
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Form filling recommendation using
machine learning techniques

Alexandre da Silva Lima

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: João Pedro Carvalho Leal Mendes Moreira

March 4, 2019

c© Alexandre da Silva Lima, 2019

Form filling recommendation using machine learning
techniques

Alexandre da Silva Lima

Mestrado Integrado em Engenharia Informática e Computação

March 4, 2019

Abstract

Nowadays, most enterprise or management software, online or offline, requires filling forms in
order to interact with the system, like a new entry, for example. In these type of systems, this is,
most of the times, a repetitive activity, which means that the likelihood of a certain user filling the
same or an identical form is high. Some forms use already known values to the system, like the
most used or most recent value in some field, to facilitate its filling.

In the last years a lot of research has been done in Machine Learning (ML) and how it can be
used to facilitate human computer interaction. ML can be used to solve very distinct problems,
with ranking problems being one of them. Most ranking approaches are generalizations of classi-
fication or regression problems. One area that focuses on solving ranking problems is Preference
Learning (PL). PL main objective is to predict the preference of some items in relation to others.

This thesis proposes a suggestion system for these forms, in order to speed up its filling pro-
cess. The suggestion system is based on multiple models for each field, in order to adapt to
different states of the filling process, to rank each possible entry for each unfilled field, trained
with past form entries. These models will use as features the currently filled values and also some
context variables.

In order to test this hypothesis we used two approaches. First, a PL approach, ranking by pair-
wise comparison (RPC), that uses the preference knowledge of a label to another and by pairwise
comparison obtains the ranking of a set of labels. Then, we used a more simple approach, which
we called ranking by probability estimation (RPE), that uses the probability results of a multi-class
classification algorithm to generate the ranking of the same set of labels. Both methods were eval-
uated in regards to the training time, prediction time and the ranking quality. The ranking quality
was evaluated by Normalized Discounted Cumulative Gain (NDCG).

Tests show that the RPE approach performs better then RPC in almost all situations, in training
and prediction time, while being competitive in ranking quality. Due to the nature of the problem,
a real time suggestion system, and also due to the fact that a form usually has multiple entries pos-
sible for a certain field, RPC becomes infeasible, because the prediction time scales quadratically
with the size of the labels set. We then tested the RPE approach with three different classification
algorithms, C5.0, Naive Bayes and Random Forest, to determine which would be the best for the
problem at hand. Results show that C5.0 is the most balanced of the three, in the three metrics
evaluated. Random Forest also shows competitive NDCG scores, at the cost of training time. Still
the overall training time of the whole process was high.

With that in mind, we decided to try a more smart approach, in terms of the models used for
each state of form filling. This approach, uses the importance of each feature to split them into
relevant and irrelevant features, training only with the relevant ones. Tests show that, this last
approach, while maintaining similar NDCG values, reduces to about one forth the time it takes to
train the whole system.

i

ii

Resumo

Atualmente, a maior parte dos programas de gestão, online ou offline, requerem o preenchimento
de formulários de forma a interagir com o sistema, como, por exemplo, uma nova entrada. Neste
tipo de sistemas, isto é, a maior parte das vezes, uma atividade repetitiva, o que significa que a
probabilidade de um utilizador preencher o mesmo ou um formulário idêntico é elevada. Alguns
formulários utilizam valores já conhecidos pelo sistema, como o valor mais recente ou o valor
mais usado, para facilitar o seu preenchimento.

Nos últimos anos muita pesquisa foi feita na área de Machine Learning (ML). ML pode ser
utilizado para resolver problemas distintos, sendo os problemas de ranking um deles. Uma área
que se foca em resolver problemas de ranking é o Preference Learning (PL). O principal objetivo
de PL é prever a preferência de alguns items em relação a outros.

Esta tese propõe um sistema de sugestões para estes formulários, de forma a acelerar o pro-
cesso de preenchimento dos mesmos. Este sistema é baseado em múltiplos modelos para cada
campo, de forma a adaptar-se a diferentes estados do processo de preenchimento, para ordenar
cada entrada possível para cada campo não preenchido. Estes modelos irão utilizar como atributos
os valores actualmente preenchidos e também alguns atributos de contexto.

De forma a testar esta hipótese utilizamos duas abordagens. Primeiro, uma abordagem de PL,
ranking by pairwise comparison (RPC), que utiliza o conhecimento da preferência de um label
por outro e através de comparação entre pares obtém um ranking de um conjunto de labels. De-
pois, usamos uma abordagem mais simples, que foi chamada de ranking by probability estimation
(RPE), que utiliza os resultados de probabilidade de um algoritmo de classificação multi-class
para gerar o ranking do mesmo conjunto de labels. Os dois métodos foram avaliados em termos
de tempo de treino, tempo de previsão e qualidade do ranking. A qualidade do ranking foi avaliada
por Normalized Discounted Cumulative Gain (NDCG).

Os testes mostram que o RPE tem melhor desempenho que o RPC em praticamente todas as
situações, em tempo de treino e de previsão, enquanto se mantém competitiva em qualidade de
ranking. Devido à natureza do problema, um sistema em tempo real, e também devido ao facto
de um formulário geralmente poder ter várias possibilidades de preenchimento para um certo
campo, o RPC torna-se inviável, pois o tempo de previsão escala quadraticamente em relação ao
tamanho do conjunto de labels possíveis. Depois, testamos a abordagem RPE com 3 algoritmos
de classificação, C5.0, Naive Bayes e o Random Forest, para determinar qual seria o melhor para
o problema em questão. Os resultados demonstram que o C5.0 é o mais equilibrado dos três, nas
três métricas avaliadas. O Random Forest também demonstra resultados competitivos de NDCG,
em prejuízo do tempo de treino. Mesmo assim, em geral, o tempo total de treino foi elevado.

Como tal, decidimos tentar uma abordagem mais inteligente, em relação aos modelos uti-
lizados para cada estado de preenchimento do formulário. Esta abordagem, utiliza a importância
de cada atributo para os dividir em atributos relevantes e irrelevantes, treinando apenas com os
relevantes. Os testes mostram que, esta última abordagem, enquanto mantém valores de NDCG
equivalentes, reduz em cerca de um quarto o tempo que demora a treinar o sistema inteiro.

iii

iv

Acknowledgments

In this dissertation I had the support of people to whom I am immensely grateful.
To my supervisor, Prof. João Moreira, I am thankful for his availability, opinions, constructive

criticism and ideas that were fundamental to this dissertation.
To the company Infraspeak, for coming up with the idea, for the constant support, for the

materials supplied, for giving me a quiet space to work, and above all, for their friendliness. As
such, my thanks to Luís Martins and all his team.

To my friends, Pedro Costa, Sérgio Nascimento and Miguel Monteiro, I thank the uncondi-
tional friendship.

To my parents, my grandparents and my brother I thank all the support throughout this journey.
And last but not least, to my girlfriend, Diana, and her daughter, Carmen, I thank all the

support and understanding, crucial to the success of this work.

Alexandre da Silva Lima

v

vi

Contents

1 Introduction 1
1.1 Forms in software and web apps . 1
1.2 Motivation . 1
1.3 Goals of this work and our approach to the problem 2
1.4 Document structure . 2

2 State of the Art 3
2.1 What has been done in form suggestion . 3
2.2 Machine Learning . 3
2.3 Preference Learning . 4
2.4 Label Ranking . 5

2.4.1 Related Problems . 5
2.4.2 Data Preparation . 6
2.4.3 Label Ranking Algorithms . 6

2.5 Other Machine Learning approaches to Ranking 7
2.5.1 Probability Estimation . 7

2.6 Evaluation Metrics . 8
2.7 Closely related works . 9
2.8 Conclusions . 10

3 Problem Definition 11
3.1 Problem Statement . 11

3.1.1 Forms we are dealing with . 11
3.1.2 Assumptions . 11
3.1.3 Suggestion System requirements . 12
3.1.4 Understanding a suggestion system . 13

3.2 Proposed solution . 13
3.2.1 Data preparation for model training and validation 13
3.2.2 Model’s Features . 14
3.2.3 Multiple models solution . 15
3.2.4 Dataset Analysis . 16
3.2.5 Ranking Approaches and Algorithms 18
3.2.6 Model evaluation/validation . 19
3.2.7 Other metrics . 19

3.3 Conclusions . 20

vii

viii CONTENTS

4 Experiments 21
4.1 Experimental Setup . 21
4.2 Implementation and Hardware Details . 26
4.3 Experiment 1 - RPE vs RPC . 27

4.3.1 Sampling Strategy . 27
4.3.2 Results . 28
4.3.3 Results Analysis . 30

4.4 Experiment 2 - RPE multiple algorithms . 30
4.4.1 Sampling Strategy . 31
4.4.2 Results Sample 1 . 33
4.4.3 Results Sample 2 . 35
4.4.4 Results Analysis . 37

4.5 Experiment 3 - RPE multiple algorithms with feature pruning 38
4.5.1 Results Sample 1 . 39
4.5.2 Results Sample 2 . 43
4.5.3 Results Analysis . 47

4.6 Conclusions . 47

5 Conclusions 49
5.1 Using ranking algorithms for a form suggestion system 49
5.2 Main threats . 50
5.3 Future Work . 50
5.4 Final thoughts . 51

A Experiment 1 Detailed NDCG Results 53

B Experiment 2 Detailed NDCG Results 57

C Experiment 3 Detailed NDCG Results 63

References 69

List of Figures

2.1 Label ranking result example . 5

3.1 Form example (Infraspeak’s platform) . 12
3.2 Example of the dataset transformation to obtain an ordered set/rank 14
3.3 Example of a variable passing from the predicted set to the DFS set 15
3.4 Number of classes by entity/operator distribution 17
3.5 Number of instances vs the number of local_id classes 18

4.1 Complete form validation and results . 22
4.2 Validation Process for each entity_id/operator_id 23
4.3 Single Direct Features combination Validation Process 25
4.4 RPE vs RPC - Average NDCG . 28
4.5 RPE vs RPC - Average NDCG for each Target 28
4.6 RPE vs RPC - NDCG by Number of Classes . 29
4.7 RPE vs RPC - Training Time by Number of Classes 29
4.8 RPE vs RPC - Prediction Time by Number of Classes 29
4.9 RPE vs RPC - Average Training Time for an entity_id/operator_id combination . 30
4.10 Kmeans sampling by number of instances and number of local_id classes 31
4.11 RPE Sample 1 - Average NDCG . 33
4.12 RPE Sample 1 - Average NDCG for each Target 33
4.13 RPE Sample 1 - NDCG by Number of Classes 34
4.14 RPE Sample 1 - Training Time by Number of Classes 34
4.15 RPE Sample 1 - Prediction Time by Number of Classes 34
4.16 RPE Sample 1 - Average Training Time for an entity_id/operator_id combination 35
4.17 RPE Sample 2 - Average NDCG . 35
4.18 RPE Sample 2 - Average NDCG for each Target 36
4.19 RPE Sample 2 - NDCG by Number of Classes 36
4.20 RPE Sample 2 - Training Time by Number of Classes 36
4.21 RPE Sample 2 - Prediction Time by Number of Classes 37
4.22 RPE Sample 2 - Average Training Time for an entity_id/operator_id combination 37
4.23 Smart RPE Sample 1 - Average NDCG . 39
4.24 Smart RPE Sample 1 - Average NDCG for each Target 39
4.25 Smart RPE Sample 1 - NDCG by Number of Classes 40
4.26 Smart RPE Sample 1 - Training Time by Number of Classes 40
4.27 Smart RPE Sample 1 - Prediction Time by Number of Classes 40
4.28 Smart RPE Sample 1 - Average Training Time for an entity_id/operator_id com-

bination . 41
4.29 Sample 1 - Average Training Time for an entity_id/operator_id comparison . . . 42

ix

x LIST OF FIGURES

4.30 Smart RPE Sample 1 - Average number of models per Target 42
4.31 Smart RPE Sample 1 - Average number of models for an entity_id/operator_id

combination . 43
4.32 Smart RPE Sample 2 - Average NDCG . 43
4.33 Smart RPE Sample 2 - Average NDCG for each Target 44
4.34 Smart RPE Sample 2 - NDCG by Number of Classes 44
4.35 Smart RPE Sample 2 - Training Time by Number of Classes 44
4.36 Smart RPE Sample 2 - Prediction Time by Number of Classes 45
4.37 Smart RPE Sample 2 - Average Training Time for an entity_id/operator_id com-

bination . 45
4.38 Sample 2 - Average Training Time for an entity_id/operator_id comparison . . . 46
4.39 Smart RPE Sample 2 - Average number of models by Target 46
4.40 Smart RPE Sample 2 - Average number of models for an entity_id/operator_id

combination . 47

A.1 RPE vs RPC - Complete NDCG for Target problem_parent_id 53
A.2 RPE vs RPC - Complete NDCG for Target problem_id 54
A.3 RPE vs RPC - Complete NDCG for Target client_id 54
A.4 RPE vs RPC - Complete NDCG for Target local_id 55
A.5 RPE vs RPC - Complete NDCG for Target priority 55

