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Abstract 

Bone sarcomas are one of the most common childhood malignancies. These rare and 

heterogeneous group of tumors jeopardize the longevity and health of the cancer survivors. 

However, the absence of initial symptoms delays the diagnosis and the beginning of the 

treatment, which has a negative impact, not only in terms of the health of the patient, but 

also on a social and economic aspect. As literature shows, there are still several unanswered 

questions related to this subject, which makes it crucial to understand the biomechanical 

effect of these tumors on the bone.   

In this work, a bibliographic review with all the necessary information for the 

accomplishment of the dissertation is presented. First, the study focused on the physiology 

and structure of bone tissue, followed by a detailed survey on bone sarcomas and its 

mechanical properties. A theoretical approach on the numerical methods that will be used and 

on the fundamentals of solid mechanics is also performed. 

A preliminary work with a healthy proximal femur bone was performed in order to acquire 

the necessary competences in computational tools, namely image processing and numerical 

simulation software using advanced discretization techniques (finite element methods and 

meshless methods). The results obtained allowed to understand the methodologies of the 

numerical analysis and to identify its limitations. 

In addition, the structural response of bone sarcomas was simulated on 2D and 3D femur 

bone model. Four different clinical cases and different sarcomas sizes were analyzed with 

meshless methods, namely Radial Point Interpolation Method (RPIM) and Natural Neighbour 

Radial Point Interpolation Method (NNRPIM), and with Finite Element Method (FEM). The 

results obtained in this work demonstrate that bone sarcomas have an impact on the femoral 

structure, affecting mostly the femoral neck. Finally, it is possible to conclude that the effect 

of bone sarcomas can be predicted with FEM and meshless methods, demonstrating a 

satisfactory degree of assertiveness. 
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Resumo 

Os sarcomas ósseos são uma das malignidades infantis mais comuns. Este grupo de tumores 

raros e heterógenos comprometem a longevidade e a saúde dos sobreviventes de cancro. No 

entanto, a ausência de sintomas iniciais atrasa o diagnóstico e o início do tratamento, o que 

afeta negativamente, não só na saúde do paciente, mas também em termos sociais e 

económicos. Tal como observado na literatura, ainda existem muitas questões por responder 

relativamente a este assunto, sendo, assim, importante entender o efeito biomecânico desses 

tumores no osso. 

Neste trabalho é apresentado uma revisão bibliográfica com toda a informação necessária 

para a realização desta dissertação. Em primeiro lugar, o estudo incidiu sobre a estrutura e 

fisiologia do tecido ósseo, seguido de uma descrição detalhada sobre os sarcomas ósseos e as 

suas propriedades mecânicas. Uma abordagem teórica sobre os métodos numéricos que irão ser 

utilizados e sobre os fundamentos de mecânica dos sólidos é também realizada. 

De seguida, um trabalho preliminar com um fémur proximal saudável foi realizado com o 

intuito de adquirir competências nas ferramentas computacionais, nomeadamente em 

softwares de processamento de imagem e simulação numérica utilizando técnicas de 

discretização avançadas (método dos elementos finitos e métodos sem malha). Os resultados 

obtidos permitiram compreender as metodologias de análise numérica e identificar as suas 

limitações. 

Posteriormente, foi avaliado o efeito de sarcomas ósseos na estrutura do fémur proximal 

em modelos 2D e 3D. Quatro casos clínicos e diferentes tamanhos de tumores foram simulados, 

utilizando os métodos sem malha, nomeadamente Radial Point Interpolation Method (RPIM) e 

Natural Neighbour Radial Point Interpolation Method (NNRPIM), e com Finite Element Method 

(FEM). Os resultados demostraram que os sarcomas ósseos têm um impacto negativo na 

estrutura do fémur, afetando principalmente o pescoço femoral. Por último é possível concluir 

que o efeito dos sarcomas ósseos pode ser previsto com recurso ao FEM e métodos sem malha, 

demonstrando um grau de assertividade satisfatório. 
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Chapter 1  

 

Introduction 

Over the last few decades, the socioeconomic development has led to the increase of life 

expectancy and of population growth worldwide. As a result, both aging and rapid population 

growth are associated with a higher cancer incidence and mortality. Nowadays, the negative 

impact of cancer on society is compromising the increase of life expectancy across the world. 

According to the World Health Organization (WHO), cancer is the first or the second leading 

cause of death in 91 of 172 countries. Also, recent estimations predict 18.1 million new cancer 

cases and 9.6 million deaths in 2018 [23]. 

The most common types of cancer are lung cancer (11,6% of the total cases and 18.4% of 

cancer deaths), followed by female breast cancer (11,6% of the total cases and 6,6% of all 

cancer deaths), prostate cancer (7,1% of the total cases and 3,8% of all cancer deaths) and 

colorectal cancer (6,1% of the total cases and 5,8% of all cancer deaths). Contrarily, bone 

sarcomas are among the rarest type of cancers, accounting for only 2% of all cancer related 

deaths and 1% of all newly diagnosed cancers [26].  

Despite being very uncommon, bone sarcomas have a major impact on the health of young 

adults and elderly, which have the higher incidence rate for this type of cancer. Adults, 

however, are more affected by metastatic bone cancer [27], which is cause by metastases from 

other types of cancers. In fact, about 30% of all cancers (particularly lung and breast cancer) 

metastasize to bone [28].  

As the cancer cells proliferate within the bone, the natural bone architecture is disrupted, 

which compromises its stability and weakens it. Ultimately, these pathological changes in bone 

anatomy increase the bone susceptibility for fracture [27]. Because bone cancer affects mainly 

the long bones of the lower limb [29], the effects of surgeries and chemotherapy have a 

negative impact on the physical performance of patients [30].  

Over the past 25 years, changes in treatments have led to a steadily increase of the survival 

rates from most bone tumors [29]. Despite these improvements, diagnosis is still delayed [31]. 

As a result, at the time of diagnosis, up to one fifth of the patients will present a pathological 

fracture [32], reducing the chances of survival up to 20% when compared with patients without 

fracture [33]. 
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Numerical methods have an important role in biomechanical simulations of biological 

structures. These methods allow to obtain results faster than in vitro studies without the 

invasive nature and less time-consuming [34]. 

In the current project, it is proposed to study the structure of proximal femoral tumors. A 

2D and 3D models of the proximal femur with and without tumors will be created based on X-

ray and CT images. In the end, both models will be studied using finite element method and 

meshless methods, which will allow to obtain and analyze the stress distribution on a global 

and local scale. Several locations and sizes of tumors will be considered, allowing to study their 

influence on the bone structure. 

1.1 - Motivation 

Bone sarcomas have a large impact on the patient health and social life. A compromised 

bone structure results from an aggressive tumor growth, which limits the physical performance 

of the patient. Even after the tumor removal, the late effects can still lead to a pathological 

fracture of the reconstructed bone. On the other hand, late diagnosis caused by lack of distinct 

initial symptoms has a negative influence on the patient prognosis due to the extension of bone 

damage. All these factors have an impact on the bone anatomy and can result in pathological 

changes that, ultimately, makes the bone more prone to fracture. Thus, one of the motivations 

of this work is to study and analyze the effect of bone sarcomas on the femoral structure. 

Biomechanical simulations allow to solve complex problems faster. In particular, these 

numerical methods can be used to simulate and study bone tumors and its consequences on 

bone anatomy. One of the most common method is the Finite Element Method (FEM), but there 

are other methods, such as the meshless methods. As it can be seen in Figure 1.1 (the data 

presented was previously obtained through a research on Scopus database: www.scopus.com), 

the number of published papers related to the numerical analysis of bone sarcomas is reduced. 

Also, the search has revealed that meshless methods have not yet been used in this scientific 

area. Therefore, another motivation of this work was to understand the level of performance 

of these methods regarding the structural analysis of bone tumors and to expand the state-of-

art of meshless methods. 

0 0 0

12

6

29

0

5

10

15

20

25

30

SARCOMAS SARCOMAS+BONE BONE METASTASES

Publications/year

Meshless Methods FEM

Figure 1.1 - Number of documents published through the years, in the subjects indicated. The data was 

obtained through a research on Scopus database (www.scopus.com) assuming as keywords the subjects 
indicated in the graph. 
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1.2 - Objective 

The main goal of this dissertation is to study the effect of size and location of bone sarcomas 

in the femoral bone structure. For that reason, a detailed survey was performed in bone 

structure and bone tissue (physiology), bone sarcomas (physiology and mathematical models to 

describe it) and discrete numerical techniques (mathematical formulation and state-of-the-

art). In this dissertation, the discrete numerical methods used are FEM, RPIM and NNRPIM.  

Another major goal is to validate the meshless methods as a way of simulating and studying 

the effect of bone sarcomas on the proximal femur. In order to achieve these main goals, other 

secondary goals have been established: 

 Simulate the overall femur/tumor system; 

 Simulate tumors with different sizes and in different locations of the femur; 

In the end, the results obtained in silico will be compared to the information available in 

the literature. 

1.3 - Document Structure 

The dissertation was organized in nine chapters. Chapter 1 begins with a brief description 

of the theme in study, followed by the objectives and structure of the present document.  In 

chapter 2, it is presented a physiological and anatomical description of the bone, particularly, 

the femur.  Also, the chapter includes an overview of bone growth and remodeling. At last, it 

is presented the material laws as well as biological, mechanical and mecanobiological models 

of bone remodeling. Chapter 3 focuses on a physiological description of bone sarcomas and the 

imaging technologies used for tumors detection and staging. In chapter 4, the numerical 

methods used in mechanical computation are described, namely the finite element method and 

meshless methods with emphasis on the natural neighbour radial point interpolation method 

(NNRPIM) and radial point interpolation method (RPIM). Chapter 5 describes the basic 

fundamentals of solid mechanics.  In chapter 6, a review of the state-of-art is conducted 

concerning the different numerical methods used to analyze the proximal femur, bone sarcomas 

and bone metastatic lesions. Chapter 7 describes the preliminary work developed previously to 

the analyses of femoral bone sarcomas. In Chapter 8, the numerical studies to evaluate the 

effect of bone tumors on the proximal femur are presented, considering different clinical cases. 

At last, in chapter 9, it is presented the overall conclusions of this dissertation. Additionally, 

some limitations and forecasts of future work are mentioned. 
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Chapter 2  

Bone 

The human skeleton comprises all the bones, ligaments and tendons of the human body. 

The bones, the hardest tissue in the human body [5], have a characteristic physiological 

structure capable to adapt to the mechanical demands of the daily life [35]. However, in the 

events of a pathological change induced by a disease, bone structure is compromised and more 

susceptible to fracture. 

In this chapter, anatomical and biological concepts of the bone are presented, followed by 

a detailed description of the femur anatomy. Furthermore, the material laws of the bone tissue 

are described, which correlate the apparent local density with the mechanical bone properties. 

Lastly, it is presented a description of numerical approaches able to predict bone remodeling, 

including biological, mechanical and mechanobiological models. 

2.1- Skeletal System 

The adult skeleton contains 206 bones, excluding the sesamoid bones [4]. Younger 

individuals contain a higher number of bones, as they fuse together to form an adult bone [9]. 

The skeleton can be subdivided into: axial skeleton and appendicular skeleton. The axial 

skeleton has 80 bones which comprise the vertebral column, skull, sternum and ribs. The 

appendicular skeleton, composed by 126 bones, includes all the bones in the limbs [4]. This 

system presents several functions which can be either mechanical or biochemical: 

1. Support: the rigid structure allow to support the body and contains attachment 

points for muscles; 

2. Protection: provide protection to the vital internal organs; 

3. Body movement: the bones act as levers for the muscles which generate forces 

that permits body movement and locomotion; 

4. Mineral homeostasis: the bones store mainly calcium and phosphate which are 

release to the blood in order to maintain mineral homeostasis; 

5. Blood cell production: provides the required environment to allow hematopoiesis 

to occur within the marrow; 
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6. Storage of triglycerides: the yellow bone marrow is responsible for the storage of 

triglycerides. 

2.2- Bone Morphology 

Individual bones can be divided into four categories, according to their shape: long, short, 

flat and irregular [36]. The different bone types are represented in the diagram of Figure 2.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Long bones are located in the limbs. These bones are curved with a length greater than the 

width. The curve occupies two different planes, which provides more strength to the bone [4]. 

At the extremities of the bone are located the epiphyses. These areas are mainly composed by 

cancellous bone surrounded by a thin layer of cortical bone. The long bones present in the 

arms, forearms, thighs and legs have one or more epiphyses on each end. However, the long 

bones of the hand and foot only have one epiphysis located on the distal or proximal end of the 

bone. The connection between the diaphysis and epiphysis occurs in the metaphysis through 

the epiphyseal plate, or growth plate. The diaphysis is the body of the bone mainly composed 

by compact bone. It is the largest area with a long and cylindrical shape. Within the diaphysis, 

there is a hollow center which contains the medullary cavity, filled with marrow. Bone marrow 

can be divided into yellow and red marrow. The red bone marrow is the site where 

hematopoiesis occurs, while the yellow marrow is composed mostly by adipose tissue. In the 

long bones, the yellow marrow completely replaces the red marrow with exception of the arm 

and thigh bones. In other bone types, the proportion of red and yellow marrow are variable. A 

thin layer of hyaline cartilage, named articular cartilage, covers the extremities of long bones 

where joints are formed. The cartilage, which has no periosteum, blood vessels or nerves, is 

important to reduce the friction between bones and to absorb shocks (Figure 2.2).  Some 

examples of long bones are femur, humerus and tibia. 

Figure 2.1 - Bone shape major groups. Adapted from [9]. 
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The outer surface of the bone is covered by a membrane of connective tissue named 

periosteum. The periosteum is composed by an outer layer of dense collagenous connective 

tissue with blood vessels and nerves, and an inner layer with bone cells, responsible for bone 

growth in thickness. The collagen fibers of the tendons and ligaments attach to the bones 

through a continuous connection with those of the periosteum [9]. The medullary cavity and 

the small cavities of the cancellous and cortical bone are covered by a layer of connective 

tissue, the endosteum, which contains different bone cells [37].  

Short bones can be found in areas of limited movement and are characterized for being as 

thick and broad as they are long. These bones are composed by a thin cortical layer surrounding 

a cancellous tissue layer with marrow. Contrarily to long bones, short bones have no diaphysis. 

Examples of short bones are carpals and tarsals. 

Flat bones serve mainly to protect or to provide a surface for muscle attachment. These 

bones have a relatively flattened and curved shape and have no diaphysis or epiphysis. Two 

thin cortical layers surround a variable cancellous tissue layer filled with red marrow. The flat 

bones are: cranial bones, sternum, ribs and scapulae. 

Finally, due to their peculiar form, the irregular bones are all the bones without the 

characteristics referred previously. They are composed by a thin cortical layer filled with 

cancellous bone. The vertebras and some of the bones in the face, like the jaw, are examples 

of irregular bones [9]. 

Figure 2.2 - Parts of a long bone: epiphysis, metaphysis and diaphysis; Representation of a partially 

dissected humerus. Adapted from [6]. 
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2.3- Bone Structure 

The bone tissue is composed by: an organic matrix (mostly collagen type I), calcium 

phosphate in the form of hydroxyapatite (HA) and water (Figure 2.3). The bone minerals are 

responsible for mechanical rigidity and load-bearing strength of the bone while the organic 

matrix provides flexibility and elasticity [36]. 

The different bone components are assembled in a complex arrangement of structures at 

different scales, ranging from the nanoscale up to the macroscale. These structures work 

together to perform a variety of mechanical, biological and chemical functions that contribute 

to the mechanical properties of the bone, such as its strength, stiffness, energy absorption and 

light weight. At a microscopic level, bone tissue is composed by collagen molecules. These 

molecules self-assemble into collagen fibrils of approximately 100 nm in diameter that are 

mineralized by HA. Between the collagen and minerals, pores are formed which are filled with 

non-collagenous proteins (NCPs) and water, creating the mineralized collagen fibril, the basic 

building block of bone. The fibrils are arranged unidirectionally into sheet-like structures, 

named lamellae with 3-7 µm thick, approximately. Lamellae bone is composed by a strong 

inorganic matrix (HA crystals) reinforced with a flexible and resistant organic matrix (collagen 

fibrils). Later, the lamellae assembles into different structures that constitute the cortical and 

trabecular bone. In the cortical bone, the lamellae organizes into concentric cylinders of 

approximately 200-300 µm in diameter and several millimeters long, forming the osteons. Each 

osteon aligns along the bone’s long axis and contains a canal in its center, called Harversian 

canal, where blood vessels run. In the trabecular bone, the lamellae forms rods or struts with 

a crescent shape of 50 µm thick and 1 mm long. 

At a macroscopic level, the osteons and trabeculae give rise to two different bone types: 

cortical bone and the trabecular bone, respectively. The cortical bone corresponds to 80% of 

the human skeleton mass and it is denser than trabecular bone. The cortical bone has 

microscopic blood vessels and no marrow. Contrarily, trabecular bone, which covers 20% of the 

skeleton mass, has many small blood vessels and marrow in between the trabeculae [20]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.3 - Hierarchical structure of the bone. Adapted from [20]. 
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2.4- Bone Cells 

Bone tissue is composed by three types of cells – osteoclasts, osteoblasts and osteocytes. 

Bone cells are originated from mesenchymal stem cells. A small population of mesenchymal 

stem cells can be found in the bone marrow. Under the correct environmental conditions, these 

stem cells can give rise to osteochondral progenitor cells, the stem cells capable to originate 

and maintain the osteoblasts. Osteochondral progenitor cells are located in the endosteum and 

periosteum of the bone, providing a viable new source for osteoblasts [9].  

The osteoblasts are responsible for the synthesis of new organic bone matrix on bone-

forming surfaces. According to their activity, osteoblasts acquire different shapes. The 

immature and inactive osteoblasts have a spindle shape, while active and mature osteoblasts, 

capable to synthesize new bone matrix, have a circular shape with large nuclei [36]. These cells 

are capable to synthesize and secrete type I collagen, proteoglycans and glycoproteins which 

are released into the bone surface. Also, osteoblasts can participate in the mineralization of 

the matrix through the release of matrix vesicles packed with high concentrations of calcium 

and phosphate. When the concentration of these minerals in the matrix reach a critical level, 

crystals of hydroxyapatite are formed, further stimulating the formation of new hydroxyapatite 

crystals [9]. 

The osteoblasts activity is regulated by various hormonal, mechanical and cytokine signals. 

Different subpopulations of osteoblasts express different gene sets. As a consequence, different 

osteoblasts have heterogeneous responses to the various stimulus. Several studies indicate that 

the osteoblasts from the appendicular and axial bone respond differently to the biochemical 

and mechanical signals. Also, the heterogeneity within the osteoblast lineage may explain the 

different trabecular microarchitecture at different skeletal sites [36].  

When an osteoblast becomes surrounded by bone matrix the cell is referred to as osteocyte. 

In fact, 15% of active osteoblasts differentiate into osteocytes [38]. With an estimated lifespan 

of 10-20 years, osteocytes account roughly 10 000 cells per mm3 in humans, making them the 

most abundant cell in the bones. Osteocytes present a shape typical of inactive cells, such as 

small Golgi structures, reduced endoplasmic reticulum and small nuclei. Though inactive when 

compared to osteoblasts, osteocytes are still capable to produce the components required to 

maintain the bone matrix. In the bone matrix, the osteocytes cell bodies occupied spaces 

without matrix called lacunae. Also, osteocytes are considered to be mechanosensor, playing a 

crucial role in the detection of mechanical signals and their transformation to biochemical 

stimulus. In the bone matrix, the osteocytes cell bodies occupied spaces without matrix called 

lacunae [35]. Inside each lacunae, there is only one osteocyte, on contrary to cartilage where 

more than one chondrocyte can be found per lacunae. Even though trapped in the matrix, the 

osteocytes still maintain contact with neighboring osteocytes through cell extensions that allow 

the diffusion of nutrients and gases among the cells. The canaliculi are the name of the spaces 

in the matrix occupied by these extensions and act as a mold for the formation of bone matrix 

[37]. 

Finally, osteoclasts are multinucleated cells responsible for bone reabsorption (Figure 2.4). 

As oppose to osteoblasts and osteocytes, osteoclasts originate from mononuclear precursors 

present in the red bone marrow, which also differentiate into monocytes (also named 

macrophages in tissues). These precursors, which are attached to the bone matrix, need direct 

contact with osteoblasts in order to mature into functional osteoclasts [9]. 
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Like the osteoblasts, the osteoclasts activity is also coordinated by cytokines, hormones 

such as calcitonin and parathyrin as well as mechanical signals [37]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5 – Bone Matrix 

The bone matrix contains organic and inorganic material with 5 to 10% water and less than 

3% lipids. The organic portion of the bone matrix comprises 20 to 40% of bone volume and is 

composed mainly by type I collagen fibers (approximately 85 to 90%) as well as noncollagenous 

proteins. Osteoblasts produce collagen fibers and noncollagenous proteins in the same amount.  

The flexibility and elasticity of the organic matrix is due to the prevalent collagen fibers. 

The type I collagen fibers have several crosslinks that increases the bone strength. Therefore, 

the bone resistance to biomechanical forces is dependent on the amount of collagen fibers. 

Also, their orientation and size influence the direction and magnitude of microcracks that arise 

in a stressed bone [8]. 

The noncollagenous proteins comprise several categories of proteins, including glycosylated 

proteins, proteoglycans and γ-carboxylated proteins. Around 25% of all noncollagenous proteins 

are not endogenously derived, which includes serum albumin and α2-HS-glycoprotein. The 

noncollagenous proteins derived from the serum are important to regulate the mineralization 

of the matrix, while α2-HS-glycoprotein is thought to regulate the proliferation of bone cells. 

Osteonectin is the most abundant noncollagenous protein in the matrix, representing 2% of 

total protein in the growing bone. This protein is believed to influence the growth of osteoblasts 

and the mineralization of the matrix. Alkaline phosphatase (AP) is the main glycosylated protein 

in the organic matrix. Bound to osteoblasts, AP performs an important yet un-defined role in 

the bone mineralization [36]. 

Approximately 50 to 70% of the bone volume corresponds to the inorganic matrix which is 

constituted by minerals. The more abundant mineral in the bone is hydroxyapatite 

[Ca10(PO4)6(OH)2]. Other minerals can be found in the bone matrix in smaller amounts such as 

carbonate, magnesium and acid phosphate. The bone’s hydroxyapatite crystals are much 

smaller than the geologic ones, measuring only 200 Å. Due to a lower solubility than the geologic 

crystals, these poorly crystalline and small crystals are able to support mineral metabolism. 

When deposited in the collagen fibers, the bone minerals provide mechanical rigidity, strength 

and hardness of the bone [36]. The average degree of mineralization differs from one skeletal 

region to another. However, an excessive mineralization makes the bone stiffer and more prone 

Figure 2.4 - Sequential phases of the normal bone remodeling cycle. Adapted from [8]. 
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to fracture. Also, larger crystals increases the brittleness of the bone, leading to a higher risk 

of fracture [8]. 

2.6– Bone Development 

Bone tissue is a metabolically active organ that continuously undergoes modeling and 

remodeling in order to maintain its frame and mineral homeostasis. The different processes 

that occur during bone development are reviewed in the following sections. 

2.6.1- Bone Formation 

Ossification, or osteogenesis, is the process of bone formation by osteoblasts that occurs 

during fetal development and bone healing. The bone tissue is formed by intramembranous 

ossification or endochondral ossification. Intramembranous ossification occurs from highly 

vascularized membranes of connective tissue. However, in endochondral ossification, which is 

the main process of bone formation, bone is formed from a preexisting cartilage template [8]. 

The woven bone is the first type of bone tissue formed by osteoblasts during 

intramembranous and endochondral ossification. This weak bone has collagen fibers randomly 

oriented in different directions. During bone remodeling, osteoclasts remove the old bone 

(woven bone) and add new bone to the matrix called lamellar bone. This mature bone is 

organized into concentric layers of approximately 3-7 µm thick. Contrarily to woven bone, the 

collagen fibers in lamellar bone are oriented in parallel to one another [37]. 

