  

 

 

Figure 1.1 – Online analysis in ICM+ allows a time-domain analysis (in the left side) and a frequency analysis (in 
the right side) of the same biosignals. 

Regarding with the importance associated with the detection of plateau waves, the need of an 

algorithm capable to automatically detect these waves arose. For that and based on the type of data 

collected from patients, the application of machine learning techniques seems to be most appropri-

ate, because the development of the models is based on artificial intelligence. Thus, the first part of 

this project consisted in the study of several machine learning techniques. They can be divided in 

supervised learning techniques if the label is used to supervise the learning process, as neural net-

works and support vector machine (SVM), and in unsupervised learning techniques if the models does 

not require the labelling of the data. After that, a preliminary evaluation of their performance in the 

data files, similar to that used in this part of the project, was performed using Weka. Weka is an open 

source software developed by the Waikato University of New Zealand written in Java. It contains 

several machine learning techniques, designated as classifiers, than can be applied to data for data 

mining tasks [1]. The model is not designed, but it provides an overview about the its performance. 

The data used to train was anonymously provided by UCNC. 

The training data in Weka requires a specific format, designated as Attribute-Relation File Format 

(ARFF) format. However, the data extracted from ICM+ cannot be directly applied in the software, 

because an ARFF file has a specific structure. At the beginning of the file, the name of the relation 

must be defined using @relation, followed by the definition of the name and the type of each variable 

declared as @attribute name type and, finally, @data that determines the beginning of the data. 

Neural networks, SVM and logistic regression were the supervised learning techniques trained in 

Weka software, while random tree was the selected unsupervised techniques. Regarding the prelim-

inary results obtained, presented in Table 1.1, the performance of the models was calculated by 

correlation coefficient and mean absolute value. While a higher correlation coefficient is associated 
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with a model with better performance, a lower mean absolute error also reveals the effectiveness of 

the model. 

 

Table 1.1 — Performance values obtained from the methods trained in Weka. 

Classifier Correlation Coefficient Mean Absolute Error 

Neural Networks 0,997 0,0474 

Random Tree 0,8811 1,5934 

Linear Regression 0,893 1,7556 

SVM 0,998 0,0304 

 

As it can be observed, the neural networks and SVM methods had shown the best values in both 

evaluators. However, the computational time required to neural networks is lower than the one re-

quired for SVM. 

Although the promising performance values, it is important to note that the data used did not 

contain the EEG signal, which was always considered to train the models presented in this part of the 

study. Despite this, the models selected to be trained were based on these results. 

1.2 - Motivation 

About 600 patients die every year as victims of TBI in Portugal, according to a study provide by 

Associação Novamente, which is a portuguese association develop to provide support to TBI patients 

and their families [2]. In addition, a study developed by Oliveira et al. [3] in 2012 shows that the TBI 

incidence in European Union was 235 in 100000 individual. The incidence values for some countries 

were also collected, such as Finland and Portugal whose values represent 101 and 137 new cases per 

100000 people each year, respectively. Thus, being Portugal a smaller country, its incidence value is 

more worrying. 

The same study shows that the number of total TBI patients in Portugal has decreased over the 

years between 1993 and 2009. However, it remains an alarming situation. Regarding the mortality, 

the value was estimated to vary between 15 and 24.6 for each 100000 patients, with the portuguese 

value estimated at 17/100000 in 1997 [3]. 

The correct prognosis and the continuous monitoring are important to improve patient’s health, 

since it can avoid the development of an undesirable outcome to the patient. In this sense, the pres-

ence of an additional tool that can help in the detection of the pathological events, namely the 

plateau waves, would be advantageous.  

Thus, one of the focus of the present project consisted in the development of the mentioned 

algorithm to detect the plateau waves contained in data already collected from patients. The algo-

rithm would be a more interesting application if it is a plugin of ICM+ to compute the predictions in 
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real time. In this regard, it would provide a second opinion that does not invalidate the prognosis 

made by the physicians.  

Furthermore, there are some relationships founded between the presence of plateau waves and 

some of the monitoring signals. However, there is no study focused in the EEG signal influence at the 

beginning of plateau waves. In these, the EEG signal and features extracted from the signal was used 

to investigate the mentioned relationship. Thus, it could be a starting point for further medical stud-

ies. 

1.3 - Main Objectives 

Plateau waves are frequent episodes in patients with acute brain lesion. Associated with the im-

paired cerebral autoregulation mechanism, the continuous multimodal monitoring helps to avoid long 

periods of increased ICP, and the emergence of a secondary brain injury.  

To address the problem, the development of the algorithm for the detection of plateau waves 

was established as the first objective of this project. Such development should be based on machine 

learning techniques due to the capacity they have to design appropriate models for the data provided. 

Along with that, the selected software was MATLAB, because the data extracted from ICM+ can be 

imported and used there. It is a software developed by MathWorks, containing a several toolboxes to 

be applied in a wide range of areas, such as signal and image processing, wavelet analysis, neural 

networks, compute vision, deep learning, data analysis among others [4]. Moreover, it is a software 

that allows the training of several machine learning techniques. However, due to the unsatisfactory 

results obtained, the algorithm was developed using a different approach. 

EEG signal present an unpredictable behaviour, because it is a stochastic signal. Despite this, it is 

not known if there is any change before all the plateau episodes that may represent a typical behav-

iour. Since there are some relationships already established between plateau waves and some of the 

monitored signals, the research for a possible relationship between the EEG signal and the beginning 

of the plateau waves was defined as a new objective to be achieved with this project. Thus, machine 

learning techniques were applied to investigate the mentioned relationship, using the labels com-

puted by the previous algorithm and the data provided by UCNC. 

1.4 - Contributions 

Since from the first part of this project some interesting results arose, the developed work was 

presented in a meeting organized by the University of Porto, nominated as Encontro de Investigação 

Jovem da Universidade do Porto. Such meeting is organised for the student community to show the 

research projects that they are involved. Thus, dissertation projects can be presented in oral or 

poster presentation. This study was presented as a poster, containing a brief contextualization of 

the subject, accomplished with the results obtained from Weka and their discussion. 
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Associated with the scope of the plateau waves problem, there are some conferences and con-

gress in several places to discuss this issue. One of them is the International Symposium on Intracra-

nial Pressure and Neuromonitoring, which serves as a forum to exchange ideas and results associated 

with ICP, cerebrovascular autoregulation and other brain topics relevant to conditions such as TBI. 

They emphasise the multidisplinarity of ICP which allows the communications between engineering 

and clinicians. In this sense, this project was also submitted to be presented in this year edition that 

will take place in Leuven at the beginning of September.  

Finally, due to the resulted obtained with the developed algorithm for the automatic detection 

of plateau waves, a contact with ICM+ owners was already established to try to create a plugin in 

the software using the model developed to detect the plateau. With this, it would be possible to 

use the data collected from patients in real time, as a tool that can provide some type of feedback 

about the patient’s data.  

1.5 - Structure of the Dissertation 

This dissertation is organized in five chapters, in order to present a contextualization, the meth-

odologies applied, and the results obtained. In this sense, this first chapter provides a brief contex-

tualization about the subject addressed in the project and it defines the main objectives to be 

achieved. Also, it refers the importance of the development of the algorithm in the medical field. 

Finally, it presents the contributions of this study in this area. 

The second chapter reviews the more important concepts for a fully understanding of the sub-

ject matter hereof. For that, the first section presents the several concepts related with neurophys-

iology to explain the definition and the detection of a plateau waves and the importance of the 

multimodal monitoring. In the second section, the machine learning concepts are introduced for an 

easier understand about the working principle of techniques that were applied to build the different 

models. Also in this chapter, there is a section dedicated to expose some studies already developed 

with application in NCCU. 

Chapter 3 presents the most important techniques applied to develop the models that could 

better describes the data. Along with it, the input data used, the computation of the labels, and 

the definition of the parameters is also presented. 

Regarding chapter 4, it shows the most significant results associated with the techniques ap-

plied, and it contains the discussion of the results to emphasise which proposed objectives were 

achieved. 

The conclusion and future works are presented in chapter 5. Along with a summary of the work 

and the most promising results, there is a section containing suggestions for future work.  
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Chapter 2 

Fundamentals of Concepts 

Plateau waves are complex phenomena characterized by changes in brain signals. They are trig-

gered by vasodilation cascade, resulting in an increase in ICP accompanied by a decrease in CPP. 

These phenomena may naturally finish by activating the vasoconstrictive mechanism, or in response 

to treatment. This later possibility is frequent in patients with severe TBI admitted in NNCU to avoid 

secondary brain injuries caused by long periods of high ICP and low CPP. The pathophysiologic con-

cepts associated with the plateau waves, monitoring signals and their changes will be presented in 

the first section of this chapter to allow a better understanding of the problem addressed in this 

study. 

Machine learning is a computational technique based on artificial intelligence to build the model 

that better describes data. Depending on whether the data label is available or not, the techniques 

can be separated into two groups, as supervised or unsupervised learning techniques respectively, 

and there are an extensive variety of them. In this sense, the second section of this chapter presents 

the concepts associated with machine learning and some of the techniques. It is important to acquire 

the knowledge about the working principle to decide which are the methods that may have a better 

performance for the available data. 

Some of the works already developed in this field are presented in the third section of this chapter 

to get an idea about what have already been applied and what could result better. At the end of the 

chapter, the conclusion recaps the main concepts and ideas that must be retained from this chapter.  
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2.1 - Neurophysiological Concepts 

2.1.1 -  Introduction 

The skull is the physical barrier that protects the brain, the blood vessels and the CSF from 

external damages. As a closed box, and accordingly to Monro-Kellie doctrine, these components 

have a total constant volume, which implies that any changes in the content of one of the compo-

nents will have negative effect in the other two [5].  

2.1.2 -  Intracranial Pressure (ICP) 

In normal conditions, ICP values should be between 0 and 15 mmHg. TBI, brain tumour, subarach-

noid haemorrhage, benign intracranial pressure and space-occupying lesions [6-9] are some of the 

factors capable to cause an increase in ICP. Accordingly to the Davson’s formula [10], the ICP can be 

defined as the sum of the CSF pressure component with the vasogenic component that is related with 

the continuous fluctuation in the cerebral blood volume (CBV) (equation 2.1). 

 

𝐼𝐶𝑃 =  𝐼𝐶𝑃𝑐𝑠𝑓 + 𝐼𝐶𝑃𝑣𝑎𝑠       (2.1) 

 

ICP pulse waveform can be decomposed in three major peaks, P1, P2 and P3, where P1>P2>P3 is 

the amplitude relation in normal conditions, while P2>P1>P3 is the amplitude relation verified if the 

brain compliance decreases (Figure 2.1) [11]. 

 

 

Figure 2.1 – ICP pulse waveform (a) during normal ICP and (b) during intracranial hypertension (adapted from 
[11]). 

2.1.3 -  Cerebral Perfusion Pressure (CPP) and Critical Closing Pressure (CCP) 

CPP is the difference between the inflow and outflow pressures, represented by the mean arterial 

blood pressure (ABP) and ICP, respectively (equation 2.2). Since CPP is the driving pressure of cerebral 

blood flow (CBF), CBF is directly related with CPP and inversely related with the cerebral vascular 

resistance (CVR) (equation 2.3). Changes in brain vessels diameter in response to the variations of 
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ABP modify vascular resistance in order to protect the brain from ischemia and hyperaemia episodes. 

[12, 13].  

 

𝐶𝑃𝑃 =  𝐴𝐵𝑃 −  𝐼𝐶𝑃      (2.2) 

 

𝐶𝐵𝐹 = 𝐶𝑃𝑃/𝐶𝑉𝑅(𝑚𝑙/100𝑔/𝑚𝑖𝑛)    (2.3) 

 

Critical Closing Pressure (CCP) is the pressure below which a blood vessel will collapse. If a CPP 

value is equal to the CCP value of the brain vessels, a critical situation of zero flow may develop. 

Thus, CCP represents the minimum ABP value to provide perfusion [12]. 

2.1.4 -  Cerebral Autoregulation (CAR) and Cerebrovascular Reactivity Pressure Index 

Cerebral Autoregulation (CAR) is a vital physiological mechanism of survival that assures a con-

stant CBF between a lower and upper limit of CPP. Within the CAR interval, constant CBF is assured 

because the changes of CPP are coupled with the changes of the CVR and CBV. ICP is influenced by 

changes in CBV and therefore may be considered as a surrogate of the CBF (Figure 2.2). Thus, within 

the CAR interval, ICP and ABP changes are inverse related, whereas outside the interval they are 

directly related. The calculation of the coefficient correlation between CPP and ICP gives information 

about the cerebrovascular reactivity status to pressure. This coefficient was designated as pressure 

reactivity index (PRx) index. A negative PRx or below 0.2 estimates a normal CAR status, while a 

positive and above 0.2 index implies CAR impairment [14]. 

 

 

Figure 2.2 – Lower limit (LLA) and upper limit (ULA) of CCP that define the interval of CAR. ICP, CBV, CVR and 
CBF changes are represented according to the CPP variations. 
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2.1.5 -  Pressure-Volume Relationship and Brain Compliance 

Difficulty in the CSF absorption, CBF variations because of metabolic needs, abnormal tissue 

growth and accumulation of liquid in the interstitial and intracellular spaces are some of the causes 

that may increase the volume inside the skull, decrease brain compliance and, therefore, increase 

ICP. To minimize these impacts, the blood vessels are the first component to suffer alterations to 

reverse the rise in ICP. At the beginning, the volume of the venous compartment is reduced, followed 

by a decrease in the arterial one. The second component to adapt is the CSF. The final change to 

compensate the ICP rise, involves the brain parenchyma with a decrease in the water tissue content 

[15]. 

An exhausted pressure-volume curve relationship denotes a decrease in the compensatory reserve 

mechanisms and a decrease in brain compliance. This will result in an exponential increase in ICP 

(Figure 2.3). 

 

Figure 2.3- The relationship between the intracranial volume and ICP is described by pressure-volume curve. It 
has three parts that describes the state of the compensatory reserve: the good compensatory reserve, the poor 
compensatory reserve and the deranged cerebrovascular reactivity. 

2.1.6 -  Lundeberg A-waves or Plateau Waves of Intracranial Pressure 

In 1950, Lundberg defined for the first time the sudden elevations of ICP above 40 mmHg during 

a minimum period of five minutes accomplished with changes in signals as CPP and HR, and with a 

spontaneous termination or in response to a treatment as “sudden rises in ICP”. Thus, this phenome-

non is designated as Lundberg A-wave, A-wave or plateau wave [11]. 

Plateau waves are triggered by a vasodilation cascade loop that appear in patients with preserved 

autoregulation and low cerebrospinal compensatory reserve. These phenomena may end naturally or 

in response to an adequate treatment, activating a vasoconstriction mechanism that counters the 
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vasodilation to reduce the amount of blood present in the brain and thus a decrease in the pressure 

inside the skull. The aim is to prevent the development of a secondary brain lesion. 

Plateau waves can be divided and classified in four phases: the premonitory drift phase, plateau 

phase, ischemic response and the resolution phase. The first phase is marked by the reduction of CPP 

values and the beginning of the vasodilation mechanism. The beginning of the plateau phase is 

reached when ICP value is about 40 mmHg. A continuous vasodilation accomplished with a rise in ICP 

and a decay of CPP to ischemia level is observed in the third phase. This ischemic response ends with 

a sudden termination spike, that may not be noticed if the CPP restoration to baseline values is slow. 

