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Resumo 

O trabalho visa realizar análises multivariadas quantitativas em amostras de revestimentos para 

prever os teores dos quatro principais componentes - polímero, carbonato de cálcio, dióxido de 

titânio e água - nos produtos acabados com a intenção de utilizar as informações adquiridas 

para auxiliar no controle do processo. 

Para atingir as metas estabelecidas, foram construídas duas bases de dados consoante o tipo 

de ligante presente nos revestimentos, acrílica e estireno-acrílica. Espectros de revestimentos 

provenientes da produção diária da empresa e de reformulações feitas em laboratório, foram 

obtidos por espectroscopia FTIR-ATR e modelos de calibração foram construídos usando o 

algoritmo dos mínimos quadrados parciais (PLS) combinado com a técnica de validação cruzada 

k-fold. Para um teste de conjunto de dados independente, foram criados conjuntos de tintas 

reformuladas - 21 revestimentos de estireno-acrílico e 11 revestimentos de acrílico - com teores 

específicos, sendo realizada a avaliação de desempenho de todos os modelos. 

Por comparação de indicadores estatísticos calculados a partir de ambos os modelos de 

calibração e conjuntos de dados independentes, oito modelos de previsão foram selecionados 

como os mais apropriados, um para cada componente principal em revestimentos com os 

diferentes tipos de ligante. 

Por último, foram realizados testes experimentais em conjuntos de revestimentos - 5 tintas 

estireno-acrílicas e 3 tintas acrílicas - de composição desconhecida para determinar os seus 

teores de líquidos, compostos orgânicos, carbonato de cálcio e de cinzas. Os melhores modelos 

foram aplicados, e os teores previstos foram comparados com os resultados obtidos pelas 

determinações experimentais. 

A espectroscopia de FTIR-ATR combinada com a análise PLS de dados provou ser uma 

ferramenta eficiente na geração de modelos com uma boa capacidade de previsão dos teores 

dos principais componentes de revestimento. Uma vantagem do método desenvolvido para fins 

industriais é a rápida quantificação da composição dos produtos fabricados, garantindo a 

qualidade final do produto. Com base neste método, em casos de erros de produção, através 

da análise dos produtos não conformes, é também possível identificar e solucionar problemas 

relacionados com o processo industrial. 

 

Palavras Chave: Revestimentos, Tintas, Espectroscopia de FTIR-ATR, 
Regressão dos mínimos quadrados parciais (PLS). 
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Abstract 

The work aims to perform multivariate quantitative analyses in coatings samples to predict the 

content of its four main components – polymer, calcium carbonate, titanium dioxide, and water 

– in the finished products with the intent of using the information acquired to assist in the 

process control.  

To achieve the goals established, two databases were constructed based on the type of binders 

present in the coatings, namely acrylic, and styrene-acrylic. Spectra from both daily production 

and manually modified coatings were attained by FTIR-ATR spectroscopy, and calibration 

models were built using partial least squares (PLS) algorithm combined with k-fold cross-

validation technique. For an independent dataset test, sets of reformulated paints – 21 styrene-

acrylic’s and 11 acrylic’s coatings - were created with specific contents and performance 

evaluation of all models was carried out. 

By comparison of statistical indicators computed from both calibration models and independent 

dataset data, eight prediction models were selected as the most appropriated, one for each 

main component for coatings with the different kinds of binders.  

Finally, experimental tests were performed in sets of coatings – five styrene-acrylics and three 

acrylics paints - of unknown composition to determine their liquid, organic compounds, calcium 

carbonate, and ashes’ contents. The best models were then successfully applied, and 

predictions’ content values were compared to the results gathered by the experimental 

determination. 

FTIR-ATR spectroscopy combined with PLS data analysis was proved to be an efficient tool in 

generating models with overall good predictability of the coating’s main components contents. 

The advantages of the method developed for industrial purpose are the performance of rapid 

quantification of the composition of manufactured goods providing product quality assurance, 

and in cases of manufacture errors, the essential information provided by analysis of defective 

good which can assist in process control troubleshooting. 

 

Keywords: Coatings, Paints, FTIR-ATR spectroscopy, Partial Least 
Square (PLS). 
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1 Introduction 

1.1 Framing and presentation of the work 

Coatings are a mixture of volatile and nonvolatile components. Solvents, binders, extenders, 

and pigments are responsible for most of the final product's volume. Additives, like anti-foam 

and neutralizing agents, biocides, thickeners, are accountable for a minimum quantity of its 

final weight, less than 5 % (w/w) (Bieleman, 2000).  

Precise determination of coatings composition, although very challenging, is of extreme 

importance when it comes to maintaining process control throughout manufacture. Information 

acquired from the composition analyses of a flawed final product can be of extreme help in 

process control troubleshooting. 

The Fourier transform infrared (FTIR) spectroscopy has become an analytical technique 

extensively implemented in several different industries (e.g., polymer, pharmaceutical, food). 

It is used with the purpose of identifying quality consistency of raw materials, verifying finished 

goods quality, resolving contamination issues and assisting in the process control (Bunaciu, 

Aboul-Enein, and Fleschin, 2010; Amir et al., 2013). 

The ability to perform a short and non-destructive sample analysis that requires no previous 

sample preparation (Chalmers and Everall, 1999) and provide crucial data about components 

present in complex mixtures is of invaluable importance for the coating industry.  

Held in a business environment, the primary objective of the thesis was the development of 

chemometric methods for quantitative analysis of the main components present in coatings. 

The underlying motivation for the study was the necessity of conducting a fast and effective 

evaluation of the composition of paints in order to secure its validity and provide information 

about the occurrence of possible manufacturing errors. 

This work has as a finality the development of multivariate models capable of predicting paint 

composition in order to maintain the process control and correct possible manufacture errors, 

which can infer inferior quality to the final product. 

To achieve such goals, the creation of spectra databases was required. Infrared spectra were 

obtained from liquid samples acquired by Fourier transform infrared (FTIR) spectroscopy 

equipment incorporated with an attenuated total reflection (ATR) accessory. The data were 

collected and interpreted by the PerkinElmer Spectrum™ 10 software. 

The PerkinElmer Spectrum® Quant software was used for the development of quantitative 

multivariate analysis methods, with the implementation of partial least-square (PLS) algorithm. 
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Prediction models for polymer, water, titanium dioxide, and calcium carbonate content were 

created individually using the assembled databases. 

1.2 Presentation of the company 

In 1920, Barbot was founded by Diogo Barbot in Porto. The first factory was situated in the 

Santo Ildefonso. The family business had a traditional image with fundamental characteristics 

such as rigor, safety, and quality. 

In 1958, under Carlos Aires Pereira, a new factory was built in Laborim. Four years later, it was 

created the brand's most famous paint and current best seller, Barbot Dioplaste. 

A violent fire destroyed the entire Santo Ildefonso factory in 1981, indisputably changing the 

history of the brand. Now led by Carlos Barbot, the company focused on expanding throughout 

policies of acquisitions and partnerships, which allowed to strengthen the label and extend its 

range of products. In 1982, occurred the transfer of its premises from Porto to Vila Nova de 

Gaia. 

Throughout the 1990s, Barbot continued to expand, continually launching new products. This 

expansion led to a fourfold increase in the warehouse area and the opening of a new plant in 

Canelas in 2002. A higher level of responsiveness and competitiveness was able to be achieved 

by the acquisition of modern facilities equipped with the most advanced technology, providing 

Barbot with a field of national scope. 

Barbot is currently present from the north to the south of Portugal, with two factories, an 

extended network of resellers and twenty-four of its own points of sale.  

The Barbot group includes eight companies, clearly demonstrating the importance of this 

continuously growing brand that already operates on three continents: Europe (Belgium, Spain, 

France, Luxemburg, Switzerland), Africa (Angola, Cabo Verde, Guinea, Mozambique), and South 

América (Peru). 

1.3 Contributions of the Work  

The work developed generated two complete spectra databases, which include all daily 

productions prepared at Barbot, for styrene-acrylic and acrylic coatings. With the use of the 

databases, multivariate models for identification of the main components – polymer, calcium 

carbonate, titanium dioxide, and water – for the two types of coatings, were built. 

With the implementation of the PLS models faster and effective composition analysis of finished 

products can be performed, being a valuable tool for process control troubleshooting.    
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1.4 Organization of the thesis  

The thesis consists of 6 chapters. Chapter 1 presents a brief description of the work, stating its 

goals, as well as the company where it was developed. In chapter 2, the most relevant 

theoretical information towards the understating of the work, for example, its background, 

paint systems, and the main methods used, FTIR and multivariate analysis, are addressed. In 

chapter 3, the materials and the previously explained method's application are described in 

detailed, for possible work reproducibility. In chapter 4, the results attained are presented as 

well as discussed, and the conclusions drawn are then indicated in chapter 5. In the last 

chapter, 6, an assessment of the work performed is made. 
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2 Context and State of the art  

Nowadays, product quality is one of the most critical concerns in industrial activity. Modern 

production is no longer possible without the search for continuous improvement of the final 

product's qualitative aspects (Jozsef and Blaga, 2014). 

Characterization of paint mixtures has been successfully carried out by employing advanced 

analytical techniques such as gas chromatography with mass spectrometry (GC-MS) (Colombini 

et al., 2000) implemented with chemometric methods like principal components analysis (PCA) 

(Colombini et al., 2010). However, disadvantages related to the use of this method, as for 

requiring sample preparation and thus time, make it less appropriate for industrial process 

control. FTIR spectrometry, on the other hand, because of its reliability, little sample 

preparation, and exceptionally rapid analysis, is widely used for qualitative identification, using 

PCA (Muehlethaler, Massonnet and Esseiva, 2011; Sciutto et al., 2017) and quantitative 

determination performing PLS, in some paint components, like pigments (Marengo et al., 2005), 

and also in oils (Schulz et al., 2002). Nevertheless, all studies previously mentioned are 

regarding components for artistic purpose, for example paintings rehabilitations, and are not 

related to industrial activities.  

A recent study, conducted with liquid and solid samples, was successfully able to quantify the 

components present in mixtures of paint consisting of several different binding media, pigments 

and alkyd resin. FTIR-ATR analysis was carried out followed by the creation of PLS models, and 

data analysis (Hayes, Vahur and Leito, 2014). The study achieved positive results for coatings 

containing alkyd resin and pointed out the advantages of applying the method to process and 

quality control in manufacturing of coatings. 

2.1 Composition of coatings 

According to the ISO 4618/1; DIN 55945, “Coating” is a general term denoting a material that 

is applied to a surface. “Paint” indicates a pigmented material, while “varnish” refers to clear 

lacquer (Stoye and Freitag, 1998). Coatings are defined as any liquid, paste, or powder products 

designed for application to a substrate, by various methods and equipment, in a thin layer 

which is converted to an opaque solid film after application (Gürses et al., 2016). Their primary 

purpose is either to protect surfaces or to create a more aesthetically pleasing environment, 

however, they can also provide information (traffic signs, information signs, advertising); or 

have more specific properties. 

Coatings systems are made of numerous components, depending on the method of application, 

the desired properties, the substrate to be coated, and ecological and economic constraints 

(Stoye, Marwald and Plehn, 2010).  
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Coatings constituents can be classified as volatile (solvents) or nonvolatile (binders, additives, 

pigments, and extenders). Solvents, binders, extenders, and pigments account for most of the 

final product while the proportion of additives are meager, typically, less than 5 % (w/w) 

(Bieleman, 2000). These components fulfill specifics functions not only in the liquid paint but 

also in the solid coating film, obtained after hardening. Their leading roles will be briefly 

described in the subsections below. 

2.1.1 Binders 

Binders are macromolecular products, which ought to be suitable for physical film formation. 

Their primary function is to ensure the cohesion of the paint and the connection between the 

pigments (Alua, 2012). Resin, binder formulation, can be formed by polymers of different 

molecular sizes. High molecular mass polymers, as cellulose nitrate and polyacrylate and vinyl 

chloride copolymers, are able to initiate film formation without the need for an additional 

chemical reaction. However, low molecular mass products which include alkyd resins, phenolic 

resins, polyisocyanates, and epoxy resins, must be chemically hardened after application to 

produce high molecular mass cross-linked macromolecules, in order to produce acceptable 

films. 

Binders are of extreme importance once they affect almost all properties of the coating, 

including adhesion and related properties (resistance to blistering, cracking and peeling), 

fundamental resistance properties (resistance to scrubbing, chalking and fading), and 

application properties (flow, leveling and film build, and gloss development). 

2.1.2 Pigments and Extenders 

Pigments and extenders are responsible for the color and covering power of coatings; in some 

cases, they also grant improved properties to the coating film. They can be combined in 

different proportions in order to achieve a specific type of paint.  

Pigments are colored, colorless, or fluorescent particulate organic or inorganic finely divided 

solids which are usually insoluble in, and virtually chemically unaffected by, the vehicle or 

medium in which they are incorporated (Gürses et al., 2016). They provide one or more of the 

principal functions, namely color, opacification, and anti-corrosive properties (Stoye and 

Freitag, 1998). The most important pigment used in the industry is titanium dioxide (TiO2). 

Extenders disperse well in coatings, although they provide much less hiding power when 

compared to pigments. Their main advantage and the reason why they are used in significant 

quantities are related to their relatively low cost, which makes the final product more cost-

effective. They also impact on many properties, enhancing opacity, controlling surface sheen, 

and facilitating ease of sanding. Typical extenders are barium sulfate, calcium carbonate, talc, 

or kaolin. 
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2.1.3 Solvents 

The solvents should be able to disperse the binder, conceding the proper viscosity to the paint 

and obtaining a clear and homogeneous solution as the final product. Besides, they enable 

incompatibility between paint components to be overcome, improve pigment wetting and 

dispersion, and control storage stability of the coating (Stoye, Marwald, and Plehn, 2010).  

In coatings, some of the most used organic solvents are aromatic and aliphatic hydrocarbons, 

esters of acetic acid, glycol ethers, alcohols, and some ketones (Stoye and Freitag, 1998). In 

water-based systems, the water may act not only as a true solvent for some components but 

also be a non-solvent for the main film former. This occurs in decorative emulsion paints. 

2.1.4 Additives 

Paint additives are auxiliary raw-materials added to coatings, in much lower amounts, in order 

to improve particular technical properties, facilitate manufacture and application, increase 

stability, and minimize defects of the paints or coating films (Alua, 2012; CSD Engineers, 2016). 

There are several additives available these being classified according to their mode of action. 

