
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Deep Learning for identification and
quantification of oncocytic cells in

microscopic images

Luís Costa

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Rui Camacho (FEUP)

Co-Supervisor: Luís Teixeira (FEUP)

March 19, 2019

Deep Learning for identification and quantification of
oncocytic cells in microscopic images

Luís Costa

Mestrado Integrado em Engenharia Informática e Computação

March 19, 2019

Abstract

In the recent past, digital pathology has become much more powerful and handful. Slide scanners
are able to give, in full detail, images of cells from tissues from patients with different diseases
with all kinds of resolutions allowing pathologists to deeply diagnose tissues resultant by biopsies.
However, identifying all the problematic cells and regions of interest is a laborious task and it is
always dependant on the expert experience and subjectivity.

As big data grows, the need to have powerful tools to analyze complex data increases. Deep
learning takes an important role in the image processing field, providing a whole set of models
powerful enough to extract the most peculiar features.

Bioinformatics benefits from evolution of these technologies and histopathological image anal-
ysis has become a vast field of study. Different models have been proposed on a variety of diseases
and its success earned the interest of Deep Learning enthusiasts.

The aim of this project is to ease the pathologist task of speeding up and automating the
tasks of manually annotating tumor cells and do the counting in order to understand the disease
severity. Therefore, we propose a tool for friendly annotation and a framework that processes high
resolution images of thyroid tissue to identify and classify oncocytes, a type of tumor cells that
can be found in a few organs. The detection of these cells can help on the diagnosis and treatment
of several diseases such as thyroid cancer. These oncocytic tumor cells are larger, have a rounder
nucleus, less intercellular space and a more intense eosinophilic staining. In our methodology, we
explore these characteristics and present the performance of different Deep Learning architectures
and their results.

The framework relies on an end-to-end image processing pipeline that includes a tool for image
annotation with pre-segmented nucleus. The task of the pathologist is to correctly label each of
those images providing a reliable dataset that is used to the model construction.

The results show that image processing is very helpful on histopathological images analysis.
Different staining, light conditions and hardware specifications can contribute to image quality
degradation. Our image processing module helps to increase state of the art deep learning models
accuracy.

Keywords: Neural Networks, Deep Learning, Machine Learning, Bioinformatics

i

Resumo

Nos últimos anos, a patologia digital tem-se tornado cada vez mais útil e poderosa. O uso de
equipamentos para digitalização de amostras de tecido resultante de biópsias fornecem, em com-
pleto detalhe, imagens de diversas doenças com múltiplos níveis de resolução que permitem ao
patologista uma análise profunda e minuciosa.

O objectivo deste projecto é implementar uma ferramenta que ajude o patologista no processo
de idenficação e contagem de células cancerígenas que permitem fazer o diagnóstico e ter conheci-
mento do grau de severidade da lesão. Propomos uma ferramenta de utilização fácil e um processo
de construção de modelos para a detecção de oncócitos. Oncócitos são um tipo de célula cancerí-
gena que aparecem em diversos órgãos, nomeadamente a tiróide. Estas células sao conhecidas por
terem núcleos mais arredondados e uma forma eosinofílica e elevado número de mitocondria no
citoplasma. Na nossa metodologia, exploramos estas características morfológicas e apresentamos
o desempenho de diferentes modelos de Deep Learning e suas arquitecturas.

O modelo contém um processamento completo de imagens de alta resolução de tecidos da
tiróide que depois são apresentadas ao especialista para serem anotadas como cancerígenas ou
não. Desta anotação surgem os dados que são utilizados para o desenvolvimento do modelo de
classificação.

Os resultados demonstram que o processamento das imagens de alta resolução é muito im-
portante pois existem diversos factores que podem prejudicar a qualidade da imagem. Visto que
a principal característica destas imagens é a quantidade de informação, todo o processamento em
prol da melhoria da sua qualidade é bastante benéfico para a sua futura avaliação. Os mode-
los utilizados para a classificação das células cancerígenas demonstram que, com o devido poder
computacional, é possível ter uma eficácia elevada, equiparável à classificação feita por especial-
istas.

Keywords: Redes Neuronais Artificiais, Deep Learning, Aprendizagem Computational, Bioin-
formática

iii

Acknowledgements

I would like to thank my supervisors, professor Rui Camacho and Luís Teixeira of the Faculty of
Engineering of the University of Oporto. It was not always easy but the effort was worth it and
you always managed to get me in the right path.

I would also like to thank to my friends that have been with me throughout this course and at
the end of the day, they are the only ones that can exactly feel your pain.

I am thankful to my family. My mother, my brother and my grandparents for all the support
and for reminding me that there is no place like home.

And to my beloved girlfriend that I could never praise enough, I want to thank her for all the
effort, all the love and all the nerve. She inspired me to always want something more and she
inspired me to do this.

And thank you Rufus, my dog, for looking at me while I was blabbering about the all the
hyper-parameters that were consuming my soul.

You are the best.

Luís Costa

v

‘Fitter, happier,
More productive,

Comfortable,
Not drinking too much

Regular exercise at the gym, three days a week
Getting on better with your associate employee contemporaries

At ease
Eating well, no more microwave dinners and saturated fats

A patient, better driver
A safer car, baby smiling in back seat

Sleeping well, no bad dreams
No paranoia

Careful to all animals, never washing spiders down the plughole
Keep in contact with old friends, enjoy a drink now and then

Will frequently check credit at moral bank, hole in wall
Favours for favours, fond but not in love

Charity standing orders on sundays, ring-road supermarket
No killing moths or putting boiling water on the ants

Car wash, also on sundays
No longer afraid of the dark or midday shadows, nothing so ridiculously teenage and desperate

Nothing so childish
At a better pace, slower and more calculated

No chance of escape
Now self-employed

Concerned, but powerless
An empowered and informed member of societ, pragmatism not idealism

Will not cry in public
Less chance of illness

Tires that grip in the wet, shot of baby strapped in backseat
A good memory

Still cries at a good film
Still kisses with saliva

No longer empty and frantic
Like a cat

Tied to a stick
That’s driven into

Frozen winter stuff, the ability to laugh at weakness
Calm, fitter, healthier and more productive

A pig in a cage on antibiotics’

Thomas Edward Yorke

vii

Contents

1 Introduction 1
1.1 Context and Framing . 1
1.2 Problem Description . 1
1.3 Motivation . 2
1.4 Goals . 3
1.5 Thesis Contribution . 3
1.6 Structure of the Report . 3

2 Domain and technological background 5
2.1 Biological Background . 5
2.2 Image Data and Pre-Processing . 7
2.3 Deep Learning Background . 9

2.3.1 Convolutional Neural Networks . 23
2.3.2 ResNet . 25
2.3.3 DenseNet . 29
2.3.4 InceptionV3 . 35
2.3.5 R-CNN . 39
2.3.6 Fast R-CNN . 41
2.3.7 Faster R-CNN . 42
2.3.8 Mask R-CNN . 43
2.3.9 U-Net . 45
2.3.10 Capsule Networks . 47

2.4 Image Processing . 49
2.4.1 Canny Edge Detection . 49
2.4.2 Color . 50
2.4.3 Contrast . 53
2.4.4 Morphology . 55
2.4.5 Watershed . 58
2.4.6 Normalizing Staining . 59

2.5 Chapter Summary . 61

3 Methodology 63
3.1 Data Loading and Preprocessing . 63
3.2 Nuclei identification . 68
3.3 Experimental Procedure . 74

3.3.1 Dataset . 74
3.3.2 Data Augmentation . 74
3.3.3 Hardware Specification . 75

ix

x CONTENTS

3.3.4 Deep Learning Software . 75
3.3.5 Experimental Setup . 76

4 Oncofinder 85
4.1 Overall Interface . 86

4.1.1 Open Project . 86
4.1.2 Manage Images . 87
4.1.3 Load Annotations . 88
4.1.4 Draw Section . 88
4.1.5 Save Annotations . 89
4.1.6 Manage Attributes . 89
4.1.7 Label Image . 89
4.1.8 Save Project . 89

4.2 Chapter Summary . 90

5 Conclusions and Future Work 91
5.1 Objectives Fulfillment . 91
5.2 Future Work . 92

References 93

List of Figures

1.1 Whole Slide Image example at lowest magnification (0 zoom level) 2

2.1 Cell Structure . 6
2.2 Example of an oncocyte and a non-oncocyte . 7
2.3 A gigapixel Whole Slide Image in the center and 4 tiles and the left and right side. 8
2.4 Biological neural network . 10
2.5 Simple Feedforward Neural Network . 11
2.6 Deep Learning system to that represents the concept of an image of a person . . . 12
2.7 Learning rate increases after each mini-batch 14
2.8 SGD with and without momentum . 15
2.9 Nesterov Update Vector . 16
2.10 CNN structure . 23
2.11 A neuron of a convolutional layer performing a convolution operation with a 3 x

3 receptive field on an RGB image . 25
2.12 Receptive field, stride and padding . 26
2.13 A neuron of a pooling layer performing a max pooling operation with a 3 x 3

receptive field on neurons of an underlying layer 27
2.14 ResNet Concept . 27
2.15 ResNet Architecture . 28
2.16 Bottleneck Design of Residual Neural Networks 28
2.17 ResNet overall architecture for all network . 29
2.18 Standard Convolutional Neural Net Concept . 30
2.19 Standard Dense Block . 30
2.20 Dense Block with Growth Rate k . 30
2.21 Concatenation during Forward Propagation. Each layer passes its own feature

maps to the subsequent layer. The process is repeated by every layer. 31
2.22 Composition Layer . 32
2.23 DenseNet-B . 32
2.24 Multiple Dense Blocks . 32
2.25 Implicit “Deep Supervision” . 33
2.26 Number of Parameters for ResNet and DenseNet. Due to the concatenation during

Forward Propagation, feature maps are reused and at the end of the last dense
block, a global average pooling is performed with a softmax classifier reducing
the output to the desired number of channels. 33

2.27 More Diversified Features. Densenet keeps high and low complex features which
results in more diversity. 34

2.28 Standard ConvNet . 34
2.29 DenseNet overall architecture . 34

xi

xii LIST OF FIGURES

2.30 Two 3x3 convolutions replacing one 5x5 convolution 35
2.31 Inception Module A using factorization . 36
2.32 One 3x1 convolution followed by one 1x3 convolution replaces one 5x5 convolution 36
2.33 Inception Module B using asymmetric factorization 37
2.34 Inception Module C using asymmetric factorization 37
2.35 Auxiliary Classifier act as a regularization . 38
2.36 Conventional downsizing (Top Left), Efficient Grid Size Reduction (Bottom Left),

Detailed Architecture of Efficient Grid Size Reduction (Right) 38
2.37 Inception-v3 Architecture (Batch Norm and ReLU are used after Conv) 38
2.38 The y-axis is the error rate on ImageNet. In 2015 the error rate of humans is

slightly higher than the CNN model presented 39
2.39 R-CNN architecture . 40
2.40 Fast R-CNN combined the CNN, classifer, and bounding box regressor into one,

single network . 41
2.41 In Faster R-CNN is used for region proposals and classifications 43
2.42 The Region Proposal Network slides a window over the features of the CNN. At

each window location, the network outputs a core and a bounding box per anchor 44
2.43 Regional Proposal Networks follow the same intuition of humans to recognize

objects. We know that the bounding boxes for people tend to be rectangular and
vertical. We can use this same principle to create an anchor of such dimensions . 45

2.44 Mapping a region of interest onto a feature map 46
2.45 Mask R-CNN aggregates the best of the previous model by being able to segment

and classify objects in an image . 47
2.46 Overlap strategy for high resolution images . 48
2.47 (a) raw image (b) overlay with ground truth segmentation. Different colors indi-

cate different instances of cells. (c) generated segmentation mask (white:foreground,
black: background). (d) map with a pixel-wise loss weight to force the network to
learn the border pixels . 49

2.48 U-net architecture . 50
2.49 Important differences between capsules and neurons 51
2.50 The original image (a) with edges enhanced as it is shown in (b). 51
2.51 The original image (a) is converted to a Grayscale image (b). 52
2.52 Eosin channel filter image processing. The cytoplasm in the original image (a)

that is highlighted with eosin staining gains a black color (b). 52
2.53 Hematoxylin channel filter image processing. The nucleus in the original image

(a) that is highlighted with hematoxylin staining gains a black color (b). 53
2.54 Contrast Stretching Image Processing. The contrast in the original image (a) is

increased by stretching the image colors’ intensity to a [0,255] range (b). 54
2.55 Histogram Equalization Image Processing. Areas with low image contrast in the

original image (a) gain an higher contrast and areas with similar contrast are high-
lighted from each other as shown in (b). 54

2.56 Adaptive Equalization Image Processing. The original image (a) is enhanced by
generating several histograms for each section of the image resulting in the image
(b). 55

2.57 Binary Dilation with a different disk size. In the image (a), disk= 5 enlarges bright
areas in a smaller area comparing with a disk= 20 (b). 56

2.58 Binary Erosion. Edges eroded with disk= 5 (a) and disk= 20 (b). 57
2.59 Binary Opening. Bright areas enlarged with disk= 5 (a) and disk= 20 (b). 58

LIST OF FIGURES xiii

2.60 Binary Closing with disk= 5 (a) removes small holes with lesser area comparing
with disk= 20 (b). 58

2.61 A geographical watershed. 59
2.62 Visualizing the watershed: the image on the left can be topographically repre-

sented as the image on the right . 60
2.63 Example: Segmenting Steel Grains . 60
2.64 Normalize Staining . 61

3.1 Spark Application architecture. A driver to manage the job flow and schedule
tasks and executors that run concurrently in a single process. 64

3.2 Stain normalized image . 67
3.3 HED to Eosin Channel . 67
3.4 Histogram Equalization Contrast . 68
3.5 Resulting Masks from the model. Three visible targets: nucleus (blue), boudaries

(light blue) and background (black) . 70
3.6 Masks after Watershed postprocessing . 70
3.7 Resulting Masks of a single patch . 72
3.8 Resulting mask of a single patch with watershed 72
3.9 Resulting mask of a single patch with watershed and binary erosion 73
3.10 Framework pipeline. 74
3.11 Training versus Validation loss on ResNet101 77
3.12 Early Stopping on ResNet101 . 78
3.13 Learning Rate and Loss for ResNet101 model 80
3.14 Accuracy and Learning Rate decay for ResNet54 model 81
3.15 Learning Rate and Loss for ResNet54 model . 81
3.16 On the right image we can see a tumor binary mask and on left image the heatmap

image based on the tumor probability. 83

4.1 Oncofinder Use Case Diagram . 85
4.2 Oncofinder main page . 86
4.3 Project file upload window . 87
4.4 Oncofinder main page . 88
4.5 Annotations file upload window . 88
4.6 Region Shape menu. From left to right, the user can draw the in the following

shapes: rectangle, circle, elliptical, polygon, points, lines. 89
4.7 Manage Attributes submenu . 90
4.8 Label image interface . 90

List of Tables

3.1 Transformations applied to our WSI dataset . 66
3.2 Size comparison between three WSIs before and after Foreground Extraction. . . 68
3.3 Train, valid and test set samples distribution . 75
3.4 Results without image processing . 80
3.5 Test Results . 81

xv

Abbreviations

AUC Area Under Curve
CapsNet Capsule Networks
CNN Convolutional Neural Networks
CPU Central processing unit
CV Computer Vision
DenseNet Densely Connected Convolutional Networks
DL Deep Learning
DP Digital Pathology
FE Foreground Extraction
FPR False Positive Rate
GPU Graphics processing unit
LR Learning Rate
MIA Medical Images Analysis
ML Machine Learning
NN Neural Network
RDD Resilient Distributed Database
ResNet Residual Neural Network
ROI Region of Interest
RPN Region Proposal Network
SGD Stochastic Gradient Descent
TPR True Positive Rate
WSI Whole Slide Imge

xvii

Chapter 1

Introduction

1.1 Context and Framing

In the past few years, as computational power and digital pathology have grown, it is possible

to store, process and analyze high resolution medical images, such as slide images from biop-

sies. Two areas that proved to be useful when processing these images are Computer Vision and

Data Mining. Computer Vision is an interdisciplinary field that aims at giving a high-level under-

standing of the world to a computer from images and videos. Computer Vision has the ability of

"making a computer see" and tries to do what a human brain does with the retinal input. Data

Mining provides a set of techniques and methods that help to classify and build models from data.

