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Attitude Control of a Satellite Based on a Decentralized Architecture

Abstract

Firstly, this dissertation presents a solution for the Attitude Control System (ACS) of satellites

up to 150 Kg, using reaction wheels and magnetorquers as actuators. This solution is made up of

a collection of autonomous control algorithms that are able to detumble the spacecraft upon orbit

injection, maintain a reference attitude according to the mission phase, desaturate the reaction

wheels and keep them at an ideal velocity. The case study of this work is the portuguese satellite

Infante that is currently under development.

Secondly, this dissertation presents a new concept of control architecture for small satellites,

called decentralized architecture. In this architecture, each reaction wheel has its own local,

independent ACS, which has no knowledge regarding the existence of the others. This indepen-

dence allows for a greater modularity and development flexibility, since reaction wheels can be

modified, removed or added, without having to modify the others. This total system indepen-

dence has as a consequence differences between the control action computed by the controller,

and the action that is effectively performed by the reaction wheel assembly. This difference

is formally described, showing that for the typical cases, this has reduced influence in system

behavior and stability.

The developed algorithms are validated by simulation results using Simulink, in a model

developed specifically for this work.
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Resumo

Em primeiro lugar, esta dissertação propõe uma solução para o Sistema de Controlo de Atitude

(ACS) de satélites até 150 Kg, que utilizem rodas de inércia e magnetorquers como meio de

atuação. Esta solução engloba o desenvolvimento de algoritmos de controlo autónomos, capazes

de estabilizar o satélite após injeção em órbita, manter uma atitude de referência de acordo

com a fase de missão, dessaturar as rodas de inércia e mantê-las num regime de velocidade

ideal. O caso de estudo deste trabalho é o satélite português Infante que se encontra em fase de

desenvolvimento.

Em segundo lugar, esta dissertação propõe uma arquitetura de controlo inovadora para pe-

quenos satélites, denominada arquitetura descentralizada. Nesta arquitetura, cada roda de

inércia tem o seu próprio ACS local e independente, que é alheio à existência das restantes.

Esta total independência permite uma maior modularidade e flexibilidade de desenvolvimento,

uma vez que as rodas de inércia podem ser modificadas, removidas ou acrescentadas, sem ter de

modificar as restantes. A independência total dos sistemas tem como consequência diferenças

entre a ação de controlo calculada pelo controlador, e aquela que é efetivamente realizada pelo

conjunto das rodas inércia. Esta diferença é formalmente descrita, mostrando-se que para o casos

mais t́ıpicos, esta tem uma influência reduzida no comportamento e estabilidade do sistema.

Os algoritmos desenvolvidos são validados através de simulações em Simulink, num modelo

desenvolvido especificamente para esta dissertação.
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1 Introduction

1.1 Motivation

Space exploration is one of the youngest branches in science and engineering, a field that has

only just started to become accessible to universities and small companies. Because this is such

a recent and competitive area, the satellite industry suffers from a notable lack of standardiza-

tion and documentation about its methods. Decentralized architecture fits here as an idea for

reaction wheel manufacturers to make ACS development easier for small companies and univer-

sities. Reaction wheels could be sold individually with an ACS and connected to a standardized

“attitude bus”, automatically producing a stable, working system, without needing any expert

knowledge in attitude systems.

1.2 The Infante Project

The Infante Project is an initiative led by the Portuguese company Tekever. Its goal is to

launch the Infante Satellite in Low Earth Orbit (LEO) in 2020, the first of a constellation of

small satellites focused on Earth observation. This observation, aimed at the Atlantic Ocean,

can be separated in the following objectives:

• Maritime Surveillance - Infante will identify ships in the Atlantic and report alerts to

users.

• Environmental Monitoring - Infante will monitor slow evolving environmental phenomena

(such as oil spills or algal blooms) and report data to users.

• Extreme Event Detection and Monitoring - Infante will detect and monitor fast evolving

phenomena (e.g. fires, floods, extreme meteorological event or other) and report data to

users.

To accomplish these objetives the Infante is equiped with the following features:

• A Multispectral Camera and a Synthetic Aperture Radar (SAR) for Earth observation

• A sustainable power system consisting of batteries and solar panels, in order to cope with

a power demanding payload.

• Down/up link with the ground to send commands and receive high-resolution payload

data.

• Propulsion system to maintain the orbit throughout the mission.

• An active ADCS system, to provide the necessary attitude and stability for the Earth

observation operation - which is the main topic of this dissertation.

1.3 Thesis Objectives

The first objective of this dissertation is to design a set of attitude control algorithms which

are able to:

• Detumble the satellite upon orbit injection.

• Maintain the reference attitude, which is subject to change according to the mission phase.

• Desaturate the reaction wheels using the magnetorquers.

• Avoid close to null velocity points of the reaction wheels.

1
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The second objective is to validate the decentralized architecture and the underlying dot

product distribution as reliable methods for designing an ADCS for small satellites.

Both objectives imply the development of a Simulink model of Infante in orbit, in order to

test, develop and validate the control algorithms.

1.4 Structure of the thesis

This document is segmented into several chapters, each regarding a certain aspect of the

overall model of the Infante satellite in the space environment:

Section 2 is the State of the Art in Attitude Control, providing historic and technological

context to this thesis.

Section 3 explains the mission requirements for this particular satellite in detail, necessary to

understand the details in the development of Infante and its ADCS.

Section 4 includes a brief review on attitude parameterization methods and the equations for

attitude kinematics and dynamics, which are necessary to elaborate a dynamic model of the

attitude. The reference frames used throughout this document are also defined here.

Section 5 reviews Kepler’s laws for orbital motion and presents the equations used to develop

a simple orbit propagator, describing the spacecraft’s motion around the Earth, as well as other

necessary algorithms for time keeping.

In Section 6, environment models are introduced and the attitude disturbances of gravity

gradient torque and aerodynamic torque are analyzed in detail.

Section 7 presents accurate models of the sensors, magnetorquers and reaction wheels.

Section 8 summarizes the development of a Multiplicative Extended Kalman Filter, which is

used to get a better estimate of the current attitude.

Section 9 introduces the topic of decentralized architecture, where the torque distortion prob-

lem is analyzed for the common reaction wheel assemblies.

Section 10 presents attitude control laws for regulation, detumbling, desaturation of the reac-

tion wheels and management of the reaction wheel’s momentum. For reaction wheel regulation,

the optimum control optimal gains are derived and the effect of the torque distortion introduced

by the decentralized architecture is studied. A comparison with the traditional architecture is

also done here.

Section 11 presents the science modes and ADCS programming designed for Infante so it can

become fully autonomous.

Lastly, Section 12 provides simulation results for a mission lasting several orbits.

2
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2 State of the Art

2.1 State of the Satellite Industry

The satellite industry is an engineering branch that is very recent and growing quite fast.

According to the United Nations Office for Outer Space Affairs’s annual report of 2019 [1], there

are 2100 functional satellites currently in orbit, with 300 being launched in 2018. This is 27%

compared to a total of around 8000 satellites that have been deployed since the first satellite,

Sputnik, in 1957 [1]. A survey by NATO concludes that this number is expected to rise to

7,000 within several years [2]. The manufacturing sector of the satellite industry has seen a

growth in revenues of 26%, while the launch sector has seen a growth of 34% in 2018, as seen in

this year’s report of the Space Industry Association (SIA) [3]. SIA argues there is currently a

new “golden age” of space exploration, due to recent technological innovations, and ESA, in its

2016 report [4], refers to “fresh opportunities for space in the form of new technologies of which

bio-inspired systems, self-healing, additive manufacturing, nano-tubes, in-space production and

assembly, artificial intelligence and quantum technology”. ESA also refers to a new era of “Space

4.0”, analogous to the “Industry 4.0”, the unfolding of the fourth industry revolution [5].

This recent growth and optimistic forecast are due to the fall of the costs and risks associated

with this activity. Even tough space exploration has always been profitable, the costs associated

with it were extremely prohibitive in its early stages, and could only have been supported by

national governments such as the United States and the Soviet Union. There has been a huge

increase in the private sector and in globalization. Private firms like Space X and Blue Origin

are no longer operating as contractors, but becoming key protagonists in space, while changing

the way companies perceive this industry. Space X has expressed its concern with maximum

standardization and re-usability, illustrated by their rockets whose boosters can be re-used [2].

Table 1: Classification of Satellites with examples, taken from [6]

Name Mass Cost Classification

Immar-Sat 4 5945 Kg $0.1 -2 B Large

GIOVE-A 660 Kg $50-100 M Medium

UK-DMC 166 Kg $10-50 M Mini

PicoSat 67 Kg $2-10 M Micro

SNAP 6.5 Kg $0.2 - 2 M Nano

PalmSat 1 Kg $20-200 K Pico

PCB Sat 250 g $3 -20 K Femto

Despite this, manufacturing of satellites remains relatively centralized in a handful of compa-

nies that possess the skilled workforce, the scale, engineering capacity and financial resources

needed to produce reliable complex systems. Satellites are still very expensive, but costs are

declining with the advent of small satellites. The Airbus OneWeb satellite programme aims

to launch 900 small satellites - that weigh between 10 and 20 kilograms - that will collectively

provide affordable internet access to the entire world. The first of these micro satellites will

be deployed in 2019. This is a highly ambitious trans-Atlantic project that has also demanded

very rapid satellite production lines relying on robotic assembly lines [7] [2]. SpaceX has also

launched a similar initiative called “Starlink”, and 60 of its satellites are already in orbit [8].
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2.2 State of the art in Attitude Control

The Attitude Determination and Control System (ADCS) of a satellite is always designed

taking the mission primary objective, the desired accuracy, stabilization requirements, size con-

straints, the disturbance torques, system budget and costs into account [9]. There are a wide

variety of sensors and actuators available, each with specific performance ranges. A company

can develop their own attitude sensors and actuators, buy them individually from manufacturers

or buy complete ADCS solutions [10].

There are three main types of attitude control: passive stabilization, spin stabilization and

active stabilization. Passive stabilization relies on gravity gradient or magnetic torques, supplied

by either a “boom” or permanent magnet rods. They are used on satellites with very coarse

attitude requirements, since this only provides stabilization. An example of a mission using

this is the QuakeSat, which measured low frequency oscillations in the magnetic field to predict

earthquakes [11]. Spin stabilization relies on conservation of angular momentum, stabilizing a

satellite by having it deployed while spinning at a considerable rate. The most infamous case

is the USA’s first satellite Explorer 1 which entered in flatspin shortly after being deployed

in orbit [9]. Active stabilization involves the use of attitude sensors and actuators to provide

control torques.

The most common attitude sensors are: sun sensors, horizon sensors, Earth sensors, magne-

tometers, star trackers and gyroscopes. Sun sensors acquire attitude by estimating the Sun’s

position and comparing it to an internal model of the Sun’s position. Horizon sensors work using

the same principle, detecting Earth’s horizon using an infrared camera, as well as magnetome-

ters, that measure Earth’s magnetic field. A star tracker is essentially a camera that tracks stars

in its field of view, is able to hold certain attitude measurements and compute the attitude by

consulting a star catalog. It is the only sensor that can provide full knowledge of the attitude,

without needing any extra instrumentation [9] [10] [12].

In attitude control, the exisiting technologies include: reaction wheels, magnetorquers and

thrusters. Reaction wheels are inertia wheels attached to an electric motor, that create a reaction

torque by accelerating them. These can be sold individually or in assemblies, depending on

the mission’s objectives, since three wheels are neeed to control the spacecraft in all three axis.

Magnetorquers produce torque by interacting with Earth’s magnetic field and they are a popular

option for LEO missions in small satellites. Thrusters work by ejecting fluid, producing torque

when their direction is misaligned with the center of mass. They have a limited mission lifetime

and are usually more adequate for bigger satellites, because of their high power density and

difficult miniaturization [10] [12].

Modern attitude estimation usually employs an on-board Kalman Filter to obtain a higher

accuracy. A Kalman filter is an estimation tool that uses an observer model of the system to

evaluate if the measures being taken are coherent with the system’s states. Often, Kalman

Filters are able to take multiple, redundant measures to tell which is the most probable sys-

tem state, based on a priori information regarding sensor noise. The early uses of this tool are

not openly documented since they were directed towards military uses, but its most famous

application was its use on the Apollo missions’ trajectory estimation. Its first attitude appli-

cations were attempted in the 60s, without initial success. These first Kalman filters assumed

uncoupled rotation axes and used Euler Angles representations, and were later used by NASA

in some missions with success. Since spacecraft attitude dynamics are non-linear, an Extended

Kalman Filter is more commonly used, with different parameterizations such as the direction
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cosine matrix, the quaternion and the Gibbs vector, to provide accurate results, which had a

slow adoption due to the threat of non-convergence [13] [9]. State of the art filters in attitude

estimation include the Multiplicative Extended Kalman Filter (MEKF), reviewed by this doc-

ument, and two variants: the Isotropic Kalman Filter (IKF) and the Unscented Kalman Filter

(UKF). The IKF assumes the same covariance in all directions, reducing computational effort,

while the UKF propagates the state and the covariance using the Unscented Transformation,

reducing linearization errors [14] [15] [16].

Closed-loop control of a spacecraft’s attitude can also be achieved through multiple ap-

proaches, depending on the system’s complexity, and desired performance, efficiency and ro-

bustness. The classic regulation approach is achieved by combining either a PD or a PID

controller with a representation of the rotation error in quaternion form or in Euler Angles.

This is the most common controller when reaction wheels are being used and large maneuvers

are not solicited, providing simple implementation, analysis and system stability. Sliding mode

control is commonly used when tracking a certain attitude trajectory, which is the case of the

WMAP spacecraft presented in [9], providing robust control but usually at the cost of high con-

trol action. An alternative robust controller that is gaining popularity is H∞, that is ideal for

complex, flexible satellites structures with stringent attitude requirements, since it has proofed

to be efficient at rejecting unmodeled disturbances [17] [18] [19]. An optimal control strategy

known as Linear Quadratic Regulator (LQR) is also gaining popularity in satellite attitude con-

trol, as seen for example in [16] and in [20]. Other modern control strategies like fuzzy logic

have shown success in satellites using thrusters and magnetorquers for attitude control [21] [22].

Finally, adaptive control has been applied to systems with modeling uncertainty regarding its

inertia [23] and actuators [24].
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3 Mission Requirements

In this chapter the mission requirements and objectives are presented in detail, in order to

provide context to the algorithms developed later.

Sun

Figure 1: Sun Syn-

chronous Orbit

The Infante satellite is set to be launched in 2020 and injected

into a midnight-noon sun-synchronous Low Earth Orbit of altitude

500 km, as an auxiliary payload of a larger mission. In this orbit

regime the satellite passes near the North and South poles, while

the orbit plane is forced to rotate with the Earth around the Sun.

This phenomenon occurs for certain orbital inclinations due to the

Earth’s non-spherical gravity; an illustration is provided in Figure 1.

This orbit provides good lighting conditions for Earth observation

that change only seasonally, local observation time is always around

midnight or noon.

Infante shall be deployed by a P-Pod, a rectangular aluminum

container that pushes the satellite into space using the force of

a loaded spring. P-Pods usually follow standard dimensions of

CubeSats but the current development of Infante led to a non-

standardized size and a P-Pod will be manufactured specially for

this mission. In order to fit inside the rectangular P-Pod, Infante

has foldable solar panels that only open after detumbling. Figure

3 illustrates the Infante foldable solar panels. Tumbling is what is

called to the high-rate rotation that is expected upon orbit injec-

tion. The payload is to be located underneath the spacecraft with

the solar panels facing up, casting a shadow over it when pointing

at the Sun, keeping it cool.

Infante is still under development so final dimensions and moment of inertia matrices are

unavailable. For the purpose of this study a temporary model is considered. Infante has a shape

close to a rectangular cuboid of dimensions 890× 292× 250 mm3 with thin foldable solar panels

that span across an area of 892 × (4 × 219) mm2 each. The estimated weight is 71.58 Kg and

its inertia is larger if the solar panels are deployed. Two inertia matrices are considered at the

center of mass, in case the solar panels are either closed or open:

Jclosed =

0.9154 0 0

0 5.0469 0

0 0 5.2522

 Jopen =

5.1658 0 0

0 6.1260 0

0 0 10.3434

 [kgm2] (1)

These dimensions can be seen on Figure 2 and in Table 3.

The satellite’s ADCS (Attitude Determination and Control System) is made up of attitude

sensors (a coarse Sun Sensor, two magnetometers, a Star Tracker, a coarse and a precise gyro-

scope) and attitude actuators (an assembly of four reaction wheels and three magnetorquers),

which are explained in detail later. The ADCS is responsible for determining and holding the

spacecraft’s attitude within certain requirements, using the least amount of power as possible.

7



Attitude Control of a Satellite Based on a Decentralized Architecture

lw

lx

by

bx

bz

Figure 2: Dimensions of the Infante Satellite

Table 2: Dimensions of Infante in millimeters

bx by bz lx lw
890 292 250 892 4× 292

The Synthetic Aperture Radar (SAR) is an imaging radar mounted on a moving platform

where electromagnetic waves are transmitted sequentially, the echoes are collected, stored and

sent to ground for signal processing. One of the great appeals of this radar is that it’s capable

of producing high resolution images from space in spite of daytime and weather conditions. The

SAR to be used in Infante requires that its beam hits the Earth at different angles, usually in

the region of 30o. Since the radar is fixed to the spacecraft’s body, Infante needs to perform a

roll before a SAR scan, as depicted in Figure 4.

Figure 3: Deployment of the Solar Panels

During a SAR mission the attitude requirements are strict. The attitude knowledge is bounded

by a 3σ = 0.25o in all axes and the overall attitude error is bounded by 3σ = 0.75o and axes.

When the satellite is standing by, the overall attitude error can amount to a total of 3σ = 5o.

During the actual SAR scan it is also desirable to reduce the attitude control dynamics of the

system since a control dynamic that is too active may blur the obtained images.

A reaction wheel is a high inertia flywheel attached to a brushless electric motor, that provides

torque by accelerating and braking. Several reaction wheels are assembled so they can provide

three axis torque control, which is used for fine pointing of the satellite. Over time, as wheels
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accelerate, their speed may increase until a certain limit is reached where they can no longer

provide torque; this is called saturation. The opposite case can also be problematic since reaction

wheels have poor torque control at very low speeds. In Infante, reaction wheels will operate in a

four-wheel pyramid assembly to provide redundancy in case of wheel failure and enabling control

over the distribution of their own momentum, ensuring that the wheels are operating in their

optimal region.

Figure 4: SAR Scanning

Procedure

Detumbling and desaturation of the reaction wheels is done by

magnetorquers. A magnetorquer is a controllable electromagnet

that creates a magnetic dipole, which interferes with Earth’s mag-

netic field, providing useful torque. Magnetorquers exhibit residual

magnetic dipoles or hysteresis, which can disturb the spacecraft. To

avoid this, a decaying dither signal is applied to minimize this effect.

In addition, when the magnetorquers are active the magnetometers

must be turned off, otherwise they will measure the magnetic field

generated by the satellite itself as interference.

There are two magnetometers in Infante: a low precision one that

is inside the satellite’s structure and a more precise one that is used

outside. The inner magnetometer measures the magnetic field upon

detumbling, providing information on how to trigger the magnetor-

quers only. After detumbling, the more precise magnetometer is

deployed outside the satellite’s structure and is used to get better readings of the magnetic field,

this time, for attitude acquisition.

Infante is equiped with two gyroscopes: a low power coarse gyro and another of great precision.

The coarse gyro uses low power and should be turned on for the entire mission while the precision

gyro uses more power and should only be turned on if necessary.

