
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Trustable oracles towards trustable
blockchains

Pedro Duarte da Costa

MASTER’S DISSERTATION

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Filipe Figueiredo Correia

Second Supervisor: Hugo Sereno Ferreira

July 23, 2019

Trustable oracles towards trustable blockchains

Pedro Duarte da Costa

Mestrado Integrado em Engenharia Informática e Computação

July 23, 2019

Abstract

The Blockchain concept was proposed as a way of processing and recording financial transactions
in a peer-to-peer network while avoiding the double-spending problem and without requiring any
centralized authority. Later, smart contracts were introduced as immutable applications whose
terms are directly written in lines of code that are persisted and run on the Blockchain.

However, currently, smart contracts lack an important feature: internet connectivity. Due to
the deterministic nature of Blockchain and the incompatible indeterministic nature of the Web,
smart contracts cannot directly query it.

Oracles solve the connectivity problem, by listening to events produced by smart contracts,
they can insert the needed information on the Blockchain to later be used by the contracts. But or-
acles do not abide by the same rules and do not support the same guarantees given by Blockchain,
so they must either be trusted without hard guarantees about the truthfulness of the data that they
provide or we must find ways of guaranteeing their honesty.

In order to find out how blockchain oracles are being designed, a systematic literature review
was performed. This review produced fewer oracle solutions than expected, and, therefore, the
author also searched for projects created by the industry. Existing oracle solutions rely on two main
solutions: authenticity proofs, which are cryptographic proofs that something actually happened,
or wisdom-of-the-crowd solutions based on incentives and penalising bad behaviour.

Bearing this in mind, this dissertation contribution is threefold.
Firstly, it analyses and summarises the existing authenticity proofs and mechanisms for guar-

anteeing oracle trust, allowing a smart contract developer to be fully informed of the implications
of using each proof and their limitations.

Secondly, it defines four possible architectures for oracle design and how each of them ad-
dresses different points of trust in the oracle. Starting from the use of a third-party the author
identifies and describes two architectures: Oracle-as-a-Service w/Single Data Feed and Oracle-
as-a-service w/Multiple Data Feeds. Then the author describes a self-hosted approach with an-
other two architectures: Single-Party Self Hosted Oracle and Multi-Party Self Hosted Oracle. This
way, the author creates a guide that can support those creating blockchain oracles in thinking about
the many limitations, trade-offs and possibilities that are inherent to the design of such kinds of
system.

Finally, as the author worked on each architecture he found existing oracle solutions that would
fit in the first two, regarding third-party providers, and later a new project focusing on the devel-
opment of the third architecture. Regarding this, the author decided to implement the fourth archi-
tecture, both because no existing solution was available and because doing so would demonstrate
the viability of this new architecture.

In conclusion, this dissertation paves the way for oracle development and research summaris-
ing firstly in a broad sense existing solutions and later contributing with a systematic set of archi-
tectures and a solution that can be easily adopted by teams interested in deploying their own oracle
to achieve higher standards of trust.

i

ii

Resumo

O conceito de Blockchain foi proposto como uma forma de processar e registrar transações fi-
nanceiras numa rede peer-to-peer, evitando o problema de double-spending e sem exigir qual-
quer autoridade centralizada. Mais tarde, os smart contracts foram introduzidos como aplicações
mutáveis cujos termos são escritos diretamente em linhas de código que são persistidas e execu-
tadas na Blockchain.

No entanto, atualmente, os smart contracts carecem de um recurso importante: a ligação à
Internet. Devido à natureza determinística da Blockchain e à natureza não-determinística da Web,
os smart contracts não podem consultá-la diretamente.

Oracles resolvem o problema de conectividade; ouvindo eventos produzidos por smart con-
tracts, os oracles inserem as informações necessárias na Blockchain para depois serem usadas
pelos contratos. Mas os oracles não cumprem as mesmas regras e não suportam as mesmas garan-
tias dadas pela Blockchain e, desta forma, ou é possível confiar-se na sua execução sem garantias
concretas sobre a veracidade dos dados que fornecem, ou é necessário encontrar outras formas de
garantir a sua honestidade.

A fim de descobrir como os blockchain oracles são atualmente desenvolvidos, foi realizada
uma revisão sistemática da literatura científica e de projetos criados pela indústria. As soluções
existentes de oracles recorrem a: provas de autenticidade, que são provas criptográficas de que
algo realmente aconteceu, ou soluções de wisdom-of-the-crowd baseadas em incentivos.

Com isto, esta dissertação contribui em três frentes.
Em primeiro lugar, analisa e resume as provas de autenticidade existentes e mecanismos para

garantir a confiança de oracles, permitindo que um desenvolvedor de smart contracts seja total-
mente informado sobre as implicações de usar cada prova e suas limitações.

Em segundo lugar, define quatro arquiteturas possíveis para desenhar oracles e como cada uma
delas aborda diferentes pontos de confiança no oracle. O autor identifica e descreve duas arquite-
turas que utilizam serviços de terceiros: Oracle-as-a-Service com Single Data Feed e Oracle-as-a-
service com Multiple Data Feeds . Em seguida, o autor descreve uma abordagem auto-hospedada
com outras duas arquiteturas: Single-Party Self-Hosted Oracle e Multi-Party Self-Hosted Oracle.
Estas arquiteturas constituem um guia, capaz de apoiar aqueles que criam oracles a pensar sobre
as limitações, trade-offs e possibilidades inerentes ao design de soluções de oracles.

Por fim, como o autor apenas encontrou casos de uso existentes para as três primeiras arquite-
turas, decidiu implementar a quarta arquitetura. Isto porque nenhuma solução existente estava
disponível e porque isso demonstraria a viabilidade da nova arquitetura proposta.

Em conclusão, esta dissertação abre o caminho para o desenvolvimento de oracles e descreve
inicialmente soluções existentes e posteriormente contribui com um conjunto sistemático de ar-
quiteturas e uma solução que pode ser facilmente adotada por equipas interessadas em desenvolver
o seu próprio oracle para alcançar padrões mais elevados de confiança.

iii

iv

Acknowledgements

First of all, I thank my family,

My father, whose values, ethic and cleverness were always a true example.
My mother, who spends her life helping kids with disabilities become educated man and woman,
and whose heart knows no limit.
My brother, whose discipline, brilliance and guidance were always an inspiration.

These are also the giants in which I proudly stand upon and owe my education to.

Furthermore, I thank my supervisor Filipe Figueiredo Correia for his guidance, readiness to help
and time spent meticulously reviewing this work. I also thank my second supervisor, Hugo
Sereno Ferreira, for the productive and challenging discussions we had during critical
brainstorming moments.

Pedro Duarte da Costa

v

vi

“If I have seen further it is by standing on the shoulders of Giants.”

Isaac Newton

vii

viii

Contents

1 Introduction 1
1.1 Blockchain . 1
1.2 Smart Contracts . 2
1.3 The Smart Contract Connectivity Problem . 3
1.4 Smart Contracts Space and Computation Limits 4
1.5 Oracles as a Solution . 4
1.6 Authenticity Proofs . 5
1.7 Motivation and Objectives . 5
1.8 Document Structure . 6

2 Blockchain Oracles 7
2.1 Literature Review . 7

2.1.1 Research Questions . 7
2.1.2 Search Process . 8
2.1.3 Search Strategy and Data-sources . 9
2.1.4 Study Selection and Quality Assessment 10
2.1.5 Data extraction and Data Synthesis . 11

2.2 Commercial Products and Projects . 13
2.3 Summary . 14
2.4 Conclusions . 16

3 Authenticity Proofs 17
3.1 Trusted Execution Environment (TEE) . 17
3.2 Authenticity Proofs Mechanisms . 18

3.2.1 TLSNotary . 18
3.2.2 Android Proof . 20
3.2.3 Ledger Proof . 21
3.2.4 TLS-N . 22
3.2.5 Town Crier . 24

3.3 Summary . 25

4 Problem Statement 27
4.1 Proposal . 28
4.2 Desiderata . 28
4.3 Conclusions . 29

ix

CONTENTS

5 Trustable Oracles 31
5.1 Oracle Architectures . 32
5.2 Oracle as a Service w/ Single Data Feed. 32

5.2.1 Context . 32
5.2.2 Problem . 32
5.2.3 Forces . 32
5.2.4 Solution . 33
5.2.5 Resulting Context . 33
5.2.6 Known Uses . 34

5.3 Oracle as a Service w/ Multiple Data Feeds. 34
5.3.1 Context . 34
5.3.2 Problem . 34
5.3.3 Forces . 35
5.3.4 Solution . 35
5.3.5 Resulting Context . 36
5.3.6 Known Uses . 36

5.4 Single-Party Self Hosted Oracle. 36
5.4.1 Context . 36
5.4.2 Problem . 36
5.4.3 Forces . 37
5.4.4 Solution . 37
5.4.5 Resulting Context . 37
5.4.6 Known Uses . 37

5.5 Multi-Party Self Hosted Oracle. 37
5.5.1 Context . 37
5.5.2 Problem . 38
5.5.3 Forces . 38
5.5.4 Solution . 39
5.5.5 Resulting Context . 40
5.5.6 Known Uses . 40

5.6 Summary and Conclusions . 40

6 Self-hosted Oracle Implementation 43
6.1 Oracle Overview . 44
6.2 Component analysis . 45

6.2.1 On-Chain Oracle . 45
6.2.2 Off-Chain Oracle . 47

6.3 Project Information . 48
6.4 Summary and Conclusions . 48

7 Evaluation 51
7.1 Oracle Architectures . 51

7.1.1 Oracle-as-a-Service w/ Single Data Feed 51
7.1.2 Oracle-as-a-Service w/ Multiple Data Feeds 52
7.1.3 Single-Party Self Hosted Oracle . 52
7.1.4 Multi-Party Self Hosted Oracle . 52
7.1.5 Conclusions . 53

7.2 Self-hosted Oracle Implementation . 54
7.2.1 Reduced costs . 54

x

CONTENTS

7.2.2 Higher trust . 55
7.2.3 Higher contract empowerment . 55
7.2.4 Conclusions . 56

8 Conclusions and Future Work 57
8.1 Difficulties . 57
8.2 Contributions . 57
8.3 Future Work . 58
8.4 Conclusions . 59

References 61

A SLR Screening Stages 63

B On-Chain Oracle Code 79

C Off-Chain Oracle Code 83

D Off-chain ethereum connection - ethereum.js 85

E Systematic Literature Review 87

xi

CONTENTS

xii

List of Figures

1.1 Smart contract connectivity problem. 3
1.2 Oracle integration. 5

2.1 Review strategy. 8
2.2 Resulting papers from search distributed per year 10
2.3 Screening stages. 11
2.4 Town crier high-level architecture. Figure taken from the Town Crier paper. . . . 12
2.5 High-level overview of Astraea’s architecture. 12

3.1 Content Omission Attack - The left figure shows the original and the right figure
the signed conversation. 23

3.2 Simplied Overview of TLS-N. 23

5.1 Oracle as a Service w/ Single Data Feed. 33
5.2 Oracle as a Service w/ Multiple Data Feeds. 35
5.3 Single-Party Self Hosted Oracle. 38
5.4 Multi-Party Self Hosted Oracle. 39
5.5 Process for choosing the architecture of a blockchain oracle. 41

6.1 Self-hosted architecture. 44
6.2 Cost per query using a consensus of 2/3, . 45

xiii

LIST OF FIGURES

xiv

List of Tables

2.1 Number of results and applied filters per database 9
2.2 Summary of oracle projects/research. 15

3.1 Summary of authenticity proofs . 25

7.1 Summary of architecture forces . 53
7.2 Oraclize fees in USD . 54

xv

LIST OF TABLES

xvi

Abbreviations

SLR Systematic Literature Review
HTTP Hyper Text Transfer Protocol
HTTPS Hyper Text Transfer Protocol Secure
TLS Transport Layer Security
TEE Trusted Execution Environment
DAPP Distributed Application
API Application Programming Interface
IoT Internet of Things
SGX Software Guard Extensions
OS Operating System
JWS JSON Web Signature
SDK Software Development Kit

xvii

Chapter 1

Introduction

Once more, a technological revolution sparked in a not-yet-ready world. Just as the Internet in-

vention brought us closer together and opened an unlimited virtual world of possibilities so does

blockchain. The technology is still in its early development days and many different proposals are

being worked on to improve its performance and scalability. Akin to the dotcom boom, a plethora

of blockchain projects live on more expectations than results but ultimately blockchain could re-

solve the Internet’s failed promise. To understand what is blockchain and why it is necessary we

need to comprehend the social background around the time of its release. The Internet promised

a peer-to-peer connected world, however, financial incentives and technological challenges led to

a centralized and non-privacy advocated virtual world. The increasing general concern regarding

the privacy of personal information and the meddling of third parties in everyday online actions

allied with the financial crash of 2008 lead to a new technological and social breakthrough.

Satoshi Nakamoto’s introduced Bitcoin, in 2009 [Nak09], and revolutionized money and cur-

rency, setting the first example of a digital asset which has no backing or intrinsic value and

more importantly no centralized issuer or controller. In order to require no third party to verify

each transaction and prevent double-spending, he introduced a distributed ledger mechanism now

known as Blockchain.

1.1 Blockchain

Blockchain is a tool for distributed consensus, in a byzantine fault-tolerant approach, without

requiring to trust in centralized parties. In this ledger, transactions are recorded in an ongoing

chain, creating an immutable public record that cannot be changed without redoing the proof-

of-work. Anyone can become a node and leave and rejoin the network. Having incentives to

work on the CPU intensive proof-of-work, extending the chain, and so, for as long as the majority

of nodes are trustworthy, the longest and honest chain will thrive. The proof-of-work used on

Bitcoin is HashCash [Bac02], proposed in 1997 by Adam Back, is a cryptographic hash-based

1

Introduction

proof-of-work algorithm that requires a selectable amount of work to compute, but the proof can

be verified efficiently. Nodes can easily verify that a block is valid and that some effort was put

in its creation. The proof-of-work difficulty can increase and decrease depending on the network

size and capability, creating on average a block every 10 minutes, like a heartbeat.

In simpler terms, transactions are grouped in blocks and for each block there is a mathematical

challenge (proof-of-work) which requires time and computational resources to be solved, guaran-

teeing that some effort is put into solving the challenge and therefore making it extremely hard

to quickly manufacture false blocks. Each block has a hash, a signature, of the previous block

linking all blocks in a single chain. Nodes always work on the longest chain, so as long as the

majority of the nodes are honest and work in building correct blocks, which means they don’t have

double entries and transactions are legitimate, the biggest chain will grow and remain a trusted and

distributed ledger.

Leveraging Blockchain, Bitcoin requires no personal information to exchange value, anyone

can join the network and no central authority is needed. This opens an unlimited world of new

scenarios for the use of blockchain.

1.2 Smart Contracts

In 2015, Ethereum [Gav14] was launched as an alternative protocol for building decentralized

applications called smart contracts. Introduced as applications that run on the blockchain, smart

contracts are self-verifying, self-executing and immutable contracts whose terms are directly writ-

ten in lines of code which persist on the blockchain, promising to replace real-world contracts.

Contracts are the building blocks of our identity, economy and society. They enforce agreements

between multiple parties and ensure trust in the compliance of the rules of the agreement but tra-

ditional contracts lack automation and decentralization. Smart Contracts provide the ability to

execute tamper-proof digital agreements, which are considered highly secure and highly reliable.

Smart contracts have a wide range of use cases. For example, they can be used in Supply

Chains and Logistics [KHD17]. Smart contracts allow tracking product movement from the fac-

tory to the store shelves. Each intermediary signs a step of the contract which then the final

consumer can analyse and have the guarantee of the origin of the product.

2

Introduction

1.3 The Smart Contract Connectivity Problem

Figure 1.1: Smart contract connectivity problem.

The Ethereum blockchain is designed to be entirely deterministic [Gav14], meaning that if some-

one downloads the whole network history and replays it they should always end up with the same

state. Bearing this in mind, smart contracts cannot directly query URLs for certain information

since everyone must be able to independently validate the outcome of running a given contract

making it impossible to guarantee that everyone would retrieve the same information since the

internet is non-deterministic and changes over time. Determinism is necessary so that nodes can

come to a consensus. In order for smart contracts to gain traction, they need access information of

the real world, outside of the blockchain. For example, the current price of the US dollar. How-

ever smart contracts cannot directly query the internet for information due to the non-deterministic

nature of the internet. Meaning that the information retrieved at some point in time cannot be en-

trusted to be available or equal in another point in the future, which may result in different states

when validating smart contracts by querying the internet in different moments. Oracles solve

the non-deterministic problem, of querying the internet, by inputting external information on the

blockchain through a transaction making sure that the blockchain contains all the information

required to verify itself.

3

Introduction

1.4 Smart Contracts Space and Computation Limits

Another problem for smart contracts is performing long and costly operations in terms of com-

putation and space. Several platforms are implementing smart contracts, also called DAPPs, Dis-

tributed Applications, namely Ethereum and EOS [Blo18], among others.

On the Ethereum platform, smart contracts pay "Gas" to run. "Gas" is a unit that measures the

amount of computation effort that certain operations require to execute. "Gas" is basically the fees

paid to the network in order to execute an operation. Therefore, the longer the application runs the

more "Gas" the smart contract as to pay.

EOS, on the opposite of Ethereum, works on an ownership model whereby users own and are

entitled to the use of resources in proportion to their stake. Basically, instead of paying transaction

fees, the owner who holds N tokens is entitled to N*k transactions. While Ethereum rents out

computational power on the network, EOS gives ownership of the resources in accordance with

the amount of EOS held. The mentioned resources are RAM, corresponding to the used state

on the network, CPU measuring the average consumption of computing resources and NET which

measures used bandwidth. With increasing prices of EOS tokens, staking these resources becomes

very costly.

All in all, either for users of smart contracts or the teams deploying them, keeping smart

contracts efficient and performing a non-costly operation is the key. Nonetheless, sometimes ap-

plications require costly operations and outsourcing them to an oracle outside of the blockchain is

the answer.

1.5 Oracles as a Solution

The solution to the smart contract connectivity problem and to outsourcing computation from the

blockchain is the use of a secure blockchain middle-ware, mentioned before as, an oracle. Ora-

cles can query data from APIs, data feeds, other blockchains or perform their own calculations

and input that data on the smart contract. This way the blockchain has all the necessary infor-

mation to verify the result of running a smart contract, and will always produce the same result,

independently of the point in time in which that verification runs.

4

Introduction

Figure 1.2: Oracle integration.

1.6 Authenticity Proofs

Authenticity proofs, are cryptographic proofs commonly used by oracles in order to prove their

honest behaviour. By generating some cryptographic document that can later be used to prove that

the oracle actually saw the information that it relayed or computed. In Chapter 3 I take a closer

look to the existing proofs.

1.7 Motivation and Objectives

The research hereby exposed was proposed by Takai, a blockchain start-up born in Porto, Portugal

with the purpose to be the first blockchain open innovation platform. Sponsored by Bright Pixel,

an innovation hub and venture investment house, which supports promising startups in their early

years. Taikai is building a platform that connects talent and entrepreneurs with the challenges of

the corporate players, through the power of the sharing economy and blockchain trust.

The growing interest in blockchain technology and especially in the potential of Smart Con-

tracts together with the lack of research on trustable oracles creates a gap in the general adoption

of blockchain by business and governments.

The proposed objectives for this work are as follows:

• Defining the requirements for oracle trust;

• Understanding blockchain oracles behaviour;

5

Introduction

• In-depth analysis of existing Authenticity Proofs;

• Define multiple oracle architectures in terms of trust;

• Oracle implementation and analysis.

1.8 Document Structure

Additionally to the Introduction, this document contains seven more chapters.

In Chapter 2, the author analyse the state-of-the-art in terms of blockchain oracles. Initially by

performing a systematic literature review, to capture existing academic work on the field and later

I expose some more work detailed by companies and individuals in their projects’ whitepapers.

In Chapter 3, the author deep-dive on existing authenticity proofs, detailing how they work,

what they can achieve and their limitations.

Chapter 4 exposes the problem statement underlying this dissertation and exposes a set of

forces that are meant to be achieved.

Chapter 5 looks at different oracle architectures and their different approaches for achieving

trust, assigning a context to be solved by each one and the resulting context of its application.

Chapter 6 describes the implementation of the last architecture, creating a simple and effective

boilerplate that can be leveraged for a wide range of oracle usage scenarios.

In Chapter 7 the author validates each architecture against the forces described in the problem

statement, as well as the implementation in its ability to achieve its goal.

Finally in Chapter 8, the other concludes on its contributions, details possible future work and

describes some of the challenges the author faced during the dissertation.

6

Chapter 2

Blockchain Oracles

The topic of blockchain oracles is still unexplored territory mostly investigated by start-up com-

panies and individuals thriving to solve a new problem. Therefore, research related to oracles

is scarcely found on peer-reviewed publications but, nonetheless, is invaluable in such an early

phase of the technology. Consequently, the state of the art cannot be complete without reviewing

the work developed by the academia and also by start-ups, enterprises, governments and individ-

uals.

2.1 Literature Review

To get an overview of academic research a systematic literature review was performed. It’s main

components and finding are described in this section.

A literature review allows scholars not to step on each other’s shoes but to climb on each other’s

shoulders, meaning, not duplicated existing research, find research gaps and strive to discover

something new. To conduct a non-biased, methodical and reproducible review we identify its

methodology, what are the data sources and what is the selection selection criteria (see 2.1.2).

The goal of this literature review is to get a sense of the corpus of existing works on the

topic of blockchain oracles, and the directions and extent to which previous research has rendered

significant results.

2.1.1 Research Questions

First of all and to guide the focus of the research, the following research questions were defined:

• RQ1: What kind of blockchain oracles have been proposed?
We seek to analyse the scope of existing blockchain oracles. The methodologies and tech-

nologies used, so as to understand how the oracle problem is tackled.

7

Blockchain Oracles

• RQ2: What are the research trends on blockchain oracles?
The goal of this question is to identify the main directions of research. Analysing past

solutions that never made it into production and solutions currently adopted.

2.1.2 Search Process

Figure 2.1, depicts the predefined review strategy that was used. These steps are inspired on the

guidelines for performing a systematic review by Kitchenham et al., 2007 [KKC07].

Figure 2.1: Review strategy.

The first step, Search Strategy and Data-sources, comprises a preliminary search on several

databases trying to optimize the query that best fits the research questions. After identifying the

set of keywords that best describe the problem a full query is built and tested.

Once a satisfactory query is achieved, we proceed to the next step, Study selection, here we

aggregate the studies from all databases and in the Screening and cleaning phase we remove papers

written in other languages or duplicated.

Next, in the Quality assessment step we iteratively exclude papers that do not help us answer

to any of the research questions. Initially analysing only the title followed by the abstract and so

8

Blockchain Oracles

on until a full read of the article seems worth it to take conclusions and respond to que research

queries.

This leads to the Data extraction step, in which we take and summarize the findings after

reading each paper.

These findings are used in the Data synthesis step, we can summarize all the findings, infer

some conclusions and answer the research questions.

2.1.3 Search Strategy and Data-sources

Having defined the strategy for the systematic review and after testing some keywords on mul-

tiple databases, the author selected the following four electronic databases to query for relevant

information:

• ACM Digital Library

• IEEE Xplore

• Scopus

• Google Scholar

The defined search query was the following:

(("blockchain" OR "block chain" OR "block-chain") AND ("oracles" OR

"oracle" OR "middle-ware" OR "middleware" OR "middle ware" OR "datafeed"

OR "data feed" OR "data-feed"))

This search query was used to comprise all the possible ways of referring to blockchain and

oracles. Some scholars have investigated the oracle issue by simply calling them a middleware or

data-feed since oracles can either be used as an intermediary that relays data or as the source of

the data.

The search was performed on the 5th of February 2019 and revealed the results presented in

Table 2.1.

Database Filters Results
ACM Digital Library Title, abstract and keywords 34
IEEE Xplore Title, abstract and index terms 24
Scopus Title, abstract and keywords 57
Google Scholar Title 8
Total 123

Table 2.1: Number of results and applied filters per database

Since the concept of smart contracts on the blockchain was only introduced in 2015, with

the introduction of the Ethereum blockchain [Gav14], only results after 2015 were considered,

also, all duplicated papers were removed. Analysing the initial search results per year, Figure

2.2, we can infer the growing popularity of oracle-related academic research. The year 2019 only

9

Blockchain Oracles

comprises work published in the month of January since the search was performed at the beginning

of February.

2015 2016 2017 2018 2019

0

15

30

45

60

1
6

27

55

2

Year

N
um

be
ro

fp
ap

er
s

Figure 2.2: Resulting papers from search distributed per year

2.1.4 Study Selection and Quality Assessment

The process of exclusion is depicted in Figure 2.3 and all the information regarding the papers and

in which phase they were excluded is transparently presented in A.

The study selection process initially started with a pool of 123 papers from the previously

stated online databases. As described on Figure 2.1, the selection and quality assessment compro-

mised four stages:

• Stage 1: Screening and cleaning duplicated articles or articles that were not in English.

• Stage 2: Exclusion by carefully reading the title but most importantly the abstract. After

this stage, only 13 of the 91 non-duplicated papers were either describing specific trustable

oracle implementations or mentioning the use of oracles.

• Stage 3: Analysing the introduction and conclusions in order to remove papers which do

not describe an implementation of a trustable oracle or a protocol to overcome the trust in

oracles.

• Stage 4: Full article reading to assess if the final bucket of articles answers the research

questions.

10

Blockchain Oracles

Figure 2.3: Screening stages.

2.1.5 Data extraction and Data Synthesis

This process resulted in finding three articles and two theses that approach varying problems in

implementing and guaranteeing trust in oracles. In these publications the author found the descrip-

tion of eight different implementations or approaches to blockchain oracles, which are analysed in

the following paragraphs.

Town Crier (TC) [ZCC+16], leverages trusted hardware, specifically Intel SGX1, to scrape

HTTPS-enabled websites and serve source-authenticated data to smart contracts. The architecture

of TC is depicted on Figure 2.4 2. It involves a TC contract on the blockchain that receives

requests from a client contract and communicates those request to a TC server which runs a SGX-

protected process to retrieve an answer from a data source through an HTTPS connection. Trusted

Execution Environments (TEE) prevent even the operating system of the server from peeking into

the enclave or modifying its behaviour, while use of the TLS (Transport Layer Security) protocol

prevents tampering or eavesdropping on communications on the network.

1Intel Corporation. Intel R© Software Guard Extensions SDK. https://software.intel.com/en-us/sgx-sdk, 2019
2Image taken from: https://town-crier.readthedocs.io/en/latest/how_tc_works.html

11

Blockchain Oracles

Figure 2.4: Town crier high-level architecture. Figure taken from the Town Crier paper.

Astraea, proposed by [ABV+18], describes a decentralized oracle network, which is depicted

on Figure 2.5 [ABV+18], with submitters, voters and certifiers, in which voters play a low-risk

game and certifiers a high-risk game with associated resources. Using a monetary incentive struc-

ture as a means to keep the players honest.

Figure 2.5: High-level overview of Astraea’s architecture.

Gilroy Gordon [Gor17] proposes a protocol for oracle sensor data authenticity and integrity to

IoT devices network with low computational resources. Using sets of public and private keys to

authenticate that the oracle sensor data actually was originated by that oracle even if the informa-

tion needs to pass by several oracles before being consumed by the application.

Francisco Monroy [Mon18] defines a gambling protocol based on incentives and assuming

that every entity involved has the objective to maximize their profit. The protocol overcomes the

trust in a single Oracle by polling a network of 7 oracles from a large network of available oracles,

they will then stake their money on a specific bet and only receive their investment back if the

majority of the oracles vote in the same winner. Creating, therefore, incentives for Oracle good

behaviour.

J. Eberhardt [EH18] does not propose a specific method but analyses existing solutions and

defines a systematic classification for existing trustable off-chain computation oracles. The authors

identify the following off-chain computation oracles approaches:

12

Blockchain Oracles

• Verifiable off-chain Computation, a technique where a prover executes a computation and

then publishes the result including a cryptographic proof attesting the computation’s cor-

rectness to the blockchain. An on-chain verifier then verifies the proof and persists the

result in case of success. Identified existing solutions are zkSNARKs [BTV19], Bullet-

proofs [BBB+18] and zkSTARKs [BSBHR18]. zkSNARKs require a setup phase which is

more expensive than naive execution. After the setup, however, proof size and verification

complexity are extremely small and independent of circuit complexity. This amortization

makes zkSNARKs especially efficient for computations executed repeatedly, which is usu-

ally the case for off-chain state transitions. While zkSTARKs and Bulletproofs require no

setup, proof size and verification complexity grows with circuit complexity, which limits

applicability.

• Secure Multiparty Computation, SMPCs, enable a set of nodes to compute functions on se-

cret data in a way that none of the nodes ever has access to the data in its entirety. Identifies

Enigma [Tam18], which proposes a privacy-preserving decentralized computation platform

based on multiple parties where a blockchain stores a publicly verifiable audit trail. How-

ever, current SMPC protocols add too much overhead for them to be practical. Hence,

Enigma now relies on Trusted Execution Environments.

• Enclave-based Computation, EbC, relying on Trusted Execution Environments (TEE) to ex-

ecute computations off-chain. Identified existing solutions are Enigma and Ekiden [CZK+18]

which present two different implementations of EbCs. In Enigma, programs can either be

executed on-chain or in enclaves that are distributed across a separate off-chain network. An

Enigma-specific scripting language allows developers to mark objects as private and hence,

enforce off-chain computation. In contrast to Enigma, Ekiden does not allow on-chain com-

putation but instead, the blockchain is solely used as persistent state storage.

• Incentive-driven Off-chain Computation, IOC, relies on incentive mechanisms applied to

motivate off-chain computation and guarantee computational correctness. IOCs inherit two

critical design issues: (1) keep verifiers motivated to validate solutions and (2) reduce com-

putational effort for the on-chain judge. The paper identifies TrueBit [TR17], as the first IOC

implementation, proposing solutions for both challenges. As verifiers would stop validating

if solvers only published correct solutions, TrueBit enforces solvers to provide erroneous

solutions from time to time and offers a reward to the verifiers for finding them.

2.2 Commercial Products and Projects

This search, unlike the systematic one explained before, cannot be described in a systematic way,

since the source of the information is scattered throughout whitepapers and documentation web-

pages of startups, which cannot be guaranteed to be searchable and assessable in a systematic

way.

13

Blockchain Oracles

To search for existing commercial products and projects, Google, a search engine and Medium,

a platform for blog posting used widely by developers and the start-up community, were used as

a means to find new projects or solutions for the oracle trust problem. Using these two tools a

lot of projects were found trying to solve the oracle trust problem and are solely documented on

white-papers or on the companies’ website documentation page. This kind of literature cannot

be found in peer-reviewed databases, but can nonetheless provide invaluable information and is

therefore worth being analysed.