B.1 RPE Sample 1 - Complete NDCG for Target problem_parent_id 57
B.2 RPE Sample 1 - Complete NDCG for Target problem_id 58
B.3 RPE Sample 1 - Complete NDCG for Target client_id 58
B.4 RPE Sample 1 - Complete NDCG for Target local_id 59
B.5 RPE Sample 1 - Complete NDCG for Target priority 59
B.6 RPE Sample 2 - Complete NDCG for Target problem_parent_id 60
B.7 RPE Sample 2 - Complete NDCG for Target problem_id 60
B.8 RPE Sample 2 - Complete NDCG for Target client_id 61
B.9 RPE Sample 2 - Complete NDCG for Target local_id 61
B.10 RPE Sample 2 - Complete NDCG for Target priority 62

C.1 Smart RPE Sample 1 - Complete NDCG for Target problem_parent_id 63
C.2 Smart RPE Sample 1 - Complete NDCG for Target problem_id 64
C.3 Smart RPE Sample 1 - Complete NDCG for Target client_id 64
C.4 Smart RPE Sample 1 - Complete NDCG for Target local_id 65
C.5 Smart RPE Sample 1 - Complete NDCG for Target priority 65
C.6 Smart RPE Sample 2 - Complete NDCG for Target problem_parent_id 66
C.7 Smart RPE Sample 2 - Complete NDCG for Target problem_id 66
C.8 Smart RPE Sample 2 - Complete NDCG for Target client_id 67
C.9 Smart RPE Sample 2 - Complete NDCG for Target local_id 67
C.10 Smart RPE Sample 2 - Complete NDCG for Target priority 68

List of Tables

3.1 Feature combinations needed for the DFS set {A,B,C,D,E} 16
3.2 Example of generated models for target A with the irrelevant feature E 16
3.3 Example of failures dataset in its original state 16

4.1 Example of the ranked dataset for target priority 24
4.2 Example of the relevance dataset for target priority 24
4.3 Sample summary for RPE vs RPC . 28
4.4 Sample 1 summary for RPE algorithm tests . 32
4.5 Sample 2 summary for RPE algorithm tests . 32

xi

xii LIST OF TABLES

Abbreviations

ERP Enterprise Resource Planning
LR Label Ranking
ML Machine Learning
NDCG Normalized Discounted Cumulative Gain
RPC Ranking by Pairwise Comparisons
PL Preference Learning
UI User Interface
RPE Ranking by Probability Estimation
DFS Direct Features

xiii

Chapter 1

Introduction

In this chapter we will introduce the main concepts, the problem at hand, the main motivation to

solve it and the goals of this work.

1.1 Forms in software and web apps

Electronic forms are embedded in many of today’s user interfaces (UI), enabling users to engage in

online communities, e-commerce, and productivity software (Wroblewski, 2008). This is also true

for many enterprise and management software, like Enterprise resource planning (ERP) software.

Web forms remain one of the core interaction elements between users and website owners (Seckler

et al., 2012). Although web forms are very common, people usually do not like to fill them

out (Wroblewski, 2008).

In the case of enterprise software, this filling process can be quite repetitive and time consum-

ing. What can be done to reduce this burden?

This work is being done with the collaboration of Infraspeak. Infraspeak is a company that

commercializes a technical operations platform. This software uses forms as the main type of

interaction with the system.

1.2 Motivation

There are many aspects to form design (Bargas-Avila et al., 2010). We will be focused in what

can be done to speed up the filling process of each field, resulting in improving also the speed of

filling the whole form. This also results in users spending less time in the filling process, freeing

them to other activities, improving productivity and user experience.

Our approach focuses on State of the Art ML techniques and its application on the referred

problem. We expect this approach to be significantly superior to the usual most recently used or

most commonly used values that most forms suggest. As ML evolves and sees its use in solving

complex problems, sometimes even in simpler problems ML can be a good solution.

1

2 Introduction

1.3 Goals of this work and our approach to the problem

In the recent years a lot of interest was shown in the ML area. These days ML is used in a vast

amount of areas. From the human computer interaction field some usages of machine learning can

be seen in Recommender systems (Ricci et al., 2015) or Chatbots (Shawar and Atwell, 2007).

In this work we will explore the possibility of using ML techniques, LR and other approaches,

to obtain a ranking of each possible input for each unfilled field, in order to generate suggestions.

Our approach focuses on the usage of the already obtained knowledge from past user entries on

each form. With this knowledge we are able to train multiple ML models, one for each stage of

the filling process. Each stage refers to the amount of information, on a specific filling process, we

have, meaning that, for instance, if a form has already two fields filled, we have more information

than if it had only one. That justifies the reasoning behind the multiple models system.

With this approach we will be able to develop a suggestion system, that can suggest a ranked

list of possible entries for each unfilled field and can adapt its suggestions if a user fills a previously

unfilled field.

The main goal of this work is to test the viability of the proposed solution. In order to do that

we will test some different approaches and ranking algorithms, while evaluating the ranking qual-

ity of each, and also the training and prediction time, as this is a real time suggestion system. For

this test a real dataset will be used, provided by Infraspeak, from a single form, that encapsulates

multiple problems due to its own nature.

1.4 Document structure

Besides the introduction, this document will contain 4 more chapters.

In Chapter 2 we will review the State of the Art, specially related to ML, the algorithms and

performance metrics, and also what is usually done in forms.

Chapter 3 will be focused on the careful specification of the problem and how we intend to

solve it. It will explore the data preparation, training and evaluation phases of each model for each

approach.

Chapter 4 will be centered around the experiments done during this work, its specification and

results.

Lastly, in Chapter 5 is the summary of the document, as well as, the enunciation of possible

threats and some final thoughts.

Chapter 2

State of the Art

The main focus of this chapter will be in the review of the current state of the art, relating to ML

specially, and also comparing our work with other similar works.

2.1 What has been done in form suggestion

This suggestion problem was defined as predictive models for form filling by Ali and Meek (2009).

A predictive model of form filling aims to reduce the amount of time a user spends filling out a

form by predicting the values of fields on the form and using these predictions to make suggestions

to the form filler (Ali and Meek, 2009).

The most common approaches to this problem is suggesting for each field the most commonly

used value or the most recently used value (Ali and Meek, 2009). This assumes independence

between fields which might result in a bad suggestion.

This paper also presents another solution called Collaborative and Contextually Frequently

Used model (CCFU) (Ali and Meek, 2009). While this model assumes dependency between fields

it also assumes that a field that is after the predicted field does not affect the prediction. As such it

assumes a certain order in filling the form, that may not always be true.

Our approach assumes some degree of dependency between fields and does not assume any

special order in the filling process.

It must be noted that the referred paper’s forms are not of the same type we are dealing with.

It deals with more general forms, like registration forms.

2.2 Machine Learning

The study and computer modeling of learning processes in their multiple manifestations consti-

tutes the subject matter of machine learning (Michalski et al., 2013). It is concerned with the au-

tomatic discovery of regularities in data through the use of computer algorithms and with the use

of these regularities to take actions such as classifying the data into different categories (Bishop,

2006).

3

4 State of the Art

ML tasks are typically classified into two categories:

• Unsupervised Learning

• Supervised Learning

Unsupervised machine learning is the machine learning task of inferring a function that de-

scribes the structure of unlabeled data. By applying these unsupervised (clustering) algorithms,

researchers hope to discover unknown, but useful, classes of items (Jain et al., 1999).

Supervised machine learning or Supervised Learning is the search for algorithms that reason

from externally supplied instances to produce general hypotheses, which then make predictions

about future instances. In other words, the goal of supervised learning is to build a concise model

of the distribution of class labels in terms of predictor features (Kotsiantis et al., 2007).

Classification is a typical supervised learning task. The classification problem is that of learn-

ing the structure of a data set of examples, already partitioned into groups. The learning of these

categories is typically achieved with a model. This model is used to estimate the group identifiers

(or class labels) of one or more previously unseen data examples with unknown labels (Aggarwal,

2015).

Another common supervised learning task is Regression. Regression relates to learning prob-

lems where the target variable is expressed in a quantitative scale.

Lastly, another supervised learning task is Preference Learning.

2.3 Preference Learning

Preference learning refers to the task of learning to predict an order relation on a collection of

objects (alternatives). Among the problems in the realm of preference learning, the task of "learn-

ing to rank" has probably received the most attention in the machine learning literature in recent

years (Fürnkranz and Hüllermeier, 2011).

Although still a recent topic, preference learning can be divided into 3 different tasks:

• Label Ranking – learning a mapping from instances to rankings over a predefined set of

labels (Fürnkranz et al., 2008).

• Instance Ranking – produce a ranking in which instances from higher classes precede those

from lower classes (Fürnkranz and Hüllermeier, 2011).

• Object Ranking – learning functions used to sort objects from example orders (Kamishima

et al., 2010), commonly used in information retrieval applications.

This PL task classification was proposed by Fürnkranz and Hüllermeier (2011).

We will now focus on Label Ranking, as it is our main concern.

2.4 Label Ranking 5

2.4 Label Ranking

As stated in section 2.3 LR is the task of learning a mapping from instances to rankings over a

predefined set of labels (Fürnkranz et al., 2008). Rankings are also sometimes referred as total

orders, as in Vembu and Gärtner (2010). The ordering should be performed in accordance with

some notion of relevance of the labels. That is, a label deemed relevant to an instance should be

ranked higher than a label which is considered less relevant (Dekel et al., 2004). An example of

this can be seen in figure 2.1.

Figure 2.1: Label ranking result example

The training information consists of a set of instances for which (partial) knowledge about the

associated preference relation is available (Hüllermeier et al., 2008).

2.4.1 Related Problems

Label ranking is a very interesting problem as it associates with three important supervised learn-

ing problems, including multiclass classification, multilabel classification and multilabel rank-

ing (Zhou et al., 2014).

• Multiclass Classification – refers to assigning each of the observations into one of k classes (Wu

et al., 2004).

• Multilabel Classification – supervised learning problem where an instance may be associ-

ated with multiple labels (Read et al., 2011).

• Multilabel Ranking – refines a multilabel classification in the sense that, while the latter

only splits a predefined label set into relevant and irrelevant labels, the former furthermore

puts the labels within both parts of this bipartition in a total order (Brinker and Hüllermeier,

2007).

The results of a LR algorithm can be easily used to solve a multiclass classification problem.

Multilabel ranking is a mixture of multilabel classification and LR.

6 State of the Art

2.4.2 Data Preparation

As in any supervised learning problem, the training data is assumed to be labeled. In the case of

LR this labeling, as was referenced in 2.4, requires the knowledge of atleast the partial order for

each training instance.

It can be obtained explicitly, by asking someone to judge the relevance of each label (Niu et al.,

2012), or implicitly, by making judgements based on the available data (Rendle et al., 2009).

2.4.3 Label Ranking Algorithms

There are two main approaches to the problem of LR: methods that transform the ranking problem

into multiple binary problems and methods that were developed or adapted to treat the rankings as

target objects, without any transformation (de Sá et al., 2017). Other LR algorithm categorization

can be seen in Vembu and Gärtner (2010) and Zhou et al. (2014). An example of a transforma-

tion into multiple binary problems is ranking by pairwise comparisons (RPC) (Hüllermeier et al.,

2008), while an example of ranking as target objects can be seen in Naive Bayes (Aiguzhinov

et al., 2010). Almost all algorithms are derived and adapted from other typical ML problems.

Apart from the already mentioned algorithms more can be found such as Decision Trees (Cheng

et al., 2009), Ranking Forests (de Sá et al., 2017), Instance based methods (Cheng et al., 2009),

Log-linear Models (Dekel et al., 2004), SVM (Shalev-Shwartz and Singer, 2006) and k-Nearest

Neighbor (Brazdil et al., 2003).

2.4.3.1 Ranking by Pairwise Comparison

As stated before, one of the classical LR algorithms is the ranking by pairwise comparison (RPC)

algorithm. RPC first induces a binary preference relation from suitable training data using a natural

extension of pairwise classification. A ranking is then derived from the preference relation thus

obtained by means of a ranking procedure, whereby different ranking methods can be used for

minimizing different loss functions (Hüllermeier et al., 2008). In essence, RPC for every pair

(λi,λ j) of labels of the ranking set, extracts knowledge where a preference relation from one to

another is known and trains a model.