Combining these two areas, it is possible to extract a set of complementary features that can give

us important insights about the phenomenon that produced the data that could not be retrieved by

manual methods. The work covered by this thesis is concerned about these technologies and how

they can be used to identify, count and classify oncocytes in Whole Slide Images (WSI). WSI are

used in Digital Pathology (DP) and is currently regarded as one of the most promising avenues of

diagnostic medicine in order to achieve even better, faster and cheaper diagnosis, prognosis and

prediction of cancer and other important diseases.

DP is the process by which histology slides are digitized to produce high-resolution images.

DP is becoming increasingly common due to the growing availability of whole slide digital scan-

ners. These digitized slides lead to the possibility of applying image analysis techniques to DP for

application in detection, segmentation and classification.

1.2 Problem Description

Recent studies on DNA mutations have shown that these are intimately related to complex dis-

eases. One example is the formation of oncocytes which originate tumors. To identify these

problems, pathologists have to analyze the phenotype of each cell and its morphology which can

a be labor intensive process. Lately, with the growth of digital pathology, it is possible to access

high resolution images, with a high number of characteristics and information. These images are

1

2 Introduction

Figure 1.1: Whole Slide Image example at lowest magnification (0 zoom level)

from a microscopic viewing with fine-grained attributes that might be ignored by the person who

is examining or escape the human eye. Combining the recent events in Digital Pathology with

the evolution of computational power, tools can hopefully be developed to automate and speed

up the identification of abnormal cells. A previous study [6], showed that it is possible to do this

classification recurring to traditional Machine Learning (ML) algorithms. One such example are

Deep Learning techniques that proved to be more effective and robust to either do segmentation

and classification than traditional ML methods. In this thesis we try to improve the previous re-

sults with a methodology that keeps up with the state of the art in Medical Image Analysis (MIA).

Furthermore, we focus on the image processing phase, using state of the art models to do the

identification and segmentation of cell nucleus. The high quality microscopic images that will be

used are available through the National Institutes of Health (NIH), and one example can be seen

in Figure 1.1. In order to successfully classify oncocytic cells, we need to analyze the images with

the help of experts. They will help us understand whether a cell shows abnormal characteristics

that result in an oncocyte and which features are useful to classify them.

1.3 Motivation

In [6], traditional machine learning algorithms have shown useful and efficient in many contexts

as they have the capacity to not only significantly reduce the laborious and tedious act of man-

ually analyze every slide image and provide accurate quantification (e.g. severity of the disease,

number of oncocytes), but to act as a complementary insight that can reduce the subjectivity of

1.4 Goals 3

each pathologist analysis. With our approach, we intend to improve further the classification reli-

ability, providing a method to ease the quantification (e.g. oncocytes counting) or tissue grading

(classification). An increased performance would mean a better diagnosis which leads to a better

treatment and better prognosis prediction.

This is a very hard task even for an experienced pathologist. Slide images provide a high level

of detail and its analysis require full observation of the tissue and its components. This evaluation

relies on the quality of the data provided by digital scanners and on the expert perception which

can lead to faulty information.

1.4 Goals

The main objective of this dissertation is to provide a method that would improve the identification,

count and classification of oncocytes in digital microscopic images. We focus on the identification

methodology proposing some state of the art methods for delineating an accurate boundary for

cytologic primitives (i.e cells, nuclei) so that precise morphological features can be retrieved.

To accomplish that, few intermediary steps are needed to improve the process. Each of these

guidelines need to be taken into account carefully since they have an influence on further analysis.

Our goals include:

• preprocess high resolution images to make the analysis can be computationally feasible

• identify the cells, their nuclei or both taking into account overlapping cells

• distinguish between oncocytic and non-oncocytic cells

• quantify the number of oncocytes present in the slide image

• produce an heatmap that shows regions of interest of a given slide. The heatmap is a friendly

representation of our model results.

1.5 Thesis Contribution

We intend to show that DL methods can achieve a superior performance compared with traditional

Machine Learning algorithms and reach a performance very close of the classification done by

experts. We also propose an Image Processing module that increases the accuracy of several DL

models.

1.6 Structure of the Report

Besides this introduction, this dissertation has other 4 chapters. In Chapter 2 we present and

discuss state of the art related to the research areas involved in our problem domain that will give

us insights about the best approach to be taken. Our methodology can be seen as a threefold

4 Introduction

model, sequentially organized. For each topic, we present current solutions that can be applied

in our project. In chapter 3 presents the approach that we chose to reach the desired product and

we present an experiment conducted to support our methodology and the results obtained by our

prototype. In chapter 4 we present our annotation tool, Oncofinder, show the application interface

and its main features. At last, in chapter 5 discuss our results and point out future improvements.

Chapter 2

Domain and technological background

In this chapter, we provide a meaningful background about our problem and the methods that will

be applied to address it. To start, we provide a biological background illustrates some primitive

concepts about cells’ morphology. This chapter will help to understand which histologic parts we

need to take into account in the identification process. The major domains concerning our project

and research are associated with Computer Vision and Deep Learning techniques. We present a set

of different methods that can be applied to solve our problem. For each method, we discriminate

the advantages and drawbacks in order to choose the best approach and the one that would take us

closer to the results we pursue.

2.1 Biological Background

In this chapter we present a brief introduction to the biological concepts that are helpful to un-

derstand what is being done and why. First, it is crucial to have an overview of the structure of

an animal cell and its histological primitives (e.g, nuclei, mitochondria, ribosomes). Figure 2.1,

gives an overview of a cell structure.

As shown in Figure 2.1, one unique cell is composed by a set of components, each of them

with a particular function. For this project purpose, the most relevant component are the mitho-

condrion and the nucleus. Mithocondrion is a double-membrane organelle that is responsible for

energy production from oxygen and glucose. The nucleus maintains the integrity of genes and con-

trols the activities of the cell by regulating gene expression—the nucleus is, therefore, the control

center of the cell. The main structures making up the nucleus are the nuclear envelope, a double

membrane that encloses the entire organelle and isolates its contents from the cellular cytoplasm,

and the nuclear matrix (which includes the nuclear lamina), a network within the nucleus that adds

mechanical support.

Cancer or malignant tumor is a group of diseases with the potential to invade or spread to

several organs. Cancer can initiate in any part of the body and it starts when cells begin to grow out

of control and crowd out normal cells [42]. On the other hand, benign tumor do not spread to other

organs and can be controlled. Cancer is among the leading causes of death worldwide. In 2012,

5

6 Domain and technological background

Figure 2.1: Cell Structure1

there were 14.1 million new cases and 8.2 million cancer-related deaths worldwide. The number

of new cancer cases per year is expected to rise to 23.6 million by 2030. In 2018, an estimated

1,735,350 new cases of cancer will be diagnosed in the United States and 609,640 people will die

from the disease. The most common cancers (listed in descending order according to estimated

new cases in 2018) are breast cancer, lung and bronchus cancer, prostate cancer, colon and rectum

cancer, melanoma of the skin, bladder cancer, non-Hodgkin lymphoma, kidney and renal pelvis

cancer, endometrial cancer, leukemia, pancreatic cancer, thyroid cancer, and liver cancer. In this

project we will focus on thyroid cancer [26]. Thyroid gland, or simply the thyroid, is an endocrine

gland in the neck, below the Adam’s apple. The thyroid gland secrets thyroid hormones, which are

primarily influence in the metabolic rate and protein synthesis. Thyroid cancer can be detected

through oncocytes. An oncocyte is an epitheleal cell characterized by an abnormal number of

mitochondria and hence displaying a grainy, eosinophilic appearance and a swollen cytoplasm.

Oncocytes also display a bigger and less pleomorphic (more rounded) nuclei. As the cytoplasm

is swollen, the cells are bigger which increases the distance between the nuclei and neighbor

cells. These characteristics are important to distinguish oncocytes from normal thyroid tumor

cells. This celular phenotype can also occur in other diseases but most of these oncocytomas

are usually benign displaying low invasiveness, although a few can become malignant, especially

in the thyroid. Tumors can contain a mix of cells with and without this phenotype and what

determines a tumor as oncocytic depends on the fraction of oncocytic cells within a tumor passing

a relatively high threshold - typically 75% [9].

In conclusion, the presence of oncocytes does not determine the existence of a malignant

tumor. Therefore, a quantitative and qualitative observation of these cells is needed in order to

evaluate the disease severity.

1https://biology.tutorvista.com/animal-and-plant-cells/animal-cell.html

2.2 Image Data and Pre-Processing 7

(a) (b)

Figure 2.2: Example of an oncocyte (a) and non-oncocyte (b)

The difference between oncocytes and non-oncocytes can be seen in the two tissues shown on

2.2. The Figure 2.2a shows a cell with a rounded nuclei in the upper left corner, a swollen cyto-

plasm and consequently with a higher distance from neighbor cells. This represents an oncocyte.

On the other hand, in Figure 2.2b, the image shows how a non-oncocytic (normal thyroid cell) is:

more flatten and with no swollen cytoplasm, resulting in a smaller inter-nuclei distance.

2.2 Image Data and Pre-Processing

Biological Images

In Biological Imaging, to highlight distinct structures in microscopy images of tissue samples,

tissue staining is commonly used. Frequently two stains, such as hematoxylin and eosin (H&E),

are applied for purposes such as discriminating cell nuclei and cytoplasm. Variations in staining

results can be normalized by using fully standardized staining protocols. However, a precise

control over the stain color and is not possible: stains fade over time, colors may differ slightly,

slides may have been imaged on different microscopes.

After the tissue staining with H&E, the histological slides digitization is possible by means of

digital scanners or microscopes equipped with cameras. This technique can replace physical slides

for educational purposes, remote consultancies and, mainly, for the development of automated

images-based systems.

Whole Slide Tissue Images (WSI) refers to scanning of conventional glass slides in order

to produce digital slides. This is the most recent imaging modality being employed by patholo-

gists departments worldwide. WSI continues to gain traction among pathologists for diagnostic,

educational, and research purposes[28]. In Figure 2.3 [16] we can see an example of a WSI.

These images can have a resolution in the 40 000 pixels order both on width and height, which

added the problem of being a wide image to display on a computer screen. Downsampling is not

an option, since discriminating details could be lost and that would imply a loss of features[16].

Therefore, to solve these problems the WSIs need to be split into smaller tiles. The idea is to

take an image and divide it in smaller images that can be computationally processed in reasonable

time. However, tiling have some drawbacks that need to be taken into account. As we stated

before, these images are very rich and can contain a lot of useful information, when cropping the

8 Domain and technological background

Figure 2.3: A gigapixel Whole Slide Image in the center and 4 tiles and the left and right side.

image we need to be sure that we will not jeopardize its content by losing important components

(e.g. cropping a cell in half).

Computational methods are being widely developed for histological image-based applications,

since they improve analyses through segmentation until diseases classification. In this project we

used Image Processing for the preprocessing phase for foreground extraction, staining normaliza-

tion and image enhancement.

Available libraries

OpenSlide2

OpenSlide is a C library that provides a simple interface for reading whole-slide images, also

known as virtual slides, which are high-resolution images used in digital pathology. These images

can occupy tens of gigabytes when uncompressed, and so cannot be easily read using standard

tools or libraries, which are designed for images that can be comfortably uncompressed into RAM.

Whole-slide images are typically multi-resolution; OpenSlide allows reading a small amount of

image data at the resolution closest to a desired zoom level. OpenSlide can read WSI in several

formats. The WSI provided by NCI are in Aperio (.svs, .tif) format.

OpenCV3

OpenCV (Open Source Computer Vision Library) is released under a BSD license and hence it is

free for both academic use. It contains C++, Python and Java interfaces and supports Windows,

Linux, Mac OS, iOS and Android. OpenCV was created for computational efficiency and with

focus on real-time applications. Written in optimized C/C++, the library can take advantage of

2https://openslide.org/
3https://opencv.org/

2.3 Deep Learning Background 9

multi-core processing. Enabled with OpenCL, it can take advantage of the hardware acceleration

of the underlying heterogeneous compute platform.

2.3 Deep Learning Background

Deep Learning is a field of a broader family of Machine Learning algorithms. So, before getting

into Deep Learning in detail, it is mandatory to provide some foundations of what is Machine

Learning and how computers are able to learn. Learning is the process by which an entity acquires

information by either experimentation/studying or getting taught. There are two types of learning,

supervised and unsupervised.

Many Deep Learning algorithms are currently the state-of-art image classifiers [4, 15, 21, 22,

16]. However, due to high computational cost, deep learning algorithms cannot be applied to very

high resolution images, such as microscopic images due to the high number of features and lack of

computational power to process them. MIA requires a careful and detailed preprocessing in order

to decrease the dataset magnitude and make it suitable for feature extraction.

Supervised and Unsupervised Learning

Supervised Learning

Supervised is the type of learning where we help the computer determine what it needs to achieve

by giving it the desired results along with the input in the training data. A supervised learning

algorithm analyzes the training data and produces an inferred function, which can be used for

mapping new examples. A common problem of this kind of approach is overfitting. Overfitting

happens when the model learns the data instead of learning the functions, so when presented with

new data that was not present initially it performs poorly because it is too adapted to the training

set. This phenomenon usually happens when the dataset is too small or homogeneous.

Unsupervised Learning

Unsupervised Learning is the task of inferring a function that describes the structure of unlabeled

data. In supervised learning our data is classified or categorized and we know the result and by

inferring a function from the initial dataset we can map new examples. This does not happen in

unsupervised learning, since the data is unlabeled there is no straightforward way to evaluate the

accuracy of the structure that is produced by the algorithm. Instead it is used to find relationships

among the given data, for instance, clustering, which is one of the most commonly unsupervised

learning techniques.

In our project, only Supervised Learning is used.

10 Domain and technological background

Figure 2.4: Biological neural network4

Deep Neural Networks

Neural network or artificial neural network is one of the frequently used buzzwords in analytics

these days. Neural network is a machine learning technique which enables a computer to learn

from the observational data. Neural network in computing is inspired by the way biological ner-

vous system process information.

Biological neural networks consist of interconnected neurons with dendrites that receive in-

puts. Based on these inputs, they produce an output through an axon to another neuron (Fig-

ure 2.4).

In the computing world, neural networks are organized on layers made up of interconnected

nodes which contain an activation function. These patterns are presented to the network through

the input layer which further communicates it to one or more hidden layers. The links between the

output of a neuron and the input of another one have numeric weights assigned that represent the

strength of the connection between the two nodes. The hidden layers perform all the processing

and pass the outcome to the output layer (Figure 2.5).

There is no general consensus about the definition of deep neural network but it can be seen

as any artificial neural network that has several hidden layers, typically more than two. By having

multiple layers these networks are able to learn representations of the data with multiple levels of

abstraction [13]. Deep Learning solves the central problem in representation learning by introduc-

ing representations that are represented in terms of other, simpler representations. Deep learning

enables the computer to build complex concepts out of simpler concepts. Figure 2.6 shows how

a deep learning model can represent the concept of an image of a person by combining simpler

concepts, such as corners and contours, which are defined in terms of edges [13].

In Section 2.6 we provide an illustration of a deep learning model. It is difficult for a computer

to understand the meaning of raw sensory input data, such as this image represented as a collection

of pixel values. Learning or mapping this mapping seems insurmountable if tackled directly. So,

4https://en.wikipedia.org/wiki/Biological_neuron_model

2.3 Deep Learning Background 11

Figure 2.5: Simple Feedforward Neural Network5

Deep Learning methods solve this problem by dividing the desired complex mapping into a series

of nested simple mappings, each described by a different layer of the model. If we look at the

picture, the visible layer that, as the name says, contains variables that are actually visible in the

image (e.g the color of the person’s shirt, the skin color, the foreground, etc). Then we have a

series of hidden layers that increasingly extract abstract features from the image. These features

cannot be observed in the image, that is why they are called hidden. Instead the model should be

able to determine which concepts are useful for explaining the semantics in the given data.

Given the pixels, the first layer can easily identify edges, by comparing the brightness and

neighboring pixels. The first hidden layer searches for corners and contours, which are recogniz-

able as a collection of edges. The second hidden layers give information about the image in terms

of edges and contours and then the third hidden layers can detect entire parts of specific objects,

by finding specific collections of contours and corners [44]. The description of this image in terms

of geometric primitives can be used to recognize objects in the image.

Training the models - Backpropagation

Backpropagation is the common method to use when training an artificial neural network. It is

commonly used with an optimization method called gradient descent. Gradient Descent is an

optimization algorithm that is used to finad a local minimum of a function, called the cost or error

functions. There are three variations of gradient descent [33]:

5https://medium.com/@rajatgupta310198/getting-started-with-neural-network-for-regression-and-tensorflow-
58ad3bd75223

12 Domain and technological background

Figure 2.6: Deep Learning system to that represents the concept of an image of a person [13]

Batch Gradient Descent

Batch Gradient Descent computes the gradient of the cost function with respect to the parameters

θ for the entire training dataset:

θ = θ −η ·∇θ J(θ)

In this algorithm the gradient is calculated to the entire dataset before performing one update,

which can make the process slow for big datasets or even very difficult to do when the dataset does

not fit in memory.