The fourth phase is controlled by the vasoconstriction mechanism in order to reduce CBV and to 

restore and stabilize ICP and CPP signals to the baseline level [8, 12]. 

Intracranial hypertension is commonly observed in patients admitted in NCCU with TBI and low 

Glasgow Coma Score (GCS) [8]. Nevertheless, the rise in ICP may be related to several causes apart 

from A-waves. There are three other situations when a rise in ICP can result in a misclassification of 

intracranial hypertension: a passive transmission of the pressure in the arterial compartment to the 

intracranial compartment, a decrease in ABP accomplished with a rise in the ICP due to increase in 

CBV to compensate the changes in brain perfusion and higher ICP values secondary to severe hyper-

aemia [16]. Therefore, continuous multimodal brain monitoring is recommended to help physicians 

with the differential diagnosis, to manage brain hemodynamic and to avoid secondary brain injury 

(Figure 2.4). 

 

 

Figure 2.4 – Multimodal brain monitoring in ICM+, in which plateau wave can be observed. From upper to lower 
chart, ICP, ABP, CPP, pbtO2, CBF and PRx are displayed. 

To study a plateau wave, the highest modal frequency (HMF) can also be considered, since it is 

reversely related with CPP. In this sense, while the CPP decreases the HMF increases and it decreases 

with a rise in CPP, which is explained by the reduction and elevation in the intracranial compliance, 

respectively [17]. 
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2.1.7 -  Multimodal Brain Monitoring 

Several brain and systemic signals, such as ICP, CPP, HR, ABP, pulse amplitude, brain tempera-

ture, brain tissue oxygen tension (pbtO2), cerebral oximetry with transcutaneous near-infrared 

spectroscopy, respiratory markers (end-tidal carbon dioxide (ETCO2) and respiratory rate), CBF with 

thermal diffusion method and EEG, are simultaneously recorded and saved as raw data in ICM+ 

software.  

ICM+ is a software developed by the clinical neuroscience department of Cambridge University, 

specially designed to display the data collected from neurocritical patients in real time. Alterna-

tively, it can be used for later analysis in offline mode to develop clinical decision tools.  

Besides the collection of data of ICP, ABP, CPP, HR and amplitude of intracranial pressure (AMP) 

signals from patients, ICM+ calculates secondary variables. Most of those variables are related with 

the cerebrovascular reactivity and the cerebral compensatory reserve, such as: PRx, pressure am-

plitude index (PAx), oxygen reactivity index (ORx), cerebral blood flow reactivity index (CBFx), 

index of cerebrospinal compensatory reserve (RAP) and the index of autoregulation with transcranial 

Doppler (Mx). PRx results from five minutes moving window considering ICP and ABP, while PAx 

considers the same window but with ABP and the pulse amplitude of ICP signals. ORx is the average 

value of 60 minutes between CPP and pbtO2 and CBFx consists in the moving correlation established 

between CBF and CPP. Mx describes independency between the changes that occur in the blood flow 

and in CPP if it takes a negative value; otherwise it describes a dependency. RAP coefficient de-

scribes the state of the compensatory reserve since it correlates AMP and mean ICP [9]. Therefore, 

a coefficient close to 0 reveals a good compensatory reserve index, since there is no relation be-

tween the mentioned signals. On the other hand, a coefficient below 0 indicates an exhausted cer-

ebrovascular reactivity index, and a RAP close to 1 suggest a poor compensatory reserve. 

There are other parameters that can be calculated in ICM+ as a representation of the relation-

ship between PRx and CPP. It is the U-shaped curve and it indicates the way in which the failure of 

the cerebral autoregulation evaluated with PRx is distributed across CPP values along time using a 

window of 4 hours. The minimum value of U-shaped curve corresponds to the optimal cerebral per-

fusion pressure (CPPopt) (Fig 2.5), which is the value of CPP that optimizes CAR. 

2.2 - Machine Learning Concepts 

2.2.1 -  Introduction 

Machine learning consists in a set of techniques, in which a mathematical model that better de-

scribe the input data is built. The model learns and trains from the meaningful information extracted 

from data, known as data mining. For this reason, a larger and heterogenous dataset used in the 

training process will result in a model with a higher accuracy, once a set of different situations is  
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Figure 2.5 – Multimodal brain monitoring chart of ICM+, with the plot of CPP, CPPopt, ICP and PRx in the first 
two panels. The visualisation of PRx against CPP results in the plot of U-curve, presented in the third panel. Its 
minimum value corresponds to CPPopt. The black section represents the optimal range, which corresponds to 
the PRx values above the threshold set to 0. The last panel contains the time in critical region (TICR), represented 
in red in the histogram, corresponding to 2.7% of the total time of the window presented. The dose value results 
from the computation of TICR with the mean CPP value during that period of time. 

 

presented and consequently, in testing process, the model already knows how to manage different 

scenarios of data. Ideally, one set of data must be provided to train, one set for the validation process 

and other must be used to perform the tests in the model. If only one dataset is available, it can be 

split in two subsets, for the training and testing processes, or in three if a validation subset is required 

[18, 19]. The validation step is used to adjust the hyperparameters to avoid the overfitting of the 

data. A model that fits perfectly each training data is designated as overfitting, because the classifier 

hyperparameters have a biased behaviour. However, if the error of the model is high, it represents a 

underfitting of the data. A model without an overfitting or underfitting behaviour has an appropriate 

capacity since it fits in a larger range of training and testing values. This results in a machine learning 

model with better performance [18]. 

The performance of the machine learning algorithms is evaluated through the accuracy and the 

error rate. The accuracy represents the proportion of the output data that were correctly classified, 

while the error rate consists in the proportion of data that were incorrectly classified. In testing 

process of a supervised learning technique, it is also possible to calculate the confusion matrix, which 

is a summary of the predictions that were correctly and incorrectly assigned. Thereby, true positive 

(TP), true negative (TN), false positive (FP) and false negative (FN) instances are calculated. The true 

term is associated with a correct prediction whereas the false exposes an incorrect classification. On 

the other hand, the positive and negative terms reveal the presence or the absence of an abnormality, 

if it is a problem with two classes. After confusion matrix calculation, it is possible to determine the 

specificity and the sensitivity of the model. These performance evaluators are calculated based on 

the results from test set, since it is the data set that the model had not interact so far [18]. 
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The machine learning techniques can be separated in two groups: the supervised and the unsu-

pervised learning techniques, if the input data is accomplished by their label or not, respectively. A 

supervised technique learns from the data and the label, while an unsupervised technique groups data 

accordingly with the similarity between data and the probability distribution [18]. Once there is an 

extensive list of algorithms that can be classified as supervised or unsupervised learning techniques, 

just the ones applied in the development of the algorithm will be presented and explained. 

2.2.2 - Supervised Leaning Techniques 

As previously mentioned, the supervised learning techniques use the input data and its label, even 

if it is automatically generated, to design the mathematical model. These techniques can be used for 

classification if the data points are classified into one of two possible classes or for regression tasks 

if the output is a real number [18].  

2.2.2.1 – Linear and Logistic Regression 

Linear and logistic regression are both linear techniques, although the logistic model considers 

the logarithmic scale to obtain the result. These methods place a hyperplane that minimizes the 

distance between itself and the data point provided. The main difference between these regression 

techniques is the number of output values that can be assumed: two in the case of linear regression 

and more than two for the logistic regression [20, 21].  

Linear regression models are widely used in computer sciences, quantitative problems, and in 

areas such psychology and medicine, since it allows the prediction of clinical outcome for patients 

and to quantify the influence of some drugs considering age, sex and other factors. The predictor 

outcome of the linear regression is based on the result obtained from the sum of the weighted features 

with the intercept, which is a coefficient without any feature associated, and with the error portion 

that describes the difference between the real and the predicted output, ε. Therefore, a linear re-

gression model can be calculated using (equation 2.4): 

 

𝑦 =  𝑏0 + 𝑏1𝑥1 + ⋯ +  𝑏𝑝𝑥𝑝 +  𝜀 ,                (2.4) 

 

or alternatively as (equation 2.5): 

 

𝑦 =  𝑏0 +  ∑ 𝑏𝑖𝑥𝑖
𝑝
𝑖=1 +  𝜀 .                (2.5) 

 

The weight for each 𝑥𝑖 is calculated through the ordinary least squares method to minimize the 

squared difference defined between the real and the predicted output (equation 2.6) [21]. 

 

𝑏̂  = min ∑ (𝑦(𝑖) − 𝑏0 + ∑ 𝑏𝑗𝑥𝑗
(𝑖)𝑝

𝑗=2 )
2𝑛

𝑖=1                (2.6) 
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Logistic regression models are also used in medical context and one of its applications is the 

prediction of the amount of microbiology present in food. This type of regression calculates the prob-

ability of the occurrence of an event, designated as dependent variable, which is a dependency of 

factors as nominal or ordinary variables. Hence, the output value must be between zero and one. 

The probability is calculated based on a logistic sigmoid function, shown in equation 2.7, where 

𝑧 is the sum of the weighted features with the intercept and the error. The result of the mentioned 

sum can give the probability of the event logarithmically (equation 2.8). 

 

𝜎(𝑧) = 1/(1 + 𝑒(−𝑧))                        (2.7) 

 

𝑙𝑜𝑔𝑖𝑡 [𝑃(𝑒𝑣𝑒𝑛𝑡)]  =  𝑏0 + 𝑏1𝑥1 + ⋯ +  𝑏𝑝𝑥𝑝              (2.8) 

 

In logistic regression models, the weights of the features are calculated through the maximum 

likelihood, which consists in a method used to estimate the parameters to maximize the probability 

of the data and to avoid the overfitting of the data. It is achieved when the hyperplane separates the 

two cases. Thus, it does not depends on the number of data points neither the number of parameters 

[20, 21].   

2.2.2.2 - Support Vector Machine (SVM) Technique 

SVM is a feedforward network technique where the training data and their labels are used to 

position an optimal hyperplane to separate each class in each side. In the case of a two-dimensional 

space, the hyperplane corresponds to a line that splits the plane in two classes and each data point 

is predicted to belong to one of them. Each prediction is calculated using a weight vector, w, and a 

bias, b, and it belongs to the positive class if the result of 𝑤𝑇𝓍 +  𝑏 is positive (equation 2.9); other-

wise, the point belongs to the negative class (equation 2.10). 

 

𝑤𝑇𝓍 +  𝑏 ≥  0                      (2.9) 

 

𝑤𝑇𝓍 +  𝑏 <  0                 (2.10) 

 

The support vectors correspond to the most difficult points to classify since they satisfy both 

equalities presented. Thereby, they are placed in the hyperplane or decision surface and are the 

responsible for the optimal positioning of the hyperplane (Figure 2.6). The remaining data points are 

not relevant in this learning process. The number of the support vectors extracted from the training 

data determines the dimensionality of the feature space [18, 22, 23]. 
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Figure 2.6 – Representation of the optimal hyperplane positioning in case of linearly separable data. The blue 
points represent the support vectors (adapted from[22]). 

The margin of separation, ρ, consists in the separation between the hyperplane and the nearest 

points of each class. Thus, the hyperplane must be positioned to maximize the margin of separation. 

Once in most of the cases it is impossibility to find an optimal hyperplane that separates data without 

errors, the aim is to find the one that minimizes the probability of classify errors. The deviation of 

the point from the correct pattern of separation is designated as slack variable, ξ, and its value varies 

from 0 and 1 if  the point is placed in the correct side of the region of separation; otherwise, its value 

is above 1 [22, 23]. 

Non-linear regression and pattern-classification are examples of regression and classification 

tasks, respectively, that can be performed using SVM. In addition, SVM can be used as unsupervised 

learning technique if the label of the data is not available [18]. 

2.2.2.3 - Neural Networks Technique 

In a neural process, a stimulus is detected by the receptors presented in the body. That sensorial 

information is processed in the brain to generate an appropriate response executed by the effectors 

(Figure 2.7). This approach can also be used to explain, in a similar way, the neural network tech-

nique. Thus, the input data is provided to the algorithm and based on the information extracted from 

that, a model that better describes the data and better predict new instances is designed [22]. 

 

 

Figure 2.7 – Block diagram of a neural process that can be used to explain the basics of the neural network 
technique (adapted from [22]). 

The good performance of this technique is based on a massive interconnection of the simple cells 

designated as “neurons” or “processing units”. As in the human brain, the death of the cells results 
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in new connections, although the artificial neurons are rudimentary compared with the ones present 

in the brain of the humans. 

Considering 𝑥𝑖 as the input of the synapse and 𝑤𝑘𝑗
 as the weights connected to a neuron 𝑘, that 

may assume positive or negative values in contrast to the weights of the cerebral synapses. An ad-

der, 𝛴, sums the weighted input signals as a linear combination resulting in a value that can trigger 

the activation function to generate an output signal (Figure 2.8). The presence of the bias, 𝑏𝑘, in-

creases or decreases the input of the activation function as an affine transformation, that consists in 

a linear transformation, 𝑚𝑥, followed by a translation, 𝑏. 

 

 

Figure 2.8 – Representation of a neural network model, considering a bias (adapted form [22]). 

 

Instead of the bias, 𝑏𝑘, a fixed weight value, 𝑤𝑘0, of +1 can be used (Figure 2.9). 

 

 

Figure 2.9 – Representation of a neural network model, considering a fixed weight value (adapted from [22]). 

The activation function, 𝜑(𝑣), influences the output of the neuron and it can be a threshold or a 

sigmoid function. The threshold function limits the output value accordingly to the induced local field 

of the neuron (equation 2.11), 𝑣, while the resulting value of the sigmoid function (equation 2.12) 

assumes any value between 0 and +1, or if redefined in the range of −1 and +1.  
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𝜑(𝜈) =  {
1      𝑖𝑓 𝜈 ≥  0
0      𝑖𝑓 𝜈 <  0 

                         (2.11) 

 

𝜑(𝜈) =  
1

1+ 𝑒−𝑎𝜈                     (2.12) 

 

Figure 2.10 illustrates the behaviour of both activation functions mentioned, accordingly to the 

induced local of field of the neuron value. 

  

 

Figure 2.10 – Graphical representation of both activation functions: (a) the threshold function and (b) the sig-
moid function, according to the local of field of the neuron ν (adapted from [22]). 

Euclidean distance is used to measure the similarity of the data, since the minimal distance is an 

indicator of a higher approximation between the elements of the input vectors 𝑥𝑖  and 𝑥𝑗. 

The neural networks architecture is divided in single-layer feedforward networks, multilayer feed-

forward networks and the recurrent networks. The feedforward concept implies that the input layer 

of the sources nodes is projected to the output layer and not in the opposite direction. Moreover, 

while the single-layer feedforward network has a unique layer of neurons (Figure 2.11 (a)), or com-

putation nodes, the multilayer feedforward network has at least one hidden layer with the hidden 

units or hidden neurons. These hidden units are the output of the computation of the previous layer 

and, simultaneously, the input of the subsequent layer [22]. The “hidden” term reflects the fact that 

these layers are not observed neither from the input or from the output. If in this type of network 

every node is connected to each node present in the subsequent layer, it is called as a multilayer 

feedforward network fully connected (Figure 2.11 (b)). In the case of recurrent network, the output 

signal can be used to produce the same output or others, acting as feedback with an impact in the 

performance and on the learning capability of the network (Figure 2.11 (c)) [22]. 