The results of this search revealed a wide range of projects and protocols with varying degrees

of decentralization or authenticity. A short explanation of each will be detailed here:

• Oraclize.it [Ora18], provides Authenticity Proofs for the data it fetches guaranteeing that

the original data-source is genuine and untampered and can even make use of several data

sources in order the gather trustable data, but its centralized model does not guarantee an

always available service.

• ChainLink[EJN17], describes a decentralized network of oracles that can query multiple

sources in order to avoid dependency of a sole oracle, which can be prone to failure and

also to gather knowledge from multiple sources to obtain a more reliable result. ChainLink

is also considering implementing, in the future, authenticity proofs and make use of trusted

hardware, as of now it requires users to trust in the ChainLink nodes to behave correctly.

• SchellingCoin [Vit14] protocol incentivizes a decentralized network of oracles to perform

computation by rewarding participants who submit results that are closest to the median of

all submitted results in a commit-reveal process.

• TrueBit [TR17], introduces a system of solvers and verifiers. Solvers are compensated

for performing computation and verifiers are compensated for detecting errors in solutions

submitted by solvers.

2.3 Summary

A detailed explanation of the findings from the systematic literature search is already detailed in

Section 2.1.5 and the industry solutions in Section 2.2. This section analyses the combined work

from both the academia and industry.

Table 2.2, summarises the existing projects that were found and answers the first research

question (Section 2.1.1) highlighting three main types of oracles.

The first is software-based oracles, which try to prove their honest behaviour through the use

of software-based authenticity proofs. These, mostly take advantage of some features of TLS to

prove that the data they are relaying is the actually provided data.

The second type is hardware-based oracles. These leverage specific hardware to provide a

TEE, to securely separate the environment running the oracle code from the operating system and

14

Blockchain Oracles

Name Type Distributed Network Achieves trust through
Town Crier Hardware-based No Trusted hardware signed attestations
Astraea Consensus-based Yes Network with submitters, voters and certifier
[Gor17] Software-based Yes Sets of public and private keys
[Mon18] Consensus-based Yes Gambling protocol based on incentives
TrueBit Consensus-based Yes System of solvers and verifiers
Oraclize.it Software-based No TLSNotary, Android Proof

ChainLink
Consensus-based /

Software-based
Yes Query multiple sources

SchellingCoin Consensus-based Yes Incentive based

Table 2.2: Summary of oracle projects/research.

other applications to achieve higher guarantees on untampered code execution. They may even

provide authenticity proofs regarding that the query actually came from a legit TEE.

Lastly, consensus-based oracles, which require a network of peers working together to achieve

higher redundancy, having several peers querying the data and even in some cases peers perform-

ing the role of the verifier. This last approach largely depends on the existence of such a network

and requires the use of monetary incentives to keep the networking running.

The most promising solutions are Town Crier, ChainLink and Oraclize.it . Town Crier hardware-

based solution, more specifically Intel SGX, adds strong guarantees that the computation per-

formed can be trusted due to its isolution from the remaining environment. To this reason, Chain-

Link is adopting Town Crier3 to add increasing reliability to their distributed solution. The Chain-

Link distributed oracle network and their partnerships with huge players such as SWIFT 4 make it

a promising solution, although a private and fee-based one.

Oraclize.it, is an industry leading service because of their use and research of authenticity

proofs. They have also integrations with the most widely used blockchains implementations, such

as, Ethereum, EOS [Blo18], Hyperledger Fabric [ABB+], Rootstock 5 and Corda [BCGH16].

Their authenticity proofs are both software-based and hardware-based, with the use of TLSNo-

tary [TLS14], Android Proof 6 and Ledger Proof 7.

In conclusion, the industry presents ready to use solutions for a fee where as the academia

mostly investigates the use of consensus-based solutions which adopt an incentives based network.

The latter has the problem of requiring such a network of peers to existing in order to be trusted

where as the former can be used right away.

3ChainLink’s annoucement regarding the use of Town Crier: https://blog.chain.link/town-crier-and-chainlink/
4SWIFT is a global provider of secure financial messaging services, more info: https://www.swift.com/
5More information on Rootstock can be found here: https://www.rsk.co/
6More information on the Android Proof can be found here: https://provable.xyz/papers/android_proof-rev2.pdf
7More information on the Ledger Proof can be found here: https://docs.provable.xyz/#security-deepdive-

authenticity-proofstypes-ledger-proof

15

Blockchain Oracles

2.4 Conclusions

The author surveys 123 papers and fully analyses 5. One resulting in an hardware-based oracle

solutions, two consensus-based oracle proposals, one software-based solution for an IoT devices

network data authentication and the last one proposing a classification system of existing off-chain

computation oracles. The industry presents us four projects, in which two of them are widely in

use, namely Oraclize.it and ChainLink, and other two consensus-based solutions. The industry

seems to be investing the most on oracle research, as the two previous mentioned companies are

developing a wide range of authenticity proofs and leverage hardware solutions to increase their

oracles trustability as details on the previous section. As well as partnering with major banks and

institutions to allow their solutions to power new solutions for smart contracts.

Two main conclusions arise from both academic and non-academic research, and answer the

second research question 2.1.1.

First of all, there is a clear lack of academic research on the topic of creating trustable oracles.

This is mostly likely due to the specificity of the problem and that blockchain related technology

is usually paved by start ups and enthusiasts and not yet addressed in universities curricular plans.

Secondly, even though the main research on trustable oracles is being pursued by startups or

sole developers all the existing projects seem to be blockchain specific or in very early phases and

not yet ready to be generally adopted.

16

Chapter 3

Authenticity Proofs

In this chapter, the author takes a deep dive into existing authenticity mechanisms, in terms of their

applicability and limitations.

In the context of today’s Web, we are accustomed to trusting that a certain website or data

is originated from the expected source due to the general adoption of the HTTPS protocol. An

extension of the HTTP protocol which creates an encrypted and authenticated channel between

the client and the web-server providing the requested information. Then it becomes a matter of

whether we trust the source or not, but no doubts are raised as for the channel through which we

received it.

Unfortunately, in the context of blockchain, the most used, available and trusted protocols

do not have a direct way of communicating with HTTPS enabled services and therefore obtain

authenticated data. This creates the need for a trusted service to input that information, but trusting

in a third-party service requires it to provide irrefutable proof of its honesty.

Oracles, currently resort to two main techniques to prove their honesty. (1) Authenticity

proofs, which is a software or hardware generated cryptographic proof during or after an exe-

cution that can later be used to prove the integrity and honesty of the execution or of the provided

data. (2) Trusted Execution Environments (TEE) which add another layer of security by isolating

the application code from the environment in which it ran, and may also provide cryptographic

proof of their honest behaviour.

3.1 Trusted Execution Environment (TEE)

A Trusted Execution Environment is a secure computational environment that is strongly isolated

from the main operating system. It provides application isolation, integrity and memory confi-

dentiality. Sensitive data is stored, processed and protected from the main operating system or

network. This isolation is accomplished through software and hardware-enforced mechanism.

TEE runs a small operating system which exposes a minimal interface to the running application

17

Authenticity Proofs

and therefore reduces the attack surface. Advanced TEE embeds unique identities that allow to

verify the device authenticity and can be used to generate proofs of the device honest execution.

Examples of TEEs are Intel Software Guard Extensions (SGX) 1 and ARM Trustzone-based

Secure Elements [BBB+18], the latter is commonly found on smartphones. Another example is

Trusty 2, a secure Operating System (OS) that provides a TEE for Android. It is isolated from the

rest of the system by both hardware and software. Trusty’s isolation protects it from malicious

apps installed by the user and potential vulnerabilities that may be discovered in Android.

3.2 Authenticity Proofs Mechanisms

Several authenticity mechanisms have been developed and, as described in the state-of-the-art re-

vision, most oracles as a service providers use authenticity proofs to prove their honest behaviour.

However, these proofs are not infallible and the details or their implementation are not always

transparent or do not provide the disclosed level of trust. I will deep dive on the most common

proofs and discuss their implementation and applicability.

3.2.1 TLSNotary

TLSNotary is a mechanism for independently audited HTTPS (Hyper Text Transfer Protocol Se-

cure) sessions. Allowing clients to provide evidence to a third party auditor that certain web traffic

occurred between himself and the server. This mechanism takes leverage of the TLS (Transport

Layer Security) 3 handshake protocol to create an irrefutable proof, as long as the auditor trusts

the server’s public key, by splitting the TLS master secret 4 between three parties: the server, the

auditee and the auditor.

The algorithm allows an auditor to verify some part of a session by withholding a small part

of the secret data used to set up the HTTPS connection while allowing the client to conduct an

HTTPS session normally. The auditor never fully possesses, at any time, any of the session keys

and therefore cannot decrypt any sensitive information and can only verify that certain traffic did

occur.

3.2.1.1 How it works

TLSNotary modifies the TLS handshake protocol on the client side by levering some properties of

TLS 1.0 and 1.1. More specifically the pseudorandom function (PRF) used in the TLS 1.0 RFC

2246.

PRF(secret, label,seed) = PMD5(S1, label + seed)⊗PSHA−1(S2, label + seed) (3.1)

1More information on Intel SGX can be found here: https://software.intel.com/en-us/sgx/sdk
2More information on Trusty can be found here: https://source.android.com/security/trusty
3Information on the TLS protocol can be found here: https://www.ietf.org/rfc/rfc2246.txt
4The master secret is used, when generating keys and MAC secrets, as an entropy source, and the random values

provide unencrypted salt material and IVs for exportable ciphers.

18

Authenticity Proofs

This function compromises two secrets, S1 and S2. The auditor and auditee will independently

generate random bytes of data, S1 and S2, respectively.

The auditee applies P_MD5 to S1, generating 48 bytes:

H1 = H1,1 ‖ H1,2 (3.2)

The auditor applies P_SHA-1 to S2, generating 48 bytes:

H2 = H2,1 ‖ H2,2 (3.3)

The auditor and auditee then exchange H21 and H12 allowing each other to construct different

halves of the master secret, M2 and M1, respectively.

M2 = H1,2 ‖ H2,2 (3.4)

M1 = H2,1 ‖ H1,1 (3.5)

The auditee and auditor calculate X and Y, respectively.

X = P_MD5(M1) (3.6)

Y = P_SHA−1(M2) (3.7)

The auditor sends sufficient bytes from Y to the auditee so that it can compute the necessary

encryption keys and client mac key to send the request to the server.

Then the server response is received, but not decrypted, and the network traffic is logged and

a hash of the traffic is computed and set to the auditor as commitment.

Only then, does the auditor send the remaining bytes of Y to the auditee and this allows him

to calculate the server mac key and safely execute the regular TLS decryption and authentication

steps.

This complex sequence of calculations prevents the auditee from creating a fake version of

the post-handshake traffic from the server since he did not have in his possession the server-mac-

write-secret to decrypt and authenticate the initially requested data.

3.2.1.2 Limitations

TLSNotary provides some capabilities to attest TLS connections but comes with several limita-

tions. Firstly, TLSNotary supports only TLS 1.0 or 1.1, the properties mentioned before are not

present in TLS 1.2 and 1.3 and the former are considered less secure versions of TLS. Secondly,

TLSNotary depends on RSA Key exchange, which does not provide forward secrecy. Thirdly, TL-

SNotary uses MD5 and SHA-1 functions, which are now considered deprecated. Finally and most

importantly, TLSNotary requires trusting in a third party in most of its implementations, such as

in Oraclize [Ora18], and being an interactive proof there is no way to verify the TLSNotary proof

19

Authenticity Proofs

unless you were performing the role of the auditor during the retrieval. Oraclize, runs an auditor

node on Amazon Web Services (AWS), claiming that this implementation is secure as far as AWS

is trusted, simply moving the trust to a larger central entity. It also only allows the existence of one

auditor in which we must trust, TLSNotary will not be a suitable solution if more than one auditor

is required.

3.2.1.3 Conclusions

The TLSNotary proof is promising due to be software based and is, as of this moment, the most

spoken of authenticity proof. However, it’s applicability is increasingly getting limited due to the

deployment of new TLS versions and the assurances provided by the proof current implementa-

tions, which simply move the trust to a bigger entity. Therefore, it should not be considered a

reliable authentication method for future implementations.

3.2.2 Android Proof

In the oracle context, the Android Proof 5 results from Oraclize research and development efforts.

It takes leverage of SafetyNet software attestation and Android Hardware Attestation to provision

a secure and auditable environment to fetch authenticated data.

3.2.2.1 SafetyNet Attestation

SafetyNet 6, developed by Google, is an API service that allows assessing the Android device

in which an app is running on. It provides a cryptographically-signed attestation, assessing the

integrity of the device, looking at the software and hardware environment for integrity issues. By

returning an SHA-256 hash of the application that called the SafetyNet API it allows assessing if

the application running on the device has not been tampered with by comparing the application

SHA-256 hash with its publicly available and distributed open-source code.

3.2.2.2 Android Hardware Attestation

Since Android Nougat 7, developers are able to generate an hardware attestation object with details

regarding the device unique key stored in the Android Hardware KeyStore 8. The attestation object

is signed by a special attestation key kept on the device and the root certificate used by that key

is a known Google certificate. This guarantees that the hardware running the code has not been

tampered with.

5Documented explanation of the proof can be found here: https://provable.xyz/papers/android_proof-rev2.pdf
6Further described on the google developer page: https://developer.android.com/training/safetynet/attestation.html
7https://www.android.com/versions/nougat-7-0/
8Further explanation can be found here: https://source.android.com/security/keystore/

20

Authenticity Proofs

3.2.2.3 How it works

The application running on the Android device, on its first run, creates a NIST-256p key pair,

containing the Hardware Attestation Object to prove the integrity of the key, using the Android

Hardware KeyStore.

When a request is sent to the Android device, it starts an HTTPS connection and the entire

HTTP response is retrieved. The response’s SHA256 hash is signed using the hardware attested

key pair created on the application start. A call to SafetyNet API is then issued to attest the

SHA-256 hash of the application package running on the device, which should be open-source

and public available and distributed, guaranteeing the application integrity and therefore that no

change has occurred on the HTTP response before it was signed and its hash used in the SafetyNet

request.

SafetyNet then returns an attestation response in the JSON Web Signature format (JWS) that

guarantees the integrity of the application running, the integrity of the system in which the appli-

cation ran and that both the HTTPS request and the signing process using the initially created and

attested key has taken place in the application issuing the SafetyNet request.

The SafetyNet JWS response and the HTTP response is sent back for off-chain verification

and validation.

3.2.2.4 Conclusions

The Android proof is a far more complex and in-depth authenticity proof in comparison to TLSNo-

tary. It provides strong guarantees of software and hardware integrity as well as of the requested

data. Nonetheless, it relies on a centralized authority, Google, to develop a secure Trusted Exe-

cution Environment (TEE), used by Android to generate private keys, and to maintain SafetyNet

security sophisticated enough to offer good guarantees of the device and application integrity. A

bottleneck in this approach can be the required use of a physical Android device, limiting the

scalability context of this approach, but nonetheless, as long as Google is trustworthy it is a very

secure model.

3.2.3 Ledger Proof

The ledger proof is based on the use of a specific trusted environment, the Ledger Nano S 9

and Ledger Blue 10, developed by a French company to secure crypto assets safely. This device

provides an attestation for its authenticity and code integrity.

3.2.3.1 How it works

This device implements several layers of hardware and software to prove the security of its ex-

ecution. These devices run specific software, BOLOS 11 (Blockchain Open Ledger Operating

9https://shop.ledger.com/products/ledger-nano-s
10https://shop.ledger.com/products/ledger-blue
11Specific information regarding BOLOS can be found here: https://ledger.readthedocs.io/en/0/bolos/index.html

21

Authenticity Proofs

System), which has an SDK that enables developers to build application which can be installed

on the hardware. BOLOS exposes a set of kernel-level APIs which allows running secure crypto-

graphic operations as well as attest the device and the code running on it. The later is very useful

as it allows to run code in a secure manner and provides an attestation for the code. An application

can ask the kernel to produce a signed hash of the application binary code. A special attesting key

is used in this process and is safely controlled by the kernel, away from attacks attempts by any

application code. With this, the ledger proof leverages both the device attesting and code attesting

features to prove that the applications are running on a TEE of a ledger device.

3.2.3.2 Conclusions

Currently, the ledger proof is used by Oraclize to provide true random data to a smart contract.

But its use can be extended to other computation operations that may require to run outside of

the blockchain as long as there is support in terms of computational and memory capacity by the

ledger device. The device also lacks a direct connection to the internet and therefore cannot be

used to query data from the internet.

3.2.4 TLS-N

TLS-N [RWG+17a], is the first privacy preserving TLS extension that is efficient and most impor-

tantly provides non-repudiation 12. TLS-N does not require the use of a third-party or any trusted

hardware and is an extension to the TLS 1.3 protocol. In comparison to other implementations

such as TLSNotary which rely on deprecated versions, is up to date to the current technologies. It

guarantees non-repudiation, not only in a single TLS message exchange but also in a conversation

compromising several messages. It allows, with an additional computation overhead, to obfuscate

certain parts of the conversation (such as passwords or other sensitive information) while keeping

its trust model intact.

In the TLS-N model, there is no need to trust in a single auditor, such as in TLSNotary, since

the proofs are non-interactive and can be inspected by anyone, at any point in time, without having

to trust in a single auditor honesty.

3.2.4.1 How it works

TLs-N requires the web server (generator) and the client (requester) to have both support for the

protocol.

Initially, both generator and requester establish a TLS connection and negotiate the TLS-N

parameters in the handshake. The generator stores the state of the conversation which comprises a

hash value incorporating all previous records, an ordering vector and the time stamp from the start

of the session.
12Non-repudiation refers to a state of affairs in which the authenticity of something cannot be challenged, meaning

that there is absolute guarantee that something happened the way that it is stated.

22

Authenticity Proofs

The protocol ends when the requester sends a request for evidence. The evidence is composed

of a window of the exchanged ordered messages signed by the generator. The window begins right

after the handshake, this prevents Content Omission Attacks, depicted on Figure 3.1.

Figure 3.1: Content Omission Attack - The left figure shows the original and the right figure the
signed conversation.

Image extracted from [RWG+17b]

In this situation the evidence collection only starts after the first request is done, and another

request is asked right after (this one, inside the window collection, Req y on the image) and the

response for the first request is assumed to be the response to the second one. Only this two

messages are stored in the evidence window, since context is missing in the signed conversation,

the response 123 appears to belong to request y which is incorrect. Therefore, TLS-N always starts

right after the TLS handshake. The correct TLS-N flow is presented on Figure 3.2.

Figure 3.2: Simplied Overview of TLS-N.
Image extracted from [RWG+17b]

23

Authenticity Proofs

To generate a small proof independently of the number of messages, TLS-N uses merkle

trees [Mer79] to create a chain of messages’ hashes and then returns only the last hash, which

to be created requires all the previous hashes. This ensures a small storage overhead per TLS

session.

3.2.4.2 Conclusions

TLS-N was designed with the oracle trust problem in mind, the generated proof is small enough to

be evaluated on-chain on a smart-contract. The only drawback is that the smart contracts cannot

verify TLS signatures based on the web-PKI (public-key infrastructure) and therefore the contract

must have the generator public key.

TLS-N is, therefore, a promising solution to the oracle trust problem being the only major

drawback requiring the data providers to adopt the TLS-N protocol.

3.2.5 Town Crier

Town Crier [ZCC+16] (TC) authenticates data-feeds through the use of trusted hardware, more

specifically Intel SGX enabled CPUs. By levearing intel SGX, and as long as this system is trusted,

there’s is no need to trust the environment in which TC is running since it the TEE guarantees the

isolation of the TC implementation.

Thanks to its use of SGX and various innovations in its end-to-end design, Town Crier offers

several properties that other oracles cannot achieve:

1. Authenticity guarantee: There’s no need to trust any particular service provider(s) in order

to trust Town Crier data. (You need only believe that SGX is properly implemented.)

2. Succinct replies: Town Crier can prune target website replies in a trustworthy way to pro-

vide short responses to queries. It does not need to relay verbose website responses. Such

succinctness is important in Ethereum, for instance, where message length determines trans-

action costs.

3. Confidential queries: Town Crier can handle secret query data in a trustworthy way. This

feature makes TC far more powerful and flexible than conventional oracles.

3.2.5.1 How it works

Intel’s Software Guard Extensions (SGX) is a set of new instructions that confer hardware protec-

tions on user-level code. SGX enables process execution in a protected address space known as an

enclave. The enclave protects the confidentiality and integrity of the process from certain forms

of hardware attack and other software on the same host, including the operating system.

Upon request, the enclave can generate a proof, usually called attestation, signed by and hard-

ware protected key that can be used to prove that a certain software was run in a legit TEE.

24

Authenticity Proofs

Proof Requires specific hardware Can query the Web Future-proof Currently in production

TLSNotary X X
Android Proof X X X X
Ledger Proof X X X
TLS-N X X
Town Crier X X X X

Table 3.1: Summary of authenticity proofs

The flow of a TC requests starts with a User Contract creating a datagram request to the

TC Contract. The TC Contract, is a simple smart-contract on the blockchain that accepts client

requests and to whom the TC server listens to for new requests.

The TC Server, listens to events on the TC Contract and queries the requested data-source. The

enclave takes care of signing the operation where as the relay is a simple networking interface. The

answer is signed and returned to the TC Contract to later relay it to the User Contract.

3.2.5.2 Conclusions

Town Crier, presents an effective solution to tackle trust issues in the oracle operation. It does

require the use of proofs as well as its later analysis for good behaviour and specific hardware.

In scenarios, where there is a higher requirements for trust in the oracle behaviour and cost/per-

formance is not a problem, TC is a viable and more secure solution than software-based proofs.

3.3 Summary

Table 3.1 summarizes the previous analysed proofs regarding the necessities of specific hardware,

the possibility of their usage to not be deprecated in the next following years, if whether they can

query the web and are already be used in production.

25

Authenticity Proofs

26

Chapter 4

Problem Statement

Smart contracts power a decentralized world of automation and trust-less commitments. Compa-

nies, groups and individuals are able to automate tasks and contracts but in the current ecosystem,

smart contracts are still very much limited to the information available in the blockchain. There-

fore, connecting with the outside world requires a trusted authority to input in the blockchain the

required information upon request from the smart contract. This trusted authority is generally

called an oracle.

As explained before, the deterministic nature of blockchain does not allow smart contracts to

directly query a data-feed for information. In this context, oracles help connecting smart contracts

to the world outside of the blockchain. The problem here is to trust the oracle service to not

behave maliciously and undermine the trust provided by the blockchain consensus mechanisms.

Blockchain technology can be trusted to behave correctly even in byzantine environments, but the

oracle service does not abide by the same rules and therefore some workings must be put into

action to ensure the oracle’s response credibility.

As seen in Chapter 2, current solutions to the oracle problem use complex techniques to

achieve a certain desired level of trust. Some use complicated trusted hardware others incentive-

based mechanisms or authenticity proofs, but neither of these are simple and fully trusted ap-

proaches and they add extra complexity from the developer side, as detailed on Chapter 3.

The oracle problem is neither simple nor has a single solution, but its importance in powering

greater applications for smart contracts is undeniable. Their need arises from the following three

factors.

• Smart contract empowerment - Providing smart contracts with trustable information from

outside of the blockchain is decisive to gain general adoption and practicality.

• Cost optimization - Blockchain operations tend to be quite expensive, therefore, the oracle

solution should introduce a lower overhead cost as possible.

27

Problem Statement

• Keeping trust standards - As blockchain technology creates a trust-less environment, ora-

cles should as well keep up with the level of trust in their functioning.

4.1 Proposal

With this thesis, the author intends to lay the foundations for the development and architecture of

trustable oracle systems that will power several smart contract use cases.

The author believes that by describing, in a trust-guided manner, multiple architectures and

examples where they are being applied or possible use cases not yet documented creates a guided

model that helps future cases to have a systematic approach to which architecture will fit the

best. The architecture and design of blockchain oracles is still very much unexplored territory,

specially in terms of academia research but also in the industry, and therefore this thesis approaches

it broadly and investigates possible approaches and their trade-offs so that later studies can be

developed on the specifics of each architecture. To this extent the author defines a set of forces

that ought to be present on a well architectured oracle and also to help evaluating each architecture.

This forces are described bellow, in Section 4.2.

Furthermore, in Chapter 6, the author presents a possible implementation of a self-hosted ora-

cle. After analysing the state of the art in oracle development and the specifics of used authenticity

proofs, the author believes that the best way to achieve trust in an oracle is to deploy one instead

of relying on a third-party. The described approach, when in comparison to deployed solutions

in the industry reduces operations costs, increases trust and empowers the contract with purpose

built oracles. The author will demonstrate that deploying and oracle, can be more trivial than at

first seems, and that trust in its operation is directly the trust in one’s code and no more measures

(authenticity proofs) are need. This measures usually add a considerable extra cost and constrain

the developer.

4.2 Desiderata

This section describes several forces that separately or in combination drive the design of oracle

architectures and implementations. Defining this forces will help validate each architecture/im-

plementation in what forces they are able to accomplish in their different scenarios.

Fast time-to-market Not having to assemble a team or allocate resources into a developing a new

product which will only serve as a component of the main product being developed.

Keeping trust standards The company focus is not the development and securement of the ora-

cle service and may not have enough resources to keep the oracle as secure and reliable as

the underlying blockchain.

Data-feed fault tolerance Ensuring that a contract can follow through even if a data provider is

down by querying another provider.

28

Problem Statement

Data veracity Querying several data sources guarantees a higher trust on the veracity of the data

by not allowing a single service to be the owner of the truth.

Lower smart contract costs Checking authenticity proofs leads to higher contract deployment

costs, as the proof can be long and computationally expensive. Striving to build simple

oracle smart contracts will lead to reduced costs.

Lower oracle complexity Dealing with authenticity proofs and implementing the necessary mech-

anisms to verify them requires a higher and deeper knowledge of their implementation and

underlying cryptography.

Oracle decentralization Connecting a smart contract to data through a single node, creates the

problem that smart contracts intend to avoid, a single point of failure. With a single oracle,

a smart contract is only as reliable as that one oracle.

Oracle ownership decentralization Having one party controlling the oracle network centralizes

the power to manipulate all the contracts relying on the information provided by that net-

work of oracles.

4.3 Conclusions

This project aims to pave the way for oracle and smart contract development and design. It does

not try to come up with a new authenticity proof which adds extra complexity for the common

smart contract developer, but instead guide the developer to a solution accordingly to the problem

necessities. As well as, providing a simple but yet effective implementation of a self-hosted oracle

so as to have a simple skeleton to which the developer can iterate upon and adapt to the specific

smart contract needs.

29

Problem Statement

30

Chapter 5

Trustable Oracles

At this point, a definition, of what trust in an oracle is, seems appropriate. Trust has a lot of

meanings, depending on the needs of all the parties involved. I will model several levels of trust

and the requirements and fallacies of each model as well as its application and drawbacks.

Starting from an absolute trust scenario, in this model, the end user, being the smart contract

which receives information provided by the oracle, has complete assurances from both the verac-

ity of the data provided by the data source, as well as, undeniable proof that the oracle did not

tamper with the relayed information. This scenario points out two main points of failure, either

maliciously or unintentionally.

The first component which can be faulty or compromised is the data source. Assuring that the

information provided is correct does not have a straightforward answer. What correct means is

open to interpretation. For example, if the data source is an IoT sensor, which is prone to failures,

being correct is relative. The sensor needs to be perfectly calibrated and accurate. In this case,

using several sensors and averaging its values or removing outliers would solve its correctness.

Another example could be an API that returns the current value of the EUR in USD. In this

scenario, a party that would benefit from a higher conversion than the real one could coerce or

attack the data-source into providing a favourable value. The answer here can also be using several

data sources. Another solution would be to use a highly trusted entity such as the European Central

Bank (ECB) which can be a lot harder to coerce or attack and having a signature from the ECB

that backs the provided data. Choosing what type of data-source to use has a huge impact on the

trust fullness of the provided data not to mention architecture centralization when using a source

such as the ECB. All in all, the end user will have to understand the requirements and level of trust

necessary.

The second, and most relevant for analysis, is the oracle service used. Oracles are a necessary

part of the process since the other option would be having the data providers adapting to the

blockchain which does not seem to be a realistic option at the moment. Therefore we must trust an

oracle or a group of oracles. Two main options are available, either trusting a third-party oracle or

31

Trustable Oracles

self-deploying an oracle. In the first scenario, three variables take part in the level of trust. Firstly

he third-party oracle, if paid for, has the monetary incentive to be honest, since a bad record of

dishonesty would have the service losing credibility and therefore clients. Secondly, by using

proofs the oracle can establish its legitimacy, as long as, the proofs can undoubtedly be trusted and

verifiable by the smart contract, I will later analyse in depth this issue. Finally, oracle execution

transparency by using open-source code and having means for being audited. Additionally, to

guaranteeing single oracle integrity, it may be in the interest of the user to use several oracles

either to provide service availability or to increase trust by combining the result from different

oracle services.

5.1 Oracle Architectures

Having analysed what trust means, it is evident that no short definition is appropriate and that

it depends on the stakeholder beliefs. Hence, several architectural models for what a trustable

system is arise. Varying in decentralization and complexity. Each model satisfies different re-

quirements, such as performance, security and decentralization. In this section, I will describe

multiple architectures and point out the limitations and achievements of each one.

5.2 Oracle as a Service w/ Single Data Feed.

5.2.1 Context

Connecting smart contracts with information provided by data-feeds, which do not, by themselves,

input the required information on the blockchain requires the use of a trusted oracle. Developing

and maintaining a oracle may be prohibitive in terms of cost (if assembling a team was needed)

and desired time to market. Outsourcing such service would be desirable in this context, it may

not be in the interest of the company to specialize in the secure development of oracles.

5.2.2 Problem

How can a non-blockchain company keep up with the fast pace of industry while maintaining trust

in its services? It is critical to be able to quickly build a smart contract and connect it with the

needed information. How can a company do so, without allocating human resources into to the

development of yet another service and simply focus on its business logic?

5.2.3 Forces

• Fast time-to-market - Quickly deploy a product without the overhead of focusing on oracle

functionality and security.

• Trust - The oracle should guarantee as much as possible the same level of trust in its func-

tioning as the underlying blockchain technology.

32

Trustable Oracles

Figure 5.1: Oracle as a Service w/ Single Data Feed.

5.2.4 Solution

Oracle as a service, come as a quick and efficient solution for fast moving companies and indi-

viduals. Providing easy integration between a smart contract and a data-feed by means of specific

function calls and/or libraries. Theses services are per-request fee-based and can be cheaper com-

paring to assembling a team dedicated to the development and maintenance of an oracle. The

fee-based system increases the trust in the service as being honest is crucial to their business

model. Additionally, this services usually provide authenticity proofs which serve as another layer

of trust in the service. In the Chapter 4 I deep dive on the subject of the proofs.

