
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Development of a Flexible
Communication Framework to support
Testing and Production of Automotive

Products

Manuel Pedro Rebelo

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Professor Paulo Portugal (PhD)

Co-Supervisor: Eng. Nuno Silva

24th June 2019

c© Manuel Pedro Rebelo, 2019

Abstract

In the Automotive Industry, the various components are carefully tested to ensure the specified
quality levels and consequently the expected performance and reliability. Among these compo-
nents are the Vehicle Infotainment Systems, which use their own interfaces such as RS-232, Eth-
ernet and Controller Area Network (CAN) to communicate with test systems. Therefore, during
the development and production processes of Vehicle Infotainment Systems, there is a need to
use different tools and work sets due to the various types of involved communication protocols.
These protocols should be integrated to establish connections and exchange data between systems
on different communication interfaces and consequently optimize all involved test processes, and
minimize potential failures.

In this context, the present Dissertation aimed to present the work developed during an intern-
ship at APTIVPort - Services, S.S., in the Department of Manufacturing Test Engineering with
the main objective to standardize and to method the practices actually used to establish commu-
nications between Infotainment Systems and test systems, through the creation of a framework
to characterize, establish, control and monitor RS-232, Ethernet and CAN communications. The
framework should consist of several standardized and integrated modules with different objectives
that exchange relevant data between their several functions.

In this scope, this Dissertation intends to address the need of a framework that integrates
those tools and facilitates the monitoring of different connections. Thus, Product Communication
Framework main objective is to permit the use of the same functions to establish connections
of different types, integrating tools that have similar purposes. The framework can be used to
test equipment and control it, sending commands and receiving messages through the established
connections. Analyzing a certain connection is also guaranteed by the framework, which permits
to consult all the exchanged messages and signal messages with defined patterns.

Additionally, the framework permits to remotely consult the content of a established connec-
tion between equipment and systems that use the framework’s functions to communicate over
RS-232, Ethernet or CAN.

The integration of the different tools was done incrementally, concretely adding first functions
to communicate over RS-232, then functions to communicate over Ethernet and finally functions
to communicate over CAN to a Dynamic Link Library developed using Visual Studio. Once this
integration was done, a remote monitor module could be developed, consisting in a Windows
service and a user interface, also developed using Visual Studio’s tools.

Finally, the Product Communication Framework is ready to use in real test systems since it was
tested in a controlled environment because the failure of the framework, when used in Production
lines’ test systems, can lead to the rejection of functional equipment.

Keywords: Infotainment; In-Vehicle Infotainment System; Test Systems; Communication
Framework; RS-232; Ethernet; CAN; Visual Studio.

i

ii

Resumo

Na Indústria Automóvel, os vários componentes são testados cuidadosamente para garantir o
níveis de qualidade e, consequentemente, o desempenho e o comportamento esperados. En-
tre estes componentes estão os Sistemas de Infotainment, que usam as suas próprias interfaces,
como RS-232, Ethernet e Controller Area Network (CAN) para comunicar com os sistemas de
teste. Portanto, durante desenvolvimento e processos de produção de Sistemas de Infotainment,
é necessário usar ferramentas diferentes devido aos vários tipos de protocolos de comunicação
envolvidos. Estes protocolos devem ser integrados para estabelecer conexões e trocar dados entre
sistemas com diferentes interfaces de comunicação e, consequentemente, otimizar os processos de
teste envolvidos e minimizar possíveis falhas.

Neste contexto, a presente Dissertação teve como objetivo apresentar o trabalho desenvolvido
durante um estágio na APTIVPort - Services, S.S., no Departamento de Engenharia de Testes
com o principal objetivo de padronizar e metodizar as práticas atualmente utilizadas para estab-
elecer comunicações entre Sistemas de Infotainment e sistemas de teste, através da criação de um
framework para caracterizar, estabelecer, controlar e monitorizar comunicações RS-232, Ethernet
e CAN. O framework deve ser constituído por vários módulos normalizados e integrados, com
objectivos diferentes, que trocam dados relevantes entre as suas diversas funções.

Neste âmbito, este trabalho pretende abordar a necessidade de uma framework que integra
ferramentas e facilita a monitorização de diferentes conexões. Assim, o objetivo principal da
framework é permitir o uso das mesmas funções para estabelecer conexões de diferentes tipos,
integrando ferramentas que têm propósitos semelhantes. A framework pode ser usada para testar
o equipamento e controlá-lo, enviando comandos e recebendo mensagens através das conexões
estabelecidas. A análise de uma determinada conexão também é garantida pela framework que
permite consultar todas as mensagens trocadas e assinalar mensagens com determinados padrões.

Além disso, a framework permite consultar remotamente o conteúdo de uma conexão estabele-
cida entre equipamentos e sistemas que usam as funções da framework para se comunicar através
de RS-232, Ethernet ou CAN.

A integração das diferentes ferramentas foi feita de forma incremental, concretamente adicio-
nando primeiro as funções para comunicar utilizando RS-232, depois as funções para comunicar
utilizando Ethernet e finalmente as funções para comunicar utilizando CAN a uma biblioteca de
links dinâmicos (DLL) desenvolvida usando o Visual Studio. Assim que essa integração foi feita,
um módulo de monitorização remota pode ser desenvolvido, consistindo num serviço Windows e
numa interface de utilizador, também desenvolvida usando as ferramentas Visual Studio.

Finalmente, a denominada Product Communication Framework foi concluída e pode para ser
utilizada em sistemas de teste reais, tendo sido testada em ambiente controlado uma vez que a falha
da framework, quando usada em sistemas de teste de linhas de produção, pode levar à rejeição de
equipamentos conformes.

Palavras-chave: Infotainment; Sistema de Infotainment de Veículos; Sistemas de teste; Frame-
work de Comunicação; RS-232; Ethernet; CAN; Visual Studio.

iii

iv

Acknowledgments

This Dissertation marks the conclusion of a cycle in my life that would have not been possible
without the effort and motivation that I have received all along these years.

Therefore, I would like to thank:
First and above all to my Parents, for giving me the possibility of receiving the best education

and giving me values that make me a better person, showing me that without work and humbleness
nothing is accomplished. There are not enough words to show how grateful I am.

To Artur, my brother, for always being a role model and giving me all the support and advises
that made me not commit errors that otherwise I would have committed.

To Paula, my girlfriend and best friend, for giving me all the patience and love that made me
never give up from my objectives, supporting and inspiring me everyday.

To Professor Paulo Portugal, my supervisor, who I had also the privilege of being my teacher
during my course, for all the time spent with me and guidance, always giving the best advises to
make this Dissertation a better one.

To Eng. Nuno Silva, my co-supervisor, for receiving me at Aptiv, giving me the possibility of
develop this project, and for all the time and knowledge shared with me, making possible to lead
the project to success.

To Aptiv’s collaborators from Braga, specially from Manufacturing Test Engineering Depart-
ment, for always making me feel integrated in the company during the past months.

To all of you my sincere gratitude,

Manuel Pedro Rebelo

v

vi

“If the doors of perception were cleansed
everything would appear to man as it is, Infinite.”

William Blake

vii

viii

Contents

Abstract i

Resumo iii

Acknowledgments v

List of Figures xii

List of Tables xiii

Abbreviations, Symbols and Units xv

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Objectives . 3
1.4 Dissertation’s structure . 4

2 Problem domain and technological background 5
2.1 Equipment description . 5

2.1.1 Aptiv’s products . 5
2.1.2 Test proceedings . 7
2.1.3 Signal generators . 9

2.2 Interfaces’ characteristics . 11
2.2.1 RS-232 . 12
2.2.2 Ethernet . 14
2.2.3 CAN . 19

2.3 Problem description . 24

3 Proposed Solution 25
3.1 Requirements . 25
3.2 Description . 27

3.2.1 Main modules . 29
3.3 Conclusions . 32

4 Implementation 33
4.1 Product Communication Framework DLL . 33

4.1.1 XML configuration file and XML Parser 41
4.1.2 Communication functions . 43

ix

x CONTENTS

4.2 Product Communication Monitor . 56
4.2.1 Product Communication Monitor Service 56
4.2.2 Product Communication Monitor UI . 57

5 Experimental Validation 61
5.1 Testing Framework . 61

5.1.1 NI TestStand sequences . 61
5.1.2 Validation of the Remote Monitoring 64

6 Conclusion and future work 69
6.1 Conclusions and achievements . 69
6.2 Future work . 70

A Product Communication Configuration File Example 71

References 73

List of Figures

2.1 MIB3-Top general view. 6
2.2 MIB3-Top back unit connectors. 6
2.3 MIB3-Top Main-Connector. 7
2.4 Example of tests performed in Infotainment Systems, when supplying them with

RF signals. 8
2.5 MIB3-Top Cross Unit fixture. 8
2.6 MIB3-Top Debug-Connector. 9
2.7 Rohde & Schwarz SMBV100A front and back view. 10
2.8 Rohde & Schwarz SFC Compact Modulator front and back view. 10
2.9 Rohde & Schwarz SFE100 front and back view. 11
2.10 DB-9 Male Connector Pin out, [12]. 12
2.11 Example of connection between DTEs using RS-232. 13
2.12 UART Frame. 14
2.13 OSI model and Ethernet corresponding sub layers. 15
2.14 IEEE 802.3 frame. 17
2.15 The evolution of the Ethernet networks. 18
2.16 Physical CAN Connection according to ISO 11898, [18]. 20
2.17 Schematic and application of a single star topology, [17]. 20
2.18 Schematic and application of a twin star topology, [17]. 21
2.19 Schematic and application of a linear bus topology, [17]. 21
2.20 Schematic and application of a hybrid topology, [17]. 21
2.21 Structure of a CAN Data frame, [17]. 23

3.1 Diagram of the proposed solution. 29
3.2 PCF DLL general view. 30
3.3 Diagram of the Product Communication Monitor. 31
3.4 Example of application for the proposed solution in test systems. 32

4.1 PCF DLL Class diagram. 34
4.2 Interface Class. 34
4.3 Example of interaction between an application and a device using PCF DLL’s

methods. 38
4.4 Log Class. 39
4.5 Example of interaction between PCF DLL’s Classes. 40
4.6 SerialDevice Class. 44
4.7 Initializing a RS-232 Device. 45
4.8 Example of interaction between an application and device using PCF DLL’s meth-

ods to communicate over RS-232. 46

xi

xii LIST OF FIGURES

4.9 Server/Client relationship example for connection-oriented sockets. 47
4.10 EthernetDevice Class. 48
4.11 Initializing an Ethernet Device. 49
4.12 Example of interaction between an application and device using PCF DLL’s meth-

ods to communicate over Ethernet. 51
4.13 XL Driver Library function calls for CAN applications, [32]. 52
4.14 CANDevice Class. 53
4.15 Initializing a CAN Device. 54
4.16 Example of interaction between an application and device using PCF DLL’s meth-

ods to communicate over CAN. 55
4.17 PCMUI homepage. 58
4.18 PCMUI connection to remote system page. 58
4.19 Example of interaction between PCMUI and PCMS. 60

5.1 Test sequence used for testing the framework’s functionalities (RS-232 Example). 62
5.2 Test sequence’s step used for testing the framework’s filtering methods. 64
5.3 Checking PCCF content using PuTTY. 65
5.4 Checking available interfaces to monitor using PCMUI. 65
5.5 PCMUI in stream mode. 66
5.6 PCMUI with PCL in memory. 66
5.7 Checking available product numbers to monitor using PCMUI. 67

List of Tables

2.1 IEEE 802.3 Transmission Medium Specifications, [15]. 16

4.1 PCF DLL’s Constructor. 35
4.2 PCF DLL’s Init method. 35
4.3 PCF DLL’s Read methods. 36
4.4 PCF DLL’s Send methods. 36
4.5 PCF DLL’s Send_Read methods. 37
4.6 PCF DLL’s CheckState method. 37
4.7 PCF DLL’s Stop method. 38
4.8 PCF DLL’s Filter methods. 39

xiii

xiv LIST OF TABLES

Abbreviations, Symbols and Units

ACK Acknowledgment
AM Amplitude Modulation
API Application Programming Interface
bps bits per second
CAN Controller Area Network
CAN FD Controller Area Network with Flexible Data-Rate
CD Compact Disc
cm centimeters
CMOS Complementary Metal-oxide Semiconductor
CRC Cyclic Redundancy Check
CSMA/CD Carrier Sense with Multiple Access and Collision Detect
CTS Clear to Send
DAB Digital Audio Broadcasting
dBm Decibel milliwatt
DCD Data Carrier Detect
DCE Data Circuit-Terminating Equipment
DLC Data Length Code
DLL Dynamic-link Library
DSR Data Set Ready
DTE Data Terminal Equipment
DTMB Digital Terrestrial Multimedia Broadcast
DTR Data Terminal Ready
EIA Electronic Industries Alliance
EMC Electromagnetic Compatibility
EMI Electromagnetic interference
EOF End Of Frame
ESD Electromagnetic Discharge
FCS Frame Check Sequence
FM Frequency Modulation
GHz Gigahertz
GND Common Ground
GNSS Global Navigation Satellite System
HD High Definition
Hz Hertz
ID Identification
IEEE Institute of Electrical and Electronics Engineers
IFG Interframe Gap
IFS Inter Frame Space

xv

xvi ABBREVIATIONS, SYMBOLS AND UNITS

I/O Inputs/Outputs
IOC Input/Ouput Controller
IP Internet Protocol
ISO International Organization for Standardization
Kbaud Kilobaud
KHz Kilohertz
LAN Local Area Network
LLC Logical Link Control
LTE Long Term Evolution
m Meter
MAC Medium Access Control
Mbaud Megabaud
Mbps Megabits per second
MHz Megahertz
NI National Instruments
OSI Open System Interconnection
OUI Organizationally Unique Identifier
PCCF Product Communication Configuration File
PCF Product Communication Framework
PCFC Product Communication Framework Class
PCL Product Communication Log
PCM Product Communication Monitor
PCMS Product Communication Monitor Service
PCMUI Product Communication Monitor User Interface
RDS Radio Data System
RF Radio Frequency
RI Ring Indicator
RTR Remote Transmission Request
RTS Request To Send
RD Received Data
SAE Society of Automotive Engineers
SD Secure Card
SIM Subscriber Identity Module
SFD Start Frame Delimiter
SDARS Satellite Digital Audio Radio Service
TCP Transmission Control Protocol
TIA Telecommunications Industry Association
TTL Transistor-transistor Logic
TV Televison
TD Transmitted Data
UART Universal Synchronous Receiver/Transmitter
UDP User Datagram Protocol
UI User Interface
USB Universal Serial Bus
V Volt
VICS Vehicle Information and Communication System
WLAN Wireless Local Area Network
XML Extensible Markup Language

Chapter 1

Introduction

This chapter 1 is divided in four sections that have as objective to present the context, the motiva-

tion, the objective for this work and its structure.

In the first section is presented the context in which this work fits.

The second section presents the motivation for developing this work in the context mentioned

before.

The third section is used for giving a description of the main objectives of the present work.

Finally, a fourth section has as objective to present the structure of the Dissertation and it can

be used as a guide for consulting this document along with the index.

1.1 Context

Since the automobile first appeared, the Automobile Industry has always involved several sectors

and branches of activity.

In the past, vehicles were presented as simple machines, focusing the attention on their me-

chanical characteristics as power rates and speed limits. Later, the advertisements focused on the

visual aspect of the vehicles, presenting them as a ”singular piece of art”.

More recently, the focus was made in the vehicles’ impact on the environment as society has

started to worry about the impact in the environment and new standards, including legal require-

ments, were issued to reduce pollution caused by automobiles [1].

Nowadays, brands show their new automobiles focusing their ads in the technological capa-

bilities that their Infotainment Systems have to offer. This systems’ functionalities appear to be

an important differentiation for the final consumer. In other words, a person who buys a new car

choose it comparing the technological functionalities that the automobile has to offer, in a very

similar way to when someone chooses a new smart phone. This can be observed comparing old

advertisements with the new ones.

According to a survey, ”by 2020 it is expected that up to 80% of new vehicles will be connected

to digital services”, [2].