In a supervised learning approach, it is possible to compare the predictions with the real labels 

and calculate the error signal, the mean-square error and the sum of the squared errors. However, 

this technique can also be used as unsupervised learning to create new classes automatically that 

better represent the features of the input data [22].   
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Figure 2.11 - Representation of the tree neural networks architecture: (a) a single-layer feedforward network, 
(b) a multilayer feedforward network fully connected and (c) a recurrent network where the outputs also are 
the input of the model (adapted from [22]). 

As the main properties and capabilities of neural networks it is possible to enumerate: the non-

linearity, input-output mapping, adaptability, evidential response, contextual information, fault tol-

erance, very-large-scale-integrated (VLSI) Implementability, uniformity of analysis and design and the 

neurobiological analogy [22]. 

2.2.2.4 – Gaussian Process 

Gaussian process is a supervised learning technique and a nonparametric kernel-based probabil-

istic model convenient for modelling tasks in machine learning and statistics. It can be used for rein-

forcement and multi-task learning, spatial model, times series and optimization [24-26]. Neal demon-

strate in 1995 that a large class of neural network models will converge to a Gaussian process in the 

limit of an infinite value of hidden units [27]. 

This is a stochastic process that can be fully defined by mean and covariance functions, which are 

difficult functions to be totally defined a priori since the hyperparameters must be inferred [25, 27]. 

The covariance function contains three parts: the first term that expresses the idea that similar inputs 

originate more correlated outputs, the linear regression term and a noisy term. The predictors of this 

model will depend on the covariance function chosen. The hyperparameters can be estimated using 

a maximum likelihood or a Bayesian approach. The maximum likelihood adjusts the hyperparameters 

to maximize the likelihood of the training data points. The values are randomly initialized and an 

iterative process leads to the optimal values [20, 27]. Another important feature is the simplification 

of the training process since there are no weighting parameters, and hence none external method as 

cross validation is needed. However, the computational limitations is an issue associated with this 

technique, because of the memory and the cubic time complexity [24].  

(a) (b) (c) 
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The gaussian process infer the latent function, 𝑓, using the 𝑛 training points and their label 𝑦 in 

the function space defined by the mean, 𝑚. 

Once it is kernel based, there are ten different kernel covariance functions available in MATLAB 

to build the gaussian process model: squared exponential kernel, exponential kernel, matern 3/2, 

matern 5/2, rational quadratic kernel, automatic relevance determination (ARD) squared exponen-

tial, ARD exponential, ARD matern 3/2, ARD matern 5/2 and ARD rational quadratic [28]. The kernel 

is responsible to control the smoothness of the process and the most used is the ARD squared expo-

nential [26]. 

2.2.3 – Unsupervised Learning Techniques 

The models in which the label of the input data, 𝑥, is not available to train and to supervise the 

learning process are known as unsupervised learning techniques. In this sense, these models try to 

find the representation that better describes the data, using density estimation by the distribution of 

the data, clustering of similar examples and visualisation based on a projection of the data from a 

high to a low-dimensional space [18, 20]. 

2.2.3.1 – Principal and Independent Component Analysis 

Principal and independent components analysis are both statistical transformation techniques, 

mainly used to collect information from second or higher order statistics, respectively, in applications 

such as feature extraction and neuroscience [29]. 

PCA is a simple and effective method used to compress data since it learns a representation of 

the data. Therefore, it is widely used to reduce the representation of the original data to a lower 

dimensionality [18]. The new coordinates are obtained by rotating or translating the original, starting 

by moving the centre of the coordinate system to the centre of the data. This is followed by the 

repositioning of the x-axis into the principal axis of variation, which corresponds to the axis where 

more variations of all data points occur, and the other axis into the orthogonal direction of variation 

[29]. The data transformation results in elements mutually uncorrelated, which is an ability and an 

important property of PCA [18]. 

The principal components can be derived from a maximization of the variance or from a minimi-

zation of the mean-squared error representation. Using the maximization of the variance, the first 

principal component is placed in the direction with the largest variance while the second principal 

component is placed to maximize the variance in all the orthogonal directions to the first. Eigenvec-

tors result from the covariance matrix and they are the principal components of the data. The aim in 

the minimization of the mean-squared error is to find a projection with the smallest average distance, 

or mean-squared, between the original vectors and the projection in the principal components [30]. 

ICA is an analysis tool widely used to separate signals in their components, but it can also be used 

to generate data using a nonlinear generative model, to estimate the density of the data, or feature 
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extraction. The independent components, known as latent variables, are estimated throughout a 

whitening or a sphering process and are used to find the transformation of the feature space into a 

new space [18, 29]. Associated with the ability to separate the mixing components of a signal, ICA 

model can be described as a linear combination of 𝑛 variables (equation 2.13): 

 

𝑥 = ∑ ∑ 𝑎𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1 𝑠𝑖           (2.13) 

 

or, using a matrix 𝐴 containing all 𝑎𝑖𝑗 elements with a random vector 𝑠 representing all 𝑠1, . . . , 𝑠𝑛 ele-

ments, as (equation 2.14): 

 

    𝑥 = 𝐴𝑠      (2.14) 

 

The ambiguities of ICA are associated with the impossibility to determine the variances or energies 

and the order of the independent components. The fact that the independent components are as-

sumed as statically independent, that their distribution must have nongaussian distribution and the 

number of components is equal to the number of observed mixtures represent restrictions of this 

method [29]. 

2.2.3.2 - Clustering Algorithms 

Clustering is an unsupervised learning algorithm that groups the data accordingly to the similari-

ties between the features to find a trend in the data. This technique has two different approaches: 

the divisive and the agglomerative clustering. The first consists on a recursively split of the data into 

smaller groups until a good clustering is achieved. An algorithm illustrative of the divisive clustering 

is random tree. The agglomerative clustering starts with each point as a cluster, and the two clusters 

with the smallest inter-cluster distance are merged until a satisfactory clustering [31]. 

The similarity between two objects is calculated by the distance between them, using the Euclid-

ean distance (equation 2.15) or, alternatively, using Manhattan or Minkowski  distance metrics [31, 

32]. 

 

𝑑𝑝(𝑥, 𝑦) = √∑ |𝑥𝑖 −  𝑦𝑖|𝑝𝑁
𝑖=1

𝑝
,           𝑓𝑜𝑟 𝑝 ≥ 1                       (2.15) 

 

K-means is the most known clustering algorithm and it requires the definition of the number of 

clusters to initialize the centres randomly. Then, each point is associated to the class, as a class 

membership 𝑐(𝑖), where the distance to the centre point is minimal. In this sense, each point is as-

signed to the centroid of a cluster using one of the indicated distance formulas. After this association, 

each centre is repositioned to be more equidistant to each data point of the cluster. The reassigning 

of the points to a cluster and the relocation of the centroid position are two steps repeated until the 
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positions of the centres are unmoved between two subsequent iteration or until the maximum number 

of iterations [20, 31]. 

The aim of the k-mean algorithm is to minimize the cost function (equation 2.16) to obtain the 

optimization function (equation 2.17). 

 

𝐽(𝑐(1), … , 𝑐(𝑚), µ1, … , µ𝑘) =  
1

𝑚
∑ ‖𝑥(𝑖) −  µ𝑐(𝑖)‖

2𝑚
𝑖=1                      (2.16) 

 

𝑚𝑖𝑛𝑐,µ𝐽(𝑐(1), … , 𝑐(𝑚), µ1, … , µ𝑘)                   (2.17) 

 

Figure 2.12 illustrates the working principle of the k-means algorithm. Two centres are randomly 

placed and, as the iterations progress, the centres are repositioned until their location is unchanged, 

as in the last two iterations. Usually and as illustrated in this example, the lower number of initial 

clusters requires fewer iterations until the model converges. 

One of the problems encountered in k-means is the sensitivity of the method to noise and outliers,  

the bias and the difficult to determine an initial suitable value for k. 

Fuzzy C-means is another clustering method in which each sample belongs to two or more clusters. 

Alternatively, mean-shift clustering is a non-parametric clustering method, which does not require 

the definition of the initial number of clusters. It detects arbitrary shapes of clusters because it is a 

density estimator [32].  

2.3 – State of Art: Similar Applications in Neurophysiological Field 

There are numerous machine learning applications in ICP, increased ICP and NCCU. Therefore, a 

set of studies and works already developed in this field will be presented. The purpose of the present 

research sought to understand which software are already available in the market and which tech-

niques have been already applied in this context. 

Technological advances enable several progresses in NCCU. One of them is the software developed 

by the University of Cambridge, ICM+, used to display the signals collected from the patients during 

continuous monitoring. Besides, machine learning techniques were suggested by Sivaganesan et al. 

(2014) [33] to develop alarm algorithms applied in real-time data. One of the machine learning algo-

rithms is classification trees since it is capable to create patients’ categories and define data rela-

tionships for each one. The other applied technique is neural network because it can find patterns in 

data to estimate the parameters. Moreover, neural network can extract rules from data about a re-

lation between the diagnostic classifications and the patient attributes. The last machine learning 

algorithm mentioned is decision trees that have been used to extract some attributes to classify the 

input data as signal or noise. 
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Figure 2.12 – Representation of k-means model showing the evolution of the model with the increased number 
of iterations: (a) the model starts with two centres randomly positioned, (b) dividing the data into two classes, 
(c) the first iteration is performed and (d) two new classes arise. The (e)-(h) steps are repetition of the process 
performed in (c)-(d) steps until the centres between two subsequent iterations do not change their position, as 
is observed in (g) and (j) (adapted from [20]). 

In addition, a treatment recommendation system for TBI patients had been developed using a 

combination of machine learning techniques with logistic regression. Another evolution in informatics 

in NCCU use a set of rules with a fuzzy logic model to develop an automatic tool for adjusting the 

fluid and drug infusion rates to maintain the haemodynamic of each patient  [33]. 

A work published by Güiza et al. (2013) [34] developed predictive models using multivariate lo-

gistic regression and gaussian processes to predict an increase in ICP 30 minutes in advance and for 

early prediction of the neurological outcome after 6 months. For that, both models consider dynamic 

predictors derived from the analyses of ICP and mean arterial pressure (MAP) signals. In the case of 

increased ICP episodes, the predictors use 4 hours intervals of ICP and MAP, and the number of epi-

sodes in the first 24 hours after the admission in the intensive care unit. The early prediction of the 

outcome considers the predictors derived from ICP and MAP in the first 24 hours in the intensive unit, 

since it improves the algorithm performance.  

Gaussian process models were successfully employed in applications in intensive care units be-

cause of its flexible modelling, high predictive performances, small number of model parameters and 
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probabilistic outputs. This method uses means and covariance functions to evaluate the similarity 

between data points, resulting a prediction which is the combination of the known outcomes of the 

similar data used in training process. The performance of the increased ICP episodes model was eval-

uated using the area under the receiver operating curve, with a value of 0.847 in the development 

cohort and a value of 0.87 in the validation. In the case of the early prediction at 6 months neurolog-

ical outcome, logistic regression models had poor performance, while gaussian process models had an 

excellent overall performance [34].  

To conclude, this study [34] creates a gaussian process model that accurately predict increased 

ICP episodes 30 minutes in advance using the information of ICP and MAP in the previous 4 hours, 

suggesting that ICP and MAP correlation is a relevant predictor that indicates the importance of cer-

ebrovascular autoregulation in the acute and chronic evolution of the TBI patient. Besides, the num-

ber of increased ICP episodes during the first 24 hrs in intensive care unit is predictable for neurolog-

ical outcome at 6 months, also using the gaussian process model with better performance. 

Chen et al. (2010) [35] study developed a SVM model to predict ICP level in TBI patients. The 

model uses an extensive set of features based on midline shift measurements and texture extracted 

from CT scan images, and demographic information, such as age, of each of the 17 patients involved. 

After the cross validation, the sensitivity of the SVM model is around 65%, whereas the specificity and 

the accuracy round 70%. 

The analysis of ICP waveform can be difficult because of multi-scale features, signal morphology 

and signal-to-noise limitations. In this sense, there is an algorithm, Scholkmann algorithm, developed 

to be used in peak and trough detection. However, it requires a high computational time and a size-

able memory. The work developed by Bishop and Ercole (2018) [36] was focused on the improvement 

of the algorithm runtime performance. Thus, after changes in trough detection and in calculations 

associated with local maxima scalogram, the modified Scholkmann algorithm shows false-positives 

(0%) and false-negatives (0%) rates comparable with the ones obtained using the original algorithm. 

However, both algorithms cannot detect the first peak and the last trough, which denotes a limitation. 

Some intensive care units have alarms that trigger when abnormal values of ICP are detected. 

However, in some situations, the alarm detection is false, and it may be due to noise or signal arte-

facts. Thus, there is the need to create an intelligent system to reduce false alarms. In this sense, 

Scalzo et al. (2012) [37] study introduces a framework to detect false alarms based on patterns in ICP 

morphology. For that, three machine learning techniques — spectral analysis, kernel spectral analysis 

and SVM — were applied and they showed improvements in alarm detection, compared with the con-

ventional method that uses threshold values. 

Meyfroidt et al. (2011) [38] developed models to predict discharge after a cardiac surgery based 

on the gaussian process method. One of the gaussian process models were designed to predict the 

probability of discharge the day after the surgery, as a classification task, and to predict the day of 

the discharge in a discrete variable, as a regression task. Both models use the collected data of four 
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hours after the admission of the patients in the intensive care unit. As results, the prediction of both 

models has better performance than the prediction made by nurses and similar to physicians. 

The dynamic cerebral autoregulation assessment is based on the analysis of the cerebral blood 

flow velocity (CBFV) as a response to change in ABP. To evaluate the dynamic cerebral autoregulation, 

instead of producing ABP fluctuations by manoeuvres, such as thigh cuff and sit-to-stand, Chacón et 

al. (2018) [39] developed a linear and a nonlinear finite impulse response models. These support 

vector regression models use the spontaneous ABP and CBFV variations of the twenty healthy patients 

submitted to the study. The dynamic cerebral autoregulation efficiency measurement using the de-

veloped models is statistically equivalent to the most used methods based on the manoeuvres. 

In terms of unsupervised learning, there are some applications using ICA, namely in neuroscience, 

since this is a technique commonly used to separate an observed signal into its underlying signals that 

must be fully independent. An electroencephalogram consists in the set of signals captured by the 

electrode sensors positioned on the head. Besides the brain signal, the eyes and heart signals are also 

captured and mixed together, resulting in a confusing measurement at the scalp of the subject. 

Therefore, ICA separates the brain and the heart signals and, in addition, the brain signal accordingly 

to regions [18]. This technique has other applications for biomedical data, such as in fMRI, optical 

imaging, ECG and in the extraction of artefact in EEG and MEG data [29]. 

2.4 – Conclusions 

Subarachnoid haemorrhage, traumatic brain injury and acute hydrocephalus are some examples 

of acute brain injury that might increase the pressure inside the skull. If the increase of ICP is above 

40 mmHg for a minimal period of five minutes accomplished with changes in signals such CPP, CBF, 

AMP and FV, it can be a plateau wave. Plateau waves are triggered by a vasodilation cascade loop 

that may end naturally if there is an active cerebral autoregulation or in response to active treatment.  

Patients with TBI are admitted in NCCU and there management is ruled by continuous multimodal 

monitoring to avoid the development of a secondary brain injury, namely due to plateau waves.  

Machine learning includes a set of techniques based on artificial intelligence capable to learn and 

extract important information from the provided data to design a model. This model is the one that 

better describes and fits in the data, and its performance is evaluated using a set of new data to test 

it. As evaluators, there is the error rate and accuracy, among others. 