In coating systems, the most commonly used are thickeners and rheology modifiers, surfactants, 

biocides, fungicides, defoamers, anti-skinning agents, film-formation promoters, catalysts, 

neutralizing agents, corrosion inhibitors. 

2.2 Fourier-Transform Infrared (FTIR) Spectroscopy: Attenuated Total 

Reflectance (ATR) 

Fourier-Transform Infrared spectroscopy is an analytical technique widely used to provide 

information about the chemical composition of matters. Also, it possesses leverages such as 

being a rapid, nondestructive, and time-saving method. There are four main sampling 

techniques: transmission/absorption, attenuated total reflection (ATR), diffuse reflection 

(DRIFTS), and specular reflection (Thermo Scientific, 2013b). 

The Attenuated Total Reflectance (ATR) technique is used to provide a qualitative and 

quantitative analysis of solids, gels, pastes, and liquids samples. Its main advantages when 

compared with the other available methods are requiring minimal sampling preparation, having 

excellent sensitivity and low detection limits (Thermo Scientific, 2013b, 2013a). 

The ATR-FTIR spectrometer contains a polychromatic infrared source (wavelengths range of 

10,000 to 100 cm-1), an adapted Michelson interferometer, a sample compartment, an internal 

reflection element (IRE) (made of Diamond, ZnSe, Ge, or Si), a detector, an amplifier, an 

analog-to-digital (A/D) converter and a computer.  
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A beam of light is generated at the source. Afterward, it goes through the Michelson 

interferometer where it is divided into two by the beam splitter which is designed to transmit 

half of the light and reflect the other half. One of the recently formed beams reaches a 

stationary mirror while the other strikes a moving mirror. Both are then reflected and return 

to the beam splitter where they recombine (LibreTexts, 2019). 

Finally, the beam is directed onto the optically dense crystal with a high refractive index at a 

certain angle. This internal reflectance creates an evanescent wave which extends beyond the 

surface of the crystal into the sample (penetration length of 0.5 µ-5 µ) held in contact with the 

crystal (PerkinElmer, 2005). Some of the energy of the evanescent wave is absorbed by the 

sample, and reflected radiation reaches the detector (Figure 1). 

 

Figure 1.  Schematic diagram of the ATR accessory (Adapted from: Ausili, Sanchez and Gomez-

Fernandez, 2015). 

There the difference in the intensity of the previous two beams is measured as a function of 

the difference of their paths. The signal is amplified and converted to a digital signal by the 

amplifier and analog-to-digital converter, respectively. Eventually, the signal is transferred to 

a computer in which Fourier transform is carried out (LibreTexts, 2019).  

The resulting spectrum is more commonly obtained from 4000 cm-1 to 400 cm-1, and it 

represents a molecular fingerprint of the sample.  Since every chemical structure produces a 

unique spectrum fingerprint, this analysis became much appreciated as a tool for chemical 

identification. In Annex 1 (Table AA1 – AA4) is presented the most relevant information for the 

FTIR spectra interpretation of coatings. Also, in Appendix 1 (Figure A1.1) can be observed an 

example of the resulting spectrum obtained from styrene-acrylic coating's analysis. 

For quantitative analysis, the Beer–Lambert law (Equation 1) is used. It relates the absorbance 

to the thickness and the concentration of the sample, since they are directly proportional. 

$ = Y	Z	[ (1) 

Where $ is the absorbance, and Z the concentration of the sample, [ the pathlength of the IR 

beams, and Y is the constant of proportionality, referred to as the molar absorptivity. 

In order to analyze the composition of a sample of unknown concentration, it would be 

necessary to use samples where the concentrations are known, their absorbances then be 

measured followed by the plot of a calibration graph. The concentration of a specific compound 
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or even compounds present in the sample, could then be read from the calibration graph, given 

that their absorbances are known (Stuart, 2004). 

2.3 Data pre-processing methods 

Pre-processing is of extreme importance for spectroscopy data analysis, since, when raw, the 

spectra may contain noise, scattering, baseline variations, or other perturbations which can 

shadow meaningful information (Sjo, 2018).  

Methods for signal correction are used to improve the reading of significant data or to minimize 

perturbations associated with the equipment (Roussel et al., 2014). Some of the preprocessing 

techniques more commonly applied in spectroscopy are baseline correction, normalization, 

multiplicative scatter correction (MSC), extended MSC (EMSC), standard normal variate (SNV) 

and range (Rinnan, Berg and Engelsen, 2009).   

Baseline correction 

Baseline correction is responsible for compensating amplitudes shifts, by subtracting the 

undesired spectrum background, formed throughout the different wavelengths which are 

induced by spectrum signal and lead to wrong results. The traditional way is to subtract the 

lowest value of each spectrum from all the variables (Roussel et al., 2014; Qian, Wu, and Hao, 

2017).  

Normalization 

Normalization can be done by dividing the spectra by an estimation of its spectrum intensity. 

It can be based on properties like its area, maximal peak, length, a specific spectrum point, or 

the sum of the spectrum values (Roussel et al., 2014).  After normalization is applied, the data 

is presented in a patterned matter, for example, having a specific size, facilitating comparisons 

(Sjo, 2018). 

Multiplicative Scatter Correction (MSC) 

The MSC removes additive and multiplicative influences from interfering signals, eliminates 

offsets and baseline effects, and normalizes sets of data (Sjo, 2018). Its concept is to reduce 

these undesirable effects by fitting each spectrum to a reference spectrum, usually an average 

calibration database spectrum (Roussel et al., 2014). It comprises two phases. First, it 

estimates the correction coefficients by performing a linear regression as in Equation 2 

>?@A = \" + \#	>@BC + ^ (2) 

where >?@A  is an original sample spectrum attained by the FTIR analysis, >@BC is a reference 

spectrum used to perform this treatment in the entire dataset, and ̂  is the un-modeled. \" and 
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\# are the correction coefficients computed for each sample. Second, a correction of the 

original spectrum is made using these coefficients, as shows Equation 3 

>D?@ =
>?@A − \"

\#
= >@BC +

^
\#

 (3) 

where >D?@ is the corrected spectrum (Rinnan, Berg and Engelsen, 2009). 

Extended MSC (EMSC) 

The extended version of MSC (EMSC) has higher flexibility once it performs more selective 

correction for distinct types of perturbations which cannot be adjusted with the use of other 

conventional preprocessing techniques. It is based on a second-order polynomial fitting to the 

reference spectrum depending on the wavelength, as in Equation 4 

>?@A = \" + \#	>@BC + \`	a̅ + \c	a̅` + ^ (4) 

where a̅ is a specific wavenumber. Afterward, the corrected spectrum can be produced in a 

simplified matter by the use of Equation 5. 

>D?@ =
>?@A − \" − \`	a̅ + \c	a̅`

\#
 (5) 

This expansion also allows the use of a priori knowledge from the spectrum of interest or 

spectrum interferents (Rinnan, Berg and Engelsen, 2009; Sjo, 2018).  

Standard Normal Variate (SNV) 

SNV correction has similar concepts to normalization and MSC, as it also is a path-length 

variation correction method. Its goal is to limit the spectrum intensity variation problem by 

processing each spectrum individually, but unlike MSC this step does not require a common 

reference signal, as can be observed in equation 6 

>D?@ =
>?@A − !"

!#
 (6) 

where, !" and !# are the average value of the sample spectrum to be corrected and the 

standard deviation of the sample’s spectrum, respectively.  

Range 

The range treatment is used when a specific region of the spectrum is considered to have more 

relevance or the opposite, when a region presents interference or does not have significant 

meaning to analyses, and therefore can be removed from consideration. The Range pre-

processing step enables to select an interval of the data to be included or excluded from the 

method calculations, and the data region to be used for all standard and sample spectrum 

(PerkinElmer, 2014). 
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2.4 Quantitative predictive models 

2.4.1 Multivariable analyses 

Multivariate analysis is a collection of statistical methods that copes with a large number of 

variables. These variables may present correlations between one another that can be taken 

into consideration when such techniques are applied (Olkin and Sampson, 2001; Beukelman and 

Brunner, 2016).  

In order to transform sets of data into useful statistical information, a relatively new discipline, 

named chemometric, is implemented. It applies mathematical, statistical, and other logic-

based methods to analyze chemical data, in particular, in analytical chemistry (Sánchez Rojas 

and Cano Pavón, 2005). Its goal is to develop models which correlate the information in the set 

of known measurements to the desired property (Camo Analytics, 2019). The most common 

methods used in multivariate analysis are principal component analysis (PCA), multiple linear 

regression (MLR), principal component regression (PCR), and partial least squares (PLS) 

regression. 

Principle component analysis (PCA) 

The method’s main intention is to characterize a system of a large number of interrelated 

variables with the minimum number of variables possible which comprises the most significant 

variation present on it thus, reducing the dimensionality of the data set (Jolliffe, 2002). The 

original variables are transformed to new variables, named principal components (PCs) that are 

uncorrelated and which are obtained by descending order of explained variance present in the 

variables. Thus, the first PC retains the most significant variance present, the second PC the 

second largest variance, and this descending order of the variance magnitude prevails until the 

last PC. Thus, this method transforms the original coordinate system axes in a new orthogonal 

coordinate system where the axes are defined by the directions of the PCs. Having in mind the 

dimensionality reduction, only a few PCs are considered, and the data set matrix X is 

transformed by Equation 7 

H = ;	4d + e (7) 

where ; is the scores matrix, i.e., the projection of the data points coordinates onto the PCs 

axes, and 4 is the loadings matrix, i.e., the coefficients that define the directions of each PC 

in the space of the original variables. The error matrix e comprises the PCs that retain 

insignificant variance in the data, so it can be neglected.  

Score plots (score as a function of principal components) allow a better conception of the 

sample variability while maintaining the distances between samples and the plot scale (Roussel 
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et al., 2014) and can indicate how are the relationship among distinct samples, while principal 

component plots show how different variables are related to each other (Peter et al., 2018). 

The PCA method is usually used to help visualize samples represented by several variables, 

detect outliers, select best-representing variables, and compress data by removing noise 

(Roussel et al., 2014). This method was the basis for other multivariate methods, such as 

previously mentioned. 

2.4.2 Partial Least Square (PLS) Regression 

PLS regression is of particular interest as it can analyze data with strongly correlated, noisy, 

and numerous X-variables as in the case of spectra data. It is also able to simultaneously model 

several response variables, Y (Wold et al., 2001). Whereas PCA maximizes only the variance in 

X, PLS tries to maximize covariance between X and Y (Grimnes and Martinsen, 2015). The PLS 

model (Figure 2) decomposes X and Y data in scores and loadings through Equations 8 and 9 

H = ;	4d + e (8) 

O = =	9d + f (9) 

where matrix = and 9 are the scores and loadings of Y, respectively, and f, the error matrix. 

 
Figure 2. Decomposition of X and Y into matrices of scores and loadings. The I observations described 

by K dependent variables are stored in the matrix Y, the values of J predictors collected on these I 

observations are collected the matrix X. E and F are the errors matrices (Adapted from Bohm, Smidt 

and Tintner, 2013). 

The PLS algorithm searches for a set of components, named latent vectors, that performs a 

simultaneous decomposition of X and Y, i.e., ; and = are determined together, with the 

constraint that these components must explain as much as possible of the covariance between 

X and Y (Abdi, 2003). The PLS model calculates a few new variables (latent variables) denoted 

J 

K K K 

T 

T 
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by :J (! = 1,⋯ , $) which can be expressed as a linear combination of the Eh variables 

(Equation 11) with the coefficients ihJ (Equation 10), where $ is smaller than X (Kunal Roy, 

2015). 

jkJ =lihJ	>kh
h

 (10) 

The X scores (:J) are orthogonal then it can be written that 

>kh =ljkJ	mJh + ^kh
J

 (11) 

where mJh represents the loadings and ^kh the X-residuals. Similarly, the Y variables can be 

expressed as Y scores (<J) such that  

(k& =lnkJ	oJ& + pk&
J

 (12) 

where oJ& represents the loadings so that the residuals, pk&, are “small”. 

The X-scores are good predictors of Y so that it can be written that 

(k& =lo&JlihJ	>kh
h

+ qk&
J

=l\&h	>kh + qk&
h

 (13) 

where the Y-residuals (qk&), express the difference between the observed and modeled 

responses. The \&h are the PLS regression coefficients obtained from the loadings, o&J, and 

weights, ihJ, and can be written as 

\&h =lo&J	ihJ
J

 (14) 

The prediction of a PLS method is summarized in the regression coefficient matrix, ), as shown 

in Equation 15 

OP = H	) (15) 

in which OP are the matrix of the response predictions. 

When the ihJ weights present a substantial value, the X-variables are considered to provide 

relevant information to the model, while if the weight values are similar, the X-variables are 

considered to provide the same information. Therefore, this coefficient allows a crucial 

understanding of how important the X-variables are (Kunal Roy, 2015). Significant \&h regression 

coefficients also allow identifying valuable s-variables. Large Y-residuals suggest that the 

model has bad prediction abilities, while X-residuals are used to identify outliers in the X-space.  
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In PLS modeling, it is considered that only a few variables (latent variables, LV) influence the 

system. At first, the exact number of LV’s are unknown, with the performance of several 

iterations, the PLS regression, is capable of estimating the ideal LV number (Wold et al., 2001). 

2.4.3 Cross-Validation 

Cross-validation (CV) is a practical and consistent way to analyze the predictive capabilities of 

a model. This can be of extreme importance since, when dealing with a high number of 

correlated X-variables, the resulting model can be over-fitting, presenting very little or no 

estimation power (Wold et al., 2001). There are two types of cross-validation strategies: leave 

one out and k-Fold. 

Leave one out 

In the leave one out, each standard is taken out of the data set, one at a time. Calibration is 

performed, and the standard eliminated is then used to validate the model (Roussel et al., 

2014). 

K-Fold 

This approach divides the samples into k groups (Figure 3), developing parallel models, 

excluding one of the groups at a time. This deleted group is later used to validate the model. 

The sequence separation consists of sequentially allocating the samples into the different 

groups. For example, if six samples were divided into two groups, A and B, the sequence division 

would result in the odd samples going to the group A and the even samples to group B. 

 
Figure 3. k-Fold cross-validation scheme (adapted from Oliveira et al., 2017).  

There are three different ways of dividing the standards into groups, by sequence, blocks, or 

random partition. 

The block approach separates samples into groups. Using the same example as before, the 

result would be, the first three samples going to group A while the three lasts would go to 

group B. 
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The last tactic of splitting samples commonly used, as the name suggests, arbitrarily distributes 

the standards into the k groups (PerkinElmer, 2014).  