1

2 Introduction

The simple auto-radio has now evolved to a complex computer, the Infotainment System, that

combines entertainment and information delivery for drivers and passengers [3], keeping the main

functionalities of the old auto-radios but has now to deal with various challenges. Some of this

challenges are related to the interconnection of devices, using different protocols, wide tempera-

ture variations, vibrations caused by the movement of the vehicle and Electromagnetic interference

(EMI) that tends to increase with the inclusion of more and more devices in the system.

The lack of ability to self-monitor and actuate to eliminate or reduce certain issues can lead

to the failure of certain functionalities of this products which, ultimately, can correspond to the

failure of the vehicle as a whole. When this occurs, the costs for reparation can be significant,

risking the products’ profitability.

In order to avoid failures, during the development and production of Infotainment Systems,

various tests are made intensively. Some of these tests are made when the products are fully

assembled, consisting in sending diagnostic commands using different interfaces and evaluate the

products’ response to check if the parameters evaluated are within the corresponding requirements

previously defined and that must be complied.

Within these tests, different tools and work sets are required due to the varied types of com-

munication protocols involved. Such as the multiple layers of communication that exist to control

and monitor the different devices that are interconnected with the Infotainment Systems.

Normally, the tools used to communicate with the products are not integrated and with the

appearance of new ones, the creation of new tools come along. Thus, there is the need to create a

standardized tool set in order to communicate with different products over different interfaces.

1.2 Motivation

During the months of July and August of 2018, the author of the present work had the opportunity

to hold a Summer Internship at the Multinational Company Aptiv, specifically at its Industrial Site

located at Braga city.

In scope of the objectives that were defined for the Internship versus the results to be achieved,

the author was able to develop software to support the functional tests of products such as those

previously mentioned (Infotainment Systems).

It was an Internship developed in an industrial environment, in real working context and which

results met expectations, proving to be of effective use and application in the Company. Admit-

tedly, the Internship allowed the author to apply knowledge assimilated at the Electrical Engineer-

ing Course and acquire new knowledge, theoretical and practical.

Besides that, it is important to note that in the different phases of: design, development, testing

and production of new products, in the circumstance - auto-radios - , a variety of tools are needed.

This tools are usually created from scratch so that all these phases develop and succeed, always in

full compliance with the internal and customer requirements.

When new tools are created, they are usually intended to be used only with one product. There

are always different approaches to implement those tools and instead of being used by multiple

1.3 Objectives 3

persons they are used only by the person that created them, since there is difficulty in sharing

information and lack of time to teach others how to use them.

There is therefore a need to standardize and to method the process that results from the emer-

gence of new versions and types of products with some of the same / different features / function-

alities that are different from previous ones.

It was within this need, to standardize and to method the process of developing new tools to

communicate with different Infotainment Systems, that the opportunity of conducting the Master’s

Dissertation was identified. Acknowledged that the author of this work also has as motivator the

internal context of Aptiv, a Multinational Company that practices research, design and develops

products and processes from scratch and innovates in an Industry - the Automotive Industry -

, highly demanding, competitive and in permanent technological evolution with Customers all

around the World.

1.3 Objectives

The main objective of this work was to standardize and to facilitate the practices used to establish

communications with Infotainment Systems, through the creation of a framework to characterize,

establish, control and monitor RS-232, Ethernet and Controlled Area Network (CAN) commu-

nications. Being the mainly used to conduct tests when the products are fully assembled, these

interfaces have singular characteristics that demand the use of specific hardware and software that

are not integrated in the same work set, despite the interfaces mostly being the same for different

products.

Thus, the framework is set to be used by test engineers in their test systems that verify the

products requirements and to communicate with devices responsible to generate the various sig-

nals distributed in the test lines, such as Digital Audio Broadcasting (DAB), Satellite Digital Audio

Radio Service (SDARS) or Vehicle Information and Communication System (VICS). Addition-

ally, the framework can be used to create new applications where there is the need to establish

communications using the mentioned interfaces, for example in laboratory.

With these purposes, it is important to note that the framework should consist of several stan-

dardized and integrated modules with different objectives that exchange relevant data between

their different functions.

A first module concerns the characterization of the environment where the framework will

be integrated. The main objective is to define the characteristics of the product to be tested, the

characteristics of the test equipment, for example signal generators, and the characteristics of the

interfaces used. This way, it is possible that this module also defines the corresponding protocols

and the messages’ types to be used in the communication between the various elements involved.

A second module concerns the functions responsible for establishing communication channels,

sending and receiving messages and also waiting for possible messages. Given the objective of this

second module, it must be divided into others, in order to guarantee the multiplicity of protocols

covered by this framework, ensuring its flexibility.

4 Introduction

Derived from the importance of monitoring an established communication, it is important to

ensure that all communications can be analyzed. All contents shall be saved and the access to them

shall be also guaranteed. Besides that, the framework must contain functions that allow filtering

and signaling messages, which have particular interest in test systems where using those functions

anomalies can be detected.

Finally, the framework shall allow users to remotely access data related to a particular commu-

nication being performed at another location, for example, test lines located at Production areas.

1.4 Dissertation’s structure

The present Dissertation is structured in six chapters that are resumed in the following points:

i. the present chapter, 1, has as objective to describe the context, the objectives, the motivation

for this Dissertation and its own structure;

ii. the second chapter, 2, has as objective to describe the involved equipment characteristics, test

proceedings, the communication interfaces characteristics and the problem;

iii. a third chapter, 3, has as objective to describe the proposed solution as its requirements;

iv. a fourth chapter, 4, has as objective to describe how the solution’s different modules were

implemented to address to requirements mentioned before;

v. a fifth chapter, 5, has as objective to describe how the developed framework was tested; and

vi. a final chapter, 6, has as objective to describe the achievements of this work and future work

proposals.

At the end of this document, the references and appendix can be found.

Chapter 2

Problem domain and technological
background

This chapter 2 is divided in three main sections used to describe the involved equipment charac-

teristics as its test proceedings, the interfaces’ characteristics and the problem to be solved.

The first section consists in a general description of the equipment conceived in Aptiv, its

characteristics and how this equipment is tested. It is presented a description of test proceedings

and equipment used during those tests.

In the second section, a description of the involved communication interfaces used for testing

the equipment is made, more precisely RS-232, Ethernet and CAN.

Finally, in the third section, a description of the problem to be solved is presented.

2.1 Equipment description

2.1.1 Aptiv’s products

Being present all around the World, with 147000 collaborators in 45 countries, of which 16000

are Engineers and Scientists (approximally 11%), Aptiv is responsible for developing and produc-

ing products for some of the main automobile manufacturers such as Audi, Volkswagen, Ferrari

and Porsche, more precisely Infotainment Systems, User Experience, Connectivity and Security,

Safety Electronics and Autonomous Driving. Presents itself as a ”global technology company that

develops safer, greener and more connected solutions enabling the future of mobility”, [4].

The Company’s Braga site designs several Products but only two were conceded to develop

this work. One of the products was MIB3-Top (fig.2.1), a model present in Audi’s A3, A4 and Q7

vehicles and Porsche’s J1 vehicles. The other product was a Volvo Cluster, still in pre series pro-

duction, that will be present in the new Volvo FH12 truck model and, for this reason, a description

of this equipment will not be included in this work.

5

6 Problem domain and technological background

Figure 2.1: MIB3-Top general view.

MIB3-Top is an Infotainment Central Unit with no Compact Disc (CD), no Secure Digital

(SD) card, no Subscriber Identification Module (SIM) function, no buttons neither illumination. To

interact with it, a display shall be connected to the MIB3-Top in the connectors 5 and 7 present in

the figure 2.2. The connector 6 shall be connected to the vehicle display that works as tachometer.

MIB3-Top does not include a Bluetooth or Wireless Local Area Network (WLAN) antenna, but in

the Bluetooth case an antenna can be connected to the connector 9.

This unit has one multimedia board with a Samsung processor and it has one main board with

a TI J6 processor and a Renesas Input/Output Controller (IOC) processor.

Figure 2.2: MIB3-Top back unit connectors.

2.1 Equipment description 7

Besides the connectors for Universal Serial Bus (USB) interfaces (4, 11 and 18), Ethernet (17),

Radio Frequency (RF) signals (10), among others, MIB3-Top Main-Connector (14) (fig.2.3) is of

particular importance since it is used to power the unit and to link it to sensors. It is also used to

connect and supply analog and digital audio systems and to couple the unit to CAN bus present in

the vehicle.

Figure 2.3: MIB3-Top Main-Connector.

2.1.2 Test proceedings

The framework to be developed is intended to be included in test systems responsible for the Final

Tests of the units produced. Units are placed in cross units fixtures that establish the connection

between the different unit interfaces and the test system. Then, test systems use National Instru-

ments (NI) TestStand [5] to run test sequences responsible to verify the state of the unit being

tested.

These tests contain segments in which test systems communicate with the units using spe-

cific interfaces. Using these interfaces, test sequences start by commanding the product to go to

diagnostic mode, by sending a special diagnostic command. Then, the modules present in the

Infotainment Systems are ready to be queried with diagnostic commands to which they respond.

The responses are then processed by the functions present in the test sequences, verifying the

parameters being evaluated.

An example of the tests (fig. 2.4) performed is when cross units fixtures are supplied with RF

signals, that for they turn, they supply to the unit being tested. Once those signals are generated

with known values, it is possible to compare them with the measured ones, checking if they either

match or not.

8 Problem domain and technological background

Figure 2.4: Example of tests performed in Infotainment Systems, when supplying them with RF
signals.

Furthermore, these test sequences permit the execution of different tests in parallel, testing in-

dependent modules of the product at the same time, in order to optimize the time and the available

resources.

When the test is finished, the unit is released by the fixture and manually removed from it,

going further in the production process if it passed all the tests or going to laboratory to be analyzed

otherwise.

Test systems present in the production line of the MIB3-Top (fig.2.5) use RS-232 and also use,

more recently, Ethernet to RS-232 adapters such as Brainboxes ES-257 [6] (a device that enables

the connection of two RS232 interfaces to an Ethernet network) to communicate with the product’s

processors being tested, diagnosing the product’s components states, checking if they comply with

the specific defined requirements.

Figure 2.5: MIB3-Top Cross Unit fixture.

2.1 Equipment description 9

For MIB3-Top, the communication is established via RS-232 using the connector (fig.2.6)

present in the front of MIB3-Top units, specifically created for debug and diagnostic purposes.

Figure 2.6: MIB3-Top Debug-Connector.

It is important to notice that diagnostic commands sent to products’ RS-232 interface have a

specific format, concretely composed by a prefix field, a group identification field, a test identifi-

cation field, an operation field, a status information field, a number of bytes field and data bytes

field. Depending on the operation field, a check sum field can be added to the command.

In the Volvo Cluster test systems, diagnostic commands are sent to the product over it’s CAN

interface. In both cases, the devices respond to the commands with pre-defined responses that

make the test systems able to verify different requirements that must be complied by the product

being tested. Since this Volvo Cluster has a screen, some of the tests consist, for example, in

checking its brightness, by sending a command to set it to a pre-defined value, which is then

verified using the test systems sensors.

In this case, as others where there is the need to establish CAN connections, Aptiv’s Engineers

use Vector devices as interface between their products and test systems, such as VN1610 [7],

providing an USB interface to access a CAN network.

2.1.3 Signal generators

Since there are different RF signals used by Infotainment Systems, there is the need to use signal

generators to generate these signals with known values in order to provide them across the test

systems. Measuring a value as power or frequency of a signal in a device and comparing it to

the generated one permits evaluate if the device’s components are complying with the defined

requirements.

Signal generators are used not only in test systems but also in laboratory where Engineers have

the objective of test independently a certain module of a device, for example a SDARS module.

To facilitate the use of signal generators in the mentioned environments, remote controlling

them is very useful. It is with this purpose that identifying the commonly used signal generators

and respective characteristics is important. Therefore, the signal generators in use are:

10 Problem domain and technological background

• Rohde & Schwarz SMBV100A [8];

The SBMV100A (fig.2.7) offers a very high output level and short setting times. At the same

time, can be equipped with an internal baseband generator to allow generation of a num-

ber of digital standards (e.g. Long Term Evolution (LTE), LTE-Advanced, IEEE802.11ac,

Global Navigation Satellite System (GNSS)). This device has a frequency range from 9 kHz

to 6 GHz and a level range from -145 dBm to +18 dBm.

Figure 2.7: Rohde & Schwarz SMBV100A front and back view.

It is used in Aptiv’s test lines to generate SDARS and VICS signals and according to its

manual it can be controlled remotely sending commands using its Ethernet interface.

• Rohde & Schwarz SFC Compact Modulator [9];

The SFC Compact Modulator (fig.2.8) is a multi-standard signal source. It supports real time

coding for all conventional digital and analog television (TV) and audio broadcasting stan-

dards such as Digital Terrestrial Multimedia Broadcast (DTMB), Digital Audio Broadcast-

ing (DAB), Frequency Modulation (FM) and Radio Data System (RDS). The SFC Compact

Modulator is equipped with a built-in computer. This device has a frequency range from 30

MHz to 800 MHz.

Figure 2.8: Rohde & Schwarz SFC Compact Modulator front and back view.

It is used in Aptiv’s test lines to generate DAB signals and according to its manual it can be

controlled remotely sending commands using its Ethernet interface.

2.2 Interfaces’ characteristics 11

• Rohde & Schwarz SFE100 [10];

The SFE100 (fig.2.9) is a multi-standard test transmitter providing real time coding for

broadcast signals. It supports all common digital and analog TV standards and a number

of audio broadcasting standards such as Amplitude Modulation (AM), FM and RDS. This

device has a frequency range from 100 kHz to 2.7 GHz.

Figure 2.9: Rohde & Schwarz SFE100 front and back view.

It is used in Aptiv’s test lines to generate High Definition (HD) radio signals and according

to its manual it can be controlled remotely sending commands using its Ethernet interface.

It is possible to conclude that it is possible to control remotely all the mentioned signal gener-

ators using their Ethernet interface.

2.2 Interfaces’ characteristics

One of the main goals of the framework is to contend functions that make the user able to com-

municate with the automotive Products using a specified interface and, if desired, monitor that

communication for analysis and testing proposes.

To build such functions, it is very important to understand the characteristics of the different

involved layers in a specific type of communication. It is important to know how each one vary

from one to another, besides the importance of knowing the expected behavior of the equipment

chosen to communicate with.

In the following subsections are described the main concepts of the involved interfaces, specif-

ically RS-232, Ethernet and CAN, which are the principal interfaces used to send diagnostic com-

mands by test systems present in the production lines of the automotive products referenced above.

12 Problem domain and technological background

2.2.1 RS-232

RS-232 was first introduced in the 60’s as a communication standard for serial transmission data.

Currently, RS-232 complies with the standard for serial interfaces defined in TIA-232-F: Inter-

face Between Data Terminal Equipment (DTE) and Data Circuit-Terminating Equipment (DCE)

Employing Serial Binary Data Interchange, [11].

It was a standard widely used in computer systems, but meanwhile it has been substituted

for other communication standards, mostly by USB. Nevertheless, RS-232 is still used in many

applications, like in the scope of this work, to communicate with Infotainment Systems.

2.2.1.1 Physical interface

Despite the standard define different connectors, the focus will be given to the case of the equip-

ment developed in Aptiv. In these devices, that use RS-232 to communicate, the connector used is

a DB-9, (fig.2.10), which contains 9 pins but only three are used for each interface in the mentioned

application. The connection is established between a DTE and a DTE.

Figure 2.10: DB-9 Male Connector Pin out, [12].

In this type of applications (fig. 2.11), the Transmitted Data (TD) is responsible to carry data

from a DTE to a DTE, the Received Data (RD) is responsible to carry data in the opposite direction

and the Common Ground (GND) used as return path for the signals. The other pins can be short

circuited in each side, namely connecting Request to Send (RTS) and Clear to Send (CTS) and

2.2 Interfaces’ characteristics 13

connecting Data Set Ready (DSR), Data Carrier Detect (DCD) and Data Terminal Ready (DTR).

The remaining pin, Ring Indicator (RI), is not used.

Figure 2.11: Example of connection between DTEs using RS-232.

Depending on the baud rate and cable type, the distance between two devices is limited.

2.2.1.2 Data and Control signals

Being a serial communication protocol, RS-232 transmits data one bit at a time, over a single

wire. Using an unbalanced voltage transmission, bits are represented by voltages levels, positive

and negative, and the communication can be bilateral, that is RS-232 can operate in a full-duplex

mode in which is possible to devices connected using the standard to send and receive data at the

same time. To operate in such way, three signals are essential, namely TD, RD and GND.

