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"Education is the path from cocky ignorance to miserable uncertainty."

Mark Twain
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Abstract

Additive manufacturing is widening its industrial applications due to the increased quality regard-
ing the mechanical behaviour of its parts. It is, however, not yet able to reach the same quality of
surface integrity as well as dimensional and geometrical tolerances of traditional processes such
as subtractive manufacturing processes (such as machining), which is why most components are
submitted to post-processing operations. This dissertation focuses on the machinability of con-
ventional and additively manufactured (SLM) maraging steel (18Ni300). For that, cutting loads,
chip control and surface integrity of the machined AM and conventional parts were analysed.

An initial inspection of the materials (two distinct AM maraging steels from different sup-
pliers and a conventional sample) was conducted by studying the existence of fabrication related
defects and microstructure through metallographic imaging. Their chemical composition, hard-
ness values, surface roughness and compression behaviour were also compared. Compression tests
allowed for the characterization of the maraging steels as well as understanding the difference in
mechanical strength of the considered alloys. These tests enabled the development of a constitu-
tive model which, by means of inverse identification and literature, was completed for dynamic
and high temperature domains.

Instrumented cylindrical turning tests (for a wide range of finishing cutting parameters) al-
lowed for measuring the cutting force and determining the machinability of an AM and conven-
tional alloys. Cutting tool impact (flat vs. chip-breaker) was also studied. Power consumption,
specific cutting pressure, chip generation and surface quality were also part of the investigated
variables.

A similar cutting behaviour was found between the AM and conventional steels. Regarding the
numerical simulation of the turning operations, the validation of the proposed constitutive model
was conducted by comparing the numerically obtained cutting forces with the experimental.
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Resumo

O fabrico aditivo tem vindo a expandir as suas aplicações industriais devido à qualidade iner-
ente das peças produzidas, no que diz respeito a comportamento mecânico. É, contudo, ainda
impossível alcançar níveis de qualidade e integridade super�cial, assim como tolerâncias dimen-
sionais e geométricas tão apertadas como processos tradicionais, tal como a maquinagem, sendo
este o principal motivo de estas peças serem sujeitas a operações de pós-processamento.

Esta dissertação foca-se na maquinabilidade do aço maraging (18Ni300) produzido de forma
convencional e através de fabrico aditivo. Para tal, esforços de corte, controlo de apara, e inte-
gridade super�cial foram analisados. Uma fase de classi�cação inicial foi realizada, focando-se
no estudo de imagens metalográ�cas, obtidas através das amostras tanto do material convencional
como FA. Valores de composição química, ensaios de dureza, medições de rugosidade super�cial
e ensaios de compressão também foram comparados. Os ensaios de compressão realizados per-
mitiram o desenvolvimento de um modelo constitutivo que, recorrendo à literatura e a métodos
inversos, é posteriormente usado em simulação numérica do processo de torneamento.

Ensaios de maquinabilidade foram conduzidos através de torneamento cilíndrico. Valores dis-
tintos para os parâmetros de corte foram usados de forma a cobrir um intervalo amplo de condições
de torneamento em acabamento. O impacto da ferramenta de corte (quebra aparavslisa) também
foi avaliado. Esforços de corte, potencia consumida, pressão especi�ca de corte, geração de apara
e qualidade da superfície também foram variáveis avaliadas.

Foi obtido um comportamento semelhante entre os dois aços, convencional e FA. No que diz
respeito à simulação numérica, a validação do modelo constitutivo proposto procedeu-se através
da comparação dos valores obtidos experimentalmente com os valores provenientes de simulação.
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Chapter 1

Introduction

1.1 Framework and motivation

The present work integrates the project MAMTOOL under development at INEGI- Institute of Sci-

ence and Innovation in Mechanical and Industrial Engineering. INEGI is a Research and Technol-

ogy Organisation (RTO), bridging the University – Industry gap and focused on applied Research

and Development, Innovation and Technology Transfer activities for the industry.

MAMTool is a research project focused on machinability characterisation of metallic powder-

based additive manufactured materials. By evaluating machinability of metallic additively manu-

factured metallic, the project has as its main goal the development of numerical predictive tools

to simulate the metal cutting mechanics accounting for speci�cities of additively manufactured

material.