After developing models, the residual variance between the predicted and actual Y-values are 

calculated for all deleted data in each model, as is the sum of squares of these differences. 

The later parameter measures how well-fitted a model is to a set of new standards, not used 

for its development. With these calculated values, the standard error of prediction (SEP) 

estimate can be computed, as shown in Equation 16. 

SEPFBwxkyJxB =
z∑

((k − (Lk)`
(1 − ℎkk)`

}
k~#

1 − 1
 

(16) 

where G is the number of LV considered in the model, (k and (Lk are the experimental and 

estimated value of the property, respectively, and 1 the number of standards. The ℎkk is the 

leverage of the U th sample in the property subspace (PerkinElmer, 2014). 

The SEPFBwxkyJxB value establishes how many latent variables will be included in the model. The 

SEPFBwxkyJxB value associated with the lowest number of latent variables, considered not being 

significantly different from the SEPFBwxkyJxB of the maximum latent variable number will be the 

chosen value. This can be explained by the principle of the PLS algorithm works, which is, as 

stated before, to explain a complex system as best as possible by using a minimum of latent 

variables, considered to be the optimum number of latent variables to the model. An F-test is 

performed in order to determine if there is a significant change between the statistical 

indicator values (SEPFBwxkyJxB) (PerkinElmer, 2014). 
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3 Materials and Methods  

3.1 Samples origins 

In order to achieve well-adjusted models, it was necessary to build databases with coatings 

spectra's information, which contained a proper extent of the desired components' contents. In 

other words, these contents needed to vary as much as possible, so they would cover a 

significant range of values and therefore be able to produce reasonable predictions results. 

The use of samples acquired only from daily production was thought not to be enough to obtain 

the models stated before. With that in mind, sampling modifications were conducted, adjusting 

the desired components' contents. In Table 1, it is shown the number of samples gathered of 

each type of coating, what kind of resin they possessed, and their origin. 

Table 1. Summary of obtained samples 

  Daily productions Laboratory 
Modifications  

Coating’s type Paint Varnish Primer Paint Total 

Resin 
Acrylic 35 1 8 15 59 

Styrene-acrylic 89 1 3 35 128 

Daily Production 

The samples were derived from daily production of coatings - paints, varnishes or primers -  

which were formulated with either acrylic or styrene-acrylic resins.  

Laboratory modifications 

Alterations were proceeded by using some of the samples mentioned above to formulate newly 

remodeled paints. This was done by the addition of previously calculated quantities of water, 

calcium carbonate, and titanium dioxide dispersions, and resin. These contents' values were 

chosen based on their expected scope on coatings, and so gaps were filled. This strategy 

allowed a better representation of the standards' resulting spectra according to changes in the 

sought components' concentration leading to the production of more complete and 

consequently reliable models. 

3.2 Spectra FTIR analysis 

Two separate databases, one for each type of resin, were created with the spectra collected 

from analysis done in the Spectrum Two FT-IR Spectrometer by PerkinElmer equipped with a 

diamond crystal ATR accessory, optical potassium bromide beam splitter, and a lithium 

tantalite (LiTa03) detector. The liquid samples, previously properly blended, were placed in 
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small amounts on the ATR accessory, assuring complete coverage of the diamond crystal. In 

every sample, measurements were performed in triplicate where eight scans were accumulated 

at a resolution of 2 cm-1, and the wavelength range of registration was 400-4000 cm-1. The 

background was executed between every analysis. The spectrum data were collected by the 

PerkinElmer Spectrum™ 10 software. 

3.3 Development of PLS prediction models 

Applying the acquired databases, several models were constructed to predict either polymer, 

water, calcium carbonate, or titanium dioxide content, using the PerkinElmer Spectrum® Quant 

software. In all models, a PLS algorithm was used with random k-Fold cross-validation. Minor 

versions of models were created with different pre-processing treatments. The first one 

contained only a baseline correction using a second derivate with nine points smoothing window 

for noise reduction. While the second an MSC normalization was added and in the third a pre-

processing named range, where only a specific range of the spectrum is used for the method's 

calculations, was added. The number of iterations groups (k), in which the samples were 

randomly divided, was also changed according to the number of standards used to create the 

models. Data pre-processing consisted of a baseline correction using a second derivate with 

nine points smoothing window for noise reduction, an MSC normalization and a specification on 

the range of spectra regions used for the method's calculations.  

General prediction models 

For both kinds of resin, and for each needed content, general models were developed. Updated 

versions were established according to the introduction of the reformulated coatings’ data or 

the deletion of samples with zero percentage of the component to be predicted. 

Specific contents’ range models  

Concern arose when the polymer content's model for styrene-acrylic resins was being tested. It 

was observed that in coatings with very low concentrations of this constituent, the resulting 

predictions had significant errors. Two ideas were considered for dealing with this obstacle. 

The first was to fill gaps in the lower contents' range with modified paints to assure this region 

was better represented. The second was to construct models based on a more limited amplitude 

of polymer content. With that, models containing only spectra of polymer contents within the 

interval of 0-6% and 0-10% were composed. 

3.4 Evaluation of models’ performance 

In the way of evaluating predicting abilities of the calibration models, also known as reduced 

models, obtained by the Quant PLS analysis, a set of statistical parameters were adopted, them 
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being the Nash-Sutcliffe Efficiency (NSE), the percent bias (PBIAS), and the ratio of the root 

mean square error to the standard deviation of measured data (RSR). 

Nash-Sutcliffe Efficiency (NSE) 

The NSE is a normalized statistic that determines the relative magnitude of the residual 

variance ("noise") compared to the measured data variance ("information"). Its optimal value is 

1. When between 0.0 and 1.0, the model is generally viewed as having acceptable levels of 

performance. Whereas, values lower than zero, indicates that the mean observed value is a 

better predictor than the simulated value, which indicates unacceptable performance (Moriasi 

et al., 2007). In Equation 17, it is possible to view how the parameter is calculated. 

NSE = 1 −
∑ ((k − (Lk)`}
k~#

∑ ((k − (ÄÅ)`}
k~#

 (17) 

where (k is the observed value, (ÄÅ is the mean of observed data, and (Lk is the estimated value 

for the constituent being evaluated. 

Percent bias (PBIAS) 

It measures the average tendency of the simulated contents to be larger or smaller than their 

observed counterparts. Its optimal value is 0. Positive values indicate an underestimated 

model; contrarily, it indicates an overestimated model (Gupta, Sorooshian and Yapo, 1999). 

The parameter is computed using Equation 18 

PBIAS = Ö
∑ (	(Lk − (k) × 100}
k~#

∑ (k}
k~#

à (18) 

Ratio of the root mean square error to the standard deviation of measured 

data (RSR) 

It is calculated as the ratio of the RMSE and standard deviation of measured data. RSR optimal 

value is 0, which indicates zero RMSE or residual variation and therefore, perfect model 

simulation (Moriasi et al., 2007). It is calculated as shown in Equation 19 

RSR =
RMSE
STDEV

=
ç∑ ((k − (Lk)`}

k~#

ç∑ ((k − (ÄÅ)`}
k~#

 (19) 

The parameters above mentioned were classified, similarly to Moriasi et al., 2007,  either as 

unsatisfactory, satisfactory, good, or very good, in correspondence with an established array 

of values, as represented in Table 2. Based on the resulting ratings, it was possible to conclude 

how well was the model's performance. 
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Table 2. General performance ratings for recommended statistics for model’s evaluation (Moriasi et 

al., 2007) 

Performance Rating NSE PBIAS RSR 

Very good 0.9 < NSE £ 1.0 ½PBIAS½< 5 0.0 £ RSR £ 0.5 

Good 0.8 < NSE £ 0.9 ½PBIAS½< 10 0.5 < RSR £ 0.6 

Satisfactory 0.6 < NSE £ 0.8 ½PBIAS½< 15 0.6 < RSR £ 0.7 

Unsatisfactory NSE £ 0.6 ½PBIAS½> 20 RSR > 0.7 

Calibration model evaluation 

The data used was gathered at the end of each model's calibration, acquired with a complete 

statistical review performed by the software and presented in a report. At the calibration 

report, the experimental and estimated values for the reduced models were exported, and 

further statistical calculations were performed as described previously. 

Independent dataset test 

For validation of the models, sets of coatings were formulated, 21 using styrene-acrylics resin 

and 10 using acrylics resin. The constituent’s contents were established to reside inside or close 

to their general models' range. Analyses were performed ten times for each of these paints in 

the FTIR-ATR. Once again, eight scans were accumulated at a resolution of 2 cm-1, and the 

wavelength range of 400-4000 cm-1. Between every analysis, background checks were done. 

After, a mean of the spectra was acquired. All models were tested, and statistical data, as 

mentioned before, was determined for each one of them. 

3.5 Application of the best models to analyze the composition of 

coatings 

Two sets of paints composed of the two different types of resin were analyzed, five being 

styrene-acrylics, and three acrylics coatings. Predictions of the four main components were 

performed by applying the best-established models for the different type of resin. Experimental 

results were attained from tests performed in the laboratory and which will be further 

explained in subsection 3.5.2. The produced contents in both analyses were then compared. 

3.5.1 Model’s prediction 

For each kind of resin, the best content's models achieved by both the train and the test groups, 

regarding performance ratings, were used to perform predictions.  

3.5.2 Experimental determination of constituents’ content  

In an analytical balance, porcelain melting pots were weighted. In each of those, was added 

1 gram of coating sample well homogenized. The determinations were performed in triplicates, 



Application of PLS models by FTIR for process control of coatings 

Materials and Methods  19 

and the final results were reached by their average calculation when presenting 15 % 

concordance.    

Solid content (SC)   

To determine the solid content on the sample, the melting pots were subjected to the muffle 

at 105 ºC for 3 hours. After, the porcelain melting pots were left resting for in the desiccator 

and when the room temperature was reached, their mass was determined by Equation 20  

SC	(%,i/i) =	
K#"ëºì − KyBîxk}A	ï?x

KwJyïîB
× 100 (20) 

where K#"ëºì is the mass of the porcelain melting pot after drying at 105 ºC, KyBîxk}A	ï?x is the 

empty porcelain melting pot weight, and KwJyïîB is the mass of the sample added. 

Organic compounds content (OCC) 

The procedure was done by following an internal method used at Barbot, which performed the 

calcination of coatings samples in a muffle. The procedure allows the determination of the 

organic compound degraded, mainly composed of the polymer, organic solvents, and additives.  

To determine the organic compounds’ content, Equation 21, the porcelain melting pots stated 

before were brought to the muffle, now at 450 ºC, for 6 hours. After the porcelain melting pots 

rested in the desiccator till their temperature reached room temperature, and then they were 

weighted. The OCC was calculated with Equation 21 

OCC	(%,i/i) = 	
K#"ëºì − Kóë"ªì

KwJyïîB
× 100 (21) 

where Kóë"ªì is the mass weighted after the muffle test at 450 ºC. 

Carbonates content (CC) 

The melting pots and sample used for the OCC determination, Equation 22, were placed in the 

muffle at a temperature of 950 ºC, for 6 hours. In order to avoid thermic shock and possible 

sample loss, the melting pots initially cooled in the muffle and then proceeded to the desiccator 

where they reached room temperature, afterward, their weighted were determined. The CC 

was calculated with the Equation 22 

CC	(%,i/i) =	
Kóë"ºì − Kôë"ªì

KwJyïîB
× 2.27 × 100 (22) 

where Kôë"ªì is the mass weighted after the muffle test at 450 ºC and 2.27 corresponds to a 

stoichiometric factor which correlates the molar mass of the calcium carbonate and the carbon 

dioxide.  
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4 Results and discussion 

4.1 Coatings databases 

Two different sets of spectra databases, acquired by FTIR-ATR analysis, were constructed, one 

for each type of resin. They were separately built since the polymers' bands regarding the 

carbonyl bond are formed in very similar ranges of the spectrum, 1730 cm-1 for styrene-acrylic 

and 1727 cm-1 for acrylic (Annex 1). Since paint systems are composed of several raw materials, 

small variations can occur in the range of expected bands in its resulting spectra. Therefore, 

these slights shifts could prompt to a misinterpretation, which would result in a wrongful 

prediction of binder's content. 

Initially, the sets consisted of spectra from coatings’ samples derived from daily production 

containing a number of 273 and 132 standards for styrene-acrylic and acrylic coatings, 

respectively.  Later, as previously mentioned, spectra of modified samples were introduced, 

resulting in two new databases of 383 and 177 standards for styrene-acrylics and acrylics 

coatings, correspondingly (Table 3). The strategy was taken with the intent of completing the 

information contained in the databases so models with better predicting abilities could be 

generated.  

Table 3. Summary of databases range of component's contents regarding each resin kind 

 Content range (%) 

Database Polymer CaCO3 Water TiO2 

Styrene-Acrylic resin 0.8 - 42.1 0.0 - 62.6 26.3 - 86.4 0.0 - 15.3 

Acrylic resin 8.8 - 40.8 0.0 - 67.2 7.1 - 75.5 0.0 - 22.3 

4.2 Development and performance evaluation of PLS models 

Several predictions models were created with the spectra databases. The firsts versions were 

all obtained from spectra derived from daily production. After preliminary testing, it was 

verified the need for a better representation of some of the regions, with that, remodeled 

paints were made, which were then used to build optimized versions of the component's 

models. All first minor versions were built having baseline correction as a pre-processing 

treatment. In the second and third minor versions pre-processing methods were always added, 

namely MSC normalization and range, respectively. 

For each constituent, different strategies were followed in pursuit of the best-resulting model. 

The calibrations performed by the PerkinElmer Spectrum® Quant software computed and 

presented a few model's statistical indicators, the main ones being the number of latent 
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variables, the coefficient of determination (also known as R2), the standard error of estimate 

(SEE) and the standard error of prediction (SEP) Additionally, after every model's calibration, a 

review report was generated. Information about the calibration models (a group of data which 

accomplished a model with the best predicting ability also known as reduced models), was 

given, including calculated values of contents for each sample held on it. Based on these values 

and the actual known contents, evaluations of performance could be completed, as is referend 

in section 3.4. 

Performance ratings were also reached from the independent dataset. This evaluation consisted 

in the creation of sets of paints (Table 4), for both types of coatings, which possessed specific 

computed compositions; in other words, were formed of unknown samples to the models and 

therefore, did not have any matching spectra on it. The resulting computed ratings reached 

from this particular assessment are of great importance once they allow a more realistic review 

of the model’s predictability capacities. 

