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Abstract: Clupeiformes, such as sardines and herrings, represent an important share of worldwide
fisheries. Among those, the European sardine (Sardina pilchardus, Walbaum 1792) exhibits significant
commercial relevance. While the last decade showed a steady and sharp decline in capture levels,
recent advances in culture husbandry represent promising research avenues. Yet, the complete
absence of genomic resources from sardine imposes a severe bottleneck to understand its physiological
and ecological requirements. We generated 69 Gbp of paired-end reads using Illumina HiSeq X Ten
and assembled a draft genome assembly with an N50 scaffold length of 25,579 bp and BUSCO
completeness of 82.1% (Actinopterygii). The estimated size of the genome ranges between 655 and
850 Mb. Additionally, we generated a relatively high-level liver transcriptome. To deliver a proof of
principle of the value of this dataset, we established the presence and function of enzymes (Elovl2,
Elovl5, and Fads2) that have pivotal roles in the biosynthesis of long chain polyunsaturated fatty acids,
essential nutrients particularly abundant in oily fish such as sardines. Our study provides the first
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omics dataset from a valuable economic marine teleost species, the European sardine, representing
an essential resource for their effective conservation, management, and sustainable exploitation.

Keywords: European sardine; draft genome; teleosts; comparative genomics; long chain polyunsaturated
fatty acids

1. Introduction

Teleosts comprise the most species-rich group of vertebrates, with approximately 30,000 described
species [1]. During the last decades, teleosts emerged as particularly insightful models for comparative
evolutionary studies [2]. Moreover, numerous teleost fish species are of high commercial importance for
both fisheries and aquaculture. Fish are not only an important source of protein for human consumers,
but oily species represent unique sources of the healthy omega-3 long-chain polyunsaturated fatty acids
(LC-PUFAs), which have been shown to have essential roles in cardiovascular health and neuronal
development [3,4]. Yet, over-fishing combined with global changes entail countless threats to this
taxon, making it an interesting target for aquaculture which already provides approximately half of the
seafood consumed worldwide [5]. The oily fish European sardine (Sardina pilchardus, Walbaum 1792)
(Figure 1) is one of the most commercially important species [6], particularly for the canning industry,
and has high nutritional value primarily linked to its omega-3 LC-PUFA content. Interestingly, a steady
and sharp decline in capture levels has been observed in the last decade, which is currently dictating
severe cuts in fishing quotas within the European Union [7]. Recent advances in captive sardine
culture practices represent promising research possibilities [8,9]; however, the complete absence of
genomic resources from this iconic species imposes a severe bottleneck. Genome data emerging
from high-throughput sequencing technology combined with multiple assembly algorithms has
represented a truly transformative event in the field of comparative genomics [10]. Moreover, de novo
assemblies based on low coverage and short read approaches are cost effective, and provide valuable
biological information [11–13]. Here, we present the first draft genome of the European sardine and
provide a relatively high-level liver transcriptome enabling nutrigenomics studies in this iconic species.
The genomic makeup of the European sardine was further compared to that of other teleosts, including
the closely related clupeid, the Atlantic herring [14]. As a proof of principle, we selected the LC-PUFA
biosynthesis, a metabolic pathway accounting for the production of omega-3 fatty acid in fish [15],
and characterized key genes with well-established roles within these pathways [3,16].
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Mónica Felício and André M. Machado).