In RS-232 applications that use Universal asynchronous receiver-transmitter (UART), in which

data is transmitted using frames (fig.2.12), it starts with the so called start bit that correspond to

a bit with logic value 1. When a device is not transmitting, the logic value is 0. When a change

occurs in this value, that indicates to the receiver that a frame is incoming. The following bits,

defined by the User in the parameters of the communication, correspond to the data bits and are

transmitted starting with the least significant bit and finishing with the most significant one.

If parity is used, it corresponds to the following bit. When a frame is received, the DCE counts

the number of data bits with value equal to one and checks if it is either an odd or even number, if

parity bit does not match it, a transmission error occurred.

Finally, the frame has one or two bits used to signal the end of the frame, called stop bits and

correspond to bits with logic value 0.

14 Problem domain and technological background

Figure 2.12: UART Frame.

According to Axelson, J. [13], the remaining lines (RTS, CTS, DSR, DCD, DTR and RI) are

flow-control and other status and control signals. ”The RS232 standard defines uses for all of the

signals, but applications are free to use the signals in any way as long as both ends agree on what

the signals mean. Many links use the RTS and CTS flow-control signals. In the most commonly

used protocol, each computer uses an output bit to let the other computer know when it’s okay to

send data. The DCE asserts CTS when ready to receive data, and the DTE asserts RTS when ready

to receive data. Before transmitting, a computer reads the opposite computer’s flowcontrol output.

If the signal’s state indicates that the receiving computer isn’t ready for data, the transmitting

computer waits. In links that use DTR and DSR, each computer typically asserts its output on

power up to indicate that the equipment is present and powered.”

RI, DCD, DSR and CTS are outputs on the DCE, and the first two can have any use if not used

for their original purposes, that is detecting a ring signal on a phone line (RI) and detecting the

presence of a carrier, respectively.

This author [13] also states that ”RS-232 logic levels are defined as positive and negative volt-

ages rather than the positive-only voltages. Bits with logic value 1 are represented with voltages

levels between -15 V and -3 V and bits with logic value 0 are represented with voltages levels

between +3 V and +15V with respect to the common ground”.

2.2.2 Ethernet

Ethernet is a Local Area Network (LAN) technology that allows the connection between various

devices within a relatively low-cost and flexible network system. It can be used in small networks

as in very large networks, with different applications.

The Open Systems Interconnection (OSI) model describes how networking hardware and soft-

ware work together, dividing their tasks into seven separate layers. OSI was developed in 1978 by

International Organization of Standardization (ISO). The lower layers correspond to the standards

used to describe how a LAN system moves bits around, in which Ethernet is included, while higher

layers correspond to abstract notions as the reliability of data transmission and how the user gets

the data. Ethernet is included in the two lower layers of OSI model, corresponding to physical and

data link layers (fig.2.13).

2.2 Interfaces’ characteristics 15

Figure 2.13: OSI model and Ethernet corresponding sub layers.

An Ethernet Local Network is composed by hardware and software that work together to de-

liver digital data between different devices. To make it possible, four basic elements are combined,

composing an Ethernet System. This four building blocks are the follow [14] :

1. the physical medium, which consists of the cables and other hardware used to carry digital

Ethernet signals between computers attached to the network;

2. the signaling components, which consists of a standardized electronic devices that send and

receive signals over an Ethernet channel;

3. the frame, which is a standardized set of bits used to carry data over the System; and

4. the Medium Access Control (MAC) protocol, which consists of a set of rules embedded in

each Ethernet interface that allow multiple computers to access the shared Ethernet channel

in a fair manner.

On the other hand, the mentioned blocks can be grouped in two parts, one corresponding to the

physical layer and other to the MAC layer. Signaling components and physical medium belong to

the first one and the frame and MAC protocol belong to the other.

2.2.2.1 Physical medium and signaling components

The signaling components are all the hardware used to send and receive signals over the physical

medium, which is all the hardware components responsible to carry the transmitted signals. This

hardware differ depending on the type of cabling used and the Ethernet system’s speed.

In Ethernet systems, signaling components refer to all the specific transceivers used in the

Ethernet cards interfaces and repeater hubs, since they are responsible to generate, send and receive

the signals used in the Ethernet system.

16 Problem domain and technological background

In the table 2.1 are presented the specifications of the most used Ethernet media systems, being

the 10BASE-T and 100BASE-T the most common.

Table 2.1: IEEE 802.3 Transmission Medium Specifications, [15].

Characteristic Ethernet Value 10base5 10base2 10baseT 10baseFL 100baseT
Data rate (Mbps) 10 10 10 10 10 100
Signaling method Baseband Baseband Baseband Baseband Baseband Baseband

Maximum
segment length (m)

500 500 185 100 2000 100

Media
50-ohm
coax (thick)

50-ohm
coax (thick)

50-ohm
coax (thick)

Unshield
twisted-pair
cable

Fiber-optic
Unshield
twisted-pair
cable

Topology Bus Bus Bus Star Point-to-point Bus

The 10BASE-T systems might use as signaling components an Ethernet interface with a built-

in 10BASE-T transceiver or a repeater hub equipped with 10BASE-T ports, among others. While

for building a 10BASE-T twisted-pair segment, the media components used are an unshielded

twisted-pair cable with Category 3, which applies to 100 ohm unshielded twisted pair cables and

associated connecting hardware whose transmission characteristics are specified up to 16 MHz,

or better and a eight-position RJ-45-style modular connector. The twisted-pair cables are rated

in Category according to the Telecommunications Industry Association/Electronic Industries Al-

liance (TIA/EIA) 568 standard [16] which describes the specifications the cables met.

The most worldwide used Fast Ethernet media system is 100BASE-T, allowing transmissions

with data rates of 100 Mbps.

The 100BASE-T systems might use as signaling components an Ethernet interface with a

built-in 100BASE-T transceiver, a Medium-Independent Interface or an external 100BASE-T

transceiver. While for building a 100BASE-T twisted-pair segment, the media components used

are an unshielded or shield twisted-pair cable and a eight-position RJ-45-style modular connector

that meets Category 5 specifications, which applies to 100 ohm unshielded twisted pair cables and

associated connecting hardware whose transmission characteristics are specified up to 100 MHz.

2.2.2.2 The Ethernet frame

Ethernet communication consists in the exchange of standardized frames between stations, in

which the bits are formed up in specified fields as presented in the figure 2.14 and in accordance

with the official Ethernet standard Institute of Electrical and Electronics Engineers (IEEE) 802.3.

The preamble field allows the interfaces on the network to synchronize themselves with the

incoming data stream, preventing the important data fields will not be lost due to signal start-up

delays present in 10 Mbps Ethernet interfaces. Although signal start-up delays are avoided in Fast

Ethernet systems, due the use of more complex mechanisms for encoding signals, the preamble is

maintained in this systems to provide compatibility with the original Ethernet frame. According

to the IEEE 802.3 specification the Start Frame Delimiter (SFD) consists on one byte in which the

last two bits are 1, and it can be considered as part of the preamble.

2.2 Interfaces’ characteristics 17

Figure 2.14: IEEE 802.3 frame.

The destination address consists in a 48 bit Ethernet address called the interface’s physical or

hardware address where the frame is intended to be delivered. This field may contain a multicast

address, a standard broadcast address or a unicast address. When a frame is received by an Eth-

ernet interface, it is read at least to this field, so that they can ignore the rest of the frame if this

destination address does not match their own or the ones their programmed to receive.

The source address corresponds to the physical address of the interface that sent the frame.

This field and the destination address are composed by two 24 bits parts, one called Organiza-

tionally Unique Identifier (OUI), forming the first half of the physical address of any Ethernet

interface, acquired by the Ethernet equipment manufactures from IEEE. The second part is assign

by the vendor as each interface is manufactured.

The follow field is either a length or type field. In the first version of IEEE 802.3 standard,

published in 1985, the type field was not included, being this field only called length field. In

1997, type field was added to the mentioned standard. The hexadecimal value present in the field

indicates the manner that it is being used. If the decimal value of the field is less than or equal to

1500, then this field is being used as a length field, indicating the number of Logical Link Control

(LLC) data octets that are present in the data field of the frame. If the decimal value of this field

is greater than or equal to 1536, then this field is being used as a type field, indicating the type of

protocol data being carried in the data field of the frame.

The data field contains a minimum of 46 bytes and a maximum of 1500 bytes. If the number

of LLC data octets is inferior than the minimum, then data octets will be added to make the data

field large enough. When the frame is received, the length of valid data in this field is determined

using the length field.

The last field in the IEEE 802.3 frame is called Frame Check Sequence (FCS) or Cyclic Re-

dundancy Check (CRC) and it is used to check if the data transmitted is correct. This 32 bit field

is calculated using all the fields in the transmitted frame except the preamble and the SFD. When

an interface receives a frame it calculates the CRC and compares it to the present in the frame, if

both values match it means that no errors occurred during the transmission of the frame over the

Ethernet channel.

18 Problem domain and technological background

2.2.2.3 Medium Access Control protocol

When transmitting a frame on the original mode of a Ethernet operation, a half-duplex shared

Ethernet channel, Medium Access Control Protocol defines a set of rules, such as Carrier Sense

with Multiple Access and Collision Detection (CSMA/CD), that devices present in the network

must follow.

Mainly, a interface connected to this type of channel must know when it can transmit and

receive and must be able to detect and respond if a collision occurs. To do so, the following steps

must be followed:

• if a signal is being transmitted in the channel, the present condition is called ”carrier”;

• if a device wants to transmit a frame, it waits until the channel is idle, waiting for an absence

of ”carrier”;

• when the channel is idle, the interface waits a period called interframe gap (IFG), and then

transmits its frame; and

• if two interfaces transmit at the same time, a collision occurs. The interfaces detect the

signal collision and reschedule their frame transmission. This mechanism is called collision-

detection.

Once data transmission is made one frame at a time and every interface use the same rules to

access the Ethernet channel, the use of this algorithms ensures a fair chance to use the network for

each interface present.

With the evolution of the Ethernet networks, figure 2.15, concretely with emergence of the

full-duplex operation mode, approved for adoption into the IEEE 802.3 standard in March 1997,

simultaneous communication between a pair of stations is allowed. For full-duplex operation, the

media system must provide independent transmit and receive data paths. This constitutes a major

advantage compared with the original operation mode, once it doubles the total bandwidth and the

timing requirements of a shared channel no longer limit the maximum segment length, being the

only limits set by the signaling capabilities of the media segment.

Figure 2.15: The evolution of the Ethernet networks.

2.2 Interfaces’ characteristics 19

In the full-duplex operation mode the connection is made by exactly two stations in a point-

to-point link, medium is not shared and consequently CSMA/CD algorithms are not needed. Both

stations must be configured to operate in the same operation mode, otherwise communication

errors will occur.

In this operation mode, the MAC protocol is used to provide mechanisms that control when

Ethernet frames are sent, allowing stations to interact in real time to control the data flow.

2.2.3 CAN

CAN is a communication protocol which was introduced by Robert Bosch GmbH in 1986 as

a serial bus system originally developed to by used in passenger automobiles. Mercedes Benz

was the first car manufacturer to apply it for networking body electronics of its S-Class vehicles.

Although, it is now used in several different vehicles from trucks to planes, as well as in industrial

applications.

”Since 1994–1995, CAN is the most common protocol for automotive applications, and is

described in the ISO standards 11898-1 to 11898-5. In Part 1 of ISO 11898 (ISO 11898-1), the

data link layer and physical layer are set according to the ISO reference model ISO/IEC 7498-1.

The “High Speed” CAN bus access (up to 1 Mbps) is specified in ISO 11898-2 and mainly used

in the propulsion of a vehicle. The “Low Speed” CAN (40. . . 125 kbps) for the comfort section

is described in ISO 11898-3. ISO 11898-4 allows a time-triggered communication to ensure a

smooth data transfer with high communication traffic”, [17]. ISO 111898-5 is an extension of Part

2 and describes High-speed medium access unit with low-power mode.

In the following subsections, it will be presented CAN main features, namely CAN physical

layer, CAN data link layer with the typical CAN frame and higher-layer protocols.

2.2.3.1 Physical Layer

For CAN systems there are two main concepts for the Physical Layer, namely the Fault-Tolerant

Low-Speed CAN Physical Layer and the High-Speed CAN Physical Layer. These concepts differ

in the maximum data rate, 125 kbits/s for low-speed CAN and 1Mbit/s high-speed CAN, and differ

in the bus termination. The focus will be taken in high-speed CAN since it is the one used in the

communication between products and test systems.

CAN Physical Layer (fig.2.16) consists in a transceiver, a connector, a network or a data bus,

a CAN coil (optional), electromagnetic compatibility (EMC) and electrostatic discharge (ESD)

protection devices (optional).

20 Problem domain and technological background

Figure 2.16: Physical CAN Connection according to ISO 11898, [18].

For the two different Physical Layers concepts, the transceiver is identical, it transmits and

receives the physical data to and from the bus using differential voltage signals which are converted

in the receiver to a logical signal.

The standard, defined by ISO, states the use of two 120 ohms resistors in each termination of

the bus for high-speed CAN, which reduces the echo on the bus and makes the communication

more reliable.

CAN can have several topologies:

• Single star (fig.2.17) - In this architecture, all transceivers are connected to a single point

and only one termination resistor (60 ohm) is used. The maximum length of each wire is 9

meters and the maximum baud rate is 500 kbaud;

Figure 2.17: Schematic and application of a single star topology, [17].

• Twin Star (fig.2.18) - In this architecture, two single stars are connected to each other, with

the termination resistors located in the center of each star. The maximum baud rate is equal

to the single star topology;

2.2 Interfaces’ characteristics 21

Figure 2.18: Schematic and application of a twin star topology, [17].

• Linear Bus (fig.2.19) - This architecture is the most used in industrial applications, allowing

baud rates up to 1 Mbaud. The connection between the transceiver and the bus is limited to

a maximum of 30 cm and the bus length should be below 40 m; and

Figure 2.19: Schematic and application of a linear bus topology, [17].

• Hybrid (fig.2.20) - This architecture consists in a combination of a single star and a linear

bus. This topology allows baud rates up to 1 Mbaud but the maximum length of the wire is

smaller than in the other topologies. The cost for this solution is higher than for the others.

Figure 2.20: Schematic and application of a hybrid topology, [17].

22 Problem domain and technological background

2.2.3.2 Data link layer

The data link layer of CAN protocol is divided into two separate layers, as in the Ethernet’s data

link layer these two layers are MAC, responsible to manage the use of the bus, in order to avoid

collisions, frame encoding and decoding, and signaling errors, and LLC, responsible to give the

User a proper interface between lower and higher layers being used in the CAN system, this

interfaces are called communication services.

CAN protocol’s MAC mechanism is based on the CSMA scheme. This means that before

a node transmit, it must know the state of network. If the network is in a idle state, the node

can transmit its frame otherwise it must wait for the end of the current transmission. When two

nodes transmit at same time a collision occurs, but unlike Ethernet, CAN resolve contentions in a

deterministic way, using the identifier field of the frames, that as mentioned before the ones with

lowest identifiers have higher priority. This way, CAN ensures that maintenance of the bandwidth

available.

ISO specification states that LLC sublayer of CAN provides two communication services, one

used to broadcast the value of a specific object over the network and one used to ask for the value

of a specific object to be broadcast by its remote producer. This way CAN can be applied to

Producer/Consumer and Master/Slave based systems.

Furthermore, CAN controllers can be classified as BasicCAN or FullCAN. For BasicCAN

controllers, there are one transmit and one receive buffer, as in UART, and frame filtering is made

by application layers. In the FullCAN case, a variable number of internal buffers can be configured

to either receive or transmit particular messages and frame filtering is implemented directly in the

CAN controller.

2.2.3.3 The CAN frames

Although CAN frames belong to the data link layer, it was considered relevant to have a subsection

specifically to describe them.

CAN protocol defines four types of frames: Data frame, Error frame, Remote frame and

Overload frame. Each one have different objectives but only Data frame transports message data.

The others are used for fault containment, triggering and synchronization.

For Data frame, message is divided into specific fields with fixed length. In CAN there are two

different structures for CAN data frame (fig.2.21), distinguished by the size of the identifier field.