5.2.5 Resulting Context

This solution results in an architecture that compromises two points of trust. The first being the

data-feed itself. No guarantees are given that the data provided is reliable and the smart contract

owner must, therefore, to the best of his knowledge, select a data-feed in which, by the operator

size or record of good behaviour, he can trust.

33

Trustable Oracles

The second point of failure is the oracle service itself. Although smart contracts, in the result-

ing context, have access to the information from the outside, that is only possible due to the use

of a third party to honestly relay the data. In this architecture, if the oracle simply relays the data,

then no trust model can be achieved as the oracle good behaviour is not tested against. As this

would not be a feasible architecture the existing services provide authenticity proofs to guarantee,

to a certain level, their honest behaviour. The problem here is on how are these proofs generated,

can they be verified on-chain or only off-chain and who is making, or providing, the verification

tools. In Chapter 4 I deep dive on these questions and techniques. Another reason to trust in the

service can be the monetary incentive for good behaviour. By paying the oracle for each request,

that becomes the oracle service business model, an extensive record of good behaviour is crucial

for business prosperity and therefore a good enough incentive for honestly conveying the requested

data. In this context, if the authenticity proofs provide enough assurances for the smart contract

creator and he trusts in the selected data-feed to provide the required data, then this model can

satisfy its needs in terms of trust, as well as, performance since it only queries one data-feed and

uses only one oracle. By not having any consensus mechanism an exchanging the least amount

of messages it can both achieve greater performance and a lower cost. But this lower cost and

higher performance architecture by itself is prone to failure due to lack of decentralization and

does not guarantee service availability which could lead to a failure in the smart contract to obtain

the requested information.

5.2.6 Known Uses

Oracize.it [Ora18] is a company currently using this type of architecture to power smart contracts.

They provide a oracle-as-a-service solution available to several blockchains and multiple authen-

ticity proofs. Their honesty is backed by the use of authenticity proofs, for a fee. They provide

multiple integrations and tools to check the proofs.

5.3 Oracle as a Service w/ Multiple Data Feeds.

5.3.1 Context

This scenario iterates on the previous one but focuses on data veracity. Sometimes an answer to

a contract request cannot be truly accepted unless several sources confirm it. Either because it is

unwise to trust in a single identity or because there might not be a single true answer but only an

answer that is accepted by a selected majority.

5.3.2 Problem

The previous architecture specified a single point of failure on the data-source layer. A contract

with high requirements in terms of availability cannot rely on using a single data-source, as doing

so would void the contract when the service providing that data is down or taken down. In terms

of trust, certain contracts may also require that several services provide an answer and then have a

34

Trustable Oracles

Figure 5.2: Oracle as a Service w/ Multiple Data Feeds.

consensus between all the received answers. This cannot be achieved by querying a single source

and therefore the oracle service must be able to query several sources and either define the resulting

answer or provide all the responses to the smart contract and let the smart contract resolve to a

final answer.

5.3.3 Forces

• Availability - Higher fault-tolerance guarantees in the data provider.

• Trust - Higher trust on the veracity of the queried data..

5.3.4 Solution

The oracle service should have a mechanism to query several data-sources during a specified

timeframe. And have a predefined consensus mechanism that would require to have m of n data-

sources providing the possible answers and reduce them to a final answer to the smart contract.

35

Trustable Oracles

5.3.5 Resulting Context

In this context, the layer of trust regarding the data-feed is almost eliminated by having the ability

to choose from several data providers and therefore not relying on a source of truth. It also provides

a higher system availability, as the oracle/smart contract can have some degree of redundancy in

the data providers selection.

5.3.6 Known Uses

Chainlink [EJN17] is a known use case of a service that differentiates itself from the competition

by using a decentralized network of oracles to guarantee data veracity and availability. Chainlink

is partenering with Oraclize.it to integrate Oraclize.it service with authenticity proofs into the

decentralized network of Chainlink.

5.4 Single-Party Self Hosted Oracle.

5.4.1 Context

Although the use of Oracles as a Service allows for a lower product time to market by not having

to take care of the development, maintenance and deployment of the oracle service it usually leads

to less flexibility in the oracle design, vendor lock-in and fees charged by the vendor. If the product

requirements do not allow for the specified challenges or the trust levels required by the contract

are more than what the oracle vendor can provide it may be a solution to deploy its own oracle.

A company with its own developing team capable of allocating resources for the development of

the oracle or a single developer who does not want to incur in the oracle vendor fees will benefit

from their own deployment in terms of cost and most importantly in regard to trusting the oracle

behaviour.

Instead of fast-time to market the main focus here is trusting the oracle provider to behave

correctly. The smart contract output will only affect a single party or multiple parties which are

non competing and therefore trust someone to run the oracle. In such scenario, costs can be

reduces, with increasing developer workload, by not using any authenticity proofs and the oracle

can be further customised to handle a specific contract requirement.

5.4.2 Problem

Currently, oracle behaviour is neither easy to check nor fully transparent and trustable. As seen in

Chapter 4, verifying oracles authenticity proofs sometimes cannot be done on-chain, resulting in a

contract being executed with an incorrect proof which is only later verified but the contract is irre-

versible adding not much to oracle trustability except the ability to cancel future contracts. Proofs

also add complexity to the smart contract code which will result in slower contract development

and more importantly in higher contract costs. Most blockchains charge contracts by either CPU,

36

Trustable Oracles

memory and network use, or even all of these, and therefore receiving the proof and verifying it

on-chain will increase the cost of running a contract.

5.4.3 Forces

• Trust - Higher trust requirements than those provided by the authenticity proofs.

• Cost optimization - Checking authenticity proofs leads to higher contract deployment costs,

as the proof can be long and computationally expensive. The use of authenticity proofs

also increases personal cost, as it requires higher knowledge of the proofs workings and of

cryptography.

5.4.4 Solution

A solution to trusting an oracle service is to deploy our own oracle service. Surely, doing so

incurs in technical expenses for programming, deploying and maintaining the oracle, however,

does not require to trust in a third party but only on our ability to maintain the necessary level of

security in our own oracle. Additionally, it will free the smart contract owner from the fees charged

by the oracle provider and allow for further flexibility in adapting the oracle to new sources of

information. Furthermore, it will also lead to simpler and cheaper smart contracts by not requiring

the use of authenticity proofs in regards to the oracle behaviour, as the developer knows exactly

what the oracle is running under the hood.

5.4.5 Resulting Context

With this solution we almost remove the second layer of trust, trusting in the oracle service.

Nonetheless, we move the trust to the developer ability in coding a secure and reliable oracle.

The main benefit is not requiring to have the overhead expense of using, understanding and veri-

fying the authenticity proofs required for a trustable use of Oracles as a service.

5.4.6 Known Uses

Gardener 1 is a recent open-source project, created in beginning of 2019, to tackle the use of third-

party oracle providers. Their open-source solution can be self-hosted by anyone and allows to

deploy your own oracle service without having to use authenticity proofs or trusting on a provider.

5.5 Multi-Party Self Hosted Oracle.

5.5.1 Context

In some cases, competing parties may rely on a smart contract to keep track of some value with

interest to them, therefore, it may be a requirement that several of these parties take part in the

1More information on the gardener oracle project can be found here: https://gardeneroracle.io/

37

Trustable Oracles

Figure 5.3: Single-Party Self Hosted Oracle.

process of providing the data to the smart contract. It may also be the case, that if a single oracle

is the source of truth of a smart contract, then the easiest way to attack the smart contract is by

attacking the central point of failure, the oracle. In both of these cases, the oracle singularity needs

to be tackled.

5.5.2 Problem

This context raises two problems, oracle consensus and availability. Whoever owns the oracle

providing the data to the smart contract holds the smart contract and therefore can influence the

execution of the contract, in which several competing parties rely upon. In terms of availability, a

single oracle creates a single point of failure in case of an attack or system failure.

5.5.3 Forces

• Availability - Oracle decentralization eliminates the oracle service as a single point of fail-

ure and possible denial-of-service attacks.

38

Trustable Oracles

Figure 5.4: Multi-Party Self Hosted Oracle.

• Trust - Oracle ownership decentralization brings increased trust in the result of the smart

contract, as it requires multiple distinct entities to deploy an oracle and have their say in the

final data provided by the oracle to the smart contract.

5.5.4 Solution

The most beneficial and simple solution, here, is having each interested party launching their own

oracle and having all oracles communicating between themselves with a mechanism for consensus.

The consensus mechanism would vary from case to case, and from how critical the smart contract

solution is. To increase the level of trust in each party, each node would sign their response and be

able to launch only one node. With this, once one of the nodes had collected all the signatures than

it would provide the contract with the requested information. Also, a party would not be able to

gain control over the network of oracles by launching more nodes than the remaining stakeholders.

However, the consensus algorithm should never require that all nodes provide a response since that

would again create a weak network in which by tacking down one oracle the whole system would

fail.

39

Trustable Oracles

5.5.5 Resulting Context

With this context, we bring the same trust level given by blockchain technology to the oracle

service. Resulting in a decentralized network with no single party running it and every stakeholder

has the same weight in providing the data. This context, however, is only suitable for previously

defined user groups, with an agreed minimum necessary quorum for consensus and known public

keys of all nodes.

In a community context, this approach is not suitable since nodes would be able to join and

leave making it harder to achieve a predefined consensus. Involved parties would be able to launch

more than one node, resulting in some parties being able to take over the minimum consensus

quorum and overpower the network unless some proof-of-work mechanism is implemented. This

would also result in a context of wisdom of the crowd, in which the most effective way of control-

ling a correct answer would be by implementing some incentives mechanism such as [ABV+18].

The problem around incentives is that they do not guarantee that, in edge cases, with enough in-

centives, the network will provide a wrong answer if justifiable. Although, as far as the author is

concerned, no other mechanism is available when dealing with wisdom-of-the-crowd information.

5.5.6 Known Uses

As no specific use case for this architecture could be found, the implementation describe on Chap-

ter 6 is a proof-of-concept of the use of such architecture and it’s pros and cons are also analysed

on the chapter.

5.6 Summary and Conclusions

The described patterns represent different trust level requirements and forces. Each resolve a

specific issue and may create another. When the trust requirements increase so does the gap from

idea to market and development costs. Each architecture involves trading cost and flexibility with

trust.

Figure 5.5 depicts a possible simple flow of thought when choosing the previous defined pat-

tern that better fits a specific need.

First the decision maker must look at the smart contract needs and decide if the level of trust

and audibility provided by an oracle service is sufficient. If so, then can he trust the data source or

is there a need for several data providers? Leaving two patterns, 5.2 and 5.3. If he cannot trust any

existing oracle service, either because the existing proofs are to expensive to verify, or cannot be

verified in the contract or just don’t provide the necessary audibility, among others, whatever the

reason he needs to think if he has the, either monetary and human, to build his own oracle service.

If not, and with increasing costs due to per-request fees, he may choose to use multiple oracle

services and then perform some consensus mechanism on the smart contract. If he can then build

and maintain its own oracle service he must aks him self the question, Who will use this oracle?

How many different and maybe competing parties rely on the smart contract to which the oracle

40

Trustable Oracles

Figure 5.5: Process for choosing the architecture of a blockchain oracle.

will provide data. If there is only one stakeholder of the smart contract and he runs the oracle,

then a perfect system of trust is achieved since outside the blockchain he controls every part of the

process, resulting in the pattern 5.4. However if a smart contract has several stakeholders then, no

single party should control the oracle and there must be a mechanism to deploy several oracles to

power the smart contract while achieving consensus outside of the blockchain and only providing

the smart contract with the final result. This reduces smart contract costs while allowing every

stakeholder to have a say in the data provided to the smart contract, pattern 5.5.

41

Trustable Oracles

42

Chapter 6

Self-hosted Oracle Implementation

This chapter presents a possible implementation of a multi-purpose self-hosted oracle. Multi-

purpose since it will be able to query a specified API and return a particular value from the answer

of that API, allowing to be used by several contracts which require different information and

different sources. Self-hosted, as its code is available for anyone to copy and use for their own

purpose and not having to rely on and oracle-as-a-service product by deploying their own version

of the oracle.

As far as the author as searched, at the moment there is no clear explanation on how to imple-

ment your own oracle and therefore on how to power smart-contracts to query the web. Creating,

therefore, a need for the architectural analysis presented in the previous chapter and a detailed

approach to the last architecture, paving the way for new ways of solving the oracle problem.

In principle, the described oracle is to be used by a single entity or competing entities. In this

setup, competing parties which may not trust each other, would be able to power their contracts by

having each party launch one oracle, and therefore having all the same power of decision. Singles

entities powering their contract, can also use the same implementation by mentioning only a single

oracle addres in the contract list of oracles. For competing parties it requires a list of predefined

oracles and a predefined minimum quorum. As the list of the oracles address is transparently in

the oracle smart contract, there is no way for a party to cheat in their voting power.

This implementation cannot address an open community in which oracles can leave and join

the network. The rationale behind this decision is that if it were to be open to a community the

decision power in the final result would be dependent on who could launch the most oracles,

solving this issue would require the use of strategies, such as, proof-of-work which would become

a different issue than the one the author is trying to solve.

43

Self-hosted Oracle Implementation

Figure 6.1: Self-hosted architecture.

6.1 Oracle Overview

The oracle compromises two main components, the on-chain oracle and the off-chain oracle. Fig-

ure 6.1 depicts the general architecture and a simplified version of the messages exchanged.

The on-chain oracle is a smart contract that functions as a bridge between a client smart con-

tract that needs information from the Web and the oracle service that will query the web. This

oracle has a whitelist of oracle addresses which are trusted by the oracle to query the web and has

the necessary functions to create events, explained in Section 6.2 that will trigger API calls and

reach a consensus and the necessary data structures to store the requests and the agreed answer.

The off-chain oracle, or oracles, are services that continuously listen to specific events emitted

by the oracle smart contract. Upon listening to a NewRequest event query the specified API and

key and return a single value to the smart contract by means of a new transaction.

This architecture allows for the use of several oracle nodes and the use of minimum voting

quorums to achieve higher levels of trust, include more parties or increase service availability.

However, the higher the number of oracles the higher the cost per transaction. Table 6.2 shows the

44

Self-hosted Oracle Implementation

cost of each query in euro using different numbers of oracles1.

3 6 12

0

2

4

6

2.16

3.53

6.87

Number of oracles

C
os

ti
n

E
ur

o
pe

rr
eq

ue
st

Figure 6.2: Cost per query using a consensus of 2/3,

Queried Google Finance on the 22th of May, 2019.

6.2 Component analysis

As described before the oracle implementation comprises two components, the on-chain and the

off-chain oracle components. In this section, the author describes the logic behind each component

and how they interact with each other to answer requests made to the oracle.

6.2.1 On-Chain Oracle

The on-chain oracle is a smart contract that has an array which stores the requests made to the

contract. Hard-coded in the contract is the predefined minimum quorum, which is the minimum

number of equal answers needed to trust in the declaration of a final result. This minimum quorum

will be used in all requests to the contract. Also hard-coded are the white-listed addresses of

oracles that the contract will accept transactions to update requests.

Having the addresses and minimum quorum hard-coded on the oracle smart contract is not a

software anti-pattern but rather an imposition on the contract terms. Doing so allows all parties

who depend on this oracle to previously know that the oracle will always query those addresses

and therefore they cannot be later altered for the benefit of one or more parties.

The code for the on-chain oracle can be found in Appendix B and due to its small size can be

easily interpreted. Nonetheless, an explanation of its logic is detailed bellow.

1Each test was composed of 110 requests using the same settings (Gas Price of 20 Gwei) except for the number of
oracles. The result shown is the average cost of each request.

45

Self-hosted Oracle Implementation

6.2.1.1 Creating a request

Initially the request structure, Listing 6.1, only contains the URL which will be queried by the

off-chain oracle and the attribute to return in the json API response.

1 struct Request {

2 uint id; //request id

3 string urlToQuery; //API url

4 string attributeToFetch; //json attribute (key) to retrieve in the

response

5 string agreedValue; //value from key

6 mapping(uint => string) anwers; //answers provided by the oracles

7 mapping(address => uint) quorum; //oracles which will query the answer (1=

oracle hasn’t voted, 2=oracle has voted)

8 }

Listing 6.1: Structure that holds information regarding each request.

A client smart contract calls the public function createRequest passing the url to query and the

attribute from the api response that it needs to retrieve. This will add a new request to the array of

requests in the oracle smart contract, initializing the list of trusted off-chain oracles addresses and

the minimum quorum. This list is composed of the addresses of the accounts which are trusted

to add their input, the ones specified in the contract parameters, by creating transactions to the

on-chain oracle contract.

The mapping of each address to an unsigned int is initialized at one, due to the fact that by

default a mapping contains all possible addresses initialized at zero. By marking an address at

one we explicitly set the trusted addresses so that later we can filter messages whose sender was

previously marked with one.

Finally, an the NewRequest event, Listing 6.2, is emitted so as to alert the off-chain oracles of

the existence of a new request.

1 event NewRequest (

2 uint id,

3 string urlToQuery,

4 string attributeToFetch

5);

Listing 6.2: Event emmited upon a new request to the on-chain oracle.

6.2.1.2 Reaching consensus

Each off-chain oracle, upon listening to the NewRequest event will query the specified API and

call the updateRequest function on the on-chain oracle contract passing the id of the request and

the value it retrieved from the API. The calling of the function is done by means of inputing a

46

Self-hosted Oracle Implementation

new transaction on the blockchain addressed to the smart contract, this will make the requested

information available on the blockchain to be used by the contract.

The on-chain oracle contract, will first check if the transaction came from the whitelisted

oracle addresses and if so, mark, that for this specific request this oracle has inputed his answer.

Then it will save the answer on the list of answers for that request and count how many answers

are on the list that match the current answer. If the count matches the minimum quorum set on the

contract, the oracle contract will set a final agreed value for that request, meaning that at least a

specified minimum number of oracles have provided the same answer and so it can be trusted to

be the correct answer. This will emit a UpdatedRequest event, Listing 6.3, that will alert who ever

made that request that an agreement was reached on its answer.

1 event UpdatedRequest (

2 uint id,

3 string urlToQuery,

4 string attributeToFetch,

5 string agreedValue

6);

Listing 6.3: Event emmited by the on-chain oracle upon achieving consensus.

6.2.2 Off-Chain Oracle

The off-chain oracle is a service that continuously listens to the events emitted by the on-chain

oracle contract, more specifically to the NewRequest event.

For this proof-of-concept the author used a node.js service, detailed in Appendix C, which

upon new requests queries a specified API and returns a value to the smart contract by means of a

transaction.

In order to create theses transactions we connect to the Ethereum blockchain, using web3.js2,

an Ethereum JavaScript API, and configure the accounts which will add the transactions with the

answers to the requests to the smart contract. These accounts are the ones whose account addresses

are specified on the white-listed list of addresses on the on-chain oracle. The detailed code can be

found on Appendix D.

The off-chain oracle is very versatile, as it can be written in any language, that is supported

by the Ethereum API. It can be worked upon to easily integrate new APIs or further logic and

features without requiring any changes to the smart contract, as long as it respects the contract

callback requirements.

2More information about web3.js can be foud here: https://web3js.readthedocs.io/en/1.0/

47

Self-hosted Oracle Implementation

6.3 Project Information

The full project code hosted on a Github repository and can be found here: https://github.

com/pedroduartecosta/blockchain-oracle. All the information regarding dependen-

cies and how to run can be found in the README.md file inside the repository.

The specified set-up, will launch a new local deterministic Ethereum blockchain with three

accounts for testing. It is deterministic so as to make testing easier. It will also, compile and

deploy the oracle smart contract to the local created blockchain and launch the off-chain oracle

services required to listen to the blockchain events for new requests and query the requested APIs.

It will also launch a off-chain client that will act as a client smart-contract and will create new

requests every second to the oracle smart contract and a off-chain consumer that will log all the

requests being made for debugging purposes.

The project is licensed with "The Unlicense" 3, a license with no conditions whatsoever which

dedicates works to the public domain.

6.4 Summary and Conclusions

This oracle implementation, although simple, is a versatile proof-of-concept which can already be

applied to multiple smart-contracts in different scenarios. Since it allows to query any supported

API and to choose which field the client smart contract needs. Limited only in accepting requests

to APIs which return an answer in JSON format and also to only one value, but those limitations

are only from the developer perspective and can easily be removed. This allows to achieve a

desired simplicity that does not constrain the current model to a single use case. Rather, the code

base can be used to add new features accordingly to the needs of each case without requiring big

and breaking changes, being therefore a great starting point tackling the biggest problems when

creating an oracle from scratch.

Having explained the versatility of this approach we have to consider the cost and benefits of

being self deployed. Firstly, by using a self-deployed oracle, no extra-fees4 are charged by a third

party. To be clear, the cost of making a request to an oracle-as-a-service provider is composed

of making the call to the oracle smart-contract, meaning its execution, plus an extra-fee for using

the service. Secondly, trust is maintained since we know exactly the code that is being executed,

even in an environment of competing parties, since all parties can launch an oracle and have the

same say in its final result. Thirdly, cost can be easily optimized, since cost in a smart-contract is

proportional to the amount of executed code, the developer has full access to edit and improve the

on-chain oracle contract and therefore can improve the cost of each transaction/answer from the

oracle to the oracle contract. Whereas in a third-party service the on-chain oracle contract code

is managed by the service to whom we pay. Since, third-parties usually use authenticity proofs

as evidence of their honesty, those proofs will add an extra cost to the transaction. Nonetheless,

3Information regarding this license can be found here: https://unlicense.org/
4More information about oraclize.it can be foud here: https://docs.oraclize.it/#pricing

48

https://github.com/pedroduartecosta/blockchain-oracle
https://github.com/pedroduartecosta/blockchain-oracle

Self-hosted Oracle Implementation

there are some possible extra costs not taken into account in this analysis which are relate to the

maintenance and deployment of the off-chain oracle, something that is taken care by the third-party

oracle provider. However, this off-chain oracle can be also be self deployed or even if deployed

on a cloud provider the cost is insignificant in comparison to the cost of each request made to the

on-chain oracle as demonstrated in Figure 6.2.

All in all, this Chapter alongside the corresponding Appendixes, B, C and D, present a simple

but effective way of deploying an oracle platform, on-chain and off-chain, that easily abd cost

effectively can support and further empower existing and future smart-contract scenarios with

trust in mind.

49

Self-hosted Oracle Implementation

50

Chapter 7

Evaluation

In this Chapter, the author seeks to demonstrate how the architectures and prototype detailed in

Chapters 5 and 6 provide answers to the desiderata stated in Chapter 4.

Initially, the author compares the defined architectures with existing solutions and how broadly

they describe all possible scenarios.

Then, the implemented solution in comparison to the state of the art, as well as its applicability,

use case scenarios and limitations.

7.1 Oracle Architectures

In this section, the author will validate each architecture against the forces defined previously in

the desiderata, in Section 4.2.

7.1.1 Oracle-as-a-Service w/ Single Data Feed

This architecture achieves a fast time-to-market, allowing the developer of the smart-contract

to quickly retrieve data from the web by plugging-in an oracle-as-a-service solution. Thus, this

approach does not require any study, development and maintenance of an oracle service, quickly

satisfying the contract data needs.

In terms of keeping trust standards, this type of architectures usually involves the use of

trusted hardware or authenticity proofs to achieve such end. There are some caveats associated

with some of them, such as the most widely used one, TLSNotary, but others such as the Android

Proof and the use of trusted hardware may suffice to guarantee trust in the oracle service if their

implementation and proofs are readily and transparently available. These proofs are managed by

the third-party provider and therefore do not hinder achieving a fast time-to-market.

51

Evaluation

7.1.2 Oracle-as-a-Service w/ Multiple Data Feeds

Iterating on the previous architecture, this one upholds the same characteristics of the previous

one, fast time-to-market and keeping trust standards.

However, in this scenario, we don’t fully trust the data-source. Trust here, has two compo-

nents. Trusting the data-source availability (uptime) and trusting the veracity of the data provided.

By querying multiple data-feeds and setting a quorum both problems are solved. If some data

providers fail to answer the request and the minimum quorum upholds the contract can still per-

form its duties. Also, if we cannot trust a single party to provide the data, as doing so will give full

power to the outcome of the contract to that single data provider, the problem is solved by having

a minimum quorum that can provide the same answer. This way, an outlier in the selected data

provider is discarded. Guaranteeing both data-feed fault tolerance and data veracity.

7.1.3 Single-Party Self Hosted Oracle

This scenario takes a different approach, from the two previous ones, in terms of where to place the

trust. In the previous scenario, due to the use of a third-party, it is required that some sort of proof

is generated in order to guarantee the good behaviour of the third party. However, these proofs do

add extra overhead to each request in terms of memory and computation used. In a scenario where

the smart contract execution will only affect a single user, the owner of the client smart contract,

and he is able to develop and maintain its own oracle, then it will become a more viable approach

to use a self-hosted oracle approach than to use a third-party oracle-as-a-service. Since it is own

code that is being executed and he controls the environment of execution he can have full trust in

the oracle behaviour, not depending therefore on any extra mechanism.

In a scenario wherein a set of predefined parties are stakeholders in the smart-contract execu-

tion, it is possible to skip the use of authenticity proofs by having all the parties contributing to the

oracle execution. With such approach, we get to keep the trust standards of the execution of the

smart-contract as a whole.

However, this approach introduces increases the time-to-market as it requires to develop and

maintain the oracle service.

Additionally, it reduces the costs of the oracle operation by removing the extra fee from each

query. Also, as there is no need for authenticity proofs, the contract code becomes simpler and

the storage costs decrease as well leading to lower smart contract costs. In fact, due to being

purpose-built, these contracts should have less executable code in comparison to contracts that

need to fulfil a bigger list of requisites, lower oracle complexity, and therefore become cheaper

contracts.

7.1.4 Multi-Party Self Hosted Oracle

Iterating on the previous scenario, this architecture addresses the issue of having several parties

depending on the execution of the client-smart contract. Here a predefined set of parties are stake-

holders in the smart-contract execution, it is, therefore, possible to skip the use of authenticity

52

Evaluation

proofs by having all the parties contributing to the oracle execution. Each party can deploy their

own off-chain oracle and the on-chain oracle smart contract will serve as the contract to which all

parties accept to abide by. Having all the parties identified in the contract, for example with the

account address, then only they can make transactions that will be accepted in the smart contract.

With such approach we get to keep the trust standards of the execution of the smart-contract as

a whole, as well as, oracle decentralization and oracle ownership decentralization, by having

each party contributing to the final result by launching their own oracle and having the same say

in the final result. Having higher oracle availability and trust in its behaviour by having multi-

ple stakeholders performing the same job. It also allows for data-feed fault tolerance and data
veracity if this quorum of oracles query different data-sources or being the source of information.

7.1.5 Conclusions

Having addressed these architectures in terms of a predefined set of values, that are expected

to be upheld in the operation of an oracle, it is possible to understand how each architecture

addresses different concerns and the implied use cases. Table 7.1 summarises the architectural

forces according to each architecture.

OaaS w/SDF 7.1.1 OaaS w/MDF 7.1.2 SP-SHO 7.1.3 MP-SHO 7.1.4

Fast time-to-market X X

Keeping trust standards X X X X

Data-feed fault tolerance X X

Data veracity X X

Lower smart contract costs X X

Lower oracle complexity X X

Oracle decentralization X

Oracle ownership

decentralization
X

Table 7.1: Summary of architecture forces

As the Table 7.1 visually points out, no architecture can satisfy all requirements, which can be

easily understood. For example, in a self-hosted scenario it is always impractical to achieve fast
time-to-market as it is necessary to develop, study and deploy the whole solution.

Also, lower smart contract costs requires further analysis. The author, considered that the

self-hosted option is cheaper comparing to the use of a third-party provider by considering only

the costs of running the oracle and not the costs of paying developers and infrastructure. Still on

the topic of costs, the architecture MP-SHO 7.1.4 can only be assumed to have lower costs than

the as-a-service approach since it does not require complex contracts or paying fees. But it might

be more expensive than the architecture OaaS w/SDF 7.1.1 if the number of oracles deployed is

53

Evaluation

Proof type

Datasource Base price None TLSNotary Android Ledger

URL 0.01$ +0.0$ +0.04$ +0.04$ N/A
WolframAlpha 0.03$ +0.0$ N/A N/A N/A
IPFS 0.01$ +0.0$ N/A N/A N/A
Random 0.05$ +0.0$ N/A N/A +0.0$
Computation 0.50$ +0.0$ +0.04$ +0.04$ N/A

Table 7.2: Oraclize fees in USD

too large in comparison to the use of a single oracle in the latter mentioned architecture. As for

each oracle, the cost of operations increases, as depicted on Figure 6.2.

Finally, analysing the factor keeping trust standards all architectures checked this boxes, as

oracles-as-a-service have at their disposal authenticity proofs, such as TLS-N and Town Crier, that

can provide a trustable enough proofs for certain scenarios. It might not be the ones that their are

using now, but looking from an architecture standpoint they can achieve this as well.

7.2 Self-hosted Oracle Implementation

The author proposes three main characteristics of its implementation comparing to the current

existing oracle-as-a-service solutions. These are reduced costs, higher trust and higher contract

empowerment.

7.2.1 Reduced costs

In this context, cost per query compromises multiple dimensions. Firstly, the cost of querying the

oracle and inputting the result in the contract which corresponds to the execution of the contract

code and is therefore directly related to the amount of code that needs to run. Secondly, underlying

fees imposed by the third-party service. And finally, a smaller cost but still worth mentioning, the

cost of the off-chain oracle service that will query the API.

Analysing the first one, the contract executing cost paid by the caller, that is not much that

the developer of the smart contract can do to optimize this since it is fully managed by the third-

party service. Hence, on a self-deployed oracle, the cost can be further optimized by modelling

a single purpose oracle for the smart contract needs, which will inherently run less code due to

its simplicity. Also, on a self-hosted oracle there is no need to add the over-head of authenticity

proofs which either verified on-chain or partially stored off-chain lead to higher transaction costs.

Secondly, existing services are for-profit companies and therefore require an extra-payment for

their service. Oraclize.it adds an extra fee paid in dollars, depicted on Table 7.2, that depends on

the data source and authenticity proof used. Chainlink requires that every request is paid using its

token LINK whose value depends on the current market price. In a self-deployed oracle approach,

none of these fees are present leading therefore to lower costs.

54

Evaluation

Finally, in a self-deployed oracle scenario, there are inherent costs of running the off-chain

oracle which, in the oracle-as-a-service scenario these are taken care of by a third-party service.