2. Methods, Results and Discussion

2.1. Sampling, DNA Extraction, Library Preparation and Genome Sequencing

One S. pilchardus specimen (Figure 1) was caught off Esposende (41.501944 N 8.851667 W),
Portugal, under the “Programa Nacional de Amostragem Biológica” carried out by the Instituto
Português do Mar e da Atmosfera (IPMA). Tissues were harvested immediately and stored in
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100% ethanol (muscle) and RNA later (liver) until further processing (Supplementary Table S1 in
Supplementary File 2). Genomic DNA was extracted from muscle tissue (~0.5 g) in three replicates,
using Qiagen’s DNeasy Blood & Tissue Kit (Valencia, CA, USA) according to the manufacturer’s
instructions, with the following modifications: prior to elution in 100 µL AE buffer, samples were
incubated at 37 ◦C for 10 min, to increase DNA yield. DNA concentration and integrity were verified
using an Agilent Genomic DNA ScreenTape (Waldbronn, Germany). We constructed one 150 bp
paired-end reads library from 1.2 µg of genomic DNA using the standard Illumina protocol for the
TruSeq Nano DNA library kit (Illumina, San Diego, CA, USA). Sequencing was performed with the
Illumina HiSeq X Ten (Macrogen, Seoul, Korea) platform and generated 69.0 Gbp of raw reads for
downstream analysis (Supplementary Table S1 in Supplementary File 2).

2.2. RNA Extraction, Library Preparation and Sequencing

Total RNA was extracted from liver using Illustra RNAspin Mini RNA Isolation Kit (GE
Healthcare, Hammersmith, UK) according to the manufacturer’s instructions. The isolated RNA
was treated with RNase-free DNase I and eluted with RNase-free water. A strand-specific library with
insert size of 250~300 bp was built after conversion of the liver total RNA to cDNA, and sequenced
using 150 bp paired-end reads on the Illumina HiSeq 2500 platform by Novogene (Beijing, China).
A total of 122.8 million raw reads were produced (Supplementary Table S1 in Supplementary File 2).

2.3. RNA-Seq Raw Data Clean-Up and De Novo Assembly Transcriptome

The quality of raw RNA-Seq reads were scrutinized using the FastQC software (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). Trimmomatic (v0.36) [17] was used to clean up
the initial dataset (LEADING:15 TRAILING:15 SLIDINGWINDOW:4:20 MINLEN:50) (Table 1).
To assemble the paired end reads we used the de novo assembler Trinity (v2.4.0) [18]. All default
parameters were used except for SS_lib_type—RF and min_contig_length of 300 bp. To check for
contamination sources such as vectors, adapters or other exogenous sequences, we applied the same
methodology as previously described [19]. Thus, using the MCSC (Model-based Categorical Sequence
Clustering) decontamination pipeline [20] and UniVec database (build 10.0), we obtained the final
decontaminated transcriptome assembly further used in the genome annotation process. Overall,
from 111.5 million clean reads we obtained a total of 245,053 assembled transcripts, with N50 of
1760 bp (Table 1 and Supplementary Table S1 in Supplementary File 2). Additionally, we also evaluated
the gene content completeness using the Benchmarking Universal Single-Copy Orthologs (BUSCO
(v.3)) [21]. This analysis was done against the lineage-specific library of Actinopterygii, and showed
that from 4584 BUSCO ortholog genes, our transcriptome assembly contains 80.6% of the sequences
(complete and partial; Table 1).

Table 1. Summary of genome and liver transcriptome statistics of the European sardine,
Sardina pilchardus.

Features Genome # Liver Transcriptome #

Raw Data
Raw sequencing reads 456,775,568 122,806,922

Clean reads 412,914,751 111,524,231

Contig statistics
Number of contigs 90,290 245,053

Total contig size, Mb 640.1 278.5
Contig N50 size, bp 10,878 1760
Longest contig, bp 87,474 15,773

GC/AT/N, % 44.45 48.10

Scaffold statistics
Number of scaffolds 45,321 -

Total scaffold size, Mb 641.5 -
Scaffold N50 size, bp 25,577 -
Longest scaffold, bp 285,113 -
Genome coverage, × 59 -

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Table 1. Cont.