A frame with 11-bit identifier field (Standard Frame) has the following composition:

• starts with a single bit called Start of Frame, used to signal the start of a frame and for

synchronize all network nodes;

• the next field is called Arbitration Field and it is composed by 12 bits. This bits contain

the 11-bits Identifier, used as logical address and indicate the message’s priority. The lower

the numerical value is, higher the priority is. Arbitration Field last bit is called Remote-

Transmission-Request (RTR) and it is used to identify the frame as containing data from its

2.2 Interfaces’ characteristics 23

Figure 2.21: Structure of a CAN Data frame, [17].

identifier or a frame with no data but triggers the actual transmitter of the identifier to send

a frame with data;

• following RTR is the Control Field composed by 6 bits that are also separated in different

fields. The first bit of this field is the Identifier Extension Flag used to indicate if the data

frame is either a one with 11 bit identifier or a 29 bit identifier, and it comes low or high

respectively and indicates if the identifier is completed. The next bit r0 is reserved. Finally,

Control Field last four bits contain the Data Length Code (DLC) to indicate the length of

the following field;

• data field has variable size (0 to 8 bytes) and contains the data of the message;

• used for fault detection, the following field is called CRC field and it is 16 bits long. It

contains the checksum for the preceding bits in the first 15 bits and is followed by one bit

called CRC Delimiter in high level;

• the next field of the frame is Acknowledge Field. This field has one bit called ACK Slot,

transmitted in a high level excepting to be overwritten to low level by a receiver node. This

only indicates that the frame was at least recognized by at least one active node as a correct

one. As in CRC field, the first field, ACK Slot, is followed by a one bit delimiter in high

level;

• After ACK field, the frame has the called End Of Frame (EOF) 7 bits long field, that as the

name says, it indicates the end of the data frame; and

• finally, the frame has the Inter Frame Space (IFS) 3 bits long field, used to separate the

current frame from the following one.

Extended frames, frames with 29 bit identifiers, differ from the standard frames in the Arbi-

tration Field and in the first bit of the Control Field. Arbitration Field consists in 32 bits divided

in three parts, the 11 most significant bits are the Base Identifier, followed by two high bits called

the Substitute Remote Request and the Identifier Extension Flag. The 18 least significant bits

correspond to the Identifier Extension. The last bit of the Arbitration Field is the RTR.

24 Problem domain and technological background

2.2.3.4 Higher-layer protocols

In the past few years, several higher-level application protocols have been defined, in order to re-

duce the resources involved in designing and implementing automation and networked embedded

systems. These protocols rely on the CAN data link layer to transfer messages between nodes of

this type of network. ”The main aim of such protocols is to provide a usable and well-defined set

of service primitives, which can be used to interact with embedded devices in a standardized way.

Reduced design and development costs are easily achieved thanks to standardization”, [19].

Currently, several solutions are available such as CANopen [20] for embedded control systems,

Society of Automotive Engineers (SAE) J1939 [21] used in trucks and other vehicles, DeviceNet

[22] used in factory automation applications, among others.

2.3 Problem description

Along with the appearance of new products, Aptiv’s Engineers are used to develop new communi-

cation tools despite using similar tools on previous products. This results in a waste of resources,

both human and time. On one hand allocating someone to create a new communication tool that

could already created is dispensable, on the other there is difficulty in sharing the information to

use those tools correctly.

Furthermore, during Infotainment Systems’ life cycles there is the need to use different com-

munication interfaces to interact and control them. In early phases, when products are being

developed, communication interfaces are used to debug the equipment behavior. In later phases,

when products are being produced, there is the need to control the equipment when it is being

tested, which demands tools that can be integrated in NI TestStand. In laboratory, both for repair

and current product engineering, there is also the need of communication tools to control and

debug Infotainment Systems.

When a certain system is communicating with a Infotainment System, it is important to moni-

tor that connection. In the case of test systems, located in Production areas, it is desirable to access

remotely the communication content being exchanged between these systems and the products in

test.

It is in the need of standardized tool to communicate with Infotainment Systems, well docu-

mented in order to be used by Aptiv’s Engineers of various areas, that the problem was identified.

To solve the problem presented, it shall be created a flexible tool that can be used to establish

communications between Infotainment Systems and other systems, for example test systems, us-

ing different communication interfaces, namely RS-232, Ethernet and CAN. Besides permitting

the exchange of messages between the mentioned systems, the solution must permit to consult

the communication content both locally and remotely. The filtering of messages must also be

guaranteed.

Chapter 3

Proposed Solution

This chapter 3 is divided in three main sections that have as objective to present the proposed

solution, the requirements that it must address and the consequent conclusions.

In the first section are presented the requirements that the solution must comply in order to

fulfill the objectives defined for this work.

Derived from the points contained in the mentioned section, a description of the proposed

solution is presented in the second section of this chapter.

In the last section are presented the conclusions derived from the architecture presented in 3.2.

3.1 Requirements

In accordance with the needs derived from the problem to be solved, it was elaborated a list of

requirements and goals that its solution must comply.

It is desired that the solution has enough flexibility so it can be used by test systems responsible

for the final tests in the Production lines of different products. It is also desired that the solution

can be used by Test Engineers during the development of new test sequences when a new product

is being prepared for production as to be used in laboratory and repair locations where products

are debugged.

Thus, the requirements that the solution must address are:

i. contain functions that are used to define the characteristics of the Aptiv’s product to be tested;

ii. contain functions that are used to define the characteristics of the test equipment, as signal

generators, to be controlled;

iii. contain functions that are used to define the characteristics of the communication interfaces

to be used by the systems where the mentioned functions are used;

iv. deal with multiple connections (maximum 4);

v. contain functions that establish RS-232 connections;

25

26 Proposed Solution

vi. contain functions that establish Ethernet connections;

vii. contain functions that establish CAN connections;

viii. contain functions that make enable synchronous and asynchronous connections between the

systems where the mentioned functions are used and the devices that are intended to commu-

nicate with, namely Aptiv’s products and test equipment;

ix. contain functions to send, receive and wait for messages of the different connection types

mentioned before;

x. give to the User the ability to send and receive messages over different communication inter-

faces using the same functions despite the involved interfaces;

xi. contain functions that are used to save all the content of a established connection;

xii. the number of communication logs saved must be limited to 5;

xiii. contain functions that are used to flag a certain message defined by the user in a established

connection;

xiv. contain a monitor service that makes User able to remotely access data from certain connec-

tion established between a remote device and certain product, for example in a production

line;

xv. work on Windows Operative System (minimum version is Windows 7);

xvi. contain functions that can be integrated in test sequences from NI TestStand; and

xvii. contain functions written in C# or C++.

Analyzing the described requirements, it is possible to separate them in different groups that

concern different objectives.

The first one, from i to iv, establish the intention to have functions that are used to define the

characteristics of the equipment involved in a certain communication to be established. Conse-

quently, this information must be stored somewhere, must be editable and there must be a way to

parse it to the functions used for communicating. The number of different devices described is

limited to the number of connections that can be established, in this case four.

A second group, from v to xii, states the intention to establish connections using RS-232,

Ethernet or CAN between a certain system and a device with the selected interface. With the

connection established the User shall be able to send, receive and wait for messages using the

same functions despite the interface being used. The solution must save all the communication

in order to be consulted during and after the communication. The number of logs saved must be

limited to 5, because in a test system a lot of units are tested and if the system keeps saving all the

logs, storing can be become a problem.

3.2 Description 27

A third group, xiii and xiv, states the intention to monitor the communications established

using the functions described before. The monitoring process shall be done using functions to be

used locally, this is in the system where the communication functions are being used. The mon-

itoring process shall be also done remotely, in other words, the communication content must be

available to consult from other system that is not connected directly to the device that is commu-

nicating with system where communication functions are being used. This is of particular interest,

for consulting the content of a communication established between a test system in the Production

line and the unit being tested by it, without using the test system itself.

Finally, a fourth group, from xv to xvii, concerns the environment where the solution can be

integrated. Since test systems use Windows as operative system, along with NI TestStand to run

tests on Aptiv’s products, it is imperative that the solution can be integrated in both. C# or C++

are the programming languages that can be used to develop scripts to be used on NI TestStand.

The definition and analysis of the requirements above were the start point for elaborating a

solution that integrates different communication types and makes the User capable of monitor

locally and remotely the desired communication.

3.2 Description

To ensure that all requirements, separated in four groups in 3.1, are fulfilled, the proposed solution

is the creation of a framework composed by different modules that together can characterize,

establish, control and monitor RS-232, Ethernet and CAN communications.

The figure 3.1 shows the proposed solution diagram. This solution includes:

• a standardized Extensible Markup Language (XML) file called Product Communication

Configuration File (PCCF) created specifically to be used to store the characteristics of the

interfaces that the User intends to communicate with and the paths where all contents of the

communications and the errors that can occur should be saved.

XML was the format chosen because it enables the creation of different tags, that can be

organized in a hierarchical way, used to store pertinent information without using too much

memory. Furthermore, this type of file is easily editable;

• a Dynamic-Link Library (DLL) constituted by different functions. One of these functions is

responsible to extract all the information from the previous mentioned XML file and build

an object. This object can be then used by the remaining DLL’s functions that make the

User able to open communication channels, send, receive and wait for possible messages.

These functions save communication contents and errors/exceptions that can occur in log

files called Product Communication Logs (PCLs). This DLL also include functions to filter

and signal messages defined by the user and check the current state of certain interface.

This DLL shall be written in C# due the fact that functions used in test sequences can use

.Net, which is a framework with a lot of useful resources. Having a DLL with all these

functions makes the framework more flexible, since it can be used not only on NI TestStand

28 Proposed Solution

but also in other applications where it is intended to communicate using RS-232, Ethernet

and CAN interfaces; and

• a monitor solution constituted by a Windows service that works as a Transmission Con-

trol Protocol/Internet Protocol (TCP/IP) server in the system where the framework is being

used and a User Interface (UI) to monitor remotely the communications established using

the framework’s DLL functions, working as a client that communicate with the Windows

service.

It is important to mention that IP objective is to hide the underlying physical network by

creating a virtual network view, using addresses that are represented by a 32 bit unsigned

binary value. This protocol is connectionless packet delivery meaning that the dependency

on specific computing centers that use hierarchical connection-oriented networks is min-

imized. Packets sent by IP might be lost, arrive out of order, or even be duplicated. IP

assumes higher layer protocols will address these anomalies, [29].

TCP objective is to provide a reliable logical circuit or connection service between pairs

of processes, [29]. Since it assumes that lower-level protocols, as IP, are not reliable, TCP

guarantees that reliability. TCP allows applications to stream data transfer, since it groups

data bytes to be transferred to the destination into TCP segments, which are passed to the

below layer like IP. TCP assigns a sequence number to each byte transmitted and waits for a

positive acknowledgment (ACK) from the destination TCP layer. Case ACK is not received

after a timeout interval, data is transmitted again. This sequence numbers are also used

by the receiving TCP to order the segments and to eliminate duplicate segments. ACK is

also used to indicate to the sender the number of bytes that can be received. TCP allows

multiplexing through the use of ports and provides full duplex for bidirectional concurrent

data streams.

This way, this service can be integrated in any Windows system and it enables the connection

of multiple devices that intend to consult PCLs, either they are using the UI specifically

designed to do so or using other software that can establish TCP/IP connections. Since this

type of service is always running on background, it shall also be responsible to manage the

logs saved in the system.

3.2 Description 29

Figure 3.1: Diagram of the proposed solution.

The solution presented can be easily implemented in test systems. Different products and

equipment can be described in the configuration file which can be edited at any time. The functions

from the DLL, can be integrated in NI TestStand test sequences, and independently the interface

type, the methods invoked are the same. With the Windows service installed, the communication

content is automatically managed and can be consulted from any device that is in the same net-

work, using a UI specifically design to do it or using other software for TCP/IP connections. The

communication content can also be consulted locally, once it is always available in the log files.

3.2.1 Main modules

This section focus in the main modules of the solution, namely the Product Communication Frame-

work (PCF) DLL and the Product Communication Monitor (PCM) since together they address the

main objectives for this work.

3.2.1.1 Product Communication Framework DLL

Product Communication Framework DLL can be itself divided in three different groups of func-

tions that have particular objectives, such as parsing configuration information, communicate with

interfaces and analyze the established communications. Figure 3.2 gives a general view of PCF

DLL and shows the hierarchal call trees for its methods.

30 Proposed Solution

Figure 3.2: PCF DLL general view.

A first part concerns parsing the information contained in the XML configuration file, PCCF,

into an object concretely a new instance of Product Communication Framework Class (PCFC).

This permits that the information from the XML configuration file can be used by the remaining

functions of the PCF DLL. In other words, after creating PCFC using the class constructor, the

User can call other methods from the PCF DLL using the created PCFC.

A second part is constituted by all the methods that permit the User to communicate with

the different devices specified in the XML configuration file and check their status. These meth-

ods include the functions responsible to initialize a specified device and establish the connection

between the host and the device using the corresponding interface.

After the initialization, the User can use some of the PCF DLL methods to read incoming

messages and send messages to the device. The PCF DLL also includes methods to send and wait

for an expected response within a time interval.

If intended, all the exchanged messages are saved in a PCL file created in the pre-defined paths

from the XML configuration file. To terminate a connection, the User can call a stop method. At

any moment, the User can check a certain communication status calling the corresponding method.

The last part of PCF DLL includes functions to create and manage the communication filters,

that is, a group of functions which main objective is to flag if a certain message occurred. Con-

cretely, the User have access to methods that permit adding and removing filters. With those filters

created, the User can then use a method to check if the filter occurred and a method to check when

it happened.

3.2 Description 31

3.2.1.2 Product Communication Monitor

The main objective of Product Communication Monitor is to make the User able to monitor re-

motely the communications established using PCF DLL’s functions. To do so, PCM is constituted

by two modules (fig.3.3):

i. Product Communication Monitor Service (PCMS), a Windows service that can be installed in

the system where PCF DLL is being used; and

ii. Product Communication Monitor User Interface (PCMUI), a UI application to be used in a

remote system.

Figure 3.3: Diagram of the Product Communication Monitor.

Despite PCM and PCF not being directly connected, they both use PCLs to share fundamental

information.

The main idea is to monitor communications established using PCF DLL remotely is quite

simple. PCF DLL’s functions write the communication contents in PCLs and PCMS consults

those files to be able to transmit the information stored there. Then, using PCMUI the User can

establish a connection with a certain system that have PCMS installed in order to have access to

the System’s information. PCMS shall be responsible to manage the files stored in the system in

order to avoid too many PCLs to be stored.

PCMS shall be flexible enough to permit the simultaneous connections of different applica-

tions other than PCMUI. It shall respond to specific commands that make the User able to remotely

consult the interfaces characteristics connected to the system and consult the PCLs of established

connections. Consequently PCMS, must content a XML parser in order to extract information

from PCCF in a similar way PCF constructor does.

Despite other applications can be connected to PCMS to obtain information from the system,

the main objective for building a UI specifically to monitor the communications established using

PCF is to make the User able to download a copy of the PCLs to the remote system.

32 Proposed Solution

3.3 Conclusions

After defining the requirements that the solution for the problem must comply it was possible to

design the solution’s architecture.

Using a standardized XML file for saving configuration parameters along with a DLL, the

proposed solution guarantees the flexibility to be integrated in different applications where com-

munication over RS-232, Ethernet or CAN is a must, such in test systems.

The solution presented also guarantees the possibility of monitoring the connection established

using the DLL’s functions both locally and remotely. Locally, communication content is saved in

log files and can be consulted at any time. Remotely, the access to these log files is guaranteed by

a Windows service along with an UI designed specifically for purpose, or a TCP/IP client.

An example of application for the proposed solution is illustrated in figure 3.4 where the frame-

work’s modules are signaled in red. Inside a test system, the communication functions are used

inside NI TestStand test sequences to communicate with Infotainment Systems and Signal gener-

ators. The configuration file and the log files are saved in it too. The Windows service is optional

depending if the user intends to permit the remote access to the communications established using

the framework’s functions. To have this type of access, there is the UI inside the remote systems.

Figure 3.4: Example of application for the proposed solution in test systems.

The solution’s architecture is the guide line to its implementation that is presented in the fol-

lowing chapter 4.