The model is trained with all examples for which either λi � λ j or λ j � λi is known. Examples

for which nothing is known about the preference between λi and λ j are ignored (Hüllermeier et al.,

2008). If we have a tie between ranks no preference knowledge is known and this means those

instances should be ignored.

During prediction the final ranking can be obtained by a simple voting strategy where

Si(i, j) =

1 i f λi � λ j

0 i f λ j � λi

(2.1)

2.5 Other Machine Learning approaches to Ranking 7

then a score for each possible target is obtained and ranked accordingly. Alternatively, one

may also employ base classifiers that map into the unit interval [0, 1] instead of 0, 1, and thereby

assign a valued preference relation (Hüllermeier et al., 2008). Instead of assuming a win or a loss

in every pairwise relation it uses the probability of being of a x class in the scoring function of that

class.

The number of pairwise models needed for RPC can be calculated as

NModels =
n(n−1)

2
(2.2)

where n is the number of target classes. So, the number of needed models for RPC has

quadratic growth.

2.5 Other Machine Learning approaches to Ranking

Many Classification algorithms are also able to generate class probability estimates for each pos-

sible label. Some authors defend the idea of exploiting the connection between probability es-

timation and ranking (Cheng and Hüllermeier, 2012). Indeed, ranking is in a sense in-between

classification and probability estimation or, stated differently, can be seen as an intermediate step

from classification to probability estimation (Flach, 2007). With the knowledge of the probabil-

ity estimation of each class we can induce a ranking. For example, (Schapire and Singer, 2000)

included an ad hoc extension to multilabel ranking in their experimental setup by ordering labels

according to decreasing confidence scores (Fürnkranz et al., 2008).

This approach assumes having a fully labeled dataset, in order to treat the problem as a Clas-

sification problem and generating the ranking from class probability estimates.

2.5.1 Probability Estimation

Probability estimation is a metric that represents the likelihood of each class belonging to the

test instance. These probabilities have numerous applications, including ranking, expected utility

calculations, and classification with unequal costs (Olson and Wyner, 2018).

Probability estimation is calculated in different ways depending on the modeling algorithm

used.

For example, when classifying a test example, C4.5 and other decision tree methods assign by

default the raw training frequency p = k
n as the score of any example that is assigned to a leaf that

contains positive k training examples and n total training examples (Zadrozny and Elkan, 2001).

Its capability of representing the real class probability is criticized in some literature, due to high

bias and high variance (Zadrozny and Elkan, 2001). Some also introduced some possible changes

in order to improve it (Liang and Yan, 2006) (Provost and Domingos, 2003).

Random Forests use a probability forest as in (Malley et al., 2012). In short, each tree predicts

class probabilities and these probabilities are averaged for the forest prediction.

8 State of the Art

Some probability based models already return class probabilities by default, such as Naive

Bayes.

2.6 Evaluation Metrics

Different metrics can be used to evaluate the performance of a ranking model.

Spearman’s rank correlation coefficient (ρ) (Spearman, 1904) is a non-parametric measure of

correlation between two variables. For a pair of rankings π and π ′ of length k, it is defined as

ρ = 1− 6D(π,π ′)

k(k2−1)
, (2.3)

where

D(π,π ′) =
k

∑
i=1

(π(i)−π
′(i))2 (2.4)

is the sum of squared rank distances (Vembu and Gärtner, 2010).

Kendall tau correlation coefficient (τ) (Kendall, 1938) is a non-parametric statistic used to

measure the degree of correspondence between two rankings. For a pair of rankings π and π ′, it is

defined as

τ =
nc−nd

1
2 k(k−1)

, (2.5)

where nc is the number of concordant pairs, and nd is the number of discordant pairs in π and

π ′ (Vembu and Gärtner, 2010).

These metrics evaluate the quality of the predicted ranking in relation to a ground truth. Al-

though we assume total orders, it may be the case that two labels are tied in the same rank. In this

case, a variation of Kendall’s τ , the tau - b (Agresti, 2010) can be used (de Sá et al., 2017).

Another interesting metric is the Normalized Discounted Cumulative Gain (NDCG) (Järvelin

and Kekäläinen, 2000). For a given query qi, the results are sorted by decreasing score output by

the algorithm, and the NDCG is then computed as

NDCG@k ≡ Ni

k

∑
j=1

rel(j)
log2(1+ j)

, (2.6)

where rel(j) is the relevance of the j’th document, and where the normalization constant Ni is

chosen so that a perfect ordering gets NDCG score 1 (Burges et al., 2005). Also, k is the cutoff

point or the size of the document list, if smaller than the cutoff.

This formulation can be divided as

NDCG@k ≡ DCG@k
IDCG@k

, (2.7)

2.7 Closely related works 9

where

DCG@k ≡
k

∑
j=1

rel(j)
log2(1+ j)

, (2.8)

and

IDCG@k ≡
k

∑
j=1

reli(j)
log2(1+ j)

, (2.9)

where IDCG@k is the ideal DCG. As such reli(j) is the ideal relevance at position j. IDCG@k is

also used for normalization purposes.

There is also a tie aware NDCG approach. NDCG can be adapted fairly easily to deal with

ties, as the normalization requires no special attention, and discounted cumulative gain is a simple

sum over the returned results. For each position in a tied group, the average gain at that position

is the average of the gain function across tied elements. As the discount function is multiplicative,

we need only multiply it by this average gain at each position (McSherry and Najork, 2008).

As such, the DCG@k can then be formulated as

DCG@k ≡
k

∑
j=1

relavg(j)
log2(1+ j)

, (2.10)

where

relavg(j)≡ 1
n

n

∑
t=1

relt(j), (2.11)

where rel j(t) is the relevance of the t element at rank j. n is the number of tied elements at rank j.

NDCG values the document/label at the beginning of the sequence more than the document/label

at the end, and that can be useful in some situations. NDCG is common in learning to rank prob-

lems.

2.7 Closely related works

Multi-Directional Ensembles of Regression and Classification Trees (Van Wolputte et al., 2018),

in short MERCS, achieves, in essence, what this work intends to achieve, but for classification and

regression. It intends to solve the following problem: given a dataset D with instances described

by a set of variables A = A1, ...,Am, learn a model M such that, for any subsets X ⊆ A and Y ⊆ A,

M can be used to predict Y from X (Van Wolputte et al., 2018). They call this type of model a

versatile model.

The referred work’s approach is to construct an ensemble of trees of which the input and output

variables vary, to the extent that the ensemble contains enough trees to allow for predictions of

10 State of the Art

any Y from any X. Additionally, the benefits of decision trees carry over to the MERCS model,

ensuring efficient learning and fast predictions (Van Wolputte et al., 2018).

A ranking approach of the enunciated work could prove a good solution to our problem.

2.8 Conclusions

This chapter summarizes the knowledge needed for our work. In order to understand LR we first

need to understand ML and PL, as most LR algorithms are based on other ML algorithms. We

have also distinguished the LR task from similar tasks and defined the State of the Art on all

the stages of a typical supervised learning problem. We also explored one other possible ranking

approach in the form of generating the ranks through the class probability estimation. After that,

we identified possible metrics to evaluate our models. Lastly, a description of a related work, that

could be adapted to ours, was done.

Chapter 3

Problem Definition

This chapter will be focused on specifying and carefully detailing this work’s problem and the

proposed solutions. We will start by showing exactly what type of forms are being dealt with, fol-

lowed by stating what type of assumptions this work has. After that, this chapter will be centered

around this work’s approach to the problem, for each stage of a ML task.

This chapter presents our ranking approaches to solve the form suggestion problem.

3.1 Problem Statement

3.1.1 Forms we are dealing with

As stated before, this work deals with very specific forms. Enterprise/Management software forms

have the characteristic of being used by the same user multiple times for different or the same

goals. Contrary to registration forms that only are filled once for each user, the repetitive nature

of the former forms allows us to assume that unfilled fields in the filling process can be predicted,

based on past user usage.

These forms are composed of a multitude of input types, like textboxes, dropdowns, check-

boxes, radio buttons, etc. An example of one of those forms can be seen in figure 3.1.

The green boxes in figure 3.1 are the fields to be suggested.

3.1.2 Assumptions

A couple of assumptions were made to develop this work. Firstly, it is assumed that the same form

filled by the same user multiple times follows a certain pattern. If each form is filled in a "random"

way this ranking approach makes no sense, since no relevant knowledge can be obtained from past

user’s data. It is also assumed that there is some degree of dependence between some fields in a

form, otherwise using the filled fields as features in a ranking model would have no impact or a

negative one. Lastly, it is also assumed that the ranking extracted from past forms is the ground

truth (real ranking), in order to train and evaluate the models.

11

12 Problem Definition

Figure 3.1: Form example (Infraspeak’s platform)

3.1.3 Suggestion System requirements

The proposed system has some requirements that need to be taken into account. The system has

to:

1. Be user based;

2. Use past forms and currently inputted data for the ranking process;

3. Adapt to the user filling a field;

4. Rank possible entries for each unfilled field;

5. Be able to make predictions in "real time".

Requirement 1 states that the ranking system is independent between users of the software.

Users in this problem are entity (company) and operator combinations. It makes no sense to

use data from company X to rank possible entries for company Y, because they have completely

different working contexts. For example, a retail company has completely different filling pro-

cesses of a certain form compared to a car selling company, even though they can still use the

same forms and the same software to manage their business.

Requirement 2 was already stated before. This work intends to extract knowledge from each

user’s past filled forms to train models to rank a new entry. Each of those models is trained using

3.2 Proposed solution 13

different field combination in order to allow the currently inputted data to be used for the ranking

process.

Requirement 3 means that the system, as soon as a new field is filled, has to adapt the ranking

of each unfilled field by making a new prediction. This leads to the necessity to generate multiple

models to adapt to each possibility. This will be discussed in further sections.

Requirement 4 is the main goal of the system. We want to rank each possible entry for each

unfilled field in order to make a suggestion. To make the suggestion we don’t need a full ranking,

as not all values need to be used in the suggestion. That will also be discussed in the next sections.

Requirement 5 is the main reason time measurements are being considered. In order to be

viable in a real environment, the time it takes to make a ranking prediction must be apparently

instant.

3.1.4 Understanding a suggestion system

The purpose of this work is to evaluate the possibility of using ranking algorithms to suggest each

possible value in a certain field and extend that solution to all unfilled fields in a form, which leads

to a suggestion system.

Although we are only interested in the top values of that ranking, the complete ranking is

obtained in order to give whoever implements the visual interface of the suggestion system full

liberty. This work only intends to offer the tools and not decide how to use them.

However, it is logical that, for usage purposes, not more than five suggested values will be

shown at any given time, usually three even. The usage of too many values can increase the

complexity of the filling process, when the main goal is the opposite. This means that, in order

to evaluate the quality of the ranking in a realistic way, the selection of those quality metrics is

relevant, as it will be discussed in further sections.

3.2 Proposed solution

3.2.1 Data preparation for model training and validation

As stated in section 2.4.2 there are two main approaches for obtaining a ranked set. This ranked

set will be used in RPC’s training and also in the ranking validation.

We will take the implicit approach, which means that the ranking information for training will

be obtained from the dataset. For this specific problem, in the dataset we only have information on

past form entries. This means that we need to find a way to obtain rankings from that information.

The proposed solution for that revolves around aggregating instances in the dataset that have the

same features and using the count of the target label to order each possible entry for that target.

An example of this transformation can be seen in figure 3.2.

We will assume that the ranking obtained from this transformation is the ground truth for

model validation purposes.

14 Problem Definition

Figure 3.2: Example of the dataset transformation to obtain an ordered set/rank

Apart from this data transformation we will also be decomposing the date values into three

variables, quarter of the year, day of the week and if its weekend or not. This is a simple decom-

position, and that is intended. If the date was decomposed into more specific variables, we would

end up with a very sparse dataset, which would make the aggregation mentioned in the beginning

of this section end up always with a single instance aggregated, and by consequence, a label with

rank one and all the others tied with 0 relevance. That is still a normal occurrence in the dataset

but we also want to rank more complete ranking data, so we need to control that dataset sparsity

by also controlling the features that we are aggregating it by. This also reduces the possibility of

overfitting the models.

3.2.2 Model’s Features

Features have to be defined in order to train and test the ranking models. This feature selection is

crucial to any ML task. Two types of feature sets were defined. They were classified as:

• Direct Features (DFS) – Currently filled fields.

• Indirect Features – Context features.