Stochastic gradient descent

Instead of computing the cost function for the whole dataset every time an update is done, Stochas-

tic gradient descent (SGD) performs a parameter update for each training sample:

θ = θ −η ·∇θ J(θ ;x(i);y(i))

Where x(i) and y(i) are a sample of the training set. While batch gradient descent has redun-

dancy problems (the cost functions need to be recomputed every time there is an update), SGD

does away with this redundancy by performing an update at a time. This approach solves the prob-

lem where the dataset is too large to fit in memory and, in addition to this, has a faster convergence,

2.3 Deep Learning Background 13

since since it avoids the computation of similar values on each parameter update. Nevertheless, it

can lead to some fluctuations on the minimization of the objective function.

Mini-batch gradient descent

Mini-batch gradient descent takes the best of both previous approavhes and performs an update

for every mini-batch of n training examples:

θ = θ −η ·∇θ J(θ ;x(i:i+n);y(i:i+n))

Where x(i:i+n) and y(i:i+n) are elements from a batch with size n This approach has two major

advantages:

• Reduces the variance of the parameter updates, which can lead to more stable convergence

• can make use of highly optimized matrix optimizations common to state-of-the-art deep

learning libraries that make computing the gradient with respect to a mini batch very effi-

cient.

By choosing a small batch of data, this approach reduces the fluctuations of the parameter

updates in comparison to the updates from the stochastic approach. An epoch is a forward pass

and a backward pass of all training examples. In other words, an epoch is complete as soon as

all the examples in the dataset are processed. On the other hand, an iteration is completed after

each mini-batch is processed. The number of iterations in an epoch depends on the size of the

mini-batch.

In the case of neural networks, gradient descent is used to find the optimal value for each

weight, since its optimal value is at the global minimum, which sometimes cannot be satisfied

because gradient descent can get stuck in a local minimum, being one of its limitations. Choosing

a learning rate can help with this issue. The learning rate tells the optimizer how far to move the

weights in the direction of the gradient for a mini-batch. If the learning rate is low, then training

is more reliable, but optimization will take a lot of time because steps towards the minimum of

the loss function are tiny. On the other hand, if the learning rate is hight, then training may

not converge or even diverge. Weight changes can be so big that the optimizer overshoots the

minimum and makes the loss worse.

There are multiple ways to select a good starting point for the learning rate. A naive approach

is to try different values and see which one gives you the best loss without sacrificing speed of

training. When we start with a large learning rate, the loss does not improve and probably even

grows while we run the first few iterations of training. When training with a smaller learning

rate, at some point the value of the loss function starts decreasing in the first few iterations. This

learning rate is the maximum we can use, any higher value doest not let the training converge.

Even this value is too high: it won’t be good enough to train for multiple epochs because over

time the network will require more fine-grained weight updated.

14 Domain and technological background

Figure 2.7: Learning rate increases after each mini-batch6

To ease the learning rate choose, Leslie N. Smith describes a powerful technique to select a

range of learning rates for a neural network [33]. The idea is to train a network starting from a low

learning rate and increase the learning rate exponentially for every batch (Figure 2.7).

Record the learning rate and training loss for every batch and then, plot the loss and the learn-

ing rate. Typically, it looks like this:

First, with low learning rates, the loss improves slowly, then training accelerates until the

learning rate becomes too large and loss goes up: the training process diverges.

We need to select a point in the graph with the fastest decrease in the loss. In this example, the

loss function decreases fast when the learning rate is between 0.001 and 0.01.

Selecting a starting value for the learning rate is just one part of the problem. Another thing

to optimize is the learning schedule: how the learning rate evolves and changes during training.

Learning rate schedules [35] practically eliminates the need to experimentally find the best values

and schedule for the global learning rates. Instead of monotonically decreasing the learning rate,

this method lets the learning rate cyclically vary between reasonable boundaries values. Train-

ing with cyclical learning rates instead of fixed values achieves improved classification accuracy

without a need to tune and often in fewer iterations.

In sum, backpropagation tries to find the minimum of the error function in the weight space

using gradient descent. The general steps of the algorithm in a neural network the following:

1. Initialize network weights and biases

6https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performance-in-deep-
learning-d0d4059c1c10

2.3 Deep Learning Background 15

(a) SGD without momentum (b) SGD with momentum

Figure 2.8: SGD with and without momentum7

2. Weights are propagated forward through the network

3. The output error is calculated

4. Compute hidden and input layers weights by calculating the partial derivative of the error

function with respect to the given weight

5. Update network weights by multiplying the negative of the computed partial derivatives

with the learning rate

6. Repeat until stop condition is met

Gradient Descent Optimization Algorithms

In the following, we will provide a comprehensive overview of some algorithms that are widely

used by the deep learning community to deal with the aforementioned challenges. Algorithms that

are infeasible to compute (e.g Newton’s method) are not presented.

Momentum

Stochastic Gradient Descent has trouble navigating areas where the surface curves much more

steeply in one dimension than in another [36], which are common around local optima. In these

scenarios, SGD oscillates across the slopes of the ravine while only making hesitant progress along

the bottom towards the local optimum as in 2.8.

Momentum is a method that helps accelerate SGD in the relevant direction and dampens oscil-

lations as can be seen in Figure 2.8b, which are common around local optima. In these scenarios,

SGD oscillates across the slopes of the ravine while only making hesitant progress along the bot-

tom towards the local optimum as in Figure 2.8a. It does by adding a fraction γ of the update

vector of the past time step to the current update vector:

vt = γvt−1 +η∇θ J(θ)

θ = θ − vt

Essentially, when using momentum, we push a ball down a hill. The ball accumulates mo-

mentum as it rolls downhill, becoming faster and faster on the way (until it reaches its terminal

7https://www.willamette.edu/ gorr/classes/cs449/momrate.html

16 Domain and technological background

Figure 2.9: Nesterov Update Vector8

velocity if there is air resistance, i.e. γ < 1). The same thing happens to our parameter updates:

The momentum term increases for dimensions whose gradients point in the same directions and

reduces updates for dimensions whose gradients change directions. As a result, we gain faster

convergence and reduces oscillation.

Nesterov accelerated gradient

However, a ball that rolls down a hill, blindly following the slope, is highly unsatisfactory. We

would like to have a smarter ball, a ball that has a notion of where it is going so it knows to slow

down before the hill slopes up again. In the case of momentum, when reaching towards a mini-

mum, momentum is often high and it does not slow down causing it to miss the minimum entirely

and goind further to a not so good solution. In order to solve that issue, Nesterov accelerated

gradient [25] was created.

vt = γvt−1 +η∇θ J(θ − γvt−1)

θ = θ − vt

Instead of using gradient at the current location and then taking a big step in the direction of

momentum, it first takes a bit step in the direction of the accumulated gradient and then makes a

correction based on the gradient(Figure 2.9.

While Momentum first computes the current gradient (small blue vector on Figure 2.9), and

then takes a big jump in the direction of the updated accumulated gradient (big blue vector), Nes-

terov approach first makes a big jump towards the previous accumulated gradient (brown vector),

measures the gradient and then makes a correction (red vector), which results in the complete

NAG update (green vector). Anticipating an updates helps us preventing going too fast and results

in increased responsiveness, which has significantly increased the performance of Deep Learning

methods, such as RNNs, on a number of tasks. Dean et al [7] have found that Adagrad greatly

improved the robustness of SGD and used it for training large-scale neural nets at Google, which

8http://www.cs.toronto.edu/ tijmen/csc321/slides/lecture_slides_lec6.pdf

2.3 Deep Learning Background 17

- among other things - learned to recognize cats in Youtube videos [5]. Another research, by Pen-

nigton et al used Adagrad to train GloVe [29] word embeddings, as infrequent words require much

larget updates than frequent ones.

Adagrad

Adagrad [8] is an optimizer with parameter-specific learning rates, which are adapted relative to

how frequently a parameter gets updated during training. The more updates a parameter receives,

the smaller the updates. This is very useful for sparse data where features that are highly infor-

mative are not very abundant in the training data. When high informative features appear in the

training set, they are weighted equally compared to features that are a lot more present in training

samples and are not very informative.

The solution purposed by Adagrad is to increase the learning rate for more sparse parameters

and decrease for less sparse ones. Previous we performed an update for all parameters θ at once

as every parameter θi used the same learning rate η . As Adagrad uses a different learning rate for

every parameter θi at every time step t, we first show Adagrad’s per-parameter update, which we

then vectorize. For brevity, we use gt to denote the gradient at time step t. gt,i is then the partial

derivative of the objective function with respect to the parameter θi at time step t:

gt,i = ∇θ J(θt,i)

The SGD update for every parameter θi at each time step t then becomes:

θt+1,i = θt,i−η ·gt,i

Adagard changes the learning rate η at each step t for every parameter θi based on the gradients

previously computed for θi:

θt+1,i = θt,i− η√
Gt,ii+ε

�gt

Gt represents a diagonal matrix that contains the sum of the squares of the past gradients of

each θi and ε a small value, normally 10−8, to avoid division by 0.

Adagard’s main weakness is its accumulation of the sum of the squares of the past gradients.

Since this sum is referred to the denominator, it makes the learning rate to shrink until it becomes

infinitesimally small which makes the algorithm unable to learn additional knowledge. The fol-

lowing algorithms aim to resolve this flaw.

ADAM

Adaptative Moment Estimation(Adam) [20] is a another algorithm that computes adaptive learning

rates for each parameter. ADAM is a generalization of AdaGrad. The update rule for Adam is

based on the estimation of first (gradient mean) and second (uncentered variance) order moments

18 Domain and technological background

of past gradients. Previously, we compared Momentum as a ball that is thrown down a hill and its

problems with slowing down to reach the optimal minimum. Adam behaves like a heavy ball with

friction, which thus prefers flat minima in the error surface. We compute the decaying averages of

past and past sum of the squared gradients m1 and vt respectively as follows:

mt = β1mt−1 +(1−β1)gt

vt = β2vt−1 +(1−β2)g2
t

mt and v : t are estimates of the first moment (the mean) and the second moment (the uncentered

variance) of the gradients respectively, hence the name of the method. As mt and vt are initialized

as vectors of 0’s, they are biased towards zero, especially during the initial time steps and when

the decay rates are small, β1 and β2 are close to 1.

To handle these biases it is computed an estimate for first and second moment:

m̂t =
mt

1−β t
1

v̂t =
vt

1−β t
2

As we said before, the update rule for ADAM is based on the estimation of the gradient mean

and the uncentered variance. So, after we calculate both we just replace the function to update the

parameters with the results:

m̂t =
mt

1−β t
1

v̂t =
vt

1−β t
2

With these approach we get the correction bias to update parameters and we prevent the de-

nominator to go infinitesimal small and it is possible to continue acquiring knowledge.

Cost functions

Cost functions can be viewed as the loss, or error of the model. Basically, they are the measure that

determines how far is the actual result from the correct result. Backpropagation aims to minimize

this function in order to infer the right weights. Here, we provide some of the most common cost

functions:

Mean Squared Error

CMSE(W,B,Sr,Er) = 0.5∑
j
(aL

j −Er
j)

2

• W is the neural network’s weights

• B is the neural network’s biases

2.3 Deep Learning Background 19

• Sr is the input of a single training sample

• Er
j is the desired output of that training sample

• aL
j is the activation value of the jth neuron in the L layer

The MSE function measures the average of the squares of the errors, that is, the difference

between the output value we got and what we estimated. Also known as quadratic error, maximum

likelihood, and sum squared error.

The gradient of this cost function with respect to the output of a neural network and some

sample r is:

∇aCMSE = (aL−Er)

Cross-entropy cost

Also known as Bernoulli negative log-likelihood and Binary Cross-Entropy

CCE(W,B,Sr,Er) =−∑
j
[Er

j ln aL
j +(1−Er

j) ln (1−aL
j)]

• W is the neural network’s weights

• B is the neural network’s biases

• Sr is the input of a single training sample

• Er
j is the desired output of that training sample

• aL
j is the activation value of the jth neuron in the L layer

Normally used when the data is normalized as its results are bounded between 0 and 1 and can

be represented as probabilities.

The gradient of this cost function with respect to the output of a neural network and some

sample r is:

∇aCCE = (aL−Er)
(1−aL)(aL)

Exponential cost

This requires choosing some parameter τ that you think will give you the behavior you want.

Typically it is needed to play with this variable until things work correctly.

CEXP(W,B,Sr,Er) = τ exp(1
τ

∑
j
(aL

j −Er
j)

2)

• W is the neural network’s weights

20 Domain and technological background

• B is the neural network’s biases

• Sr is the input of a single training sample

• Er
j is the desired output of that training sample

• aL
j is the activation value of the jth neuron in the L layer

• expx is simply shorthand for ex

The gradient of this cost function with respect to the output of a neural network and some

sample r:

CEXP(W,B,Sr,Er) = τ exp(1
τ

∑
j
(aL

j −Er
j)

2)

Hellinger Distance

CHD(W,B,Sr,Er) = 1√
2 ∑

j
(
√

aL
j −

√
Er

j)
2

• W is the neural network’s weights

• B is the neural network’s biases

• Sr is the input of a single training sample

• Er
j is the desired output of that training sample

• aL
j is the activation value of the jth neuron in the L layer

This function needs to have positive values, and ideally values between 0 and 1. The same is

true for the following divergences.

The gradient of this cost function with respect to the output of a neural network and some

sample r is:

CHD(W,B,Sr,Er) = 1√
2 ∑

j
(
√

aL
j −

√
Er

j)
2

Kullback–Leibler divergence

Kullback–Leibler divergence is typically denoted:

DKL(P‖Q) = ∑i P(i) ln P(i)
Q(i)

DKL(P‖Q) is a measure of information lost when Q is used to approximate P. Thus we want

to set P = E i and Q = αL, because we want to measure how much information is lost when we

use ai
j to approximate E i

j. This gives us:

2.3 Deep Learning Background 21

CKL(W,B,Sr,Er) = ∑
j

Er
j log

Er
j

aL
j

The gradient of this cost function with respect to the output of a neural network and some

sample r is:

∇aC = Er

aL

Activation Functions

For any hidden layer to provide any useful information we need to use a non-linear activation

function, otherwise it does not matter how deep the network is, the results will always yield a

linear transformation, which won’t produce any useful information given the non-linearity in real-

world problems. Here we list some of the commonly used activation functions in this field.

Sigmoid

f (x) = 1
1+e−x

The sigmoid function is vastly used as an activation function. One of the reasons for it is that the

derivatives needed for the gradient descent are easy to calculate. However, there are some down-

sides of using this function, one of them is the vanishing gradient, towards the end the gradient

becomes exponentially smaller in the early layer which makes the network refuse to learn further

or the learning process is drastically slow (depending on use case and until gradient/computation

gets hit by floating point value limits). The output of the sigmoid function is always going to be in

range (0,1) compared to (−∞,+∞) of linear functions. Having the activations bound avoids bias

in the gradients.

Tanh

f (x) = 2
1+e−2x−1

Tanh is also a widely used activation function that is quite similar to the sigmoid. However, this

function’s derivatives are steeper than sigmoid’s so it has stronger gradients. It also has a greater

range ([−1,1]) than the sigmoid’s ([0,1]), avoiding bias in the gradients. As well as the sigmoid

function, it also has the downside of vanishing gradient, due to the fact that we still need to

calculate exponentials. Chossing between sigmoid function and tanh depends on the requirements

we have for gradient strength.

22 Domain and technological background

ReLU

Rectified Linear Unit (ReLU) is the most popular non-linear function[13] which is simply the

half-wave rectifier:

f (z) = max(z,0)

In past decades, neural nets used smoother non-linearities, such as Tanh or sigmoid, but the

ReLU typically learns much faster in networks with many layers, allowing training of a deep

supervised network without unsupervised pre-training. ReLU is not bounded, it translates any

negative input to 0 and all positive values are kept. The reason for ReLU’s popularity is that

it is fast, and doest not have problems with the vanishing gradient. that the sigmoid and Tanh

have. However, ReLU has a problem usually called dying RelU problem. This occurs because the

gradient can go towards 0. For activations in that region of ReLU, gradient will be 0 because of

which the eights will not get adjusted during descent. That means, those neurons which go into

that state will stop responding to variations in error/input (simply because gradient is 0, nothing

changes). This problem can cause several neurons to just die and not respond making a substantial

part of the network passive, unresponsive. There are variations of ReLU that mitigate this problem,

such as Leaky ReLU or Exponential ReLU. Instead of translating a value to 0 if it is negative we

can modify the flat side of the function for it to have a gradient and give the neuron a chance to

recover.