Chapter 4

Implementation

This chapter 4 is divided in two main sections that have as objective to describe how the solution’s

different modules are implemented to address the requirements previously defined in the chapter

3.

In the first section is presented how the XML module, responsible for parsing the description

of the interfaces to an object, is implemented and presents how the different interfaces functions

are developed in order to be integrated in a unique module responsible to contain all the commu-

nication functions

A second section describes how the Product Communication Monitor module is implemented.

4.1 Product Communication Framework DLL

The implementation of PCF DLL was made using Microsoft Visual Studio 2017 along with its tem-

plate for building DLLs in C#. This way, the DLL created can be included in different applications

and address the requirements xvi and xvii previously defined in 3.1.

PCF DLL (fig. 4.1) is composed by several Classes but only PCF Class can be accessed by

the User.

PCF Class has public methods that can be grouped in three groups, one concerning parsing

information from PCCF and build a PCF Class object to be used by the other groups of methods,

one concerning communication functions and one concerning functions to filter selected messages.

33

34 Implementation

Figure 4.1: PCF DLL Class diagram.

Every object of the PCF Class has one field that is a Dictionary Class [23] object containing

instances of the Interface Class (fig. 4.2), built using a private method from PCF Class called

XMLParser that will be presented with detail in the subsection 4.1.1.

Figure 4.2: Interface Class.

Interface Class has three different constructors, each one corresponding to a different inter-

face type. To make this association, the constructors of the Interface Class call the constructor

of the corresponding device Class to build an object from the desired type. Interface Class has

a field that identifies the type of communication and it is used by remaining methods to make the

link between PCF Class’ methods and the corresponding device’s methods.

4.1 Product Communication Framework DLL 35

Thus, Interface Class enables PCF Class to inherit fields and methods from SerialDevice
Class, EthernetDevice Class and CanDevice Class, which implementation will be presented

with detail in the subsections 4.1.2.1; 4.1.2.2 and 4.1.2.3, respectively. This way, the User can

use the same functions independently the interface to be used to communicate, addressing the

requirement x defined in 3.1.

In addition, PCF Class methods return an integer that correspond to an error code from Stan-
dardError Class. Hence, this functions when included on test sequences of NI TestStand can be

easily checked for their right functionality.

To build an object from the PCF Class, with the parameters of the interfaces defined in the

configuration file, the User shall call the PCF method present in the table 4.1.

Table 4.1: PCF DLL’s Constructor.

Method Arguments Returns Description

PCF
string path

ref int error
PCF Class instance

This constructor builds an instance of the PCF
Class for the file saved in a specified path

passed as argument in path and it returns an error

code in the error field passed by reference.

To establish a connection, the User shall use the Init method present in the table 4.2.

Table 4.2: PCF DLL’s Init method.

Method Arguments Returns Description

Init
string interfaceName

string interfaceId

0 if no error occurred

-1 if an error occurred

-10 if an exception occurred

This function is used to initialize the

communication with the selected interface

passed as argument in interfaceName.

The interfaceId argument is used to

identify the correspondent product in

the communication logs.

Once a connection is established with a certain device, the User can read received messages

that are saved in a Queue Class [24] instance by using the Read methods present in the table

4.3. Considering the format of certain messages, only used in RS-232 and Ethernet connections,

as mentioned in 2.1.2, there is the need to read messages divided in separated fields. These fields

correspond to the ones of the diagnostic commands, which are a prefix field, a group identification

field, a test identification field, an operation field, a status information field, a number of bytes

field and data bytes field.

36 Implementation

Table 4.3: PCF DLL’s Read methods.

Method Arguments Returns Description

Read
string interfaceName

ref string msg

0 if no error occurred

-1 if there is no message to be read

-2 if there is connection problem

-10 if an exception occurred

This function is used to read a single message

passed as reference in msg from the selected

interface passed as argument in interfaceName.

Read

string interfaceName

string responseManu-

facturingPrefix

string groupId

string testId

string operation

ref string statusInformation

ref int nDataBytes

ref string data

double timeOut

0 if no error occurred

-1 if there is no message to be read

-2 if there is a connection problem

-3 if the selected interface is invalid

-4 if no matching message was

found

-5 if arguments passed have

unexpected size

-6 if there was check sum error

-10 if an exception occurred

This function is used to read a single

message within a timeout in milliseconds

passed as argument in timeOut from the

selected interface passed as argument

in interfaceName. The prefix field shall

be passed as argument in responseManu-

facturingPrefix, the group identification

field shall be passed as argument in groupId,

the test identification field shall be passed

as argument in testId and the operation

field shall be passed as argument in operation.

The status information field from the received

message is passed by reference in statusInfor-

mation, the number of bytes read is passed by

reference in nDataBytes and the received data

field is passed by reference in data.

The DLL has functions that enables the User to send messages over a certain connection,

namely the Send methods, presented in the table 4.4. As in the Read methods, it was taken in

consideration the format of the diagnostic commands. In this case, it is possible to send a message

divided in separated fields.

Table 4.4: PCF DLL’s Send methods.

Method Arguments Returns Description

Send
string interfaceName

string msg

0 if no error occurred

-10 if an exception occurred

This function is used to send a single message

passed as argument in msg to the selected

interface passed as argument in interfaceName.

Send

string interfaceName

string requestManu-

facturingPrefix

string groupId

string testId

string operation

string data

0 if no error occurred

-3 if the selected interface is

invalid

-5 if arguments passed have

unexpected size

-10 if an exception occurred

This function is used to send a single message

to the selected interface passed as argument in

interfaceName. The prefix field shall be passed

as argument in requestManufacturingPrefix, the

group identification field shall be passed as

argument in groupId, the test identification field

shall be passed as argument in testId,

the operation field shall be passed as argument

in operation and the data field shall be passed

as argument in data.

Derived the need to send a message and capture immediately the respective response, it was

developed the Send_Read methods that enable to do so, both for raw messages or messages sep-

arated in the fields for diagnostic commands, as mentioned in 2.1.2. These methods are presented

4.1 Product Communication Framework DLL 37

in the table 4.5.

Table 4.5: PCF DLL’s Send_Read methods.

Method Arguments Returns Description

Send_Read

string interfaceName
string msg
string responsePattern
ref string response
double timeOut

0 if no error occurred
-1 if the pattern was not found
-2 if there was an error
matching the pattern
-10 if an exception occurred

This function is used to send a message passed
as argument in msg to the selected interface
passed as argument in interfaceName and wait
for an expected pattern passed as argument in
responsePattern within a timeout in
milliseconds passed as argument in timeOut.
If the pattern occurs, the correspondent
response is returned in response
passed by reference.

Send_Read

string interfaceName
string requestManu-
facturingPrefix
string groupId
string testId
string operation
string txData
string responseManu-
facturingPrefix
ref string statusInfor-
mation
ref int nDataBytes
ref string rxData
double timeOut

0 if no error occurred
-1 if there is no message
to be received or if the
selected interface is off
-2 if there is a connection
problem
-3 if the selected interface
is invalid
-4 if the expected message
was not found
-5 if the arguments have
unexpected size
-6 if there was a check
sum error
-10 if an exception occurred

This function is used to send a single message
to the selected interface passed as argument in
interfaceName and wait for the correspondent
response within a timeout in milliseconds
passed as argument in timeOut. The prefix field
of the message to be sent shall be passed as
argument in requestManufacturingPrefix, the
group identification field shall be passed as
argument in groupId, the test identification field
shall be passed as argument in testId, the operation
field shall be passed as argument in operation
and the data field of the message to be sent
shall be passed as argument in data.
If the expected response occurs, the correspondent
status information is returned in statusInformation,
the number of data bytes received is returned in
nDataBytes and the data received is returned inrxData
all passed by reference.

At any time, the User can verify the state of a connection using the CheckState method

presented in the table 4.6.

Table 4.6: PCF DLL’s CheckState method.

Method Arguments Returns Description

CheckState string interfaceName

-1 if the state is unknown

0 if the state is Run

1 if the state is Stop

2 if the state is Stopped

3 if the state is Running

This function is used to check the state

of a certain communication established

with the selected interface passed as

argument in interfaceName.

The User can terminate a certain connection using the Stop method presented in the table

4.7. After using this method, the User can reinitialize the same connection by calling the Init

method, previously presented in the table 4.2.

38 Implementation

Table 4.7: PCF DLL’s Stop method.

Method Arguments Returns Description

Stop string interfaceName
0 if no error occurred

-10 if an exception occurred.

This function is used to stop the

communication with the selected interface

passed as argument in interfaceName.

The figure 4.3 illustrates the usage of some of the PCF DLL’s methods presented until this

point. In this figure, it is possible to verify that, once a connection is established, all received

messages are saved and using the Read method, the User will have access to them, in a logic of

first in, first out.

Figure 4.3: Example of interaction between an application and a device using PCF DLL’s methods.

PCF DLL has also other public methods which objective is to filter and signal messages defined

by the User, in order to address the requirement xiii previously defined in 3.1. The mentioned

methods are presented in the table 4.8.

4.1 Product Communication Framework DLL 39

Table 4.8: PCF DLL’s Filter methods.

Method Arguments Returns Description

AddSniffingItem

string interfaceName

string itemName

string pattern

—

This function is used to add a pattern to be

filtered passed as argument in pattern in the

communication established using the selected

interface passed as argument in interfaceName.

The user shall define a name for the filter,

passing it as an argument in itemName.

RemoveSniffingItem
string interfaceName

string itemName
—

This function is used to remove a filter with the

name passed as argument in itemName

from the selected interface passed as

argument in interfaceName.

ContainsSniffingItem
string interfaceName

string itemName

True if the filter exists

false otherwise

This function is used to check if a certain filter

with specified name passed as argument in

itemName exists for the interface with the

name passedas argument in interfaceName.

GetSniffingItemValue
string interfaceName

string itemName

The captured a message,

otherwise the function

will return null.

This function is used to check if a certain filter

with specified name passed as argument in

itemName exists for the interface with the

name passed as argument in interfaceName.

ClearSniffingItemValue
string interfaceName

string itemName
—

This function is used to clear the capture value

of a filter with specified name passed as

argument in itemName for the interface

with the name passed as argument

in interfaceName.

Furthermore, once a connection is established, every received and sent messages are saved in

PCLs automatically, just by defining a correct path for saving it in the PCCF. Additionally, every

expected errors that can occur using a specified interface will be also saved in a log if a path

for it is defined in PCCF. To do so, PCF Class, SerialDevice Class, EthernetDevice Class and

CANDevice Class use Log Class’ (fig. 4.4) objects and correspondent methods. More precisely,

each device has one Log Class object to save the communication content and one Log Class object

to save errors.

Figure 4.4: Log Class.

40 Implementation

Objects created using PCF Class’ constructor have one Log Class object to save all the errors,

independently of the type of the interface in use by the correspondent PCF Class object.

To make the interaction between PCF DLL’s Classes more clear, the figure 4.5 shows a simple

example where using an abstract Device, that could be RS-232, Ethernet or CAN, some of the

methods from PCF DLL are used. First, information about the device is extracted from the config-

uration file using PCF Class’ constructor (presented at table 4.1), in order to construct an Interface

instance that for its turn will use the constructor from the ”DeviceClass”. Then, the communica-

tion with the device is initialized using the Init method from the DLL (presented at table 4.2).

In this example, if the initialization succeed, the method Send_Read (presented at table 4.5) is

invoked to send a message to the abstract Device and wait for an expected response. Finally, the

Stop method (presented before at table 4.7) is used to terminate the connection with the Device.

Figure 4.5: Example of interaction between PCF DLL’s Classes.

4.1 Product Communication Framework DLL 41

With the top view of PCF DLL presented, it is important to describe how lower level modules

are implemented, namely the XML parser and the different interfaces’ functions. This description

is present in the following subsections, 4.1.1 and 4.1.2.

4.1.1 XML configuration file and XML Parser

The requirements specified in 3.1, more precisely i, ii and iii, state the need to specify the charac-

teristics of the interfaces that the User intend to use and transform that information in such way

that makes it to be usable by the functions present in the PCF DLL.

It is within this scope that first was defined the format of PCCF, choosing for each interface

type which characteristics must be defined in order to it’s values be used by the correspondent

functions. Then, it was defined a method able to parse this information to an PCF Class object

when it is created. Please consult appendix A to see a PCCF example with a RS-232 device, an

Ethernet Device and a CAN device.

Independently of the device which is intended to communicate with, it must be defined an

unique identification (ID) for each device in PCCF. This ID will be then used by the User to call

PCF DLL methods, corresponding to the interfaceName field in its methods.

Each device has also a group of parameters defined in PCCF corresponding to its characteris-

tics that vary with the communication type, also specified within these parameters. As mentioned

before, each device has as parameter a path for saving the communication content and another

path to save eventual errors that can occur.

The remaining parameters vary with communication type of the correspondent device. For

devices that use an RS-232 interface, the parameters to be defined in PCCF are the correspondent

port name, baud rate, parity, number of data bits, number of stop bits, timeout for writing and a

timeout for reading. For devices that use an Ethernet interface, the parameters to be defined in

PCCF are the correspondent IP address, port number, address family code and buffer size. Finally,

for devices that use a CAN interface, the parameters to be defined in PCCF are the number of the

hardware type, channel number and baud rate. All this parameters are explained with detail in the

correspondent subsections of the different interfaces in 4.1.2.

As example, for a PCCF with only one Ethernet device, the content of the configuration file

would be:

<?xml version="1.0" encoding="UTF-8"?>

<Devices>

<ExceptionLogPath>C:\Users\User\Desktop\PCF\PCF_exceptionLOG.txt

</ExceptionLogPath>

<Device>

<id>EthernetDeviceExample</id>

<Parameters>

<CommunicationType>Ethernet</CommunicationType>

<IP>10.238.227.20</IP>

42 Implementation

<Port>9001</Port>

<AddressFamily>2</AddressFamily>

<BufferSize>1024</BufferSize>

<CommunicationLogPath>C:\Users\User\Desktop\LOGS

\Com\</CommunicationLogPath>

<ExceptionLogPath>C:\Users\User\Desktop\LOGS\

Error\</ExceptionLogPath>

</Parameters>

</Device>

</Devices>

As previously mentioned, there is the need to transform the parameters specified in the PCCF

into variables that can be used inside the methods available in PCF DLL. To accomplish this

objective, PCF DLL has a private method called XMLParser that has as arguments a string that

must indicate the path where the PCCF is saved and an integer passed by reference that correspond

to an error that can be returned in it, for example if a parameter is missing. After analyzing PCCF,

this method returns a Dictionary Class instance that has as primary keys the different IDs of the

specified devices and as correspondent value an object from Interface Class.

XMLParser method uses System.XML Namespace [25] from .NET framework to open and

read data present in PCCF, more precisely XmlDocument Class’ constructor and the Load

method to open the configuration file then, using XmlNode Class, the method is able to parse

all the information from the file to List Class objects, one for each device defined in PCCF. Af-

ter that, each List created is passed to a Dictionary Class object that as primary keys the ID of

the devices and as corresponding value a List of parameters. Finally, XMLParser goes through

each element of the Dictionary Class object created and using the Interface Class’ constructors,

it adds to the Dictionary Class object to be returned by the XMLParser method the ID of the

device and the correspondent Interface Class object.

In example presented, XMLParser creates a List Class instance with a single object corre-

sponding to the Ethernet device specified in the file.

Then, the List Class instance created is passed to a Dictionary Class object with a single

entrance. In this case, the primary key would be ”EthernetDeviceExample” and the correspon-

dent value a List Class instance with the parameters: ”Ethernet”, ”10.238.227.20”, ”9001”, ”2”,

”1024”, ”C:\Users\User\Desktop\LOGS\Com\”, ”C:\Users\User\Desktop\LOGS\Error\”.

Going through the Dictionary Class object created, the first value saved in the List Class
object is the communication type that is used to distinguish which Interface Class constructor

has to be invoked to create the right object. In this case, XMLParser is dealing with an Ethernet

Interface, consequently the Interface Class object created is of this type which use the remain-

ing values of the List Class instance as parameters when invoking the EthernetDevice Class
constructor.

At last, XMLParser returns a Dictionary Class instance with a single entrance, the primary

4.1 Product Communication Framework DLL 43

key is once again ”EthernetDeviceExample” and the correspondent value the Interface Class ob-

ject which type is Ethernet and parameters the ones saved in the PCCF. To communicate with this

device, the argument interfaceName of the PCF DLL functions would be ”EthernetDeviceExam-

ple”.

