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Abstract

Nowadays, virtually everything around us generates large amounts of data. With this comes the
need to store such large volumes of data in a scalable and efficient way. Conventional databases,
which follow relational models, are no longer scalable when applied to large amounts of data since
it follows the properties: Atomicity, Consistency, Isolation, Durability — ACID. In these situa-
tions, losing the ACID properties, NoSQL databases are preferred due to easy scalability. There
are also time series databases that are designed to store pairs of timestamp and value attributes.

In the case of the renewable energy, in particular, the wind energy area, the decision making
is often — if not always — sustained by large data sets collected by different instruments and
sensors. The constant fluctuation of the meteorological variables, such as wind speed, direction,
air temperature, etc. increases the importance of accurate measurements of such variables. This
can be done during prospect phase, where local wind conditions are assessed to ensure wind
turbines suitability, or post construction, to track the performance of the wind farms, monitor
the conditions of critical components and optimize the wind turbines control. These data can be
recorded at different frequencies, typically with sampling rates of 1 Hz and integration times of 10
minutes where several statistics are generated. In certain circumstances, the sampling frequencies
can reach higher values and the integration time may not even be applied, meaning all data needs
to be stored for later processing, which creates a large amount of data.

The main objective of this work is to create an information system capable of storing and man-
aging large volumes of data, processing, cleaning invalid records, and subsequent reporting of that
data. This challenge was proposed by INEGI, who has an implemented system currently, although
with some limitations, namely in what concerns scalability and flexibility. The created platform
aims to solve those problems and is designed to support three database systems: PostgreSQL,
MongoDB and Influx. We studied the performance by inserting and querying the raw data, and
also the disk space occupied by each database system.

The performed tests not only helped us to choose the best database to do such operations but
also allowed us to improve the platform during these tests. The study revealed that a Relational
Database Management System — RDBMS — and a Time Series Database — TSBD — can co-
exist in the same system, using PostgreSQL to store and handle all the meta information of the
system and Influx to store the raw data provided by the wind towers.

To develop the platform, we studied the different Actors in the system, refering to the different
access levels in the platform by each user. We analyzed the different User Stories that contain
the individual interactions in the platform by those users, and we also designed the Model of the
Domain to describe the entities and their subsequent relationships present in the system. The plat-
form was implemented in Django, a Python framework, that follows an Modal-View-Controller
— MVC — architecture to separate the different layers in the Web system.
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Resumo

No decorrer dos dias de hoje, e cada vez mais, estamos rodeados de dados, o que gera uma neces-
sidade de armazená-los de uma forma eficiente e escalável. As base de dados convencionais, que
seguem o esquema relacional, deixam de ser escaláveis quando se deparam com grande volumes
de dados, pois seguem as propriedades: Atomicidade, Consistência, Isolamento e Durabilidade —
ACID. Nestas situações, perdendo as propriedades ACID, são preferidas as base de dados NoSQL
devido à sua fácil escalabilidade. Existem também base de dados especificamente desenhadas para
guardar pares de timestamp e valor, que são designadas por base de dados time series.

No caso da energia eólica, a tomada de decisão é muitas vezes — se não sempre — sustentada
por grandes conjuntos de dados recebidos por diferentes instrumentos e sensores. A constante
flutuação das variáveis meteorológicas, como a velocidade e direção do vento, temperatura do ar,
etc., aumenta a importância de ler essas variáveis de uma forma mais precisa. Isso pode acon-
tecer durante a fase prospetiva, onde as condições locais de vento são avaliadas para garantir o
correto funcionamento das turbinas eólicas, ou pós-construção, para monitorizar o desempenho
dos parques eólicos, as condições dos componentes críticos e otimizar o controle das turbinas
eólicas. Esses dados podem ser registados em frequências diferentes, geralmente com taxas de
amostragem de 1 Hz e tempos de integração de 10 minutos, onde são geradas várias estatísticas.
Em determinadas circunstâncias, as frequências de amostragem podem atingir valores mais altos
e o tempo de integração pode nem ser aplicado, o que significa que todos os dados precisam de ser
armazenados para processamento posterior, o que cria uma grande quantidade de dados.

O principal objetivo desta dissertação passa por criar um sistema de informação capaz de ar-
mazenar e manipular grandes volumes de dados, processá-los, limpar registos inválidos e posteri-
ormente gerar relatórios desses dados. Este desafio foi proposto pelo INEGI, que atualmente tem
um sistema implementado, contudo possui limitações de escalabilidade e de flexibilidade. Esta
plataforma visa resolver esses problemas e é projetada para suportar 3 sistemas de base de dados:
PostgreSQL, MongoDB e Influx. Para isso, estudou-se o desempenho, inserindo e consultando os
dados brutos, e também o espaço em disco ocupado por cada sistema de base de dados.

Os testes realizados, ajudaram a escolher qual a melhor base de dados para realizar essas
operações e também permitiram melhorar a plataforma durante os mesmos. O estudo revelou
que as base de dados relacionais e as time series podem coexistir no mesmo sistema, usando o
PostgreSQL para armazenar e manipular a meta-informação do sistema e o Influx para armazenar
os dados brutos fornecidos pelas turbinas eólicas.

Para desenvolver a plataforma, estudou-se os diferentes Atores do sistema, no qual permite-
nos diferenciar os níveis de acesso na plataforma por cada tipo de utilizador. Analisou-se as
diferentes User Stories que contêm as interações individuais na plataforma por cada utilizador e
desenhou-se também o Modelo Conceptual com o objettivo de descrever as entidades e as suas
subconsequentes relações no sistema. A plataforma criada foi implementada utilizando o Django,
uma framework Python, que segue uma arquitetura Model-View-Controller — MVC —, no qual
separa as diferentes camadas de um sistema Web.
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“You can have data without information, but
you cannot have information without data”

By Daniel Keys Moran
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Chapter 1

Introduction

In the last 20 years, data has increased on a large scale in several areas. According to a report from

International Data Corporation (IDC1), in 2011, the world created and copied an amount of 1.8

ZB data volume, that increased by almost 9 times in the next five years [13].

1.1 Context and Motivation

Recently, industries become interested in the real potential of big data and data e-Science, forcing

many government agencies to declare major plans in big data research [20]. With that, comes a

great need to store large data in a dynamic, reliable and efficient way [29]. If we consider the big

company Google2 as an example, they process data of hundreds of Petabytes, Facebook3 generates

log data of over 10 Petabytes per month, and Taobao4 from Alibaba group5, generates data of tens

of Terabytes for online trading per day [6].

In the case of the renewable energy, in particular of the wind, where electric generation is

achieved under conditions of constant variability, it is relevant to record and store the evolution of

the various meteorological variables over time, as well as data generated by wind turbines [3]. This

data should be stored in a reliable, efficient and scalable system, ensuring that managers handle

that data easier to achieve goals and profit with their investors and clients.

It is also important to mention the impact of the renewable energies to avoid severe problems

of environment pollution, energy shortage and climate change. A study made on India concludes

that the forecast of total electricity consumption in the year 2020 and 2030 will be 944 524 GWh

and 1 395 754 GWh, respectively in this country. This means an increase of energy consumption

by 47 %. The same study predicted renewable energy sources would replace the fossil fuels to the

1https://www.idc.com/
2https://www.google.com
3https://www.facebook.com
4https://world.taobao.com/
5https://www.alibabagroup.com/
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2 Introduction

extent of 32 % in the year 2020 [22]. We have China as the most energy consumption country,

representing a consumption of 20.3 % worldwide [28]. According to Enerdata, only 25 % of the

total energy created in the year 2017 worldwide was produced by renewable energy [40], which

means our world has a long way to change, fighting against financial and political strengths.

This work was proposed by the Institute of Science and Onnovation in Mechanical Engineering

and Industrial Engineering (INEGI6), particularly by the Engineer José Carlos Matos from the

renewable energy department. The Institute was created in 1986 and develops its activity in four

fundamental services: as investigation, as innovation and technology transfer, as scientific and

technological consulting, and as service supply.

The main goals from INEGI renewable energy department its to make equipment management,

process data, clients interfaces and operations support.

1.2 Goals and Results

In the wind energy field, there are a lot of data sets being collected continuously during the whole

project lifetime. With that comes the need to store such large amount of data in databases, in a

reliable and scalable way. That’s why NoSQL (Not only SQL) is very popular nowadays.

The main goal of this work it’s the creation of a Web based Information System, focusing on

performance and scalability to store, handle and export high volumes of data provided by meteo-

rological masts, turbines and other equipment’s. This platform will store all the meta information

and the raw data provided from wind met masts. That means the platform will be divided into two

sections, one to store all the meta information using a relational database, other to store the largest

data set — all the raw data — using a NoSQL and a time series databases. Another functionality

to be created is a classification scheme to flag and clean the raw data and the possibility of creating

plots and statistic tables from that cleaned data. There are a lot of other functionalities regarding

how data is created, such as data collection, complex reporting exportation, field report, that due

to lack of time, will not be implemented.

Even with the popularity of the NoSQL databases in these days to store large amounts of data,

no Web platform uses time series database (TSDB) to store, handle and export data provided by

wind energy. With this, it is expected that this prototype compares performance and scalability

with the different solutions, on the different databases that will be implemented, with the actual

INEGI solution.

1.3 Document Structure

The remainder of this document is structured as follows:

• Chapter 2, State of the Art, refers to the existing platforms in e-Science field, as theoretical

concepts of renewable energy, especially in wind energy and an important review on existing

databases.
6http://www.inegi.pt
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• Chapter 3, Problem Statement and Solution Proposal, describes the actual problem in the

INEGI platform to store and handle a large amount of data and a possible solution to solve

that problem.

• Chapter 4, Requirements Analysis and Architecture, refers to the requirements analysis that

gives us a top overview of the system functionalities, the selected technologies and also the

system architecture.

• Chapter 5, Implementation, describes how the application was implemented, presenting the

approaches made for the most critical features.

• Chapter 6, Tests and Results, refers to the tests methodology applied, what and how we

made these tests, and also discussion of the results from those tests.

• Chapter 7, Conclusions and Future Work, describes the conclusions of the work and also

the future work to be done.
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Chapter 2

State of the Art

In this chapter, we will review the existing e-Science platforms for data management, handle some

theoretical concepts of renewable energy, especially the wind energy, and approach some existing

databases, relational, NoSQL and time series databases, and how the database make transactions

safely.

2.1 Research Data Management

This section analyzes the already existing solutions of e-Science platforms to manage their data.

There are a few platforms already developed across the world.

2.1.1 Introduction

Unfortunately, similar institutions in Portugal that store and handle data provided from wind me-

teorological masts also develop their own system and no documentation on this topic is disclosed

as such systems are regarded as a potential competitive advantage. For this reason, we research

for worldwide platforms to handle that data. In the next topics, we will refer to some e-Science

platforms that exists worldwide in this context and also mention the INEGI platform to manage

wind tower data.

2.1.2 HubZero

The HubZero platform aims for researchers to access and share scientific simulation and model-

ing tools and results in an easy way. This platform was developed at Purdue University by re-

searchers to support the nanoHUB.org, an online community for the Network for Computational

Nanotechnology (NCN), founded in 2002 by the US National Science Foundation [30]. In 2007,

nanoHUB.org served more than 56 000 users from 172 countries [24] and since that year, more

Sites or HUBs were created, thanks to the high demand for more scientific areas. Some of these

5



6 State of the Art

areas are pharmaceutical engineering, heat transfer, microelectromechanical systems, health care,

cancer care, and engineering education [31]. HubZero offers to their client’s functionalities as,

creation of datasets and interactive simulation tools using RStudio, Jupyter Notebooks, and other

web applications, it also gives the researches the possibility to publish products including, datasets,

tools, and white papers on the system. HubZero also provides online forums for researchers teams

and collaborators to discuss data concepts, track progress, and share files through Google Drive,

GitHub, or Dropbox.

This infrastructure can have an impact on scientific discovery [24] thanks to the creation of

different hubs to serve various communities, to support collaborative development and dissemi-

nation of scientific models that run in a cloud system [31]. The primary function of this platform

is the Middleware for hosted execution. The format of each tool published on the hub is like a

journal paper, containing the title, abstract, list of authors and list of references. It also includes an

option to launch a live session. The simulation runs on a cluster of executions hosted near the Web

server, projected to the user’s browser using a virtual network computing. To control access to file

systems, network and many other server processes, the tool runs in a restricted lightweight virtual

environment implemented using OpenVZ1. Each user has a unique and private home directory,

requiring ownership, access controls and quota limitations.

The main goal for HubZero future is on the development of new functionalities to connect re-

lated content so that tools published on one hub can be shared and easily found by other hub’s [31].

2.1.3 EUDAT

The EUDAT2 project is a pan-European data initiative that started in October 2011. The project

involves 25 partners – including research communities, national data and high-performance com-

puting (HPC) centers, technology providers, and funding agencies [25].

In last years many investments have been made by the European Commission and European

member states to create a pan-European e-Infrastructure supporting multiple research communi-

ties. EUDAT aims to build a sustainable cross-disciplinary and cross-national data infrastructure

that provides a set of shared services for accessing and preserving research data [14] helping to

overcome these challenges by laying out the foundations of a Collaborative Data Infrastructure

(CDI). It’s known that research communities from different disciplines have different ambitions,

data and approaches, but they have in common many shared basic service requirements and EU-

DAT aims to establish common data services, designed to support multiple research communities.

The main characteristic of this platform is the CDI framework (Figure 2.1 adapted from [19]),

that ensure the trustworthiness of data, provide for its curation, and permit an easy interchange

among the generators and users of data [19]. This will enable the communities to focus a more

significant part of their effort and investment on discipline-specific services. The CDI also pro-

vides to the smaller communities or individual researchers solutions with access to sophisticated

1www.openvz.org
2https://eudat.eu/
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Figure 2.1: The Collaborative Data Infrastructure

shared services, thus removing the need for large-scale capital investment in infrastructure devel-

opment [25].

The main services that EUDAT offers to their community are:

• Data Replication — to guard against data loss in long-term archiving and preservation.

• Data processing — ability to share a huge amount of data between the EUDAT storage

structures.

• Metadata — making data from various disciplines available in one collaborative infrastruc-

ture can be extremely beneficial.

• Storage and Sharing of Scientific Papers — ability to share between researchers their data

and scientific papers.

2.1.4 WindScanner.eu

The WindScanner.eu is a distributed Research Infrastructure facility (RI) from a European initia-

tive, led by the Technical University of Denmark in association with the European Strategic Energy

Technology Plan [33]. This infrastructure is a remote sensing-based research facility capable of

providing new fundamental knowledge about the detailed three-dimensional atmospheric wind

flow and turbulence around huge wind turbines, when extracting data from wind turbines [33].