Direct Features are the obvious features of the system, the currently filled values. These allow

the system to adapt to the user interaction with the software, while extracting valuable knowledge

to the ranking process. It is important to note that these features will all be treated as nominal or

categorical values, even though they can sometimes be plain text. This means that, for the system,

a user filling a certain text field as "Porto" is different from filling it as "Oporto". The green boxes

in figure 3.1 are an example of these types of features. These features also have the characteristic

of being in some cases predictive features and in other cases the target variable we want to suggest.

Indirect Features are context features, for example time or date. Essentially any feature that

can be extracted from the dataset, that does not belong to the form fields and that is relevant to

the ranking. These features also allow us to control the sparsity of the dataset. For instance, if

the dataset is too simple or too bias towards a certain feature set, we can change the granularity of

certain indirect features to solve it. A simple example of that is using the day of the week instead

of the day of the month.

3.2 Proposed solution 15

3.2.3 Multiple models solution

As it was already mentioned before, the suggestion system is based on multiple ranking models,

due to the necessity of having to adapt to the other filling a field and to the fact that multiple fields

are being predicted for each form. The adaptation of the user filling a field leads to variables that

were being ranked before becoming part of the DFS set. A simple example of that can be seen in

figure 3.3.

Figure 3.3: Example of a variable passing from the predicted set to the DFS set

This fact leads to the formulation of multiple models, and the amount of models to be generated

depends on the number of fields each form has. This can be calculated as

2n−1n, (3.1)

where n is the number of fields in the form. This formula essentially is the number of values in

subsets that can be achieved using a superset, in this case the DFS set minus each target variable,

times the number of target variables. With all these models we are able to predict and suggest any

unfilled field for any possible form filling state.

There is the threat of the number of models scaling, due to the exponential growth in relation

to the number of fields, to an impracticable amount, due to high training time. As such, the amount

of fields in a form this system can deal with has to be limited. For example, the form shown in

the figure 3.1 leads to 25−1 ∗5 = 80 needed models for each User, 16 for each target variable. An

example of the needed models can be seen in the table 3.1.

This assumes that every Direct Feature is relevant for each target variable. Another possible

approach to reduce this issue, that this work will attempt, is to identify, prior to training the models

for a certain target variable, which DFS are relevant. Our hypothesis is that, it is possible to do it

by training a model, for a certain target variable, with all the other DFS. From that model, we can

then extract each feature’s importance and identify which are irrelevant. If a feature is irrelevant,

16 Problem Definition

Target Feature Combinations
A {}, {B},{C},{D},{E},{B,C},{B,D},{B,E},{C,D},{C,E},{D,E},{B,C,D},{B,C,E},{B,D,E}, {C,D,E}, {B,C,D,E}
B {}, {A},{C},{D},{E},{A,C},{A,D},{A,E},{C,D},{C,E},{D,E},{A,C,D},{A,C,E},{A,D,E}, {C,D,E}, {A,C,D,E}
C {}, {A},{B},{D},{E},{A,B},{A,D},{A,E},{B,D},{B,E},{D,E},{A,B,D},{A,B,E},{A,D,E}, {B,D,E}, {A,B,D,E}
D {}, {A},{B},{C},{E},{A,B},{A,C},{A,E},{B,C},{B,E},{C,E},{A,B,C},{A,B,E},{A,C,E}, {B,C,E}, {A,B,C,E}
E {}, {A},{B},{C},{D},{A,B},{A,C},{A,D},{B,C},{B,D},{C,D},{A,B,C},{A,B,D},{A,C,D}, {B,C,D}, {A,B,C,D}

Table 3.1: Feature combinations needed for the DFS set {A,B,C,D,E}

for a certain target, models trained with and without it are approximately the same. That means

that it is not needed to train all models, only the ones without it. Even if that field is filled, we can

use the most adequate model for that filling state while ignoring that Direct Feature. For example,

from the 16 calculated models for a certain target, if one Direct Feature is considered irrelevant

we would end up with only 24−1 = 8 models. An example of this model pruning method can be

seen in table 3.2.

Generated models for Target A It also works for
{} {E}

{B} {B,E}
{C} {C,E}
{D} {D,E}

{B,C} {B,C,E}
{B,D} {B,D,E}
{C,D} {C,D,E}

{B,C,D} {B,C,D,E}
Table 3.2: Example of generated models for target A with the irrelevant feature E

In essence, we generate all possible combinations of the considered relevant features, and,

apart from working for a that feature combination, it should also be used for all subsets of irrelevant

features, including the superset, merged with the original feature combination.

This approach will be compared to the more brute force approach of generating models for

each DFS combination.

3.2.4 Dataset Analysis

As stated before we will be working with a dataset provided by Infraspeak. This dataset is the

result of entries in a failures form, figure 3.1. A sample of that dataset can be seen in table 3.3.

entity_id operator_id start_date problem_parent_id problem_id local_id client_id priority
24 1136 2018-05-02 20:36:20+00 486 2269 90579 3155 3
12 826 2018-04-11 23:56:57+00 151 739 55099 5507 2
66 836 2018-04-21 16:10:44+00 2962 3015 66720 6016 2
87 2511 2018-07-03 12:40:27+00 5580 5583 141521 6389 3
24 536 2018-05-13 11:09:07+00 462 463 34866 3155 3

Table 3.3: Example of failures dataset in its original state

Most of the columns are categorical variables. They refer to:

3.2 Proposed solution 17

• entity_id – Id of the entity responsible for reporting the failure, in essence the company

using Infraspeak’s platform – Categorical Variable.

• operator_id – Id of the operator (platform user) reporting the failure – Categorical Variable.

• start_date – Time and date of the failure report – Continuous Variable.

• problem_parent_id – Id of the area in which the problem can be included – Categorical

Variable.

• problem_id – Id of the problem – Categorical Variable.

• local_id – Id of the local in which the failure took place – Categorical Variable.

• client_id – Id of a client of the entity, owner of the failing item – Categorical Variable.

• priority – Priority of the reported failure, from 1 to 4, where 4 is the highest priority and 1

the lowest – Discrete variable.

As stated in section 3.1.3, users in our approach are entity_id and operator_id combinations.

The complete dataset has 363339 instances divided by 1571 entity/operator combinations.

The other variables, although mostly categorical, vary in the numbers of possible classes in

different ways, depending of the entity/operator combination. A certain id only matters for an

entity/operator combination if it shows at in a instance within that combination, otherwise it does

not exist within the scope of that combination. As such, and assuming that the number of possible

classes to rank has an effect in both quality metric and time metrics, an evaluation of it is needed,

in order to understand how they vary. An analysis of the distribution of the number of classes for

each variable, grouped by entity/operator combinations, can be seen in figure 3.4.

Figure 3.4: Number of classes by entity/operator distribution

18 Problem Definition

As it can be seen, client_id, problem_id and local_id have a high amount of outliers. It can also

be added that the maximum possible value of the number of classes of each is 310, 280 and 1105

respectively. From a brief analysis of the plot in figure 3.4, we can observe that the variable that

usually has the higher number of classes or possibilities is local_id, while also having the higher

possible amount at 1105. This identifies the number of possible local_ids as a relevant value for

the ML process. Apart from that value, we also know for a fact that the number of instances

in each entity/operator combination is also an important factor in both quality and training time.

While the higher amount of instances usually correlates to more knowledge, it should also lead to

an increase of the training time. On average, the increase in the number of instances leads to an

increase in the number of possible local_id classes, but that is not always true as we can see in

figure 3.5.

Figure 3.5: Number of instances vs the number of local_id classes

It should be noted that client_id is a fringe case within this dataset. Since it refers in theory

to a client of a client, from Infraspeak’s perspective, in reality it usually is a different id for its

own entity. That leads to, on average, having only one client_id within an entity/operator scope,

although there are some cases where it is higher than that, representing companies that really offer

a maintenance service to others.

Other than this evaluation, it is hard to make a precise analysis of each variable, although they

are always the same for each entity_id/operator_id combination, their usage varies wildly.

3.2.5 Ranking Approaches and Algorithms

Three ranking approaches will be tested in this work, RPC (2.4.3.1), ranking by probability esti-

mation (2.5), and the later approach with pruned models (3.2.3).

3.2 Proposed solution 19

In regards to the RPC implementation, the pairwise comparison models are trained with rpart

trees. Also, for the pairwise comparison, only instances where knowledge of a preference between

one of the values in the pair in relation to the other is known, otherwise, that instance is removed.

This means that if the pair is tied in a certain instance, that instance is not used to train that pair’s

model.

Ranking by probability estimation (RPE) requires data in a labeled format, not in a ranking

one. This means the data used for RPE will be close to the original dataset. It will still be tested

with ranked instances, for NDCG purposes. In order to test different probability estimation meth-

ods from different algorithms, RPE’s method, both the pruned models and brute force approach,

will be tested with C5.0 trees, Random Forest and the Naive Bayes classification techniques. SVM

and xgBoost were also considered, during development, but, due to the need of specific param-

eter tuning from problem to problem and due to high training times their usage possibility was

discarded.

The experiments and comparisons between each approach will be further explained in the later

chapters.

3.2.6 Model evaluation/validation

In order to evaluate the ranking performance of each model, NDCG with ties, as defined in sec-

tion 2.6, will be used. This means that not all the dataset can be used for training, as part of it will

be used for validation. For that we will use 5-fold cross validation strategy.

NDCG measures the relevance of the ranked labels according to their rank divided by the ideal

rank, for normalization purposes. As stated before, it gives more importance to the ranks at the top.

It is also possible to use a cutoff point k, that means that ranks higher thank k are not evaluated.

We will be using a cutoff of 5, mostly because it is assumed that we will never suggest more than

5 values, section 3.1.4. Since NDCG uses the relevance of each label, we also need to classify the

dataset labels, for any given instance, in terms of relevance. Relevance will be the times a certain

label showed up in a given instance, using the aggregation method described in section 3.2.1. This

means if it shows zero times it is considered an irrelevant label for NDCG purposes and the more

times it appears the more relevant it is.

This metric will give us a good idea of the quality of the obtained ranking.

It should be noted that, there are other possible gain functions that value even more the relevant

values. Due to the fact that we are using an aggregation count, that can achieve already high values,

we felt that it already differentiates and values relevant from irrelevant values, so there no need for

an even more punishing gain function.

3.2.7 Other metrics

Apart from a pure ranking quality metric described in section 3.2.6, two performance metrics will

be evaluated.

20 Problem Definition

Training time for each approach and algorithm will be measured in order to evaluate how long

it takes, for any given form, to train. This is relevant because in order to keep the models updated,

a certain training frequency is assumed, for example each day. Since the training process is long

and complex, due to all combinations needed to train for multiple Users, keeping the training time

of each model low, and by consequence keeping the complete form training time low, is important.

Prediction time will also be taken into consideration, since this is a real time system. In real

time, multiple predictions, one for each unfilled field, will be made in order to suggest possible

entries. As such, the smaller it is, the faster will the system be able to give its suggestions. There

is also a limit to which the prediction time cannot pass, because at that point it loses its real time

characteristic.

3.3 Conclusions

Defining the form suggestion problem as a ranking problem has many facets. First what type of

forms are we dealing with. It is important to note the context of these forms and what a user is

from the perspective of the system, a company/operator combination. From this point on, every

time a certain feature is referenced is always within this scope.

The feature separation into two different types allows a much needed flexibility to solve some

typical ML problems, such as bias datasets or lack of information, while allowing the multiple

model system to adapt to the user filling a form. While the most obvious approach is to model

every possible filling state to solve these issues, we also presented the possibility of avoiding to

train redundant models by identifying the relevant DFS.

Data preparation is also an important stage in our work, as it is from it that we can get the

rankings needed to train with the RPC algorithm and also to test with NDCG. NDCG will be the

main metric used to evaluate the quality of the ranking models, mainly because it values the top

ranked labels, that are the most important for the suggestion system.

Understanding the dataset allows us to take some assumptions. In this case we assumed that the

number of local_id classes and also the number of instances, within a company/operator scope, are

distinctive characteristics, that will influence directly, at least, the total training time. On average,

the higher the number of possible classes any given target has, the lower NDCG will become.

Chapter 4

Experiments

In this chapter we will be detailing and explaining the three experiments done. In summary, we

will be doing an experiment in order to compare the RPE against the RPC label ranking algorithm.

Experiment 2 and 3 will be based around testing RPE, with three algorithms, C5.0, Random Forest

and Naive Bayes, with the brute force approach, testing every combination of DFS, and with the

feature pruning by importance approach, respectively. In all experiments we will be comparing

NDCG, training time and testing time.

Some sampling strategies were used due to the sheer size of the dataset. It should be noted

that, for sampling purposes we removed all entity/operator combinations that did have less than

100 instances, in all experiments, as we considered that as an arbitrary number to consider that,

with less than 100 we did not have enough knowledge. This number is merely arbitrary, and was

chosen mainly because we had 420 observations higher than that.