LeakyReLU

{
x i f x > 0

0.01x i f x≤ 0

ELU

{
x i f x > 0

α(ex−1) i f x≤ 0

Softmax

S j =
eZi

∑
N
K=1eak

∀ j ∈ 1..N

The softmax function is mainly used as the activation function of an output layer using cross-

entropy loss for multi-class classification. It takes an N dimensional vector of real values and

produces another N dimensional vector of values in the range 0 to 1 that can be interpreted as the

probability of a given input being of the given class.

2.3 Deep Learning Background 23

Figure 2.10: The structure of a CNN, consisting of convolutional, pooling and fully-connected
layers9

2.3.1 Convolutional Neural Networks

When we feed our neural network, it is generally recommended to train and run the models on

raw inputs, without manually extracting features. The reason for this is that a network trained is

able to extract features on its own, but in contrast to working with prebuilt features, it would also

be able to further optimize the feature extraction as the network improves. By manually extracting

features, we might lose information due to some negligence and the neural network would be

compromised since the beginning. If our input is an image, it would, therefore, be desirable to

work with raw pixel values. One image consists in many of pixels and each pixel is possibly

represented by multiple color values which makes the representation of that image in the input

layer a really complex task. For example, an image with 1920x1080 pixels would require an input

layer with 6 220 800 neurons (1920 x 1080 x 3). If we use a fully connected layer/architecure each

neuron would be connected to each neuron on the subsequent layer. If the first fully connected

layer contains 1000 neurons, the total number of parameters would amount to over six billion.

Since the network has to optimize all these parameters, the training process could become very

slow and storage intensive [2]. In order to mitigate this problem, a different kind of architecture is

used, called Convolutional Neural Networks (CNN). CNNs are mainly used to work with images.

The reason it happens is because the neurons of a layer are organized in three components, height,

width and depth, just like the pixels present in an image where the depth component differentiates

the different color values. In addition to that, CNNs introduce two new types of hidden layers

that are not fully connected, instead they are only connected to a subset of neurons to prevent the

aforementioned problem. In the following, it will be presented an overview about some important

concepts that help to understand how CNNs work and why they are the state-of-art for image

recognition.

CNNs are usually trained by propagation via Stochastic Gradient Descent (SGD) to find

weights and biases that minimize certain loss function in order to map the arbitrary inputs to

the targeted outputs as closely as possible[1].

24 Domain and technological background

Convolution layers

In order to deal with the problems that fully-connected layers faced when processing images,

Convolutional Layers are used in CNNs instead. What separates a convolutional layer from a

fully-connected layer one is that each neuron is only connected to a small subset of neurons in the

previous layer, which is a square sized region across the height and width dimensions. The size

of this square is a parameter named Receptive Field. Since the convolutions always perform the

whole depth, there is no need to define an hyperparameter for that. The reason for this is that the

depth dimension usually has information about the different colors of the image and it is usually

necessary to combine them in order to retrieve useful information.

Neurons of the convolution operator can perceive some local patterns of past layer’s yield.

Since the patterns that are perceived ought to be independent of their position in the image, all

neurons will be compelled to recognize the same pattern bu making all of them share one single

arrangement of parameters. This idea is alluded to as Parameter Sharing. In order to now recog-

nize multiple different features within one layer, it is required to have several Filters, where each

filter is a group of neurons that recognize a certain pattern at different locations in the image. In the

convolutional layer, the depth dimension is then specifying to which filter a given neuron belongs.

Additionally, convolution operations are performed across all depth values because neurons

in a convolutional layer, which are stacked on top of other, should have their feature jointly con-

sidered in the next layer. Therefore, a neuron in a convolutional layer will be connected to r ∗ d

neurons on the underlying layer, where r is the size of the receptive field and d is the depth of the

previous layer. For example, if we apply convolution in the input layer of an RGB image with

r = 3 x 3, each neuron of the layer, will be connected to 27 input neurons, consisting of a 3 x 3

square of pixels with three neurons per pixel, as shown on the Figure 2.11.

The number of convolutions being conducted is defined by another parameter, named Stride

that determines how large is the gap between two scanned regions. Without using any further

hyperparameters we would always perform fewer convolutions on inputs close to the borders.

Adjusting the Padding hyperparameter can make that more even, as it adds an additional borer of

0 values around the original input. Padding also makes the convolutional result to have a certain

width and height, e.g. making the output have the same size as the input. In the Figure 2.12 we

can see an example of the stride and padding given a receptive field.

The output of a convolutional layer is given by the following equation:

out = in−receptive f ield+2∗padding
stride +1

Pooling Layer

The third kind of layer that aims to mitigate some of the CNN problems is the pooling layer.

Similarly to the convolutional layer, neurons in the pooling later are connected to a square size

9https://towardsdatascience.com/how-to-teach-a-computer-to-see-with-convolutional-neural-networks-
96c120827cd1

2.3 Deep Learning Background 25

Figure 2.11: A neuron of a convolutional layer performing a convolution operation with a 3 x 3
receptive field on an RGB image [2]

region across the width and height dimensions of the previous layer. However, unlike the fully

connected layer and the convolutional layer, the pooling layer is not parametrized. This means

that neurons in the pooling layer do not have weights or biases that will be learned during the

training process but instead perform some fixed functions on its inputs. Additionally, the pooling

layer does not compute different depth values. Instead, the resulting pool layer will have the same

depth as the previous layer and it will only combine local regions within a filter.

Max Pooling is an example of pooling. Max pooling is a sample-based discretization pro-
cess. The objective is to down-sample an input representation reducing its dimensionality and

allowing for assumptions to be made about features contained in the sub-regions binned. In Max

Pooling the result of combining a number of neurons is the maximum value that any of them re-

turned. Since all neurons in the convolutional layer can recognize the same patterns, this result

can be interpreted as whether one pattern has been recognized in the pooling area or not, but the

exact location will not be relevant anymore. An example of pooling can be seen in Figure 2.13

Max Pooling is typically used to prevent over-fitting by providing an abstracted form of the

representation. Additionally, it helps mitigates the computational problem of CNNs by drastically

reducing the number of parameters to learn.

2.3.2 ResNet

For conventional deep learning networks, convolutional layers are usually fully connected (FC)

layers for classification task, without any skip/shortcut connection, in this dissertation we will

26 Domain and technological background

Figure 2.12: Receptive field, stride and padding [2]

name these NNs plain networks. When the plain network is deeper (layers are increased), the

problem of vanishing/exploding gradients occurs [40].

We expect deeper networks will have a better accuracy due to the high number of features.

However these deep conventional networks suffer from a Degradation phenomenon. During

backpropagation, when partial derivative of the error function with respect to the current weight

in each epoch of training, this has the effect of multiplying n of these small / large numbers to

compute gradients of the “front” layers in an n-layer network. Degradation can be caused by two

reasons:

• When the network is deep, and multiplying n of these small numbers will become zero

(vanished).

• When the network is deep, and multiplying n of these large numbers will become too large

(exploded).

To overcome this issue ResNet a skip/shortcut connection approach. The input x image is

added after a few weight layers which means that even if we have a vanishing gradient we will

still have the identity x to transfer back to earlier layers. In other words, identity mapping is

proposed to promote the gradient propagation. Element-wise addition is used. Basically, a ResNet

state is passed to another one. This kind of approach can ease the backpropagation using shortcuts

2.3 Deep Learning Background 27

Figure 2.13: A neuron of a pooling layer performing a max pooling operation with a 3 x 3 receptive
field on neurons of an underlying layer

and keeping the state of each module. An example of this skip/shortcut connection is shown on

Figure 2.14.

Figure 2.14: ResNet Concept10

2.3.2.1 ResNet Architecture

The figure 2.15 shows the ResNet architecture. The picture shows three different architectures. In

the bottom, we have a VGG19 neural network, which is a state-of-the-art approach in ILSVRC

2014. VGG19 is an improvement to standard CNNs by increasing the depth of the network by

adding more convolutional layers, which is feasible due to the use of very small (3x3) convolution

filters in all layers.

10https://towardsdatascience.com/review-resnet-winner-of-ilsvrc-2015-image-classification-localization-detection-
e39402bfa5d8

28 Domain and technological background

Figure 2.15: ResNet Architecture10

In the middle we have a 34-layer plain network is treated as the deeper network of VGG-19,

i.e. more conv layers.

On the top we have 34-layer residual network (ResNet) is the plain one with addition of skip /

shortcut connection.

For ResNet, there are 3 types of skip / shortcut connections when the input dimensions are

smaller than the output dimensions.

1. Shortcut performs identity mapping, with extra zero padding for increasing dimensions.

Thus, no extra parameters.

2. The projection shortcut is used for increasing dimensions only, the other shortcuts are iden-

tity. Extra parameters are needed.

3. All shortcuts are projections. Extra parameters are more than that of (2).

2.3.2.2 Bottleneck Design

Figure 2.16: Bottleneck Design of Residual Neural Networks10

2.3 Deep Learning Background 29

Since the network is very deep now, the time complexity is high. A bottleneck design is used

to reduce the complexity as follows:

The 1x1 conv layers are added to the start and end of network as in the figure (right). This

is a technique suggested in Network In Network and GoogLeNet (Inception-v1) [45]. 1x1 conv

can reduce the number of connections (parameters) while not degrading the performance of the

network so much.

With the bottleneck design, 34-layer ResNet become 50-layer ResNet. And there are deeper

network with the bottleneck design: ResNet-101 and ResNet-152. The overall architecture for all

network is shown in Figure 2.16.

Figure 2.17: ResNet overall architecture for all network10

2.3.3 DenseNet

Dense Convolutional Network (Densenet) is a model that connects each layer to every other layer

in a feed-forward way. Traditional CNNs with L layers have L connections between each layer

and its subsequent layer, Densenet has L(L+1) direct connections, where L+1 is the subsequent

layer. The features maps of all preceding layers are used as inputs for each layer and its own feature

map is used as input in the subsequent layers. This approach has some compelling advantages: it

reduces the vanishing-gradient impact, strengthen feature propagation and incentives feature reuse

reducing the number of parameters [17].

Dense Block

In a Standard Convolutional Neural Network, the input image goes through multiple convolution

and obrain high-level features (Figure 2.18) [39].

As we mentioned before, in ResNet, identity mapping is proposed to promote the gradient

propagation. Element-wise addition is used. It can be viewed as algorithms with a state passed

from one ResNet module to another one.
11https://towardsdatascience.com/review-densenet-image-classification-b6631a8ef803

30 Domain and technological background

Figure 2.18: Standard Convolutional Neural Net Concept11

Figure 2.19: Standard Dense Block11

In DenseNet, each layer obtains additional inputs from all preceding layers and passes on

its own feature-maps to all subsequent layers. Concatenation is used. Each layer is receiving a

“collective knowledge” from all preceding layers (Figure 2.19).

Figure 2.20: Dense Block with Growth Rate k11

Since each layer receives feature maps from all preceding layers, network can be thinner and

more compact, i.e. we can have fewer channels which attenuates the overhead. The growth rate k

2.3 Deep Learning Background 31

is the additional number of channels for each layer (Figure 2.20).

Therefore, it has higher computational efficiency and memory efficiency. Figure 2.21 shows

the concept of concatenation during forward propagation.

Figure 2.21: Concatenation during Forward Propagation. Each layer passes its own feature maps
to the subsequent layer. The process is repeated by every layer.11

DenseNet Architecture

Basic DenseNet Composition Layer

For each composition layer, Pre-Activation Batch Norm (BN) and ReLU, then 3x3 Conv are

done with output feature maps of k channels, say for example, to transform x0, x1, x2, x3 to x4.

This is the idea from Pre-Activation ResNet. An example of a composition layer is shown in

Figure 2.22.

DenseNet-B (Bottleneck Layers)

To reduce the model complexity and size, BN-ReLU-1x1 Conv is done before BN-ReLU-3x3
Conv (Figure 2.23).

Multiple Dense Blocks with Transition Layers

32 Domain and technological background

Figure 2.22: Composition Layer11

Figure 2.23: DenseNet-B11

1x1 Conv followed by 2x2 average pooling are used as the transition layers between two

contiguous dense blocks. Feature map sizes are the same within the dense block so that they can

be concatenated together easily. At the end of the last dense block, a global average pooling is

performed and then a softmax classifier is attached. An example of multiple dense blocks with

transition layers is shown in Figure 2.24.

Figure 2.24: Multiple Dense Blocks11

2.3 Deep Learning Background 33

DenseNet Advantages

DenseNets have a strong gradient flow. The error signal can be easily propagated to earlier layers

more directly. This is a kind of implicit deep supervision as earlier layers can get direct supervision

from the final classification layer (Figure 2.25).

Figure 2.25: Implicit “Deep Supervision”11

DenseNet also brings Parameter & Computational Efficiency. For each layer, number of pa-

rameters in ResNet is directly proportional to CxC while the number of parameters in DenseNet is

directly proportional to lxkxk.

Since k << C, DenseNet has much smaller size than ResNet. In Figure 2.26 is shown the

difference between the number of parameters of ResNet and DenseNet.

Figure 2.26: Number of Parameters for ResNet and DenseNet. Due to the concatenation during
Forward Propagation, feature maps are reused and at the end of the last dense block, a global
average pooling is performed with a softmax classifier reducing the output to the desired number
of channels.11

DenseNet has more diversified features since each layer in DenseNet receive all preceding

layers as input, more diversified features and tends to have richer patterns (Figure 2.27). Further-

more, DenseNet maintains low complexity features while in a standard CNN the classifier uses

34 Domain and technological background

high complex features since each convolution gets an higher abstraction from the features on the

previous convolution.

Figure 2.27: More Diversified Features. Densenet keeps high and low complex features which
results in more diversity.11

In DenseNet, classifier uses features of all complexity levels. It tends to give more smooth de-

cision boundaries. It also explains why DenseNet performs well when training data is insufficient

(Figure 2.28).

Figure 2.28: Standard ConvNet11

In Standard ConvNet, classifier uses most complex features (Figure 2.29).

Figure 2.29: DenseNet overall architecture11

2.3 Deep Learning Background 35

2.3.4 InceptionV3

The Inception deep convolutional architecture was introduced as GoogLeNet [37], formerly named

Inception-v1. Later the Inception architecture was refined and improved in various ways, first by

the introduction of batch normalization [19] and it was named Inception-v2. Later by additional

factorization ideas in the third iteration [38] which is referred as InceptionV3.

The InceptionV3 model is composed by many modules. Modules are layers with a defined

task. The most import modules in InceptionV3 are the factorization modules which aim to reduce

the number of connections/parameters without jeopardizing the network efficiency.

Some of these factorization modules are presented below.

Factorization Into Smaller Convolutions

Two 3x3 convolutions replaces one 5x5 convolution as in Figure 2.30.

Figure 2.30: Two 3x3 convolutions replacing one 5x5 convolution12

By using 1 layer of 5x5 filter, number of parameters = 5x5=25 By using 2 layers of 3x3 filters,

number of parameters = 3x3+3x3=18. Number of parameters is reduced by 28%

A similar technique was already presented in VGGNet [34]. With this technique, one of the

new Inception modules (Inception Module A) can be seen in Figure 2.31.

Factorization Into Asymmetric Convolutions

One 3x1 convolution followed by one 1x3 convolution replaces one 3x3 convolution as shown

in Figure 2.32.

12https://medium.com/@sh.tsang/review-inception-v3-1st-runner-up-image-classification-in-ilsvrc-2015

36 Domain and technological background

Figure 2.31: Inception Module A using factorization12

Figure 2.32: One 3x1 convolution followed by one 1x3 convolution replaces one 5x5 convolu-
tion12

By using 3x3 filter, number of parameters = 3x3=9 By using 3x1 and 1x3 filters, number of

parameters = 3x1+1x3=6 Number of parameters is reduced by 33%

If we use two 2x2 filters, number of parameters = 2x2x2=8 Number of parameters is only

reduced by 11

With this technique, a new module is created, Module B, shown in Figure 2.33

And Inception module C is created to promote high dimensional representations according to

author descriptions as shown in Figure 2.34.

Auxiliary Classifier

2.3 Deep Learning Background 37

Figure 2.33: Inception Module B using asymmetric factorization12

Figure 2.34: Inception Module C using asymmetric factorization12

Auxiliary Classifiers were already suggested in GoogLeNet / Inception-v1 [37]. There are

some modifications in Inception-v3.