The European WindScanner project consists of a measurement system and analysis through laser

sensors — LiDAR. These sensors will measure and generate maps on wind conditions, in which

a large amount of data is created over time. With this comes the necessity to develop the Wind-

Scanner.eu platform, that allows collection, processing and visualization of data provided from
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Figure 2.2: Data flow between nodes

those laser sensors, that will be later manipulated by researchers. This platform is also designed

for three types of users to interact: data-curator — the user that clean and classify the raw data —

data provider — the user that provides the raw data — and researcher — the user that export data

and creates reports.

One main characteristic on this platform is the centralized architecture that contains three

nodes [15]:

• The campaign site node — place where data created by the sensors will be collected.

• The local node — place where data will be collected from each Campaign Sites and then

apply Quality Assurance (QA) process.

• The hub node — place where the e-Science platform is placed that receives data, making

them available for other researchers

These nodes will ensure availability of the data anywhere to everywhere, the Figure 2.2 —

adapted from [33] — represents the data flow between that three nodes.

This process will send processed data and the raw data to the Hub Node. It’s essential to

keep the raw data, as errors or inconsistent data could be created on the processed data. The hub

node it’s a place where the e-Science platform receives data from the Local Node, making them

available for researchers [33].
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2.1.5 Wind2Data

The Wind2Data (W2D) was developed in 2011 by INEGI staff, António Oliveira3 at INEGI wind

energy department. Unfortunately, no documentation was made, as this software was made in-

house for that department and the main responsible left the institute during its development. This

platform is Excel based and is used to store, retrieve, manipulate and classify wind data from

different data loggers making use of a MySQL database for raw data insertion and querying. It

also makes use of another database, the Skiron application that stores all the metadata — regarding

equipment’s, operation and maintenance of the met masts interventions.

2.1.6 Conclusion

This Section gives us a review of some existing platforms for data e-Science management world-

wide. As already described in Section 2.1.1, unfortunately, most of the companies develop their

own software and don’t share publicly any content or documentation.

HubZero and EUDAT projects are made for different communities and areas, which is a sig-

nificant advantage to handle different data and concepts. The Windscanner.eu project is explicitly

made for handling data provided from laser sensors — LiDAR but may have scalability and perfor-

mance issues when adding a high amount of data to the system. Finally, we have Wind2Data. It’s

the actual platform in INEGI renewable energy department. The MySQL database has scalability

problems, as with the need for new towers in the system, is necessary to create new tables in that

database. The database also present some limitations when populated with records over 5∗105, as

no indexes was created.

2.2 Wind Energy

In this Section, we will introduce some of the theoretical concepts of wind energy, how this energy

is generated, how important is the wind resource assessment campaign and how its possible to

obtain data from this renewable energy.

2.2.1 Introduction

The Sun is the resource that most renewable energy creates in the world, and it is possible to

produce energy through this resource directly and indirectly. The directly way most know is

through plant cells, and the indirect way most know is trough winds. Global winds are caused

by pressure differences across the Earth’s surface due to the uneven heating of the planet by solar

radiation. These thermal effects combine with dynamic effects from the earth’s rotation to produce

prevailing wind patterns [38], being one of the fastest-growing and cheapest forms of clean and

renewable energy worldwide [4]. In 2017, in Portugal, 40% of the electricity production came

from renewable energy and from that value, 25% was from wind source. Worldwide, in the same

3https://www.linkedin.com/in/ant%25C3%25B3nio-oliveira-6875b474/

https://www.linkedin.com/in/ant%25C3%25B3nio-oliveira-6875b474/
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year, 25% of the total electricity production was generated using renewable energies and from that

value, only 5% comes from wind source [40]. This is a clear indicator that Portugal is entirely

above the average when it comes to the clean generation of electricity.

2.2.2 Wind Resource Assessment

"For any power plant to generate electricity, it needs fuel. For a wind power plant, that fuel is the

wind." [32]

The wind resource assessment is one of the most critical phases in the development of utility-

scale wind farms. Like every other technical project, it requires planning, coordination and can be

summarized by a budget and a schedule. The final success depends on the quality of the program’s

assembled assets [3]. Developing a wind project doesn’t always depend on the wind resource.

Other aspects need to be taken into account, such as accessibility, grid connection, environmental

impact, among others [9].

There are at least 3 stages that are important when approaching a wind resource assessment [9]:

• Initial large-area assessment — this stage tries to identify regions with a good possibility

of accepting a wind resource. It’s studied especially using Geographic Information System

(GIS), but wind atlases or meteorological stations are also used. This stage will provide

important information in the selection of new wind measurements sites.

• Evaluation of a specific resource — after choosing a potential region, an area or site is

chosen with potential development for a wind farm. At this stage its possible to compare

resources with other areas, confirming that this area is justifiable for investigations and also

gives a possibility to estimate data production for further analysis.

• Micrositing — it’s considered as the smallest scale in wind resource assessment — a few

kilometers distance only. The main goal is to analyze, in a specific site of interest, the

characteristics of the wind resource to ensure turbine compatibility with reigning conditions

and to maximize the energy production of the wind farm.

When studying a wind resource assessment, it’s important to have good practices to have the

most reliable data. The following points should be taken into action in order to obtain the data best

suited to this goal [9]:

• The minimum monitoring duration should be at least two years. This way will be possible

to assess the extra-seasonality of the wind.

• The location of the mast should be chosen to provide the best data possible.

• The wind speed should be measured at least at two heights and at each height should be

used an anemometer and a wind vane to couple information of wind at that height.

• At each human intervention, preventive or corrective — for example, to replace faulty

equipment— a report should be created with full details of the site visit.
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• The measuring equipment should be of high quality if possible, maintained and calibrated

at the correct campaign intervals.

• The data logger should be chosen, giving special care to accuracy, precision, memory capac-

ity, and reliability. It should also be checked regularly for quality or defects over time [12].

A meteorological mast is composed by several devices or sensors — a mast can have more than

20 sensors, collecting data from several environmental variables such as wind speed, direction, air

temperature, atmospheric pressure, and many others. The data logger conversion of main signals

into measures is detailed below [2]:

• Anemometer sensor — it’s the sensor type most commonly used to measure near-horizontal

wind speed. The characteristic curve of the anemometer is given in the form of the linear

equation: v = a ∗ I +B, where v it’s equal to the wind speed in m/s, a equal to slope of

characteristic, I equal to the number of impulses registered ( I > 0 ) and B equal to the offset

of characteristic at 0 m/s.

• Wind vane sensor — this sensor gives the wind direction. Are important when used at the

same height as an anemometer. The formula obtains the wind direction: d =U +O, where

d it’s equal to the wind direction in degrees, U equal to the measured voltage and O the

offset value (angle of deviation relative to North).

• Humidity/temperature sensor — this sensor gives the air temperature and humidity. The

formula obtains the air temperature: T = a ∗U − b where, T it’s equal to the temperature

in Celsius, a equal to the slope of characteristic, U equal to the measured voltage and b

represents the beginning of measurement range. The formula obtains the humidity: F =

a ∗U , where F represents the relative humidity in percentage, a is equals to the slope of

characteristic and U is the measured voltage.

• Barometric sensor — this sensor gives the air pressure obtained by the formula: P = a∗U +

B, where P represents air pressure in hPa, a equals to the slope of characteristic, U equals

to the measured voltage and B represents the offset of characteristic.

• Pyranometer sensor — this sensor measures the solar radiation obtained by the formula:

R = a ∗U , where R represents the global radiation in W/m2, a it’s equal to the slope of

characteristic and U equals to the measured voltage.

• Precipitation sensor — measures the precipitation and its obtained by the formula: N = a∗ I,

where N represents the amount of precipitation in mm, a equals to the slope of characteristic

and I equals to the number of impulses registered.

Data is collected in the field by sensors in a met mast, a data logger stores the data and then

this data is sent by a communication device to servers typically on a daily to weekly basis.

As already stated, the purpose of this work is to build a prototype able to run the necessary

tasks to manage, store, clean and classify the data and also to run the subsequent reporting as well.
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2.2.3 Conclusion

This section gives us a brief on how renewable energy, especially wind energy, embraces our

quotidian. It is quite positive the fact that Portugal produces 40% of the electricity from renewable

sources while the global average is 25%, and from the renewable sources, Portugal produced 25%

from wind source while the worldwide average is only 5%. We described some essential stages

when developing utility-scale wind farms and their best practices to collect and generate the most

reliable data as possible.

2.3 Database Systems

In this Section, we will give a review of the theoretical concepts of the database systems — Re-

lational, NoSQL and Time Series Databases — and how these databases are essential in today’s

systems when dealing with high volumes of data.

2.3.1 Introduction

Databases are present in almost every application and Web sites we visit daily, and it’s getting

more importance in e-Science field as more data is being generated daily and new databases are

created to handle these massive amount of data. Databases can be Relational (Relational Model) or

NoSQL (Not Only SQL). The main use of the databases is to store, update and retrieve information

from a collection of data.

It’s crucial to approach ACID (Atomicity, Consistency, Isolation, and Durability) properties

as this ensures and maintain consistency in a Relational database and BASE (Basically Avail-

able, Soft state, Eventually consistent) properties are in favor of availability and performance in a

NoSQL database [5].

2.3.2 Relational Databases

We will analyze the systems that follow the Relational Model of a database, being these the

MySQL Database and the PostgreSQL Database.

2.3.2.1 Introduction

Relational Database Management Systems (RDBMS) is a technology that is almost mandatory for

storing structured data in a system. E. F. Codd first introduced the theoritical basis in 1970 [8],

and since that time many software developers start using this DBMS, which is a relational model

based.

This model makes the possibility to organize data into tables — also called relations – of

columns and rows. Each row — also called records or tuples — have a unique key identification

and its where the actual data is “stored”. Each column — also called attributes, represents values

attributed to an instance.
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There are more than 100 Relational Database systems, but MySQL and PostgreSQL are the

two most used open source systems to store structured data. In the next sections, a review will be

made over those two database systems [23].

2.3.2.2 MySQL Database

MySQL it is one of the most know databases in the world, it is considered as an RDBMS, and it is

free and open source software. MySQL AB was created by a Swedish company, that was founded

by David Axmark, Allan Larsson and Michael "Monty" Widenius in the early of the 90s, but the

first version that comes to the public was on 23 May of 1995 [11].

Initially was designed to work with small and medium applications, but today, attending to

the need to creating bigger applications, have a few advantages related to other RDBMS. MySQL

has all the characteristics that a database system need and follows the ACID properties. MySQL

database stores the data in tables in a indexed sequential access method — ISAM (low-level code)

— mode that ensures high performance to tables that have an average space of 100 MB — around

106 records of 1 kB each.

The following features characterize MySQL as a good database:

• Being relational, as it organizes data into one or more tables.

• SubSELECT ensuring the possibility of making two selects in the same query. Example:

SELECT * FROM table1 WHERE x IN (SELECT y FROM table2).

• Triggers ensures that a command is automatically executed by the DBMS when a database

operation is made, as an insert, update or delete.

• Full-text search gives the possibility to the developer to search for words that are located

within a text field and a fast and simple way.

2.3.2.3 PostgreSQL Database

PostgreSQL is a free and open source database system. It’s considered as one of the most powerful

and advanced databases related to other RDBMS. This system was created from a University

project called Postgres in Berkeley University — California, in 1986. At the end of that decade, the

first official version was released but didn’t have huge popularity. In 1996 new improvements were

made ensuring ACID transactions and now is getting more popularity due to his functionalities and

performances [34].

There are a few characteristics that make this database one of the most powerful RDBMS:

• Like MySQL, it’s a relational database system, as it organizes data into one or more tables.

• ACID transactions that ensure consistency in the database.

• Replication between servers.
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• Multithreads that ensures high performance and multi-access from two or more users when

accessing the database.

• SSL Security and encryption that ensures safety channels using SHA1 and MD5 encryption

algorithms.

• Open source — is free to use by any developer or company.

2.3.2.4 ACID Properties

In 1983 Andreas Reuter and Theo Härder created the ACID acronym as shorthand for Atomicity,

Consistency, Isolation, and Durability [17] properties. But this work was firstly named by Jim

Gray [16] who enumerated Atomicity, Consistency, and Durability but left out Isolation. These

four properties are important because they allow a system to maintain consistency in a database,

before and after a transaction, which has influenced many aspects of development in database

systems. These properties are characteristic of Relational Databases. The characteristics of these

four properties as defined by Andreas Reuter and Theo Härder, are as follows [17]:

• Atomicity — ensure that a database, when making a successful transaction, change their

data, or upon a failed transaction it’s left unchanged. An atomic system must guarantee

atomicity in several situations, including power failures, errors and crashes.

• Consistency — ensures that the transaction can not leave the database in an inconsistent

state. If a transaction violates any defined rule, including constraints, cascades and triggers,

this transaction is reverted, and the database is left in a known consistency state. This pre-

vents database corruption by an illegal transaction but does not guarantee that a transaction

is correct.

• Isolation — ensures that two or more transactions are executed concurrently, leaving the

database in the same state that would have been obtained if the transactions were executed

sequentially.

• Durability — ensures that upon insertion of data in the database, this action isn’t reverted

even in the case of a system failure.

2.3.3 NoSQL Databases

We will analyze the system that follows the NoSQL Model of a database, being that the MongoDB.

2.3.3.1 Introduction

Nowadays, there’s a significant need to store a lot of data in a reliable system. In last years, to

improve the performance of the database system, as more data was being entered — called as

vertical escalation —, managers had to buy more powerful platforms instead of distributing the

database through of multiple servers — called as horizontal escalation. RDBMS have tremendous
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difficulty on vertical escalation and the NoSQL DBMS comes to solve that problem, as they are

designed to scale out as they grow [36].

These databases have existed since the late 1960s [35], but only in the early of the 21st cen-

tury they got immense popularity triggered by the needs of the web 2.0 companies like Amazon,

Facebook, Google and Yahoo. The reason for their creation was due to the demand of storing

more data in a faster way, as the transfer rate is higher than the RDBMS — being free of the join

operation helps on transfer rate. But the DBMS has a few disadvantages related to the conven-

tional RDBMS, as there is no standard query language for the DBMS and are BASE compliant,

not ACID.

2.3.3.2 MongoDB

MongoDB it’s a document database developed by 10gen4 — now MongoDB. Started to be im-

plemented in 2007 and was initially released in 2009, it was developed using C++, and it’s open

source. The main advantage of MongoDB it’s his high performance — query speed is 10 times

faster than MySQL [18] — and efficiency, providing features like consistency fault tolerance, per-

sistence, aggregation and indexing. The documents are mainly stored in BSON format — similar

to an XML or JSON document but represented in binary to achieve efficiency, and contain an

ordered list of elements consisting of a field name, type and value [27].