Although the cost per transaction of the service depends on the platform in which the service will

be deployed it can be assumed that in comparison to the fees or, even more, to the cost of executing

the smart contract code this cost is risible. Solutions such as AWS Lambda 1 that offer 1M requests

and 400,000 GB-SECONDS of compute time per month for free in their free tier 2, and even in a

scaling scenario each request costs $0.0000002. Therefore, this cost is not considered throughout

this dissertation due to its small size in comparison with the previous analysed ones.

7.2.2 Higher trust

Trust is defined as having complete certainty that the provided answer is corrected or was indeed

the one provided by the API. In the self-hosted oracle scenario, both can be achieved. The first

proposition, that the answer is correct, can be maximized by using multiple oracles and a quorum

so that multiple sources can confirm the requested result. With minor alterations, the oracle could

receive more than one URL and maximize even more the trust in the result by querying multiple

sources. The second, that the API actually return that value is achieved since the off-chain oracle

is fully controlled by the parties interested in the result of the smart-contract and therefore know

exactly the code being executed.

This approach, comparing to the state-of-the-art found solutions, although simple provides

higher guarantees that the smart contract will receive the desired answer. In the currently existing

solutions, trust is ultimately achieved through the use of authenticity proofs, which, as analysed in

Chapter 3, do not provide the necessary guarantees. Either by not being able to be analysed on the

chain contract and can only be later inspected. And also, their implementations can be dubious, as

they are being managed by a third party and always require to trust in a higher entity such as the

service where they are being deployed.

7.2.3 Higher contract empowerment

The presented implementation provides a great starting point to be worked upon and tailored to

specific contract needs. At the moment, can already work with any JSON API and therefore be

used in a wide range of applications. Being able to use and tailor, with minimum effort, the existing

boilerplate and adapt to its needs. When using third-party services there’s no such flexibility. Even

in terms of which blockchain you can deploy the contract, some services are not yet available on

some blockchains’ mainnet, and features available are totally dependent on the oracle service

provider.

1More information about the lambda service can be found here: https://aws.amazon.com/lambda/
2The pricing for lambda was queried here: https://aws.amazon.com/lambda/pricing/ on the 29th of May 2019.

55

Evaluation

7.2.4 Conclusions

This implementation intends to be a simple, cost-effective boilerplate that can already service a

range of different contracts by allowing to query any JSON API and accomplishes exactly that

purpose. Furthermore, implement already an important feature, allowing the outcome of each re-

quest made from a client smart contract to the oracle smart contract to require a minimum quorum

of off-chain oracles responses. This way increasing the infrastructure availability and decentralize

its ownership.

Moreover, the implementation demonstrates the viability of the last architecture, Architecture

5.5, the only one to which the author could not find a use case, as it fulfils the expected desiderata

values proposed for it. This architecture keeps trust standards by having each party involved

contributing to the final result, but still being resilient to failures by defining a desired minimum

quorum. Achieving data-feed fault tolerance and data veracity as the client can make several

requests to it and obtain information provided by different data-sources and queried by different

oracle entities. Additionally, it accomplishes lower smart contract costs and lower oracle com-
plexity but not requiring to verify any authenticity proof, which are complex in terms of imple-

mentation and computational resources. Finally, it is designed with oracle decentralization and

oracles ownership decentralization by being able to have multiple and distinct entities inputting

data into the system.

With this in mind, this implementation fully accomplishes the objectives proposed by the

author.

56

Chapter 8

Conclusions and Future Work

This chapter reflects on the entire work of this dissertation. Looking at the contributions of the

work performed, difficulties and possible paths for improvement and work that can still be done.

8.1 Difficulties

One of the main difficulties around this topic is the complexity of the underlying system, the

blockchain. In order to first understand the purpose of oracles, it is required to understand in depth

the underlying blockchain. Each blockchain presents a different paradigm, programming language

and challenges, and although the oracle problem usually transverses all of them or at least the most

used ones, it still requires some adaptation. For this specific work, the author chose the Ethereum

for its huge adoption and smart contract features but others, such as the EOS blockchain could

have been used.

The other main difficulty is around the oracle topic itself. There’s not a lot of documentation

around it, especially in the blockchains documentation pages. The only information found is on a

few papers and two companies which seem to dominate the market of oracles-as-a-service and are

not so transparent in the actual implementation or proof verification.

In the end, in terms of oracle implementation, the author learned from the combined knowl-

edge of a few articles from independent developers who tried to share their knowledge on how

they addressed their oracle implementation.

8.2 Contributions

This dissertation intends to pave the way for the development of secure oracle architectures and

implementations.

57

Conclusions and Future Work

It starts with a deep analysis of authenticity proofs, demystifying its inner working and

exposing their limitations as well as scenarios of use so that future developers can be more aware

of their usage by existing third-party oracle providers.

Furthermore, it presents a trust-oriented guide to architect oracles backed up by the afore-

mentioned analysis. Exposing the weaknesses and strengths of each architecture, addressing the

as-a-service ones regarding their use of proofs. Also exposes the points of trust in a oracle service

and how can each one be covered and the trade-offs of doing so as well as relating to existing

known uses, with exception for the last architecture.

Finally, to address the lack of known uses in the last architecture, the thesis provides an novel
implementation of a multi-party self-hosted oracle. This boilerplate can easily be used and

even worked upon and tailor to the needs of distinct smart contract. The author even adds in this

implementation the necessary logic for having the oracle being used and deployed by multiple

competing parties allowing them to trust in the oracle execution even if they don’t trust the other

involved parties. This implementation, however, is directed for the Ethereum blockchain, but the

author believes that its logic can be ported to other blockchains effortlessly. It also addresses the

lack of documentation around building a self-hosted oracle.

Summing up, the author contributes with a:

• Deep analysis of authenticity proofs;

• Trust-oriented guide to architect oracles;

• Novel implementation of a multi-party self-hosted oracle.

The author, also extracted the performed literature review into a paper format, attached in

Appendix E, ready to be submitted once a suitable conference is found.

8.3 Future Work

In terms of future work, it would be interesting to analyse use cases of the presented architectures.

Not only of oracle services, but use cases in the industry that were created by the same need but

not divulged to the community and may fit in the described scenarios. As of now, the author could

not find examples to fit all of them and therefore, the author was not confident enough to call them

patterns [AIS+, GHJV95]. This work would also help in the validation of the assertions made

about each architecture.

In terms of the implementation of a self-hosted oracle, the author would like to see some work

done in terms of designing a self-hosted that could be applied to a community problem. This

means, to a scenario where the stakeholders of the oracle execution are not predefined and can

enter or leave the network, more similar to the way blockchain works. Due to time limitations, the

author could not think of a feasible way of achieving this without using some kind of proof-of-

work, similarly to the blockchain.

58

Conclusions and Future Work

8.4 Conclusions

All in all, this dissertation allowed the author to gain a broader knowledge of cryptography, con-

sensus mechanisms and blockchain technology. The author also truly believes that this dissertation

is paving the way for future applications of smart-contracts and blockchain technology. Addition-

ally, will help developers who may be struggling using oracles and, unnecessarily, will recur to

third-party providers having to support extra costs in their product.

59

Conclusions and Future Work

60

References

[ABB+] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos
Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Lavent-
man, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh Nguyen, Man-
ish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou,
Marko Vukolić, Sharon Weed Cocco, and Jason Yellick. Hyperledger Fabric: A Dis-
tributed Operating System for Permissioned Blockchains. Technical report.

[ABV+18] John Adler, Ryan Berryhill, Andreas Veneris, Zissis Poulos, Neil Veira, and Anas-
tasia Kastania. Astraea: A Decentralized Blockchain Oracle. aug 2018.

[AIS+] Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max Jacobson, Ingrid
Fiksdahl-King, and Angel Shlomo. A pattern language : towns, buildings, con-
struction.

[Bac02] Adam Back. Hashcash-A Denial of Service Counter-Measure. Technical report,
2002.

[BBB+18] Benedikt Bunz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. Bulletproofs: Short Proofs for Confidential Transactions and More.
In 2018 IEEE Symposium on Security and Privacy (SP), pages 315–334. IEEE, may
2018.

[BCGH16] Richard Gendal Brown, James Carlyle, Ian Grigg, and Mike Hearn. Corda: An
Introduction. Technical report, 2016.

[Blo18] Block.one. EOS.IO Technical White Paper v2, 2018.

[BSBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, trans-
parent, and post-quantum secure computational integrity. Technical report, 2018.

[BTV19] Eli Ben-Sasson Technion Alessandro Chiesa, Eran Tromer, and Madars Virza MIT.
Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture. Tech-
nical report, 2019.

[CZK+18] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah M.
Johnson, Ari Juels, Andrew K. Miller, and Dawn Xiaodong Song. Ekiden: A Plat-
form for Confidentiality-Preserving, Trustworthy, and Performant Smart Contract
Execution. undefined, 2018.

[EH18] Jacob Eberhardt and Jonathan Heiss. Off-chaining Models and Approaches to Off-
chain Computations. In Proceedings of the 2nd Workshop on Scalable and Resilient
Infrastructures for Distributed Ledgers - SERIAL’18, pages 7–12, New York, New
York, USA, 2018. ACM Press.

61

REFERENCES

[EJN17] Steve Ellis, Ari Juels, and Sergey Nazarov. ChainLink A Decentralized Oracle Net-
work. Technical report, 2017.

[Gav14] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger.
Technical report, Ethereum, 2014.

[GHJV95] Erich. Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns
: elements of reusable object-oriented software. Addison-Wesley, 1995.

[Gor17] Gilroy Gordon. Provenance and authentication of oracle sensor data with block
chain lightweight wireless network authentication scheme for constrained oracle
sensors. 2017.

[KHD17] Kari Korpela, Jukka Hallikas, and Tomi Dahlberg. Digital Supply Chain Transfor-
mation toward Blockchain Integration. jan 2017.

[KKC07] B. Kitchenham, B. Kitchenham, and S Charters. Guidelines for performing System-
atic Literature Reviews in Software Engineering. 2007.

[Mer79] Method of providing digital signatures. sep 1979.

[Mon18] Francisco Javier Andrés Montoto Monroy. Bitcoin gambling using distributed ora-
cles in the blockchain. 2018.

[Nak09] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. Technical
report, Bitcoin, 2009.

[Ora18] Oraclize.it. Oraclize Documentation, 2018.

[RWG+17a] Hubert Ritzdorf, Karl Wüst, Arthur Gervais, Guillaume Felley, and Srdjan Capkun.
TLS-N: Non-repudiation over TLS Enabling - Ubiquitous ContentSigning for Dis-
intermediation. IACR Cryptology ePrint Archive, 2017(578), 2017.

[RWG+17b] Hubert Ritzdorf, Karl Wüst, Arthur Gervais, Guillaume Felley, and Srdjan Capkun.
TLS-N: Non-repudiation over TLS Enabling - Ubiquitous ContentSigning for Dis-
intermediation. IACR Cryptology ePrint Archive, 2017(578), 2017.

[Tam18] Andrew Tam. Secret Voting Smart Contract with Enigma: A Walkthrough, 2018.

[TLS14] TLSnotary-a mechanism for independently audited https sessions. Technical report,
TLSnotary, 2014.

[TR17] Jason Teutsch and Christian Reitwießner. A scalable verification solution for
blockchains. Technical report, 2017.

[Vit14] Vitalik Buterin. SchellingCoin: A Minimal-Trust Universal Data Feed, 2014.

[ZCC+16] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. Town Crier:
An Authenticated Data Feed for Smart Contracts. Technical report, 2016.

62

Appendix A

SLR Screening Stages

63

SLR Screening Stages

3r
d

sc
re

en

2n
d

sc
re

en

1s
t

Sc
re

en

R
em

ov
e

D
up

lic
at

es

So
ur

ce
Y

ea
r

Ti
tle

A
ut

ho
rs

D
up

lic
at

e
A

C
M

20
16

W
ea

ve
r:

A
H

ig
h-

pe
rf

or
m

an
ce

,
Tr

an
sa

ct
io

na
l

G
ra

ph
D

at
ab

as
e

B
as

ed
on

R
efi

na
bl

e
Ti

m
es

ta
m

ps

A
yu

sh
D

ub
ey

an
d

G
re

g
D

.
H

ill
an

d

R
ob

er
tE

sc
riv

a
an

d
E

m
in

Si
re

r

D
up

lic
at

e
A

C
M

20
16

To
w

n
C

ri
er

:
A

n
A

ut
he

nt
ic

at
ed

D
at

a
Fe

ed
fo

r

Sm
ar

tC
on

tr
ac

ts

Fa
n

Z
ha

ng
an

d
E

th
an

C
ec

ch
et

ti
an

d

K
yl

e
C

ro
m

an
an

d
A

ri
Ju

el
s

an
d

E
la

in
e

Sh
i

D
up

lic
at

e
A

C
M

20
16

Pr
oo

fo
fL

uc
k:

A
n

E
ffi

ci
en

tB
lo

ck
ch

ai
n

C
on

se
n-

su
s

Pr
ot

oc
ol

M
ita

r
M

ilu
tin

ov
ic

an
d

W
ar

re
n

H
e

an
d

H
ow

ar
d

W
u

an
d

M
ax

in
de

rK
an

w
al

D
up

lic
at

e
A

C
M

20
17

Pl
aT

IB
A

R
T:

A
Pl

at
fo

rm
fo

r
Tr

an
sa

ct
iv

e
Io

T

B
lo

ck
ch

ai
n

A
pp

lic
at

io
ns

w
ith

R
ep

ea
ta

bl
e

Te
st

-

in
g

M
ic

ha
el

A
.

W
al

ke
r

an
d

A
bh

is
he

k

D
ub

ey
an

d
A

ro
n

L
as

zk
a

an
d

D
ou

gl
as

C
.S

ch
m

id
t

D
up

lic
at

e
A

C
M

20
18

O
ur

ob
or

os
G

en
es

is
:C

om
po

sa
bl

e
Pr

oo
f-

of
-S

ta
ke

B
lo

ck
ch

ai
ns

w
ith

D
yn

am
ic

A
va

ila
bi

lit
y

C
hr

is
tia

n
B

ad
er

ts
ch

er
an

d
A

gg
el

os
K

i-

ay
ia

s
an

d
A

le
xa

nd
er

R
us

se
ll

an
d

V
as

-

si
lis

Z
ik

as

D
up

lic
at

e
A

C
M

20
17

O
n

th
e

D
es

ig
n

of
C

om
m

un
ic

at
io

n
an

d
Tr

an
sa

c-

tio
n

A
no

ny
m

ity
in

B
lo

ck
ch

ai
n-

ba
se

d
Tr

an
sa

ct
iv

e

M
ic

ro
gr

id
s

Jo
na

ta
n

B
er

gq
ui

st
an

d
A

ro
n

L
as

zk
a

an
d

M
on

ik
a

St
ur

m
an

d
A

bh
is

he
k

D
ub

ey

D
up

lic
at

e
A

C
M

20
17

Fr
ui

tC
ha

in
s:

A
Fa

ir
B

lo
ck

ch
ai

n
R

af
ae

lP
as

s
an

d
E

la
in

e
Sh

i

D
up

lic
at

e
A

C
M

20
18

C
on

tr
ac

tF
uz

ze
r:

Fu
zz

in
g

Sm
ar

t
C

on
tr

ac
ts

fo
r

V
ul

ne
ra

bi
lit

y
D

et
ec

tio
n

B
o

Ji
an

g
an

d
Y

e
L

iu
an

d
W

.K
.C

ha
n

D
up

lic
at

e
A

C
M

20
16

B
ri

ng
in

g
Se

cu
re

B
itc

oi
n

Tr
an

sa
ct

io
ns

to
Y

ou
r

Sm
ar

tp
ho

ne

D
av

id
e

Fr
ey

an
d

M
ar

c
X

.M
ak

ke
s

an
d

Pi
er

re
-L

ou
is

R
om

an
an

d
Sp

yr
os

Vo
ul

-

ga
ri

s

64

SLR Screening Stages

Ta
bl

e
A

.1
co

nt
in

ue
d

fr
om

pr
ev

io
us

pa
ge

3r
d

sc
re

en

2n
d

sc
re

en

1s
t

Sc
re

en

R
em

ov
e

D
up

lic
at

es

So
ur

ce
Y

ea
r

Ti
tle

A
ut

ho
rs

D
up

lic
at

e
A

C
M

20
17

B
la

ck
ch

ai
n:

Sc
al

ab
ili

ty
fo

r
R

es
ou

rc
e-

co
ns

tr
ai

ne
d

A
cc

ou
nt

ab
le

V
eh

ic
le

-t
o-

x
C

om
-

m
un

ic
at

io
n

R
en

s
W

.v
an

de
rH

ei
jd

en
an

d
Fe

lix
E

n-

ge
lm

an
n

an
d

D
av

id
an

d
Fr

an
zi

sk
a

an
d

Fr
an

k
K

ar
gl

D
up

lic
at

e
A

C
M

20
17

A
G

en
er

al
Fr

am
ew

or
k

fo
rB

lo
ck

ch
ai

n
A

na
ly

tic
s

M
as

si
m

o
B

ar
to

le
tti

an
d

St
ef

an
o

L
an

de

an
d

L
iv

io
Po

m
pi

an
u

an
d

A
nd

re
a

B
ra

c-

ci
al

i

D
up

lic
at

e
A

C
M

20
17

E
PB

C
:

E
ffi

ci
en

t
Pu

bl
ic

B
lo

ck
ch

ai
n

C
lie

nt
fo

r

L
ig

ht
w

ei
gh

tU
se

rs

L
ei

X
u

an
d

L
in

C
he

n
an

d
Z

hi
m

in
G

ao

an
d

Sh
ou

hu
ai

X
u

an
d

W
ei

do
ng

Sh
i

D
up

lic
at

e
A

C
M

20
16

B
lo

ck
ch

ai
ns

an
d

th
e

L
og

ic
of

A
cc

ou
nt

ab
ili

ty
:

K
ey

no
te

A
dd

re
ss

M
au

ri
ce

H
er

lih
y

an
d

M
ar

k
M

oi
r

D
up

lic
at

e
A

C
M

20
17

A
B

yz
an

tin
e

Fa
ul

t-
to

le
ra

nt
O

rd
er

in
g

Se
rv

ic
e

fo
r

th
e

H
yp

er
le

dg
er

Fa
br

ic
B

lo
ck

ch
ai

n
Pl

at
fo

rm

A
ly

ss
on

B
es

sa
ni

an
d

Jo
ão

So
us

a
an

d

M
ar

ko
;

D
up

lic
at

e
IE

E
E

20
18

Z
er

o-
Tr

us
tH

ie
ra

rc
hi

ca
lM

an
ag

em
en

ti
n

Io
T

M
.S

am
an

ie
go

;R
.D

et
er

s

D
up

lic
at

e
IE

E
E

20
18

Se
cu

re
Pu

b-
Su

b:
B

lo
ck

ch
ai

n-
B

as
ed

Fa
ir

Pa
y-

m
en

tW
ith

R
ep

ut
at

io
n

fo
r

R
el

ia
bl

e
C

yb
er

Ph
ys

i-

ca
lS

ys
te

m
s

Y.
Z

ha
o;

Y.
L

i;
Q

.M
u;

B
.Y

an
g;

Y.
Y

u

D
up

lic
at

e
IE

E
E

20
18

Se
cu

re
A

ttr
ib

ut
e-

B
as

ed
Si

gn
at

ur
e

Sc
he

m
e

W
ith

M
ul

tip
le

A
ut

ho
ri

tie
s

fo
r

B
lo

ck
ch

ai
n

in
E

le
c-

tr
on

ic
H

ea
lth

R
ec

or
ds

Sy
st

em
s

R
.G

uo
;H

.S
hi

;Q
.Z

ha
o;

D
.Z

he
ng

D
up

lic
at

e
IE

E
E

20
18

Pr
iv

ac
y

Im
pr

ov
em

en
tA

rc
hi

te
ct

ur
e

fo
rI

oT
E

.K
ak

;R
.O

rj
i;

J.
Pr

y;
K

.S
of

ra
nk

o;
R

.

L
om

ot
ey

;R
.D

et
er

s

65

SLR Screening Stages
Ta

bl
e

A
.1

co
nt

in
ue

d
fr

om
pr

ev
io

us
pa

ge

3r
d

sc
re

en

2n
d

sc
re

en

1s
t

Sc
re

en

R
em

ov
e

D
up

lic
at

es

So
ur

ce
Y

ea
r

Ti
tle

A
ut

ho
rs

D
up

lic
at

e
IE

E
E

20
18

D
is

tr
ib

ut
ed

So
la

r
Se

lf
-C

on
su

m
pt

io
n

an
d

B
lo

ck
ch

ai
n

So
la

r
E

ne
rg

y
E

xc
ha

ng
es

on
th

e

Pu
bl

ic
G

ri
d

W
ith

in
an

E
ne

rg
y

C
om

m
un

ity

C
.P

la
za

;J
.G

il;
F.

de
C

he
ze

lle
s;

K
.A

.

St
ra

ng

D
up

lic
at

e
IE

E
E

20
18

C
on

fid
en

tia
l

B
us

in
es

s
Pr

oc
es

s
E

xe
cu

tio
n

on

B
lo

ck
ch

ai
n

B
.C

ar
m

in
at

i;
C

.R
on

da
ni

ni
;E

.F
er

ra
ri

D
up

lic
at

e
IE

E
E

20
18

C
ha

in
FS

:B
lo

ck
ch

ai
n-

Se
cu

re
d

C
lo

ud
St

or
ag

e
Y.

Ta
ng

;Q
.Z

ou
;J

.C
he

n;
K

.L
i;

C
.A

.

K
am

ho
ua

;K
.K

w
ia

t;
L

.N
jil

la

D
up

lic
at

e
IE

E
E

20
18

B
lo

ck
ch

ai
n-

B
as

ed
Io

T-
C

lo
ud

A
ut

ho
ri

za
tio

n
an

d

D
el

eg
at

io
n

N
.T

ap
as

;G
.M

er
lin

o;
F.

L
on

go

D
up

lic
at

e
IE

E
E

20
17

B
lo

ck
ch

ai
n

w
or

ld
-

D
o

yo
u

ne
ed

a
bl

oc
kc

ha
in

?

T
hi

s
ch

ar
t

w
ill

te
ll

yo
u

if
th

e
te

ch
no

lo
gy

ca
n

so
lv

e
yo

ur
pr

ob
le

m

M
.E

.P
ec

k

D
up

lic
at

e
IE

E
E

20
18

B
lo

ck
ch

ai
n

as
a

Pl
at

fo
rm

fo
r

Se
cu

re
In

te
r-

O
rg

an
iz

at
io

na
lB

us
in

es
s

Pr
oc

es
se

s

B
.C

ar
m

in
at

i;
E

.F
er

ra
ri

;C
.R

on
da

ni
ni

D
up

lic
at

e
IE

E
E

20
18

A
na

ly
si

s
of

Se
cu

ri
ty

in
B

lo
ck

ch
ai

n:
C

as
e

St
ud

y

in
51

%
-A

tta
ck

D
et

ec
tin

g

C
.Y

e;
G

.L
i;

H
.C

ai
;Y

.G
u;

A
.F

uk
ud

a

D
up

lic
at

e
IE

E
E

20
18

A
n

ID
-B

as
ed

L
in

ea
rl

y
H

om
om

or
ph

ic
Si

gn
at

ur
e

Sc
he

m
e

an
d

It
s

A
pp

lic
at

io
n

in
B

lo
ck

ch
ai

n

Q
.L

in
;H

.Y
an

;Z
.H

ua
ng

;W
.C

he
n;

J.

Sh
en

;Y
.T

an
g

D
up

lic
at

e
IE

E
E

20
19

A
N

ew
L

at
tic

e-
B

as
ed

Si
gn

at
ur

e
Sc

he
m

e
in

Po
st

-

Q
ua

nt
um

B
lo

ck
ch

ai
n

N
et

w
or

k

C
.L

i;
X

.C
he

n;
Y.

C
he

n;
Y.

H
ou

;J
.L

i

D
up

lic
at

e
Sc

op
us

20
17

To
w

ar
ds

an
ec

on
om

ic
an

al
ys

is
of

ro
ut

in
g

in
pa

y-

m
en

tc
ha

nn
el

ne
tw

or
ks

E
ng

el
m

an
n,

F.
,

K
op

p,
H

.,
K

ar
gl

,
F.

,

G
la

se
r,

F.
,W

ei
nh

ar
dt

,C
.

66

SLR Screening Stages

Ta
bl

e
A

.1
co

nt
in

ue
d

fr
om

pr
ev

io
us

pa
ge

3r
d

sc
re

en

2n
d

sc
re

en

1s
t

Sc
re

en

R
em

ov
e

D
up

lic
at

es

So
ur

ce
Y

ea
r

Ti
tle

A
ut

ho
rs

D
up

lic
at

e
Sc

op
us

20
18

13
th

E
A

I
In

te
rn

at
io

na
l

C
on

fe
re

nc
e

on
Se

cu
ri

ty

an
d

Pr
iv

ac
y

in
C

om
m

un
ic

at
io

n
N

et
w

or
ks

,
Se

-

cu
re

C
om

m
20

17

[N
o

au
th

or
na

m
e

av
ai

la
bl

e]

D
up

lic
at

e
Sc

op
us

20
17

V
IB

E
S:

Fa
st

bl
oc

kc
ha

in
si

m
ul

at
io

ns
fo

r
la

rg
e-

sc
al

e
pe

er
-t

o-
pe

er
ne

tw
or

ks

St
oy

ko
v,

L
.,

Z
ha

ng
,

K
.,

Ja
co

bs
en

,
H

.-

A
.

D
up

lic
at

e
Sc

op
us

20
17

H
yp

er
Pu

bS
ub

:
a

de
ce

nt
ra

liz
ed

,
pe

rm
is

si
on

ed
,

pu
bl

is
h/

su
bs

cr
ib

e
se

rv
ic

e
us

in
g

bl
oc

kc
ha

in
s

Z
up

an
,N

.,
Z

ha
ng

,K
.,

Ja
co

bs
en

,H
.-A

.

D
up

lic
at

e
Sc

op
us

20
18

B
lo

ck
ch

ai
n

as
a

pl
at

fo
rm

fo
r

se
cu

re
in

te
r-

or
ga

ni
za

tio
na

lb
us

in
es

s
pr

oc
es

se
s

C
ar

m
in

at
i,

B
.,

Fe
rr

ar
i,

E
.,

R
on

da
ni

ni
,

C
.

-
A

C
M

20
17

To
w

ar
ds

an
E

co
no

m
ic

A
na

ly
si

s
of

R
ou

tin
g

in

Pa
ym

en
tC

ha
nn

el
N

et
w

or
ks

Fe
lix

E
ng

el
m

an
n

an
d

H
en

ni
ng

K
op

p

an
d

Fr
an

k
K

ar
gl

an
d

Fl
or

ia
n

G
la

se
ra

nd

C
hr

is
to

fW
ei

nh
ar

dt

-
A

C
M

20
17

V
IB

E
S:

Fa
st

B
lo

ck
ch

ai
n

Si
m

ul
at

io
ns

fo
r

L
ar

ge
-

sc
al

e
Pe

er
-t

o-
pe

er
N

et
w

or
ks

:D
em

o

Ly
ub

om
ir

St
oy

ko
v

an
d

K
ai

w
en

Z
ha

ng

an
d

H
an

s-
A

rn
o

Ja
co

bs
en

-
A

C
M

20
18

St
re

am
C

ha
in

:D
o

B
lo

ck
ch

ai
ns

N
ee

d
B

lo
ck

s?
Z

so
lt

an
d

A
le

ss
an

dr
o

So
rn

io
tti

an
d

M
ar

ko
;

-
A

C
M

20
18

So
l2

Js
:

Tr
an

sl
at

in
g

So
lid

ity
C

on
tr

ac
ts

in
to

Ja
va

sc
ri

pt
fo

rH
yp

er
le

dg
er

Fa
br

ic

M
uh

am
m

ad
A

hm
ad

Z
af

ar
an

d
Fa

la
k

Sh
er

an
d

M
uh

am
m

ad
U

m
ar

Ja
nj

ua
an

d

Sa
lm

an
B

as
et

-
A

C
M

20
18

Sc
al

in
g

B
yz

an
tin

e
C

on
se

ns
us

:A
B

ro
ad

A
na

ly
si

s
C

hr
is

tia
n

B
er

ge
ra

nd
H

an
s

P.
R

ei
se

r

67

SLR Screening Stages
Ta

bl
e

A
.1

co
nt

in
ue

d
fr

om
pr

ev
io

us
pa

ge

3r
d

sc
re

en

2n
d

sc
re

en

1s
t

Sc
re

en

R
em

ov
e

D
up

lic
at

es

So
ur

ce
Y

ea
r

Ti
tle

A
ut

ho
rs

-
A

C
M

20
18

R
es

ou
rc

e
Fa

ir
ne

ss
an

d
Pr

io
ri

tiz
at

io
n

of
Tr

an
sa

c-

tio
ns

in
Pe

rm
is

si
on

ed
B

lo
ck

ch
ai

n
Sy

st
em

s
(I

n-

du
st

ry
Tr

ac
k)

Se
ep

G
oe

l
an

d
A

bh
is

he
k

Si
ng

h
an

d

R
ac

hi
t

G
ar

g
an

d
M

ud
it

V
er

m
a

an
d

Pr
av

ee
n

Ja
ya

ch
an

dr
an

-
A

C
M

20
18

Po
w

er
in

g
So

ft
w

ar
e

Su
st

ai
na

bi
lit

y
w

ith

B
lo

ck
ch

ai
n

O
m

ar
B

ad
re

dd
in

-
A

C
M

20
17

H
yp

er
pu

bs
ub

:
A

D
ec

en
tr

al
iz

ed
,

Pe
rm

is
si

on
ed

,

Pu
bl

is
h/

Su
bs

cr
ib

e
Se

rv
ic

e
U

si
ng

B
lo

ck
ch

ai
ns

:

D
em

o

N
ej

c
Z

up
an

an
d

K
ai

w
en

Z
ha

ng
an

d

H
an

s-
A

rn
o

Ja
co

bs
en

-
A

C
M

20
17

H
ow

B
lo

ck
ch

ai
ns

C
an

H
el

p
L

eg
al

M
et

ro
lo

gy
W

ils
on

S.
M

el
o,

Jr
an

d
A

ly
ss

on
B

es
sa

ni

an
d

L
ui

z
F.