Linear and logistic regression, SVM and neural networks are supervised learning techniques since 

they use the label of the data during the learning process of the model to guide it. The regression 

models place a hyperplane to minimize the distance between itself and the data points of the differ-

ent classes. In both cases, the outcome results from the sum of weighted features with a coefficient 

without a feature associated and an error portion. Although, these are both linear techniques, the 

logistic regression uses the logarithmic scale. 

SVM also positions a hyperplane but the prediction is calculated using a weight vector, w, and a 

bias, b.  In the case of a problem with two classes, the data point belongs to the positive class if the 
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result of the indicated sum is positive; otherwise it belongs to the negative class. The hardest points 

to classify are those that verify the mentioned equalities, and, for that reason, they are called the 

support vectors. These points are responsible for the positioning of the hyperplane, that must max-

imize the separation between the positive and the negative classes. 

A neural network technique can be explained as a neural process, since the input data is a stimulus 

that is processed in the neural net to generate an appropriate output, which is the response. In this 

sense, the input data and the weights are summed as a linear combination to trigger the activation 

function — a threshold or a sigmoid function —, that determines the resulting value. There are hidden 

neurons where the computation of features and intermediate calculations occur. 

On the other hand, the PCA, ICA and clustering algorithms are unsupervised learning techniques, 

because the label of the data is not used in the learning process. In this sense, the algorithms must 

find a trend of the data or learning from the distribution of the data to build the best model. PCA and 

ICA are both linear transformation techniques, where the feature space is transformed into a new 

space. In the case of the principal components, the first axis is aligned with the principal axis of data 

variation. Although both analyses are used to reduce the dimensionality of the feature space, ICA is 

also used to separate a signal in its components. 

Regarding clustering algorithms, the data is grouped based on similarities between data points. 

K-means is one of the clustering algorithms where the similarity of the data is calculated using the 

Euclidian distance, in most cases. This machine learning method requires the definition of the number 

of clusters, so that the centres are randomly positioned. Their position is changed with the reassign-

ment of the data points to clusters, until they are unchanged between two subsequent iterations. 

Alternatively, there is Fuzzy C-means, where a data point can belong to two or more classes, and 

mean-shit clustering algorithm that does not require an initial number of clusters. 

Based on the applications and studies developed in this area, the methods that may result in 

better models for the provided data and to achieve the defined objective are SVM and gaussian pro-

cesses, since they were extremely used to predict increased ICP episodes. 
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Chapter 3 

Methodology 

3.1 - Available Data 

The data available for the development of the present study were extracted and provided by the 

UCNC database. It contains a heterogeneous set of data collected from patients admitted in the in-

tensive care unit in the last few years. The main reasons for admission in the NCCU are traumatic 

brain injury, subarachnoid haemorrhage and ischemic stroke. 

A total of 100 files was anonymously provided to train and test the different machine learning 

techniques applied to find the model that better describe the input data and predict the new in-

stances. All the files contain ICP, CPP, AMP, ABP, ETCO2, HR, ETCO2 and one-channel EEG signals. In 

addition, there are calculated variables, such as PRx, CPPopt, PAx, ORx, Mx and mean values using 

an average filter with a window of 10 seconds, based on the measured signals. In some patients, CBF, 

brain temperature and cerebral haemoglobin oxygenation index (rSO2) were also recorded.  

All the files were classified according to the quantity and quality of EEG data recordings. In this 

sense, files with the EEG signal in the entire or almost entire recording time were separated from 

those with an intermediate quantity of signal and from the ones with a few EEG signal. The purpose 

of this classification of data files was to create subsets of data for training and testing process with 

heterogeneous EEG information to design the model. Thus, since the model learns from data contain-

ing missing values and different scenarios, it will generate a more suitable response to similar data 

points in the testing phase. This approach resulted in a total of twenty-nine files initially reserved for 

testing and thirty-tree files to train. 

Regardless of the amount of EEG signal present, all the files containing artefact information in 

the EEG signal, i.e. values close to 1 × 106, were distinguished to be pre-processed to smooth such 

values. These files were used in the first models trained, but due to the size of each file already 
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existing in the train dataset they were not used in later models to avoid a higher computational cost. 

Besides, the files containing a very short amount of EEG signal were ignored. 

The signals collected from each patient can be visualised in ICM+, the intensive care monitoring 

software, at the bedside in real time. The software developed by the Clinical Neuroscience Depart-

ment of the University of Cambridge provides a useful tool for the continuous monitoring and clinical 

analyses in online mode. Moreover, it can also be used in offline mode for later review analysis and 

research use of raw data recorded.  

Each ICM+ data file was exported from ICM+ in comma-separated values format, also known as 

csv format. This format is easily imported from the selected software to develop the algorithm, which 

is MATLAB software; in contrast to what happens with the original raw data files. Each csv file ob-

tained contained thirty-one columns of data that can be pre-processed and used in training and testing 

processes. The first column of values of csv files shows the date and time of the signals collected as 

the number of days combined with the number of seconds after 31/12/1899 [40]. It can be converted 

to the conventional format using excel functions. Besides, it has been noticed that there is an interval 

of one minute between two consequent instances present in each csv file. For this reason, the fre-

quency of each signal corresponds to one instance per minute (0.02 Hz). 

The first step involving the data exported from ICM+ consisted in the representation of the data 

of a patient in MATLAB to ensure that there was no loss of information. Therefore, the signals available 

in ICM+ were represented in MATLAB and the obtained plot was highly compared. Figure 3.1 (a) shows 

some of the monitored signals displayed in ICM+, and the respective plot using MATLAB is available in 

Figure 3.1 (b). As it can be observed, the shape of the signals was preserved, and the analysis demon-

strates the absence of information lost. 

3.2 - Experimental Conditions 

The selected machine learning methods to be applied in MATLAB only accept a unique file with 

all the input data to train the model. For each built model, the prediction was performed to a unique 

file containing the data of several patients. The approach to create the file with all the data for the 

training process consisted in the combination of various files into a unique one. The MATLAB script 

can read the specified set of csv files to be merged and combine them considering only ten of the 

thirty-one signals exported from ICM+. This data reduction resulted in a lower computational time 

and hence computational cost. To simplify, the variable that contains the information about the date 

and time of each instance, that will be further designated as dateTime variable, was converted to a 

sequence of the nonzero natural numbers, as a count of instances, because although the evolution of 

time is important to assess patient’s health, the specific time and the date of each record can be 

rejected. 

The reduction for the 10 variables also allows a signals equalization, so that the selected signals 

to be involved in the training process were added to the file with the same order. The selected signals 
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Figure 3.1- (a) – Visualisation of several monitored signals (ICP, CPP, ABP, AMP, HR, RAP, slow, PRx, CPP5min, 
CPPmed, DAP, SAP, pbtO2 and RAC) of a patient in ICM+. (b) Representation of the same monitored signals of the 
same patient in MATLAB. 

and variables for this first approach of train file were dateTime, ICP, CPP, ABP AMP, EEG, RAC, PRx 

and HR. The units presented in the original file and associated with the header of each signal were 

discarded in all posterior versions of files. 

To train the machine learning methods, and as response to the emerging needs, different files to 

train and test were being created. The first file for training combined the information of the thirty-

tree patients. Besides, the total of twenty-eight files allocated to test created the test data. In both, 

the files merged without any kind of separation between two subsequent files, and the lines contain-

ing missing values were removed. 

(a) 

(b) 
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In order to include the EEG features computed to create models that can scrutinise the influence 

of EEG signal before the beginning of a plateau wave, the features were added to the existing file, 

creating a second training file. Another change occurred in labels used to train and test, because the 

prediction considered ICP and ABP variations instead of the changes observed in ICP and CPP signals. 

The second testing file included the information of the twenty-eight patient files, as the first testing 

file, with the merge of the computed EEG features. 

Further, a third training file was generated, because there are changes in the behaviour of the 

signals from patient to patient and a signal may end with a lower value in a patient and start with a 

high value in the file of the next patient. If these files were merged, there would be a sudden transi-

tion with none explanation that could confuse the learning process of the model. Hence, between the 

information of two patient files, five lines of data were added, that can be interpreted as five minutes 

of recording considering the acquisition frequency. In these lines, only the dateTime variable did not 

contain missing values and continued the time sequence, since the purpose was to reproduce the idea 

of time evolution with missing information to substantiate the mentioned changes. Moreover, this 

new file only contains five of the original thirty-one columns, because it was applied in the set of 

machine learning methods focused to evaluate the existence of a relationship between the EEG signal 

and the beginning of plateau waves. Therefore, it included dateTime variable, ICP, ABP and EEG 

signals, and the total power of the EEG signal. 

This last version merged thirty-three files as in the first version. However, to reduce the compu-

tational cost and to transform the models into feasible training models, it was reduced to ten ran-

domly selected patient information files. In the case of the test file, it is composed by the five men-

tioned signals of the twenty-eight patient files the data of the twenty-eight patients selected for 

testing. Moreover, the five lines introduced between two patient files were inserted and the missing 

values were not eliminated. 

The missing values existing in the ICM+ data file, represented as NaN values, can be originated 

due to an accidental disconnection, such the disconnection of a sensor, or an intentional disconnec-

tion when the patients have a medical examination. Alternatively, it can be related with the capacity 

of ICM+ to save data that stops after a certain size of data has been collected, electrical interferences 

or movements of the patient. These missing values can be found in one or more signals at the same 

time and they were maintained as data because their elimination would represent a loss of infor-

mation that could result in an abrupt change of signal values in two consecutive instances. However, 

these missing values were not considered for the calculation of means and standard deviations. 

3.3 - Algorithm for Automatic Detection of Plateau Waves 

Before the design of the algorithm, it is important to understand the evolution of ICP signal be-

fore, during and after a plateau wave. As mentioned in section 2.1.2, ICP signal varies between 0 and 

15 mmHg, whereas values above 40 mmHg may reveal the presence of a plateau wave. Although the 

occurrence is the focus, it is important to understand the typical delineation of the mentioned wave 
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(Figure 3.2). Besides the period marked by the increased ICP values, the mean of ICP for the 30 

minutes before the occurrence, characterized by values below 20 mmHg, is designated as baseline. 

On the other hand, the mean values of the first 30 minutes after the decrease of ICP establishes the 

30 minutes after A-wave. If the second 30 minutes after the occurrence of the plateau wave are 

considered, it composes the 60 minutes after A-wave. The oscillations that occur before and after the 

episode, characterised by the variation between 20 and 40 mmHg, correspond to a change in the 

stationarity of the ICP signal. Thus, before plateau waves, this change has an exponential behaviour, 

while after the events the slope of the change is slower. 

 

 

Figure 3.2 - Typical plateau wave delineation. The ICP values below 20 mmHg define the baseline of the ICP, 
represented in 1-2, 5-6 and 6-7 intervals. The periods of 30 minutes existing before and after the event are used 
to calculate the baseline. Plateau waves are commonly defined as the rises in ICP to value above 40 mmHg. The 
zones between the plateau and baseline values represent a change in the stationarity of the signal, which is 
associated with an exponential increase before the plateau wave (2-3 interval), or a slower variation in the 
decrease verified after the episode (4-5 interval). The two 30 minutes baseline verified after the occurrence of 
the plateau wave. 

There are two main changes in the monitored signals that can be observed during a plateau wave 

– an increasing in ICP to values above 40 mmHg and a relevant decrease in CPP values. During the all 

period of the plateau waves phenomena ABP remains almost constanst. Thereby, a function to auto-

matically detect plateau waves in patient files using offline data was developed. The labels computed 

trained and tested the accuracy of several machine learning models developed. However, the algo-

rithm had not a good performance, since some of the instances were misclassified as plateau waves. 

This was observed in an analysis performed to the labels of a specific file, in which it was noticed 

that CPP signal variations were the origin of several false positives.  

Therefore, since in plateau waves the increase of ICP is accomplished with a decrease of CPP 

signal and ABP can be defined as the sum of ICP with CPP (equation 3.1), a small variation in ABP 

signal can be considered for the detection of the episodes instead of the CPP decrease. 

 

𝐴𝐵𝑃 =  𝐼𝐶𝑃 + 𝐶𝑃𝑃      (3.1) 
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In this way, the final algorithm for the automatic detection of plateau waves creates a set with 

all the instances where an increase of ICP above 40 mmHg values was maintained for a minimum 

period of two minutes, represented as two data points. As result, several groups of instances revealing 

potential plateau waves have been identified over time. Moreover, the standard deviation of each 

group of potential instances was computed, and they were classified as a plateau wave if its value 

was lower than the standard deviation of the ABP signal. 

3.4 - EEG Features Extraction 

The study of the influence of EEG signal in the beginning of the plateau waves required the ex-

traction of some EEG features, namely its amplitude, the amplitude difference established between 

the peak of the plateau wave and the basal values observed immediately before and after the episode. 

Besides, a frequency analysis of the signal was performed and the ratio between alpha and theta brain 

waves calculated. 

The amplitude of the signal resulted from the absolute value of the difference established be-

tween each instance and the mean value of the entire signal. The values were inserted in a vector 

with the same size that the number of instances presented in EEG signal. The analysis of the difference 

between peak and basal values was concentrated in the instances classified as plateau waves, starting 

two instances before its beginning and finishing after two instances. Between the first and the penul-

timate instances, the difference in the amplitude between each data point and the next is calculated 

and added to a vector. The instances not involved in these calculations had their values set to 0, 

because the purpose was to study the variations that would occur near to the plateau waves, and thus 

this value did not represent variation. 

To calculate the ratio between alpha and theta waves, the original signal was decomposed into 

five wavelets — noisy, gamma, beta, alpha and delta —, using the wavedec and wrcoef functions [41]. 

The division resulting from the alpha and theta wavelets computed the ratio. 

The fast Fourier transform method converts the signal representation in the time domain to the 

frequency domain. Consequently, to extract some frequency features, the EEG signal was converted 

to the frequency domain and its phase and magnitude extracted.  

These features were calculated for the EEG signal of a specific file, that could include the data 

of one or more patients. This information contained in the file was imported to an array and the EEG 

features attached to its end. The final array corresponded to the input data used to train or to test 

some of the machine learning methods applied. 
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3.5 - Machine Learning Techniques Applied 

3.5.1  - Unsupervised Learning Algorithms 

Since the provided data was not labelled to identify the plateau waves, the first approach applied 

to the data consisted in the training of unsupervised learning techniques to try to categorize and label 

the data as a plateau wave instance or not. 

Although PCA is widely used for dimensionality reduction of the feature space, it is an unsuper-

vised learning technique. For this reason, it trained using the first version of training file. However, 

since this method replaced the representation of data in x-axis for the principal axis of variation, the 

results as classifiers are inconclusive. Besides, due to the 3D scatter property the representation was 

focused on the three variables with most influence in the outcome, discarding the other. 

A new attempt to train unsupervised learning techniques caused the implementation of k-means. 

This method, defined by kmeans function in MATLAB [42], only requires the input data and the defi-

nition of the number of clusters that can be interpreted as the number of classes to group the data, 

defined as 2 for this application. Four models were trained as the results of the application of one 

additional parameter in the function, which is the distance metric [42]. It can be the squared Euclid-

ean, set as the default value, correlation, cosine and cityblock. There is other available metric, the 

hamming distance, that was not computed since its application resulted in an error. The input data 

corresponded to the data contained in the first training file created. 

However, the computed labels presented an unexpected behaviour since the detection of the 

plateau waves was concentrated in the intermediate data points and the expected result consisted in 

a more distributed presence of plateau waves over time, since the file contained information of sev-

eral patient with various plateau waves. 