The coarse Sun Sensor is made up of six photo-resistors, one for each face of Infante. By

measuring and comparing the voltage across each photo-resistor it is possible to estimate the

Sun direction, compare it with a model and estimate the attitude.
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4 Spacecraft Attitude Modeling

In this section the definitions and notations used throughout this document are presented, as

well as a brief review of the kinematic and dynamic equations used to model the attitude of the

spacecraft. This material is based on the works of [25] and [9]. Vectors x are written in bold

and quaternions q̄ with an overbar.

4.1 Attitude Parameterizations

Attitude is defined as the orientation of the satellite body frame regarding a certain reference

frame. This orientation is usually expressed through a 3×3 rotation matrix. The rotation matrix

A that relates the spacecraft’s body frame B with an arbitrary reference frame I is denoted ABI ,

so that a vector in frame I can be written in frame B by the equation:

xB = ABIxI (2)

There are, however, other attitude representations that are more compact and intuitive, such

as Euler angles, unit quaternions and the Gibbs Vector.

The Euler angles φ, θ, ψ, represent a series of three consecutive rotations upon a given set of

axis. The classical 3−2−1 Euler sequence is a very common description of spacecraft’s attitude,

where the rotations are performed around the x−, y− and z−axis of the satellite body. The

angles are usually denoted by roll, pitch and yaw angles.

The individual rotation matrices are given by:

Aφ =

1 0 0

0 cos(φ) sin(φ)

0 − sin(φ) cos(φ)

 (3)

Aθ =

cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)

 (4)

Aψ =

 cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1

 (5)

The rotation matrix given by a 3−2−1 Euler angle sequence can be obtained by A321(φ, θ, ψ) =

AφAθAψ. On the other hand, a matrix representing a 1−2−3 Euler sequence would be obtained

by inverting the order of the rotations, becoming roll, pitch and yaw. Another common Euler

Angle sequence is the 3 − 1 − 3 sequence; here the rotation is first around the yaw axis, then

around the roll axis, and lastly around the yaw axis again.

This representation provides an intuitive description of attitude but is prone to be numerically

unstable due to the existence of singularities. To avoid this problem the quaternion parameter-

ization is often used.
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Euler’s eigenaxis theorem states that any matrix transformation can be expressed by a rotation

angle φ over a fixed eigenaxis e. The unit quaternion is a four-parameter representation based

upon this theorem that is defined by:

q̄ =


e1 sin(φ/2)

e2 sin(φ/2)

e3 sin(φ/2)

cos(φ/2)

 =

[
q̄1:3

q̄4

]
=


q1

q2

q3

q4

 (6)

Where q̄1:3 is the vector part of the quaternion and q̄4 is the scalar part. This convention

where the scalar part comes fourth is used in this document. A convention where the scalar

part comes first is also used very often, and is used for example in MATLAB’s native quaternion

functions. The quaternion product is defined as the following operation:

q̄ ⊗ ¯̄q =

[
q̄4¯̄q1:3 + ¯̄q4q̄1:3 − q̄1:3 × ¯̄q1:3

q̄4 · ¯̄q4 − q̄1:3 · ¯̄q1:3

]
(7)

The quaternion product provides a convenient way to perform vector transformations. Let

q̄BI be the quaternion representing a rotation analogous to the rotation matrix in equation

(2). It can be shown that the quaternion product provides an equivalent matrix transformation

through the expression:

xB = q̄BI ⊗ xI ⊗ q̄∗BI (8)

Where q̄∗BI is the conjugate quaternion given by the expression q̄∗BI =

[
−q̄1:3

q̄4

]
, which is

also its inverse q̄−1 if it’s a unit quaternion. Another option is to compute the rotation matrix

of a quaternion directly:

A(q̄) =

q2
1 − q2

2 − q2
3 + q2

4 2(q1q2 + q3q4) 2(q1qq3 − q2q4)

2(q1q2 − q3q4) −q2
1 + q2

2 − q2
3 + q2

4 2(q2q3 + q1q4)

2(q1q3 + q2q4) 2(q2q3 − q1q4) −q2
1 − q2

2 + q2
3 + q2

4

 (9)

Therefore, describing attitude in quaternions has computational advantage since singularities

are avoided and vector transformations can be performed without the use of trigonometric

functions.

The last parameterization to be introduced is the Gibbs Vector Representation:

g(q̄) =
q̄1:3

q̄4
(10)

With the equivalent expression in terms of Euler axis and angle:

g(e, φ) = e tan(φ/2) (11)

This representation is very useful to represent small rotation errors with the disadvantage of

becoming infinite for a 180◦ rotation.
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4.2 Attitude Kinematics

When two frames are in relative motion their Euler axis and angle exhibit a time dependency

e(t) and φ(t). The rotating body frame B is considered at time instants t and t + ∆t, whose

attitude is defined in terms of an inertial frame I. The B frame in the first time instant can be

related to the next instant by a rotation axis e′ and a small rotation angle ∆φ′. We define the

angular rate at which the frames B and I are rotating relative to each other as the following

limit:

ωBIB = lim
∆t→0

∆φ′

∆t
e′ (12)

Where the superscript BI means that the considered velocity is the body’s, with respect to

the inertial frame I, and the subscript B means that the angular rate is represented on the body

frame. For convenience, the subscript is omitted for body vectors, since this is usually the case.

The kinematic relation between these rotating frames can also be expressed by the derivative

of the quaternion. This is given by a similiar limit:

˙̄qBI(t) = lim
∆t→0

q̄BI(t+ ∆t)− q̄BI(t)
∆t

(13)

It can be shown that an equivalent, more convenient form for this equation is:

˙̄qBI(t) = ωBI ⊗ q̄BI (14)

Which is known as the kinematic equation of the quaternion.

4.3 Attitude Dynamics

Consider a spacecraft equipped with an assembly of n reaction wheels, each labeled by the

index l. Each wheel has its spin axis direction represented by the body vector wl and corre-

sponding wheel angular velocity of magnitude ωwl . Since each wheel is axis-symmetric we use

this fact to decompose the wheel’s moment of inertia into two components: the component along

the spin axis J
‖
l and the component J⊥l along any other perpendicular axis; as illustrated in

Figure 5. This decomposition can be described in terms of the following equation:

Jwl = J⊥l (I3 −wlw
T
l ) + J

‖
l wlw

T
l (15)

Let J̃ represent the spacecraft’s moment of inertia at the center of mass without reaction

wheels. We can add the transverse component of the wheels for convenience since this component

is ineffective for control purposes:

J = J̃ + J⊥ = J̃ +

n∑
l=1

J⊥l (I3 −wlw
T
l ) (16)

Since Infante has a moment of inertia that is much larger than the wheel’s transverse com-

ponent, and since at the current project stage, its inertia is not well determined, we can assume

that J ≈ J̃ for simplicity.
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The total angular momentum of the spacecraft can then be calculated as:

H = JωBI +Hw, (17)

Hw =

n∑
l=1

J
‖
l (wl · ωBI + ωwl )wl (18)

≈
n∑
l=1

J
‖
l (ωwl wl) (19)

w3

w1

w2

Hw
B

J
‖
1

J⊥1

J⊥1

Figure 5: Reaction Wheel

Schematics

The axial momentum of the wheels due to spacecraft mo-

tion can be neglected, since they are usually spinning at rates

much higher than the spacecraft. By deriving equation (17)

and using the chain rule, the following differential equation

is obtained:

Ḣ = Jω̇BI + Ḣ
w

+ ωBI × (JωBI +Hw) (20)

The derivatives of the angular momentum are just the same

as the applied torques L and Lw, so this equation can be

rearranged and rewritten as:

ω̇BI = J−1
[
L−Lw − ωBI × (JωBI +Hw)

]
(21)

This is the state space equation used to model the attitude dynamics of the spacecraft, which

returns the state ωBI(t). The kinematic equation of the quaternion provides the remaining state

of attitude q̄(t). The final block diagram is presented on Figure 6, showing how to perform a

Simulink implementation of the model above.

ω̇BI = J−1
[
L−Lw − ωBI × (JωBI +Hw)

]
1
s

L

Lw

1
s

Hw

˙̄q(t) = ωBI ⊗ q̄

ω̇BI ωBI

1
s

q̇ q

H = JωBI
H

Hw
0

ωBI0

q0

ωBI

Figure 6: Block Diagram of Spacecraft Attitude Model
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4.4 Reference Frames

This subsection addresses the definition of the different reference frames used throughout this

document.

4.4.1 Spacecraft Body Frame

The body frame is defined at the center of mass for the purpose of this study for convenience.

Generally, spacecraft body frames are located in a rigid navigation base, a subsystem including

attitude sensors and payload. The x−axis points ahead, the y−axis to the right side and the

z−axis points down, defined according to the local frame and space navigation conventions, as

depicted in Figure 7.

4.4.2 GCI Frame

The GCI frame (Geocentric Inertial Frame) is an approximate inertial frame that has its

origin at the Earth’s center of mass. Its z−axis is aligned with Earth’s North Pole and its

x−axis is aligned with the vernal equinox, the intersection of the Earth’s equatorial plane with

the plane of the Earth’s orbit around the Sun on the first day of spring. Since this frame orbits

the sun at the rate of only one revolution per year, it’s considered a practical and good enough

approximation of an inertial frame for the analysis of spacecraft attitude. It’s denoted in Figure

8 as {i1, i2, i3}.

4.4.3 ECEF Frame

The ECEF frame (Earth-Centered/Earth-Fixed Frame), denoted by {ε1, ε2, ε3} in Figure 8,

is similar to the GCI frame since they both share the z−axis but with the difference that ECEF

rotates with the Earth. The x−axis points toward Earth’s prime meridian and the angle between

GCI and ECEF frames is denoted by θGMST (Greenwich Mean Sideral Time). Computation of

this angle is explained later in the Epoch calculations chapter.

B1

B2

B3

oB

Figure 7: Body Frame of Infante

4.4.4 LVLH Frame

The LVLH frame (Local-Vertical/Local-Horizontal Frame) is the local frame defined upon the

spacecraft’s orbit, denoted by {o1,o2,o3}. The attitude control problem is usually defined in

this frame since it coincides with the spacecraft’s body frame for Earth pointing. The z−axis

points toward the center of the Earth, the y− is perpendicular to the orbit plane and the

x−axis completes the orthogonal reference frame, pointing ahead. For eccentric orbits the speed

direction does not coincide with the x−axis, which is not the case for Infante’s.
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4.4.5 NED Frame

The NED frame (North-East-Up Frame) is a commonly used local frame, based on the Earth’s

rotation axis. The matrix relating this frame with the ECEF Frame can be obtained if the

spacecraft’s latitude φ and longitude λ are known:

AECEF−NED =

− sin(φ) cos(λ) − sin(λ) − cos(φ) sin(λ)

− sin(φ) sin(λ) cos(λ) − cos(φ) sin(λ)

cos(φ) 0 − sin(φ)

 (22)

i1 ε1
i2

ε2

i3 ≡ ε3

o3

o2

o1

θGMST

O
rb

it
Pla

ne

Equatorial

Plane

Figure 8: GCI, ECEF and LVLH Frames
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5 Spacecraft Orbital Dynamics

In order to provide a realistic environment for the attitude model of Infante, its orbit needs

to be described since the spacecraft’s position and speed are crucial for simulating a real mis-

sion. The model needs to account events like solar eclipses, geographic passages and proper

aerodynamic and magnetic effects, which are a consequence of the spacecraft’s motion around

the Earth. In this section, the mathematical tools are provided so a simple yet effective orbit

model can be built.

5.1 Keplerian Motion and Orbital Propagation

Let r be the spacecraft’s position in the GCI frame and ṙ be its time derivative, the space-

craft’s speed. The problem of interest consists in finding a realistic algorithm that returns r(t)

and ṙ(t) for a certain set of initial conditions. The simplest way to produce this algorithm is to

consider the spacecraft’s orbit as an ellipse with the Earth at its focus, and then to propagate

the spacecraft’s motion through some angle E(t). This approximation is known as Keplerian

Motion, since Kepler was the first to demonstrate that the planetary orbits are ellipses, by using

Newton’s laws of gravity and motion. This is not completely true however, disturbances like

aerodynamic drag and non spherical gravity are not accounted for in this model. Satellites in

LEO have decaying orbits and exhibit relatively small deviations from the elliptic orbit. For the

purpose of this thesis Kepler’s orbit model is sufficient, since these perturbations do not greatly

affect attitude analysis.

As a consequence of the elliptic shape of a planetary orbit, Kepler proposed the classical

orbital elements as a mean to describe an orbiting body’s trajectory. The dimensional elements

are:

• a: semimajor axis (size of orbit)

• e: eccentricity (shape of orbit)

• M0: initial mean anomaly (related to the initial position in orbit)

These elements describe the elliptical motion of the spacecraft in the Perifocal frame, denoted

by {ip, ie, ih} in Figure 9. The x−axis ip points along the periapsis, which is the point closest

to the focus, the z−axis ih points outside the orbit plane with the y−axis ie completing the

direct frame. Once the orbital ellipse is defined, it is necessary to define its orientation relative

to the Earth, which is given by the orientation elements, also illustrated in Figure 9:

• i: inclination (angle between orbit plane and the equatorial plane)

• Ω: right ascension of the ascending node (angle between i1 and line of nodes in, the

intersection of the orbit plane with the equatorial plane)

• ω: argument of the periapsis

As stated before, the propagation problem consists of finding an algorithm which returns the

spacecraft’s position and speed at any point in time, given some arbitrary initial conditions.

The most intuitive method would be calculating υ(t), the true anomaly of the ellipse, since the

position in the perifocal frame can be calculated by:

xp = r(υ) cos(υ(t)) yp = r(υ) sin(υ(t)) (23)
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Figure 9: Perifocal Frame

Kepler’s second law states that “the line joining the satellite to the Earth sweeps out equal

areas in equal times”, which means that the function υ(t) is not a linear time function. Further-

more, no closed-form solutions exist for this function and it is easier to compute the solution for

orbit propagation in the perifocal frame using an angle called the eccentric anomaly E.

The eccentric anomaly E is the angle between the x− axis direction and the line joining the

center of the ellipse to a vertical projection of the point of interest in a concentric circle, as

shown in Figure 10.

a

E υ
b

F1F2

c

xp

yp

Figure 10: Ellipse Dimensions

This should not be confused with the mean anomaly M that is not represented. The mean

anomaly M is an argument that is a linear function of time, as if the orbit was a circle, defined

by the expression:

M(t) = M0 + n(t− t0), (24)

n =
2π

T
(25)
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where n is the mean motion (corresponding to the mean angular velocity) and T is the orbital

period. It can be shown that the mean motion is given by:

n =

√
µ

a3
, µ ≈ GM (26)

where µ is the gravitational parameter, Newton’s gravity constant times the mass of the Earth.

The mean anomaly is easy to calculate but does not provide the true rate of elliptic motion.

Kepler arrived at the following relation between the mean anomaly and the eccentric anomaly

E in an orbit:

M(t) = E(t)− e sin(E(t)) (27)

which is known as Kepler’s Equation. Even tough no direct form for E(M) exists, this can be

computed by iteration of the function:

f(E) = M − (E − e sin(E)) (28)

which is zero for the correct E. If f(Ê) returns a residue that is too big, the following iteration

can be given by the following update:

Ê+ = Ê− +
M − (Ê− − e sin(Ê−))

1− e cos(Ê−)
(29)

Having arrived at a value of the eccentric anomaly for a current time E(t), the current position,

velocity and distance to the center of the Earth can be calculated in the perifocal frame:

x = a(cos(E)− e) y = a
√

1− e2 sin(E) (30)

ẋ = −
(
na2

r

)
sin(E) ẏ =

(
na2

r

)√
1− e2 cos(E) (31)

r = a(1− e cos(E)) (32)

Once the spacecraft’s position and speed are calculated in the orbit plane, they can be trans-

formed into GCI through a matrix transformation. The GCI frame and the perifocal frame can

be related by a 3− 1− 3 Euler Angle sequence of angles Ω, i, ω :

r = AT313(Ω, i, ω)

xy
0

 ṙ = AT313(Ω, i, ω)

ẋẏ
0

 (33)
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5.2 Sun-syncrhonous Orbit

The midnight-noon Sun-synchronous orbit was introduced previously in Section 3. The satel-

lite’s orbit plane is able to rotate due to the Earth’s equatorial bulge: Earth’s diameter is 43

km bigger in the equatorial plane than in the poles, which means that Earth’s gravitational

field is stronger in the equatorial plane, perturbing any satellite orbit that is not aligned with

Earth’s symmetry. This perturbation, also known as J2, causes the orbit plane to slightly rotate

with time, at a rotation rate depending on the orbit size a, inclination i and its eccentricity e.

Correctly tuning these parameters lets us achieve the desired midnight-noon orbit. It can be

shown that for an eccentricity of zero and a mean height of 500 km, the inclination must be

i = 97.461o. [9]

The current model does not account for these perturbations and the classical orbit elements

are constant. A right ascension rate Ω̇ is added to simulate the rotating effect, which corresponds

to the rate of one revolution per year:

Ω(t) = Ω0 + Ω̇ · t , Ω̇ =
2π

365.25× 24× 3600
= 1.991× 10−7 [rad s−1] (34)

The offset Ω0 must be calculated taking in account the simulation epoch in order to make

sure that the orbit plane is oriented at noon. To calculate the Sun’s position in the GCI frame

one must first define the current time in terms of astronomical events, which is called the epoch.

5.3 Epoch Calculations

In this section are presented the algorithms used to calculate the simulation’s epoch, which

can be expressed simply as a date and a time, but also in more standardized formats like the

Julian Date and Day of Year. The current calendar standard is the Gregorian Calendar and the

current time standard is called the Universal Time, based on Earth’s rotation.

5.3.1 Julian Date

The Julian Date is the standard format of declaring a certain epoch in navigation, a scalar

corresponding to the time elapsed since a specific reference time. The default reference starts

on midday of November 22 of the year 4714 BC, the start of the Julian Calendar. The following

expression returns the number of Julian Days, for a given year Y , month M , day D, hour h,

minute m and second s of the Gregorian Calendar:

JD = 1, 721, 013.5 + 367Y − INT
{

7

4

[
Y + INT

(
M + 9

12

)]}

+INT

(
275M

9

)
+D +

60h+m+ s/60∗

1440
[days]

(35)

where INT denotes the integer part and 60* denotes using 61 seconds for days with leap seconds.

Leap seconds are rather uncommon and can be ignored to a good approximation since only a

total of 27 leap seconds have been added since the year 1972 to the present year of 2019. The

next predicted leap second should be added on June 30, 2020. The Julian Date can be offset to

a common reference that is J2000, which refers to midday of January 1 of the year 2000.