R
.C

.C
ar

m
o

-
A

C
M

20
18

eV
IB

E
S:

C
on

fig
ur

ab
le

an
d

In
te

ra
ct

iv
e

E
th

er
eu

m

B
lo

ck
ch

ai
n

Si
m

ul
at

io
n

Fr
am

ew
or

k

A
di

ty
a

D
es

hp
an

de
an

d
Pe

zh
m

an
N

as
ir-

ifa
rd

an
d

H
an

s-
A

rn
o

Ja
co

bs
en

-
A

C
M

20
18

E
VA

:F
ai

ra
nd

A
ud

ita
bl

e
E

le
ct

ri
c

V
eh

ic
le

C
ha

rg
-

in
g

Se
rv

ic
e

U
si

ng
B

lo
ck

ch
ai

n

Je
le

na
Pa

jic
;R

iv
er

a
an

d
K

ai
w

en
Z

ha
ng

an
d

H
an

s-
A

rn
o

Ja
co

bs
en

-
A

C
M

20
18

D
ec

on
st

ru
ct

in
g

B
lo

ck
ch

ai
ns

:
C

on
ce

pt
s,

Sy
s-

te
m

s,
an

d
In

si
gh

ts

K
ai

w
en

Z
ha

ng
an

d
R

om
an

V
ite

nb
er

g

an
d

H
an

s-
A

rn
o

Ja
co

bs
en

-
A

C
M

20
18

C
ID

D
S:

A
C

on
fig

ur
ab

le
an

d
D

is
tr

ib
ut

ed
D

A
G

-

ba
se

d
D

is
tr

ib
ut

ed
L

ed
ge

rS
im

ul
at

io
n

Fr
am

ew
or

k

M
oh

am
ed

R
is

w
an

A
bd

ul
L

at
hi

f
an

d

Pe
zh

m
an

N
as

ir
ifa

rd
an

d
H

an
s-

A
rn

o
Ja

-

co
bs

en

-
A

C
M

20
18

B
lo

ck
ch

ai
ns

fo
rB

us
in

es
s

Pr
oc

es
s

M
an

ag
em

en
t-

C
ha

lle
ng

es
an

d
O

pp
or

tu
ni

tie
s

68

SLR Screening Stages

Ta
bl

e
A

.1
co

nt
in

ue
d

fr
om

pr
ev

io
us

pa
ge

3r
d

sc
re

en

2n
d

sc
re

en

1s
t

Sc
re

en

R
em

ov
e

D
up

lic
at

es

So
ur

ce
Y

ea
r

Ti
tle

A
ut

ho
rs

-
A

C
M

20
18

B
lo

ck
ch

ai
n

L
an

ds
ca

pe
an

d
A

IR
en

ai
ss

an
ce

:
T

he

B
ri

gh
tP

at
h

Fo
rw

ar
d

H
an

s-
A

rn
o

Ja
co

bs
en

an
d

M
oh

am
-

m
ad

Sa
do

gh
ia

nd
M

oh
am

m
ad

H
os

se
in

Ta
ba

ta
ba

ei
an

d
R

om
an

V
ite

nb
er

g
an

d

K
ai

w
en

Z
ha

ng

-
A

C
M

20
18

A
Fe

de
ra

te
d

L
ow

-P
ow

er
W

A
N

fo
rt

he
In

te
rn

et
of

T
hi

ng
s

M
eh

di
B

ez
ah

af
an

d
C

at
he

la
in

an
d

To
ny

D
uc

ro
cq

-
A

C
M

20
18

A
ut

he
nt

ic
at

ed
M

od
ul

ar
M

ap
s

in
H

as
ke

ll
V

ic
to

r
C

ac
ci

ar
i

M
ir

al
do

an
d

H
ar

ol
d

C
ar

r
an

d
A

le
x

K
og

an
an

d
M

ar
k

M
oi

r

an
d

M
au

ri
ce

H
er

lih
y

-
A

C
M

20
18

A
tta

ck
an

d
V

ul
ne

ra
bi

lit
y

Si
m

ul
at

io
n

Fr
am

ew
or

k

fo
rB

itc
oi

n-
lik

e
B

lo
ck

ch
ai

n
Te

ch
no

lo
gi

es

Fa
bi

an
an

d
Pe

zh
m

an
N

as
ir

ifa
rd

an
d

H
an

s-
A

rn
o

Ja
co

bs
en

-
G

oo
gl

e

Sh
oo

la
r

20
17

B
lo

ck
ch

ai
n

O
ra

cl
es

–E
in

sa
tz

de
r

B
lo

ck
ch

ai
n-

Te
ch

no
lo

gi
e

fü
rO

ffl
in

e-
A

nw
en

du
ng

en

A
H

op
pe

-
G

oo
gl

e

Sh
oo

la
r

20
18

B
lo

ck
ch

ai
n

C
ou

pl
ed

O
ra

cl
e

Fu
si

on
D

Sa
tp

at
hy

-
G

oo
gl

e

Sh
oo

la
r

20
18

B
lo

ck
ch

ai
n

an
d

C
on

se
ns

us
fr

om
Pr

oo
fs

of
W

or
k

w
ith

ou
tR

an
do

m
O

ra
cl

es

JA
G

ar
ay

,A
K

ia
yi

as
,G

Pa
na

gi
ot

ak
os

-
G

oo
gl

e

Sh
oo

la
r

20
18

B
lo

ck
ch

ai
n

ac
ro

ss
O

ra
cl

e:
U

nd
er

st
an

d
th

e
de

ta
ils

an
d

im
pl

ic
at

io
ns

of
th

e
B

lo
ck

ch
ai

n
fo

rO
ra

cl
e

de
-

ve
lo

pe
rs

an
d

cu
st

om
er

s

R
va

n
M

öl
ke

n

-
IE

E
E

20
18

U
nd

er
st

an
di

ng
B

lo
ck

ch
ai

n
Te

ch
no

lo
gy

:
T

he

C
os

ts
an

d
B

en
efi

ts
of

D
ec

en
tr

al
iz

at
io

n

69

SLR Screening Stages
Ta

bl
e

A
.1

co
nt

in
ue

d
fr

om
pr

ev
io

us
pa

ge

3r
d

sc
re

en

2n
d

sc
re

en

1s
t

Sc
re

en

R
em

ov
e

D
up

lic
at

es

So
ur

ce
Y

ea
r

Ti
tle

A
ut

ho
rs

-
IE

E
E

20
18

To
w

ar
ds

A
pp

lic
at

io
n

Po
rt

ab
ili

ty
on

B
lo

ck
ch

ai
ns

K
.S

hu
do

;R
.K

an
da

;K
.S

ai
to

-
IE

E
E

20
17

Se
cu

re
on

e-
tim

e
bi

om
et

ri
e

to
ke

ns
fo

r
no

n-

re
pu

di
ab

le
m

ul
ti-

pa
rt

y
tr

an
sa

ct
io

ns

K
.N

an
da

ku
m

ar
;N

.R
at

ha
;S

.P
an

ka
nt

i;

S.
D

ar
ne

ll

-
IE

E
E

20
17

M
ul

tic
lo

ud
s

in
an

E
nt

er
pr

is
e

–
a

L
ov

e-
H

at
e

R
e-

la
tio

ns
hi

p

M
.Y

ou
si

f

-
IE

E
E

20
19

L
ev

er
ag

in
g

th
e

C
ap

ab
ili

tie
s

of
In

du
st

ry
4.

0
fo

r

Im
pr

ov
in

g
E

ne
rg

y
E

ffi
ci

en
cy

in
Sm

ar
tF

ac
to

ri
es

N
.

M
oh

am
ed

;
J.

A
l-

Ja
ro

od
i;

S.

L
az

ar
ov

a-
M

ol
na

r

-
IE

E
E

20
17

Fo
st

er
in

g
co

ns
um

er
s’

en
er

gy
m

ar
ke

t
th

ro
ug

h

sm
ar

tc
on

tr
ac

ts

I.
K

ou
ne

lis
;

G
.

St
er

i;
R

.
G

iu
lia

ni
;

D
.

G
en

ei
at

ak
is

;R
.N

ei
ss

e;
I.

N
ai

-F
ov

in
o

-
IE

E
E

20
18

C
ha

in
M

O
B

:M
ob

ili
ty

A
na

ly
tic

s
on

B
lo

ck
ch

ai
n

B
.N

as
ru

lin
;M

.M
uz

am
m

al
;Q

.Q
u

-
IE

E
E

20
16

B
lo

ck
ch

ai
ns

an
d

th
e

lo
gi

c
of

ac
co

un
ta

bi
lit

y
M

.H
er

lih
y;

M
.M

oi
r

-
IE

E
E

20
18

B
lo

ck
ch

ai
n

B
as

ed
Se

cu
ri

ty
Fr

am
ew

or
k

fo
r

Io
T

Im
pl

em
en

ta
tio

ns

K
.N

.K
ri

sh
na

n;
R

.J
en

u;
T.

Jo
se

ph
;M

.

L
.S

ilp
a

-
IE

E
E

20
18

B
lo

ck
ch

ai
n

B
as

ed
V

eh
ic

ul
ar

D
at

a
M

an
ag

em
en

t
R

.S
ha

rm
a;

S.
C

ha
kr

ab
or

ty

-
Sc

op
us

20
16

W
ea

ve
r:

A
hi

gh
-p

er
fo

rm
an

ce
,

tr
an

sa
ct

io
na

l

gr
ap

h
da

ta
ba

se
ba

se
d

on
re

fin
ab

le
tim

es
ta

m
ps

D
ub

ey
,A

.,
H

ill
,G

.D
.,

Si
re

r,
E

.G
.,

E
s-

cr
iv

a,
R

.

-
Sc

op
us

20
18

To
w

ar
ds

a
sm

ar
t

co
nt

ra
ct

-b
as

ed
,

de
ce

nt
ra

liz
ed

,

pu
bl

ic
-k

ey
in

fr
as

tr
uc

tu
re

Pa
ts

on
ak

is
,C

.,
Sa

m
ar

i,
K

.,
R

ou
ss

op
ou

-

lo
s,

M
.,

K
ia

yi
as

,A
.

-
Sc

op
us

20
16

Sy
sT

E
X

20
16

-
1s

t
W

or
ks

ho
p

on
Sy

st
em

So
ft

-

w
ar

e
fo

r
Tr

us
te

d
E

xe
cu

tio
n,

co
lo

ca
te

d
w

ith

A
C

M
/I

FI
P/

U
SE

N
IX

M
id

dl
ew

ar
e

20
16

[N
o

au
th

or
na

m
e

av
ai

la
bl

e]

70

SLR Screening Stages

Ta
bl

e
A

.1
co

nt
in

ue
d

fr
om

pr
ev

io
us

pa
ge

3r
d

sc
re

en

2n
d

sc
re

en

1s
t

Sc
re

en

R
em

ov
e

D
up

lic
at

es

So
ur

ce
Y

ea
r

Ti
tle

A
ut

ho
rs

-
Sc

op
us

20
18

Sy
st

em
at

ic
pe

rf
or

m
an

ce
ev

al
ua

tio
n

us
in

g

co
m

po
ne

nt
-i

n-
th

e-
lo

op
ap

pr
oa

ch

K
oc

si
s,

I.,
K

le
ni

k,
A

.,
Pa

ta
ri

cz
a,

A
.,

Te
le

k,
M

.,
D

eé
,F

.,
C

se
h,

D
.

-
Sc

op
us

20
18

Sy
nc

hr
on

iz
ed

ag
gr

eg
at

e
si

gn
at

ur
es

fr
om

th
e

R
SA

as
su

m
pt

io
n

H
oh

en
be

rg
er

,S
.,

W
at

er
s,

B
.

-
Sc

op
us

20
18

Si
m

pl
e

pr
oo

fs
of

se
qu

en
tia

lw
or

k
C

oh
en

,B
.,

Pi
et

rz
ak

,K
.

-
Sc

op
us

20
17

SE
R

IA
L

20
17

-
1s

t
W

or
ks

ho
p

on
Sc

al
ab

le
an

d

R
es

ili
en

tI
nf

ra
st

ru
ct

ur
es

fo
rD

is
tr

ib
ut

ed
L

ed
ge

rs
,

C
ol

oc
at

ed
w

ith
A

C
M

/I
FI

P/
U

SE
N

IX
M

id
dl

ew
ar

e

20
17

C
on

fe
re

nc
e

[N
o

au
th

or
na

m
e

av
ai

la
bl

e]

-
Sc

op
us

20
18

Se
cu

ri
ty

of
th

e
bl

oc
kc

ha
in

ag
ai

ns
tl

on
g

de
la

y
at

-

ta
ck

W
ei

,P
.,

Y
ua

n,
Q

.,
Z

he
ng

,Y
.

-
Sc

op
us

20
18

Se
cu

re
Pu

b-
Su

b:
B

lo
ck

ch
ai

n-
B

as
ed

Fa
ir

Pa
y-

m
en

t
w

ith
R

ep
ut

at
io

n
fo

r
R

el
ia

bl
e

C
yb

er
Ph

ys
-

ic
al

Sy
st

em
s

Z
ha

o,
Y.

,L
i,

Y.
,M

u,
Q

.,
Y

an
g,

B
.,

Y
u,

Y.

-
Sc

op
us

20
18

Se
cu

re
A

ttr
ib

ut
e-

B
as

ed
Si

gn
at

ur
e

Sc
he

m
e

w
ith

M
ul

tip
le

A
ut

ho
ri

tie
s

fo
r

B
lo

ck
ch

ai
n

in
E

le
c-

tr
on

ic
H

ea
lth

R
ec

or
ds

Sy
st

em
s

G
uo

,R
.,

Sh
i,

H
.,

Z
ha

o,
Q

.,
Z

he
ng

,D
.

-
Sc

op
us

20
17

R
in

gC
T

2.
0:

A
co

m
pa

ct
ac

cu
m

ul
at

or
-b

as
ed

(l
in

ka
bl

e
ri

ng
si

gn
at

ur
e)

pr
ot

oc
ol

fo
r

bl
oc

kc
ha

in

cr
yp

to
cu

rr
en

cy
M

on
er

o

Su
n,

S.
-F

.,
A

u,
M

.H
.,

L
iu

,J
.K

.,
Y

ue
n,

T.
H

.

-
Sc

op
us

20
16

Pr
oo

f
of

L
uc

k:
A

n
ef

fic
ie

nt
bl

oc
kc

ha
in

co
ns

en
-

su
s

pr
ot

oc
ol

M
ilu

tin
ov

ic
,M

.,
H

e,
W

.,
W

u,
H

.,
K

an
-

w
al

,M
.

71

SLR Screening Stages
Ta

bl
e

A
.1

co
nt

in
ue

d
fr

om
pr

ev
io

us
pa

ge

3r
d

sc
re

en

2n
d

sc
re

en

1s
t

Sc
re

en

R
em

ov
e

D
up

lic
at

es

So
ur

ce
Y

ea
r

Ti
tle

A
ut

ho
rs

-
Sc

op
us

20
18

Pr
iv

ac
y

im
pr

ov
em

en
ta

rc
hi

te
ct

ur
e

fo
rI

oT
K

ak
,E

.,
O

rj
i,

R
.,

Pr
y,

J.
,S

of
ra

nk
o,

K
.,

L
om

ot
ey

,R
.K

.,
D

et
er

s,
R

.

-
Sc

op
us

20
17

Pl
aT

IB
A

R
T:

A
Pl

at
fo

rm
fo

r
Tr

an
sa

ct
iv

e
Io

T

bl
oc

kc
ha

in
ap

pl
ic

at
io

ns
w

ith
re

pe
at

ab
le

te
st

in
g

W
al

ke
r,

M
.A

.,
D

ub
ey

,
A

.,
L

as
zk

a,
A

.,

Sc
hm

id
t,

D
.C

.

-
Sc

op
us

20
17

O
ve

rc
om

in
g

C
ry

pt
og

ra
ph

ic
Im

po
ss

ib
ili

ty
R

e-

su
lts

U
si

ng
B

lo
ck

ch
ai

ns

G
oy

al
,R

.,
G

oy
al

,V
.

-
Sc

op
us

20
18

O
ur

ob
or

os
pr

ao
s:

A
n

ad
ap

tiv
el

y-
se

cu
re

,
se

m
i-

sy
nc

hr
on

ou
s

pr
oo

f-
of

-s
ta

ke
bl

oc
kc

ha
in

D
av

id
,

B
.,

G
až

i,
P.

,
K

ia
yi

as
,

A
.,

R
us

-

se
ll,

A
.

-
Sc

op
us

20
17

O
n

th
e

de
si

gn
of

co
m

m
un

ic
at

io
n

an
d

tr
an

sa
ct

io
n

an
on

ym
ity

in
bl

oc
kc

ha
in

-b
as

ed
tr

an
sa

ct
iv

e
m

i-

cr
og

ri
ds

B
er

gq
ui

st
,

J.
,

L
as

zk
a,

A
.,

St
ur

m
,

M
.,

D
ub

ey
,A

.

-
Sc

op
us

20
17

M
id

dl
ew

ar
e

20
17

-P
ro

ce
ed

in
gs

of
th

e
20

17
M

id
-

dl
ew

ar
e

Po
st

er
s

an
d

D
em

os
20

17
:

Pr
oc

ee
di

ng
s

of
th

e
Po

st
er

s
an

d
D

em
os

Se
ss

io
n

of
th

e
18

th
In

-

te
rn

at
io

na
lM

id
dl

ew
ar

e
C

on
fe

re
nc

e

[N
o

au
th

or
na

m
e

av
ai

la
bl

e]

-
Sc

op
us

20
17

M
4I

oT
20

17
-

Pr
oc

ee
di

ng
s

of
th

e
20

17
W

or
k-

sh
op

on
M

id
dl

ew
ar

e
an

d
A

pp
lic

at
io

ns
fo

rt
he

In
-

te
rn

et
of

T
hi

ng
s

4t
h

E
di

tio
n

an
d

2n
d

Fe
de

ra
te

d

E
ve

nt
w

ith
th

e
M

oT
A

W
or

ks
ho

p,
Pa

rt
of

M
id

dl
e-

w
ar

e
20

17
C

on
fe

re
nc

e

[N
o

au
th

or
na

m
e

av
ai

la
bl

e]

72

SLR Screening Stages

Ta
bl

e
A

.1
co

nt
in

ue
d

fr
om

pr
ev

io
us

pa
ge

3r
d

sc
re

en

2n
d

sc
re

en

1s
t

Sc
re

en

R
em

ov
e

D
up

lic
at

es

So
ur

ce
Y

ea
r

Ti
tle

A
ut

ho
rs

-
Sc

op
us

20
18

Io
T

B
D

S
20

18
-

Pr
oc

ee
di

ng
s

of
th

e
3r

d
In

te
r-

na
tio

na
l

C
on

fe
re

nc
e

on
In

te
rn

et
of

T
hi

ng
s,

B
ig

D
at

a
an

d
Se

cu
ri

ty

[N
o

au
th

or
na

m
e

av
ai

la
bl

e]

-
Sc

op
us

20
18

In
tr

od
uc

in
g

th
e

ne
w

pa
ra

di
gm

of
So

ci
al

D
is

-

pe
rs

ed
C

om
pu

tin
g:

A
pp

lic
at

io
ns

,
Te

ch
no

lo
gi

es

an
d

C
ha

lle
ng

es

G
ar

cí
a-

V
al

ls
,M

.,
D

ub
ey

,A
.,

B
ot

ti,
V.

-
Sc

op
us

20
17

Fr
ui

tC
ha

in
s:

A
fa

ir
bl

oc
kc

ha
in

Pa
ss

,R
.,

Sh
i,

E
.

-
Sc

op
us

20
17

E
PB

C
:

E
ffi

ci
en

t
Pu

bl
ic

B
lo

ck
ch

ai
n

C
lie

nt
fo

r

L
ig

ht
w

ei
gh

tU
se

rs

X
u,

L
.,

C
he

n,
L

.,
G

ao
,Z

.,
X

u,
S.

,S
hi

,

W
.

-
Sc

op
us

20
18

D
is

tr
ib

ut
ed

So
la

r
Se

lf
-C

on
su

m
pt

io
n

an
d

B
lo

ck
ch

ai
n

So
la

r
E

ne
rg

y
E

xc
ha

ng
es

on
th

e

Pu
bl

ic
G

ri
d

W
ith

in
an

E
ne

rg
y

C
om

m
un

ity

Pl
az

a,
C

.,
G

il,
J.

,
D

e
C

he
ze

lle
s,

F.
,

St
ra

ng
,K

.A
.

-
Sc

op
us

20
18

D
es

ig
ni

ng
bl

oc
kc

ha
in

-b
as

ed
SI

E
M

3.
0

sy
st

em
M

ilo
sl

av
sk

ay
a,

N
.

-
Sc

op
us

20
18

C
ha

in
FS

:B
lo

ck
ch

ai
n-

Se
cu

re
d

C
lo

ud
St

or
ag

e
Ta

ng
,

Y.
,

Z
ou

,
Q

.,
C

he
n,

J.
,

L
i,

K
.,

K
am

ho
ua

,C
.A

.,
K

w
ia

t,
K

.,
N

jil
la

,L
.

-
Sc

op
us

20
16

B
ri

ng
in

g
se

cu
re

B
itc

oi
n

tr
an

sa
ct

io
ns

to
yo

ur

sm
ar

tp
ho

ne

Fr
ey

,D
.,

M
ak

ke
s,

M
.X

.,
R

om
an

,P
.-L

.,

Ta
ïa

ni
,F

.,
Vo

ul
ga

ri
s,

S.

-
Sc

op
us

20
15

B
lo

ck
ch

ai
n-

ba
se

d
m

od
el

fo
r

so
ci

al
tr

an
sa

ct
io

ns

pr
oc

es
si

ng

Sa
rr

,I
.,

N
aa

ck
e,

H
.,

G
ue

ye
,I

.

-
Sc

op
us

20
18

B
lo

ck
ch

ai
n-

B
as

ed
Io

T-
cl

ou
d

au
th

or
iz

at
io

n
an

d

de
le

ga
tio

n

Ta
pa

s,
N

.,
M

er
lin

o,
G

.,
L

on
go

,F
.

73

SLR Screening Stages
Ta

bl
e

A
.1

co
nt

in
ue

d
fr

om
pr

ev
io

us
pa

ge

3r
d

sc
re

en

2n
d

sc
re

en

1s
t

Sc
re

en

R
em

ov
e

D
up

lic
at

es

So
ur

ce
Y

ea
r

Ti
tle

A
ut

ho
rs

-
Sc

op
us

20
17

B
lo

ck
ch

ai
n

w
or

ld
-

D
o

yo
u

ne
ed

a
bl

oc
kc

ha
in

?

T
hi

s
ch

ar
t

w
ill

te
ll

yo
u

if
th

e
te

ch
no

lo
gy

ca
n

so
lv

e
yo

ur
pr

ob
le

m

Pe
ck

,M
.E

.

-
Sc

op
us

20
17

B
la

ck
ch

ai
n:

Sc
al

ab
ili

ty
fo

r
re

so
ur

ce
-c

on
st

ra
in

ed

ac
co

un
ta

bl
e

ve
hi

cl
e-

to
-x

co
m

m
un

ic
at

io
n

V
an

D
er

H
ei

jd
en

,R
.W

.,
E

ng
el

m
an

n,
F.

,

M
öd

in
ge

r,
D

.,
Sc

hö
ni

g,
F.

,K
ar

gl
,F

.

-
Sc

op
us

20
17

B
ey

on
d

he
llm

an
’s

tim
e-

m
em

or
y

tr
ad

e-
of

fs
w

ith

ap
pl

ic
at

io
ns

to
pr

oo
fs

of
sp

ac
e

A
bu

sa
la

h,
H

.,
A

lw
en

,
J.

,
C

oh
en

,
B

.,

K
hi

lk
o,

D
.,

Pi
et

rz
ak

,K
.,

R
ey

zi
n,

L
.

-
Sc

op
us

20
17

A
na

ly
si

s
of

th
e

bl
oc

kc
ha

in
pr

ot
oc

ol
in

as
yn

-

ch
ro

no
us

ne
tw

or
ks

Pa
ss

,R
.,

Se
em

an
,L

.,
Sh

el
at

,A
.

-
Sc

op
us

20
18

A
na

ly
si

s
of

se
cu

ri
ty

in
bl

oc
kc

ha
in

:C
as

e
st

ud
y

in

51
%

-a
tta

ck
de

te
ct

in
g

Y
e,

C
.,

L
i,

G
.,

C
ai

,H
.,

G
u,

Y.
,F

uk
ud

a,

A
.

-
Sc

op
us

20
18

A
n

in
te

gr
at

ed
pl

at
fo

rm
fo

rt
he

In
te

rn
et

of
T

hi
ng

s

ba
se

d
on

an
op

en
so

ur
ce

ec
os

ys
te

m

L
i,

Y.
Q

.

-
Sc

op
us

20
18

A
n

ID
-B

as
ed

L
in

ea
rl

y
H

om
om

or
ph

ic
Si

gn
at

ur
e

Sc
he

m
e

an
d

It
s

A
pp

lic
at

io
n

in
B

lo
ck

ch
ai

n

L
in

,Q
.,

Y
an

,H
.,

H
ua

ng
,Z

.,
C

he
n,

W
.,

Sh
en

,J
.,

Ta
ng

,Y
.

-
Sc

op
us

20
19

A
N

ew
L

at
tic

e-
B

as
ed

Si
gn

at
ur

e
Sc

he
m

e
in

Po
st

-

Q
ua

nt
um

B
lo

ck
ch

ai
n

N
et

w
or

k

L
i,

C
.-Y

.,
C

he
n,

X
.-B

.,
C

he
n,

Y.
-L

.,

H
ou

,Y
.-Y

.,
L

i,
J.

-
Sc

op
us

20
17

A
ge

ne
ra

lf
ra

m
ew

or
k

fo
rb

lo
ck

ch
ai

n
an

al
yt

ic
s

B
ar

to
le

tti
,

M
.,

L
an

de
,

S.
,

Po
m

pi
an

u,

L
.,

B
ra

cc
ia

li,
A

.

-
Sc

op
us

20
18

A
cr

iti
ca

l
lo

ok
at

cr
yp

to
go

ve
rn

an
ce

of
th

e
re

al

w
or

ld
:

C
ha

lle
ng

es
fo

r
sp

at
ia

lr
ep

re
se

nt
at

io
n

an
d

un
ce

rt
ai

nt
y

on
th

e
bl

oc
kc

ha
in

A
da

m
s,

B
.,

To
m

ko
,M

.

74

SLR Screening Stages

Ta
bl

e
A

.1
co

nt
in

ue
d

fr
om

pr
ev

io
us

pa
ge

3r
d

sc
re

en

2n
d

sc
re

en

1s
t

Sc
re

en

R
em

ov
e

D
up

lic
at

es

So
ur

ce
Y

ea
r

Ti
tle

A
ut

ho
rs

-
Sc

op
us

20
17

A
by

za
nt

in
e

fa
ul

t-
to

le
ra

nt
or

de
ri

ng
se

rv
ic

e
fo

r

th
e

hy
pe

rl
ed

ge
r

fa
br

ic
bl

oc
kc

ha
in

pl
at

fo
rm

(S
ho

rt
Pa

pe
r)

B
es

sa
ni

,A
.,

So
us

a,
J.

,V
uk

ol
ić

,M
.

-
Sc

op
us

20
17

4t
h

In
te

rn
at

io
na

lC
on

fe
re

nc
e

on
Fu

tu
re

D
at

a
an

d

Se
cu

ri
ty

E
ng

in
ee

ri
ng

,F
D

SE
20

17

[N
o

au
th

or
na

m
e

av
ai

la
bl

e]

-
Sc

op
us

20
18

3r
d

In
te

rn
at

io
na

l
C

on
fe

re
nc

e
on

In
te

rn
et

of

T
hi

ng
s,

IC
IO

T
20

18
H

el
d

as
Pa

rt
of

th
e

Se
rv

ic
es

C
on

fe
re

nc
e

Fe
de

ra
tio

n,
SC

F
20

18

[N
o

au
th

or
na

m
e

av
ai

la
bl

e]

-
Sc

op
us

20
17

36
th

A
nn

ua
l

In
te

rn
at

io
na

l
C

on
fe

re
nc

e
on

th
e

T
he

or
y

an
d

A
pp

lic
at

io
ns

of
C

ry
pt

og
ra

ph
ic

Te
ch

-

ni
qu

es
,E

U
R

O
C

RY
PT

20
17

[N
o

au
th

or
na

m
e

av
ai

la
bl

e]

-
Sc

op
us

20
18

21
-

B
ri

ng
in

g
do

w
n

th
e

co
m

pl
ex

ity
:

Fa
st

co
m

-

po
sa

bl
e

pr
ot

oc
ol

s
fo

r
ca

rd
ga

m
es

w
ith

ou
ts

ec
re

t

st
at

e

D
av

id
,B

.,
D

ow
sl

ey
,R

.,
L

ar
an

ge
ir

a,
M

.

-
Sc

op
us

20
18

13
th

E
A

I
In

te
rn

at
io

na
l

C
on

fe
re

nc
e

on
Se

cu
ri

ty

an
d

Pr
iv

ac
y

in
C

om
m

un
ic

at
io

n
N

et
w

or
ks

,
Se

-

cu
re

C
om

m
20

17

[N
o

au
th

or
na

m
e

av
ai

la
bl

e]

-
Sc

op
us

20
17

11
th

In
te

rn
at

io
na

lC
on

fe
re

nc
e

on
Pr

ov
ab

le
Se

cu
-

ri
ty

,P
ro

vS
ec

20
17

[N
o

au
th

or
na

m
e

av
ai

la
bl

e]

-
pa

ss
A

C
M

20
18

To
w

ar
ds

So
lv

in
g

th
e

D
at

a
A

va
ila

bi
lit

y
Pr

ob
le

m

fo
rS

ha
rd

ed
E

th
er

eu
m

D
an

ie
l

Se
l

an
d

K
ai

w
en

Z
ha

ng
an

d

H
an

s-
A

rn
o

Ja
co

bs
en

75

SLR Screening Stages
Ta

bl
e

A
.1

co
nt

in
ue

d
fr

om
pr

ev
io

us
pa

ge

3r
d

sc
re

en

2n
d

sc
re

en

1s
t

Sc
re

en

R
em

ov
e

D
up

lic
at

es

So
ur

ce
Y

ea
r

Ti
tle

A
ut

ho
rs

-
pa

ss
G

oo
gl

e

Sh
oo

la
r

20
18

Tr
us

te
d

ag
en

tb
lo

ck
ch

ai
n

or
ac

le
M

D
Ja

ck
so

n

-
pa

ss
IE

E
E

20
18

To
w

ar
ds

D
is

tr
ib

ut
ed

SL
A

M
an

ag
em

en
t

w
ith

Sm
ar

tC
on

tr
ac

ts
an

d
B

lo
ck

ch
ai

n

R
.B

.U
ri

ar
te

;R
.d

e
N

ic
ol

a;
K

.K
ri

tik
os

-
pa

ss
Sc

op
us

20
18

Z
er

o-
tr

us
th

ie
ra

rc
hi

ca
lm

an
ag

em
en

ti
n

Io
T

Sa
m

an
ie

go
,M

.,
D

et
er

s,
R

.