Table 4. Summary of the ranges for each components’ contents of the paints created for the 

independent dataset test  

 Content range (%) 

Dataset Polymer CaCO3 Water TiO2 

Styrene-Acrylic resin 2.15 - 27.79 9.00 - 60.03 37.25 - 82.20 1.95 - 15.01 

Acrylic resin 12.33 -36.99 5.46 - 30.38 38.86 - 69.94 2.22 - 20.40 

With performance evaluations’ statistical indicators values and their corresponded ratings, a 

single model was chosen for each component for the different type of resins, having a total of 

eight PLS predicting models with the best-obtained capacities. 

4.2.1 Models for prediction of components’ content in styrene-acrylics coatings 

Polymer's content models 

Numerous models (Table 5) for predicting polymer's content were constructed, where different 

approaches were taken. The need for creating a high number of models for this property had 

two underlying reasons. Firstly, the polymer's content is considered a crucial element of a 

coating's composition; hence, it demands a better accuracy in predictions results. Secondly, 

and more mattering, this kind of resin is used in lowers quantities in paints when compared to 

the acrylics type, with that, the outcomes had more significant relative errors associated with 

it. The different strategies were taken with the intent of minimizing those errors and achieving 

higher precisions in the estimated values.  
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Table 5. Summary and calibration statistical indicators of polymer’s models for styrene-
acrylics coatings 

Smp = number of samples, BC = Baseline Correction, LV = Latent Variables, MSC = Multiplicative Scatter 
Correction, SEP = Standard Error of Prediction, SEE = Standard Error of Estimate, BP = Barbot’s 
Production, RP = Reformulated Paint 

The first obtained model (StyPol), as mentioned before, had data acquired only from daily 

productions samples. The model’s statistical indicators and calibration model's evaluation 

ratings (Table 6) were acceptable; however, when independent dataset performance 

evaluation was conducted results pointed out an overestimation in the predicted values, since 

PBIAS was equal to 12.59.  

Considering the performance ratings, better spectrum representation of the polymer’s content 

was sought as an attempt to achieve better models. Bearing in mind that approximately 86 % 

of the samples used to build the first model (StyPol) had a polymer content equal to or lower 

than 10 %, and also that this range is usual for the styrene-acrylic coatings, two approaches 

were considered. Twenty paints were formulated to fill gaps in the amplitude between 0-10 % 

of polymer's content (StyPolOpt1.1.1, StPolOpt1.1.2) and not only an optimized version of the 

previous model was generated, where the new samples were included, but also two other 

models were created having restricted ranges of polymer’s contents between 0-10 % (StyPol(0-

10%)1.1.1, StyPol(0-10%)1.1.2) and 0-6 % (StyPol(0-6%)1.1.1, StyPol(0-6%)1.1.2). 

    Pre-processing     

Model’s name Smp Samples 
description K-Fold BC MSC Range LV R2 SEE SEP 

StyPol 273 BP 3 ü û û 6 0.993 0.562 0.570 

StyPolOpt1.1.1 
333 BP + 20 RP 

12 ü û û 8 0.995 0.454 0.462 

StyPolOpt1.1.2 22 ü û û 7 0.993 0.506 0.518 

StyPol(0-10%)1.1.1 
293 BP + RP 

pol<10% 
12 ü û û 6 0.968 0.339 0.347 

StyPol(0-10%)1.1.2 15 ü û û 7 0.975 0.302 0.311 

StyPol(0-6%)1.1.1 
269 BP + RP  

pol<6% 
12 ü û û 6 0.973 0.235 0.239 

StyPol(0-6%)1.1.2 20 ü û û 6 0.975 0.227 0.230 

StyPolOpt2.1 

377 BP + 35 RP  22 

ü û û 8 0.994 0.463 0.471 

StyPolOpt2.2 ü ü û 8 0.995 0.418 0.425 

StyPolOpt2.3 ü ü ü 6 0.972 0.321 0.334 

StyPol(0-10%)2.1 
339 BP, RP 

pol<10% 15 
ü û û 8 0.972 0.323 0.333 

StyPol(0-10%)2.2 ü ü û 7 0.977 0.222 0.225 

StyPol(0-6%)2.1 
308 BP + RP 

pol<6% 
20 ü û û 7 0.976 0.226 0.229 

StyPol(0-6%)2.2 18 ü ü û 8 0.994 0.451 0.460 

StyPolOpt3.1.1 

383 New BP 
added+ RP 

22 ü û û 8 0.994 0.463 0.472 

StyPolOpt3.1.2 18 ü û û 8 0.994 0.463 0.472 

StyPolOpt3.1.3 45 ü û û 8 0.994 0.463 0.472 

StyPolOpt3.1.4 3 ü û û 8 0.994 0.463 0.472 

StyPolOpt3.2 22 ü ü û 8 0.995 0.427 0.435 

StyPolOpt3.3 22 ü ü ü 7 0.993 0.490 0.499 
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Table 6. Performance rating computed from values of polymer's content for styrene-acrylics coatings 

 Calibration model ratings Independent datasets ratings 

Model’s name NSE PI PBIAS PI RSR PI NSE PI PBIAS PI RSR PI 

StyPol 0.993 VG 0.00 VG 0.08 VG 0.906 VG 12.59 S 0.31 VG 

StyPolOpt1.1.1 0.995 VG 0.00 VG 0.07 VG 0.915 VG 10.19 S 0.29 VG 

StyPolOpt1.1.2 0.993 VG 0.00 VG 0.08 VG 0.903 VG 12.67 S 0.31 VG 

StyPol(0-10%)1.1.1 0.977 VG 0.00 VG 0.15 VG 0.671 S -16.13 U 0.57 G 

StyPol(0-10%)1.1.2 0.975 VG 0.00 VG 0.16 VG 0.694 S -17.65 U 0.55 G 

StyPol(0-6%)1.1.1 0.973 VG 0.00 VG 0.16 VG 0.110 U -46.92 U 0.94 U 

StyPol(0-6%)1.1.2 0.975 VG 0.00 VG 0.16 VG 0.133 U -44.80 U 0.93 U 

StyPolOpt2.1 0.994 VG 0.00 VG 0.08 VG 0.937 VG 4.56 VG 0.25 VG 

StyPolOpt2.2 0.995 VG 0.00 VG 0.07 VG 0.941 VG 7.31 G 0.24 VG 

StyPolOpt2.3 0.994 VG 0.00 VG 0.08 VG 0.943 VG 6.48 G 0.24 VG 

StyPol(0-10%)2.1 0.972 VG 0.00 VG 0.17 VG 0.762 S -17.14 U 0.49 VG 

StyPol(0-10%)2.2 0.972 VG 0.00 VG 0.17 VG 0.861 G -10.64 S 0.37 VG 

StyPol(0-6%)2.1 0.977 VG 0.00 VG 0.15 VG 0.184 U -44.97 U 0.90 U 

StyPol(0-6%)2.2 0.976 VG 0.00 VG 0.16 VG 0.278 U -42.79 U 0.85 U 

StyPolOpt3.1.1-3.1.4 0.984 VG -2.50 VG 0.13 VG 0.937 VG 4.60 VG 0.25 VG 

StyPolOpt3.2 0.995 VG 0.00 VG 0.07 VG 0.943 VG 6.40 G 0.24 VG 

StyPolOpt3.3 0.993 VG 0.00 VG 0.08 VG 0.941 VG 7.95 G 0.24 VG 

  PI = Performance Index, VG =Very good, G = Good, S = Satisfactory, U = Unsatisfactory 

Also, each pair of models were constructed using the same samples and pre-processing 

treatments, changing only the k-fold number. This action was taken with the intent of analyzing 

the influence of this variable in the models' results. 

Evaluations were proceeded to judge the models' performances. Regarding the general models 

(StyPolOpt1.1.1, StyPolOpt1.1.2), better results were attained for the model StyPolOpt1.1.1, 

the version with the smallest k-Fold number, equal to 12. The evaluation’s parameters were 

slightly better, for both the calibration model and independent dataset, when compared to the 

other two general versions (StyPol, StyPolOpt1.1.2), and the PBIAS showed a reduction (from 

12.69/12.67 to 10.19) which means the model was predicting values with better accuracy.  

For the restricted range models, even though all calibration model's ratings were considered 

very good, the results attained from the independent dataset test had an opposing conclusion. 

The results confirmed the lack of extrapolation capacities of the models, since when using 

datasets with a larger range than the range of the actual model. The statistical indicators were 

significantly distant from their ideal values. Both models were proved to be underestimated 

(range of attained PBIAS values of -16.13 to -44.97) with significant residual values, especially 

the 0-6% polymer’s content model (StyPol(0-6%)1.1.1, StyPol(0-6%)1.1.2). As for the k-fold 

influence, since inconsistent results were achieved, no reliable conclusion was able to be 

drawn. Further investigation was carried out in a later version. 
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The addition of reformulated coatings to the model was proved to be effective in increasing 

the general model's prediction abilities. Accordingly, 35 new reformulations were produced, 

analyzed in the FTIR-ATR, and introduced to generate a second optimized version of the general 

model. 

In the second general optimized version (StyPol Opt2.1) two new minor versions (StyPol Opt2.2, 

StyPol Opt 2.3) were produced, which defer from the first one in pre-processing treatments, as 

mentioned in section 3.2. The models' statistical indicators and calibration models' performance 

evaluation presented very similar and satisfactory results. Nevertheless, the ratings obtained 

from independent validation's performance evaluation inferred the model with only baseline 

correction as pre-processing with having the best predicting abilities. Since its bias held the 

lower absolute value (4.56), even though it was considered to be slightly overestimated.   

As for the limited range's models (StyPol(0-10%)2.1, StyPol(0-10%)2.2, StyPol(0-6%)2.1, 

StyPol(0-6%)2.2), only a second minor version was carried out. And, performance evaluation 

proved this later minor version to be significantly better than the first, especially in the 0-10% 

polymer's content model (StyPol(0-10%)2.2). 

A third and last optimized version was built (StyPolOpt3.1.1-3.1.4, StyPolOpt3.2, StyPolOpt3.3). 

It presented now the spectra of all styrene-acrylic coatings produced at Barbot. In this final 

version, the k-fold influence was once again studied. The same strategy as for the first 

optimized version attempt was taken, but four similar models (StyPolOpt3.1.1-3.1.4) were 

created with different k-fold numbers, 3, 18, 22, and 45. The models’ statistical indicators and 

consequently, the performance ratings derived from both evaluations were identical. With that, 

it is possible to presume that different k-Fold numbers for random cross-validation can achieve 

the same results, hence changing between them does not bear any significance to the resulting 

model. The best way of choosing the most appropriated one is only based on the statistical 

indicators obtained after the calibration of each model. In other words, different k numbers 

should be tested until the best calibration review is conferred. 

Styrene polymer best model – StyPolOpt2.1 

 The best obtained model for polymer's content prediction in styrene-acrylics coatings was the 

model named as "StyPolOpt2.1".  

The model was tested as having different latent variable numbers, for each of them the SEP 

estimate number was computed (Figure 4) and also the cumulative X and Y-variance, which 

shows how much of both variables can be explained by the model. The optimum number of LV’s 

was determined as 8, having a SEP estimate of 0.47 and as expected translated in a much better 

explanation of the variables (having a cumulative X-variance and Y-variance of 50.1 % and 99.4 
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%, respectively, Table 7) when compared to the same model containing only one latent variable. 

This optimum number was established by the performance of an F-test. 

Table 7. Cumulative variance 

values for StyPolOpt2.1 model for 

the different number of LV 

LV  Cum  
X-Var (%) 

Cum 
Y-Var (%) 

1 25.2 84.6 

2 34.2 93.6 

3 40.2 96.4 

4 43.1 97.9 

5 45.0 98.7 

6 46.9 99.1 

7 48.4 99.3 

 8 50.1 99.4 

LV = Latente Variables, Cum = Cumulative, 
Var = Variance 

A first visible confirmation is that most samples are indeed comprised in the lowers content 

ranges, up to 9 % (Figure 5-a). It is possible to verify that the model can be considered as having 

a good bias since computed values for PBIAS were 0.0 and 4.56 for the calibration model (Figure 

5-a) and independent dataset test, respectively (Table 6). Even though slight overestimation 

can be observed in the validation test (Figure 5-b), both performance evaluation ratings were 

very good. 

  
Figure 5. Estimated values as a function of experimental values of polymer content attained from 

“StyPolOpt2.1” calibration model (a) independent dataset test (b). 

 
Figure 4. SEP estimates as a function of Latent variables for 

"StyPolOtm2.1" model. 

 

(b) (a) 
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Also, both regressions lines presented concordant results, having NSE indicators of 0.994 and 

0.937 and RSR indicators of 0.08 and 0.25, for calibration model and independent dataset, 

correspondingly. Their ratings were also classified as very good, which pointed to a model very 

well adjusted to the data, presenting all points with no or little significant residual variance.  

It is possible to confirm that results from both performances evaluations are concordant, and 

prediction abilities of the attained model for polymer's content prediction in styrene-acrylics 

resin were good and, most importantly, the model was able to demonstrate its applicability. 

Calcium carbonate's content models 

Extenders present a particular situation. In coatings like varnishes which are transparent, there 

is no amount of extenders of any kind, including calcium carbonates, present in their 

composition. With that in mind, it was considered that when present in coatings, more precisely 

in paints or primers, the lowest content typically used in styrene-acrylics is close to 8 % and in 

acrylics is 5 %. Moreover, by having spectra of coatings with no content of this component in 

the database used to build the models (Table 8), the gap between the 0 % and the lowest 

content of the other type of coatings that present this constituent, could affect the regression 

line and consequently the accuracy of predictions. In search of a better understanding of the 

influence these coatings’ spectra presence in the models, versions without data derived from 

them were built (StyCaCO31.3, StyCaCO31.4, StyCaCO3Opt1.3, StyCaCO3Opt1.4). 