3.5.2  - Supervised Learning Algorithms 

Once the application of the unsupervised learning techniques did not result in satisfying models 

for the classification of the data as plateau wave or not, the need for the development of an algorithm 

capable to automatically detect the plateau waves has arisen. As solution, a first algorithm was de-

veloped and later improved to its final version, as mentioned in section 3.3. The computed labels 

operated as real labels to train the supervised learning methods applied or to test their accuracy. The 

initial purpose of the application of these methods was to develop an algorithm that could predict 

plateau waves at the beginning. For that, the data of the first and second training files were imported 

as input data. Later, the purpose changed to evaluate the existence of a possible relationship between 

the EEG signal and the beginning of a plateau wave. In this case, the models used the third training 

file with the EEG features as input data. 
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3.5.2.1 - Logistic Regression 

Linear and logistic regressions are techniques that place a hyperplane to separate data point into 

classes. Although the linear regression showed a good performance in Weka software, the logistic 

regression can design non-linear boundaries for two-dimensional space problems for a better separa-

tion of data. Thus, its output assumes any value between 0 and 1 since it represents the probability 

of the occurrence of an event based on a logistic sigmoid function.  

This model trained only once using the data of ICP and CCP signal imported from the first training 

file created as input data. Being a supervised learning technique, the first version of the algorithm 

for the automatic detection of plateau waves computed the label. The cost function and the gradient 

were calculated and used as parameters to compute the optimization function. At the end, using the 

developed model, the label of the data imported from the first testing file and the model accuracy 

were calculated. 

3.5.2.2 – Long-Short Term Memory (LSTM) Model 

Long-short term memory (LSTM) is a type of recurrent neural network convenient for the study of 

time series and sequences. The algorithm learns from the dependencies existing between the time 

instances of the series or sequence. If the information used to train is in the forward direction, it is 

a LSTM network. Otherwise, if the information in both directions is simultaneously considered, the 

model is designated as bidirectional LSTM network. 

In MATLAB, the trainNetwork function can be used to train an LSTM model, a bidirectional LSTM 

model or a neural network [43]. As parameters, the models require a cell array with a time series or 

a sequence, the label of that data, and the definition of the options and the layers of the network. 

The type of the label varies according to the problem. In case of classification problems, the output 

can be a categorical vector or a cell array of categorical sequence, while the output of regression 

problems can be a matrix of targets or a cell array of numeric sequence. Since this is a classification 

problem, the label was provided to the model as a categorical vector. The training options, such the 

maximum number of epochs, the initial learning rate and the gradient threshold, and the specifica-

tions of the network layers, including its architecture and the number of hidden units, are determined 

with options and layer [44] parameters, respectively.  

The time series was imported from the first training file created and its responses was calculated 

using the first version of the algorithm to the automatic detection plateau waves. To create the cell 

array with the input data, the transpose matrix containing the data imported from the training file 

was calculated, so that each row represented one feature and not an instance as in time series of the 

original matrix. In layers, 10 and 100 were defined as different numbers of hidden units to train. 
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3.5.2.3  - Neural Networks Tool 

MATLAB has a toolbox to train and test neural network models for different applications, that can 

be launched by nnstart command line [45]. When it is started, there is a panel containing four types 

of solving problems where neural networks work well, which are fitting tool, pattern recognition tool, 

clustering tool and the time series tool. Alternatively, each tool can be launched using nftool, nprtool, 

nctool and ntstool command lines, respectively. 

Regarding the fitting tool, after the selection of the input data and the targets, a panel is pre-

sented to select the percentage of data that must be used for the validation and test phases. A fixed 

value of 70 is defined as the percentage of the input data to be used to train the model. However, 

this data partition is randomly executed [46], which means that the concept of the evolution of the 

signals over time is missed. This can interfere negatively in the learning process because the ICP 

values of plateau waves are mixed with the baseline values and the changes that may occur in the 

different monitored signals before the triggering of a plateau wave are not measured. The following 

panel allows the definition of the number of hidden neurons that must be considered in the learning 

process. It is important to emphasise that the higher number of hidden units requires a higher com-

putational cost, since more convolutional operations are performed to produce intermediate output 

as a result of the weighted inputs. After that, the model can be trained using Levenberg-Marquardt, 

Bayesian Regularization and Scaled Conjugate Gradient backpropagations as training algorithms. The 

Levenberg-Marquardt backpropagation algorithm was designed to approach second-order training 

speed without the computation of a matrix of second-order partial derivatives of a function, desig-

nated as Hessian matrix [47]. The Bayesian Regularization backpropagation minimizes the linear com-

bination of squared errors and weights. The weight and the bias values are updated according to 

Levenberg-Marquardt optimization [48]. The Scaled Conjugate Gradient backpropagation updates the 

weight and the bias values using the scaled conjugate gradient method, which applies the Levenberg-

Marquardt in step size scaling [49, 50]. 

During the training, a window with the neural networks details appears (Figure 3.3). This window 

contains the summary of the training method, containing information regarding the network accuracy, 

the number of iterations performed, and the time elapsed until the training phase is completed. 

Besides, it provides useful plots, such the performance plot that presents the evolution of the perfor-

mance measure over time. The fit plot shows how the network fits in the data throughout a repre-

sentation of the error over the several input data points. 

If the results in the training are not satisfactory, the network can be retrained using the same 

initial conditions, resulting in a different performance accuracy. The network and the labels of the 

test set resulting from this training can be exported and saved in the workspace of MATLAB. Further-

more, the network code can be edited to be more customized to the current application. These fea-

tures related to the saving and editing of the networks are available in the four tools. 

 

 



36  Methodology 

 

 

 

Figure 3.3 – Summary window of the training process using the neural networks tool. Between the information 
available, there is the definition of the performance evaluator, the type division performed in data and the 
selected training algorithm. 

The pattern recognition tool is suitable for pattern recognition and classification problems. Simi-

larly to the previous tool, the input data and the labels must be imported, followed by the definition 

of the percentage of the input data for validation and test, with the training value fixed at 70%, and 

the definition of the number of hidden units. However, this tool only uses the Scaled Conjugate Gra-

dient backpropagation. During the training process, a window is displayed with a summary of the 

process, as in the previous tool.  

Regarding the clustering tool, it is suitable for feature extraction and data dimensionality reduc-

tion. Only the input data is provided, and thus it can be considered as an unsupervised learning 

method. The input data should not contain missing values, and the number of the hidden units is 

replaced by the number of neurons. After that, the model can train using a batch self-organizing map 

algorithm [51]. This algorithm groups the data accordingly to the way that they are grouped in the 

input space and it learns from the distribution and the topology of the input vectors.  

Finally, the time series tool solves nonlinear time series problems using dynamic neural networks, 

since it uses past prediction to compute the new. Three types of nonlinear series problems can be 

solved using this tool. The first type is the nonlinear autoregressive with external (exogeneous) input 

(NARX) where the prediction is calculated based on some past predicted values and in the time series. 
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The second kind is the nonlinear autoregressive (NAR) problems, where the prediction is only based 

on a specified number of the last predictions. The third problem is the nonlinear input-output that 

only considers the series to compute the prediction, and thus it does not consider any predicted value 

[52].  

While the NARX and the nonlinear input-output require the input data and the labels, the NAR 

only requires the targets, since the new predictions are based on some of the previous computed 

predictors. However, the three approaches require the selection of percentages for validation and 

testing, the number of hidden neurons and the number of delays. Besides, Levenberg-Marquardt, 

Bayesian Regularization and Scaled Conjugate Gradient are available training algorithm for the three 

approaches. The time delay concept in this context represents the number of input data that feds the 

neural network in time dimension, instead of the spatial dimension observed in most of the machine 

learning processes.  

Due to the randomly split of data, training multiple times will generate different results since the 

initial sampling is different. Three sets of input data and the two labels of plateau waves were ap-

plied.  

Regarding the fitting tool, the first training file created two subsets of data: the first considered 

all the data imported from the file and the labels were computed using the first version of the plateau 

waves detection algorithm, while the second considered the same data except the ICP values that 

were implemented as target. The pattern recognition tool trained with the input data coming from 

the first training file and the labels computed from the first version of the algorithm for the automatic 

detection of plateau waves. These labels were also implemented in the clustering tool. However, the 

summary about the training process of the model was inconclusive, because the performance evalu-

ator was absent. Regarding the time series tool, it was widely trained, because, in addition to the 

tree training algorithm and different number of delays trained, several pairs of input data and labels 

were also applied. To simplify the comprehension of the combinations trained using the time series 

tool, they are all summarized in Table 3.1. The designation of all data represents the data derived 

from the first training file, while the same data without the ICP values is designated as all data except 

ICP values. The computed labels designation represents the label computed using the first version of 

the algorithm for the automatic detection of plateau waves. 

In addition, the second training file were also used to train models in time series app. Since, the 

size of the input data increased, the models were initially trained using only the information of three 

files randomly selected. 

In time series tool, the NARX and the nonlinear input-output problems were applied with the three 

training algorithms. The number of hidden neurons defined as 10 and the number of delays set in 2. 

The NAR problem was not trained because it only considers the labels to predict new instances and 

the purpose of this study is to predict plateau waves based on the monitored signals. 
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Table 3.1 — Summary of the trained models in the time series application  
to solve NARX problems, using the first training file. 

Training Algorithm Input Data Label of the Data Number of de-

lays 

Levenberg-Marquardt 
All data Computed Labels 10 

All data except ICP values ICP values 10 

Bayesian  

Regularization 

All data except ICP values ICP values 5,10 

All data Computed Labels 100 

Scaled Conjugate  

Gradient 

All data Computed Labels 10, 50, 100 

All data except ICP values ICP values 10, 50, 100 

 

Moreover, using the information of the three patients, the fitting tool trained with the three 

training algorithms with 10 hidden units. Besides, the Levenberg-Marquardt also trained with 4 hidden  

units and the Scaled Conjugate Gradient with 100. The pattern recognition tool trained with 10 and 

100 hidden units, and the clustering app only used the input data. However, the computational time 

was relatively lower, and all data were used later. Thus, using all patient files, the fitting tool and 

pattern recognition were trained with 10 hidden units and the time series tool trained with 10 hidden 

neurons and 2 time delays. In both cases, the labels were predicted based on the final version of the 

plateau waves detection algorithm. 

 This tool was not used with the final version of data where the focus is in the EEG features, since 

the division of the data using this toolbox is random [46]. Thus, the results that could be obtained 

would not be meaningful for the present study.  

Alternatively to the tool, the train function can also be applied to train a neural network model 

and the computation of the data test labels using the trained model can be achieved using the predict 

function [53].  

3.5.2.4 - Support vector Machine (SVM) Models 

Considering the medical applications using SVM models, it seems to be a suitable method to be 

applied. To train it in MATLAB, with fitcsvm function [54], the input data and labels arrays must be 

provided. Optionally, other parameters can be defined, such as the kernel function and the name of 

classes to use in training.  

Two groups of SVM models were trained. Both use the labels computed by the final version of 

plateau waves detection. However, the set of input data was different. While one set used the data 

available in the second training file, characterised by the presence of the 10 variables and the EEG 

features, the second group were trained using the third version of data, which contains only 5 signals 

collected from patients and the EEG features. Besides, each input data has been trained for all the 
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available kernel function, which are gaussian, linear and polynomial kernels, as an additional param-

eter. 

Alternatively to the mentioned function, there are other two designed for specific SVM problems. 

For binary classification problem for high-dimensional data, the fitclinear function can be used in-

stead. In case of regression problems, there is the fitrlinear function for high-dimensional data and 

fitrsvm function for the other data sets. 

3.5.2.5 - Gaussian Process Models 

The gaussian process regression model are trained in MATLAB using the fitrgp function [55], which 

requires as parameters the input data and its labels. Optionally, there are other parameters that can 

be redefined. One of them is the kernel function responsible for defining the covariance function 

form to compute the gaussian process. Due to the variety that this parameter might produce in the 

results, all its values were trained. Besides the default kernel, squaredexponential, there are other 

nine functions: exponential, matern 32, matern 52, rationalquadratic, ardexponential, 

ardsquaredexponential, ardmatern32, ardmatern52 and ardrationalquadratic. The purpose of this 

approach was to evaluate if one of the kernel functions would result in an algorithm with better 

performance. This method was the most trained because, besides the kernel functions, three sets of 

input data were trained. 

The first training data imported the data available in the first training file. The labels of these 

data were calculated using the first version of the algorithm developed for the automatic detection 

of plateau waves. The second input data picked up the data coming from the second training file. In 

this case, the labels were computed through the final algorithm for the automatic detection of plat-

eau waves. Finally, the third input data set contained the data of the third training file and its labels 

were also computed using the final version of the algorithm for plateau waves detection. Since, the 

integration of the EEG features increases the computational cost of the models, the second and third 

groups of models only considers the information of four and ten patient files, respectively. Even so, 

the models still require a medium to high computational time.  
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Chapter 4 

Results and Discussion 

After the training of each machine learning model presented and explained in the previous chap-

ter, the labels of the test data were computed. These labels predicted by the models were compared 

with the labels obtained using the two versions of the algorithm for the automatic detection of plateau 

waves, in different situations. The purpose of the comparison relies on the calculation of the accuracy 

of each model, since this is one of the most important performance measurements of a model. How-

ever, some models present their mean squared error instead of accuracy value. Hence, based on the 

built models, the performance evaluators were calculated to conclude which models may have a 

better behaviour for the current application. In addition, for a set of developed models, their confu-

sion matrices were calculated for a better analysis of the predictions performed by those models.  

To accomplish the results, a discussion will be presented to perceive the reasons that may cause 

those results, since the input data, the labels, the parameters defined for each model and the working 

principle of the different machine learning technique applied can be in their origin. 

4.1 - Machine Learning Techniques Applied 

4.1.1 - Methodology Results 

As mentioned in the previous chapter, three training files were created to train several machine 

learning methods. Associated with each training file, a testing file was also created with the same 

conditions. Besides the same variables were presented in the same order, the existence or absence 

of the missing values and the EEG features depended on the structure of the training file. However, 

the data used to test consisted in a new dataset unseen by the models. 
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Using each of the developed models, the prediction of the new labels was performed with the 

model and the test data as input arguments. After the computation of the predictions, the accuracy 

of the model was calculated based on the labels calculated using one of the versions of the algorithm 

for the automatic detection of plateau waves, which was considered in each application as the ground 

truth, i.e. as a real classification of data points. 

Since it is a binary classification problem, the data points can assume one of the two available 

values for labelling, which are 0 and 1 that correspond to the absence and presence of plateau wave, 

respectively. Therefore, the label that will be referred as class 0 identifies the instances where there 

are no plateau waves, whereas the class or label 1 indicates the instances that reveal the presence 

of a plateau wave. 

The accuracy is the ratio calculated between the quantity of instances well classified and the 

total number of data points. This was the most used formula to calculate the accuracy of the models; 

however, there are other evaluators. 

The mean squared error, mainly used in neural networks tool, corresponds to the average squared 

difference between the outputs and targets. For this reason, lower values indicate better perfor-

mance of the models, and a value equal to 0 means the absence of errors. The cross-entropy meas-

urement presents a similar behaviour. Thus, lower values indicate good classification performed by 

the model. In some of training models, there is the regression value that measures the correlation 

between the outputs and the targets. If its value is 1, it indicates that there is a close relationship. 