Additive Manufacturing (AM) technology has been in the forefront of the new industrial revo-

lution (Industry 4.0), allowing the production of high performance and customised products with

low lead times due to its unique characteristics. However, �nish machining of such components

is imperative to satisfy surface requirements and tolerances, mainly for functional features. This

technology has been attracting attention of several industries, one particularly interesting regarding

Portugal's background is the metalworking and speci�cally the tooling industry (plastics injection

moulds industry). Maraging steel is a material particularly relevant for these industries taken its

inherent characteristics.

This dissertation integrates the MAMTOOL project by carrying out a study on the machinabil-

ity of 18Ni300 maraging steels, either conventionally produced or by Selective Laser Melting. A

strategic planning was de�ned regarding a strong experimental framework where several charac-

terisation processes, like microstructural evaluations, and mechanical tests, such as compression

tests and turning tests, would be proceeded with the main goal of evaluating the machinability of

these materials.
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1.2 Objectives

The main purpose of this work is evaluating the machinability of 18Ni300 maraging steel produced

by Additive Manufacturing, more speci�cally by SLM process. In order to carry this evaluation

several parameters needed to be studied and measured. For this reason, some intermediate goals

were de�ned:

• An initial literature review on the several topics these work would involve, focusing on the

study of SLM process, maraging steels mechanical behaviour, machining conditions and

parameters;

• Metalographic characterisation of the AM samples in order to better understand the manu-

facturing parameters and defects that could affect the machinability of AM produced parts

namely, chemical analysis, hardness measurements, microstructural observation, using op-

tical and scanning electron microscopy;

• Cutting forces measurement through instrumented turning tests for different turning condi-

tions with the main goal of machinability evaluation for both AM and conventional materi-

als;

• Chip analysis and surface roughness measurements for different machining conditions, be-

ing these aspects also indicators of material machinability for the two materials;

• Experimental compression tests with the goal of material characterisation and obtaining

input information for constitutive modelling;

• Selection of a constitutive model for the AM material that is able to predict the cutting force

for distinct sets of cutting parameters.

1.3 Structure

This dissertation is composed of �ve main chapters which are summarised as follows:

• Introduction: In this chapter the motivation is presented, a small introduction of the in-

volved institutions is made and goals are de�ned;

• State of art: Literature research is carried in order to update the knowledge on metal addi-

tive manufacturing, with special focus on SLM process, maraging steel inherent character-

istics and the mechanics of metal cutting;

• Experimental work: In this chapter the experimental tests are comprehensively reported.

The purpose of each experimental campaign is also presented;

• Results and Discussion:The results for all executed tests, analysis and measurements are

displayed and discussed. This chapter also includes a small contribution as regards the

simulation of some turning tests and comparison with the experimental data.
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Structure

• Conclusions and future works: In this chapter the main conclusions are stated as well as

possible future works that would enrich this investigation.
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Chapter 2

State of the Art

2.1 Additive Manufacturing

2.1.1 Introduction to AM

Additive Manufacturing is de�ned by the ISO/ASTM 52900 standard [1] as the process of joining

materials to make solid parts based on a 3D CAD model. This technology is usually carried out

by adding layer upon layer, in contrast with the usual manufacturing processes that are subtractive

or formative. Despite the popularity of the 3D printing term, the standard terminology for this

technology is additive manufacturing, which was previously known as rapid prototyping due to

being commonly used for that purpose (non-functional parts and prototypes) [2].

AM technologies have been under research and development for more than 30 years. A grow-

ing number of industrial sectors are embracing AM. The consumer, industrial, medical, or military

sectors are a few examples of the long applications list. Today, it is possible to reliably manufac-

ture dense parts with certain AM processes and for a wide range of materials. Injection mould

inserts with conformal cooling evolved [3], for the mould-making industry, and prosthetics [4],

for medical sector, are some examples of high-demanding applications that were made possible

with the AM advancement [2, 5].