4.1.2 Communication functions

The following sections have as objective to describe how functions used to communicate with the

interfaces that the framework must support were implemented.

The implementation of PCF DLL was done adding to it a Class for each interface incremen-

tally. Creating a Class for each interface permitted to maintain the overall structure of the DLL

and permits that new interfaces that were not included in the requirements can be added to it with

minimal changes in the source code, avoiding also that certain interface’s functions are dependent

of other interface’s functions, which shows how modular this DLL is.

The development of the mentioned Classes was done in the order that is presented in the

following sections, that is PCF DLL first version supported only RS-232 interfaces, a second

version supported RS-232 and Ethernet interfaces and the last version complies with all interfaces

defined in the requirements from 3.1, which are RS-232, Ethernet and CAN interfaces.

4.1.2.1 RS-232 functions

The main objective to implement the following functions is to address the requirements v and

ix specified before in 3.1, that is establish RS-232 connections and send, receive and wait for

messages using this connection type.

SerialDevice Class (fig. 4.6) methods can be divided in three groups:

i. the first one concerns the constructor for this Class. As mentioned before, it is used by

XMLParser method along with the respective Interface Class constructor when a RS-232

device is present in PCCF and consequently a new instance of this class must be created in

order to communicate with it;

ii. a second group includes all the methods responsible for guarantee the establishment of the

connection, enabling the possibility of send, receive and wait for messages, save those mes-

sages and check the state of the connection; and

iii. a third group concerns the methods used to filter messages in the connection.

SerialDevice Class was implemented using SerialPort Class [26] from .NET framework that

is part of System.IO.Ports namespace [27] that contains classes for controlling serial ports.

SerialDevice Class constructor creates an instance from SerialPort Class setting its propri-

eties. The constructor also defines the remaining fields for the SerialDevice Class object that it is

creating. These fields are the name for the instance and the paths for creating the files where the

communication content and errors shall be saved. It also creates a Queue Class instance to save

received messages and a Dictionary Class instance to handle the filters that can be created.

44 Implementation

Figure 4.6: SerialDevice Class.

To establish the connection the method used is Init which verifies the state of the Port that is

intended to be used. If it is not being used and its a valid one, this method uses SerialPort Class’

Open method to open it. Finally, it creates a thread (Process_Data) responsible to handle

received messages and put them in the Queue Class instance and in the PCL created for saving

them. Every time a message is received, it is verified if it contains any pattern from the filters

that can be included in the filter’s Dictionary Class object. This initialization is illustrated in the

figure 4.7.

4.1 Product Communication Framework DLL 45

Figure 4.7: Initializing a RS-232 Device.

SerialDevice Class contains two Read methods, one to read a message as it was received and

other to read a message with a specific format as explained in the respective method from PCF

Class. Both methods use SerialDevice Class’ GetData method to get messages from the Queue
Class instance where received messages are being saved.

The two existing Send methods in SerialDevice Class, one to send a raw message and other

to send a message that is composed by several fields as explain in the respective method from

PCF Class, use the same SerialDevice Class method to effectively send a message using the

established connection, this is SendData method. This method uses WriteLine method from

SerialPort Class to do so and if successful it saves the sent message in the PCL.

Additionally, in SerialDevice Class, the method to send and read a raw message uses SendData

and GetData methods directly while the equivalent method for the predefined format of mes-

sages mentioned uses the respective Send and Read methods for such format.

Once the format mentioned can have a field to contain check sum bytes, it was created a class,

CRC_CCITT Class, used to generate those field in the Send method adding it to the message

to be sent and used to verify that field on a received message, returning an error if the calculated

check sum is not equal to the received one.

To terminate the established connection, SerialDevice Class contains the Stopmethod which

dispose all the resources being used by the respective instance and closes the port that is being used

by the SerialPort Class instance with its Close method.

46 Implementation

The communication state can be checked with the CheckState method which returns the

_myRs field that indicates if the connection is either in Run, Stop, Stopped or Running states.

In order to enable the use of the methods that read and send messages included in different

threads running at same time, GetData and SendData methods use the lock statement along

with a respective object, _lock and _sendlock. The lock statement acquires the mutual-exclusion

lock for a given object, executes a statement block, and then releases the lock. While a lock is

held, the thread that holds the lock can again acquire and release the lock. Any other thread is

blocked from acquiring the lock and waits until the lock is released, [28]. This statement is also

used in the functions used to save messages in PCL and in the functions that filter messages.

The figure 4.8 illustrates the usage of some of the PCF DLL’s methods to communicate with

a device using a RS-232 interface. It is possible to observe the interaction between Classes and

how messages are sent and received. In the SerialDevice line is included the SerialPort Class
functions calls.

Figure 4.8: Example of interaction between an application and device using PCF DLL’s methods
to communicate over RS-232.

Finally, SerialDevice Class includes the methods that interact directly with the filter’s Dictio-
nary Class instance. This methods permit to add new filters, verify messages comparing them to

existing filters, clear saved filtered messages and remove filters from the filter’s Dictionary Class
instance.

4.1 Product Communication Framework DLL 47

4.1.2.2 Ethernet functions

In this work, Ethernet connections use the association between TCP/IP protocols.

To implement a Ethernet connection over TCP/IP, the typical approach is to use sockets in a

server/client relationship (fig.4.9).

The socket interface is an application programming interface to the communication protocols

that is used by processes to request network services from the operating systems.

Figure 4.9: Server/Client relationship example for connection-oriented sockets.

Socket Class [30] from .NET is one of the available frameworks that implement the Berkeley

sockets interface using different methods and properties that allow to perform synchronous and

asynchronous data transfer using TCP/IP. This Class belongs to System.Net.Sockets Namespace

[31] which provides a managed implementation of the Windows Sockets interface.

For this type of connection-oriented protocol, Socket Class allows the creation of a server

that can listen for connections using the Listen method. To specify the local IP address and

port number, the Bind method shall be called before the Listen method. For processing any

incoming connection request, the Accept method can be used and it returns a Socket to be used

to communicate data with the remote host. This returned Socket is then used to call the Send or

Receive methods. To connect to a listening host, the method to be used is Connect.

In the client side the Constructor shall be used to initialize a new instance of the Socket Class.

If it is pretended to communicate data asynchronously, the methods BeginConnect and

EndConnect are used to connect with a listening host while BeginSend, EndSend, Begin-

Receive and EndReceive methods are used to communicate data. In this case, the incoming

connecting request can be processed using BeginAccept and EndAccept methods.

Finally, when data transfer is finished, the Shutdown method is used to disable the Socket

and after being called, the Close method is used to release all resources associated with it.

48 Implementation

The main objective to implement a Class specifically to Ethernet connections is to address the

requirements vi and ix specified in 3.1, that is establish Ethernet connections and send, receive and

wait for messages using this connection type.

EthernetDevice Class (fig. 4.10) methods can be divided in three groups:

i. the first one concerns the constructor for this Class. As mentioned before, it is used by

XMLParser method along with the respective Interface Class constructor when a Ether-

net device is present in PCCF and consequently a new instance of this class must be created

in order to communicate with it;

ii. a second group includes all the methods responsible for guarantee the establishment of the

connection, enabling the possibility of send, receive and wait for messages, save those mes-

sages and check the state of the connection; and

iii. a third group concerns the methods used to filter messages in the connection.

Figure 4.10: EthernetDevice Class.

EthernetDevice Class constructor creates an instance from Socket Class setting its propri-

eties. The constructor also defines the remaining fields for the EthernetDevice Class object that

it is creating. More precisely, it defines the name for the instance and the paths for creating the

files where the communication content and errors shall be saved. It also creates a Queue Class

4.1 Product Communication Framework DLL 49

instance for save received messages and a Dictionary Class instance to handle the filters that can

be created.

To establish the connection the method used is Init which connects to a remote end point de-

fined in PCCF, using Socket Class’ Connectmethod. Then, it creates a thread (Process_Data)

responsible to handle received messages and put them in the Queue Class instance and in the PCL

created for saving them. This thread uses the Receive method from Socket Class. Every time a

message is received, it is verified if it contains any pattern from the filters that can be included in

the filter’s Dictionary Class instance. This initialization is illustrated in the figure 4.11.

Figure 4.11: Initializing an Ethernet Device.

EthernetDevice Class contains two Read methods, one to read a message as it was received

and other to read a message with a specific format as explained in the respective method from

PCF Class. Both methods use EthernetDevice Class’ GetData method to get messages from

the Queue Class instance where received messages are being saved.

There are two Send methods in EthernetDevice Class, one to send a raw message and other

to send a message that is composed by several fields as explain in the respective method from PCF
Class. Both methods, use the same EthernetDevice Class method to effectively send a message

using the established connection, this is SendData method. In its turn, this method uses Send

method from Socket Class to do so and if successful it saves the sent message in the PCL.

50 Implementation

Additionally, in EthernetDevice Class, the method to send and read a raw message uses

SendData and GetData methods directly while the equivalent method for the predefined for-

mat of messages mentioned uses the Send and Read methods for such format.

As mentioned before, as in SerialDevice Class, once the format mentioned can have a field to

contain check sum bytes, it was created a class, CRC_CCITT Class, used to generate those field

in the Send method adding it to the message to be sent and used to verify that field on a received

message, returning an error if the calculated check sum is not equal to the received one.

Despite the format mentioned being specific for RS-232 connections, there is the need to

implement functions capable of dealing with it in Ethernet connections since some systems use

Ethernet to Serial converters to communicate with certain devices. From the point of view of the

application where PCF is being used, the connection is Ethernet only. In this work, it was used

Brainboxes ES-257, a device that enables the connection of two RS232 interfaces to an Ethernet

network.

To terminate the established connection, EthernetDevice Class contains the Stop method

which dispose all the resources being used by the respective instance and closes the connection

with the end point that is being used by the Socket Class instance, using the Shutdown method

to disable the socket and the Close method to release all resources associated with the Socket

object.

The communication state can be check with the CheckState method which returns the

_myRs field that indicates if the connection is either in Run, Stop, Stopped or Running states.

Like in SerialDevice Class, in order to enable the use of the methods that read and send

messages included in different threads running at same time, GetData and SendData methods

use the lock statement along with a respective object, _lock and _sendlock. This statement is also

used in the functions used to save messages in PCL and in the functions that filter messages.

The figure 4.12 illustrates the usage of some of the PCF DLL’s methods to communicate with

a device using an Ethernet interface. It is possible to observe the interaction between Classes and

how messages are sent and received. In the EthernetDevice line is included the Socket Class
functions calls.

4.1 Product Communication Framework DLL 51

Figure 4.12: Example of interaction between an application and device using PCF DLL’s methods
to communicate over Ethernet.

Finally, EthernetDevice Class includes the methods that interact directly with the filter’s Dic-
tionary Class instance. This methods permit to add new filters, verify messages comparing them

to existing filters, clear saved filtered messages and remove filters from the filter’s Dictionary.

4.1.2.3 CAN functions

As mentioned before, to establish CAN connections, Aptiv’s Engineers use Vector devices as

interface between their products and test systems. In order to use these devices, Vector provides

various tools such as applications like CANalyser, CANape and CANoe, and a DLL, XL Driver

Library [32], which enables the development of applications for CAN, among other protocols, on

supported Vector devices, which applies to the implementation of PCF DLL’s CAN functions.

Besides XL Driver Library function calls, Vector Hardware Config tool is required to set up

the hardware settings.

With that said, it became imperative to use part of the XL Driver Library function calls for

CAN applications (fig.4.13) in the implementation of CANDevice Class (fig.4.14). Thus, this

functions’ calls were integrated in different methods of the CANDevice Class in order to keep a

structure similar to the other interfaces Classes.

52 Implementation

Figure 4.13: XL Driver Library function calls for CAN applications, [32].

The main objective to implement a Class specifically to CAN connections is to address the

requirements vii and ix specified before in 3.1, that is establish CAN connections and send, receive

and wait for messages using this connection type.

Following the structure of the others devices classes, CANDevice Class (fig.4.14) methods

can be divided in three groups:

i. the first one concerns the constructor for this Class. As mentioned before, it is used by

XMLParser method along with the respective Interface Class constructor when a CAN

device is present in PCCF and consequently a new instance of this class must be created in

order to communicate with it;

4.1 Product Communication Framework DLL 53

ii. a second group includes all the methods responsible for guarantee the establishment of the

connection, enabling the possibility of send, receive and wait for messages, save those mes-

sages and check the state of the connection; and

iii. a third group concerns the methods used to filter messages in the connection.

Figure 4.14: CANDevice Class.

CANDevice Class constructor defines the fields needed to use a Vector device to communicate

using CAN protocol, namely the hardware type, that corresponds to the device being used, the

channel of this device and the baud rate. The constructor also defines the remaining fields for

the CANDevice Class object that it is creating. These fields are the name for the instance and

the paths for creating the files where the communication content and errors shall be saved. The

constructor also creates a Queue Class instance to save received messages and a Dictionary Class
instance to handle the filters that can be created.

To establish the connection the method used is Init which verifies in first place if the Vector

driver is already being used, if not Init method uses XL_OpenDriver and XL_GetDriver-

Config to configure the driver. After this, Init method verifies if PCF DLL is already defined

as an application in Vector Hardware Config, if it is not defined it uses XL_SetApplConfig

function call, otherwise it uses XL_GetApplConfig to read the channel assignments. Then,

54 Implementation

XL_GetChannelMask, XL_OpenPort, XL_CanSetChannelBitRate and XL_Activa-

teChannel are invoked by this order. Finally, the Initmethod creates a thread (Process_Da-

ta) responsible to handle received messages and put them in the Queue Class instance and in the

PCL created for saving them. This thread waits for receiving messages using XL_Receive func-

tion call. Since XL Driver defines a structure for CAN messages, there is the need to convert

this structure into a string, which accomplished using CANDevice Class’ CANmsgToString

method. Every time a message is received, it is verified if it contains any pattern from the filters

that can be included in the filter’s Dictionary Class instance. This initialization is illustrated in

the figure 4.15.

Figure 4.15: Initializing a CAN Device.

Contrary to the other devices classes, the format mentioned for diagnostic commands using

RS-232 does not apply to CANDevice Class.

Thus, CANDevice Class contains a Read method, that uses CANDevice Class’ GetData

method to get messages from the Queue Class instance where received messages are being saved.

The only Send method in CANDevice Class, receives as argument a string with a specific

format (i.e ”ID:0x1111|Data:0x01 0x02 0x03”), calls SendData method where this message is

converted to the CAN message structure from XL Driver using StringToCANmsg method and

4.1 Product Communication Framework DLL 55

then effectively send message using XL_CanTransmit function call from XL Driver Library. If

successful it saves the sent message in the PCL.

Additionally, in CANDevice Class the method to send a message and wait for a specified

response it is used its SendData and GetData methods directly.

To terminate the established connection, CANDevice Class contains the Stop method which

dispose all the resources being used by the respective instance and closes the connection using

XL_DeactivateChannel and XL_ClosePort function calls from XL Driver Library.

The communication state can be check with the CheckState method which returns the

_myRs field that indicates if the connection is either in Run, Stop, Stopped or Running states.

As in other devices, in order to enable the use of the methods that read and send messages

included in different threads running at same time, GetData and SendData methods use the

lock statement along with a respective object, _lock and _sendlock. This statement is also used in

the functions used to save messages in PCL and in the functions that filter messages.

The figure 4.16 illustrates the usage of some of the PCF DLL’s methods to communicate with

a device using an CAN interface. It is possible to observe the interaction between Classes and how

messages are sent and received. In the CANtDevice line is included the XL Driver functions calls.

Figure 4.16: Example of interaction between an application and device using PCF DLL’s methods
to communicate over CAN.

Finally, as in the other Device Classes, CANDevice Class includes the methods that interact

directly with the filter’s Dictionary Class instance.

56 Implementation

4.2 Product Communication Monitor

The following sections have as objective to describe how the applications that make possible to

remotely access the communication logs created using PCF DLL were implemented.

In a first phase, it was implemented a Windows Service, called Product Communication Mon-

itor Service, responsible to give access to the communication logs created using PCF DLL func-

tions. Working as a TCP/IP server, this service permits the connection of multiple clients to the

system where PCF DLL functions are being used. Furthermore, if desired, this service can manage

the number of communication logs stored in the system.