Features Genome # Liver Transcriptome #

BUSCO Completeness
(Met/Ver/Actino)

Complete, % 82.7/70.5/68.8 99.1/80.6/72
Complete and single copy, % 78.8/68.4/66.3 41.5/31.2/29.1
Complete and duplicated, % 3.9/2.1/2.5 57.6/49.4/42.9

Fragmented, % 9.2/19.0/13.3 0.6/10.5/8.6
Missing, % 8.1/10.5/17.9 0.3/8.9/19.4

Total BUSCO found 91.9/89.5/82.1 99.7/91.1/80.6

Annotation
Number of protein-coding genes 29,701 -

Number of functionally annotated proteins 28,783 -
Average CDS length 1561.42 -

Longest CDS 49,643 -
Average protein length 373.45 -

Longest protein 16,525 -
Average number of exon per gene 6.59 -

# All statistics are based on contigs/scaffolds of size ≥200 bp. Met: From a total of 978 genes of Metazoa
library profile; Ver: From a total of 2586 genes of Vertebrata library profile; Actino: From a total of 4584 genes of
Actinopterygii library profile.

2.4. DNA Raw Data Clean-Up and Genome Size Estimation

Raw Illumina reads were first processed with Trimmomatic [17] for the removal of adapter
sequences, and trimming bases with quality <20 and discarded reads with length <80. The genome
size estimation was performed with two different approaches, using GenomeScope (v1.0.0) [22] and
Kmergenie (v1.7044) [23] on genomic clean reads. The first approach requires the Jellyfish (v2.2.6)
software to build k-mer frequency distributions. We applied three values of k-mers, 21, 25, and 31,
and each histogram was submitted to the GenomeScope software. In the end, we estimated a genome
size between 625–637 Mbp, heterozygosity levels between 1.60–1.75%, and unique content of 85.0–85.7%
(Supplementary Figure S1A–C in Supplementary File 1 and Supplementary Table S2 in Supplementary
File 2). The Kmergenie software with the diploid model was also used, and a genome size of 850 Mb
was estimated.

2.5. Assembly and Assessment of Sardine Genome

The genomic clean reads were assembled with the Celera assembler (downloaded from the
CVS Concurrent Version System, http://wgs-assembler.sourceforge.net/) repository on 21 June
2017; for details see Supplementary Materials and Methods in Supplementary File 1. Interestingly,
this assembler has been successful for other teleost species genomes (e.g., Parachaenichthys charcoti) [24].
After genome assembly, the clean reads were back-mapped to the sardine genome with BWA mem [25].
PCR duplicates were removed with Picard MarkDuplicates (http://picard.sourceforge.net) and
local realignment around indels was done with GATK [26]. A median insert size of 441 bp was
determined with Picard CollectInsertSizeMetric. To evaluate the genome assembly, we primarily
used QUAST v4.3 [27]. Next, the validation of the genome was done with the K-mer analysis toolkit
(KAT) [28]. Through this analysis, it was possible to check how the Celera Assembler dealt with the
heterozygosity of the sardine. In Supplementary Figure S2 of Supplementary File 1, two peaks can be
observed: the first at 25× (heterozygotic) and the second at 55× (homozygotic). Ideally, it is expected
that, after the assembly, the shared k-mers contents of both distributions (red zones) are merged (black
zones in the first peak), and stayed represented just once in both distributions [28]. Notwithstanding,
our distributions show this profile, with the black content of the first peak nearly filling the full
area of the second peak. Second, and similarly to the transcriptomic approach, the sardine genome
was also inspected in terms of expected gene content with the BUSCO v3 software [21]. From the
total of 4584 genes present in the Actinopterygii library, we found 82.1% (complete and fragmented).
Importantly, the BUSCO scores are in line with previous reports for other fish assemblies with similar
methodologies and sequencing strategies. For instance, Malmstrøm and colleagues [13] reported
the genome of 66 teleost species, in which 48 genomes showed between 33 and 84% (complete and

http://wgs-assembler.sourceforge.net/
http://picard.sourceforge.net
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fragmented) of the genes present in the Actinopterygii library. A combination of short and long
read provides, however, a higher detection of BUSCO scores, and should be pursued in the near
future [29–32]. To further determine the genome completeness, we mapped the de novo assembled
liver transcriptome against the genome with Blat [33]. More than 97% of the transcripts have a match
hit with at least one genomic scaffold, and 89% of the total number of bases are covered by our
assembly (Supplementary Table S3 in Supplementary File 2).