Only 1 auxiliary classifier is used on the top of the last 17x17 layer, instead of using 2 auxiliary

classifiers. Batch normalization, suggested in Inception-v2 [19], is also used in the auxiliary

classifier.framework based on decision tree algorithm, used for ranking and classification.

Efficient Grid Size Reduction

Conventionally, such as AlexNet and VGGNet, the feature map downsizing is done by max

pooling. The drawback is either too greedy by max pooling followed by conv layer, or too expen-

sive by conv layer followed by max pooling. Hence, an efficient grid size reduction is proposed

and an example can be seen in Figure 2.36.

With this mechanism, 320 feature maps are done by conv with stride 2. 320 feature maps are

computed by max pooling. These 2 sets of feature maps are concatenated as 640 feature maps and

go to the next level of inception module.

38 Domain and technological background

Figure 2.35: Auxiliary Classifier act as a regularization12

Figure 2.36: Conventional downsizing (Top Left), Efficient Grid Size Reduction (Bottom Left),
Detailed Architecture of Efficient Grid Size Reduction (Right)12

Grid size reduction makes the model less expensive, i.e. less layers, and still efficient.

Overall architecture

Figure 2.37: Inception-v3 Architecture (Batch Norm and ReLU are used after Conv)12

2.3 Deep Learning Background 39

Figure 2.38: The y-axis is the error rate on ImageNet. In 2015 the error rate of humans is slightly
higher than the CNN model presented13

With 42 layers deep, the computation cost is only about 2.5 higher than that of GoogLeNet [37]

and much more efficient than that of VGGNet[34].

2.3.5 R-CNN

Since a group of researchers won the ImageNet Large Scale Visual Recognition Challenge in

2012 [21], Convolutional Neural Networks have become the gold standard for image classification.

Since then, the growth of CNN architectures have improved in a way that in current ImageNet

challenges, this methods outperform humans [12] as we can see in Figure 2.38.

R-CNN are Regions With CNNs. The goal of R-CNN is to take an image, and correctly

identify where the main objects are (via a bounding box) in the image.

• Inputs: Image

• Outputs: Bounding Boxes + labers for each object in the image

The problem is to find the bounding boxes. R-CNN does what we might intuitively do as well

- propose a bunch of boxes in the image and then see if any of them corresponds to the object that

we are actually looking for. R-CNN creates these bounding boxes using a method called Selective

Search. Selective Search results from the combination of the best of the intuitions of segmentation
and exhaustive search. Like segmentation, Selective Search use the image structure to guide the

sampling process. Like exhaustive search, it aims to capture all possible object locations [41]. At

a high level, Selective Search (Figure 2.39) looks at the image through windows of different sizes,

and for each size tries to group together adjacent pixels by texture, color, or intensity to identify

objects.

13https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-
34ea83205de4

40 Domain and technological background

Figure 2.39: R-CNN architecture13

Once the region proposals are created, R-CNN warps the region to a standard square size and

passes it through to a Convolutional Neural Network. This CNN is responsible for classification of

the object. Therefore, on the final layer the CNN, R-CNN adds a Support Vector Machine (SVM)

that simply classifies whether this is an object, and if so what object.

Improving the Bounding Boxes

When we find the object in an image, we can tight the box to fit the true dimensions of the object.

This is the final step of a R-CNN. R-CNN runs a simple linear regression on the region proposal to

generate tighter bounding box coordinates to get our final result. Here are the inputs and outputs

of this regression model:

• Inputs: sub-regions of the image corresponding to objects

• Outputs: New bounding box coordinates for the object in the sub-region.

So, to summarize the behaviour of R-CNN, we have:

1. Generate a set of proposals for bounding boxes

2. Run the images in the bounding boxes through a pre-trained CNN and finally an SVM to

see what object the image in the box is.

3. Run the box through linear regression model to output tighter coordinates for the ox once

the object has been classified

To summarize, the CNN model consists in three modules. The first generates category-

independent region proposals. These proposals define the set of candidate detections available

to the detector. The second module is a large convolutional neural network that extracts a fixed-

length feature vector from each region. Finally, the third module is a set of class-specific linear

SVM’s. The last module depends on the classification method used. The main functionality of

these algorithms is to analyze ROIs (Regions of Interest). Since those regions are identified, a

standard classification algorithm can be used to identify different objects and label them accord-

ingly [12].

2.3 Deep Learning Background 41

Figure 2.40: Fast R-CNN combined the CNN, classifer, and bounding box regressor into one,
single network13

2.3.6 Fast R-CNN

Fast R-CNN employs several innovations to improve training and testing speed while also increas-

ing detection accuracy.

R-CNN performs quite slow for some circumstances:

1. It requires a forward pass of the CNN for every single region proposal for every single image

2. It has to train three different models separately - the CNN to generate image features, the

classifier that predicts the class, and the regression model to tighten the bounding boxes.

This makes the pipeline extremely hard to train

In 2015, the first author of R-CNN, solve both of these problems, leading to a second algo-

rithm, named Fast R-CNN.

For the forward pass of the CNN, the author realized that for each image, a lot of proposed

regions for the image invariably overlapped causing the problem of having to run the same CNN

computation all over again. The suggested approach was simple, run the CNN once per image

and then find a way to share the computation across the set of proposals. The approach used was

a RoIPool (Regions of Interest Pooling. RoIPool shares the forward pass of a CNN for an image

across its subregions. In the Figure 2.40 , we can see how the CNN features for each region are

obtained by selecting a corresponding region from the CNN’s feature map. Then, the features in

each region are pooled (max pooling). This way, all it takes is one pass of the of the image instead

of all the passes that we would need to process for each region.

The difference between Fast R-CNN and CNN is, that for the latter we needed a classifier that

worked independently from the extractor, therefore we needed two different models to process

our input. Additionally, an extra model is needed to tight the bounding boxes (regressor). Fast

R-CNN instead used a single network to compute all three methods. Fast R-CNN replaces the

SVM classifier with a softmax layer on top of the CNN to output a classification. It also needs a

42 Domain and technological background

linear regression layer parallel to the softmax layer to output bounding box coordinates. This way

all the outputs needed come from a single network. To summarize the Fast R-CNN model:

1. Inputs: Image with region proposals

2. Outputs: Object classifications of each region along with tighter bounding boxes[11].

2.3.7 Faster R-CNN

Even though Fast R-CNNs have promising results, there was still one remaining bottleneck - the

region proposer. In Fast R-CNN and R-CNN we have generate a set of potential bounding boxes

or ROIs (regions of interest) to test. In Fast R-CNN , these proposals were created using Selective
Search, a fairly slow process that was found to be the bottleneck of the overall process [31].

The main idea of Faster R-CNN is to reuse the CNN results for region proposals instead of

running a separate selective search algorithm. So instead of depending on features of the image

that were already calculated, the algorithm can reuse the output of the pass of CNN (first step of

classification). This kind of approach is illustrated in the Figure 2.41

In the image above we can see how a single CNN is used to both carry out region proposals

and classification. This way, only one CNN needs to be trained and we get region proposals in the

most simplistic way, in a faster and computationally friendly way.

The inputs and outputs of this model are the following:

• Inputs: Images (regions proposals are not needed)

• Outputs: Classifications and bounding box coordinates of objects in the images.

However, we have to take a look on how the regions are generated in Faster R-CNN. To

generate regions of interest, Faster R-CNN adds a Fully Convolutional Network on top of the

features of the CNN creating what is known as the Region Proposal Network. An example of

this technique is illustrated on the Figure 2.42.

The Region Proposal Network works by passing a sliding window over the CNN feature map

and at each window, outputting k potential bounding boxes and scores how accurate these boxes

are expected to be. For that we create anchor boxes. Anchor boxes work like our intuitively way

of seeing things. When we want to identify an human region, our first perception is to bound them

into a rectangular region. Likewise, we know we won’t see many boxes that are very thin. For

each such anchor box, we output one bounding box and score per position in the image. As soon

as we can recognize these aspect ratios and sizes we can easily identify promising regions and

discard regions with no interest (Figure 2.43).

Having this in mind we can discriminate the inputs and outputs to this Region Proposal Net-

work:

• Inputs: CNN Feature Map

2.3 Deep Learning Background 43

Figure 2.41: In Faster R-CNN is used for region proposals and classifications13

• Outputs: A bounding box per anchor. A score representing how likely the image in that

bounding box will be an object.

To generate a classification, the bounding box is passed into a Fast R-CNN to generate a

classification and tight the bounding boxes.

2.3.8 Mask R-CNN

The remaining question is: Can we extend the previous techniques to go a little bit further and

locate exact pixels instead of bounding boxes without compromising our image analysis and com-

putational power? This problem is known as image segmentation has been vastly explored by

many researchers.

Given that Faster R-CNN works well with object recognition, one step forward would be to

extend this recognition at pixel level [14].

44 Domain and technological background

Figure 2.42: The Region Proposal Network slides a window over the features of the CNN. At each
window location, the network outputs a core and a bounding box per anchor13

Mask R-CNN does this by adding a branch to Faster R-CNN that outputs a binary mask that

says whether or not a given pixel is part of an object. The branch is a Fully Convolutional Network

on top of a CNN based feature map. The inputs and outputs are:

• Inputs: CNN Feature Map

• Outputs: Matrix with 1s on all locations where the pixel belongs to the object and 0s

elsewhere (typically known as binary mask)

Mask R-CNN appeared due to some inaccuracy on the previous methods. Since either Faster

R-CNN and Fast R-CNN rely on regions on the feature map selected by RoIPool, this can lead to

inefficiency when we are analyzing the picture at the pixel level. To mitigate this problem a new

approach for pooling was designed, called RoIAlign.

In the Figure 2.44 we have an image of size 128 x 128 and a feature map of 25 x 25. If we

want the features corresponding to the 15 x 15 pixels in the original image (top left) that would

be translated to 25/128 pixels in the feature map. To select 15 pixels from the original image,

we just select 15∗25/128 = 2.93 pixels. However, in RoIPool this value would be truncated and

cause a slight misalignment. In RoIAlign is used bilinear interpolation to get a precise idea of what

would be at pixel 2.93. This, at a high level, allows to avoid misalignments caused by RoIPool.

Once these masks are generated, Mask R-CNN combines them with the classifications and

bounding boxes from Faster R-CNN to generate some precise and accurate segmentations, as we

can see in Figure 2.45.

2.3 Deep Learning Background 45

Figure 2.43: Regional Proposal Networks follow the same intuition of humans to recognize ob-
jects. We know that the bounding boxes for people tend to be rectangular and vertical. We can use
this same principle to create an anchor of such dimensions13

2.3.9 U-Net

The typical use of convolutional networks is on classification tasks, where the output to an image

is a single class label. However, in many visual tasks, especially in biomedical image processing,

the desired output should include localization, i.e., a class label is supposed to be assigned to each

pixel. On Mask R-CNN, a network is trained in a sliding-window approach to predict the class

label of each pixel by providing a local region (patch) around that pixel as input.

The method has some drawbacks, such as:

• It is quite slow because the network must be run separately for each patch, and there is a lot

of redundancy due to overlapping patches.

• There is a trade-off between localization accuracy and the use of context

The U-net approach follows a more elegant architecture, the so-called fully convolutional net-

work. The U-net method modifies this architecture such that it works with very few training

images and outputs more precise segmentations (Figure). The main idea of this method is to sup-

plement a usual contracting network by successive layers, where pooling operators are substituted

by upsampling operators. Hence, these layers increase the resolution of the output. In order to

localize, the upsampled output is combined and aggregated with high resolution features from the

46 Domain and technological background

Figure 2.44: Mapping a region of interest onto a feature map13

contracting path. A successive convolution layer can then learn to assemble a more precise output

based on this information.

The main difference from this approach to other conventional CNN architectures is that in the

upsampling part, there are a large number of feature channels, which allows the neural network

to propagate those features to higher resolution layers. The network does not have any fully

connected layers and only uses the valid part of each convolution, i.e., the segmentation map only

contains the pixels, for which the full context is available in the input image. The most important

advantage of this approach when thinking about our project is the ability to predict the pixels in

the border region of each patch since the missing context is extrapolated by mirroring the input

image. This strategy allows the seamless segmentation of arbitrarily large images by an overlap-

tile strategy (see Figure 2.46). This patch-based approach is very useful to process high quality

images, since otherwise the resolution would be limited by the GPU memory[32].

In our context, detecting oncocytic cells in high resolution microscopic images, the main issue

is how to deal with overlapping cells. Overlapped cells can’t be analyzed as a whole since that

each of them got a unique morphology and a set of fine-grained attributes that cannot be ignored.

Following our method, the separation of touching objects can be solved by using a third channel

that predicts the boundaries between cells. This is one of the advantages of U-Net is that it is

possible to structure the network to output as many channels as we need and represent any class in

any channel by using 1x1 convolution at the final layer. In our case, the output will be background,

nuclei and boundary. An example of this approach can be seen in Figure 2.47.

U-Net architecture

In Figure 2.48 we have a possible U-Net architecture. It consists of a contracting path (left side)

and an expansive path (right side). The contracting path follows a CNN architecture that consists

2.3 Deep Learning Background 47

Figure 2.45: Mask R-CNN aggregates the best of the previous model by being able to segment
and classify objects in an image13

of the repeated application of two 3 x 3 convolutions, each followed by a ReLU activation function

and a 2x2 max pooling operation with stride 2 for down sampling. At each downsampling step the

number of feature channels is doubled.

2.3.10 Capsule Networks

On the other hand, in the expansive path consists in a feature map that is upsampled followed by a

2x2 convolution that breaks the feature channels in half, a concatenation with the correspondingly

cropped feature map from the contracting path and two 3x3 convolutions, followed by a ReLU.

The cropping is necessary due to the loss of border pixels in every convolution.

CNNs (convolutional neural networks) are one of the reasons deep learning is so popular today,

they can do amazing things that people used to think computers would not be capable of doing

for a long, long time. But they have their limits and some fundamental drawbacks and that is why

Capsules neural networks are picking up pace, which introduce a new building block that can be

used to overcome these limits & drawbacks of CNNs. Capsule networks (CapsNets) are a trendy

new neural net architecture that may well have a profound impact on deep learning, in particular

for computer vision.

A Capsule Neural Network (CapsNet) is a machine learning system that is a type of artificial

neural network (ANN) that can be used to better model hierarchical relationships. The approach

is an attempt to more closely mimic biological neural organization.

A CapsNet is composed of capsules rather than neurons. A capsule is a small group of neurons

that learns to detect a particular object within a given region of the image, and it outputs a vector

whose length represents the estimated probability that the object is present, and whose orientation

48 Domain and technological background

Figure 2.46: Overlap strategy for high resolution images [32]

encodes the object’s pose parameters. If the object is changed slightly then the capsule will output

a vector of the same length, but oriented slightly differently. Thus, capsules are equivariant.

Computer graphics deals with constructing a visual image from some internal hierarchical

representation of geometric data, relationships between 3D objects can be represented by a so-

called pose, which is in essence translation plus rotation. But how do we model these hierarchical

relationships inside of a neural network? For a CNN, this task is really hard because it does not

have this built-in understanding of 3D space, but there is type of neural network (CapsNet), for

which it is much easier because these relationships are explicitly modeled. On Figure 2.49 we can

see the main differences between a capsule and a traditional neuron.

CNNs perform exceptionally great when they are classifying images which are very close to

the data set. If the images have rotation, tilt or any other different orientation then CNNs have poor

performance. This problem was solved by adding different variations of the same image during

training. Pooling layer helps in creating the positional invariance for CNN but what we needed was

not invariance but equivariance. Equivariance makes CapsNet understand positional, orientational,

proportional invariances. This leads us to the recent advancement of Capsule Networks [30]

A neuron receives input scalars from other neurons, then multiplies them by scalar weights

and sums. This sum is then passed to one of the many possible nonlinear activation functions, that

take the input scalar and output a scalar according to the function. That scalar will be the output

of the neuron that will go as input to other neurons.

In essence, artificial neuron can be described by 3 steps:

• scalar weighting of input scalars

• sum of weighted input scalars

• scalar-to-scalar nonlinearity

while, the capsule has vector forms of the above 3 steps in addition to the new step, affine

transform of input:
14https://medium.com/ai%C2%B3-theory-practice-business/understanding-hintons-capsule-networks-part-ii-how-

capsules-work-153b6ade9f66

2.4 Image Processing 49

Figure 2.47: (a) raw image (b) overlay with ground truth segmentation. Different colors indi-
cate different instances of cells. (c) generated segmentation mask (white:foreground, black: back-
ground). (d) map with a pixel-wise loss weight to force the network to learn the border pixels [32].