Table 8. Summary and calibration statistical indicators of calcium carbonate’s models for 

styrene-acrylics coatings 

    Pre-Processing     

Model’s name Smp Samples 
description k-Fold BC  MSC Range LV  R2  SEE SEP 

StyCaCO31.1 
278 BP 

25 

ü û  û 7 0.978 2.46 2.51 

StyCaCO31.2 ü ü û 7 0.978 2.48 2.52 

StyCaCO31.3 
269 BP no 

varnishes 
ü û û 6 0.976 2.36 2.40 

StyCaCO31.4 ü ü û 5 0.966 2.77 2.81 

StyCaCO3Opt1.1 
383 BP + 35 RP 

35 

ü û û 8 0.977 2.30 2.33 

StyCaCO3Opt1.2 ü ü û 7 0.973 2.27 2.30 

StyCaCO3Opt1.3 
374 

BP + 35 RP no 
varnishes ü û û 7 0.973 2.27 2.30 

StyCaCO3Opt1.4  12 ü ü û 7 0.973 2.27 2.29 

Smp = number of samples, BC = Baseline Correction, LV = Latent Variables, MSC = Multiplicative Scatter 
Correction, SEP = Standard Error of Prediction, SEE = Standard Error of Estimate, BP = Barbot’s 
Production, RP = Remodeled Paint 

Results gathered from the calibration models’ reviews, and performance ratings were all 

refereed as very good, and little difference between statistical indicators values can be 

observed. However, when analyzing the results attained from independent validation (Table 9), 
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the first conclusion to be drawn was that models with the varnishes spectra – StyCaCO31.1, 

StyCaCO31.2, StyCaCO3Opt1.1, and StyCaCO3Opt1.2 – presented the worst performance, 

showing significant underestimated content's values having computed PBIAS of -27.82, -25.85, 

-19.87, and -15.40, correspondingly. 

Table 9. Performance rating computed from values of Calcium Carbonate's content for styrene-acrylics 

coatings 

 Calibration model ratings Independent dataset ratings 

Model’s name NSE PI PBIAS PI RSR PI NSE PI PBIAS PI RSR PI 

StyCaCO31.1 0.978 VG 0.00 VG 0.15 VG 0.537 U -27.82 U 0.68 S 

StyCaCO31.2 0.978 VG 0.00 VG 0.15 VG 0.596 U -25.85 U 0.64 S 

StyCaCO31.3 0.976 VG 0.00 VG 0.15 VG 0.798 S 9.23 G 0.45 VG 

StyCaCO31.4 0.966 VG 0.00 VG 0.18 VG 0.645 S 14.95 S 0.60 G 

StyCaCO3Opt1.1 0.973 VG 0.00 VG 0.16 VG 0.706 S -19.87 U 0.54 G 

StyCaCO3Opt1.2 0.975 VG 0.00 VG 0.16 VG 0.674 S -15.40 U 0.57 S 

StyCaCO3Opt1.3 0.973 VG 0.00 VG 0.16 VG 0.630 S 13.98 S 0.61 S 

StyCaCO3Opt1.4 0.973 VG 0.00 VG 0.16 VG 0.630 S 13.98 S 0.61 S 

  PI = Performance Index, VG =Very good, G = Good, S = Satisfactory, U = Unsatisfactory 

 Calcium carbonate best Model – StyCaCO31.3 

The model with best performance ratings for predicting calcium carbonate’s content in coatings 

containing styrene-acrylics resin was the model named as “StyCaCO31.3”. The optimum number 

of latent variables for this model was 5 with a SEP estimate equals to 2.81 and a cumulative X 

and Y-variance of 47.4 % and 97.6 %, as suggests Table A1.1 and Figure A1.1. 

Initially, predictions reached by this model suggested no presence of bias, and calculation of 

PBIAS from values gathered from calibration review report confirms this statement. However, 

after analyses of independent dataset results, and calculation of PBIAS (9.23), an 

overestimation bias was observed, which indicated predictions values to present higher 

contents of CaCO3 than the actual sample content’s value. The NSE indicators of the calibration 

model and independent dataset regression lines (Figure 6), were rated as very good and good, 

having values of 0.976 and 0.798, and both RSR were considered very good, 0.15 and 0.45, 

correspondingly. The indicators computed describe a fairly-adjusted model with no significant 

residual variance between estimated and experimental contents’ values. 

Water's content models 

The approach selected for the water content's models were the simplest and identical for both 

kinds of resin. It can be explained by the fact that the high amounts of water used in coatings 

generate small relative prediction errors. Thus, a high accuracy of the model is not an essential 

factor. Also, in the case of uncertainty, verification of water's content can be determined by 
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performing the muffle test as described in section 3.5.2 or a more rapid one: Halogen Moisture 

Analyzer. While there are available tests able to indicate a very accurate content of water 

presented in the coating, they have the disadvantage of taking several minutes or even hours 

to generate the results required. By using the work in development, only a few minutes would 

be necessary to attain such information. Four models were constructed to determine the 

content of the constituent in question (Table 10).  

Table 10. Summary and calibration statistical indicator of calcium carbonate’s models for styrene-

acrylics coatings 

    Pre-Processing     

Model’s 
name Smp Samples 

description k-Fold BC  MSC Range LV   R2  SEE  SEP 

StyWtr1.1 
278 BP 

8 ü û û 6 0.935 2.12 2.14 

StyWtr1.2 20 ü ü û 7 0.945 1.95 1.98 

StyWtrOpt1.1 
383 BP + 35 RP 

12 ü û û 7 0.938 1.95 2.00 

StyWtrOpt1.2 8 ü ü û 7 0.936 1.97 2.00 

Smp = number of samples, BC = Baseline Correction, LV = Latent Variables, MSC = Multiplicative Scatter 
Correction, SEP = Standard Error of Prediction, SEE = Standard Error of Estimate, BP = Barbot’s Production, 
RP = Remodeled Paint 

All calibration models presented excellent evaluation concerning the reduced model's 

performance ratings (Table 11).  Moreover, very few distinctions can be made regarding the 

results achieved through independent validation. The main difference is that the optimized 

models –StyWtrOpt1.1, StyWtrOpt1.2 – are producing slightly less overestimated values than 

the first versions' models – StyWtr1.1, StyWtr1.2 – which can be observed by the calculated 

  

Figure 6. Estimated values as a function of experimental values of CaCO3 content attained from 

“StyCaCO21.3” calibration model (a) and independent dataset test (b). 

(a) (b) 
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PBIAS results which are lower for the optimized versions (8.78 and 9.39, respectively). This 

means that, even though in all models, the estimated content is higher than the experimental 

content value, the later versions present slightly more accurate results. 

Table 11. Performance rating computed from values of water's content for styrene-acrylics coatings 

 Calibration model ratings Independent dataset ratings 

Model’s 
name NSE PI PBIAS PI RSR PI NSE PI PBIAS PI RSR PI 

StyWtr1.1 0.939 VG 0.04 VG 0.25 VG 0.53 U 9.57 G 0.69 S 

StyWtr1.2 0.947 VG 0.07 VG 0.23 VG 0.53 U 9.62 G 0.69 S 

StyWtrOpt1.1 0.938 VG 0.00 VG 0.25 VG 0.54 U 8.78 G 0.68 S 

StyWtrOpt1.2 0.936 VG 0.00 VG 0.25 VG 0.51 U 9.39 G 0.70 S 

  PI = Performance Index, VG =Very good, G = Good, S = Satisfactory, U = Unsatisfactory 

 Water best Model – StyWtrOpt1.1 

The best model for water’s content prediction in styrene-acrylics paints was the StyWtrOpt1.1. 

The selected latent variable number for the model was 7, having a cumulative X and Y- 

variances and a SEP estimate associated to it of 48.2 %, 93.8 %, and 2.00, correspondingly, Table 

A1.2 and Figure A1.2. 

Analysis of the calibration model regression line (Figure 7-a) confirms ratings of performance 

evaluation determined as very good. The PBIAS, NSE, and RSR had computed values of 0.0, 

0.938, and 0.25, respectively. The first observable characteristic of the validation test (Figure 

7-b) is the model’s overestimation bias toward predicted values, and calculated PBIAS of 8.78 

corroborates with this assumption. Performance ratings were found unsatisfactory and 

satisfactory for the NSE and RSR parameters, which presented values of 0.54 and 0.68, 

correspondingly.  

Important information, which can be noticeable by analyzing both graphics, is that there is a 

range, around 30-50 %, where most samples where comprised. It was expected since this region 

is so well characterized, high accuracy of prediction in contents of paints held within this 

interval. However, with results from the independent dataset test, in this range of content, all 

predictions presented overestimated values. This could mean that the model, even though well 

represented in those regions, drawn wrong assumptions because other ranges were not as well 

defined or spectra of coatings with the same content of water presented contradictory spectra. 

A possible solution to the problem could be producing more coatings with different water 

contents and introducing their spectra in the database as a way of allowing better identification 

of the changes caused by different contents quantities in spectra. By taking this approach, the 

model could then make more coherent distinctions and, as a consequence, predict more 

reliable results. 
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Figure 7. Estimated values as a function of experimental values of water content attained from 

“StyWtrOpt1.1” calibration model (a) and independent dataset test (b). 

Titanium dioxide’s content models 

Strategies for titanium dioxide (TiO2) models' development (Table 12) did not differ based on 

the resin type. Since varnishes also do not present any content of TiO2 in their composition, in 

the second version optimized versions of models (StyTiO2Opt2.1-2.3), no spectrum 

corresponding to this type of coating was introduced. Also, is worth mentioning, that spectra 

database was very limited in range, since as specified before, this constituent has a high price 

associated with it, and therefore it is not frequently used in large amounts.  

Different from previous constituent’s contents models, a third minor version (StyTiO2Opt1.3, 

StyTiO2Opt2.3) was created. It consisted of applying a specific range as a pre-processing 

treatment.  In the case of TiO2, the bands responsible for its identification in a spectrum are 

located close to the region of 500 - 400 cm-1 (Bobrova et al., 1968). Hence this was defined as 

the range to be taken into consideration in the pre-processing of standards. 

Calibration models' performance ratings revealed acceptable results for all models, although 

the minor third versions presented slight poorest values. Ratings from Independent validation 

analyses demonstrated unsatisfactory predictions produced by most models. Table 13 presents 

performance ratings computed for this constituent’s developed models.  

 Titanium dioxide best Model – Sty TiO2Opt2.1 

The most adjusted model for estimation of titanium dioxide’s content attained for coatings 

composed of styrene-acrylics resin was the StyTiO2Opt2.1. It was created with spectra only 

from coatings containing this component. 

  

(a) (b) 
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Table 12. Summary and statistical indicators calibration of titanium dioxide’s models for 

styrene-acrylics coatings 

    Pre-Processing     

Model’s name Smp Samples 
description k-Fold BC MSC Range  LV  R2  SEE SEP 

StyTiO2Opt1.1 

383 BP + 35 RP 18 

ü û  û 7 0.971 0.73 0.74 

StyTiO2Opt1.2 ü ü û 7 0.970 0.75 0.76 

StyTiO2Opt1.3 ü ü ü 4 0.808 1.87 1.91 

StyTiO2Opt2.1 

335 BP + 35 RP 
no varnishes 

10 ü û  û 6 0.965 0.76 0.76 

StyTiO2Opt2.2 18 ü ü û 6 0.961 0.80 0.81 

StyTiO2Opt2.3 10 ü ü ü 4 0.771 1.9 1.96 

Smp = number of samples, BC = Baseline Correction, LV = Latent Variables, MSC = Multiplicative Scatter 
Correction, SEP = Standard Error of Prediction, SEE = Standard Error of Estimate, BP = Barbot’s Production, 
RP = Remodeled Paint 

Table 13. Performance rating computed from values of titanium dioxide's content for styrene-

acrylics coatings 

 Calibration model ratings Independent dataset ratings 

Model’s name NSE PI PBIAS PI RSR PI NSE PI PBIAS PI RSR PI 

StyTiO2Opt1.1 0.971 VG 0.00 VG 0.17 VG 0.278 U -34.14 U 0.85 U 

StyTiO2Opt1.2 0.813 G 0.00 VG 0.43 VG 0.506 U -24.14 U 0.70 U 

StyTiO2Opt1.3 0.808 G 0.00 VG 0.44 VG 0.272 U -29.08 U 0.85 U 

StyTiO2Opt2.1 0.965 VG 0.00 VG 0.19 VG 0.750 S -15.00 S 0.50 VG 

StyTiO2Opt2.2 0.970 VG -0.56 VG 0.17 VG 0.316 U -31.83 U 0.83 U 

StyTiO2Opt2.3 0.771 S 0.00 VG 0.48 VG -0.690 U -6.35 G 1.30 U 

  PI = Performance Index, VG =Very good, G = Good, S = Satisfactory, U = Unsatisfactory 

The optimum number for the latent variables was defined as 6 having an associated SEP 

estimate of 0.76, and cumulative X and Y-variances were 43.3 % and 96.5 %, correspondingly, 

as it is indicated in Table A1.3 and Figure A1.3. 

The regression line resulted from the calibration model (Figure 9-a) had all statistical indicators 

classified as very good regarding the performance evaluation. Its calculated values for NSE of 

0.964 and RSR of 0.19, indicated a very well-adjusted model with minimal residual variance 

between the experimental and estimated values. The bias of the model was considered very 

good as well, being the computed value of PBIAS equal to zero.  

The regression line from the independent dataset test (Figure 9-b) results had a computed value 

of NSE of 0.75 and RSR of 0.50, being judged as satisfactory and very good, respectively. 

However, when analyzing Figure 8-a, it is noticeable that a consistent underestimation of the 

predicted values, confirmed by a PBIAS calculated value of -15.0. 
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4.2.2 Models for prediction of components’ content in acrylics coatings 

Polymer's content models 

Since the quantities of polymer in acrylic coatings were observed to be higher than in styrene-

acrylics coatings, and the limited range approach did not generate satisfactory results, only 

four models were built for predicting polymers content in acrylics coatings (Table 14). 

Table 14. Summary and statistical indicators calibration of polymer’s models for acrylics coatings 

    Pre-Processing     

Model’s name Smp Samples 
description k-Fold BC MSC Range LV R2 SEE SEP 

AcrylPol1.1 
132 BP 8 

ü û  û 4 0.963 1.62 1.65 

AcrylPol1.2 ü ü û 3 0.967 1.53 1.55 

AcrylPolOpt1.1 
177 BP + 15 RP 8 

ü û  û 3 0.933 2.12 2.20 

AcrylPolOpt1.2 ü ü û 3 0.958 1.73 1.75 

Smp = number of samples, BC = Baseline Correction, LV = Latent Variables, MSC = Multiplicative Scatter 
Correction, SEP = Standard Error of Prediction, SEE = Standard Error of Estimate, BP = Barbot’s Production, 
RP = Remodeled Paint 

Calibration's parameters and reduced model's ratings were more satisfying for the models made 

only from Barbot's productions (AcrylPol1.1, AcylPol1.2) while independent validation's ratings 

pointed out better performances for the minor versions only with baseline correction pre-

processing (AcrylPol1.1, AcrylPolOpt1.1). In Table 15, the obtained performance ratings can be 

observed. 