The intramembranous ossification begins at the eighth week of fetal development and will 

only be completed after, approximately, two years. The frontal, parietal, and parts of the 

occipital bones as well as the upper and lower jaw are formed by this ossification process. In 

the membrane of the connective tissue, the ossification begins in the centers of ossification. In 

these centers, embryonic mesenchymal cells differentiate into osteochondral progenitor cells 

that later will origin osteoblasts. Osteoblasts produce an organic and non-mineralized matrix 

called osteoid, which is later mineralized, ossifying the membrane. Therefore, new woven bone 

is created that will radially expand throughout the centers of ossification. As a result of this 

process, osteoblasts become entrapped in the matrix and become osteocytes. The new woven 

bone develops into small trabeculae that becomes gradually larger and longer due to additional 

osteoblasts present at the surfaces of the trabeculae. This process forms a network of 

trabeculae and spaces, creating the trabecular bone. The spaces between the trabeculae are 

penetrated by blood vessels and the cells present in this cavities differentiate to form red bone 

marrow. The periosteum is formed by the osteoblasts that surround the bone in development. 

These osteoblasts will then produce the compact bone around the trabecular bone. 

The endochondral ossification begins at the fourth week of fetal development. However, 

contrarily to intramembranous ossification, in endochondral bone formation, some cartilage 

starts to ossify at the end of the fourth week, while other cartilage may not begin this process 

until 18-20 years of age. This process happens in the majority of the skeletal system and is 

responsible for the formation of long and short bones [37].  

Endochondral ossification begins with the differentiation of embryonic mesenchymal cells 

into osteochondral progenitor cells that give rise to chondroblasts. The chondroblasts form a 

hyaline cartilage template surrounded by a perichondrium and with a shape similar to the bone 



 

11 

 

that will be formed. As the matrix develops, the chondroblasts become entrapped and create 

chondrocytes. Afterwards, the perichondrium is penetrated by blood vessels and osteochondral 

progenitor cells present in the perichondrium differentiate into osteoblasts. With the 

production of bone matrix by the osteoblasts, the perichondrium becomes periosteum and the 

surface of cartilage begins to calcify into compact bone, creating a bone collar. During this 

process, the chondrocytes hypertrophied, releasing matrix vesicles into the cartilage which 

leads to the formation of hydroxyapatite crystals. As a result, the cartilage becomes calcified 

and the chondrocytes in this area die, leaving empty lacunae in the calcified matrix. The 

osteoblasts migrate into the calcified matrix and create bone on the surface of the cartilage, 

forming trabeculae. This area of trabeculae bone is called the primary center of ossification. 

In long bones, the primary ossification center forms in the diaphysis and, as the bone formation 

proceeds, the bone collar thickens and secondary ossification centers are formed in the 

epiphyses. The process in the secondary centers of ossification is the same as those in the 

primary ossification center. However, primary ossification centers only appear during 

embryonic development, whereas the secondary centers of bone formation are only created in 

the epiphyses of the tibia, humerus and femur within 1 month before birth. The last secondary 

ossification center will form in the medial epiphysis of the clavicle at the 18-20 years of age. 

At the end of this process, the cartilage is fully replaced by bone, except in the epiphyseal 

plate and on articular surfaces. The epiphyseal plate exists while the bone is actively growing. 

Once it stops growing, this plate regresses into the epiphyseal line [9]. 

2.6.2- Bone Growth and Remodeling 

Throughout life, bone develops through longitudinal and radial growth, modeling and 

remodeling. Intramembranous and endochondral ossification lead to radial and longitudinal 

bone growth, which occurs until, approximately, 20 years of age, depending on the bone and 

individual. After bone formation, long bones are capable to grow in length and width. Until 

adolescence, growth in bone length occurs through the formation of new cartilage at the 

epiphyseal plate [8]. This cartilage is later calcified and ossified by the same process that occurs 

during endochondral ossification. With aging, the thickness of the epiphyseal plate decreases 

and becomes the epiphyseal line, in a process called epiphyseal plate closure. As a result, bone 

stops growing in length. Long bones can also grow in width through appositional growth by the 

addition of new bone due to osteoblasts present in periosteum. As the osteoblasts produce 

more matrix, the bone ridges increase in size and extend to each other, creating a tunnel 

surrounding a blood vessel. Then, the lamellae with a circumferential shape is remodeled and 

becomes an osteon.   

The structure and shape of the bones in an adult skeleton are genetically determined, but 

other factors such as hormones and nutrition can modify the expression of those genes, thus 

influencing bone growth [9]. 

As a highly active organ, bone can progressively adjust its shape and size through bone 

modeling and remodeling, as a response to biomechanical forces. In bone modeling, the process 

of bone removal by osteoclasts and bone formation by osteoblasts are independent. Thus, bone 

resorption and bone formation do not occur at the same site. With aging, skeletal modeling 

becomes less frequent than bone remodeling [8, 36].  

Approximately 10% of the human skeleton is renewed each year due to bone remodeling. 

Bone remodeling is a perennial and coordinated process prevalent in the adult skeleton. This 
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process is crucial to maintain the bone mass, to repair microscopic damage in specific regions 

(with the purpose to prevent accumulation of damage and, consequently, fracture), and to 

preserve mineral homeostasis. In a homeostatic equilibrium, old bone is removed and new 

tissue is formed at the same skeletal site due to a response to mechanical and biochemical 

stimuli. An increase of the mechanical stress leads to an increase in osteoblastic activity and 

decrease in the osteoclastic activity, resulting in bone formation. Contrarily, as the mechanical 

stress decreases, the osteoblastic activity also decreases while osteoclastic activity is 

increased, which leads to bone resorption. However, if there is an imbalance between bone 

resorption and bone formation, the structure of the bone is compromised and several bone 

diseases can arise, such as osteoporosis [39, 40]. 

The remodeling process depends on the temporary interaction between the osteoclasts and 

osteoblasts, which are organized into basic multi-cellular units (BMU’s).  The organization of 

the BMU’s is different in the cortical and trabecular bone and is estimated that 1-2×106 of these 

units exist in the human skeleton [40]. Each year, between 2% and 5% of cortical bone is 

renewed. However, trabecular bone has a larger surface and, therefore, is more frequently 

remodeled than cortical bone. 

Bone remodeling is a cyclic process composed by three sequential phases: reabsorption, 

reversion and formation (Figure 2.5). During the first phase, the mononuclear pre-osteoclasts 

migrate to the bone surface, where occurs the formation of multinucleated osteoclasts. 

Thereafter, mononuclear cells arise in the bone surface, preparing it for bone formation and 

to provide signals for the migration and differentiation of osteoblasts. Finally, osteoblasts are 

responsible for bone formation, which occurs in two stages: matrix synthesis (osteoid) and 

extracellular mineralization. The activity of these cells is regulated by a set of hormones, 

cytokines, as well as mechanical loading, and there is a systemic and local regulation of bone 

cell function [38]. 

2.7- Trabecular and Cortical Bone  

The human skeleton is composed by two different bone types: the cortical and trabecular 

bone. Overall, the cortical tissue accounts for 80% of the bone mass and the remaining 20% 

match the trabecular tissue. Depending on the bone and skeletal site, the ratio between 

Figure 2.5 - Sequential phases of the normal bone remodeling cycle. Adapted from [8]. 



 

13 

 

trabecular and cortical bone is different. The cortical bone is composed by osteons while the 

trabecular bone is composed by trabeculae [36]. 

Cortical bone is dense and compact and is typically found in the surface of bones (Figure 

2.6). The main functions of the cortical bone is to provide protection and mechanical strength, 

but it can contribute to mineral homeostasis in the cases of severe mineral deficit. Compared 

to trabecular bone, cortical bone has a slow turnover rate and, as a result, its porosity is usually 

less than 5%. An increase in cortical remodeling leads to an increase in porosity and decrease 

of the cortical bone mass. With aging, the porosity of the cortical bone increases [38].  

In a healthy human, it is estimated to exist 21×106 cortical osteons, named Haversian 

systems, which constitutes, approximately, 3,5 m2 of total remodeling area [36]. Each 

Haversian system contains a central canal (Haversian canal) where blood vessels, nerves and 

lymphatic vessels run. The osteons are aligned parallel to each other and across the bone 

longitudinally. Within the osteon, there are lacunaes where osteocytes are to be found. From 

each lacunae, a network of canaliculi spread throughout the osteon. These network connects 

the vessels and nerves in the medullary canal, Haversian canal and in the Volkman’s canal 

(perforating canals where the blood vessels and nerves enter the cortical bone in the 

periosteum), allowing for the distribution of nutrients and oxygen, as well as the disposal of 

waste throughout the bone. Between each osteon, there are remnants of old Haversian systems 

called interstitial bone, with a structure similar to the osteons but with a higher mineralization 

degree. These secondary Haversian systems are formed during bone remodeling and contain a 

boundary between the osteon and the interstitial bone named cement lines. The osteons that 

have not being remodeled are called primary osteons and do not have cement lines [20]. 

The cortical bone is composed by two different surfaces: an outer periosteal surface and 

an inner endosteal surface. Appositional growth and fracture repair occur in the periosteal 

surface. On the periosteal surface, bone formation prevails inducing an increase in diameter 

with aging. The inner surface has a higher remodeling activity than periosteal surface due to 

Figure 2.6 - Osteons in compact bone. Adapted from [9]. 
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greater biomechanical and biochemical signals. With aging, the marrow space in the endosteal 

surface is expanded due to an exceeding bone resorption [36]. 

Despite constituting only one fifth of the bone mass, trabecular bone accounts for 80% of 

the bone surface. Trabecular bone is composed by rods and studs interconnected to form the 

trabeculae. In a healthy human, there are approximately 14×106 trabeculae that constitutes 

7m2 of the total trabecular area [36]. Between each trabeculae are spaces, which are filled 

with bone marrow and blood vessels. This bone type is more elastic and porous with a higher 

turnover rate than cortical bone. For that reason, trabecular bone plays a crucial metabolic 

role in maintaining mineral homeostasis [38, 41]. 

2.8 – Femur Anatomy 

The longest and strongest bone in the adult human skeleton is the femur with an average 

length of 48 cm (Figure 2.7). Located in the thigh, the femur extends from the hip to the knee 

and as the ability to support as far as 30 times the weight of an adult [41]. It is a slightly curved 

bone with a variable degree of inclination among different people. In the female, the femur 

has a higher degree of inclination due to a greater breadth of the pelvis. Like other long bones, 

the femur can be divided into a body and two extremities [9]. 

The proximal femur, or upper extremity, is composed by a head, a neck, a greater and a 

lesser trochanter. The prominent and rounded head has a smooth surface covered with 

cartilage, except in the fovea, an ovoid depression located below and behind the head. The 

fovea acts as an attachment point for the ligament of the head of the femur (or ligamentum 

teres). This ligament provides support for the hip joint and transports an artery that supplies 

the femur’s head. The head of the femur is connected to the body through the neck, structurally 

weak area prone to fractures. This flattened bone forms an angle opening medialward with the 

body. The widest angle is formed during infancy and diminish during growth. In adulthood, the 

angle between the neck and the body is 125°. This angle can vary in inverse proportion to the 

development of the pelvis and the stature. Also, the angle is different between female and 

male, due to differences in the width of the pelvis.  

Lastly, there are two trochanters in the femur- the lesser and greater trochanters- that act 

as levers to the muscles, allowing the rotation of the thigh on its axis. The lesser trochanter is 

a conical eminence located in the inferior and posterior part of the neck. The size of the lesser 

trochanter is variable among different people. A single muscle is attached to the lesser 

trochanter. Located at the junction with the neck and the body of the femur, the greater 

trochanter is an irregular and large eminence. The trochanters provide an attachment point for 

muscles that secure the hip to the thigh. At the union between the greater trochanter and the 

upper part of the neck, a protuberance of variable size called tubercle of the femur can be 

found. Like the trochanters, the tubercle of the femur is an attachment site for muscles. On 

the anterior side of the femur, there is the intertrochanteric line between the trochanters. On 

the posterior side of the femur, the intertrochanteric crest connects the trochanters.  

The body, or shaft, has a cylindrical shape with a slight curvature. At the proximal end of 

the shaft, a roughened crest named linea aspera is the site of attachment for multiple muscles 

of the hip and thigh [4].  

The distal femur, or lower extremity, contains medial and lateral condyles which articulate 

with the tibia to form the knee joint. The medial and lateral epicondyles are located proximally 

to the condyles and form an attachment point for muscles and ligaments. Proximal to the 
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medial epicondyle, an adductor tubercle can be found and is, also, a site of attachment for 

muscles. The articulation between the femur and patella in the knee is established by a wide 

groove formed between the condyles named patellar surface [9].  

The inner and outer structure of the femur are defined by the mechanical conditions that 

exist in every point in the bone. Overall, the femur is composed by an outer shell of cortical 

bone surrounding cancellous bone. The ratio of cortical to trabecular bone varies throughout 

the femur; in the head, the ratio is 50:50 and 95:5 in the shaft [36]. Also, the femur contains a 

medullary cavity with red and yellow marrow, an endosteum and a periosteum as well as 

articular cartilage in the hip and knee joint [41]. 

The femur performs several daily movements, which requires the action of multiple muscles 

(Figure 2.8). The 22 muscles that act on the femur provide, not only stability, but also the 

necessary force to perform these movements. [42]. These muscles can be subdivided in 

different ways. Based on their function, the muscles can be divided into: flexors, extensors, 

abductors, adductors, external and internal rotators.  

Each subdivision contains different muscles [4, 9]: 

 Flexors: iliopsoas, rectus femoris, tensor fasciae latae and pectineus; 

 Extensors: gluteus maximus, semimembranosus, semitendinosus and biceps femoris; 

 Abductores: gluteus medius (the main abductor of the hip articulation) and gluteus 

minimus; 

 External Rotators: piriformis, quadratus femoris and obturatorius internus externus; 

 Internal rotators: gluteus minimus, with the help of tensor fasciae latae, 

semitendinosus, semimembranosus and gluteus medius. 

 
 
 

Figure 2.7 - Lateral and posterior view of the femur. Adapted from [4]. 
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2.9 – Bone Quality 

As the main support system in the human body, bones are constantly submitted to a 

mechanical stress under different loading conditions. The maximal amount of load endured by 

the bone without causing structural failure defines its strength. Bone strength depends on bone 

mass, geometry and quality in order to dissipate the stress generated within the bone and to 

prevent the formation of micro-cracks [43].  

The term bone quality is related to several aspects of the bone structure and architecture, 

which comprises microarchitecture, the degree of mineralization, bone turnover, fatigue 

damage, composition of the matrix and geometry [44]. When the quality of the bone is 

compromised, bone strength decreases and the bone becomes more fragile with a higher risk 

of fracture. The assessment of bone quality in vitro is most commonly associated with the 

determination of the bone turnover [45]. Higher turnover rates eliminate microdamages which, 

in return, lead to an improvement of the bone quality [44]. 

In the femoral bone, the assessment of bone quality is important to evaluate the risk of 

fracture but also to determine therapeutic options in implantology. Dorr et al. developed an X-

ray classification system based on the femoral shape and cortical thickness [46]. Three different 

structural patterns were identified, based on X-ray images, and labelled as A, B and C. A bone 

classified as type A has dense and thick cortices with a narrow and funnel shape of the proximal 

femur canal. This bone type is more commonly found in men and in younger people. A type B 

bone prevails in men and presents a moderate cortices with higher porosity and irregular 

endosteal surfaces. Lastly, a type C bone contains a wide and cylindrical shaped canal in the 

Figure 2.8 - Muscles in the thigh: medial and lateral view [7]. 
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proximal femur with dramatically thin walls. This bone type is more common in older women 

due to a more compromised structure [47]. 

2.10 – Bone Mechanical Properties 

The bones experience a set of forces, or loads, with external and internal origins. The 

external forces can occur due to an impact during a fall or during walking, whereas the internal 

forces are caused by contact forces between bones, muscle contraction and tension from 

ligaments. While the forces are acting, stress develops in the bone. The deformation caused by 

the action of the external forces leads to strains, which defines the relative volume/shape 

change of the domain.  

In strucutral engineering, it is commun to depict the load-deformation curve of material or 

structure [48]. The stress-strain curve replicates the material behavior of the bone (Figure 2.9) 

and the curve slope represents the elasticity modulus (Young’s Modulus). The Young’s modulus 

is a measured of the bone stiffness. The area under the curve denotes the amount of energy 

per unit of bone volume required to induce a fracture in the bone [8]. 

The bone’s capacity to sustain loads is dependent on its mechanical properties. In order to 

perform numerical and experimental analysis, it is important to determine these properties 

[49].  The bone is composed by a dense and compact tissue, the cortical tissue, and by the 

trabecular tissue, which has a smaller apparent density. The apparent density, ρapp, is 

determined by the wet mineralized mass of hydrated tissue (wsample), over the volume of 

sampled tissue (Vsample).  

 

𝜌𝑎𝑝𝑝 =
𝑤𝑠𝑎𝑚𝑝𝑙𝑒

𝑉𝑠𝑎𝑚𝑝𝑙𝑒

 (2.1) 

 

However, the apparent density is dependent on the bone porosity, p, as demonstrated by 

the following expression, 

Figure 2.9 - Representation of a stress-strain curve. 
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𝑝 =
𝑉ℎ𝑜𝑙𝑒𝑠
𝑉𝑠𝑎𝑚𝑝𝑙𝑒

 (2.2) 

The porosity differs between the trabecular and cortical bone. The trabecular bone is 

more porous with a porosity that varies between 30% up to 90%. On the other hand, cortical 

bone is more compact and, ergo, with a reduced porosity that varies between 5% up to 30%.  

Based on the compact bone density (ρ0 = 2,1 g / cm3), it is possible to calculate the 

apparent density (ρapp)  through the expression,  

 

𝜌𝑎𝑝𝑝 = 𝜌0 ∙ (1 − 𝜌) (2.3) 

 

Many studies relate the bone mechanical properties with bone density [50-52]. One of 

these studies was performed by Carter e Hayes [53] that, while analyzing cortical and 

trabecular bone, discovered that the Young’s modulus was proportional to the cube of 

apparent density:  

 

where E is the elastic modulus in MPa, ρ is the apparent density in g/cm3 and ε is the 

deformation rate per second. Despite being capable of predicting bone mechanical 

properties, this model does not consider the influence of bone microstructure and 

mechanical behaviors in different directions [5].  

 

 Lotz material law 

The bone orthotropic behavior was first considered in the work of Lotz [54], where it 

was suggested different material laws for the behavior of the cortical and trabecular bone. 

Thus, using the apparent density (ρapp), it was possible to determine the elasticity modulus 

and the ultimate compressive stress for both the trabecular and cortical bone in the axial 

and transversal direction:  

 

𝐸𝑖 = 𝑎1 ∙ (𝜌𝑎𝑝𝑝)
𝑎2

 (2.5) 

𝜎𝑖
𝑐 = 𝑎3 ∙ (𝜌𝑎𝑝𝑝)

𝑎4
 (2.6) 

 

Where Ei is the elasticity modulus and 𝜎𝑖
𝑐 the ultimate compressive stress in direction i, 

expresses in MPa and the apparent density 𝜌𝑎𝑝𝑝 in g /cm3. The coefficients for the 

trabecular and cortical bone are stated in Table 2.1, for both the axial and transversal 

direction [5].  
 

Table 2.1 - Coefficients of Lotz law. 

Bone tissue Direction a1 a2 a3 a4 

Cortical Axial 2,056E+03 3,090E+00 7,240E+01 1,880E+00 

Transversal 2,314E+03 1,570E+00 3,700E+01 1,510E+00 

Trabecular Axial 1,904E+03 1,640E+00 4,080E+01 1,890E+00 

Transversal 1,157E+03 1,780E+00 2,140E+01 1,370E+00 

 

 

𝐸 = 3790휀0,06𝜌3 (2.4) 
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 Belinha material law 

A new orthotropic law was proposed by Belinha et. al. [55] based on the experimental data 

obtained by Zioupos [56]. They concluded that the law governing the mechanical behavior is 

the same for both the cortical and the trabecular bone. With the work of Belinha et. al. [55], 

it is possible to classify the bone according to the apparent density (𝜌𝑎𝑝𝑝), such that   𝜌𝑎𝑝𝑝 ≤

1,3 𝑔/𝑐𝑚3  corresponds to trabecular bone and  corresponds to cortical bone. The minimum and 

maximum values found for the apparent density were 0,1 g/cm3 and 2,1 g/cm3, respectively.  

Thus, based on the work of Zioupos [56] and Lotz [54], Belinha et. al. [55] proposed a new 

mathematical orthotropic law, unified for the trabecular and the cortical bone. Hence, the 

elasticity modulus in the axial direction (𝐸𝑎𝑥𝑖𝑎𝑙) is obtained by the following expression: 

 

𝐸𝑎𝑥𝑖𝑎𝑙 =∑𝑎𝑗 ∙

3

𝑗=0

(𝜌𝑎𝑝𝑝)
𝑗
 𝑖𝑓 𝜌𝑎𝑝𝑝 ≤ 1,3 𝑔 /𝑐𝑚3 

(2.7) 

𝐸𝑎𝑥𝑖𝑎𝑙 =∑𝑏𝑗 ∙

3

𝑗=0

(𝜌𝑎𝑝𝑝)
𝑗
 𝑖𝑓 𝜌𝑎𝑝𝑝 > 1,3 𝑔 /𝑐𝑚3 

(2.8) 

 

Where the coefficients aj and bj are represented on Table 2.2 Belinha et. al. also proposed 

mathematical curves for the elasticity modulus in the transversal direction (𝐸𝑡𝑟𝑎𝑛𝑠)  and 

ultimate compressive stress in the axial (𝜎𝑎𝑥𝑖𝑎𝑙
𝑐 ) and transversal direction (𝜎𝑡𝑟𝑎𝑛𝑠

𝑐 ). The values 

for  𝐸𝑡𝑟𝑎𝑛𝑠, 𝜎𝑎𝑥𝑖𝑎𝑙
𝑐   and 𝜎𝑡𝑟𝑎𝑛𝑠

𝑐  are calculated by the following expressions: 

 

𝐸𝑡𝑟𝑎𝑛𝑠 =∑𝑐𝑗 ∙

3

𝑗=0

(𝜌𝑎𝑝𝑝)
𝑗
 

(2.9) 

𝜎𝑎𝑥𝑖𝑎𝑙
𝑐 =∑𝑑𝑗 ∙

3

𝑗=0

(𝜌𝑎𝑝𝑝)
𝑗
  

(2.10) 

𝜎𝑡𝑟𝑎𝑛𝑠
𝑐 =∑𝑒𝑗 ∙

3

𝑗=0

(𝜌𝑎𝑝𝑝)
𝑗
 

(2.11) 

 

Where the coefficients cj, dj and ej are represented in Table 2.2. 

 
Table 2.2 - Coefficients of Belinha law. 

Coefficient 𝒋 = 𝟎 𝒋 = 𝟏 𝒋 = 𝟐 𝒋 = 𝟑 

aj 0,000E+00 7,216E+02 8,059E+02 0,000E+00 

bj -1,770E+00 3,861E+05 -2,798E+05 6,836E+04 

cj 0,000E+00 0,000E+00 2,004E+03 -1,442E+02 

dj 0,000E+00 0,000E+00 2,680E+01 2,035E+01 

ej 0,000E+00 0,000E+00 2,501E+01 1,247E+00 
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The graphical representations for the elasticity modulus in the axial and transversal direction 

as well as for the ultimate compressive stress in the axial and transversal direction are 

represented in Figure 2.10 and Figure 2.11, respectively [5]. 

2.11 – Bone Remodeling Process 

The remodeling bone phenomena leads to changes in the bone structure and, consequently, 

in the mechanical properties. In order to understand this complex process, several 

mathematical models of bone remodeling have been developed and proposed in the literature. 