• matrix multiplication of input vectors

• scalar weighting of input vectors

• sum of weighted input vectors

• vector-to-vector nonlinearity

We see that the design of the capsule builds up upon the design of artificial neuron, but expands

it to the vector form to allow for more powerful representational capabilities. It also introduces

matrix weights to encode important hierarchical relationships between features of different layers.

The result succeeds to achieve the goal of the designer: neuronal activity equivariance with respect

to changes in inputs and invariance in probabilities of feature detection.

2.4 Image Processing

In this section, several image processing techniques that were used throughout this project are

described.

2.4.1 Canny Edge Detection

The Canny edge detector is an edge detection operator that uses a multi-stage algorithm to detect

a wide range of edges in images. It was developed by John F. Canny in 1986[[27]. Canny also

produced a computational theory of edge detection explaining why the technique works.

Canny edge detection algorithm can be split into 5 different steps:

• Apply Gaussian filter to smooth the image in order to remove the noise

• Find the intensity gradients of the image

• Apply non-maximum suppression to get rid of spurious response to edge detection

• Apply double threshold to determine potential edges

50 Domain and technological background

Figure 2.48: U-net architecture [32]

• Track edge by hysteresis: finalize the detection of edges by suppressing all the other edges

that are weak and not connected to strong edges.

In Figure 2.50 we show how this image processing technique looks like on WSI. It enhances

the boundaries of each structure which can be used for nuclei identification but it can also be

inconclusive and faulty without further image processing.

2.4.2 Color

Grayscale

In digital photography, computer-generated imagery, and colorimetry, a grayscale or greyscale

image is one in which the value of each pixel is a single sample representing only an amount of

light, that is, it carries only intensity information. Grayscale images, a kind of black-and-white or

gray monochrome, are composed exclusively of shades of gray. The contrast ranges from black at

the weakest intensity to white at the strongest.

Grayscale images are distinct from one-bit bi-tonal black-and-white images which, in the con-

text of computer imaging, are images with only two colors: black and white (also called bilevel or

binary images). Grayscale images have many shades of gray in between.

Grayscale images can be the result of measuring the intensity of light at each pixel according

to a particular weighted combination of frequencies (or wavelengths), and in such cases they are

monochromatic proper when only a single frequency (in practice, a narrow band of frequencies)

is captured. The frequencies can in principle be from anywhere in the electromagnetic spectrum

(e.g. infrared, visible light, ultraviolet, etc.).

A colorimetric (or more specifically photometric) grayscale image is an image that has a de-

fined grayscale colorspace, which maps the stored numeric sample values to the achromatic chan-

nel of a standard colorspace, which itself is based on measured properties of human vision.

In Figure 2.51 we can see the effect of grayscale technique on our patches.

2.4 Image Processing 51

Figure 2.49: Important differences between capsules and neurons14.

(a) (b)

Figure 2.50: The original image (a) with edges enhanced as it is shown in (b).

RGB to HED

Color deconvolution on the original RGB image to create HED (Hematoxylin, Eosin, Diaminoben-

zidine) channels. This is a very important technique since it allows to extract the channel color of

each dye used for staining.

As we mentioned before, Hematoxylin is a dark blue or violet stain that is basic/positive. It

binds to basophilic substances (such as DNA and RNA, which are acidic and negatively charged).

Therefore, dyes like hematoxylin bind to DNA and RNA and stain them violet.

Eosin is a red or pink stain that is acidic and negative. It binds to acidophilic substances such

as positively charged amino acid side chains (e.g. lysine, arginine). Most proteins in the cytoplasm

of some cells are basic because they are positively charged due to the arginine and lysine amino

acid residues. These form salts with acid dyes containing negative charges, like eosin. Therefore,

eosin binds to these amino acids/proteins and stains them pink.

Therefore, if we filter the Hematoxylin channel we enhance the basophilic substances, e.g.

nucleus, and if we filter the Eosin channel we enhance the acidophilic substances, e.g. cytoplasm.

52 Domain and technological background

(a) (b)

Figure 2.51: The original image (a) is converted to a Grayscale image (b).

HED to Eosin

Obtain Eosin channel from HED array and rescale it (e.g., to 0 to 255 for uint8) for increased

contrast (Figure 2.52).

(a) (b)

Figure 2.52: Eosin channel filter image processing. The cytoplasm in the original image (a) that
is highlighted with eosin staining gains a black color (b).

HED to Hematoxylin

Obtain Hematoxylin channel from HED array and rescale it (for example, to 0 to 255 for uint8)

for increased contrast (Figure 2.53).

2.4 Image Processing 53

(a) (b)

Figure 2.53: Hematoxylin channel filter image processing. The nucleus in the original image (a)
that is highlighted with hematoxylin staining gains a black color (b).

2.4.3 Contrast

Consider an image a histogram with the number of pixels (intensity on y-axis) plotted against

the range of possible pixel values (x-axis, 0 to 255). Contrast is a measure of the difference in

intensities. An image with low contrast is typically dull and details are not clearly seen visually.

An image with high contrast is typically sharp and details can clearly be discerned. Increasing the

contrast in an image can be used to bring out various details in the image (See 2.54).

Contrast Stretching

One form of increasing the contrast in an image is contrast stretching. Consider that all intensities

in an image occur between 100 and 150 on a scale from 0 to 255. If we rescale the intensities so

that 100 now corresponds to 0 and 150 corresponds to 255 and we linearly rescale the intensities

between these points, we have increased the contrast in the image and differences in detail can

more clearly be seen. This is contrast stretching. See Figure 2.54 for an example.

Histogram Equalization

This method usually increases the global contrast of many images, especially when the usable data

of the image is represented by close contrast values. Through this adjustment, the intensities can

be better distributed on the histogram. This allows for areas of lower local contrast to gain a higher

contrast. Histogram equalization accomplishes this by effectively spreading out the most frequent

intensity values.

The method is useful in images with backgrounds and foregrounds that are both bright or both

dark. In particular, the method can lead to better views of bone structure in x-ray images, and to

better detail in photographs that are over or under-exposed. A key advantage of the method is that

54 Domain and technological background

(a) (b)

Figure 2.54: Contrast Stretching Image Processing. The contrast in the original image (a) is
increased by stretching the image colors’ intensity to a [0,255] range (b).

it is a fairly straightforward technique and an invertible operator. So in theory, if the histogram

equalization function is known, then the original histogram can be recovered. The calculation is

not computationally intensive. A disadvantage of the method is that it is indiscriminate. It may

increase the contrast of background noise, while decreasing the usable signal (Figure 2.55).

(a) (b)

Figure 2.55: Histogram Equalization Image Processing. Areas with low image contrast in the
original image (a) gain an higher contrast and areas with similar contrast are highlighted from
each other as shown in (b).

2.4 Image Processing 55

Adaptive Equalization

Rather than applying a single transformation to all pixels in an image, adaptive histogram equal-

ization applies transformations to local regions in an image. As a result, adaptive equalization

allows contrast to be enhanced to different extents in different regions based on the regions’ in-

tensity histograms. It differs from ordinary histogram equalization in the respect that the adaptive

method computes several histograms, each corresponding to a distinct section of the image, and

uses them to redistribute the lightness values of the image. It is therefore suitable for improving

the local contrast and enhancing the definitions of edges in each region of an image (Figure 2.56).

(a) (b)

Figure 2.56: Adaptive Equalization Image Processing. The original image (a) is enhanced by
generating several histograms for each section of the image resulting in the image (b).

2.4.4 Morphology

Mathematical morphology (MM) is a theory and technique for the analysis and processing of

geometrical structures, based on set theory, lattice theory, topology, and random functions. MM

is most commonly applied to digital images, but it can be employed as well on graphs, surface

meshes, solids, and many other spatial structures. The primary morphology operators are erosion,

dilation, opening, and closing. With erosion, pixels along the edges of an object are removed. With

dilation, pixels along the edges of an object are added. Opening is erosion followed by dilation.

Closing is dilation followed by erosion. With morphology operators, a structuring element (such

as a square, circle, cross, etc) is passed along the edges of the objects to perform the operations.

Morphology operators are typically performed on binary and grayscale images.

Binary Dilation

• Dilation adds pixels to the boundaries of objects in an image or grow or thickens objects in

a binary image.

56 Domain and technological background

(a) (b)

Figure 2.57: Binary Dilation with a different disk size. In the image (a), disk= 5 enlarges bright
areas in a smaller area comparing with a disk= 20 (b).

• The number of pixels added on the size & shape of the structuring element

• Let E be a Euclidean space or an integer grid, A a binary image in E, and B a structuring

element regarded as a subset of Rd .

A⊕B =
⋃
bεB

Ab

In our WSI image, binary dilation looks like Figure 2.57. The higher the disk the biggest is the

dilation.

Binary Erosion

Erosion is one of the two basic operators in the area of mathematical morphology, the other being

dilation. It is typically applied to binary images, but there are versions that work on grayscale

images. The basic effect of the operator on a binary image is to erode away the boundaries of

regions of foreground pixels (i.e. white pixels, typically). Thus areas of foreground pixels shrink

in size, and holes within those areas become larger. The erosion operator takes two pieces of data

as inputs. The first is the image which is to be eroded. The second is a (usually small) set of

coordinate points known as a structuring element (also known as a kernel). It is this structuring

element that determines the precise effect of the erosion on the input image.

• Suppose that A is the set of Euclidean coordinates corresponding to the input binary image,

and that B is the set of coordinates for the structuring element.

• Let Bz denote the translation of B so that its origin is at z.

• Then the erosion of A by B is simply the set of all points z such that Bz is a subset of A.

A	B = {z ∈ E|Bz ⊆ A}

2.4 Image Processing 57

(a) (b)

Figure 2.58: Binary Erosion. Edges eroded with disk= 5 (a) and disk= 20 (b).

Binary Opening

In mathematical morphology, opening is the dilation of the erosion of a set A by a structuring

element B:

A◦B = (A	B)⊕B

where 	 and ⊕ denote erosion and dilation, respectively.

Together with closing, the opening serves in computer vision and image processing as a basic

workhorse of morphological noise removal. Opening removes small objects from the foreground

(usually taken as the bright pixels) of an image, placing them in the background, while closing

removes small holes in the foreground, changing small islands of background into foreground.

These techniques can also be used to find specific shapes in an image. Opening can be used to find

things into which a specific structuring element can fit (edges, corners, ...).

One can think of B sweeping around the inside of the boundary of A, so that it does not extend

beyond the boundary, and shaping the A boundary around the boundary of the element. On our

images Binary Opening can be used to remove small foreground objects (Figure 2.59)

Binary Closing

In mathematical morphology, the closing of a set (binary image) A by a structuring element B is

the erosion of the dilation of that set,

A•B = (A⊕B)	B

where 	 and ⊕ denote erosion and dilation, respectively.

In image processing, closing is, together with opening, the basic workhorse of morphological

noise removal. Opening removes small objects, while closing removes small holes.

58 Domain and technological background

(a) (b)

Figure 2.59: Binary Opening. Bright areas enlarged with disk= 5 (a) and disk= 20 (b).

(a) (b)

Figure 2.60: Binary Closing with disk= 5 (a) removes small holes with lesser area comparing with
disk= 20 (b).

An example of binary closing with different disk sizes can be seen in Figure 2.60. We can that

the with a bigger disk size (b), small holes are completely removed while with a smaller disk size

(a) edges are not eroded enough to fill the small holes.

2.4.5 Watershed

A watershed is defined as a region of land that drains water into a river or a creek. It is an area of

high ground through which water flows into the river (Figure 2.61).

Simply defined, watershed is a transformation on grayscale images. The aim of this technique

is to segment the image, typically when two regions of interest are close to each other — i.e, their

edges touch or they are overlapped. This technique of transformation treats the image as a topo-

graphic map, with the intensity of each pixel representing the height. For example, "darker areas

can be intuitively considered to be ‘lower’ in height and can represent troughs. On the other hand,

bright areas can be considered to be ‘higher’, acting as hills or as a mountain ridge"15(Figure 2.62).

15http://thewatershedproject.org/what-is-a-watershed/

2.4 Image Processing 59

Figure 2.61: A geographical watershed15.

Various algorithms can be used to compute watersheds. One of the most popular algorithm is

watershed-by-flooding that is described below.

Watershed-by-flooding
Consider that a source of water is placed in the catchment basins — the areas with low in-

tensity. These basins are flooded and areas where the floodwater from different basins meet are

identified. Barriers in the form of pixels are built in these areas. Consequently, these barriers act

as partitions in the image, and the image is considered to be segmented.

An example of watershed can be seen in Figure 2.63.

2.4.6 Normalizing Staining

Inconsistencies in the preparation of histology slides make it difficult to perform quantitative anal-

ysis on their results. So, we followed a previous project [23] that purposes two different mech-

anisms to overcome many of the known inconsistencies. As we mentioned before these slides

retrieved from digital scanner pass through a staining process. Staining is used to highlight impor-

tant features of the tissue as well as to enhance the tissue contrast. Hematoxylin is a basic dye that

is widely used in this process and stains the nuclei giving it a bluish color while eosin (another

stain dye used in histology) stains the cell’s nucleus giving it a pinkish stain [3]. The majority

of stains only absorb light, and the stained slides are therefore viewed using a microscope with a

light illuminating the sample from below. If no stain is present, all of the light will pass through,

appearing bright white. Areas where the stain has adhered to a substance in the tissue will absorb

some of the light. The amount of light absorbed depends on many factors. This paper purposed

a solution to minimize the variations of the amount of light spread along the slide. This paper

assumes that there is a specific stain vector corresponding to each of the two stains present in the

image, and that the resulting color (in OD space) of every pixel is a linear combination of these

stain vectors.
16https://www.mathworks.com/company/newsletters/articles/the-watershed-transform-strategies-for-image-

segmentation.html

60 Domain and technological background

Figure 2.62: Visualizing the watershed: the image on the left can be topographically represented
as the image on the right15

(a) (b)

Figure 2.63: Example: Segmenting Steel Grains. The grains in the original image (a) are separated
resulting in the watershed transformation presented in (b)16

The presented algorithm has the following steps:

1. Input: RGB Slide

2. Convert RGB to Optical Density

3. Remove data with Optical Density less than β

4. Calculate singular value decomposition on the Optical Density tuples

5. Create plane from the SVD directions corresponding to the two largest singular values.

6. Project data onto the plane, and normalize to unit length.

7. Calculate angle of each point wrt the first SVD direction.

8. Find robust extremes(α th and (100−α)th percentiles) of the angle

9. Convert extreme values back to OD space

10. Output: Optimal Stain Vectors

An example of the effect of this normalize staining algorithm can be seen in Figure 2.64 [23].

2.5 Chapter Summary 61

(a) Example of two histopathology slides of melanomas, both stained with hema-
toxylin and eosin, but with drastically different appearances. The images were
obtained by scanning the slides at 20X using an Aperio Scanscope

(b) Same images as shown in (a), but the second slide has been transformed into
the same colorspace as the first slide by the method purposed by the paper.

(c) Same images as shown in (a), but both are now at the same average intensity
level by the method discussed by the project

Figure 2.64: Normalize Staining [23]

2.5 Chapter Summary

In this chapter we presented a biological and technological background. The biological back-

ground provides a brief explanation of the cell and its components so we can understand which

characteristics are important for the feature extraction process.

We also presented the state of the art methods for image recognition and classification. We

started by presenting an overview of how neural networks work and why they are appropriated

to image processing. Then, we presented different CNN models that are utterly used in image

analysis. For each model, we presented the overall architecture, advantages and drawbacks and

possible performances.

We can conclude that Mask R-CNN implementation and training is harder since it employs

a two-stage learning approach, where you first optimize for an RPN (Region Proposal Network)

and then predict bounding boxes, classes and masks simultaneously. On the other hand U-Net is

62 Domain and technological background

a very popular end-to-end encoder-decoder network for semantic segmentation and it was orig-

inally invented and first used for biomedical image segmentation. In this project we used both

architectures but our segmentation was done using U-Net since it presented better results.

Capsule Networks was not used in this dissertation but we think it is relevant for this kind of

problems and could be tested in further progress. A recent study [18] used CapsNet for classifi-

cation of breast cancer histology images and the results were very promising. One of the reasons

why CapsNet presents good results in histology images is because of the hierarchical representa-

tion of data. For example, to identify an oncocyte the inter-nuclei distance between cells is bigger

due to the high amount of mithocondria in the cytoplasm. CapsNet uses this relationships and

geometrical representations as features.