4.1 Experimental Setup

As stated before, we will use different sampling strategies, depending on the experiment, to select

which entity_id/operator_id combinations will be used. The optimal way would be to use the

whole dataset, but due to time constraints that is impossible.

The basic experimental setup for each entity_id/operator_id combination can be seen in fig-

ure 4.1. In summary, for each sampled entity_id/operator_id combination, a validation process (1)

is applied.

21

22 Experiments

Figure 4.1: Complete form validation and results

That validation process, see figure 4.2, takes the sampled dataset and a list of DFS. Then,

for each target (each element in the DFS list), generates the ranking sets (1), as explained in

section 3.2.3, and a list of all possible combinations of the rest of the DFS (2). The result of the

4.1 Experimental Setup 23

first operation is then used to generate the 5-fold cross-validation folds. The later operation uses

bitwise operations and lexicographic ordering to generate all possible subsets of the DFS minus

the target set. This includes the empty set and the complete set.

Figure 4.2: Validation Process for each entity_id/operator_id

In the pruned models approach, before generating all possible combinations of DFS (2), a

C5.0 model is trained with all DFS. C5.0 importance values are in the range 0 to 100. We then,

consider as relevant all DFS that have an importance higher than 10, using only those to generate

the possible combinations. Then, after each model is trained, it is also assigned to that DFS

combination associated with all possible subsets of irrelevant features.

We used 5-fold cross-validation because it felt as the perfect balance between computation

time and results credibility. This cross-validation is generated through a stratified strategy, in

which, it is considered the label that is on top of the rank for a certain instance, the distinctive

attribute for that same instance, for stratified cross-validation purposes only.

It is important to note that the result of Extract Ranking (1) is, in reality, two sets. One with

the labels identified by ranking, see table 4.1, with 1 being the top rank, and another dataset with

24 Experiments

the relevance for each label, see table 4.2, which is, as stated before, the number of times that label

appears in that specific instance. The last is used only for NDCG purposes.

client_id local_id problem_id problem_parent_id SeasonYear WeekDay WeekEnd 1 2 3 4
3155 90474 543 541 4 Qua 0 3 3 1 3
3155 90474 543 541 4 Qui 0 3.5 2 1 3.5
3155 90474 2269 486 1 Qua 0 3 1 3 3

Table 4.1: Example of the ranked dataset for target priority

client_id local_id problem_id problem_parent_id SeasonYear WeekDay WeekEnd 1 2 3 4
3155 90474 543 541 4 Qua 0 0 0 1 0
3155 90474 543 541 4 Qui 0 0 1 2 0
3155 90474 2269 486 1 Qua 0 0 1 0 0

Table 4.2: Example of the relevance dataset for target priority

Then, the ranked set, original set and the generated folds are used into a single DFS combina-

tion validation process (3).

A pseudocode representation of the whole process can be seen in algorithm 1. The original

dataset refers to the selected entity_id/operator_id combination.

input : directFeaturesSet, originalDataset = entity_id_operator_idX_Dataset

output: resultsSet

foreach target ∈ directFeaturesSet do
directFeaturesCombSet← generateDFSComb (directFeaturesSet - target);

rankingSets← extractRanking (originalDataset, target);

rankedDataset← rankingSets[0];

relevanceDataset← rankingSets[1];

f oldsSet← getCrossValidationFolds (rankedDataset);

foreach d f s ∈ directFeaturesCombSet do
results← validate (originalDataset, rankedDataset, relevanceDataset,

f oldsSet, d f s);

resultsSet← resultsSet + results;

end
end

Algorithm 1: Validation Process for each entity_id/operator_id

We can observe a sketch of the single combination validation process in figure 4.3. In this

process, first a fold is obtained from the ranked set (1), generating a ranked training set. The same

process is repeated, in the relevance set, to obtain the test instances of that same fold, generating

a test set. Afterwards, from the original dataset, we extract all instances that correspond to the

ranked training set (2), for the RPE approach, in order to guarantee the integrity of the results,

by using the same instances in both RPE and RPC. We then fit the data into 2 types of models,

RPC (4) and RPE (5). For the RPC approach, multiple models are trained, one for each possible

4.1 Experimental Setup 25

pair. These models are generated through rpart trees. For RPE, for each algorithm being tested,

only one model is trained. In both approaches, we apply the models to the test set, and, using the

relevance knowledge obtained in the transformation of the original set into the ranked set, compare

the predicted ranking with the ideal ranking, using NDCG.

Figure 4.3: Single Direct Features combination Validation Process

When validating only the RPE approach, which will happen in experiment 2 and 3, the RPC

Train Set is still produced and used to obtain the RPE train instances, because it is necessary to

guarantee consistency between the training set and the test set. Mainly, because the test set has to

be a ranked set too. All RPC operations after that are then ignored for this case.

A pseudocode representation of the last validation process can be seen in algorithm 2.

26 Experiments

input : originalDataset, rankedDataset, relevanceDataset, f oldsSet, d f s

output: results

foreach f old ∈ f oldsSet do
trainSetRPC← selectTrainFolds (rankedDataset, f old);

trainSetRPE← extractInstances (originalDataset, trainSetRPC);

testSet← selectTestFolds (relevanceDataset, f old);

trainSetRPC← selectFeatures (trainSetRPC, d f s);

trainSetRPE← selectFeatures (trainSetRPE, d f s);

testSet← selectFeatures (testSet, d f s);

if doRPC == T RUE then
modelRPC← trainRPC (trainSetRPC);

predictionsRPC← predictRPC (testSet, modelRPC);

resultsRPC← NDCG (testSet, predictions);

results← results+ resultsRPC;

end
modelRPE← trainRPE (trainSetRPE);

predictionsRPE← predictRPE (testSet, modelRPC);

resultsRPE← NDCG (testSet, predictionsRPE);

results← results+ resultsRPE;

end
Algorithm 2: Single Direct Features combination Validation Process

4.2 Implementation and Hardware Details

The validation process was tested on a Intel Core i5-6200U CPU 2.30GHz, with two physical

cores, and on 8 gigabytes of memory. This specification is relevant because the measured times

obtained would be different on a different machine.

In regards to the implementation, it was done in R, using for most algorithms already existing

packages. It is also important to note the following for each algorithm:

• RPC – Pairwise modeling used a self-made implementation, using rpart trees from the rpart

package, with the default values. Rpart is pretty much parameter free.

• C5.0 – From C50 package, with 10 boosting iterations, although with early stopping if no

gain is achieved. The class probability estimation reflects the distribution of the classes in

the terminal nodes.

• Random Forest – From the ranger package, with 500 trees and working on two threads. The

last one is relevant because it affects how we visualize the timings obtained on Random

Forest. While the other implementation use only one cpu core, Random Forest is using two.

The class confidence values were already explained in 2.5.1

4.3 Experiment 1 - RPE vs RPC 27

• Naive Bayes – From the e1071 package. Naive Bayes is also parameter free.

There are some exceptions also implemented, that may occur in any given dataset. First, for

any given feature, if its value is always the same, that feature is removed from the training process,

as some implementations fail when that its present. Also there is no knowledge to obtain from

a feature that only has one possible value. That may also happen with the target variable. If the

target variable has always the same value, no model is trained, regardless of the algorithm being

used. We can assume that value as the right response always.

The whole process is seeded so that the results can be reproducible.

4.3 Experiment 1 - RPE vs RPC

Experiment 1, in essence, was made in order to compare RPC and RPE. We expect the training

and prediction time of RPC to grow in relation to the number of possible targets to be ranked, due

to the nature of pairwise comparison. We will be detailing the sampling strategy and the results

obtained, as well as, an analysis of the later.

4.3.1 Sampling Strategy

It is assumed that RPC’s training and prediction time will have a quadratic growth, in relation

to the number of possible target classes, due to the number of needed models having the same

growth. This means that, in order to be able to collect results in a reasonable time, the sample set

used cannot exceed a certain value. It is also known that the local_id variable is the one which

fluctuates the most in terms of possible classes, while being the one that reaches the higher amount.

As such, we obtained entity_id/operator_id combinations that follow the next rules:

• Has more than 100 instances.

• Has more than 20 local_id classes.

• Has less than 90 local_id classes.

Following those rules we then extracted 5% of the resulting dataset and ended up with 8

entity_id/operator_id combinations. A summary of that sample dataset can be seen in table 4.3,

where the number shown in the id’s variables is the number of classes for that combination, apart

from entity_id and operator_id.

An interesting detail in this sample is that the number of client_id classes varies more, on

average, than in the original dataset. Other than that, this sample is a good representation of the

dataset, given the limitations forced by RPC. It is also very heterogeneous in terms of the number

of instances of each combination, ranging from 134 instances to 2032. Although priority ranges

from 1 to 4, there are some cases where no observations of a certain value are seen, as such that

value is also not considered for training purposes.

28 Experiments

entity_id operator_id NumberOfInstances Nclient_id Nlocal_id Nproblem_id Nproblem_parent_id Npriority
12 44 556 8 33 26 9 4
20 586 314 9 71 7 7 4
24 227 211 1 39 37 15 4
24 296 161 1 45 43 13 4
24 1080 134 1 63 59 12 3
62 874 355 25 77 14 7 4
62 2281 147 12 52 9 6 3
110 1372 2032 1 29 9 8 4

Table 4.3: Sample summary for RPE vs RPC

4.3.2 Results

The complete form validation of all the sampled data took 9070 seconds (151 minutes) while on

average each entity/operator combination took 1133 seconds (18.9 minutes).

Figure 4.4: RPE vs RPC - Average NDCG

Figure 4.5: RPE vs RPC - Average NDCG for each Target

The calculated average NDCG score for RPE and RPC, see figure 4.4, was 0.697 and 0.674,

respectively. It is also possible to observe how each target behaves in regard to NDCG in figure 4.5.

4.3 Experiment 1 - RPE vs RPC 29

We can see how NDCG behaves, for each state of the form filling process for each target

variable in Appendix A. In those observations, we can also see how the existence or not of each

direct feature affects the quality of the ranking.

Figure 4.6: RPE vs RPC - NDCG by Number of Classes

Figure 4.7: RPE vs RPC - Training Time by Number of Classes

Figure 4.8: RPE vs RPC - Prediction Time by Number of Classes

Since the number of classes or possible targets was identified as a relevant value for NDCG,

training time and prediction time, an analysis of how those values behave when this number of

classes increases was also done. While NDCG decreases with this increase (figure 4.6), for both

RPE and RPC approaches, the training time (figure 4.7) and the prediction time (figure 4.8) of RPC

increases. RPC reaches, at 77 classes, 24.8 seconds of training time and 7.6 seconds of prediction

time.

30 Experiments

Knowing these values, it is also possible to calculate how much time it takes, for each ap-

proach, to generate all models for any given entity_id/operator_id combination, see figure 4.9.

While RPE ended up with an average training time of 1.8 seconds, for all 80 models of any com-

bination, RPC was 227 seconds, as can be seen by the value disparity in figure 4.9.

Figure 4.9: RPE vs RPC - Average Training Time for an entity_id/operator_id combination

4.3.3 Results Analysis

Results show that RPC, while competitive in terms of NDCG score, albeit slightly lower, both

the high values of training time and prediction time make it infeasible for this suggestion system.

As we saw before, this sample does not represent entirely the original dataset, as the later can

have DFS that have way more possible classes than the sampled one. We can also see that, the

measured times have a quadratic growth, in relation to the number of target classes, as expected.

Training time influences how frequently these models can be updated. High values force this

update frequency to be really low. On another hand, high prediction time takes the real time

capabilities off the system. With all that in mind, we discarded RPC for the next experiments and

focused solely on RPE.

From the plots in Appendix A we can perceive how certain features interact with a certain

target. For instance, whenever problem_parent_id is present in the features set, the problem_id’s

NDCG increases, when it is the target variable, and vice versa. The same is also true, to some

degree, between client_id and local_id.

One last thing to note, is the fact that NDCG score drops, for both RPE and RPC, with the

increase of the number of possible targets, but this was also expected.

4.4 Experiment 2 - RPE multiple algorithms

Experiment 2 focuses on expanding the RPE approach to other typical classification algorithms.

In this experiment, we will test how C5.0, Random Forest and Naive Bayes behave, with this

approach.

4.4 Experiment 2 - RPE multiple algorithms 31

These algorithms were selected for three reasons. First, they are mostly hyper parameter free,

although Random Forest as some possible tuning options, specially in the number of generated

trees. Second, they are generally fast at training and prediction. And lastly, because they are able

to return class probability estimations.

4.4.1 Sampling Strategy

For this experiment, since the limitations of RPC are not present, a more broad sampling strategy

can be applied.