Instead, a value of 0 indicates a random relationship. The mentioned outputs correspond to the labels 

predicted by the training models, while the targets correspond to the labels computed using one of 

the versions of the algorithm designed for the automatic detection of plateau waves. 

The confusion matrix is also a common measurement to evaluate the performance of models and 

it can be obtained in MATLAB using confusionmat function [56]. To obtain the confusion matrix, it is 

necessary to provide the predicted and the real labels. As results, a summary of the existing classes 

and the confusion matrix are presented. The matrix contains the quantity of TP, TN, FP and FN in-

stances [57]. The positive designation is related with the presence of an abnormality, that could be 

an event or pathology, whereas the term negative reveals the absence of the abnormality. On the 

other hand, the true term indicates that the instance was correctly predicted, while the false desig-

nation indicates the misclassification of the instance. In this case, TP represents the number of in-

stances that were correctly predicted as plateau waves by the model and TN reveals the amount of 

instances where the absence of plateau waves was also predicted properly. Regarding FP, it indicates 

the number of instances incorrectly predicted as plateau waves instances. This means that the model 

predicted the instance with a label 1, but the label considered as ground truth was 0. Similarly, the 

FN number presents the quantity of instances not predicted as plateau waves when they are instances 

that present such episodes. Thus, the label coming from the ground truth is 1 and the model predicted 

as 0. 
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Using the results of the confusion matrix, it is possible to calculate the accuracy (equation 4.1) 

and obtain a value equal to the one obtained using the mentioned formula. In addition, other perfor-

mance metrics can be evaluated, such as the sensitivity (equation 4.2), also designated as recall or 

true positive fraction, the specificity (equation 4.3), the precision (equation 4.4) and the false posi-

tive fraction (equation 4.5) [57]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP+TN

TP+TN+FN+FP
     (4.1) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
TP

TP+FN
             (4.2) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
TN

TN+FP
             (4.3) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP+FP
            (4.4) 

 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑐𝑖𝑡𝑦 =
FP

TN+FP
   (4.5) 

 

4.1.2 - Compute Labels 

After some machine learning techniques have trained with the labels computed by the first version 

of the algorithm developed for the automatic detection of plateau waves, it was noticed that their 

results were not satisfactory. Since those labels were not the real prediction, i.e. they were not 

classified by a physician in order to have a ground truth to be used to train and test the models, it 

was thought that the reason behind the unsatisfactory results could be in the automatic computation 

of the labels. For that reason, some patient had their labels computed and an analysis of the potential 

plateau waves in ICM+ was performed. The files were randomly selected and opened in ICM+ to ob-

serve the various signals in simultaneous and confirm or eliminate the presence of a plateau wave for 

the predicted instances. As result, some of the instances detected by the algorithm as plateau waves 

were false positive, which indicates the detection of instances as plateau waves higher than the 

number of real plateau waves. However, all true plateau waves were correctly identified. 

 The development of an improved version of the algorithm for the detection of the plateau waves 

arose. This new version results in a more accurate model for the detection of the plateau waves. 

Figure 4.1 shows the prediction computed by the algorithm and the physician identification are shown. 

Figure 4.1(a) display the ICP and ABP signals of a patient in ICM+ software. The red lines placed over 

the ICP signal identifies the beginning of the plateau waves identified by the physician. On the other 

hand, Figure 4.1(b) shows the detection of the plateau waves computed by the algorithm, since it 

contains the number of instances in the x-axis and the prediction of each one in y-axis. Apart from 

the fact that the images are not completely aligned, the plateau waves identified by the physician 

correspond to the plateau waves detected by the algorithm.  
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Figure 4.1 - (a) ABP and ICP signals of a patient displayed in ICM+ software. ICP signal contains red lines that 
represent the beginning of the plateau waves. (b) Representation of the plateau waves detected by the final 
version of the algorithm for the automatic detection of the plateau waves in MATLAB. 

Thus, the algorithm shows a good performance and it seems to be a suitable tool for the automatic 

detection of plateau waves. 

4.1.3 - Unsupervised Learning Algorithms 

As already mentioned in section 3.5.1, PCA model produce inconclusive results, because this ma-

chine learning technique transforms the representation of the data from the original axis to the prin-

cipal axis of variation, and therefore the results are not appropriate as classifiers. For that reason, 

this method was only used with the first training file and not in posterior models as it happens with 

some supervised learning techniques. 

Regarding the k-means models, four models were trained as the result of the application of four 

available distance metrics. These models use the information coming from the first training file as 

input data with the number of classes to classify the data points defined as two. Since it is an unsu-

pervised learning technique, the labels do not have to be provided to supervise the learning process. 

However, they were computed using the first version of the algorithm for the detection of the plateau 

waves. The purpose of this computation was to obtain labels to be considered as the real labelling of 

the data to calculate the accuracy, because each developed k-means model predicted the instances 

for the training data. Therefore, the accuracy presented the amount of instances in the training data 

whose label of the algorithm and the model matched.  

To assess whether the accuracy values were biased due to the employment of the same data in 

training and testing processes of the models, the data of the first testing file created was tested in 

each of the four developed models. Therefore, eight accuracy values were calculated, and they are 

presented in Table 4.1. The accuracy values vary between 45% and 98%. As it can be noticed, most of 

the models present better accuracy in the testing set of data than in training data. With this, it is 

possible to conclude that the values obtained in the training set were not biased. This could be a 

positive feature of the developed models.  
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Table 4.1 — Accuracy values obtained for the models trained with each distance metric. 

Distance Metric File with the In-

put Data 

Accuracy (%) 

Squared  

Euclidean 

Training 46.0560 

Testing 83.3957 

Cityblock 
Training 57.1576 

Testing 58.7444 

Cosine 
Training 57.3380 

Testing 83.3858 

Correlation 
Training 98.0821 

Testing 83.3864 

 

 

Figure 4.2 – (a)-(b) Labels predicted by the k-means models designed, using cityblock distance metric, in two 
subsequent iterations, and (c) represents the labels considered as real label to calculate the accuracy of the 
models. 
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However, when the models are trained multiple times, the accuracy values obtained are differ-

ent. Therefore, the resulted presented for the training data were calculated when the figures were 

saved. Figure 4.2 represents this behaviour in two consecutive trainings using cityblock as distance 

metric and it also contains the labels that were considered as ground truth to compute the accuracy. 

As it is possible to notice, the two models resulted in predictions very different, which represents the 

diversity mentioned. The x-axis presents the number of instances, while the y-axis represents the 

prediction of each sample, which corresponds to the configuration defined for all the plots that shows 

the prediction of models. The prediction present in Figure 4.2 (a) has the accuracy value of 57%, 

whereas 47% is the accuracy value associated with the predicted observed in Figure 4.2 (b). In addi-

tion, Figure 4.3 (a) represents the computation of the labels with the model that presented better 

accuracy using the training data, which corresponds to the application of correlation as distance met-

ric. Although the elevated accuracy value, there are a lot of plateau waves that are not detected. 

Besides, some prediction that should belong to the class 0 where classified as members of the class 

1. Conseqeuntly, it is possible to conclude that the models are not suitable to build a model to predict 

plateau waves because of the diversity of models originated in different iterations and the misclassi-

fication of several points. 

 

 

 

Figure 4.3 – (a) Labels predicted by the k-means model trained with the training data and correlation as the 
distance metric. (b) Labels computed using the first version of the algorithm for the detection of plateau waves, 
considered as real labels.  
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4.1.4  - Supervised Learning Algorithms 

4.1.4.1 – Logistic Regression 

As mentioned, the logistic regression method was trained only once with the first training file. 

The developed model predicted the instances of the first testing file. The resulting predictions were 

compared with the ones computed using the first version of the algorithm developed for the automatic 

detection of plateau waves. Therefore, the accuracy value was 99.3848%, which corresponds to a high 

value. Figure 4.4 presents the plot resulting from the predicted labels and the ones considered as 

real. As it can be observed by the similarities between the two plots, most of the plateau wave 

instances were correctly predicted, although some of them were not detected by the logistic regres-

sion model. However, this method was not applied in the posterior training and testing files, due to 

the increase of the computational cost caused by the increase in the input data size. Besides, the 

final training file contains missing values that are not supported in this supervised learning technique. 

 

 

Figure 4.4 – Representation of the labels computed with the logistic regression model developed, and the labels 
computed by the first version of the algorithm for the detection of plateau waves, considered as the real labels. 

4.1.4.2 – Long-Short Term Memory (LSTM) 

Regarding LSTM method, two models were developed as result of the two different numbers of 

hidden units trained. The network with 100 hidden units took more than 130 minutes to compute 496 

iterations, whereas the network with 10 hidden units required 15 minutes to compute the same num-

ber of iterations and the 36 minutes to compute the 1000 iterations that corresponds to the maximum 

number of iterations. 
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In both cases, the developed models predicted the labels for the first training file, which were 

compared with the ones obtained using the first version of the algorithm for the automatic detection 

of plateau waves. The calculation of accuracy for both models resulted in a value between 50 and 

60%, and the loss function rounds the value of 0.7. Although the labels were not the correct ones, 

these models did not show a good performance. For that reason they were discarded to train with the 

other training files created later, because just almost half of the instances were correctly predicted. 

This revealed a bad performance for the prediction of plateau waves. 

4.1.4.3 - Neural Networks Tool 

Regarding neural networks tool, a set of models were trained using the first training file and 

another set using the second training file. Since there is a part dedicated to the definition of the 

percentages that must be used to partition the input data into training, validation and testing subsets, 

the first and second testing file were not used in this tool. The labels for the first training file were 

computed using the first version of the algorithm for the automatic detection of plateau waves, 

whereas the labels for the second file were computed with the final version. The performance eval-

uator used in this tool is the mean squared error, where a lower value represents a better model 

performance.  

Using the first training file, the performance of the models trained, validated and tested in fitting 

and pattern recognition tools are presented in Table 4.2. The performance of the clustering model is 

not presented, because the results of the training were inconclusive. As mentioned, some models 

were trained with all the data contained in the training file, while other ignored the ICP values in the 

input data and used it as labels of the data to evaluate if the other signals could be predictor of the 

ICP values, and thus with the presence of plateau waves. The models trained with the entire file 

exhibit a better performance value, which can be due to importance that ICP values have in the 

prediction of plateau waves. In addition, those models require less computational time. To illustrate 

it, the Bayesian Regularization training algorithm takes less than 4 minutes to compute 1000 itera-

tions, that corresponds to the maximum number of iterations, while the same computation using the 

input data that ignored the ICP values took longer than four minutes. So, the application of ICP as 

target instead of an additional signal in the input data is not a good approach for the first goal of this 

study, at least with these experimental conditions. 

Regarding time series results obtained from NARX problem solving, presented in Table 4.3, the 

increased number of hidden units applied for the same input data exhibits an improvement of the 

mean squared error value, since this value decreases. It is an expected behaviour, because the higher 

number of hidden units requires more intermediate computations between the input and the output 

layers, and thus the outcome is more adaptable. Once again, the models in which ICP data were used 

as label had worst overall performance results, and the computational time is higher, even if the 

difference is small. 
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Table 4.2 — Performance of several models trained with different input data  
in Fitting and Pattern Recognition Tools. 

Neural Network 

Application 

Training Algorithm Input Data contains 

ICP values 

Mean Squared Error 

Fitting Tool 

Levenberg-Marquardt Yes 0.00111 

No 0.0293 

Bayesian Regulariza-

tion 

Yes 0.00105 

No 0.0271 

Scaled Conjugate Gra-

dient 

Yes 0.00393 

No 0.223 

Pattern Recogni-

tion Tool 

Scaled Conjugate Gra-

dient 
Yes 0.00307 

 

 

Table 4.3 — Performance values of the models trained in Time Series Tool to solve 
NARX problems, according to the input data and number of delays. 

Training Algorithm Input Data contains 

ICP values 

Number  

of delays 

Mean Squared Error 

Levenberg-Marquardt 
Yes 10 0.00297 

No 10 2.75 

Bayesian Regulariza-

tion 

No 5 2.41 

No 10 2.20 

Yes 100 0.00364 

Scaled Conjugate Gra-

dient 

Yes 10 0.00414 

Yes 50 0.00417 

Yes 100 0.00405 

No 10 3.01 

No 50 4.82 

No 100 3.05 

 

In this context, it is possible to assert that the approach of use the ICP values as prediction, in 

order to try to predict the future ICP values based on the changes and the values observed in the 

other signals is not a good methodology. Thus, the ICP signals must be always used to train the dif-

ferent models. Since this data approach was applied as one of the first approaches to develop a 
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model, as well as the k-means method and logistic regression, it has not been further trained or tested 

in this tool, SVM or gaussian process models. 

Due to the insignificance improvement in the performance as result of the increased number of 

hidden units, the second training file trained with few variations in the number of hidden units. The 

labels used were computed by the final version of the algorithm for the detection of plateau waves. 

As initial approach, some models trained with the information imported from only three patient files, 

randomly selected. The purpose was to reduce the computational cost; however, it was verified that 

the addition of EEG features did not significantly increased the cost. Thus, the same models were 

training with all the patient data of the second training file. Both sets of data were trained for fitting, 

pattern recognition, clustering and time series tool.  

The results regarding the fitting app with these experimental conditions can be consulted in Table 

4.4. The application of the reduced subset of data results in higher performance, because the model 

had less heterogeneous information to compute and a more adjustable model is developed. Besides, 

the test data is very similar to the data used to train and validate. However, the full set of data 

results in good mean squared error values and they are very similar for Levenberg-Marquardt and 

Bayesian Regularization training algorithms. 

 

Table 4.4 — Performance results obtained from the application of the different  
training algorithms in Fitting App. 

Training Algorithm Quantity of patient 

files used to train 

Number  

of delays 

Mean Squared Error 

Levenberg-Marquardt 

3 4 1.03 × 10−10 

3 10 9.46 × 10−12 

33 10 0.0560 

Bayesian Regulariza-

tion 

3 10 5.08 × 10−13 

33 10 0.0558 

Scaled Conjugate Gra-

dient 

3 10 0.000515 

3 100 0.000534 

33 10 1.12 

 

Regarding pattern recognition tool, the cross-entropy is the measure used to evaluate the perfor-

mance of the models trained. Therefore, and as in the previous tool, training with the information of 

three patients and 10 hidden units results in a performance value of 0.000113, while 100 hidden units 

improves the value to 8.58 × 10−5. Using all the data of the second training file and 10 hidden units, 

the cross-entropy value is 0.258.  

As mentioned in section 3.5.2.3, eleven models were trained using time series tool, because, in 

addition to three types of problems and the training algorithms, two sets of data were provided to 
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train. One of them uses all the information presented in the second training file, while the other uses 

the information of three patients presented there. The first set was not used in NAR problem, because 

it uses the past predictions to compute the new prediction, which is not the purpose of this study.  

Table 4.5 shows the results computed from NARX and nonlinear input-output problems for the 

algorithms using all the data of the second training file. In general, the NARX approach has better 

mean squared error values. However, regarding training algorithms, Levenberg-Marquardt generated 

the models with higher performance. These results were obtained in a specific training iteration; 

thus, the same data and the number of hidden units and delays will probably change the definition of 

the best model. This is because the partition of data that originates different subsets in each itera-

tion, which is an acceptable reason to reject the development of a model with this tool because the 

behaviour of the model computed in the next iteration is unknown, as it can be noticed in Figure 4.5. 

Although, the predictions of the developed models are similar between them and to the predictions 

computed by the final algorithm developed for the automatic detection of plateau waves, there are 

some instances that can be distinguished because they were not predicted. 