Chapter 3

Methodology

As mentioned before the data was downloaded from the National Cancer Institute(NCI). NCI pro-

vides a Genomic Data Commons Data Portal, a robust data-driven platform that allows cancer

researchers and bioinformaticians to search and download cancer data for analysis. The project

from which we downloaded our Whole Slide Images is named THCA (Thyroid Carcinoma). These

images have a gigapixel resolution which makes them computationally hard and laborious to pro-

cess. In the next sections we will explain the preprocessing steps applied to reduce our images

size by cropping and applying traditional image processing techniques.

3.1 Data Loading and Preprocessing

Since the gigabyte size of a WSI poses serious challenges for scalable storage and fast retrieval,

which is essential for next-generation image analytics, we propose a system for scalable storage

of WSIs and fast retrieval of image tiles using Apache Spark.

Apache Spark is an open-source distributed general-purpose cluster-computing framework

(see Figure 3.1). Spark provides an interface for programming entire clusters with implicit data

parallelism and fault tolerance. It has as its architectural foundation the Resilient Distributed

Dataset (RDD), a read-only multiset of data items distributed over a cluster of machines, that is

maintained in a fault-tolerant way. We could also describe Spark as a distributed, data process-

ing engine for batch and streaming modes featuring SQL queries, graph processing, and machine

learning. In our case we did not take full advantage of this cluster computation since our applica-

tion is standalone - we only used one machine. However we could have used parallel computing

to increase our performance.

Spark Key Concepts:

• Application: This may be a single job, a sequence of jobs, a long-running service issuing

new commands as needed or an interactive exploration session.

63

64 Methodology

Figure 3.1: Spark Application architecture. A driver to manage the job flow and schedule tasks
and executors that run concurrently in a single process.17

• Spark Driver: The Spark driver is the process running the spark context (which represents

the application session). This driver is responsible for converting the application to a di-

rected graph of individual steps to execute on the cluster. There is one driver per application.

• Spark Application Master: The Spark Application Master is responsible for negotiating

resource requests made by the driver and finding a suitable set of hosts/containers in which

to run the Spark applications. There is one Application Master per application.

• Spark Executor: A single JVM instance on a node that serves a single Spark application. An

executor runs multiple tasks over its lifetime, and multiple tasks concurrently. A node may

have several Spark executors and there are many nodes running Spark Executors for each

client application.

• Spark Task: A Spark Task represents a unit of work on a partition of a distributed dataset.

Our Apache Spark system used the following configuration:

• Driver-Cores: 8

• Driver Memory 16GB

• Number of executors 8

• Executor Memory 8GB

• Executor Cores 1

An optimal system would have multiple workers, with multiple executors preferably with more

memory. Even though we do not have an optimal system we managed to reduce the preprocessing

time from 4,5 hour/image to 1 hour/image.

17https://blog.cloudera.com/blog/2014/05/apache-spark-resource-management-and-yarn-app-models/

3.1 Data Loading and Preprocessing 65

RDD Operations

RDDs support two types of operations:

• transformations - which create a new dataset from an existing one.

• actions - which return a value to the driver program after running a computation on the

dataset.

For example, map is a transformation that passes each dataset element through a function and

returns a new RDD representing the results. On the other hand, reduce is an action that aggregates

all the elements of the RDD using some function and returns the final result to the driver program

(although there is also a parallel reduceByKey that returns a distributed dataset).

All transformations in Spark are lazy, in the sense that they do not compute their results right

away.

Instead, they just remember the transformations applied to some base dataset (e.g. a file). The

transformations are only computed when an action requires a result to be returned to the driver

program. This design enables Spark to run more efficiently – for example, we can realize that a

dataset created through map will be used in a reduce and return only the result of the reduce to the

driver, rather than the larger mapped dataset.

By default, each transformed RDD may be recomputed each time we run an action on it.

However, we can also keep an RDD in memory using the persist (or cache) method, in which case

Spark will keep the elements around on the cluster for much faster access the next time you query

it. There is also support for persisting RDDs on disk, or replicated across multiple nodes.

Transformations

In our project we have applied some transformations, shown in Table 3.1, that can be seen as a

sequence of steps shown below.

• open_slide - Open a whole-slide image, given an image number and returns an OpenSlide

object representing a whole-slide image.

• process_slide- Generate all possible tile indices for a whole-slide image. Given a slide num-

ber, tile size, and overlap, generate all possible (slide_num, tile_size, overlap, zoom_level,

col, row) indices. The zoom level is the maximum magnification or the closest possible.

• process_tile_index- Generate a tile from a tile index. Given a (slide_num, tile_size, overlap,

zoom_level, col, row) tile index, generate a (slide_num, tile) tuple. Returns a (slide_num,

tile) tuple, where slide_num is an integer, and tile is a 3D NumPy array of shape (tile_size,

tile_size, channels) in RGB format.

• keep_tile - Determine if a tile should be kept. This filters out tiles based on size and a

tissue percentage threshold, using a custom algorithm. If a tile has height & width equal to

66 Methodology

Action Function Description Result

filter open_slide Reads a Whole Slide Im-
age

Return an OpenSlide ob-
ject

flatMap process_slide Generate all possible tile
indices for a WSI

All possible tile indices

Map process_tile_index Generate a tile from a tile
index.

A (slide_num, tile) tuple

filter keep_tile Determine if a tile should
be kept.

A Boolean indicating
whether or not a tile
should be kept.

flatMap process_tile Generates all the kept in-
dices

Kept tile indices

map normalize_staining Normalize the staining of
H&E histology slides.

Normalized slides.

Table 3.1: Transformations applied to our WSI dataset

(tile_size, tile_size), and contains greater than or equal to the given percentage, then it will

be kept; otherwise it will be filtered out. The algorithm consists in a set of image processing

techniques to verify if the percentage of tissue present in a tile is higher than the threshold.

The steps are the following ones:

1. The image is converted to grayscale

2. 8 bit 2’s complement, from 1 (dense tissue) to 0 (plain background).

3. Canny edge detection with hysteresis thresholding. This returns a binary map of

edges, with 1 equal to an edge. The idea is that tissue would be full of edges, while

background would not.

4. Binary closing, which is a dilation followed by an erosion. This removes small dark

spots, which helps remove noise in the background.

5. Binary dilation, which enlarges bright areas, and shrinks dark areas. This helps fill in

holes within regions of tissue.

6. Fill remaining holes within regions of tissue.

7. Calculate percentage of tissue coverage.

• process_tile - Process a tile into a group of smaller samples. Cut up a tile into smaller

blocks of sample_size x sample_size pixels, change the shape of each sample from (H, W,

channels) to (channels, H, W), then flatten each into a vector of length channels*H*W.

• normalize_staining - Normalize the staining of H&E histology slides. This function nor-

malizes the staining of H&E histology slides. See Figure 2.4.6 for the implementation

details and Figure 3.2 for an example.

3.1 Data Loading and Preprocessing 67

Figure 3.2: Stain normalized image

• RGB to HED - Filter RGB channels to HED (Hematoxylin - Eosin - Diaminobenzidine)

channels.

• HED to Eosin - Obtain Eosin channel from HED Image and rescale it for increased contrast

(Figure 3.3)

Figure 3.3: HED to Eosin Channel

• Contrast with Histogram Equalization (Figure 3.4)

68 Methodology

Figure 3.4: Histogram Equalization Contrast

This image processing steps proved to be very helpful when performing our segmentation

since foreground extraction (FE) decreased the images size by almost 40% (see Table 3.2) and

when applying normalize staining we removed the noise caused by light and other external fac-

tors. Furthermore, this preprocessing module also increases the classification of tumor cells. In

Section 3.3 we compare the results of several models performance metrics between a dataset with

preprocessing and a dataset without it.

3.2 Nuclei identification

As we mentioned before, nucleus are a very small structure, with a very specific morphology, i.e.

small components with a specific phenotype and its recognition is dependant on many factors,

such as lightning, staining, equipment used, etc. This deep and detailed processing of WSI will

be handful later, in the segmentation process. The aim of this project is to identify oncocytic

cells on thyroid tissue slides which is a phenomenon that can be identified on the nucleus shape

and phenotype. Therefore, it is important to have a clear image of the nucleus that is going to

be annotated. To ease the pathologist task of annotating every single oncocyte, we implemented a

WSI Original size After FE
001 3686.4 MB 2334.7 MB
002 2578.8 1578.3 MB
003 3256.1 1953.9 MB

Table 3.2: Size comparison between three WSIs before and after Foreground Extraction.

3.2 Nuclei identification 69

pre-segmentation process that identifies all the nuclei in an image. Therefore, instead of annotating

every single structure on a tissue slide, the pathologist only has to annotate every segmented nuclei

as oncocyte or not.

To detect the nucleus in patch images we used a model developed by Selim Seferbekov and

his team to the Data Science Bowl 2018 challenge. DSB2018 is a Kaggle competition18 and the

proposed challenge was to identify nucleus in divergent images. The challenge ended up by April

2018 and the winners shared their solution. They won the competition by a significant difference

and their solution proved to be state of the art in nuclei identification using object detection algo-

rithms. For our pre-segmentation step used the winner U-Net Neural Network (Section 2.3.9) with

a encoder-decoder architecture that we will be described in the next section.

Segmentation

On the constructed model the authors used a UNet like encoder-decoder architectures with en-

coders pretrained on ImageNet. The encoders they used were: DPN-92, Resnet-152, Inception-

ResnetV2, Resnet101 and ensembled the results. However, the only encoder-decoder that we used

in this project was ResNet-101 since it presented better results. The approach followed by Selim

and his team proved to be the best among the other models used on DSB1018 and there are a few

reasons for that. The main constributions are the following:

• Targets - touching borders were predicted along with the other two channels. The results

are a three channel mask composed by nuclei, background, boundaries. Figure 3.5.

• The problem is an instance segmentation. Labels were generated from the given masks.

• Loss function - combines CrossEntropy and soft dice loss so that pixel imbalance doesn not

affect the results.

• Very deep encoder-decoder architectures that also achieve state-of-the-art results in other

binary segmentation problems (SpaceNet, Inria and others)

• Exhaustive postprocessing that combines watershed, morphological feature and second-

level model with Gradient Boosted Trees. Figure 3.6.

• Task specific data augmentations

Target Masks

Initially, the authors tried the simplest approach and added watershed line for binary masks. This

helped with the labelling of the given masks since it detects boundaries but it was not enough for

overlapping nucleus. Therefore, it was added a second channel with contours, where width of

contours depended on the nucleus size. However, the networks were easily predicting contours in

non ambiguous places but having difficulties in places where that was actually needed contours to

18https://www.kaggle.com/c/data-science-bowl-2018

70 Methodology

separate the nuclei. Hence the authors decided to predict only the borders between the cells. This

approach improved their solution since that they could finally separate the nucleus masks and get

a label for each training image.

Figure 3.5: Resulting Masks from the model. Three visible targets: nucleus (blue), boudaries
(light blue) and background (black)

Figure 3.6: Masks after Watershed postprocessing

Augmentations

Since the training data used for the segmentation problem did not have enough images, specific

augmentations were used to prevent models from overfitting and made them more or less general-

izable. For that, they used a lot of heavy augmentations.

• CLAHE, Sharpen, Emboss

• Gaussian Noise

3.2 Nuclei identification 71

• Color to Gray

• Remapping grayscale images to random color images

• Blur, Median Blur, Motion Blur

• Contrast and brightness

• Random scale, rotates and flips

• Heavy geometric transformations: Elastic Transform, Perspective

• Transform, Piecewise Affine transforms, pincushion distortion

• Random HSV

• Channel shuffle - divergent data

• Nucleus copying on images. That created a lot of overlapping nuclei which helps networks

to learn better borders for overlapping nuclei.

Training parameters

As we mentioned before, U-Net architecture was used with a deep encoder-decoder. The model

was trained with the following hyper-parameters:

• Random Crops: 256x256

• Batch Size: 16

• Optimizer: Adam

• Learning rate: initial 1e-4 with decay (we had different learning rate (LR) policies, but

mostly small LR no more than 1e-4)

Loss function

For networks with sigmoid activation and 2 channel masks they used a combination of binary

crossentropy with softdice per channel. For networks with softmax activation and 3 channel masks

they a used combination of categorical crossentropy with soft dice per channel (soft dice was

applied only to mask and border channels).

Postprocessing

Now that we have all nucleus identified, we need to import the masks onto our application. As we

mentioned before, the output from the segmentation process are 3-channel masks, nuclei, back-

ground, boundaries. To get the nuclei contour, we need to apply some image processing techniques

to separate the nucleus from the predicted mask.

An example of the result from the segmentation process is shown on Figure 3.7.

72 Methodology

Figure 3.7: Resulting Masks of a single patch

• The black color represents the background

• The blue color represents the nuclei

• The light blue/green color represents the boundaries between two overlapped nucleus

Applying watershed (Section 2.4.5) to the image we can separate adjacent nucleus and get the

boundary line (Figure 3.8).

Figure 3.8: Resulting mask of a single patch with watershed

3.2 Nuclei identification 73

1 {
2 "filename": "",
3 "size": -1,
4 "regions": [
5 {
6 "shape_attributes": {
7 "name": "polyline",
8 "all_points_x": [],
9 "all_points_y": []

10 }
11 }
12],
13 "file_attributes": {}
14 }

Listing 3.1: JSON file object

However, with this whatershed mask the nucleus are not differentiated since that adjacent

cells share the boundary. To have a nuclei individually segmented, we need to fill the contours

by eroding the boundaries. As we mentioned in Section 2.4.4, binary erosion uses a disk as the

structuring element that erodes the edges, usually denominated disk. The result of binary erosion

on our masks can be seen in the Figure 3.9.

Figure 3.9: Resulting mask of a single patch with watershed and binary erosion

With this approach, cells that were segmented as overlapping (some may have escape) are

correctly separated, with its own boundary. To get the coordinates of those boundaries we use an

OpenCV module to find the object contours that returns the x and y points of the whole polygon.

Finally, we created a JSON file with the format presented in Listing 3.1.

74 Methodology

3.3 Experimental Procedure

Figure 3.10: Framework pipeline.19

In this section, we briefly describe the details about the dataset, experiment setting, and demon-

strate the performance of our framework for tumor cell classification. After the preprocessing our

dataset is divided in two labels - tumor and normal. The framework pipeline can be seen in Fig-

ure 3.10 and can be divided in the following steps:

• Extract patches from ROI (Regions of Interest)

• Divide patches in two classes - tumor and normal

• Feed the neural network with 256x256 patches.

• Use the best model to test a WSI

• Generate an heatmap with tumor cells identified

3.3.1 Dataset

Having our images correctly annotated by the pathologist, we divide them into labels and build

our dataset. Our dataset has a total of 100000 images cropped in a 256x256 resolution that are

splitted by the train, validation and test set. On the Table 3.3 we can see the dataset distribution.

3.3.2 Data Augmentation

Data augmentation adds diversity to the dataset by adding information that is derived from the

actual data. This synthetically modified data, can represent a variety of conditions in which our

19https://www.researchgate.net/publication/304163398_Deep_Learning_for_Identifying_Metastatic_Breast_Cancer

3.3 Experimental Procedure 75

Tumor Normal
Train 31596 30874

Validation 5321 5112
Test 5783 5823

Table 3.3: Train, valid and test set samples distribution

data can be presented. For example, if our images are always centered and have the same scale, the

model will have difficulty to train when those kind of images are computed. In our case, images

can have a different zoom, a different brightness and a different staining. Using augmentation will

help enhancing features that are very important in the classification process. In this project we

used the following data augmentation:

• Rotations

• Random Flips (Horizontal and Vertical)

• Brightness

• Random Grayscale

Adding more diversity contributes for a more robust dataset and helps to avoid overfitting.

3.3.3 Hardware Specification

The experimental setup was conducted on a single machine with the following specifications:

• Processor. Intel Core i7-6700HQ (Intel Core i7)

• Graphics adapter: NVIDIA GeForce GTX 1060 (Laptop) - 6144 MB, GDDR5

• Memory: 16384 MB DDR4

3.3.4 Deep Learning Software

Keras, TensorFlow and PyTorch are among the most known frameworks that are used for Deep

Learning. The advantages and drawbacks of each framework depends on the problem that is being

addressed and on the approach that is followed. A brief description of these popular frameworks

is presented below.

Keras

Keras is an open source high-level API for neural network frameworks. Its main features include

user friendliness, modularity, and ease of extensibility. Keras is written in Python which makes for

an easy to understand source code. It is one of the most used high-level wrappers for Tensorflow.

Developing neural networks is quicker when using it for many commonly used layer declarations.

76 Methodology

The wrapper provides means to build networks, 27 load pre-trained weights, preprocess data,

augment data, asynchronously feed training data and other features.