2.6. Genome Annotation

The genome annotation of sardine was performed using two-pass iterative MAKER (v2.31.9)
pipeline [34]. Prior to running Maker, we identified repetitive sequences in our genome assembly
using an approach described in [35]. Briefly, RepeatModeler (v1.0.8) [36], LTRharvest [37] part
of Genome tools (v1.5.7) [38] and TransposonPSI [39] were used in combination to create a set
of putative repeats. Elements with a single match against a UniProtKB/SwissProt database and
not against the database of known repeated elements included in RepeatMasker were removed.
The remaining elements were classified and combined with known repeat elements from RepBase
(release 20150807) [40]. Then, the custom repeat database RepBase-derived and RepeatMasker
library (release 20150807) [40] were used in the RepeatMasker (v4.0.6) [41] inside the Maker pipeline.
In addition to the previously-described Trinity-based transcriptome assembly, the transcriptome reads
were mapped to the genome with HISAT (v2.0.5) [42,43] and assembled with StringTie (v1.3.1) [44].
The mapped reads were used to train the GeneMark-ET (v4.32) and AUGUSTUS (v3.2.3) [45] ab
initio gene predictors via the tool BRAKER (v1.11) [46]. Splice junctions were detected from the
mapped reads with Portcullis (v1.02) [47], and these were used as input to Mikado (v1.2.2) [48],
together with the StringTie and Trinity transcriptome assemblies, to merge the redundant transcripts.
The resulting GFF file was used as input to Maker (as est_gff). The predicted genes from GeneMark-ET
were also used as input to Maker (as pred_gff), but only in the first iteration, since Maker keeps
the gene names as given by GeneMark-ET, and uses them in the output GFF of Maker, which can
cause issues with downstream analysis. The first iteration of Maker (which also included proteins
from the UniProtKB/SwissProt, cleaned of transposable element proteins) was used to train SNAP
(v2013_11_29) [49] with the transcriptome, protein evidence, and custom library of repeats. In the
second iteration, we did not use the GeneMark-ET predictions, but utilized AUGUSTUS and SNAP,
in addition to the UniProtKB/SwissProt database and the transcriptome.

To functionally annotate the genes and protein models, we used two independent approaches.
First, we used a BLAST (v2.6.0) [50] methodology with the following parameters (blast-p, -evalue 1e−5,
-seg yes, -soft masking true, -lcase masking, and -num_alignments 1), against the UniProtKB/SwissProt
database. In the second approach, we opted for the inclusion of InterProScan [51] searches. The outputs
of both approaches were used to refine the gene and protein models, as established in protocols of
Campbell et al. (2014) [34]. Finally, our dataset contained 29,701 genes, which were selected based
on a maximum Annotation Edit Distance (AED) score of ≤0.5 (from 0 to 1, where the 0 corresponds
to strong evidence support, and 1 corresponds to no evidence support) (Table 1). The number of
predicted coding genes in our dataset is higher than that previously calculated for the Clupea harengus
genome (23,336 coding gene models) [14]. This discrepancy likely reflects a higher level of gene
fragmentation in our assembly, which does not impact the application of the dataset for experimental
research (see Section 2.9).

To obtain a broad overview of the annotated gene repertoire in the Clupeidae family, we also
compared the ortholog gene collection of sardine with other teleost species including another clupeid,
C. harengus [14], and to two well-annotated genomes from the sister clade, the Otophysa [2] (for details
see Supplementary Materials and Methods in Supplementary File 1). Using the Orthofinder v2.2.6 [52],
we identified 24,677 clusters of orthologs genes in the sardine genome: 13,433 orthogroups were shared
among the four species, and at least 690 orthogroups were shared exclusively between sardine and
herring of the Clupeidae family (Figure 2A). A total of 8679 orthogroups were found to be exclusive to
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sardine, with this number likely reflecting gene fragmentation in the assembly process, a consequence
of the sequencing strategy.Genes 2018, 9, x FOR PEER REVIEW  6 of 13 
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2.7. Sardine Phylogenomics