-
pa

ss
Sc

op
us

20
18

T
he

in
te

rf
ac

e
be

tw
ee

n
bl

oc
kc

ha
in

an
d

th
e

re
al

w
or

ld

D
am

ja
n,

M
.

-
pa

ss
Sc

op
us

20
18

O
ur

ob
or

os
ge

ne
si

s:
C

om
po

sa
bl

e
pr

oo
f-

of
-s

ta
ke

bl
oc

kc
ha

in
s

w
ith

dy
na

m
ic

av
ai

la
bi

lit
y

B
ad

er
ts

ch
er

,
C

.,
G

až
i,

P.
,

K
ia

yi
as

,
A

.,

R
us

se
ll,

A
.,

Z
ik

as
,V

.

-
pa

ss
Sc

op
us

20
18

C
on

tr
ac

tF
uz

ze
r:

Fu
zz

in
g

sm
ar

tc
on

tr
ac

ts
fo

rv
ul

-

ne
ra

bi
lit

y
de

te
ct

io
n

Ji
an

g,
B

.,
L

iu
,Y

.,
C

ha
n,

W
.K

.

-
pa

ss
pa

ss
Sc

op
us

20
18

C
on

fid
en

tia
l

B
us

in
es

s
Pr

oc
es

s
E

xe
cu

tio
n

on

B
lo

ck
ch

ai
n

C
ar

m
in

at
i,

B
.,

R
on

da
ni

ni
,

C
.,

Fe
rr

ar
i,

E
.

pa
ss

pa
ss

pa
ss

A
C

M
20

18
O

ff
-c

ha
in

in
g

M
od

el
s

an
d

A
pp

ro
ac

he
s

to
O

ff
-

ch
ai

n
C

om
pu

ta
tio

ns

Ja
co

b
E

be
rh

ar
dt

an
d

Jo
na

th
an

H
ei

ss

pa
ss

pa
ss

pa
ss

G
oo

gl
e

Sh
oo

la
r

20
18

A
st

ra
ea

:A
de

ce
nt

ra
liz

ed
bl

oc
kc

ha
in

or
ac

le
J

A
dl

er
,R

B
er

ry
hi

ll,
A

V
en

er
is

,Z
Po

u-

lo
s,

N
V

ei
ra

..
.

pa
ss

pa
ss

pa
ss

G
oo

gl
e

Sh
oo

la
r

20
17

Pr
ov

en
an

ce
an

d
au

th
en

tic
at

io
n

of
or

ac
le

se
ns

or

da
ta

w
ith

bl
oc

k
ch

ai
n

lig
ht

w
ei

gh
t

w
ir

el
es

s
ne

t-

w
or

k
au

th
en

tic
at

io
n

sc
he

m
e

fo
r

co
ns

tr
ai

ne
d

or
a-

cl
e

se
ns

or
s

G
G

or
do

n

76

SLR Screening Stages

Ta
bl

e
A

.1
co

nt
in

ue
d

fr
om

pr
ev

io
us

pa
ge

3r
d

sc
re

en

2n
d

sc
re

en

1s
t

Sc
re

en

R
em

ov
e

D
up

lic
at

es

So
ur

ce
Y

ea
r

Ti
tle

A
ut

ho
rs

pa
ss

pa
ss

pa
ss

G
oo

gl
e

Sh
oo

la
r

20
18

B
itc

oi
n

ga
m

bl
in

g
us

in
g

di
st

ri
bu

te
d

or
ac

le
s

in
th

e

bl
oc

kc
ha

in

FJ
A

M
on

to
to

M
on

ro
y

pa
ss

pa
ss

pa
ss

Sc
op

us
20

16
To

w
n

cr
ie

r:
A

n
au

th
en

tic
at

ed
da

ta
fe

ed
fo

rs
m

ar
t

co
nt

ra
ct

s

Z
ha

ng
,

F.
,

C
ec

ch
et

ti,
E

.,
C

ro
m

an
,

K
.,

Ju
el

s,
A

.,
Sh

i,
E

.

77

SLR Screening Stages

78

Appendix B

On-Chain Oracle Code

1 pragma solidity >=0.4.21 <0.6.0;

2

3 contract Oracle {

4 Request[] requests; //list of requests made to the contract

5 uint currentId = 0; //increasing request id

6 uint minQuorum = 2; //minimum number of responses to receive before declaring

final result

7 uint totalOracleCount = 3; // Hardcoded oracle count

8

9 // defines a general api request

10 struct Request {

11 uint id; //request id

12 string urlToQuery; //API url

13 string attributeToFetch; //json attribute (key) to retrieve in

the response

14 string agreedValue; //value from key

15 mapping(uint => string) anwers; //answers provided by the oracles

16 mapping(address => uint) quorum; //oracles which will query the answer

(1=oracle hasn’t voted, 2=oracle has voted)

17 }

18

19 //event that triggers oracle outside of the blockchain

20 event NewRequest (

21 uint id,

22 string urlToQuery,

23 string attributeToFetch

24);

25

26 //triggered when there’s a consensus on the final result

27 event UpdatedRequest (

28 uint id,

29 string urlToQuery,

30 string attributeToFetch,

79

On-Chain Oracle Code

31 string agreedValue

32);

33

34 function createRequest (

35 string memory _urlToQuery,

36 string memory _attributeToFetch

37)

38 public

39 {

40 uint lenght = requests.push(Request(currentId, _urlToQuery,

_attributeToFetch, ""));

41 Request storage r = requests[lenght-1];

42

43 // Hardcoded oracles address

44 r.quorum[address(0x6c2339b46F41a06f09CA0051ddAD54D1e582bA77)] = 1;

45 r.quorum[address(0xb5346CF224c02186606e5f89EACC21eC25398077)] = 1;

46 r.quorum[address(0xa2997F1CA363D11a0a35bB1Ac0Ff7849bc13e914)] = 1;

47

48 // launch an event to be detected by oracle outside of blockchain

49 emit NewRequest (

50 currentId,

51 _urlToQuery,

52 _attributeToFetch

53);

54

55 // increase request id

56 currentId++;

57 }

58

59 //called by the oracle to record its answer

60 function updateRequest (

61 uint _id,

62 string memory _valueRetrieved

63) public {

64

65 Request storage currRequest = requests[_id];

66

67 //check if oracle is in the list of trusted oracles

68 //and if the oracle hasn’t voted yet

69 if(currRequest.quorum[address(msg.sender)] == 1){

70

71 //marking that this address has voted

72 currRequest.quorum[msg.sender] = 2;

73

74 //iterate through "array" of answers until a position if free and save

the retrieved value

75 uint tmpI = 0;

76 bool found = false;

77 while(!found) {

80

On-Chain Oracle Code

78 //find first empty slot

79 if(bytes(currRequest.anwers[tmpI]).length == 0){

80 found = true;

81 currRequest.anwers[tmpI] = _valueRetrieved;

82 }

83 tmpI++;

84 }

85

86 uint currentQuorum = 0;

87

88 //iterate through oracle list and check if enough oracles(minimum quorum)

89 //have voted the same answer has the current one

90 for(uint i = 0; i < totalOracleCount; i++){

91 bytes memory a = bytes(currRequest.anwers[i]);

92 bytes memory b = bytes(_valueRetrieved);

93

94 if(keccak256(a) == keccak256(b)){

95 currentQuorum++;

96 if(currentQuorum >= minQuorum){

97 currRequest.agreedValue = _valueRetrieved;

98 emit UpdatedRequest (

99 currRequest.id,

100 currRequest.urlToQuery,

101 currRequest.attributeToFetch,

102 currRequest.agreedValue

103);

104 }

105 }

106 }

107 }

108 }

109 }

81

On-Chain Oracle Code

82

Appendix C

Off-Chain Oracle Code

1 require("dotenv").config();

2

3 import request from "request-promise-native";

4

5 import {

6 updateRequest,

7 newRequest

8 } from "./ethereum";

9

10 const start = () => {

11

12 newRequest((error, result) => {

13

14 let options = {

15 uri: result.args.urlToQuery,

16 json: true

17 };

18

19 request(options)

20 .then(parseData(result))

21 .then(updateRequest)

22 .catch(error);

23 });

24 };

25

26 const parseData = result => (body) => {

27 return new Promise((resolve, reject) => {

28 let id, valueRetrieved;

29 try {

30 id = result.args.id;

31 valueRetrieved = (body[result.args.attributeToFetch] || 0).toString

();

32 } catch (error) {

83

Off-Chain Oracle Code

33 reject(error);

34 return;

35 }

36 resolve({

37 id,

38 valueRetrieved

39 });

40 });

41 };

42

43 export default start;

84

Appendix D

Off-chain ethereum connection -
ethereum.js

1 require("dotenv").config();

2

3 import Web3 from "web3";

4

5

6 const web3 = new Web3(new Web3.providers.HttpProvider(process.env.

WEB3_PROVIDER_ADDRESS));

7 const abi = JSON.parse(process.env.ABI);

8 const address = process.env.CONTRACT_ADDRESS;

9 const contract = web3.eth.contract(abi).at(address);

10

11 const account = () => {

12 return new Promise((resolve, reject) => {

13 web3.eth.getAccounts((err, accounts) => {

14 if (err === null) {

15 resolve(accounts[process.env.ACCOUNT_NUMBER]);

16 } else {

17 reject(err);

18 }

19 });

20 });

21 };

22

23 export const updateRequest = ({

24 id,

25 valueRetrieved

26 }) => {

27 return new Promise((resolve, reject) => {

28 account().then(account => {

29 contract.updateRequest(id, valueRetrieved, {

30 from: account,

85

Off-chain ethereum connection - ethereum.js

31 gas: 60000000

32 }, (err, res) => {

33 if (err === null) {

34 resolve(res);

35 } else {

36 reject(err);

37 }

38 });

39 }).catch(error => reject(error));

40 });

41 };

42

43 export const createRequest = ({

44 urlToQuery,

45 attributeToFetch

46 }) => {

47 return new Promise((resolve, reject) => {

48 account().then(account => {

49 contract.createRequest(urlToQuery, attributeToFetch, {

50 from: account,

51 gas: 60000000

52 }, (err, res) => {

53 if (err === null) {

54 resolve(res);

55 } else {

56 reject(err);

57 }

58 });

59 }).catch(error => reject(error));

60 });

61 };

62

63 export const newRequest = (callback) => {

64 contract.NewRequest((error, result) => callback(error, result));

65 };

66

67 export const updatedRequest = (callback) => {

68 contract.UpdatedRequest((error, result) => callback(error, result));

69 };

86

Appendix E

Systematic Literature Review

87

Systematic Literature Review on Blockchain Oracles

Pedro Duarte da Costaa, Filipe Figueiredo Correiaa,b, Hugo Sereno Ferreiraa,b

aFaculty of Engineering, University of Porto, Oporto, Portugal
bINESC TEC, Oporto, Portugal

Abstract

Blockchain is fomenting a growing number of solutions and smart contracts are powering
new, secure and trusted applications. Smart contracts, currently, lack the important feature
of internet connectivity and thus require the use of oracles as a middleware for obtaining
information from the Web. This creates a new problem: trusting the use of those oracles;
as they do not abide by the same rules as smart contracts. However, current research on
Blockchain oracles is scarce and therefore this paper, seeks to systematize existing works
regarding oracles, both from academia research as well as from the industry. No survey
of the kind was found, to the date of this writing. This analysis comprises a transparent
and systematic review of 123 papers queried from the ACM Digital Library, IEEE Xplore,
Scopus and Google Scholar. The author concludes that the industry is paving the way in the
field of Blockchain oracles and that they can be grouped in the following three categories:
Software-based oracles, Hardware-based oracles and Consensus-based oracles.

Keywords: Blockchain, Oracles, Trusted Computation

1. Introduction

The topic of blockchain oracles is still
unexplored territory mostly investigated by
start-up companies and individuals thriv-
ing to solve a new problem. Therefore, re-
search related to oracles is scarcely found
on peer-reviewed publications but, nonethe-
less, is invaluable in such an early phase of
the technology. Consequently, a review on
existing work cannot be complete without
considering the one developed by academia

Email addresses:
pedro.duartecosta@fe.up.pt (Pedro Duarte da
Costa), filipe.correia@fe.up.pt (Filipe
Figueiredo Correia), hugosf@fe.up.pt (Hugo
Sereno Ferreira)

and also by start-ups, enterprises, govern-
ments and individuals.

The goal of this literature review is to get
a sense of the corpus of existing works on the
topic of blockchain oracles, and the direc-
tions and extent to which previous research
has rendered significant results.

This review is structured as follows: Sec-
tion 2 provides some background knowledge
required to clarify important concepts used
in the next sections. Section 3 details the
methodology used to carry out the research,
including which databases where queried,
how they were queried, and the process for
including or excluding certain works. Sec-
tion 4 analyses further work carried out by
the industry. Section 5 summarises the re-

July 3, 2019

sults found both in academic literature as
well as in the industry and answers the first
research question. Finally, Section 6 infers
some conclusions on the existing work and
answers the second research question.

2. Background

To discuss the topic of blockchain oracles
it’s important to understand a few key con-
cepts.

2.1. Blockchain

Blockchain is an implementation for dis-
tributed consensus, in a byzantine fault-
tolerant approach, without requiring to
trust in centralized parties. In this ledger,
transactions are recorded in an ongoing
chain, creating an immutable record.

2.2. Smart Contracts

In 2015, Ethereum [1] was launched as
an alternative protocol for building decen-
tralized applications called smart contracts.
As applications that run on the blockchain,
they are self-verifying, self-executing and
immutable contracts whose terms are di-
rectly written in lines of code. They can be
used to build a wide range of applications.

2.3. Blockchain Oracles

Smart contracts lack an important fea-
ture: internet connectivity. Due to the de-
terministic nature of Blockchain and the
incompatible indeterministic nature of the
Web, smart-contracts cannot directly query
it. Oracles solve the connectivity problem,
by listening to events produced by smart
contracts, they can insert the needed infor-
mation on the Blockchain to later be used
by the contracts. But oracles do not abide
by the same rules and do not support the
same guarantees given by Blockchain, so

they must either be trusted without hard
guarantees about the truthfulness of the
data that they provide or we must find ways
of guaranteeing their honesty.

2.4. Authenticity Proofs

A software or hardware generated crypto-
graphic proof during or after an execution
that can later be used to prove the integrity
and honesty of the execution or of the pro-
vided data.

2.5. Trusted Execution Environment
(TEE)

A Trusted Execution Environment is a
secure computational environment that is
strongly isolated from the main operating
system. It provides application isolation,
integrity and memory confidentiality. Sensi-
tive data is stored, processed and protected
from the main operating system or network.
This isolation is accomplished through soft-
ware and hardware-enforced mechanism.
TEE runs a small operating system which
exposes a minimal interface to the running
application and therefore reduces the attack
surface. Advanced TEE embeds unique
identities that allow to verify the device
authenticity and can be used to generate
proofs of the device honest execution.

Examples of TEEs are Intel Software
Guard Extensions (SGX) 1 and ARM
Trustzone-based Secure Elements Bunz
et al. [2], the latter is commonly found on
smartphones. Another example is Trusty 2,
a secure Operating System (OS) that pro-
vides a TEE for Android. It is isolated from
the rest of the system by both hardware and

1More information on Intel SGX can be found
here: https://software.intel.com/en-us/sgx/sdk

2More information on Trusty can be found here:
https://source.android.com/security/trusty

2

software. Trusty’s isolation protects it from
malicious apps installed by the user and po-
tential vulnerabilities that may be discov-
ered in Android.

3. Methodology

A literature review allows scholars not to
step on each other’s shoes but to climb on
each other’s shoulders, meaning, not dupli-
cated existing research, find research gaps
and strive to discover something new. To
conduct a non-biased, methodical and re-
producible review we identify its methodol-
ogy, what are the data sources and what is
the selection selection criteria (see 3.2).

3.1. Research Questions

First of all and to guide the focus of the
research, the following research questions
were defined:

• RQ1: What kind of blockchain or-
acles have been proposed?
We seek to analyse the scope of exist-
ing blockchain oracles. The method-
ologies and technologies used, so as to
understand how the oracle problem is
tackled.

• RQ2: What are the research
trends on blockchain oracles?
The goal of this question is to iden-
tify the main directions of research.
Analysing past solutions that never
made it into production and solutions
currently adopted.

3.2. Search Process

Figure 1, depicts the predefined review
strategy that was used. These steps are
inspired on the guidelines for performing
a systematic review by Kitchenham et al.,
2007 [3].

The first step, Search Strategy and
Data-sources, comprises a preliminary
search on several databases trying to opti-
mize the query that best fits the research
questions. After identifying the set of key-
words that best describe the problem a full
query is built and tested.

Once a satisfactory query is achieved, we
proceed to the next step, Study selec-
tion, here we aggregate the studies from all
databases and in the Screening and clean-
ing phase we remove papers written in other
languages or duplicated.

Next, in the Quality assessment step
we iteratively exclude papers that do not
help us answer to any of the research ques-
tions. Initially analysing only the title fol-
lowed by the abstract and so on until a full
read of the article seems worth it to take
conclusions and respond to que research
queries.

This leads to the Data extraction step,
in which we take and summarize the find-
ings after reading each paper.

These findings are used in the Data syn-
thesis step, we can summarize all the find-
ings, infer some conclusions and answer the
research questions.

3.3. Search Strategy and Data-sources

Having defined the strategy for the sys-
tematic review and after testing some
keywords on several databases, the au-
thor selected the following four electronic
databases to query for relevant publications:

• ACM Digital Library

• IEEE Xplore

• Scopus

• Google Scholar

3

Figure 1: Systematic Review strategy.

The defined search query was the follow-
ing:

(("blockchain" OR "block chain"

OR "block-chain") AND ("oracles"

OR "oracle" OR "middle-ware" OR

"middleware" OR "middle ware"

OR "datafeed" OR "data feed" OR

"data-feed"))

This search query was used to com-
prise the most frequent ways of referring to
blockchain and oracles. Some scholars have
investigated the oracle issue by simply call-

ing them a middleware or data-feed since
oracles can either be used as an intermedi-
ary that relays data or as the source of the
data.

The search was performed on the 5th of
February 2019 and revealed the number of
results presented in Table 1.

Since the concept of smart contracts
on the blockchain was only introduced in
2015, with the introduction of the Ethereum
blockchain [1], only results after 2015 were
considered, also, all duplicated papers were

4

Database Filters Results
ACM Digital Library Title, abstract and keywords 34
IEEE Xplore Title, abstract and index terms 24
Scopus Title, abstract and keywords 57
Google Scholar Title 8
Total 123

Table 1: Number of results and applied filters per database

removed. Analysing the initial search re-
sults per year, Figure 2, we can infer the
growing popularity of oracle-related aca-
demic research. The year 2019 only com-
prises work published in the month of Jan-
uary since the search was performed at the
beginning of February.

2015 2016 2017 2018 2019

0

15

30

45

60

1
6

27

55

2

Year

N
u

m
b

er
of

p
ap

er
s

Figure 2: Resulting papers from search distributed
per year

3.4. Study Selection and Quality Assess-
ment

The process of exclusion is depicted in
Figure 3 and all the information regarding
the papers and in which phase they were
excluded is transparently presented in Ap-
pendix A.

The study selection process initially
started with a pool of 123 papers from the
previously stated online databases. As de-
scribed on Figure 1, the selection and qual-
ity assessment compromised four stages:

• Stage 1: Screening and cleaning dupli-
cated articles or articles that were not
in English.

• Stage 2: Exclusion by carefully read-
ing the title but most importantly the
abstract. After this stage, only 13 of
the 91 non-duplicated papers were ei-
ther describing specific trustable oracle
implementations or mentioning the use
of oracles.

• Stage 3: Analysing the introduction
and conclusions in order to remove pa-
pers which do not describe an imple-
mentation of a trustable oracle or a
protocol to overcome the trust in or-
acles.

• Stage 4: Full article reading to assess if
the final bucket of articles answers the
research questions.

5

Figure 3: Screening stages.

3.5. Data extraction and Data Synthesis

This process resulted in finding three ar-
ticles and two theses that approach varying
problems in implementing and guarantee-
ing trust in oracles. In these publications
the author found the description of eight
different implementations or approaches to
blockchain oracles, which are analysed in
the following paragraphs.

Town Crier (TC) [4], leverages trusted
hardware, specifically Intel SGX3, to scrape
HTTPS-enabled websites and serve source-
authenticated data to smart contracts. The
architecture of TC is depicted on Fig-
ure 4 4. It involves a TC contract on
the blockchain that receives requests from

3Intel Corporation. Intel R© Software Guard
Extensions SDK. https://software.intel.com/en-
us/sgx-sdk, 2019

4Image taken from: https://town-
crier.readthedocs.io/en/latest/how tc works.html

a client contract and communicates those
request to a TC server which runs a SGX-
protected process to retrieve an answer from
a data source through an HTTPS con-
nection. Trusted Execution Environments
(TEE) prevent even the operating system
of the server from peeking into the enclave
or modifying its behaviour, while use of
the TLS (Transport Layer Security) proto-
col prevents tampering or eavesdropping on
communications on the network.

Figure 4: Town crier high-level architecture. Figure
taken from the Town Crier paper.

Astraea, proposed by Adler et al. [5],
describes a decentralized oracle network,
which is depicted on Figure 5 [6], with sub-
mitters, voters and certifiers, in which vot-
ers play a low-risk game and certifiers a
high-risk game with associated resources.
Using a monetary incentive structure as a
means to keep the players honest.

Figure 5: High-level overview of Astraea’s architec-
ture.

6

Gilroy Gordon [7] proposes a protocol for
oracle sensor data authenticity and integrity
to IoT devices network with low computa-
tional resources. Using sets of public and
private keys to authenticate that the oracle
sensor data actually was originated by that
oracle even if the information needs to pass
by several oracles before being consumed by
the application.

Francisco Monroy [8] defines a gambling
protocol based on incentives and assuming
that every entity involved has the objec-
tive to maximize their profit. The protocol
overcomes the trust in a single Oracle by
polling a network of 7 oracles from a large
network of available oracles, they will then
stake their money on a specific bet and only
receive their investment back if the majority
of the oracles vote in the same winner. Cre-
ating, therefore, incentives for Oracle good
behaviour.

J. Eberhardt [9] does not propose a spe-
cific method but analyses existing solutions
and defines a systematic classification for
existing trustable off-chain computation or-
acles. The authors identify the following off-
chain computation oracles approaches:

• Verifiable off-chain Computation, a
technique where a prover executes a
computation and then publishes the re-
sult including a cryptographic proof at-
testing the computation’s correctness
to the blockchain. An on-chain veri-
fier then verifies the proof and persists
the result in case of success. Identified
existing solutions are zkSNARKs [10],
Bulletproofs [2] and zkSTARKs [11].
zkSNARKs require a setup phase which
is more expensive than naive execution.
After the setup, however, proof size and
verification complexity are extremely
small and independent of circuit com-

plexity. This amortization makes zk-
SNARKs especially efficient for com-
putations executed repeatedly, which is
usually the case for off-chain state tran-
sitions. While zkSTARKs and Bullet-
proofs require no setup, proof size and
verification complexity grows with cir-
cuit complexity, which limits applica-
bility.

• Secure Multiparty Computation, SM-
PCs, enable a set of nodes to com-
pute functions on secret data in a way
that none of the nodes ever has ac-
cess to the data in its entirety. Iden-
tifies Enigma [12], which proposes a
privacy-preserving decentralized com-
putation platform based on multiple
parties where a blockchain stores a
publicly verifiable audit trail. How-
ever, current SMPC protocols add too
much overhead for them to be prac-
tical. Hence, Enigma now relies on
Trusted Execution Environments.

• Enclave-based Computation, EbC, re-
lying on Trusted Execution Environ-
ments (TEE) to execute computations
off-chain. Identified existing solutions
are Enigma and Ekiden [13] which
present two different implementations
of EbCs. In Enigma, programs can
either be executed on-chain or in en-
claves that are distributed across a sep-
arate off-chain network. An Enigma-
specific scripting language allows devel-
opers to mark objects as private and
hence, enforce off-chain computation.
In contrast to Enigma, Ekiden does
not allow on-chain computation but in-
stead, the blockchain is solely used as
persistent state storage.

• Incentive-driven Off-chain Computa-

7

tion, IOC, relies on incentive mech-
anisms applied to motivate off-chain
computation and guarantee computa-
tional correctness. IOCs inherit two
critical design issues: (1) keep ver-
ifiers motivated to validate solutions
and (2) reduce computational effort for
the on-chain judge. The paper identi-
fies TrueBit [14], as the first IOC im-
plementation, proposing solutions for
both challenges. As verifiers would
stop validating if solvers only pub-
lished correct solutions, TrueBit en-
forces solvers to provide erroneous so-
lutions from time to time and offers a
reward to the verifiers for finding them.

4. Commercial Products and Projects

This search, unlike the systematic one ex-
plained before, cannot be described in a sys-
tematic way, since the source of the infor-
mation is scattered throughout whitepapers
and documentation webpages of startups,
which cannot be guaranteed to be search-
able and assessable in a systematic way.

To search for existing commercial prod-
ucts and projects, Google, a search engine
and Medium, a platform for blog posting
used widely by developers and the start-up
community, were used as a means to find
new projects or solutions for the oracle trust
problem. Using these two tools a lot of
projects were found trying to solve the ora-
cle trust problem and are solely documented
on white-papers or on the companies’ web-
site documentation page. This kind of lit-
erature cannot be found in peer-reviewed
databases, but can nonetheless provide in-
valuable information and is therefore worth
being analysed.

The results of this search revealed a wide
range of projects and protocols with varying

degrees of decentralization or authenticity.
A short explanation of each will be detailed
here:

• Oraclize.it [15], provides Authenticity
Proofs for the data it fetches guaran-
teeing that the original data-source is
genuine and untampered and can even
make use of several data sources in or-
der the gather trustable data, but its
centralized model does not guarantee
an always available service.

• ChainLink[16], describes a decentral-
ized network of oracles that can query
multiple sources in order to avoid de-
pendency of a sole oracle, which can
be prone to failure and also to gather
knowledge from multiple sources to ob-
tain a more reliable result. ChainLink
is also considering implementing, in the
future, authenticity proofs and make
use of trusted hardware, as of now it
requires users to trust in the ChainLink
nodes to behave correctly.

• SchellingCoin [17] protocol incentivizes
a decentralized network of oracles to
perform computation by rewarding
participants who submit results that
are closest to the median of all submit-
ted results in a commit-reveal process.

• TrueBit [14], introduces a system of
solvers and verifiers. Solvers are com-
pensated for performing computation
and verifiers are compensated for de-
tecting errors in solutions submitted by
solvers.

5. Results

A detailed explanation of the findings
from the systematic literature search is al-

8

Name Type Distributed Network Achieves trust through
Town Crier Hardware-based No Trusted hardware signed attestations
Astraea Consensus-based Yes Network with submitters, voters and certifier
Gordon [7] Software-based Yes Sets of public and private keys
Montoto Monroy [8] Consensus-based Yes Gambling protocol based on incentives
TrueBit Consensus-based Yes System of solvers and verifiers
Oraclize.it Software-based No TLSNotary, Android Proof

ChainLink
Consensus-based /

Software-based
Yes Query multiple sources

SchellingCoin Consensus-based Yes Incentive based

Table 2: Summary of oracle projects/research.

ready detailed in Section 3.5 and the in-
dustry solutions in Section 4. This section
analyses the combined work from both the
academia and industry.

Table 2, summarises the existing projects
that were found and answers the first re-
search question (Section 3.1) highlighting
three main types of oracles.

The first is software-based oracles,
which try to prove their honest behaviour
through the use of software-based authen-
ticity proofs. These, mostly take advantage
of some features of TLS to prove that the
data they are relaying is the actually pro-
vided data.

The second type is hardware-based or-
acles. These leverage specific hardware to
provide a TEE, to securely separate the en-
vironment running the oracle code from the
operating system and other applications to
achieve higher guarantees on untampered
code execution. They may even provide au-
thenticity proofs regarding that the query
actually came from a legit TEE.

Lastly, consensus-based oracles,
which require a network of peers working
together to achieve higher redundancy,
having several peers querying the data
and even in some cases peers performing
the role of the verifier. This last approach
largely depends on the existence of such a
network and requires the use of monetary

incentives to keep the networking running.
The most promising solutions are Town

Crier, ChainLink and Oraclize.it . Town
Crier hardware-based solution, more specif-
ically Intel SGX, adds strong guarantees
that the computation performed can be
trusted due to its isolution from the remain-
ing environment. To this reason, ChainLink
is adopting Town Crier5 to add increasing
reliability to their distributed solution. The
ChainLink distributed oracle network and
their partnerships with huge players such as
SWIFT 6 make it a promising solution, al-
though a private and fee-based one.

Oraclize.it, is an industry leading ser-
vice because of their use and research
of authenticity proofs. They have
also integrations with the most widely
used blockchains implementations, such as,
Ethereum, EOS [18], Hyperledger Fab-
ric [19], Rootstock 7 and Corda [20]. Their
authenticity proofs are both software-based
and hardware-based, with the use of TL-
SNotary [21], Android Proof 8 and Ledger

5ChainLink’s annoucement regarding the use
of Town Crier: https://blog.chain.link/town-crier-
and-chainlink/

6SWIFT is a global provider of se-
cure financial messaging services, more info:
https://www.swift.com/

7More information on Rootstock can be found
here: https://www.rsk.co/

8More information on the An-

9

Proof 9.
In conclusion, the industry presents ready

to use solutions for a fee where as the
academia mostly investigates the use of
consensus-based solutions which adopt an
incentives based network. The latter has
the problem of requiring such a network
of peers to existing in order to be trusted
where as the former can be used right away.

6. Conclusions

In this work, the author surveys 123 pa-
pers and fully analyses 5. One result-
ing in an hardware-based oracle solutions,
two consensus-based oracle proposals, one
software-based solution for an IoT devices
network data authentication and the last
one proposing a classification system of ex-
isting off-chain computation oracles. The
industry presents us four projects, in which
two of them are widely in use, namely
Oraclize.it and ChainLink, and other two
consensus-based solutions. The industry
seems to be investing the most on oracle re-
search, as the two previous mentioned com-
panies are developing a wide range of au-
thenticity proofs and leverage hardware so-
lutions to increase their oracles trustability
as detailed on the previous section. They
are also partnering with major banks and
institutions to allow their solutions to power
new solutions for smart contracts.

Summarizing, two main conclusions arise
from both academic and non-academic re-
search, and answer the second research
question 3.1.

droid Proof can be found here:
https://provable.xyz/papers/android proof-
rev2.pdf

9More information on the Ledger Proof can be
found here: https://docs.provable.xyz/#security-
deepdive-authenticity-proofstypes-ledger-proof

First of all, there is a clear lack of aca-
demic research on the topic of creating
trustable oracles. This is mostly likely
due to the specificity of the problem and
that blockchain related technology is usu-
ally paved by start ups and enthusiasts and
not yet addressed in universities curricular
plans.