These models are able to provide useful clinical information related to: therapeutic options for 

metabolic bone disorders, such as in osteoporosis; as well as predicting the distribution of 

tension and correlate it with bone remodeling in situations of implant placement. Next, a brief 

Figure 2.10 - Elasticity modulus in axial direction. Comparison between experimental data from Ziopous work, 

Lotz law for cortical and trabecular bone, and mathematical model proposed by Belinha. Adapted from [5]. 

Figure 2.11- (a) Elasticity modulus in transversal direction. (b) Ultimate compressive stress in axial direction. 

(c) Ultimate compressive stress in transversal direction. Adapted from [5]. 
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overview over mechanical, biological and mecanobiological models proposed by several 

authors.  

2.11.1 – Mechanical Models 

The mechanical models are able to predict bone remodeling based on mechanical stimulus 

and bone structure, but do not consider actual biological processes. The first mathematical 

formulation of “Wolff´s Law” was developed by Pauwels [5]. After this, several authors 

developed and proposed different models of bone remodeling. Cowin [57] developed a theory 

named adaptive elasticity, describing the process of bone remodeling as a result of the sum of 

the chemical reactions between the bone matrix and extracellular fluids. Later, Cowin [58] 

created a model able to predict density changes and reorientation of trabecular architecture, 

through the stress applied to the bone and certain bone parameters. However, in order to 

describe the remodeling behavior, the model requires an elevated number of parameters 

needed for bone remodeling, which poses a significant disadvantage. 

The concept of self-optimization was proposed by Carter and Fyhrie [59].  Then, they 

developed a model that is able to predict the apparent density of the bone and the trabecular 

orientation for a continuous description of the trabecular material. However, the model 

presented a disadvantage since the approach only considered a single load condition, which 

only occurs, for example, during the gait, in the posture phase of a single limb. Later, Carter 

[59, 60] expanded this approach and described a theory that considers the daily loading history. 

This condition is characterized in terms of stress magnitude, cyclic strain energy density and 

number of loading cycles. 

Beaupré [14, 61] modified and extended ideas developed by other authors in order to 

develop a remodeling theory dependent on time. Later, Petermann [62] suggested an improved 

version of the Carter’s model which reported that the adaptation bone tissue may be described 

at a continuous level by using global parameters of the material and measures of 

stress/deformation. Also, Doblaré [63] developed a continuous damage repair algorithm 

grounded in the model of Carter.  

2.11.2 – Biological Models 

The biological models are important in order to predict the results of multiple and 

simultaneous actions of paracrine and autocrine factors in the process of bone remodeling. In 

recent years, it is possible to observe a growing interest in this approach.  

The first mathematical model developed was created by Komarova [64] and demonstrates 

the effect of paracrine and autocrine signalization in the interaction between osteoclasts and 

osteoblasts, and, consequently, it describes the changes in the bone mass in a single site of 

bone remodeling. Also, the model is capable of predicting different modes of behavior: a bone 

remodeling in a healthy situation or in a pathological one, such as Paget’s disease. Based on 

this model, Komarova studied the regulation of bone remodeling through the administration of 

parathyroid hormone (PTH). The results obtained demonstrated that a continuous 

administration of PTH leads to bone loss as it activates the osteoclasts responsible for bone 

resorption [65].  
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Other studies have been developed to investigate the mechanism for different effects of 

PTH administration [64, 66]. Ayati et. al. developed a model based on Komarova [67], which 

studied the bone remodeling phenomena in an heathy and pathologic situation such as 

myeloma, which is an important tool to investigate new possible treatments [68]. 

2.11.3 – Mechanobiological Models 

The mechanobiological models are a useful tool to predict bone remodeling since it takes 

in consideration the mechanical stimulus as well as the biological factors that influence this 

process. These models are recent and have been developed in order to fill the existing gaps 

related to the bone remodeling process.  

The model created by Hambli describes the process of bone remodeling as a combination 

of the osteoclasts and osteoblasts activity with the bone mechanical behavior, considering the 

accumulation and mineralization of fatigue damages. This model was later applied in a model 

of proximal femur using finite element method (FEM) which demonstrated similar remodeling 

patterns observed in a human proximal femur [69]. 

Another model that simulates the bone remodeling process, was developed by Mercuri. The 

mathematical model describes the biological response to different mechanical stimulus, such 

as strain energy density (SED). The model was tested in a two-dimensional femur model 

developed by FEM. The results demonstrated that different mechanical stimulus can influence 

the bone homeostasis [70]. 
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Chapter 3  

Bone Sarcomas 

The term neoplasia or tumor is defined as an abnormal mass of tissue resulting from an 

excessive, uncontrolled and autonomous growth of a group of cells. Based on their growth 

patterns, tumors can be classified as benign, when their growth occurs in a confined local area, 

or malignant, which are capable of invading surrounding tissues, entering the bloodstream and, 

ultimately, spreading to other parts of the body [71]. 

 In this chapter, a socioeconomic analysis for bone sarcomas is presented, followed by a 

detailed description of the distinct types of sarcomas. Furthermore, the growth and staging of 

bone sarcomas are describe as well as the imaging methods necessary to define them. Finally, 

the mechanical properties of bone sarcomas are introduced. 

3.1 – Socioeconomic Analysis 

Cancer is a noncommunicable disease (NCD) with a global impact. According to the World 

Health Organization (WHO), in the 21st century, cancer is the leading cause of death worldwide 

responsible for death of people before age 70 years in 91 of 172 countries. In fact, cancer 

incidence and mortality rates are rapidly increasing on a global scale and, as a result, it poses 

a significant obstacle to the increase of life expectancy. Based on the GLOBOCAN 2018 

estimates, 18,1 million new cancer cases and 9,6 million cancer deaths are expected to occur 

in the year 2018 (Figure 3.1)[23]. 

Sarcomas are a rare heterogeneous group of tumors, accounting for less than 1% of all adult 

diagnosed cancers and nearly 21% of all pediatric malignant cancers [12]. Also, sarcomas are 

responsible for 2% of cancer deaths and the 5-year survival rate is 60% [26]. Sarcomas can be 

divided into soft-tissue sarcomas and bone sarcomas. Soft-tissue sarcomas are more frequent, 

representing nearly 87% of all diagnosed sarcomas, with the remaining 13% related to bone 

sarcomas. 
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Bone cancer can be classified as primary bone tumors (sarcomas), or secondary bone 

tumors. Bone sarcomas are rare primary malignant tumors that originate in the bone and are 

responsible for only 0,2% of all malignant tumors [29]. Although extremely rare, the incidence 

rate for these type of tumors is rising as life expectancy becomes higher in developed countries. 

However, improvements in chemotherapy treatment have led to a steadily increase of the 

survival rates over the past 25 years. The 5-year survival rate in Europe is 57% (Figure 3.2) [22]. 

Regardless of treatment improvements, the incidence of subsequent secondary malignancies 

within 2 to 3 years from the time of initial diagnosis ranges between 30 to 40%, with 90% being 

located in the lung [72]. 

Figure 3.2 - Incidence rate of bone sarcomas in Europe. Adapted from [22]. 

Figure 3.1 - Global map representing the National Ranking of Cancer as a cause of death at ages 

below 70 years in 2015. Adapted from [23]. 
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Secondary bone tumors are caused by metastases from other cancers, such as lung cancer, 

breast cancer and prostate cancer. In fact, the bones are the third more common place for 

metastatic cancer of which the femur is among the most affected bones [73], with an incidence 

rate of up to 70% in patients with advanced breast and prostate cancer and 15 to 30% in patients 

with carcinoma of stomach, lung, rectum, colon, thyroid, kidney or bladder. In the United 

States alone, an estimation of 350 000 deaths occur due to bone metastasis. Furthermore, the 

survival rates for metastatic bone cancer are very low: the 5-year survival rate for a patient 

with breast cancer is only 20%. The frequency of bone metastasis is owed to the high blood flow 

in the areas of the red marrow [74].  

Many factors can influence the risk of developing bone cancer, with age being one of the 

most important. These malignant tumors have a double peak of incidence in early adolescence 

and the elderly. Teenagers and young adults with ages between 15 -24 years are the most 

affected by this type of cancer, which is currently the third leading cause of death in this age 

group within developed countries, females have an earlier peak of incidence below 15 years 

whereas males have a peak after 15 years of age in all continents. This could be due to the 

growth spurt that occurs earlier in females during adolescence. As demonstrated by Figure 3.3, 

the incidence rate plateaus during the third and fourth decade, but begins to increase from the 

fifth decade onwards, reaching a peak at 70 years or later depending on life expectancy [11]. 

However, males are more affected by bone cancer than females, with a male/female ratio of 

13:10 [29]. Secondary bone cancer is more common among adults [27]. 

Bone sarcomas comprise a large and distinct group of tumors (Figure 3.4). The most common 

types are osteosarcoma, chondrosarcoma and Ewing’s sarcoma. Osteosarcoma has an incidence 

rate of 32% and affects all age groups and is the second leading cause of death in young children 

[21]. Chondrosarcoma occurs mainly during adulthood and the incidence gradually increases 

with age. Ewing’s sarcoma accounts for only 15% and affects mostly during the second decade 

of life. The other types of bone tumors comprise only 10% of bone sarcomas [11, 32].  

Due to its heterogeneity, bone tumors can affect any bone or cartilage. However, the areas 

more affected are the metaphyses of long bones, where the growth rate is maximum. 

Osteosarcoma is mostly found in the distal femur (40%), tibia (20%), humerus (10%) and pelvis 

(8%). Chondrosarcomas can be found mainly in the axial skeleton, affecting the pelvis and ribs 

(45%), ilium (20%), femur (15%) and humerus (10%). Lastly, Ewing’s sarcomas are more common 

in the diaphysis or metaphyseal-diaphyseal portion of long bones, pelvis and ribs [32]. 

Figure 3.3 - Primary malignant bone tumor incidence in the world. Adapted from [11]. 
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Globally, malignant bone tumors are not as significant as other neoplasms, such as breast 

cancer. However, because bone sarcomas affect mostly young children and, thus their potential 

longevity, the long-term effects of this disease can have a severe impact on their lives. 

Therefore, recent studies have been conducted to evaluate the late effects of cancer 

treatments among children [21].  

In the United States, approximately 1 of 640 individuals, between the ages of 20 and 39 

years, is a survivor of childhood cancer. Despite having a 5-year survival rate higher than 70%, 

new attempts have been made to raise this values which lead to therapeutic options that resort 

to more intensive and painful therapy as well as radical surgeries, thus increasing the changes 

of long-term adverse outcomes in the patients [75].  

About one third of childhood bone cancer survivors have stated late effects that restricted 

physical performance and participation in daily activities. The surgical procedures conducted 

result in damaged structures necessary to execute movement. In fact, limb-sparing surgery can 

result in frequent infection, delayed healing, nonhealing fractures and early immobility, all of 

which have a negative impact on the survivor’s quality of life. Likewise, patients who 

underwent amputation or limb-sparing procedures had significant deficits in education, 

employment and insurance when compared with sibling controls and approximately 11% 

reported difficulties to attend work or school due to poor health restriction [30]. Also, up to 

40% of survivors stated adverse general health and mental health [75]. Evidences indicate that 

females and patients who underwent limb-sparing surgery had impaired emotional and social 

functioning, symptoms of fatigue and a higher risk for poor quality of life [76]. 

Because bone sarcomas are extremely rare and lack initial symptoms, delayed diagnosis are 

very common, which affects the prognosis of the patient, making these type of malignancy 

quite deadly [31]. The time between initial symptoms and a correct diagnosis ranges between 

4 months and 2 years depending on the site and type of tumor. The average size of a bone 

sarcoma at the time of presentation is 10 cm as opposed to less than 2,5 cm for breast cancer 

tumors [32]. Also, up to one fifth presented a pathological fracture at the time of diagnosis and 

approximately 80% of the patients with osteosarcomas present micrometastatic lung disease 

[77], which reduces their survival rates to less than 25% [32]. 

Delayed diagnosis are related to poor prognosis and require more intensive and expensive 

treatments. According to estimates by the National Institutes of Health (NIH), the overall cost 

Figure 3.4 - Distribution of new cases by histology, in 2008. Adapted from [12]. 
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of cancer in 2005 was 210 billion dollars, with 74 billion dollars related to direct medical 

expenses, 17,5 billion dollars in indirect morbidity and 118 billion dollars due to indirect 

mortality. From that total amount, 9,7 million dollars are required for the lifetime treatment 

of childhood bone cancer survivors. In the cases of young people that need a prosthesis or 

implant, the treatment costs will be higher, because a constant substitution will be required 

during growth. For out-of-hospital costs, the expenditure is estimated to be 0,7 million dollars 

for men and 0,2 million dollars for female. Due to physical limitation and a compromised health, 

the workforce participation by the bone cancer survivors is reduced, costing close to 16,4 

million dollars. On the other hand, premature mortality will also have a negative impact on 

economy, accounting for 17,5 million dollars, approximately, with 13,8 million dollars 

corresponding to male and 3,6 million dollars for female [78]. 

In United States, the national cost for patients with bone metastasis is estimated to be 12,6 

billion dollars, which accounts for 17% of the 74 billion dollars in total direct medical cost 

estimated by NIH [79]. 

3.2 – Types of Sarcomas 

Sarcomas are a heterogeneous group of malignant neoplasms that originate primarily from 

mesenchymal cells. There are several distinct histological categories comprised within 

sarcomas and the tumors can form in any anatomic site [22]. Mainly, sarcomas can be divided 

into soft-tissue and bone sarcomas. Bone sarcomas are classified based on the cytologic features 

or the recognizable products of the proliferating cells. The most common types of bone 

sarcomas are chondrosarcoma (33%), osteosarcoma (32%) and Ewing’s sarcoma (15%). 

Osteosarcomas (OS) are the most common type of primary malignant bone tumor, 

accounting for 150 cases per year in the UK and a 5-year survival rate of 65%. The mesenchymal 

malignant cells in OS produce osteoid (immature bone), but can also contain cartilage and 

fibrous tissue matrix. The radiological features of osteosarcomas indicate lytic, sclerotic or 

mixed lesions with aggressive characteristics that include a wide zone of transition, breach of 

the cortical tissues and periosteal reaction (Figure 3.5) [32]. 

OS is composed by several morphological sub-types, which are classified based on 

anatomical location and grade. Central osteosarcomas, formed within medullary bone, 

constitute the majority of these tumors and are mainly classified as high-grade in nature. The 

Figure 3.5 - X-ray of OS lesion on the femur. Adapted from [21]. 
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most common subtype of central sarcomas are conventional sarcomas which account for 75% of 

cases. Accounting for only 4% of OS, telangiectatic osteosarcoma is characterized by a large 

blood-filled spaces with lysis and no mineralization of the matrix, which represents a poor 

prognosis. Surface osteosarcomas occur in the cortex and are classified as low-grade. Parosteal 

osteosarcomas are more commonly found in young adults and occur in the bone surface, 

representing only 4% of osteosarcomas. Characterized by a well-defined lobulated mass, this 

sub-type of OS is usually formed in the posterior aspect of the distal femur or on the proximal 

humerus. The prognosis is more favorable than conventional osteosarcomas, with 91% survival 

at 5 years. Periosteal sarcomas accounts for less than 2% of osteosarcomas. The tumors are 

usually rich in cartilage and are formed in the deep surface of the periosteum of the long bones 

diaphysis, particularly the femur and tibia. Finally, high-grade surface osteosarcomas are very 

similar to conventional osteosarcomas and account for less than 1% of osteosarcomas [32].  

OS has two age peaks: in the second decade of life, which coincides with the growth spurt, 

and over the fifth decade (likely due to other malignancies). OS affects more males than 

females (ratio 1,4:1), while females have an earlier peak of incidence due to an earlier onset 

of growth spurt. In fact, the higher incidence of OS in adolescence is observed during puberty, 

when the rate of bone growth is highest. Recent studies indicated that young patients with OS 

were taller than normal population of the same age group [21]. 

The most common sites for OS are the distal femur (40%) and the proximal tibia (20%), due 

to their large growth plates with high proliferative activity and bone turnover. For patients 

with OS in the tibia or femur, the prognosis is favorable and the 5-year survival rates are, 

approximately, 77,5% for the tibia, which is slightly better than the distal femur at 66%. 

However, Bieling et. al. noted that the tumors with an absolute tumor volume (ATV) greater 

than 150 cm3 where often found in the distal femur, contrarily to the smaller tumor group 

observed in the tibia [33]. A tumor with an ATV of less than 150 cm3 has a 92% 5-year metastasis-

free survival rate, as oppose to the 58% in tumors with an ATV greater than 150 cm3 [21].  

Chondrosarcomas is a malignant bone tumor that presents a cartilage matrix and account 

for approximately 180 new cases in the UK and present variable radiological features which 

may include calcified cartilaginous areas or fusiform cortical expansion and erosions. Based on 

morphology and cellularity, chondrosarcomas are sub-divided into conventional, de-

differentiated, mesenchymal and clear cell. Conventional chondrosarcoma are the most 

frequent type with a higher incidence in female adults, usually in fourth and fifth decades of 

life. This sub-type of tumor is usually found in the pelvis and in metaphyseal area of long bones, 

especially in the femur and proximal humerus. These slow-growing tumors rarely metastize to 

other areas. Its radiological features usually indicates an expansive lesion in the medulla, with 

thickening of the cortex, endosteal scalloping and chondroid mineralization. Occasionally, a 

soft-tissue mass may be observed. De-differentiated chondrosarcomas are an aggressive tumor 

that account for 10% of all chondrosarcomas. Within this low-grade variant of chondrosarcoma, 

a high-grade sarcoma can usually form without chondroid formation and frequently 

mestastasises to the lungs. Representing only 0,7% of all bone tumors and 3-10% of all 

chondrosarcomas, mesenchymal chondrosarcomas occur in the earlier stages of life, usually in 

the second or third decade of life, and are commonly found in maxilla, mandible and ribs. 

Finally, clear cell chondrosarcomas are a rare low-grade variant of chondrosarcomas that 

commonly affect the epiphysis of long bones, particularly in the femur. 

Ewing’s sarcoma presents varying degrees of neuroectodermal differentiation and occurs 

mainly in patients younger than 20 years (80%). This type of malignancy is more commonly 
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found in male, accounting for a ratio male/female of 1,4:1. Unlike other bone sarcomas, 

Ewing’s sarcoma has no osteoid or chondroid formation and usually presents undifferentiated 

small round cells with an indistinct pattern and a vascular network around the lesion. The 

majority of the lesions are mixed lytic-sclerotic (75%) with the remaining being purely lytic 

(25%). This type of malignancy affects the diaphysis or metaphyseal-diaphyseal area of long 

bones, pelvis and ribs [32]. 

3.3 – Staging, Grading and Development 

All sarcomas have a characteristic pattern of biological behavior due to their common 

mesenchymal origin. These patterns allow to categorize the tumors according to their stage 

and grade, which is important to predict the prognosis and guide the treatment [77].  

Staging systems categorize the tumors according to its extension in the body and are based 

in size of the tumor, existence of metastases and areas where it spread. For that reason, staging 

requires a local and systemic approach. Local staging provides information related to the tumor 

size and anatomical relationships (proximity to neurovascular bundles). Systemic staging is 

important to detect distant spread of the tumor. Grading systems classify cancer cells based 

on the cells activity and morphology when compared to normal healthy cells [32].  

The tumor, node and metastasis (TNM) system contains both staging and grading, which 

makes it the most used system to classify all types of cancers (Table 3.1). These system is based 

on tumor grade, size and the presence of metastases. 

However, the Enneking system is the most commonly used to classify bone tumors (Table 

3.2). Stage IA is the most uncommon stage which confers a 5-year survival rate of nearly 100%. 

Stage IIB is the most common of all osteosarcomas presentations and with a 5-year survival rate 

of 40%.  Stage III is defined by the presence of metastasis with a 5-survival rate of 68% in the 

patients with only lung metastasis [33]. 

 
Table 3.1 - The tumor, node and metastasis (TNM) system. 

Stage Tumor (T) Node (N) Metastasis (M) Grade (G) 

Stage IA 
T1 (tumor 8 cm or 

less) 
No M0 G1, 2 low grade 

Stage IB 
T2 (tumor more than 

8 cm) 
No M0 G1, 2 low grade 

Stage IIA T1 No M0 G3, 4 high grade 

Stage IIB T2 No M0 G3, 4 high grade 

Stage III 
T3 (discontinuous 
tumors in primary 

site) 
No M0 Any G 

Stage IVA Any T No M1a (lung) Any G 

Stage IVB 

Any T 
N1 (regional 
lymph nodes) 

Any M Any G 

Any T Any N M1b (other sites) Any G 

 

Bone sarcomas, as malignant tumors, are enclosed in a reactive zone called pseudocapsule. 

The thickness of the reactive zone is dependent on the hystogenic type and grade of the tumor. 

In general, bone sarcomas grow within the anatomical site in which they arise. As the tumor 

continues to grow, the walls of the compartment are breached and the tumor extends into the 
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adjacent soft tissues. At time of diagnosis, most bone sarcomas are bi-compartmental [77]. 

However, the majority rarely expands to the marrow cavity. In the case of osteosarcomas, the 

tumor usually arises intramedullary and grows towards the cortex. The growth of this type of 

tumor is radial and forms a ball-like mass. As the tumor continues to expand, it compresses the 

surrounding muscles and can, ultimately, encircle the bone. Once the formation of soft-tissue 

masses occurs, pulmonary metastasis are very likely to develop [21]. 

 
Table 3.2 - The Enneking system. 

Stage Grade Tumor Metastasis 

IA G1 low grade T1 (intracompartmental) M0 

IB G1 low grade T2 (extracompartmental) M0 

IIA G2 high grade T1 (intracompartmental) M0 

IIB G2 high grade T2 (extracompartmental) M0 

IIIA G1 or G2 T1(intracompartmental) M1 

IIIB G1 or G2 T2(extracompartmental) M1 

 

Contrarily to primarily malignant bone tumors, bone metastatic cancer arises in the bone 

marrow. The metastases can spread in a direct, arterial or venous way with the latter 

representing the most common form. The hematopoietically active bone marrow is highly 

vascularized and, due to the slow blood flow typical of the venous circulation, the entrance of 

cancer cells is facilitated. The tumor cells produce adhesion molecules that bind to the marrow 

stromal cells and bone matrix [80]. Furthermore, the cancer cells disrupt the normal bone 

remodeling process, usually causing major trabecular bone loss before cortical bone loss [28]. 

3.4 – Imaging Methods 

In order to determine the stage and grade of a bone sarcoma, physical examination and 

imaging studies are required (Figure 3.6). The key imaging method in the evaluation of bone 

tumors is plain radiography and each patient should have X-rays images in two planes ate 

presentation. Combined with physical examination, the final diagnosis has an accuracy of more 

than 80% of cases [77].  

In the cases where diagnosis is uncertain, computed tomography (CT) images allow to 

evaluate the extent of bone destruction, such as areas of microcalcification, periosteal bone 

formation, cortical destruction and soft-tissue involvement. Also, CT images are the diagnostic 

technique of choice to evaluate the lungs for metastases.  

Magnetic resonance imaging (MRI) is a method superior to CT and the best modality for local 

staging in the cases where the malignancy can be diagnosed on X-rays. This modality is also 

used to evaluate the intramedullary and extraosseous extension of the bone tumor. Contrast 

MRI is important to study the relationship of the tumor to adjacent blood vessels and nerves 

[77, 81]. Additional imaging studies are sometimes required for accurate staging of the tumor. 

Positron emission tomography (PET) imaging is a complementary modality used to determine 

the metabolic rates of tumors, monitor the therapy response of neoadjuvant therapies, 

differentiate viable sarcoma from post-treatment changes and to select biopsies sites [82]. 