Despite the multiple software that permits to communicate with PCMS, it was implemented

an application specifically design to communicate with these service after its creation, in order to

give a more user friendly interface and permit to download the PCLs to a remote location where

this user interface is running.

4.2.1 Product Communication Monitor Service

Using Visual Studio’s template forWindows Services, it was implemented the Product Commu-

nication Monitor Service with the main objective to address the requirement xiv defined before

in 3.1. This service shall be installed in the systems where PCF DLL is being used in order to

remotely access the PCLs, otherwise this is not possible.

Once PCMS is started, two different threads are initialized, one creates the Server and the

other manage the PCLs in the system. Both threads use a similar Parser to XMLParser from

PCF DLL in order to obtain the information from PCCF and use a Log Class (fig. 4.4) instance to

store errors that can occur in both threads into log files.

Thus, PCMS main functionalities are divided in two main groups:

i. the first one concerns the functions responsible to create a TCP/IP Server, responsible to

communicate with multiple clients; and

ii. a second group includes all the methods responsible to manage PCLs in the system.

Similar to the methods used to implement the communication functions for Ethernet devices,

Socket Class from .Net is used in the implementation of the TCP/IP server of the PCMS. This

time, the methods used are Bind and Listen in order to wait for new connections from remote

systems that want to access PCLs. When a client connects to the server, a new Socket is created in

a Async Call Back with BeginAccept method from the mentioned Class. Finally, Shutdown

and Close methods are used to destroy the socket when the connection with the client terminates.

With the connection established, the service waits for a pre-defined command from the client

in order to give the respective response:

• ”-l” - list all available devices, respective interface and product numbers available to moni-

tor;

4.2 Product Communication Monitor 57

• ”-lc” - list all available devices, respective interface’s parameters and product numbers avail-

able to monitor;

• ”-ml” followed by identifier integer and product number (i.e. -ml0[1234]) - load the PCL of

the respective device;

• ”-ms” followed by identifier integer (i.e. -ms0) - continuously monitor the most recent

device for given interface;

• ”-msui” followed by identifier integer (i.e. -msui0) - command used by PCMUI to continu-

ously monitor the most recent device for given interface;

• ”-c” - end connection with the client; and

• ”-h” - list available commands and respective functionality.

The number of available interfaces to monitor is limited to four as specified in the requirement

iv from 3.1.

The thread responsible to manage PCLs, parses the information from PCCF to know where

PCLs are saved and which devices are defined. Then, PCMS uses DirectoryInfo Class [33] from

.Net framework to load information from the directory where, for a certain device defined in PCCF,

PCLs are saved. PCMS manipulates the information retrieved by GetFiles method in order to

limit the number of files for a certain device to five, deleting exceeding files using Deletemethod

from File Class [34].

PCMS has as editable settings the name of PCCF and the name of exception logs files that

must be contained in the directory where the service is installed. Another setting mutable is the

Port that shall be opened for incoming connections from clients to the Service’s server. Finally,

the file manager can be either activated or deactivated using a Boolean setting that works as a flag

to indicate if it is pretended to have the file manager running or not.

The User can install the described service manually [35], running the command ”installutil”

(i.e ”installutil pcms.exe”) in the Developer Command Prompt for Visual Studio, or install the

Service automatically using the installer implemented in Visual Studio using the Setup Project

template.

After PCMS is installed, communication with this service can be established using any telnet

client like PuTTY or PCMUI, the software developed specifically with this purpose and that is

described in the following section 4.2.2.

4.2.2 Product Communication Monitor UI

The main objective accomplished with the implementation of PCMUI is enable the User able to

download to his system a selected PCL stored in another system where PCF DLL functions are

being used to communicate with different devices while creating the respective communication

logs and where PCMS is installed, giving remote access to those logs.

58 Implementation

In addition, PCMUI permits the user to see the messages flow live in a connection that is being

established using PCF DLL functions.

PCMUI was implemented using Microsoft Visual Studio along with its Windows Forms Appli-

cation project template to be written in C#.

When the application developed starts, the main Form (fig. 4.17) appears and the User shall

introduce a name, a IP address and a port number corresponding to the system where PCMS is

running and which intends to connected with. This Form is always open while PCMUI is running,

which enables the connection to multiple remote systems or multiple connections to the same

remote system.

Figure 4.17: PCMUI homepage.

Once the User introduces valid parameters and clicks on connect, a new client is created,

using Sock Class’ methods, and a new Form (fig. 4.18) appears, corresponding to the connection

established with PCMS and where several information is presented.

Figure 4.18: PCMUI connection to remote system page.

In this Form, the user can consult the available interfaces to monitor. Selecting an interface,

the respective available product numbers are loaded into the ”Available product numbers” combo

4.2 Product Communication Monitor 59

box. At anytime, the User can check for new available product numbers for a selected interface,

clicking on the Update button.

With an interface and a product number chosen and clicking in the Select button, the PCMUI

loads into memory the PCL received from PCMS, if ”Load to ListView” check box is selected, the

PCL received is also loaded to the List View present in the Form. The Refresh button loads again

to the list view the selected PCL and the Reorder button inverts the order of the PCL showed in

the List View.

When a PCL is saved in memory, the User can click on Download. Doing this, will pop up

a new form where specifying a name for the new file, a valid path to save the file and clicking

on Save will create a copy of the received PCL in the system where PCMUI is running. To do

so, first PCMUI checks if the specified path is a valid one, then if it does not exist, the direc-

tory is created using the Create method from the DirectoryInfo Class. Finally, PCMUI uses

WriteAllLines method from File Class to copy the PCL from the memory to a new text file.

PCMUI also enables the User to monitor continuously a certain communication established

in the remote system. To do so, the User must select the most recent product number, which is

signaled with the character * before its name, and click on Start Stream Mode. By doing this,

the User will activate a timer that when ticks will request PCMS the last lines of the PCL from

the selected product number, then compares it to the previously received to check if new messages

were exchanged between the remote system and the selected device. If two consequent messages

are equal then the mentioned timer is stopped and stream mode is deactivated. While stream mode

is active, it can be deactivated by clicking on Stop Stream Mode button.

There is a lot of memory consumption since PCMUI requires the allocation of a considerable

memory to receive the PCLs using the buffer of a socket, to save those content into memory and

to load it to the List View. To mitigate this consumption, PCMUI uses GC Class [36] to control

the system garbage collector, automatically reclaiming unused memory, concretely, from time to

time, Collect and WaitForPendingFinalizer methods are called.

PCMUI can be installed in a certain Windows system using the respective installer created

using Setup Project template from Microsoft Visual Studio.

The figure 4.19 illustrates an example of an interaction between PCMUI and PCMS. In this

example, the User connects to PCMS using PCMUI, in order to download to his system a com-

munication log file of a certain device with a specified product number.

60 Implementation

Figure 4.19: Example of interaction between PCMUI and PCMS.

Chapter 5

Experimental Validation

This chapter 5 is constituted by a single section used to present the experimental validation.

5.1 Testing Framework

During the development of the PCF DLL, communication functions for each interface were built

and then debugged in order to guarantee their correct functionalities.

Besides the debug done, several parts of code inside the functions that prevent errors that could

stop the applications where PCF DLL is being used. Additionally, there are code that verifies

parameters to guarantee that unexpected behaviors that could lead to wrong results do not happen.

With the framework development completed, it is important to test it in a controlled environ-

ment before it can be used in real applications like in Production lines. Testing in such environment

prevents the framework functions to pass wrong variables from the products to the test systems

which could lead to consider good products to be defective ones.

Since one of the objectives of the framework is to be included in other applications as in test

systems, NI TestStand was the platform chosen to perform the experimental tests.

The tests presented are an example of the ones done for the different interfaces, in order to

illustrate the method used to test all of them. In the case presented, it was created a test sequence

to communicate with MIB3-Top using an RS-232 interface. While the sequence was running,

verifying the DLL’s functions correct performance, it was used PCMS and PCMUI to monitor

remotely the connection.

Due to confidentiality issues some of the figures contain black boxes covering the diagnostic

commands used.

5.1.1 NI TestStand sequences

Since test systems use NI TestStand sequences to test the products, there is the need to build new

sequences using the PCF DLL functions in order to use the framework functionalities.

61

62 Experimental Validation

The sequence used in the following example was developed in order to be used with MIB3-

TOP directly with RS-232 interface or using Brainboxes ES-257, just by defining a RS-232 in-

terface or an Ethernet interface, respectively, in the configuration file and then initialize it using

the correspondent name. In the following example, the interface used was RS-232, as mentioned

before.

The sequence developed (fig.5.1) is separated in three parts, each one constituted by different

steps that use the methods present in the DLL, with the objective of validate them.

Figure 5.1: Test sequence used for testing the framework’s functionalities (RS-232 Example).

The first part is called Setup. It starts with Load Configuration, that is used to invoke the

constructor of the PCF object, to be used by the remaining steps. In this case, the configuration

file, PCCF, content is the following:

<?xml version="1.0" encoding="UTF-8"?>

<Devices>

<ExceptionLogPath>C:\Users\gjfz41\Desktop\PCF v3\

PCF_exceptionLOG.txt</ExceptionLogPath>

<Device>

<id>MIB3RS</id>

<Parameters>

<CommunicationType>Serial</CommunicationType>

<portname>COM4</portname>

<baudrate>115200</baudrate>

<parity>None</parity>

<databits>8</databits>

<stopbits>One</stopbits>

<WriteTimeout>1000</WriteTimeout>

<ReadTimeout>1000</ReadTimeout>

5.1 Testing Framework 63

<CommunicationLogPath>C:\Users\gjfz41\Desktop\

LOGS-FINAL TESTS\Com\</CommunicationLogPath>

<ExceptionLogPath>C:\Users\gjfz41\Desktop\LOGS-

FINAL TESTS\Error\</ExceptionLogPath>

</Parameters>

</Device>

<Device>

<id>MIB3ETH</id>

<Parameters>

<CommunicationType>Ethernet</CommunicationType>

<IP>10.238.227.20</IP>

<Port>9001</Port>

<AddressFamily>2</AddressFamily>

<BufferSize>1024</BufferSize>

<CommunicationLogPath>C:\Users\gjfz41\Desktop\

LOGS-FINAL TESTS\Com\</CommunicationLogPath>

<ExceptionLogPath>C:\Users\gjfz41\Desktop\LOGS-

FINAL TESTS\Error\</ExceptionLogPath>

</Parameters>

</Device>

</Devices>

The Setup is concluded when the interface is initialized, using the Init function from the

DLL. If the sequence is paused at this point, it can be verified that communication is established

as supposed consulting the respective PCL, where received messages are being saved.

The Main part starts by sending the command that makes the device in test to enter in diag-

nostic mode, using the Send_Read method for diagnostic commands in order to first send the

respective command and then read the expected response. With the diagnostic mode activated, the

device is ready to receive other diagnostic commands.

After entering in diagnostic mode, the step Terminal Filter is used to filter the messages sent

by the device, restricting them to responses to the commands sent.

The following three steps, Get IOC SW Version, Get CPA SW Version and Get INIC SW
Version also use the Send_Read method for diagnostic commands in order to get the software

versions present in the various processors of the device in test.

Sniffing IOC Version (fig.5.2) has a similar objective as Get IOC SW Version, but in this

step the methods used and respective functionalities intended to verify are different. First, it is

added an item to the filter structure using the AddingSniffingItem method, in this case it

is intended to check if ”Version:” occurs. Then it is sent a message, concretely ”version”, using

the Send method for raw messages. After sending the message, GetSniffingItemValue is

invoked within a timeout in order to check if the filter occurred. Finally, the filter is removed from

structure using RemoveSniffingItem method.

64 Experimental Validation

Figure 5.2: Test sequence’s step used for testing the framework’s filtering methods.

After using filtering methods, the PCF DLL methods for communicating were used to write

values in memory and then verify if those values were indeed written in the memory of the device.

Besides this validation, it was also performed other tests that permit to verify if the functions

used to communicate work indeed. The Power Check step turns off and then turns on one of the

antennas present in the device. Using a multimeter, it was verified that when the step occurs, the

voltage of the antenna drops and then comes up to the initial level.

The Recovery Mode step is used to send a command that permits to control the Inputs/Outputs

(I/O) of the device, with the objective of choose the output source, set its frequency and set its

volume, in the following steps, namely Primary Source, Set Frequency and Set VOLUME
respectively. Connecting a speaker to the radio, it was verified that radio started to play audio

when the commands are sent on these steps.

Finally, the Cleanup part of the sequence is used to stop the communication with the device

in test using the PCF DLL’s Stop method. After running this step the sequence is finished and

consulting the respective PCL it was verified that the communication is terminated.

5.1.2 Validation of the Remote Monitoring

After building the sequence presented in 5.1.1 using PCF DLL functions and validate its results,

the monitor modules of the framework can be tested.

In this validation test, PCMS is running in the system where the sequence is used. Both use

the same PCCF, previously presented in 5.1.1, in order to guarantee that interfaces defined are the

same and no errors occur when the communication established by the sequence is being monitored.

The PCCF content can be checked establishing a connection with PCMS using for example

PuTTY (fig.5.3) or other software similar to it and sending the command ”-lc”. In this example

any product have been tested consequently, there is any available product to monitor.

5.1 Testing Framework 65

Figure 5.3: Checking PCCF content using PuTTY.

Using PCMUI, the available interfaces can be consulted establishing a connection with PCMS

(fig.5.4).

Figure 5.4: Checking available interfaces to monitor using PCMUI.

With the test sequence running, the product number of the device will be then available to

be monitored. In the following example, it was used the interface called MIB3RS and defined as

product number 12345. Selecting both and starting stream mode, the communication content can

be consulted remotely through PCMUI (fig.5.5) while the test sequence and the device exchange

messages.

66 Experimental Validation

Figure 5.5: PCMUI in stream mode.

When the sequence is finished, it is possible to load to the PCMUI the complete PCL (fig.5.6)

and save it on the system where the UI is running. This can be achieved by selecting the right

interface and product number and then clicking on download.

Figure 5.6: PCMUI with PCL in memory.

Then, it was verified that the PCL saved in the system where the test sequence was running

and PCMS is running is equal to the one received by PCMUI.

Finally, the test sequence was used five more times, changing only the product number of the

device being tested. By doing this, it was possible to verify that PCMS is indeed managing the

amount of files stored, deleting the oldest ones and that the product number more recent is the one

indicated by PCMUI (fig.5.7).

5.1 Testing Framework 67

Figure 5.7: Checking available product numbers to monitor using PCMUI.

68 Experimental Validation

Chapter 6

Conclusion and future work

This chapter 6 is divided in two main sections used to present this work’s conclusions, achieve-

ments and proposals for future work.

In the first section are presented the main conclusions and achievements, resulted from the

developed work.

In the second section are suggested possible developments and future work proposals, in which

the work already done can be improved.

6.1 Conclusions and achievements

Before the development of Product Communication Framework, Aptiv’s Engineers had to develop

communication tools along with the appearance of new products despite using similar tools to

communicate with older products. This procedure resulted in a waste of resources, both human

and time versus associated costs, and resulted also in difficulty in sharing the information needed

to use those tools, since proper documentation about them was not created. Another issue was that

for different communication types, different tools were required.

By adopting PCF, Aptiv’s Engineers have now a tool-set that facilitates not only the devel-

opment of new products but also their tests in Production lines. PCF integrates tools required to

communicate over different interfaces, enabling the User to use the same functions for different

interfaces, namely RS-232, Ethernet and CAN.

The developed functions are prepared to detect various errors that can occur when a com-

munication is established. This way, connection problems can be distinguished from functional

problems of a device. PCF’s functions also have components to register those errors in log files.

PCF is also composed by functions that can be used to filter certain messages defined by the User.

Furthermore, PCF gives the capability of monitor remotely the connections established, which

is of particular interest when the communication functions are being used in Production lines’ test

systems, facilitating the access to the content exchanged between these systems and the products

being tested. This is achieved by using of PCF’s Windows Service along with a TCP/IP Client,

that can be the PCF’s Monitor UI.

69

70 Conclusion and future work

The framework developed was tested in order to be used in real test systems, but it has enough

flexibility to be used to support the development of new applications where communication over

RS-232, Ethernet or CAN is a requirement.