We wanted to test a more precise representation of the dataset, while also testing the more

extreme cases. As such, two sampling strategies were defined.

After determining that the most defining characteristics of each entity_id/operator_id combi-

nation would be the number of instances and the number of local_id classes (3.2.4), if we apply a

clustering algorithm and then proceed to do a stratified sampling from it, a good representation of

the original dataset should be achieved. A visual description of the resulting clusters of a kmeans

algorithm applied to the number of instances and the number of local_id classes can be seen in

figure 4.10.

After that we did a stratified sampling, by kmeans clusters, of 5% of the original dataset. A

summary of the result entity_id/operator_id combinations is in table 4.4.

Figure 4.10: Kmeans sampling by number of instances and number of local_id classes

We ended up with 24 combinations. Sample combinations range from 126 to 5800 number of

instances and from 1 to 610 number of local_id classes, while having a good diversity in the other

DFS. The odd case of the number of client_id classes remains, being mostly 1, apart from 3 cases.

We can expect NDCG values of client_id to be skewed to 1, but that’s the reality of the dataset.

32 Experiments

entity_id operator_id NumberOfInstances Nclient_id Nlocal_id Nproblem_id Nproblem_parent_id Npriority
10 37 867 43 421 47 13 4
24 228 272 1 97 58 15 4
24 308 1252 1 84 64 20 4
24 328 399 1 130 115 26 4
24 355 188 1 66 57 16 4
24 386 612 1 257 123 19 4
24 760 133 1 10 12 5 2
24 1107 406 1 206 58 14 4
24 1136 3951 1 366 151 18 4
24 1988 142 1 37 56 15 4
24 2175 142 1 1 44 11 3
27 193 429 19 218 32 12 4
39 395 190 1 109 16 8 4
45 1593 168 1 105 12 12 3
62 589 126 6 19 11 5 4
67 701 247 1 98 56 11 4
72 762 510 1 26 43 13 4
75 828 626 1 35 8 8 4
75 829 173 1 26 8 8 4
82 1864 366 1 214 93 22 4
90 982 390 1 125 54 16 4
94 1027 2646 1 610 87 15 4
110 1372 2032 1 29 9 8 4
134 1633 5800 1 227 151 23 4

Table 4.4: Sample 1 summary for RPE algorithm tests

We also wanted to test the most extreme cases, so another sampling strategy was used. Both

samples will be tested separately. In the extreme case, it was decided to select all combinations

that had more than 4000 instances, producing the sample set that can be observed in table 4.5.

entity_id operator_id NumberOfInstances Nclient_id Nlocal_id Nproblem_id Nproblem_parent_id Npriority

24 402 6016 1 367 229 24 4

24 504 6121 1 382 210 24 4

24 565 7029 1 451 252 22 4

24 1137 4559 1 411 184 21 4

24 1138 4496 1 404 157 19 4

40 338 7912 1 207 280 33 4

41 339 4466 1 382 59 10 4

61 571 7299 3 507 56 13 4

64 636 18424 1 941 91 15 4

66 659 6820 1 407 113 16 4

66 836 4134 1 354 81 13 4

67 697 6075 1 624 116 13 4

82 876 5410 1 454 225 30 4

84 892 4789 1 549 149 13 4

86 1067 4130 1 965 34 10 2

87 910 8976 1 864 262 17 4

103 1176 6568 1 1105 159 22 4

104 1177 7227 1 488 86 15 4

126 1537 4100 1 646 57 13 4

134 1633 5800 1 227 151 23 4

Table 4.5: Sample 2 summary for RPE algorithm tests

4.4 Experiment 2 - RPE multiple algorithms 33

While it is usually considered that the number of instances has a direct correlation with the

amount of knowledge that can be obtained, the increase of instances also makes the average num-

ber of classes for any target increase. In this case, not only the local_id reaches high values (1105)

but also the problem_id reaches unseen values so far (280). It is expected really high validation

times for this sample set, as well as, a general reduction in average NDCG score. This sample has

20 combinations.

4.4.2 Results Sample 1

The complete form validation of all the sampled data took 13813 seconds (230.2 minutes) while

on average each entity/operator combination took 576 seconds (9.6 minutes).

Figure 4.11: RPE Sample 1 - Average NDCG

The average NDCG score for C5.0, Random Forest and Naive Bayes was 0.701, 0.704 and

0.579, respectively. A plot of that result can be observed in figure 4.11. Figure 4.12 shows NDCG

values distribution, for each possible target attribute.

Figure 4.12: RPE Sample 1 - Average NDCG for each Target

34 Experiments

Figure 4.13: RPE Sample 1 - NDCG by Number of Classes

Figure 4.14: RPE Sample 1 - Training Time by Number of Classes

Figure 4.15: RPE Sample 1 - Prediction Time by Number of Classes

We can again, observe a decrease in NDCG with the increase of the number of possible target

classes, see figure 4.19.

In figure 4.14, we see Random Forest being the most affected by the number of classes, with

2.7 seconds of training time, at 610 classes. C5.0 reaches 2.3 seconds, at 151 classes, while

decreasing in higher number of classes. Another factor must have influenced this value. Naive

Bayes’s training time is close to zero, independently of the number of classes. It is important to

note that, the plotted curve exhibits the average values at a certain value of number of classes, and

not the top values.

In terms of prediction time, figure 4.15, Naive Bayes reaches 16.8 seconds, at 610 classes,

while for the same number of classes also has values at around 3 seconds, which means that

4.4 Experiment 2 - RPE multiple algorithms 35

the addition of certain features influences the prediction time. C5.0 and Random Forest have

negligible prediction times throughout the whole sample.

Figure 4.16: RPE Sample 1 - Average Training Time for an entity_id/operator_id combination

The average training time for a single entity_id/operator_id combination, see figure 4.16, is

3.8, 11.5 and 0.76 seconds for C5.0, Random Forest and Naive Bayes, respectively.

4.4.3 Results Sample 2

For this sample with more extreme cases, the complete form validation of all the sampled data

took 53392 seconds (889.9 minutes) while on average each entity/operator combination took 2669

seconds (44.5 minutes).

Figure 4.17: RPE Sample 2 - Average NDCG

The average measured NDCG scores, see figure 4.17, were 0.648, 0.652 and 0.559 for C5.0,

Random Forest and Naive Bayes, accordingly. Regarding each target variable, which can also be

observed in figure 4.12, although almost all dropped a bit, the local_id variable takes the biggest

dive in terms of NDCG, due to the consistent high amount of possible classes it has throughout all

the sample set.

36 Experiments

Figure 4.18: RPE Sample 2 - Average NDCG for each Target

Figure 4.19: RPE Sample 2 - NDCG by Number of Classes

Figure 4.20: RPE Sample 2 - Training Time by Number of Classes

4.4 Experiment 2 - RPE multiple algorithms 37

Figure 4.21: RPE Sample 2 - Prediction Time by Number of Classes

Figure 4.19 exhibits the already observed behaviour of NDCG in relation to the number of

possible target classes.

The training time, see figure 4.20, also follows the same behaviour as before, albeit having

higher values overall. For Random Forest, it reaches, at 864 classes, 13 seconds, while C5.0

reaches, at 91 classes, 9 seconds, again, probably motivated by other factors.

In terms of prediction time, as can be seen in figure 4.21, Naive Bayes stays the loser, reaching

92.6 seconds, at 941 classes.

Figure 4.22: RPE Sample 2 - Average Training Time for an entity_id/operator_id combination

The average training time for each entity_id/operator_id combination, in summary, is a scaled

version of the previous sample, reaching 36.7, 98 and 1.16 seconds for C5.0, Random Forest and

Naive Bayes, respectively, which can be observed in figure 4.22.

4.4.4 Results Analysis

Both samples show really interesting average NDCG values, specially for C5.0 and Random For-

est. With NDCG score above 0.5 we can assume that, on average, the first three ranks will contain

relevant values. Sample 2, considered more extreme in both local_id classes and in the number of

instances, shows a small drop in average NDCG values, due to really low values for local_id as

target, mainly. In reality, all algorithms show a huge decrease, and eventual stagnation at really

38 Experiments

low values of NDCG, at high number of classes. Still Naive Bayes NDCG drops faster, as seen in

figure 4.13 and figure 4.19. Naive Bayes is the clear loser regarding NDCG.

In terms of pure ranking quality, and specially for C5.0 and Random Forest, this experiment

proves the viability of this approach. We can see how the NDCG behaves for each of the DFS

combination in Appendix B. This behaviour is similar to what was observed in 4.3.2, while the

client_id and local_id have less interaction due to the simplicity of the first, for both samples.

In the matter of training time, Random Forest reveals a flaw. It exhibits around three times

more training time than C5.0, for a single entity_id/operator_id combination. It also shows a

higher growth of this value at high number of classes. These values, although high, do not reveal

the impossibility of using Random Forest, as it depends on the problem and on the intended update

rate of the models, although it should still be taken into account. They can also be lowered by

reducing the number of trees the algorithm uses. Naive Bayes simple training process shows

really fast training times.

On another hand, while fast at training, Naive Bayes shows concerning prediction times, spe-

cially at high number of classes, observed in figures 4.15 and 4.21, reaching values at which the

system cannot be considered in real time.

Although considerably higher in sample 2, the times measured in both samples reveal a con-

sistent behaviour of all algorithms, that can be observed by the similar appearance of the plots in

each sample set.

C5.0 appears to be the most balanced of the three. While it has competitive NDCG scores, it

also exhibits good training and prediction times.

Lastly, and specially on sample 2, the total training time for each entity_id/operator_id and also

the complete validation process time show extremely high values. Sample 2 results took around

14.8 hours to be obtained. While in a real scenario only one algorithm and one pass through the

data is needed, compared to the 5 passes for 3 algorithms done in this experiment, these values

are still alarming. Which leads us to Experiment 3, in which we will attempt to reduce these same

values.

4.5 Experiment 3 - RPE multiple algorithms with feature pruning

The main goal of this experiment is to test an hypothetical possibility of reducing the number of

models, and by consequence, reducing the total training time for the complete form. This approach

was already explained in section 3.2.3, and focuses on identifying the relevant and irrelevant DFS

of each target, by training a model for any given target with all the other DFS and extracting

the feature importance. This can be seen as a smart approach compared to the more brute force

approach of the experiments 1 and 2.

If we can maintain similar NDCG results while reducing the total training time by entity_id/

operator_id combination this experiment will be a success.

It is also important to note that, for comparison purposes, the pruned models with the irrele-

vant features are still produced in the results, by copying the results of the corresponding model

4.5 Experiment 3 - RPE multiple algorithms with feature pruning 39

with only the relevant features, while identifying it as fake, for training time purposes. This also

simulates the real world scenario, where we would end up only using models with the relevant

features with this approach. An example of how models with irrelevant features are assigned to

models with only relevant ones can be seen in table 3.2.

Lastly, and also for comparison reasons, the same samples and the same folds, within each

target of each sample, of experiment 2 will be used.

4.5.1 Results Sample 1

The complete form validation of all the sampled data took 3693 seconds (61.6 minutes) while

on average each entity/operator combination took 154 seconds (2.6 minutes). These results were

produced in about 26.7% of the time it took in section 4.4.2 to be obtained.

Figure 4.23: Smart RPE Sample 1 - Average NDCG

Figure 4.24: Smart RPE Sample 1 - Average NDCG for each Target

The average measured NDCG score, seen in figure 4.23, was 0.7, 0.699 and 0.65 for C5.0, Ran-

dom Forest and Naive Bayes, respectively. Pretty close results to what was seen in section 4.4.2,

40 Experiments

with the scores 0.701, 0.704 and 0.579. Naive Bayes actually shows considerably better results

with this approach.

In figure 4.24, we can observe that Naive Bayes, compared to the results from section 4.4.2,

shown in figure 4.12, has an increase in NDCG score for targets problem_id and problem_parent_id.

For the other algorithms the results are close to identical for each target.

Figure 4.25: Smart RPE Sample 1 - NDCG by Number of Classes

Figure 4.26: Smart RPE Sample 1 - Training Time by Number of Classes

Figure 4.27: Smart RPE Sample 1 - Prediction Time by Number of Classes

The behaviour of NDCG with the increase of the number of possible target classes, seen in

figure 4.25, is almost an identical replica of the one shown in figure 4.13.

The training time of each model, see figure 4.26, stays pretty much that same, peaking, at 151

classes, 2.7 seconds for C5.0 and, at 610 classes, 2.88 seconds for Random Forest. There is no

4.5 Experiment 3 - RPE multiple algorithms with feature pruning 41

reason for these values to change much, as this sample is exactly the same sample that was used

in section 4.4.2. C5.0 probably reached higher values due to some outside interference.