Recently, fusion of PET images with CT scans or MRI has improved the accuracy of the diagnosis 

and the differentiation between benign and malignant primary bone tumors [2, 83]. 
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3.5 – Mechanical Properties of Bone Sarcomas 

Bone sarcomas and metastatic bone lesions disrupt the structural integrity of the bone. On 

account of a compromised structure, the pathologic changes affect the bone density and 

mechanical properties, making the bone weaker and more susceptible to fracture [84]. The 

fracture risk is dependent on the reduction in the load-bearing capacity of the bone, which is 

caused by the cancer and the loads applied to it. Studies suggest that the strength of the bone 

tissue adjacent to the lesions is diminished and the bone stress is increased during loading, 

resulting in an increased fragility of the bone [24]. 

However, it is important to mention that the articles found in literature were referred to 

the mechanical properties of metastatic bone cancer and not to primary bone tumors (bone 

sarcomas). 

3.5.1 – Mechanical Properties of Trabecular Bone with 

Metastatic Lesions 

A study conducted by Nazarian et. al. [24] on specimens with normal and metastatic 

trabecular bone demonstrated that the trabecular bone with the neoplasm is hypomineralized 

when compared with a normal noncancer bone. Furthermore, the average tissue density, ρtissue, 

and the bone volume fraction of the specimens with cancer was 11% and 33% lower than that 

of normal noncancer bone, respectively. Additionally, the mineral content of metastatic 

trabecular bone was 19% lower than the normal trabecular bone and, as a result, the tissue in 

the cancer specimens was 50% less hard and less rigid than normal noncancer specimens (Table 

3.3). However, Nazarian et. al. concluded that metastatic cancer has an evident effect at the 

material level but it has a smaller influence on the mechanical properties of the trabecular 

bone. 

They also observed that a single analytic function could predict the strength and stiffness 

of normal and metastatic trabecular bone by using bone mineral density (BMD) or bone volume 

fraction (BV/TV) as independent variables. Surprisingly, they verified that the bone mineral 

density was not able to predict the macroscopic behavior of trabecular bone as oppose to the 

Figure 3.6 - Comparison between imaging techniques from a young man with left knee pain for 1 month. 

(A) radiograph of distal femur shows aggressive tumor. (B) MRI of the distal femur. (C) PET/CT scan of left 
femur. Adapted from [2]. 
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minimum bone volume fraction governed the mechanical behavior of the normal and metastatic 

trabecular bone. 

 
Table 3.3 - Material and structural properties for cancer and noncancer specimens (mean ± standard 

deviation) [24]. 

Variable Unit Metastatic cancer Normal 

Tissue density (ρtissue) g cm-3 1,68 ± 0,22 1,82 ± 0,12 

Average bone volume fraction (BV/TVAVG) % 24,29 ± 12,26 36,46 ± 15,38 

Hardness (H) GPa 0,24 ± 0,03 0,52 ± 0,09 

Tissue elastic modulus (ENANO) GPa 0,22 ± 0,03 0,47 ± 0,07 

Modulus of elasticity (E) MPa 201,5 ± 59,68 356,2 ± 89,7 

Yield strength (σy) MPa 40,4 ± 10,1 100,5 ± 21,8 

 

Therefore, it is possible to determine the elasticity modulus and yield strength of 

metastatic trabecular bone by the following expressions: 

 

𝐸𝑐𝑎𝑛𝑐𝑒𝑟 = 1030 ∙ (𝐵𝑉/𝑇𝑉𝑀𝐼𝑁) + 19,7 (3.1) 

 

𝜎𝑦 = 37,4 ∙ (𝐵𝑉/𝑇𝑉𝑀𝐼𝑁) − 1,81 (3.2) 

 

Where BV/TVmin is the bone volume fraction in mm3/mm3, 𝐸𝑐𝑎𝑛𝑐𝑒𝑟 is the elasticity modulus 

of metastatic trabecular bone in MPa and 𝜎𝑦 is the yield strength of metastatic trabecular bone 

in MPa. The linear regression models are represented in Figure 3.7 [24]. 

 In another study, Kaneko et. al. [84] studied the effect of metastatic cancer on the 

material properties and quantitative tomography (QCT) data of trabecular bone. Three 

different types of bone metastases where considered: lytic, blastic and mixed, based on 

radiographic appearance. In lytic metastasis, bone resorption prevails around the tumor sites 

while bone formation barely occurs, which results in areas with profound osteopenia. Blastic 

lesions are characterized by an increase in bone formation and decrease of bone resorption 

with a sclerotic appearance. Mixed lesions are a combination of the lytic and blastic lesions. 

However, bone formation and resorption are unbalanced, changing the bone turnover. When 

the blastic component is prevalent, bone formation is increased, but in the cases where lytic 

activity is dominant, an increase in bone resorption leads to significant bone loss [74, 85]. Like 

Nazarian et. al., Kaneko et. al. also observed that metastatic cancer has no significant impact 

on the relationships between the mechanical properties (E, SY and Su) and ρash of distal femoral 

trabecular bone (Table 3.4).  

 
Table 3.4 - Material properties of trabecular bone with metastatic lesions. NA indicates not available. 

Adapted from [84]. 

Material Property Lmixed Llytic Lblastic Normal 

ESI (MPa) 518 ± 30,3 1030 ± 77,5 1240 ± 674 1110 ± 591 

EAP (MPa) 204 ± 31,4 620 ± 184 828 ± 551 710 ± 371 

EML (MPa) 132 ± 52,6 353 ± 256 581 ± 348 457 ± 276 

EMEAN (MPa) 284 ± 17,1 667 ± 121 915 ± 430 774 ± 360 

SY (MPa) 3,93 ± na 4,47 ± 0,907 7,64 ± 3,70 7,59 ± 3,29 

Su (MPa) 4,04 ± na 4,67 ± 1,07 7,41 ± 4,38 7,89 ± 3,49 

Ash density (mg/cm3) 138 ± 7,37 173 ± 24,4 202 ± 75,1 214 ± 63,3 

QCT data (mg/cm3) 88,7 ± 12,2 122 ± 25,4 158 ± 81,0 169 ± 79,0 
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They also determined that ρash can be used to predict the mechanical properties of bone 

with and without cancer. Therefore, it is possible to determine the elasticity modulus and yield 

strength of metastatic trabecular bone by the following expressions: 

 

𝐸𝑆𝐼 = 0,161 ∙ 𝜌𝑎𝑠ℎ
1,61 (3.3) 

 

𝐸𝐴𝑃 = 0,00578 ∙ 𝜌𝑎𝑠ℎ
2,15 (3.4) 

 

𝐸𝑀𝐿 = 0,00155 ∙ 𝜌𝑎𝑠ℎ
2,30 (3.5) 

 

𝐸𝑀𝑒𝑎𝑚 = 0,0308 ∙ 𝜌𝑎𝑠ℎ
1,85 (3.6) 

 

𝑆𝑦 = 0,000831 ∙ 𝜌𝑎𝑠ℎ
1,68 (3.7) 

 

𝑆𝑢 = 0,000592 ∙ 𝜌𝑎𝑠ℎ
1,75 (3.8) 

 

Where ESI, EAP and EML are the moduli in the superior-inferior (SI), anterior-posterior (AP) 

and medial-lateral (ML) direction in MPa, EMean is the average of ESI, EAP and EML in MPa, Sy is the 

yield strength in MPa and Su is the ultimate strength in MPa. Finally, the correlation between 

ρash and 𝜌𝑄𝐶𝑇 for metastatic cortical bone is calculated by the following expression: 

𝜌𝑎𝑠ℎ = 57,7 + 0,917 ∙ 𝜌𝑄𝐶𝑇 (3.9) 

 

Where 𝜌𝑎𝑠ℎ is the apparent density in mg/cm3 and 𝜌𝑄𝐶𝑇 is the quantitative tomography 

density in mg/cm3. 

Figure 3.7 - Linear regression models of (A) modulus of elasticity and (B) yield strength of noncancer and cancer 

specimens in function of BV/TVmin. Linear regression models of (A) modulus of elasticity and (B) yield strength of 
noncancer and cancer specimens in function of vBMD. Adapted from [24]. 
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3.5.2 – Mechanical Properties of Cortical Bone with Metastatic 

Lesions 

The bone structural capacity is highly determined by the cortical tissue. Kaneko et. al. [17] 

studied the mechanical properties of cortical bone from femoral diaphysis with and without 

metastatic lesions (Table 3.5). The results demonstrated linear relationships between 

quantitative tomography (QCT) density and the elasticity modulus, strength, and ash density 

(ρash) for metastatic cortical bone (Figure 3.8). The correlations between the mechanical 

properties of metastatic trabecular bone in tension and ρQCT are calculated by the following 

expressions: 

 

𝐸𝑡 = −4,4 + 0,0201 ∙ 𝜌𝑄𝐶𝑇 (3.10) 

 

𝑆𝑦𝑡 = −15,8 + 0,0815 ∙ 𝜌𝑄𝐶𝑇 (3.11) 

 

𝑆𝑢𝑡 = −18,4 + 0,0941 ∙ 𝜌𝑄𝐶𝑇 (3.12) 

 

𝜖𝑦𝑡 = 0,00718 − 9,10 × 10−7 ∙ 𝜌𝑄𝐶𝑇 (3.13) 

 

Where Et is the elastic modulus expressed in GPa, Syt is the yield strength expressed in GPa, Sut 

is the ultimate strength expressed in GPa and  is the yield strain expressed in mm/mm. 
 

Table 3.5 - Material property of cortical bone with metastatic lesions [17]. 

Material Property Metastatic Normal 

Et (GPa) 17,7 ± 4,3 22,7 ± 1,7 

Ec (GPa) 18,0 ± 4,3 23,0 ± 1,8 

Syt (MPa) 74,9 ± 15,7 83,9 ± 8,8 

Syc (MPa) 106,6 ± 34,6 153,0 ± 16,5 

Sut (MPa) 86,2 ± 18,7 95,6 ± 10,9 

Suc (MPa) 115,5 ± 34,1 161,8 ± 5,9 

ϵyt (mm/mm) 0,0062 ± 0,0002 0,0057 ± 0,0003 

ϵyc (mm/mm) 0,0079 ± 0,0007 0,0086 ± 0,0008 

ϵut (mm/mm) 0,0168 ± 0,0050 0,0129 ± 0,0047 

ϵuc (mm/mm) 0,0137 ± 0,0027 0,0118 ± 0,0019 

ϵ(u-y)t (mm/mm) 0,0106 ± 0,0051 0,073 ± 0,0043 

ϵ(u-y)c (mm/mm) 0,0058 ± 0,0029 0,0033 ± 0,0024 

Ash density (mg/cm3) 1011 ± 139 1145 ± 20 

QCT data (mg/cm3) 1074 ± 162 1169 ± 32 

 
The correlations between the mechanical properties of metastatic trabecular bone in 

tension and ρQCT are calculated by the following expressions: 

 

𝐸𝑐 = −4,30 + 0,0203 ∙ 𝜌𝑄𝐶𝑇 (3.14) 

 

𝑆𝑦𝑐 = −54,8 + 0,150 ∙ 𝜌𝑄𝐶𝑇 (3.15) 

 

𝑆𝑢𝑐 = −46,1 + 0,150 ∙ 𝜌𝑄𝐶𝑇 (3.16) 
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𝜖𝑦𝑐 = 0,00533 + 2,40 × 10−6 ∙ 𝜌𝑄𝐶𝑇 (3.17) 

 

𝜖(𝑢−𝑦)𝑐 = 0,0130 − 6,76 × 10−6 ∙ 𝜌𝑄𝐶𝑇 (3.18) 

 

Where Ec is the elastic modulus in compression expressed in GPa, Syc is the yield strength in 

compression expressed in GPa, Suc is the ultimate strength in compression expressed in GPa,  is 

the yield strain in compression expressed in mm/mm and  is the strain from yield to ultimate 

failure in compression expressed in mm/mm. 

Finally, the correlation between ρash and  for metastatic cortical bone is calculated by the 

following expression: 

𝜌𝑎𝑠ℎ = 147 + 0,805 ∙ 𝜌𝑄𝐶𝑇 (3.19) 

 

Where  is the apparent density in mg/cm3 and 𝜌𝑄𝐶𝑇 is the quantitative tomography density in 

mg/cm3. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.8 - Linear regression for elasticity modulus in function of 𝝆𝑸𝑪𝑻 . Adapted from [17].     
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Chapter 4  

 

Numerical Methods 

Over the last years, computers have constantly evolved, increasing the processing speed 

and the capability to store information. These improvements have increased the use of 

numerical methods to simulate biological structures, allowing to build more robust and reliable 

models for the biomechanical analysis. As such, numerical methods have become a solid 

alternative for biomedical research, which is still expensive and ethically questionable, and is 

now considered an important tool in the diagnosis and treatment of diseases [86].  

In this chapter, a brief explanation of FEM is introduced, presenting its advantages and 

disadvantages, followed by a detailed presentation of meshless methods, particularly on the 

RPIM and NNRPIM methods. 

4.1 – Finite Element Method (FEM) 

FEM is a numerical technique used in physics and engineering that provides the exact 

analytical solution to a complex mechanical problem. In order to find the right solution, the 

problem has to be defined in a geometrical shape (or domain) that, later, will be subdivided 

into multiple subdomains called finite elements. Each element has a certain number of vertices, 

called nodes, and both assemble into the finite element mesh (Figure 4.1). This process is 

denominated domain discretization and allows to split the complex problem into simpler and 

smaller regions. However, the accuracy of the results is dependent on the type, arrangement 

and total number of elements. Normally, the elements are shaped as triangles in 2D models, 

but, in 3D models, the elements assume a tetrahedral shape. On the other hand, the elements 

may also have different properties, which allows to simulate structures composed with 

different materials [5].   
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Figure 4.1 - Creation of a mesh and demonstration of its influence on the discretization error. Adapted 

from [34]. 

FEM can be combined with the theory of elasticity to obtain several variable fields, such as 

stress, strain and displacements. Shape functions are used to interpolate the field variables. 

Forces and constraints (boundary conditions) are applied to the nodes in order to simulate the 

loads that act on the body and to prevent nodal displacements, respectively. For each element, 

the forces and displacements at the nodes are related by the stiffness matrix, denoted 𝑲𝑒. 

Because each element is linked to other elements, the stiffness matrix of the whole structure 

(denoted 𝑲) is defined by the assembly of the individual matrixes. The global system of 

equations can be presented as: 

 

𝑲𝑼 = 𝑭 (4.1) 

 

Where 𝑭 represents all nodal forces, 𝑲 is the stiffness matrix of the whole structure and 𝑼 are 

the nodal displacements. Therefore, the entries for the matrix  are known and, by solving 

equation 4.1 for 𝑼, it is possible to obtain all nodal displacements [87].   

FEM was developed in 1956 for aerospace industry and was only applied in biomechanics in 

1972, for the mechanical analysis of skeletal parts [34]. The first studies conducted with FEM 

started with 2D models (Figure 4.2) [10], later evolving for 3D models with more complex 

structures [88]. Over the past years, FEM has been used in the biomedical engineering field to 

study percutaneous heart valves, human lumbar spine, among others. Relatively to 

biomechanics, FEM has been used to analyze stress and strain, to predict bone fractures and to 

study the bone remodeling process.  

Figure 4.2 - FE models of the 2D and 3D human femur. Adapted from [10]. 
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However, FEM is not without limitations. An interpolation based on a mesh is one of the 

main limitations of this method. The accuracy of the results is dependent on the quality of the 

mesh, therefore, high values of error occur for low quality meshes. Also, FEM is not capable of 

solving problems with discontinuities misaligned with element edges, because it is a mesh-

based method [89]. 

4.2 – Meshless Methods 

Meshless methods were created to overcome the limitations of FEM, mainly concerning the 

difficulties in the mesh generation [89].  

In meshless methods, the problem domain is discretized in arbitrarily distributed nodes 

without any pre-established relation between them. Influence-domains establish the nodal 

connectivity, so the field functions are approximated within an influence-domain, rather than 

an element. However, influence-domains must overlap each other in meshless methods, 

contrarily to FEM [5]. 

Meshless methods can be divided into: approximation methods and interpolation methods. 

Approximation methods, the first meshless methods to be developed, use approximation 

functions to obtain smoother solutions. The influence-domains were implemented through fixed 

radial searches and the background integration scheme was nodal independent.  

The Smoothed-Particle Hydrodynamics (SPH) was the first meshless approximation method 

to be created, initially developed for astronomy. This method was in the origin of the 

Reproducing Kernel Particle Method (RKPM) [90]. From the early 1990’s, other meshless 

methods were developed. The Diffuse Element Method (DEM) [89] was the first meshless 

methods to use Moving Least Square approximants (MSL), proposed by Lancaster and Salkaukas, 

in the construction of approximation functions. Based on DEM, the Element Free Galerkian 

Method (EFGM) was, later, developed [89]. 

However, approximation methods lack the delta Kronecker property, which represents a 

limitation in the imposition of essential and natural boundary conditions. For that reason, 

several interpolation methods have been developed, which includes the Point Interpolation 

Method (PIM) [89], the Radial Point Interpolation Method (RPIM) [89], the Natural Neighbour 

Finite Element Method (NNFEM) [89] and the Natural Element Method (NEM) [89]. The 

combination between NEM and RPIM originated the NNRPIM [5]. 

In this work, the meshless methods used are the RPIM and the NNRPIM. A brief introduction 

of both techniques is presented in the next subsections.  

4.2.1 – Meshless Generic Procedure 

The generic procedure of meshless methods consists of three basic steps: nodal 

connectivity, numerical integration scheme and shape functions. The first step consists on the 

study of the problem’s geometry and establish a solid domain with its boundaries and boundary 

conditions. However, it is important to mention that the nodal distribution does not form a 

mesh, because no previous information about the relation between each node is required to 

construct the approximation or interpolation functions of unknown variable field functions. The 

process of nodal discretization is presented in Figure 4.3. 
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Then, using influence-domains or Voronoï diagrams, nodal connectivity is established, 

followed by the construction of a background integration mesh. With the use of Gaussian 

integration meshes, the background mesh is adjusted to the problem domain, as in FEM. 

However, other methods that use nodal integration, require Voronoï diagrams to obtain the 

integration weight on each node.  

After the imposition of nodal connectivity, an equation system is established using 

approximation or interpolation functions, based on the combination of RBFs with polynomial 

basis functions. The interpolation functions have an important property, namely the delta 

Kronecker property, so the obtained function passes through all nodes inside the influence-

domain. With this property, the same simple FEM techniques can be used to impose boundary 

conditions.  

Next, an explanation of the generic procedure for both RPIM and NNRPIM will be presented. 

However, only 2D cases will be described for both methods, since it is simpler to represent 2D 

domais, the sections regarding the nodal connectivity, numerical integration and interpolation 

functions [5]. 

4.2.2 – Nodal Connectivity 

4.2.2.1 – RPIM 

In order to obtain the discrete equation system, RPIM uses the Galerkian weak form 

formulation. After the nodal discretization, nodal connectivity in RPIM is obtained by the 

overlap of the influence domain of each node.  

Influence-domains are found by searching enough nodes inside a certain area or volume, 

and can have a fixed or a variable size, as well as may take different shapes. RPIM, contrarily 

to other meshless methods, uses a fixed number of neighbor nodes. In Figure 4.4 are 

represented two types of fixed size domais, a rectangular and a circular, respectively. Based 

on these figures, it is possible to observe that different nodal connectivity is obtained for 

influence-domains with different shapes and sizes. In addition, depending on the initial nodal 

spatial distribution, influence-domains obtained can be unbalanced without containing an 

approximated equal number of nodes. These factors can affect the final solution of the problem 

and reduce the accuracy in the numerical analysis. 

Figure 4.3 - Nodal discretization of the domain of the problem: (a) solid domain with the natural 

and essential boundaries; (b) regular nodal discretization; (c) irregular nodal discretization. Adapted 
from [5]. 
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For that reason, in order to overcome these problems, RPIM depends on influence-domains 

with variable size, but with a constant number of nodes within the domain, as represented in 

Figure 4.4. Thus, a radial search is performed and the interest point 𝒙𝑖 is used as center in 

order to find the 𝑛 closest nodes. The process is illustrated in 4.4c, resulting in a constant nodal 

connectivity [5]. 

4.2.2.2 – NNRPIM 

In NNRPIM, the nodal connectivity is obtained by using the natural neighbor concept with 

the partition of the discretized domain into a set of Voronoï cells [91]. A node is associated 

with each one of these cells.  

Considering a problem domain 𝛺 ⊂  ℝ2, bounded by a physical boundary 𝛤 ∈  𝛺, discretized 

in several randomly distributed nodes 𝑵 = {𝑛0, 𝑛1, … 𝑛𝑁 }   ∈  ℝ
2 with the following coordinates 

𝑿 = {𝒙0, 𝒙1, … , 𝒙𝑁}  with 𝒙𝑖 ∈ ℝ2, the Voronoï cell is defined by 

 

𝑉𝑖 = {𝒙𝑖 ∈ Ω ⊂  ℝ𝑑: ‖𝒙𝐼 − 𝒙𝑖‖ < ‖𝒙𝑗 − 𝒙𝑗‖,   ∀ 𝑖 ≠ 𝑗} (4.2) 

 

Where 𝒙𝑖 is an interest point of the domain and ||.|| the Euclidian metric norm. Therefore, 

the Voronoï cell 𝑉𝑖  is the geometric place where all points in the interior 𝑉𝑖  are closer to the 

node 𝑛𝑖  than to any other node. The Voronoï diagram is defined by the assemble of the VoronoЇ 

cells. Thus, the Voronoï diagram of 𝑵 is the partition of the domain defined by 𝛺 into sub 

regions 𝑉𝑖 , closed and convex, as represented in Figure 4.5. 

Therefore, in NNRPIM, the influence cells are built based on the information from the 

Voronoï diagram, making them dependent on the nodal mesh arrangement. Influence cells can 

be divided in two types: first-degree-cells and second-degree cells. 

The first-degree influence-cells, represented in Figure 4.5(a), are established when a point 

of interest 𝒙𝐼 begins to search the direct neighboring nodes, following the Natural Neighbour 

Voronoï Construction. The second-degree influence-cells, shown in Figure 4.5(b), are 

established when a point of interest  searches neighboring nodes similarly to first degree 

influence-cells and, then, taking into account the Voronoï diagram, the natural neighbour of 

the first neighbour of 𝒙𝐼 are attached to the influence-cell. Second-degree influence-cells have 

Figure 4.4 - Examples of different types of influence-domains: (a) influence-domain with fixed size 

and rectangular shape; (b) influence-domain with fixed size and circular shape; (c) influence-domain 
with variable size and circular shape. Adapted from [5]. 
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a superior size than the first degree influence cells and, thus, it is expected to obtain more 

accurate approximations [5]. 

4.2.3 – Numerical Integration 

4.2.3.1 – RPIM 

For the numerical integration, RPIM uses the Gauss-Legendre quadrature scheme. Initially, 

the solid domain is divided in a regular grid as Figure 4.6a indicates. Then, each grid-cell is 

filled with integration points, respecting the Gauss-Legendre quadrature rule, as illustrated in 

Figure 4.6b. 

The Cartesian coordinates of the quadrature points are obtained using isoparametric 

interpolation functions, 𝑁𝑖, present in Equations (4.3) and (4.4). 

 

 

 

 

 

 

 

Figure 4.5 - a) Second degree influence cell of interest point xi; (b) Representation of the sub-cells 

forming the Voronoï cell; (c) Schematic representation of 4 x 4 integration points inside a sub-cell. 
Adapted from [5]. 