  
Figure 8. Estimated values as a function of experimental values of TiO2 content attained from 

“StyTiO2Opt2.1” calibration model (a) and independent dataset test (b). 

(a) (b) 
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Table 15. Performance rating computed from values of polymer’s content for acrylics coatings 

 Calibration model ratings Independent dataset ratings 

Model’s name NSE PI PBIAS PI RSR PI NSE PI PBIAS PI RSR PI 

AcrylPol1.1 0.963 VG 0.00 VG 0.19 VG 0.913 VG 0.01 VG 0.29 VG 

AcrylPol1.2 0.967 VG 0.00 VG 0.18 VG 0.922 VG 2.54 VG 0.28 VG 

AcrylPolOpt1.1 0.933 VG 0.00 VG 0.26 VG 0.929 VG 2.52 VG 0.27 VG 

AcrylPolOpt1.2 0.958 VG 0.00 VG 0.20 VG 0.921 VG 3.50 VG 0.28 VG 

  PI = Performance Index, VG =Very good, G = Good, S = Satisfactory, U = Unsatisfactory 

  Acrylic polymer best Model – AcrylPol1.1 

The model with best predictable abilities for polymer’s content in acrylics coatings was the 

“AcrylPol1.1”. As for latent variables, the optimum number was defined as 4, having a 

cumulative X and Y-variances of 41.4 % and 96.3 %, respectively, and a SEP estimate of 1.65. In 

this specific case, the number of latent variables was considerably smaller than the one with 

minimum SEP estimate associated (Table A1.4 and Figure A1.4). This can happen if the F-test 

determines that there is no significant difference in the model's results when it is calibrated 

with those numbers of latent variables (4 and 8). Once one of the intents of the PLS algorithm 

is to represent a system by using the smallest number of latent variables as possible, it chooses 

the optimum number of latent variables as being 4. 

The model is well adjusted, having values of NSE and RSR of 0.963 and 0.19, correspondingly, 

and also has a good estimation, presenting a calculated PBIAS of zero. An observation to be 

made when analyzing Figure 9-a is that the concentration of the majority of samples used to 

develop the model contained polymer’s content in the range of 14-25 %. 

For the independent validation (Figure 9-b), although the regression line does not present a 

flawless adjustment, once its NSE and RSR are 0.913 and 0.29, the predictions do not present 

a substantial residual variation and model is still considered very good. It produces an overall 

good estimation of content values, having a computed value for PBIAS of just 0.01. 

Calcium carbonates’ content models 

The creation of models for predicting this component content in acrylic coatings followed the 

same line of thinking, regarding as which samples were included and pre-processing treatments 

were used, of when creating the styrene-acrylics models for this constituent and a summary is 

found in Table 16. 
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Table 16. Summary and statistical indicators calibration of calcium carbonate’s models for 

acrylics coatings 

    Pre-Processing     

Model’s name Smp Samples 
description k-Fold BC MSC Range LV R2  SEE  SEP 

AcrylCaCO31.1 
132 BP 5 

ü û  û 3 0.942 2.94 2.98 

AcrylCaCO31.2 ü ü û 4 0.964 2.32 2.38 

AcrylCaCO31.3 
99 BP no 

varnishes 3 
ü û û 5 0.983 1.19 1.22 

AcrylCaCO31.4 ü ü û 3 0.950 2.02 2.06 

AcrylCaCO3Opt1.1 
177 BP + 35 RP 

8 

ü û û 2 0.883 3.87 3.91 

AcrylCaCO3Opt1.2 ü ü û 2 0.855 4.33 4.37 

AcrylCaCO3Opt1.3 
144 BP + 35 RP 

no varnishes 
ü û û 2 0.823 3.65 3.68 

AcrylCaCO3Opt1.4 5 ü ü û 2 0.819 3.69 3.70 

Smp = number of samples, BC = Baseline Correction, LV = Latent Variables, MSC = Multiplicative Scatter 
Correction, SEP = Standard Error of Prediction, SEE = Standard Error of Estimate, BP = Barbot’s Production, 
RP = Remodeled Paint 

Performance evaluation (Table 17) of calibration models showed better results for models 

created from daily (AcrylCaCO31.1-1.4) production but opposing conclusions could be drawn 

when examining ratings gathered from validation test (AcrylCaCO3Opt1.1-1.4). Most models 

obtained negative NSE, which is a concern, once, as stated before, it means that the mean 

observed value is a better predictor than the estimated value. Since this is considered 

unacceptable for a good prediction model, the models which possessed this result were not 

analyzed any further. As for the remaining models (AcrylCaCO3Opt1.1, AcrylCaCO3Opt1.3), two 

consisted of models containing varnishes spectra and all only had baseline correction as a pre-

processing treatment.  

  

Figure 9. Estimated values as a function of experimental values of polymer content attained from 

“AcrylPol1.1” calibration model (a) and independent dataset test (b). 

(a) (b) 
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Table 17. Performance rating computed from values of calcium carbonate's content for acrylics 

coatings 

 Calibration model ratings Independent dataset ratings 

Model’s name NSE PI PBIAS PI RSR PI NSE PI PBIAS PI RSR PI 

AcrylCaCO31.1 0.942 VG 0.00 VG 0.24 VG 0.023 U -14.14 S 0.99 U 

AcrylCaCO31.2 0.964 VG 0.00 VG 0.19 VG -0.095 U -15.74 U 1.05 U 

AcrylCaCO31.3 0.987 VG 0.00 VG 0.11 VG -0.816 U 141.73 U 1.35 U 

AcrylCaCO31.4 0.963 VG 0.00 VG 0.19 VG -0.721 U 25.48 U 1.31 U 

AcrylCaCO3Opt1.1 0.883 G 0.00 VG 0.34 VG 0.108 U -10.72 S 0.94 U 

AcrylCaCO3Opt1.2 0.855 G 0.00 VG 0.38 VG -0.013 U -6.90 G 1.01 U 

AcrylCaCO3Opt1.3 0.853 G 0.00 VG 0.38 VG 0.033 U 3.96 VG 0.98 U 

AcrylCaCO3Opt1.4 0.850 G 0.00 VG 0.39 VG -0.255 U 2.90 VG 1.12 U 

  PI = Performance Index, VG =Very good, G = Good, S = Satisfactory, U = Unsatisfactory 

Calcium carbonate best Model – AcrylCaCO3Opt1.3 

In acrylics coatings, the model “AcrylCaCO3Opt1.3” was found to be the best-representing 

model for this constituent. It is composed with spectra only from coatings where this 

constituent is present. The number of latent variables considered for this model as optimum 

was 2. A SEP estimate, cumulative X, and Y-variance of 3.68, 24.7 %, and 82.3 %, is associated 

with it, as can be observed in Table A1.5 and Figure A1.5.  

The calibration model can be considered as possessing no bias, which not only can be confirmed 

by analyzing Figure 10-a but also by the calculated PBIAS, equal to 0.0 with an NSE and RSR of 

0.823 and 0.38, respectively, it is notable the presence of residual variance.  

The results achieved from the independent dataset (Figure 10-b) test for the model were not 

so satisfactory; however, it presents interesting data. The results gathered are approximately 

half overestimated, and the other half is underestimated. When the PBIAS is calculated 

(Equation 2), a sum of variances is made. Since the resulting value of 3.96 is relatively close to 

zero, because there is a compensation, the final score of the parameter is viewed as very good 

when, in reality by evaluating the data, the model does not seem to present accurate results. 

 Hence, the importance of the graphic analysis for this statistical indicator. It is possible to 

determine that the angles and the crossing position between those two regression lines 

(independent dataset and bias) are also important for bias analysis. The bigger the angle 

between them, the worst the model’s bias is. Moreover, depending on where the lines cross 

each other, will determine the type of bias the model presents. If the crossing happens in the 

lower contents' region, the model will present underestimated values, on the contrary, if they 

crossed in the higher content ranges than the model would perform overestimation.  
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Water’s content models 

PLS models constructed for the component’s content prediction in acrylic coatings are 

represented in Table 18. 

Table 18. Summary and statistical indicators calibration of water’s models for acrylics coatings 

    Pre-Processing     

Model’s name Smp Samples 
description k-Fold BC MSC Range LV R2 SEE SEP 

AcrylWtr1.1 
132 BP 8 

ü û û 4 0.923 2.66 2.71 

AcrylWtr1.2 ü ü û 4 0.909 2.89 2.98 

AcrylWtrOpt1.1 
177 BP + 15 RP 8 

ü û  û 4 0.866 3.91 3.94 

AcrylWtrOpt1.2 ü ü û 4 0.860 4.01 4.07 

Smp = number of samples, BC = Baseline Correction, LV = Latent Variables, MSC = Multiplicative Scatter 
Correction, SEP = Standard Error of Prediction, SEE = Standard Error of Estimate, BP = Barbot’s Production, 
RP = Remodeled Paint 

In this type of resin, conflicting performance evaluation (Table 19) outcomes were observed 

for the calibration model, and independent dataset test collected data. In the first, the best 

results were attained from the model with only daily productions data and minor versions 

conducting baseline correction exclusively (AcrylWtr1.1). However, in the validation test 

significantly better performance ratings were attained by the optimized version and minor 

versions with not just baseline correction but also MSC normalization pre-processing 

(AcrylWtrOpt1.2). 

  

Figure 10. Estimated values as a function of experimental values of CaCO2 content attained from 

“AcrylCaCO2Opt1.3” calibration model (a) and independent dataset (b). 

(b) (a) 
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Table 19. Performance rating computed from values of water's content for acrylics coatings 

 Calibration model ratings Independent dataset ratings 
Model’s name NSE PI PBIAS PI RSR PI NSE PI PBIAS PI RSR PI 

AcrylWtr1.1 0.923 VG 0.00 VG 0.28 VG 0.496 U -9.40 G 0.71 U 

AcrylWtr1.2 0.909 VG 0.00 VG 0.30 VG 0.543 U -9.75 G 0.68 S 

AcrylWtrOpt1.1 0.866 G 0.00 VG 0.37 VG 0.674 S -4.35 VG 0.57 G 

AcrylWtrOpt1.2 0.860 G 0.00 VG 0.37 VG 0.740 S -3.95 VG 0.51 G 

  PI = Performance Index, VG =Very good, G = Good, S = Satisfactory, U = Unsatisfactory 

Acryl water best Model – AcrylWtrOpt1.2 

The preferred estimation model for water content in acrylic coatings was the AcrylWtrOpt1.2. 

For the model in question, the latent variable number defined as optimum was 4, having 

cumulative X and Y-variances of 35.8 % and 86.0 %, correspondingly, generated SEP estimate of 

4.07 (Table A1.6 and Figure A1.6). 

The calibration model regression line presents significant residual variance, but still, the 

model’s statistical indicators are considered as good and very good, presenting values of 0.860 

and 0.37 for the NSE and RSR, respectively. The adjustment of the independent dataset 

regression line was considered satisfactory, even though significant residual variation can be 

observed. The values calculated for NSE and RSR parameters were 0.74 and 0.51, 

correspondingly. The computed PBIAS indicates no significant bias, and a similar deduction 

could be made by graph analyses (Figure 11-a). However, independent dataset regression line 

results, noticeably reveal the underestimation bias (Figure 11-b), and the PBIAS value of -3.95 

shows agreeance. 

Values presenting more inaccurate estimations present content values in ranges where there is 

more than one sample with the same experimental content presenting different estimated 

value attributed to it. This can indicate a possible misinterpretation of the spectrum by the 

model which would translate into an incorrect prediction. Reducing this error can be done by 

instead of introducing triplicates of samples' spectrum in the databases used in the construction 

of models, the use of a medium spectrum should be preferred. Also, since variation in between 

spectra can be quite significant, more reads should be performed, in order to achieve more 

accurate results. 

Titanium dioxide’s content PLS models 

Summary of models generated for the prediction of the pigment’s content in question is 

represented in Table 20. 
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Table 20. Summary and statistical indicators calibration of water’s models for acrylics coatings 

    Pre-Processing     

Model’s name Smp Samples 
description k-Fold BC MSC Range LV R2 SEE SEP 

AcrylTiO2Opt1.1 

174 BP + 15 RP 14 

ü û  û 7 0.989 0.75 0.76 

AcrylTiO2Opt1.2 ü ü û 7 0.986 0.83 0.85 

AcrylTiO2Opt1.3 ü ü ü 4 0.947 1.63 1.68 

AcrylTiO2Opt2.1 

132 
BP + 15 RP  

no varnishes 
12 

ü û  û 6 0.985 0.73 0.75 

AcrylTiO2Opt2.2 ü ü û 6 0.981 0.82 0.85 

AcrylTiO2Opt 2.3 ü ü ü 3 0.906 1.80 1.85 

Smp = number of samples, BC = Baseline Correction, LV = Latent Variables, MSC = Multiplicative Scatter 
Correction, SEP = Standard Error of Prediction, SEE = Standard Error of Estimate, BP = Barbot’s Production, 
RP = Remodeled Paint 

Performance scores for this kind of resin were significantly better. All models’ parameters were 

judged as very good, in the calibration model's evaluation. The versions with the varnish’s 

spectra (AcrylTiO2 Opt1.1-1.3) and the minor version with baseline correction and MSC 

normalization pre-processing of samples (AcrylTiO2Opt1.2, AcrylTiO2Opt2.2), was able to make 

more accurate predictions. In Table 21, parameters and ratings calculated for each model can 

be observed. 

Titanium dioxide best Model – AcrylTiO2Opt1.2 

The best predicting model for TiO2 content in acrylics coatings was AcrylTiO2 Opt1.2. The 

optimum number of latent variables was 7, and the attained SEP estimate was 0.85. Cumulative 

X and Y-variance was 54.1 % and 98.6 % (Table A1.7 and Figure A1.7). The calibration regression 

line was considered well-adjusted with no meaningful residual variance between values, 

  

Figure 11. Estimated values as a function of experimental values of water content attained from 

“AcrylWtrOpt1.2” calibration model (a) and independent dataset test (b). 

(b) (a) 



Application of PLS models by FTIR for process control of coatings 

Results and discussion  39 

presenting the values for NSE and RSR of 0.813 and 0.17, correspondingly. Calculated PBIAS of 

0, shows no model’s bias as the line is almost overlapped with the bias line. Moreover, the 

regression line shows a good adjustment with no significant residual variance between values 

(Figure 12-a). 