JDJ2000 = JD − 2, 451, 545 [days] (36)
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5.3.2 Day of Year

Models like the NRLMSISE, discussed in the atmospheric model chapter, use Day of Year as

a measure of the current epoch. This can easily be calculated by subtracting the Julian Date of

the current year at midnight of January 1 to the current Julian Date:

DOY = JD(Y,M,D, h,m, s)− JD(Y, 0, 0, 0, 0, 0) (37)

5.4 Sun and Earth Position

Earth orbits the Sun at the rate of one revolution per year in an elliptic orbit. This motion

causes an apparent motion of the Sun around the Earth that can be described through the ecliptic

reference frame: an Earth centered frame that maps the apparent position of the Sun, illustrated

on Figure 11. Describing the Sun’s position follows steps similar to the orbit propagation

problem, where it is first described on the ecliptic orbit plane and then transformed to the

GCI frame. The following algorithm presents a good approximation to the position of the Sun,

with a precision better than 1o. [26]

Sun

i1

i2

i3

ε

equatorial plane

ecliptic plane

λ

vernal equinox
ie

Figure 11: Ecliptic Plane

The mean longitude of the Sun, corrected for the aberration of light, is:

L = 280.460o + 0.9856474o · JDJ2000 (38)

The mean anomaly of the Sun in the ecliptic frame is:

g = 357.528o + 0.9856003o · JJ2000 (39)

These angles can be put in the range of 0o to 360o by:

L ≡ L (mod 360o) , g ≡ g (mod 360o) (40)

The ecliptic longitude of the Sun is:

λ = L+ 1.915o sin(g) + 0.020o sin(2g) (41)

Since the ecliptic latitude of the Sun is nearly zero, the distance from the Sun to the Earth

can be given in astronomical units by:

R = 1.00014− 0.016171 cos(g)− 0.00014 cos(2g) (42)
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Where an astronomical unit corresponds to AU = 1, 49597871× 1011 meters. The position is

now completely defined in the ecliptic coordinate system and needs to be converted into GCI.

First we compute the obiquity of the ecliptic ε, the angle between Earth’s rotational axis and

the Sun’s orbital axis, also known as the axial tilt:

ε = 23.439o − 0.0000004× JD2000 (43)

The right ascension of the orbital plane can be calculated:

α = arctan(cos(ε), tan(λ)) (44)

And its declination:

δ = arcsin(sin(ε), sin(λ)) (45)

Finally, it can be computed in GCI by:

xi = R cos(ε) cos(λ) , yi = R cos(ε) sin(λ) , zi = sin(ε) (46)

Referring back to the sun-synchronous orbit problem of finding a value for Ω0, a midnight-

noon orbit can be defined easily by letting Ω0 = λ, ensuring that the orbit plane is pointing in

the direction of the Sun.

5.5 Latitude and Longitude

Once the spacecraft’s position is fully defined in the GCI Frame it is necessary to describe

it in the ECEF Frame in order to specify the spacecraft’s position on Earth itself. To achieve

this, θGMTS must be computed in terms of the epoch: first we calculate the number of Julian

centuries elapsed from the J2000 reference to zero hours of the date in question:

T0 =
JD2000(Y, M, D, 0, 0, 0)

36, 525
[centuries] (47)

Once this is calculated, the current θGMTS can be calculated in seconds:

θGMTS = 24, 110.54841 + 8, 640 184.812866T0 + 0.093104T 2
0

−6.2× 106 T 3
0 + 1.002737909350795(3600h+ 60m+ s) [s]

(48)

Then it is reduced to a range from 0 to 86400 s (number of seconds in a day) and converted

to seconds by dividing by 240, since 86400/360
o

= 240 s/o :

θGMTS =
θGMTS (mod 86400o)

86400
[o] (49)

Converting from GCI to ECEF is done simply by the matrix:

A =

 cos(θGMTS) sin(θGMTS) 0

− sin(θGMTS) cos(θGMTS) 0

0 0 1

 (50)
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Most Earth models do not use the ECEF frame to describe a geographical location but rather

geodetic latitude µ, longitude λ and height h. These values are calculated through an algorithm

available in Matlab, based on the World Geodetic System (WGS84). The WGS84 is the most

popular Earth model standard, used by GPS systems and others [27]. Simulation results for an

ascending sun-synchronous orbit, starting at midday of the day 20/03/2019, can be seen below

on Figure 12. It is interesting to see that in the first passage the satellite is near the 0o and the

180o longitudes, as expected.

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

-90

-60

-30

0

30
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Figure 12: Simulation results for a few orbits of Infante plotted on a world map
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5.6 Eclipse

Given the position of the Sun it is possible to determine if the Earth is eclipsing the space-

craft, an important information for orientation and energy purposes. The eclipse condition is

determined by the following algorithm, inspired by [28].

Eclipse Region

αeclipse

α

R
+
h

R

Sun

Figure 13: Eclipsed Region

In this model, the distance from the Earth to the Sun is considered great enough when

compared to the Sun’s radius to make the assumption that the Sun is a point of light at an

infinite distance, generating a shadow region like the one in Figure 13. In reality, there is a

transition region in this shadow called the penumbra, which takes a few seconds to cross in orbit.

Consider the plane that contains the Sun direction as well as the spacecraft’s direction from

the center of the Earth, represented in Figure 13. The angle α which describes the position of

the satellite from the Sun in this plane can be calculated:

α = arccos

(
rSun · r

||rSun|| · ||r||

)
(51)

The angle αeclipse, which describes the angle at which an eclipse starts, is given in radians by.

αeclipse = π − arcsin

(
R

R− h

)
(52)

where h is the spacecraft’s height and R is the Earth’s radius at the eclipse latitude. Since

Infante has a high inclination, low altitude, midnight-noon orbit, R can be approximated to the

Earth’s radius in the poles, R ≈ 6357 km. The condition for eclipse can then be expressed as

α > αeclipse.

The atmosphere plays an important role in the eclipse phenomenon because it distorts light

as the Sun reaches the horizon. It makes sense to define another angle α′eclipse, calculated by

the same expressions above but with R′ = R+ hatm.
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6 Environment Modeling and Disturbances

In this section the main attitude disturbances are discussed and the respective equations

are presented, as well as the inherent magnetic and atmospheric models . The main attitude

disturbances can be separated in the following torques:

• Solar Radiation Pressure Torque

• Gravity Gradient Torque

• Aerodynamic Torque

• Magnetic Torque

Solar Radiation Pressure torque is caused by the momentum exchange of photons hitting the

satellite, creating torque depending on the spacecraft’s attitude toward the Sun. This distur-

bance is considered to be dominated by the other three at the altitude of 500 km in which Infante

operates, so it will not be covered by this thesis.

g + δg

g

Figure 14: Satellite under

Gravity Gradient Torque

Gravity Gradient Torque occurs in any non symmetrical body

subject to a gravity field. The underlying concept is: a satellite in

space has parts of its body closer to the Earth than others, which

are under the influence of a slightly stronger gravitational force.

This difference in gravitational force can create a small torque if

the attitude is not aligned with the field. In Figure 14, the satellite

has the higher tip of the wing subjected to an acceleration g, while

the lower tip has a slightly stronger acceleration g+ δg, creating a

small roll torque. The Gravity Gradient δg is stronger the larger

the body and the closer it is to the Earth.

In LEO, the predominant disturbance is usually the aerody-

namic torque, due to a higher air density. In a similar way to the

Gravity Gradient Torque, it can be made null if the proper attitude regarding the air speed is

taken, which will be studied in this section.

Finally, Magnetic Disturbance Torque is due to the residual magnetic dipole of the magne-

torquers after they have been operated. The residual magnetic dipole is not modeled since in

modern magnetorquers a “dither” signal is applied, to minimize this effect. The time of actuation

of this signal is taken in account.

6.1 Gravity Gradient Torque

The Local LVLH frame is a useful tool to study the Gravity Gradient Torque since the z−axis

always points down in the direction of gravity field g. Markley and Crassidis [9] present a solution

for Gravity Gradient torque in the local frame for a 3− 2− 1 Euler Angle representation:

Lg =
3µ

||r3||

(J3 − J2) cos(θ)2 · cos(ψ) · sin(ψ)

(J3 − J2) cos(θ) · sin(θ) · cos(ψ)

(J1 − J2) cos(θ) · sin(θ) · sin(ψ)

 (53)

It is interesting to notice that it does not depend on the yaw angle φ and that it decreases

with the cube of the distance to the center of the Earth.
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6.2 Aerodynamic Torque and Drag

This section uses the methods developed in [29] to model the Aerodynamic Torque of the

spacecraft, where parts of the text have been adapted:

The highly rarefied atmosphere of LEO requires a different approach to aerodynamics than

that employed in the continuum regime that exists at aircraft flight altitudes. Due to the low

density, the flow regime of low Earth orbit spaceflight is commonly described as free molecular.

This means that the mean-free path (the mean distance between consecutive collisions) is many

times greater than the characteristic dimension of a body immersed in the flow. Therefore,

collisions between molecules are extremely rare in the flow field around the body, such that the

flow can be assumed collisionless and it cannot be considered as a continuum medium anymore.

Instead it is particulate in nature.

To quantify the validity of the collisionless assumption a non-dimensional parameter known

as Knudsen number is used:

Kn =
λ

lref
(54)

where lref is the characteristic dimension of the spacecraft and λ is the mean free path. A

high Kn indicates that the flow is particulate in nature and a low Kn indicates that the flow

is continuum. It is assumed that the free molecular flow assumption is valid for Kn ≥ 10. The

Knudsen number for an altitude of 500 km and a mean length of 1 m is usually between 104

and 106, indicating that the free flow assumption is reasonable not only for Infante, but for all

kinds of satellites. The molecular mean free path can vary up to two orders of magnitude with

magnetic and solar activity, which are responsible for large density and temperature variations

in the thermosphere.

Another important parameter in free molecular flow is the molecular speed ratio:

s =
V

Va
(55)

where Va is the thermal speed, which defines temperature as the most probable molecular speed

of a gas, and V is the velocity of gas in the reference frame. It can be shown that the most

probable speed of the gas is given by:

Va =
√

2RT (56)

where R is the specific gas constant of air and T is the temperature in K. The molecular speed

ratio s provides an indication of the extent to which the flow behaves like a collimated beam of

molecules (hyperthermal flow), where the bulk velocity of the gas is many times greater than

the thermal velocity of the gas, or a chaotic drifting Maxwellian flow (hypothermal flow), where

the high random thermal motion of the atmospheric gas constituents means that the free stream

gas flow cannot be treated as a collimated beam of molecules anymore.

The specific constant of air can be calculated using the molar mass of air which is approxi-

mately 15 g/mol at 500 km: [30]

R =
R

M
≈ 8.314

15× 10−3
= 554.267 (57)
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At 500 km of altitude temperatures can easily reach values of 1500 K and simulation results

indicate a mean air speed of V = 8 km/s, considering that the atmosphere rotates with the

Earth. Taking in account the equations above, the molecular speed ratio can be calculated:

s =
8000√

2× 554.267× 1500
= 6.20 (58)

For practical implementations it is assumed that the hyperflow assumption is valid for s > 5,

which is the case.

Aerodynamic torque is caused by the momentum exchange of particles with the spacecraft so

it is necessary to characterize the interaction of the particles with the body. Upon collision with

the spacecraft’s surface, particles can be reflected with the same angle (specular reflection), or

they can be reflected at a random angle (diffuse reflection). A proper gas-surface interaction

model (GSIM) must be applied to the study of the satellite in order to describe the occurrence

of these two cases.

Vi dQ Vf dQ

θi θr

n

t

pi pr

τrτi

Figure 15: Reflection of a particle

The force dF acting on a spacecraft element dA is

defined upon the moment exchange of a particle hit-

ting the surface at an angle θi and speed Vi, reflected

at angle θr and speed Vr, as illustrated in Figure 15.

The momentum exchange can be calculated by the dif-

ference of momentum fluxes:

dF

dA
= −(pi + pr)n+ (τi − τr)t (59)

Where pi and pr are the normal momentum fluxes

and τi and τr are the tangent momentum fluxes. These

incident momentum fluxes pi and τi depend on incident

velocity Vi and mass flux dQ = ρVi sin(θi), and can be calculated:

pi = Vi sin(θi)dQ τi = Vi cos(θi)dQ (60)

The reflected momentum flux does not follow a direct calculation, pr and τr depend on gas

properties such as chemical composition, density, temperature and speed, surface properties

such as material, roughness, cleanliness and temperature and finally, the incidence angle θi. To

estimate the reflected momentum a gas-surface interaction model (GSIM) must be studied.

The proposed GSIM is the Schamberg model, since it is well covered in [29], with a simple

solution for this case. It considers that the reflected particles are emitted with a scattering

pattern of a cone, as illustrated in Figure [16]. The reflected beam of particles is described by

a mean reflection angle θr and a half angle φ0. This model considers a uniform distribution of

velocities in the scattering cone, so the mean of particles can be considered to be reflected at

the mean reflection angle θr, affected by a scalar function Φ(φ0). In the diffuse case, φ0 takes

the value of π/2 and the respective scalar Φ equals 2/3.
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Figure 16: Schamberg’s scattering model

The momentum of the reflected particle also depends on what is known as the accommodation

coefficient. Particles arriving at the spacecraft’s surface can interact and exchange energy with

it, losing momentum accordingly. Complete thermal accommodation implies α = 1, the particle

is re-emitted with energy corresponding to temperature of the surface, sometimes neglected due

to high spacecraft speed. No energy exchange implies α = 0 and the particle is reflected with

the same velocity. This coefficient is calculated:

α =
Ei − Er
Ei − Ew

≈ Ei − Er
Ei

(61)

where Ei, Er and Ew are incident, reflected and surface energies respectively.

Angular distribution of reemitted particles and the accommodation coefficient are affected

mainly by the type of molecules of the incident gas and surface contamination. Clean sur-

faces have low accommodation coefficients while contaminated surfaces have high coefficients,

since they exhibit a process known as adsorption: atmospheric molecules become trapped in

the surface and incident molecules are more likely to be re-emitted diffusely. This effect is very

pronounced at altitudes between 200 and 700 km due to the presence of atomic oxygen contam-

inating the surface. For clean surfaces the accommodation coefficient is very dependent of the

material and its roughness, while for contaminated surfaces it has been shown that it is almost

independent [29] [31]. This has been measured in several spacecraft: it is very close to 1 for

altitudes up to 170km but it starts decreasing with altitude as adsorption gets weaker, primarily

due to increasingly lower air density. The article [31] also argues that experiments on Earth

have been found to be very little representative of the true values in space because of difficulties

in replicating the space environment.

Due to high adsorption, it is assumed that the angular distribution is almost purely diffuse:

particles are re-emitted at random because they become trapped in the surface due to contam-

ination. In orbit experiments measuring α make this assumption achieving good results. The

article [30] provides a table of recommended accommodation coefficients based on satellite ex-

perimental data where a completely diffuse re-emition is assumed, but only to an altitude of 325

km (α = [0.89 − 0.93]). The coefficient increases in times of high solar and magnetic activity

since this has an influence in atmosphere composition.

Taking in account this information and that the atmospheric density decays exponentially,

the following assumptions are made in the Infante aerodynamic model:

• The reflected molecules are re-emitted diffusely

• The accommodation coefficient is α = 0.85
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Solving the Schamberg model for diffusely reflected particles in a flat plate dA, as described

in Figure 15, results in the reflected moment fluxes:

pr = ΦVr sin(θr)dQ τr = ΦVr cos(θr)dQ (62)

Substituting dQ = ρVi sin(θi), Φ = 2/3 for the diffuse case, and including the accommodation

effect :

pr =
2

3
ρV 2

i sin(θi)
2r τr =

2

3
ρV 2

i cos(θi) sin(θi)r (63)

where r is the speed ratio, that can be related to the accommodation coefficient by:

r =
Vr
Vi

=
√

1− α (64)

Assuming that the thermal speed is negligible in comparison with spacecraft speed. Substitut-

ing Schamberg’s solution in equation (59) and integrating it, the expression for the aerodynamic

force in a flat plate of area A becomes:

F = AρV 2
i sin(θi)

[(
2

3
r − 1

)
sin(θi)n+

(
1− 2

3
r

)
cos(θi)t

]
(65)

For the purpose of this aerodynamic model, Infante is considered as collection of eight flat

panels. Knowing the air speed, it is possible compute the aerodynamic torque by summing

the torque contribution of each panel: a cross product between the aerodynamic force and the

distance from the center of pressure to the center of mass. A step further is taken by considering

the shadow cast by the body and wings on each panel, in a method known as Ray Tracing Panel

Method (RTP). [29]

1 - Right Solar Panel

2 - Left Solar Panel

3 - Right Body Panel

4 - Left Body Panel

6 - Bottom panel

7 - Back Panel 8 - Front Panel

C

Cg

xB

zB

yB

5 - Top Panel

∆x∆z

vx

vz vy
v

Figure 17: Panel Model of Infante

A panel is described by the normal unit vector n pointing outside of the panel. When the

body is subject to air speed, characterized by the vector V , Ray Tracing is used to figure out if

the panel is being shielded or partially shielded by the flow. Take the complex case of the Panel

number 1 as an example, represented in Figure 19. The other panels follow an identical method.
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Figure 18: Tangent Direction

of Air Speed

The normal vector characterizing this panel is:

n =

 0

0

−1

 (66)

The tangent direction t depends on the air speed. Consider the

unit vector characterizing air speed direction v = [vx, vy, vz]
T .

The trigonometric functions of the incidence angle can be calcu-

lated by:

sin(θi) = −v · n cos(θi) =
√

1− sin(θi)2 (67)

The vector t∗ can be obtained by subtracting the normal com-

ponent of the air direction and normalizing:

t∗ = v − sin(θi)n , t =
t∗

||t∗||
(68)

Once the normal and tangent vectors are defined it is necessary to compute the panel area.

Looking at Figure 19 it is possible to see that the panel will be shielded if Vz is negative (flow

hits bottom panel instead) or if the shadow angle γi is smaller than 90o.

lw lw − bz cot(θi)

bz
γi

zb

yb

Figure 19: Ray Tracing of the Wings

The area for the right panel can be computed if there is no shadow by the simply

A = lw × lx (69)

If there is shadowing, the area can be calculated in terms of the angle γi:

A = (lw − lshadow)× lx (70)

where the shadow length is:

lshadow = bz cot(γi) = bz
vy
vz

(71)

and the shadow condition becomes lshadow < lw and vz, vy > 0. Now that there is knowledge

of the effective surface area and of the air speed, the aerodynamic force can be calculated using

equation (65). Computing the right wing torque can be done as long as the distance from the

center of mass to the center of pressure is known. If there is no shielding:

dC−Cp
=

 −∆x

(by + lw)/2

−(bz −∆z)

 (72)
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and if there is body shielding:

dC−Cp =

 −∆x

lw − (lw − lshadow)/2 + by/2

−(bz −∆z)

 (73)

Finally, the aerodynamic torque of this panel can be computed by the cross product:

L1 = dC−Cp
× F 1 (74)

The remaining panels follow the same procedure: the left solar panel is symmetric to the right

solar panel and equations can be easily adapted by changing signs. Right and left body panels

suffer shielding from the solar panels when the air speed is coming from the side at some angle.

Because the solar panels are much bigger in length than the height of the body and because the

side surface area is considerably smaller than the area of the solar panels, it is considered that

the side panels suffer no shielding when vz > 0 and are not exposed when vz < 0. Since the

remaining top, bottom, front and back panels suffer no partial shielding, the existence of flow

on those surfaces be declared easily from the signs of vx, vy and vz.

The total aerodynamic force and torque can be calculated simply by adding the contributions

of each panel.

F aero =

8∑
i=1

F i , Laero =

8∑
i=1

Li (75)

For confirmation purposes, the drag coefficient can be calculated when the satellite is moving

forward, using the frontal area as the reference area:

Aref = bz × by (76)

Fdrag = F aero · v (77)

Cd =
2Fdrag
ρArefV 2

(78)

Simulations of this aerodynamic model and stated assumptions indicate a drag coefficient

Cd ≈ 2.1 which is within the values of Cd = 2 to Cd = 2.5 expected for satellites in LEO, as

indicated in literature [9].