Figure 4.6 - (a) Gaussian integration mesh and (b) transformation of the initial quadrilateral into an 

isoparametric square shape and application of the 2 x 2 quadrature point rule. Adapted from [5]. 
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𝑁1(𝜉, 𝜂) =
1

4
(1 − 𝜉)(1 − 𝜂)  

 

𝑁2(𝜉, 𝜂) =
1

4
(1 − 𝜉)(1 + 𝜂)  

 

𝑁3(𝜉, 𝜂) =
1

4
(1 + 𝜉)(1 + 𝜂) (4.3) 

 

𝑁4(𝜉, 𝜂) =
1

4
(1 + 𝜉)(1 − 𝜂)  

 

 

𝑁1(𝜉, 𝜂) = 1 − 𝜉 − 𝜂  

 

𝑁2(𝜉, 𝜂) = 𝜂 (4.4) 

 

𝑁3(𝜉, 𝜂) = 𝜉  

 

 

The Cartesian coordinates are given by 

 

𝑥 =∑ 𝑁𝑖(𝜉, 𝜂)
𝑚

𝑖=1
∙ 𝑥𝑖 (4.5) 

 

𝑦 =∑ 𝑁𝑖(𝜉, 𝜂)
𝑚

𝑖=1
∙ 𝑦𝑖 (4.6) 

 

in which 𝑚 is the number of nodes inside the grid-cell and 𝑥𝑖  and 𝑦𝑖 are the Cartesian 

coordinates of the cells nodes.  

The integration weight of the quadrature point is obtained by multiplying the isoparametric 

weight of the quadrature point with the inverse of the Jacobian matrix determinant of the 

respective grid-cell, as described in the Equation (4.6) [5]. 

 

𝑱 =

(

 
 

𝜕𝑥

𝜕𝜉

𝜕𝑥

𝜕𝜂
𝜕𝑦

𝜕𝜉

𝜕𝑦

𝜕𝜂)

 
 

 

(4.7) 

 

4.2.3.2 – NNRPIM 

NNRPIM uses the Galerkian weak form, which requires a background integration mesh. In 

this method, the integration mesh is obtained using directly and exclusively the nodal 

distribution, namely the previously constructed Voronoï diagram. Using the Delaunay 

triangulation, the area of each Voronoï cell is subdivided in several sub-areas, as represented 

in Figure 4.7.  



 

43 

 

In each of the Voronoï cells are identified the corners of the polygon, 𝑃𝑖𝑗, and the middle 

points, 𝑀𝑖𝑗, between 𝑛𝐼 and each neighbour node 𝑛𝑖  are determined, as illustrated in Figure 

4.8. The Voronoï cells are divided into k quadrilateral sub-cells, 𝑆𝑖𝑗. The number of each 

quadrilateral sub-cell is equal to the number of natural neighbors of node 𝑛𝐼.  

The sub-cells created have a quadrilateral shape when the nodes 𝑵 are distributed in an 

irregular way. If the nodes are distributed in a regular way, the sub-cells will have a triangular 

shape, as represented in Figure 4.8. 

Thus, each area of the Voronoï cell of node 𝒙𝐼, 𝐴𝑉𝐼, is divided into 𝑘 sub-areas 𝐴𝑆𝐼𝑖. The 

area of the VoronoЇ cell is equal to the sum of the area of each sub-cell, as indicated by the 

following expression: 

𝐴𝑉𝐼 = ∑ 𝐴𝑆𝐼𝑖 ,
𝑘
𝑖=1    ∀𝐴𝑆𝐼𝑖 ≥ 0 (4.8) 

 

Then, following the Gauss–Legendre quadrature rule, it is possible to distribute integration 

points inside each subarea 𝐴𝑆𝐼𝑖 [5].  

4.2.4 – Interpolation Functions 

Both RPIM and NNRPIM use the same procedure for interpolation functions, using the radial 

point interpolator (RPI) technique, combining radial basis functions (RBF) and polynomial base 

Figure 4.8 - (a) VoronoЇ cell and respective intersection points, PIi; (b) Middle points, MIi, and the 

respective generated triangles; (c) Triangular. (d) VoronoЇ cell and respective intersection points, PIi; 
(e) Middle points, MIi, and the respective generated triangles; (f) Quadrilateral. Adapted from [5]. 

Figure 4.7 - (a) Initial VoronoЇ diagram; (b) Delaunay triangulation. Adapted from [5]. 

a) b) 
c) 

d) e) f) 
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functions. The interpolation functions considering both methods, RPIM and NNRPIM, possess the 

delta Kronecker property, satisfying the following condition, 

 

𝜑𝑖(𝒙𝑗) = 𝛿𝑖𝑗 (4.9) 

 

Where 𝛿𝑖𝑗  is the delta Kronecker, for which 𝛿𝑖𝑗 = 1 if 𝑖 = 𝑗 and 𝛿𝑖𝑗 = 0 if 𝑖 ≠ 𝑗. This property 

allows to use direct imposition techniques to numerically apply the essential boundary 

conditions in the stiffness matrix.  

Considering a function 𝑢(𝒙𝐼) defined in the domain 𝛺, which is discretized by a set of 𝑁 

nodes. It is assumed that only the nodes within the influence-cell of the point of interest 

considered have an effect on 𝑢(𝒙𝐼). The value of the function 𝑢(𝒙𝐼), defined in the domain 𝛺 ⊂

 ℝ2, at the point of interest 𝒙𝐼, is given by the following expression: 

 

𝑢(𝒙𝐼) =∑𝑅𝑖

𝑛

𝑖=1

(𝒙𝐼) ∙ 𝑎𝑖(𝒙𝐼) +∑𝑝𝑗(𝒙𝐼) ∙ 𝑏𝑗(𝒙𝐼) = {𝑹(𝒙𝐼)
𝑇 , 𝒑(𝑥𝐼)

𝑇} {
𝒂(𝒙𝐼)

𝒃(𝒙𝐼)
}

𝑚

𝑗=1

 
(4.10) 

 

 

Where 𝑹(𝒙𝐼)
𝑇 is the RBF, 𝑛 the number of nodes inside the influence-cell of 𝒙𝐼, 𝒑(𝑥𝐼)

𝑇 is the 

polynomial function and 𝒂(𝒙𝐼) and 𝒃(𝒙𝐼) are the constant coefficients associated with the 

respective functions mentioned.   

Normally, 𝑚 < 𝑛 to guarantee a stable function. The vectors in equation (4. 10) can be 

represented as: 

 

𝑹(𝒙𝐼) = {𝑅1(𝒙𝐼), 𝑅2(𝒙𝐼), … , 𝑅𝑛(𝒙𝐼)}
𝑇 

 

 

𝑷(𝒙𝐼) = {𝑝1(𝒙𝐼), 𝑝2(𝒙𝐼), … , 𝑝𝑚(𝒙𝐼)}
𝑇 (4.11) 

 

𝒂(𝒙𝐼) = {𝑎1(𝒙𝐼), 𝑎2(𝒙𝐼), … , 𝑎𝑛(𝒙𝐼)}
𝑇  

 

𝒃(𝒙𝐼) = {𝑏1(𝒙𝐼), 𝑏2(𝒙𝐼), … , 𝑏𝑚(𝒙𝐼)}
𝑇  

 

The distance between the relevant node 𝒙𝐼 and the neighbour node 𝒙𝑖  corresponds to the 

variable established in the RBF, given by 𝑟𝐼𝑖 = ‖𝒙𝑖 − 𝒙𝐼‖. In this work, the RBF used is the 

Multiquadric RBF, 𝑅𝑖(𝑥𝐼) = 𝑅(𝑟𝐼𝑖) = (𝑟𝐼𝑖
2 + 𝑐2)𝑝, in which shape parameter 𝑐 takes a value close 

to zero, 𝑐 ≅ 0, and p close to one, 𝑝 ≅ 1. The general formulation of MQ-RBF is: 

 

𝑅(𝑟𝐼𝑖) = (𝑟𝐼𝑖
2 + 𝑐2)𝑝 (4.12) 

 

The non-constant coefficients 𝒂 and 𝒃 need to be determined. The polynomial basis 

functions used have the following monomial term as: 

 

𝒑(𝒙)𝑇 = [1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦, 𝑦2, … ] (4.13) 

 

Having in consideration equation (4. 10), for each node inside the influence-cell and 

admitting an extra equation, 𝒑(𝒙𝐼)𝒂(𝒙𝐼) = 𝟎, to guarantee a unique solution, a system of 

equations is obtained: 
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[
𝒖𝑠
0
] = [

𝑹 𝑷
𝑷𝑇 𝟎

] {
𝑎
𝑏
} = 𝑴{

𝒂
𝒃
} (4.14) 

 

Where: 

𝒖𝑠 = {𝑢1, 𝑢2, … , 𝑢𝑛}
𝑇 (4.15) 

 

𝑹 =

[
 
 
 
𝑅(𝑟11) 𝑅(𝑟12) … 𝑅(𝑟1𝑛)

𝑅(𝑟21) 𝑅(𝑟22) … 𝑅(𝑟2𝑛)

⋮ ⋮ ⋮
𝑅(𝑟𝑛1) 𝑅(𝑟𝑛2) … 𝑅(𝑟𝑛𝑛)]

 
 
 
 

(4.16) 

 

 

The constant polynomial basis is defined as: 

 

𝑷 = [1 1 … 1]𝑇 (4.17) 

 

For the 2D problem, the polynomial basis is represented as: 

 

𝑷 = [
1 1 … 1
𝑥1 𝑥2 … 𝑥𝑛
𝑦1 𝑦2 … 𝑦𝑛

]

𝑇

 
(4.18) 

 

Therefore, is possible to determine the non-constant coefficients 𝒂 and 𝒃 with the following 

equation: 

 

{
𝒂
𝒃
} = [

𝑹 𝑷
𝑷𝑇 𝟎

]
−1

{
𝒖𝑠
𝟎
} ⇒ {

𝒂
𝒃
} = 𝑴−1 {

𝒖𝑠
𝟎
} (4.19) 

 

Replacing in equation (4. 10): 

 

𝑢(𝒙𝐼) = {𝑹(𝒙𝐼)
𝑇 , 𝒑(𝒙𝐼)

𝑇}𝑴−1 {
𝒖𝑠
𝟎
} = {Φ(𝒙𝐼), Ψ(𝒙𝐼)} {

𝒖𝑠
𝟎
} (4.20) 

 

Thus, the shape function Φ(𝒙𝐼) = {𝜑1(𝒙𝐼), 𝜑2(𝒙𝐼), … , 𝜑𝑛(𝒙𝐼)} can be determined using [5]: 

 

{Φ(𝒙𝐼), Ψ(𝒙𝐼)} = {𝑹(𝒙𝐼)
𝑇 , 𝒑(𝒙𝐼)

𝑇}𝑴−1

= {𝜑1(𝒙𝐼), 𝜑2(𝒙𝐼), … , 𝜑𝑛(𝒙𝐼), 𝜓1(𝒙𝐼), 𝜓2(𝒙𝐼), … , 𝜓𝑚(𝒙𝐼)} 

(4.21) 
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Chapter 5  

 

Solid Mechanics 

Solid Mechanics focus on the study of deformations and relative displacements of solids, 

caused by the action of loads or forces. Hence, for a given solid and boundary condition, this 

field of study attempts to understand the relationship between stress and strain and the 

relationship between strain and displacements [5]. 

In this chapter, a brief exposition of the used continuum formulation will be presented, 

introducing the concepts of stress and strain as well as an explanation of the considered 

equilibrium and constitutive equations. 

5.1 - Fundamentals 

The behavior of each solid is predicted based on the stress-strain curve, as previously 

mentioned in section 2.11. In this work only linear elastic materials are considered. In this case, 

the relationship between stress and strain is linear and, once the applied load is removed, the 

solid returns to its initial form. Contrarily, in the case of plastic materials, the deformation in 

the solid caused by loading remains after the removal of the applied load. 

Materials can be defined has isotropic and anisotropic. Linear elastic Isotropic materials 

only require two independent material properties to classify them, the Young’s Modulus (E) and 

Poisson ration (𝜈). Anisotropic materials have distinct properties in each direction, which means 

that the deformation caused by a load applied in one direction is not equal to that caused by 

the same load in a different direction. In this work, only isotropic materials will be considered.  
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When a solid is subjected to a load or force, an internal distribution of stresses and strains 

is produced. The symmetric Cauchy stress tensor, Ʌ, represents the stresses of the current 

configuration. For a two-dimensional problem, the stress state is defined as: 

 

Ʌ = [
σ𝒙𝒙 σ𝒙𝒚
σ𝒚𝒙 σ𝒚𝒚

] (5.1) 

 

Voigt notation expresses tensors in column vectors, reducing their order. Thus, the stress 

tensor, (5.1), is transformed into stress vector, σ, [5]: 

 

𝜎 = {𝜎𝑥𝑥 𝜎𝑦𝑦 𝜎𝑥𝑦}𝑇 (5.2) 

 

Stresses can be classified as normal stress or shear stress. Normal stresses, such as tension 

and compression, develop perpendicularly to the plane of the applied force and are indicated 

by the letter 𝜎, contrarily to shear stresses, which act parallel to that plane and are denoted 

by the letter 𝜏 [8]. 

Strain is also represented by two components. The normal strain, represented by the letter 

휀, denotes the relative change of the length of a certain line segment. The shear strain is 

denoted by the letter 𝛾 and represents the change in angle of two previously perpendicular line 

segments [92]. The strain tensor is reduced to the strain vector 휀, 

 

휀 = {휀𝑥𝑥 휀𝑦𝑦 휀𝑥𝑦}𝑇 (5.3) 

 

The relation between stress and strain of a solid domain is given by the constitutive 

equation, known as Hooke’s law: 

 

𝜎 = 𝒄휀 (5.4) 

 

In which, 𝒄 is the constitutive matrix, given by 𝒄 = 𝒔−1, being the matrix 𝒔 the compliance 

elasticity matrix. For 2D cases, considering a general anisotropic material and a plane stress 

formulation, matrix 𝒔 is given by the following expression: 

 

𝒔𝑝𝑙𝑎𝑛𝑒 
𝑠𝑡𝑟𝑒𝑠𝑠

=

[
 
 
 
 
 
 

1

𝐸11
−
𝑣21
𝐸22

0

−
𝑣12
𝐸11

1

𝐸22
0

0 0
1

𝐺12]
 
 
 
 
 
 

 
(5.5) 

 

While, when considering a plane strain formulation, matrix 𝒔 is expressed as: 

 

𝒔𝑝𝑙𝑎𝑛𝑒 
𝑠𝑡𝑟𝑒𝑠𝑠

=

[
 
 
 
 
 
 

1 − 𝑣31𝑣31
𝐸11

−
𝑣21 + 𝑣31𝑣23

𝐸22
0

−
𝑣12 + 𝑣32𝑣13

𝐸11

1 − 𝑣32𝑣23
𝐸22

0

0 0
1

𝐺12]
 
 
 
 
 
 

 
(5.6) 

 

Being 𝐸𝑖𝑗 the elasticity modulus, 𝑣𝑖𝑗 the material Poisson coefficient and 𝐺𝑖𝑗 the distortion 

modulus in the material direction 𝑖 and 𝑗.  
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Then, considering the displacement field, for each point of the solid: 

 

𝒖(𝑥, 𝑦, 𝑧) = {

𝑢(𝑥, 𝑦, 𝑧)
𝑣(𝑥, 𝑦, 𝑧)

𝑤(𝑥, 𝑦, 𝑧)
} 

(5.7) 

 

The strain components can be calculated with the following expressions: 

 

{
 
 

 
 
휀𝑥𝑥
휀𝑦𝑦
휀𝑧𝑧
휀𝑥𝑦
휀𝑥𝑧
휀𝑦𝑧}

 
 

 
 

=

{
 
 
 
 
 
 

 
 
 
 
 
 

𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦
𝜕𝑤

𝜕𝑧
𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
𝜕𝑤

𝜕𝑦
+
𝜕𝑣

𝜕𝑧}
 
 
 
 
 
 

 
 
 
 
 
 

 (5.8) 

 

The strain vector can be obtained through the combination of a partial differential operator 

and the displacements field, 𝒖: 

 

휀 = 𝑳𝒖 (5.9) 

 

Where 𝑳 is given by: 

𝑳 =

[
 
 
 
 
 
 
𝜕

𝜕𝑥
0 0

𝜕

𝜕𝑦
0

𝜕

𝜕𝑧

0
𝜕

𝜕𝑦
0

𝜕

𝜕𝑥

𝜕

𝜕𝑧
0

0 0
𝜕

𝜕𝑧
0

𝜕

𝜕𝑦

𝜕

𝜕𝑥]
 
 
 
 
 
 
𝑇

 (5.10) 

 

5.2 – Weak Form 

The partial differential equation governing a physical phenomenon is defined as strong form 

equations. An exact solution is obtained with this formulation, but it has some limitations. This 

type of equations are very difficult to solve, particularly in complex practical engineering 

problems. 

 Therefore, a discrete system of equations based on the weak form is established, being 

stated for each integration point. Despite the lower consistency, this system has the ability to 

produce equations of more stable algebraic systems [5]. 

5.2.1 – Galerkin Weak Form 

In this work, the Galerkin weak form, a variational method based on energy minimization, 

is applied to obtain the system of discrete equations. 
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Considering a body in a domain Ω 𝜖 ℝ2 and bounded by 𝛤, where 𝛤 ∈ 𝛺: 𝛤𝑢 ∪ 𝛤𝑡 = 𝛤 ∧ 𝛤𝑢 ∩

𝛤𝑡 = ∅, in which 𝛤𝑢 corresponds to the essential boundary conditions and 𝛤𝑡 to the natural 

boundary conditions, the equilibrium equations governing the linear elasto-static problem are 

defined as: 

∇Λ + 𝒃 = 0 (5.11) 

 

In which, ∇ is the nabla operator, 𝒃 is the body force per volume unit and Λ is the Cauchy 

stress tensor, as defined previously. According to the Galerkian weak form, the real solution is 

the one that minimizes the Langrangian functional, 𝐿 given by: 

 

𝐿 = 𝑇 − 𝑈 −𝑊𝑓 (5.12) 

 

Being 𝑇 the kinetic energy, 𝑈 is the strain energy and 𝑊𝑓 is the work produced by the external 

forces. The kinetic energy is defined as: 

 

𝑇 =
1

2
∫ 𝜌𝒖 𝑇𝒖 
Ω

𝑑Ω 
(5.13) 

 

Where Ω represents the solid volume, 𝒖  is the first derivative of displacement with respect to 

time and 𝜌 is solid mass density. For elastic materials, the strain energy is given by: 

 

𝑈 =
1

2
∫ 휀𝑇𝜎
Ω

𝑑Ω 
(5.14) 

 

Where 휀 is the strain vector and 𝜎 is the stress vector. The work performed by external forces 

is represented by: 

 

𝑊𝑓 =
1

2
∫ 𝒖𝑇𝒃
Ω

𝑑Ω + ∫ 𝒖𝑇

Г

�̅� 𝑑 Г𝑡 
(5.15) 

 

Where 𝒖 corresponds to displacement, 𝒃 is the body forces and Г𝑡 is the traction boundary 

where forces 𝒕 are applied. Thus, Galerkian weak form is expressed as: 

 

𝐿 =
1

2
∫ 𝜌𝒖 𝑇𝒖 
Ω

𝑑Ω − ∫ 휀𝑇𝜎
Ω

𝑑Ω + ∫ 𝒖𝑇𝒃
Ω

𝑑Ω + ∫ 𝒖𝑇

Г𝑡

�̅� 𝑑 Г𝑡 
(5.16) 

 

Equation (5.16) can be minimized (𝛿𝐿 = 0) and developed as in [5]. Thus, neglecting the 

dynamic term, the following expression is obtained: 

 

−∫ (𝛿휀𝑇𝜎)
Ω

𝑑Ω + ∫ 𝛿𝒖𝑇𝒃
Ω

𝑑Ω + ∫ 𝛿𝒖𝑇

Г𝑡

�̅� 𝑑 Г𝑡 = 0 
(5.17) 

 

Considering stress-strain relation, 𝜎 = 𝒄휀, and strain-displacement relation, 휀 = 𝑳𝒖 , 

equation (5.) can be defined as [5]: 

 

∫ (𝛿𝑳𝒖)𝑇𝒄(𝑳𝒖)
Ω

𝑑Ω + ∫ 𝛿𝒖𝑇𝒃
Ω

𝑑Ω +∫ 𝛿𝒖𝑇

Г𝑡

�̅� 𝑑 Г𝑡 = 0 
(5.18) 
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5.3 – Discrete Equation System 

Based on the principle of virtual work, the discrete equation system for the finite elements 

method and for meshless methods is obtained. Through interpolation functions, mentioned in 

section 4.2.4, the field variables can be obtained. For a 2D case, the field of displacement 𝒖 

can be defined as: 

 

𝛿𝒖(𝒙𝐼) = 𝛿𝒖𝐼 = 𝑰 {
Φ(𝒙𝐼)

Φ(𝒙𝐼)
} 𝒖𝑠 = [

𝜑1(𝒙𝐼) 0 … 𝜑𝑛(𝒙𝐼) 0

0 𝜑1(𝒙𝐼) … 0 𝜑𝑛(𝒙𝐼)
]

{
 
 

 
 
𝛿𝑢𝐼
𝛿𝑣𝐼
⋮

𝛿𝑢𝑛
𝛿𝑣𝑛}

 
 

 
 

= 𝑯𝐼𝛿𝒖𝑠 

(5.19) 

 

 

being 𝑰 a 2x2 identity matrix and 𝒖𝑖 = {𝑢𝑖 , 𝑣𝑖 , }, having two degrees of freedom. 

 

Thus, simplifying the first term of Equation (5.18): 

 

∫ (𝛿𝑳𝒖)𝑇𝒄(𝑳𝒖)
Ω

𝑑Ω = ∫ (𝑳𝑯𝐼𝛿𝒖𝑠)
𝑇𝒄(𝑳𝑯𝐼𝛿𝒖𝑠)

Ω

𝑑Ω = ∫ 𝛿𝒖𝑠
𝑇 𝑩𝐼

𝑇𝒄𝑩𝐼𝒖𝑠
Ω

𝑑Ω

= 𝛿𝒖𝑇∫ 𝑩𝐼
𝑇𝒄𝑩𝐼

Ω

𝑑Ω𝒖 

 

  (5.20) 

 

In which the deformability matrix 𝑩𝐼 for the 𝑛 nodes constituting the influence-cell of 

interest point 𝒙𝐼, can be defined as: 

 

𝑩𝐼 =

[
 
 
 
 
 
 
𝜕𝜑1(𝒙𝐼)

𝜕𝑥
0

0
𝜕𝜑1(𝒙𝐼)  

𝜕𝑦

𝜕𝜑1(𝒙𝐼)

𝜕𝑦

𝜕𝜑1(𝒙𝐼)

𝜕𝑥

  

𝜕𝜑2(𝒙𝐼)

𝜕𝑥
0    …

0
𝜕𝜑2(𝒙𝐼) 

𝜕𝑦
…

𝜕𝜑2(𝒙𝐼)

𝜕𝑦

𝜕𝜑2(𝒙𝐼)

𝜕𝑥
…

  

𝜕𝜑𝑛(𝒙𝐼)

𝜕𝑥
0

0
𝜕𝜑𝑛(𝒙𝐼)

𝜕𝑦

𝜕𝜑𝑛(𝒙𝐼)

𝜕𝑦

𝜕𝜑𝑛(𝒙𝐼)

𝜕𝑥 ]
 
 
 
 
 
 

 

(5.21) 

 

In an analogous way, the second and third terms of Equation (5.18) can be also simplified, 

obtaining the following expression: 

∫ 𝛿𝒖𝑇𝒃
Ω

𝑑Ω = ∫ (𝑯𝐼𝛿𝒖𝑠)
𝑇𝒃

Ω

𝑑Ω = 𝛿𝒖𝑇∫ 𝑯𝐼
𝑇𝒃

Ω

𝑑Ω 
(5.22) 

 

 

∫ 𝛿𝒖𝑇

Г𝑡

�̅� 𝑑 Г𝑡 = ∫ (𝑯𝐼𝛿𝒖𝑠)
𝑇

Г𝑡

�̅� 𝑑 Г𝑡 = 𝛿𝒖𝑇∫ 𝑯𝐼 �̅� 𝑑 Г𝑡
Г𝑡

 
(5.23) 

 

 

So, equation (5.18) can become the following: 

 

𝛿𝐿 = 𝛿𝒖𝑇∫ 𝑩𝐼
𝑇𝒄𝑩𝐼

Ω

𝑑Ω
⏟        

𝑲

𝒖 − 𝛿𝒖𝑇∫ 𝑯𝐼
𝑇𝒃

Ω

𝑑Ω
⏟      

𝒇𝑏

− 𝛿𝒖𝑇∫ 𝑯𝐼 �̅� 𝑑 Г𝑡
Г𝑡⏟      

𝒇𝑡

= 0 
(5.24) 

 

The equilibrium is then obtained and defined as: 

 

𝑲𝒖 = 𝒇𝑏 + 𝒇𝑡 (5.25) 
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Being 𝑲, the stiffness matrix, 𝒖, the displacement field, 𝒇𝑏, the body weight vector and 𝒇𝑡 

the external forces vector. Therefore, considering the vector 𝒇 = 𝒇𝑏 + 𝒇𝑡, as the sum vector of 

the forces applied, it is possible to solve the linear equation system 𝒖 = 𝑲−1𝒇 and obtain the 

displacement field [5]. 
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Chapter 6  

 

Numerical Methods in Bone Biomechanics  

6.1 – FEM 

FEM is a numerical method developed in 1956 to solve problems in aerospace engineering. 

