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Resumo

O objectivo deste trabalho é propor uma abordagem de baixo custo e independente do GPS para
localização em redes veiculares. A localização de veículos é um aspecto de extrema importân-
cia em sistemas de transporte inteligentes, que por sua vez desempenham um papel fundamental
no futuro da mobilidade. O GPS é a solução mais amplamente conhecida e usada para veícu-
los rodoviários em ambientes exteriores. No entanto, esta opção apresenta algumas limitações,
nomeadamente erros elevados em ambientes com propagação multi-percurso e situações de falta
de visibilidade para os satélites, como acontece por exemplo em túneis, centros urbanos com
grande densidade de prédios altos e parques de estacionamento subterrâneos. Embora diversas
fontes de informação possam ser combinadas com vista a aumentar o desempenho do sistema,
a maioria dos métodos propostos são, contudo, significativamente dependentes do GPS. As al-
terativas geralmente requerem equipamentos ou infra-estruturas de custos elevados, ou ainda um
elevado esforço de mapeamento de grandes áreas. Neste trabalho, propomos uma abordagem ao
problema tanto numa perspectiva cooperativa como numa perspectiva individual.

Considerando um cenário colaborativo, aproveitamos as comunicações entre veículos, per-
mitindo a estes últimos estimar ou melhorar a sua posição usando como âncoras de posiciona-
mento os vizinhos mais próximos, que poderão ser eles próprios veículos com uma incerteza de
localização associada. Assumindo que os veículos estão equipados com o protocolo 802.11p e
sensores inerciais de baixo custo, aplicamos um filtro de Bayes com duas etapas para localizar o
veículo ao longo do tempo: 1) um filtro de Kalman não linear para estimar o sentido do desloca-
mento e 2) um filtro de partículas que faz a fusão de diversas fontes de informação, nomeadamente
indicação da potência do sinal recebido das comunicações entre veículos, usando-os como ânco-
ras de posicionamento móveis e com posições incertas, velocidade, posição GPS e informação
dos mapas. A nossa abordagem cooperativa conduz a um robusto sistema de posicionamento
ao longo do tempo, capaz de fornecer informações úteis de localização mesmo na ausência de
dados de GPS no veículo. O desempenho do algoritmo é avaliado com dados reais, recolhidos
em quatro veículos capazes de comunicar entre si durante uma viagem em ambiente urbano com
condições normais de tráfego. São consideradas diferentes combinações das fontes de informação
e é incluída uma análise de condições adequadas para a utilização das âncoras de posicionamento.
Estas experiências servem como uma prova de conceito à abordagem proposta.

Relativamente à localização individual de veículos, a informação magnética é frequentemente
utilizada para efeitos de orientação em sistemas de navegação rodoviários. No entanto, fortes
campos magnéticos locais causados por infra-estruturas presentes nas estradas são adicionados
ao campo magnético terrestre, criando anomalias. Propomos neste trabalho: 1) um algoritmo de
detecção que faz uso de janelas espaciais para processar séries temporais e aplica um conjunto
de métodos de aprendizagem para classificação binária de anomalias em cada janela; e 2) um
método de correspondência entre as anomalias recolhidas e as de referência, através da aplicação
de um algoritmo baseado no centróide mais próximo (one nearest centroid) usando dynamic time
warping para alinhamento e comparação entre séries temporais, e incluindo ainda diretrizes para
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recolha e armazenamento das anomalias de referência. Ambos os passos são testados com dados
reais recolhidos por smartphones comuns e usando equipamentos heterogéneos, demonstrando
desta forma a viabilidade do conceito em cenários especialmente desafiantes, chegando a atingir
uma detecção ao nível da faixa de rodagem. O conceito de posicionamento baseado em pontos
de referência magnéticos que propomos, pode ser usado para evitar a propagação do erro em
sistemas de navegação estimada (dead-reckoning), aumentando desta forma o seu desempenho.
Sistemas de posicionamento baseados em satélites podem ainda expandir a sua área de cobertura
e providenciar melhores resultados em áreas com conhecidas limitações.

As nossas contribuições podem ser usadas de forma independente: a primeira focando-se na
cooperação entre os nós da rede independentemente da forma como cada um destes obteve a
sua informação de posicionamento, e a segunda aplicada localmente a cada veículo. As aborda-
gens propostas poderão ainda ser combinadas entre si, explorando sinergias para providenciar aos
veículos localização cooperativa e independente do GPS. 1

1Nota: Este texto é escrito ao abrigo do antigo acordo ortográfico.



Abstract

Vehicle localization is an aspect of utmost relevance in intelligent transportation systems, which
in turn play a key role in the future of mobility. GPS is the most widespread and commonly used
solution for road vehicles in outdoor scenarios. However, it presents limitations, namely exhibit-
ing large position errors in multipath environments and non-line-of-sight satellite conditions, e.g.
tunnels, urban canyons, multilevel roads, and underground parking. Although several informa-
tion sources can be combined for improved performance, most proposed methods are nonetheless
heavily dependent on GPS. Alternatives usually require costly equipment, deploying infrastructure
or a heavy mapping phase. The aim of this thesis is to propose a low-cost and GPS-independent
localization approach for vehicular networks. We consider this problem from both cooperative
and individual perspectives.

Regarding our cooperative scenario, we leverage vehicle communications by allowing vehi-
cles to estimate or improve their position using one-hop neighbors with uncertain locations as
anchors. Assuming vehicles are equipped with 802.11p wireless interfaces and low-cost inertial
sensors, we employ a two-stage Bayesian filter to track their position: 1) an unscented Kalman
filter for heading estimation, and 2) a particle filter that fuses vehicle-to-vehicle signal strength
measurements received from mobile anchors, with velocity, GPS position, and map information.
Our cooperative approach leads to a robust tracking system that is able to provide useful location
information even in the absence of GPS data in the ego vehicle. We evaluate its performance us-
ing real-world measurements collected from four communicating vehicles in regular urban traffic
conditions, considering different combinations of information sources, and providing an analysis
of suitable anchor conditions. These experiments serve as a proof-of-concept for our approach.

Considering individual vehicle localization, magnetic information is frequently used for ori-
entation purposes in navigation systems. However, strong local magnetic fields caused by road
infrastructure add to the geomagnetic field, creating anomalies. We show that these present sig-
natures for specific paths that can be leveraged for localization purposes, as magnetic landmarks.
We propose: 1) a detection algorithm that uses a space-based window to process the time se-
ries and applies an ensemble method for anomaly binary classification of each window; and 2) a
matching method that employs one nearest centroid algorithm with dynamic time warping, and
includes guidelines for collecting and storing references. Both steps are evaluated with real-world
data collected with off-the-shelf smartphones in challenging scenarios, showing the feasibility of
the concept with diverse equipment, even for lane detection. Magnetic landmarks may be used to
correct dead reckoning cumulative errors, increasing accuracy and reliability, or be combined with
satellite-based systems, improving their localization performance in areas with known limitations.

The proposed approaches can be used independently since the first one focuses on coopera-
tion among nodes, regardless of how each one obtains its location information, whereas the sec-
ond is concerned with the individual location of a single vehicle. Our contributions may also be
combined, exploring synergies to provide cooperative and GPS-independent localization for road
vehicles.
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Chapter 1

Introduction

Mobility plays a key role in today’s world, yet its limitations bring very significant problems

for society such as traffic congestion, pollution, and road accidents that may result in injuries or

fatalities. Vehicles are equipped with various sensors as well as good computation capabilities,

with the purpose of providing a comfortable and safe driving experience [1]. While they allow

the driver to be aware of the current vehicle status and offer several protection mechanisms, those

benefits are individual for each vehicle and so have limitations. Intelligent transportation systems

are taking a groundbreaking step towards a solution, using recent developments in technologies

such as mobile computing, wireless communications, and remote sensing. Vehicles able to collect

information about themselves and the surrounding environment take it to the next level by sharing

that information with their neighbors, creating large cooperative networks. Communications will

most likely become commonplace or even mandatory in future vehicles (e.g. in Europe [2, 3]).

Vehicular ad hoc networks (VANETs) are a promising technology to provide reliable solutions for

many of the current problems in traffic and enable interesting new user applications [4]. Networks

of vehicles exchanging information with each other and the infrastructure are already a reality

for citizens in their everyday lives. For example, in the city of Porto, Portugal, more than 600

vehicles including buses, taxis and municipal service vehicles are connected, providing free WiFi

access for bus passengers and gathering urban data for smart city applications [5]. Internet access,

multimedia sharing, dissemination of road information, autonomous vehicles, enhanced driver

assistance, cooperative driving, cooperative cruise control, and vehicle collision warning are some

interesting examples of possible applications enabled or enhanced by this VANET scenario [6, 7].

They all ultimately belong to one or more of the three following categories: transportation safety,

transportation efficiency, and user services [1].

Most of the aforementioned applications require or benefit from knowing the location of the

vehicles [8, 9]. Localization of vehicles is a broad topic. In many cases, such as geographic

information dissemination, traffic control, or automatic positioning of accidents, global position

information is crucial, while in other situations, such as security distance warning, it is the rel-

ative position between vehicles that is needed [10]. Also, different applications have distinct

requirements in terms of accuracy [6, 11]. However, it is important to note that the performance

1
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of a localization system is not exclusively about reached accuracy, but also concerns provided

integrity, continuity of service, and availability [12]. While accuracy refers to the closeness of

the estimation to the real values, integrity gives a measure of how trustworthy the information is.

Continuity of service is the system’s probability of continuously providing the intended service

during the planned working period, and availability provides the percentage of the coverage area

in which the system works.

The most widely used localization solution for road vehicles nowadays is given by Global

Navigation Satellite Systems (GNSS) [9], mainly USA’s Global Positioning System (GPS). In

this thesis, we mention only GPS for simplicity, without loss of generality, since it is both the

most used satellite system and a commonly applied non-technical term to designate a global po-

sition obtained by general satellite systems (for details on satellite based location please refer

to Section 2.1.1). GPS provides 3D global position (latitude, longitude and altitude), speed and

heading estimations with good availability in outdoor environments. However, this type of solu-

tion also has some limitations. The accuracy varies with the number of visible satellites, with their

geometry, and with the presence of obstacles disturbing or blocking the signals, including build-

ings and trees. Consequently, it exhibits large position errors and sometimes ceases to work in

multipath environments and non-line-of-sight satellite conditions, e.g. dense urban environments

(frequently designated as urban canyons), tunnels, bridges, and indoor or underground areas like

vehicle parks [8]. It does not guarantee enough robustness for many critical applications [6, 9].

For these reasons, it is not adequate to be solely used as a localization solution [13]. In addition,

information redundancy is beneficial for integrity and security reasons [8]. Therefore, alternative

sources of information are required and should be explored in order to provide better performance

for localization systems [13].

Thesis Statement

It is possible to improve the performance of outdoor localization systems for road vehicles

and provide an alternative to GPS in geographic contexts where it presents limitations, by lever-

aging communication in vehicular networks, available sensors from ubiquitous equipment (e.g.

smartphones) and existing road infrastructure.

1.1 Problem Formulation

In this work, we consider the following real-world scenario that involves a set of road vehicles

and optional road side units (RSUs), deployed in the area of interest, as illustrated in Fig. 1.1. We

assume all vehicles are equipped with 802.11p connectivity and on-board sensors, including an

accelerometer, a gyroscope and a magnetometer. The 802.11p connectivity allows wireless access

in vehicular environments, enabling the vehicles to communicate with each other (V2V) and with

the RSUs (V2I). The sensors can be low-cost, for example from the driver’s smartphone. We also

assume that each vehicle has access to its own speed information, estimated from the on-board

sensors or from a different source, such as an OBD (on-board diagnostics) device or GPS receiver.
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Figure 1.1: System scenario: a set of road vehicles with 802.11p communication capabilities and
on-board sensors.

The ultimate goal of the localization problem in a vehicular network is for all vehicles to

know and track their own location. We are not interested in overly expensive solutions that, while

technically possible, are not feasible or practical to employ on a large scale. Therefore, it is very

important to leverage easily accessible or existing equipment and infrastructure. It is also relevant

for our solution to provide reliable localization in cases of GPS loss and GPS denied environments.

We assume GPS and maps might be available and are integrated in our model making it more

robust. However, they are not required for the solution to work.

Our main goal is to devise a GPS-independent localization system for road vehicles, without

requiring specific infrastructure or high cost equipment. This system should be compatible with

existing ones so that combined approaches result in improved performance. The work developed

to achieve this goal explores communications in vehicular networks and low-cost smartphone

sensors. These two aspects set the stage for the two pillars of our work: cooperation and individual

localization. We address each of them separately.

1.1.1 Cooperative Approach

In the first part of our work, we focus on a cooperative approach for localization in VANETs. We

define cooperation in our context of vehicle localization, highlight both its great potential and the

associated challenges.

Typical localization techniques based on the concept of anchors, consider these as nodes that

know their exact location and share this information with others to help them estimate their own

positions. By exchanging information with anchors, but not among themselves, regular nodes are

able to learn their relative positions with respect to the anchors, and consequently their own lo-

cations. The major limitation of this approach is that in order to be applied with full coverage,

allowing all nodes in an area to rely on anchors for localization, either high density of anchors
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or long-range anchor transmission is required [14]. In vehicular networks, RSUs, also designated

as base stations, are used as anchors and the communication range of 802.11p is up to 1000 me-

ters [1]. Obstructions between vehicles and anchors, including other vehicles traveling on the

road [15], create non-line-of-sight conditions reducing this range in real scenarios. Therefore,

urban environments typically present a communication range of few hundreds of meters [16], de-

pending on the conditions. In this context, deploying a whole network in which any node has

enough anchors at reach at all times is highly costly. On the other hand, lower anchor density

does not provide enough accuracy or coverage. Cooperative localization arises as an alternative

approach to overcome this limitation [17].

The principle of cooperation is that all nodes can contribute to global improvement by sharing

useful information with each other. In localization, even without a node’s full knowledge of its

global position, data such as the estimate of a node’s location with the respective uncertainty, its

neighbors (nodes at its reach) and its relative position to them, adds new information to the system,

leading to superior positioning performance without the need for all regular nodes to be within

communication range of fixed anchors [18]. VANETs can highly benefit from these collaborative

approaches since vehicles typically have a much higher density on roads than RSUs, making

it easier for any vehicle to have several nodes at a short distance. However, using cooperation

among connected vehicles presents several challenges, e.g. in terms of scalability, propagation

and mobility conditions [19], privacy and security [7].

In real traffic systems, there are thousands of vehicles in the same area creating a very large and

highly mobile network of nodes with heterogeneous and imperfect information, imposing signif-

icant opportunities and challenges. A relevant element concerns the architecture of the solution.

While offering easier algorithm design and usually better estimation accuracy [20], centralized

approaches present scalability problems. In networks with high number of nodes, a centralized

setting with a single fusion center is inefficient for the task due to limited computational and com-

munication capacities [21]. A distributed scheme enables a more flexible and scalable solution for

dealing with dynamic vehicle networks, by handling information locally and processing it in the

vehicle itself, spreading the computational burden among the vehicles. Nonetheless, distributed

algorithms exhibit different issues, such as how to perform efficient message dissemination un-

der bandwidth limitations. Vehicles also have to deal with the lack of perfect information, data

association uncertainties, coordinate transformations, scalability, and avoid the over convergence

problem that may arise from error propagation from multiple iterations due to inter-estimate cor-

relation [21, 22]. Another factor to take into account in this context is the time it takes to reach

a stable value, since the process cannot take longer than what is acceptable in these types of

dynamic networks with high mobility patterns [20]. Several approaches address distributed coop-

erative localization, proposing novel paths towards a solution, but the complex and large nature of

the challenges makes this an active topic in the research community.
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1.1.2 Magnetic-Based Individual Localization

Cooperative localization has great potential but depends on the quality of the information each

node has to share with its neighbors. In outdoor vehicle localization, individual information is

usually based on GPS. Frequent availability with line of sight to the satellites, considering tempo-

rary exceptions due to multiplath or shadowing [12], is usually assumed. Methods often combine

satellite-based information with augmentation systems and/or other sources of information, such

as inertial sensors and road maps, to improve the performance, especially in those critical areas,

making the estimation more accurate and robust. While these assumptions are reasonable for typ-

ical conditions, the solutions based on them are not suitable for special scenarios with permanent

absence of GPS or frequent and prolonged periods with imperfect conditions. Our work on indi-

vidual localization is particularly focused on these challenging scenarios, being nonetheless useful

for regular conditions.

Road vehicle localization solutions independent from GPS often require costly infrastructure

installations or expensive equipment for the mobile node, preventing an efficient large scale im-

plementation. Although indoor localization consists in a different scenario with distinct require-

ments and context, as a GPS denied environment it can be a good source of inspiration to develop

strategies for this purpose [23, 24]. Yet, it is important to note that, since buildings are a well

limited area, it is easier and more acceptable in such scenarios to propose solutions that require a

very detailed mapping or installing infrastructure. Magnetic information is frequently used jointly

with inertial sensors for orientation estimation in numerous scenarios, including indoor pedestrian

tracking and outdoors road navigation. Inside buildings, however, existing metallic structures

distort the magnetic field, making it difficult to accurately estimate orientation. Magnetic finger-

printing leverages those distortions. A detailed magnetic map of the whole building is recorded,

taking advantage of existing structures that distort the magnetic field in particular ways in different

locations, stable in time, allowing their identification and the consequent tracking of a person or

object by continuously measuring the magnetic field through their path.

Magnetic data in road vehicle localization is extensively used for orientation purposes, despite

the occasional strong local magnetic fields caused by road infrastructures that add to the Earth’s

magnetic field, creating anomalies. These anomalies are significantly less frequent than in indoor

environments. There are a few methods proposing embedded magnetic markers on roads, but de-

ploying infrastructure is quite expensive. Moreover, mapping in detail a large area, e.g. a whole

city implies a very high effort. Both would seem unnecessary, especially when GPS already pro-

vides near global coverage. The concept of opportunistic magnetic fingerprinting was therefore

rarely applied outdoors. We explore how to leverage these anomalies caused by local magnetic

fields as magnetic landmarks, taking advantage of easily available magnetic data from low-cost

sensors to provide useful location information in road vehicular scenarios. We don’t require in-

frastructure deployment and significantly reduce the mapping effort by focusing on opportunistic

locations where distortions are very high. This additional source of information can be very use-

ful to improve reliability and accuracy of localization systems, for example reset dead reckoning
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cumulative errors or provide an alternative in environments where satellite-based solutions have

limitations, increasing availability and continuity of service.

1.2 Main Contributions

The key research question addressed in this work is how to leverage vehicle communications,

low-cost equipment and existing road infrastructure in order to improve localization performance

in vehicular networks and provide an alternative in GPS limited or denied environments. In the

first part of our work, we focus on the cooperation among vehicles and propose a location tracking

approach, allowing vehicles to estimate or improve their position using information shared by one-

hop neighbors with uncertain locations. This work, presented in Chapter 3, has been peer-reviewed

and published at IEEE Transactions on Intelligent Transportation Systems [25]. The second part

of our work focuses on providing individual vehicle localization independent from GPS by using

ubiquitous sensors (e.g. smartphones). We take advantage of easily available magnetic data,

detecting anomalies created by road infrastructure and using them as signatures to provide useful

location information. This work, presented in Chapter 4, is under review for IEEE Transactions on

Vehicular Technology with the title MagLand: Magnetic Landmarks for Road Vehicle Localization

and on the process of submitting a request for protection of intellectual property.

Our main contributions can be summarized as follows:

1. a new neighbor-aided localization and tracking approach using moving vehicles with uncer-

tain positions as anchors and proposing suitable V2V anchor conditions;

2. a distributed inference algorithm adequate for large-scale vehicular networks, fusing in a

particle filter V2V signal strength measurements, GPS positions, inertial data from a smart-

phone, and map information;

3. evaluation of proposed approach using real-world data in a challenging urban scenario with

quality assessment for flexible combinations of the location information sources, including

the lack of GPS information in the ego vehicle;

4. a proposal for individual localization in outdoor scenarios using magnetic landmarks by

exploring strong local magnetic fields created by road infrastructure that are regarded as

anomalies from an orientation perspective and can act as signatures for a particular path;

5. a method for detecting magnetic anomalies, including data pre-processing, feature engineer-

ing and a binary classifier;

6. a method for matching magnetic anomalies, including feature engineering and a classifier,

complemented with a process to collect and save instances for reference;

7. evaluation of classification performance for both steps with sensor data collected in field

trials including challenging real scenarios.



1.3 Thesis Outline 7

1.3 Thesis Outline

The rest of the document is organized as follows.

Chapter 2
In this chapter, we offer an overview of wireless positioning techniques with a particular focus

on road vehicular scenarios, comprising different sources of information used for location estima-

tion, methods for information fusion, and performance evaluation. This is followed by a section

with a critical state of the art on cooperative approaches for localization in vehicular networks, rel-

ative to the work presented in Chapter 3. The last section addresses GPS independent localization

methods, giving special attention to the ones based on magnetic information, providing related

work concerning the approach described in Chapter 4.

Chapter 3
Our proposed cooperative approach is explained in this chapter. We begin by detailing the

path-loss model used to extract range information from the strength of the received signal, and then

derive fundamental statistical limits on the location error characteristics. We describe our proposed

Bayesian inference algorithm and the corresponding state space model for vehicle tracking. As

a proof-of-concept, we conduct experiments with collected data on a real scenario, providing an

analysis for its performance.

Chapter 4
This chapter concerns the individual localization approach based on magnetic landmarks:

MagLand. We propose a classification method for the first step, the detection, and the second

step, the identification of the magnetic anomalies, using matching and including also a procedure

to collect and save anomalies for reference. We evaluate the performance of both steps with real

data on challenging scenarios.

Chapter 5
We offer an integrated discussion about all the presented work, including strengths, limitations,

and future directions.

Chapter 6
This last chapter concludes the thesis, giving a personal interpretation of the work and its

scope, as well as an analysis of its alignment with the thesis statement and goals.
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Chapter 2

Localization for Road Vehicles

In this chapter, the broad topic of road vehicle localization is considered. This overview takes into

account both network and individual perspectives, since each vehicle can be regarded indepen-

dently or as a node in a vehicular network.

We start by addressing different sources of data, information fusion methods, and how the

performance evaluation of proposed models is achieved in the literature. Some of these techniques

are widely applied to different objects and contexts, e.g. satellite-based localization and filters for

information fusion. They are, therefore, presented in a more general perspective. Others are more

specific to road vehicle scenarios, e.g. several on-board motion sensors and map matching, and so

we consider this particular application in more detail.

In the last two sections, we present a more specific and detailed state of the art in the topics

of our proposed approaches. In Section 2.4, we focus on cooperative localization in the vehicu-

lar network perspective, reviewing and categorizing existing approaches, in relation to the work

presented in Chapter 3. We provide an overview of GPS independent solutions in Section 2.5,

highlighting magnetic-based strategies. The reader may prefer to initially skip this section and

read it only after finishing Chapter 3, as a literature review directly related to the work presented

in Chapter 4.

We provide a critical literature review covering all these subjects, considering the depth of the

analysis in the light of their relevance to the problem at hand.

2.1 Information Sources

We begin by providing a list of the most common information sources and respective techniques

to locate nodes, in this case vehicles, individually or as part of wireless networks. Satellite-based

solutions are addressed in Section 2.1.1, covering the topic of global navigation satellite sys-

tems (GNSS), with a focus on GPS due to its privileged role of currently most used service for

9
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localization. Several types of on-board sensors can be used to gather information useful for lo-

calization. These may be divided into three categories: motion (Section 2.1.2), wireless signal1

(Section 2.1.3), and visual (Section 2.1.4). Triangulation, presented in Section 2.1.3.1 as one of

several radio frequency-based positioning techniques, comprises examples of network oriented

approaches, widely applied with fixed anchor nodes to wireless sensor networks. In Section 2.1.5,

we consider the use of road maps and respective map matching techniques for localization.

2.1.1 Satellite-Based Information: GNSS

Satellite-based location information comes from at least one Global Navigation Satellite System

(GNSS), which consists in a constellation of satellites transmitting signals from space. These sig-

nals allow to obtain global 3D positioning (longitude, latitude, and altitude) and time data. GNSSs

use time of flight measurements between receiver and satellite, applying the time difference of

arrival technique (see details in Section 2.1.3), to estimate the distance to each of the visible satel-

lites, called pseudorange. To obtain this information at least four satellites need to be available to

the receiver, i.e. visible in the sky from its perspective at that moment. The Doppler frequency

shift of the signals from the satellites can be measured to provide velocity information for the

located node with higher accuracy than the one obtained from differencing consecutive positions.

There are currently four GNSS in either full operational capability or nearing full operational

capability status: GPS, GLONASS, Galileo, and BeiDou. There are other positioning systems

that do not provide global coverage and function on a regional basis, namely Indian NavIC and

Japanese QZSS. The most well-know and used worldwide GNSS is the USA’s Global Position-

ing System (GPS) [26]. GPS operates on two levels: precise positioning service, reserved for

authorities, controlled users and USA military, and standard positioning service, globally avail-

able for free to anyone with a capable receiver. Restricted access governmental services, such as

GPS precise positioning service, are out of scope in this work. Russian GLONASS (Globalnaya

Navigatsionnaya Sputnikovaya Sistema, which means Global Navigation Satellite System) is also

fully operational [27]. Compared to the GPS, GLONASS market penetration is lower [28]. Eu-

rope’s Galileo [29], named after the Italian astronomer Galileo Galilei, and China’s BeiDou [30]

are currently under development and expected to reach full operating capacity with their latest

technology by 2020 [28]. In total there are already more than a hundred GNSS satellites in or-

bit. GPS and GLONASS are employing modernization efforts in order to achieve better perfor-

mance and higher interoperability. Technical differences between the mentioned GNSS are also

out of scope. All of them apply similar principles of positioning. It is worth mentioning that

GLONASS uses frequency division multiple access (FDMA) technique, i.e. transmitting satellites

are distinguished by the frequency, unlike the other systems, which apply code division multiple

access (CDMA), meaning transmitting satellites are distinguished by the code. However, the new

generation of GLONASS satellites already implement CDMA strategy in order to improve the

1GNSS are also based on wireless signals but due to their specificity and relevance to localization, we opted to
address them in a separate section.
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compatibility with the remaining GNSSs. The trend in new receivers is the support for multi-

ple constellations and multiple frequencies, which is becoming increasingly widespread in mass

market devices [28].

GPS, as an example, is composed of a minimum of 24 (up to 32) operational satellites in

medium Earth orbit at an altitude of approximately 20,200 km. The way in which they are dis-

tributed guarantees the minimum of four available satellites at any time from virtually anywhere in

the globe. The extra satellites improve the precision of the results due to the redundant measure-

ments. The accuracy however does not only depend on the number of visible satellites, but also

highly varies with their geometry. Geometric Dilution of Precision (GDOP) measures how errors

in the pseudoranges affect the positional estimation precision. The concept of GDOP is illustrated

in 2D in Fig. 2.1. While we experience the same error in the estimated distance from each satellite

in both cases, the resultant uncertainty of the node location is much higher in Fig. 2.1b because

the satellites are placed in a similar direction relative to the node. If, on the other hand, they are

well distributed over the whole sky, as illustrated by Fig. 2.1a, the determined position has higher

precision.

V0

(a) Good geometrical alignment of satellites

V0

(b) Bad geometrical alignment of satellites

Figure 2.1: GDOP examples

Error sources in GNSS can be divided in two types: common or global errors, which are highly

correlated among receivers in a wide area (several tens of kilometers), and non-common or local

errors, which depend on the precise location and technical construction of the receiver [12]. The

main causes of global errors are the atmospheric effects, shifts in the satellite orbits, and clock

drifts. Atmospheric effects are related to the reduced velocity of propagation of the GNSS signals

in the troposphere and ionosphere due to the fluctuations of the atmospheric conditions, compared

to the speed of light of the radio signals in the outer space. Signals from satellites close to the hori-

zon are more affected than signals from satellites directly overhead, since they take a longer route

through the atmosphere and are therefore exposed to larger interference. The ionosphere effects



12 Localization for Road Vehicles

are more severe and introduce higher inaccuracies than the troposphere effects. However, iono-

sphere effects are frequency dependent and can thus be calculated and mostly corrected with dual

frequency transmissions, while troposphere effects cannot be eliminated by combinations of dual

frequency measurements. In spite of having very precise orbits, satellites can slightly deviate from

them due to gravitation forces. This data is controlled and corrected regularly, being compiled and

sent in the package of ephemeris data to the receivers. By processing ephemeris information, these

can compensate for some orbital errors. Fine correction is usually available offline, and measure-

ments can be post-processed to improve the location estimation. The atomic clocks on satellites

are extremely accurate. Nevertheless, they suffer from noise and clock drift errors. Those errors

can be estimated and fairly reduced when that information is available. Concerning non-common

errors, we can mention multipath and measurement noise. The multipath effect, also mentioned

in Section 2.1.3.1 for affecting time based techniques in general, is caused by reflection of signals

on obstacles. For GNSS signals it mainly occurs around large buildings or elevations.

GNSS receivers perform measurements on the pseudoranges to obtain observables of differ-

ent two types: code and carrier phase. Code phase-based solutions are robust but exhibit limited

accuracy. Carrier phase-based solutions can potentially offer very high accuracy, yet have lower

robustness and require an estimation of the ambiguities. Single point positioning (SPP), either

with single frequency or dual frequency, is based on the code phase observables and is the default

method. Single frequency receivers are still the most wide-spread [28]. Dual frequency receivers,

limited to professional or governmental users until recently due to their high price, are now avail-

able for mass market and becoming increasingly more common. Dual frequency receivers enable

the estimation of ionospheric delays, providing not only better accuracy, but also some protection

in terms of improved resistance to jamming. There are professional grade receivers that already

support triple frequency, allowing integer ambiguity resolution in less time.

It is possible to enhance GPS 2 results with augmentation systems and services, which act as a

complement to GPS to improve its performance. These comprise DGPS, RTK, and PPP. Assisted

GPS (A-GPS) may also be included. The time required to obtain the signal from the satellites and

acquire an initial position estimate, designated as time-to-first-fix (TTFF), can be up to 15 minutes

if the receiver was completely turned off (cold start) [31]. To overcome this limitation A-GPS, is

frequently employed. This technique provides information useful for positioning to the receiver

via a separate communication link. It is widely used, for example in smartphones, to acquire the

satellite almanac information using the cellular network. This improves TTFF and also power

efficiency.

Differential GPS (DGPS) is a technique that aims to reduce atmospheric and other common

errors by using a base station at a known location, or a network of them, serving as a refer-

ence receiver that generates pseudorange corrections calculating the offset on the range towards

each satellite [32]. This is based on the principle that most errors affecting the measurements are

2These techniques are general and apply to any GNSS. However, for consistency with the rest of the document and
due to the terms DGPS and AGPS being well known and more commonly applied than AGNSS and DGNSS, we use
the term GPS instead of GNSS.
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spatially and temporally correlated, so by differencing simultaneous observations made by close

receivers they cancel each other out [31]. The designation DGPS relates to code observations. In

case the observations are relative to the carrier phase, the technique is called Real Time Kinematic

(RTK). The communication link used to transmit these pseudorange corrections to the receivers so

that they can improve their estimated location defines the two main types of augmentation systems:

satellite based augmentation systems (SBAS) and ground based augmentation systems (GBAS).

SBAS rely on a network of reference ground stations deployed across a vast area (covering entire

continents) to transmit differential corrections and integrity messages for navigation satellites [33].

Different systems are available in distinct areas of the Earth, although all are compatible and in-

teroperable, as they comply to a common global standard. Examples are EGNOS (European Geo-

stationary Navigation Overlay Service) in Europe and WAAS (Wide Area Augmentation System)

in North America. Measurements from the reference stations are sent to geostationary satellites

primarily dedicated to the provision of integrity information and wide area corrections. These

broadcast the correction messages to that area so that enabled GPS receivers can correct most of

the global errors. GBAS support local augmentation through the use of terrestrial radio messages,

e.g. dedicated radio communication link or a cellular communication system. Ground stations

that accurately know their location take GPS measurements and broadcast real-time corrections

to close nodes. In these techniques, the nearer the receiver is to the base station providing the

corrections, the more correlated are the errors and so the better is the improvement [32]. Their

coverage varies relatively to the baseline, i.e. distance to the base station: SBAS has continent-

wide coverage, i.e. can be used up to thousands of km, DGPS (GBAS) can be used up to hundreds

of km, and RTK up to tens of km [28].

Precise Point Positioning (PPP) is an alternative to differential methods that consists in esti-

mating all individual error components. While DGPS and RTK depend on the existence of a base

station and on baseline length, PPP is based on very precise orbits and clock estimates expressed

in a global reference frame, instead of the broadcast satellite orbit and clock information. The

solution is global, without a requirement for base stations, and can be either shared with the nodes

in real time or used in a post-processed manner. It is characterized by long convergence times

and earlier solutions can be used at the cost of accuracy. This limitation may be reduced by the

availability of multi constellation, multi-frequency, and RTK information.

A typical GPS receiver performing SPP has an average horizontal accuracy that ranges from a

few meters to above 20 m [11]. DGPS increases horizontal accuracy to around 1 m while RTK and

PPP enable centimeter-level horizontal accuracy [28]. These techniques3 focus on common error

sources, and require LOS to the satellites to compute a position that may then be enhanced. This

means that, despite multi constellation, multi-frequency and augmentation systems significantly

improving standalone GPS performance, it still suffers from lack of availability or large errors in

NLOS to the satellites and strong multipath scenarios, e.g. dense urban environments, as we have

mentioned in Chapter 1.

3With the exception of AGPS, a designation that may also be applied in a wider sense and include using information
extracted from cellular of Wifi networks to provide location when GPS fails.
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2.1.2 Kinematics Information: Motion-Based Sensors

There are several on-board motion sensors that can be used for positioning in vehicles. Some

examples are odometer, velocity encoder, steering encoder, accelerometer, gyroscope, and mag-

netometer. These extract information relative to the vehicle kinematics, such as traveled distance,

heading, speed, and acceleration. Inertial navigation systems (INS) are autonomous systems that

provide dynamic information of the vehicle on which they are mounted through direct measure-

ments, applying dead reckoning techniques [34]. A typical inertial measurement unit (IMU) is

composed of three orthogonal accelerometers, three orthogonal rate gyroscopes, and occasionally

magnetometers. Although they are widely used in all areas of navigation, INS present position

errors that grow with time and distance. Gyroscope and accelerometer data must be integrated

to provide absolute measurements of orientation, position and velocity. Consequently, even small

errors in the measured data cause an unbounded growth in the error of integrated measurements.

To provide useful position information for road vehicles the INS must periodically reset inertial

sensors to eliminate their cumulative errors. This can be done by combining INS with other abso-

lute location sources, such as GPS. In fact, combining GPS with dead reckoning is a very common

solution for localization of road vehicles, because the first provides global positions but might

have frequent short periods of unavailability, and the second has good performance during short

periods of time after resetting its cumulative errors [6]. In [35], the authors cover the general topic

of inertial motion tracking, identifying aspects with room for improvement in the current state of

the art on motion tracking techniques.

2.1.3 Wireless Signal-Based Information: Communication and Ranging Devices

Wireless signals are used for localization employing different types of techniques. We first explain

triangulation, an anchor-based approach that allows the estimation of relative positions between

pairs of nodes in a network with communication signals. Different communication technologies

may be used for this purpose, e.g. from cellular networks, vehicular networks, WiFi networks

(see Table II from [13] for details on several communication technologies). We also describe

relative positioning with exteroceptive sensors specifically used for ranging in current vehicles,

such as RADAR or LiDAR. Finally, we address fingerprinting techniques with wireless signals. It

is worth mentioning that range-rate measurements may be done using the Doppler frequency shift,

provided there is a minimum relative motion between nodes, but we do not provide details about

this technique. For details, please refer to Alam et al. [36].

2.1.3.1 Triangulation

Communications in a wireless network may be used to estimate the location of the network

nodes [37]. There are several parameters that can be extracted from the measurements, in or-

der to estimate the relative orientation or the distance between pairs of nodes, which allows us

to calculate the nodes relative positions [38]. The principle relies on anchor nodes, which are

nodes that know and share their location [39]. The most common method to locate nodes through
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radio frequency (RF) signals is triangulation. It can be applied using lateration and angulation

techniques, which measure, respectively, ranges and angles between a node and the anchors in its

reach. In a 2D scenario without errors, in order to determine the possible position of the node by

lateration, we would need measurements from at least three non-collinear anchors (see Fig. 2.2a),

whereas at least two anchors would be required in the case of angulation (see Fig. 2.3a).
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Figure 2.2: Lateration examples

However, in a real scenario, the physical medium introduces errors in these range and angle

measurements. The errors are usually both time-varying errors (e.g. due to additive noise and

interference) and environment-dependent errors resultant of the physical arrangement of objects

(e.g. buildings, trees, and obstacles) [37]. Due to the errors in the measurements, the ranges do

not intersect perfectly in a single point but rather indicate an area where the position of the node

is more likely to be. The chosen point within that area will depend on the applied estimator to cal-

culate the position, for example least squares estimator or maximum likelihood estimator [40]. In

Fig. 2.2b lateration with overestimated distances is presented. Fig. 2.3b shows angulation applied

to measurements with errors from three anchors.

Different techniques have different sources of error, costs, accuracy, and associated complex-

ity. Therefore, which one is most suitable has to be analyzed for each specific application with its

resources, requirements, and goals.

Lateration

The distance between the nodes may be estimated through a variety of metrics. The two most

widely used ranging techniques are based on the received signal strength and the propagation

time of the wireless signals [20]. The first one applies calibrated channel models to exploit the

relation between power loss and the distance separating sender and receiver, using the RSSI that is
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Figure 2.3: Angulation examples

a standard feature found in most wireless devices. Time-based systems include different methods,

namely time of arrival (TOA) that uses one-way propagation time measurements, round-trip time

of arrival (RTOA) that uses round-trip propagation time measurements, and time difference of

arrival (TDOA) that uses time differences measurements.

RSSI: In free space, the power of a signal decays proportionally to d2, being d the distance

between the transmitter and the receiver. This effect is described in Equation (2.1), known as

Friis equation, where Pr and Pt are respectively the received and transmitted power, Gr and Gt

are antenna gains (not in dB) of the receiver and the transmitter, and λ is the wavelength of the

transmitted signal in same units as d (usually meters) [20]. The inverse of the squared factor in

parentheses is called free-space path loss, as it shows the loss in signal strength of an electro-

magnetic wave in free space, i.e. in a line-of-sight path with absolutely no obstacles affecting the

signal.

Pr(d) = PtGtGr

(
λ

4πd

)2

(2.1)

In real-world channels, however, the propagation of a signal is affected by various phenomena

such as reflection, refraction, diffraction, and scattering. It is nonetheless accepted on the basis of

empirical evidence that it is reasonable to model the received signal strength at the receiver as a

random and log-normally distributed variable with a distance-dependent mean value [20]. Since

the aforementioned effects are environment dependent, the models have to be calibrated for the

intended scenario.

The two major sources of error in this technique are multipath and shadowing [37]. Mul-

tipath consists in multiple signals with different amplitudes and phases arriving at the receiver,

which makes it difficult to detect the direct path between the nodes to determine their distance.

Shadowing arises from the attenuation that the signal suffers due to obstructions, such as walls,
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buildings, and trees, which force the signal to pass through the obstacle or diffract around it in its

direct path to the receiver. These effects can make the RSSI measurements quite unpredictable,

hence the sources of error must be well understood so that the localization is efficient. The signif-

icant advantage of RSSI method is that it requires no additional hardware, and thus no additional

costs. It is possible to measure the received signal strength of RF signals during normal data com-

munication among nodes. It is also fairly inexpensive in terms of local power consumption and

bandwidth [20].

Time-of-flight: The distance d between a pair of nodes can also be calculated through time-

of-flight (TOF) measurements t and the travel speed of electromagnetic waves c.

The first technique, TOA, consists in measuring the one-way propagation time. The transmit-

ter sends a packet containing the instant of transmission t1. Under ideal conditions, i.e. if both

clocks are perfectly synchronized to a common time reference, when the packet arrives at the re-

ceiver at t2, it is possible to obtain t = t2− t1, the propagation time of the wireless signal, from

which the distance can be estimated. Therefore, to use TOA in a real scenario the local times at

the transmitter and the receiver must be accurately synchronized, since a synchronization error

significantly affects ranging error. This requires highly accurate clocks and sophisticated synchro-

nization mechanisms, which increase both the cost and the complexity of the network nodes [20].

To avoid the need for a common time reference, RTOA may be used [41]. In this case, the

transmitter sends the packet with a timestamp t1 and receives it back at t2, estimating the dis-

tance from the two-way ranging. Because the same clock was used to compute the round-trip

propagation time, synchronization is not a problem. The major error is from the response delay

τ required for handling the signal in the other node. This internal delay is either estimated via a

priori calibration or measured in the receiver and sent to the original transmitter to be subtracted

t = (t2− t1−τ)/2 [20]. However, even a small relative clock offset will correspond to a large error

in estimation of t due to error accumulation over τ , which can be of some microseconds, while

the propagation within a few meters is typically in the order of nanoseconds [42]. RTOA is the

most practical time-based technique in a distributed architecture, since a common time reference

between nodes is not necessary [14].

Differential time of arrival technique differs from the TOA approach by eliminating the need

to know when the signal was transmitted, i.e. it does not require the node whose location is

estimated to be synchronized with the anchors, but it does require all the anchors to be precisely

synchronized among themselves. The signal is received by these nodes that know their position

and have a common time reference, and TDOA uses the difference in arrival times at a specific

time instant to estimate the location of the transmitter. This is done using a hyperbolic technique,

since the measurement from each pair of anchors defines a hyperbole in which the node is located

(assuming perfect measurements) [20].

The key of time-based techniques is the node’s ability to accurately estimate the arrival time

of the line-of-sight (LOS) signal [37]. Therefore, non-line-of-sight (NLOS) conditions caused

by obstructions in the direct path between nodes often lead to overestimated ranges [42]. Other

sources of error in TOF techniques are multipath effects, additive noise, and the aforementioned
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clock drifts. The first can make the detection of the direct path component, if it exists, very

difficult, leading to large errors in the distance estimate.

Angulation

Angle of arrival (AOA) measurements provide localization information by estimating the di-

rection to neighboring nodes (see Fig. 2.3), rather than the distance. The angle of arrival of a

signal can be estimated using antenna arrays and AOA estimation techniques. These are based ei-

ther on amplitude and/or phase response of the receiver antenna array [20]. The first one takes the

received signal strength ratio between distinct directions and the second makes use of phase dif-

ferences of arrival measured on the different antenna elements. Both approaches require multiple

antenna elements, so AOA techniques are usually costly due to the specific hardware and can also

imply devices with higher size [37]. Another disadvantage is the need of direct LOS path from the

transmitter to the receiver for reliable results. Measurements corrupted by NLOS effects may lead

to very large errors. AOA sources of error include additive noise, shadowing and multipath. The

accuracy of the measurements is also limited by the directivity of the antennas [20].

2.1.3.2 Exteroceptive Ranging Sensors

RADAR (Radio Detection and Ranging) and LiDAR (Light Detection and Ranging) are on-board

sensors that detect obstacles surrounding the vehicle, including other vehicles. They do this by

emitting periodic signals, which bounce back from the obstacles, and allow the application of

TOF measurements to estimate the distance between the sensor and the obstacle. While radar

uses radio waves for this purpose, lidar uses laser signals. They are frequently applied to estimate

ranges in current vehicles, for example in forward collision warning, lane change assistance and

adaptive cruise control [32] and are relevant technologies for future autonomous vehicles [11].

RADAR: Radar sensors present low power consumption [11], provide relative speed, and

are consistent in different weather and illumination conditions [43]. There are two main radar

technologies in ITS, namely impulse radar and frequency-modulated continuous wave radar [32].

Automotive radars usually operate at 24 and 77 GHz [44]. Typically, radars are categorized as

short-range or long-range. The first are suitable for urban scenarios with low speeds, providing

a limited range of less than 50 m, have wider field of view (up to ±30o) and higher spatial res-

olution (0.1 m). The latter are suitable for high speed applications, have perception ranges up to

250 m, usually have smaller field of view (around±10o) and lower spacial resolution (0.5 m) [44].

The narrow field of view has a negative impact in across track accuracy. The 79 GHz frequency

band has been recently made available for long-term operation of radar sensors by the European

Commission, which has several advantages: decreased dimension and weight, increased Doppler

sensitivity, better performance in accuracy and object discrimination, and possibility of developing

common technology for short-range and long-range radars [32].
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LiDAR: LiDAR devices use 2D or 3D laser scanners to provide high-resolution maps with

dense point clouds and are increasingly used in advanced automotive applications [44]. They usu-

ally work with wavelengths beyond the visual light spectrum (near infrared) and so their transmit

power is limited to complying with eye-safety regulations, imposing practical limits on the mea-

suring range [32]. They typically provide good range accuracy (between 0.02 m and 0.5 m), ranges

up to 200 m, and there are laser scanners that have 360o field of view [32]. Lidar devices are not

able to measure relative speed, so this information is obtained by differentiating the range of suc-

cessive scans. Their main disadvantages are the high price and power requirements compared to

radars, and the negative impact on performance in some adverse environmental conditions such as

incident sunlight, fog, rain, snow, dust, and dirt [11].

2.1.3.3 WiFi Fingerprinting

Another important signal-based technique for localization is WiFi fingerprinting [45]. It consists

in an initial phase during which a map of the signal pattern is constructed, e.g. signal strength

or the multipath characteristics, and then a second phase in which the node estimates its position

by matching observed signals with the values of the reference data. This is a pattern recognition

method, whose accuracy greatly depends on the quality of the radio map, i.e. the number of nearby

access points and how exhaustive is the training phase. WiFi fingerprint method is mainly used

indoors due to the absence of GPS providing a global location, but it is also well-known in outdoor

scenarios for road vehicles, mainly in urban areas where the availability of access points is usually

higher. In these scenarios, the most common technique to create a signal map is known as war

driving [46].

2.1.4 Visual-Based Information: Cameras

Visual-based localization consists in estimating the location of the camera that captured a given

image. Due to the lack of standard designation and its wide scope, different terms are used relative

to this area of study, including camera-based localization, visual geo-localization, image-based

pose estimation and similar. Piasco et al. [47] provide a survey on this topic focusing on urban

scenarios and categorize the methods into two distinct categories: indirect and direct localization

systems. While indirect methods (e.g. [48]) address this problem as an image retrieval task, provid-

ing coarse location information by matching reference images, direct methods (e.g. [49]) retrieve

the absolute pose of the camera, including position and orientation, according to a known repre-

sentation, which might be obtained using a mapping modules like SfM (structure from motion) or

SLAM (simultaneous localization and mapping).

Robustness to environment appearance changes over time, and data representation, which may

be local (point features and geometric features), global (hand-crafted features and learned fea-

tures) or hybrid (patch features and combined features), are important aspects in this context.

These methods are sensitive to severe weather and illumination conditions, as well as observation

angle [11]. Reaching high precision pose estimation within a large area coverage is a challenge
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for visual localization systems, so their typical trade-off concerns the balance between scale and

precision.

2.1.5 Map Information: Digital Road Maps

Road vehicles, such as cars, trucks, buses, etc, as the name indicates usually travel on the roads.

This is an important piece of information that, if we have access to digital road maps, can be used

to reduce the set of possible positions and thus improve the accuracy of estimated location. This

technique is known as map matching and consists in correcting vehicles’ positions and trajectories

to the roads. Some examples of map matching algorithms are available in [50–54]. A survey

on this topic is provided by Quddus et al. [55], considering generic and real-time map matching

algorithms.

The authors classify the approaches to map matching in four categories: geometric analysis,

topological analysis, probabilistic algorithms, and advanced techniques. The first one considers

only the geometric shape of the spacial road links and matches the position to the closest point

of the road segment. This can be done with point-to-point matching, point-to-curve matching, or

curve-to-curve matching. This geometric analysis ignores links connections to each other. Topo-

logical map-matching algorithms, on the other hand, use the geometry of the links as well as

their connectivity and proximity. Probabilistic approach requires a confidence interval around the

estimated position defining an error region. This region is derived from the variance of the sen-

sors used to estimate the location. If only one road segment intersects the region, the vehicle is

assumed to be traveling on that road. If more are available, the best match is found employing

heading, connectivity, and closeness criteria. Advanced map-matching algorithms involve more

complex processes including the applications of probability theory, fuzzy logic theory, and belief

theory.

As we mentioned in the previous sections, all sensors that collect data for localization have

associated errors. Digital maps also contain errors. Those errors can be geometric, for example

displacement and rotation of map features, or topological, such as missing road features [56]. Even

if both raw positioning data and map quality are good, map-matching cannot always determine the

correct road segment. Several constraints and limitations of existing map-matching algorithms

have been identified in [55]. These are related to vehicle position initial determination, the issues

of correcting locations in complex road layouts such as Y-junctions, roundabouts and fly-overs, the

evaluation of performance particularly in dense urban areas, and the development of confidence

indicators.

2.1.6 Conclusions

Having addressed each of the main sources of information in road vehicle localization, we can

conclude that none can successfully work in every situation [13]. They all present particular

requirements, costs, and weaknesses, as well as different strengths. The most effective solution
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for localization is to fuse complementary sources that allow better performance and robustness in

diverse conditions.

2.2 Information Fusion

We described several sources of information and techniques that allow to determine and improve

the location of vehicles. The next challenge is how to fuse different types of data in a single

estimator for the position.

Considering lateration and angulation techniques, described in Section 2.1.3.1, we can apply

either a non-parametric or a parametric approach. Deterministic methods do not make assumptions

about the probability density function of the uncertainties and solve the problem by optimizing

certain criteria [14]. An example of a non-parametric estimator would be the least squares (LS)

estimator, which minimizes the error in a least squares sense. Parametric approaches instead, take

into account the statistics of the error in the estimation. Based on the assumption that the errors

corresponding to different sensors are statistically independent, a joint likelihood of all available

information can be calculated. The greater the amount of data taken into account, the smaller the

variance of the likelihood function, i.e. less uncertainty in the estimation. Maximum likelihood

(ML) estimator is a parametric estimation method that maximizes the likelihood function [57,58].

Both LS and ML estimators are non-Bayesian, since they do not include any prior knowledge

in the estimation process [14]. Bayesian inference methods, which involve prior information and

not only the likelihood, can be applied to fuse data from different sources. The posterior distribu-

tion is based on both a likelihood of the incoming measurement, and a prior distribution, and these

are used to update the posterior dynamically. Therefore, the approach includes an underlying mo-

tion model. For a description and comparison of several motion models, please refer to Schubert

et al. [59]. The most popular Bayesian estimators are the minimum mean squared error (MMSE)

and the maximum a posteriori (MAP), which calculate respectively the mean and the mode of the

posterior distribution [14].

Typically, when estimating time-varying parameters (a process designated as tracking), filter-

ing algorithms are used. The filters operate in a sequential manner, i.e. they take into account

all the past measurements, update the current posterior with each new measurement. They are

also able to incorporate a prediction model for the dynamics of the parameters. The idea is to

find the best possible estimate for the true state of the system given some noisy observations of

that system, predicting next values before the new measurements are received. It is a two-steps

process: prediction and update. The choice of a filter is based on a trade-off between accuracy

and complexity. The model seeks to provide an appropriate description of the system while be-

ing simple enough to present feasible real time computation complexity [12]. This depends on a

number of factors including the dimension of the state vector being estimated, the sparseness of

the covariance matrix, the data rate of the measurements, the desired accuracy of the state vector,

the degree of nonlinearity, and the shape of the probability densities [60]. Next, we describe the

most common filters in this context.
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Kalman Filter: The Kalman Filter (KF) was widely used for navigation for its simplicity

of implementation, tractability and robustness. While it is optimal when the measurement and

the state transition models are both linear and all errors are Gaussian distributed, information

observations and vehicle dynamics in road navigation are nonlinear processes. Therefore, the

traditional KF is not adequate for such scenario and the focus of this section are nonlinear filtering

methods suitable for vehicle navigation.

Extended Kalman Filter: The Extended Kalman Filter (EKF) linearizes the nonlinear func-

tions with first-order Taylor series around the current estimate, in this case the navigation and

observation equations, so that the linear KF can be applied. The main issue is that this approach

may cause the system to diverge, since approximating the system by a linear one and solving it

optimally, is not the same as approximating the solution of the actual system. Nevertheless, it is

frequently used in proposed solutions for vehicle navigation, e.g. see Section 2.4. The computa-

tional complexity is in the order of j3 for the estimation of a dimension j state vector [60].

Unscented Kalman Filter: The Unscented Kalman Filter (UKF) [61], also called Sigma-

Point Filter, appears as an alternative to the EKF, specially for highly nonlinear systems for which

the latter gives particularly poor performance. The UKF consists in propagating a minimal set of

deterministically chosen weighted sample points, called sigma points, that parameterize the mean

and covariance of the prior through nonlinear transformations, known as the unscented transfor-

mation. The sigma points, by undergoing the nonlinearity transformations, capture the posterior

mean and covariance more accurately, while UKF computation complexity is approximately the

same as the EKF.

Particle Filter: Particle Filter (PF), also known as Sequential Monte Carlo method, uses a set

of samples, called particles, to represent the distributions. Each particle is a state with an associated

nonnegative weight, the importance factor. All weights sum up to one and the principle is that the

higher the weights in one area of the function, the higher the density of particles in that area should

be to adequately describe the shape of the distribution. Recursively updating these particles at each

time step, leads to a degeneracy problem where only a few of the particles have significant weights,

while all the other particles are negligible, giving a poor representation of the posterior density.

One way to mitigate this problem is to use a resampling method. Different resampling techniques

may be used (see [58]), the most common being importance sampling. This consists in replacing

some of the too small weight particles by copies of the most significant ones. Although importance

sampling attenuates the degeneracy problem, it also reduces the diversity of the particles, so we

have to be careful to avoid severe sample impoverishment, i.e. in an extreme case all particles

would occupy the same point in the state space. Usually, choosing a sufficient number of particles

prevents this situation, but at a higher computational cost. In fact, the main problem of this filtering

method is the large computational complexity compared to the other filters, specially when applied

to high-dimensional systems. This is known as the curse of dimensionality [62]. More details on

the comparison of nonlinear filters can be found in [60]. The great advantage of PFs is that they

make no restrictive assumption about the dynamics of the state-space or the density function.
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2.3 Performance Evaluation

A very relevant aspect concerning proposed solutions in the literature is how their performance is

evaluated. Tests in real environments are complex and expensive, so usually simulations are used

for this analysis. These simulations might be based on artificial data, on real data collected in a

controlled environment, or on real data collected in a realistic setting. All these options present

an increasing trade-off between simplicity that represents low costs, ease of implementation and

more quick results, and complexity that while more expensive and time consuming is also more

representative of realistic scenarios and consequently provides more reliable insights and stronger

conclusions. Other relevant aspects are the size and diversity of the dataset. These depend on

the tested approach, but might include number of nodes, vehicles, trips, duration, runs, and how

heterogeneous are the analyzed scenarios and used equipment. When using real data, particu-

larly in large datasets, how to obtain localization ground truth is also a very important aspect for

performance evaluation.

2.4 Cooperative Localization

In Chapter 1, we have explained the concept of cooperative localization and why we believe it

is beneficial. We now present a state of the art on the topic, focusing on solutions developed

specifically for VANETs.

There is a lot of research in cooperative localization for general wireless sensor networks

(WSN) and also in the area of robotics. While parts of those works may be related to our problem

and interesting in a vehicular environment, some assumptions and applications make them quite

different scenarios. WSN solutions frequently focus on energy and computation constraints, not so

significant in VANETs, and are based on static or moderate mobility assumptions, while VANETs

are highly dynamic [63]. Despite those differences, there are very relevant works for cooperative

localization in wireless networks, e.g. [14, 37].

The area of robotics also addresses the problem of cooperative localization. However, motion

and control models for robots differ from the ones for road vehicles. Moreover, robots forming an

ad-hoc network typically work together within a limited group that shares a common goal. This

also makes it much easier for nodes to have homogeneous and expensive sensors. Nonetheless,

there is much to learn from mobile robots localization algorithms, such as the cooperative and

distributed approaches presented in [64, 65].

VANETs are a very special type of ad-hoc networks, with particular constraints on vehicle

movement, high mobility causing rapid changes in topology, and limited bandwidth [66]. These

fundamental differences call for specially tailored solutions. Many authors address the localization

problem in VANETs, pointing out that GPS is insufficient, mainly in urban areas. Fusing data from

a variety of sources has a positive impact not only on the accuracy, but also on the reliability and

other performance metrics, namely coverage and continuity of service. As described in Section 2.1

each information source and technique has different advantages and disadvantages. This makes
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certain solutions more suitable for a given scenario than others. Being complementary concerning

their limitations is a very important aspect when combining these sources. Information from

independent sources can also be useful for integrity monitoring. We believe that exploiting inter-

vehicle communications for localization shows great potential. It is the least explored approach in

this area so far, compared to satellite-based information, vehicle kinematics, and road maps. First

approaches using cooperation among vehicles for localization purposes were presented during

the decade of the 2000s and in the last twelve years numerous new ones were proposed. In this

section we do our best to make a comprehensive overview. We classify cooperative approaches for

vehicular network localization into three categories related to the type of cooperation employed:

1) context-based, 2) GNSS-based, and 3) range-based. In some cases, we consider only one work

from each research group.

2.4.1 Context-Based Cooperative Localization

Context-based approaches rely either on the road configuration (usually applying digital road

maps) or on a mapping of the scene (using exteroceptive sensors like radar, lidar or camera) to

perform cooperative localization.

Group Map Matching

The first ones are based on the assumption that all vehicles in the network, being geographically

close to each other, suffer a common GNSS bias in their local estimated positions that dominates

the position error, usually considering non-common error as negligible. The map matching can

be performed jointly using constraints from all vehicles to cooperatively match them to the roads,

thus improving their location estimates by compensating for the common bias. Lee et al. [67]

present such an approach as a cooperative position fix scheme, Mattern et al. [68] include a group

map matching as part of their CoVeL positioning system fusing GNSS, odometry and maps, and

Rohani et al. [69] and Shen et al. [70] propose approaches that perform cooperative map matching

on shared raw GPS data. Dao et al. [71] do not directly use road maps, but share GPS data among

vehicles to find lane positions on a highway scenario with a Markov-based approach. They test

it with two cars equipped with low-cost GPS receivers. Lee et al. [67] test their map matching

approach (not localization) with a large GPS dataset from taxis with no ground truth. The other

three approaches use particle filters for cooperative map matching, assuming digital maps with

lane information, as part of a location tracking algorithm. Rohani et al. [69] test it with Monte

Carlo simulations. Shen et al. [70] perform simulation and real data experiments considering only

a static scenario. COVEL project [68] uses a fleet of six vehicles although only four end up being

used for tests. One of them is equipped with a high accuracy and high availability GPS+INS

reference system to be used as a ground truth for comparison. In [72], Shen et al. present a

theoretical study evaluating the impact of road constraints on cooperative map matching.
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Indirect Cooperative Localization

Context-based indirect cooperative approaches consist in measuring environment range informa-

tion using exteroceptive sensors to estimate inter-vehicle distances implicitly. This information

is combined with absolute position from each vehicle, usually from GPS. Li and Nashashibi [73]

perform SLAM with GPS, odometer and laser scanner in each vehicle, merging local maps to in-

directly estimate relative pose between vehicles. They use EKF for self-localization and test their

approach with real data from an experiment with 2 vehicles in a trajectory of approximately 200

meters inside a campus, using an RTK-GPS for ground truth and degrading it to simulate low-

accuracy GPS. In Gulati et al. [22], an infrastructure radar sensor maps the vehicles’ topology and

provides inter-vehicle distances, used as constraints in factor graphs that contain absolute loca-

tion information from vehicles on-board sensors. Soatti et al. [74] propose using non-cooperative

physical features (e.g. people, traffic lights, inactive cars) sensed by each vehicle (e.g. radar, li-

dar, camera) as common noisy reference points to jointly refine their location estimates (GNSS).

Fröhle et al. [75] track in each vehicle its own state (GNSS) and features in the surrounding envi-

ronment (radar), sending these to RSU (V2I) to centrally apply nonparametric belief propagation

and enabling accurate vehicle states estimation through cooperative feature tracking. The last three

approaches use factor graphs and are tested through simulations.

2.4.2 GNSS-Based Cooperative Localization

In GNSS-based cooperative localization the distances between vehicles are obtained from raw

GNSS observables. These approaches usually require good GNSS coverage with pseudorange

information from at least four satellites. This information, as explained in Section 2.1.1, might

be based on code or carrier phase measurements. While code delay measurements are robust

and unambiguous but noisy, carrier phase measurements can offer high precision but suffer from

cycle slipping phenomenon and require solving the integer ambiguity problem [9]. This makes

cooperative approaches for vehicular networks based on code measurements much more common

than those based on carrier measurements. Although we can mention the works by Bento et

al. [76, 77] and Müller et al. [78] as examples of cooperative approaches sharing carrier-phase

measurements, we do not consider these further our related work.

Cooperative DGPS

The concept of DGPS (see Section 2.1.1) has been extended from the fixed base station aiding mo-

bile nodes to a setup comprised only of mobile nodes where none has the role of base station, i.e.

no nodes needs to be static and have an accurately known position. Richter et al. [79] introduced

the idea of exchanging GNSS code pseudorange data for inter-vehicle estimation and cooperative

relative localization. Their work presents the theoretical formulation but is only based on sim-

ulations, without real-world measurements. Pseudorange double differentiation is tested in field

experiments for cooperative vehicle localization with fixed positions by Yang et al. [80] (3 and 8
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meters baseline) and Liu et al. [81], using a weighted least squares method. Alam et al. [82] are the

first to test their DGPS-based relative positioning approach, using tight integration, with real data

from moving vehicles. Rohani et al. [83] present their approach as a decentralized dynamic base

DGPS method. Several research groups use pseudoranges double difference with a multisensor

fusion approach performing dead reckoning, e.g. Müller et al. [84] and Lassoued et al. [85]. All

these contributions are based on the assumption that GNSS code pseudoranges are mainly affected

by common error sources. Uncorrelated error sources such as thermal noise of the receiver, multi-

path and other residual errors are viewed as negligible and not taken into account. Tahir et al. [9],

considering that this is not a realistic assumption, especially when in densely populated urban en-

vironments, study four different ways in which GNSS code observables can be used: 1) absolute

positions of the vehicles provided by GNSS receivers, 2) raw code pseudoranges; 3) single differ-

ence of the raw code pseudoranges, and 4) double difference of the raw code pseudoranges. They

conclude that double difference method is only superior in open sky environments. This technique

increases uncorrelated errors and receiver noise while reducing correlated errors, so in dynamic

environments with strong multipath, ranging using raw pseudorange is more effective.

Concerning performance, four works are evaluated using real data experiments collected from

two moving vehicles: Alam et al. [82] analyze 12 minutes along different roads near the University

of New South Wales in Sydney with different speeds and good satellite coverage using single-band

GPS receivers and comparing to RTK GPS for ground truth, Müller et al. [84] analyze 30 minutes

from a two lane highway scenario and 220 seconds snapshot from a urban scenario in the city of

Munich using an automotive laser scanner for ground truth, Lassoued et al. [85] analyze 4 minutes,

and Tahir et al. [9] analyze two dynamic scenarios (highway and dense urban).

2.4.3 Range-Based Cooperative Localization

Range-based cooperative localization comprises approaches focused on improving vehicles esti-

mated location by using the relative distances between pairs of vehicles. Inter-vehicle distance

may be directly measured using advanced on-board range measurement devices (Section 2.1.3.2)

or estimated from communication devices using triangulation (Section 2.1.3.1). The first provides

higher accuracy [13] and allows to estimate relative bearing between vehicles while the latter only

estimates distances. On the other hand, vehicle identification and data association between re-

ceived information and range measurements are more difficult when using range measurement

devices. These are also more susceptible to the requirement of direct visibility: they require

direct line-of-sight between objects for detection, while communication devices only need line-of-

sight between antennas, which can result in better detection performance in crowded urban areas

where vehicles can communicate but block each others visibility [86]. Some exteroceptive sensors

(e.g. lidar) have their performance significantly degraded by harsh environment conditions such as

heavy rain, snow, fog or darkness [11]. Although in theory we know some of these weather condi-

tions may also affect communications, we did not find conclusive studies considering their impact

on ranging estimation using communication devices. These are the main differences between the

two methods. We give examples of research works applying each one.
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Range-Based Cooperative Localization using Exteroceptive Sensors

Fujii et al. [87] assume some vehicles are equipped with a ranging sensor such as a millimeter

wave radar and measure relative angles and distances to other vehicles in immediate sight until

100 m range, with the goal of estimating the positions of equipped vehicles more accurately than

GPS and those of non-equipped vehicles. Li and Nashashibi [21] and Bounini et al. [88] assume

each vehicle is able to estimate the relative pose of neighboring vehicles, i.e. relative position and

orientation, using exteroceptive sensors such as radar or laser scanners, focusing on the algorithm

for information fusion to overcome the over-convergence problem. Sakr and Bansal [89] propose

a multi-sensor multi-target track association to perform a track-to-track association for the data

coming from two independent sources, which are a ranging sensor that measures the relative pose

of different objects in its surroundings (e.g. camera, radar, or lidar) and a DSRC transceiver

for V2V communications with vehicles state information. Shen et al. [90] propose a minimal

but scalable sensor configuration for a fleet of vehicles localizing on the urban road, although

related work and problem description are framed in terms of robots instead of vehicles, assuming a

range sensor such as lidar or camera to track relative distance and bearing angle from surrounding

robots/vehicles. Jeong et al. [91] formulates the state association problem with a framework of

spatiotemporal local-remote sensor fusion, considering the absolute state received from neighbor

vehicles and the relative state measured at the on-board radar, presenting a comprehensive model

that reflects the detailed limitations of automotive radars.

Information fusion and tracking filters vary considerably in aforementioned approaches: like-

lihood, Kalman filter and its extended version, and covariance intersection are considered. They

are evaluated with simulations except in Shen et al. [90], where three vehicles in a urban scenario

(average speed of 3 m/s) perform ranging with 2D lidar sensors (the trajectory does not have a

reported length, but from the provided material we estimate it as being around 270 meters).

Range-Based Cooperative Localization using Triangulation

Considering triangulation methods for inter-vehicle distance estimation, there are some authors

that assume the use of these techniques without specifying any in particular. Drawil and Basir [92]

propose an approach in which every vehicle is equipped with a GPS receiver, an INS and a VANET

transceiver. The inter-vehicle communication system extracts information pertinent to the location

estimates of vehicles in its vicinity: the distance between the vehicle and its neighbors, the loca-

tion estimates of the neighbors, and the level of uncertainty in their location estimates. Vehicles

with the smallest uncertainty in their location estimate are used as anchors. The work includes

a multipath detection unit, which is trained using a neural network, and vehicles with detected

multipath are not used as anchors. Ahammed et al. [93] present VLOCI2 algorithm. The goal is to

improve GPS position accuracy with ranging techniques (RSSI or TOA), using a weight function

so that closer vehicles have higher impact since inaccuracies increase with the distance. The posi-

tion estimation is updated in various iterations and afterwards rounded to the center of the nearest

lane. Yao et al. [94] examine the impact of range information exchange overhead. They state
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that the frequent exchange of large amounts of data required in cooperative positioning can cause

significant packet collisions, mainly in dense traffic conditions, affecting both the effectiveness of

the algorithms for positioning and the performance of the applications that use this information.

Some mechanisms for optimizing cooperative positioning in dense vehicular networks, in terms of

improving positioning accuracy and reducing the packet collision rates, are proposed: piggyback-

ing, compressing the range information, tuning the broadcast frequency, and combining multiple

packets using network coding. Rohani et al. [86] propose a pre-filtering of GPS positioning mea-

surement using inter-vehicle distances and other vehicles GPS measurements obtained from V2V

communications, before applying the tracking algorithm. Ekambaram et al. [95] provide a practi-

cal distributed localization algorithm using an analytical graphical model framework, considering

a multipath-rich environment with low percentage (less than 35%) of LOS signals. Gulati et

al. [96] formulate range information from vehicle communications as a new DSRC range factor,

in addition to the symmetric measurement equation factor, in a factor graph in order to perform

cooperative localization. In all these approaches the algorithms vary, comprising graphic models,

KF, EKF, PF, and combinations of those. All proposed models are evaluated using simulations.

There is also research focusing on a particular method for ranging estimation with wireless

communication devices. Alam et al. [97] propose improving GPS estimates using inter-vehicle

ranges based on the extracted Doppler shift from the carrier frequency offset of the received

packets from neighbor vehicles traveling in the opposite direction. Golestan et al. [98] use both

TOA and AOA measurements to estimate the distance and angle to one hop neighbors in order

to improve vehicles location information. Fascista et al. [99] define a tracking algorithm with

asynchronous updates triggered by beacon packet receptions, obtaining opportunistically angle of

arrival estimates. Mohammadabadi and Valaee [100] introduce a new distance ranging method

that uses time-difference-of-arrival in synchronous positive orthogonal codes. Elazab et al. [101]

present a cooperative localization scheme that utilizes RTOA for inter-vehicle distance calcula-

tion. Yuan et al. [102] provide a factor graph representation of the joint localization and time

synchronization problem based on TOA measurements, taking NLOS measurements into consid-

eration. Li et al. [103] propose a two steps method for TOA estimation using the IEEE 802.11p

short preamble. Hoang et al. [104] propose a cooperative localization approach that relies on V2V

communications (802.11p) to share GPS position estimates and on impulse radio - ultra wideband

V2V ranging measurements based on TOF to estimate distances between vehicles. Considering

the use of signal strength measurements for range estimation, Parker and Valaee [105] published in

2007 one of the first, most important and the most cited paper concerning cooperative localization

in vehicular networks. In [105], each vehicle shares its own velocity and distance to the neighbors,

calculated through RSSI, among its cluster of vehicles. GPS, if available, is used only to define

the initial position since the focus is on the vehicles relative positions. Accuracy is increased by

using road constraints downloaded from the nearest RSU. Uncertainty along the road is set to be

higher than uncertainty in the orthogonal direction. To the best of our knowledge no other work

for cooperative localization of road vehicles focused specifically on RSSI for range measurement

until very recently (see Section 3.5). Again, applied filters vary, being KF and its extensions,
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Context-Based
Cooperative Map Matching

E.g.: Dao et al. [71], Mattern et al. [68],
Rohani et al. [69]

Indirect Cooperative
Localization

E.g.: Li and Nashashibi [73], Gulati et
al. [22], Soatti et al. [74]

GNSS-Based Code Observables
E.g.: Richter et al. [79], Alam et al. [82],
Liu et al. [81], Tahir et al. [9]

Range-Based
Exteroceptive Sensors

E.g.: Fujii et al. [87], Li and
Nashashibi [21], Sakr and Bansal [89]

Communication Devices
E.g.: Parker and Valaee [105], Drawil and
Basir [92], Ekambaram et al. [95], Yuan
et al. [102], Fascista et al. [99]

Table 2.1: Classification of cooperative approaches for VANETs, including examples of each
category.

mainly EKF the most common, followed by PF. The only approach not evaluated with simulated

data is Hoang et al. [104]. Three vehicles in a highway scenario forming a platoon are tested using

impulse radio ultra wideband for ranging measurements between vehicles. Selected 30s sections

with consistent data are used for analysis. None of these ranging estimation methods with V2V

802.11p communication devices has been evaluated with real world data.

2.4.4 Summary

We summarize our classification of cooperative localization approaches for road vehicles in Ta-

ble 2.1, providing examples of research works from each category. Cooperative map matching

and GNSS-based approaches rely on GNSS measurements, assuming low local error. They suffer,

therefore, the same problems of all satellite-based approaches in NLOS satellite conditions and

multipath environments. Indirect cooperative localization and range-based approaches using ex-

teroceptive sensors share the limitations associated with the use of these sensors. These include

requirements for LOS between vehicles or vehicles and features, data association issues, as well

as specific constraints of each type of sensor. Localization using communication devices for V2V

triangulation is affected by the variability of the wireless medium, NLOS conditions between an-

tennas, shadowing and multipath scenarios [36]. It is also limited by the particularities of each

technique, as detailed in Section 2.1.3.1.

Information Sources: It is interesting to observe that all these approaches are based on the

combination of several data sources. Not only, as cooperative approaches, information collected

with a vehicle’s on-board sensors about its state and surrounding environment is combined with

information collected and shared by other vehicles, but also individual data frequently fuses mea-

surements from more than one type of sensor. Absolute positioning is provided by GPS and is

frequently combined with some form of odometry (e.g. wheels and yaw rate sensors [68], dis-

tance and yaw rate from odometer [73], INS [92], MEMS-INS and speed and steering wheel from

OBD [103]) and/or digital road maps. Inter-vehicle distances are obtained from GPS (assuming
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common bias and negligible non-common errors), range measurement devices, or triangulation

from V2V communication signals.

Information Fusion: Considering the fusion of all these sources of information, different

algorithms are used. Although in context-based approaches particle filters are the most common

choice for cooperative map matching and factor graphs for indirect ranging localization, overall

EKF is the most used filter for information fusion and location tracking (e.g. [73, 88, 92, 97, 99,

101, 105]). Some approaches use a combination of different filters, e.g. EKF and PF [98], UKF

and PF [68], KF and UKF [84], and PF, Sage-Husa adaptive filtering and KF [103]. In [21], a Split

Covariance Intersection Filter is proposed to overcome the over-convergence problem.

Performance Evaluation: Some of the aforementioned research papers provide a theoretical

analysis by calculating the Cramér–Rao lower bound (CRLB), e.g. [82, 94, 95, 105]. The ma-

jority of the presented approaches perform simulations with artificial data for their performance

evaluation. Some of these consider limited scenarios (e.g. a straight highway of few kilome-

ters [92, 105]) that do not pose most of the challenges faced in real situations, especially in urban

settings, such as alternative paths (bifurcations, intersections, roundabouts, etc), sinuous routes,

multipath and shadowing effects from numerous obstacles (including moving ones) and non-line-

of-sight communications. Only few cooperative localization approaches evaluate their proposed

algorithms with post-processed data collected in real scenarios [68,73,82,84,104]. Context-based

and GNSS-based approaches contain more evaluations with real data, possibly because GNSS data

is easier to collect than V2V communications data.

Recent surveys address relative positioning of vehicles using ranging sensors and coopera-

tive approaches [32], localization techniques and their potential for autonomous vehicle applica-

tions [11] including a section about cooperative localization, and connected vehicles landscape [7],

exploring key enabling technologies, opportunities and challenges. VANETs are a very special

type of ad-hoc networks, with particular constraints on vehicle movement, high mobility caus-

ing rapid topology changes, and limited bandwidth [66]. These fundamental differences ask for

specific solutions. To be comprehensive, these should take into account the protocol to exchange

data, the drawbacks of wireless communications in the real world, such as bandwidth limita-

tions, packet drops, channel congestion, obstacles (including vehicles [15]), data security, and

user privacy [106], and location integrity and reliability [107]. Cooperative localization focusing

on vehicular scenarios is a relatively recent area (just over 10 years) that has experienced great

contributions but still offers numerous research challenges.

2.5 GPS-Independent Localization

As aforementioned, a variety of information sources can be combined for better performance in

road vehicle localization. It is common to focus on GPS as the base of the proposed solution,

combining it with additional data and techniques to make it more accurate and robust. Most

existing solutions for outdoor vehicle localization are heavily dependent on GPS due to its global

positioning information that also provides velocity and time, broad availability outdoors and good
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accuracy in open spaces with line-of-sight to numerous satellites with suitable geometry. Even

when fusing diverse sources of information, most methods rely on GPS availability, either fully

or partially, frequently with minimum performance requirements such as the minimum number

of visible satellites, negligible multipath, maximum outage time, etc. Considering the types of

approaches most dependent on GPS in vehicular networks, we can mention those that rely on GPS

combined with augmentation systems, GPS combined with digital maps, GNSS-based cooperative

approaches, and group map matching.

However, when the ideal conditions for GPS are not present, these approaches suffer from

poor performance. Scenarios common for vehicles such as tunnels, urban canyons, underground

or indoor facilities like car parks, multiple highway crossings at different heights, or any other

situations where GPS fails, are not covered by these models. Their core assumption that there is

recurrently an adequate global position from the GPS obtained with LOS to the satellites, which is

then improved by additional sources, is not verified. We dedicate this section to review localization

approaches that consider the absence of GPS, either permanent or temporary, giving particular

attention to their requirements in terms of expensive equipment and infrastructure.

There are different types of approaches that rely only partially on GPS. These include the ones

that are robust to GPS temporary outages, and those that are mainly based on relative position

information, using GPS only for initial positions or assuming its availability solely in a subset of

the network nodes. The first ones typically rely on on-board motion sensors to provide adequate

positioning during GPS absence. However, due to the cumulative nature of the errors from these

sensors (see Section 2.1.2), they are resilient only to a limited period without GPS signal or with

high GPS errors, e.g. Najjar and Bonnifait [52] and Rezaei and Sengupta [108] test their proposed

approaches with GPS outages of 2 km and 30 seconds, respectively. Cooperative approaches

focused on range-based data, both from communication devices and range sensors, can extend

aforementioned individual localization solutions to make them more robust to GPS failures, high

errors and temporary or permanent absences.

There are different perspectives concerning how the dependence of each approach on absolute

position information, usually obtained from an on-board GPS receiver in the vehicles, is presented.

We consider the following assumptions: 1) full availability including ego vehicle, 2) availability

for a subset of the network nodes, 3) availability only for initialization, and 4) not considered. The

first one is the assumption of absolute position information in all network nodes. GPS availability

is a reasonable assumption in many environments, so in these cooperative approaches GPS absence

is not addressed. Since its impact is not evaluated, we regard those as dependent on GPS even

if they may potentially be resilient to some nodes or some periods without GPS. The second

perspective takes into account the absence of GPS in a percentage of the vehicles and evaluates

that impact on the proposed model, e.g. Lee et al. [109] and Elazab et al. [110]. There are

also some methods that include GPS as part of the proposed system, but do not consider it vital,

since only an initial global position is required, e.g. Parker and Valaee [105] and Levinson et

al. [111]. Communications among vehicles allow them to share both individual localization and

inter-vehicle distance measurements. Some approaches focus on relative localization and make
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no considerations about the availability of absolute position information in any of network nodes,

e.g. Alotaibi et al. [112].

Finally, we consider the types of approaches that are not dependent on GPS, which comprise

both those that do not include GPS and those that consider GPS as a non-vital part of the system,

i.e. the system may have GPS but it can work even if it is completely absent. We identify two main

categories of vehicle localization approaches, concerning the core strategy that enables absolute

positioning: fingerprinting-based and infrastructure-based approaches. These are not mutually

exclusive.

Fingerprinting-based approaches require an offline mapping phase and an online localization

phase. Their main limitations are related to their opportunistic nature, which does not guaran-

tee availability of distinguishing features to allow global positioning with enough accuracy for

envisioned applications, and to the high mapping effort. Fingerprinting-based strategies for road

vehicle localization include WiFi fingerprinting, visual fingerprinting, and localization using lidar

maps.

Infrastructure-based approaches rely on infrastructure deployment with a certain density to en-

able global coverage. Applied techniques are based on either proximity or triangulation. Proximity-

based approaches share the main principles of fingerprinting, but relying on installed rather than

opportunistic infrastructure, e.g. RFID or embedded magnetic markers on the roads. Triangula-

tion (see Section 2.1.3.1) uses base stations that broadcast their known and fixed location so that

nodes in range can use it along with lateration or angulation techniques to locate themselves. It

can be applied to different types of networks and required density depends on signal range and

on accuracy requirements. In vehicular networks, infrastructure-based approaches using triangu-

lation mainly consist of vehicles estimating their locations using V2I communications to RSUs.

For example, Ou [113] uses TOA techniques, relying on a large infrastructure of RSUs deployed

in both sides of the road so that a vehicle can be connected to at least one pair of RSUs at all times.

More recently, Ma et al. [114] propose an IMU-assisted single RSU localization algorithm.

We can conclude that while most proposed vehicle localization approaches in the literature

rely on the almost ubiquitous availability of GPS, there are several solutions that do not depend on

it or are partially robust to its absence. Inertial sensors and maps are useful information sources

but require some form of absolute positioning to provide an initial position and to recurrently reset

dead reckoning cumulative errors. Cooperative approaches can significantly improve performance

in the perspective of relative localization but require at least some of the vehicles to occasion-

ally have access to an independent source with absolute location information to enable all network

nodes to localize themselves with global positions. These global positions, if not available through

GPS, can be provided with deployed infrastructure or opportunistic fingerprinting based on exist-

ing infrastructure. Infrastructure deployment implies high costs so we focus on opportunistic

fingerprinting strategies. As mentioned in Section 2.1.3.2 lidar sensors are still expensive to be

installed on vehicles in large scale. Camera-based approaches could be used in the online phase

jointly with lidar maps to reduce costs [11] but both cameras and lidar sensors are affected by

harsh environmental and light conditions and have LOS requirements. Also, as mentioned in Sec-
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tion 2.1.4, vision-based approaches present a trade-off between scale and precision. WiFi-based

fingerprinting (Section 2.1.3.3) has lower costs, but depends on already installed access points and

it has low accuracy [11]. We dedicate the next section to a fingerprint strategy frequently used

indoors but rarely explored outdoors: magnetic-based fingerprinting.

2.5.1 Magnetic-Based Localization

Inspired by many animals that rely on the Earth’s magnetic field, also designated geomagnetic

field, to locate themselves relatively to their destinations, the use of magnetic fields for position-

ing purposes has been applied for a long time in many different contexts. Some examples are

road vehicle navigation, pedestrian dead reckoning, and mobile robot orientation. A survey on

magnetic field based positioning systems is provided by Pasku et al. [115]. These can be divided

in two main approaches: one uses the geomagnetic field, occasionally distorted by existing infras-

tructures; the other employs artificially generated magnetic fields and so requires magnetic based

infrastructure deployment in the area of interest, e.g. Lopes et al. [116] and Abrudan et al. [117].

In this work, we focus on the first due to our requirements for a low-cost and infrastructure de-

ployment free approach. In our scenario of interest, measuring the geomagnetic field is widely

applied for orientation in dead reckoning techniques, as described in Section 2.1.2. In this section,

we focus our attention on magnetic fingerprinting based approaches.

Proposed for indoor localization inside buildings, this concept assumes that the steel and other

materials found in structures of buildings, which causes a distortion to the Earth’s magnetic field,

allows the utilization of the magnetic data to track the location inside a previously mapped area.

Several authors explore this concept for indoor positioning with different approaches and scenar-

ios. The first solutions are one-dimensional, proposed for mobile robots localization along the

corridors inside a building and combined odometry with magnetic signatures, e.g. Suksakulchai

et al. [118] and Haverinen and Kemppainen [119]. More recent methods, such as LocateMe by

Subbu et al. [120], MaLoc by Xie et al. [121], and Magicol by Shu et al. [122], are developed

for indoor pedestrian localization using smartphones. The work by Li et al. [123] studies the

feasibility of using the magnetic field alone for indoor positing. The authors conclude that this

approach has many advantages, namely no deployment of infrastructure is required, the magnetic

field is everywhere and relatively stable, but also presents challenges such as the small number of

elements that can be used to create the fingerprint database (maximum three, usually two in many

applications), and the surveying of the area of interest. The change of magnetic field with location

is quite significant, which is good for precise positioning, but demands efficient methods to create

the database. Combining geomagnetic field positioning with other technologies e.g. WiFi finger-

print, is indicated as an interesting area for further research. IndoorAtlas [124] is a commercial

system that enables cross-platform indoor positioning of smartphones by fusing different infor-

mation sources, including geomagnetic fingerprint maps. On some devices, positioning is often

infrastructure free, since accurate positioning can be achieved using fingerprints of existing Wi-Fi

signals and magnetic fields. It is a cloud-based platform that requires a floor plan image and a

preliminary mapping of the environment.
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This concept seems to have rarely been applied to outdoor scenarios. We believe this is due

to both the existence of GPS, ideally providing global coverage, and the lower density of distur-

bances from local magnetic fields in outdoor environment compared to indoors, making it easier

to rely on the geomagnetic field for orientation and the effort of mapping the whole area too dif-

ficult and unnecessary. Experiments performed for a master thesis by Selçuk [125] describe the

use of IndoorAtlas application and its approach in crowded, central and busy locations of Tallinn

and Istanbul outdoor environments. It is tested both for pedestrians and vehicles, concluding that

this is a helpful approach to develop a GPS-independent outdoor positioning system. A survey

on fingerprinting based outdoor localization by Vo and De [46] categorizes approaches as visual,

motion, and signal, also including some hybrid ones that combine different methods. Magne-

tometer data is used in some approaches for motion fingerprint based localization, e.g. Youssef et

al. [126], although the section describing these is mainly focused on pedestrian dead reckoning,

which is out of our scope since it differs from vehicle dead reckoning by using step information.

Most reviewed systems use GPS, although briefly and infrequently, to reduce accumulated error

from inertial sensors, as a trade-off between accuracy and energy consumption. As relevant hy-

brid techniques for our scenario, we can mention WheelLoc by Wang et al. [127] and Dejavu

by Aly and Youssef [128], both including GSM antenna, accelerometer and magnetometer data

for localization of road vehicles, as an energy versus accuracy trade-off perspective. WheelLoc

seeks to capture the user mobility trace (traveled distance and turns) and match it to the maps

using a Hidden Markov Model and Viterbi decoding, limiting the searching area by the cell towers

observed, and obtaining point locations through interpolation or extrapolation. Magnetometer is

used along with accelerometer for estimating mobility trace and transportation mode. Dejavu em-

ploys a dead-reckoning approach using low-energy profile inertial sensors from mobile devices,

and leverages road landmarks (e.g. bumps, potholes, bridges, tunnels, and turns) that affect iner-

tial and other sensors with unique signatures to reset the error accumulation in the dead-reckoning

displacement. Magnetic data is specifically mentioned in the detection of tunnels along with weak

GSM signal. It builds the database with crowd-sourcing using accelerometer, magnetometer, gy-

roscope, WiFi and cellular network information. SmartLoc by Bo et al. [129] uses the inertial

sensors from smartphones as a complement to GPS in order to improve its performance in loca-

tions with poor signal. Along with dead reckoning, it also leverages particular driving patterns and

road landmarks, such as braking and speeding in traffic lights or turning at intersections, as a cali-

bration strategy. Wei et al. [130], propose a vehicle localization approach based on magnetic data

by using odometry assisted with magnetic matching. This includes an offline phase to construct

the magnetic map with magnetic field intensities and coordinates of reference points, uniformly

distributed along the road. During the online phase, magnetic field intensities in a certain distance

window are matched to the previously constructed magnetic map, providing a position estimation.

These four approaches were tested with more than a hundred km of data in the cities of Beijing,

Alexandria, Chicago, and Beijing, respectively.
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2.6 Related Work Summary

Satellite-based systems, which are the current de facto solution for outdoor vehicle localization,

present large errors in multipath environments and NLOS satellite conditions. Our work is spe-

cially focused on these challenging scenarios, although it is also useful in general. To improve

or provide localization for road vehicles in a low-cost manner, we propose to leverage available

anchors and landmarks.

Cooperative Approach: Our focus is on RSSI-based lateration since TOF-based measure-

ments for ranging purposes require specific hardware, which is costly and not widely available.

RSSI is available in standard equipment. Research papers on cooperative approaches for vehicu-

lar networks frequently assume knowledge of the inter-vehicle distances with a certain associated

error, e.g. zero mean white noise [92], zero mean Gaussian noise [86], zero mean Gaussian noise

with distance dependent standard deviation (distance percentage) [93], without considering a spe-

cific method to estimate the distances. The chosen method and associated models have a high

impact on the errors of inter-vehicle distances estimated with real data. Parker and Valaee [105]

propose to use RSSI for inter-vehicle range estimation in order to provide relative positioning.

EKFs are usually applied to track the positions of vehicles, combining the location estimates (GPS)

with inter-vehicle ranging data. The solution obtained with the linearization of non-linear func-

tions and Guassian error assumptions in EKFs may not be a good approximation for real data and

cause the system to diverge (see Section 2.2). All performance assessments from the proposed

algorithms are done with simulations using artificial data and scenarios.

We develop our algorithm taking real data into account. We track the position of the ego

vehicle applying Bayesian inference with a particle filter, enabling a flexible combination of infor-

mation sources. PFs make no restrictive assumptions about the dynamics of the state space or the

density function and are therefore more adequate to deal with the non-linearities of the real world

than EKFs. To experiment with our developed algorithm, we implement a prototype using inertial

data collected with an off-the-shelf smartphone, GPS, road maps, and RSSI measurements. We

use RSSI measurements with path-loss model for ranging estimation to one-hop neighbors, which

can be vehicles with uncertain positions, to estimate locations of nodes in a vehicular network.

MagLand approach: Continuous magnetic fingerprinting has been well explored to comple-

ment dead reckoning for location tracking in indoor environments, relying in frequent distortions

created by the building structure. This scenario is very different from road vehicle localization

outdoors because 1) distortions in outdoor environments are less frequent, 2) satellite-based sys-

tems have high availability outdoors unlike inside buildings, 3) road vehicle dynamics are different

from indoor pedestrian and indoor robot dynamics, and 4) coverage area is not so easily limited

(building versus roads), which impacts the mapping effort and the feasibility to determine the ini-

tial position. As a consequence of 1), most areas outdoors provide few distinctive patterns, which

results in low matching accuracy, at higher costs in terms of mapping area and database size due

to 4). Moreover, as a consequence of 1) continuous matching is not needed outdoors.

Wei et al. [130] recently proposed an odometry assisted magnetic matching for road vehicle
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localization. It performs continuous matching with a normalization product correlation algorithm

in a space-based window and requires a mapping of the whole coverage area (roads). A limited

initial area is used in order to start tracking, since, according to the authors, matching in the whole

map database is time consuming and inefficient. Performance evaluation for location tracking is

done with data from experiments with a mini bus in Beijing, China.

Our proposed approach for outdoor scenarios, MagLand, is focused on leveraging opportunis-

tic distortions to the geomagnetic field created by road infrastructure as magnetic landmarks. Mag-

netic matching to mapped data is performed only during detected anomalies, i.e. when there are

significant distortions to the geomagnetic field. Unlike existing approaches, we do not focus on

continuous matching because it offers a bad trade-off in terms of effort versus accuracy, when there

are better alternatives. Areas without magnetic anomalies (where we do not perform matching) are

most likely areas with few infrastructure, and so satellite-based systems have open sky conditions

and can provide location. This way, MagLand allows to concentrate the mapping and matching

efforts only in locations where the distortions are significant, presenting distinctive patterns and

so enabling a good localization accuracy. Moreover, many of these locations coincide with areas

of known limitations of satellite-based systems, e.g. tunnels, which makes MagLand very useful.

We perform a proof-of-concept with real data from Porto, Portugal, for the detection, match-

ing and mapping steps. In the detection, we use a space-based window with a random forest

binary anomaly classifier for each window. In the matching step, we apply a one nearest centroid

classifier with dynamic time warping (DTW) to match time series irrespective of their pace, so ac-

counting for different collection speeds. The mapping uses a DTW barycenter averaging algorithm

to calculate the centroid for each class, making the signatures more robust at a reduced complexity.

This approach enables initial position determination without any extra source of information in an

efficient way even if the database is large [131].

In summary, we explore both cooperation between vehicles and information from the envi-

ronment in new ways to improve localization performance, and the proposed approaches were

developed taking real scenarios and real data into account.



Chapter 3

Cooperative Localization in Vehicular
Networks

In the previous chapter, we presented a literature review, where we covered the most relevant

topics related to localization of road vehicles in respect to this thesis. We addressed typical in-

formation sources, fusion techniques, performance evaluation methods, collaborative strategies,

and GPS-independent vehicle localization. In this chapter, we present our cooperative approach in

detail. We start by describing the problem in Section 3.1 and our assumptions in Section 3.2. Our

proposed inference algorithm is explained in Section 3.3, followed by a proof-of-concept with real

data in Section 3.4. We conclude with some final remarks in Section 3.5.

3.1 Problem Formulation

Our system is composed by a group of vehicles (and RSUs if available), all equipped with IEEE

802.11p vehicular connectivity. For simplicity, the state of a vehicle consists in its 2D position

and velocity (heading and speed). Concerning sources of information, we assume that vehicles are

heterogeneous and each may have access to different types of data. Examples of potential sources

comprise GPS, on-board inertial sensors, road maps, and WiFi signals. In our implementation, we

include the first three. The flexibility of our approach allows for our implementation to be easily

extended to comprise extra information sources and a more complex state, including for example

3D position and acceleration.

We focus on the computations performed in a single vehicle as the center of the network, de-

noted as V0, as illustrated in Fig. 3.1. This vehicle of interest1 (VOI) aims to calculate its own state.

Considering the whole network, our goal is to estimate the state of all vehicles, each performing

the calculations by seeing itself as the VOI and its one-hop neighbors as mobile anchors.

As explained in Section 1.1.1, we opt for a distributed architecture since it is more scalable and

flexible for dynamic vehicular networks than a centralized one. By handling information locally

and processing it in the vehicle itself, the computational burden is spread among the vehicles. A

1Also frequently designated in the literature as ego vehicle

37
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Figure 3.1: System scenario: a set of road vehicles with 802.11p communication capabilities and
onboard sensors, optional road side units and GPS availability.

centralized architecture would imply a high use of resources and be less robust to failure [17] since

it would require all measurements to be sent to a central processor that would then transmit the

computed results to the vehicles. One limitation of distributed algorithms is the circular reasoning

that can arise from inter-estimate dependency, which might lead to over convergence [21]. To

avoid this issue, in our work the vehicles do not share any estimation made with external data, i.e.

data collected and shared by other vehicles. Each vehicle sends a position estimate obtained only

with data acquired from its own sensors, which we denote as individual position information. This

location is shared along with a corresponding measure of uncertainty.

We are considering a collaborative approach with a distributed setting for large scale applica-

tion. All the nodes within the network should have processing capabilities enabling the application

of the selected techniques, so no expensive sensors or impractical devices to install in a vehicle

should be chosen. Following the discussion from Section 2.1.3.1, we select RSSI measurements as

the best option in our case for the simplicity and low costs of implementation compared to AOA

and TOF techniques, which need specific hardware, namely antenna arrays and highly precise

clocks, respectively. RSSI has the advantage of being in full compliance with future connect vehi-

cles by using information already provided through beacon signals defined in the standards [13],

namely BSM in DSRC (USA) and CAM in ITS-G5 (Europe) [3].

3.2 Model Assumptions

3.2.1 Path-loss Channel Model

In free space, the power of a radio-frequency signal decays proportionally to d2, where d is the

distance between transmitter and receiver. In real-world channels, however, the propagation of a

signal is affected by various phenomena such as reflection, refraction, diffraction, and scattering.
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It is nonetheless accepted on the basis of empirical evidence that the received signal strength

may be modeled as a log-normally distributed random variable with a distance-dependent location

parameter [20]. Since the aforementioned effects are environment dependent, the models have

to be calibrated for the intended scenario. Eq. (3.1) provides a path-loss channel model that

describes the received signal strength ρ measured in dBm (decibel milliwatt) given the transmitter-

receiver distance d (in meters), using three parameters: received signal strength ρ0 [dBm] at a

reference distance of 1 m, channel path-loss exponent α , and the fading vσ , modeled as a zero-

mean Gaussian random variable with variance σ2, i.e., vσ ∼N (0,σ2).

ρ(d) = ρ0−10α log10(d)+ vσ (3.1)

Fig. 3.2 shows a set of real measurements along with the estimated path-loss model (using log-

arithmic scale for the distance, the model becomes linear). We collected the data in an urban

scenario, using four vehicles communicating through 802.11p with 50Hz beacons, during a ten

minutes’ drive of approximately 5.5 km, in Porto, Portugal. The linear model in Fig. 3.2 was

obtained from the measurement data of one of the vehicles using linear regression. The estimated

values for the channel parameters are ρ0 =−34 dBm, α = 2.1, and σ = 5.5 dB.
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Figure 3.2: Pairs of GPS estimated distance and RSSI used to determine channel parameters along
with the estimated model.

In Fig. 3.2, a horizontal band with fewer measurements can be observed around −67 dBm.

We believe this to be an error specific to the hardware we used (for more details see Section 3.4),

possibly in the component that maps the received signal strength to the reported RSSI value. Due

to the unitary quantization made by the hardware, the measurements overlap along the vertical axis

and the number of such overlapping points for a given RSSI value is not discernible in the plot.

Therefore, the Gaussian nature of residual RSSI errors (difference between measured and model

predicted RSSI values) is not clear in Fig. 3.2, so we provide in Fig. 3.3 the normalized histogram
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of residual RSSI errors with the corresponding Gaussian fit (zero mean and σ = 5.5 dB). The

estimated standard deviation for the fading includes all points and is generalized for all distances,

despite the slight increase with distance that can be perceived in Fig. 3.2. It is also important to

highlight that this is an aggregated model that includes both LOS and NLOS measurements, and

therefore can be applied to both LOS and NLOS scenarios. While a reliable LOS and NLOS detec-

tion with separate models should improve the range estimation, such distinction is not considered

in this work.

Normalized histogram of the residual RSSI error
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Figure 3.3: Normalized histogram of the residual RSSI error for all pairs of GPS estimated distance
and RSSI, using the estimated channel model, along with the corresponding Gaussian curve fit.

Having calculated these channel parameters, we are able to apply the path-loss model to es-

timate the distances from the RSSI values of the neighbors. Different techniques can be used to

estimate the position of the vehicle from the distance to its neighbors. We opted for a parametric

approach as it takes into account the uncertainty of the measurements. In order to estimate the

location of a vehicle, we calculate the likelihood function lρ(d) = p(ρ|d) corresponding to the

path-loss model in (3.1).

lρ(d) = N (ρ0−10α log10(d),σ
2) (3.2)

It is important to note that several parameters impact ranging precision, such as the true dis-

tance d, the fading variance σ2, and the number of available measurements M. Below, we provide

the Cramér-Rao Lower Bound (CRLB), a lower bound on the variance of any unbiased estimator

d̂ of d:

CRLB(d̂) =
1
M

(
σd ln10

10α

)2

. (3.3)
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(a) One anchor (b) Two anchors (c) Three anchors

(d) One anchor (e) Two anchors (f) Three anchors

Figure 3.4: 3D view of the likelihood function of V0’s position (top), and the corresponding heat
map (bottom).

Eq. (3.3) highlights the importance of each parameter in the estimator variance. The CRLB

increases quadratically with d and σ and is inversely proportional to M.

We substitute d by the Euclidean distance between a vehicle position x0 = [x0,y0]
ᵀ and anchor

position xa = [xa,ya]
ᵀ to obtain the likelihood of the location of the VOI V0.

We assume that nA anchors are available, and that the channel model is the same for all an-

chors. Since the anchors are at different locations separated by a distance much higher than the

wavelength, we also assume that the vehicles experience independent fading. Therefore, the joint

likelihood function of the position factorizes as follows:

lρ(x0) =
nA

∏
a=1

N (ρ0−10α lg‖xa−x0‖,σ2). (3.4)

To illustrate the likelihood function given in Eq. 3.4, we show in Fig. 3.4 synthetic examples

for one, two and three anchors with known positions.

The corresponding CRLB for the general scenario with nA anchors, each providing Ma inde-

pendent RSSI measurements, is given by (3.5). We observe that the number of anchors and their

geometry relative to the VOI impact the lowest achievable variance. These results are consistent

with the ones presented in [37] for a location estimation algorithm using RSSI, although we show

ours from the perspective of a single vehicle, VOI, while in [37] they are calculated for the whole

network. In [132], the authors present the CRLB for the scenario of network topology uncertainty.
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Fundamental limits of wideband localization are presented in the literature, namely [133, 134].

CRLB(x̂0)=
(

σ ln10
10α

)2
[

nA

∑
a=1

(xa−x0)(xa−x0)
ᵀ

M−1
a ‖xa−x0‖4

]−1

(3.5)

A higher number of anchors helps to build up the rank of the Fisher information matrix (FIM)

by summing up rank-one matrices (outer products) in (3.5). The FIM rank is increased as long as

the corresponding position vectors are linearly independent. For example, 2D position estimation

requires a rank-two (invertible) FIM. When the anchors lie approximately on a line, the rank of

the FIM tends to one, and therefore the positioning estimator exhibits very large variance along

the direction orthogonal to the corresponding line (null space). This conclusion is also consistent

with the concept of horizontal dilution of precision (HDOP), which quantifies the impact of range

estimation errors on the positioning error given certain anchor configurations.

3.2.2 Map Information

If a road map is available, we distinguish between road and non-road areas. In our implementation

we use basic map data from Open Street Map: each road segment is defined simply by two edge

points. We consider this segment as the center of the road. The map does not include the width

of the roads or their number of lanes. Since our focus is on urban environments, we attribute a

default width of 10.5 m to all road segments, assuming a three-lane road (3.5 m each lane) as the

largest possible scenario. Most streets in the city have either one or two lanes (same or opposite

directions), so this value already gives us a safe margin by including potential roadsides or parking

spaces. By choosing the highest value, we may keep non-road locations flanking narrower roads as

valid but we also guarantee that we do not eliminate suitable position candidates. This assumption

can be adapted depending on the scenario and the available map details.

3.3 Inference Algorithm

3.3.1 Bayesian Approach

Fusing different types of data with different degrees of reliability in a single position estimator can

be achieved in many different ways. Parametric estimation approaches, such as Maximum Likeli-

hood, rely on statistical models associated with erroneous measurements. Based on the assumption

that the errors corresponding to different sensors are statically independent, a joint likelihood of

all available information can be calculated [58]. Bayesian-filters are powerful statistical tools for

state estimation that are able to combine information originating from multiple sources with dif-

ferent degrees of reliability [135]. In order to track the location over time, we employ a two-stage

Bayesian filter. The main stage is a particle filter for location tracking. We have chosen this filter

because it allows the representation of arbitrary probability density functions and makes it very

easy to incorporate road restrictions. We are, however, mindful of their potential large complexity
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and careful to keep the computational cost feasible. Once the posterior function has been calcu-

lated, in order to obtain the state estimate, we use a MAP estimate, which corresponds to the mode

of the posterior density. As our state-space model is highly non-linear, we opt for a bootstrap

particle filter that implements a sequential importance sampling with the transition prior probabil-

ity distribution as importance function [58]. This main filtering stage includes a prediction phase

based on the vehicle’s dynamics, namely the velocity (speed and heading). A secondary filtering

stage, which is a UKF, is employed and outputs the heading estimate required by the main stage.

This UKF fuses inertial measurements collected from a smartphone (magnetometer, gyroscope

and accelerometer data).

3.3.2 Proposed Filter

We first introduce the state-space model corresponding to the main stage of our Bayesian filter,

i.e., the particle filter for position tracking. We define the current full state of the vehicle of interest

V0 at time k in Cartesian coordinates as

X0(k) = [x0(k), y0(k), s0(k), h0(k)]ᵀ, (3.6)

where x0(k),y0(k) are the vehicle position coordinates (in meters) at time k, s0(k) is the vehicle

speed (in meters/second), and h0(k) denotes the vehicle’s heading (measured in radians from the

x-axis that coincides with the East direction, and positive angles are measured from East to North).

The state-space model of the second stage is given as:

x0(k) = x0(k−1)+T s0(k−1)cos(h0(k−1)) (3.7)

y0(k) = y0(k−1)+T s0(k−1)sin(h0(k−1)) (3.8)

s0(k) = ŝ0(k)+wsk (3.9)

h0(k) = h0(k−1)+∆ĥ+whk (3.10)

where T is the time interval between instances k− 1 and k (in seconds), whereas ∆ĥ is the esti-

mated heading change rate during interval T , and ŝk is the estimated average speed within that

time interval. The process noise is defined for both heading and speed as Gaussian distributions,

represented by whk and wsk , respectively. The corresponding normal distributions have zero mean

and variances T σ2
h and T σ2

s , respectively, where σh and σs are the reference standard deviations

for an interval of one second.

We present the state and measurement equations as well as the map restrictions. We pro-

vide a description of the algorithm step by step, in Algorithm 1, including also an analysis of its

computational cost.

3.3.2.1 State Equations

The state prediction equation is a simple linear motion model along each coordinate x and y, as

shown in Eqs. (3.7) and (3.8), respectively. We assume the vehicle has access to heading and
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speed estimates to be used in the motion model. These can be obtained from any source, without

loss of generality. For example, the speed information can be collected by a low-cost on-board

diagnostics (OBD) device connected to the vehicle. In our case, the heading is estimated using

the inertial sensors available in an on-board smartphone, namely accelerometer, magnetometer

and gyroscope. A UKF implementation based on [136] was used, corresponding to the secondary

stage of the proposed Bayesian filter. Please refer to Section 5.2 of [136] for details about the

algorithm for orientation estimation.

3.3.2.2 Measurement Equations

We define Z(k), a composite measurement vector at time k which is comprised of individual GPS

position estimates and RSSI measurements the VOI collects from available anchors. A different

model is necessary for each sensor in composite vector Z(k). For RSSI, the model is derived from

Eq. (3.1), rewriting the distance d in terms of coordinates of the VOI x0(k) for all available anchors

xa(k). The RSSI measurement ρa(k) corresponding to the packets sent from an anchor a at time k

is related to the vehicle position x0(k) as follows

ρa(k) = ρ0−10α lg‖xa(k)−x0(k)‖+ vσ (k), (3.11)

and the corresponding joint likelihood function for nA anchors is given in Eq. (3.4). In our model,

moving vehicles that are in the range of V0 act as mobile anchors. They know their positions

with some degree of uncertainty and share their own estimated positions x̂a(k) = [x̂a, ŷa]
ᵀ along

with respective uncertainty, e.g. (a representation of) their location posterior density. In the im-

plementation, we used GPS position estimates along with position reliability measure provided

by the GPS receiver. Due to anchor position uncertainty, their realizations have been drawn from

a Gaussian distribution with mean xa as the measured GPS position, and standard deviation σa

derived from the corresponding position reliability measure. The likelihood corresponding to the

anchor’s GPS measurements is given by N (x̂a(k),σa(k)), where x̂a(k) and σa are the estimated

GPS position and its standard deviation at time k. In our algorithm (see Algorithm 1), in order

to reduce the computational cost of calculating the joint likelihood function for nA anchors with

uncertain positions online, we precompute it using 100 particles drawn from the aforementioned

Gaussian function to represent each anchor and save the results in a lookup table.

If individual location estimates are available at the vehicles, for example from GPS, the cor-

responding likelihood functions are modeled according to the reliability of these estimates. The

composite likelihood function p(Z(k)|X(k)) is given by

p(Z(k)|X(k)) = lL(x0(k))lρ(x0(k)) (3.12)

where lL(x0(k)) is the product of the probabilities of x0(k) being the current position of V0,

for each alternative source of individual information. The global positions coordinates have been

converted to Cartesian ones using an equirectangular projection.
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Data: State and weight of each particle
Result: Estimated location
get initial position and uncertainty from individual position data or mean of anchors positions;
initialize particles’ states randomly (3σ area around initial position) and weights uniformly;
foreach time instance do

get speed measurements;
get heading change from UKF;
foreach particle do

sample speed error;
sample heading error;
calculate displacement;
update state;

end
if using map restrictions then

delete particles outside road;
replicate current particles using weights;

end
if using individual position data then

get individual position and respective uncertainty;
foreach particle do

calculate Gaussian probability of location;
update weight;

end
normalize weights (sum to 1);

end
if using V2V ranging data then

foreach anchor do
get mean RSSI;
get individual position and uncertainty;

end
foreach particle do

foreach anchor do
if σa <= 15 m then

calculate likelihood of particle position from RSSI, distance to the anchor and
anchor uncertainty (from a previously created lookup table);

update weight;
end

end
end
if sum(weight)< ZeroThreshold then

restart filter;
else

normalize weights (sum to 1);
end

end
if 1/sum(weight2)< ResamplingThreshold then

delete lowest weighted particles;
copy highest weighted particles according to their weights maintaining the total number of

particles;
normalize weights (sum to 1);

end
get MAP estimate: the state (location and velocity) of highest weighted particle;

end
Algorithm 1: Vehicle tracking algorithm using particle filter
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3.3.2.3 Map Restrictions

For each particle, we check whether its position lies on a road or not. Particles outside the roads are

deleted. To maintain the total number of particles, the ones on the roads are replicated according

to their weights, so that particles with higher weights have higher probability of being replicated.

3.3.2.4 Computational Cost

The computational complexity of our particle filter is O(nAnP) at each time instance k, where nA

is the number of anchors and nP the number of particles. The number of anchors is usually much

lower than the number of particles and anchors should be limited to the closest and more promising

neighbors (the ones with higher confidence in their position). Therefore the computational cost is

mostly driven by the number of particles used in the filter, a trade-off between the accuracy of the

estimation and the required computational resources to achieve it in suitable time. For example,

considering an update rate of few Hz, and one thousand particles, the computation could be easily

carried out by most modern multi-core processors based smartphones.

3.4 Experiments with Real Data

Origin

Destination

Figure 3.5: Urban trajectory of approximately 7 km in Porto, Portugal.

We show experiments as a proof-of-concept for our approach in a real world setting, providing

an evaluation of quality among different combinations of information sources. Four cars were

driven for 30 minutes in the city of Porto along the route shown in Fig. 3.5, facing everyday traffic

conditions with regular driving behavior. No special environments or settings were chosen, other
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Figure 3.6: Setup for data collection in the four vehicles: NEC LinkBird MX and GPS receiver on
top of the vehicles, and two smartphones (Nexus 4 and Nexus 5) inside each vehicle.

than keeping the vehicles in communication reach of each other for as long as possible while being

safe and compliant with road rules. Each vehicle was equipped with a purpose-built development

platform for vehicle communication, NEC LinkBird MX (see Fig. 3.6), which implements 802.11p

wireless standard (5.85–5.925 GHz) and has built-in beaconing functionality of 50 beacons per

second. A GPS receiver was positioned on the rooftop of the vehicles, connected to the LinkBird.

Inside, two Nexus 4 or 5 smartphones (near the windshield, see Fig. 3.6) collect inertial, Wi-Fi

and GPS measurements with the maximum possible sampling rates. Video (1080p, 30 fps) was

also captured in order to infer location ground truth. The path includes some zones with poor

GPS coverage, mainly during the second half of the drive, in downtown area, due to narrow streets

flanked by buildings. We chose the front vehicle, equipped with two cameras (front and rear) as
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the vehicle of interest. Nevertheless, the approach applies to all vehicles, acting simultaneously as

a vehicle of interest from their own perspective and as an anchor relative to their neighbors. The

estimated mean GPS location error of the anchors is 7 m for a confidence interval of 1σa. The

mean GPS distance between V0 and each of the anchors is 23.2 m, 48.3 m, and 55.8 m. These

parameters are show in Fig. 3.7a and Fig. 3.7c, respectively, for each anchor throughout the trip.

The mean RSSI values from 50 beacons per second are shown as well in Fig. 3.7b.

The following parameters were used in the experiments. The ResamplingThreshold was set to

10% of the total number of particles and the ZeroThreshold was set to 10−18. The particle filter

used 1000 particles with resampling eliminating the lowest 10% weights and replicating the top

80%. It applied T = 1 s iterations with sub-iterations of 200 Hz for the motion model (UKF).

The channel parameters were ρ0 = −34 dBm, α = 2.1, and σ = 5.5 dB, obtained as described

in Section 3.2.1 from previous experiments in similar conditions2. The individual locations and

respective uncertainty from the anchors were provided by their own GPS receivers from one the

smartphones3. If available, GPS position estimates were drawn from a Gaussian distribution with

position as mean and an estimated horizontal standard deviation provided by the GPS receiver

(when unavailable we used σGPS = 5 m). The gyroscope and accelerometer from the smartphone

collected data at 200 Hz sampling rate, and magnetometer at 50 Hz. The speed measurement was

obtained from the GPS (even when GPS is not used in the update phase) since we did not have the

OBD device available for these experiments. The standard deviations used in the motion model

were set to σh = 2◦/s and σs = 0.75 m/s. Map information from Open Street Map was used as

described in Section 3.2.2.

The ground truth of the position was marked manually using videos as the main source. Two

different videos were obtained from cameras at the front and back of the vehicle of interest, as well

as at the front of all three vehicles following it. In addition, we used the map and GPS from various

devices to disambiguate some situations (when the videos did not provide clear landmarks). We

choose the position of the smartphone attached to the mid-section of the windshield (containing the

front camera and collecting GPS data) as the true position of the vehicle. Although the trajectory

may be very close to the real one, some error introduced by the manual labeling is unfortunately

inevitable at high speeds.

Location
sources

GPS
GPS

+ map
V2V

V2V
+ map

GPS
+ V2V

GPS
+ V2V
+ map

RMSE 9.80 9.84 25.71 13.63 9.68 9.47
MAE 8.37 8.31 17.01 11.60 7.92 7.70
SD [heading] 2.68 2.51 4.70 3.03 2.26 2.10
SD [⊥heading] 2.90 2.62 5.51 3.25 2.39 2.19

Table 3.1: Location errors for full trajectory (meters)

2The same vehicles driving a different path in the same city were used.
3The smartphone GPS receiver was used instead of the one on the rooftop because the obtained results were better.
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(a) Horizontal 1σa error from each anchor
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(b) Mean RSSI (using 50 beacons per second) from each anchor
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(c) GPS distance from VOI to each anchor
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Figure 3.7: Various metrics for the whole trip displayed per second.
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Figure 3.8: CDF of location error in meters.

The results for 20 runs of the algorithm are presented in Table 3.1 for six different combi-

nations of the three location information sources: GPS, RSSI ranging information denominated

V2V for simplicity, and map restrictions. We show the root-mean-square error (RMSE), the mean

absolute error (MAE), which is the mean of location error, and the standard deviation (SD) of

the posterior function, providing a measure of confidence in the estimated position, both in the

direction of motion (heading), that will mostly coincide with the direction of the road, and in the

perpendicular direction. In order to have a better picture of the errors we also present the cumu-

lative distribution function (CDF) of the location error in meters in Fig. 3.8. We observe that, as

expected, both maps and V2V improve GPS results when combined with it, and all three sources

of information jointly provide the best configuration. The position accuracy achieved in this case

is less than 6.1 m for 50% of the trip, and less than 11.7 m for 80%. It is important to note that

not only the accuracy is better, but also the reliability of the results is improved in comparison

to using only a subset of the available information sources. The V2V based model, with no GPS

available in the vehicle of interest or fixed anchors with known exact positions, relying on the GPS

estimates of its neighbors, often out-of-reach or in poorly covered GPS areas, is able to provide

localization with a position accuracy of 12.8 m for 50% of the trip, even without the map. It’s

relevant to point out that this configuration shows a small percentage of very large errors (5% of

the errors are higher than 40 m) from a specific situation where V0 was separated from the rest of

the vehicles, which got delayed by a traffic light (see in Fig. 3.7 the interval of 1 minute centered

in 10:32), resulting not only in very large distances between the vehicle of interest and the an-

chors but also in a especially poor anchor geometry. In fact, very close to each other from a large

distance of V0, these 3 anchors behave as virtually only one and the likelihood takes an annular

shape, not allowing the model to distinguish the correct road in a bifurcation. When combining

map restrictions, we are able avoid these high errors and improve significantly the quality of the

overall estimation. The error for the V2V configuration combined with map restrictions is less

than 10.5 m in 50% of the cases and less than 17.3 m in 80%. We observe that the use of map

restrictions, particularly when combined with V2V, improves both the accuracy and the reliability
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of the estimation significantly.

Location
sources

GPS
GPS

+ map
V2V

V2V
+ map

GPS
+ V2V

GPS
+ V2V
+ map

RMSE 9.62 9.23 9.60 8.70 7.30 6.93
MAE 8.64 8.28 8.05 7.32 6.18 5.90
SD [heading] 2.08 2.10 2.57 2.18 1.58 1.54
SD [⊥heading] 2.25 2.03 2.66 2.28 1.68 1.58

Table 3.2: Location errors for intervals with good conditions of the anchors (meters)

Figure 3.9: Video frames from the last vehicle, anchor A3, for illustrative purposes of vehicle
geometry during the trip.

In Fig. 3.7d, we show the values of the location error (MAE) throughout the trip, allowing the

observation of its relation with the error of the anchors and the distance to V0, for the configurations

without GPS, and provide the GPS with maps as a benchmark. We confirm that the moments for

which the V2V errors are larger, coincide with the situations where all three anchors were at large

distances from the vehicle of interest. It is very important to stress that in these experiments

we were limited to those three vehicles as anchors. They were often distant (sometimes even

completely out of reach) and providing a poor anchor geometry. However, in a typical scenario of a

densely populated urban area, a larger number of vehicles is expected to be within communication

reach of V0 and the ones providing the best geometry and lowest position errors might be chosen

as anchors.
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Figure 3.10: Geometry of anchors and V0 during the trip: longitudinal distances (measured along
the road) Di j ≥ 0 between the vehicles’ antennas vary in time and represent the distribution of
vehicles in space. The leading vehicle is V0 and A1, A2 and A3 follow in that order (their colors
correspond to the ones used to represent them in Fig. 3.7), either in one lane or in two lanes
when possible. Except for very close distances, both geometries have a similar impact. For large
distances the configuration on the right can be approximated by the one on the left, so the geometry
is mostly in line following the VOI.

We present in Table 3.2, the results only for moments that provide favorable conditions to

apply V2V. In this case we define these as all three anchors close to the leading vehicle (less than

40m of GPS distance) and with good position accuracy (less than 8 m for 1σa confidence interval).

In our experiment they correspond approximately to 23% of the trip, but we expect them to occur

much more frequently in large vehicular networks. We observe that for these favorable conditions,

the performance of our tracking algorithm even when V0 has no access to GPS position is good.

The location error of the V2V based configuration is 8 m and the estimation has a standard devia-

tion of approximately 2.6 m, which is a performance equivalent to the GPS for the same context.

The accuracy of the configuration V2V+map is 7.3 m, exceeding the accuracy of the GPS+map,

which is 8.3 m. This shows the potential of our proposed approach. It is also interesting to note

that, since the anchors follow the leading vehicle (see Fig. 3.9), the distribution of the vehicles in

space is mostly in line or in two lanes in the same direction, as depicted in Fig. 3.10, which is a

poor geometry. However, while this limits more the longitudinal error (along the direction of the

road/movement), as illustrated in Fig. 3.11), using map restrictions bounds the lateral error (per-

pendicular to the previous direction), leading to a balanced combination of information sources. In

our implementation the road restrictions assume a worse case road width, so the impact is mostly
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Figure 3.11: Likelihood from V2V for in line geometry of the anchors

noticeable in situations for which the errors are very high (e.g. very distant anchors). Neverthe-

less, using more tight road constraints, for example having access to the actual width of each road,

would lead to an even higher impact on location performance.

3.5 Concluding Remarks

We propose a localization and tracking approach for vehicular networks, allowing vehicles to

estimate or improve their position using widely available low-cost smartphone sensors and in-

formation shared by one-hop neighbors with uncertain locations. We provide a proof-of-concept

using data from four communicating vehicles in a real urban scenario with 7 km, collecting their

GPS, RSSI, and inertial data, and using available road maps.

It is worth pointing out that, to the best of our knowledge, this was the first approach to

include RSSI for range estimation in cooperative localization of road vehicles after Parker and

Valaee’s seminal work in 2007 [105]. While they looked at this problem in a relative positioning

perspective, not including any absolute source of position information except for initialization of

relative node positions, and used an EKF to fuse different measurements, we focused on absolute

position estimation and applied a PF for data fusion. We published it in IEEE Transactions on

Intelligent Transportation Systems in 2017 [25] and since then Alami et al. [137] have proposed

an approach that relies on exchanging GPS-acquired position data and RSSI measurements from

neighboring vehicles and RSUs, citing our work and stating they improve on it by resetting the

vehicle position when passing by RSUs.

We present results evaluating the quality of different combinations of information sources. By

combining all of them (GPS, RSSI, inertial data, and road maps), we provide a mean location

error of 7.7 m during the whole trip, including urban downtown areas with low GPS coverage,

as well as relying on anchors with uncertain and often poor position estimates and geometry.
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For intervals with good conditions of the anchors, we reduce this value to 5.9 m. We propose a

maximum distance of 40 m as favorable condition for using V2V ranging, when in range of at

least 3 neighbor vehicles with good position accuracy. In these V2V conditions, we show it is

possible to provide a performance comparable to the one obtained from GPS even when the VOI

lacks access to GPS, achieving a mean location error of approximately 8 m.

One limitation of our system is that the obtained accuracy in not sufficient for critical appli-

cations. This was expected as it is a direct consequence of our decision to use only off-the-shelf

equipment and easily available information. As explained in Section 2.1 GPS augmentation sys-

tems, high-quality motion sensors, lidar ranging devices and high quality digital maps, for ex-

ample, would improve the reached accuracy significantly compared to regular GPS, smartphone

inertial sensors, V2V ranging with RSSI measurements and public available road maps from Open

Street Map. Our aim was to propose and evaluate an approach feasible in a large scale for being

low-cost. It can, nonetheless, be easily extended to incorporate extra, and possibility more ac-

curate, sources of information. Actually, the cooperation approach is general and can be applied

to any type of individual information, as long as the vehicle can abstract it into a position and a

respective confidence measure (1σ error) to share with its neighbors. The model makes no prior

assumptions concerning the sources of this information. Vehicles might be heterogeneous and

each may have access to different sources and types of data.

It is relevant to note that by leveraging independent sources of information not only the ac-

curacy is improved, but the system is also more reliable and robust to failure. In the absence of

GPS, the combination of ranging information from neighbor vehicles and map data is particularly

interesting since while the map limits the lateral error, the V2V ranging helps to reduce the error

along the road direction, where the closest anchors are distributed. This conclusion about the V2V

location error being dominated by the cross-track component is expected and later confirmed by

Severi et al. [13] with real data collected using three vehicles forming a platoon in a highway

scenario.

It is important to highlight the contribution and associated effort of the presented experiments

using real data from four communicating vehicles in a long urban trajectory. Considering our

literature review in Section 2.4, we conclude few of the proposed cooperative approaches include

experiments with real data to evaluate their performance. We observe it is more frequent to have

real data results in context-based (e.g. [68, 73]) and GNSS-based approaches (e.g. [9, 84]) than in

range-based approaches. We suppose this is due to GPS measurements being sufficient for the

first two, while the latter usually require both GPS and range measurements from several vehicles,

making data collection more challenging. Also, most of these approaches use only two vehicles

for performance evaluation with real data (e.g. [9, 73, 82, 84, 85]), which would be insufficient to

obtain a unique position using triangulation techniques, since each vehicle could only use a single

anchor. Considering proposed range-based approaches with communication devices, Hoang et

al. [104] test their TOA technique using impulse radio ultra wideband V2V ranging measurements

in a highway scenario with three vehicles forming a platoon, in Helmond, Netherlands. To the

best of our knowledge, ours was the first research work for ranging estimation with V2V 802.11p
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communication devices in a vehicular scenario that has been evaluated with real world data. Since

then, Severiet al. [13] also included RSSI for ranging estimation using real data from experiments

performed in the same location and using the same vehicles as those mentioned in [104]. They

tested RSSI V2V ranging in a highway scenario with three vehicles forming a platoon. This leaves

our work as the sole evaluation performed in this context with data from a real urban scenario.
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Chapter 4

MagLand: Magnetic Landmarks for
Road Vehicle Localization

In this chapter, we focus on individual localization for road vehicles and propose MagLand, an

approach that provides opportunistic magnetic landmarks by leveraging sensors from off-the-shelf

mobile devices and existing road infrastructure. Magland’s design is driven by a key observation:

we can create location signatures from local magnetic fields that in the context of orientation esti-

mation for motion tracking are perceived as anomalies in the expected geomagnetic field, also des-

ignated as magnetic disturbances [136] or magnetic interference [35]. In outdoor scenarios, these

are typically caused by road infrastructure and detected in areas such as the ones from Fig. 4.1:

tunnels, bridges, and roads above underground structures. Our goal is to design the system that is

capable of exploiting this observation.

Figure 4.1: Examples of roads where magnetic anomalies are detected.

57
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4.1 Fundamental Insights

Magnetometer data is frequently used for orientation estimation, e.g. in road vehicle naviga-

tion [25]. Anomalies caused by strong local magnetic fields are observable in magnetometer

measurements collected with off-the-shelf devices, as shown in Fig. 4.2. This figure gives an ex-

ample of heading estimation using inertial data collected with a Nexus 4 smartphone from the field

experiments described in the previous chapter.

Figure 4.2: Heading data from several information sources, with highlighted magnetic anomalies.

Considering the magnetic data from those experiments, we notice thirteen of these anomalies.

They occur in common areas in all four vehicles, presenting similar patterns. In Fig. 4.3, we

provide one example comprising 270 seconds of the trip, where two anomalies can be perceived in

the heading plot from all four vehicles. The first one is collected on a road above a subway station,

and the second one is collected inside a tunnel. Looking into the locations of all found anomalies,

we confirm the existence of some common types of surrounding infrastructure (see examples in

Figs. 4.1 and 4.17).

We also realize that seven of the anomalies are concentrated in the downtown area, as shown

in Fig. 4.4, suggesting the density of anomalies in Porto tends to be higher there. This is expected

considering it is common for cities to have more infrastructures built in their urban and densely

populated areas. Therefore, without loss of generality, our focus is mainly on urban scenarios

since they are expected to have higher density of structures causing magnetic interference. These

infrastructures vary significantly for different metropolitan areas, but from our preliminary analy-

sis, we consider the urban density of magnetic landmarks as promising. Examples of areas where

we observe them are tunnels (both inside and above), bridges, roads crossing at different heights

(both under and above), roads crossing railways, and roads above underground structures such as

subway lines, subway stations, or parking areas.

We performed a dedicated data collection using one vehicle with two smartphones in two

locations of expected anomalies contained in the previous experiment, namely roads above a high-
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Figure 4.3: Heading estimated in each of the four vehicles for the same subset of the trip.

way and a subway station1, passing several times with different speeds. In Fig. 4.5 we show the

magnetic data for three local axes of one smartphone in the highway crossing scenario in both

directions. We observe that the same path produces a particular pattern scaled by the vehicle’s

speed. Since anomalies correspond to a path segment, traveling in different directions results in

distinct patterns. Also worthy of note is the fact that the magnetic sensor is frequently not well

calibrated. Consequently, although the general patterns of the curves remain, the absolute values

may vary significantly without proper calibration.

Using this highway crossing as an illustrative example, we observe that the obtained patterns

are persistent in time and independent of the used vehicle and traffic conditions. In Fig. 4.6 we

show the magnitude of the magnetic vector obtained on several dates, using different equipment.

We confirm, as expected from our preliminary observations, that opposite road directions present

different shapes, while the same path, collected in different dates and using diverse equipment,

shows similar patterns. In time series these are scaled by the vehicle speed, as shown on the

middle plots. When we convert to traveled distance using vehicle speed, as shown on the bottom

plots, the patterns become more evident, even though they are never perfectly aligned, which

makes it a challenge to compare them.

Based on these observations, we formally define anomalies and signature in the context of our

approach as follows.

Defining anomalies: Magnetic anomalies are subsequences in a long sequence of magnetic

data where the influence of local magnetic fields is noticeable. Different fields impact their sur-

roundings in different ways and the area under their influence may vary considerably in size.

Therefore, these anomalies have diverse lengths. In our dataset, they range from 10 to 870 meters.

1Highway crossing 2.4 and bifurcation above underground station 2.3 in Fig. 4.18
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Figure 4.4: Seven locations with detected anomalies in all four vehicles in Porto’s downtown area.

Because magnetic anomalies caused by permanent infrastructure are path specific, they may be

viewed as magnetic landmarks.

Defining signatures: How to define unique signatures from magnetic anomalies is a challenge

since each region of anomaly might have one or more signatures, depending on the path, direction,

and lane of travel. Under the assumptions that inside regions of anomaly (1) vehicles always move

forward in the allowed road directions, and (2) vehicles do not change lanes within the same road,

we define magnetic signatures as follows: data collected on roads inside a region of magnetic

anomaly, through a unique path and lane, creating a specific pattern. Regions comprising solely

a unidirectional single-lane street have a single signature, while regions of anomaly that include

alternative paths (e.g. crossroads), or lanes (both in the same direction and in opposite directions)

have several, i.e. as many as the distinct paths or lanes.

The aim of this work is to design the system that leverages magnetic anomalies as landmarks,

which opportunistically provide global location information for road vehicles. In the next section

we provide an overview of the proposed system.

4.2 MagLand Overview

MagLand is based on our observations that the influence of local magnetic fields in the measured

geomagnetic field caused by permanent road infrastructure (e.g. tunnel, bridge, underground area,

subway or railway line) in a certain location is stable in time and not significantly impacted by

notoriously changeable conditions, such as used equipment (e.g. vehicle or smartphone), traffic,

or weather. The approach to leverage magnetic anomalies as landmarks for vehicle localization,

involves the following three steps: detection, matching, and integration. In this work, we focus on
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(a) South direction at 30km/h. (b) North direction at 30km/h.

(c) South direction at 40km/h. (d) North direction at 40km/h.

(e) South direction at 50km/h. (f) North direction at 50km/h.

(g) South direction at 60km/h. (h) North direction at 60km/h.

Figure 4.5: Magnetic data in the three local axis of the smartphone collected in a highway crossing
(length 64m) with different speeds from 30 km/h to 60 km/h, in both directions of the road.
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(a) Speed (South direction). (b) Speed (North direction).

(c) Magnetometer data in time (South direction). (d) Magnetometer data in time (North direction).

(e) Magnetometer data in space (South direction). (f) Magnetometer data in space (North direction).

Figure 4.6: Data from the same highway crossing, collected on different dates, using distinct
vehicles and smartphones, and with different speed patterns. The plots show the speed in m/s
(top), and four magnetometer vector magnitude curves for each direction, in time (middle) and
space (bottom), with offsets in y axis for clarity.



4.2 MagLand Overview 63

the first two. The integration step would involve the integration of the previous two steps and the

integration of the magnetic landmarks into a continuous location tracking algorithm.

Sensors Unit

Magnetometer

Gyroscope

Accelerometer

a) Pre-Processing Anomaly Detection Anomaly Matching

Processing Unit

b) c)

a) Input: Raw Sensor Data
b) Processed Data Stream

c) Intervals of Anomaly
d) Similarity between Anomalies

e) Reference Signatures Information
f ) Output: Location Information

d)

e)

Localization
f)

Figure 4.7: System model describing the different steps of the proposed approach.

We propose the system model represented in Fig. 4.7. Magnetic signatures are previously

mapped and stored on a reference database. We propose guidelines to collect a large number

of instances per signature and average them into a single reference to represent each signature.

During MagLand online application, this databse might be available remotely, locally or both

(cached). The first step after raw data collection is the pre-processing. It involves calibration of

data from each sensor, heading calculation, and magnetic data transformation to a common refer-

ence frame. Anomaly detection, matching and localization steps are organized in a sequential man-

ner. Anomaly detection algorithm is running online with the goal of detecting blocks of anomaly.

Blocks are, in the perspective of the time series data, intervals of anomaly, which correspond to

a region in space. The matching algorithm is only performed when an anomaly is detected. It

outputs a similarity or dissimilarity measure between pairs of anomalies, which in this case are

the detected anomaly from the data stream and each of the references. If a magnetic signature is

identified, we obtain its location information from the database. In the envisioned approach the

location estimation is combined with other sources of localization to provide continuous vehicle

tracking. These three steps, detection, matching, and localization, and interconnected. They may

share relevant information online to improve global performance of the system, e.g. a positive

online matching may improve the detection step with prior knowledge concerning the anomaly

size; or knowing a broad location in advance may enable the matching algorithm to considered

references only within a limited area.

In order to provide a proof-of-concept for MagLand, we propose and evaluate algorithms

for detection and matching of magnetic anomalies. First, we collect a dataset without any path

restrictions. After pre-processing the data, we manually mark the ground truth and use supervised

learning to compare ten binary classifiers for anomaly detection in time series, choosing one. Next,

we perform new field trips containing a limited and known set of anomalies, including references

for each. To select an algorithm for matching an anomaly to stored references, we consider two

configurations with distinct goals: one uses complete versions of the anomalies for matching

and evaluates the potential accuracy of the approach; the other uses incomplete versions of the

anomalies to understand the impact of online matching on the performance.
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Figure 4.8: Vehicle setup for data collection in one of the trips, using three smartphones (two
Nexus 4 and one Nexus 5) fixed on the windshield. Each of the smartphones includes a represen-
tation of its three local axes for illustration purposes.

4.3 Sensor Data and Pre-Processing

Consider a vehicle traveling on the road, with a smartphone in a fixed position gathering data.

For this purpose we can use one of several available applications, e.g. SenseMyCity [138, 139].

The orientation of the smartphone relative to the vehicle is assumed to be known, otherwise it

has to be estimated from the data [140]. In Fig. 4.8 we provide an illustrative example with three

smartphones fixed to the windshield. This smartphone position and orientation is the one chosen

for our data collection campaigns. We use the following sensors: accelerometer, gyroscope, and

magnetometer. They are all collected at the maximum rates available in the device and modified,

via interpolation or decimation, to the instants of the magnetometer samples at 50Hz. For training

purposes we collect GPS data using the smartphone: gpstime, 3D position, speed, and heading.

We assume a maximum speed of 90km/h (25m/s). Our main focus is on urban environments where

speeds are typically lower.

4.3.1 Sensor Data

We describe in detail the data from accelerometer, gyroscope and magnetometer, collected in the

three local axes of the smartphone, illustrated in Fig. 4.8.

4.3.1.1 Accelerometer

The accelerometer measures the smartphone’s acceleration (m/s2), including the effect of gravity,

in the three local axes. In our model, acceleration data is used only to estimate the Up direction in

the global ENU (East, North, Up) frame, for orientation purposes. With a static object, the mea-

sured acceleration vector has the same magnitude as the gravity, pointing in the opposite direction,

the Up direction (see Fig. 4.10a). With a fixed position of the smartphone inside the vehicle, we

require only a small interval where the vehicle is static in a horizontal road, i.e. not particularly
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steep, to estimate the Up direction vector from accelerometer data. In our experiments, we aver-

aged the acceleration during an interval with zero speed before the driving started, confirming the

result was close to the expected magnitude (the Earth’s gravity, approximately 9.8 m/s2).

4.3.1.2 Gyroscope

The gyroscope measures the angular speed (rad/s) in the three local axes. Integrating these val-

ues, we can measure the orientation changes in time. However, since these errors accumulate, we

should estimate this drift and compensate for it in order to reduce its effects. We can estimate the

gyroscope drift as the angular speed average for a static interval. This drift usually maintains for

large periods and can be valid for the whole trip, but occasionally the smartphone might recali-

brate the gyroscope and in that case our estimation should be updated accordingly. In the online

approach both the Up direction obtained from the accelerometer data and the gyroscope drift could

be estimated and confirmed during small static (zero speed) intervals of the vehicle during the trip,

for example in traffic lights.

4.3.1.3 Magnetometer

The magnetometer measures the local magnetic field vector (microtesla) in the three local axes of

the smartphone. Most of the time, i.e. when there are no strong magnetic fields created by nearby

objects or infrastructures, the magnetometer measures the Earth’s magnetic field. This points in

the direction North-Up or North-Down (depending on the hemisphere)2. Combined with the Up

direction learned from the accelerometer, this allows to estimate the orientation of the smartphone

(for details about this process refer to [136]), and therefore of the vehicle, in the global ENU frame

(Fig. 4.10a). In our case, this is updated at the same rate as the magnetic data. Since it uses data

from both accelerometer and magnetometer and the latter is assumed to measure the geomagnetic

field, whenever its measurements are affected by local magnetic fields, this orientation presents

anomalies. In our road scenario, we are particularly interested in the horizontal orientation, the

vehicle heading.

4.3.2 Data Pre-Processing

We collect raw real-world inertial data and process it in order to obtain useful features for our

approach. This process involves two main challenges: magnetometer data calibration and feature

engineering.

4.3.2.1 Magnetometer Data Calibration

Our first challenge is to calibrate magnetic data so that we have reliable orientation and heading

during normal function, without compromising the patterns that serve as signatures inside regions

of anomaly.
2The magnetic North pole differs from the geographic North pole. It changes over time and the difference between

both in the horizontal plane is an angle called magnetic declination. We do not take it into account in this work.
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Figure 4.9: Illustrative examples of bias present in magnetometer data (trip ID 3 and trip ID 4
from Table 4.1) on the horizontal plane of the local vehicle frame (see Fig. 4.10b). The origin-
centered circles (green) show the expected horizontal intensity of the geomagnetic field for the
broad location (25.1µT), and the other circles (blue) fit the data.

The magnetometer data measured in the local frame is subject to different errors [141]. One of

them causes the measured magnetic field to present a bias, instead of being centered in the origin of

the local frame. We verified in our experiments that even small offsets in the horizontal plane can

have a significant impact on the estimated heading. An illustrative example is shown in Fig. 4.9.

The vehicle itself may generate a local magnetic field and calibration should be performed while

the magnetometer is on-board.

Several methods address the magnetic calibration problem in the literature, presenting differ-

ent conditions and limitations.Most solutions contain at least one of the following requirements:

1) movement control for calibration phase, 2) large rotation range, or 3) access to external sources

of heading or orientation information. The most traditional one, compass swinging, requires user

involvement in the process (rotating the compass in predefined directions), so it is not suitable for

our scenario where we do not control vehicle movement. Another popular approach is ellipsoid

fitting. An example of this approach is provided in [141]. It assumes a fixed device, works in

3D, and does not need an external heading source. It requires a large rotation range, which might

represent a problem in case we want our online setting to work from an early stage. In [142],

an automatic calibration technique is performed online with a minimum space coverage. How-

ever, it assumes knowledge not only of the horizontal magnetic field, but also of external heading

source of information, allowing the device to move freely during the driving. Another example

of a calibration requiring information from other sensors is given in [143]. It formulates the cali-

bration as an orientation estimation problem and uses accelerometer and gyroscope. It attempts to

compensate for the magnetic disturbances, which is not our intention in this work.

In our approach, although we have access to external sources of heading or orientation infor-

mation, we prefer to maintain the fixed device limitation and keep the magnetometer data indepen-
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dent from them. This enables their subsequent use to help in the detection of the type of errors we

are interested in, i.e. the ones caused by local magnetic fields. Concerning the horizontal plane,

we decide to apply a simpler approach to remove only the permanent offset, assuming a circle,

in order to obtain suitable heading values for non-anomalous samples. This horizontal magnetic

calibration allows us to use the heading as a feature, avoiding extra modifications to the collected

magnetometer data.

Circle Fitting Problem

In Fig. 4.9 we can see in green the origin centered circle relative to the theoretical values

for the magnetic data for the city of Porto and in connected black dots the magnetic data for a

whole trip projected on the horizontal plane. The heading of the vehicle at any moment of the trip

is measured as the angle between the direction indicated by the magnetometer in the horizontal

plane for that instant and the horizontal x axis. The blue circle is fitting the collected data. To

decrease heading errors we estimate and compensate for the offset between the center of these two

circles.

The problem of finding the blue circle is known as the circle fitting problem: get the circle

(both center coordinates and radius) that best fits a given set of points, usually in the least squares

sense. Several approaches have been proposed [144, 145]. Solving this problem in practice is not

easy, since the minimization of the least squares fitting of circles is a nonlinear problem that has no

closed form solution [144]. All known algorithms are either iterative and costly or approximative

by nature, and the problem becomes even more challenging when the points are sampled along

solely a small arc. Getting points for the whole circle might take a very long time depending on

the trajectory so, when calibrating the magnetometer data online, a good fitting is required even

with a small arc. Also, these methods are based on the assumption that all points are drawn from

a real circle with isotropic Gaussian noise. The presence of external magnetic fields implies that

this assumption is not valid in our scenario.

Proposed Calibration Procedure

In order to find an adequate circle fit under these particular conditions, small arc available and

in the presence of strong anomalies, we assume knowledge of the radius. The radius of the circle

is the horizontal intensity of the measured magnetic field and, as aforementioned, we know the

expected geomagnetic field for a given broad location area. In our practical experiments, we use

the theoretical horizontal intensity for the city of Porto, approximately 25.1µT, as the expected

radius for the circle fitting. This presents a new problem that cannot be solved as a particular

instance of the aforementioned circle fitting proposed solutions, as these estimate first the center

coordinates and only then the best radius for that center.

Our problem is to find the center of the circle that minimizes the sum of the distances from all

points to the circle. As we know our magnetometer data is subject, not only to measurement errors,
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but also to the local magnetic fields that constitute the anomalies, we decide against the more

common approach of minimizing their squares. Anomalies may have a very different behavior

than the one from the points drawn from the theoretical circle that is the expected horizontal

projection of the geomagnetic field, and squaring that error would give higher weights to these

anomalous points. We apply a descent quasi-Newton heuristic to find a local minimum, using the

origin (0,0) as the starting point. Since having an unbalanced density of points in different regions

can degrade the results, we round all coordinates with a precision of 0.1µT and remove points with

repeated values.

Regarding the vertical axis, we make an average of all available data points and apply an

offset relative to the theoretical value. This might be done with the whole time series when post-

processed or with a small initial interval otherwise.

4.3.2.2 Feature Engineering

Smartphone inertial data is collected on the local reference frame (Fig.4.8). In order to allow

comparisons between different instances, a common reference frame is required. One option is to

use the World global ENU frame (Fig. 4.10a), using gravity and magnetic North for reference. We

also include a second option that we believe could be more interesting in this specific scenario: a

vehicle local frame. We define it as follows: the front of the vehicle (direction of movement) is

the horizontal hy axis, vz is the vertical axis, and the horizontal hx axis is orthogonal to both hy

and vz, pointing to the right of the vehicle, as depicted in Fig. 4.10b. Following our assumption of

knowing the position of the smartphone inside the vehicle, we can describe the vehicle reference

frame in the smartphone local coordinates. This allows us to have a common reference without

relying on the magnetometer data.

Taking into account collected sensors and context, we propose to describe the calibrated data

as follows (50Hz, magnetometer instants):

• Magnetometer data described in two distinct frames: 2 axes in the World global ENU

frame (North and Up, since East is null), and 3 axes in the vehicle frame, shown in Fig. 4.10.

We also use the magnetometer total magnitude and the horizontal intensity, which is the

magnitude of the vector defined by the horizontal hx and hy axes.

• Orientation estimated from magnetometer and gravity, giving us a rotation for the global

ENU frame. For simplicity, from now on we suppress the reference to the accelerometer.

• Changes in orientation from gyroscope integration (after gyro drift compensation).

The initial orientation is necessarily obtained from the magnetometer, since gyroscope only

tracks changes in orientation. After the initial instant, we can track the orientation, and conse-

quently the heading, from two different sources of information. Considering gyroscope data is

unaffected by local magnetic fields, we expect differences to be relevant for detecting magnetic

anomalies.
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(a) Global ENU frame (b) Local vehicle frame

Figure 4.10: Reference frames for inertial data.

All magnetic data is in microtesla (µT) and angles are measured from East, positive counter-

clockwise, in radians. From the above data, we define the following time series (non-periodic,

50Hz):

1) heading estimated from magnetometer [hm];

2) magnetometer North component in ENU frame [mn];

3) magnetometer Up component in ENU frame [mu];

4) magnetometer horizontal hx axis in vehicle frame [mhx];

5) magnetometer horizontal hy axis in vehicle frame [mhy];

6) magnetometer vertical vz axis in vehicle frame [mvz];

7) magnetometer vector magnitude [mm];

8) magnetometer horizontal intensity [mh];

9) absolute difference of the first derivatives (changes in consecutive values) of the heading esti-

mated from magnetometer and from gyroscope [dif1];

10) absolute difference of the deviations (difference to the window mean) of the heading esti-

mated from magnetometer and from gyroscope [dif2] (only used in detection step).

These features have significant redundancy, so we expect only a subset to be necessary for

our approach. For example, features mn and mu and features mhx, mhy and mv describe the same

magnetic vector in different frames.

4.4 Magnetic Anomaly Detection

The aim of this step is to detect periods of anomaly in the magnetic time series data that are associ-

ated to local magnetic fields caused by permanent road infrastructure. Successfully detecting each

of these anomalous blocks, i.e. the start and end of anomalous subsequences in our multivariate

non-periodic time series, is very important to their use as signatures for specific paths.
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Currently, the detection of magnetic anomalies is closely related to fusion algorithms for ori-

entation tracking. Sensor fusion using accelerometer, gyroscope and magnetometer is frequently

applied to orientation estimation [35], with the most common approaches being stochastic filtering

(mainly based on the Kalman Filter and its different implementations), complementary filtering,

and gradient descent algorithm [146]. These fusion algorithms enable ignoring or attributing a low

weight to a source that gives unexpected values during a period of time. The deviation from the

expected geomagnetic field vector is generally applied as a measure of confidence in the magnetic

sensor, either combined with a threshold, e.g. Harada et al. [136], or used as a weighting factor,

e.g. Fan et al. [146]. Therefore, the focus is not on detecting the errors, but on minimizing their

impact in the system for orientation estimation purposes.

4.4.1 Anomaly Detection in Time Series

Anomaly detection is a very broad topic [147]. The most interesting model for each situation

depends highly on the available data and the requirements of the solution [148]. In our partic-

ular scenario the data consists of multivariate non-periodic time series with anomalous subse-

quences [149]. Techniques for anomaly detection in time series data may be classified in kernel-

based, window-based, and predictive techniques [150]. Kernel-based techniques make use of a

distance kernel to compute similarity between sequences. They are not suitable for online de-

tection and usually present poor performance for subsequence anomalies, so we exclude these

methods for our purposes. Window-based techniques analyze a short and fixed length window (or

subsequence) from a test sequence at a time, assigning an anomaly score. It is usually applied

combining the anomaly scores from all windows in order to find anomalous test sequences, but

it can be adapted for finding subsequence anomalies in an online setting. The choice of the win-

dow size is critical. Predictive techniques learn a predictive model from the training series and

compare the forecast observation with the actual observation to detect anomalies. The extensive

experimenting with many different time series performed by Chandola [150], indicates that for

time series data kernel and window based techniques, which are model independent, tend to give

better performance that predictive techniques. Therefore, we opted for the use of a window-based

technique, dividing each data sequence in small subsequences, or windows.

Window size: Usually windows have a fixed size corresponding to a fixed time interval, con-

taining the same number of points for a constant sampling frequency. However, due to the spatial

nature of our problem, we fix the size of the window relative to an interval in space, i.e. a fixed

traveled distance. To choose the size of our window, we take into account that a very large in-

terval may difficult the detection of small sized anomalies and reduce the space precision; on the

other hand if the interval is too short there may not be enough points per window at higher speeds.

Having considered a maximum speed of 90km/h, we choose a distance that guarantees at least 20

points per window with the data rate of 50Hz. The window size is fixed to 10 meters. The esti-

mated vehicle speed is used to analyze the data in windows of 10 m. Non-overlapping windows

are extracted from each sequence for both training and testing.
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Trip
ID Date Traj.

ID
Veh.
ID Duration Trav.

dist. (km)
Block
anom. Windows Anom.

Windows

1 27-09-2014
10h06 1 1 45m20s 12.889 19 1201 244

2∗ 27-09-2014
10h06 1 1 45m20s 12.899 15 1201 227

3 27-09-2014
10h06 1 2 45m20s 12.785 13 1205 231

4 27-09-2014
10h06 1 2 45m20s 12.785 13 1206 229

5 27-09-2014
10h06 1 4 45m20s 12.874 18 1213 222

6 13-03-2016
11h06 2 1 14m26s 12.285 6 1191 63

7∗ 13-03-2016
11h52 3 1 55m23s 21.848 32 2092 634

8 13-03-2016
11h52 3 1 55m23s 21.848 32 2092 629

9 13-03-2016
14h56 4 1 30m38s 9.775 10 927 254

10∗ 11-11-2016
19h32 5 1 31m50s 13.462 15 1298 213

11 12-11-2016
13h20 6 1 6m47s 4.043 3 382 34

12 13-11-2016
12h38 7 3 10m32s 5.176 7 448 18

13∗ 15-11-2016
09h21 8 3 9m56s 4.682 4 374 32

Total 8 8 4 6h26m35s 157.351 187 14830 3030

Table 4.1: Characteristics of the anomaly detection dataset

4.4.2 Dataset Description

We collected a total of 13 trip datasets for analysis with Nexus 4 and 5 smartphones. Table 4.1

presents the description of each trip. The dataset has some heterogeneity, including four vehicles,

eight trajectories (comprising both urban and highway sections), different dates and traffic con-

ditions. It comprises a total traveled distance of 157 km during 6h26m, including 187 anomalies

with a total of 3030 windows of anomaly (10 m each). The trips took place in the district of Porto,

Portugal.

Some of the trips were collected in the same vehicle at the same time with different smart-

phones, namely trips 1 and 2, 3 and 4, and 7 and 8. Trips 1 to 5 were collected in the same ex-

perimental campaign with distinct vehicles driving the same route. In trips 7 and 8 the trajectory

was chosen in order to repeatedly visit certain previously identified locations containing anoma-

lies in different speeds and directions. This is the reason why these trips are the ones containing

the highest ratio of anomalies, around 30%. The remaining trips were actual trips, performed in

everyday life without any planning. In these, the ratio of anomalies varied between 4% and 27%.

Nine trips are used for training and the remaining four (a third of the dataset, marked with an
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Figure 4.11: Calibrated magnetic data (microtesla) projected on the horizontal plane with high-
lighted anomalies.

asterisk in the trip ID) are used for testing. Two of those (trips 2 and 7) were collected in the same

experiment and vehicle as others used in training. The other two (trips 10 and 13) have totally

different trajectories from the ones in the training set.

Ground Truth: In order to apply supervised learning techniques, we manually annotate the

anomalies for all trips on the dataset by visually inspecting the plots of processed time series with

respect to their expected values. From gyroscope data and GPS information we learn the expected

heading. See Fig. 4.2 for an illustrative example of heading data with highlighted anomalies in red.

From the broad location, we consult the approximated expected geomagnetic field [151]. Fig. 4.11

shows an illustrative example of calibrated magnetic data projected on the horizontal plane with

highlighted anomalies in red. Fig. 4.12 shows an illustrative example of vertical magnetic data

with highlighted anomalies in red. There is an inevitable uncertainty regarding boundary points

between normal instances and anomalies. The intervals of anomaly are delimited using the initial

and final seconds (gpstime). Windows including any number of anomalous points are considered

anomalous windows.

4.4.3 Data Processing

We apply 20 functions to each window from each time series. The functions, 12 from time do-

main and 8 from frequency domain, are described in detail in Table 4.2. We define s = {si, i =

1,2, . . . ,N} as the subsequence of values from one parameter contained in each window of 10 m

in the time domain, having a total of N points, N being variable for different windows, depending

on the speed of the vehicle. Applying a fast Fourier transform (FFT) to obtain the power spectral
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Figure 4.12: Magnetic vertical data (microtesla) with highlighted anomalies.

density of the signal for that window, Pj represents the power spectrum at f j, the frequency value

at the frequency bin j in a total of M.

From the resulting 200 features (20 functions applied to the windows of each of the 10 time

series described in Section 4.3.2.2) there are four, namely peak frequency and median frequency

for parameters dif2 and mm, that result in null values for all windows, and so they are excluded

from the training and testing datasets. Therefore, to consider different models for our anomaly

detection task we use a dataset of 9865 windows of 10 m for training and 4965 for testing, each

containing 196 features.

Using features based directly on magnetometer data requires the classifier to be specifically

trained for each new area, since magnetic fields vary depending on the broad location on the globe.

On the other hand, classification solely based on heading information is location agnostic. Thus,

we consider two feature sets: (1) including features extracted from the magnetometer data and

using all 196 features, and (2) based uniquely on the 60 features that do not depend directly on the

magnetometer data, but only on the heading after processing the data.

It is very important to adequately prepare the dataset before employing the classifiers. Partic-

ular care should be taken when dealing with the presence of outliers, features of different units

and scales, imbalanced data, and highly correlated features. The goal is to detect the anomalous

instances, so outliers in the data are to be expected and should be taken into account. We address

each of the remaining issues next.

4.4.3.1 Feature Normalization

Performing feature normalization is a common pre-processing requirement. Many classifiers work

under the assumption of standardization or rely on a distance measure that should not be applied to

variables with different units and scales. While this step might help to balance the weights among



74 MagLand: Magnetic Landmarks for Road Vehicle Localization

Function Expression
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1) min mins
2) max maxs

3) mean s s = 1
N ∑

N
i=1 si

4) mav 1
N ∑
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i=1 |si|

5) ab ∑
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i=1 |si|
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15) pf fp = f j : maxPj, j = 1, . . . ,M
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f j
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M
j= f j
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1
2 ∑
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17) af ∑
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18) m1f ∑
M
j=1 Pj f j

19) se ∑
M
j=1 PN j log2 PN j,PN j =

Pj

∑
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Table 4.2: Time domain and frequency domain functions applied per window to each parameter:
1) minimum, 2) maximum, 3) mean, 4) mean absolute value, 5) absolute magnitude, 6) root mean
square, 7) mean absolute difference, 8) mean absolute deviation, 9) standard deviation, 10) skew-
ness, 11) kurtosis, 12) autocorrelation, 13) total spectral power, 14) mean spectral power, 15) peak
spectral power, 16) peak frequency, 17) median frequency, 18) mean frequency, 19) first moment
in the frequency, 20) spectral entropy.
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different features and reduce noise, in the presence of outliers it can compromise the data. Since

the best choice might depend on the model, we decided to keep both options available, original

features and normalized feature with z-score normalization (zero mean and unit variance), until

the next step.

4.4.3.2 Balancing Dataset

In our dataset the ratio of anomalies and normal instances is approximately 20% and 80%, respec-

tively. To balance the dataset making both classes equally represented, we apply SMOTE [152],

which stands for Synthetic Minority Over-sampling Technique. SMOTE artificially generates new

examples of the minority class with the nearest neighbors of existing cases. We use the implemen-

tation from DMwR R package [153], where this is combined with under-sampling of the majority

class.

4.4.3.3 Feature Selection

Many of our 196 features are highly correlated. This redundancy might have a negative impact

while training some models, as well as unnecessarily increase the complexity. To select a good

subset of features, we use Correlation-based Feature Selection (CFS) [154], which is based on the

assumption that good feature sets contain features that are highly correlated with the ground truth

class, yet uncorrelated with each other. From the original features, we keep 20 selected by CFS on

the training set.

The feature selection process chose the following 20 features: min.mn, max.mh, max.mhy,

mean.mvz, mav.mhy, mad.dif2, mad.mm, mad.mh, mad.mu, mad.mvz, sd.mhx, atc.dif1, pf.dif1,

pf.mu, pf.mhx, pf.mvz, af.dif2, af.mm, af.mn, and m1f.mvz. We observe that 12 of the features are

from the time domain and 8 are from the frequency domain. None of them is directly based on the

heading, although four are obtained from the differences in heading calculated from magnetometer

and gyroscope data. The remaining 16 features utilize magnetometer data directly: 6 using either

the local vertical or the global Up axis, 8 using some form of horizontal information, and 2 using

the total magnitude.

We also applied CFS to the 60 heading-based features and obtained the following 13 features:

mad.hm, se.hm, min.dif1, mean.dif1, atc.dif1, pf.dif1, af.dif1, rms.dif2, mad.dif2, sd.dif2, af.dif2,

m1f.dif2, and se.dif2. We observe that 7 features are from the time domain and 6 are from the

frequency domain. Only 2 directly use the heading from the magnetometer. The remaining 11 are

based on the differences to the gyroscope heading information.

4.4.4 Classification Model

We search for a suitable classifier to distinguish between normal and anomalous instances among

ten well known supervised models. The first five are strong and widely used algorithms for clas-

sification: Decision Tree (DT), Neural Network (NN), Support Vector Machine (SVM) with

a linear kernel, k-Nearest Neighbors (kNN), and Naive Bayes (NB). The other five are popular



76 MagLand: Magnetic Landmarks for Road Vehicle Localization

ensemble methods, combining the predictions of multiple learning algorithms in order to improve

the performance compared to a single one. Three are based on decision trees: Random Forest
(RF), which is a bagging method, and two boosting based models, namely Stochastic Gradient
Boosting (GBM), and Boosting C5.0 (C5). The remaining two ensembles are Boosted Logis-
tic Regression (BLR) and Model Averaged Neural Network (aNN). The implementation was

performed in R [155] applying the train function of the caret package. Unless stated otherwise,

default values are used.

4.4.4.1 Metrics

We consider the following metrics to compare the classifiers: sensitivity, precision, specificity,

accuracy, area under the ROC curve (AUC), and F2-score. While a good predictor should have

a nice balance between false positives (FP) and false negatives (FN), in our case a low number

of FN is more important than a low number of FP, since missing an anomaly has a worst impact

than misclassifying a normal instance. This is the reason sensitivity metric is more relevant for

our application than precision or specificity. Accuracy gives an important indicator of overall

performance despite its limitations on imbalanced datasets. F-scores are calculated from precision

and sensitivity, using β as the weight of sensitivity relative to precision, so we use the F2-score

with β = 2. The ROC curve [156] illustrates the performance of binary classifiers by plotting the

sensitivity against the specificity at various threshold settings. The AUC reduces ROC analysis to

a single scalar value representing expected performance (for details, please refer to [156]). It was

the selected metric to train the classifiers. We prefer classifiers with high expected values for all

metrics, with particular relevance to sensitivity. A low variance is also very important in terms of

consistency. Models for which the performance metrics vary significantly in the training set are

expected to be unstable when applied to unseen data.

4.4.4.2 Training Classifiers

We train all ten classifiers with the 20 features proposed by CFS, applying 5-fold cross-validation

and repeating the procedure ten times. The box-plots for the area under the ROC curve, sensitivity

and specificity are presented in Fig. 4.13a.

When comparing classifiers according to the aforementioned criteria, RF and C5 are the mod-

els which show a higher performance: high sensitivity, low variance, and a good balance between

sensitivity and specificity. These results indicate that an ensemble model based on decision trees,

such as RF or C5, using the selected 20 features with no normalization step is the best solution for

our anomaly detection scenario. RF seems to have a slight advantage in terms of sensitivity.

We tried both normalization options and the differences were negligible, so we show solely

results without normalization. Although we do not show the results from the training with all

196 features, we observed that with only 10% of the features we can reach practically the same

performance for most models, and even improve in some of them. This confirms the suitability of

the used feature selection model.
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(a) Using 20 features with no normalization step after applying CFS

(b) Using 13 features with no normalization step after applying CFS

Figure 4.13: Boxplot for comparison of 10 classifiers using ROC, sensitivity, and specificity.

Most classifiers show a small decrease in the training performance using the 13 heading-based

features compared to the 20 features, as shown in Fig. 4.13b. RF and C5 remain the classifiers

with the best overall training performance, with AUC average only 1% worse, although using only

65% of the number of features.

4.4.4.3 Testing Classifiers

Table 4.3 shows the performance results of trained models on the test set. Although values for

specific metrics, such as AUC and sensitivity, are lower from the ones obtained with the training

data, as expected, testing results support our previous observation that ensemble methods based

on decision trees are a good option for our problem. We choose RF for its stability and good

performance across all metrics.

The most interesting results to highlight from Table 4.3 are the sensitivity of 77% and 75%,

accuracy of 91% and 88%, and F2-score of 77% and 75%, for the RF model using 20 and 13 fea-

tures, respectively. We observe that although the RF classifier with 20 features offers better results,

as expected, the alternative with 13 features does not decrease them significantly, providing a sat-

isfying performance with 35% less features. These results consider each window independently.
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DT NN SVM kNN NB RF GBM C5.0 BLR aNN

20
fe

at
ur

es

Sensitivity 69.8% 74.3% 75.1% 70.1% 71.7% 76.5% 78.8% 78.6% 69.8% 76.6%
Specificity 94.8% 91.6% 93.3% 93.5% 95.6% 95.0% 94.5% 92.7% 93.5% 94.6%
Precision 79.3% 71.8% 76.2% 75.6% 82.4% 81.4% 80.4% 75.6% 77.2% 80.4%
Accuracy 89.2% 87.8% 89.2% 88.3% 90.3% 90.9% 91.0% 89.6% 89.9% 90.6%

AUC 87.5% 90.6% 91.2% 86.9% 91.2% 93.1% 93.1% 92.2% 91.2% 91.0%
F2-score 71.5% 73.8% 75.4% 71.2% 73.6% 77.4% 79.1% 78.0% 77.3% 77.3%

13
fe

at
ur

es

Sensitivity 75.1% 73.9% 70.7% 62.8% 59.5% 75.1% 72.4% 74.4% 77.3% 75.1%
Specificity 88.1% 90.7% 92.9% 86.2% 96.2% 91.7% 93.4% 91.2% 84.6% 89.4%
Precision 64.3% 69.5% 74.1% 56.6% 81.7% 72.2% 75.8% 70.9% 59.0% 67.1%
Accuracy 85.2% 87.0% 88.0% 81.0% 88.0% 88.0% 88.7% 87.5% 83.0% 86.2%

AUC 84.5% 88.1% 88.9% 79.8% 86.6% 89.1% 89.3% 88.2% 85.9% 89.3%
F2-score 72.6% 73.0% 71.3% 61.5% 62.9% 74.5% 73.1% 73.7% 72.8% 73.4%

Table 4.3: Test results for window-based anomaly detection.

4.4.4.4 Random Forest Parameters

We now consider the parameters for the RF model: the total number of trees ntree and the

number of variables randomly sampled as candidates at each split mtry. Until this point, all the

trained RF classifiers used the default 100 trees and the parameter mtry was tuned during training

in R with the caret package. The value mtry= 2 was chosen in most settings, but it varied from 2

to 11.

(a) Estimated OOB error as a function of ntree. (b) Training metrics as a function of mtry.

Figure 4.14: Training random forest parameters.

Choosing the number of trees is a trade-off between performance and speed. A higher number

of trees improves performance yet increases computation time, not only training the model, which

in our case is not a problem, but also in classifying new instances, which is critical for an online

solution. We present in Fig. 4.14a the out-of-bag (OOB) error estimation as a function of the

number of trees ntree used in the RF model for 20 features. It also presents the error per class,

which is higher in case of anomalies. We observe that the errors stabilize as ntree increases, the

improvement becoming negligible. We choose ntree= 50 that has an estimated OOB error of

5.73%, with 3.30% for the normal class and 8.97% for anomalies. The curve for the model with

13 features has a similar shape but the estimated error values are slightly higher: 8.28% for the
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OOB error, with 3.79% for the normal class and 14.28% for anomalies.

After fixing the number of trees, we aim to find a good balance for the parameter mtry.

Increasing it improves the individual tree performance but lowers their overall diversity, key to the

RF method. The default value used for classification is sqrt(nfeat), being nfeat the number

of features, which would result in an mtry value of approximately four features for both 20 and

13 features. We vary mtry to find the best value for each configuration, as shown in Fig. 4.14b.

The circles correspond to the configuration using 13 features, while the solid squares correspond

to the configuration using 20 features. The best mtry values using AUC as metric were 8 and 9,

for 20 and 13 features respectively, but the variation is so small that these depend highly on the

used seed. Considering all three available metrics and the importance of sensitivity, we choose

mtry= 6 for both configurations as a good balance.

4.4.5 Analysis per Block Anomaly

Since our goal is to detect entire blocks of anomaly, it is relevant to also analyze the detection

patterns per block anomaly and per trip. Figures 4.15a and 4.15b show these in detail for the

configurations with 20 and 13 features, respectively. We have a total of 61 block anomalies in our

four test trips: 12 from trip 2 (A1 to A12), 31 from trip 7 (A13 to A43), 15 from trip 10 (A44 to

A58), and 3 from trip 13 (A59 to A61). Some values are lower from the ones indicated in Table 4.1

because those considered all available magnetic data, and when transforming the data to distance

based windows, we lost some that did not contain sufficient speed information. In our practical

experiments, speed information was obtained from GPS. While the data was interpolated and short

failures were overcome, this resulted in the loss of some anomalies in GPS denied environments.

It is interesting to mention that although test trips 2 and 7 include trajectories equal to those used

in training trips, and test trips 10 and 13 present new trajectories, we do not notice any influence

on the quality of the results due to this factor.

Only one block anomaly (A42, the sole composed by a single window) was not detected. The

mean of detected windows per block anomaly is 69% for 20 features and 65% for 13 features, with

standard deviations of 23% and 24%, respectively. In the first case, 41% of the 61 block anomalies

detected correctly at least 80% of the anomalous windows, 28% detected between 60% and 80%,

and only 13% detected less than 40%. When applying the configuration with 13 features, 34% of

the 61 block anomalies detected correctly at least 80% of the anomalous windows, 33% detected

between 60% and 80%, and 20% detected less than 40%.

Considering Fig. 4.15a, with 20 features, we see that 90% of the detected block anomalies are

classified as anomalies within the first three 10m windows: 57% in the first, 25% in the second, and

8% in the third. The remaining 10% are detected after four to eight windows. In the configuration

with 13 features, in Fig. 4.15b, 90% of the detected block anomalies are classified as anomalies

within the first three 10m windows as well: 52% in the first, 30% in the second, and 8% in the third.

The remaining 10% are detected using between four and thirteen 10m windows. The maximum

number of consecutive undetected windows is seven for the configuration with 20 features and
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(a) Test results per block anomaly for 20 features.

(b) Test results per block anomaly for 13 features.

Figure 4.15: Anomaly detection per block.

twelve for the configuration with 13 features. In both configurations 80% of the block anomalies

have a maximum number of consecutive undetected windows of three or less.

Taking history into account would allow us to leverage the sequential property of the data

and improve on these results. Even if classified as normal instances, windows before and after

intervals of detected anomalies have a higher probability of being false negatives and could be

processed taking this into account. Depending on the anomaly detection application, it might be

beneficial to assume these as anomalies, e.g. fusion of different types of information to estimate

orientation (false negatives have a strong negative impact), or include a second phase with a looser

classification, e.g. using anomalies for localization purposes and including a next step that com-

pares anomalies for identification. In the latter case, small intervals with undetected anomalous

windows within a block with a high percentage of successful detection have a lower impact on the

overall performance of the system than initial windows.

4.5 Magnetic Anomaly Matching

Our aim in this step is to identify magnetic anomalies by matching an input stream to a signature

from a set of pre-recorded and stored references. We model this as a classification problem: each

signature from the reference database is a class, each class is represented by a multivariate time

series. The challenge is matching time series with similar patterns irrespective of their length and

pace.

The main issue is to find a suitable distance measure to compare the anomalies (multivariate

time series). The supervised classification algorithm k nearest neighbors with k=1, known as

one nearest neighbor (1NN) is widely applied in time-series classification with Dynamic Time

Warping (DTW) as a distance measure [157] (not a metric). It is commonly accepted in the
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Figure 4.16: Illustrative example of a DTW alignment.

literature that this traditional 1NN-DTW classifier is hard to beat [131, 158] and it is frequently

used as a benchmark [159, 160]. While experimental studies on time series classification show

that no classifier outperforms all others in every domain, empirical evidence suggests 1NN-DTW

gives in general very satisfactory results, often close to recently proposed more complex ensemble

methods [160].

The choice of the distance to compare the time series is crucial. DTW is the oldest elas-

tic measure and one of the earliest similarity measures proposed for time series [159]. DTW

is especially adequate for matching time series containing patterns that, while having different

lengths and paces, are qualitatively similar. DTW algorithm computes the stretch of the time

axis which optimally maps one given timeseries (query) onto whole or part of another (refer-

ence), yielding the point-by-point correspondence (warping function) and cumulative distance

after the alignment. An illustrative example of a DTW alignment for two time series is provided

in Fig. 4.16. Although DTW is often assumed to be computationally expensive, there are several

techniques that can be used to make it feasible for scenarios with demanding time and complexity

constraints [131]. Some examples are lower bounds, early abandoning of different calculations,

and using the squared distance since omitting the square root does not alter the relative rankings

of nearest neighbors. For details about DTW please refer to [131, 161].
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DTW parameters: DTW algorithm allows to define the following parameters:

1) step pattern: used to locally constrain the slope of the alignment function, listing the transi-

tions allowed for local warping steps and their cost;

2) pointwise distance function: local distance function between matched points of query and

reference. For comparison the DTW cumulative distance needs to be normalized for path length;

3) warping window: windowing enforces a global constraint on the envelope of the warping path,

for which we can choose the window type and size;

4) endpoints: standard DTW algorithm matches the initial and final points from both time series.

It is possible to remove one or both of these constraints for partial matches. Open-ended align-

ment computes the alignment which best matches the query with a leading part of the reference.

Open-begin makes sense when open-end is also enabled for subsequence finding;

5) multidimensional DTW: having multidimensional time series, as is our case, is also important

to define if DTW will be performed separately as unidimensional time series for each dimension

(independent DTW) or if a single warping will be performed considering all dimensions (depen-

dent DTW).

CTS classifier PTS classifier

Features Normalization
Linear: Z-score;
Directional: scaling range

None

Window Slanted band None

Step pattern Asymmetric Asymmetric

Endpoints OBE OE

Pairwise distance
Linear features: Euclidean;
Heading: minimum angle

Linear features: Euclidean;
Heading: minimum angle

Multidimensional DTW Dependent
Independent for linear and
directional features

Table 4.4: Alternative configurations for DTW classifiers

We present two alternative DTW configurations. The first one, designated as CTS (complete

time series) classifier, is suitable for complete signatures and its purpose is to evaluate the poten-

tial accuracy of the method. The second one, named PTS (partial time series) classifier, avoids

using techniques that require the complete time series to be available for matching so that we

can understand the impact of online matching on the performance. The parameters selected for

each configuration are summarized in Table 4.4. We explain these design choices in detail in

Section 4.5.2, after we describe the datasets because the observation of the data was critical for

dimensioning the algorithm.
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Figure 4.17: Roads where magnetic anomalies were collected: highway crossing 2.5, tunnel 2.2,
road above underground station 2.1, and railway crossing 1.2. from Fig. 4.18

4.5.1 Dataset Description

We collect three datasets, summarized in Fig. 4.18. They have some heterogeneity, including dif-

ferent vehicles, smartphones, and traffic conditions. The campaigns all took place in the district of

Porto, Portugal. Instances obtained for reference were collected with a constant speed of 45km/h

(see section 4.5.3). For practical reasons, it was not possible to collect the same number of refer-

ences for all locations, and the values in our experiments range from 3 to 25. Instances collected

for training and testing include diverse speed patterns from 0 to 90km/h, combining accelerations,

decelerations, short stops and constant speed sections.

Dataset A contains references for area 1 and queries for training the classifier. It includes

four locations of anomaly (see Fig. 4.19a), each with two lanes in opposite directions, resulting in

eight distinct magnetic signatures. The roads crossing the same highway have similar orientation.

This is relevant to understand if a similar structure with a similar size, location (and consequently

geomagnetic field) and orientation has in fact a unique pattern that might be used as a signature.

Dataset B contains references for area 2 and queries for testing the classifier, with a total of 13

signatures in 5 regions of anomaly (see Fig. 4.19b). These anomalies were chosen for representing

particularly challenging situations. One is a bifurcation on top of an underground metro station.

The beginning of the anomaly is the same and then we can either turn left or right in the crossroads.

Three of these regions of anomaly have two lanes in the same road and direction, in a total of eight

signatures: road above an underground metro station and a tunnel (one direction, two lanes), and

road crossing a highway (two lanes in each direction), all illustrated in Fig. 4.17. We also consider

the signature from the road above that tunnel, perpendicular to it.

Dataset C contains between 2 and 6 instances per signature for testing in all 9 regions, in-

cluding a total of 66 instances. They were collected in different dates and using different vehicles

and smartphones (Sony Xperia Z3 and Google Pixel) relatively to the ones used to collect the

respective references.
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Figure 4.18: Datasets A, B and C maps and descriptions.

4.5.2 Classification Model

In this section we explain how we select the parameters for our matching classifier. Some of them

are the same for both configurations, namely step pattern and pairwise distance. The others are

described in subsections dedicated to each of them.

Step pattern: A real time open-end version of the dynamic time warping algorithm (OE-

DTW) is proposed by Tormene et al. [162], in the context of a system for upper limb post-stroke

rehabilitation. The problem contains two main design choices: 1) ensuring the analysis takes

place in real-time, not just after the movement is finished, and 2) choosing an algorithm to quan-
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(a) Four regions of anomaly from area 1.

(b) Four of the five regions of anomaly from area 2.

Figure 4.19: Regions of anomaly obtained from Google Maps street view and Google Earth.



86 MagLand: Magnetic Landmarks for Road Vehicle Localization

tify similarity between time series, irrespective of the pace of execution. We face very similar

requirements. Asymmetric step pattern has useful properties for such scenarios (for details refer

to Section 6.2 in [162]). At each step, the index in the query is increased by one unit with a weight

of one, therefore, the warping curve length is equal to the query length. Dividing the total cumula-

tive DTW distance by that length allows to easily normalize it for comparison among time series

of different sizes. This is called DTW normalized distance and is used on the 1NN algorithm. The

asymmetric step pattern determines the warping slope to vary from a minimum of zero to a max-

imum of two. This allows unlimited time dilatation and a query twice as fast as the reference for

the maximum time compression. This results in some restrictions while collecting the references

(see Section 4.5.3).

Pairwise distance: Euclidean distance is used as local distance function for all linear features,

which are all our features except the heading that is an angle, and therefore, directional. The local

distance for the heading is computed as the minimum angle difference between the two given

heading angles.

4.5.2.1 CTS classifier: complete time series classification

This configuration is focused on showing the feasibility of considering magnetic anomalies as

signatures for a particular path, so using the complete version of each query signatures for classi-

fication.

Endpoints: Although in controlled examples time series have well delimited frontiers for

the events they describe, in practical scenarios the exact endpoints are hard to detect [161]. An

open-begin and open-end version of DTW (OBE-DTW) allows partial matchings and avoids the

problem of increased DTW distance for matches whose final points are fuzzy and therefore not

well aligned. However, without any further restrictions this might cause singularities, which are

undesired alignments where a large subsection of a time series is matched to a single point on

the other. On the other hand, very tight constraints might increase the risk of missing the correct

warping path. By combining the elimination of the endpoint conditions with a global constraint in

the form of a warping window, we avoid creating such singularities while allowing some flexibility

concerning alignment of the endpoints, as long as the size of the warping window is well-chosen.

In our particular scenario, the only legitimate case of a large portion of the query matching to a

single point in the corresponding reference would be when the vehicle is static. To define a useful

warping window, we assume, without loss of generality, that a vehicle can stop and immediately

resume driving but it cannot stay stopped for an arbitrarily long period of time. We can easily

handle this situation in practice by identifying such cases using speed information and discarding

static samples or increasing the window accordingly.

Warping window: We use a slated band window, which imposes the warping path to lie

within the band centered around the line segment that joins elements (1; 1) and (N; M), being N

the length of the query and M the length of the reference, therefore having a slope of M/N. and

not 1 like Sakoe-Chiba band [163]. It is more suitable than the latter for time series of different

lengths, although it has to be applied to the complete version of both series. To determine what
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is the best size, i.e. the lowest size that does not discard from the valid warping area the correct

alignment, we made experiments. The most critical situations are very low speeds and traffic

patterns with static moments. With our assumption that the query might have any speed plausible

for a road vehicle, but cannot be static for undefined long period of time, we choose the size of the

warping window as 15% of the larger time series.

Feature normalization: Normalization is a general requirement for most machine learning

algorithms and is very relevant to obtain meaningful comparisons between time series [131]. It is

especially important if they contain measurements that have different units, namely in k-nearest

neighbors (kNN) algorithm using Euclidean distance, so that all features are made to contribute

equally to the final solution. For linear features, the best option is using z-score normalization.

However, it cannot be applied to directional features, namely the heading. These can be scaled

for a range that ensures a balanced weight for different features. For this purpose, we consider the

histogram of the dependent multidimensional DTW normalized distances for the linear features

after z-score normalization and the unidimensional DTW normalized distance for the raw heading

feature. We propose to scale the total range of the directional features to the measured range

of the DTW normalized distances distribution for the linear features after z-score normalization.

This way, it is possible to provide a good balance for all features when summing the squares

of pairwise distances. We omit the square root calculation as it improves running time without

changing nearest neighbors relative order. We observe that for the z-normalized linear features,

the DTW normalized distances range from 0.1 to 2.6, as shown in Fig. 4.20a. For the heading, the

distribution of the DTW normalized distances range from 0 to 2.7, as shown in Fig. 4.20b. Due

to the high similarity of both ranges we concluded that a scaling of the DTW normalized distance

resultant from the directional feature is not necessary in this particular case.

Feature selection: In Fig. 4.21a we show the classification error for each individual feature

using CTS classifier, PTS classifier with complete time series and PTS classifier using only the first

half. We observe that the heading is the feature that provides the lowest classification error. We

apply forward selection using CTS classifier in order to choose the most promising combination

of features. The results are presented in Fig. 4.21b. The classification is performed with no errors

using from 2 to 6 features. However, using the complete normalized signature is the best possible

scenario and we expect that in more challenging scenarios having more than 2 features will benefit

the classification performance. Since the features selected in steps 2, 3 and 4 are the 3 axis of the

magnetometer in the vehicle frame, we opt for a classifier with four features. The selected features

are the heading hm and the 3 magnetometer axis in the vehicle frame mhx, mhy and mv.

4.5.2.2 PTS classifier: partial time series classification

The second configuration for DTW is aimed at partial time series. It should be applied to succes-

sively larger subsequences of the query that contain its initial point, without requiring the complete

anomaly for start the classification procedure to start. In this configuration we choose asymmet-

ric step pattern and open-end, while enforcing the initial point constraint (matching first point of

query and reference), and removing the warping window and the normalization steps. The total
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(a) DTW normalized distance histogram for linear features magnetometer axes in the vehicle frame.

(b) DTW normalized distance histogram for directional feature heading.

Figure 4.20: DTW normalized distance histogram for CTS classifier, using dataset A.

length of the query anomaly, not available in PTS, would be necessary for slope calculation to

apply the slanted-band window. Removing global constraints and opting for both endpoints open

could result in undesirable singularities. Also, normalization needs to be applied to the same in-

tervals of query and reference. Since our time series are non-periodic the most suitable interval

is the complete subsequence that constitutes each anomaly. However, without normalization, we

cannot join linear and directional features in a balanced way for dependent DTW. Non-directional

features are all based on magnetic data and share the same units, so there is a lesser impact for

not performing the normalization step. For directional features, the possible ranges of values are

known, e.g. heading range is from 0 to 2π , so they can all be scaled to share the same range. What

we propose is to apply independent DTW to both types of features, obtaining separate classifica-

tion results with 1NN-DTW for each. If both classifiers agree, the resultant class is assigned to the

partial anomaly. Otherwise no class is selected at that moment, and the query awaits more data for
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(a) 1NC-DTW classification error using each feature independently.

(b) Feature selection: forward selection using 1NC-DTW (CTS) classification error.

Figure 4.21: Classification errors for feature selection.

adequate classification.

4.5.3 Reference Signatures

Considering a data rate of 50Hz, we collect data for reference with a constant speed of 12.5 m/s

(45 km/h). This is the spatial equivalent of collecting four samples per meter. Due to our choice

of asymmetric step pattern, this limits the valid matchings to queries up to 25 m/s (90 km/h) at

50Hz. It is a valid assumption for urban areas. Nevertheless, queries with higher speeds or lower

spatial sampling frequency can be easily supported by collecting additional references to cover

those cases.

It is important to have a diverse and large reference dataset, i.e. data collected in distinct

conditions and using different equipment, such as smartphones and vehicles, to make the system

more robust. However, running 1NN-DTW in a large set implies substantial space and time re-

quirements, which creates difficulties in making the classifier suitable for resource constrained

devices and online use. A solution to this problem is to average the elements of each class and



90 MagLand: Magnetic Landmarks for Road Vehicle Localization

Figure 4.22: Example of heading feature averaging for highway crossing 1.1 signature in South
direction, in meters. It includes three of the 24 instances collected for reference, and the resultant
reference using DBA technique.

use the nearest centroid (1NC) instead of 1NN for classification [164, 165]. However, it is not

trivial how to average time series data, since using the Euclidean distance typically results in a

centroid that does not resemble any of the instances. Petitjean et al. [164,165] show that a method

named DTW Barycenter Averaging (DBA) [166] allows to perform a meaningful averaging of

times series under DTW, and therefore use NC classifiers that are in general at least as accurate

as NN, while being faster with reduced computational requirements. In some situations, it might

even increase the accuracy by creating prototypes that better represent a class ideal than any of its

individual instances [164]. An example of the application of DBA method is shown in Fig. 4.22

for the heading feature of a highway crossing signature from dataset A. It shows three of the 24

instances collected for reference with three different vehicles and smartphones.

4.5.4 Performance Analysis

For the evaluation we use the dtw package available for R statistical software [163]. The applied

performance metric is 1NC-DTW classification accuracy. We consider two levels of matching:

road matching that consists in correct road and direction, and lane matching that requires correct

lane detection even when there are multiples lanes in the same direction.

4.5.4.1 CTS Classifier

In Table 4.5 we preset the performance for CTS classifier. We start by analyzing the road matching

results. This is our best scenario since we have access to the complete anomaly and ignore lane
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Dataset Nq Nr Correct road and direction Correct road, direction and lane

A 232 8 232 100% 232 100%
B 84 21 84 100% 78 93%
C 66 21 61 92% 54 82%

Table 4.5: Classification results for CTS classifier (road and lane matching).

precision. For dataset B, in which the queries were collected in the same trips as the instances

used to build 13 of the 21 references, we obtain perfect classification for the 84 queries. It is

important to recall that it includes more challenging scenarios than the ones in dataset A, used to

train the model. For dataset C, collected with a completely different equipment and on a different

date relative to the whole reference dataset, we obtain a road matching accuracy of 92% for the 66

queries.

Considering lanes, we achieve correct lane matching for 93% of the queries in dataset B and

82% in dataset C. We also analyze only the 8 signatures containing another lane in the same

direction. In dataset B they are 33 of the 84 queries. The 6 wrongly classified lanes represent 18%

of these 33, resulting in a lane accuracy of 82%. In dataset C they are 26 of the 66 queries. From

these 26, 4 had wrong location classification (15%), 7 had wrong lane classification (27%) and 15

were correctly classified (58%). These results are promising and indicate that it is feasible to use

magnetic anomalies as signatures for a known path, achieving up to lane precision.

4.5.4.2 PTS Classifier

Datasets Nq Nr Correct road Incorrect road
Non-classified
road

A 232 8 223 96% 2 1% 7 3%
B 84 21 70 83% 3 4% 11 13%
C 66 21 50 76% 0 0% 16 24%

Table 4.6: Classification results for PTS 50% classifier (road matching).

Having successfully achieved a good accuracy for the anomalies identification using the com-

plete signatures, we evaluate the classification accuracy for incomplete versions of them. In order

to guarantee partial signatures for this purpose, we decide to use only their first half, as an il-

lustrative example. It is important to note that, after getting the partial version of the anomalies,

we do not take into account any knowledge of the percentage of the signature being classified.

The classification results are shown in Tables 4.6 and 4.7. We observe that for road matching, in

Table 4.6, the classification accuracy decreases 16,7% for both datasets B and C compared to the

CTS version.

Considering lane matching, in Table 4.7, the classification accuracy decreases 21,4% and

19,7% for datasets B and C, respectively. It is important to highlight that very few instances
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Datasets Nq Nr
Correct road, direc-
tion and lane

Incorrect road, direc-
tion and lane

Non-classified road,
direction and lane

A 232 8 223 96% 2 1% 7 3%
B 84 21 60 71% 9 11% 15 18%
C 66 21 41 62% 0 0% 25 38%

Table 4.7: Classification results for PTS 50% classifier (lane matching).

are incorrectly classified. Most of the remaining queries are not attributed to any class since the

results from independent classification using linear and directional features, respectively, do not

agree.

4.5.4.3 Threshold-Based Alternative

It is interesting to observe the distribution of DTW normalized distances for matches and non-

matches, shown in Fig. 4.23a, for the training dataset A. Not only it is clear that the range of the

two distributions is very different, but it is also possible to easily find the threshold that better

separates the elements from both: 1.1. Only 8 matches are above the threshold (3,4% of FN) and

there are no non-matches below, i.e. no FPs.

This threshold enables classification with DTW normalized distance only, without the need

to apply 1NC. That may be very useful, e.g. if we have a singular candidate chosen considering

a different source of information or when we require the option “none of the above”, in cases of

false detection or non-permanent sources of anomaly.

We consider the number of FPs and FNs using this threshold for the test datasets from the

DTW normalized distances obtained with CTS classifier. For dataset B, shown in Fig. 4.23b,

we obtain 9 FNs (10,7%) and 6 FPs (0.4%), which represent in total an error of 0.85%. For

dataset C, shown in Fig. 4.23c, we obtain 19 FNs (28,8%) and 3 FPs (0.2%), which represent an

error of 1.6%. The FP rates are very good, particularly considering that dataset A did not include

signatures of distinct lanes in the same road and direction, which we expected to be more similar

than signatures from distinct locations. The FN rates, on the other hand, are much higher than

the ones obtained in dataset A, especially in dataset C. It is interesting to note, however, that this

threshold is nonetheless a suitable choice since modifying it does not reduce the overall percentage

of incorrect classifications.

4.6 Concluding Remarks

The goal of this work is to design MagLand based on our observation that the influence of local

magnetic fields caused by permanent road infrastructure has a particular pattern that is stable in

time and so can be used as a magnetic landmark for road vehicles.

MagLand approach: We leverage magnetic anomalies as signatures, providing useful loca-

tion information from available sensors and infrastructure in a opportunistic fashion, to support



4.6 Concluding Remarks 93

(a) Dataset A

(b) Dataset B

(c) Dataset C

Figure 4.23: DTW normalized distance histogram for CTS classifier.
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existing localization systems for road vehicles. There are approaches that consider magnetic fin-

gerprinting outdoors by mapping the whole area, e.g. Wei et al. [130], and others leveraging road

landmarks that affect inertial data, e.g. Dejavu [128] and SmartLoc [129]. The first imply a high

mapping effort and the second are mainly focused on finding specific driving patterns, such as a

slow up and down pattern in a bridge, a fast up and down pattern in a bump, and a particular turn-

ing pattern at an intersection. MagLand is the first to consider detection with subsequent matching

of magnetic anomalies, providing a good balance between current localization systems limitations

and mapping effort.

Anomaly detection: We propose an anomaly detection algorithm that uses space-based win-

dows of 10 m to analyze time series. It applies a random forest with 50 trees for anomaly binary

classification of each window, in order to detect blocks of anomaly from the stream of magnetic

data. The best results are obtained when applying the classifier to 20 features chosen with a suit-

able feature selection method. An alternative with 13 features based on heading information is also

proposed, providing a close performance with the advantage of not requiring training the model

for new locations.

Reference database: We provide guidelines to build a reference database that enables high

classification accuracy with low complexity, by averaging time series for each signature with DBA

method.

Anomaly matching: We propose one nearest centroid algorithm with dynamic time warping

to classify magnetic anomalies relative to the reference database, which allows us to match time

series irrespective of their pace. One version uses the complete signature and is concerned with

showing the feasibility and full potential of this concept. The other one considers online use by

matching a partial input to a complete reference.

Evaluation with real data: We demonstrate the feasibility of MagLand with real-world data

collected in challenging scenarios. For the anomaly detection, we achieve a classification accuracy

of 91% and sensitivity of 77% for 20 features. Our matching analysis shows that using magnetic

anomalies as signatures is feasible. The classification accuracy for new trips with different equip-

ment from the one used to build the database of anomalies is up to 92% for road matching and up

to 82% including lanes.

These results are even more relevant for localization systems since several of the road infras-

tructures causing the anomalies coincide with locations where GPS has known limitations. It is

the case of areas without visibility to the satellites like tunnels, urban canyons, or underground

parking lots. Also roads with similar 2D positions but different heights are examples of scenarios

where GPS can have a large error and make a wrong estimation of the path for some time before

it is able to correct it. Our model can be valuable in such scenarios, by providing an alternative

source of localization with lane precision. Magnetic landmarks can also be very useful for dead

reckoning corrections, by enabling opportunistic global localization to reset cumulative errors.



Chapter 5

Discussion and Future Directions

We made our contributions to the broad topics of intelligent transportation systems and mobility

focusing on two main aspects of road vehicles localization: cooperation and individual sources

of location information. Having addressed each of these elements individually, we believe a ro-

bust solution should build on the synergy between both. In fact, the knowledge acquired from

communication with neighbor nodes improves each vehicle’s individual estimation. At the same

time, the learning from cooperation is dependent on the quality of the information each node has

to share. We are, therefore, confident that all our results, useful as individual contributions can

also be conjugated harmoniously in a global approach with an even greater positive impact for the

field.

In this chapter we discuss the main strengths and limitations of the proposed work, including

future directions to explore.

Cooperative localization: From the perspective of cooperation, we propose a distributed

model for nodes in a vehicular network to share their individual location information and improve

it locally by relying on data collected and sent by their one-hop neighbors, which might be other

vehicles with uncertain information. Our approach to this problem focuses on finding a low-cost

solution in terms of equipment, infrastructure, and communication. This is the main motivation

for using RSSI for ranging estimation. While it is cheaper than the alternatives, it is also more

uncertain and less accurate.

We abstract individual location sent by the nodes to their neighbors in two parameters: location

and confidence. This shared location is obtained solely from data collected by the vehicle itself,

without including external information from other nodes. This avoids over convergence issues

and limits the complexity and communication requirements of the approach, but it also prevents

us from taking advantage of the full potential of cooperation. Nodes perform a single iteration in

each new update step for the current location because they benefit only from information collected

by their direct neighbors and not from information of all nodes propagated thought the whole

network.

We believe that having presented results with real data, collected in an uncontrolled setting is

of utmost importance. Nevertheless, collecting and analyzing real data always involves a high ef-
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fort. Setting up the experiments with four different vehicles sharing information, gathering data in

real urban traffic scenarios and processing that data presented numerous challenges. Few research

works in this area present such a performance evaluation, especially those involving ranging with

V2V communication devices. This not only allowed to better understand the impact of our coop-

erative approach, but it also enabled to propose good anchor conditions in this particular context.

Due to our choice of GPS as the anchor vehicles global location source of information, anchor

location quality in terms of accuracy and reliability in our experiment is frequently homogeneous,

since the equipment used in all vehicles was similar and GPS presents many global errors, result-

ing in close positions sharing similar conditions. The experimental work comprises a single trip

and is limited to three anchors, so it could be extended to study other conditions. It is important

to stress that we propose one solution to this problem, with its assumptions, requirements, and

goals. Different approaches have different strengths and limitations. Despite its limitations, we

believe our contribution is an important step forward towards making cooperation among vehicles

a reality in the future.

Individual localization: Concerning our contribution to individual localization, we focused

on proposing an approach that would not be dependent on GPS, while being low-cost and not

requiring a new infrastructure. We show that it is possible to create a database of magnetic anoma-

lies and use them as signatures for that particular location, acting as magnetic landmarks. Using

the magnetic field for localization purposes with existing infrastructure was proposed for indoor

tracking inside buildings. In this context, the whole area is previously mapped and included in

the fingerprinting based strategy for the online phase. In our work, with application for outdoors

localization, we propose MagLand, a localization based on the magnetic field signature using

only the areas where the influence of the local magnetic fields is significant and creates magnetic

anomalies. We designate as magnetic anomalies the influences of local magnetic fields in the

geomagnetic field perspective, which is used to obtain orientation in navigation systems. Areas

near structures such as tunnels, roads above and below railways and highways, roads above under-

ground car parks and subway stations, present these anomalies and have high density inside urban

environments. Unlike the continuous magnetic fingerprinting for which the whole area needs to be

previously mapped, saved and matched online, in our method the magnetic based matching to pre-

viously stored references is done solely in these opportunistic areas where the geomagnetic field

presents anomalies, designated magnetic landmarks. Instead of a continuous stream matching of

magnetic based data (continuous matching algorithm), we propose a stream anomaly detection

and a posterior matching only in areas of anomaly (anomaly detection algorithm with a second

step of matching only in case of positive detection). Therefore, the size of the required reference

database is significantly reduced. This has an impact not only on storage space for the covered

area, but also on the size of the search space for matching new inputs. From an online localization

perspective of a mobile node, it means either the size of the local reference database stored on the

node or the required amount of data for communications with the cloud is reduced.

It is important to note that MagLand, unlike magnetic fingerprinting, cannot be solely used as

a continuous localization algorithm. It intends to be used jointly with other localization methods.
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What is especially interesting and convenient, making it all even more useful and efficient, is

that structures causing magnetic anomalies are highly coincident with locations where common

widely used outdoors localization systems like dead reckoning and GPS have known limitations.

Dead reckoning, which greatly suffers from the geomagnetic field anomalies created by those

local magnetic fields in orientation (and consequently heading) estimation, can not only benefit

from our proposed anomaly detection by ignoring magnetic data for orientation purposes, but also

use the magnetic landmarks to correct the location and reset its cumulative errors. Satellite-based

systems suffer from large errors and outages in areas where the receivers lack line of sight to the

satellites or require good vertical accuracy, such as tunnels, highway crossings and urban canyons.

Since these areas typically comprise a high density of metallic structures, resulting in magnetic

anomalies, our model may provide an accurate and reliable alternative by enabling lane distinction.

There are obviously aspects that we have not addressed in detail in this work. They include

particular challenges of online implementation, the combination of the detection and matching in

a unique approach, the integration in a continuous localization algorithm for a joint solution with

other sources, and a detailed complexity analysis of the whole system. It would be interesting to

study how much the data rates of the sensors impact the performance of the approach as well as

the relation between the traveled distance and the performance of the matching algorithm, i.e. how

many meters are required for correct matches. Also, our experiments are limited to data gathered

in the city of Porto. Despite these limitations, we have reached our goal of proposing a road vehicle

localization approach which is both low-cost and independent from GPS. It can nevertheless be

combined with it for improved performance. It takes advantage of ubiquitous smartphone sensors

and existing road structures to provide vehicles with useful location information. We are confident

that combining magnetic landmarks with (already collected) inertial data, and digital road maps

would provide a continuous localization system that could serve as a low-cost alternative for road

vehicles in the absence of satellite-based information.

Information fusion: It is worth to note that the information fusion method we used in the con-

text of our cooperative approach allows for efficient combination of different information sources,

not being dependent on the availability of any of them in particular. Another of its advantages is

enabling an easy incorporation of new sources of data to the algorithm. Moreover, particle filters,

unlike other less complex alternatives, do not impose any restrictions on the probability function

or the dynamics of the system, which makes them more effective when dealing with complex

functions and mobility patterns. This comes, however, at an increased computational cost.

We have conducted experiments with real-world data with different combinations of the fol-

lowing information sources: on-board sensors used for the motion model, road maps (from Open

Street Maps) to restrict possible locations to the roads, GPS and RSSI ranging using V2V commu-

nications. We discuss not only accuracy but overall performance of these different combinations,

namely coverage and reliability, which includes confidence values for both along the road direction

and the direction orthogonal to the road. This allows us to carefully analyze the impact of each in-

dividual source on a vehicle local position estimation, and to better understand good matches such

as V2V ranging and maps, since the first helps to reduce the error along the road direction, where
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the closest anchors are usually distributed, while the latter limits the lateral error. Furthermore, it

enables a real data analysis on the impact of the anchors location quality on the performance of

the location estimation in the ego vehicle.

Future directions: Future work should include studying an approach to find the best selection

of anchors when in range of a large number of vehicles, e.g. how many and which vehicles to

choose. In order to do so, it would be useful to conduct real data experiments with more anchors

in different conditions and with more heterogeneous data, enabling a practical analysis of such

scenarios.

It would be interesting to extend our cooperative approach to estimate the position of the

vehicles with mesh based strategies, taking into account both the collected and the learned data

contained in the nodes, and exploring how to iteratively apply belief propagation theory to avoid

over-convergence issues. This would include a protocol to efficiently exchange information in this

setting, in order to take advantage of the collaborative potential of the network nodes in a feasible

manner in such a dynamic network with high mobility patterns. Although opting for a low-cost

approach, as we have done in this work, favors the choice of RSSI for V2V ranging information,

the application of TOF based techniques for this purpose would be a potentially more efficient

choice when relaxing this requirement, as they allow better accuracy. Future research could also

include detecting and applying different models for LOS and NLOS conditions.

Concerning MagLand approach, we did not explore its third step mentioned in Section 4.2:

the integration. As aforementioned, this stands for both the integration of proposed detection and

matching methods into a combined approach and for its integration into a localization system. All

these processes might be seen as mutually beneficial, i.e. instead of regarding them as successive

steps (where results from previous step benefits the next one) we might see them as simultane-

ous steps with shared knowledge. It is clear that detection influences both the matching and the

localization approaches, but the opposite is also possible. If a current estimation of the vehicle lo-

calization is available, it is possible to predict beforehand which are the most probable anomalies

that might appear in the next moments, and that is valuable information that may be used for im-

proved performance in the detection step. Also, during online detection and matching, a positive

partial match with high confidence can positively influence the detection result. Instead of using

only the binary results from previous step, this would make it possible to leverage knowledge from

different steps in an integrated and probabilistic approach. On a more practical perspective, experi-

ments allowing to extend real data analysis to new combinations of information sources, including

our proposed magnetic landmarks concept, would be valuable. It would help us to understand its

impact and evaluate its contribution to a joint approach with GPS, inertial data performing dead

reckoning or both.

Ultimately, we envision our contributions being integrated in combined solutions for vehicular

networks, each vehicle using magnetic landmarks to better estimate self location, sharing that

information with its neighbors, and so improving global performance in the context of cooperation.
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Conclusion

When we started this work, our aim was to make a relevant contribution in the scientific area of

localization of road vehicles, helping to devise new solutions to mobility problems. We believed

the answer lied in the collaboration among nodes in a vehicular network and in fusing different

types of information that complemented each other. Despite the nodes’ ability to communicate

with each other, which we were confident would be a common feature in future vehicles, we

thought we should not impose further requirements, be it in terms of equipment or infrastructure,

so that our approach could be applied in large scale. This also implied that we did not want to

be dependent on a particular source of individual information, namely GPS or any other satellite

based system, but allow heterogeneous nodes that could localize themselves through different

sources and strategies. With this in mind, we defined as our main goal to devise a low-cost and

GPS-independent reliable localization system for road vehicles, compatible with existing ones for

improved performance. As stated in Chapter 1, our reseach question was to find how to acomplish

this by leveraging widely available equipment and infrastructure.

We started by working in the context of road vehicle networks and proposed a cooperative

approach where each vehicle receives position data with uncertainty sent by one-hop neighbors

and leverages it to improve its own location information. We devised an algorithm that uses a

particle filter to fuse different sources of data, including range information from signal strength

measurements, inertial sensors, GPS, and road maps. Experiments with real data collected in an

uncontrolled environment were performed in order to better understand and improve our algo-

rithm. A critical analysis of the results, including different combinations of information sources,

makes us confident we have attained an adequate proof-of-concept for our approach.

While considering the results of our field trials analysis, we confirmed the strong relation of the

neighbors individual data quality and heterogeneity on the practical usefulness of the collaborative

approach. In fact, most current localization systems are heavily dependent on GPS information,

which has global sources of error that are shared by vehicles in a given area. To better benefit from

the cooperative strategy, vehicles need to be close and it is therefore frequent for neighbors to si-

multaneously suffer similar individual localization errors or failures when relying on GPS. We felt

that, in order to improve collaborative potential in practical scenarios, more research work should
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be devoted to GPS-independent individual localization as well as to strategies for combining other

information sources with GPS, so helping overcome its limitations. Using inertial data from on-

board sensors to help navigation is the most commonly applied strategy for this purpose. The main

problem with this type of approach is the cumulative nature of the errors due to the integration of

accelerometer and gyroscope data. Magnetometer, widely used to measure the geomagnetic field

for orientation estimation, suffers from interference from strong local magnetic fields created by

road infrastructure. Considering GPS and dead reckoning (both separated and combined) as the

most common and widespread localization solutions in outdoor settings, we aimed to provide an

improvement or alternative to them, particularly in areas or scenarios where these solutions failed.

Taking advantage of available equipment or infrastructure would be a valuable aspect for our ap-

proach for keeping it low-cost and maximizing its usefulness and large scale application.

Having noticed in our experiments the persistent pattern presented by each anomaly in the

magnetic data caused by existing road infrastructure, we decided to study the possibility of lever-

aging these as signatures for localization purposes. We conducted new data collection campaigns

that contained several locations of expected anomalies. We proposed and evaluated methods for

the detection and matching of these anomalies, including data pre-processing, feature engineering,

feature selection, and classification steps, as well as a procedure to gather and store signatures for

reference. The good classification accuracy on the test datasets, which comprise some challenging

scenarios, led us to believe that we have adequately corroborated our proposed approach. These

results are even more useful when we consider that several of the road infrastructures causing the

anomalies coincide with locations where GPS has known limitations, and that these landmarks

can be used to reset dead reckoning cumulative errors.

Looking back to the thesis statement, we are confident that by proposing a global cooperative

approach and a magnetic landmarks based individual approach, both corroborated by experiments

with real data, we have successfully validated the claim of our thesis. All this brings us to the

combined approach we envision for the localization of road vehicles: individual localization that

fuses complementary sources of information, and a global cooperative strategy in which vehicles,

as nodes in a large vehicular network, share their location data and improve it by leveraging their

neighbors information. We have made contributions in both of these perspectives leading towards

our goal, confident that they reinforce this larger vision of localization and mobility in the future.



References

[1] Panos Papadimitratos, Arnaud de La Fortelle, Knut Evenssen, Roberto Brignolo, and Ste-
fano Cosenza. Vehicular communication systems: Enabling technologies, applications, and
future outlook on intelligent transportation. IEEE Communications Magazine, 47(11):84–
95, 2009.

[2] European Parliament and Council. Directive 2010/40/EU, 7 July 2010. URL: http://eur-
lex.europa.eu/eli/dir/2010/40/oj.

[3] Katrin Sjoberg, Peter Andres, Teodor Buburuzan, and Achim Brakemeier. Cooperative
intelligent transport systems in Europe: Current deployment status and outlook. IEEE
Vehicular Technology Magazine, 12(2):89–97, 2017.

[4] Georgios Karagiannis, Onur Altintas, Eylem Ekici, Geert Heijenk, Boangoat Jarupan, Ken-
neth Lin, and Timothy Weil. Vehicular networking: A survey and tutorial on requirements,
architectures, challenges, standards and solutions. IEEE communications surveys & tutori-
als, 13(4):584–616, 2011.

[5] Pedro Santos, João Rodrigues, Susana Cruz, Tiago Lourenço, Pedro d’Orey, Yunior Luis,
Cecília Rocha, Sofia Sousa, Sérgio Crisóstomo, Cristina Queirós, et al. PortoLivingLab: An
IoT-based sensing platform for smart cities. IEEE Internet of Things Journal, 5(2):523–532,
2018.

[6] Azzedine Boukerche, Horacio Oliveira, Eduardo Nakamura, and Antonio Loureiro. Vehic-
ular ad hoc networks: A new challenge for localization-based systems. Computer commu-
nications, 31(12):2838–2849, 2008.

[7] Joshua Siegel, Dylan Erb, and Sanjay Sarma. A survey of the connected vehicle land-
scape – Architectures, enabling technologies, applications, and development areas. IEEE
Transactions on Intelligent Transportation Systems, 19(8):2391–2406, 2018.

[8] Felipe Cunha, Leandro Villas, Azzedine Boukerche, Guilherme Maia, Aline Viana, Raquel
Mini, and Antonio Loureiro. Data communication in VANETs: Protocols, applications and
challenges. Ad Hoc Networks, 44:90–103, 2016.

[9] Muhammad Tahir, Sayed Saad Afzal, Muhammad Saad Chughtai, and Khurram Ali. On
the accuracy of inter-vehicular range measurements using GNSS observables in a coopera-
tive framework. IEEE Transactions on Intelligent Transportation Systems, 20(2):682–691,
2019.

[10] Keyvan Ansari. Cooperative position prediction: Beyond vehicle-to-vehicle relative posi-
tioning. IEEE Transactions on Intelligent Transportation Systems, 2019.

101



102 REFERENCES

[11] Sampo Kuutti, Saber Fallah, Konstantinos Katsaros, Mehrdad Dianati, Francis Mccullough,
and Alexandros Mouzakitis. A survey of the state-of-the-art localization techniques and
their potentials for autonomous vehicle applications. IEEE Internet of Things Journal,
5(2):829–846, 2018.

[12] Isaac Skog and Peter Händel. In-car positioning and navigation technologies – A survey.
IEEE Transactions on Intelligent Transportation Systems, 10(1):4–21, 2009.

[13] Stefano Severi, Henk Wymeersch, Jérôme Härri, Markus Ulmschneider, Benoît Denis, and
M. Bartels. Beyond GNSS: Highly accurate localization for cooperative-intelligent trans-
port systems. In IEEE Wireless Communications and Networking Conference (WCNC),
pages 1–6. IEEE, 2018.

[14] Henk Wymeersch, Jaime Lien, and Moe Win. Cooperative localization in wireless net-
works. Proceedings of the IEEE, 97(2):427–450, 2009.

[15] Mate Boban, Tiago Vinhoza, Michel Ferreira, João Barros, and Ozan Tonguz. Impact of
vehicles as obstacles in vehicular ad hoc networks. IEEE Journal on Selected Areas in
Communications, 29(1):15–28, 2011.

[16] Javier Gozálvez, Miguel Sepulcre, and Ramon Bauza. IEEE 802.11 p vehicle to infras-
tructure communications in urban environments. IEEE Communications Magazine, 50(5),
2012.

[17] Moe Win, Andrea Conti, Santiago Mazuelas, Yuan Shen, Wesley Gifford, Davide Dardari,
and Marco Chiani. Network localization and navigation via cooperation. Communications
Magazine, 49(5):56–62, 2011.

[18] Yuan Shen, Santiago Mazuelas, and Moe Win. Network navigation: Theory and interpreta-
tion. IEEE Journal on Selected Areas in Communications, 30(9):1823–1834, 2012.

[19] Gustavo Marfiay, Giovanni Pau, and Marco Roccetti. On developing smart applications for
VANETs: Where are we now? Some insights on technical issues and open problems. In
International Conference on Ultra Modern Telecommunications & Workshops, ICUMT’09,
pages 1–6. IEEE, 2009.
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