The same is true for prediction time, in figure 4.27, having Naive Bayes reach 18.7 seconds,

at 610 classes. Again, slightly higher peak values, but probably due to variations in the processing

power.

Figure 4.28: Smart RPE Sample 1 - Average Training Time for an entity_id/operator_id combina-
tion

In the average training time for each entity_id/operator_id combination, seen in figure 4.28, is

where the possible gain can be achieved. Although the figures in 4.16 and 4.28 look identical, the

scale is completely different. In this case, the C5.0, Random Forest and Naive Bayes measured

times were 1.34, 3.64 and 0.197 seconds, respectively, being about 35%, 32% and 26% of the

values obtained in section 4.4.2.

We can observe a comparison of the average training time for each entity_id/operator_id com-

bination for both experiments in figure 4.29.

42 Experiments

Figure 4.29: Sample 1 - Average Training Time for an entity_id/operator_id comparison

In this experiment, is also possible to evaluate the number of generated models. An average of

this value for each target and for an entity_id/operator_id combination can be seen in figures 4.30

and 4.31, respectively. The dashed line shows the static values for the other experiments.

Figure 4.30: Smart RPE Sample 1 - Average number of models per Target

4.5 Experiment 3 - RPE multiple algorithms with feature pruning 43

Figure 4.31: Smart RPE Sample 1 - Average number of models for an entity_id/operator_id com-
bination

On average, 17.4 models were generated, for each combination, 21.75% of the models used in

the other two experiments.

4.5.2 Results Sample 2

The complete form validation of all the sampled data took 12056 seconds (200.9 minutes) while

on average each entity/operator combination took 603 seconds (10.1 minutes). These results were

produced in about 22.6% of the time it took on experiment 2 to be obtained.

Figure 4.32: Smart RPE Sample 2 - Average NDCG

44 Experiments

Figure 4.33: Smart RPE Sample 2 - Average NDCG for each Target

In resemblance to section 4.5.1, the measured average NDCG values for C5.0 and Random

Forest, that can be seen in figure 4.32, have an insignificant variation, scoring 0.646 on the first

and 0.649 on the second, compared to the 0.648 and 0.652 values observed in section 4.4.3. Naive

Bayes also follows the same behaviour seen in section 4.5.1, increasing its score to 0.627 compared

to 0.559 observed in section 4.4.3.

The relation of average NDCG for each Target follows the same behaviour exhibited in sec-

tion 4.5.1.

Figure 4.34: Smart RPE Sample 2 - NDCG by Number of Classes

Figure 4.35: Smart RPE Sample 2 - Training Time by Number of Classes

4.5 Experiment 3 - RPE multiple algorithms with feature pruning 45

Figure 4.36: Smart RPE Sample 2 - Prediction Time by Number of Classes

Compared to section 4.4.3, the NDCG score, training time and prediction time in relation to

the number of target classes, also follows the same behaviour observed in section 4.5.1.

The training time, seen in figure 4.35, reaches 7.4 seconds, at 91 classes, for C5.0 and 11.6

seconds, at 864 classes, for Random Forest.

The prediction time (figure 4.36) for Naive Bayes peaks at 91.5 seconds, at 941 classes.

Figure 4.37: Smart RPE Sample 2 - Average Training Time for an entity_id/operator_id combina-
tion

Again, the average training time for each entity_id/operator_id combination, see figure 4.37,

seems like a replica from section 4.4.3 but with a completely different scale. C5.0, Random Forest

and Naive Bayes scored average values of 8.9, 24.3, and 0.237 seconds, respectively, being about

24.3%, 24.8% and 20.4% of the values observed in the last experiment.

We can see a comparison between the two plots in figure 4.38.

46 Experiments

Figure 4.38: Sample 2 - Average Training Time for an entity_id/operator_id comparison

In resemblance to section 4.5.1, is possible to evaluate the number of generated models. An

average of this value for each target and for an entity_id/operator_id combination can be observed

in figures 4.39 and 4.40, accordingly.

Figure 4.39: Smart RPE Sample 2 - Average number of models by Target

4.6 Conclusions 47

Figure 4.40: Smart RPE Sample 2 - Average number of models for an entity_id/operator_id com-
bination

On average, 15.9 models were generated, for each combination, 19.88% of the models used in

the other two experiments.

4.5.3 Results Analysis

This experiment shows that the model pruning approach has, on average, close NDCG results to

the ones observed previously. Actually, for Naive Bayes, it improves its score. This can happen

because we are removing highly correlated features, by removing irrelevant features from training.

We know for a fact that Naive Bayes is susceptible to it.

In terms of the average training time for one entity_id/operator_id combination, which is di-

rectly proportional to training the whole dataset, we have gains in between 65% and 80% by

reducing in the number of generated models around 80% too. This is huge, as it will allow to

increase the update frequency of the models, at little to no cost of NDCG.

This experiment was successful in what it intended to achieve.

4.6 Conclusions

This chapter was focused on the actual work done and implemented, and its corresponding results.

The experimental setup, shown in section 4.1, guarantees the integrity of the whole validation

process. Although not the same sampling strategy is used for all experiments, when comparing

algorithms and approaches, the same training and test sets are used. It is also guaranteed that we

are not making predictions with models trained with the instance being predicted.

It is important to note, also, the different processing power available to each algorithm. While

Random Forest, albeit producing 500 trees, is running on two cores, the rest is running on only one.

This is important to know, mainly, to compare the training times of each algorithm and approach.

Different sampling strategies were used for two reasons. The first being the assumption that

RPC will take a huge amount of time, to train and predict, when the quantity of target classes is

48 Experiments

high. The second reason is that we wanted to test, for RPE, both the general cases and the more

extreme ones.

Experiment 1, see section 4.3, reveals the flaw, already assumed before, of RPC. While it

is competitive in terms of NDCG, its training and prediction times, specially on high amount of

target classes, are shown to be infeasible for this real time system. As such, it was decided to

expand the RPE

Experiment 2, see section 4.4, extends the RPE approach to other algorithms. C5.0 appears

to be the most balanced of the three algorithms tested, in all three metrics. Random Forest, albeit

having very competitive NDCG score, suffers from high training times. This can be decreased by

reducing the amount of produced trees, at a probable NDCG cost. Naive Bayes is shown to be

the worst of the three. It has inconsistent NDCG values, making its overall score lower than the

rest. Still, the main issue with Naive Bayes is the huge prediction time it has at an high number of

target classes. All algorithms are shown to have bad NDCG scores at really high values too, with

Naive Bayes being the one more affected by it.

Experiment 3, see section 4.5, wanted to reduce the total training time, by reducing the number

of needed models. It proved to be successful, reducing the total training time to approximately

one fourth of the original time, while maintaining close NDCG values to the ones obtained in

experiment 2. Naive Bayes actually scores higher in this experiment.

Chapter 5

Conclusions

This chapter will be centered around a summary of the full document as well as a final exploration

of the problem, our solution, its main threats and future work.

5.1 Using ranking algorithms for a form suggestion system

This work is focused on expanding the already used solutions in form suggestion, to further adapt

to each user needs. ML has been invading all areas of computation, improving them.

We propose another possible application of ML, in form suggestion. This approach uses sev-

eral models to predict and rank each possible entry for each field, adapting its prediction during

the filling process. It is expected to have better results than traditional methods, as it takes into ac-

count the past knowledge from previously filled forms, while being able to adapt to new scenarios.

This solution is targeted to very specific types of forms, as it was explained in section 3.1.1.

The complexity of the training process is directly related to the number of fields it has. The

number of needed models grows exponentially in relation to the number of fields. This led us to

develop one possible approach that selects which fields it will use for a certain target, considerably

reducing the number of needed models.

Two ranking approaches were tested in this work, the RPC algorithm and RPE approach. The

first is a proved and tested LR algorithm. The second is the hypothetical approach of converting

the probability estimation results of a multi-class classification algorithm into rankings. This is

only possible because we have a labeled dataset.

Mostly hyper parameter free algorithms were used, for generalization purposes.

Experiment 1 shows that, while both have really interesting NDCG results, RPC exhibits really

inefficient training and test times. As such, we decided to expand the RPE approach to other multi-

class classification algorithms.

Experiment 2 compares C5.0, Random Forest and Naive Bayes algorithms, for the RPE ap-

proach. C5.0 comes out as being the most balanced of the three.

Experiment 3 shows that the model pruning approach works, at little to no cost of NDCG.

49

50 Conclusions

The experiments done show the viability of the system, from a NDCG standpoint. While

viable, we cannot expect the system to always suggest the correct ranking, as there is no perfect

prediction algorithm. For instance, at high number of possible target values, all algorithms tested

reveal really low NDCG values. Remember also, that for suggestion purposes, we are only using

a selection of the first ranked elements.

5.2 Main threats

One of the main threats of this work, is the fact that the system was not tested in a real environment.

System analysis was done only on validation results.

Testing the system on only one form can also be threatening. Although this form encapsulates

multiple problems, as each entity working on the form has completely different working contexts,

there’s no guarantee that for any other form the system still proves viable.

The system is also not able to deal properly with pure text fields, as that would lead to innu-

merous possible target classes, which already proved to show bad results. It would only be able to

deal with it, if the user filled that text field in a finite number of ways.

Lack of data is a typical threat in ML problems. If we are confronted with that issue it is

always possible to revert to typical suggestion approaches, like the most used values for a certain

field, resorting to old methods to fix the problem. In our case, we removed from testing the

entity_id/operator_id combinations that exhibited a low number of instances, although they are

still real users.

Lastly, the system training process, even with the pruned models approach, uses alot of com-

putation resources. This is due to the scope in which each model is trained, in our case a en-

tity_id/operator_id combination.

5.3 Future Work

The most important work left to be done was already enunciated in section 5.2. Those are:

• To test the system in a real environment.

• To validate the system in other types of forms.

In order to validate the reduction of the form filling time, testing the system in a real environ-

ment has to be done. This means, implementing the suggestion in the visual interface of that form,

and measuring the results. If the time it takes for a user to fill a form is recorded, before and after

the suggestion is implemented, it is possible to do a real evaluation of the system. Another way to

do it, is to count the number of hits it has. By number of hits we mean the number of times a value

suggested is used.

Also, in order to prove that this solution can be generalized for any type of form, multiple

forms must be tested. It can, also, allow us to perceive other behaviours, not seen in the experi-

ments done.

5.4 Final thoughts 51

Although we assumed, in chapter 4, that if an entity_id/operator_id combination had less than

100 instances we wouldn’t have enough knowledge to get a good ranking, that value was not

studied. It should be possible to obtain a more precise value, by studying the behaviour of NDCG

on combinations with a lower amount of instances.

Other than the already referred work, it is also possible to extend the proposed system to other

LR algorithms, see section 2.4.3, or other multi-class classification algorithms, in the case of a

RPE approach. Also, a ranking implementation of MERCS, see section 2.7, could prove to be a

viable approach, in terms of NDCG, training time and prediction time, of the problem at hand.

5.4 Final thoughts

The ML field has infinite applications in the computing field. The possibility proposed in this

document proves that.

Form suggestion is not a typical theme these days. The form users are used to the way forms

normally behave and the techniques used to help the form filling. This thesis can lead to very

interesting results in the field. While on one hand, it attempts to use ranking in a way it was never

used before and, on another hand, because form design does not usually focuses on suggestion.

To finish, we expect that our approach can lead to a new paradigm in form suggestion.

52 Conclusions

Appendix A

Experiment 1 Detailed NDCG Results

In this appendix we can find the detailed results, for each Direct Features combination for each

target, for experiment 1, allowing us to perceive how the presence of certain features influence the

quality of prediction.

Figure A.1: RPE vs RPC - Complete NDCG for Target problem_parent_id

53

54 Experiment 1 Detailed NDCG Results

Figure A.2: RPE vs RPC - Complete NDCG for Target problem_id

Figure A.3: RPE vs RPC - Complete NDCG for Target client_id

Experiment 1 Detailed NDCG Results 55

Figure A.4: RPE vs RPC - Complete NDCG for Target local_id

Figure A.5: RPE vs RPC - Complete NDCG for Target priority

56 Experiment 1 Detailed NDCG Results

Appendix B

Experiment 2 Detailed NDCG Results

Same as Appendix A but for Experiment 2, for both sampling strategies.