The phylogenomic analysis was conducted with gene orthologues from 17 fish species,
representing 13 orders, providing an ample representation of teleost diversity, with a specific focus in
Clupeidae. Transcriptomic sequences for S. pilchardus, C. harengus, Alosa alosa, and Scomber colias were
clustered based on sequence similarity with zebrafish sequences. Briefly, a blast-p output was filtered
to obtain only hits with a percent identity equal or higher than 50% and a length of at least 30 amino
acids. We then selected the hit with the highest bitscore. Zebrafish orthologs were retrieved from the
ENSEMBL database [53] for all the 17 fish species available, and assigned to the respective cluster.
In order to avoid paralogs, only clusters with one sequence per species were considered, resulting
in 106 ortholog clusters that included all species (Supplementary File 3). Amino acid sequences
were then aligned with MAFFT v7.402 [54] using the model L-INS-i, recommended for a small
number of sequences with long gaps. The resulting 106 sequences alignments were then concatenated
(42,267 bp long). A maximum-likelihood phylogenetic inference for the concatenated protein alignment
was done in ExaML v3 [55], including 100 bootstrap replicates, under the protgammaauto option,
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and was computed using parsimony starting trees for each replicate, using RAxML v8.2.12 [56].
In the ExaML tree, two major groups can be observed: one that comprises all Actinopterygian,
and another with the Sarcopterygii and Cephalaspidomorphi in the basal position of the tree (Figure 2B).
In this tree, all species belonging to the Clupeiformes order are clustered together, and the same for
Tetraodontiformes and Cyprinodontiformes. Perciformes are the only order that is separated into two,
with Oreochromis niloticus closely related to Cyprinodontiformes and S. colias with Gasterosteiformes.
The position of Lepisosteus oculatus at the base of the Actinopterygian cluster was also recovered with
maximum support. Overall, our phylogenetic analysis demonstrates the phylogenetic position of the
European sardine, together with other clupeids such as the allis shad (A. alosa) and the Atlantic herring
(Figure 2B). The same general phylogenetic relationships were recovered when the concatenated
mitochondrial dataset of protein-coding genes was used. The only exception position was the
A. mexicanus, in that it was clustered together (with low statistical support) with Clupeiformes and not
with zebrafish (Supplementary Materials and Methods and Supplementary Figure S4 of Supplementary
File 1, and Supplementary Table S4 in Supplementary File 2).

2.8. Mitochondrial Genome

We used NOVOPlasty (v2.6.5) [57] to perform the de novo assembly of the sardine mitochondrial
genome (mtDNA). The assembly was executed using the raw whole genome sequencing reads only
with the adapters removed (authors’ instructions), and using a cox1 mtDNA gene nucleotide sequence
of the same species (NCBI accession number NC_009592.1 (5484 . . . 7034)). The k-mers length was
set to 39, 50, and 75 bp, and all assembly runs resulted in the same mtDNA circular contig with
total length of 17,755 bp. We also used NOVOPlasty to detect heteroplasmy in the newly-assembled
mtDNA, with a minimum minor allele frequency option set to 0.01 (heteroplasmy detection of >1%).
Two heteroplasmic positions were detected in the kmer-75 at positions 3500 (from T to G, alternative
allele frequency of 1.23%, depth of coverage of 326, located in mt-nd1 gene), and another at position
10208 (from T to C, alternative allele frequency of 1.02%, depth of coverage of 391, located in mt-nad4l
gene). Mitochondrial gene annotations were performed using MITOS (v2) [58] and tRNAs gene limits
were rechecked with ARWEN (v1.2) [59]. All typical Metazoan genes were annotated (13 protein coding
genes, 22 transfer RNAs, and 2 ribosomal RNAs, Supplementary Figure S3 in Supplementary File 1).
The complete mtDNA was deposited in GenBank (Supplementary Table S1 in Supplementary File 2).

2.9. Gene Orthologs of LC-PUFA Desaturation and Elongation Are Present in the Sardine Genome
and Transcriptome

To demonstrate the biological value of the omics datasets, we next investigated the key enzymes
of LC-PUFA biosynthesis in the sardine draft genome and liver transcriptome, a major metabolic site
for PUFA metabolism [15]. More specifically, we investigated the repertoire and function of genes
encoding fatty acyl desaturases (Fads) and elongation of very long chain fatty acid (Elovl) proteins
with pivotal roles in LC-PUFA biosynthesis [3]. Among fads, our data shows that the European
sardine possess one single fads-like gene that was confirmed to be orthologous of fads2 (Figure 3A,C)
(for details see Supplementary Materials and Methods in Supplementary File 1 and Supplementary
File 4). Our microsynteny analyses shows the conservation of the reconstructed locus, when compared
to C. harengus, and further suggests the absence of fads1 from sardine’s genome, in agreement with the
loss of this tandem gene duplicate during teleost evolution (Figure 3C, Supplementary Tables S5 and S6
in Supplementary File 2) [16]. Among elovl, we identified two elovl-like sequences, namely elovl2 and
elovl5, with well-known roles in LC-PUFA biosynthetic pathways (Figure 3B). Again, microsynteny
conservation was found in the reconstructed loci. While elovl5 is present in virtually all teleosts [3,60],
elovl2 has only been described in a few of species, and is reported to be lost in the Neoteleostei [60].
Thus, the presence of an elovl2 gene in sardine is consistent with the phylogenetic location of this
species within the Otomorpha group, to which species with characterized elovl2 belong [61,62].
Accession numbers for the herein isolated fads2, elovl2, and elovl5 gene orthologs have been deposited
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in GenBank (Supplementary Table S1 in Supplementary File 2), and are located within genome scaffold
numbers: fads2—scaffolds scf7180014809123 and scf7180014798914; elovl2—scaffold scf7180014826570;
and elovl5—scaffolds scf7180014798588 and scf7180014802726 (for details see Supplementary Materials
and Methods in Supplementary File 1 and Supplementary Table S5 in Supplementary File 2).

We next examined the function of the enzymes encoded by the fads2, elovl2, and elovl5
genes to establish their contribution to LC-PUFA biosynthesis in sardine using an established
yeast-based expression system [63] (Figure 3D) (Supplementary Table S7 in Supplementary File 2;
see Supplementary Materials and Methods in Supplementary File 1 for details). The sardine fads2
encodes a desaturase with ∆6 and ∆8 desaturase activities (Supplementary Tables S8 and S9 in
Supplementary File 2), typical of vertebrates Fads2 enzymes [3]. Both Elovl2 and Elovl5 were
capable of elongating polyunsaturated fatty acids from 18 to 22 carbons, which is consistent
with activities reported in other vertebrate orthologs (Supplementary Table S10 in Supplementary
File 2). Such enzymatic capabilities enable sardines to produce docosahexaenoic acid (DHA) from
eicosapentaenoic acid (EPA, 20:5n-3). However, the lack of ∆5 desaturation capacity strongly suggests
that sardine is unable to produce EPA endogenously or arachidonic acid (ARA, 20:4n-6) (Figure 3D).
Importantly, these results clearly illustrate the validity of the herein released omics datasets for
nutrigenomic studies.
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3. Conclusions

We generated a draft genome assembly and liver transcriptome of the commercially-important
European sardine. We further demonstrate the power of this dataset by exploring the endogenous
capacity of sardines (clupeids) to biosynthesize LC-PUFAs. The information retrieved here, and made
publicly available, will further contribute not only to elucidating the fundamentals of the physiology,
endocrinology, reproduction, and nutrition of sardine, providing an essential framework for future
conservation and sustainable exploitation of this iconic species, but will also contribute to future
comparative genomic studies, notably regarding life history strategies among teleosts.
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