AM brings huge advantages in terms of expediting the products' development process. By

enabling a fast prototype fabrication which can be used as visualisation tools or even be tested as

functional parts, it reduces the likelihood of producing �awed parts. Since it is a tool-less man-

ufacturing technology, it avoids considerable economical investment in tooling. The geometrical

freedom brought by additive manufacturing is breaking the traditional geometrical constraints and

led to the development of methods such as generative design and topology optimization. These two

techniques are performance enhancing processes where the components' design are reconsidered

to create high-performance solutions based on the input constraints [6]. However, product quality

after production can be challenging to attain, whether in terms of surface quality or anisotropy of

mechanical properties mainly due to the implicit building method (layered construction) [2, 7–9].
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2.1.2 Categories in Additive Manufacturing

AM encompasses seven distinctly different categories as de�ned in the ISO/ASTM 52900 standard

[2]:

•Material extrusion: A manufacturing process in which the material is selectively dispensed

through a nozzle or ori�ce in a semi-liquid state, used mostly in thermoplastics;

•Material Jetting: A process in which droplets of build material are selectively deposited

by inkjet printing heads and multi-heads can be used to increase speed or to work with various

materials;

•Binder Jetting: An additive manufacturing process in which a liquid bonding agent is selec-

tively deposited to join powder materials;

•Sheet Lamination: A process in which sheets of material, with the desired form, are layered

and bonded to form a part;

• Vat photopolymerization: An additive manufacturing process in which liquid photopolymer

in a vat is selectively cured by light-activated polymerization;

•Powder bed fusion: A manufacturing process in which thermal energy, through laser or

beam, selectively fuses regions of a powder bed, sintering or melting the different powders in

order to form a part;

•Directed energy deposition: A process in which focused thermal energy is used to fuse

materials by melting as they are being deposited.

2.1.3 Metal Additive Manufacturing

Metal Additive Manufacturing (MAM) is a recent and rapidly growing technology, mostly because

it allows producing parts for the most demanding applications, breaking the misconception that 3D

printing is only used to produce prototypes. The distinct metal additive manufacturing categories

differ in the used feedstock materials such as powder, wire or sheets, and in the used technique

to consolidate them into a dense metallic part, either by melting and solidi�cation with an energy

source such as laser, electron beam or electric arc, or by the use of ultrasonic vibration in a layer by

layer manner. Four, of the previously mentioned, categories that are relevant to the metal additive

manufacturing are [2, 10]:

-Powder Bed Fusion (PBF)

-Directed Energy Deposition (DED)

-Binder Jetting

-Sheet Lamination

These ASTM categories can then be sub-divided into more speci�c processes, for example,

the PBF is composed by the processes Selective Laser Melting (SLM), also called Direct Metal

Laser Sintering (DMLS) and EBM - Electron Beam Melting. In the case of Directed Energy

Deposition, it bears the processes of Laser-Engineered Net Shaping (LENS) and Electron Beam

Additive Manufacturing (EBAM). Sheet Lamination category has been commercialised under the
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processes Laminated Object Manufacturing (LOM) and more recently ultrasonic additive manu-

facturing (UAM).

2.1.4 Selective Laser Melting

Selective Laser Melting is an additive manufacturing process, that uses a high power-density laser

to melt metallic powders within and between layers. A schematic of the process can be visualised

in Fig. 2.1. The SLM process is also commonly reffered as direct selective laser sintering, Laser-

Cusing, and direct metal laser sintering. This process has been proven to produce near net-shape

functional parts, with a relative density near 100%. This technology was �rst developed by Dr. M.

Fockele and Dr. D. Schwarze of F & S Stereolithographietechnik GmbH, then patented in 1997,

and published in 1998.

Figure 2.1: SLM process principles [11].

The SLM process comprises a series of steps. The initial step, common for all AM processes,

is the design of the 3D CAD model. Follows the STL conversion and �le manipulation where, the

desired process parameters are given. It is necessary to prepare the CAD data to enable the poste-

rior removal of fabricated component from the building platform and verify if support structures

are necessary. The building process starts by spreading of the �rst metal powder layer on a sub-

strate plate in a building chamber. After the powder is laid, a high energy-density laser is used to

melt and fuse or sintering the selected areas according to processed data. Once the laser scanning

is completed, the building platform is lowered, new powder deposited on top of the existent layer,

and scanned again by the laser. The process is then repeated for successive layers of powder until

required components are completely built. In terms of post processing, steps such as removal of
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unmelted powders and separation of the built part from the building plate are always necessary.

Removing these loose powders can sometimes be dif�cult for certain geometries (e.g. internal

channels), requiring extra post processing, like media blasting. The removal of the support struc-

tures, when is necessary, and machining to improve the surface quality, are other common post

processing techniques [12, 13].