Over the last few decades, the growing computer capacities allowed to apply this method to 

the majority of scientific areas, which has helped to solve ever more complex problems with a 

reasonable degree of accuracy [34]. Based on a research on Scopus database using different 

keywords, the graph depicted in Figure 6.1 demonstrates the expansion of this method to bone 

mechanics, as the number of published papers follows a growing trend over the years. However, 

when the search was narrowed to a more specific area of bone mechanics (FEM+femur), it was 

also possible to verify an increase in the number of published papers. 

FEM was first used in orthopaedics in 1972 by Brekelmans [93]. In this study, in order to 

analyze the mechanical behavior of skeletal parts, a two-dimensional model of a femur was 

Figure 6.1 - Number of documents published through the years, in the subjects indicated. The data 

was obtained through a research on Scopus database (www.scopus.com) assuming as keywords the 
subjects indicated in the graph. 
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developed and analyzed under a few load situations. The results obtained for the stresses and 

strains in the bone demonstrated that this method can be applied to a complex geometry and 

a variety of loading conditions without compromising the accuracy of the results.   

6.1.1 – FEM and Bone 

As mentioned in section 4.1, FEM can be applied in three areas of bone biomechanics: 

analysis of stress and strain, fracture prediction and study of bone remodeling process [86].  

6.1.1.1 – Fracture Prediction 

According to the Wolf’s law, the human femur adopts an optimal structure in function of 

the normal loads of daily life. However, the bones are more vulnerable to non-habitual loads 

present in accidents and physical exercises [94]. In the cases where the loads exceed the 

maximum bone strength, bone structure failure occurs. Hip fracture is currently a common 

health problem among the elderly that results in increased morbidity and mortality, as well as 

high medical care costs. It is estimated that the number of hip fractures will rise from 1,7 

million in 1990 to 6,3 million in 2050 [95]. Also, recent clinical studies have shown that the 

majority of hip fractures occurred at one of the three locations, the femoral neck (37%), the 

trochanter region (49%) and the femoral shaft (14%) (Figure 6.2) [96]. Due to the high costs and 

disabling nature of this injury, it is important to assess the femoral fracture risk in order to 

prevent it. FEM is a numerical method capable of integrate the femoral risk factors based on 

well-established mechanical principles and governing equations, allowing to understand the 

fracture mechanism and, ultimately, to predict femoral fractures [95]. 

The cause for femoral fractures is multifactorial. Early research focused on the loading 

conditions present in the bone [13]. Keyak et. al. developed an automated method for 

generating quantitative CT (QCT)-based femur models to predict femoral fracture load (Figure 

6.3). Although the method produced a suboptimal representation of the bone surface, the 

results correlated well with experimental measurements on the same bone and can predict 

femoral fracture load within -40% to +60% with 95% [13]. 

Figure 6.2 - Percentage of hip fracture in the femoral neck, trochanter region and femoral shaft. 



 

54 

 

Approximately 90% of femoral fractures are associated with a fall, with the descent and 

impact phases of a fall representing major etiologic importance. Several studies have been 

conducted to understand the importance of load direction as a fracture risk. In one of these 

studies, Pinilla et. al. study the influence of impact onto the lateral aspect of the greater 

trochanter on failure load of the proximal femur. Three different loading angles (angle between 

the neck axis and the femoral head load) were define, including 0°, 15° e 30°. The results 

obtained demonstrated a load reduction of 24% due to an increase in the loading angle from 0° 

to 30°. Also, the group observed that, independently of the femoral bone mineral density, the 

broad range of failure loads is explained by the impact direction of the fall [97]. Keyak et. al. 

also studied the impact of force direction on failure loads for two types of loading conditions, 

one representing impact from a fall and one similar to joint loading during daily activities. The 

results indicated that the greatest fracture risk was present in the fall configuration, 

particularly a fall onto the posterolateral aspect of the greater trochanter [98].  

Other studies have highlighted the importance of using multiple loading configurations in 

FE models to improve the prediction of fracture risk. Nishiyama et. al. developed a model that 

could estimate the bone stiffness and failure load under various loading conditions. They 

concluded that boundary conditions have a great impact on bone stiffness. The highest stiffness 

values were observe for 0° and -15° of internal rotation of the femoral neck, which corresponds 

to a fall impact anterolateral on the hip. The lowest stiffness value was found at 45° of internal 

rotation representing a fall on the hip where the impact is posterolateral [99]. On another 

study, Falcinelli et. al. simulated different loading configurations to identify the weakest 

structural condition of the proximal femur in order to improve the FE-models that predict 

femoral fractures. The model developed was able to identify fracture cases based on bone 

weakness, which, then, emphasizes the importance of the use of different loading conditions 

on FE models [100]. 

However, since less than 5% of falls result in fractures, other research groups believe to be  

important to consider other risk factors, such as bone strength, bone geometry and muscle 

activity [97]. Current methods for assessing bone fracture consider that reduced bone strength 

is related to fracture incidence and require two-dimensional or three-dimensional imaging 

techniques, such as dual-energy X-ray absorptiometry (DXA) or quantitative computed 

Figure 6.3 - Failure location computed for the stance loading condition (top) and fall condition 

(bottom) for a matched pair of femora. Adapted from [13]. 
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tomography (QCT) to determine bone mineral density. Because bone strength is dependent, 

not only on bone mineral density, but also on three-dimensional shape, the mechanical 

properties and the loading conditions, these methods have only been partly successful in 

identifying patient with high fracture risk [13]. For that reason, FEM has been used to predict 

more accurately bone strength than densitometry measurements alone.  

Orwoll et. al. developed the first QCT-FE models for proximal femurs of older men (Figure 

6.4) and demonstrated the capacity of these models to predict bone fractures in men based on 

bone strength [1]. On another study, the group compared statistically three methods for 

predicting proximal femoral fracture loads: DXA, QCT and FEM. Three different models were 

developed: one model based on DXA images, another based on QCT images and an FE model 

based on QCT images. The results indicated that the FE model was able to explain 20% more of 

the variance in strength than the DXA models. Overall, the QCT-FE model proved to be a 

promising tool to predict femoral strength in vivo [101].  

Contrarily, Testi et. al. studied the risk of fracture in elderly patients based on DXA-FE 

models and the results were in agreement with the experimental results [102]. Ara et. al. also 

reported that DXA-FE models are able to predict up to 77% of femoral strength [103]. 

Langton et. al. performed a finite element analysis of 2D X-ray images and developed a 3D 

model derived from a single 2D radiographic image. When compared with the failure load 

prediction achieved with bone mineral density, the coefficient of determination to predict 

failure load was 54,5% for BMD and 80,4% for the model, which demonstrates that it has an 

increased accuracy of failure load assessment [104]. 

So far, the methods considered only used femora of cadavers or femoras of osteoporotic 

patients to analyze femoral strength. However, Bessho et. al. developed a CT-FE model based 

on the femora of ten patients with contralateral hip fracture in order to predict fracture load 

and fracture location. The group observed a markedly reduced structural strength in the 

femoral neck of the patients with hip fractures, which is in agreement with previous studies 

that reported a reduction of femoral neck strength by 50% less than that of normal femora. In 

conclusion, the model was capable to predict the fracture location and load. Thus, the group 

suggested that this is a valuable tool for clinical practice [105].  

Figure 6.4 - Typical QCT-FE model of proximal femur, showing 3D (A) and 2D sectional (B) views. 

The color-coding shows the spatial variation of material strength assigned to the individual finite 
element. Adapted from [1]. 
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Age-related bone loss occurs due to a set of underlying structural changes that decreases 

proximal femoral strength, thus increasing the likelihood of structural failure in the case of a 

fall. The first study to document cross-sectional estimates of bone strength losses due to aging 

was conducted by Keaveny et. al. From a cohort of men and women with ages ranging from 20 

to 80 years old, they observed a decline of 55% to 39% of proximal femoral bone strength of the 

greater trochanter over the lifetime of both men and women. However, this study had some 

limitations related to small number of elderly subjects. Lang et. al. evaluated the extent to 

which proximal femoral density, structure and strength change with age in function to gender. 

QCT-FE models were developed based on a cohort of elderly men and women and the results 

indicated bone loss between the genders is consistent with a higher fracture among elderly 

women. The deficits observed in women correlate with a period following the menopause [106]. 

In another study [107], the structural features of the proximal femur of women with the same 

age, with and without hip fracture, were compared in order to distinguish the women at higher 

risk for fracture. The results indicated a larger outer femoral neck in the women who sustain a 

fracture, which corresponds to a compensatory effect at the load-bearing inferior cortex. In 

conclusion, the group remarked that this deficit may be used as a biomarker for increased 

fracture risk. 

 Femur bone strength can also be evaluated by its cortical thickness together with BMD, 

because cortical bone withstands greater loads than trabecular bone. Cortical thickness is not 

uniform throughout the bone due to the asymmetric mechanical loading present in daily bipedal 

locomotion. This loading condition results in a higher compressive stress at the inferior cortex 

and smaller tensile stress at the superior cortex of the femoral neck. As a result, cortical 

geometry of the proximal femur reflects a mechanically appropriate shape, with the cortical 

bone at the inferomedial side being thicker than at the superolateral side [95]. With aging, the 

cortical thinning becomes evident, with a decrease from 1,6 mm at the age of 25 to 0,3 mm at 

Figure 6.5 - (Left) Location of the midfemoral neck in stance; schematic diagram showing cortical 

thickness at the midfemoral neck at 25 and 85 years. Adapted from [19]. 
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the age of 85 years in females in the superoposterior cortex of the femoral neck (Figure 6.5) 

[19]. The cortical thinning of the femoral neck makes it more prone to fracture.  

In order to assess the possibility of using cortical thickness as a bone fracture risk factor, 

Long et. al. analyzed DXA-FE simulations and demonstrated that cortical thickness has a better 

discriminative capacity for bone fracture than BMD and should, therefore, be used in FE models 

[95]. 

Recent studies have indicated that targeted exercises can help to prevent femoral fractures 

and that physical activity should be maintain with aging in order to preserve fracture resistance 

[108]. A study, represented in Figure 6.6, conducted based on 3D proximal femur FE models 

with young adult female athletes with distinct exercise loading patterns showed lower stresses 

at the femoral neck in the athletes that performed endurance running, soccer and squash [3]. 

Abe et. al. also observed that exercise loading history with high impacts or odd impacts, such 

as running and squash, can lower the risk of fall-induced femoral fracture [109]. 

Besides predicting the risk of bone fracture, FEM can also be used to determine the fracture 

location in the proximal femur. Keyak et. al. developed an automatically generated CT-FE 

model of the proximal femur to predict fracture location and type. For the stance configuration, 

the fracture location was predicted with an accuracy of 72% and 79% for the fall configuration. 

In conclusion, FE models can be used to predict the location of fractures with moderate 

accuracy and require, therefore, further studies for improvement of the models [110].  

Patient-specific finite element (PSFE) models are the most recent method able to predict 

the biomechanical response of bones based on each individual anatomy. Several models have 

been developed so far. Trabelsi et. al. developed a PSFE model based on QCT and the numerical 

results obtained were in good correlation with the experimental results. This method has a high 

accuracy and can be used as a clinical decision-making tool [111]. 

However, despite all the models already developed, FEM has not yet been integrated in 

clinical routine procedure mainly because of its technical complexities.  

Figure 6.6 - Examples of typical Von Mises stress distribution from A, B, C, D, E, F and control group 

during fall simulation. H-I represents high-impact, O-I represents odd-impact, H-M represents high-
magnitude, R-I represents repetitive-impact and R-NI represents repetitive non-impact. Adapted from [3]. 
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6.1.1.2 – Analysis of Stress and Strain 

The first studies conducted with FEM were concern with the stress and strain analysis of the 

femur. Valliappan et. al. developed a 3D-FE model and used isotropic mechanical properties 

for cortical and trabecular bone. The results demonstrated that the area with the higher stress 

levels was the femoral neck, which is the more fracture prone area of the femur, as mentioned 

before [42]. Aghili et. al. analyzed the stress patterns in the femur under different loading 

conditions. The results also evidenced a maximum stress at the inferior side of the femoral 

neck [112]. 

The stress and strain in the femur are influenced by the muscles activity. Some studies have 

confirmed the importance of the abductor muscles and ilio-tibial band to simulate femoral 

loading conditions. Duda et. al. developed an FE model based on a loading situation that 

included all thigh muscles and compared the results of strain distributions with those obtained 

from an FE model with simplified load regimes. The differences in the strains between the 

simplified model and the one with all thigh muscles included were as high as 26%. However, 

when the abductors are added to a loading situation of hip contact, the difference is reduced 

to 5% (Figure 6.7). In conclusion, FE simulations should include all thigh muscles to reproduce 

the physiological strain distribution in the human femur [15]. 

The bone mechanical properties also influence the stress and strain patterns in the bone. 

Lotz et. al. determined the stress distribution in normal and osteoporotic proximal femora in a 

gait and fall configuration in order to understand the structural importance of cortical ad 

trabecular bone. The results showed that the principal stresses were more concentrated in the 

cortical bone of the intertrochanteric region during gait configuration. Based on the stress 

distribution throughout the bone, the group observed that the cortical and trabecular bone 

carried approximately constant load cases but varied depending on location. The cortical bone 

supported 30% of the total load at the subcapital region, 50% at the mid-neck, 96% at the base 

Figure 6.7 - Principal strains ε1 (maximal) and ε1 (minimal) along the human femur at 45% gait cycle with all 

thigh muscles included (dark lines). A representation for the simplified load regimes are also included (light 
lines). Adapted from [15]. 
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of the neck and 80% at the intertrochanteric region [113]. Nawathe et. al. also studied the 

influence of cortical and trabecular bone on the load sharing capacity in the femoral neck. The 

results demonstrated maximum stress levels in the cortical bone distally and proximally in the 

trabecular bone of the femoral neck [114]. Finally, Kachlík et. al. developed an FE model of 

the osteons in the proximal femur and observed that the cortical microstructure had influence 

on the stress distribution throughout the bone [115]. 

Stress fracture is a common type of fracture among athletes and military caused by 

repetitive skeletal loads during intense physical training. Voo et. al. evaluated the stress 

distribution in a human femur in order to assess the risk of stress fractures. They indicated that 

bone geometry has an influence on the stress distribution in the femur. The overall maximum 

stress was observed in the inferior aspect of the femoral neck. However, when they developed 

a FE model with a cortical thickness higher than the previous one, a reduced peak stress (35%) 

was observed in the inferior cortex of the neck with unchanged stress levels at the superior 

cortex [116]. 

6.1.1.3 – Study of Bone Remodeling Process 

FEM is one of the numerical methods used to analyze the bone remodeling phenomena. As 

mentioned in section 2.12, several models of bone remodeling have been developed using FEM 

[63, 69, 70]. However, despite all the models already developed, bone remodeling is a complex 

process unable to be fully described at the present moment [5]. 

Bone remodeling is also important in implantology to estimate the changes in the stress 

fields in the bone created by implant insertion. Hip replacement surgery is a common surgical 

procedure required to treat femoral fractures where the femoral head is replaced by an implant 

[117]. Nowadays, there are many types of femoral implants with many shapes, materials and 

functionalities. Due to the adaptive remodeling effect induced in the bone by the implant, it is 

important to study the mass changes of the bone tissue after a hip replacement surgery [118]. 

Several studies have been performed to understand the influence of the prosthesis geometry, 

the material properties of the implant and the type of fixation [119, 120]. 

Musculoskeletal loading affects the patterns of stress and strain within the human femur 

and, thereby, influence the bone remodeling process. Some studies have already demonstrated 

that all thigh muscles should be included when simulating the bone remodeling process [15, 

121]. Bitsakos et. al. performed an FE simulation with different muscle loading conditions and 

analyzed the effect on the outcome of the bone remodeling phenomena. The results obtained 

demonstrated that the model with simplified load regimes predicted more pronounced bone 

loss compared to those with all muscles included [122]. 

6.1.2 – FEM and Sarcoma 

Sarcomas compromise the structural integrity of bone and soft tissues, as mentioned in 

section 3.3. of this manuscript. Through a search in the Scopus database, using the key words: 

finite element method, sarcomas, bone metastases and bone sarcomas, it was possible to notice 

that FEM has not yet been widely used in the study of sarcomas. In Figure 6.8, the search results 

are indicated as the total number of publications from the year 2003 to 2017, using the 
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combination of the keywords. From the total amount of publications concerning sarcomas, only 

46% are related to bone sarcomas. 

6.1.2.1 – FEM and Bone Sarcomas 

As mentioned in section 3.5, bone sarcomas induce pathological changes in the bone that 

can increase the risk of fracture. Subject-specific finite element models have been created to 

analyze the long-term effects of limb reconstructions after the resection of bone tumors and 

to access the risk of bone fracture. One of these studies evaluated the fracture risk of a 

reconstructed proximal femur from a four-year-old child affected by Ewing’s sarcoma, after 

three years of follow-up. The proximal femur was reconstructed using an allograft with a 

vascularized fibula autograft. The results demonstrated that the reconstructed femur had not 

recovered the whole mechanical strength when compared to the contralateral and healthy 

proximal femur. Higher stresses were also observed, particularly, in the neck and in the medial 

aspect of the allograft. As a result, these areas appeared weaker and had a higher fracture risk. 

However, no region in the model reached the fracture limit. In conclusion, this study 

demonstrated that subject-specific finite element models can be used to predict the fracture 

risk of a reconstructed femur after tumor resection [123]. 

Very few studies have considered the long-term biomechanical response of a reconstructed 

femur in response to different loading conditions. Valente et. al. developed a subject-specific 

finite element model of a reconstructed femur and combined it with a musculoskeletal model 

in order to study bone resorption under different mechanical stimulus induced by different 

loading conditions.  The results obtained suggest that bone resorption occurs due to the effect 

of proximal metal screws and muscle loading, which affects the stress and strain conditions in 

the reconstructed femur. Therefore, the group suggested that the surgical treatment should be 

altered and physical therapy should be promoted to optimize bone adaptation [124].  

However, no published papers dealing with the analysis of bone sarcomas and its effects, 

using finite element models, were found in the Scopus database. Several searches were 

conducted in Scopus, ScienceDirect and Elsevier database (with the keywords: “FEM” and “bone 

sarcomas”) and no documents were found, revealing a gap in this research topic that this work 

intends to fulfill.  

Figure 6.8 - Number of documents published through the years, in the subjects indicated. The data was 

obtained through a research on Scopus database (www.scopus.com) assuming as keywords the subjects 
indicated in the graph. 
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6.1.2.1 – FEM and Bone Metastatic Lesions 

The total number of manuscripts dealing with bone sarcomas is very low when compared to 

the total amount of published works concerning bone metastatic lesions (Figure 6.8), which 

have been increasing recently (Figure 6.9) as a result of the growing incidence rates of bone 

metastatic disease.  

As stated in section 3.1., osseous metastatic lesions in the femur are very common. Femoral 

metastases disrupt the bone remodeling process and may lead to pathological fractures. 

Surgical intervention is often required to treat these fractures, due to a poor healing of the 

bone. However, an increase in perioperative morbidity is often observed in the patients who 

suffer surgery as well as a higher risk for infection [124]. In some cases, some patients can be 

spared from unnecessary surgical procedures if at-risk lesions could be defined. For that reason, 

guidelines have been developed based on observational studies to predict the fracture risk [73]. 

Fidler studied the effect of metastases with different sizes in the fracture incidence of long 

bones. The results demonstrated that when more than 50% of the cortex was involved, the 

fracture incidence rate was approximately 60% and approximately 80% when more than 75% of 

the cortex was affected. Other authors assumed a certain size of lesion or a certain ratio of 

lesion width to bone width to be the main risk factors responsible for pathological fractures 

[125]. 

However, several authors concluded that these guidelines have a poor predictive power 

because they are based in a small sample size and are also associated with a large error in the 

estimation of the bone load-bearing capacity. Therefore, there are still no established clinical 

or radiological guidelines able to predict the fracture risk and validate fractures [73, 126]. 

Finite element analysis have been successfully used in fracture prediction of metastatic 

bone disease, but have not yet been applied in clinical practice. Most of past studies use healthy 

bones with artificially created defects as poor representations of actual metastatic tumors, in 

order to validate the FE model [127]. The results obtained are limited and do not accurately 

predict the fracture risk [28]. As such, recent studies simulate metastatic lesions in the femur 

and validate the results with actual metastatic bones. Yosibash et. al. created a patient-

specific finite element model capable of predicting the risk of fractures in femurs with 

metastatic defects [28]. Also, Keyak et. al. developed an subject-specific FE model capable of 

predicting the proximal femoral strength and fractures in the subcapital region [128].  

Figure 6.9 - Number of documents published through the years concerning bone metastatic lesions. 

The data was obtained through a research on Scopus database (www.scopus.com) assuming as 
keywords bone metastatic lesion and FEM. 
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So far, the studies conducted do not take into consideration different sites of metastatic 

lesions within the bone. For that purpose, Keyak et. al. studied the effect of tumor location 

within the femur as a risk factor. To simulate the lesion, several defect sizes were considered 

for a preliminary studied: 10 mm, 15 mm and 20 mm in diameter. Defects smaller than 20 mm 

in diameter caused only minimal reductions in the proximal femoral strength. Hence, only a 

20-mm-diameter spherical void was used to simulate a metastatic lesion in the neck and in the 

lesser trochanter. Within the femoral neck, the inferomedial defects had the greater effect on 

the proximal femoral strength. At the level of the lesser trochanter, the defect in the 

anteromedial surface of the bone resulted in the lowest proximal femoral strength. Defects 

located in the lateral or posterior corner led to consistently increasing proximal femoral 

strength (Figure 6.10). In conclusion, the percentage of intact bone strength is dependent on 

defect location, making these findings important to evaluate pathological fracture risk [18]. On 

another study, Benca et. al. demonstrated significant differences in the biomechanical 

behavior of metastatic femurs with lesions in superolateral or in the inferomedial neck. Also, 

different lesion locations lead to different magnitudes in failure load and stiffness. These 

results underline the importance of metastases location on current clinical guidelines for 

fracture prediction [73]. 

6.2 – Meshless Methods 

The FEM is the most commonly used discrete numerical method in bone mechanics. 

However, this method has some limitations due to mesh-based interpolation, such as low quality 

meshes with higher errors and unable to solve problems with discontinuities that do not align 

with elements edges [129]. Therefore, meshless methods were developed with the purpose to 

overcome the problems associated with FEM. A search through Scopus database (Figure 6.11) 

allowed to demonstrate that the number of published papers related to bone mechanics has 

been recently increasing. When the search is narrowed to the study of the femur, it was also 

possible to verify an increase in the number of published papers. However, because these 

methods have only been recently used in this area, the number of published papers is still lower 

than the ones related to FEM, which emphasizes the gap that exists concerning this topic, which 

this work intends to fulfill. 