 

Table 4.5 — Performance results obtained from the application of the different  
training algorithms in each type of problem available in the Time Series Tool. 

Type of Problem Training Algorithm Mean Squared Error 

NARX 

Levenberg-Marquardt 0.271 

Bayesian Regularization 0.768 

Scaled Conjugate Gradient 0.152 

Nonlinear  

input-output 

Levenberg-Marquardt 0.212 

Bayesian Regularization 0.262 

Scaled Conjugate Gradient 1.69 

 

As the results of the fitting app, the models trained with the small set of data (Appendix A – Table 

A.1) present better performance, because the model is more customized to the input data. Therefore, 

the computation of a new set of different instances can result in an unexpected outcome.  

Since the data used to train, validate and test the models were randomly selected, this approach 

was not applied to be trained and tested with the third training and testing files created, respectively.  

The changes that occur in all the signals over time are important for a correct prediction of future 

instances. 
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Figure 4.5 – (a)-(b) Labels predicted by models resulting from the time series app to solve NARX problem, using 
Levenberg-Marquardt as training algorithm. Both models were trained with the data contained in the second 
training file. (c) Labels computed using the final version of the algorithm for the detection of plateau waves, 
considered as real labels. 

4.1.4.4 – Support Vector Machine (SVM) 

The two training files and the three kernel function available resulted in the training of six SVM 

models. The labels computed using the developed models can assume any value between 0 and 1, 

instead of assuming only the 0 and 1 values as the labels obtained from the second version of the 

algorithm for the automatic detection of plateau waves, which was used in SVM models. For that 

reason, the labels were normalized to guarantee that they really were between 0 and 1, and then 

two approach were applied to classify each value as a member of the class 0 or class 1. 

The first approach considers a threshold value that was manually selected. This must be a value 

that does not influence the detection of the plateau events nor the instances where plateau waves 

are not presented. Thus, the selected value was 0.5 since it is the mean value in the range for pre-

diction and it seems appropriate to assume that the instances without the event present lower pre-

diction values, while the plateau wave instances present the highest values. The second approach 

uses a value selected by the algorithm. Such value corresponded to the mean value of the predictions, 
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which can be higher or lower than the previous threshold value, according to the amount of plateau 

waves that the file contains. The purpose was to evaluate if the threshold value was properly chosen 

or if could affect the results. However, all the three models for each training file result in the same 

accuracy. This means that the models trained with the gaussian, linear and polynomial kernel training 

and the data of the second training file had an accuracy of 99.8571%. This value reflects the quantity 

of instances correctly predicted as 0, because the models predicted all the samples as 0 (Figure 4.6).  

 

 
Figure 4.6 – (a) Labels predicted from the SVM model trained with the data of the second training file and 

gaussian kernel. These predictions were obtained after the recalculation of the labels to belong to class 0 or 1. 
(b) Labels computed from the final version of the algorithm for the detection of the plateau waves. 

 

Besides, the accuracy value for the three kernel functions models trained with the third training 

file was equal to 99.9693%. Once again, all the instances were predicted as 0 by the developed models 

(Figure 4.7). Since it does not vary according to the kernel function, it is possible to assert that neither 

the kernel nor the approach used for the final assign did not influence the final predictions. 

Although the prediction did not detect plateau waves, the accuracy values are elevated, because 

the classification of most of the total of 487648 instances using the second version of the algorithm 

for the automatic detection of plateau waves, used to compute the real labels of SVM models, were 

correctly classified as instances of class 0. Since the amount of instances related with plateau waves 

is reduced, the accuracy value is high. 
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Figure 4.7 - (a) Labels predicted from the SVM model trained with the data of the third training file and gaussian 
kernel. These predictions were obtained after the recalculation of the labels to belong to class 0 or 1, which 
presents an equal behaviour for both approaches. (b) Labels computed form the final version of the algorithm 
for the detection of plateau waves. 

4.1.4.5 – Gaussian Process Models 

Due to the three training files and the ten available kernel function to define the covariance 

function form, a total of thirty models were trained. All the results can be observed in Appendix A – 

Table A.2. Since the results related with the first and second training and testing files were not the 

most important, a summary of them will be presented. Only the results of the models developed using 

the third training and testing with the third testing files will be completely presented, in addition to 

their confusion matrices. 

 Once again, the labels computed using the developed models assumed any value between 0 

and 1. The two approach applied in SVM models to convert those labels for the values of 0 and 1 were 

also applied.  

For the first training file, the models that used the threshold value of 0.5 for the classification of 

the labels present a better overall accuracy than the set of models that used the mean of the predic-

tions as threshold value. However, the rationalquadratic and ardrationalquadratic are kernel func-

tions whose models present similar accuracy values for the two mentioned approaches. In addition, 

they present the two highest accuracies using the threshold value for the final classification, which 

are 99.7321% and 99.5025%, respectively. 

The models trained with the second training file and tested with the second testing file present 

similar accuracy values for both approaches (Appendix A – Table A.2), which can be observed in Figure 

4.8 (a)-(b). Although, there is a slightly higher values for the approach using the threshold value of 

0.5. This is understandable because this value is not influenced by the amount of instances presented 
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potentially classified as plateau waves. In this context, the further results will only focus on the 

threshold approach and not in the mean approach, although both results are provided.  

 

 

Figure 4.8 – (a) Label predicted by the gaussian process model, applying the threshold value to assign the pre-
diction to classes 0 and 1. (b) Labels computed using the same model but using the mean of the predictions as a 
threshold for the same computation. (c) Labels computed using the final version of the algorithm developed for 
the automatic detection of plateau waves, used as the ground truth. 

The final set of models trained using the gaussian process had as input data the third training file 

and they were tested with the third testing file (Appendix A – Table A.2). The threshold value approach 

resulted in better accuracy values, with the ardsquaredexponential, squaredexponentialand and ar-

drationalquadratic having the best values. After the plotting of those models, it was noticed that all 

the instances were predicted as 0. Once again, the high accuracy value reflects the huge amount of 

the 487648 instances correctly predicted as members of the class 0. Since a small amount of them is 

predicted as instances that belongs to class 1 by the final version of the algorithm for the automatic 

detection of plateau waves, the ratio established between the quantity of instances correctly pre-

dicted and the number of all the data points presents an elevated value. Similarly to the predictions 

obtained using the second training file, some of the trained models with the third training file results 
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in predictions similar to Figure 4.8 (a)-(b), instead of a prediction representation similar to Figure 4.8 

(c).  

The model using the exponential kernel function presented the worst accuracy value. When plot-

ting the resulting labels (Figure 4.9), it is noticed that most of the instances are predicted as plateau 

waves, which results in an elevated number of FP. This is not the desirable outcome since the pres-

ence of several FP instances may result in various false alarms. As in the first set of gaussian process 

models developed, it was the kernel function with the weakest performance results. Thus, it is pos-

sible to conclude that this kernel function is not suitable for the development of gaussian process 

models for the type of data used in this study. 

 

 

Figure 4.9– (a) Label predicted by the gaussian process model trained with exponential kernel function and with 
the data of the third training file. (b) Labels computed using the same model but using the mean of the predic-
tions as a threshold for the same computation. 

As an extra to evaluate the performance of the models trained and testing with their respective 

third files, the confusion matrix was computed for each one and their results are presented in Appen-

dix A – Table A.3. Due to the importance associated with the quantity of TP, TN, FP and FN samples, 

the model with the best performance is the one considering the ardexpoential kernel function, alt-

hough it is not the model with the highest accuracy value. However, the model does not detect FN 

instances, which means that all the plateau waves were correctly predicted. Thus, it classified 1289 

as plateau waves instances and the remaining 486359 instances as members of class 0. According to 

the final version of the algorithm used for the detection of plateau waves, a total of 697 instances 

were classified as plateau waves. This value of instances can be founded in the number of true positive 

instances. In comparison, the amount determined by the gaussian process model is higher. Thus, the 

sensitivity of the model corresponds to 1, the specificity has a value of 0.9988 and a precision of 

0.5407. These evaluators values for the other gaussian process models trained with the third training 
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file can be consulted in Appendix A – Table A.4. The absence of FN cases in this model is an important 

feature because, if only the results provided by the model was used to look for the plateau waves, it 

would not misclassify instance as a normal value when it corresponds to a plateau wave value. Thus, 

the plotting of the predictions computed by this gaussian process model (Figure 4.10) shows similari-

ties, although it is possible to detect that Figure 4.10 (a) contains more instances of the class 1 than 

the quantity of instances presented in Figure 4.10 (b). 

 

 

Figure 4.10 – (a) Label predicted by the gaussian process model trained with ardexponential kernel function and 
with the data of the third training file. (b) Labels computed using the same model but using the mean of the 
predictions as a threshold for the same computation. 

4.2 – Discussion of the Results 

4.2.1 – Computation of the Labels 

Regarding the results obtained for the computation of the labels, the algorithm apparently has a 

good performance in the detection of plateau waves, as it can be observed in Figure 4.1. In a further 

analysis, the date and time of the physician and algorithm predictions were compared, and the results 

are presented in Table 4.6. 

Observing the obtained results, it is possible to conclude that the date and time of predictions 

detected by the algorithm did not match with the episodes identified in ICM+. The reason for this is 

that the data displayed in ICM+ contains more than one data point collected from the patient every 

second. However, when the patient data is exported as csv file, it was notice that between two 

consecutive data point there is a one minute interval. Thus, the data presented in the file corresponds 

to a part of all the data available. Hence, the algorithm detects each plateau wave in the first instance 
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that fulfil the conditions, instead of the instance when the plateau wave starts, as it happens in the 

predictions in ICM+. In this context, the similarity between the data points should be considered 

rather than their equalities; thus, the similarities in the data points demonstrate a correct detection 

of the plateau waves. 

 

Table 4.6 — Comparison between the physician and the algorithm prediction of plateau wave. 

Number of 

Plateau Wave  

Physician Identification Algorithm Detection 

PW1 05/03/2017 23:05:51 05/03/2017 23:06:01 

PW 2 06/03/2017 00:50:01 06/03/2017  00:51:01 

PW 3 06/03/2017 15:41:01 06/03/2017  15:42:00 

PW 4 07/03/2017 09:18:01 07/03/2017  09:19:00 

07/03/2017  09:27:01 

07/03/2017  09:29:01 

PW 5 Not detected 08/03/2017  09:39:24 

PW 6 08/03/2017 09:45:24 08/03/2017  09:46:24 

PW 7 08/03/2017 13:35:24 08/03/2017  13:35:24 

PW 8 09/03/2017 00:18:38 09/03/2017  00:19:38 

PW 9 09/03/2017 00:53:05 09/03/2017  00:52:00 

PW 10 09/03/2017 22:47:07 09/03/2017  22:44:00 

PW 11 10/03/2017 04:18:33 10/03/2017  04:18:07 

PW 12 14/03/2017 22:11:16 14/03/2017  22:10:38 

PW 13 21/03/2017 06:54:18 21/03/2017  06:54:00 

PW – Plateau Wave 

 

However, there are two interesting results that must be clarified. The first is related with the 

PW4. The oscillations presented in ICP values during the 10 minutes of data collected results in the 

detection of three plateau waves by the algorithm. Indeed, they can be considered as a unique wave 

because of the general behaviour of ICP and ABP signals. Consequently, although the prediction is not 

incorrect, the algorithm can be improved by adding a step responsible for ensuring that the episodes 

closest in time, similar to this case, are predicted as a unique wave. The second result is associated 

with the detection of PW5 by the algorithm. This wave was not identified in ICM+, because, clinically, 

it seems to be a unique episode with a long duration, associated with PW6, that presents some ICP 

fluctuations between 30 and 40 mmHg. Thus, it is more correct that PW5 is not considered as plateau 

wave, but it can be an indicator of the presence of a plateau wave occurring soon. 
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Besides, there are two situations that can induce the incorrect detection of plateau waves due to 

behaviour that the signals present. However, a deeper analysis results in the elimination the presence 

of a plateau wave. These two episodes were not detected by the algorithm, which means that the 

established definition of plateau wave avoids the detection of false positive events. 

Despite the misclassification of PW5, whose detection was based on the fulfilment of the condi-

tions presented in the algorithm, it is possible to conclude that the algorithm shows a good perfor-

mance in the detection of plateau waves. It is important to notice that there are no plateau waves 

missing, which may be considered a good recall of the algorithm. As a second opinion tool, it would 

never invalidate the diagnosis made by the physicians and the misclassification of instances as plateau 

waves can be undone.  

4.2.2  - Unsupervised Learning Techniques 

The purpose of the application of the unsupervised learning techniques consisted in the creation 

of a model that can correctly classify the data points as instances of one of the two classes to label 

the data. However and as discussed in sections 2.2.3.1 and 3.5.1, the application of PCA technique 

did not result in reasonable results for the current application, since this technique applied a trans-

formation of the axis of the original data. In this sense, it is not suitable as unsupervised learning 

technique. 

Using k-means method, several models were trained. Their accuracies were calculated for the 

data used to train and for a new set of data. Although these accuracy values vary between two sub-

sequent trainings, some of the models present good accuracy. For those models, after the plotting of 

the predicted labels, it was noticed that all the instances were predicted as data points of the class 

0. Thus, the high accuracy value reflects the elevated quantity of instances correctly labelled as 0 

expressing the absence of plateau waves. Therefore, the non-prediction of plateau waves combined 

with the fact that the performance evaluator can vary between two iterations for the same experi-

mental conditions were reasons to not develop an algorithm capable to detect the plateau waves with 

this method. Besides, due to the results of the other technique, the idea of the employment of unsu-

pervised learning techniques to create an initial label of the data was discarded. Thus, the algorithm 

for the detection of the plateau waves was developed. 

4.2.3  - Supervised Learning Techniques 

 

Considering only the accuracy value with the plot of label predicted by the logistic regression 

model, it could be asserted that the model could be present a very good performance to predict the 

label for new data. However, the training was performed only using the ICP and CPP values since it 

was applied as one of the first techniques. Thus, the data of the third testing file cannot be used to 

predict the label of the instances, since it contains the EEG features that must be considered to train 
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models. Moreover, the third file was used to try to train a logistic regression model, but the compu-

tation was not concluded because it required an elevated computational time. Besides, logistic re-

gression is a method that does not support missing values in the data inputted to train and the file 

contains such values.  

Although it is an appropriate method to be applied for the study of time series, the developed 

long-short term memory model presented weak performance, expressed by the lower accuracy values. 

The application of the incorrect labelling of the data and the first training file could be the origin for 

those results. However, other techniques trained with the same data showed better performance, 

while the application of the third testing file resulted in a slight improvement of the performance 

evaluators. Thus, it is possible to conclude that this recurrent neural network is not suitable to be 

trained and tested with the other files to predict the labels for new data. 

The performance of the models trained in neural networks tool show a better performance if the 

ICP values are used as an input data, instead of being used as labels. With this, and as expected, the 

ICP values must be always provided as input data for the prediction of the instances. Besides, the 

increased number of hidden units shows an improvement in accuracy values, because more interme-

diate computations are performed which means a better balance of the inputs to obtain the new 

labels.  