Table 21. Performance rating computed from values of titanium dioxide's content for acrylics coatings 

 Calibration model’s ratings Independent dataset ratings 

Model’s name NSE PI PBIAS PI RSR PI NSE PI PBIAS PI RSR PI 

AcrylTiO2Opt1.1 0.989 VG 0.00 VG 0.10 VG 0.937 VG -9.33 G 0.25 VG 

AcrylTiO2Opt1.2 0.986 VG 0.00 VG 0.12 VG 0.948 VG 0.74 VG 0.23 VG 

AcrylTiO2Opt1.3 0.947 VG 0.00 VG 0.23 VG 0.882 G -6.86 G 0.34 VG 

AcrylTiO2Opt2.1 0.985 VG 0.00 VG 0.12 VG 0.894 G 4.74 VG 0.33 VG 

AcrylTiO2Opt2.2 0.981 VG 0.00 VG 0.14 VG 0.915 VG 9.06 G 0.29 VG 

AcrylTiO2Opt 2.3 0.906 VG 0.00 VG 0.31 VG 0.895 V -5.04 G 0.32 VG 

  PI = Performance Index, VG =Very good, G = Good, S = Satisfactory, U = Unsatisfactory 

The independent dataset results presented similar statistical indicators to the calibration 

model. The regression line was determined as having very good adjustment, and residual 

variance between experimental and estimated values were not considered as being substantial. 

Computed values of o.948 and 0.23 for the parameters NSE and RSR, respectively, corroborates 

with the conclusions gathered from the plot analysis (Figure 12-b). Also, the model’s bias could 

be considered as insignificant once, since the two lines are very close to each other throughout 

the entire range, and the regression line seems to compensate the over with the 

underestimated values. With calculation of the PBIAS the previous assumption was able to be 

confirmed having the parameter a value of 0.74. The model attained can be presumed as a 

generator of good estimation in the hole range tested.  

  
Figure 12. Estimated values as a function of experimental values of TiO2 content attained from 

“AcrylTiO2Opt1.2” calibration model (a) and independent dataset test (b). 

(b) (a) 
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4.3 Application of the best models to analyze the composition of 

coatings 

Two sets of coatings (five and three containing styrene-acrylics and acrylics resin, respectively) 

were analyzed by FTIR-ATR and predictions models were applied. Since there was no 

information about the composition of the tested coatings, a deeper studied of the paint system 

were performed by comparison of the predicted contents with the contents gathered from the 

experimental analysis performed as described in Section 3.5. The results attained are 

represented in Table 22. 

Table 22. Results obtained from the experimental determinations and PLS models for coatings  

 Content (%, w/w) 

 Experimental results Prediction results 

Coatings Org. Comp. CaCO3 Water Ashes Polymer CaCO3 Water TiO2 

Acryl #1 22.52 ± 0.76 16.13 ± 0.40 43.28 ± 0.70 33.96 ± 0.28 15.35 17.81 38.72 18.10 

Acryl #2 16.34 ± 0.18 11.73 ± 1.13 47.54 ± 0.03 31.13 ± 0.65 16.48 15.95 47.91 15.74 

Acryl #3 20.83 ± 0.27 13.23 ± 0.73 47.68 ± 0.20 26.52 ± 0.44 15.74 11.77 46.62 15.83 

Sty #1 6.43 ± 0.07 38.03 ± 1.28 37.03 ± 0.35 39.91 ± 0.64 3.35 48.32 31.78 9.77 

Sty #2 9.26 ± 0.05 29.13 ± 1.54 36.44 ± 0.26 41.51 ± 0.82 6.91 26.54 23.68 9.88 

Sty #3 7.66 ± 0.02 25.27 ± 0.99 40.85 ± 0.06 40.43 ± 0.47 2.24 32.73 26.24 5.45 

Sty #4 10.22 ± 0.05 25.23 ± 1.21 34.90 ± 0.05 44.04 ± 0.42 7.50 18.10 27.16 4.47 

Sty #5 9.03 ± 0.01 5.55 ± 0.73 52.03 ± 0.18 40.26 ± 0.40 10.94 9.41 52.04 11.07 

Water content 

The constituent in question is the simplest to verify and acquire definitive results. Results 

obtained for the acrylic's paints are very satisfying, having the most considerable value of 

relative errors of only 10 %, w/w (Acryl #1). As for the styrene-acrylic's coatings, conflicting 

results were attained, only one result showed high similarity (Sty #5), while all others were 

significantly underestimated. 

Polymer content 

The majority organic part of a coating's composition consists of binders, organic solvents, and 

additives. Since the analyzed paints were all aqueous dispersions, organic solvents are used 

only as additives (e.g., as a coalescent agent). Therefore, the organic part of the type of 

coatings in the study can be considered as formed of just binders and additives. 

Since the typical content of additives present in coating varies up till 5 %, w/w, it can be 

expected the maximum organic compound content to be the sum of polymer's content and the 

maximum content of additives frequently used. In some coatings (Acryl #1, Acryl #3, Sty #3), 

there is a slightly more significant organic compound value than the maximum expected. This 
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can mean that either more additives were used in these coatings or that their polymer's content 

predictions were slightly overestimated. 

Calcium carbonate content 

The results attained for the prediction of the content of calcium carbonates presented a 

significant discrepancy between one another. However, lower relative errors were associated 

with the contents' values of the acrylic coatings. For this component, the best prediction model 

for styrene-acrylics coatings was judged as possessing overestimation bias, which can be 

confirmed in three of the analysis (Sty #1, Sty #3, Sty #5) performed in this type of paint. An 

observation can be made when comparing the paints Sty #3 and Sty #4. The results gathered 

from the experimental test showed very similar content of, 25.27 and 25.23, respectively. 

However, predicted results were overestimated for the first, 32.73, and underestimated for 

the later,18.10. By evaluating the unexpected results, was assumed that one of the coatings 

presented a component which interfered with the spectrum interpretation related to the band 

of the CaCO3 characteristic bonds. Since the model's bias was considered overestimated, the 

assumption would be that the paint with the unknown interferent was the Sty #4.   

TiO2 content 

By using the experimental test, only a mere comparison was able to be made. The ashes are 

formed of the inorganic components of the coatings which are mainly consisted of the inorganic 

parts of the extenders and inorganic pigments compounds, one of them being the TiO2.  

The information derived from the value of ashes content combined with the results from 

calcium carbonate determination and the TiO2 content prediction allows a better understanding 

of the presence of other types of extenders which might have been used in the coatings 

formulation.  

	$oℎ^o	(%,i/i) = 		ú!ù	(%,i/i) + ûUù`	(%,i/i) + ùjℎ^ü	^>j^1†^üo	!1†	mUq°^1jo	(%,i/i) 

where the calcium oxide (CaO) present in coatings is the product of thermal decomposition of 

the calcium carbonate of the coating’s formulations. With that, by using the attained values 

for ashes and CaCO3 content determined by the experimental test and the predicted content 

values for TiO2 given by the PLS models, an approximate value of the content of other extenders 

and inorganic pigments present in the coatings can be estimated, Table 23. 

The results point to a meaningful presence of other types of extenders and pigments in the 

analyzed composition of styrene-acrylic's coatings. It is also possible to observe a significant 

difference in the quantity of these other constituents between the two types of coatings 

studied. It is clear that a more substantial part of the styrene-acrylic coatings' composition 



Application of PLS models by FTIR for process control of coatings 

Results and discussion  42 

consists of extenders when compared to the part related to pigments, however, the opposite 

was noticed when analyzing the results gathered from acrylic coatings' constitution.  

Table 23. Estimated computed values for different extenders in the tested coatings 

 Content (%, w/w) 

Coatings Ashes CaO * TiO2 ** 
Other extenders 

and inorganic 
pigments 

Acryl #1 33.96 9.04 18.10 6.82 

Acryl #2 31.13  6.57 15.74 8.82 

Acryl #3 26.52  7.41 15.83 3.28 

Sty #1 39.91  21.31 9.77 8.83 

Sty #2 41.51  16.32 9.88 15.31 

Sty #3 40.43  14.16 5.45 20.82 

Sty #4 44.04  14.14 4.47 25.43 

Sty #5 40.26  3.11 11.07 26.08 

* Value of CaO calculated from decomposition of CaCO3, present in the ashes ** Value estimated by the PLS 
model 

4.4 Exemplification of PLS model’s applicability in process control 

The key finalities of the work accomplished were to assist in maintaining process control 

throughout the manufactures and to assist in the first stage of troubleshooting. This later is a 

systematic approach to locate and solve a one-time problem. Its first step consists of 

determining what changed in the production process, which may have caused the problem. 

By performing an FTIR-ATR analysis of a defective good followed by the use of PLS models' 

information regarding its composition is promptly provided. This strategy can, in a matter of 

minutes, suggest the source of the manufactured failure, since the error in a constituent 

content indicates, either a problem is related to the raw material or the occurrence of an error 

in a process step associated to that specific component. 

An example of that was encountered when performing the independent dataset test of the TiO2 

model in styrene-acrylic’s coatings previously described in section 4.2.1.  

The set of paint mixtures, used to accomplish the performance evaluation, were created using 

a dispersion of the TiO2 powder. The prediction values attained from the model were 

considerably underestimated, as can be observed in Figure 9-b, and suggest the occurrence of 

a systematic error.  With that, a few considerations for why the error occurred were made.  

The dispersion used was already created, and the content of TiO2 was assumed to be correct 

when calculations for the paints’ contents were made. Therefore, if the production of the raw 

material were defective, it would directly affect the later produced coatings. Another 

possibility would be the incorrect homogenization of the dispersion before been added to the 
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coatings. Once TiO2 tends to sediment, the formulated paints would possess a smaller content 

of this constituent in their composition, assuming the dispersion was taken from an upper level 

of the recipient where lowers contents of the component were present.  

Similar incidents are frequent in a larger scale production when failure of equipment or even 

human error occurs. By applying the developed tool to analyze the final product, the 

abnormalities were easily located. In the case, if the samples were derived from 

commercialized paint manufacture, the conclusion drawn would be related to the TiO2, 

simplifying the search for the origin of the failure. Since it concerns a systematic error and not 

a one-time error, further analyses should proceed, and different batches investigated in order 

to attain a history of the productions. 

Also, by performing the independent dataset test, was confirmed the ability of the models to 

detect one-time errors. After conducting the validation test in acrylic’s coatings of the CaCO3 

model and when analyzing the plot data (Figure 11-b), two outliers were detected.  

The information presented can be interpreted, as being an indicator of oversights when 

preparing these two samples, once the predicted value is almost double as the original supposed 

content. Since CaCO3 is also used in dispersions and its sedimentation occurs fast, periodic 

homogenization is necessary. Once the amounts of CaCO3 estimated are much higher, a possible 

explanation could be the raw material dispersion recipient was not full, and when used before, 

the mixture was not well homogenized, and a part of it was removed, which provoked a change 

of the concentration of CaCO3 in the remaining dispersion. 

These situations were excellent examples of how the work in development can be used in 

industrials facility to assist in not only the detection of one-time error but also systematic 

manufacture errors, initiate process control troubleshooting and after normalization of the 

production process, perform periodic analyses in order to verify the quality of the finished and 

therefore the solution of the problem. 
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5 Conclusion 

The work was able to demonstrate the applicability of FTIR-ATR spectroscopy in conjunction 

with multivariate analyses, more particularly the PLS method, to quantify the majority 

composition of acrylics’ and styrene-acrylics’ coatings, namely the polymer, calcium 

carbonate, titanium dioxide, and water’s content.  

In order to create the PLS models, two databases, one for each type of resin, were constructed, 

containing all Barbot’s produced coatings. Besides, with the intent of improving the 

predictability capacity of the models, reformulated coating’s spectra were introduced to those 

databases. A total of 59 and 128 samples of acrylic’s and styrene-acrylic’s coatings were 

analyzed, generating databases containing a total of 177 and 384 IR spectra, respectively. 

The eight best models selected presented overall very good prediction results in both the 

independent dataset test and in the final analysis of the composition of coatings (Section 4.4). 

Most of the selected models, 75 %, were optimized versions and performed only baseline 

correction as a pre-processing sample treatment, which indicates them as the best approach. 

Regarding the calcium carbonate’s models, the use of a database without the spectra of 

varnishes (no presence of CaCO3) was proved to generate models with better results. 

Further studies should consider the construction of models using databases created with solid 

samples’ spectra. This strategy would allow better prediction results for the solid constituents 

present in paints since the water bands would not appear in the spectrum, and better 

interpretation of characteristics bands of the solids components would be possible. Another 

recommendation would be creating models with the medium spectrum obtained from the 

triplicates. This tactic would minimize residual variance and therefore, errors related to the 

predictions’ results. Furthermore, taking into consideration the two previous suggestions, the 

development of PLS models for the quantification of other commonly used extenders, namely 

talc, barium sulfate, silicates, and kaolin, would be of interest, since in most coatings they also 

represent a significant amount of their total weight. 

The main applications of the developed work could be to detect the origin of a manufacturing 

error, by correlating composition’s defects of flawed products with a particular step of the 

production process and also perform routine analysis to maintain process control throughout 

manufactures. Since composition’s analysis can be made in a matter of minutes and the results 

attained from the PLS models were proven reliable, the work developed can be a valuable tool 

to be implemented in an industrial unit. 
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6 Assessment of the work done  

6.1 Objectives Achieved  

Complete sets of databases were created for the two main types of coatings – acrylics and 

styrene-acrylics – produced at Barbot. 

PLS models were developed, with the use of the databases, to predict the contents of the four 

main components present in coatings: polymer, calcium carbonate (CaCO3), titanium dioxide 

(TiO2) and water. For each resin type, after the validation test, the models with best predicting 

abilities were selected, one for each component.  

6.2 Other Work Carried Out  

Performance of quality control on samples of all daily productions was conducted. It consisted 

of verifying if the most critical properties of the coatings, mainly viscosity, density, opacity, 

glow, and pH, were contained within the required range established internally.  

FTIR analyses of raw materials samples were carried out either to confirm their compositions 

or, with the use of a tool present in the Spectrum Software called compare. With the later, 

similarity analyses were conducted in order to find similar ones present at Barbot's raw material 

database. 

Spectrum analysis of paints related to customers complaints were also completed, using not 

only the Spectrum software tools but also the PLS models in development in the Quant software, 

to detect possible composition errors. 

Samples derived from residues which led to equipment failure were also analyzed in the FTIR-

ATR, so composition was discovered.  

6.3 Limitations and Future Work  

Paint media is an extremely complex mixture. Therefore, spectrum data has difficulties when 

it comes to identifying some components present on it, for example, additives, owing to the 

existence of overlapping and very low-intensity bands (since they are present in small 

quantities).  