6.3 Atmosphere Model

The Atmosphere Model used in this thesis was the 2001 United States Naval Research Lab-

oratory Mass Spectrometer and Incoherent Scatter Radar Exosphere (NRLMSISE-00) [32], an

extensive empirical model of the upper atmosphere. It is available as a Simulink block in

MATLAB’s Aerospace Toolbox; it returns total air density and composition if height, latitude,

longitude and epoch are provided. An optional feature is the addition of solar and magnetic pa-

rameters, which become extremely important at LEO altitudes as mentioned previously. These

parameters, like the Ap index for geomagnetic activity, can be obtained accurately for the present

but cannot be determined for future times, since they are part of unpredictable phenomenons

known as space weather.

6.4 Optimal Attitude and Stability

Given the extensive modeling in the previous aerodynamic torque chapter, the goal of this

chapter is to study which attitude minimizes the mean disturbance torque.
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If the attitude was to be defined with the body axes coincident with the local frame (case

(1) in Figure 20), the gravity gradient torque would be null, but the aerodynamic torque would

have a positive component in pitch, assuming that the incoming air has the opposite direction of

speed. This is due to the fact that the front panel has a pressure center higher than the center

of mass, and when the air hits it, it creates a torque that tends to pitch the satellite backwards.

As the satellite tilts backwards (case (2) in Figure 20), the aerodynamic force in the bottom

panel tends to create an opposite torque, since the satellite’s center of mass is slightly ahead of

the pressure center. If the pitch angle is high enough, the total aerodynamic torque becomes null

but the total disturbance torque is not null since the gravity gradient torque is acting, tilting

the satellite backwards. Even tough the bottom area is much greater, its torque arm, distance

from the center of pressure to the center of mass, is smaller than the torque arm of the front

plate. Therefore, a great inclination is needed in order to compensate for the front panel torque

and the gravity gradient torque.

C C C
V Laero

V
Laero

V
Laero

Lgg

V
Laero

V

Laero

Lgg

(1) (2) (3)

Figure 20: Different Attitude Pitch and Disturbance Torques

In the case of negative pitch (case (3) in Figure 20), the top and solar panel plates act to

compensate the front panel torque but the gravity gradient torque acts favorably, reducing the

amount of pitch that is needed in order to achieve zero mean disturbance torque.

In Figure 21 the simulated disturbance torques are plotted in terms of the pitch angle, assum-

ing the wind speed matches the spacecraft speed. For the specified case of a height of 500 km

and a torque arm of ∆x = 11 mm, it is visible the gravity gradient torque plays a major role

in the attitude disturbance, increasing almost linearly with pitch. Due to the small torque arm

the aerodynamic torque remains similar for most pitch angles. A minimum point in the total

disturbance curve is found for a small negative pitch of −0.424o, which is the optimum flying

pitch.

Figure 21 also shows that the satellite is pitch unstable: for a pitch under the optimum

pitch the disturbance torque is negative, while for a pitch larger than the optimum point, the

disturbance is positive.

Next, the same simulation was run but with the center of mass pushed significantly forward,

so that ∆x = 100 mm. The objective is to evaluate if pushing the center of mass forward enough

makes the optimum pitch point attractive. In Figure 22, it is visible that the spacecraft now

becomes aerodynamically stable, but the overall disturbance torque is still unstable due to the

gravity gradient torque. Also, the optimal pitch was found at −0.44o, very similar to the original

case.
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While Infante will spend most of its lifetime at the height of 500km, it will necessarily make its

way through the 400 km region when de-orbiting, where the aerodynamic torque is much more

pronunciated. In Figures 23 and 24 is plotted the pitch influence in the disturbance torques, for

∆x = 11 mm and ∆x = 100 mm, at the height of 400 km.
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Figure 21: Disturbance Torques with Pitch Angle, ∆x = 11mm, h = 500 km
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Figure 22: Disturbance Torques with Pitch Angle, ∆x = 100mm, h = 500 km
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Figure 23: Disturbance Torques with Pitch Angle, ∆x = 11mm, h = 400 km
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Figure 24: Disturbance Torques with Pitch Angle, ∆x = 100mm, h = 400 km

Figure 24 shows that for a lower altitude and a center of mass that is placed significantly

forward, the spacecraft tends to stability but the optimal point is still unattractive. For orbits

in the range of 300-400 km, the engineering effort of placing the spacecraft’s center of mass

as forward as possible is rewarded with less disturbance and stability. However, in the case of

Infante this effort is not significant since it will be operated at a height in the region of 500 km

for most of its mission lifetime.
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6.5 Earth’s Magnetic Field

The Magnetic Field Model used in this study is the World Magnetic Model 2015 (WMM2015),

a complex model produced by the United States’ National Geospatial-Intelligence Agency (NGA)

and the United Kingdom’s Defence Geographic Centre (DGC), that is available to the general

public in [33]. The current model is valid up to December 2019; unfortunately the next model

update, the WMM2020, is yet to be released. This model is also available in MATLAB’s Simulink

software as a block that returns the magnetic field direction and intensity from height, latitude,

longitude, and epoch.

6.6 Earth’s Albedo

The main source of error in a Coarse Sun is Earth’s Albedo, the reflection of sunlight from

Earth’s surface. It is assumed that the reflected sunlight comes from Earth’s center and that

its intensity depends of Earth’s mean reflectance and Sun angle. This is a coarse approximation

since Earth’s albedo near the ice covered poles is 0.84 and in dark forest regions only 0.14. The

mean albedo is assumed to be around 0.3, as indicated by [34].

Sun

β

sunlight
albedo

Figure 25: Albedo Model

The sunlight shining upon the spacecraft is divided

in two components, direct sunlight and reflected light:

l = lsun + lreflected (79)

Direct sun light is equal to the Sun’s solar constant,

I = 1361W/m2, the amount of incoming electromag-

netic power, times the Sun direction vector.

lsun = Is (80)

The reflected sunlight is assumed to be coming from

the center of Earth and that it is proportional to

cos(β), as represented in Figure 25:

lreflected = aI cos(β)n (81)

where a is Earth’s mean reflectance and n is the nadir

vector, the vector pointing down from the spacecraft’s to Earth’s center. Sunlight shining upon

the satellite can be further reduced to the following expression:

l = I[s+ a(s · n)n] (82)
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7 Sensors and Actuators

This section aims to explains the characteristics of the sensors and actuators and how they

were modeled to provide a realistic control behavior.

7.1 Gyroscopes

Three-axis gyroscopes are instruments that measure the angular velocity of the body they are

attached to. By integrating the angular velocity, it is possible to get an attitude estimation in

the present from attitude measurements in the past, making gyroscopes particularly useful in

attitude estimation. The quality of these estimations degrades over time because the angular

rate errors are also integrated and accumulated. A gyroscope is usually subject to the following

error sources:

• Rate White Noise

• Angular White Noise

• Systematic Bias

• Bias Instability

• Misalignment Errors

• Scale Factor Errors

Rate White Noise is simply the zero mean noise that happens naturally upon measuring the

angular rate, mostly due to environment factors. This is considered a white noise source, in

which the error variance does not depend on frequency. Integration of this noise source results

in a phenomenon called Angular Random Walk (ARW).

Angular White Noise (AW), similar to rate white noise, is the measurement noise that is

added upon integration of the angular velocity.

Systematic Bias is the systematic error that is present in the gyroscopes’ axis. Integrating

this bias results in a linear function with time, proportional to the bias. The bias is usually

estimated on-board by the Kalman Filter, to be evaluated in the next section, and compensated

for.

The bias in a gyroscope is not constant over time, therefore, the gyros’s Bias Instability must

be evaluated. It is assumed that the bias is a first order Gauss-Markov noise process. This is

also called Random Rate Walk (RRW), but with a fundamental difference between this process

and the Angular Rate Walk, that must be well understood. While the Angular Walk is a true

unbounded Random Walk process, the Random Rate walk is bounded due to the nature of the

Gauss-Markov process, therefore is not a true random walk in the strict sense.

When a gyro is mounted on a body, its axis might not be aligned with the body axis pretended

to be measured, giving rise to misalignment errors. The output of the gyro might also be slightly

different from the true rate by a scale factor. These two error sources can be compensated by

gyro calibration. Due to this fact, these errors are assumed to be compensated and are out of

the scope of this thesis.
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Taking in account the information above, the following gyro model is implemented in Simulink:

+
+

+

bias

rate white noise

ω
ωgyro

1
s +

+

θgyro
σARW

σAW

resolution

resolution

bo
GM

angular white noise

Figure 26: Block Diagram of the Gyroscope model

The square blocks with variances σ2 are random number generators which produce Gaussian

white noise at simulation step time, and the block GM represents a first order Gauss-Markov

noise process. This model was inspired by articles [35] and [36].

A first order Gauss-Markov process is a self-correlated process that can be written in the

following discrete form:

xk = (1− β∆t)xk−1 + µk (83)

where µk corresponds to Gaussian white noise µk ∼ N (0, σ) and the scalar β is the inverse of

the correlation time Tc:

β =
1

Tc
(84)

The higher the correlation time, the longer the process will stay self correlated. The noise

deviation σ is related to the correlation time by the expression:

σ = σGM
√

1− e(−2β∆t) (85)

where σGM is the standard deviation of the noise process, which in this case, is the Bias Stability

of the gyroscope. If the gyro is standing still, it can be shown that for an infinite amount of

samples, the expected value of the square of the noise process is:

lim
k→∞

E(x2
k) =

σ2

1− α2
(86)

where α = 1 − β∆t, therefore proving the convergence of the process. By contrast, a random

walk process yk, produced by integrating Gaussian white noise of variance σ2 is divergent. The

expected value of the square of the noise process after N samples is:

E(y2
N ) = σ2N (87)

The challenge of gyro modeling is not the error model itself, but quantifying the variances

of the errors sources. Even tough information regarding these parameters is available in the

datasheets of the used gyroscopes, it is worth mentioning the method used to extract this

information. The most common method of measuring Angular White Noise, Angular Random

Walk and Random Rate Walk is the Allan Variance Method, which will be used on the data

produced by the simulation to assess if the gyro model is realistic.
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Allan variance is a measure of noise stability used in clocks, oscillators, amplifiers and gyros.

Suppose there is a certain amount of discrete gyro data with N samples over a total time t. The

Allan Variance σ2(τ) is the variance of the means of n consecutive smaller groups of data, with

cluster time τ , where τn = t. It is estimated as:

σ2(τ) =
1

2τ2(N − 2n)

N−2n∑
k=1

(ωk+2n − 2ωk+n + ωk)2 (88)

It is represented as a curve: the variance as function of cluster time, as seen on Figure 27.

For cluster time equal to the sampling time, the Allan Variance becomes simply the sample

variance σ2. The influence of Angular Random Walk and Rate Random Walk can be seen in

this curve: presence of Angular Random Walk noise causes a decrease of the Alan Variance

at smaller cluster times with a slope of −0.5 and presence of Rate Random Walk noise causes

an increase with 0.5 at higher cluster times. The Allan Variance reaches a minimum when the

cluster time reaches the Gauss-Markov correlation time.

Figure 27: Allan Standard Deviation of an Hypothetical Gyro Measurement [36]

7.1.1 Coarse Gyro

It is expected that the Coarse Gyroscope to be mounted onboard the Infante Mission is the

Bosch BMG250 low power gyroscope. Relevant aspects of the datasheet are gathered below [37]:

Table 3: Noise characteristics of the Bosch BMG250 gyro

Random Walk Bias Instability Correlation Time Maximum Drift

0.007o/
√
s 10o/h 6.350s 3o/s

This gyro comes with no Allan Variance plot and so it must be modeled with the information

above only. The correlation time does not come in the data-sheet but was calculated as:

CT =

(
ARW

BI

)2

(89)
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Where ARW and BI are Angular Random Walk and Bias Instability respectively. As men-

tioned previously, the challenge for proper gyro modeling is choosing the correct variance for

the noise generators in the model displayed in Figure 26. These variances depend on simulation

step time, since the same variance produces a higher noise density for a smaller step. This is one

of the reasons the simulation step is conveniently set to 1 second, since it avoids this problem.

Different time steps would need a time correction in the noise variances. The Bias Instability

needs to be converted to degrees per second: σGM = σBI = 0.0028o/s. The standard deviation

corresponding to the Angular Random Walk is set to σARW = 0.007o/
√
s. The Root Allan

variance plot was calculated and is represented in Figure 28.
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Figure 28: Root Allan Variance of BMG250 from Simulink Data

7.1.2 Precise Gyro

The precision gyro that is expected to be onboard the Infante is the STIMM 210 gyroscope.

The relevant information of the precise gyro was taken from the datasheet [38]:

Table 4: Noise characteristics of the STIMM 210 gyro

Random Walk Bias Instability Correlation Time Maximum Drift

0.0025o/
√
s 0.3o/h 900s 0.07o/s

which was used as input on the Simulink model, like in the coarse gyroscope. This gyro comes

with an Allan Deviation plot in the datasheet, so data from the simulation can be extracted to

generate an Allan Deviation plot for comparison. In Figure 29 is the Allan Deviation from the

datasheet and in Figure 30 is the one generated by the gyro model. It can be seen that they are

a close match, validating the model. The datsheet’s plot is smoother only because it contains

more data, as a smaller step size was considered.
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Figure 29: Root Allan Variance taken from Datasheet [38]
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Figure 30: Root Allan Variance generated from Simulink Data

7.2 Coarse Sun Sensor

The Coarse Sun sensor is a collection of six photo-resistors. each mounted on a face of the

spacecraft. By comparing the electrical current across each resistor, it is possible to estimate

the solar radiation on each face.

Consider two opposite faces along the spacecraft’s x−axis, whose normal vectors are n1 =

[1, 0, 0] and n2 = [−1, 0, 0]. Knowing the photo-resistor gain Ks, it is possible to estimate the

solar radiation in the x− direction ŝx by measuring the current difference I1 − I2.
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Figure 31: Block Diagram of the Sun Sensor

Figure 31 illustrates the block diagram for the x − axis of the sun sensor. Similar blocks

apply for the y− and z− axis. Each axis component is added along with white noise and a

normalization procedure. The inverse algorithm of the albedo model discussed previously is

used to compensate for Earth’s reflection. Here is introduced the greatest source of error, where

the algorithm is forced to overestimate the albedo.

7.3 Magnetometer

As mentioned previously, there are two magnetometers in Infante: an inside magnetometer

which gives magnetic field information for detumbling, and an outside precise magnetometer that

is used for navigation. Both are modeled the same way but with corresponding values taken

from the data-sheet. The measurement is considered to be the real vector affected by white

noise and a bounded first order Gauss-Markov process bias, in a similar way to the gyroscopes

mentioned previously. The respective block diagram is illustrated in Figure 32.

bo
GM

+
+

white noise
σNoise

B̂

resolution

Btrue

+

bias

Figure 32: Block Diagram of a Magnetometer

The magnetometers that are expected to be onboard the Infante are the ST IIS2MDC mag-

netometer (low precision) and the Bosch BMM150. The relevant aspects of the corresponding

datasheets were gathered below in Table[5]:

Table 5: Information regarding the used magnetometers [39] [40]

ST IIS2MDC Bosch BMM150

Sensitivity/ Resolution 0.15 µT 0.3 µT

RMS Noise 0.3 µT (3σ) 0.6 µT (1σ)

Sensor offset / Accuracy (3σ) 6 µT 2.5o (B = 30µT )
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The accuracy of the Bosch BMM150 can be converted to micro-Tesla by assuming the error

equal to 30µT · sin(2.5o) ≈ 1.3µT . The assumed correlation time for the bias is ten minutes.

7.4 Star Tracker

αFOV

Protective

Baffle

Lens

Figure 33: Angle of Exclusion

in a Star Tracker Camera

Star Trackers are digital cameras that follow multiple stars

in the sky, match them to an internal catalog and compute the

tracker’s attitude with respect to a celestial frame. A typical

tracker has an accuracy of a few arcseconds in the boresight (axis

of the camera), losing precision as stars move to the limit of the

field of view. Unlike the Sun Sensor and the Magnetometer, this

sensor has the ability of computing the attitude without other

information, returning the correspondent attitude quaternion.

It has the inconvenient of consuming a considerable amount of

power and not working if the Sun is in its field of view. It is

typical to find a baffle in the camera, protecting it from stray

lights while narrowing the field of view angle αFOV , as seen on

Figure 33. The Star Tracker will be equipped on top of the

Infante so it is expected that the Sun enters its field of view

during daytime, near the equator.

The proposed equipment is the Leuven Star Tracker, a com-

pact tracker for CubeSats. The relevant information is presented below in Table [6]:

Table 6: Information regarding the KU Leuven Star Tracker [41]

Cross Boresight Error (1σ) Around Boresight Error (1σ) Sun Rejection Angle

2 arcsec 10 arcsec 40o

Evaluating if the Sun is in the field of view can be done by analyzing the dot product between

the sun direction and the camera’s boresight direction. The camera is pointing upwards in the

direction of −o3 and the field of view angle is αFOV = 40o, so the Star Tracker can’t be used if:

− s · o3 ≥ cos(20o) (90)

Modeling a Star Catalog and multiple star tracking is a task too complicated for the benefit

of this study, so it is assumed that the true error lies between the two indicated values. Also,

Star Trackers suffer from not only random noise, but systematic errors, which are due to: image

pixelization, inhomogeneity of components, different sensivity to each star’s emission spectre,

light aberration and other optical effects [42].

The chosen model is very simple, but sufficient: a walking error under the form of rotation

is added to the true quaternion, followed by white noise. The addition of noise violates the

quaternion norm so it needs to be normalized. Finally, a resolution effect is added.
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Figure 34: Simulink Model of the Star Tracker

The systematic error is modeled as a first order Gauss-Markov process like the bias in the

gyroscopes mentioned previously. This error is essentially a bounded random walk of error Euler

Angles, with a deviation of σ = 8 arcseconds, a mean error near the worst case scenario. An

arbitrary correlation time of 1000 s was chosen, since it is considered that the systematic error

moves very slowly. The resolution of the Star Tracker is not disclosed but is assumed to be near

1 arcseconds in one axis. Translating this in quaternion resolution:

sin(φ/2) = sin

(
1

60 · 2

)
= 1.45× 10−4 (91)

Therefore, the resolution considered is 10−4 in each of the quaternion’s components. The

white noise added has a standard deviation of this value.

7.5 Magnetorquers

Magnetorquers are controllable electromagnets which create a magnetic dipole moment m.

This magnetic dipole interferes with Earth’s magnetic field B creating a magnetic torque:

Lmag = m×B (92)

This magnetic dipole is created by producing a current over a coil wrapped in a ferromagnetic

core, where m = kNIA, where k is an dimensionless constant, N is the number of loops, I is

current and A is the loop area. It is worth mentioning that it’s not possible to produce torque in

the direction of the magnetic field with magnetorquers, however, full control is usually available

over the course of an orbit. Care is needed when evaluating magnetic control and simulations

should be longer than 24h to ensure there is no unfavorable magnetic field geometry at some

point [9].

The magnetorquers expected to be used in Infante shall be manufactured by Tekever. The

only information that is available at the moment is that they will be developed to ensure a dipole

moment of 0.52 Am2 in the x− and y− body axis and a dipole moment of 1 Am2 on the z−
axis. These magnetorquers are assumed to be completely controllable and linear, so they are

simply modeled using equation (92).
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7.6 Reaction Wheels

The Reaction Wheel Assembly is the fundamental pointing instrument of Infante, so this is a

topic requiring some attention, since the control error will directly depend on the error model of

the wheels. A major problem with the choice of a simulation step time of only one second is the

difficulty in representing the reaction wheels’ error dynamics, which spin at rates of thousands

of rpm. The model must accomplish acceptable performance while ignoring fast phenomenon

like torque ripple.