2.1.5 Process parameters

In SLM there are several process parameters that in�uence the mechanism of printing affecting the

built part quality. Fig. 2.2 illustrates some of the most important parameters that can be adjusted

and optimised for each application.

Figure 2.2: SLM process parameters [12].

2.1.5.1 Layer Thickness

Layer thickness can in�uence the values of density, which leads to changes in the mechanical

behavior of the part. Usual values of the layer thickness vary between 30mm and 60mm. Other

parameters such as the type of rake or roller that is used to spread the powders, atmosphere, gap

height, rake velocity, and surface condition of the build plate all affect the powder spreading and

consequently the layer thickness [14, 15].

2.1.5.2 Hatch Spacing

Hatch spacing is the distance between the successive scans made by the laser, as can be seen in

the Fig. 2.2. Poor hatch spacing means big distances between laser scans, which often results in

regular porosity in built parts as adjacent melt lines do not fuse together completely [12].
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2.1.5.3 Laser power

The laser power needs to be adjusted to each need. The range of laser power values goes from

20 W to 1 kW, and can even vary for different zones of the same part. When using a low power,

problems like incomplete melting may occur [5, 12].

2.1.5.4 Powder size and size distribution

Particles' size and size distribution drive powder �owability. A mix of small and larger particles is

best suited for SLM, where the smaller particles percolate through the larger particles and suitably

�ll the void to achieve higher density. The size range can go from 5mm to 90mm but optimised

values usually range between 15mm to 45mm [16, 17].

2.1.5.5 Scan speed

Scan speed is de�ned by the speed of the laser scan through the powder bed. The scanning speed

can be extremely slow or go up to 15 m/s. Inadequate values of scan speeds usually result in lack

of fusion phenomena or excessive heat transfer [5, 12].

2.1.5.6 Scan strategy

The path that the heat source follows during selective melting is classi�ed as the scan strategy,

as shown in Fig. 2.3. In SLM, the most used and simpler strategies are the unidirectional and

bi-directional. Also, the island scanning can be used. Island scanning is a checkerboard pattern of

alternating unidirectional �lls. These strategies are used because it has been shown that residual

stresses and subsequent part distortion increase with increase in track length, so dividing the scan

area into small squares or strips and then scanning each segment with short tracks is highly bene-

�cial. Apart from this, randomization of square scanning, rather than scanning contiguous squares

one after the other, and changing the primary scan direction between squares, as seen in Fig. 2.3

(c) helps alleviate preferential build-up residual stress [18].

Figure 2.3: SLM scan strategies. Adapted from [18].
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2.1.6 Defects on SLM

The SLM is a process that consists of complicated physics, such as absorption and transmission

of laser energy, rapid melting and solidi�cation of material, microstructure evolution, �ow in a

molten pool, and materials evaporation. Many of the previously mentioned process parameters,

such as laser power, scan speed, hatch spacing, layer thickness, powder materials and chamber

environment affect the produced parts characteristics. The chosen combinations between them

can, for example, increase the production rate - using higher scanning speeds, higher laser powers,

larger hatch spacing and thick layers - however jeopardising other properties and causing defects

[19].

2.1.6.1 Porosity

Porosities in SLM can be caused by many factors. A typical porosity that can be found is a

gas induced porosity. This one tends to be small in size, typically less than 100mm with an

approximately spherical shape, as shown in Fig. 2.4. It is caused by the high cooling rates of

the process that do not allow the dissolved gas to reach the surface of the molten pool, before the

solidi�cation takes place [19].

Figure 2.4: Spherical porosities in SLM material [20].

Another usual phenomenon that jeopardises the mechanical properties of the SLM produced

part is the balling phenomenon. Balling can be found in two types, the ellipsoidal balls with

dimension of about 500mm and the spherical balls with dimension of about 10mm, but only

the �rst one is detrimental to SLM quality. It is known that the balling phenomenon occurs with

the decrease of free energy, however the clear in�uence of each factor is extremely complicated

to understand due to the complex physical, chemical, and laser interaction. This in�uence of

each parameter has been studied [21] and allow to conclude that a large number of pores in SLM

components tend to be formed between many discontinuous metallic balls. In Fig. 2.5 and 2.6 it
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