Secondly, even though the main research
on trustable oracles is being pursued by
startups or sole developers all the exist-
ing projects seem to be specific to specific
blockchain platforms or in very early phases
and not yet ready to be generally adopted.

References

[1] Gavin Wood, Ethereum: A secure decen-
tralised generalised transaction ledger, Tech-
nical Report, Ethereum, 2014.

[2] B. Bunz, J. Bootle, D. Boneh, A. Poel-
stra, P. Wuille, G. Maxwell, Bulletproofs:
Short Proofs for Confidential Transactions and
More, in: 2018 IEEE Symposium on Security
and Privacy (SP), IEEE, 2018, pp. 315–334.

[3] B. Kitchenham, B. Kitchenham, S. Charters,
Guidelines for performing Systematic Litera-
ture Reviews in Software Engineering (2007).

[4] F. Zhang, E. Cecchetti, K. Croman, A. Juels,
E. Shi, Town Crier: An Authenticated Data
Feed for Smart Contracts, Technical Report,
2016.

[5] J. Adler, R. Berryhill, A. Veneris, Z. Poulos,
N. Veira, A. Kastania, Astraea: A Decentral-
ized Blockchain Oracle (2018).

[6] J. Adler, R. Berryhill, A. Veneris, Z. Poulos,
N. Veira, A. Kastania, ASTRAEA: A Decen-
tralized Blockchain Oracle, Technical Report,
2018.

[7] G. Gordon, Provenance and authentication of
oracle sensor data with block chain lightweight
wireless network authentication scheme for
constrained oracle sensors (2017).

[8] F. J. A. Montoto Monroy, Bitcoin gambling
using distributed oracles in the blockchain
(2018).

[9] J. Eberhardt, J. Heiss, Off-chaining Mod-
els and Approaches to Off-chain Computa-
tions, in: Proceedings of the 2nd Workshop

10

on Scalable and Resilient Infrastructures for
Distributed Ledgers - SERIAL’18, ACM Press,
New York, New York, USA, 2018, pp. 7–12.

[10] E. Ben-Sasson Technion Alessandro Chiesa,
E. Tromer, M. Virza MIT, Succinct Non-
Interactive Zero Knowledge for a von Neu-
mann Architecture, Technical Report, 2019.

[11] E. Ben-Sasson, I. Bentov, Y. Horesh, M. Ri-
abzev, Scalable, transparent, and post-
quantum secure computational integrity, Tech-
nical Report, 2018.

[12] A. Tam, Secret Voting Smart Contract with
Enigma: A Walkthrough, 2018.

[13] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes,
N. M. Johnson, A. Juels, A. K. Miller,
D. X. Song, Ekiden: A Platform for
Confidentiality-Preserving, Trustworthy, and
Performant Smart Contract Execution, unde-
fined (2018).

[14] J. Teutsch, C. Reitwießner, A scalable verifi-
cation solution for blockchains, Technical Re-
port, 2017.

[15] Oraclize.it, Oraclize Documentation, 2018.
[16] S. Ellis, A. Juels, S. Nazarov, ChainLink A De-

centralized Oracle Network, Technical Report,
2017.

[17] Vitalik Buterin, SchellingCoin: A Minimal-
Trust Universal Data Feed, 2014.

[18] Block.one, EOS.IO Technical White Paper v2,
2018.

[19] E. Androulaki, A. Barger, V. Bortnikov,
C. Cachin, K. Christidis, A. De Caro,
D. Enyeart, C. Ferris, G. Laventman,
Y. Manevich, S. Muralidharan, C. Murthy,
B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukolić,
S. W. Cocco, J. Yellick, Hyperledger Fabric:
A Distributed Operating System for Permis-
sioned Blockchains, Technical Report, 2018.

[20] R. G. Brown, J. Carlyle, I. Grigg, M. Hearn,
Corda: An Introduction, Technical Report,
2016.

[21] TLSnotary-a mechanism for independently au-
dited https sessions, Technical Report, TLSno-
tary, 2014.

11

Appendix A. SLR Screening Stages

12

3r
d

sc
re

en
2n

d
sc

re
en

1s
t

S
cr

ee
n

R
em

ov
e

D
u

p
li

-
ca

te
s

S
ou

rc
e

Y
ea

r
T

it
le

A
u

th
o
rs

D
u

p
li

ca
te

A
C

M
20

16
W

ea
ve

r:
A

H
ig

h
-p

er
fo

rm
an

ce
,

T
ra

n
sa

ct
io

n
al

G
ra

p
h

D
at

ab
as

e
B

as
ed

on
R

efi
n

ab
le

T
im

es
-

ta
m

p
s

A
y
u

sh
D

u
b

ey
a
n

d
G

re
g

D
.

H
il

l
a
n

d
R

o
b

er
t

E
sc

ri
va

a
n

d
E

m
in

S
ir

er

D
u

p
li

ca
te

A
C

M
20

16
T

ow
n

C
ri

er
:

A
n

A
u

th
en

ti
ca

te
d

D
at

a
F

ee
d

fo
r

S
m

ar
t

C
on

tr
ac

ts
F

a
n

Z
h

a
n

g
a
n

d
E

th
a
n

C
ec

ch
et

ti
a
n

d
K

y
le

C
ro

m
a
n

a
n

d
A

ri
J
u

el
s

a
n

d
E

la
in

e
S

h
i

D
u

p
li

ca
te

A
C

M
20

16
P

ro
of

of
L

u
ck

:
A

n
E

ffi
ci

en
t

B
lo

ck
ch

ai
n

C
on

-
se

n
su

s
P

ro
to

co
l

M
it

a
r

M
il

u
ti

n
ov

ic
a
n

d
W

a
rr

en
H

e
a
n

d
H

ow
a
rd

W
u

a
n

d
M

a
x
in

d
er

K
a
n

-
w

a
l

D
u

p
li

ca
te

A
C

M
20

17
P

la
T

IB
A

R
T

:
A

P
la

tf
or

m
fo

r
T

ra
n

sa
ct

iv
e

Io
T

B
lo

ck
ch

ai
n

A
p

p
li

ca
ti

on
s

w
it

h
R

ep
ea

t-
ab

le
T

es
ti

n
g

M
ic

h
a
el

A
.

W
a
lk

er
a
n
d

A
b

h
is

h
ek

D
u

b
ey

a
n

d
A

ro
n

L
a
sz

ka
a
n

d
D

o
u

-
g
la

s
C

.
S

ch
m

id
t

D
u

p
li

ca
te

A
C

M
20

18
O

u
ro

b
or

os
G

en
es

is
:

C
om

p
os

ab
le

P
ro

of
-o

f-
S

ta
ke

B
lo

ck
ch

ai
n

s
w

it
h

D
y
n

am
ic

A
va

il
ab

il
it

y
C

h
ri

st
ia

n
B

a
d

er
ts

ch
er

a
n

d
A

g
g
el

o
s

K
ia

y
ia

s
a
n

d
A

le
x
a
n
d

er
R

u
ss

el
l

a
n

d
V

a
ss

il
is

Z
ik

a
s

D
u

p
li

ca
te

A
C

M
20

17
O

n
th

e
D

es
ig

n
of

C
om

m
u

n
ic

at
io

n
an

d
T

ra
n

sa
ct

io
n

A
n

on
y
m

it
y

in
B

lo
ck

ch
ai

n
-b

as
ed

T
ra

n
sa

ct
iv

e
M

ic
ro

gr
id

s

J
o
n

a
ta

n
B

er
g
q
u

is
t

a
n

d
A

ro
n

L
a
sz

ka
a
n

d
M

o
n

ik
a

S
tu

rm
a
n

d
A

b
h

is
h

ek
D

u
b

ey
D

u
p

li
ca

te
A

C
M

20
17

F
ru

it
C

h
ai

n
s:

A
F

ai
r

B
lo

ck
ch

ai
n

R
a
fa

el
P

a
ss

a
n

d
E

la
in

e
S

h
i

D
u

p
li

ca
te

A
C

M
20

18
C

on
tr

ac
tF

u
zz

er
:

F
u

zz
in

g
S

m
ar

t
C

on
tr

ac
ts

fo
r

V
u

ln
er

ab
il

it
y

D
et

ec
ti

on
B

o
J
ia

n
g

a
n

d
Y

e
L

iu
a
n

d
W

.
K

.
C

h
a
n

D
u

p
li

ca
te

A
C

M
20

16
B

ri
n

gi
n

g
S

ec
u

re
B

it
co

in
T

ra
n

sa
ct

io
n

s
to

Y
ou

r
S

m
ar

tp
h

on
e

D
av

id
e

F
re

y
a
n

d
M

a
rc

X
.

M
a
k
ke

s
a
n

d
P

ie
rr

e-
L

o
u

is
R

o
m

a
n

a
n

d
S

p
y
ro

s
V

o
u

lg
a
ri

s
D

u
p

li
ca

te
A

C
M

20
17

B
la

ck
ch

ai
n

:
S

ca
la

b
il

it
y

fo
r

R
es

ou
rc

e-
co

n
st

ra
in

ed
A

cc
ou

n
ta

b
le

V
eh

ic
le

-t
o-

x
C

om
m

u
n

ic
at

io
n

R
en

s
W

.
va

n
d

er
H

ei
jd

en
a
n

d
F

el
ix

E
n

g
el

m
a
n

n
a
n

d
D

av
id

a
n

d
F

ra
n

zi
sk

a
a
n

d
F

ra
n

k
K

a
rg

l
D

u
p

li
ca

te
A

C
M

20
17

A
G

en
er

al
F

ra
m

ew
or

k
fo

r
B

lo
ck

ch
ai

n
A

n
al

y
t-

ic
s

M
a
ss

im
o

B
a
rt

o
le

tt
i

a
n

d
S

te
fa

n
o

L
a
n

d
e

a
n
d

L
iv

io
P

o
m

p
ia

n
u

a
n

d
A

n
-

d
re

a
B

ra
cc

ia
li

13

T
a
b
le

A
.3

c
o
n
ti
n
u
e
d

fr
o
m

p
re

v
io
u
s
p
a
g
e

3r
d

sc
re

en
2n

d
sc

re
en

1s
t

S
cr

ee
n

R
em

ov
e

D
u

p
li

-
ca

te
s

S
ou

rc
e

Y
ea

r
T

it
le

A
u

th
o
rs

D
u

p
li

ca
te

A
C

M
20

17
E

P
B

C
:

E
ffi

ci
en

t
P

u
b

li
c

B
lo

ck
ch

ai
n

C
li

en
t

fo
r

L
ig

h
tw

ei
gh

t
U

se
rs

L
ei

X
u

a
n

d
L

in
C

h
en

a
n

d
Z

h
im

in
G

a
o

a
n

d
S

h
o
u

h
u

a
i

X
u

a
n

d
W

ei
d

o
n

g
S

h
i

D
u

p
li

ca
te

A
C

M
20

16
B

lo
ck

ch
ai

n
s

an
d

th
e

L
og

ic
of

A
cc

ou
n
ta

b
il

it
y
:

K
ey

n
ot

e
A

d
d

re
ss

M
a
u

ri
ce

H
er

li
h
y

a
n

d
M

a
rk

M
o
ir

D
u

p
li

ca
te

A
C

M
20

17
A

B
y
za

n
ti

n
e

F
au

lt
-t

ol
er

an
t

O
rd

er
in

g
S

er
v
ic

e
fo

r
th

e
H

y
p

er
le

d
ge

r
F

ab
ri

c
B

lo
ck

ch
ai

n
P

la
t-

fo
rm

A
ly

ss
o
n

B
es

sa
n

i
a
n

d
J
o
ã
o

S
o
u

sa
a
n

d
M

a
rk

o
;

D
u

p
li

ca
te

IE
E

E
20

18
Z

er
o-

T
ru

st
H

ie
ra

rc
h

ic
al

M
an

ag
em

en
t

in
Io

T
M

.
S

a
m

a
n

ie
g
o
;

R
.

D
et

er
s

D
u

p
li

ca
te

IE
E

E
20

18
S

ec
u

re
P

u
b

-S
u

b
:

B
lo

ck
ch

ai
n

-B
as

ed
F

ai
r

P
ay

-
m

en
t

W
it

h
R

ep
u

ta
ti

on
fo

r
R

el
ia

b
le

C
y
b

er
P

h
y
si

ca
l

S
y
st

em
s

Y
.

Z
h

a
o
;

Y
.

L
i;

Q
.

M
u

;
B

.
Y

a
n

g
;

Y
.

Y
u

D
u

p
li

ca
te

IE
E

E
20

18
S

ec
u

re
A

tt
ri

b
u

te
-B

as
ed

S
ig

n
at

u
re

S
ch

em
e

W
it

h
M

u
lt

ip
le

A
u

th
or

it
ie

s
fo

r
B

lo
ck

ch
ai

n
in

E
le

ct
ro

n
ic

H
ea

lt
h

R
ec

or
d

s
S

y
st

em
s

R
.

G
u

o
;

H
.

S
h

i;
Q

.
Z

h
a
o
;

D
.

Z
h

en
g

D
u

p
li

ca
te

IE
E

E
20

18
P

ri
va

cy
Im

p
ro

ve
m

en
t

A
rc

h
it

ec
tu

re
fo

r
Io

T
E

.
K

a
k
;
R

.
O

rj
i;

J
.
P

ry
;
K

.
S

o
fr

a
n

ko
;

R
.

L
o
m

o
te

y
;

R
.

D
et

er
s

D
u

p
li

ca
te

IE
E

E
20

18
D

is
tr

ib
u

te
d

S
ol

ar
S

el
f-

C
on

su
m

p
ti

on
an

d
B

lo
ck

ch
ai

n
S

ol
ar

E
n

er
gy

E
x
ch

an
ge

s
on

th
e

P
u

b
li

c
G

ri
d

W
it

h
in

an
E

n
er

gy
C

om
m

u
n

it
y

C
.

P
la

za
;

J
.

G
il

;
F

.
d
e

C
h

ez
el

le
s;

K
.

A
.

S
tr

a
n

g

D
u

p
li

ca
te

IE
E

E
20

18
C

on
fi

d
en

ti
al

B
u

si
n

es
s

P
ro

ce
ss

E
x
ec

u
ti

on
on

B
lo

ck
ch

ai
n

B
.
C

a
rm

in
a
ti

;
C

.
R

o
n

d
a
n

in
i;

E
.
F

er
-

ra
ri

D
u

p
li

ca
te

IE
E

E
20

18
C

h
ai

n
F

S
:

B
lo

ck
ch

ai
n

-S
ec

u
re

d
C

lo
u

d
S

to
ra

ge
Y

.
T

a
n

g
;

Q
.

Z
o
u

;
J
.

C
h

en
;

K
.

L
i;

C
.

A
.

K
a
m

h
o
u

a
;

K
.

K
w

ia
t;

L
.

N
ji

ll
a

D
u

p
li

ca
te

IE
E

E
20

18
B

lo
ck

ch
ai

n
-B

as
ed

Io
T

-C
lo

u
d

A
u

th
or

iz
at

io
n

an
d

D
el

eg
at

io
n

N
.

T
a
p

a
s;

G
.

M
er

li
n

o
;

F
.

L
o
n

g
o

D
u

p
li

ca
te

IE
E

E
20

17
B

lo
ck

ch
ai

n
w

or
ld

-
D

o
yo

u
n

ee
d

a
b

lo
ck

ch
ai

n
?

T
h

is
ch

ar
t

w
il

l
te

ll
y
ou

if
th

e
te

ch
n

ol
og

y
ca

n
so

lv
e

yo
u

r
p

ro
b

le
m

M
.

E
.

P
ec

k

14

T
a
b
le

A
.3

c
o
n
ti
n
u
e
d

fr
o
m

p
re

v
io
u
s
p
a
g
e

3r
d

sc
re

en
2n

d
sc

re
en

1s
t

S
cr

ee
n

R
em

ov
e

D
u

p
li

-
ca

te
s

S
ou

rc
e

Y
ea

r
T

it
le

A
u

th
o
rs

D
u

p
li

ca
te

IE
E

E
20

18
B

lo
ck

ch
ai

n
as

a
P

la
tf

or
m

fo
r

S
ec

u
re

In
te

r-
O

rg
an

iz
at

io
n

al
B

u
si

n
es

s
P

ro
ce

ss
es

B
.

C
a
rm

in
a
ti

;
E

.
F

er
ra

ri
;

C
.

R
o
n

-
d

a
n

in
i

D
u

p
li

ca
te

IE
E

E
20

18
A

n
al

y
si

s
of

S
ec

u
ri

ty
in

B
lo

ck
ch

ai
n

:
C

as
e

S
tu

d
y

in
51

%
-A

tt
ac

k
D

et
ec

ti
n

g
C

.
Y

e;
G

.
L

i;
H

.
C

a
i;

Y
.

G
u

;
A

.
F

u
k
u

d
a

D
u

p
li

ca
te

IE
E

E
20

18
A

n
ID

-B
as

ed
L

in
ea

rl
y

H
om

om
or

p
h

ic
S

ig
-

n
at

u
re

S
ch

em
e

an
d

It
s

A
p

p
li

ca
ti

on
in

B
lo

ck
ch

ai
n

Q
.
L

in
;

H
.
Y

a
n

;
Z

.
H

u
a
n

g
;

W
.
C

h
en

;
J
.

S
h

en
;

Y
.

T
a
n

g

D
u

p
li

ca
te

IE
E

E
20

19
A

N
ew

L
at

ti
ce

-B
as

ed
S

ig
n

at
u

re
S

ch
em

e
in

P
os

t-
Q

u
an

tu
m

B
lo

ck
ch

ai
n

N
et

w
or

k
C

.
L

i;
X

.
C

h
en

;
Y

.
C

h
en

;
Y

.
H

o
u

;
J
.

L
i

D
u

p
li

ca
te

S
co

p
u

s
20

17
T

ow
ar

d
s

an
ec

on
om

ic
an

al
y
si

s
of

ro
u

ti
n

g
in

p
ay

m
en

t
ch

an
n

el
n

et
w

or
k
s

E
n

g
el

m
a
n

n
,
F

.,
K

o
p

p
,
H

.,
K

a
rg

l,
F

.,
G

la
se

r,
F

.,
W

ei
n

h
a
rd

t,
C

.
D

u
p

li
ca

te
S

co
p

u
s

20
18

13
th

E
A

I
In

te
rn

at
io

n
al

C
on

fe
re

n
ce

on
S

e-
cu

ri
ty

an
d

P
ri

va
cy

in
C

om
m

u
n

ic
at

io
n

N
et

-
w

or
k
s,

S
ec

u
re

C
om

m
20

17

[N
o

a
u

th
o
r

n
a
m

e
av

a
il

a
b
le

]

D
u

p
li

ca
te

S
co

p
u

s
20

17
V

IB
E

S
:
F

as
t

b
lo

ck
ch

ai
n

si
m

u
la

ti
on

s
fo

r
la

rg
e-

sc
al

e
p

ee
r-

to
-p

ee
r

n
et

w
or

k
s

S
to

y
ko

v
,

L
.,

Z
h

a
n

g
,

K
.,

J
a
co

b
se

n
,

H
.-

A
.

D
u

p
li

ca
te

S
co

p
u

s
20

17
H

y
p

er
P

u
b

S
u

b
:

a
d

ec
en

tr
al

iz
ed

,
p

er
m

is
-

si
on

ed
,

p
u

b
li

sh
/s

u
b

sc
ri

b
e

se
rv

ic
e

u
si

n
g

b
lo

ck
ch

ai
n

s

Z
u

p
a
n

,
N

.,
Z

h
a
n

g
,
K

.,
J
a
co

b
se

n
,
H

.-
A

.

D
u

p
li

ca
te

S
co

p
u

s
20

18
B

lo
ck

ch
ai

n
as

a
p

la
tf

or
m

fo
r

se
cu

re
in

te
r-

or
ga

n
iz

at
io

n
al

b
u

si
n

es
s

p
ro

ce
ss

es
C

a
rm

in
a
ti

,
B

.,
F

er
ra

ri
,

E
.,

R
o
n
-

d
a
n

in
i,

C
.

-
A

C
M

20
17

T
ow

ar
d

s
an

E
co

n
om

ic
A

n
al

y
si

s
of

R
ou

ti
n

g
in

P
ay

m
en

t
C

h
an

n
el

N
et

w
or

k
s

F
el

ix
E

n
g
el

m
a
n

n
a
n

d
H

en
n

in
g

K
o
p

p
a
n

d
F

ra
n

k
K

a
rg

l
a
n

d
F

lo
ri

a
n

G
la

se
r

a
n

d
C

h
ri

st
o
f

W
ei

n
h

a
rd

t
-

A
C

M
20

17
V

IB
E

S
:

F
as

t
B

lo
ck

ch
ai

n
S

im
u

la
ti

on
s

fo
r

L
ar

ge
-s

ca
le

P
ee

r-
to

-p
ee

r
N

et
w

or
k
s:

D
em

o
L

y
u

b
o
m

ir
S
to

y
ko

v
a
n

d
K

a
iw

en
Z

h
a
n

g
a
n

d
H

a
n
s-

A
rn

o
J
a
co

b
se

n
-

A
C

M
20

18
S

tr
ea

m
C

h
ai

n
:

D
o

B
lo

ck
ch

ai
n

s
N

ee
d

B
lo

ck
s?

Z
so

lt
a
n

d
A

le
ss

a
n

d
ro

S
o
rn

io
tt

i
a
n

d
M

a
rk

o
;

15

T
a
b
le

A
.3

c
o
n
ti
n
u
e
d

fr
o
m

p
re

v
io
u
s
p
a
g
e

3r
d

sc
re

en
2n

d
sc

re
en

1s
t

S
cr

ee
n

R
em

ov
e

D
u

p
li

-
ca

te
s

S
ou

rc
e

Y
ea

r
T

it
le

A
u

th
o
rs

-
A

C
M

20
18

S
ol

2J
s:

T
ra

n
sl

at
in

g
S

ol
id

it
y

C
on

tr
ac

ts
in

to
J
av

as
cr

ip
t

fo
r

H
y
p

er
le

d
ge

r
F

ab
ri

c
M

u
h

a
m

m
a
d

A
h

m
a
d

Z
a
fa

r
a
n

d
F

a
la

k
S

h
er

a
n

d
M

u
h

a
m

m
a
d

U
m

a
r

J
a
n

ju
a

a
n

d
S

a
lm

a
n

B
a
se

t
-

A
C

M
20

18
S

ca
li

n
g

B
y
za

n
ti

n
e

C
on

se
n

su
s:

A
B

ro
ad

A
n

al
-

y
si

s
C

h
ri

st
ia

n
B

er
g
er

a
n

d
H

a
n

s
P

.
R

ei
se

r

-
A

C
M

20
18

R
es

ou
rc

e
F

ai
rn

es
s

an
d

P
ri

or
it

iz
at

io
n

of
T

ra
n

sa
ct

io
n

s
in

P
er

m
is

si
on

ed
B

lo
ck

ch
ai

n
S

y
st

em
s

(I
n

d
u

st
ry

T
ra

ck
)

S
ee

p
G

o
el

a
n

d
A

b
h

is
h

ek
S

in
g
h

a
n
d

R
a
ch

it
G

a
rg

a
n

d
M

u
d

it
V

er
m

a
a
n

d
P

ra
ve

en
J
ay

a
ch

a
n

d
ra

n
-

A
C

M
20

18
P

ow
er

in
g

S
of

tw
ar

e
S

u
st

ai
n

ab
il

it
y

w
it

h
B

lo
ck

ch
ai

n
O

m
a
r

B
a
d

re
d

d
in

-
A

C
M

20
17

H
y
p

er
p

u
b

su
b

:
A

D
ec

en
tr

al
iz

ed
,

P
er

m
is

-
si

on
ed

,
P

u
b

li
sh

/S
u

b
sc

ri
b

e
S

er
v
ic

e
U

si
n

g
B

lo
ck

ch
ai

n
s:

D
em

o

N
ej

c
Z

u
p

a
n

a
n

d
K

a
iw

en
Z

h
a
n

g
a
n

d
H

a
n

s-
A

rn
o

J
a
co

b
se

n

-
A

C
M

20
17

H
ow

B
lo

ck
ch

ai
n

s
C

an
H

el
p

L
eg

al
M

et
ro

lo
gy

W
il

so
n

S
.

M
el

o
,J

r
a
n
d

A
ly

ss
o
n

B
es

sa
n

i
a
n

d
L

u
iz

F
.

R
.

C
.

C
a
rm

o
-

A
C

M
20

18
eV

IB
E

S
:

C
on

fi
gu

ra
b

le
an

d
In

te
ra

ct
iv

e
E

th
er

eu
m

B
lo

ck
ch

ai
n

S
im

u
la

ti
on

F
ra

m
ew

or
k

A
d

it
ya

D
es

h
p

a
n

d
e

a
n

d
P

ez
h

m
a
n

N
a
si

ri
fa

rd
a
n

d
H

a
n

s-
A

rn
o

J
a
co

b
se

n
-

A
C

M
20

18
E

V
A

:
F

ai
r

an
d

A
u

d
it

ab
le

E
le

ct
ri

c
V

eh
ic

le
C

h
ar

gi
n

g
S

er
v
ic

e
U

si
n

g
B

lo
ck

ch
ai

n
J
el

en
a

P
a
ji

c;
R

iv
er

a
a
n

d
K

a
iw

en
Z

h
a
n

g
a
n

d
H

a
n

s-
A

rn
o

J
a
co

b
se

n
-

A
C

M
20

18
D

ec
on

st
ru

ct
in

g
B

lo
ck

ch
ai

n
s:

C
on

ce
p

ts
,

S
y
s-

te
m

s,
an

d
In

si
gh

ts
K

a
iw

en
Z

h
a
n

g
a
n

d
R

o
m

a
n

V
it

en
-

b
er

g
a
n

d
H

a
n

s-
A

rn
o

J
a
co

b
se

n
-

A
C

M
20

18
C

ID
D

S
:

A
C

on
fi

gu
ra

b
le

an
d

D
is

tr
ib

u
te

d
D

A
G

-b
as

ed
D

is
tr

ib
u

te
d

L
ed

ge
r

S
im

u
la

ti
on

F
ra

m
ew

or
k

M
o
h

a
m

ed
R

is
w

a
n

A
b

d
u

l
L

a
th

if
a
n

d
P

ez
h

m
a
n

N
a
si

ri
fa

rd
a
n

d
H

a
n

s-
A

rn
o

J
a
co

b
se

n
-

A
C

M
20

18
B

lo
ck

ch
ai

n
s

fo
r

B
u

si
n

es
s

P
ro

ce
ss

M
an

ag
e-

m
en

t
-

C
h

al
le

n
ge

s
an

d
O

p
p

or
tu

n
it

ie
s

16

T
a
b
le

A
.3

c
o
n
ti
n
u
e
d

fr
o
m

p
re

v
io
u
s
p
a
g
e

3r
d

sc
re

en
2n

d
sc

re
en

1s
t

S
cr

ee
n

R
em

ov
e

D
u

p
li

-
ca

te
s

S
ou

rc
e

Y
ea

r
T

it
le

A
u

th
o
rs

-
A

C
M

20
18

B
lo

ck
ch

ai
n

L
an

d
sc

ap
e

an
d

A
I

R
en

ai
ss

an
ce

:
T

h
e

B
ri

gh
t

P
at

h
F

or
w

ar
d

H
a
n

s-
A

rn
o

J
a
co

b
se

n
a
n

d
M

o
h

a
m

-
m

a
d

S
a
d

o
g
h

i
a
n

d
M

o
h

a
m

m
a
d

H
o
s-

se
in

T
a
b

a
ta

b
a
ei

a
n

d
R

o
m

a
n

V
it

en
-

b
er

g
a
n

d
K

a
iw

en
Z

h
a
n

g
-

A
C

M
20

18
A

F
ed

er
at

ed
L

ow
-P

ow
er

W
A

N
fo

r
th

e
In

te
r-

n
et

of
T

h
in

gs
M

eh
d

i
B

ez
a
h

a
f

a
n

d
C

a
th

el
a
in

a
n

d
T

o
n
y

D
u

cr
o
cq

-
A

C
M

20
18

A
u

th
en

ti
ca

te
d

M
o
d

u
la

r
M

ap
s

in
H

as
ke

ll
V

ic
to

r
C

a
cc

ia
ri

M
ir

a
ld

o
a
n

d
H

a
ro

ld
C

a
rr

a
n

d
A

le
x

K
o
g
a
n

a
n

d
M

a
rk

M
o
ir

a
n

d
M

a
u

ri
ce

H
er

li
h
y

-
A

C
M

20
18

A
tt

ac
k

an
d

V
u

ln
er

ab
il

it
y

S
im

u
la

ti
on

F
ra

m
e-

w
or

k
fo

r
B

it
co

in
-l

ik
e

B
lo

ck
ch

ai
n

T
ec

h
n

ol
og

ie
s

F
a
b

ia
n

a
n

d
P

ez
h

m
a
n

N
a
si

ri
fa

rd
a
n

d
H

a
n

s-
A

rn
o

J
a
co

b
se

n
-

G
o
og

le
S

h
o
ol

ar
20

17
B

lo
ck

ch
ai

n
O

ra
cl

es
–E

in
sa

tz
d

er
B

lo
ck

ch
ai

n
-

T
ec

h
n

ol
og

ie
fü

r
O

ffl
in

e-
A

n
w

en
d

u
n

ge
n

A
H

o
p

p
e

-
G

o
og

le
S

h
o
ol

ar
20

18
B

lo
ck

ch
ai

n
C

ou
p

le
d

O
ra

cl
e

F
u

si
on

D
S

a
tp

a
th

y

-
G

o
og

le
S

h
o
ol

ar
20

18
B

lo
ck

ch
ai

n
an

d
C

on
se

n
su

s
fr

om
P

ro
of

s
of

W
or

k
w

it
h

ou
t

R
an

d
om

O
ra

cl
es

J
A

G
a
ra

y,
A

K
ia

y
ia

s,
G

P
a
n

a
g
io

-
ta

ko
s

-
G

o
og

le
S

h
o
ol

ar
20

18
B

lo
ck

ch
ai

n
ac

ro
ss

O
ra

cl
e:

U
n
d

er
st

an
d

th
e

d
et

ai
ls

an
d

im
p

li
ca

ti
on

s
of

th
e

B
lo

ck
ch

ai
n

fo
r

O
ra

cl
e

d
ev

el
op

er
s

an
d

cu
st

om
er

s

R
va

n
M

ö
lk

en

-
IE

E
E

20
18

U
n

d
er

st
an

d
in

g
B

lo
ck

ch
ai

n
T

ec
h

n
ol

og
y
:

T
h

e
C

os
ts

an
d

B
en

efi
ts

of
D

ec
en

tr
al

iz
at

io
n

-
IE

E
E

20
18

T
ow

ar
d

s
A

p
p

li
ca

ti
on

P
or

ta
b

il
it

y
on

B
lo

ck
ch

ai
n

s
K

.
S

h
u

d
o
;

R
.