The circuit of a brushless electric DC motor is adequately modeled by the following equation:

Uin = RI + L
dI

dt
−Keω (93)

where Ke is the back electromotive force constant and Uin is the voltage applied to the motor.

The inductance effects are neglected since the simulation step of one second overcomes this effect,

usually in the range of milliseconds. The output torque is a function of the motor’s current and

speed:

L = LDC − Ld = KmI − Ccsign(ω)− Cdω (94)

where Km is the motor’s mechanical gain and Cc and Cd are the Coulomb and Viscous drag

coefficients respectively. The wheel’s dynamic equation is simply:

L = Ḣ = Jω̇ (95)

The motor’s internal Hall sensor measures the circuit’s current, feeding this information to

an internal PID controller, where the current torque is estimated. This fact is simplified, as it

is assumed that the controller obtains perfect information about torque. The block diagram of

this reaction wheel model can be seen on Figure 35.
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Figure 35: Block Diagram of the Reaction Wheels

The reaction wheel used in this study is a wheel developed by Tekever, based on a MAXON

EC 20 351005 Flat motor with Hall Sensor [43], attached to a high inertia wheel. Relevant

information about this reaction wheel is gathered below on Table [7.6].
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Table 7: Reaction Wheel Specifications [43]

Nominal Voltage 6 V

No load speed 9350 rpm

Max Continuous Torque 7.59 mNm

Max Continuous Current 1.31 A

Resistance 2.05 Ω

Inductance 0.189 mH

Mechanical Time Constant 30.3 ms

Torque Constant 5.88 mNm/A

Electric Constant 5.89 mV/rads

Wheel Inertia 861.37 gcm2

Max Momentum (9000 rpm) 83.9 mNms

The mechanical time constant and inductance are small enough to be neglected, the reason why

these were ignored in this model. The datasheet lacks information regarding the drag coefficients

Cc and Cd, and controller gains. The overall drag can be estimated taking in account the speed

achieved with no load, summing the torques acting on the motor’s shaft:

Cd ωmax + Cc = Km

(
6V −Ke ωmax

R

)
≈ 0.50mNm (96)

Assuming a 20% − 80% distribution of the Coulomb and Viscous friction at this speed, the

drag coefficients are estimated:

Cc = 0.1mNm Cd = 4.085× 10−4mNmsrad−1 (97)

The PID gains are hand tuned until a satisfactory performance is obtained. It is important to

take in account the poor wheel performance at low and high speeds, specially when null velocity

points are crossed. It is also important to mention that the integral part of the PID needs

anti-windup to ensure fast response times when the wheel is saturated and the torque changes

direction.

To test the model a random desired torque trajectory was generated, in a way that the wheel

exhibits null velocity points, direction changes and saturation. Results are displayed on Figures

36 and 37.
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Figure 36: Torque Trajectory of Modeled Reaction Wheel

Figure 37: Speed Trajectory of Modeled Reaction Wheel
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7.6.1 Reaction Wheel Assemblies

The most common reaction wheel assembly is a pyramid configuration of four wheels, each

wheel making a 30o angle with the baseline, like the one represented in Figure 38. The body

vectors of each wheel are described by:

w1 =


√

3
2

0

0.5

 , w2 =

−
√

3
2

0

0.5

 , w3 =

 0√
3

2

0.5

 , w4 =

 0

−
√

3
2

0.5

 (98)

w1w2 w3w4

B1

B3 B3

B2

w4 w1

30o 30o

Figure 38: Reaction Wheel Pyramid Configuration

Let D = [w1,w2,w3,w4] be the wheel frame matrix. The overall torque in the body frame

is calculated:

LwB = DLww , Lww =
[
L1, L2, L3, L4

]T
(99)

The inverse problem of calculating how torque is distributed by the wheels, for a given desired

body torque, has multiple solutions. Since the D matrix is not square but rather 3× 4, it is said

that the reaction wheel assembly has a one dimensional null-space: any torque configuration

in the wheel’s null-space equals zero torque in the body frame. The null space of a pyramid

configuration such as the one expected to be used in Infante is:

n4 = k


1

1

−1

−1

 (100)

Where k is a free scalar. The solution of interest is the one that minimizes any torque in the

null space, since this has no effect overall. It is shown in [9] that this distribution is given by

the pseudoinverse of D, denoted by Dp. The pseudoinverse is given by:

Dp = DT (DDT )−1 =


1√
3

0 0.5

− 1√
3

0 0.5

0 1√
3

0.5

0 − 1√
3

0.5

 (101)

And the ideal torque distribution is done by:

Lww = DpLwB (102)
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8 Attitude Estimation and Filtering Algorithms

Multiplicative Extended Kalman Filter (MEKF)

The use of a Kalman Filter allows us to get a better estimate of the current attitude state by

combining multiple sensor measurements with a dynamic model of the system. It is a technique

that has been widely employed with success on spacecraft navigation for many decades. This

chapter focuses on the development of a Multiplicative Extended Kalman Filter (MEKF), a

special formulation designed to work with the unit quaternion parameterization and information

from the spacecraft’s gyros. It is expected that the reader is familiar with the basic concepts of

a Kalman Filter. This filter model was developed based on the works of [13], [44] and [9].

As discussed previously, the unit quaternion has many advantages in representing attitude but

the norm constraint makes it impossible to implement a linear additive update and its compo-

nents are not independent from each other. Another disadvantage is that since the quaternion

is a four parameter representation, the 4 × 4 covariance matrix becomes singular because the

information contained in a quaternion is redundant; a quaternion can be reduced to a three pa-

rameter representation. To overcome these problems this approach regards the filter as a three

component error vector, while still representing the global attitude by a quaternion.

8.0.1 Model

The following truth model is defined:

q̄true = δq̄(a)⊗ ˆ̄q (103)

Where q̄true is the true attitude quaternion, ˆ̄q is the current best estimate and δq̄(a) is the

the quaternion representing the estimation error rotation, represented in the spacecraft body

frame. The estimation error quaternion is also represented by a three parameter representation

a, which is what is used in the filter equations. The task of the filter is to estimate the current

error â and perform the following multiplicative update:

ˆ̄q+ = δq̄(â)⊗ ˆ̄q− (104)

Where q̂+ is the a posteriori estimate after a measurement and q̂− is the a priori estimate.

Many choices for the parameterization of the error ’a’ are possible but the quantity of two times

the Gibbs Vector was chosen, since it provides numerical stability and it has been well covered

by literature. The used Gibbs Vector representation is given by:

ag = 2g (105)

δq̄(ag) =
1√

4 + ‖ag‖2

[
ag
2

]
(106)

A further advantage of the this Gibbs vector parameterization is that the update can be

performed in few steps by the following equations:

ρ =

[
ag
2

]
⊗ ˆ̄q− (107)

ˆ̄q+ = ρ/|ρ| (108)
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The angular speed is measured through the use of gyros, which provide noisy, biased infor-

mation. In order for the bias to be estimated and compensated for, the gyro and angular speed

are modeled in following way:

ω(t) = ω̂(t)− b(t)− η1(t) (109)

ḃ(t) = η2(t) (110)

where η1(t) and η2(t) are zero mean white noise processes of variances σ2
u and σ2

v , ω̂(t) is the

gyro output and b(t) is the gyro bias.

The six component state vector to be estimated is comprised of the error parameterization

and the gyro bias, with the state space being described by the following:

ẋ =

[
ȧg
ḃ

]
=

[
f(ag,ω)

η2(t)

]
, x =

[
ag
b

]
(111)

The filtering algorithm can be divided in the following major steps:

• Propagation

• Update

• Reset

8.0.2 Propagation

Since the expected value of the gyro noise process η1(t) is zero, the current angular velocity

is computed by the equation:

ω̂k = ω̂gyro k − bk (112)

Each propagation is made at the filter’s sampling time and the spacecraft’s attitude dynamics

can be considered low enough to make the assumption that the direction of ω is constant over

this time interval. A rotation angle vector can then be computed by:

∆θ =

∫ t+∆t

t

ω(τ)dτ ≈ ω̂k∆t (113)

The solution for the attitude propagation of ˆ̄q is given by the equation:

ˆ̄q−k = M(∆θ)ˆ̄q+
k−1 (114)

where the matrix M(∆θ) is given by:

M(∆θ) = cos(||∆θ||/2)I4×4 +
sin(||∆θ||/2)

||∆θ||
Ω(∆θ) (115)

Ω(∆θ) =


0 ∆θ3 −∆θ2 ∆θ1

−∆θ3 0 ∆θ1 ∆θ2

∆θ2 −∆θ1 0 ∆θ3

−∆θ1 −∆θ2 −∆θ3 0

 (116)

During propagation the obtained estimate for the attitude is assumed to be currently the best,

so the error vector ag is kept at zero. Similarly, the bias b has a derivative that is a zero mean

white noise process so it is held at its current value. However, the certainty level to which we

know these values decreases with time, so the covariance matrix must be propagated:

P−k+1 = ΦkP
+
k ΦTk +Qk (117)
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A closed-form expression for the state propagation matrix Φk exists and can be computed by

the following:

Φ =

[
Φ11 Φ12

Φ21 Φ22

]
(118)

Φ11 = I3 − [ω̂×]
sin(||ω̂||∆t)
||ω̂||

+ [ω̂×]2
1− cos(||ω̂||∆t)

||ω̂||2
(119)

Φ12 = [ω̂×]
1− cos(||ω̂||∆t)

||ω̂||2
− I3∆t− [ω̂×]2

||ω̂||∆t− sin(||ω̂||∆t)
||ω̂||3

(120)

Φ21 = 03 Φ22 = I3 (121)

The noise covariance matrix Q can be approximated by the matrix below if the sampling rate

is faster than Nyquist’s limit, which is the case:

Qk ≈

(σ2
v∆t+ 1

3σ
2
u∆t3

)
I3 −

(
1
2σ

2
u∆t2

)
I3

−
(

1
2σ

2
u∆t2

)
I3

(
σ2
u∆t

)
I3

 (122)

8.0.3 Update

A filter update occurs when a measurement is performed, which can be presented to the filter

in two ways: a quaternion measurement from the Star Tracker or a vector measurement from

the Magnetometer or the Coarse Sun Sensor. In case of a quaternion measurement it is possible

(and more convenient) to transform the measurement directly into the error parameterization

ag by comparing it to the current attitude estimate ˆ̄qk. In this case, the sensitivity matrix is

simply equal to the identity matrix in the attitude error part, and null in the gyro bias part

since this part is not observable:

astar = 2 δq̄1:3/δq̄4 , δq̄ = q̄star ⊗ ˆ̄q−1 (123)

Hk =
[
I3 03

]
, z = astar (124)

This method of observation comes with the small inconvenient that the Star Tracker’s error

covariance matrix R needs to be defined as a 3 × 3 matrix representative of attitude errors in

the body frame.

ẑ ×∆z

z

∆z

ẑ

Figure 39: Cross

product illustration

In case of a vector measurement the input of the filter becomes the

vector difference between the measured and predicted state ∆z :

∆z = z − ẑ (125)

The sensitivity matrix in this case is given by the cross matrix [ẑ×] for

the attitude error part. This transforms the vector difference ∆z into a

vector ẑ ×∆z representing the rotation error e sinφ , shown in the right

by Figure 39. It is shown in [9] that this vector is equal to the error

parameterization ag for a first order approximation.

Hk =
[
[ẑ×] 03

]
(126)
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It is worth noticing that a unit vector is an insufficient measure of the attitude and because

of this, in the case of only one vector observation, the attitude estimation will spin away in

the vector axis, at a rate depending on the gyro’s bias instability. In the common case of

multiple observations the sensitivity matrix becomes a 3m×6 matrix, where m is the number of

observations, and the input vector becomes a 3m concatenation of the several results. Presented

below is the case where the Star Tracker, the Sun Sensor and the Magnetometer are in use:

zk =

 astar
∆zsun

∆zmagnt

 Hk =

 I3 03

[ẑsun×] 03

[ẑmagnt×] 03

 (127)

Obtaining the filtering gain K follows the same procedure as the standard Kalman Filter,

which produces the optimal gain:

Kk = P−k H
T
k

[
HkP

−
k H

T
k +R

]−1
(128)

where R is the measurement covariance matrix, a 3m× 3m diagonal matrix of the variances of

the sensors being used. The covariance matrix P is updated through Joseph’s formula to ensure

numerical stability:

P+
k = [I6 −KkHk]P−k [I6 −KkHk]

T
+KkRK

T
k (129)

The state update equation is given simply by:

x+
k = x−k +Kkzk (130)

Finally, the global quaternion parameterization is updated through equations (107) and (108)

8.0.4 Reset

After the global attitude update, the error part of the state needs to be reset to zero, since

the filter has arrived at the best estimate. This is simply done by:

x+
k (1, 2, 3) =

0

0

0

 (131)

8.0.5 Filter Convergence

When the filter is turned on and when gyros are commuted, it may take some time for the

filter to converge into accurate results. Large estimation errors, even if temporary, can lead

to undesirable and potentially dangerous control actions if some precautions are not taken.

Upon initialization, gyro biases are unknown and can be significantly different than zero. It is

necessary to turn on a sufficient number of instruments, which completely describe attitude, and

no control action must be taken until results are stable. The algorithm can also commute between

the coarse and the precise gyros, so the respective biases need to be stored and interchangeable.

Not changing biases upon changing gyros will most likely cause a spin in the estimated attitude

that may only be recovered after some time. Storing and switching the last covariance matrix

before commuting gyros also helps achieve better results.
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8.0.6 Application

An example of filter performance using multiple sensors can be seen on Figures 40, 41 and

42. In the first figure is plotted the true quaternion q̄GCI−B , translating the attitude of the

body regarding the GCI frame, and the filter estimated ˆ̄qGCI−B , obtained from the sensors

modeled in the previous section. The next figure represents the rotation error in Euler Angles,

to better understand the magnitude of the error. The last figure is the data logging taken from

the simulation, showing which sensors are active.

It is visible that filter convergence is not instantaneous, it takes a couple seconds to find a

close solution. At around 250 seconds of simulation time the sun sensor is unavailable due to

eclipse, attitude knowledge comes only from the magnetometer, which is insufficient. To hold

the attitude knowledge the precision gyro is turned on. Even tough the attitude information

isn’t correct, due to the magnetometer and sun sensor’s biases, the precision gyro doesn’t let the

accuracy degrade until the sun sensor is available again around the 2500 second mark. At 3000s

the magnetometer is deliberately turned off , showing that the accuracy degrades slowly with

the coarse gyro until the star tracker is turned on multiple times to compensate for this drift.

At 6000 seconds the star tracker and precision gyro are turned on to give a very precise attitude

estimate, whose maximum error is around 0.06o, or 3.6 arcseconds. Using the filter with the

star tracker and the precision gyro provides better accuracy than using the star tracker alone.

Turning on the biased sun sensor when the star tracker is used has no negative influence, since

the filter rejects the sun sensor error automatically.
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Figure 40: Kalman Filter Quaternion
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Figure 41: Kalman Filter Error in Euler Angles
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Figure 42: Sensors Used in the Kalman Filter
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9 Decentralized Architecture

Traditionally, the internal architecture of a modern satellite with attitude control would look

something like the scheme represented in Figure 43. The attitude sensors give information to the

ADS (Attitude Determination System), where the Kalman Filter estimates the current attitude.

The ADS also gives commands to the sensors, regarding the use of different modes, and is able

to turn them on or off to save energy. The ADS communicates with the ACS (Attitude Control

System), by giving instructions about the current attitude, which are needed to compute the

control actions, while the ACS can return information about actuators’ status. Both ADS and

ACS form a larger system, the ADCS (Attitude Determination and Control System), which is

often only one construction comprising the two subsystems. The ADCS communicates with

the OBC (On-Board Computer), the central authority of the satellite, which gives the ADCS

instructions about the desired attitude and its precision requirements. It also gives valuable

information regarding the satellite’s current position, taken from orbit propagation and GPS

measurements, which are needed to compute the local frame, position of the Sun and expected

magnetic field.
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Tracker
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Wheel
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Wheel

Reaction

Wheel
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Other
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ADCS

Payload

Reaction

Wheel Assembly
Attitude

Sensors

Ground

Link

Figure 43: Example of a common satellite architecture

The ACS handles torque or speed commands to the reaction wheels, and voltage commands

to the magnetorquers. It is assumed that each wheel has an internal PID controller, as modeled

previously in the Actuators section, although torque control can be made within the ACS.

Reaction wheels usually feedback status, wheel velocity/momentum, and sometimes the current

output torque to the ACS, while the magnetorquers can feedback its status and electrical current,

although the latter can be made with no feedback at all. Quite often, manufacturers sell reaction

wheels in an assembly that is locally controlled by a different subsystem, which simply receives

torque or speed commands from the ACS and then controls all four wheels simultaneously. This

is another example of a typical control architecture, displayed in Figure 44.
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Figure 44: Another Example of a Common Satellite Architecture

This thesis proposes a decentralized architecture, where the ACS is partitioned and migrated

to the reaction wheels and magnetorquers, as illustrated in Figure 45. In this case, the ADS

gives attitude requirements to the several ACSs and only expects feedback from the wheel’s

speed and magnetorquer’s status, since this is the only information needed by the ADS, to allow

the desaturation of the reaction wheels and the use of the magnetometer. The ACSs of the

reaction wheels work independently, without any knowledge of the other wheels’s directions,

actions and status, under the assumption that each component is doing its job of minimizing

the control error, and that the overall system is stable as long as this is true. The two advantages

of this architecture are increased modularity and ACS redundancy.

The output of the ADS is built as an “attitude bus”, that is divided and routed to the

several ACSs of the reaction wheels, all using the same communication protocol. The reaction

wheels become fully independent and the only information that is known to them is: their

own direction wl, an estimate of the inertia matrix of the spacecraft J , two control parameters

(natural frequency ωn and damping coefficient ζ), and the current and desired attitudes. The

local ACS does not have information regarding the direction of the other wheels because this is

not needed to achieve a stable system. With this independence, modifications can be made to

the reaction wheels without having to fully re-program the ADCS.
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Figure 45: Proposed Decentralized architecture

Suppose that during the development stage, where an engineering model is being tested,

the attitude performance of the satellite reveals itself as insufficient. With a decentralized

architecture engineers can add a reaction wheel, or change its model or its direction, in a practical

way, which does not involve reprogramming the other local ACSs. The same philosophy applies

to the opposite case: during the test phase, if the engineers reach the conclusion that the

spacecraft is too heavy and that a reaction wheel must be changed or removed, they can do

so without worrying about modifications to the other wheels. Ultimately, reaction wheels can

be manufactured with an incorporated ACS using a standardized protocol, in which a satellite

developer can simply attach a wheel to a spacecraft, connect the “attitude bus” and declare the

wheel’s direction vector. After this, the spacecraft is ready for testing and eventual tuning.

The trade-off of this architecture is that the control torque becomes slightly distorted, and

the obtained control action differs from the programmed one. It will be shown later that this

distortion acts like a small deviation of the calculated control gains, and that it does not bring

instability to the system. To compute how much torque a reaction wheel should apply, each

individual ACS computes the control torque that should be applied to the spacecraft, and

then computes how much of this torque can be performed by the wheel using a dot product

distribution:

Lwiw = LwB ·wi
l (132)

This torque distribution does not guarantee an optimum torque distribution like the pseudo-

inverse method, and for most of the cases it returns a torque that is bigger than the computed

torque. The pseudo-inverse method gives different results depending on the type of assembly, so

reaction wheel assemblies must be analyzed one by one. For a three wheel orthogonal assembly,

the pseudo-inverse method simply becomes the inverse method, which gives the same result
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for the dot product distribution, which is equation (132). In this case, as long as the wheel’s

axes are orthogonal, the dot distribution provides the optimal solution. For the other cases, the

difference between the pseudo-inverse and the dot distributions causes the control action to be

distorted, and this distortion can be characterized by the distortion matrix D:

LRW = DLControl , D =

DT
x /D

p
x 0 0

0 DT
y /D

p
y 0

0 0 DT
z /D

p
z

 (133)

A practical example is given to explain these concepts: consider a classical four-wheel pyramid

assembly, represented in Figure 46, which is characterized by the following distribution matrix

and its pseudo-inverse:

D =

a −a 0 0

0 0 c −c
b b d d

 Dp =
1

2


a−1 0 b/(b2 + d2)

−a−1 0 b/(b2 + d2)

0 c−1 d/(b2 + d2)

0 −c−1 d/(b2 + d2)

 (134)

w1w2 w3w4

B1

B3 B3

B2

w4 w1

ϕ γ

Figure 46: Four Reaction Wheel Assembly in a Pyramid

Where a = cos(ϕ), b = sin(ϕ) and c = cos(γ), d = sin(γ). The dot distribution gives the

following distribution matrix:

Ddot = DT =


a 0 b

−a 0 b

0 c d

0 −c d

 (135)

Considering a symmetric assembly with with ϕ = γ, the distortion matrix is:

D =

2 cos(γ)2 0 0

0 2 cos(γ)2 0

0 0 4 sin(γ)2

 (136)

Most of times the pyramid is symmetric, with ϕ = γ, and this inclination angle is in the

region of 20o to 60o. For angles outside of this region, the assembly starts losing the ability to

act effectively in all directions: for ϕ = 0o there is no component in B3, while for ϕ = 90o there

is torque in B3 only. For these intermediate angles, the numeric value of the dot distribution

matrix approaches the value of the pseudo-inverse matrix, so the distortion matrix approaches
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the identity matrix I3. In Figure 47 is a plot of the numerical values for both pseudoinverse

(blue) and dot (red) distributions , for the xy directions and the z direction, as a function of

the wheel’s inclination angle γ. Below, the dot distribution’s relative deviation to the optimal

solution is represented, showing the percentage of torque distortion in the xy and z directions.
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Figure 47: Dot and Pseudoinverse Distributions for a pyramid assembly with four wheels

For angles between 25o and 45o, the distortion is less 100% in any direction, with no distortion

in xy for γ = 45o and in z for γ = 30o. For a classical, symmetrical pyramid assembly with

ϕ = γ = 30o, the distortion matrix becomes:

D =

1.5 0 0

0 1.5 0

0 0 1

 (137)

This will be used as a reference for the development of the control laws for Infante. What is

interesting is that the consequence of this distortion is not a loss in control performance, but

rather a small increase of the control gains in that axis, where the satellite responds slightly faster

than expected, by using the dot distribution. Furthermore, this distortion can be interpreted as

a the result of a pseudo-inverse distribution law for a different set of higher control gains in the

xy direction.
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Another typical assembly is the six reaction wheel pyramid, represented in Figure 48, in which

the angle β defines the pyramid’s inclination.

w1

w2w3

w4

w5 w6

β

B3

B1

B2

Figure 48: Six Reaction Wheel Assembly in a Pyramid

The pyramid is around the B3 axis for analytical simplicity, they are commonly built around

the B2 axis to achieve higher capacity in pitch. The distribution matrix for this assembly is

given by :

D =

a a/2 −a/2 −a −a/2 a/2

0 a
√

3/2 a
√

3/2 0 −a
√

3/2 −a
√

3/2

b b b b b b

 (138)

Where a = cos(β) and b = sin(β). The pseudo-inverse is given by the matrix:

Dp =
1

6

2a−1 a−1 −a−1 2a−1 −a−1 a−1

0
√

3a−1
√

3a−1 0 −
√

3a−1 −
√

3a−1

b−1 b−1 b−1 b−1 b−1 b−1

T (139)

The dot distribution matrix is again Ddot = DT . Similarly, the numerical values of the

pseudo-inverse matrix are similar to the dot distribution matrix for a certain reasonable window

of the angle β. The distortion matrix is calculated as:

D =

3 cos(β)2 0 0

0 3 cos(β)2 0

0 0 6 sin(β)2

 (140)

In Figure 49 is the analysis for this assembly: of the values of dot product algorithm (red) and

the optimum method of the pseudo-inverse (blue), and the produced distortion in percentage

in both directions. For the reasonable interval of inclination angles from 30o to 50o, the dot

distribution algorithm is within 250% of the optimum pseudo-inverse. A small distortion is

achieved between 35o and 40o. These are also the angles that are typically used, where the

assembly provides a more uniform performance.
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Figure 49: Dot and pseudoinverse distributions for a pyramid assembly with six wheels

These results can be generalized for pyramid assemblies of n wheels: the graphics exhibit

similar shapes and the dot product distortion increases with n, and if the inclination angles

become too low or too high. For n = 8 reaction wheels, the distortion is twice the one in Figure

47 and the same can be said for n = 12, which produces a distortion twice as large as the one

seen in Figure 49.

In the next section, attitude control laws are developed using a dot distribution with the

originally planned four-wheel pyramid assembly for Infante, with ϕ = 30o. Then a comparison

is made with the pseudo-inverse method, and the effects of adding and removing reaction wheels

is studied.
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10 Attitude Control Laws

In this chapter, the developed control laws are explained in detail, along with simulation

results showing their effectiveness. First, a general algorithm for regulation is developed, and

its simulation results are obtained using the dot distribution, not the pseudo-inverse. The

control parameters are tuned using these results, ignoring the torque distortion caused by this

distribution. Then, the relation is derived between the calculated control gains, as calculated

by the pseudo-inverse, and the actual gains, as distorted by the dot distribution. This will show

that the distortion introduced by the decentralized architecture keeps the system stable, and

does not introduce significant changes to its behavior.

In the second part of this section, algorithms for detumbling the spacecraft, desaturating the

reaction wheels and managing its momentum are also presented, along with their simulation

results.

10.1 Regulation

Regulation control consists of keeping a certain commanded attitude with the reference angular

velocity as zero. It is the control law that keeps the satellite pointed to the Earth, to the Sun,

or to other convenient point. The first part consists of defining the desired quaternion:

The target attitude is defined in the local LVLH frame but represented in the GCI frame

which is static. The desired attitude is described as a roll rotation followed by a pitch and a

yaw rotation in the local frame, or more simply a 1 − 2 − 3 Euler Angle representation. This

strategy lets us to define a roll component first, that can be used for either SAR or for rolling

the spacecraft with the Sun, and then to define a pitch component to minimize the disturbance

torque. The yaw component can ultimately be ignored since this has no practical utility, it exists

solely to enable any attitude command that might be necessary in any special case.

The rotation quaternion that defines the attitude is:

q̄attitude = q̄yaw ⊗ q̄pitch ⊗ q̄roll (141)

Where:

q̄roll =


sin(φ/2)

0

0

cos(φ/2)

 q̄pitch =


0

sin(θ/2)

0

cos(θ/2)

 q̄yaw =


0

0

sin(ψ/2)

cos(ψ/2)

 (142)

Provided that there is knowledge of the attitude of the local frame, the desired attitude in the

geo-centric inertial frame is obtained by the product:

q̄desired = q̄LV LH−GCI ⊗ q̄attitude (143)

The control error is given by the rotation between the estimated and desired attitudes. The

rotation is itself represented by the error quaternion δq̄:

ˆ̄qGCI−B = δq̄ ⊗ q̄desired (144)

δq̄ = ˆ̄qGCI−B ⊗ q̄−1
desired (145)
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The chosen regulation control law is a non-linear PD controller in the quaternion form,

adapted from [9], where it is shown that is asymptotically stable:

Lcontrol = Kpsign(δq̄4)δq̄1:3 +Kd(1 + δq̄T1:3δq̄1:3)ωlocal (146)

This law was chosen since it is a simple yet effective PD controller, with a non-linear gain

in the derivative part, increasing stability in large maneuvers. The disturbances are relatively

small in magnitude so no integral action is used, assuring stability in exchange for a negligible

steady state error. It is important to notice that this feedback law has no minus sign, due to the

nature of the reaction wheels: if you apply a positive torque in a reaction wheel, it will respond

with a negative torque in the spacecraft. The torque distortion effect of the dot distribution is

neglected, as it will be shown to have little effect.

The term sign(δq̄4) is used to prevent a phenomenon called unwinding, since q̄ and −q̄ rep-

resent the same attitude. The controller could complete a 360o maneuver to “unwind” the

quaternion if this was not considered.

The subscript in ωlocal means that it is the angular velocity regarding the local frame. The

local frame has a non-negligible orbital component that needs to be subtracted, so that when

the spacecraft is static in this frame, it must have zero angular velocity.

The desired feedback gains are derived making some approximations: the axis are considered

uncoupled, the disturbances negligible and the error angles small. Later it is shown that these

approximations are reasonable and provide an excellent starting point for the control design.

Consider that there is just one rotation axis in the satellite, the x−axis, and that the control

objective is to keep the reference angle θref = 0. The sum of torques in that axis, using Newton’s

second law is:

Ldisturbances + Lcontrol = Jxθ̈ (147)

Now consider the control law of equation (146) in the x−axis only. The vector part of the

error quaternion is the Euler axis and angle product δq̄1:3 = e sin(θ/2). Assuming again the

error of the x−axis only, and using the first order approximations:

sin(θ/2) ≈ θ/2 , (1 + δq̄T1:3δq̄1:3) = [1 + sin(θ/2)2] ≈ 1 (148)

The control action is written in the approximate form:

Lcontrol = −Kp

2
θ −Kdω

x , ωx = θ̇ (149)

Assuming that disturbances are negligible and substituting the control action in equation

(147):

− Kp

2
θ −Kdθ̇ = Jxθ̈ (150)

This can be written as a second order differential equation in its canonical form:

θ̈ +
Kd

Jx
θ̇ +

Kp

2Jx
θ = 0 (151)

This differential equation’s coefficients are closely related to a natural response frequency ωn
and a damping coefficient ζ:

Kp

2Jx
= ω2

n ,
Kd

Jx
= 2ζωn (152)
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Rearranging these expressions, it is possible to represent the gains as a function of the desired

behavior:

Kp = 2Jxω
2 , Kd = 2Jxζωn (153)

Generalizing for all three axis, the control law in equation (146) is rewritten as:

Lcontrol = 2J
[
ω2
nsign(δq̄4)δq̄1:3 + ζωn(1 + δq̄T1:3δq̄1:3)ωlocal

]
(154)

Where the natural response frequency ωn and damping coefficient ζ are the adjustable pa-

rameters. These are only representative of the true behavior for a certain interval of natural

frequencies and damping coefficients. Setting a value too low for the natural frequency will

cause the control action to be too small, and the effect of the disturbances too evident. Setting

a frequency too high will cause the satellite to chatter and vibrate, and to not converge in a

static attitude state, even with a high damping coefficient.

A natural frequency of ωn = 0.1 rad/s was chosen for a tight control of the attitude, where

a good balance of stability, maneuver time and accuracy was found. The chosen damping

coefficient is ζ = 1, which in theory prevents overshoots and oscillations, which translate in

wasted energy and higher convergence time. In Figure 50 is plotted the local quaternion for

a step response of the controller with these parameters, and in Figure 51 the respective error

represented in Euler Angles. The spacecraft is kept aligned with the local frame until a step

input of 30o occurs at the 2500 second mark. It is shown that the controller behaves well, with

a minimal overshoot of 0.7o. This shows that the first order approximations performed when

deriving the gains were reasonable, but not exact, as no overshoot was expected, and also that

the dot distribution has little effect in the behavior of the spacecraft.

Figure 50: Controller Step Response for 30o in roll, ωn = 0.1 rad/s and ζ = 1
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Figure 51: Control Error in Euler Angles for 30o in roll, ωn = 0.1 rad/s and ζ = 1

Performance starts to degrade when the controller is asked to act on multiple axis. The more

complicated is the maneuver, the bigger the overshoot, mainly due to the assumption that the

rotation axes act as uncoupled. In Figure 52 is represented the attitude quaternion in the local

frame for a step response of 60o in roll, pitch and yaw. The spacecraft takes approximately 2

and a half minutes to complete the maneuver with an overshoot of 7.748o in the y−axis.

Figure 52: Controller Step Response for 60o in all axis, ωn = 0.1 rad/s and ζ = 1
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Figure 53: Control Error in Euler Angles for 60o in all axis, ωn = 0.1 rad/s and ζ = 1

This problem is reduced by increasing the damping coefficient. Simulation results show that

a damping coefficient of ζ = 1.5 is sufficient so no overshoot happens in the vast majority of

maneuvers. However, asking for a 90o shift in all angles is a special case that exhibits angle

overshoot for damping coefficients as high as ζ = 3. For practical cases, this rotation is unlikely,

and, with such a damping coefficient, maneuvers would take much longer to be completed.

Sometimes it is better to have a couple degrees of angle overshoot in exchange for a large

economy in maneuver time.

In Figures 54 and 55 is a plot of the local quaternion and the respective control error expressed

in 3−2−1 Euler Angles, for a 60o step input in all axes, but this time, with a damping coefficient

of ζ = 1.5. The maneuver takes 261 seconds to complete with negligible overshoot.

Figure 54: Controller Step Response for 60o in all axis, ωn = 0.1 rad/s and ζ = 1.5
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Figure 55: Control Error in Euler Angles for 60o in all axis, ωn = 0.1 rad/s and ζ = 1.5

In satellite attitude control, it is usually best practice to have a slightly over-damped system

than a faster, under-damped system. The satellite does not need to have fast dynamics but

rather slow, efficient movements, so the chosen parameters for a dynamic control were defined

as ωn = 0.1 rad/s and ζ = 1.5. In Figure 56 is a plot of the steady state error in attitude

Euler Angles, when the spacecraft is using the Star Tracker, the Precise Gyroscope and the

developed attitude law. The expected error, estimation error plus control error, is bounded to

0.05o degrees. The pitch error is the largest one due to the effect of the aerodynamic torque. No

integral action is needed since no steady state error is noticeable and since the error is within

the specification by a large margin.

Figure 56: Attitude Error when Aligned with local frame, ωn = 0.1 rad/s and ζ = 1.5
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In Figure 56 the total attitude error is plotted again but this time with the spacecraft rolled

30o, simulating a SAR maneuver. The total attitude error is similar to the previous case, being

bounded on a ±0.05o interval again. It is worth mentioning that these simulation results are

very optimistic and they do not represent the actual expected error for Infante, since a lot of

error sources were neglected throughout this study.

Figure 57: Attitude Error of the Spacecraft when rolled 30o, ωn = 0.1 rad/s and ζ = 1.5

When Infante is standing by, the attitude sensors are kept at a minimum to save energy.

Consider a case where the sun sensor, magnetometer and coarse gyro are used during orbit

daytime, and that the precise gyro is turned on just before the eclipse, when the sun sensor

is powered off. This is a situation subject to large estimation errors, due to the nature of

these sensors, and a situation where the control action should be minimized. A combination of

parameters such as a natural frequency of ωn = 0.01 rad/s and a damping coefficient of ζ = 3

was chosen, since it produces slow control dynamics with two great advantages: first, energy is

saved by performing less control effort and secondly, it is less sensitive to error spikes in attitude

estimation.

In Figures 58 and 59 is represented the estimation error and the control error for several

orbits using this control law. In Figure 60 the total attitude error is represented. The largest

estimation errors occur during daytime and can amount up to a 10o error, due to coarse gyro

drift, magnetometer bias and albedo effect in the Sun Sensor. For such significant estimation

errors, nothing can be done but reducing the controller dynamics.
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Figure 58: Estimation Error of the Spacecraft in cruise mode ωn = 0.01 rad/s and ζ = 3

Figure 59: Control Error of the Spacecraft in cruise mode ωn = 0.01 rad/s and ζ = 3

Figure 60: Total Attitude Error of the Spacecraft in cruise mode ωn = 0.01 rad/s and ζ = 3
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In Figure 61 it is possible to appreciate the difference in control effort for each set of gains,

during the regulation of attitude.

Figure 61: Reaction Wheel Control Effort with High and Low Gains

10.2 Influence of torque distortion in control

The use of a decentralized architecture and a dot product distribution law means that the

output torque is distorted, interfering with optimum control. This distortion can be characterized

by a distortion matrix D, as discussed previously in the section regarding the Decentralized

Architecture:

LRW = DLcontrol (155)

Substituting the control law of equation (154), the true, distorted reaction wheel torque be-

comes:

LRW = 2J
[
sign(δq̄4)ω2

nDδq̄1:3 + ζωnD(1 + δq̄T1:3δq̄1:3)ωlocal
]

(156)

The true natural frequency ω̌n and the true damping coefficient ζ̌ become two diagonal ma-

trices, since the system is not isotropic anymore:

[ω̌2
n] = ω2

nD , [ζ̌ω̌n] = ζωnD (157)

And the following relation can be extrapolated:

[ω̌n] =

ω̌xn 0 0

0 ω̌yn 0

0 0 ω̌zn

 = ωn


√
Dx 0 0

0
√
Dy 0

0 0
√
Dz

 (158)

[ζ̌] =

ζ̌x 0 0

0 ζ̌y 0

0 0 ζ̌z

 = ζ


√
Dx 0 0

0
√
Dy 0

0 0
√
Dz

 (159)

The true system frequency and dampness, taking in account the dot distribution law, are

represented by these matrices, which increase with the square root of the torque distortion. The

actual natural frequency and damping coefficients for the developed control law, affected by
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the dot distribution in a four wheel pyramid assembly, can be calculated by substituting the

distortion matrix calculated previously in (137):

[ω̌n] = ω

1.2247 0 0

0 1.2247 0

0 0 1

 , [ζ̌] = ζ

1.2247 0 0

0 1.2247 0

0 0 1

 (160)

The distortion created by using the dot distribution method, in this case, only produces a

22.5% increase in the calculated natural frequency and damping coefficient in the xy directions.

This variation is quite small, showing that the dot distribution does not change the behavior of

the system significantly. Having an xy natural frequency of ω̌ = 0.123 instead of ω = 0.1, and

having a damping coefficient of ζ̌ = 1.84 instead of ζ = 1.5, is not critical: the control is still in

an optimum region. Furthermore, an increase in system dampness compensates the increase in

dynamics by the natural frequency.

More interestingly, torque distortion tends to be greater than unity for most assembly angles,

and tends to increase with wheel number. This means that as reaction wheels are added to the

spacecraft, its natural frequency and damping coefficient tend to increase slightly, making the

satellite automatically faster and more damped. Care is needed when removing reaction wheels,

because it may cause a decrease of the damping coefficient to values below one, making the

spacecraft under-damped.

Consider the addition of two reaction wheels, so that the assembly becomes a six wheel

pyramid with β = 30o. Substituting equation (140), the distortion matrix for this assembly

becomes:

D =

2.25 0 0

0 2.25 0

0 0 1.5

 (161)

And the new natural frequency and damping coefficients become:

[ω̌n] = ω

1.5 0 0

0 1.5 0

0 0 1.2247

 , [ζ̌] = ζ

1.5 0 0

0 1.5 0

0 0 1.2247

 (162)

Which is also an example of the low effect torque distortion has on the overall system behavior.

To better evaluate the difference in system behavior caused by using a dot product distribution,

the cases that were studied were simulated using the developed method. A 60o step input in this

is given in all axis at 1000 second simulation time. In Figure 62 is the comparison of the control

error in Euler Angles for four different cases: the classical pyramid assembly of four reaction

wheels using both pseudo-inverse and dot product distribution, the six reaction wheel pyramid

using dot distribution and two equal sets of the four wheel pyramid assembly, also using a dot

product distribution.
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Figure 62: Performance comparison between assemblies and distributions

The maneuver is considered complete when the control error is less than 0.25o for all axis.

The pseudoinverse method is only two seconds faster than the dot distribution for the four wheel

assembly, showing that in practice, performance is nearly identical. One of the reasons for this is

that the actuators are using its maximum torque during the maneuver, making control differences

even smaller. For a six wheel pyramid assembly, the maneuver was completed 15 seconds earlier

than the previous cases, due to the increased actuation power. Using two pyramid assemblies of

four wheels, however, provides a performance similar to the six wheels case because the system

becomes too over-damped. These simulations show that the dot product distribution is a valid,

functional method, which is sufficiently close to the optimum solution to be used in practice.
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10.3 Detumbling

When a satellite is deployed from its launcher, it spins in an uncontrolled way, which must be

stopped in order to proceed with the mission. Although this can happen naturally, it can take

months or years, so a detumbling action is done by the magnetorquers by producing a torque

opposite to the angular velocity. This can be challenging in some cases because attitude sensors

like the Star Tracker, the Sun Sensor and some types of gyroscopes, do not typically work at

high spinning rates. There are several types of control laws for the magnetorquers which will

be studied and compared, depending on their energy efficiency, detumbling time and resources

used.

Assuming that angular velocity is available from a gyro measurement, [9] proposes the control

law:

m =
k

||B||2
ω ×B (163)

which produces the control torque:

Lmag = −k(I3 − bbT )ω (164)

where b = B/||B||2. This control torque acts in the opposite direction of ω and can be shown

to be Lyapunov stable. Sometimes gyro measurements are unavailable because they become

saturated. This is frequent in small CubeSats, so they use a variation of this control law called

the B-dot control, where the angular velocity is replaced by the derivative of the measured

magnetic field Ḃ, which is estimated on board. The time derivative is:

Ḃ = ABIṘ− ω ×B ≈ −ω ×B (165)

where Ṙ is the magnetic field derivative due to the spacecraft’s motion in orbit, which can be

neglected for a considerable tumbling rate. The control law then becomes:

m = − k

||B||
Ḃ (166)

Another variation of this control law is also popular, called the bang-bang control, based on

an on-off controller. Here each magnetorquer is controlled individually:

mi = −mmax
i sign(ui · Ḃ) (167)

The advantages of this controller is that it has a bigger actuation capacity and it is less

sensitive to noise. The field derivative Ḃ is calculated by a backward finite difference:

Ḃ(t) ≈ B(t)−B(t−∆t)

∆t
(168)

Worse performance can be expected in the simulation than in real conditions, due to a simu-

lation time constraint of one second. These control laws can be used without gyros and attitude

acquisition but they cannot completely detumble the spacecraft, as a residual angular velocity is

left, due to the orbital variation of the magnetic field. Nevertheless, this is enough for starting

reaction wheel actuation and these strategies have become very popular.
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The optimal gain k has been calculated and suggested by several authors in literature [45] [9]

[46]. It is worth mentioning that a higher gain doesn’t always mean a better time performance.

Setting a gain too high will not only make the detumbling take longer, but also less energy

efficient. Optimal performance sits below the calculated optimal detumbling time, balancing

energy and detumbling time [45]. The authors of [47] indicates that the optimal gain is given

by:

k∗ = 2ω0(1 + sin(i))Jmin (169)

where ω0 is the orbit rate, i is the orbit inclination and Jmin in the minimum inertia. The articles

[46] and [47] propose the use of a changing gain, which becomes stronger if the tumbling rate is

higher, and decreases as detumbling reaches the end phase. This allows for a significant decrease

in consumed energy with small changes in overall detumbling time. The gain is calculated:

k∗∗ =
k∗

ϕp+ ε
(170)

where ϕ is the rate factor, ε is the tuning parameter and p is the tumbling parameter:

p ≈ ||ω̂||√
3|ωmax|

(171)

where |ωmax| is the maximum sensible angular velocity by the attitude sensors.

Two important parameters are the frequency and the duty cycle of the magnetometer and the

magnetorquers. When the magnetorquers are functioning the magnetometer does not provide

realistic measurements as the magnetic field created by the spacecraft interferes with the readings

of Earth’s magnetic field. Increasing magnetometer time provides better readings but decreases

actuation time, and vice-versa. The article [46] argues that the best performance happens in the

case where the magnetorquers and the magnetometer change as fast as possible, and assumes

a 50% duty cycle. Taking this into account and that the simulation’s minimum step time is

only of one second, the chosen cycle is two seconds for the magnetometer, in order to provide a

finite difference, two seconds for the magnetorquer actuation and one second for the desaturation

signal.

The five types of controllers were simulated with several gains and rate factors, registering the

detumbling time as well as the energy used. In the five cases the spacecraft was given an initial

velocity of ω = 0.05 rad/s in each axis, which is representative of initial tumbling conditions.

Detumbling ends when the module of the angular velocity reaches 0.02 rad/s and the reaction

wheels are activated with the regulation control law.

Results are plotted for each controller in Figures 63 and 64, showing how the absolute angular

velocity decreases with time and how much power is used. The results are then summarized in

Table 8, where units [kJ ]× c mean that the actual energy used is unknown, but the algorithms

are compared using an unknown power constant c.
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Figure 63: Absolute Angular Velocity ||ω|| during Detumbling for various controllers
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Figure 64: Energy used during Detumbling for various controllers

Table 8: Chosen gains and simulation results for five different detumbling control laws

Control Law Gain ϕ Detumbling Time [s] Energy Used [kJ ]× c
Gyro Feedback, Static Gain 0.75 k∗ 20174 10.88

Gyro Feedback, Dynamic Gain k∗ 12 20228 10.48

Bdot, Static Gain k∗ 22233 11.54

Bdot, Dynamic Gain 1.5 k∗ 12 22206 11.35

Bang-Bang ∞ 21618 15.15

It is shown that the Gyro Feedback laws achieve the best performance. The chosen gain for

the simple gyro feedback controller of equation (163) is 0.75 k∗, since it gives a better balance

between used power and detumbling time than the theoretical gain k∗ . The dynamic gain law,

where gain is calculated by equation (170), was dimensioned using the gain k∗ and ε = 1. The

tumbling parameter ϕ = 12 was found to give a similar detumbling time while being able to save

a bit of energy. This is the best controller to be implemented due to this small improvement.

The case where there is no feedback from the gyroscopes must be considered, since gyro-

scope saturation can occur for high tumbling rates, and because these are simpler controllers
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to implement. The B-dot controllers perform slightly worse than the previous when speed is

slowed down, due to the approximation made in equation (165). Similarly, there is also a small

improvement on energy efficiency by using a dynamic gain, which should be considered.

Lastly, the Bang-Bang control law provides a smaller detumbling time than the other magnetic

feed-back controllers but at the cost of losing energy efficiency. A B-dot controller is prefered

for this reason.

10.4 Desaturation of the Reaction Wheels

10.4.1 Desaturation of the Reaction Wheels using Magnetorquers

Over the course of the mission, the disturbances on the spacecraft force the reaction wheels to

accelerate, up to a point where they can reach saturation. To prevent this, the magnetorquers

act to reduce reaction wheel momentum on the spacecraft, by creating a torque opposite to the

wheels’s accumulated momentum.

In a similar way to the detumbling algorithm of equation (163), [9] proposes a desaturation

control law in the form of:

m =
k

||B||2
hw ×B , hw =

Hw

||Hw||
(172)

where Hw is the reaction wheel momentum in the body frame, that should be minimized.

Notice that minimizing the wheel momentum in the body space is very different than keeping

the individual wheels’ momentum near zero. In fact, the objective is to keep the velocity of

each wheel at a desired speed, while the overall momentum is zero, by taking advantage of the

wheel’s redundant configuration and null space. This shall be discussed further ahead, and in

this chapter the only concern is minimizing the body component of the wheel’s momentum. It

can be shown that the resulting torque of this control law is:

Lmag = −k(I3 − bbT )hw (173)

The effect of this control law is illustrated in Figures 65 and 66, for various control gains from

0.25k′ to 5k′, where k′ is the optimal gain adapted from the detumbling gain equation (169):

k′ = ω0(1 + sin(i)) =
k∗

2Jmin
(174)

In this demonstration of the desaturation control law, the spacecraft is tumbling with a mo-

mentum of ||H|| = 0.5 Nms, that is transfered to the reaction wheels when they activate and

stabilize the satellite. Soon after, the magnetorquers start desaturating the reaction wheels until

its momentum in the body space reaches ||Hw
B || = 0.005 Nms. Both Figures 65 and 66 show

that the gain k′ provides a good balance between desaturation time and energy efficiency. It

is worth mentioning that attitude errors do not increase significantly if the magnetorquers are

acting do desaturate the wheels, but they do increase significantly if there is a lot of accumulated

momentum. Because of this, it is common to have the desaturation algorithms always turned

on during the mission [9].
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Figure 65: Total momentum of the Reaction Wheels during desaturation
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Figure 66: Energy used during desaturation for various control gains

10.4.2 Desaturation of the Reaction Wheels using Attitude

Considering the analysis of the aerodynamic and gravity gradient torque disturbances per-

formed previously in the Disturbances section, it can be noticed that for the height of 500 km

the relation between pitch and torque is close to linear, as seen on Figure 21. Even tough this

relation is a coarse approximation, since it assumes that the atmosphere is static, some authors

have suggested using attitude disturbances to the benefit of the satellite, for example, do desat-

urate the reaction wheels. The main advantage of this strategy is that there is no energy spent

by the magnetorquers. Such control law, in pitch, would be:

θdesat = −kHy
RW (175)
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10.5 Momentum Management of the Reaction Wheels

Due to the redundancy of the reaction wheels when mounted in an assembly, it is possible

to have an overall momentum of zero, while the wheel’s individual momentum is different than

zero. This allows the wheels to be kept at optimal speed without interfering with the attitude

control by applying a torque in the wheel’s null space. The article [48] suggests an approach

where the torque done by the wheels is divided into two: a component for spacecraft attitude

control and a component driving the wheel to their optimal speed:

LwB = D(Lww + Lmanagementn) = DLww (176)

where Lmanagement is the torque driving the wheel’s speed to the desired state and n is the

assembly’s null space. By the definition of null space, the management torque has no effect in

the body, and therefore it does not interfere with the control action. The management torque

is defined by the article as:

Lmanagement = PID (ωdesired − nTωRW ) (177)

The problem with this solution is that it is incompatible with decentralized architecture, since

the local ACSs do not have access to the other wheels’ speed. This thesis proposes a blind

method of driving the reaction wheels to the desired state. In the same manner as the article,

each reaction wheel performs a control torque with two components:

LRW = Lcontrol + Lmanagement (178)

where the management torque is driven by a proportional controller:

Lmanagement = kmanagement [sign(HRW )Hdesired −HRW ] (179)

where Hdesired is the desired momentum in the null space and HRW is the current momentum.

Due to the lack of information regarding the other wheels, the sign(HRW ) term drives the

wheel’s speed the closest of the desired states. This management works on the assumption that

all the wheels will be managing the their momentum as well, so the overall system will converge

into a desired null space. Unlike the first algorithm, it is not guaranteed that this algorithm

won’t interfere with the attitude control, so the management torque must be limited in a way

that for a worst case scenario, a wheel failure, this won’t degrade control performance. This

is done by setting a management gain that is low enough, which for this case it was found

that kmanagement = 10−6 Nm/Nms produced good results. A low management gain means that

reaching the desired state might take a considerable amount of time, but this isn’t critical since

once it is reached it will unlikely diverge unless the reaction wheels absorb a lot of momentum.

The desired momentum was set as 0.01 Nms, around 10% of the maximum, where the wheels

are spinning at low speed and far from the saturation limits. The maximum management torque

produced by this algorithm in a worst case scenario is 10−7 Nm, 10% of the expected disturbance

torque.

Simulation results of this algorithm can be seen in Figures 67 and 68, which show the evolu-

tion of the reaction wheel’s momentum in their wheel space and body space respectively. In this

simulation the spacecraft is kept pointing to the Earth while performing several orbits. Con-

vergence to the desired null space takes a few hours due to the low gain, and is only possible if

there is desaturation of the reaction wheels. A sinusoidal pattern at orbit rate can be observed

because the reaction wheels aren’t completely desaturated, and this causes an interchange of

the residual momentum between them, keeping the angular momentum of the wheels pointing

at the same direction in the inertial frame.
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Figure 67: Total momentum of the Reaction Wheels during desaturation

Figure 68: Total momentum of the Reaction Wheels during desaturation
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11 ADCS Modes and Programming

In this section is proposed a global ADCS logic structure, whose goal is to make Infante fully

autonomous. It is assumed that the ADCS communicates with the On-Board Computer (OBC)

and the attitude sensors: the OBC gives a desired SAR epoch, and ADCS replies if it is ready

to perform each mission phase.

This logic was designed as a state machine and implemented in the Simulink model using

MATLAB’s state machine compiler Stateflow. The goal was to design a logic structure as simple

and robust as possible, while still being able to fulfill the requirements for this mission. The

control program handles a set of logical variables that can be separated in system inputs, system

outputs and internal variables. A list of these variables can be found in Tables [9], [10] and [11]:

Table 9: Output Variables of the ADCS

Variable Type Description

detumbling flag Bool Requests detumbling control

regulation flag Bool Requests regulation control

desaturation flag Bool Requests desaturation of the RW

solar panels flag Bool Requests solar panel deployment

outer mag deploy flag Bool Requests deployment of the outer magnetometer

dynamic control flag Bool Requests higher dynamics in regulation control

sun sensor flag Bool Requests use of the Coarse Sun Sensor

star tracker flag Bool Requests use of the Star Tracker

coarse gyro flag Bool Requests use of the coarse gyroscope

precise gyro flag Bool Requests use of the precise gyroscope

inner magnetorquer flag Bool Requests use of the inner magnetorquer

outer magnetometer flag Bool Requests use of the outer magnetometer

dither flag Bool Requests dithering of the magnetorquer

sar ready flag Bool Is positive if spacecraft is ready for SAR

ready flag Bool Is positive if spacecraft is mission ready

roll command Double Sets desired roll

pitch command Double Sets desired pitch

yaw command Double Sets desired yaw

Table 10: Internal Variables of the ADCS
Variable Type Description

ads start Bool Returns positive if ADS is functioning properly

mission mode Bool Requests accurate attitude determination

magnetometer flag Bool Requests the activation of any magnetometer

eps Double Measure of attitude determination accuracy

JD Double Current Julian Date

delta t Double Time left until SAR

sensor time Double Time before SAR where strict attitude determination starts

maneuver time Double Time before SAR where maneuver starts

t min Double Minimum preparation time for mission
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Table 11: Input Variables of the ADCS

Variable Type Description

eclipse status Bool Returns positive if the spacecraft is in eclipse, small margin

pre eclipse status Bool Returns positive if the spacecraft is in eclipse, large margin

sun sensor status Bool Returns positive if sun sensor is available

star tracker status Bool Returns positive if star tracker is available

inner magnetometer status Bool Returns positive if inner magnetometer is available

outer magnetometer status Bool Returns positive if outer magnetometer is available

outer mag deploy status Bool Returns positive if outer magnetometer is deployed

coarse gyro status Bool Returns positive if coarse gyroscope is available

precise gyro status Bool Returns positive if precision gyroscope is available

solar panels status Bool Returns positive if solar panels are deployed

magnetorquer status Bool Returns positive if magnetorquers are available

sar status Bool Returns positive if OCB is doing SAR

H Double Total Momentum of Spacecraft in Local Frame

H wheels Double Total Momentum on RW’s body space

battery level Double Energy available on the batteries

JD mission Double Julian Date at mission Time

The system is divided into several state machines that are run in parallel, each with variables

that are bounded to the states of the other state machines. The first state machine, labeled “a”,

handles the main states of the satellite, and is represented in Figures 69 and 70. All machines

start in a ”stand-by” state, which jumps to the next one when the starting bit “adcs start” is

triggered by the ADCS after start-up. It is assumed that the ADCS will be turned on after being

ejected into orbit, and that the first effective state, “a10”, should be detumbling. The program

transitions into state “a20” when the total estimated momentum is below a certain threshold,

where regulation control is possible. The reaction wheels absorb the rest of the momentum, so

this threshold should be somewhat below the maximum momentum that can be supported by

the reaction wheels. When the momentum is very small, the program transitions into the next

state “a30”, where the solar panels are deployed. It is important to mention that this momentum

is measured regarding the local frame. In this state, the flag “outer mag deploy flag” is also set,

so that the outer magnetometer can be deployed, so it can substitute the inner magnetometer.

Upon confirmation that the solar panels have been deployed, the program enters in what is

intended to be its definitive state, “a40”, and sets an output as “ready”. If, for any given

reason, the spacecraft’s momentum becomes too large, the program goes back to detumbling

mode, returning to “a40” after this is completed. The opposite threshold for detumbling must

be larger than any momentum that the satellite might gain during a maneuver, or this state

might be reached by accident.

Regulation control is defined by groups of two child states, defined inside the parent states

“a20”, “a30” and “a40”, as illustrated in Figure 70. Regulation is only possible if there is enough

energy stored in the batteries and the variable “eps” is low enough. This is an internal variable

ε that correlates with the uncertainty of the attitude determination, that has been defined as

one thousand times the trace of the covariance matrix of the Kalman Filter:

ε = 1000× trace(P ) (180)
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In Figures 71 and 72 can be seen how this variable correlates with the estimation error during

the satellite’s regulation, while using only the sun sensor, magnetometer and gyroscopes. This

strategy is to turn off the regulation control of the reaction wheels whenever the value of ε

becomes too large, which is a consequence of when the filter regards its estimation as uncertain.

This should be used with care, however, since this is a correlation, and the value of ε can be

high for a correct estimation, and vice-versa.

a00

detumbling flag := false;

regulation flag := false;

solar panels flag := false;

a10

[adcs start == true]
en:

detumbling flag := true;

regulation flag := false;

en:

a20

detumbling flag := false;

(regulation flag := ...)

en:

a30

solar panels flag := true;

en:

a40

ready status := true;

en:

[solar panels status == true][H <0.005]

[H <0.1 && solar panels status ==false]

[H >0.2]

[H >0.2]

[H >0.2]

ready status := false;

(regulation flag := ...) (regulation flag := ...)

[H <0.1

&& solar panels status

==true]

outer mag deploy flag := true;

ready status := false;

detumbling flag := false;

Figure 69: State Machine for Main Attitude Modes (Parent)

a410

[eps > 2 OR battery level <0.1]

en:

regulation flag:= true;

[eps < 1 OR battery level > 0.15]

en:

regulation flag:= false;

a420

a40

Figure 70: State Machine for Main Attitude Modes (Child)

84



Attitude Control of a Satellite Based on a Decentralized Architecture

Figure 71: Estimation error of Infante during regulation control

Figure 72: Variable “ε” and its correlation with the estimation error

The second state machine “b” handles the execution of SAR missions, and is represented on

Figure 73. The first state is a stand-by state in which no mission is performed, and Infante

shall remain here for the great majority its lifetime. The On-Board Computer gives the ADCS

a certain mission epoch in Julian days, using a variable called “JD mission”, which is the

calculated epoch when Infante will be flying over a specific target. What this state machine

does is calculate the time interval ∆t of time left until the passage over the target, in order to

anticipate actions like activating the Star Tracker, the precision gyroscope and maneuvering the

spacecraft.

There is a transition into the mission states if the following conditions are gathered: the vari-

able “delta t” is within a certain interval of time, the ADCS has completed its initial procedures

and there is enough energy in the batteries. The variable “delta t” is computed:

∆t = (JD mission− JD)× 24× 60 [min] (181)

The number of minutes before the scan in which the sensors activate, here described as

“sensor time”, can be either fixed, or declared as a function of the variable “eps”, allowing

the precision sensors to be turned on later if Infante has already good attitude accuracy.

When entering the first mission state, the flags for precision attitude and control are triggered,

the program jumps into its next state as the mission comes closer, and the spacecraft starts

maneuvering. As seen earlier, it takes approximately four minutes to perform any maneuver

on Infante, so something like seven minute time window is reasonable. An example maneuver

is given in this state, although in practice the OBC would communicate the desired attitude

required to hit a target. Once the maneuver is complete, the program transitions into the next

state, where a ready flag is activated and the ADCS stands by. If the OBC replies with a SAR

status, the dynamic control is deactivated to avoid the possibility of any corrections blurring

the image, by having the reaction wheels responding too fast. The final state is triggered after

SAR is over, the spacecraft rolls back into its normal position and then goes back to stand-by.
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b00

dynamic control flag := false;

b10
[t min<delta t <sensor time

&& ready status == true

&& battery level > 0.3]en:

mission flag := true;

en:

b40
en:

b30
en:

b20

roll command := 30;

en:

[attitude error <0.25][sar status ↓]

[delta t >maneuver time]

mission flag := false;

pitch command := 0;

yaw command := 0;

dynamic control flag := false;

dynamic control flag := true;

sar ready flag := true;

roll command := 0;

yaw command := 0;

pitch command := 0;

[attitude error <0.25]

b310
[sar status == true]

en: en:

b320

b30

[sar status == false]

dynamic control flag := true;

sar ready := false;

dynamic control flag := true;

Figure 73: State Machine for Mission Handling

Each attitude sensor has a state machine assigned to its behavior. They are all quite similar,

with a starting state, a turn-off state and an active state. It is important to clarify that the

term “status” is used to indicate that a sensor is able to give reasonable data if turned on at any

given moment. For example: in a Star Tracker, its status is positive if the sensor has not failed

and if the Sun is not in its field of view. This model is used on the state machine since most of

the sensors can be operated with power-saving modes, in which they are standing by and not

performing attitude measurements, but still transmitting status data and using low power. This

type of stand-by mode is available in the magnetometers [40] [39] and the coarse gyroscope [37],

but no information is given for the Star Tracker [41] and the Sun Sensor. Still, it is assumed

that it is possible to know if the sun is in the Star Tracker’s field of view or if there is an eclipse.

The precision gyro doesn’t have a stand-by mode [38], but this gyro is always available unless

there is a failure, which would then be recorded by the ADCS.
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star tracker flag := false;

[(mission flag == false && after(200,sec)) OR star tracker status == false

OR battery level <0.2 OR detumbling flag == true]

c10

star tracker flag := true;

c20

[(eps>5 OR mission flag == true)

&& star tracker status == true && battery level > 0.25

&& detumbling flag == false]

c00
star tracker flag := false; [adcs start == false]

[adcs start == true]

[adcs start == false]

Figure 74: State Machine for the Star Tracker

In Figure 74 is represented the state machine for the Star Tracker. As mentioned, it goes

into stand-by mode “c10” once the ADCS has started, and goes into an active state if the

following conditions are gathered: accurate attitude determination is needed, either because the

covariance of the Kalman Filter is too high or because the spacecraft is on a mission, there is

enough energy in the batteries, the star tracker is available and the spacecraft is not detumbling.

The star tracker is turned off if there is no mission and sufficient time has passed to ensure good

attitude knowledge, or if there is low battery level or the sensor becomes unavailable, or the

satellite starts detumbling.

precise gyro flag := false;

[pre eclipse status == false && mission flag == true

OR precise gyro status == false OR battery level < 0.2]

OR detumbling flag == true

d10
precise gyro flag := true;

d20

[pre eclipse status == true OR mission flag == true

&& precise gyro status == true && battery level > 0.25

&& detumbling flag == false]

d00
precise gyro flag := false; [adcs start == false]

[adcs status == true]

[adcs start == false]

Figure 75: State Machine for the Precision Gyroscope

In Figure 75 is the state machine for the precision gyroscope. It is quite similar to the state

machine of the Star Tracker, but instead of activating the gyro with an increase of the variable

“eps”, the gyro is activated by the variable “pre eclipse status”, which is one of the two computed

eclipse conditions. The eclipse conditions are set using GPS and orbit propagation data by the

OBC, rather than being set by looking at the actual Sun, intentionally triggering the eclipse

status sooner than the physical eclipse, and returning it to false after the eclipse period has
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ended. The variable “pre eclipse status” is more conservative than the variable “eclipse status”,

allowing the precision gyroscope to be turned on before the sun sensor is turned off. This holds

the attitude estimation performed by the magnetometer and the sun sensor, which is better than

the insufficient one performed by the magnetometer only. The use of the variable “eclipse status”

can be seen on the state machine for the sun sensor in Figure 76, where it is used to power the

sensor off during the night. The logic of this sensor is also similar to the previous ones:

sun sensor flag := false;

[eclipse status == false OR sun sensor status == false OR battery level <0.1]

e10

sun sensor flag := true;

e20

[eclipse status == true && sun sensor status == true && battery level >0.15]

e00
[adcs start == false]

[adcs start == true]

[adcs start == false]
sun sensor flag := false;

Figure 76: State Machine For Main Attitude Modes

The coarse gyro follows a simple logic, so its state machine is not represented: after the ADCS

has started, the coarse gyroscope is always turned on until an eventual failure occurs, or energy

levels become critical. Having the coarse gyroscope continuously functioning is a decision made

by Tekever based on the fact that it consumes low power, it’s not mission critical and because

it can eventually be replaced by the precision gyro.

In Figure 77 is represented the state machine handling the behavior of the magnetometers

and the magnetorquers. Before explaining this diagram, it is important to clarify the difference

between two behavior options that can be chosen for a spacecraft with this technology: either

ignore magnetometer readings while actuating the magnetorquers, or place the magnetometers

in stand by while the magnetorquers are active. The first option should be more robust while

the second option can save energy. This is a choice that depends on factors like the cycle times

attributed to this state machine and the electronic properties of the magnetometer, and falls

beyond the scope of this thesis. For this study it is assumed that the magnetometers are placed

in stand by during magnetorquer actuation, which does not mean that it will be the case for

Infante. If the continuous operation case were to be chosen, it would mean erasing the variable

“magnetometer flag” from the state machines. Then, the magnetorquer status would be used

to tell the Kalman Filter that magnetometer measurements should be ignored.

The first active state of Figure 77 is bounded to the activation of any magnetometer, whose

choice depends of the state machine “h”. If the spacecraft is detumbling or desaturating the

reaction wheels, if there is enough energy in the batteries, if the magnetorquers are available and

if there has been enough time for the magnetometer to perform readings, a magnetorquer loop

is executed, through states “f20” and “f30”. In these states the magnetorquers act according

to the active control algorithm, and then dither after some time, in order to avoid the effect of

residual momentum.
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f00

f30

en:

en:

f10
en:

f20
en:

[after tmagnetorquer,sec]

[(detumbling flag == true

OR desaturation flag == true)

&& battery level > 0.1

&& after(tmagnetometer,sec)

&& magnetorquer status ==true]

magnetorquer flag := false;

[adcs start == true]

magnetorquer flag := true;

exit:

magnetorquer flag := false;dither flag := true;

exit:
dither flag := false;

[adcs start == false]

[adcs start == false]

[adcs status == false]

[after tdither,sec]

magnetometer flag := false;
magnetometer flag := true;

exit:

magnetometer flag := false;

Figure 77: State Machine Handling Magnetometers and Magnetorquers

In Figure 78 is represented the state machine for the choice of magnetometers. One of the

two magnetometers becomes active if the magnetometer flag is triggered and if there is enough

battery. The inner and outer magnetometer are chosen depending if they fulfill conditions (1)

and (2) respectively, which are mutually exclusive as long as both magnetometers don’t fail,

which is a part of condition (3). The inner magnetometer is chosen if the outer magnetometer

has failed or hasn’t been deployed successfully to the outside of the spacecraft. The outer

magnetometer replaces the inner magnetometer upon failure or as soon as it’s deployed.

Figure 79 represents the state machine for the desaturation of the reaction wheels. Desatura-

tion is performed as long as there is a minimum amount of momentum in the reaction wheels’

body space, if there is enough battery, if there is no current mission (since the magnetorquers

can perturb precise attitude control) and if there is enough battery. The inverse, analogous case

prohibits desaturation of the reaction wheels.

These eight, parallel state machines have shown to be sufficient to make the spacecraft fully

autonomous, which is demonstrated in the next section. The reader is reminded that this is a

global proposal for the ADCS logic and that a lot of details were ommited in the design of these

state machines.
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inner magnetometer flag := true; outer magnetometer flag := true;

outer magnetometer flag := false; inner magnetometer flag := false;

h10 h20

[(2)** == true]

[(1)* == true]

inner magnetometer flag := false;

outer magnetometer flag := false;

***(3): (outer magnetometer status == false && inner magnetometer status == false)

OR adcs start == false OR magnetometer flag == false OR battery level <0.1

[magnetometer flag == true

&& adcs start == true

&& battery level > 0.15

&& (1)* == true]

[magnetometer flag == true

&& adcs start == true

&& battery level > 0.15

&& (2)**]

*(1): (outer mag deploy status == false OR outer magnetometer status == false)

&& inner magnetometer status == true

**(2): outer magnetometer status == true && (outer mag deploy status == true

OR inner magnetometer status == false)

[(3)*** == true]
[(3)*** == true]

h00

Figure 78: State Machine for Inner and Outer Magnetometers

desaturation flag := false;

[detumbling flag == true OR H wheels < 0.0002

OR mission mode == true

OR magnetorquer status ==false

OR battery level < 0.1]

g10

desaturation flag := true;

g20

[detumbling flag == false && H wheels > 0.005

&& mission mode == false

&& magnetorquer status ==true

&& battery level > 0.15]

g00
[adcs start == false]

[adcs start == true]

[adcs start == false]
desaturation flag := false;

Figure 79: State Machine for Desaturation of the Reaction Wheels
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12 Simulation Results

To demonstrate the concepts discussed on this thesis, a final simulation was designed to

include all mission phases, including two SAR scans, scenarios such as loss of battery power and

non-critical failures of the precision gyroscope and a reaction wheel.

This simulation starts arbitrarily at 22:15:00 of the day 10th of July 2019, with the satellite

being injected into orbit with the angular velocity of ω0 = [1.72; 2.29; 2.29] degrees per second.

Its starting point is at −50o of latitude, performing a circular sun synchronous orbit with the

characteristics mentioned previously. It has two SAR missions scheduled for 12:49:50 (Universal

Time) on the 11th of July, when it will be flying over Portugal, and for 06:15:00 (Universal

Time) on the 12th of July when it will be flying over Asia. After the first SAR, the spacecraft

will experience periods of low power at 20 and 22 hours of simulation time. At 25 hours of

simulation time the precision gyroscope will fail, followed by a failure of reaction wheel number

four, at 27 hours of simulation time, just before the second SAR scan is performed.

Figure 80: Attitude of the Spacecraft in the Local Frame, states of internal variables

The first Figure 80 shows the 321 Euler Angles of the spacecraft attitude regarding the local

frame, which is the most intuitive way to perceive how the spacecraft behaves during the sim-

ulation. In Figure 80 are also the states of the dynamic control, mission mode and SAR scan

variables, showing the two moments when missions are performed. In the first eight hours of

simulation it is visible that the satellite is experiencing detumbling, and stabilizes around this

time. The moments where the satellite rolls 30o for the SAR scans are evident in the Euler

Angles plot, when the other variables are also active. It is also evident the effect of the power

losses, as the satellite slowly tumbles when actuators and attitude sensors are turned off. The

gyroscope failure also causes a visible loss of attitude precision during nightime, as well as the

reaction wheel failure which causes a temporary error around 5o. Despite these drawbacks,

the spacecraft is still able to keep the attitude within the 0.25o requirement during SAR, as

illustrated by the data cursors.

92



Attitude Control of a Satellite Based on a Decentralized Architecture

On Figure 81 is represented the control and estimation errors during the simulation. Figure

82 is a time diagram of the different control laws and the evolution of the variable ε, representing

the filter’s uncertainty, and in Figures 83 and 84 is a time diagram of the attitude sensors and

eclipse conditions.

Turning our attention to Figure 82, it can be seen that the detumbling control law is used

during the first 8 hours, being replaced by the regulation and desaturation control algorithms

as soon as the satellite slows down enough. The variable ε is extremely high in the beginning

of the simulation because the only sensors turned on are the Sun Sensor (during day), the inner

magnetometer and the coarse gyroscope, which can be seen in Figure 83. The inner and outer

magnetometers’ states are illustrated in a lighter color in the moments where the magnetorquers

are active (detumbling and desaturation control) because they are being turned on and off every

few seconds, due to the duty cycle mentioned earlier.

When the satellite is stabilized after 8 hours of simulation, it enters its stand-by state: the outer

magnetometer replaces the inner magnetometer, the Sun Sensor is turned on during daytime

and the precise gyro is turned on during night time, as seen on Figure 83. During this phase,

the reaction wheels are desaturated, reducing the momentum left from the initial detumbling

or that was absorbed by the disturbances throughout time. It can be seen in Figure 82 that

this is active for most of the time, being turned off during SAR and low power mode. Similarly,

regulation is always active except for the low energy mode, and when the variable ε becomes too

high. Comparison of Figure 81 with Figure 80 shows that this strategy of turning off regulation

with ε is successful at minimizing attitude error during high uncertainty, since the actual error

is considerably less than the estimation and control error at certain moments. Moments like

this occur during the night time after the failure of the precise gyroscope, because the attitude

information received becomes insufficient, and the coarse gyro is unable to hold attitude for long.

The Star Tracker is also turned on to compensate this lack of knowledge, as seen on Figures 82

and 83, but not for long to save energy. It can be seen on Figure 81 that attitude precision is

mostly adequate, except for the power outages and the failure of the precise gyroscope.
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Figure 81: Control and Estimation Errors represented in 321 Euler Angles
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Figure 82: Time Diagram of Control laws and uncertainty measure “ε”

Figure 83: Time Diagram of Attitude Sensors

Figure 84: Time Diagram of Gyroscopes and the Occurrence of Eclipse

In Figure 84 can be seen how the coarse gyroscope is kept on for the entirety of the mission,

and how the precise gyroscope and the sun sensor activate with the different eclipse variables.

On Figure 85 is plotted the momentum of the reaction wheels in the body and the wheel

space during the simulation. The reaction wheels respond with the activation of the regulation

control, and absorb the rest of the momentum that was not absorbed by the magnetorquers.

This momentum, represented on the body frame, changes direction during several orbits, due to

the conservation of momentum in the inertial frame, until the desaturation algorithm drives it

to zero. On the wheel space, as the global momentum approaches zero, each of the four wheels
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approaches its optimal speed at HRW = 0.01 [Nms]. The SAR roll causes temporary spikes on

the wheel’s momentum, since they supply torque to rotate the spacecraft. It is visible how upon

the failure of reaction wheel number 4 at hour 27, the other three wheels lose their null space,

so they lose the ability of having a non-zero speed for a global momentum of zero. It can be

seen on Figure 80 that the error introduced by a reaction wheel failure is only around 15o.

On Figure 86 is visible a world map with the orbit trajectories and the targets scanned during

this simulation.
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Figure 85: Reaction Wheel Momentum on Body and Wheel Space

Figure 86: World Map with SAR targets and Orbits
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13 Conclusions

In this dissertation were proposed two main objectives: a global solution for the ADCS of

the satellite Infante, and the analysis of a new type of control architecture, called decentralized

architecture, for which the Infante satellite served as a case study. To validate the proposed

control algorithms and the architecture, the development of a simulation model is also necessary.

13.1 Contributions

As seen by the results of the previous section, the proposed solution for the ADCS of Infante

has fulfilled the requirements given on the start of this dissertation: the control algorithms

developed are able to detumble the spacecraft, maintain a reference attitude, desaturate the

reaction wheels and keep them away from null velocity states. The first problem of detumbling

was solved with time and energy efficiency in mind, optimizing currently used algorithms for

this case. The regulation control problem was solved using the dot distribution inherent to

the decentralized architecture, for which it was shown to be stable, efficient and robust. The

proposed solution for the desaturation of the reaction wheels was also designed keeping in mind

time and energy efficiency using a traditional algorithm. A new way to drive the reaction wheels

to their desired state was also proposed, since the traditional method of directly applying torque

in the null space cannot be used with decentralized architecture. This new method is functional

and of simple implementation, but riskier and slower than the current method. It was also

proposed a simple programming logic using state machines, which ensured mission success,

energy economy and robustness to non-critical failures. A law for desaturating the reaction

wheels using attitude, based on an rigorous analysis of the disturbances, was proposed but

unfortunately was not implemented.

A Simulink model was developed in the scope of this thesis, in an effort to validate the proposed

solutions. This model includes, among other things, rigorous attitude dynamics, classical orbital

propagation, complete environment models from third parties, precise astronomical mechanics,

self-modeled attitude sensors and actuators, a Multiplicative Extended Kalman Filter and an

ADCS state machine capable of simulating real missions. This model can be used to not only

aid the development of Infante but also to simulate any other kind of small to medium satellites.

The topic of decentralized architecture was proposed, explained and analyzed in depth. It has

been shown that using this control architecture provides an increase in development flexibility at

the cost of a small change in effective control behavior. This change was formally described by

a “distortion matrix” and its consequences were analyzed for the most common reaction wheel

assemblies. For the classic 30o four wheel pyramid assembly, the damping coefficient and the

natural frequency increased by 22.5% in the xy directions; for a classical six wheel assembly it

increased by 22.5% and 50% in xy and z directions. This is interpreted as a change in the control

gains, that has low impact on system behavior, since the increase in dampness compensates the

increase in the natural frequency, and since the control action becomes saturated easily. This

was confirmed by using the developed Simulink model to compare the dot distribution with the

pseudoinverse method.

As stated previously, the goal of this architecture is to allow a more flexible methodology in

the development of an ADCS. Technicians can add, modify or remove reaction wheels without

compromising the global design of the control system, which is highly suitable for using with a

design-test-iterate philosophy.
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13.2 Future Works and Recommendations

The next step regarding the topic of decentralized architecture is to continue the mathematical

description of the other assemblies that were not described here, like asymmetrical configurations

and non-pyramid configurations. It would also be productive to evaluate if there are other

“blind” distributions, other than the dot product distribution, that might be more efficient and

flexible. Finally, it would be important to see what control algorithms, other than the presented

PD, are stable using this architecture.

The next step for Infante is continuing the development of its ADCS, whether this is from a

theoretical point of view or if it is actual implementation. A topic that I would have liked to have

contributed to, is the study of the solar panel flexibility. This is a critical analysis that cannot be

ignored: if the solar panels’ natural frequency is too close to the controller’s natural frequency,

they will resonate and most likely cause the solar panels to break. Preliminary analysis from

Tekever has shown that this is unlikely but a deeper study must be made.

The developed model uses some crude approximations, which can be improved in order to

provide more realistic results. Such approximations include: the use of a classical propagator,

neglecting solar light pressure, small simulation step size, perfect on-board magnetic model, etc.
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