Figure 6.10 - Compressive principal strain illustrate different failure locations (shown in black) for 

the proximal femur (A) in the intact state, (B) with an inferomedial femoral neck defect, and (C) with 
a defect in the anteromedial corner at the level of the lesser trochanter. Adapted from [18]. 
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6.2.1 – Meshless Methods and Bone 

Meshless methods have not yet been widely used in bone mechanics, as previously 

demonstrated in Figure 6.1. As a result, the majority of the work developed so far was to 

validate these methods and compared then to other numeric methods. 

Several computational algorithms for bone remodeling process have been developed and 

implemented with FEM, as mentioned in section 5.1.1. Recently, meshless methods have been 

used to also analyze the bone remodeling process. Belinha et. al. presented a new algorithm 

for bone remodeling, based on a meshless method, the NNRPIM. The viability and efficiency of 

the algorithm was successfully tested, under multiple loading conditions, on a femur bone 

model and a calcaneus bone model [130-132]. On another work, Belinha et. al. also studied the 

bone tissue trabecular remodeling process with the meshless method NNRPIM [55]. Fernandez 

et. al. investigated the femoral cortical bone remodeling process based on the smooth particle 

hydrodynamics method (SPH). The results demonstrated that this is an effective method 

capable to predict the bone pore shapes and remodeling evolution overtime [133]. Doblaré et. 

al. considered that the natural element method (NEM) is the most appropriate method for 

biomechanics. For that reason, the group simulated the bone internal remodelling process on 

the femur and the results were compared with finite element models, demonstrating a good 

agreement and performance by the NEM [134]. 

More recently, meshless methods have been applied in implantology, namely in the study 

of femoral behavior after the insertion of a stem in the diaphysis. When compared with other 

numerical methods, the results obtained in this study allowed for a smoother and more accurate 

strain energy fields (SED) which means the remodeling predictions are more reliable [135]. 

Meshless methods can also predict bone fractures. Lee et. al. used the moving least square 

approximation technique to analyze the behavior of the trabecular femoral bone loaded in 

compression. The CT images of the trabecular bone were converted into a three-dimensional 

meshless model, which was used to simulate the osteoporotic process. Furthermore, a fracture 

Figure 6.11 - Number of documents published through the years, in the subjects indicated. The 

data was obtained through a research on Scopus database (www.scopus.com) assuming as keywords 
the subjects indicated in the graph. 
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criterion was proposed and the process was simulated on the femur. The results demonstrated 

that trabecular bone is important in the prevention of progressive failure and that this method 

can be applied for the prognosis of osteoporosis [136]. On another work, Fernandez et. al. 

investigated the age-related changes in femoral cortical bone with the SPH method, in order 

to understand the mechanism for bone weakening and, subsequently, the increase in fracture 

vulnerability. The findings from this study proven that SPH can be successfully used to model 

pore shapes over time and, also, demonstrated that bone remodeling at the osteon level causes 

pore merging, which increases with aging. [137]. 

Finally, stress and strain distributions can be obtained with meshless methods. Liew et. al. 

was the first to apply the reproducing kernel particle approximate (RKPM) to the investigation 

of stress distribution within the proximal femur. The model was used to simulate the effects of 

aging and necrosis. However, the simplifications adopted to create the model limited the 

results and, furthermore, its clinical relevance [138]. Taddei et. al. developed a new approach 

for subject-specific strain prediction based on the cell method. The meshless implementation 

provided results with good accuracy, which demonstrates that meshless methods can have 

clinical applications [139].  

6.2.2 – Meshless Methods and Sarcomas 

In my best knowledge, there are no publications regarding the study of meshless methods 

and sarcomas. A search performed in the Scopus, ScienceDirect, Elsevier and Springer database, 

using the key words: meshless method, sarcomas, bone metastases and bone sarcomas, found 

no documents regarding these subjects, meaning that there is a gap in literature related to this 

topic, which this work intends to fulfill.  
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Chapter 7  

 

Preliminary Work 

Initially, a preliminary work was performed on a healthy proximal femur before the analysis 

of femoral bone sarcomas. This study allowed to introduce the basic software required for the 

development of the dissertation and to acquire a proficient level, as user, of the following 

software: 

 3D Slicer, a freeware capable to produce STL files from CT medical images, which 

allowed to understand the 3D anatomy of femur bones and to acquire the geometries 

from the DICOM files (CAT-scan files). 

 FEMAP, (Siemens PLM Software, student version) – a software allowing the construction 

of meshes from STL files possessing drawing tools to create geometric models their 

respective meshes; 

 FEMAS® (Finite Element and Meshless Analysis Software - cmech.webs.com) - a 

freeware academic software that allows the analysis of models using either the FEM or 

meshless methods combined with several linear and non-linear formulations. 

In this chapter, the preliminary work is described and the results obtained from the analysis 

are presented with the main conclusions.  

7.1 – The Structural Analysis of a Femur Bone Using a 2D FEM 

Approach 

A two-dimensional (2D) model of the proximal femur was developed in order to achieve the 

proficient level in the previously mentioned software. The practical case study was conducted 

on a 2D model of a proximal femur based on an X-ray image in DICOM (Digital Imaging and 

Communications in Medicine) format. From the X-ray image, different points were extracted 

and designed in the FEMAP® software. The points were further connected, the boundary 

surfaces were established, and the triangle mesh was created. From FEMAP®, an INP file was 

generated and imported to FEMAS® software, where the two materials were defined (cortical 

bone and trabecular bone) represented with different colors (blue represents trabecular bone 
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and purple represents cortical bone). The final 2D model, represented in Figure 7.1, is 

composed by 7672 triangular elements (constant strain elements) and 4002 nodes. 

In the present study, it was considered a Young’s modulus (E) of  

1,7 × 104 MPa and 2,13 × 103 MPa for cortical and trabecular bone, respectively. The Poisson’s 

ratio (𝜈) was defined as 0,33 and 0,30 for cortical and trabecular bone respectively.  

In order to simplify and represent the model as close as possible to reality, the boundary 

conditions considered were applied in the distal section of the femur, preventing its movement. 

The loads applied can be divided into three different cases, each consisting of one parabolic 

distributed load over the joint surface and another parabolic distributed load on the trochanter, 

representing the abductor muscle attachment (Figure 7.2). 

The equivalent strain and the von Mises stresses distribution along the femur were obtained 

and are represented in Figure 7.3, respectively. Based on the results obtained, it was possible 

to determine some interest points, that is, nodes showing higher stress and strain. For that 

Figure 7.1 – (a) Final femur model with cortical (purple) and trabecular (blue) bone; (b) Points of interest 

selected for the study to analyze the strain and the von Mises stress. 

Figure 7.2 - Loads of the different cases. (a) First mechanical case, (b) Second mechanical case, (c) Third 

mechanical case. 

a) b) 
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reason, 2 points were selected, one in the femur head (PA) and the other in the trochanter 

(PB), respectively, as well as two different sections. Section 2 is composed by 25 nodes in the 

neck of the femur, while, in the distal segment, 20 nodes constitutes section 3 (Figure 7.1 (a)).  

The obtained results demonstrated that the highest stresses are concentrate in the cortical 

bone of the femur’s shaft, particularly, in the lower portion of the femur. However, in case 1, 

despite existing higher stress levels in the cortical other than the trabecular bone, the highest 

stress is concentrated in the lower section of the femur’s neck.  

The cortical and trabecular bone have different behaviors and, therefore, different yield 

stress. In other words, the trabecular bone yields when the stresses are above 50 MPa, contrarily 

to the cortical bone, which can resist, approximately, to 170 MPa of stress. The results in Figure 

7.3 demonstrates that in case 1, the stress varies between 0-900 MPa, with a higher stress being 

observed in the cortical bone. In this case, the stress exerted on the cortical bone exceeds the 

maximum stress, which means that the cortical bone begins to yield or undergo damages. The 

same can be observed in cases 2 and 3, especially because the range of stress is from 0-1200 

MPa and 0-2500 MPa, respectively.  
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Case 2 Case 3 Máx. 
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Figure 7.3 - Six numerical models resulting from the use of FEM in each load case. Three models present the 

equivalent von Mises stress and three others present the equivalent strain applied for the different load cases. 
Representation of the maximum stress and strain for each case. 
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To better understand the stress applied both in the cortical and the trabecular bone, the 

equivalent von Mises stress was calculated for 2 sections (Figure 7.1 (b)) for each load cases 

and represented in graphs in Figure 7.4.  

The cortical bone is represented in the graph’s extremities, with the trabecular bone being 

represented in the middle of the graph. It is possible to observe that the distribution of stress 

increases in the cortical bone, decreasing when reaching trabecular bone, except in the case 1 

of section 3, where it can notice an increase in stress in the right trabecular-cortical interface, 

followed by a decrease in stress in the cortical bone. In cases 2 and 3 of both sections, the 

stress present in the cortical bone are greater than 170 MPa, meaning that the bone enters in 

yield. However, in case 1 of section 2, the stress in the cortical bone on the left extremity of 

the section is smaller than the maximum stress of yield. The maximum values of stress are 

observed in case 2 and 3 of section 3, as it is expected, considering the color maps in Figure 

7.3.  

 Von Mises stress 
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Figure 7.4 - Graphical representation of the values obtain for the equivalent von Mises stress, for each 

load case. The stress is represented in function of distance between nodes (dx), in millimeters (mm). 
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Notice that in this work, it was considered the 2D plane strain deformation theory. Thus, in 

fact only a thin slice of femur bone (with 1mm thick) was analyzed, in which the total force 

was applied. Therefore, the magnitude of the variable fields do not correspond to the real 

scenario. They are a qualitative representation of the real stress/strain distributions. In order 

to obtain a better approximation, one should divide the value of the obtained variable fields 

by the thickness of the femur bone (which is approximately 30mm to 35mm). After this 

dimensional correction, it is possible to observe that all stress values obtained are below the 

yield/ultimate stress of bone tissue. 

The equivalent strain of the femur bone for each of the load cases is represented in Figure 

7.3. Despite being denser, the cortical bone is capable of supporting lower levels of strain, 

before fracturing, contrarily to the trabecular bone. In case 1, the higher strain is visible in the 

trabecular bone on the femur’s head and neck. In case 2, both trabecular and cortical bone 

experiment high levels of strain, particularly in the shaft and neck of the femur. Also affected, 

the trabecular and cortical bone in case 3 experiment the highest strain mainly in the shaft of 

the femur.  

The results in Figure 7.5.5 shown significant values of displacement in the x component of 

the vector, particularly in point A. In conclusion, the femur experiments the higher 

displacement in case 2, both in the head (Point A) and trochanter (Point B) of the femur. 
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Figure 7.5 - Bar graphs for displacement field, in millimeters (mm), of point A and point B, for each load case. 

The u represents the x component of the displacement vector and v represents y component of displacement 
field. 
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Chapter 8  

Numerical Analysis of Bone Sarcomas in 
the Proximal Femur 

In this chapter, the numerical analysis performed with femoral bone sarcomas will be 

presented. For that reason, a 2D and 3D model of a cancerous femur bone were developed 

based on X-ray images and CT scan, respectively. The aim of this work is to study the influence 

of this type of malignancy in the bone structure, both on a global and local scale. Moreover, 

three numerical methods were used (FEM, NNRPIM and RPIM) not only to compare them and 

understand the level of performance of meshless methods, but also to expand the state-of-art 

of meshless methods. 

8.1 – Numerical Analysis of Two-dimensional Femur Models 

with Bone Sarcomas 

In this section, 12 two-dimensional models of bone sarcomas in the proximal femur were 

developed, in order to understand the effect of size and location of the tumor on the bone 

structure. The generic geometry of model, represented in Figure 8.1(b), was created based on 

radiographs provided by the Hospital Center of Porto (Figure 8.1(a)). 
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Trabecular Bone 
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R
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Figure 8.1 - (a) Anteroposterior radiograph of the femur on the right side of the patient; (b) Representation of 

the geometric femur model with a bone sarcoma located on the shaft. 
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Four different clinical cases of bone sarcomas were analyzed. The tumors assumed an 

elliptical shape and are located in four different areas of the proximal femur, xc, namely, head, 

neck, greater trochanter and body. The 12 two-dimensional models are represented in Figure 

8.2. In the bone sarcomas of each clinical case, the rays R1 and R2 of the ellipse vary, where 

R1=3 mm and R2=5 mm correspond to size 1; R1=5 mm and R2=7 mm correspond to size 2; and 
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Figure 8.2 - Representation of the 12 two-dimensional models of bone sarcomas in the proximal femur.  
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R1=7 mm and R2=9 mm correspond to size 3. Therefore, the defects with a size 1 occupy an 

area of approximately 47 mm2, the ones with a size 2 occupy an area of 110 mm2 and the ones 

with a size 3 have an area of 198 mm2. Finally, the domain of the 12 geometric models was 

discretized into a mesh of 4010 nodes and 7640 triangular elements with an irregular nodal 

distribution, as represented in Figure 8.3(a) and (b). 

The numerical models are constituted by three different materials: cortical bone tissue, 

trabecular bone tissue and bone sarcoma, as observed in Figure 8.3(c). The layer of cortical 

bone presents a maximum thickness of 5 mm. The materials considered have a linear elastic, 

homogenous and isotropic behavior and its mechanical properties are summarized in Table 8.1. 

 

Table 8.1 - Mechanical Properties of the materials [14, 24]. 

  

In this work, a 2D plane strain deformation theory was considered and only a thin slice of 

femur bone (with 1 mm thick) was analyzed, in which the forces were applied. For that reason, 

a representative load case was assumed for a patient weighting 100 kg, based on the first load 

case proposed by Beaupré et. al. [14] and the load case proposed by Kersh et. al. [25] and Lutz 

et. al. [16]. The load case proposed by Beaupré et. al. [14] consists on one parabolic distributed 

load over the joint surface and another parabolic distributed load on the trochanter, 

representing the abductor muscle attachment. On the other hand, the load case proposed by 

Lutz et.al [16] and Kersh et. al. [25] includes the same forces described by Beaupré et. al. [14] 

plus the force exerted by the iliopsoas muscle, with an insertion point in the lesser trochanter. 

Thus, the loads represented in Figure 8.4(c) were later normalized to account for the thickness 

of the femur model. Therefore, each of the forces were divided by the total thickness of the 

femur (which is approximately 30 mm [41]), which results in a more accurate representation of 

the real stress/strain distribution in the bone. An essential boundary condition was also 

imposed, in which all degrees of freedom were constrain at the base of the model, preventing 

Materials Young´s Modulus (E) (MPa) Poisson’s coefficient (υ) 

Cortical Bone 1,70 × 104 0,33 
Trabecular Bone 2,13 × 103 0,30 

Sarcoma 5,84 × 102 0,30 

(a) (b) 

Figure 8.3 - Discretization of the problem domain: (a) nodal mesh; (b) element mesh. 
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its movement. In Figure 8.4(a), (b) and (c) is represented the resultant of each force applied 

and the corresponding direction, as well as the essential boundary condition. 

The results obtained from the computational analysis for the 12 two-dimensional models, 

using three numerical methods, FEM, RPIM and NNRPIM, are presented. In Figure 8.5, Figure 

8.6 and Figure 8.7, it is possible to observe the dispersion color maps of the von Mises effective 

stress (σsef) for FEM, RPIM and NNRPIM, respectively. In Figure 8.8, Figure 8.9 and Figure 8.10, 

the dispersion color maps of the principal stress 1 (σ11) for FEM, RPIM and NNRPIM are 

represented, respectively. Finally, in Figure 8.11, Figure 8.12 and Figure 8.13, it is presented 

the color maps of the principal stress 2 (σ22) for FEM, RPIM and NNRPIM, respectively. 

Through a qualitative analysis, it is possible to observe that, for all clinical cases, the 

highest stress concentrations are present in the cortical bone on the upper right side of the 

femoral diaphysis and upper femoral head. In case A for size 3, the stress levels is higher on 

the upper side of the femoral head. However, contrarily to what was expected, the von Mises 

effective stress presents a tendency to increase with the increase in size of the bone sarcoma, 

regardless of the numerical method used. According to Keyak et. al., a simulated spherical lytic 

lesion in the proximal femur with a diameter smaller than 20 mm will only cause minimal 

reductions in femoral strength [18]. Therefore, considering that all bone sarcomas simulated in 

this work have a diameter smaller than 20 mm, it could explain the tendency of the effective 

stress to increase as the tumor grows in size.  

Nevertheless, it can be noticed that case C, located in the neck of the femur, is the most 

critical due to higher levels of stress, indicating that this case could lead to the fracture of the 

femoral neck. These results are in agreement with other studies [18, 73], where lesions located 

in the femoral neck, particularly inferomedial defects, compromised the bone mechanical 

properties, which may result in transcervical neck fractures of the proximal femur. 
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Figure 8.4 - Representation of the natural and essential boundary conditions: (a) load case described by 

Beaupré et.al. [14]; (b) load case described by Lutz et. al. [16] and Kersh et. al. [25]; (c) loads applied to 
the femur models with bone sarcomas. 
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Figure 8.5 - Color maps of the von Mises effective stress (σsef) of the 12 two-dimensional models, using FEM. 
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Figure 8.6 - Color maps of the von Mises effective stress (σsef) of the 12 two-dimensional models, using RPIM. 
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Figure 8.7 - Color maps of the von Mises effective stress (σsef) of the 12 two-dimensional models, using NNRPIM. 
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Figure 8.8 - Color maps of the principal stress 1 (σ11) of the 12 two-dimensional models, using FEM. 
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Figure 8.9 - Color maps of the principal stress 1 (σ11) of the 12 two-dimensional models, using RPIM. 
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Figure 8.10 - Color maps of the principal stress 1 (σ11) of the 12 two-dimensional models, using NNRPIM. 
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Figure 8.11 - Color maps of the principal stress 2 (σ22) of the 12 two-dimensional models, using FEM. 
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Figure 8.12 - Color maps of the principal stress 2 (σ22) of the 12 two-dimensional models, using RPIM.   
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Figure 8.13 - Color maps of the principal stress 2 (σ22) of the 12 two-dimensional models, using NNRPIM.    
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Regarding the dispersion color maps of principal stress 1 and 2, it is possible to observe 

which type of stress (traction and compression) are present in the different areas of the  

proximal femur in each clinical case. In the cortical bone present on the left side of the femoral 

shaft, the highest tensile stresses can be found, as well as in the cortical bone present in the 

left side of the greater trochanter. These regions of traction are mainly due to the tensile force 

applied to the greater trochanter, which translates the force exerted by the abductor muscles 

at the stage when the foot touches the ground during the cycle of the human gait. With regard 

to compressive stresses, these are present in the cortical bone on the right side of the femoral 

diaphysis and in the superior region of the femoral head. This is mainly due to the compressive 

force exerted on the femoral head caused by the hip joint.   

The tensile stresses (positive stresses) are similar in all clinical cases, regarding the size of 

the bone sarcoma. Except for case B, where the bone sarcoma is located in the greater 

trochanter, which demonstrates an increasing trend of tensile stresses with the increase of the 

size of the bone sarcoma. As with tensile stresses, the compressive stresses (negative stresses) 

are similar in all the clinical cases. The clinical case C, with the sarcoma located on the femoral 

neck, is the case where the highest compressive stresses are observed, as would be expected 

considering the von Mises effective stresses, previously observed. 

In all models, it is also possible to observe tensile and compressive zones in the bone tissue 

surrounding the sarcomas. Ergo, in order to understand the influence of the location of the 

bone sarcoma in the adjacent bone tissue, a set of nodes around the tumor was selected. In 

Figure 8.14 is possible to observe a generic representation of the selected nodes. In Figure 

8.15, Figure 8.16 and Figure 8.17 are graphically presented the results obtained from the von 

Mises effective stress, using FEM, RPIM and NNRPIM, for each of the four areas of interest 

mentioned above. These results demonstrate the stress level along the curved line represented 

in Figure 8.14, starting in point P1 and following the anti-clock direction, P2, P3, P4 and 

finishing in P1. In order to allow a better comparison between the analysis, the length of the 

curve was normalized between 0 and 1, with the expression x ̅=x/L, being x ̅ the normalized 

position on the curve, x the real position on the curve and L the length of the curve. All the 

graphs similar with Figure 8.15, Figure 8.16 and Figure 8.17 from this point forward, respect 

this normalization scheme. 

 

  

a) b) c) d) 

P1 

P2 

P3 

Figure 8.14 - Generic representation of the selected nodes (black line) for all clinical cases: (a) Case A; (B) case 

B; (c) Case C and (d) Case D. 
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Figure 8.15 - Graphical representation of the von Mises stress distribution obtained through FEM for 

the cases of bone sarcomas studied in the four areas of interest.  
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Figure 8.16 - Graphical representation of the von Mises stress distribution obtained through RPIM for 

the cases of bone sarcomas studied in the four areas of interest. 
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The quantitative analysis of the von Mises effective stress demonstrates a similar graphical 

distribution in all sizes of sarcomas, 1, 2 and 3, with RPIM and NNRPIM. However, the graphics 

obtained through FEM present higher values of stress than the ones obtained with meshless 

methods. Nevertheless, a tendency to an increase of stress with the increase of size of the bone 

sarcoma can be observed in all clinical cases. For that reason, the effect of the tumor size in 

adjacent bone tissue will be further discussed later in this subsection. 

Moreover, case A demonstrates the highest levels of effective stress, which vary between 

2,7 (NNRPIM) to 6,5 MPa (FEM). The area of bone tissue most affected is in P1, located in the 

upper side of the femoral head, except in the case using FEM, which demonstrates higher 

stresses near P2. Nonetheless, an agreement can be observed between these results and the 

previous dispersion color maps. Contrarily to case A, the lowest levels of stress are observed in 

case B, particularly between P3 and P4. In this case, the bone tissue in the left side of the 

greater trochanter (P1) is the most affected area. Finally, in case C and D, the effective stress 

increases between P3 to P4, with P4 demonstrating higher values of stress that vary between 

2,5 MPa (RPIM and NNRPIM) to 5,5 MPa (FEM). In both cases, the inferomedial neck and upper 

right side of the diaphysis present high levels of stress, which is in agreement with the 

dispersion color maps observed previously. 

The graphics regarding the principal stress 1 and 2, using FEM, RPIM and NNRPIM, for each 

clinical case are represented in Figure 8.18, Figure 8.19 and Figure 8.20, respectively. Overall, 

meshless methods assume the same graphical distribution, contrarily to FEM, as previously 

observed. The areas with higher tensile stresses occur in P1 (case A) and P3 (case D), indicating 

that these are regions of traction. Also, regarding compressive stresses, P4 is a region of 

compression in case D, while P1 also presents high levels of compressive stresses in case A. In 

case C, the tensile stresses are low, contrarily to compressive stresses which are higher in P4 

Figure 8.17 - Graphical representation of the von Mises stress distribution obtained through NNRPIM 

for the cases of bone sarcomas studied in the four areas of interest. 
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(region of compression). Finally, case B presents the lowest levels of tensile and compressive 

stresses, as previously observed. 

  

Principal stress 1 (σ1) Principal stress 2 (σ2) 

  

 

 

 

 

    

  

Figure 8.18 - Graphical representation of the principal stress 1 and 2 obtained through FEM for the 

cases of bone sarcomas studied in the four areas of interest. 
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Figure 8.19 - Graphical representation of the principal stress 1 and 2 obtained through RPIM for the 

cases of bone sarcomas studied in the four areas of interest. 
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Lastly, to better understand the effect of the sarcoma size in the adjacent bone tissue, the 

maximum values of the von Mises effective stress and principal stress 1, as well as the minimum 

values of the principal stress 2, obtained from the previous graphics, were represented in Figure 

8.21, Figure 8.22 and Figure 8.23, respectively.  
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Figure 8.20 - Graphical representation of the principal stress 1 and 2 obtained through NNRPIM for the 

cases of bone sarcomas studied in the four areas of interest. 
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von Mises stress (σsef) 

  

 

 

 

 

  

Figure 8.21 - Graphical representation of the maximum von Mises effective stress obtained through 

FEM, RPIM and NNRPIM for all clinical cases of bone sarcomas. 

Principal stress 1 (σ1) 

  

 

 

 

 

 

Figure 8.22 - Graphical representation of the maximum principal stress 1 obtained through FEM, RPIM 

and NNRPIM for all clinical cases of bone sarcomas. 
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A difference can be observed in the stress, as the tumor growths, on the results obtained 

with FEM. For meshless methods, the difference is higher for case D. 

Therefore, the location of the maximum effective stresses, principal stress 1 and 2 for each 

clinical case, considering the three different methods used, are represented in Figure 8.24, 

Figure 8.26 and Figure 8.25, respectively.  

Principal stress 2 (σ2) 

  

 

 

 

 

  

Figure 8.23 - Graphical representation of the maximum principal stress 2 obtained through FEM, RPIM 

and NNRPIM for all clinical cases of bone sarcomas. 
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Figure 8.24 - Generic representation of the location of maximum values of the von Mises effective stress 

obtained through FEM, RPIM and NNRPIM, for size 1, 2 and 3 of all clinical cases analyzed. 
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Overall, a similarity between all numerical methods can be perceived. Additionally, in case 

A, the upper side of the femoral head, particularly in the left side of the tumor, occurs the 

highest effective stresses and both compressive and tensile stresses. In case B, the upper left 

side of the trochanter is the area most affected and presents both regions of compression and 

traction. In case C, the inferomedial side of neck is the area most affected by the stresses 

created by the tumor in the femoral neck. Finally, in case D, the region of compression occurs 

on the right side of the shaft for all sizes of the sarcomas, while the region of traction is verified 

in the middle area of the femoral shaft. All these results are in agreement with the ones 

previously observed. 

In conclusion, there is a increasing trend of stresses with the growth of the tumor. However, 

an increase can be seen locally in the bone tissue adjacent to the sarcomas, particularly in the 

inferomedial side of the neck and upper right side of the shaft. Therefore, micro-damages will 

start to form in these areas, as a result of the tumors, and continue to propagate throughout 

the bone, increasing its fragility and possibly creating fractures. Considering the overall effect 

Figure 8.25 - Generic representation of the location of maximum values of the principal stress 2 obtained 

through FEM, RPIM and NNRPIM, for size 1, 2 and 3 of all clinical cases analyzed. 

Figure 8.26 - Generic representation of the location of maximum values of the principal stress 1 obtained 

through FEM, RPIM and NNRPIM, for size 1, 2 and 3 of all clinical cases analyzed. 
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caused by the sarcomas demonstrated in the dispersion color maps, it is possible to speculate 

that the microdamages will most likely lead to the fracture of the femoral neck, as indicated 

in the literature [18, 73, 123]. 

Lastly, a qualitative comparison between the solutions obtained using FEM and meshless 

methods can be done, which denotes a relative similarity between the results obtained, 

particularly in the graphical distributions and dispersion color maps. However, the stress values 

are higher using FEM than RPIM and NNNRPIM. The inequalities between the different numerical 

methods can be justified by differences in the formulations, particularly in the creation of the 

nodal mesh. As previously demonstrated in subsection 4.2, in meshless methods, the nodes are 

randomly distributed, since shape functions are approximated by influence-domains rather than 

elements (FEM), which results in more homogeneous solutions than the ones obtained with FEM. 

Also, the use of tetrahedral elements in FEM creates low quality meshes, negatively impacting 

the final solutions. These results validate the information obtained in literature [5]. 

8.2 – Numerical Analysis of Three-dimensional Femur Models 

with Bone Sarcomas 

 The numerical analysis conducted previously only considered a simplified 2D analysis 

assuming plain strain assumptions. Consequently, to better understand the effect of bone 

sarcomas in the overall volume of the femur, it is required to analyze a three-dimensional 

model of a femur with bone sarcomas. Thus, in this next subsection, 8 three-dimensional models 

of bone sarcomas in the proximal femur were developed based on CT scans provided by the 

Hospital Center of Porto. The generic 3D model, composed by 2172 nodes and 2030 tetrahedral 

elements, is represented in Figure 8.27(a). 

The same clinical cases used for the numerical analysis of the 2D models were, also, 

analyzed in the 3D models. Based on a Matlab routine, the bone sarcomas were developed with 

a circular shape and located in four different areas of the proximal femur, xc, namely head, 

neck, greater trochanter and shaft. In each clinical case, the ray R1 varies, where R1=10 mm 

corresponds to size 1, while size 2 corresponds to R1= 20 mm. Therefore, the defects with a 

Cortical Bone 

Trabecular Bone 

Sarcoma 

a) b) 
Figure 8.27 - (a) Element mesh (b) Representation of the geometric three-dimensional femur model 

with a bone sarcoma located on the femoral head. 
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size 1 occupy an area of approximately 314 mm2 and the ones with a size 2 occupy an area of 

approximately 1256 mm2. The 8 three-dimensional models are represented in Figure 8.28.  

 Regarding the materials, the models are constituted by a layer of cortical bone tissue, a 

layer of trabecular tissue and bone sarcoma, as observed in Figure 8.27(b). The layer of cortical 

bone presents a maximum thickness of 1 mm. The materials considered have a linear elastic, 

homogenous and isotropic behavior and its mechanical properties are summarized in Table 8.2. 

 

Table 8.2 - Mechanical Properties of the materials [14, 24]. 

Materials Young´s Modulus (E) (MPa) Poisson’s coefficient (υ) 

Cortical Bone 1,70 × 104 0,33 
Trabecular Bone 2,13 × 103 0,30 

Sarcoma 5,84 × 102 0,30 

 

The essential and natural boundary conditions applied in the 3D models are also the same 

as the ones described previously for the 2D models. However, in this case, the forces were not 

normalized because it is a three-dimensional model of a proximal femur. Therefore, a 

representative load case was assumed for a patient weighting 100 kg, based on the first load 

case proposed by Beaupré et. al. [14] and the load case proposed by Kersh et. al. [25] and Lutz 

Figure 8.28 - Representation of the 8 three-dimensional models of bone sarcomas in the proximal femur. 
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et. al. [16], described previously in subsection 8.1. An essential boundary condition was also 

imposed, in which all degrees of freedom were constrain at the base of the model, preventing 

its movement. In Figure 8.29(a), (b) and (c) is represented the resultant of each force applied 

and the corresponding direction, as well as the essential boundary condition. 

The results obtained from the computational analysis of the four 3D models, using three 

numerical methods, FEM, RPIM and NNRPIM, are presented. In Figure 8.30, Figure 8.31 and 

Figure 8.32, it is possible to observe the dispersion color maps of the von Mises effective stress 

(σsef) for FEM, RPIM and NNRPIM, respectively. In Figure 8.33, Figure 8.34 and Figure 8.35, the 

dispersion color maps of the principal stress 1 (σ11) for FEM, RPIM and NNRPIM are represented, 

respectively. Finally, in Figure 8.36, Figure 8.37 and Figure 8.38, it is presented the color maps 

of the principal stress 3 (σ33) for FEM, RPIM and NNRPIM, respectively. 

A qualitative analysis of the color maps demonstrates that bone sarcomas have a higher 

impact on cortical bone, as evidenced by the higher values of stress present in it. The trabecular 

bone, however, presents the same stress distribution and values, regardless of the tumor size. 

On the other hand, the growth of the sarcoma does not interfere with the stress values in 

case A and C. For case B, a minimal increase of stress can be observed, with the increase of 

tumor size. For case D, it is possible to observe an increase in stress values between size 1 and 

size 2, with the highest stress values being present in the femoral neck and diaphysis for size 

2. However, for all clinical cases, a difference in the stress pattern can be observed with the 

growth of the bone sarcoma, which indicates that this malignancy does affect the femoral bone 

structure. In all cases, the femoral diaphysis and neck are the areas most significantly affected.   
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Figure 8.29 - Representation of the natural and essential boundary conditions: (a) load case described by 

Beaupré et.al. [14]; (b) load case described by Lutz et. al. [16] and Kersh et. al. [25]; (c) loads applied to the 
femur models with bone sarcomas. 
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Figure 8.30 - Color maps of the von Mises effective stress (σsef) in the cortical and trabecular bone of 

the 8 three-dimensional models, using FEM.   
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Figure 8.31 - Color maps of the von Mises effective stress (σsef) in the cortical and trabecular bone of 

the 8 three-dimensional models, using RPIM.    
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Figure 8.32 - Color maps of the von Mises effective stress (σsef) in the cortical and trabecular bone of 

the 8 three-dimensional models, using NNRPIM.    
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Figure 8.33 - Color maps of the principal stress 1 (σ11) in the cortical and trabecular bone of the 8 

three-dimensional models, using FEM.  
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Figure 8.34 - Color maps of the principal stress 1 (σ11) in the cortical and trabecular bone of the 8 

three-dimensional models, using RPIM.  
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Figure 8.35 - Color maps of the principal stress 1 (σ11) in the cortical and trabecular bone of the 8 

three-dimensional models, using NNRPIM.  
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Figure 8.36 - Color maps of the principal stress 3 (σ33) in the cortical and trabecular bone of the 8 

three-dimensional models, using FEM. 
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Figure 8.37 - Color maps of the principal stress 3 (σ33) in the cortical and trabecular bone of the 8 

three-dimensional models, using RPIM.  
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Figure 8.38 - Color maps of the principal stress 3 (σ33) in the cortical and trabecular bone of the 8 

three-dimensional models, using NNRPIM.  
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Therefore, it can be concluded that case D, where the tumor is located in the femoral shaft, 

is the most critical case and the one that could lead to the fracture of the femoral neck or 

diaphysis. These results are in agreement with the analysis conducted previously with 2D 

models, which evidenced a higher fracture risk for the femoral neck. 

In the dispersion color maps of principal stress 1 and 2, it is possible to observe that the 

greatest tensile stresses can be found in the cortical bone on the left side of the femoral shaft. 

These regions of traction are mainly due to the tensile force applied to the greater trochanter, 

which translates the force exerted by the abductor muscles at the stage when the foot touches 

the ground during the cycle of the human gait. On the other hand, the compressive stresses are 

present in the cortical bone on the right side of the femoral diaphysis up to the inferomedial 

neck as well as in the upper region of the femoral head. This is mainly due to the compressive 

force exerted on the femoral head caused by the hip joint. 

As previously demonstrated in the 2D models, the tensile stresses (positive stresses) are 

similar in all clinical cases, regardless of the size of the bone sarcoma. Contrarily, the 

compressive stresses (negative stresses) are similar in case A and C. However, in case B and D, 

the compressive stresses increase with the tumor size, with case D demonstrating the highest 

compressive stresses, as would be expected considering the von Mises effective stresses, 

previously observed. Relatively to the bone tissue surrounding the bone sarcoma, it can be 

noticed a minimal effect, which will be further detailed. 

After the qualitative analysis, 4 areas of interest were selected and are represented in 

Figure 8.39. Thus, five points of interest were selected in these zones to perceive which is the 

most affected in each clinical case. It was analyzed the von Mises effective tension, the 

principal tension 1 and principal tension 3 for each point of interest, using different methods: 

FEM, RPIM and NNRPIM. In Figure 8.40, Figure 8.41, Figure 8.42 and Figure 8.43 are graphically 

presented the results obtained from the von Mises effective stress for all clinical cases studied. 

  
Z1 

Z2 

Z3 Z4 

Figure 8.39 – Representation of the zones (red circles) where the points of interest were selected. 



 

105 

 

Zone 1 

von Mises stress (σsef) 

  

 
 

 
  

Figure 8.40 – Graphic representation of the von Mises effective stress obtained through FEM, RPIM and NNRPIM, 

for all clinical cases studied in zone of interest 1.  
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Figure 8.41 - Graphic representation of the von Mises effective stress obtained through FEM, RPIM and 

NNRPIM, for all clinical cases studied in zone of interest 2.  
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Figure 8.42 - Graphic representation of the von Mises effective stress obtained through FEM, RPIM and 

NNRPIM, for all clinical cases studied in zone of interest 3.  

Figure 8.43- Graphic representation of the von Mises effective stress obtained through FEM, RPIM and 

NNRPIM, for all clinical cases studied in zone of interest 4.  
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Figure 8.44 - Graphic representation of the principal stress 1 and 3 obtained through FEM, RPIM and 

NNRPIM, for all clinical cases studied in zone of interest 1.  
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Figure 8.45 - Graphic representation of the principal stress 1 and 3 obtained through FEM, RPIM and 

NNRPIM, for all clinical cases studied in zone of interest 2.  
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Figure 8.46 - Graphic representation of the principal stress 1 and 3 obtained through FEM, RPIM and 

NNRPIM, for all clinical cases studied in zone of interest 3.  
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Figure 8.47 - Graphic representation of the principal stress 1 and 3 obtained through FEM, RPIM and 

NNRPIM, for all clinical cases studied in zone of interest 4.  
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In zone 1, 3 and 4, it is possible to notice that, for all clinical cases, the size of the sarcoma 

does not influence the increase in stress. When comparing these zones, the highest stresses are 

present in zone 3 and vary between 30-35 MPa in all clinical cases. However, all the cases 

studied for this area have an identical stress that is not significantly affected by the increase 

in size of the bone sarcoma. The zone 1, located in the femoral head, demonstrates the lowest 

values of stress, which vary between 20-30 MPa. Nevertheless, a tendency to an increase in 

stress is observed for case A with the increase in the tumor size (in this area of interest).  In 

zone 4, case C and D have the highest stress values, but the stress is identical regardless of the 

tumor size. Finally, the maximum stress values, of approximately 40 MPa, are present in zone 

2 of case B, size 2, where an increase in stress can be noticed with the growth of the sarcoma. 

The same can be observed for case D (also in zone 2),  where the tumor size induces an increase 

in stress, demonstrating the highest stress value, of approximately 38 MPa,  in size 2. 

In Figure 8.44, Figure 8.45, Figure 8.46 and Figure 8.47, the results obtained for principal 

stress 1 and principal stress 3 can be observed. Overall, it is possible to observe that zone 1, 2 

and 3 are regions of compression (higher negative values of principal stress 3) and zone 4 is a 

region of traction (higher values of principal stress 1), which is in agreement with the literature 

[140]. In zone 1, 3 and 4, it can be verified that for all cases, the compression stresses are 

identical, independently of the tumor size. Contrarily, in zone 2, an increase in stress with the 

increase of the sarcoma size can be observed, with the exception of case A. 

In order to understand the effect of the bone sarcoma in the surrounding bone tissue, a set 

of nodes around the tumors were selected. In Figure 8.48 is possible to observe a generic 

representation of the selected nodes. For each clinical case, it was analyzed the von Mises 

effective stress, the principal stress 1 and principal stress 2 for each of the four areas of 

interest, using different methods: FEM, RPIM and NNRPIM. In Figure 8.49, Figure 8.50, Figure 

8.51 and Figure 8.52 are graphically presented the results obtained from the von Mises effective 

stress for all clinical cases studied, for each of the four areas of interest mentioned above. 

  

Figure 8.48 - Generic representation of the selected nodes (black line) for all clinical cases: (a) Case A; 

(B) case B; (c) Case C and (d) Case D. 
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von Mises stress (σsef) 

  

 
 

 
  Figure 8.49 - Graphical representation of the von Mises effective stress obtained through FEM for the 

cases of bone sarcomas studied in the four areas of interest. 

von Mises stress (σsef) 

  
 

 
 

 
  

Figure 8.50 - Graphical representation of the von Mises effective stress obtained through RPIM for the 

cases of bone sarcomas studied in the four areas of interest. 
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The quantitative analysis of the von Mises effective stress demonstrates a similar graphical 

distribution in all sizes of sarcomas, with FEM and meshless methods. An increase of stress with 

the increase of size of the bone sarcoma can be observed in all clinical cases.  

Moreover, case B demonstrates the highest levels of effective stress, which vary between 

20 MPa (FEM) to 30 MPa MPa (RPIM), except for case A, using NNRPIM, which demonstrates 

higher values of stress than case B. The area of bone tissue most affected is P4, which is near 

the femoral neck. The lowest levels of stress are observed in case C, particularly in P1. In this 

case, the bone tissue in the greater trochanter is the most affected area (area between P3 and 

P4 for size 2 and P2 for size 1). Finally, in case D, the effective stress increases in P4, 

demonstrating higher values of stress of approximately 10 MPa. These results are in agreement 

with the previous color maps, which demonstrates that the femoral neck and right side of the 

diaphysis are the areas most affected by the bone sarcomas. 

The graphics regarding the principal stress 1 and 3, using FEM, RPIM and NNRPIM, for each 

clinical case are represented in Figure 8.52, Figure 8.53 and Figure 8.54, respectively. Overall, 

meshless methods and FEM assume the same graphical distribution. The areas with higher 

tensile stresses occur in P2 (case A) and P3 (case D), indicating that these are regions of 

traction. Also, regarding compressive stresses, P4 is a region of compression in case A, B and D 

(size 2), while P2 presents high levels of compressive stresses in case C, for size 1. Finally, case 

B presents the lowest levels of tensile stresses, while case C demonstrates lower levels of 

compressive stresses.  

von Mises stress (σsef) 

  
 

 
 

 
  

Figure 8.51 - Graphical representation of the von Mises effective stress obtained through NNRPIM for 

the cases of bone sarcomas studied in the four areas of interest. 

0.0

5.0

10.0

15.0

20.0

25.0

0 0.2 0.4 0.6 0.8 1

σ
s e

f 
(M

P
a
)

Perimeter 

Case A

Size 1 Size 2

0.0

2.0

4.0

6.0

8.0

10.0

0 0.2 0.4 0.6 0.8 1

σ
s e

f 
(M

P
a
)

Perimeter 

Case B

Size 1 Size 2

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 0.2 0.4 0.6 0.8 1

σ
s e

f 
(M

P
a
)

Perimeter 

Case C

Size 1 Size 2

-0.2

0.8

1.8

2.8

3.8

4.8

5.8

0 0.2 0.4 0.6 0.8 1

σ
s e

f 
(M

P
a
)

Perimeter 

Case D

Size 1 Size 2

P1 
P2 P3 

P4 

P1 

P1 

P2 

P3 
P4 

P1 
P1 

P2 

P3 

P4 

P1 

P1 P2 
P3 

P4 

P1 



 

114 

 

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

0 0.2 0.4 0.6 0.8 1

σ
1
1
 (
M

P
a
)

Perimeter 

Case A

Size 1 Size 2

 
  

Principal stress 1 (σ11) Principal stress 3 (σ33) 

  
 

 
 

 

    

 

 

Figure 8.52 - Graphical representation of the principal stress 1 and 3 obtained through FEM for the 

cases of bone sarcomas studied in the four areas of interest. 
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Figure 8.53 - Graphical representation of the principal stress 1 and 3 obtained through RPIM for the 

cases of bone sarcomas studied in the four areas of interest. 
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Figure 8.54 - Graphical representation of the principal stress 1 and 3 obtained through NNRPIM for the 

cases of bone sarcomas studied in the four areas of interest. 
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In conclusion, case A and C demonstrate minimal changes in stress with the increase of the 

sarcoma size. However, there is an increase of stress with the growth of the tumor in case B 

and D, both on a local and global scale, particularly in the inferomedial side of the neck and 

upper right side of the shaft. Therefore, these areas are more likely to occur micro-damages, 

as a result of the tumors, and continue to propagate throughout the bone, increasing its fragility 

and possibly creating fractures. These results are in agreement with the ones obtained for the 

2D model, which evidence the formation of microdamages and possible fracture of the femoral 

neck. 

At last, when comparing the numerical methods, it is possible to observe that a relative 

similarity between the results obtained, particularly in the graphical distributions and 

dispersion color maps. However, as previously explained, differences in formulations and the 

type of elements used can cause inequalities between the different numerical methods, which 

validate the information obtained in literature [5]. 
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Chapter 9  

 

Conclusions and Future Work 

 

The bone is a dynamic tissue in constant remodeling in response to biological and 

mechanical stimulus. However, pathological changes can occur to its structure as a result of a 

disease, such as bone sarcomas, which increases its susceptibility to fracture. 

Bone sarcomas are rare primary malignant tumors that originate in the bone and affect, 

mainly, children and young adults. The most common types are osteosarcoma, chondrosarcoma 

and Ewing’s sarcoma. However, despite being a rare condition, the incidence rate for these 

type of tumors is rising as life expectancy becomes higher in developed countries. Another 

important factor is the bone growth rate. Long bones, such as the femur, are more likely to 

develop this type of malignancy, particularly in the metaphyses, where the growth rate is 

maximum during adolescence. Nevertheless, recent improvements in treatments have 

increased the survival rates, but the late effects have a negative impact in the health of the 

patient. As a result, the bone cancer survivals report several physical limitations that 

compromise its social and economic environment. In the literature, the majority of studies 

considers bone metastatic cancer instead of bone sarcomas, reporting reduced bone strength 

and changes in its mechanical properties. Thus, a review of the literature demonstrate that 

there are still several unanswered questions related to the effect of bone sarcomas, in this 

case, in the proximal femur, which makes it crucial to understand the biomechanical effect of 

these tumors on the bone.  

Therefore, the main purpose of this work is to simulate and analyze the effect of bone 

sarcomas in the proximal femur using advanced discretization techniques, such as FEM and 

meshless methods (RPIM and NNRPIM). Another goal is to validate the meshless methods as a 

way of simulating and studying the effect of bone sarcomas on the proximal femur. 

Thus, a preliminary work was initially developed, where a proximal femur model was used 

to evaluate the biomechanical behavior of the bone in a healthy condition. For that reason, a 

linear elastic two-dimensional analysis was performed, where the stress and strain distribution 

throughout the bone was evaluated. Overall, the results demonstrate higher stresses in the 

shaft of the femur, particularly in the cortical bone. Relatively to the deformation, the cortical 

and trabecular bone in the shaft and neck of the femur presented significant deformations. 
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This preliminary work allowed to acquire the necessary competences in computational tools, 

namely image processing and numerical simulation software using advanced discretization 

techniques (finite element methods and meshless methods). 

Additionally, the effect of bone sarcomas on the proximal femoral structure was evaluated 

with a 2D and 3D model. In the two numerical studies, four different clinical cases of bone 

sarcomas were simulated with different sizes. In the two-dimensional approach, the sarcomas 

were simulated on the femoral head, neck, greater trochanter and shaft and assumed an 

elliptical shape with three different sizes. In the three-dimensional approach, the same clinical 

cases were analyzed but only two sizes were considered. However, in both cases, the 

biomechanical analysis was conducted using FEM, RPIM and NNRPIM, in order to compare these 

methods and validate the use of meshless methods to simulate bone sarcomas. The results 

obtained demonstrated a local influence of the sarcoma in the surrounding bone tissue, with 

the tumor growth, particularly in the inferomedial side of the neck and upper right side of the 

shaft. When considering the global effect of these tumors, the results demonstrated higher 

stresses in the femoral neck which may result in the formation of microdamages and possible 

fracture. In the future, it would be interesting to test a real femur with bone sarcomas and 

compare the results with the ones obtained in this study. 

Finally, the results obtained allowed to conclude that meshless methods can be used to 

simulate bone sarcomas and result in smother stress fields than FEM. However, this study 

presented some significant limitations. The most evident is the simplification of the two-

dimensional and three-dimensional models in order to reduce the number of nodes and 

elements. Although, it is possible to analyze models with more nodes using FEM and meshless 

methods, RPIM and NNRPIM, the computational power that would be required to obtain the 

same level of discretization would be increased considerably. In addition, as an essential 

boundary condition, the femoral bone was fixed in the middle shaft, which causes increasing 

artificial stiffness as it approaches the attachment region. This work used mechanical 

properties for metastatic bone cancer instead of bone sarcomas. However, the literature did 

not report the mechanical conditions for bone sarcomas. Therefore, the mechanical properties 

of metastatic bone cancer were approximated to bone sarcomas, despite having different 

physiologies.  
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