Tensorflow

Keras is a high-level neural networks API, written in Python and capable of running on top of

different backend frameworks for computation-heavy tasks such as Tensorflow, CNTK or Theano.

TensorFlow is a framework that provides both high and low level APIs and is used for high-

performance numerical computations across various computing hardware. To achieve high perfor-

mance levels, it uses optimized code for specific hardware. For instance, on NVIDIA GPUs can

use cuDNN1library for computation-heavy tasks.

PyTorch

PyTorch2is a lower-level API focused on direct work with array expressions. It is primarily de-

veloped by Facebook’s artificial-intelligence research group and Uber’s "Pyro" software for prob-

abilistic programming is built on it. Pytorch is

PyTorch provides two high-level features:

• Tensor computation (like NumPy) with strong GPU acceleration

• Deep neural networks built on a tape-based autodiff system

In terms of programming, Tensors can be considered multidimensional arrays. Tensors in

PyTorch are similar to NumPy arrays, with the addition being that Tensors can also be used on a

GPU that supports CUDA.

In our project, Deep learning experiments were conducted using Keras with Tensorflow back-

end. We also used Transfer Learning, i.e. pre-trained PyTorch models, for our classification

process.

3.3.5 Experimental Setup

During training and inference, we extracted 304x304 patches from WSIs at the highest magnifica-

tion. We trained our data using the following models:

• ResNet - Residual Networks (Section 2.3.2)

– ResNet101

– Resnet50

– Resnet34

– Resnet18
1https://developer.nvidia.com/cudnn
2https://www.analyticsvidhya.com/blog/2018/02/pytorch-tutorial/

3.3 Experimental Procedure 77

• DenseNet - Densely Connected Networks (Section 2.3.3)

– DenseNet101

• InceptionV3 (Section 2.3.4)

Each of these models have a different architecture. For example, ResNet models can have

different architectures as we mention in Section 2.3.2.1. The more layers a model have, the deeper

it is, meaning that it will help to extract more complex features, but we can only do that up to a

certain extent. There is a limit and after that, instead of extracting features, we tend to overfit the

data. Although we have a significant amount of data, histology slides are very rich in information

and the thyroid cytology contains many structures that can be hard to identify and can differ from

slide to slide. To understand what we need to classify, we have to know exactly what kinds of

features we are looking for and the learning growth we want for our model.

Since we have some hardware limitations we have to take special care with our parameters and

tune our model to process fewer images at a time, which can lead to overfitting. In the Figure 3.11,

it is shown the loss of a ResNet101 model. ResNet has 101 layers and it is one of the deepest

models we experimented. We can see that after the 8th epoch the model starts overfitting, meaning

that the loss on the validation set is diverging from the training loss. The model is not learning

anymore but memorizing each label. For this kind of issues we implemented few mechanisms to

control overfitting. The first was already mentioned, it is data augmentation which adds diversity

to the original patches. The other mechanisms are presented below.

Figure 3.11: Training versus Validation loss on ResNet101

3.3.5.1 Early Stopping

Our model has a saturation point. This saturation point shows the moment when the validation

and training loss are converging. When the training/validation loss starts to diverge, the model is

78 Methodology

overfitting. Therefore, we stopped our model when it does not learn anything relevant. Our early
stopping method works as follows:

1. The best loss starts at infinity

2. We give our model a patience variable. When the patience runs out, we stop the training

process.

3. Compare the validation loss at each epoch with the best loss.

4. If the current validation loss is better than the actual best loss, it becomes the new best loss

and we continue.

5. If the validation loss is worse than the best loss we decrease our patience by one.

6. When patience reaches 0, the model stops.

With this mechanism we can keep track of our best validation loss and we can check if we are

overfitting and wait for our curve to be steep. As soon as the model starts overfitting, the results

are not relevant and we can stop learning and save the model with the best loss ratio. In Figure

3.12 we can see the early stopping mechanism on the ResNet101 model. The validation curve

stops converging at epoch 6 and given a patience=7 it will give up on the model after seven epochs

without learning or improving its loss.

Figure 3.12: Early Stopping on ResNet101

3.3.5.2 Learning Rate Adjustment

The learning rate is how quickly a network abandons old beliefs for new ones. If our model sees

10 examples of tumor cells and all of them have a pink nuclei, it will assume that tumor cells have

3.3 Experimental Procedure 79

pink nuclei. However, if it sees a tumor cell with violet nuclei, with a large learning rate, it will

quickly realize that the violet nuclei is not the most important feature of a tumor cell. With a small

learning rate, it will assume that the violet nuclei is an outlier and that tumors are identified by

pink nucleus. The higher the learning rate means that the network changes its mind more quickly.

If the learning rate is too high it might start to think that all tumor cells have violet nuclei even

though it has seen more tumor cells with pink nuclei that violet ones.

In general, we want to find a learning rate that is low enough that the network converges to

something useful, but high enough that we do not have to spend too much time training it.

Normally, when the dataset has exhaustive data from both labels the learning rate can be static

since it will have all the diversity it needs to converge to an output. However, when the dataset is

limited, we need to take the features that we already extracted and build our model around it. So,

we implemented a learning rate adjustement that works like this:

1. The best loss is initialized with infinity.

2. We initialize the LR_DECAY and LR_CHANCE variables with 0 and 2, respectively. The

LR_DECAY is the how much the factor of how much the learning rate drops. LR_CHANCE

works like patience mentioned on early stopping and gives the learning rate a chance to

perform.

3. At each epoch, we check the validation loss.

4. If the validation loss is better than the best validation loss it becomes the new best validation

loss.

5. If the validation loss is worse than the best validation loss the LR_CHANCE is decreased by

one.

6. When the LR_CHANCE reaches 0, LR_DECAYis increased by one and LR_CHANCE is

reseted.

7. The actual learning rate is calculated by the following equation:

actual_learning_rate = initial_rate∗ (decay_ f actorLR_DECAY)

With this adjustment, we can make our model to converge to something useful. When the

actual learning rate is becoming obsolete, we decrease the learning rate by a factor. Doing this,

the learning rate will become smaller and smaller which means that it will become more strict

when it learns, building a model around the beliefs of non-overfitting epochs. In Figure 3.13, we

can see the learning rate being adjusted for the ResNet101 model. Initially, the model reaches its

optimal solution at epoch 1. Then, it gives the model 2 epochs as a chance to improve its best

result. In epoch 4, the chances run out and the learning rate decreases from 0.005 to 0.0025. The

model reaches its best solution at epoch 6, replacing the best loss from epoch 4. After that, the

model starts overfitting and the training process stops.

80 Methodology

(a) Validation vs Training Loss (b) Learning Rate per Epoch

Figure 3.13: Learning Rate and Loss for ResNet101 model

3.3.5.3 Results

As explained on the previous sections, we trained a set of Deep ConvNets with the most state-of-art

models in order to determine which one performs better on our data and which limitations we have

and what we can do to overcome them. We used mini-batch Stochastic Gradient Descent (SGD)

as the optimizer, Binary Cross Entropy as the loss function and exponential decay mechanism for

learning rate. We set the initial learning rate to 0.01 and decreased the value by half every three

epochs without an improvement of the model in order to reduce oscillation and avoid divergence.

The model is trained continually using 1 GPU and the batch size depends on the model archi-

tecture due to memory limitations.

In Figure 3.14 we can see that our model reaches its solution in the second epoch. In the loss

plot (Figure 3.14a) we can see that the validation and training loss curves converge until epoch

2 reaching almost the same loss, after that the model diverges on epoch 3 and that is when the

learning rate is adjusted (Figure 3.14b) keeping the loss curve steep until the end of the training

process.

To evaluate our image processing module impact in the classification process, we tested our

models on two datasets: a dataset without any preprocessing and a dataset with the preprocessing

methodology presented in Section 3.1. The results of each model performance on non-processed

images can be seen in Table 3.4.

Model Accuracy Recall Precision Specificity F1 Threshold AUC
ResNet101 0.848 0.851 0.843 0.874 0.843 0.150 0.887
DenseNet101 0.836 0.813 0.878 0.830 0.805 0.273 0.870
ResNet50 0.835 0.847 0.815 0.817 0.852 0.370 0.883
ResNet34 0.853 0.845 0.854 0.817 0.840 0.51 0.892
ResNet18 0.889 0.898 0.848 0.835 0.872 0.38 0.887
InceptionV3 0.857 0.855 0.878 0.858 0.880 0.150 0.891

Table 3.4: Results without image processing

3.3 Experimental Procedure 81

(a) Training versus Validation accuracy (b) Learning Rate per epoch for ResNet54 model

Figure 3.14: Accuracy and Learning Rate decay for ResNet54 model

(a) Validation vs Training Accuracy

(b) Early stopping method on ResNet54. The model
does not learn anything relevant from epoch 5 and
stops. The saved model is the one with lowest loss
(epoch 3)

Figure 3.15: Learning Rate and Loss for ResNet54 model

Model Accuracy Recall Precision Specificity F1 Threshold AUC
ResNet101 0.884 0.892 0.880 0.904 0.885 0.140 0.933
Densenet101 0.873 0.841 0.901 0.870 0.830 0.090 0.920
ResNet50 0.868 0.881 0.859 0.854 0.870 0.120 0.927
ResNet34 0.897 0.888 0.897 0.898 0.887 0.340 0.935
ResNet18 0.885 0.877 0.897 0.878 0.875 0.170 0.930
InceptionV3 0.898 0.895 0.903 0.898 0.903 0.150 0.941

Table 3.5: Test Results

In Table 3.5 we can see the results of each model used on our project with the preprocessing

module applied. InceptionV3 has the best results except for specificity, i.e. the true positive rate,

meaning that ResNet101 is better on classifying normal patches and InceptionV3, with 90.1%

precision does a better classification on negative patches, tumor patches. As a comparative metric,

we used Area Under Curve (AUC). AUC combines the False Positive Rate (FPR) and the True

Positive Rate (TPR) into one single metric; we first compute the two former metrics with many

different threshold, then plot them on a single graph, with the FPR values on the abscissa and the

82 Methodology

TPR values on the ordinate. The resulting curve is called ROC curve, and the metric we consider

is the AUC of this curve, which we call AUROC. Analyzing the AUC for each model, we can

conclude that InceptionV3 performs better on our dataset with an AUC of 94.1%.

ResNet101 results are very close to InceptionV3, having an higher specificity. DenseNet101

has the highest precision together with InceptionV3, with 90.1%.

The false positives are due to incomprehensible training data as we have extracted training

patches randomly to reduce number of training samples. Because of this randomness, some diffi-

cult negatives patches from the histological mimics of cancer were missed in training data, which

results in producing false positives.

We can see an improvement of 0.5% in AUC metric comparing InceptionV3 performance on

pre-processed images with the results in Table 3.4. These results mean that Image processing has

an impact on the model accuracy and data preparation is very important when analyzing histology

slides. As we mentioned before, WSI are very rich in information and have fine-grained details.

However, the quality of these images is dependant on many factors, such as lightning, tissue

damage and staining. The image processing module implemented in this project helps to reduce

the noise caused by external factors, normalizes images and enhances their features. Improving

data quality we are improving our feature extraction process leading to a better classification.

Overall, deeper models presented a better performance among other architectures. However,

due to lack of data, different mechanisms needed to be implemented to regulate our learning

rate to avoid overfitting. Comparing the training/validation loss of ResNet54 (Figure 3.15) with

ResNet101 (Figure 3.11), we can see that the curve of ResNet54 model is steeper than ResNet101.

Higher capacity models have a tendency to overfit unless we use some sort of regularizer. One

way that very deep networks overfitting can hurt performance is that they will rapidly approach

very low training error in a small number of training epochs, i.e. we cannot train the network

for a large number of passes (epochs) through the dataset. A technique like Dropout, a stochastic

regularization technique, allows us to train very deep nets for longer periods of time. This in effect

allows us to learn better features and improve our classification accuracy because we get more

passes through the training data. Using a smaller training set size, may result in learning a smaller

distributed feature representation, and this may hurt the generalization ability. Lastely, if we want

to be able to generalize well we would need a larger training that will allow us to learn a more

diverse distributed feature hierarchy.

3.3.5.4 Heatmaps

To have a clear visualization of our results we implemented a feature that aggregates the patch-

level predictions to create tumor probability heatmaps and perform post-processing over these

heatmaps to make predictions for the slide-based classification task and the tumor-localization

task. In the heatmap based post-processing approach, we use the tumor probability heatmap to

compute the slide-based evaluation scores for each WSI.

An example of a probability heatmap can be seen in Figure 3.16.

3.3 Experimental Procedure 83

Figure 3.16: On the right image we can see a tumor binary mask and on left image the heatmap
image based on the tumor probability.

This heatmap feature helps the pathologist to visualize regions of interest and can be used to

improve the framework by identifying bad classifications. Furthermore, this feature can also be

used to fix wrong annotations. Analyzing the heatmaps, the pathologist can identify wrong labelled

zones and help to improve the segmentation process which leads to a more accurate dataset and

consequently, a better classification.

Chapter 4

Oncofinder

Oncofinder is the name of the annotation tool developed to ease the pathologist task of annotate

every single oncocytic cell. Oncofinder is a very light Javascript application and its main func-

tionality is to label the objects that we want to identify. The web application contains a built-in

segmentation model that highlights the nucleus present in the image.

Figure 4.1: Oncofinder Use Case Diagram

In Figure 4.1 we present a Use Case Diagram to illustrate the main functionalities of our web

85

86 Oncofinder

application. In the following sections we provide a description of each of these features and of the

overall process of the application.

4.1 Overall Interface

Figure 4.2: Oncofinder main page

In Figure 4.2 we can see our main page. This web application contains a single page where

the User has access to all the features. The navigation bar provides a shortcut for the main actions,

such as Open/Save Project, Load/Import Annotations, Grid View, Next/Previous Image, Zoom

In/Out. The left side bar provides the submenus for file management, drawing tools and attributes

creation.

4.1.1 Open Project

Open project lets the user load a previous saved project. Each project file is in JSON format

and contains information regarding the project structure and appearance. The saved settings are

presented below.

• UI settings

4.1 Overall Interface 87

– Annotation editor height

– Annotation editor font size

– Left sidebar width

– Image height

– Region shape fill

– Region shape fill opacity

– Region shape color

– Region shape stroke width

– Region label font

– Region label placement

• Core

– Buffer size

– File path

– Default File path

• Project

– Project name

– Last update

These settings are specific for each saved project and are loaded every time the User opens its

respective JSON file. An example of Open Project can be seen in Figure 4.3.

Figure 4.3: Project file upload window

4.1.2 Manage Images

Manage Images feature is an add/remove option that lets the User upload a new image to annotate

or remove an image from the current workspace. When an image is removed its annotations are

also deleted. In Figure 4.4 it is shown the Files submenu with both options and a list of current

project images. The User can also search for an image or use the scroll menu to filter images using

a given option. Options include the following filters:

88 Oncofinder

• Show images without regions

• Show images missing region annotations

• Images that could not be loaded

• Regular expression

Figure 4.4: Oncofinder main page

4.1.3 Load Annotations

Load Annotations is a feature that lets the user load annotations for the current set of images in the

workspace or for one single image. Consider that the user has been working on a different project

and wants to load an image annotation to the current project. To address that, we created an option

to load a JSON or CSV file of a specific image or project. In Figure 4.5 is shown an example of

an annotation file upload.

Figure 4.5: Annotations file upload window

4.1.4 Draw Section

The User has access to several draw tools present in the left upper corner of our web application

(see Figure 4.2). When choosing one of the tools, the User can draw annotations in the current

4.1 Overall Interface 89

image. We provide different draw shapes in order to be able to annotate different objects and make

the application suitable for different problems. In Figure 4.7 we can see the Region Shape menu.

Figure 4.6: Region Shape menu. From left to right, the user can draw the in the following shapes:
rectangle, circle, elliptical, polygon, points, lines.

4.1.5 Save Annotations

Save Annotations lets the User save the current image annotations or all the annotations drawn

in the project. When the User is done drawing the regions, the shape coordinates are saved in a

JSON file (see Section 3.1). This file is used in our framework in order to create our dataset with

tumor/normal patches or binary masks of oncocytic cells.

4.1.6 Manage Attributes

Manage Attributes features are designed to create and edit Region Attributes. A region attribute

is a designation for the segmentation target we are currently labelling. Each target contains an

option that is the class of the object we are identifying. Consider we have a project and we want

two different datasets using the same images, we can add a region attribute named Nuceoli where

we annotate all the nucleoli in the image and we can add an attribute named Nucleus where we

annotate the whole nucleus. This feature was also developed regarding different problems since

we only have one attribute, