Draft Genome Sequence of the N2-Fixing Cyanobacterium *Nostoc piscinale* CENA21, Isolated from the Brazilian Amazon Floodplain

C. Leão,a,b,c P. Guimarães, b,c A. Grasielle Costa de Melo, c R. Jucá Ramos, c P. Nuno Leão, a A. Silva, d F. Fiore, e M. Cruz Schneider d

Center for Marine Biotechnol. and Biomed., Scripps Inst. of Oceanography, University of California San Diego, La Jolla, California, USA; Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, USA; Federal University of Pará, Institute of Biological Sciences, Center of Genomic and System Biology, Belém, Pará, Brazil; Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.

We announce here the draft genome sequence of *Nostoc piscinale* CENA21, a diazotrophic heterocyst-forming cyanobacterium isolated from the Solimões River, Amazon Basin, Brazil. It consists of one circular chromosome scaffold with 11 contigs and total size of 7,094,556 bp. Secondary metabolite annotations indicate a good source for the discovery of novel natural products.

Received 11 February 2016 Accepted 15 February 2016 Published 31 March 2016

Citation Leão T, Guimarães P, de Melo AGC, Ramos RTJ, Leão PN, Silva A, Fiore MF, Schneider MPC. 2016. Draft genome sequence of the N2-fixing cyanobacterium *Nostoc piscinale* CENA21, isolated from the Brazilian Amazon floodplain. Genome Announc 4(2):e00189-16. doi:10.1128/genomeA.00189-16.

Copyright © 2016 Leão et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Tiago Leão, tferrei@ucsd.edu.

The *Cyanobacteria* are among the most ancient life forms on Earth, dating back approximately 3 billion years ago, and they are responsible for the rise of the atmospheric oxygen on the primitive Earth (1). They are a group of photosynthetic prokaryotes capable of surviving in almost every conceivable environment. The great adaptation skills of cyanobacteria are directly related to their capacity to produce several bioactive natural compounds (2). In particular, the genus *Nostoc* is known for the production of several highly bioactive compounds, such as cryptophycins, nosperin, nostocyclopeptide, nostopeptolide, and nostophycin (3–7), as well as potent toxins, such as cryptophycins, nosperin, nostocyclopeptide, and nostopeptolide. The announcement of the genome contributes to the understanding of the *Nostoc* biology and its role in natural ecosystems.

ACKNOWLEDGMENTS

This work has been supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Funda-
çãodeAmparodaPesquisadoEstadodoPará(BIONORTE-CNPq/FAPESP)tOM.P.C.S.

FUNDING INFORMATION

This work, including the efforts of Marli Fatima Fiore and Maria Paula Cruz Schneider, was funded by MCTI | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (307045/2010-2 and 306607/2012-3). This work, including the efforts of Tiago Leão and Pedro Ivo Guimarães, was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (13425-13-7 and 13194-13-5). This work, including the efforts of Pedro Nuno Leão, was funded by Ministry of Education and Science | Fundação para a Ciência e a Tecnologia (FCT) (IF/01358/2014).

REFERENCES