Figure B.1: RPE Sample 1 - Complete NDCG for Target problem_parent_id

57

58 Experiment 2 Detailed NDCG Results

Figure B.2: RPE Sample 1 - Complete NDCG for Target problem_id

Figure B.3: RPE Sample 1 - Complete NDCG for Target client_id

Experiment 2 Detailed NDCG Results 59

Figure B.4: RPE Sample 1 - Complete NDCG for Target local_id

Figure B.5: RPE Sample 1 - Complete NDCG for Target priority

60 Experiment 2 Detailed NDCG Results

Figure B.6: RPE Sample 2 - Complete NDCG for Target problem_parent_id

Figure B.7: RPE Sample 2 - Complete NDCG for Target problem_id

Experiment 2 Detailed NDCG Results 61

Figure B.8: RPE Sample 2 - Complete NDCG for Target client_id

Figure B.9: RPE Sample 2 - Complete NDCG for Target local_id

62 Experiment 2 Detailed NDCG Results

Figure B.10: RPE Sample 2 - Complete NDCG for Target priority

Appendix C

Experiment 3 Detailed NDCG Results

Same as Appendix A and Appendix B but for Experiment 3.

Figure C.1: Smart RPE Sample 1 - Complete NDCG for Target problem_parent_id

63

64 Experiment 3 Detailed NDCG Results

Figure C.2: Smart RPE Sample 1 - Complete NDCG for Target problem_id

Figure C.3: Smart RPE Sample 1 - Complete NDCG for Target client_id

Experiment 3 Detailed NDCG Results 65

Figure C.4: Smart RPE Sample 1 - Complete NDCG for Target local_id

Figure C.5: Smart RPE Sample 1 - Complete NDCG for Target priority

66 Experiment 3 Detailed NDCG Results

Figure C.6: Smart RPE Sample 2 - Complete NDCG for Target problem_parent_id

Figure C.7: Smart RPE Sample 2 - Complete NDCG for Target problem_id

Experiment 3 Detailed NDCG Results 67

Figure C.8: Smart RPE Sample 2 - Complete NDCG for Target client_id

Figure C.9: Smart RPE Sample 2 - Complete NDCG for Target local_id

68 Experiment 3 Detailed NDCG Results

Figure C.10: Smart RPE Sample 2 - Complete NDCG for Target priority

References

Charu C Aggarwal. Data mining: the textbook. Springer, 2015.

Alan Agresti. Analysis of ordinal categorical data, volume 656. John Wiley & Sons, 2010.

Artur Aiguzhinov, Carlos Soares, and Ana Paula Serra. A similarity-based adaptation of naive
bayes for label ranking: Application to the metalearning problem of algorithm recommendation.
In International Conference on Discovery Science, pages 16–26. Springer, 2010.

Alnur Ali and Chris Meek. Predictive models of form filling. 2009.

Javier A Bargas-Avila, O Brenzikofer, SP Roth, AN Tuch, S Orsini, and K Opwis. Simple but
crucial user interfaces in the world wide web: introducing 20 guidelines for usable web form
design. In User interfaces. InTech, 2010.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer-Verlag, Berlin, Heidelberg, 2006. ISBN 0387310738.

Pavel B Brazdil, Carlos Soares, and Joaquim Pinto Da Costa. Ranking learning algorithms: Using
ibl and meta-learning on accuracy and time results. Machine Learning, 50(3):251–277, 2003.

Klaus Brinker and Eyke Hüllermeier. Case-based multilabel ranking. In IJCAI, pages 702–707,
2007.

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg
Hullender. Learning to rank using gradient descent. In Proceedings of the 22nd international
conference on Machine learning, pages 89–96. ACM, 2005.

Weiwei Cheng and Eyke Hüllermeier. Probability estimation for multi-class classification based
on label ranking. In Proceedings of the 2012th European Conference on Machine Learn-
ing and Knowledge Discovery in Databases - Volume Part II, ECMLPKDD’12, pages 83–
98, Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-3-642-33485-6. doi: 10.1007/
978-3-642-33486-3_6. URL https://doi.org/10.1007/978-3-642-33486-3_6.

Weiwei Cheng, Jens Hühn, and Eyke Hüllermeier. Decision tree and instance-based learning
for label ranking. In Proceedings of the 26th Annual International Conference on Machine
Learning, pages 161–168. ACM, 2009.

Cláudio Rebelo de Sá, Carlos Soares, Arno Knobbe, and Paulo Cortez. Label ranking forests.
Expert Systems, 34(1):e12166, 2017.

Ofer Dekel, Yoram Singer, and Christopher D Manning. Log-linear models for label ranking. In
Advances in neural information processing systems, pages 497–504, 2004.

69

https://doi.org/10.1007/978-3-642-33486-3_6

70 REFERENCES

Peter A. Flach. Putting things in order: On the fundamental role of ranking in classification
and probability estimation. In Proceedings of the 18th European Conference on Machine
Learning, ECML ’07, pages 2–3, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 978-3-
540-74957-8. doi: 10.1007/978-3-540-74958-5_2. URL http://dx.doi.org/10.1007/
978-3-540-74958-5_2.

Johannes Fürnkranz and Eyke Hüllermeier. Preference learning. In Encyclopedia of Machine
Learning, pages 789–795. Springer, 2011.

Johannes Fürnkranz, Eyke Hüllermeier, Eneldo Loza Mencía, and Klaus Brinker. Multilabel clas-
sification via calibrated label ranking. Machine learning, 73(2):133–153, 2008.

Eyke Hüllermeier, Johannes Fürnkranz, Weiwei Cheng, and Klaus Brinker. Label ranking by
learning pairwise preferences. Artificial Intelligence, 172(16-17):1897–1916, 2008.

Anil K Jain, M Narasimha Murty, and Patrick J Flynn. Data clustering: a review. ACM computing
surveys (CSUR), 31(3):264–323, 1999.

Kalervo Järvelin and Jaana Kekäläinen. Ir evaluation methods for retrieving highly relevant doc-
uments. In Proceedings of the 23rd annual international ACM SIGIR conference on Research
and development in information retrieval, pages 41–48. ACM, 2000.

Toshihiro Kamishima, Hideto Kazawa, and Shotaro Akaho. A survey and empirical comparison
of object ranking methods. In Preference learning, pages 181–201. Springer, 2010.

Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938.

Sotiris B Kotsiantis, I Zaharakis, and P Pintelas. Supervised machine learning: A review of
classification techniques. Emerging artificial intelligence applications in computer engineering,
160:3–24, 2007.

Han Liang and Yuhong Yan. Improve decision trees for probability-based ranking by lazy learners.
In Tools with Artificial Intelligence, 2006. ICTAI’06. 18th IEEE International Conference on,
pages 427–435. IEEE, 2006.

James D Malley, Jochen Kruppa, Abhijit Dasgupta, Karen G Malley, and Andreas Ziegler. Proba-
bility machines. Methods of Information in Medicine, 51(01):74–81, 2012.

Frank McSherry and Marc Najork. Computing information retrieval performance measures ef-
ficiently in the presence of tied scores. In Proceedings of the IR Research, 30th European
Conference on Advances in Information Retrieval, ECIR’08, pages 414–421, Berlin, Hei-
delberg, 2008. Springer-Verlag. ISBN 3-540-78645-7, 978-3-540-78645-0. URL http:
//dl.acm.org/citation.cfm?id=1793274.1793325.

Ryszard S Michalski, Jaime G Carbonell, and Tom M Mitchell. Machine learning: An artificial
intelligence approach. Springer Science & Business Media, 2013.

Shuzi Niu, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Top-k learning to rank: labeling, ranking
and evaluation. In Proceedings of the 35th international ACM SIGIR conference on Research
and development in information retrieval, pages 751–760. ACM, 2012.

Matthew A Olson and Abraham J Wyner. Making sense of random forest probabilities: a kernel
perspective. arXiv preprint arXiv:1812.05792, 2018.

http://dx.doi.org/10.1007/978-3-540-74958-5_2
http://dx.doi.org/10.1007/978-3-540-74958-5_2
http://dl.acm.org/citation.cfm?id=1793274.1793325
http://dl.acm.org/citation.cfm?id=1793274.1793325

REFERENCES 71

Foster Provost and Pedro Domingos. Tree induction for probability-based ranking. Machine
learning, 52(3):199–215, 2003.

Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. Classifier chains for multi-label
classification. Machine learning, 85(3):333, 2011.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr: Bayesian
personalized ranking from implicit feedback. In Proceedings of the twenty-fifth conference on
uncertainty in artificial intelligence, pages 452–461. AUAI Press, 2009.

Francesco Ricci, Lior Rokach, and Bracha Shapira. Recommender systems: introduction and
challenges. In Recommender systems handbook, pages 1–34. Springer, 2015.

Robert E Schapire and Yoram Singer. Boostexter: A boosting-based system for text categorization.
Machine learning, 39(2-3):135–168, 2000.

Mirjam Seckler, Alexandre N Tuch, Klaus Opwis, and Javier A Bargas-Avila. User-friendly loca-
tions of error messages in web forms: Put them on the right side of the erroneous input field.
Interacting with Computers, 24(3):107–118, 2012.

Shai Shalev-Shwartz and Yoram Singer. Efficient learning of label ranking by soft projections
onto polyhedra. Journal of Machine Learning Research, 7(Jul):1567–1599, 2006.

Bayan Abu Shawar and Eric Atwell. Chatbots: are they really useful? In Ldv Forum, volume 22,
pages 29–49, 2007.

Charles Spearman. The proof and measurement of association between two things. The American
journal of psychology, 15(1):72–101, 1904.

Elia Van Wolputte, Evgeniya Korneva, and Hendrik Blockeel. Mercs: multi-directional ensembles
of regression and classification trees. In Thirty-Second AAAI Conference on Artificial Intelli-
gence, 2018.

Shankar Vembu and Thomas Gärtner. Label ranking algorithms: A survey. In Preference learning,
pages 45–64. Springer, 2010.

Luke Wroblewski. Web Form Design: Filling in the Blanks. Rosenfeld Media, Brooklyn, New
York, first edition, 2008. ISBN 1933820241, 9781933820248.

Ting-Fan Wu, Chih-Jen Lin, and Ruby C Weng. Probability estimates for multi-class classification
by pairwise coupling. Journal of Machine Learning Research, 5(Aug):975–1005, 2004.

Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability estimates from decision
trees and naive bayesian classifiers. In Proceedings of the Eighteenth International Conference
on Machine Learning, ICML ’01, pages 609–616, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc. ISBN 1-55860-778-1. URL http://dl.acm.org/citation.
cfm?id=645530.655658.

Yangming Zhou, Yangguang Liu, Jiangang Yang, Xiaoqi He, and Liangliang Liu. A taxonomy of
label ranking algorithms. JCP, 9(3):557–565, 2014.

http://dl.acm.org/citation.cfm?id=645530.655658
http://dl.acm.org/citation.cfm?id=645530.655658

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Forms in software and web apps
	1.2 Motivation
	1.3 Goals of this work and our approach to the problem
	1.4 Document structure

	2 State of the Art
	2.1 What has been done in form suggestion
	2.2 Machine Learning
	2.3 Preference Learning
	2.4 Label Ranking
	2.4.1 Related Problems
	2.4.2 Data Preparation
	2.4.3 Label Ranking Algorithms

	2.5 Other Machine Learning approaches to Ranking
	2.5.1 Probability Estimation

	2.6 Evaluation Metrics
	2.7 Closely related works
	2.8 Conclusions

	3 Problem Definition
	3.1 Problem Statement
	3.1.1 Forms we are dealing with
	3.1.2 Assumptions
	3.1.3 Suggestion System requirements
	3.1.4 Understanding a suggestion system

	3.2 Proposed solution
	3.2.1 Data preparation for model training and validation
	3.2.2 Model's Features
	3.2.3 Multiple models solution
	3.2.4 Dataset Analysis
	3.2.5 Ranking Approaches and Algorithms
	3.2.6 Model evaluation/validation
	3.2.7 Other metrics

	3.3 Conclusions

	4 Experiments
	4.1 Experimental Setup
	4.2 Implementation and Hardware Details
	4.3 Experiment 1 - RPE vs RPC
	4.3.1 Sampling Strategy
	4.3.2 Results
	4.3.3 Results Analysis

	4.4 Experiment 2 - RPE multiple algorithms
	4.4.1 Sampling Strategy
	4.4.2 Results Sample 1
	4.4.3 Results Sample 2
	4.4.4 Results Analysis

	4.5 Experiment 3 - RPE multiple algorithms with feature pruning
	4.5.1 Results Sample 1
	4.5.2 Results Sample 2
	4.5.3 Results Analysis

	4.6 Conclusions

	5 Conclusions
	5.1 Using ranking algorithms for a form suggestion system
	5.2 Main threats
	5.3 Future Work
	5.4 Final thoughts

	A Experiment 1 Detailed NDCG Results
	B Experiment 2 Detailed NDCG Results
	C Experiment 3 Detailed NDCG Results
	References