As for limitations regarding the PLS models, the presence of overlapping and low-intensity band 

can interfere with the accuracy of the main components’ prediction. Another related 

complication is the presence of unexpected compounds in coatings which could lead to 

erroneous results, once their respective bands are not present in the database with which the 

model was created.  
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In order to use the developed prediction PLS models for the acquisition of information about 

coatings of unknown compositions, it necessary that the user possesses enough knowledge of 

the paint system and spectrum analyses to be able to draw right conclusions.  

As for future work, development of PLS models using spectra acquired for solid samples could 

be a way of obtaining more accurate predictions' results. This can be explained by the high 

intensity of bands related to water molecules' bonds, which usually causes overlapping of bands 

leading to possible misinterpretation of spectra information and latter incorrect predictions. It 

is also advisable to create databases using medium spectrum only, once it was observed during 

the development of models an increase of prediction error associated with the use of triplicates 

spectra. 

Further studies related to other frequently used extenders, for example, talc, and their main 

spectrum bands could provide enough information for the development of PLS models for 

predicting their content’s. Also, models should be built for prediction of components in vinylics’ 

coatings, once it is the third main type of coating produced at Barbot.  

6.4 Final Assessment  

The applicability of the PLS models as a process control tool can be expected to present 

outstanding outcomes, once it can generate fast and considerably accurate prediction results 

concerning the final product's composition. 

The performed work can also be used with other finalities, for example, the models can be 

used to determine the defective composition of paints related to customer complaints, 

simplifying the search for the error while producing quick definite results. 

 

 

 

 

 

 

 

 

 

 



Application of PLS models by FTIR for process control of coatings 

References  47 

7 References 

Abdi H (2003) Partial least squares (PLS) regression. In: Lews-Beck M, Bryman A, Futing T (eds) 

Encyclopedia of Social Sciences Research Methods. Thousand Oaks. Sage. pp 792–795.  

Alua, P. M. (2012) ‘Opacity optimization of waterborne paints’, Masters Thesis, Universidade 

de Lisboa. Lisboa. Portugal. 

Amir, R. M., Anjum, F. M., Khan, M. I., Pasha, I., Nadeem, M. (2013) ‘Application of Fourier 

Transform Infrared (FTIR) Spectroscopy for the identification of wheat varieties’, Journal of 

Food Science and Technology, 50(5), pp. 1018–1023. 

Ausili, A., Sanchez, M. and Gomez-Fernandez, J. C. (2015) ‘Attenuated total reflectance 

infrared spectroscopy: A powerful method for the simultaneous study of structure and spatial 

orientation of lipids and membrane proteins’, Biomedical Spectroscopy and Imaging, 4(2), pp. 

159–170.  

Beukelman, T. and Brunner, H. I. (2016) ‘Trial Design, Measurement, and Analysis of Clinical 

Investigations’, in Textbook of Pediatric Rheumatology. 7th Edition. Elsevier, pp. 54-77.e2. 

Bieleman, J. (2000) Additives for Coatings. Wiley. New York.  

Bobrova, A. M., Zhigun, .I G., Bragina, M. I., Fotiev, A. A. (1968) ‘Infrared absorption spectra 

of various titanium compounds’, Journal of Applied Spectroscopy, 8(1), pp. 59–63. 

Bohm, K., Smidt, E. and Tintner, J. (2017) ‘Application of Multivariate Data Analyses in Waste 

Management’, in Beata Akselsen (ed.) Multivariate Analysis in Management, Engineering and 

the Sciences. Scitus Academics LLC. Valley Cottage. 

Bunaciu, A. A., Aboul-Enein, H. Y. and Fleschin, S. (2010) ‘Application of Fourier Transform 

Infrared Spectrophotometry in Pharmaceutical Drugs Analysis’, Applied Spectroscopy Reviews, 

45(3), pp. 206–219. 

Camo Analytics (2019) Chemometrics. Available at: https://www.camo.com/chemometrics/ 

(Accessed: 10 June 2019). 

Chalmers, J. M. and Everall, N. J. (1999) ‘Polymer Analysis and Characterization by FTIR, 

FTIRMicroscopy, Raman Spectroscopy and Chemometrics’, International Journal of Polymer 

Analysis and Characterization, 5(3), pp. 223–245. 

Colombini, M. P., Modugno, F., Giannarelli, S., Fuoco, R., Matteini, M. (2000) ‘GC-MS 

characterization of paint varnishes’, Microchemical Journal, 67(1–3), pp. 385–396.  

Colombini, M. P., Andreotti A., Bonaduce I., Modugno F., Ribechini E. (2010) ‘Analytical 

strategies for characterizing organic paint media using gas chromatography/mass 

spectrometry’, Accounts of Chemical Research, 43(6), pp. 715-727. 

CSD Engineers, I. (2016) Paint and Varnishes Industry. UNIDO, Environmental Management 

Branch. Vienna. 

Faia, C. (2018) Determinação de componentes de tintas através de FTIR. Dissertação de 



Application of PLS models by FTIR for process control of coatings 

References  48 

Mestrado. Universidade do Porto. Porto. Portugal. 

Grimnes, S. and Martinsen, Ø. G. (2015) ‘Data and Models’, in Academic Press (ed.) 

Bioimpedance and Bioelectricity Basics. 3rd edition. Elsevier. San Diego. pp. 329–404.  

Gupta, H. V., Sorooshian, S. and Yapo, P. O. (1999) ‘Status of Automatic Calibration for 

Hydrologic Models: Comparison with Multilevel Expert Calibration’, Journal of Hydrologic 

Engineering, 4(2), pp. 135–143. 
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Annex 1 IV Spectra Interpretation  

Resins e respective monomers 

Table AA1.1. Characteristic peaks of main resin and their respective monomers in Infrared Spectroscopy (adapted from:Faia, 2018) 

Wavenumber (cm-1) 

 =C-H 

(3200-3000) 

C-H 

(3000-2800) 

C=O 

(1800-1700) 

CH2 

(1470-1450) 

CH3 

(1415-1360) 

C-O 

(1280-1200) 

C-O-C 

(1200-1000) 

=C-H 

(710-690) 

Resins 

Acrylic  2956 (w) 1727 (s) 1450 (m) 1385 (w) 1236 (m) 1143 (s)  

Styren-
Acrylic 3069 (w) 2958 (w) 1730 (s) 1453 (m) 1385 (w) 1270 (m) 1162 (s) 698 (vs) 

Vinyl-VeoVa  2959 (w) 1735 (s) 1434 (w) 1372 (m) 1235 (vs) 1022 (s)  

Monomers 

Butyl 
acrylate  2962 (w) 1723 (s) 1464 (w) 1408 (m) 1273 (m) 1186 (s)  

Styren 3083 (w)   1450 (w) 1413 (w) 1202 (w) 1083 (w) 695 (s) 

Vinyl 
acrylate 3095 (w)  1740 (s)  1371 (m) 1225 (s) 1133 (s) 710 (w) 

VeoVa 3040 (w) 2962 (w) 1735 (s) 1463 (w) 1384 (w) 1206 (w) 1015 (vs) 698 (w) 

 

 

 

w- weak intensity peak; m -medium intensity peak; s-strong intensity peak; vs - very strong intensity 
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Solvents and diluents  

Table AA1.2- Characteristic peaks of solvents in Infrared Spectroscopy (adapted from: Faia, 2018) 

Wavenumber (cm-1) 

 O-H 

(3400-3000) 

C-H 

(3000-2800) 

C=O 

(1800-1700) 

CH2 

(1470-1450) 

CH3 

(1380-1360) 

C-O 

(1270-1200) 

C-O 

(1200-1000) 

Esters  2961 (m) 1739 (vs) 1463 (w) 1366 (m) 1228 (vs) 1065 (m) 1031 (m) 

Ketones  2980 (w) 1713 (s) 1458 (w) 1364 (m) 1240 (w) 1171 (m) 1086 (w) 

Ethers  2974 (m)    1263 (w) 1200 (m) 1102 (s) 

Alcohols 3325 (w) 2970 (m)/ 2884 (s)  1467 (w) 1378 (m) 1230 (w) 1160 (m) 1128 (s) 

 

Table AA1.3- Characteristic peaks  of diluents in Infrared Spectroscopy (adapted from: Faia, 2018) 

Wavenumber (cm-1) 

 C-H insat 

(3100-3000) 

C-H sat 

(3000-2800) 

C=C 

(1610-1460) 

CH3 

(1380-1360) 

H- aromatics 3027 (w) 2920 (w) 1604 (w) 1495 (m) 1460 (w) 1380 (w) 

H- aliphatics  2957 (m) 2923 (m) 2856 (s) 1461 (m) 1378 (w) 

 

 

 

w- weak intensity peak; m -medium intensity peak; s-strong intensity peak; vs - very strong intensity 
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Extenders 

 Annex AA1.4- Characteristic peaks of solvents in Infrared Spectroscopy (adapted from: Faia, 2018) 

Wavenumber (cm-1) 

 3240-3220 1640-1620 1422-1390 1200-1100 1100-1000 1000-900 900-800 800-700 700-600 600-400 

Calcium 
Carbonate 

  1412 (s) 

C-O 

   875 (m) 

O-C-O 

712 (w) 

O-C-O 

  

Talc      981 (s) 

Si-O 

  666 (m) 

Si-O/Si-MgO 

411 (s) 

SiO/MgO 

Kaolin     1074 (s) 

Si-O-Si 

811 (w) 

Si-O-Si 

   450 (vs) 

Si-O-Si 

Silica     1058 (s) 

Si-O-Si 

  778 (m) 

Si-O-Si 

  451 (vs) 

Si-O-SI 

Barium 
Sulfate 

   1189 (w) 

S-O 

1062 (s) 

S-O 

983 (m) 

S-O 

 

  637 (m) 

O-S-O 

605 (s) 

O-S-O 

 

Titanium 
Dioxide 

3236 (m) 

O-H 

1635 (w) 

H-O-H 

        482 (s) 

O-Ti-O 

w- weak intensity peak; m -medium intensity peak; s-strong intensity peak; vs - very strong intensity 
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 Example of coating’s spectrum 

 
Figure A1.1. Example of resulting spectra obtained from styrene-acrylic coating's analysis. 
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 Data for selection of optimum number 

of latent variables for the different PLS models 

 

Table A2.1. Cumulative variance 

values for StyCaCO31.4 model for the 

different number of latent variables 

LV  
Cum  

X-Var (%) 

Cum 

Y-Var (%) 

 1 29.7 86.8 

2 34.1 90.4 

3 42.2 93.9 

4 44.7 95.8 

5 47.1 96.6 

6 49.1 97.6 

7 50.4 98.0 

 8 52.5 98.3 

LV = Latente Variables, Cum = Cumulative, 
Var = Variance 

 Table A2.2. Cumulative variance 

values for StyWtrOpt1.1 model for the 

different number of latent variables 

LV  
Cum  

X-Var (%) 

Cum 

Y-Var (%) 

1 13.0 34.8 

2 30.2 64.9 

3 38.6 78.7 

4 42.2 85.8 

5 44.4 90.1 

6 46.0 92.2 

7 48.2 93.8 

 8 49.9 94.7 

LV = Latente Variables, Cum = Cumulative, 
Var = Variance 

 

 

 
Figure A2.1. SEP estimates as a function of Latent variables for 

StyCaCO31.4 model. 

 

 

 

Figure A2.2. SEP estimates as a function of Latent 

variables for StyWtrOpt1.1 model. 
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 Table A2.3. Cumulative variance values 

for StyTiO2Opt2.1 model for the different 

number of latent variables 

LV  
Cum  

X-Var (%) 

Cum 

Y-Var (%) 

1 23.7 58.7 

2 30.2 74.9 

3 37.9 87.0 

4 40.5 93.3 

5 42.0 95.6 

6 43.3 96.5 

7 46.5 96.9 

 8 48.7 97.4 

LV = Latente Variables, Cum = Cumulative, 
Var = Variance 

 Table A2.4. Cumulative variance values 

for AcrylPol1.1 model for the different 

number of latent variables 

LV  
Cum  

X-Var (%) 

Cum 

Y-Var (%) 

1 17.8 85.1 

2 26.6 92.4 

3 36.8 94.4 

4 41.4 96.3 

5 45.6 97.5 

6 48.0 98.1 

7 51.8 98.6 

 8 55.2 98.9 

LV = Latente Variables, Cum = Cumulative, 
Var = Variance 

 Table A2.5. Cumulative variance values 

for AcrylCaCO3Opt1.3 model for the 

different number of latent variables 

LV  
Cum  

X-Var (%) 

Cum 

Y-Var (%) 

1 13.2 65.5 

2 24.7 82.3 

3 27.2 85.9 

4 33.7 90.3 

5 41.6 91.1 

6 47.6 93.5 

7 50.9 95.2 

 8 53.5 96.4 

LV = Latente Variables, Cum = Cumulative, 
Var = Variance 

 

Figure A2.3. SEP estimates as a function of Latent 

variables for StyTiO2Opt2.1 model. 

 

 

 
Figure A2.4. SEP estimates as a function of Latent 

variables for AcrylPol1.1 model. 

 

 

 
Figure A2.5. SEP estimates as a function of Latent 

variables for AcrylCaCO3Opt1.3 model. 
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 Table A2.6. Cumulative variance values 

for AcrylWtrOpt1.2 model for the 

different number of latent variables 

LV  
Cum  

X-Var (%) 

Cum 

Y-Var (%) 

1 11.8 63.6 

2 20.3 75.0 

3 28.6 79.9 

4 35.8 86.0 

5 43.2 87.8 

6 50.5 90.1 

7 53.5 92.8 

 8 55.2 94.4 

LV = Latente Variables, Cum = Cumulative, 
Var = Variance 

 Table A2.7. Cumulative variance values 

for AcrylTiO2Opt1.2 model for the 

different number of latent variables 

LV  
Cum  

X-Var (%) 

Cum 

Y-Var (%) 

1 13.7 88.9 

2 21.1 93.1 

3 32.1 95.3 

4 37.5 96.5 

5 45.0 97.4 

6 51.1 98.0 

7 54.1 98.6 

 8 57.3 98.9 

LV = Latente Variables, Cum = Cumulative, 
Var = Variance 
 
 

 

 
Figure A2.6. SEP estimates as a function of Latent 

variables for AcrylWtrOpt1.2 model. 

 

 

 
Figure A2.7. SEP estimates as a function of Latent 

variables for AcrylTiO2Opt1.2 model. 

 

 