Regarding the available results for the first set of trained models, the Levenberg-Marquardt pre-

sents the better performance in fitting app. On the other hand, the Scaled Conjugate Gradient is the 

algorithm associated with the models that present the worst performance values in all the applica-

tions, since their mean squared error values are higher. However, it is difficult to comment the results 

because different iterations of training result in different accuracy values. Such variation can be 

observed in Figure 4.11, that shows the prediction of the labels for the same file using two different 

trained model with the Levenberg-Marquardt training algorithm in the fitting tool. This means that if 

all the models were retrained, the model that present the better performance would probably 

change. The reason that explains this behaviour is the random partition of the input data that each 

time creates different subsets of data to train, validate and test the model. In addition, this division 

of the data eliminates the idea associated with the evolution of the signals over time which is not 

convenient for the development of models that must predict the existence of new plateau waves.  

In general, the application of the second training file did not result in improved models’ perfor-

mance, comparing with the results obtained in the previous set of models. Once again, there are 

models that show a lowest mean squared or cross-entropy value results, representing higher perfor-

mance. However, they were obtained for that training iteration and another iteration would result in 

different values, because of the mentioned division of the data into small subsets to be used on the 

development of the model. Thus, this neural network tool cannot be used to develop models to predict 

plateau waves, due to the variety that iteration can originate in the development of models. 

The SVM models exhibit high performance values. The three models trained for each input file, 

as a result of the application of the different kernel functions, present the same accuracy. However, 
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such values derived from the large quantity of instances well classified as instances of the class where  

 

 

 

Figure 4.11 - (a)-(b) Labels predicted by models resulting from the fitting app of time series tool, using the first 
training file as input data and the labels computed from distance metric, in two subsequent iterations, and (c) 
represents the labels considered as real to calculate the accuracy of the models. 

 

plateau waves are absent, because all the points were predicted as members of the class 0. Since 697 

of 487648 instances classified as plateau waves is a small number, the value of the accuracy is slightly 

affected, and thus is presents a value close to the perfect prediction. 

The gaussian process method presents overall models with high accuracy values, revealing their 

good performance for the purpose of the present study. Although the training and testing steps per-

formed with different files, algorithms and kernel functions, the models tested with the last testing 

file are the most important because there are related with the study of a possible relationship be-

tween the beginning of plateau waves and the EEG signal. The model trained with the ardexponential 

kernel function exhibits the better performance and it can indicate that the employment of the EEG 

features, accomplished with the signal itself and the two of the most important signals for the detec-

tion of plateau waves, can be represent some relationship. 
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For an intensive analysis of the model performance, the confusion matrix was computed. The 

ardexponential kernel function model present the most interesting results in the matrix, since it does 

not predict any plateau wave as a member of class 0, although the plateau wave prediction exceeds 

the number of actual instances. Providing a higher number of instances predicted as plateau waves is 

a preferable outcome than providing a smaller number of predictions, because a physician can detect 

the misclassification associated with the additional episodes. However, the absence of the detection 

of the pathologies or, as in this case, the critical events can compromise patient’s life, if the algorithm 

is the only method used to detect the plateau waves and evaluate the state of the patient over time. 

Notwithstanding, the physicians’ prognosis is still the more important and appropriate, because of 

their vast knowledge and expertise on neurocritical field.  

To conclude, a lot of machine learning techniques were trained and tested as shown in the first 

section of this chapter. In addition to the algorithm developed for the automatic detection of plateau 

waves that seems to be very accurate in the detection, the gaussian process model using the ardex-

ponential kernel function is the model that, in despite of not presenting the best accuracy value, the 

confusion matrix shows the best results. Since the model does not detect FN instances, which could 

influence the treatment of the patient, it is possible to conclude that it maybe could be used for 

further application.  

Although there are some other machine learning models developed with high accuracies, these 

values do not represent good models because they are associated with the high quantity of instances 

well classified as instances of class 0, since just a small subset of them are classified as plateau waves 

and therefore it generates a minimum impact in the accuracy values. While, the neural networks 

models, developed to predict plateau waves, presented also very good performance evaluators, they 

have the problem of the random division of the data and thus the evolution of the signals is lost, since 

the purpose was to create a model that can predict a new episode based on the changes that happen 

before the occurrence of the plateau wave. 
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Chapter 5 

Conclusion 

5.1 – Conclusion 

Triggered by a vasodilation cascade loop, plateau waves are characterised by an increase of ICP 

to values above 40 mmHg, during a minimal period of two minutes, accomplished with changes in 

other signals, such as an almost constanst ABP and consequently a decrease in CPP. Such episodes 

may end spontaneously by the passive activation of the vasoconstriction mechanism or in response to 

active treatment. Plateau waves are recurrent phenomena observed in TBI patients that have their 

pressure-volume compensatory reserve system exhausted with brain autoregulation preserved. Severe 

TBI patients are admitted in the NCCU to be managed under continuous multimodal monitoring to 

avoid secondary insults, such as long periods of intracranial hypertension and ischemia and further 

development of secondary brain injury. Multimodal monitoring includes, besides from the three 

above-mentioned signals, other waveforms, such as HR, CO2, EEG, RSO2 and pbtO2, collected from 

patients.  

Resulting from the computation of some collected signals, additional variables are calculated, 

which can reveal some further information about the patient health status. RAP coefficient is the 

Pearson correlation coefficient between ICP and its amplitude and describes the state of the pressure-

volume compensatory reserve, also called brain compliance. PRx index is the Pearson correlation 

coefficient between ICP and CPP and describes the cerebrovascular reactivity to pressure as an esti-

mation of the autoregulation status of the brain. 

Based on the multimodal monitoring, a tool capable to automatic detect the episodes of increased 

ICP could improve the patient’s prognosis. Since there are a lot of applications in the medical field 

using machine learning techniques and some studies already developed involving ICP signal with pos-

itive contributions to treat neurocritical patients, the algorithm should be developed based on 
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machine learning techniques. Machine learning consists in a collection of techniques capable to design 

models based on artificial intelligence. This implies that based on the input data, the model can 

extract information and use it to group the data according to the similarities, as an unsupervised 

learning technique, or it can learn using a combination of the input data with their labels, as a super-

vised learning technique.  

Due to the extensive quantity of methods available, the results obtained in the first part of this 

study was the starting point. The first step consisted in the collection of patient data to create the 

files that must be used as training and as testing data. After that, k-means, logistic regression, long-

short term memory and neural network techniques were trained to evaluate if one of them could 

result in a model with a good performance to detect the plateau waves in the collected data. How-

ever, although some of the models could be promising, when plotting the labels predicted by the 

model, most of them did not detect any plateau wave. Thus, the high performance values reflect the 

large amount of instances well classified as members of class 0. 

At the beginning, one initial problem was encountered, because the supervised learning methods 

required the label of the data as input. In this context, a first version of the algorithm for the detec-

tion of plateau waves was developed. Due to the poor results obtained, the characterisation of plat-

eau waves was changed, and the algorithm improved.  

A new objective had arisen to study the relationship of the EEG signal at the beginning of plateau 

waves. For that, features related with the amplitude and the frequency content of the signal were 

extracted and used as input data. Thus, the structure of the input file data had changes to include 

those features. Most of the models trained with this data were based on gaussian process method and 

SVM. The gaussian process models were trained and tested for various kernel functions, but ardexpo-

nential is the one that performs better. Although, its accuracy value is not the highest, the confusion 

matrix outcome reveals that apparently it detects all the plateau waves and some additional episodes. 

Confusion matrix is an important evaluator because the study of the quantity of FN suggests if the 

algorithm did not detect plateau waves. Besides, it provides an overview of the misclassification of 

the instances. 

In this regard, based on the overall performance of the models trained with gaussian process 

method, and in particular the one trained with ardexponential, it is possible to conclude that the EEG 

signal may present some changes that can be related with the beginning of the plateau waves. How-

ever, it is important to notice that EEG is a stochastic signal, which may justify the occurrence of an 

unexpected behaviour that may occur at any time. However, since signals such ICP and ABP are pre-

sented in the input data provided to train the models, they can have a considerable importance in 

the computation of the final predictions. 

5.2 – Suggestions for Future Work 

The final version of the algorithm developed for the detection of plateau waves shows a good 

overall performance. However, an additional step can be included to algorithm to ensure that the 
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detection of several plateau waves near in time corresponds to various episodes or if they can be 

related with changes of a unique plateau wave. Despite this improvement, the algorithm can be im-

plemented as a plugin in ICM+. Such plugin would allow the detection of plateau waves using the 

online data, i.e. the predict would be performed simultaneously with the collection of the signals in 

real time. Besides, it could be used at offline mode, with the existing patient files, for a further 

analysis. 

The input data used to train the gaussian process models that demonstrates the better perfor-

mance contained missing values. However, some of the machine learning methods applied does not 

support the presence of missing values in the input data. In this sense, other approaches to handle 

with the missing data and to separate the data of two different patients can be studied and imple-

mented. The data may be applied to all the techniques to conclude if one of them result in a model 

with higher global performance than the gaussian process model presents using ardexponential as 

kernel function. 

Moreover, the extraction of EEG features to study the relationship between EEG and plateau 

episodes resulted in the computation of models with good accuracy. Alternatively, a new set of EEG 

features namely related to processed EEG may be explored and improved. Besides, other methods for 

the transformation of the data, apart from the fast Fourier transform may be used, to transform the 

EEG signal from time domain to frequency domain, such as the wavelet transform. In addition, this 

method allows the employment of both domains simultaneously for the extraction of features. 
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Table A.1 — Performance results obtained from the training in Time Series Tool for 
each problem, using the data of three patients. 

Type of Problem Training Algorithm Mean Squared 

Error 

NARX 

Levenberg-Marquardt 1.57 × 10−5 

Bayesian Regularization 1.33 × 10−10 

Scaled Conjugate Gradient 0.000587 

NAR 

Levenberg-Marquardt 0.000448 

Bayesian Regularization 0.000481 

Scaled Conjugate Gradient 0.000639 

Nonlinear  

input-output 

Levenberg-Marquardt 0.371 

Bayesian Regularization 0.879 

Scaled Conjugate Gradient 0.706 
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Table A.2 — Performance values obtained from the training of different kernel 
functions, for each training file developed. The threshold and the mean designa-

tions represent the two approaches used to reassign the data points to the classes. 

Version of Input  

Data File 

Kernel Function Accuracy (%) 

Threshold Mean 

First  Ardsquaredexponential 98.7353 98.7353 

Exponential 0.8419 3.7122 

Squaredexponential  97.4354 0.2070 

Matern 32 99.3877 1.5691 

Matern 52 98.9093 0.3253 

rationalquadratic 99.7321 93.1879 

ardexponential 97.5890 88.0338 

ardmatern32 97.9908 89.8775 

ardmatern52 97.8951 89.4374 

ardrationalquadratic 99.5025 95.1971 

Second  Ardsquaredexponential 99,8571 99.3303 

Exponential 99.3303 97.1106 

Squaredexponential  3.1190 99.3303 

Matern 32 97.2063 99.3303 

Matern 52 97.2063 99.3303 

rationalquadratic 99.3303 99.3303 

ardexponential 99.3303 88.5381 

ardmatern32 99.9225 99.3303 

ardmatern52 99.7321 99.3303 

ardrationalquadratic 99.8661 99.3303 

Third  Ardsquaredexponential 99.8688 99.8688 

Exponential 56.3574 56.3585 

Squaredexponential  99.8669 99.8688 

Matern 32 56.3585 56.3585 

Matern 52 56.3585 56.3585 

rationalquadratic 99.8669 99.8688 

ardexponential 99.8651 7.3518 

ardmatern32 99.8669 53.4537 

ardmatern52 7.3518 7.3518 

ardrationalquadratic 99.8688 99.8688 
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Table A.3 — Confusion Matrix of each gaussian process model trained with the data 
of the third training file developed. The threshold and mean designations represent 

the two approaches used to reassign the data points to the classes. 

Kernel Function  Approach to  

recalculate labels 

Confusion Matrix 

Ardsquaredexponential Threshold TN = 486951 FP = 0 

FN = 697 TP = 0 

Mean TN = 486951 FP = 0 

FN = 697 TP = 0 

Exponential Threshold TN = 274515 

FN = 408 

FP = 212436 

TP = 289 

Mean TN = 274515 

FN = 408 

FP = 212436 

TP = 289 

Squaredexponential Threshold TN = 486951 

FN = 697 

FP = 0 

TP = 0 

Mean TN = 486951 

FN = 697 

FP = 0 

TP = 0 

Matern 32 Threshold TN = 274515 

FN = 408 

FP = 212436  

TP = 289 

Mean TN = 274515 

FN = 408 

FP = 212436  

TP = 289 

Matern 52 Threshold TN = 274515 

FN = 408 

FP = 212436  

TP = 289 

Mean TN = 274515 

FN = 408 

FP = 212436  

TP = 289 

Rationalquadratic Threshold TN = 486951 

FN = 697 

FP = 0 

TP = 0 

Mean TN = 486951 

FN = 697 

FP = 0 

TP = 0 

Ardexponential Threshold TN = 486359 

FN = 0 

FP = 592 

TP = 697 

Mean TN = 35211 

FN = 0 

FP = 451740 

TP = 697 
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Ardmatern32 Threshold TN = 486951 

FN = 697 

FP = 0 

TP = 0 

Mean TN = 260246 

FN = 262 

FP = 226705 

TP = 435 

Ardmatern52 Threshold TN = 35211 

FN = 0 

FP = 451740 

TP = 697 

Mean TN = 35211 

FN = 0 

FP = 451740 

TP = 697 

Ardrationalquadratic Threshold TN = 486951 

FN = 697 

FP = 0 

TP = 0 

Mean TN = 486951 

FN = 697 

FP = 0 

TP = 0 



Appendix A  73 

 

Table A.4 — Specificity, sensitivity and precision values for each gaussian process 
model trained with the third training file. The threshold and mean designations 
represent the two approaches used to reassign the data points to the classes. 

Kernel Function Threshold Mean 

Ardsquaredexponential specificity = 1.0000 

sensitivity = 0.0000 

precision = NaN 

specificity = 1.0000 

sensitivity = 0.0000 

precision = NaN 

Exponential specificity = 0.5637 

sensitivity = 0.4146 

precision = 0.0014 

specificity = 0.5637 

sensitivity = 0.4146 

precision = 0.0014 

Squaredexponential specificity = 1.0000 

sensitivity = 0.0000 

precision = NaN 

specificity = 1.0000 

sensitivity = 0.0000 

precision = NaN 

Matern 32 specificity = 0.5637 

sensitivity = 0.4146 

precision = 0.0014 

specificity = 0.5637 

sensitivity = 0.4146 

precision = 0.0014 

Matern 52 specificity = 0.5637 

sensitivity = 0.4146 

precision = 0.0014 

specificity = 0.5637 

sensitivity = 0.4146 

precision = 0.0014 

Rationalquadratic specificity = 1.0000 

sensitivity = 0.0000 

precision = NaN 

specificity = 1.0000 

sensitivity = 0.0000 

precision = NaN 

Ardexponential specificity = 0.9988 

sensitivity = 1.0000 

precision = 0.5407 

specificity = 0.0723 

sensitivity = 1.0000 

precision = 0.0015 

Ardmatern32 specificity = 1.0000 

sensitivity = 0.0000 

precision = NaN 

specificity = 0.5344 

sensitivity = 0.6241 

precision = 0.0019 

Ardmatern52 specificity = 0.0723 

sensitivity = 1.0000 

precision = 0.0015 

specificity = 0.0723 

sensitivity = 1.0000 

precision = 0.0015 

Ardrationalquadratic specificity = 1.0000 

sensitivity = 0.0000 

precision = NaN 

specificity = 1.0000 

sensitivity = 0.0000 

precision = NaN 

 NaN – value not available 
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