Another advantage of the MongoDB is the fact that the documents are polymorphic — fields

or attributes can vary from document to document within a single collection. This means that there

is no need to declare a structure of the document to the system.

MongoDB has a few disadvantages as it can turn unreliable due no ACID properties, and

indexation takes a lot of RAM [36].

2.3.3.3 BASE Properties

When a system requires availability and performance, as eBay or Amazon sites, BASE proper-

ties are applied, as the system needs to be available for their customers. Brewer introduced the

BASE properties [5] and lost the ACID properties of strict consistency and isolation in favor of

availability and performance is a characteristic of NoSQL Databases.

The characteristics of these properties, as defined by Brewer, are as follows:

• Basically Available — ensures that the underlying system remains functional and responsive

even upon some of components failure. The returned data may not be consistent or the most

recent.

• Soft state — means that even without any data entry, the database may change over time

due to internal operation to achieve consistency.

• Eventually consistent — means that when dealing with a lot of data insertion, the database

sooner or later will become consistent when no more data is entered. All received data will
4https://www.mongodb.com/press/10gen-announces-company-name-change-mongodb-inc
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be disseminated to all nodes and the system remains available to receive new entries, not

checking the consistency of each transaction before processing the next one.

2.3.4 Time Series Databases

In the following sections, we will analyze the Time Series databases, that are specially designed

to deal with timestamp or time series data.

2.3.4.1 Introduction

In recent years, many e-Science platforms start to giving special attention to the Time Series

databases (TSDB) to store and handle timestamped data. In fact, TSDB, are not new, since it was

primarily focused to financial data, the volatility of stock trading, and systems built to solve trad-

ing [21]. These databases are built specifically for handling metrics and events or measurements

that are timestamped, focusing on the following features [37]:

• Scalability. Many databases even support clustering for high availability.

• Optimized for large scans over many records.

• High performance on writing information.

• Challenges specified to time-based queries simplified — such as manipulating time zones

or providing filters for days of the week.

2.3.4.2 InfluxDB

InfluxDB is one of the most recent TSDB. This database is composed of measurements, series,

and points. It’s designed specially to handle time series data, as each point consists of several

key-value pairs — field-set and a timestamp. Series are defined by a group of points, that at the

end determine a measurement. This database start to be developed by InfluxData as a project

in late 2013 and was specially made for storing large amounts of timestamped data [21]. Based

on GitHub stars 5, InfluxDB emerge as the open source tools with the strongest traction when

compared to other TSDB [37].

There are a few features that make this database a must use for time series storage [21]:

• It has a datastore written specifically for time series data allowing high ingest speed and data

compression.

• Written in Go language, compiling into a single binary with no external dependencies, of-

fering the developer a great performance on a query.

• It’s SQL-like query language to query aggregated data easily.

• Allows indexation in series for fast and efficient queries.
5https://help.github.com/en/articles/about-stars
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2.3.5 Conclusion

In this Section, we described how databases are essential when it comes to storing information

in the nowadays systems and also some of the most used open source databases. We refer to

how NoSQL databases are more efficient when it comes to data insertion and querying over the

Relational databases when working with large volumes of data. We additionally described the

TSDB to manipulate timestamped data.

It was also important to refer to the ACID transactions when we want consistency over avail-

ability in an RDBMS system and to the BASE properties when we want a system that needs to be

available almost every time over consistency in the NoSQL databases.
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Chapter 3

Problem Statement and Solution
Proposal

As already described, nowadays there is a great need to store a large volume of data in a scalable

and efficient way. A reliable system is necessary for storage and display such amount of data.

This chapter describes the problems to be solved and presents the approaches designed for its

resolution.

3.1 Problem Statement

Over time, a wind met mast generates a lot of data that needs be to stored in a system. These data

can be recorded at different frequencies, typically with 1 Hertz sampling and time integration of 10

min. In certain circumstances the sampling frequencies can reach 100/200 Hertz and integration

might not be applied [32] — meaning all records need to be stored — which creates a huge

amount of data if we take into account that some of these measurement campaigns can last for

several years.

Currently, INEGI’s Wind Energy department has a system that imports, processes and allows

the visualization of the data generated from the wind towers. The system uses a MySQL database,

but has many limitations, as scalability with the number of wind tower and as new metrics, or

new data logger information comes with a new time series. If a new wind tower is entered on the

actual system, a group of tables are necessary to be created. To manage a wind tower, the system

needs four to five tables. INEGI’s department has around 300 active stations, this means, a total

of 1 200 to 1 500 tables are necessary to manage all stations. Another 900 to 1 000 stations are

inactive but should, ideally, migrate to the same system as historical data is often used to establish

correlations, long term exercises and other types of analysis. From a disk space view, each time

series entry occupy around 90 B. With an average integration time of 1 min, a day will generate

129 600 B of data for a wind tower — In a year the total is around 45 MB. The system has about

19
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1 300 towers, and this means approximately 57 GB of space disk is used to store all wind towers

raw data over a year. Due to the enormous amount of data that is produced by each wind tower,

it’s inefficient to make use of a relational database to store the time series produced [27]. This

has mostly to do with the inherent scalability problems described above, as the relational model

presents limitations when it is necessary to manage a large number of tuples — sometimes in the

order of the billions [27]. When dealing with a few rows in a MySQL database, the system is quite

fast, but when querying with a large number, like thousand millions of rows, it takes more than 24

h to return the results [27]. The difficulty of MySQL is not in storing the data, but returning them

when we are faced with large amounts of data, meaning that MySQL has scalability problems [27].

Regarding the data visualization, this is done in Wind2Data application — Excel based —

which further limits the efficiency of the system. The Excel starts by querying the database and

then populates the spreadsheets; this process generates a very heavy operation. For example, when

loading one month of data for a single wind tower, the time to query the database and view in Excel

takes about 30 s. A request of two or three years volume data becomes very time-consuming.

The data logger stores temporally the signal provided from the different sensors in each chan-

nel. If a change of channel is made, during a technical intervention, for example, the data logger

configuration may not be up to date, leading to inconsistencies between the real mast configuration

and the data logger configuration. This raises a difficulty, meaning it is necessary to be flexible

enough to change/update/edit the access to each data set along time as several situations as the one

previously described will certainly occur.

3.2 Solution Proposal

From the analysis of the problem described previously in Section 3.1, it becomes clear that there

is a need to build a new application that handles a large amount of data, storing it efficiently and

able to display, classify and export these data. The Figure 3.1 — adapted from [39] — describes a

comparison with MySQL and MongoDB when managing a textbook system. It’s possible to con-

firm that MySQL, a relational database, has a few disadvantages regarding insertion and querying,

comparing to a NoSQL database. It’s possible to verify that MongoDB is almost three times

faster when inserting and nearly two times faster when querying a large amount of data [39].

Other tests made prove that MongoDB have 10 times better query performance when comparing

to MySQL [18].

From a performance view, when comparing InfluxDB over MongoDB for time series data,

it’s possible to conclude from the Figure 3.2 — adapted from [7] — that InfluxDB had a better

performance by 2.4x when it came to data ingestion. The same study proves that InfluxDB has 65x

better performance when comparing disk space used to store the data — InfluxDB occupies 145

MB, and MongoDB occupy 9 420 MB — and it is 5.7x better when comes to query performance

— From 87 264 000 records in the dataset.

Many other features were not considered due to the limited amount of time available to ac-

complish this work. As in many different areas, the wind sector is progressively adapting and
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Figure 3.1: MySQL and MongoDB comparison

Figure 3.2: InfluxDB and MongoDB comparison
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taking advantage of the digital transformation that is currently taking place worldwide. Thus, the

integration of the information of several areas of interest brings additional added value to software

solutions like this one. This topic will be addressed later in the Chapter 7.2, concerning future

works.

The new system will be Web-based and built using Django, a Python framework. With Post-

greSQL database, we will manage static information, such as tower information, sensors infor-

mation and classification information. The raw data will be stored in a NoSQL database using

MongoDB and InfluxDB. From a performance point of view, the raw data can also be stored in

PostgreSQL and then compare the query performance with the MongoDB and the InfluxDB — it

will also be possible to compare the performance between MongoDB and InfluxDB.

As already described in Section 3.1, data can be inconsistent, as raw data need the data logger

configuration to know what values belong to each sensor and metrics. To ensure data integrity, the

system will store the raw data as received from the data logger and then apply different configura-

tions to that data. Those configurations will be saved in the database to easily use them if new data

logger configurations come over time or if data exportation or reports are necessary. Data can also

be invalid during a period, the system will be able to classify that period with the corresponding

activity, as the data can be classified as no problem, frozen, extreme heat and many others.

3.3 Conclusion

In this chapter, it was possible to identify and describe the problems to be solved and the ap-

proaches designed for their resolutions. It was possible to conclude that Wind2Data have an in-

adequate database design and also presents scalability problems. It’s essential to study the impact

that a relational database system will have on the performance of the platform. To make this study

possible, it will be necessary to approach the problem using three different databases: one using a

relational database for the meta-information — as sensors, towers, configuration and classification

period — and other two using a NoSQL and a Time Series databases for the raw data — for a

scalability and performance comparison.



Chapter 4

Requirements Analysis and
Architecture

In this chapter, we will describe the Actors and User Stories of the system and approach the

architecture and technologies that will be used to implement this work. It’s important to study and

analyze the user needs to arrive at a definition of the problem domain and system requirements.

This will help us to get a better description of the problem and the solution, such as detection of

conflicts between user requirements, prioritize and triage of requirements, define different levels

of access between users and especially to estimate costs and work necessary to develop the project.

4.1 Actors

An actor represents an entity that interacts with the system that is being specified. This can include

people, external systems, and other organizations. Actors are always foreign to the system that is

being modeled and never part of the system [1]. The Figure 4.1 represent the actors in the system.

• User — Generic user. Can consult project public information.

• Visitor — Non authenticated user. Can consult project public information and do login.

• Authenticated — Authenticated user, can be a manager, administrator or a customer. Can

edit their personal information.

• Manager — Can view all wind stations in the system and edit those associated to him. Can

add equipment, such as data loggers and sensors (anemometer, wind vane and others). From

the wind stations associated to the manager, it’s allowed to add and edit period of configu-

ration’s, sensor settings, measurement information, classification periods and comments.

• Administrator — Can manage all authenticated users. Will assign winds stations to a man-

ager and will also assign masts to the clients.

23
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Figure 4.1: Actors
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• Client — Can export data and reports from a wind station during a period.

4.2 User Stories

A user story is a high-level definition of a requirement, containing only the information necessary

for developers to produce a reasonable estimate of the effort required to implement it [1]. It’s

a brief description of potential interaction with the system by one of its users focuses only on

behavioral requirements rather than on design aspects.

The Table 4.1 describes each user story with their priority, low or high, giving priority to the

high level to develop first. The low priority can be developed in the future.

Table 4.1: User Stories

Identifier Name Description Priority
US01 Login As a visitor, I want to make the login, so that I have

access to the all private information in the system, like

wind towers, equipment’s and raw data

High

US02 Profile As an authenticated, I want to edit my personal infor-

mation, so that I can keep them updated

High

US03 Add station As a manager, I want to add a new station, so that later

I can add raw data and equipment’s information

High

US04 Edit station As a manager, I want to edit information of an station,

associated to me, so that I can keep them up-to-date.

This information can be the name or the position of a

station

High

US05 Remove

station

As a manager, I want to remove a station, associated

to me, so that I can keep my system up-to-date

High

US06 Add cluster As a manager, I want to create a cluster of stations, so

that I can have a group for stations

High

US07 Edit cluster As a manager, I want to edit the information from a

cluster, so that I can keep them up-to-date

High

US08 Remove clus-

ter

As a manager, I want to remove a cluster, so that I can

keep my system up-to-date

High

US09 Add equip-

ment

As a manager, I want to add new equipment with a

name, so that I keep tracking equipment information.

This equipment can be a data logger or a sensor.

High

US10 Edit equip-

ment

As a manager, I want to edit the static information of

equipment, so that I can keep them up-to-date

High

US11 Remove

equipment

As a manager, I want to remove equipment, so that I

can keep my system up-to-date

High

Continues on next page. . .
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Table 4.1 – continued from previous page

Identifier Name Description Priority
US12 Add equip-

ment charac-

teristic

As a manager, I want to add a new characteristic to

equipment with static information as, manufacturer,

model, version, designation and serial number, so that

I keep tracking equipment information.

High

US13 Edit equip-

ment charac-

teristic

As a manager, I want to edit the static information of

a characteristic of equipment, so that I can keep them

up-to-date

High

US14 Remove

equipment

characteristic

As a manager, I want to remove an equipment charac-

teristic, so that I can keep my system up-to-date

High

US15 Add calibra-

tion

As a manager, I want to add new calibration informa-

tion, like offset, slope, date, reference, belonging to

equipment, associated to a dimension type so that I

keep tracking equipment information.

High

US16 Edit calibra-

tion

As a manager, I want to edit the static information of

an calibration, so that I can keep them up-to-date

High

US17 Remove cali-

bration

As a manager, I want to remove an calibration, so that

I can keep my system up-to-date

High

US18 View stations As a manager, I want to view a list of all stations in the

system, so that I can get an overview of all the stations

and select one of them to view all information

High

US19 View station As a manager, I want to view information of a chosen

station, so that I can see the static information, period

of configuration’s and comment’s

High

US20 Add comment As a manager, I want to add a new comment, internal

or external, to a certain station, with the possibility to

associate equipment to this comment, so that I keep

all users updated with any extra information

Medium

US21 Edit comment As a manager, I want to edit the information from a

comment, so that I can keep them up-to-date

Medium

US22 Remove com-

ment

As a manager, I want to remove a comment, so that I

can keep my system up-to-date

High

US23 Add equip-

ment configu-

ration

As a manager, I want to add a new equipment config-

uration, that contains logger offset, logger slope and

height information, so that later I can complete data

raw information

High

Continues on next page. . .
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Table 4.1 – continued from previous page

Identifier Name Description Priority
US24 Edit equip-

ment configu-

ration

As a manager, I want to edit information of an equip-

ment configuration, so that I can keep them up-to-date

High

US25 Remove

equipment

configuration

As a manager, I want to remove an equipment config-

uration, so that I can keep my system up-to-date

High

US26 Add classifi-

cation

As a manager, I want to add a new classification pe-

riod to an equipment configuration, that contains sta-

tus information (OK, frozen, damaged and others), so

that I can classify data raw information

High

US27 Edit classifi-

cation

As a manager, I want to edit information of a classifi-

cation period, so that I can keep them up-to-date with

correct information

High

US28 Remove clas-

sification

As a manager, I want to remove a classification, so

that I can keep my system up-to-date

High

US29 Add dimen-

sion

As a manager, I want to add dimension information to

an equipment configuration, that contains information

as row (help for reading raw data), and a dimension

type, so that later I can complete data raw information

High

US30 Edit dimen-

sion

As a manager, I want to edit information of dimension

information, so that I can keep them up-to-date with

correct information

High

US31 Remove

dimension

As a manager, I want to remove a dimension, so that I

can keep my system up-to-date

High

US32 Add period

configuration

As a manager, I want to add a new period of config-

uration to a certain station and associate equipment

configuration’s to this period, so that I can have dif-

ferent periods to different data logger configuration’s

High

US33 Edit period

configuration

As a manager, I want to edit information of a period of

configuration, so that I can keep them up-to-date with

correct information

High

US34 Remove

period config-

uration

As a manager, I want to remove a period of configu-

ration, so that I can keep my system up-to-date

High

Continues on next page. . .
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Table 4.1 – continued from previous page

Identifier Name Description Priority
US35 View period

configuration

As a manager, I want to view information of a period

of configuration, so that I can see the static informa-

tion and a list of configuration of equipment’s from

this period of configuration

High

US35 Add auto-

configuration

As a manager, I want to add a new period of config-

uration to a certain station by a data logger file con-

figuration, so that each period of configuration knows

where to read each position on the time series auto-

matically

Low

US36 View raw data As a manager, I want to visualize raw data and classi-

fications in two plots by choosing a certain station and

a period time, so that I can see and classify that data

and clean it

High

US37 View neigh-

bors data

As a manager, I want to visualize data from the neigh-

bor’s stations, by choosing a period time and a radius,

so that I can compare the clean data between them

Low

US38 Insert raw data As a manager, I want to upload raw data, so that I can

keep my platform updated with the last existing raw

data from wind towers

High

US39 Export INEGI As a manager, I want to export data in INEGI native

format, so that I keep the clean data ready to be saved

in an INEGI server

Low

US40 Create report As a manager, I want to create a report, that contains

plots, as wind rose, diagram rose, energy rose, and

tables with general and important statistics of monthly

campaigns, so that I can have a better visualization of

the wind station data and deliver them to the clients

Medium

US41 Add equip-

ment type

As a manager, I want to add a new equipment type

(Example: anemometer), so that I can use this new

equipment in the system

High

US42 Edit equip-

ment type

As a manager, I want to edit information about an

equipment type, so that I can keep them up-to-date

with correct information

High

US43 Remove

equipment

type

As a manager, I want to remove an equipment type, so

that I can keep my system up-to-date

High

Continues on next page. . .
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Table 4.1 – continued from previous page

Identifier Name Description Priority
US44 Add dimen-

sion type

As a manager, I want to add a new dimension type,

that contains component, statistic, unit and metric

types, so that I can use this new dimension type in

dimensions and/or calibrations of equipment’s

High

US45 Edit dimen-

sion type

As a manager, I want to edit information of a dimen-

sion type, so that I can keep them up-to-date with cor-

rect information

High

US46 Remove

dimension

type

As a manager, I want to remove a dimension type, so

that I can keep my system up-to-date

High

US47 Add compo-

nent type

As a manager, I want to add a new component type

(Example: horizontal), so that I can use this new

equipment in the system

High

US48 Edit compo-

nent type

As a manager, I want to edit information of a com-

ponent type, so that I can keep them up-to-date with

correct information

High

US49 Remove com-

ponent type

As a manager, I want to remove a component type so

that I can keep my system up-to-date

High

US50 Add statistic

type

As a manager, I want to add a new component type

(Example: average), so that I can use this new equip-

ment in the system

High

US51 Edit statistic

type

As a manager, I want to edit information of a statistic

type, so that I can keep them up-to-date with correct

information

High

US52 Remove

statistic type

As a manager, I want to remove a statistic type, so that

I can keep my system up-to-date

High

US53 Add unit type As a manager, I want to add a new unit type (Exam-

ple: m/s), so that I can use this new equipment in the

system

High

US54 Edit unit type As a manager, I want to edit information of a unit type,

so that I can keep them up-to-date with correct infor-

mation

High

US55 Remove unit

type

As a manager, I want to remove a unit type, so that I

can keep my system up-to-date

High

Continues on next page. . .
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Table 4.1 – continued from previous page

Identifier Name Description Priority
US56 Add metric

type

As a manager, I want to add a new metric type (Ex-

ample: speed), so that I can use this new equipment in

the system

High

US57 Edit metric

type

As a manager, I want to edit information of a metric

type, so that I can keep them up-to-date with correct

information

High

US58 Remove met-

ric type

As a manager, I want to remove a metric type, so that

I can keep my system up-to-date

High

US59 Add status

type

As a manager, I want to add a new status type (Exam-

ple: Frozen), so that I can use this new equipment in

the system

High

US60 Edit status

type

As a manager, I want to edit information of a status

type, so that I can keep them up-to-date with correct

information

High

US61 Remove status

type

As a manager, I want to remove a status type, so that

I can keep my system up-to-date

High

US62 Add user As an administrator, I want to add a new user, so that

this user be part of the system

High

US63 Ban user As an administrator, I want to ban a user, so that this

user doesn’t have more access to the system

High

US64 Add user type As an administrator, I want to add a new user type, so

that later I can associate the type of user in a user

High

US65 Edit user type As an administrator, I want to add edit information

from a user type, so that I can keep them up-to-date

High

US66 Remove user

type

As an administrator, I want to remove a user type, so

that I can keep my system up-to-date

High

US67 Associate sta-

tions

As an administrator, I want to associate an access pe-

riod to a user and a station, so that this user manage

only stations associated with him

High

US68 Edit station

association

As an administrator, I want to edit the information

from an association, so that I can keep them up-to-

date

High

US69 Remove

stations asso-

ciation

As an administrator, I want to remove an association

so that I can ensure the user doesn’t have more access

to the station

High

Continues on next page. . .
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Table 4.1 – continued from previous page

Identifier Name Description Priority
US70 Export data As a client, I want to export cleaned data from a wind

station associated with me, so that I can analyze and

create reports

Medium

US71 Create report As a client, I want to create a report from a wind sta-

tion associated with me, that contains plots, as wind

rose, diagram rose, energy rose, and tables with gen-

eral and important statistics of monthly campaigns, so

that I can have a better visualization of the wind tow-

ers data

Medium

4.3 Non-Functional Requirements

Some requirements actually aren’t necessary to implement any line of code but have a crucial

impact when developing a system. These are called “non-functional requirements” and relates

important aspects as performance, security, usability and compatibility. It is vital to identify these

requirements because they force limitations in the architecture of the platform to be developed [1].

The platform must provide these non-functional requirements:

• Accessibility — the platform should be user-friendly on the Web interfaces

• Availability — the platform must be available almost every time.

• Cost — the platform must use open source components.

• Data Integrity — the platform must maintain accuracy and consistency of the data over its

entire life-cycle.

• Fault tolerance — the platform must continue operating correctly in case of the failure of

some of its components.

• Performance — the platform must respond in a considerable time to the user actions.

• Scalability — the platform must provide enough storage and be scalable for the raw data

collected from wind towers and meta-information that will be entered in the system over

time

4.4 Conceptual Model

The class diagram is one of the most important UML (Unified Modeling Language) diagrams. The

main objective of this diagram is to demonstrate the identification and description of the entities
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of the problem domain and also the relationships between them. The class diagram represents a

static view of how classes are organized, emphasizing on how to define their logical structure [10].

The Figure 4.2 represents the class diagram designed for the system to be implemented. The

Station entity will handle meta-information from a Tower or a Machine, storing attributes as code,

name and geographical coordinates of its position. A Manager User can handle Station’s associ-

ated to him during a period and a Client User can see the information of the Station’s associated

to him also during a period. The Station entity will also contain Period_Con f iguration’s to rep-

resent the begin and end date of a campaign period. To a Period_Con f iguration entity several

Equipment_Con f iguration are related to store information about the configuration of the equip-

ment as height, orientation, offset and slope from the data logger. A Equipment containing a serial

number has Equipment_Characteristic relation that includes static information as the manufac-

turer, model, version and designation. A Calibration containing the offset and slope is related to a

Equipment to be used in Equipment_Con f iguration’s. To the Equipment_Con f iguration entity

two relations will be made, a Classi f ication_Period entity, to classify raw data from a begin and

end data containing a Status, and a Dimension entity, containing auxiliary attributes and relation

as column to read in the raw data and Dimension_type. Comment’s can be given to a Station and

a Classi f ication_Period. In the DataSet we will store the raw data.

4.5 Architecture

The platform to be created will follow the architecture MVC (Model-View-Controller), developed

by Trygve Reenskaug for the Smalltalk platform in the late 1970s [26]. Since then, it has played

an influential role in most UI (User Interface) frameworks and in the thinking about UI design.

Almost every web framework is based on this architecture, because separate the user interface from

the underlying data represented by the user interface. The Figure 4.3 represents this architecture.

In MVC, the Model represents an entity of the domain and maps in a table of the database.

The View is the UI, and it’s actually what the user sees in the Browser and are represented by

HTML/CSS/JavaScript files. The Controller is the middleman that connects the View and Model,

meaning that it is the one passing data from the Model to the View.

The Figure 4.4 represents the components of the system and how they interact with each other

to achieve the proposed objectives. The Controller Layer takes cares of actions made by a user,

calling the correct service by GET and POST request calls. The Business Logic makes the sep-

aration from the Controller Layer and the Data Layer and takes care of the calling the correct

functions and methods — available in the Service Layer — chosen the by the user in the Con-

troller Layer. The Data Access Object Layer will provide access to the databases in the system,

and it’s used to separate the low-level API from the highest-level layers. The Data Layer is where

the databases will be present, and this databases will be PostgreSQL, Mongo and Influx.
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Figure 4.2: Model of the Domain
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Figure 4.3: Model View Controller

Figure 4.4: Component diagram
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4.6 Selected Technologies

In this Section, we will describe the selected technologies to develop the system. These technolo-

gies were chosen specially for being open source, free of use and developer friendly:

• Django1 — is a high-level Python Web framework giving the developer the possibility of

rapid development and pragmatic, clean design. A web framework is a toolkit of compo-

nents all web applications need, making life easier for developers, as it is “out of the box”,

having everything necessary to create a web platform in one product, working seamlessly

together, following consistent design principles. It’s free and open source. Django uses the

MVC architecture, thus separating the UI from the logic layer, what is a plus for this choice.

One main advantage of using Django are the packages, allowing the developer to choose

according to their needs. It also has a good online community and documentation, which

makes more points in favor to choose this Web framework.

• Pandas2 — is an open source software library written for the Python programming language.

Gives the developer the ability to data manipulation and analysis, offering data structures

and operations for manipulating numerical tables and time series.

• PostgreSQL3 — as already described in Section 2.3.2.3, is a powerful open source object-

relational database system that uses a SQL language. Ensures the developer’s reliability,

data integrity and extensibility, enforcing the ACID properties.

• MongoDB4 — as already described in Section 2.3.3.2, is an open source and cross-platform

document-oriented database system. It is classified as a NoSQL database system, that uses

documents similar to JSON with schemas.

• InfluxDB5 — as already described in Section 2.3.4.2, is an open source time series database

developed by InfluxData that uses a SQL-like language. It is written in Go language and

offers the developer a great performance on querying, high-availability storage and retrieval

of time series data. It is classified as a NoSQL database system.

4.7 Summary

In this chapter, we described the Actors, that will help us to understand the different access levels in

the system by each user. We illustrated the different User Stories, that contain different interactions

in the system by those users, helping the developer to prioritize the requirements to be developed

first. We also described the architecture and technologies that will be used for the development of

the system.

1https://www.djangoproject.com/
2https://pandas.pydata.org/
3https://www.postgresql.org/
4https://www.mongodb.com/
5https://www.influxdata.com/
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Chapter 5

Implementation

In this chapter, we will present the actual implementation. We will describe several approaches

on how to store and handle the raw data with equipment’s configurations and finally showing it in

charts.

5.1 Introduction

After careful deliberation on the architecture in Chapter 4, we started by implementing the applica-

tion in Django. It was necessary to maintain all the code readable, easy to maintain and consistent

to simplify the development of new features.

We start by creating a basic Django project using an open source template. The content was

chosen to give the customer needs, being responsive and clean using bootstrap and jquery frame-

works.

The application separates the service layer and data layer, where the service layer works inde-

pendently of the data layer that is taking care of. This architecture means that the service layer is

a higher top layer level and will handle the three databases systems that are in a lower layer level,

what is a good programming practice, as we can avoid replicated code and also gives the user the

ability to access any of the three database systems easily within the same application. It was also

necessary to make this approach as we will compare the performance of each database system.

It was also made good programming practices during the development, as commenting the

essential views/functions and classes, handling the exceptions and errors properly and giving the

correct attributes, functions, views and URL routes names.

5.2 Django Framework

Django is a robust web framework using Python language that gives the programmer the necessary

tool-kits to start coding a web application faster and easier.

37
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Table 5.1: Routes for Tower entity

URL Type Description
tower/new GET Form to add a new tower.
tower POST Add a new tower.
towers GET List all towers.

tower/{id}
GET Show tower information, period’s of configuration and com-

ments from that tower.
PUT Update tower information.
DELETE Remove a tower.

As described in Section 4.5, Django separates different layers using a Model View Controller

architecture, that fits perfectly in the application. We need to show the user a User Interface — UI

— the Controller handles the different user actions and the Model stores and load the data to the

application using, in turn, the three different databases systems.

The Django framework works in three different stages:

1. When the Browser makes POST or GET requests to Django — Web Server — this return

responses in HTML or JSON.

2. Web Server — start by looking in the urls.py the URL called by the browser and then call the

corresponding view in views.py. The views.py handle all actions — load template HTML

code, load forms, handle data and database calls — and then returns a HttpResponse. When

making a database call in the middle, Django looks for the settings.py for the database

connection properties.

3. Database — Save, update and load, all information sent and received by the Web Server.

5.2.1 Naming Resource Routes

Defining routes allows the Django dispatcher to call the controllers with the respective views

from the introduced URL. Giving clean route names is an essential detail in a high-quality Web

application, helping the following developers to understand the calls easily and on creating new

features.

These routes are defined in an array called urlpatterns in urls.py. When a user requests a page,

Django will search in the urlpatterns the route name, if it’s matched, the controller will call the

corresponding view or function. If it isn’t matched, or if an exception is raised during any point in

this process, Django invokes an appropriate error-handling view. It’s also possible to send values

through the URL; this is defined with regular expressions on each route.

The Table 5.1 shows the available URL in the platform for Tower entity with their call types

— POST or GET — and description using Web services RESTful. In the Appendix A, we can see

all the URL for all entities in the platform.
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5.2.2 Django Packages

One of the main advantages of Django is being Python based, which gives the developer the

possibility of using any Python packages. To help to develop the project, we make use of some

open source packages created by the Django and Python community.

Django already comes with the basic standards to start a web application, but for our needs,

we installed the next packages:

• django-autocomplete-light1 — allow inputs in forms to make autocomplete with informa-

tion or objects present in the database.

• django-bootstrap-datepicker-plus2 — displays in the input form a modal with date picker

making use of Bootstrap and jQuery.

• django-bootstrap43 — package of Bootstrap 4 that allows to build responsive web pages.

• django-chartjs4 — allows to display charts from Chart.js and HighCharts in the HTML page

using JavaScript.

• django-widget-tweaks5 — helps the developer to make full forms customization with several

forms fields like, Text, Email, Dates, Radio and Check box’s and many more.

• django-pandas6 — allow the developer to make use of Pandas framework to manage data

structures and make data analysis more easily.

• influxdb7 — connector to the Influx database.

• pymodm8 — connector to the MongoDB database.

These packages not only help to create web applications faster but also allow to connect to

different databases systems in the same application. Some other packages were also tried to handle

the connection between databases and showing charts that will be described in the next section.

5.3 Databases and Data Visualization Approaches

The web application makes use of three different database systems using the same service layer.

This type of implementation is essential because it makes the separation of each data layer when

using the same interface. This implementation was also crucial as we had to compare insertion and

1https://github.com/yourlabs/django-autocomplete-light
2https://github.com/monim67/django-bootstrap-datepicker-plus
3https://pypi.org/project/django-bootstrap4/
4https://github.com/peopledoc/django-chartjs/
5https://pypi.org/project/django-widget-tweaks/
6https://github.com/chrisdev/django-pandas
7https://github.com/influxdata/influxdb-python
8https://github.com/mongodb/pymodm
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1 class Cluster(models.Model):
2 name = models.CharField(unique=True, max_length=100)
3 towers = models.ManyToManyField(’Tower’, verbose_name="list of towers", blank=

True)

Listing 5.1: Example of Cluster model in Django

querying performance of each database system and helps the developer to avoid code replication

what is a good programming practice.

The first approach uses a PostgreSQL database system. This database stores all the meta infor-

mation of the system referred on Figure 4.2: as towers, periods of configuration’s, equipment’s and

much more. It is also storing all raw data provided from the wind towers. The second approach is

using a MongoDB database system, where is storing only the raw data. The third approach is also

for storing only raw data, and it’s the Influx database system.

It’s expected that these database systems store at least 156 millions of records, what corre-

sponds to raw data of then years with rates of a timestamp of then minutes over 300 stations.

5.3.1 Database — PostgreSQL

We choose PostgreSQL database system to store all meta information of the system for being an

RDBMS, what helps us to manage all information provided from the wind towers, equipment’s

and periods of configuration’s that the system will face over periods. The main goal of this struc-

ture was to avoid scalability problems as the current solution from INEGI’s application is facing:

instead of creating a new group of tables to manage a new tower, our solution only needs one

row in some tables to handle that same information. All of the meta information was described

in the conceptual model of Section 4.4. Detailed knowledge of this RDBMS was described in

Section 4.6.

One of the main difficulties that we faced while studying this architecture was to avoid repli-

cated information inside the tables, as we are taking care of several equipment’s that can be used

in several periods of configuration, but normalizing the database helped us to avoid this problem.

Django already provides a connector to the PostgreSQL Database, and we only had to describe

all of our relations into Python classes inside the models.py file, then the Django automatically

converts into the PostgreSQL database tables. For example, the Cluster model has the syntax of

Listing 5.1 in Django. This syntax means a Cluster has a field with a name and towers associated

and towers that can be used in this or other clusters. This relationship is a ManyToManyField

in Django, in an RDBMS it’s referred to a Many-To-Many relationship. The table definition in

PostgreSQL from the Cluster model is represented in Listing 5.2. As we can see, Django helps the

developer creating the models for the database without writing any SQL language. It also creates

constraints automatically to give rules for the data in a table.
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1 TABLE cluster (
2 id SERIAL PRIMARY KEY,
3 name character varying(100) NOT NULL UNIQUE
4 );
5

6 TABLE cluster_towers (
7 id SERIAL PRIMARY KEY,
8 cluster_id integer NOT NULL REFERENCES cluster(id) DEFERRABLE INITIALLY

DEFERRED,
9 tower_id integer NOT NULL REFERENCES tower(id) DEFERRABLE INITIALLY DEFERRED,

10 CONSTRAINT cluster_towers_cluster_id_tower_id_403c5ce9_uniq UNIQUE (cluster_id,
tower_id)

11 );

Listing 5.2: Example of a table definition in SQL

Like a ManyToManyField relationship, Django also offers other associations to refer to other

tables:

• OneToOneField — in PostgreSQL it’s referred to a One-To-One.

• ForeignKey — in PostgreSQL it’s referred to a Many-To-One.

Table 5.2 help us understand how all the classes defined in models.py were implemented into

the PostgreSQL tables.

Table 5.2: Relational Schema

Relation Description
R01 datasetpg(id, tower_code NN, time_stamp, value NN)

R02 tower(id, code_inegi UK NN, code_aux1, code_aux2, code_client, designa-

tion, position_x NN, position_y NN, utm_zone, coords_system NN, instal-

lation_date, client -> affiliationtype, project, parish, district, country NN,

gsm_number)

R03 machine(id, code_inegi UK NN, designation, position_x NN, position_y

NN, utm_zone, coords_system NN, installation_date, client -> affiliationtype,

project, parish, district, country NN)

R04 cluster(id, name UK NN)

R05 cluster_towers(cluster_id -> cluster, tower_id -> tower)

R06 myuser(id, password NN, username UK NN, full_name NN, is_staff NN DF

False, is_client NN DF False, is_manager NN DF False, group_type_id ->

usergrouptype, affiliation_id -> affiliationtype)

R07 usergrouptype(id, name UK NN)

R08 affiliationtype(id, name UK NN)

Continues on next page. . .
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Table 5.2 – continued from previous page

Relation Description
R09 myuser_towers(myuser_id -> myuser, usertowerdates_id -> usertowerdates)

R10 usertowerdates(id, begin_date NN, end_date NN CK end_date > begin_date

AND end_date <= Today, user_id -> myuser NN)

R11 usertowerdates_tower(usertowerdates_id -> usertowerdates, tower_id ->

tower)

R12 periodconfiguration(id, begin_date NN, end_date CK end_date > begin_date

AND end_date <= Today, wind_rss NN DF False, solar_rss NN DF False,

raw_freq NN, time_zone NN, tower_id -> tower NN)

R13 equipmentconfig(id, height NN, height_label, orientation, boom_length,

boom_var_height, offset_dl NN DF 1, slope_dl NN DF 1, calibration_id ->

calibration NN, conf_period_id -> periodconfiguration NN)

R14 calibration(id, offset NN, slope NN, calib_date, ref NN, equipment_id ->

equipment NN, dimenstion_type_id -> dimensiontype NN)

R15 equipment(id, sn UK NN, model_id -> equipmentcharacteristic NN)

R16 equipmentcharacteristic(id, manufacturer, model, version, designation, output

NN, gama, error, sep_field, sep_dec, sep_thousand, type_id -> equipmenttype

NN)

R17 equipmenttype(id, name UK NN)

R18 classificationperiod(id, begin_date NN, end_date NN CK end_date > be-

gin_date AND end_date <= Today, equipment_configuration_id -> equipment-

config NN, status_id -> status NN, user_id -> myuser NN)

R19 status(id, code UK NN, name UK NN)

R20 dimension(id, column NN, dimenstion_type_id -> dimensiontype NN)

R21 dimenstiontype(id, metric_id -> metrictype NN, statistic_id -> statistictype

NN, unit_id -> unittype NN, component_id -> componenttype NN)

R22 metrictype(id, name UK NN)

R23 statistictype(id, name UK NN)

R24 unittype(id, name UK NN)

R25 componenttype(id, name UK NN)

R26 comment(id, begin_date NN, end_date NN CK end_date > begin_date AND

end_date <= Today, comment_date NN DF Today, internal_comment, com-

pact_comment, detailed_comment)

R27 comment_tower(id, comment_id -> comment NN, tower_id -> tower NN)

R28 comment_classification(id, comment_id -> comment NN, classification_id ->

classificationperiod NN)



5.3 Databases and Data Visualization Approaches 43

1 class DataSetPG(models.Model):
2 tower_code = models.CharField(max_length=20, null=False)
3 time_stamp = models.DateTimeField(default=datetime.now, null=True, blank=True)
4 value = models.CharField(max_length=200)

Listing 5.3: DataSet model for PostgreSQL in Django

To complement the Table 5.2 we have the following legend:

• UK — Unique Key

• NN — Not Null

• DF — Default

• CK — Check

In PostgreSQL, we are also storing all raw data provided from wind towers. In Django models,

our class is called as DataSetPG, that is represented in Listing 5.3. This class is represented by

a tower code, a timestamp and a string with values — coming from each data logger channel —

separated by commas. This structure means that we will have a table with millions of rows as we

will store all raw data from all towers into one table. We decided to keep and store all values of

the corresponding timestamp and tower code in a string rather than a dynamic array. The reason

for this is because later we parse this value field with Pandas framework and its easier to do in a

string rather than an array. Another reason for this was on to keep all the values as received from

data-logger as much as possible, so our model can receive and store any values coming from any

data logger.

We could also use an approach of storing the corresponding raw data from each tower on

separated tables using dynamic models9 — creating and using models in runtime, as new towers

with raw data is entered in the system — this would help us to avoid millions of records into the

same table. But unfortunately, we discover this option to late and due lack of time we couldn’t

implement it.

5.3.2 Database — MongoDB

In our second approach, we make use of a NoSQL database system to store only raw data provided

by wind towers. The database we choose is MongoDB, and it’s detailed in the Section 4.6.

The MongoDB model has the same structure as the one as PostgreSQL, meaning that we

have one MongoDB collection with documents and each document have a tower code field, a

timestamp and a string with values separated by commas. In Django models, our class is called as

DataSetMongo, that is represented in Listing 5.4. We can see that MongoModel is the base class

for the DataSetMongo model and not the base class model from Django database system. This

9https://pypi.org/project/django-dynamic-model/
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1 class DataSetMongo(MongoModel):
2 tower_code = fields.CharField(max_length=20)
3 time_stamp = fields.DateTimeField(default=datetime.now)
4 value = fields.CharField(max_length=200)

Listing 5.4: DataSet model for MongoDB in Django

is because Django, at the current version, doesn’t support MongoDB database by default. So, to

solve this problem, we need to use a package that handles the connection between the Django and

MongoDB server.

The package we first used to handle connection between Django and MongoDB server was

MongoEngine10, but unfortunately this package has a few performance issues when inserting

and/or querying high number of documents in the same collection11, so we ended by using other

package called PyMODM, that have better inserting and querying performance than Mongo-

Engine.

In the beginning, our model structure was different from the one we referred at Listing 5.4. We

were trying a more structured model, where our document was represented by a tower code and a

list of documents with timestamp and value. The Listing 5.5 represents this type of structure in the

Django model. This structure ensures that each document stores raw data from an individual tower,

meaning we will have a good performance querying when compared to the structure in Listing 5.4.

But we fast stand with a big problem as MongoDB documents can only have a maximum size of

16 MB, which was easily occupied with our raw data. Because of this problem, we ended by

using the structure where a document saves only a record of a value belonging to a timestamp and

a tower code, as described in Listing 5.4.

5.3.3 Database — InfluxDB

Like in the MongoDB approach, the Influx database will only store the raw data provided from

wind towers. The information of this database it’s detailed in Section 4.6.

10https://github.com/MongoEngine/mongoengine
11https://github.com/MongoEngine/mongoengine/issues/1230

1 class TimeValue(EmbeddedMongoModel):
2 time_stamp = fields.DateTimeField(default=datetime.now)
3 value = fields.CharField(max_length=200)
4

5 class DataSetMongoPyMod(MongoModel):
6 tower_code = fields.CharField(max_length=20)
7 time_value = fields.EmbeddedDocumentListField(TimeValue)

Listing 5.5: First DataSet model structure for MongoDB in Django
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1 point={
2 "measurement": tower_code,
3 "time": time_value,
4 "fields": {
5 "value": values
6 }
7 }

Listing 5.6: JSON structure to insert into Influx Database

Because Influx it’s oriented to time series, it’s structure store information into Measurements,

and each Measurement receive a time and a value field to store value or values. The structure we

are using at Influx to store raw data is different from PostgreSQL and MongoDB, where instead

of saving all raw data into one table, we store the raw data from each wind tower into individual

Measurements, meaning that each Measurement stores only raw data of one wind tower.

At present, we only have one connector from Django server to Influx database called in-

fluxdb12. This connector its more straightforward than the others used in PostgreSQL and Mon-

goDB, as wasn’t necessary to initiate any class model in the models.py file to handle Influx. To

insert new instances into the Influx database, we need to create a JSON document, as referred at

Listing 5.6. This structure it’s called as a point and receive a measurement field that will contain

a tower code, the corresponding timestamp and a string with values separated by commas. After

creating an array of point’s, we can insert into Influx using write_points function provided from

Influx connector. To make queries we need to use query function from the connector that uses

SQL code.

The connector also offers the developer the option to use a class model to insert instances into

the Influx database using a base class called SeriesHelper, but unfortunately using this approach

bring us inefficiency when inserting values into the database when compared to the write_points

function.

5.3.4 Data Visualization

After successfully store the raw data into the database, we need to query it, manipulate and then

show it on charts. This is where django-pandas and django-chartjs packages are tacked into

action.

5.3.4.1 Pandas

Pandas is one of the most known framework in Python community to manipulate a large amount of

data, as it requires only a few lines of code to load data, split it and do mathematical operations. So

we tacked advantage of this powerful framework and used it to handle the data in our application,

what is one of the most important requirements in our application.

12https://github.com/influxdata/influxdb-python
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Figure 5.1: DataFrame without value field splited

After making the query to the raw data we use read_frame function from Pandas to create a

DataFrame with the raw data. The DataFrame is composed by rows and two columns, the times-

tamp and a value field that have all values separated by commas, as represented in Figure 5.1.

Using the apply function from Pandas we can split one column from the DataFrame and create

many columns as many commas the column value have — the Figure 5.2 illustrate that represen-

tation.

Having the DataFrame composed by a timestamp and values separated by columns, we need

to query the periodconfiguration table to get the different configurations present in that raw data.

When iterating the Period Configuration’s we create temporary DataFrames to manipulate and

change columns if necessary to get the correct values. At this point, we have access to the

Equipment Configuration’s that belongs to the Period Configuration. Each Equipment Config-

uration has access to several Dimensions that will tell us what is the correct value column that

the Equipment Configuration is reading at that point and then associate the correct value col-

umn on the temporary DataFrame. Equipment Configuration is linked to all Equipment infor-

mation, as static information and calibrations. At this point, we can apply mathematical oper-

ations to the data to get the final results using the correct offset and slope values. To do these

mathematical operations, we need two steps. The first step is to get the default value that the

sensor read before sending to the data logger. The default value is taken using the formula:

de f ault = RawData− (o f f set_DL/slope_DL), where RawData is the raw data stored in the

database, o f f set_DL is the offset_dl attribute value stored in the Period Configuration, slope_DL,

is the slope_dl attribute value stored in the Period Configuration. The second step is to get the final

value using the Calibration values present in the Equipment Configuration. To get the final value

we use the formula: f inal = de f ault ∗ (slope+ o f f set), where de f ault is the value obtained in

the first step, the slope is the slope attribute value present in the Calibration and the o f f set is the

offset attribute value existing in the Calibration. Using Pandas, we only need one line of code to

apply each step to the DataFrame.

Figure 5.2: DataFrame with value field splited
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After having the temporary DataFrames appended to a final DataFrame, we only have to fill

empty raw data with NaN with frequencies of 10 min — as requested by INEGI — and convert

the timestamp to UNIX time. At this point, we are ready to send the DataFrame with the raw data

to display in a chart.

5.3.4.2 Charts

We make use of charts to display the raw data, choosing a period from a wind tower, and the

corresponding classifications status that the equipment’s have for that period, to fully implement

the User Story US36 from Table 4.1.

To display the raw data, we make use of django-charts to send this data from the view to the

HTML page. This package gives the developer the possibility to use charts from HighCharts13

and Chart.js14, but to display the raw data we use the Line Chart15 from HighChart because of

their functionalities and simple configuration. HighChart gives the developer the possibility to

customize the charts using JavaScript, like functions upon a directly click on the chart, zoom in

and out options and much more. We tried other packages that the Django community offer, like

django-nvd316 that makes use of the d3.js17 JavaScript library, but unfortunately, it’s limited in

functionalities and outdated. We also tried django-graphos18 this package gives the developer

the ability to use charts from Google19, Flot20, Morris.js21 and many others, but is also limited in

functionalities, as we can’t make use of all of the powerful features and customization’s from those

APIs. This happens because django-graphos doesn’t implement them and we can’t customize

using JavaScript, as the template is being rendered by django-graphos tags and not by JavaScript

code directly on that HTML source code.

We also make use of X-Range Chart22 from HighCharts to display the classifications status

from equipment’s in a period entered by the user.

5.4 User Interfaces

In this section, we will describe the most important interfaces of the platform. Our main goal was

to create a web application to replace the platforms from INEGI wind resource team. While the

INEGI team use two applications to manage meta information from wind towers and classify data,

the web application was implemented to make that two functionalities in one only, adding more

features like clients access, comment a classification or a station, etc. To create the web application

13https://www.highcharts.com/
14https://www.chartjs.org/
15https://www.highcharts.com/docs/chart-and-series-types/line-chart
16https://github.com/areski/django-nvd3
17https://d3js.org/
18https://github.com/agiliq/django-graphos
19https://developers.google.com/chart/
20http://flotcharts.org/
21http://morrisjs.github.io/morris.js/
22https://www.highcharts.com/docs/chart-and-series-types/x-range-series
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Figure 5.3: Interface containing information from a Wind Tower

we used a template derived from SB Admin 223, that use Bootstrap and jQuery, ensuring that is

responsive and easy to use and that the user only needs a few clicks on the interface to get the

desired actions.

The Figure 5.3 represent the URL tower/{id} from routes Table 5.1. This interface shows

the meta-information from wind tower — by default, the form is collapsed — the periods of

configuration and the comments belonging to that tower — also collapsed by default to avoid full

fill the page with information. This interface also represents the next User Stories from Table 4.1:

• US04 — Edit station

• US05 — Remove station

• US19 — View station

• US20 — Add comment

The Figure 5.4 represent the URL tower/{id}/con f _period/{id} from routes Table A.1. This

interface is one of the most important in the platform, as it shows the meta-information from a

period of configuration — by default, the form is collapsed — and also a table with equipment’s

23https://startbootstrap.com/themes/sb-admin-2/
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Figure 5.4: Interface containing information from a period of configuration and it’s equipment’s

present in that period of configuration. On this interface, we can see some important attributes:

as the equipment serial number, the slope’s and offset’s from the data logger and calibration and

also the dimension that equipment is reading in the string value from raw data. This interface also

represents the next User Stories from Table 4.1:

• US23 — Add equipment configuration

• US33 — Edit period configuration

• US34 — Remove period configuration

• US35 — View period configuration

The Figure 5.5 represent the URL tower/{id}/show from routes Table A.14. This interface

is the most important in the platform, as it shows the classifications status and the raw data from

a period of a wind tower in charts. It’s also possible to classify and comment on this interface by

choosing a period of dates directly from the raw data chart. This interface also represents the next

User Stories from Table 4.1:

• US20 — Add comment
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• US26 — Add classification

• US36 — View raw data

5.5 Conclusion

In this chapter, we described the most important details of the implementation. Choosing a good

architecture initially makes the development quick and facilitates new features to be implemented.

We described how Django makes use of three databases in the same application to measure

the insertion and query performance of the raw data and how we pass from the Conceptual Model

from Section 4.4 to tables in PostgreSQL database that is represented by a Relational Schema in

Table 5.2. We also described how important was the use of Pandas framework to structure and

manipulate the raw data from wind towers and their configurations. The essential User Interfaces

were also presented in this chapter.
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Figure 5.5: Interface showing classifications and raw data from a wind tower
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Chapter 6

Tests and Results

In this chapter, we will measure the performance of the insertion and selection of the raw data

in three different database systems and also describe how validation tests were made during the

development of the platform. The performance test will give us a better understanding of what

database system should we use to store the raw data provided from the wind towers.

6.1 Methodology

One of the main goals of this work was to understand what database system best suits the applica-

tion. To obtain the conclusions about the tests, we will perform load tests, meaning we will create

iterations rising the amount of data to study the behaviour of the system.

The tests made are divided into two groups, insertion and selection to the three different

databases. The raw data inserted follows a logarithmic base of 10, and we start adding one thou-

sand rows of the series — 103 records — and finishing at 1 thousand million rows of the series

— 109 records —, this means we will have seven iterations, where each iteration has an amount

of data ten times greater than the old one. We also compared the selection performance and chart

load between this new platform and the actual INEGI platform, that works as the baseline. We

repeated each test several times, to achieve an average to represent the bests results as possible and

also — to give consistency on the results —, we kept the same CPU processes running, killing all

unnecessary applications and avoiding any scheduled tasks.

To measure the performance of the databases in our platform, we used the time.time() function

from Python, that returns the current time in seconds since the Epoch by measuring the wall-clock

time. Python also offers other function to measure the time called time.clock(), but this function

returns the CPU time or real time since the start of the process or since the first call of time.clock().

The code in Listing 6.1 gives us a better understanding of the difference between time.time() and

time.clock() functions, where we called each function and give a sleep of one second and then

called each function again. We can see that time.time() is different of time.clock(), as we need

53
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1 print(time.time(), time.clock())
2 time.sleep(1)
3 print(time.time(), time.clock())
4 > 1560874948.752479 2.793988
5 > 1560874949.756335 2.824063

Listing 6.1: time vs clock function

to measure, not only the CPU time, but also the access to the database storage. To measure the

execution time of the INEGI platform — Wind2Data — we used the Timer function from VBA.

To make these tests, we used two machines, one to insert and query the three databases and one

other to query and load the chart with raw data as we needed to compare with the Wind2Data. The

first machine has the next hardware specifications: 2.0 GHz dual-core Intel Core i5, Turbo Boost

up to 3.1 GHz with 4 MB shared L3 cache, 8 GB of 1866 MHz LPDDR3 onboard memory, 512

GB PCIe-based onboard SSD, running a macOS Mojave OS with version 10.14.5 (18F132). The

second machine has the next hardware specifications: Intel(R) Core(TM) i7-7500U CPU @ 2.70

GHz, 2901 MHz, 2 Core(s), 4 Logical Processor(s), 16 GB of memory RAM, 512 GB of SSD disk

space, running a Windows 10 OS with version 10.0.17134 Build 17134. The databases installed

on each machine was PostgreSQL v.11.2, MongoDB v4.0.4 and Influx v1.7.4. The Python version

used was the 3.7.1.

6.2 Performance Tests

In this section, we will describe the performance tests made. One of the main questions was to

study the most used operations by the INEGI team, the insertion time, the partial selection and the

disk space that the raw data was occupying into each database system. We made a total selection

to study the performance of each database but it is not the most used operation. We also compared

this new solution with the actual INEGI solution by making a partial selection and a chart load.

PostgreSQL and MongoDB databases will be tested with and without indexes, and Influx with

indexes only, as it already comes with indexes by default on its Measurements. In this section, we

will also describe some optimization’s made to try to obtain better results when making selections.

6.2.1 Insertion Tests

The insertion represents the User Story US38, the ingestion of time series into the database sys-

tems. What we expect with this tests it’s to measure the insertion time for each database system.

To successfully get most homogeneous and reliable results, we insert the same raw data into the

three database systems with the following configurations:

• 103 records — contains approximately seven days of different time series values from one

tower, with a timestamp frequency of ten minutes.
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• 104 records — contains approximately 70 days of different time series values from one

tower, with a timestamp frequency of ten minutes.

• 105 records — contains approximately two years of different time series values from one

tower, with a timestamp frequency of ten minutes.

• 106 records — contains approximately 12 years of different time series values from one

tower, with a timestamp frequency of one to ten minutes.

• 107 records — contains approximately 12 years of different time series values from ten

towers, with a timestamp frequency of one to ten minutes.

• 108 records — contains approximately 12 years of different time series values from 100

towers, with a timestamp frequency of one to ten minutes.

• 109 records — contains approximately 12 years of different time series values from 1 000

towers, with a timestamp frequency of one to ten minutes.

Each record is composed by a tower code, a timestamp and a string with values separated with

commas. We also repeated the insertion tests several times, to get the most reliable results, having

the following repetitions configurations:

• 103 to 106 records — repeated 50 times

• 107 records — repeated 20 times

• 108 records — repeated 5 times

• 109 records — repeated 2 times

We needed to reduce the repetition times with the increment of the working load because the

insertion time was increasing and was getting impractical to repeat such amount of times. But

from Figure 6.1, we can confirm that the measuring times was practically constant. Calculating

the coefficient of variation, for 106 records without indexes, we get 2.75 % for PostgreSQL and

1.45 % for MongoDB, what is considered a low dispersion — below 15 % —, meaning we are

working with homogeneous data, giving us more security on the results for records 107 to 109. For

records of 103 and 104 we get high dispersion — over 30 % —, as we are facing with milliseconds

operations, meaning we have a high rate of different time values. The coefficient of variation

values are present in Table 6.1.

It’s crucial that we verify the initial conditions for each insertion test and, therefore, before

each test, we place the database in its initial state, meaning that no time series are stored. To

insert into the PostgreSQL database we used the bulk_create function from Django models, using

a batch_size of 100 000, to avoid any in-memory problem, and for the MongoDB database we used

the bulk_create function from MongoModel, but unfortunately we had no batch_size parameter, so

we ended by forcing a max of 100 000 records to be inserted each time on the MongoDB database.
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Figure 6.1: Insertion of 106 records with 50 repetitions

Table 6.1: Coefficient of variation over records in insertion tests

Without Indexes With Indexes
Records PostgreSQL MongoDB PostgreSQL MongoDB Influx

103 32.05 % 40.45 % 32.51 % 20.40 % 28.89 %
104 5.71 % 8.55 % 4.08 % 6.87 % 45.26 %
105 3.11 % 4.76 % 2.84 % 2.32 % 5.66 %
106 2.75 % 1.45 % 8.86 % 1.97 % 2.41 %
107 2.99 % 1.31 % 5.76 % 0.33 % 1.50 %
108 0.80 % 0.26 % 2.84 % 0.64 % 2.48 %
109 0.61 % 0.65 % NA 0.13 % 0.52 %
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Figure 6.2: Insertion performance for PostgreSQL and MongoDB without indexes

Finally to insert into the Influx database we used the write_points function from Influx connector,

using a batch_size of 100 000.

It’s also important to refer that these tests helped us to measure the database in extreme situa-

tions, as the regular insertion will be one day of raw data for 300 wind stations — around 43 200

records — and rarely we will insert 109 records.

6.2.1.1 Without Indexes

The Figure 6.2 shows us the comparison of insertion without indexes for PostgreSQL and Mon-

goDB, increasing the number of records inserted into the databases. We couldn’t make insertion

tests without indexes for Influx, as that database structure already comes with indexes.

6.2.1.2 With Indexes

To improve the selection performance, we configured the PostgreSQL and MongoDB with a

B+Tree index on tower_code and time_stamp attributes. Consequently, we also had to rerun the

insertion tests to have the updated results, as using indexes influence the insertion time, because

it’s necessary to fill the index with information from those two attributes. The Figure 6.3 shows

us the comparison of insertion with indexes for PostgreSQL, MongoDB and Influx increasing the

number of records inserted into the databases.

We can see that we are unable to insert 109 records into the PostgreSQL due disk space limi-

tation, stopping at nearly 0.7∗109 records and taking around 358 600 s — three days. It would be

expected to take approximately four days to insert 109 records into the PostgreSQL.
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Figure 6.3: Insertion performance for PostgreSQL, MongoDB and Influx with indexes

We also faced one problem inserting 109 records into the Influx database due to insufficient

RAM. Influx uses two stages — using wal and data directories — to insert the data into the

database. In the first stage, Influx uses the wal — Write-Ahead-Log — directory to append new

writes and deletes, and also store in-memory cache until the cache is snapshotted. Based on

the cache-snapshot-write-cold-duration — the time interval at which the engine will snapshot the

cache and write it to a new TSM (Time-Structured Merge) Tree file if the shard hasn’t received

writes or deletes — value a new level 1 TSM file is written and the wal segments associated to that

snapshotted are removed. This is where the problem was. The database was always storing using

in-memory without releasing it because the cooldown time of ten min — by default — wasn’t

never expired, so we ended by changing that value to twenty s to solve the problem. At this stage,

Influx is fast to write but not to query. The second stage — using data directory — takes care of

compacting the TSM files into more compressed forms to improve query performance.

6.2.1.3 Results

The Table 6.2 shows a resume of results obtained when inserting raw data without and with in-

dexes. The performance results are expressed in seconds, rounded to 2 decimals, for each database

system. We also used a speedup measurement, comparing the worst and the best execution, where

PostgreSQL is represented by (P), MongoDB by (M) and Influx by (I). For the speedup measure-

ment, we used the original measured time.

We can see that MongoDB had, an average of 1.32 times, better performance inserting without

indexes when comparing to PostgreSQL, mainly because MongoDB, upon an insertion, don’t have
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Table 6.2: Insertion without and with indexes

Records 103 104 105 106 107 108 109

Without Indexes
MongoDB 0.06 s 0.62 s 6.59 s 63.30 s 649.27 s 6 342.88 s 64 154.51 s

PostgreSQL 0.06 s 0.47 s 4.74 s 46.95 s 466.96 s 4 703.66 s 47 444.40 s
Speedup 1.10 (M) 1.32 (M) 1.39 (M) 1.35 (M) 1.39 (M) 1.35 (M) 1.35 (M)

With Indexes
PostgreSQL 0.07 s 0.67 s 7.19 s 79.29 s 785.29 s 7 832.81 s NA
MongoDB 0.06 s 0.50 s 4.98 s 50.10 s 495.31 s 5 248.05 s 52 863.88 s

Influx 0.03 s 0.18 s 1.46 s 14.38 s 145.71 s 2 041.70 s 19 028.08 s
Speedup (P)/(I) 2.61 3.67 4.92 5.51 5.39 3.84 NA
Speedup (M)/(I) 2.24 2.72 3.40 3.48 3.40 2.57 2.78

to look for foreign keys and also for ACID properties. Using indexes, we can see that Influx is

faster inserting than PostgreSQL and MongoDB. If we compare with PostgreSQL, Influx is faster

with a speedup average of 4.32, and 2.94 when compared with MongoDB. This happens because

Influx use in-memory to insert and it’s well optimized for time series data composed by a key pair

of time/value(s).

We also compared the insertion from each database system without and with indexes. The

results are represented in Table 6.3. It’s expected that the insertion time is higher with indexes than

without indexes, as the database need to fill information for those indexed attributes. PostgreSQL,

with indexes, is slower 1.15 times inserting when we compare the same operation without indexes.

MongoDB is also slower 1.06 times when we insert with indexes. We didn’t get any value for 109

records in PostgreSQL insertion with indexes — as explained in Section 6.2.1.2 — but we could

estimate it would take 4 days, meaning that would take around 5.38 times more than the insertion

without indexes. We noticed on PostgreSQL that the time was increasing when dealing over 106

records, as that database recommends the creation of indexes only after insertion to speed up the

insertion process. With MongoDB, we noticed a slight increase in insertion time when dealing

with records over 108.

Table 6.3: Time relation on each database system with and without indexes upon insertion

Records PostgreSQL MongoDB
103 1.04 0.98
104 1.08 1.06
105 1.09 1.05
106 1.25 1.07
107 1.21 1.06
108 1.23 1.12
109 NA 1.11



60 Tests and Results

1 SELECT relname AS objectname, relkind AS objecttype, reltuples AS "#entries",
pg_size_pretty(relpages::bigint*8*1024) AS size

2 FROM pg_class
3 WHERE relpages >= 8
4 ORDER BY relpages DESC;

Listing 6.2: Get size of tables

6.2.2 Disk Space

One of the goals was to know how much disk space each database occupy. For this, we measure

the PostgreSQL database with and without indexes using the query at Listing 6.2 through Postico1

— a client for PostgreSQL. The query returns the size for data, primary and foreign keys, and

indexes on each table from the database.

For MongoDB we used the stats and storageSize functions from the collection, directly in

MongoDB Shell, to get, respectively, the indexes and unique indexes — for _id —, and the data

size. For Influx, we had to get the actual size in the data directory, as Influx don’t offer any query

or function to get the disk space being used at the Measurements.

The Figure 6.4 show us the comparison of the data and the primary key disk space — in kB

— for PostgreSQL and MongoDB, over records.

The Figure 6.5 show us the comparison of disk space — in kB — of the data, the primary key

and the indexes for PostgreSQL, MongoDB and Influx, over records.

6.2.2.1 Results

We can see by the Table 6.4 that MongoDB (M) had — with an average of 1.82 times — less disk

space when comparing to PostgreSQL. This has to be how the data is stored, while MongoDB

stores the data on the disk as a BSON2— binary-encoded serialization of JSON-like documents,

PostgreSQL, by default, writes blocks of data — pages — to disk in 8 k chunks.

1https://eggerapps.at/postico/
2http://bsonspec.org/

Table 6.4: Disk space without indexes

Records PostgreSQL MongoDB Better x
103 133 kB 97 kB 1.37 (M)
104 1 317 kB 724 kB 1.82 (M)
105 13 406 kB 7 135 kB 1.88 (M)
106 136 080 kB 70 906 kB 1.92 (M)
107 1 400 167 kB 758 996 kB 1.84 (M)
108 16 168 661 kB 7 764 471 kB 2.08 (M)
109 142 938 347 kB 78 207 475 kB 1.83 (M)
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Figure 6.4: Disk space without indexes

Figure 6.5: Disk space with indexes
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Table 6.5: Disk space with indexes

Records PostgreSQL MongoDB Influx Better (P)/(I) Better (M)/(I)
103 167 kB 125 kB 37 kB 4.51 3.38
104 1 671 kB 875 kB 338 kB 4.94 2.59
105 16 823 kB 8 482 kB 3 573 kB 4.71 2.37
106 172 821 kB 82 108 kB 36 457 kB 4.74 2.25
107 1 726 582 kB 881 949 kB 378 318 kB 4.56 2.33
108 19 664 402 kB 8 917 146 kB 3 244 919 kB 6.06 2.75
109 NA 90 413 333 kB 28 865 885 kB NA 3.13

By analyzing the Table 6.5, we can compare the three databases systems with indexes. We

can see that Influx occupy 4.92 times less disk space when compared with PostgreSQL and when

compared with MongoDB, require 2.69 times less disk space. This is because Influx is good

compressing data into TSM files.

If we compare PostgreSQL and MongoDB with and without indexes, we can see that Post-

greSQL, by an average of 1.25, and MongoDB, by an average of 1.19, occupy more disk space

when using indexes. We could expect that PostgreSQL when dealing with 109 records, with

indexes, would occupy around 167∗106 kB. This means almost 1.85 more disk space when com-

paring that same number of records without indexes.

6.2.3 Selection Tests

The selection tests represent the User Story US36. In the next two sections, we will analyze the

time that the platform takes to select the raw data from the three databases systems. This tests

will be divided into two groups: total and partial selection. Like the insertion tests, selection tests

will follow a logarithmic base of 10, and we will start selecting one thousand lines — 103 — and

iterating until 1 thousand million of records — 109. We will also repeat the selection tests several

times to get an average of execution times — we will describe the repetition configurations in the

next two Sections.

6.2.3.1 Total Selection

In this section, we will analyze the total selection. The total selection consists of getting all

the records from the DataSet table, independently of the wind towers. This operation isn’t the

most used but will help us measure the performance of the database in extreme situations. For

PostgreSQL, the total selection have the following code: DataSetPG.ob jects.all(), that is the

same as SELECT ∗FROMdataset pg in SQL language. For MongoDB, we used the following

code: DataSetMongo.ob jects.all(), that is the same as db.data_set_mongo. f ind(). For Influx we

used the query function from Influx connector to make the following query: SELECT ∗FROM/.∗
/. Because influx stores each raw data from each tower into separated Measurements, we had to

select all of them with the code: /.∗/.
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Figure 6.6: Total query execution time

During the total selection tests, we faced in-memory problems when selection records over

108. This problem occurred because we were selecting huge amounts of values into memory with-

out releasing it. In order to solve this problem, we had to use the iterator function for PostgreSQL

with chunk_size equal to 100 000, and the aggregate function for MongoDB with a batchSize

equal to 100 000. This means both solutions will load into memory, small records of 100 000 and

return them each time. Unfortunately, the Influx connector doesn’t offer, at the moment, any solu-

tion to load into memory, small records each time, so we had to stop selecting at 107 records. To

get the most reliable results, we repeated the total selection tests several times with the following

configurations:

• 103 to 106 records — repeated 50 times

• 107 records — repeated 20 times

• 108 records — repeated 10 times

• 109 records — repeated 5 times

The Figure 6.6 show us the comparison of the total selection in PostgreSQL — without indexes

—, MongoDB — without indexes — and Influx — with indexes —, increasing the number of

records to be selected from the databases.
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1 DataSetPG.objects.filter(tower_code=value1, time_stamp__gte=value2, time_stamp__lte
=value3)

Listing 6.3: Django partial query for PostgreSQL

6.2.3.2 Partial Selection

A partial selection is the most used and vital operation, as it consists in getting raw data from a

tower between a period. For PostgreSQL query, the partial selection has the following code at

Listing 6.3 in Django. For MongoDB, the partial selection is represented by the following code

at Listing 6.4 in Django. For Influx, the partial selection has the following code at Listing 6.5

in Django. Where, for the three cases, the value1 is the code tower, and the value2 and value3

are, respectively, the beginning and end date of the period to be searched. We choose a period

within 90 days, that corresponds to 8 209 records, to be returned in the queries. We had to start

the database populated with 104 records, as the chosen period don’t fit in 103 records. It’s also

essential to refer that we don’t order by time_stamp or time during the selections, as we are doing

it in the Pandas framework.

We can compare in the Figure 6.7 the measured time without indexes for PostgreSQL and

MongoDB when making a partial selection.

At this point, by looking at the results, we quickly realized the need to create indexes. A final

user shouldn’t have to wait several minutes to get the raw data belonging to a period from a tower,

especially when it’s the most used operation in the platform. To fully understand what attributes

should we use to create indexes, we study the query, using the query planner. In Django, we

can get the query planner from PostgreSQL database using the explain function — Unfortunately,

PyMODM connector doesn’t offer that function, but we could get an idea where to create the

indexes in MongoDB using the query planner from Django. We tested with 105 records and by

looking for the results at Listing 6.6, we can see only one step made by the database, a sequential

scan in all the table to find the raw data from a tower_code within a time_stamp period.

This step can be easily optimized by creating a composite index with the attributes tower_code

and time_stamp, as we will always be looking for a tower and a period in the same query. This way,

it wouldn’t be necessary to search sequentially in all tower_code’s and then in all time_stamp’s

from that tower_code to find the desired results. After creating the indexes and running the explain

function, we can confirm — by checking the results at Listing 6.7 — that the database only hit the

1 DataSetMongo.objects.raw({’tower_code’: value1, ’time_stamp’: {’$gte’: value2, ’
$lte’: value3}})

Listing 6.4: Django partial query for MongoDB
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1 INFLUXCLIENT.query("select * FROM value1 where time >= " + value2 + " and time <= "
+ value3)

Listing 6.5: Django partial query for Influx

Figure 6.7: Partial selection without indexes

1 Seq Scan on datasetpg (cost=0.00..3119.00 rows=8147 width=73)
2 Filter: ((time_stamp >= ’2019-01-05 04:10:00+00’::timestamp with time zone) AND (

time_stamp <= ’2019-04-05 04:10:00+00’::timestamp with time zone) AND ((
tower_code)::text = ’port1’::text))

Listing 6.6: Query planner without indexes
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1 Bitmap Heap Scan on datasetpg (cost=232.29..1743.86 rows=8147 width=73)
2 Recheck Cond: (((tower_code)::text = ’port1’::text) AND (time_stamp >= ’

2019-01-05 04:10:00+00’::timestamp with time zone) AND (time_stamp <= ’
2019-04-05 04:10:00+00’::timestamp with time zone))

3 -> Bitmap Index Scan on main_app_da_tower_c_6a0ada_idx (cost=0.00..230.25 rows
=8147 width=0)

4 Index Cond: (((tower_code)::text = ’port1’::text) AND (time_stamp >= ’
2019-01-05 04:10:00+00’::timestamp with time zone) AND (time_stamp <= ’
2019-04-05 04:10:00+00’::timestamp with time zone))

Listing 6.7: Query planner using indexes

raw data from the tower_code and time_stamp, not being necessary to go through the entire table

to search for it.

In the Figure 6.8, we can compare the measured time for the partial selection with indexes for

PostgreSQL, MongoDB and Influx. We can notice in the Influx database that, over 107 records,

the measured time start to increase, by a small portion, as we start to get more Measurements

— more towers with raw data — in the system. PostgreSQL and MongoDB maintain a constant

measured time while increasing the total of records.

6.2.3.3 Results

Through the selection tests, we analyzed the time the platform takes to get the raw data from the

different database systems.

By looking at the Table 6.6, we can discuss the results of the execution time for the total se-

lection operation. It’s possible to confirm that PostgreSQL over Influx have a speedup average of

2.06. PostgreSQL is also better when making a total selection when comparing to MongoDB, but

only with a speedup average of 1.09. One of the main reason for Influx being slower than Mon-

goDB and PostgreSQL has to do with the fact that the query stores all returned data in-memory,

instead of storing small records and returning them each time. In fact, we tested PostgreSQL

and MongoDB without using, respectively, the chunk_size and batchSize parameters in the query

call, and it was possible to conclude that both databases are 1.9 times slower without those two

parameters.

By looking at the Table 6.7, we can compare the execution time for the partial query. It’s

possible to analyze that PostgreSQL (P) it’s better than MongoDB with a speedup average of 3.32

when our databases have no indexes. But at this point, our system was slow when selecting a

few results from a table with million of records, so we created indexes and had the following

performance improvements for each database system:

• PostgreSQL — improved an average of 113.38 times over the solution without indexes.

• MongoDB — improved an average of 1883.69 times over the solution without indexes.
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Figure 6.8: Partial selection with indexes

Table 6.6: Execution time for total query

Records PostgreSQL MongoDB Influx Speedup (M)/(P) Speedup (I)/(P)
103 0.01 s 0.01 s 0.03 s 1.33 3.36
104 0.08 s 0.09 s 0.12 s 1.05 1.44
105 0.85 s 0.90 s 1.03 s 1.07 1.21
106 8.37 s 8.89 s 11.38 s 1.06 1.36
107 87.59 s 88.78 s 255.51 s 1.01 2.92
108 873.31 s 920.44 s NA 1.05 NA
109 8 867.57 s 9 487.63 s NA 1.07 NA
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Table 6.7: Execution time for partial query

Records 103 104 105 106 107 108 109

Without Indexes
PostgreSQL NA 0.08 s 0.11 s 0.27 s 1.29 s 49.14 s 591.74 s
MongoDB NA 0.15 s 0.27 s 1.28 s 7.68 s 128.66 s 1 506.62 s
Speedup NA 1.71 (P) 2.42 (P) 4.67 (P) 5.93 (P) 2.62 (P) 2.55 (P)

With Indexes
PostgreSQL NA 0.09 s 0.11 s 0.09 s 0.10 s 0.09 s NA
MongoDB NA 0.14 s 0.15 s 0.14 s 0.14 s 0.15 s 0.15 s

Influx NA 0.10 s 0.10 s 0.10 s 0.16 s 0.14 s 0.14 s
Speedup (M)/(P) NA 1.59 1.38 1.59 1.35 1.66 NA
Speedup (I)/(P) NA 1.09 0.92 1.08 1.63 1.52 NA

Improvement With Indexes
PostgreSQL NA 0.96 1.07 3.07 12.89 548.89 NA
MongoDB NA 1.03 1.87 8.99 56.74 865.87 1 0367.64

If we compare the three database systems with indexes, our results are almost similar on each,

giving an advantage to PostgreSQL. It’s, with a speedup average of 1.25, faster than Influx, and,

with a speedup average of 1.51, faster than MongoDB.

6.2.4 Comparison with Wind2Data

One goal was also to compare this new solution with the actual INEGI solution. For this, we used

the second machine described at Section 6.1, to get direct access to the Wind2Data. This test

aims to make a partial query — in PostgreSQL, MongoDB and Influx — and a chart load using

the HighCharts in our platform. Then we do the same in the Wind2Data, that uses MySQL for

database and Excel for chart visualization. Each system had 106 records on each database, and we

selected the raw data with the following configurations:

• 2 160 records — around 15 days — with 10 repetitions. Having a coefficient of variation

of 3.39 % on Wind2Data, and an average of 12.53 % on our system, between the three

databases.

• 4 320 records — around 30 days — with 10 repetitions. Having a coefficient of variation

of 2.38 % on Wind2Data, and an average of 10.33 % on our system, between the three

databases.

• 103 680 records — around 2 years — with 5 repetitions. Having a coefficient of variation of

3.21 % on Wind2Data, and an average of 4.00 % on our system, between the three databases.

In Figure 6.9, we can compare the results and see that Wind2Data is slower than our platform.

The main reason for this is because Excel needs to make a query to the MySQL database and then

fill the Excel spreadsheet’s with all the information from the query, which is a very heavy process.
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Figure 6.9: Partial selection with indexes

Looking at the Table 6.8, we can confirm that our solution, regardless of the database, is almost

5.6 times better when selecting 2160 records, 3.3 times better when selecting 4320 records, and

2.6 times better when selecting 103 680 records.

Table 6.8: New vs INEGI solution

Records PostgreSQL MongoDB Influx Wind2Data
2 160 1.43 s 1.44 s 1.47 s 8.08 s
4 320 3.31 s 3.16 s 3.24 s 10.84 s

103 680 55.40 s 59.57 s 60.32 s 145.77 s

6.3 Validation Tests

During the development of the platform, more precisely on each User Story development, we made

validations tests by introducing real data into each form from each User Story. We also tested the

classification and raw data chart’s with different equipments and configurations to fully validate

those implementations. These tests ensure that the product actually meets the client’s needs. We

create this project “dockerized”3 to quickly run the platform independently of the SO being used.

This way, the client could test the new implementations that were developed. These tests not

only helped to reinforce the client’s needs but also helped us to find bugs to be fixed during the

development.

3https://www.docker.com/
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6.4 Final Results

On the previous sections of the performance tests, we described what is the best database system

for insertion, selection and also what is the one that occupies less disk space.

We could conclude that Influx is faster inserting when compared with PostgreSQL and Mon-

goDB — with an average of speedup of 4.32 and 2.94, respectively. For disk space management,

we can conclude that Influx occupies 4.92 times less disk space when compared to PostgreSQL

and 2.69 times less when compared with MongoDB. Upon a total selection, even if isn’t the most

used operation by the client, the PostgreSQL is 1.09 times faster against MongoDB and 2.06 times

faster against Influx. For a partial selection, using indexes, we got almost the same results, less

than 0.2 seconds for each database system, even when the databases had a total of 109 records

to search. But PostgreSQL had, slightly, the better results when compared with MongoDB and

Influx — better 1.51 and 1.25 times, respectively. It was also astonishing the comparison of Post-

greSQL and MongoDB upon the creation of indexes to use on partial selections. PostgreSQL had

a speedup improvement of 113.38 and MongoDB an improvement of 1 883.69 without indexes.

With these results, we can conclude that, in overall, Influx is 2.66 better than PostgreSQL and

1.47 better than MongoDB, being able to store and handle raw data from up to 30 years. For this

scenario we choose Influx to handle the raw data and PostgreSQL to handle the meta information

of the system. Many companies already use Influx in their services4, for example, Adobe5 use it as

a microservice based on the Adobe EchoSign integration for Microsoft SharePoint online. Cisco6

for other side uses to monitor their ecommerce application that tracks all Cisco Service Renewals.

Huawei7 uses Influx to collect and show the Linux computing cluster performance data.

We also made performance tests to compare the new solution with the INEGI solution. We

conclude that our solution is, on average, 3.86 faster, making the partial selection and loading the

chart with raw data.

4https://www.influxdata.com/customers/
5https://www.adobe.com
6https://www.cisco.com
7https://www.huawei.com
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Conclusions and Future Work

In this Chapter we will summarize the work done and also analyze what future work can be done

to improve and complement the implemented system.

7.1 Summary

Nowadays, everything around us generates data, specially in the wind energy, a strongly data-

driven domain. With all this data comes the need to store and handle it in an efficient and scalable

way.

The main goal of this work was the creation of a Web based Information System, that not only

stores the raw data, but also handles all meta information associated to the wind meteorological

masts in order to ensure traceability and scalability. Flexibility is also a requirement, particularly

in what concerns the ability to deal with a vast variety of data sources and data formats. Despite

the lack of time to implement and test a large amount of data types, this requirement was taken

into account in the solution designed to store and manage the data — making it compatible with,

virtually, any time series based data structure. The findings of this work might help INEGI wind

energy department understand which solutions shall be followed in future developments of their

internal tools.

In the first phase, focus on studying the actual problem was the main goal. And it was quickly

realized that it would be a big and complex project. Not only INEGI has to make the data collection

but also applies different transfer functions to different data series along time, classifies the data

with a diverse range of status and subsequently uses the processed and cleaned data as input to

prepare several complex and detailed reports. After getting an overview, we studied the database

systems that do not follow the relational model, as an alternative to the RDBMS.

In a second phase, the platform was designed, focusing to storing the raw data, wind me-

teorological tower and equipment’s information. The platform had also to be able to store data

classification and present it in charts.

71
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In a third phase, the actual implementation of the platform was accomplished. The platform

development followed two big stages, in the first stage we designed all Models for PostgreSQL —

a RDBMS — to handle all meta information from wind towers, equipment’s and classifications.

The second stage focus to insert the raw data using three different storage solutions, PostgreSQL,

MongoDB and Influx. The second stage is combined with the first, as the platform is able to

access any of the three data bases created. This implementation not only helped us developing the

project faster, but also allowed us to compare insertion and selection performance from the three

technologies. During the development of the project, the client was able to do validations tests, to

confirm that the product actually meets the client needs.

In a fourth stage, we made performance tests and conclude that Influx was the faster database

inserting and making partial selections of the raw data. We also measured the disk space to com-

pare what approach uses less disk space storing data, and we could conclude that Influx occupies

less disk space when compared with PostgreSQL and MongoDB. These tests not only helped us to

deduce which database was faster, but also allowed us to improve the platform during these tests.

We also compared our platform with the INEGI platform and could conclude that our platform

was, 3.86 times faster when loading raw data from the database to charts.

At the end we conclude that the platform actually meet the client needs being scalable and with

a good performance. The platform is able to handle meta information from all designed domain

entities, and also to insert and query raw data and show it in charts. We also conclude that RDBMS

and TSDB can coexist in the same system, using PostgreSQL to handle the meta information and

Influx to store the raw data. This platform is only a small portion of what can be in the future,

requiring further studies and also a base for new implementations.

7.2 Future Work

As already described on the previous chapters, the developed platform was limited to the core

functionalities defined by INEGI as time was limited — in short raw data storage and subsequent

processing. Despite that, an effort was made during the design and development of this solution

to fulfill the main requirements — traceability, scalability, flexibility and time effectiveness. The

flexibility is regarded here as the ability of this system to deal with diverse data types. Thus, despite

not fully tested, a considerable effort was made to ensure that the system is suitable to store data

of different sources, formats and time scales — not only from wind meteorological masts but

also from wind turbines, solar power plants, inverters, meso-scale models, reanalysis data, etc.

To make it possible, the approach was to store all time series in a standard structure within the

database and on top of each data series, a layer of meta-data is necessary to accurately describe

its content, source, provider, owner and many other attributes. As only limited sources of data

series were tested, in future work, as other sources of data are considered, it will be necessary to

understand which attributes are required to describe it. Apart from the “multi-data-types” ability,

the integration of this tool with management and support to the field operations, management of

the equipment and clients portfolio, the introduction of advanced analytics, creation of customized
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template reports, etc. is still to be done in the future provided the solution developed in the context

of this work proves robust and reliable.

PostgreSQL, MongoDB and Influx were used to store the raw data, but these are only a few

of the many existing databases. There are other databases, mainly, oriented to timeseries, like

TimeScale1 and OpenTSDB2 that require study and should be tested in order to improve the sys-

tem.

1https://www.timescale.com/
2http://opentsdb.net/
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Appendix A

URL Tables

At this appendix we can view all the available URLs routes for each entity in the platform that was

described at Section 5.2.1.

Table A.1: Routes for Period_Configuration entity

URL Type Description
tower/{id}/
conf_period/add

GET Form to add a new period of configuration to a tower.

tower/{id}/
conf_period

POST Add a period of configuration.

tower/{id}/
conf_period/{id}

GET Show tower information, period’s of configuration and
comments from that tower.

PUT Update period of configuration information.
DELETE Remove a period of configuration.

Table A.2: Routes for Equipment_Configuration entity

URL Type Description
tower/{id}/
conf_period/{id}/
equi_conf/add

GET Form to add a equipment configuration to a period of con-
figuration that belongs a station.

tower/{id}/
conf_period/{id}/
equi_conf

POST Add a new equipment configuration.

tower/{id}/
conf_period/{id}
equi_conf/{id}

GET Show equipment configuration information.
PUT Update equipment configuration information.
DELETE Remove a equipment configuration.
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Table A.3: Routes for Classification_Period entity

URL Type Description
tower/{id}/
conf_period/{id}/
equi_conf/{id}/
classification/add

GET Form to add a classification period to a equipment con-
figuration that belongs to a period of configuration from a
tower.

tower/{id}/
conf_period/{id}/
equi_conf/{id}/
classification

POST Add a new classification period.

tower/{id}/
conf_period/{id}
equi_conf/{id}
classification/{id}

GET Show classification period information from an equipment
configuration

PUT Update classification period information.
DELETE Remove a classification period.

Table A.4: Routes for Dimension entity

URL Type Description
tower/{id}/
conf_period/{id}/
equi_conf/{id}/
dimension/add

GET Returns a form to add a new dimension to a equipment
configuration that belongs to a period of configuration’s of
a tower.

tower/{id}/
conf_period/{id}/
equi_conf/{id}/
dimension

POST Add a new dimension.

tower/{id}/
conf_period/{id}
equi_conf/{id}
dimension/{id}

GET Show dimension information from an equipment configu-
ration

PUT Update dimension information from an equipment config-
uration.

DELETE Remove a dimension.
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Table A.5: Routes for Comment entity

URL Type Description
tower/{id}/
conf_period/{id}/
equi_conf/{id}/
classification/{id}/
comment/add

GET Returns a form to add a comment to a classification that
belongs to a equipment configuration from a period of con-
figuration’s of a tower.

tower/{id}/
conf_period/{id}/
equi_conf/{id}/
classification/{id}/
comment

POST Add a new comment to a classification that belongs to a
equipment.

tower/{id}/ com-
ment/add

GET Returns a form to add a comment to a tower.

tower/{id}/ com-
ment

POST Add a new comment to a tower.

tower/{id}/
comment/{id}/
type

GET Show the comment information from a type — tower or an
equipment.

PUT Update the comment information.
DELETE Remove a comment.

Table A.6: Routes for User entity

URL Type Description
user/new GET Form to add a new user.
user POST Add a new user.
users GET List all users.

user/{id}
GET Show user information.
PUT Update user information.
DELETE Remove a user.

user/{id}/ban PUT Ban a user.

Table A.7: Routes to associate User to Tower’s entity

URL Type Description
associate/new GET Form to add a new tower’s association to an user.
associate POST Add a new association.
associations GET List all towers associations.

associate/{id}
GET Show tower association information.
PUT Update tower association information.
DELETE Remove a tower association.
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Table A.8: Routes to Cluster entity

URL Type Description
cluster/new GET Form to add a new cluster.
cluster POST Add a new cluster.
clusters GET List all cluster’s.

cluster/{id}
GET Show cluster information.
PUT Update cluster information.
DELETE Remove a cluster.

Table A.9: Routes to Equipment entity

URL Type Description
equipment/new GET Form to add a new equipment.
equipment POST Add a new equipment.
equipments GET List all equipment’s.

equipment/{id}
GET Show equipment information.
PUT Update equipment information.
DELETE Remove a equipment.

Table A.10: Routes to Calibration entity

URL Type Description
equipment/{id}/
calib/add

GET Form to add a new calibration to the equipment ID.

equipment/{id}/
calib

POST Add a new calibration.

equipment/{id}
calib/{id}

GET Show calibration information from an equipment.
PUT Update calibration information from an equipment.
DELETE Remove a calibration from an equipment.

Table A.11: Routes to any Type’s entity

URL Type Description
type/add/typex GET Form to add a new type of typex — equipment, model,

status, unit, statistic, metric, dimension, component, affili-
ation, user_group.

type POST Add a new type of typex.

type/{id}/typex
GET Show type information of a typex.
PUT Update type information of a typex.
DELETE Remove a type of typex.

dimension_type/add GET Form to add a new dimension_type.
dimension_type POST Add a new dimension_type.

dimension_type/{id}
GET Show dimension_type information.
PUT Update dimension_type information.
DELETE Remove a dimension_type.
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Table A.12: Routes for Machine entity

URL Type Description
machine/new GET Form to add a new machine.
machine POST Add a new machine.
machines GET List all machine.

machine/{id}
GET Show machine information.
PUT Update machine information.
DELETE Remove a machine.

Table A.13: Routes for Status entity

URL Type Description
status/new GET Form to add a new status.
status POST Add a new status.
statues GET List all status.

status/{id}
GET Show status information.
PUT Update status information.
DELETE Remove a status.

Table A.14: Routes for Data Management

URL Type Description
tower/{id}/show GET Show charts of raw data and classifications made
classify_from_charts POST Make a new classification viewing charts
view_classifications_chart GET Ajax call to initiate and update the classification

chart
view_raw_data GET Ajax call to initiate and update the raw data chart
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