The experimental tests presented in this work enables PCF to be used in test systems. For

products already in production is difficult to change what is already done, since these changes take

a lot of time to be made. On the contrary, for new products, PCF can be very useful to develop the

parts of the test sequences where communication over RS-232, Ethernet or CAN is required.

Finally, in order to PCF be used by different Engineers, it was created an User Manual. This

documented procedure has all the relevant information not only to use the framework, but also to

understand its architecture. Additionally it was given a tutorial, on a Skype meeting with the Test

Engineering team from Portugal, Germany and Poland. The framework has already been used by

Engineers in Aptiv, concretely in its Tech Center in Braga and in the repair site.

It is possible to conclude that all the initial objectives were achieved. The PCF complies with

all the requirements defined before its implementation, solving a problem that Aptiv’s Engineers

faced as a team. It is a very flexible framework that can be used in the testing and production of

Infotainment Systems, supported by documentation that makes it easier to use.

The development of this tool-set allowed the contact with the highly demand Industry where

Aptiv is inserted. Being a work developed in such environment revealed to be a reinforcement not

only professional but also personal. The contact with people of different areas permitted learning

competencies, including soft skills, that otherwise would not be possible.

6.2 Future work

PCF’s modular design enables the integration of new communication tools. The Visual Studio

projects are all commented and along with the User Manual, it is easy to introduce new interfaces

to the framework. The framework architecture was developed with that in mind, since there are

many different communication interfaces in Infotainment Systems. The ones already integrated

are the mainly used to test the equipment.

The framework’s functions could be integrated in a microcontroller in order to concentrate all

the connectors in a small device, saving physical space, for example in laboratory applications.

The filter methods can be used to detect recurrent problems if defined by the User. Other

option would be if this could be done automatically, using filters defined in a data base that is

connected to the system where the functions are being used. This would also permit that different

types of filters could be created. The creation of a module to communicate with data bases would

be needed.

Improving the Product Communication Frameworks is possible by integrating in it modules

that have communication capabilities. Being Communication the main aim of this framework,

adding such capabilities would possibility the usage of the framework in applications from differ-

ent areas of the Infotainment Systems’ Production while interconnecting them.

Appendix A

Product Communication Configuration
File Example

<?xml version="1.0" encoding="UTF-8"?>

<Devices>

<ExceptionLogPath>C:\Users\UserName\Desktop\PCF\PCFexceptionLog.

txt</ExceptionLogPath>

<Device>

<id>RS232Example</id>

<Parameters>

<CommunicationType>Serial</CommunicationType>

<portname>COM4</portname>

<baudrate>115200</baudrate>

<parity>None</parity>

<databits>8</databits>

<stopbits>One</stopbits>

<WriteTimeout>1000</WriteTimeout>

<ReadTimeout>1000</ReadTimeout>

<CommunicationLogPath>C:\Users\UserName\Desktop\

PCF\</CommunicationLogPath>

<ExceptionLogPath>C:\Users\UserName\Desktop\PCF\

</ExceptionLogPath>

</Parameters>

</Device>

<Device>

<id>EthernetExample</id>

<Parameters>

<CommunicationType>Ethernet</CommunicationType>

<IP>10.238.111.20</IP>

71

72 Product Communication Configuration File Example

<Port>9001</Port>

<AddressFamily>2</AddressFamily>

<BufferSize>1024</BufferSize>

<CommunicationLogPath>C:\Users\UserName\Desktop\

PCF\</CommunicationLogPath>

<ExceptionLogPath>C:\Users\UserName\Desktop\PCF\

</ExceptionLogPath>

</Parameters>

</Device>

<Device>

<id>CANExample</id>

<Parameters>

<CommunicationType>CAN</CommunicationType>

<HardwareType>59</HardwareType>

<Channel>1</Channel>

<BaudRate>500000</BaudRate>

<CommunicationLogPath>C:\Users\UserName\Desktop\

PCF\</CommunicationLogPath>

<ExceptionLogPath>C:\Users\UserName\Desktop\PCF\

</ExceptionLogPath>

</Parameters>

</Device>

</Devices>

References

[1] The evolution of car advertising. https://www.appnova.com/
from-selling-men-dreams-to-ugc-the-evolution-of-car-advertising-in-history/.
Accessed: 2019-01-07.

[2] Pierre Audoin Consultants cited in Consultancy UK (2015). BearingPoint: 80% of new
vehicles connected by 2020. https://www.consultancy.uk/news/2353/
bearingpoint-80-percent-of-new-vehicles-connected-by-2020/.
Accessed: 2019-01-07.

[3] The Royal Society for the Prevention of Accidents. Road Safety Factsheet. https:
//www.rospa.com/rospaweb/docs/advice-services/road-safety/
vehicles/infotainment-systems-factsheet.pdf, October 2018. Accessed:
2019-01-07.

[4] Aptiv’s website. https://www.aptiv.com/. Accessed: 2019-01-07.

[5] NI TestStand - Getting Started with TestStand. https://www.ni.com/pdf/
manuals/373436f.pdf. Accessed: 2019-01-14.

[6] Brainboxes Ethernet to Serial, ES - Range Product Manual. http://www.brainboxes.
com/files/catalog/product/ES/ES-257/documents/ES%20Range%
20Product%20Manual%203.5.pdf. Accessed: 2019-03-25.

[7] VN1600 Interface Family Manual. https://assets.vector.com/cms/content/
products/VN16xx/docs/VN1600_Interface_Family_Manual_EN.pdf. Ac-
cessed: 2019-04-08.

[8] Rohde & Schwarz SMBV100A Operating Manual. https://scdn.rohde-schwarz.
com/ur/pws/dl_downloads/dl_common_library/dl_manuals/gb_1/s/
smbv/SMBV100A_OperatingManual_en_17.pdf. Accessed: 2019-01-14.

[9] Rohde & Schwarz SFC Compact Modulator Operating Manual. https:
//scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_common_
library/dl_manuals/gb_7/sfc_2/SFC_GettingStarted_en_06.pdf.
Accessed: 2019-01-14.

[10] Rohde & Schwarz SFE100 Operating Manual. https://scdn.rohde-schwarz.
com/ur/pws/dl_downloads/dl_common_library/dl_manuals/gb_7/
sfe_100/SFE100_GettingStarted_en_13.pdf. Accessed: 2019-01-14.

73

https://www.appnova.com/from-selling-men-dreams-to-ugc-the-evolution-of-car-advertising-in-history/
https://www.appnova.com/from-selling-men-dreams-to-ugc-the-evolution-of-car-advertising-in-history/
https://www.consultancy.uk/news/2353/bearingpoint-80-percent-of-new-vehicles-connected-by-2020/
https://www.consultancy.uk/news/2353/bearingpoint-80-percent-of-new-vehicles-connected-by-2020/
https://www.rospa.com/rospaweb/docs/advice-services/road-safety/vehicles/infotainment-systems-factsheet.pdf
https://www.rospa.com/rospaweb/docs/advice-services/road-safety/vehicles/infotainment-systems-factsheet.pdf
https://www.rospa.com/rospaweb/docs/advice-services/road-safety/vehicles/infotainment-systems-factsheet.pdf
https://www.aptiv.com/
https://www.ni.com/pdf/manuals/373436f.pdf
https://www.ni.com/pdf/manuals/373436f.pdf
http://www.brainboxes.com/files/catalog/product/ES/ES-257/documents/ES%20Range%20Product%20Manual%203.5.pdf
http://www.brainboxes.com/files/catalog/product/ES/ES-257/documents/ES%20Range%20Product%20Manual%203.5.pdf
http://www.brainboxes.com/files/catalog/product/ES/ES-257/documents/ES%20Range%20Product%20Manual%203.5.pdf
https://assets.vector.com/cms/content/products/VN16xx/docs/VN1600_Interface_Family_Manual_EN.pdf
https://assets.vector.com/cms/content/products/VN16xx/docs/VN1600_Interface_Family_Manual_EN.pdf
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_common_library/dl_manuals/gb_1/s/smbv/SMBV100A_OperatingManual_en_17.pdf
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_common_library/dl_manuals/gb_1/s/smbv/SMBV100A_OperatingManual_en_17.pdf
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_common_library/dl_manuals/gb_1/s/smbv/SMBV100A_OperatingManual_en_17.pdf
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_common_library/dl_manuals/gb_7/sfc_2/SFC_GettingStarted_en_06.pdf
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_common_library/dl_manuals/gb_7/sfc_2/SFC_GettingStarted_en_06.pdf
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_common_library/dl_manuals/gb_7/sfc_2/SFC_GettingStarted_en_06.pdf
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_common_library/dl_manuals/gb_7/sfe_100/SFE100_GettingStarted_en_13.pdf
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_common_library/dl_manuals/gb_7/sfe_100/SFE100_GettingStarted_en_13.pdf
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_common_library/dl_manuals/gb_7/sfe_100/SFE100_GettingStarted_en_13.pdf

74 REFERENCES

[11] Telecommunications Industry Association. TIA-232-F Interface Between Data Terminal
Equipment and Data Circuit-Terminating Equipment Employing Serial Binary Data Inter-
change. Standard ANSI/TIA/EIA-232-F, American National Standards Institute, Arlington,
USA, 1997.

[12] D-sub 9 Connector Pinout. https://www.db9-pinout.com/. Accessed: 2019-01-14.

[13] J. Axelson. Serial Port Complete: The Developer’s Guide, Second Edition. Complete Guides
Series. Lakeview Research, 2007.

[14] Charles E. Spurgeon. Ethernet The Definitive Guide. O’Reilly, First edition, 2000.

[15] Rion Hollenbeck. The IEEE 802.3 Standard (Ethernet): An Overview of the Technology,
September 2001.

[16] Telecommunications Industry Association. Commercial Building Telecommunications
Cabling Standard – Part 2: Balanced Twisted-Pair Cabling Components. Standard
ANSI/TIA/EIA-568-B.2-2001, American National Standards Institute, Arlington, USA,
2001.

[17] Wolfhard Lawrenz. CAN System Engineering From Theory to Pratical Applications.
Springer, Second edition, 2013.

[18] CAN A Serial Bus System - Not Just For Vehi-
cles. http://www.esd-electronics-usa.com/
Controller-Area-Network-CAN-Introduction.html. Accessed: 2019-
01-14.

[19] Gianluca Cena and Adriano Valenzano. Controller Area Networks for Embedded Systems.
In Embedded Systems Handbook: Networked Embedded Systems, pages 15–25. Taylor and
Francis Group, 2009.

[20] CiA - CANopen - The standardized embedded network. https://www.can-cia.org/
canopen/. Accessed: 2019-01-14.

[21] SAE J1939 - Serial Control and Communications Heavy Duty Vehicle Network. Standard,
Society of Automotive Engineers, USA, 2018.

[22] DeviceNet Overview. https://www.odva.org/Technology-Standards/
DeviceNet-Technology/Overview. Accessed: 2019-01-14.

[23] Dictionary<TKey,TValue> Class. https://docs.microsoft.com/en-us/
dotnet/api/system.collections.generic.dictionary-2? Accessed:
2019-03-04.

[24] Queue Class Documentation. https://docs.microsoft.com/en-us/dotnet/
api/system.collections.queue. Accessed: 2019-03-04.

[25] System.XML Namespace Documentation. https://docs.microsoft.com/
en-us/dotnet/api/system.xml. Accessed: 2019-03-04.

[26] SerialPort Class Documentation. https://docs.microsoft.com/en-us/
dotnet/api/system.io.ports.serialport. Accessed: 2019-03-11.

https://www.db9-pinout.com/
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
https://www.can-cia.org/canopen/
https://www.can-cia.org/canopen/
https://www.odva.org/Technology-Standards/DeviceNet-Technology/Overview
https://www.odva.org/Technology-Standards/DeviceNet-Technology/Overview
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2?
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2?
https://docs.microsoft.com/en-us/dotnet/api/system.collections.queue
https://docs.microsoft.com/en-us/dotnet/api/system.collections.queue
https://docs.microsoft.com/en-us/dotnet/api/system.xml
https://docs.microsoft.com/en-us/dotnet/api/system.xml
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports.serialport

REFERENCES 75

[27] System.IO.Ports Namespace Documentation. https://docs.microsoft.com/
en-us/dotnet/api/system.io.ports. Accessed: 2019-03-11.

[28] Lock statement Documentation. https://docs.microsoft.com/en-us/
dotnet/csharp/language-reference/keywords/lock-statement.
Accessed: 2019-03-12.

[29] Lydia Parziale, David T.Britt, Chuck Davis, Jason Forrester, Wei Liu, Carolyn Matthews,
and Nicolas Rosselot. TCP/IP Tutorial and Technical Overview. IBM, Eighth edition, 2006.

[30] Socket Class Documentation. https://docs.microsoft.com/en-us/dotnet/
api/system.net.sockets.socket. Accessed: 2019-03-25.

[31] System.Net.Sockets Namespace Documentation. https://docs.microsoft.com/
en-us/dotnet/api/system.net.sockets. Accessed: 2019-03-25.

[32] XL Driver Library Manual. https://assets.vector.com/cms/content/
products/XL_Driver_Library/Docs/XL_Driver_Library_Manual_EN.
pdf. Accessed: 2019-04-08.

[33] DirectoryInfo Class Documentation. https://docs.microsoft.com/en-us/
dotnet/api/system.io.directoryinfo. Accessed: 2019-04-22.

[34] File Class Documentation. https://docs.microsoft.com/en-us/dotnet/
api/system.io.file. Accessed: 2019-04-22.

[35] How to: Install and uninstall Windows services. https://docs.
microsoft.com/en-us/dotnet/framework/windows-services/
how-to-install-and-uninstall-services. Accessed: 2019-04-29.

[36] GC Class Documentation. https://docs.microsoft.com/en-us/dotnet/
api/system.gc. Accessed: 2019-05-06.

https://docs.microsoft.com/en-us/dotnet/api/system.io.ports
https://docs.microsoft.com/en-us/dotnet/api/system.io.ports
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/dotnet/api/system.net.sockets.socket
https://docs.microsoft.com/en-us/dotnet/api/system.net.sockets.socket
https://docs.microsoft.com/en-us/dotnet/api/system.net.sockets
https://docs.microsoft.com/en-us/dotnet/api/system.net.sockets
https://assets.vector.com/cms/content/products/XL_Driver_Library/Docs/XL_Driver_Library_Manual_EN.pdf
https://assets.vector.com/cms/content/products/XL_Driver_Library/Docs/XL_Driver_Library_Manual_EN.pdf
https://assets.vector.com/cms/content/products/XL_Driver_Library/Docs/XL_Driver_Library_Manual_EN.pdf
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo
https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo
https://docs.microsoft.com/en-us/dotnet/api/system.io.file
https://docs.microsoft.com/en-us/dotnet/api/system.io.file
https://docs.microsoft.com/en-us/dotnet/framework/windows-services/how-to-install-and-uninstall-services
https://docs.microsoft.com/en-us/dotnet/framework/windows-services/how-to-install-and-uninstall-services
https://docs.microsoft.com/en-us/dotnet/framework/windows-services/how-to-install-and-uninstall-services
https://docs.microsoft.com/en-us/dotnet/api/system.gc
https://docs.microsoft.com/en-us/dotnet/api/system.gc

	Front Page
	Abstract
	Resumo
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abbreviations, Symbols and Units
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Dissertation's structure

	2 Problem domain and technological background
	2.1 Equipment description
	2.1.1 Aptiv's products
	2.1.2 Test proceedings
	2.1.3 Signal generators

	2.2 Interfaces' characteristics
	2.2.1 RS-232
	2.2.2 Ethernet
	2.2.3 CAN

	2.3 Problem description

	3 Proposed Solution
	3.1 Requirements
	3.2 Description
	3.2.1 Main modules

	3.3 Conclusions

	4 Implementation
	4.1 Product Communication Framework DLL
	4.1.1 XML configuration file and XML Parser
	4.1.2 Communication functions

	4.2 Product Communication Monitor
	4.2.1 Product Communication Monitor Service
	4.2.2 Product Communication Monitor UI

	5 Experimental Validation
	5.1 Testing Framework
	5.1.1 NI TestStand sequences
	5.1.2 Validation of the Remote Monitoring

	6 Conclusion and future work
	6.1 Conclusions and achievements
	6.2 Future work

	A Product Communication Configuration File Example
	References