K
a
n

d
a
;

K
.

S
a
it

o

-
IE

E
E

20
17

S
ec

u
re

on
e-

ti
m

e
b

io
m

et
ri

e
to

k
en

s
fo

r
n

on
-

re
p

u
d

ia
b

le
m

u
lt

i-
p

ar
ty

tr
an

sa
ct

io
n

s
K

.
N

a
n

d
a
k
u

m
a
r;

N
.

R
a
th

a
;

S
.

P
a
n

ka
n
ti

;
S

.
D

a
rn

el
l

-
IE

E
E

20
17

M
u

lt
ic

lo
u

d
s

in
an

E
n
te

rp
ri

se
–

a
L

ov
e-

H
at

e
R

el
at

io
n

sh
ip

M
.

Y
o
u

si
f

17

T
a
b
le

A
.3

c
o
n
ti
n
u
e
d

fr
o
m

p
re

v
io
u
s
p
a
g
e

3r
d

sc
re

en
2n

d
sc

re
en

1s
t

S
cr

ee
n

R
em

ov
e

D
u

p
li

-
ca

te
s

S
ou

rc
e

Y
ea

r
T

it
le

A
u

th
o
rs

-
IE

E
E

20
19

L
ev

er
ag

in
g

th
e

C
ap

ab
il

it
ie

s
of

In
d

u
st

ry
4.

0
fo

r
Im

p
ro

v
in

g
E

n
er

gy
E

ffi
ci

en
cy

in
S

m
ar

t
F

ac
to

ri
es

N
.

M
o
h

a
m

ed
;

J
.

A
l-

J
a
ro

o
d

i;
S

.
L

a
za

ro
va

-M
o
ln

a
r

-
IE

E
E

20
17

F
os

te
ri

n
g

co
n

su
m

er
s’

en
er

gy
m

ar
k
et

th
ro

u
gh

sm
ar

t
co

n
tr

ac
ts

I.
K

o
u

n
el

is
;

G
.

S
te

ri
;

R
.

G
iu

li
a
n

i;
D

.
G

en
ei

a
ta

k
is

;
R

.
N

ei
ss

e;
I.

N
a
i-

F
ov

in
o

-
IE

E
E

20
18

C
h

ai
n

M
O

B
:

M
ob

il
it

y
A

n
al

y
ti

cs
on

B
lo

ck
ch

ai
n

B
.

N
a
sr

u
li

n
;

M
.

M
u

za
m

m
a
l;

Q
.

Q
u

-
IE

E
E

20
16

B
lo

ck
ch

ai
n

s
an

d
th

e
lo

gi
c

of
ac

co
u

n
ta

b
il

it
y

M
.

H
er

li
h
y
;

M
.

M
o
ir

-
IE

E
E

20
18

B
lo

ck
ch

ai
n

B
as

ed
S

ec
u

ri
ty

F
ra

m
ew

or
k

fo
r

Io
T

Im
p

le
m

en
ta

ti
on

s
K

.
N

.
K

ri
sh

n
a
n

;
R

.
J
en

u
;

T
.
J
o
se

p
h

;
M

.
L

.
S

il
p

a
-

IE
E

E
20

18
B

lo
ck

ch
ai

n
B

as
ed

V
eh

ic
u

la
r

D
at

a
M

an
ag

e-
m

en
t

R
.

S
h

a
rm

a
;

S
.

C
h

a
k
ra

b
o
rt

y

-
S

co
p

u
s

20
16

W
ea

v
er

:
A

h
ig

h
-p

er
fo

rm
an

ce
,

tr
an

sa
ct

io
n

al
gr

ap
h

d
at

ab
as

e
b

as
ed

on
re

fi
n

ab
le

ti
m

es
-

ta
m

p
s

D
u

b
ey

,
A

.,
H

il
l,

G
.D

.,
S

ir
er

,
E

.G
.,

E
sc

ri
va

,
R

.

-
S

co
p

u
s

20
18

T
ow

ar
d

s
a

sm
ar

t
co

n
tr

ac
t-

b
as

ed
,

d
ec

en
tr

al
-

iz
ed

,
p

u
b

li
c-

ke
y

in
fr

as
tr

u
ct

u
re

P
a
ts

o
n

a
k
is

,
C

.,
S

a
m

a
ri

,
K

.,
R

o
u

s-
so

p
o
u

lo
s,

M
.,

K
ia

y
ia

s,
A

.
-

S
co

p
u

s
20

16
S

y
sT

E
X

20
16

-
1s

t
W

or
k
sh

op
on

S
y
st

em
S

of
t-

w
ar

e
fo

r
T

ru
st

ed
E

x
ec

u
ti

on
,

co
lo

ca
te

d
w

it
h

A
C

M
/I

F
IP

/U
S

E
N

IX
M

id
d

le
w

ar
e

20
16

[N
o

a
u

th
o
r

n
a
m

e
av

a
il

a
b

le
]

-
S

co
p

u
s

20
18

S
y
st

em
at

ic
p

er
fo

rm
an

ce
ev

al
u

at
io

n
u

si
n

g
co

m
p

on
en

t-
in

-t
h

e-
lo

op
ap

p
ro

ac
h

K
o
cs

is
,

I.
,

K
le

n
ik

,
A

.,
P

a
ta

ri
cz

a
,

A
.,

T
el

ek
,

M
.,

D
eé

,
F

.,
C

se
h

,
D

.
-

S
co

p
u

s
20

18
S

y
n

ch
ro

n
iz

ed
ag

gr
eg

at
e

si
gn

at
u
re

s
fr

om
th

e
R

S
A

as
su

m
p

ti
on

H
o
h

en
b

er
g
er

,
S

.,
W

a
te

rs
,

B
.

-
S

co
p

u
s

20
18

S
im

p
le

p
ro

of
s

of
se

q
u

en
ti

al
w

or
k

C
o
h

en
,

B
.,

P
ie

tr
za

k
,

K
.

18

T
a
b
le

A
.3

c
o
n
ti
n
u
e
d

fr
o
m

p
re

v
io
u
s
p
a
g
e

3r
d

sc
re

en
2n

d
sc

re
en

1s
t

S
cr

ee
n

R
em

ov
e

D
u

p
li

-
ca

te
s

S
ou

rc
e

Y
ea

r
T

it
le

A
u

th
o
rs

-
S

co
p

u
s

20
17

S
E

R
IA

L
20

17
-

1s
t

W
or

k
sh

op
on

S
ca

l-
ab

le
an

d
R

es
il

ie
n
t

In
fr

as
tr

u
ct

u
re

s
fo

r
D

is
tr

ib
u

te
d

L
ed

ge
rs

,
C

ol
o
ca

te
d

w
it

h
A

C
M

/I
F

IP
/U

S
E

N
IX

M
id

d
le

w
ar

e
20

17
C

on
fe

re
n

ce

[N
o

a
u

th
o
r

n
a
m

e
av

a
il

a
b

le
]

-
S

co
p

u
s

20
18

S
ec

u
ri

ty
of

th
e

b
lo

ck
ch

ai
n

ag
ai

n
st

lo
n

g
d

el
ay

at
ta

ck
W

ei
,

P
.,

Y
u
a
n

,
Q

.,
Z

h
en

g
,

Y
.

-
S

co
p

u
s

20
18

S
ec

u
re

P
u

b
-S

u
b

:
B

lo
ck

ch
ai

n
-B

as
ed

F
ai

r
P

ay
-

m
en

t
w

it
h

R
ep

u
ta

ti
on

fo
r

R
el

ia
b

le
C

y
b

er
P

h
y
si

ca
l

S
y
st

em
s

Z
h

a
o
,

Y
.,

L
i,

Y
.,

M
u

,
Q

.,
Y

a
n

g
,

B
.,

Y
u

,
Y

.

-
S

co
p

u
s

20
18

S
ec

u
re

A
tt

ri
b

u
te

-B
as

ed
S

ig
n

at
u

re
S

ch
em

e
w

it
h

M
u

lt
ip

le
A

u
th

or
it

ie
s

fo
r

B
lo

ck
ch

ai
n

in
E

le
ct

ro
n

ic
H

ea
lt

h
R

ec
or

d
s

S
y
st

em
s

G
u

o
,

R
.,

S
h

i,
H

.,
Z

h
a
o
,

Q
.,

Z
h

en
g
,

D
.

-
S

co
p

u
s

20
17

R
in

gC
T

2.
0:

A
co

m
p

ac
t

ac
cu

m
u

la
to

r-
b

as
ed

(l
in

ka
b

le
ri

n
g

si
gn

at
u

re
)

p
ro

to
co

l
fo

r
b

lo
ck

ch
ai

n
cr

y
p

to
cu

rr
en

cy
M

on
er

o

S
u

n
,

S
.-

F
.,

A
u

,
M

.H
.,

L
iu

,
J
.K

.,
Y

u
en

,
T

.H
.

-
S

co
p

u
s

20
16

P
ro

of
of

L
u

ck
:

A
n

effi
ci

en
t

b
lo

ck
ch

ai
n

co
n

-
se

n
su

s
p

ro
to

co
l

M
il

u
ti

n
ov

ic
,

M
.,

H
e,

W
.,

W
u

,
H

.,
K

a
n
w

a
l,

M
.

-
S

co
p

u
s

20
18

P
ri

va
cy

im
p

ro
ve

m
en

t
ar

ch
it

ec
tu

re
fo

r
Io

T
K

a
k
,

E
.,

O
rj

i,
R

.,
P

ry
,

J
.,

S
o
fr

a
n

ko
,

K
.,

L
o
m

o
te

y,
R

.K
.,

D
et

er
s,

R
.

-
S

co
p

u
s

20
17

P
la

T
IB

A
R

T
:

A
P

la
tf

or
m

fo
r

T
ra

n
sa

ct
iv

e
Io

T
b

lo
ck

ch
ai

n
ap

p
li

ca
ti

on
s

w
it

h
re

p
ea

ta
b

le
te

st
-

in
g

W
a
lk

er
,

M
.A

.,
D

u
b

ey
,

A
.,

L
a
sz

ka
,

A
.,

S
ch

m
id

t,
D

.C
.

-
S

co
p

u
s

20
17

O
v
er

co
m

in
g

C
ry

p
to

gr
ap

h
ic

Im
p

os
si

b
il

it
y

R
e-

su
lt

s
U

si
n

g
B

lo
ck

ch
ai

n
s

G
oy

a
l,

R
.,

G
oy

a
l,

V
.

-
S

co
p

u
s

20
18

O
u

ro
b

or
os

p
ra

os
:

A
n

ad
ap

ti
ve

ly
-s

ec
u

re
,

se
m

i-
sy

n
ch

ro
n

ou
s

p
ro

of
-o

f-
st

ak
e

b
lo

ck
ch

ai
n

D
av

id
,

B
.,

G
a
ži

,
P

.,
K

ia
y
ia

s,
A

.,
R

u
ss

el
l,

A
.

19

T
a
b
le

A
.3

c
o
n
ti
n
u
e
d

fr
o
m

p
re

v
io
u
s
p
a
g
e

3r
d

sc
re

en
2n

d
sc

re
en

1s
t

S
cr

ee
n

R
em

ov
e

D
u

p
li

-
ca

te
s

S
ou

rc
e

Y
ea

r
T

it
le

A
u

th
o
rs

-
S

co
p

u
s

20
17

O
n

th
e

d
es

ig
n

of
co

m
m

u
n

ic
at

io
n

an
d

tr
an

s-
ac

ti
on

an
on

y
m

it
y

in
b

lo
ck

ch
ai

n
-b

as
ed

tr
an

s-
ac

ti
ve

m
ic

ro
gr

id
s

B
er

g
q
u

is
t,

J
.,

L
a
sz

ka
,

A
.,

S
tu

rm
,

M
.,

D
u

b
ey

,
A

.

-
S

co
p

u
s

20
17

M
id

d
le

w
ar

e
20

17
-

P
ro

ce
ed

in
gs

of
th

e
20

17
M

id
d

le
w

ar
e

P
os

te
rs

an
d

D
em

os
20

17
:

P
ro

-
ce

ed
in

gs
of

th
e

P
os

te
rs

an
d

D
em

os
S

es
si

on
of

th
e

18
th

In
te

rn
at

io
n

al
M

id
d

le
w

ar
e

C
on

fe
r-

en
ce

[N
o

a
u

th
o
r

n
a
m

e
av

a
il

a
b

le
]

-
S

co
p

u
s

20
17

M
4I

oT
20

17
-

P
ro

ce
ed

in
gs

of
th

e
20

17
W

or
k
-

sh
op

on
M

id
d

le
w

ar
e

an
d

A
p

p
li

ca
ti

on
s

fo
r

th
e

In
te

rn
et

of
T

h
in

gs
4t

h
E

d
it

io
n

an
d

2n
d

F
ed

-
er

at
ed

E
v
en

t
w

it
h

th
e

M
oT

A
W

or
k
sh

op
,
P

ar
t

of
M

id
d

le
w

ar
e

20
17

C
on

fe
re

n
ce

[N
o

a
u

th
o
r

n
a
m

e
av

a
il

a
b

le
]

-
S

co
p

u
s

20
18

Io
T

B
D

S
20

18
-

P
ro

ce
ed

in
gs

of
th

e
3r

d
In

te
r-

n
at

io
n

al
C

on
fe

re
n

ce
on

In
te

rn
et

of
T

h
in

gs
,

B
ig

D
at

a
an

d
S

ec
u

ri
ty

[N
o

a
u

th
o
r

n
a
m

e
av

a
il

a
b

le
]

-
S

co
p

u
s

20
18

In
tr

o
d

u
ci

n
g

th
e

n
ew

p
ar

ad
ig

m
of

S
o
ci

al
D

is
-

p
er

se
d

C
om

p
u

ti
n

g:
A

p
p

li
ca

ti
on

s,
T

ec
h

n
ol

o-
gi

es
an

d
C

h
al

le
n

ge
s

G
a
rć

ıa
-V

a
ll

s,
M

.,
D

u
b

ey
,

A
.,

B
o
tt

i,
V

.

-
S

co
p

u
s

20
17

F
ru

it
C

h
ai

n
s:

A
fa

ir
b

lo
ck

ch
ai

n
P

a
ss

,
R

.,
S

h
i,

E
.

-
S

co
p

u
s

20
17

E
P

B
C

:
E

ffi
ci

en
t

P
u

b
li

c
B

lo
ck

ch
ai

n
C

li
en

t
fo

r
L

ig
h
tw

ei
gh

t
U

se
rs

X
u

,
L

.,
C

h
en

,
L

.,
G

a
o
,

Z
.,

X
u

,
S

.,
S

h
i,

W
.

-
S

co
p

u
s

20
18

D
is

tr
ib

u
te

d
S

ol
ar

S
el

f-
C

on
su

m
p

ti
on

an
d

B
lo

ck
ch

ai
n

S
ol

ar
E

n
er

gy
E

x
ch

an
ge

s
on

th
e

P
u

b
li

c
G

ri
d

W
it

h
in

an
E

n
er

gy
C

om
m

u
n

it
y

P
la

za
,

C
.,

G
il

,
J
.,

D
e

C
h

ez
el

le
s,

F
.,

S
tr

a
n

g
,

K
.A

.

-
S

co
p

u
s

20
18

D
es

ig
n
in

g
b

lo
ck

ch
ai

n
-b

as
ed

S
IE

M
3.

0
sy

st
em

M
il

o
sl

av
sk

ay
a
,

N
.

-
S

co
p

u
s

20
18

C
h

ai
n

F
S

:
B

lo
ck

ch
ai

n
-S

ec
u

re
d

C
lo

u
d

S
to

ra
ge

T
a
n

g
,

Y
.,

Z
o
u

,
Q

.,
C

h
en

,
J
.,

L
i,

K
.,

K
a
m

h
o
u

a
,

C
.A

.,
K

w
ia

t,
K

.,
N

ji
ll

a
,

L
.

20

T
a
b
le

A
.3

c
o
n
ti
n
u
e
d

fr
o
m

p
re

v
io
u
s
p
a
g
e

3r
d

sc
re

en
2n

d
sc

re
en

1s
t

S
cr

ee
n

R
em

ov
e

D
u

p
li

-
ca

te
s

S
ou

rc
e

Y
ea

r
T

it
le

A
u

th
o
rs

-
S

co
p

u
s

20
16

B
ri

n
gi

n
g

se
cu

re
B

it
co

in
tr

an
sa

ct
io

n
s

to
y
ou

r
sm

ar
tp

h
on

e
F

re
y,

D
.,

M
a
k
ke

s,
M

.X
.,

R
o
m

a
n

,
P

.-
L

.,
T

ä
ıa

n
i,

F
.,

V
o
u

lg
a
ri

s,
S

.
-

S
co

p
u

s
20

15
B

lo
ck

ch
ai

n
-b

as
ed

m
o
d

el
fo

r
so

ci
al

tr
an

sa
c-

ti
on

s
p

ro
ce

ss
in

g
S

a
rr

,
I.

,
N

a
a
ck

e,
H

.,
G

u
ey

e,
I.

-
S

co
p

u
s

20
18

B
lo

ck
ch

ai
n

-B
as

ed
Io

T
-c

lo
u

d
au

th
or

iz
at

io
n

an
d

d
el

eg
at

io
n

T
a
p

a
s,

N
.,

M
er

li
n

o
,

G
.,

L
o
n

g
o
,

F
.

-
S

co
p

u
s

20
17

B
lo

ck
ch

ai
n

w
or

ld
-

D
o

yo
u

n
ee

d
a

b
lo

ck
ch

ai
n

?
T

h
is

ch
ar

t
w

il
l

te
ll

y
ou

if
th

e
te

ch
n

ol
og

y
ca

n
so

lv
e

yo
u

r
p

ro
b

le
m

P
ec

k
,

M
.E

.

-
S

co
p

u
s

20
17

B
la

ck
ch

ai
n

:
S

ca
la

b
il
it

y
fo

r
re

so
u

rc
e-

co
n

st
ra

in
ed

ac
co

u
n
ta

b
le

ve
h

ic
le

-t
o-

x
co

m
-

m
u

n
ic

at
io

n

V
a
n

D
er

H
ei

jd
en

,
R

.W
.,

E
n

g
el

-
m

a
n

n
,

F
.,

M
ö
d

in
g
er

,
D

.,
S

ch
ö
n

ig
,

F
.,

K
a
rg

l,
F

.
-

S
co

p
u

s
20

17
B

ey
on

d
h
el

lm
an

’s
ti

m
e-

m
em

or
y

tr
ad

e-
off

s
w

it
h

ap
p

li
ca

ti
on

s
to

p
ro

of
s

of
sp

ac
e

A
b

u
sa

la
h

,
H

.,
A

lw
en

,
J
.,

C
o
h
en

,
B

.,
K

h
il

ko
,

D
.,

P
ie

tr
za

k
,

K
.,

R
ey

zi
n

,
L

.
-

S
co

p
u

s
20

17
A

n
al

y
si

s
of

th
e

b
lo

ck
ch

ai
n

p
ro

to
co

l
in

as
y
n

-
ch

ro
n

ou
s

n
et

w
or

k
s

P
a
ss

,
R

.,
S

ee
m

a
n

,
L

.,
S

h
el

a
t,

A
.

-
S

co
p

u
s

20
18

A
n

al
y
si

s
of

se
cu

ri
ty

in
b

lo
ck

ch
ai

n
:

C
as

e
st

u
d

y
in

51
%

-a
tt

ac
k

d
et

ec
ti

n
g

Y
e,

C
.,

L
i,

G
.,

C
a
i,

H
.,

G
u

,
Y

.,
F

u
k
u

d
a
,

A
.

-
S

co
p

u
s

20
18

A
n

in
te

gr
at

ed
p

la
tf

or
m

fo
r

th
e

In
te

rn
et

of
T

h
in

gs
b

as
ed

on
an

op
en

so
u

rc
e

ec
os

y
st

em
L

i,
Y

.Q
.

-
S

co
p

u
s

20
18

A
n

ID
-B

as
ed

L
in

ea
rl

y
H

om
om

or
p

h
ic

S
ig

-
n

at
u

re
S

ch
em

e
an

d
It

s
A

p
p

li
ca

ti
on

in
B

lo
ck

ch
ai

n

L
in

,
Q

.,
Y

a
n

,
H

.,
H

u
a
n

g
,

Z
.,

C
h

en
,

W
.,

S
h

en
,

J
.,

T
a
n

g
,

Y
.

-
S

co
p

u
s

20
19

A
N

ew
L

at
ti

ce
-B

as
ed

S
ig

n
at

u
re

S
ch

em
e

in
P

os
t-

Q
u

an
tu

m
B

lo
ck

ch
ai

n
N

et
w

or
k

L
i,

C
.-

Y
.,

C
h

en
,

X
.-

B
.,

C
h

en
,

Y
.-

L
.,

H
o
u

,
Y

.-
Y

.,
L

i,
J
.

-
S

co
p

u
s

20
17

A
ge

n
er

al
fr

am
ew

or
k

fo
r

b
lo

ck
ch

ai
n

an
al

y
ti

cs
B

a
rt

o
le

tt
i,

M
.,

L
a
n

d
e,

S
.,

P
o
m

-
p

ia
n
u

,
L

.,
B

ra
cc

ia
li

,
A

.

21

T
a
b
le

A
.3

c
o
n
ti
n
u
e
d

fr
o
m

p
re

v
io
u
s
p
a
g
e

3r
d

sc
re

en
2n

d
sc

re
en

1s
t

S
cr

ee
n

R
em

ov
e

D
u

p
li

-
ca

te
s

S
ou

rc
e

Y
ea

r
T

it
le

A
u

th
o
rs

-
S

co
p

u
s

20
18

A
cr

it
ic

al
lo

ok
at

cr
y
p

to
go

ve
rn

an
ce

of
th

e
re

al
w

or
ld

:
C

h
al

le
n

ge
s

fo
r

sp
at

ia
l

re
p
re

se
n
ta

ti
on

an
d

u
n

ce
rt

ai
n
ty

on
th

e
b

lo
ck

ch
ai

n

A
d

a
m

s,
B

.,
T

o
m

k
o
,

M
.

-
S

co
p

u
s

20
17

A
b
y
za

n
ti

n
e

fa
u

lt
-t

ol
er

an
t

or
d

er
in

g
se

rv
ic

e
fo

r
th

e
h
y
p

er
le

d
ge

r
fa

b
ri

c
b

lo
ck

ch
ai

n
p

la
t-

fo
rm

(S
h

or
t

P
ap

er
)

B
es

sa
n

i,
A

.,
S

o
u

sa
,

J
.,

V
u

ko
li

ć,
M

.

-
S

co
p

u
s

20
17

4t
h

In
te

rn
at

io
n

al
C

on
fe

re
n

ce
on

F
u

tu
re

D
at

a
an

d
S

ec
u

ri
ty

E
n

gi
n

ee
ri

n
g,

F
D

S
E

20
17

[N
o

a
u

th
o
r

n
a
m

e
av

a
il

a
b

le
]

-
S

co
p

u
s

20
18

3r
d

In
te

rn
at

io
n

al
C

on
fe

re
n

ce
on

In
te

rn
et

of
T

h
in

gs
,

IC
IO

T
20

18
H

el
d

as
P

ar
t

of
th

e
S

er
-

v
ic

es
C

on
fe

re
n

ce
F

ed
er

at
io

n
,

S
C

F
20

18

[N
o

a
u

th
o
r

n
a
m

e
av

a
il

a
b

le
]

-
S

co
p

u
s

20
17

36
th

A
n

n
u

al
In

te
rn

at
io

n
al

C
on

fe
re

n
ce

on
th

e
T

h
eo

ry
an

d
A

p
p

li
ca

ti
on

s
of

C
ry

p
to

gr
ap

h
ic

T
ec

h
n

iq
u

es
,

E
U

R
O

C
R

Y
P

T
20

17

[N
o

a
u

th
o
r

n
a
m

e
av

a
il

a
b

le
]

-
S

co
p

u
s

20
18

21
-

B
ri

n
gi

n
g

d
ow

n
th

e
co

m
p

le
x
it

y
:

F
as

t
co

m
p

os
ab

le
p

ro
to

co
ls

fo
r

ca
rd

ga
m

es
w

it
h

ou
t

se
cr

et
st

at
e

D
av

id
,

B
.,

D
ow

sl
ey

,
R

.,
L

a
ra

n
g
ei

ra
,

M
.

-
S

co
p

u
s

20
18

13
th

E
A

I
In

te
rn

at
io

n
al

C
on

fe
re

n
ce

on
S

e-
cu

ri
ty

an
d

P
ri

va
cy

in
C

om
m

u
n

ic
at

io
n

N
et

-
w

or
k
s,

S
ec

u
re

C
om

m
20

17

[N
o

a
u

th
o
r

n
a
m

e
av

a
il

a
b

le
]

-
S

co
p

u
s

20
17

11
th

In
te

rn
at

io
n
al

C
on

fe
re

n
ce

on
P

ro
va

b
le

S
ec

u
ri

ty
,

P
ro

v
S

ec
20

17
[N

o
a
u

th
o
r

n
a
m

e
av

a
il

a
b

le
]

-
p

as
s

A
C

M
20

18
T

ow
ar

d
s

S
ol

v
in

g
th

e
D

at
a

A
va

il
ab

il
it

y
P

ro
b

-
le

m
fo

r
S

h
ar

d
ed

E
th

er
eu

m
D

a
n

ie
l

S
el

a
n

d
K

a
iw

en
Z

h
a
n

g
a
n

d
H

a
n

s-
A

rn
o

J
a
co

b
se

n
-

p
as

s
G

o
og

le
S

h
o
ol

ar
20

18
T

ru
st

ed
ag

en
t

b
lo

ck
ch

ai
n

or
ac

le
M

D
J
a
ck

so
n

-
p

as
s

IE
E

E
20

18
T

ow
ar

d
s

D
is

tr
ib

u
te

d
S

L
A

M
an

ag
em

en
t

w
it

h
S

m
ar

t
C

on
tr

ac
ts

an
d

B
lo

ck
ch

ai
n

R
.

B
.

U
ri

a
rt

e;
R

.
d

e
N

ic
o
la

;
K

.
K

ri
-

ti
ko

s
-

p
as

s
S

co
p

u
s

20
18

Z
er

o-
tr

u
st

h
ie

ra
rc

h
ic

al
m

an
ag

em
en

t
in

Io
T

S
a
m

a
n

ie
g
o
,

M
.,

D
et

er
s,

R
.

22

T
a
b
le

A
.3

c
o
n
ti
n
u
e
d

fr
o
m

p
re

v
io
u
s
p
a
g
e

3r
d

sc
re

en
2n

d
sc

re
en

1s
t

S
cr

ee
n

R
em

ov
e

D
u

p
li

-
ca

te
s

S
ou

rc
e

Y
ea

r
T

it
le

A
u

th
o
rs

-
p

as
s

S
co

p
u

s
20

18
T

h
e

in
te

rf
ac

e
b

et
w

ee
n

b
lo

ck
ch

ai
n

an
d

th
e

re
al

w
or

ld
D

a
m

ja
n

,
M

.

-
p

as
s

S
co

p
u

s
20

18
O

u
ro

b
or

os
ge

n
es

is
:

C
om

p
os

ab
le

p
ro

of
-o

f-
st

ak
e

b
lo

ck
ch

ai
n

s
w

it
h

d
y
n
am

ic
av

ai
la

b
il

it
y

B
a
d

er
ts

ch
er

,
C

.,
G

a
ži

,
P

.,
K

ia
y
ia

s,
A

.,
R

u
ss

el
l,

A
.,

Z
ik

a
s,

V
.

-
p

as
s

S
co

p
u

s
20

18
C

on
tr

ac
tF

u
zz

er
:

F
u

zz
in

g
sm

ar
t

co
n
tr

ac
ts

fo
r

v
u

ln
er

ab
il

it
y

d
et

ec
ti

on
J
ia

n
g
,

B
.,

L
iu

,
Y

.,
C

h
a
n

,
W

.K
.

-
p

as
s

p
as

s
S

co
p

u
s

20
18

C
on

fi
d

en
ti

al
B

u
si

n
es

s
P

ro
ce

ss
E

x
ec

u
ti

on
on

B
lo

ck
ch

ai
n

C
a
rm

in
a
ti

,
B

.,
R

o
n

d
a
n
in

i,
C

.,
F

er
-

ra
ri

,
E

.
p

as
s

p
as

s
p

as
s

A
C

M
20

18
O

ff
-c

h
ai

n
in

g
M

o
d

el
s

an
d

A
p

p
ro

ac
h

es
to

O
ff

-
ch

ai
n

C
om

p
u

ta
ti

on
s

J
a
co

b
E

b
er

h
a
rd

t
a
n

d
J
o
n

a
th

a
n

H
ei

ss
p

as
s

p
as

s
p

as
s

G
o
og

le
S

h
o
ol

ar
20

18
A

st
ra

ea
:

A
d

ec
en

tr
al

iz
ed

b
lo

ck
ch

ai
n

or
ac

le
J

A
d

le
r,

R
B

er
ry

h
il

l,
A

V
en

er
is

,
Z

P
o
u

lo
s,

N
V

ei
ra

..
.

p
as

s
p

as
s

p
as

s
G

o
og

le
S

h
o
ol

ar
20

17
P

ro
v
en

an
ce

an
d

au
th

en
ti

ca
ti

on
of

or
ac

le
se

n
-

so
r

d
at

a
w

it
h

b
lo

ck
ch

ai
n

li
gh

tw
ei

gh
t

w
ir

e-
le

ss
n
et

w
or

k
au

th
en

ti
ca

ti
on

sc
h

em
e

fo
r

co
n

-
st

ra
in

ed
or

ac
le

se
n

so
rs

G
G

o
rd

o
n

p
as

s
p

as
s

p
as

s
G

o
og

le
S

h
o
ol

ar
20

18
B

it
co

in
ga

m
b

li
n

g
u

si
n

g
d

is
tr

ib
u

te
d

or
ac

le
s

in
th

e
b

lo
ck

ch
ai

n
F

J
A

M
o
n
to

to
M

o
n

ro
y

p
as

s
p

as
s

p
as

s
S

co
p

u
s

20
16

T
ow

n
cr

ie
r:

A
n

au
th

en
ti

ca
te

d
d

at
a

fe
ed

fo
r

sm
ar

t
co

n
tr

ac
ts

Z
h

a
n

g
,

F
.,

C
ec

ch
et

ti
,

E
.,

C
ro

m
a
n

,
K

.,
J
u

el
s,

A
.,

S
h

i,
E

.

23

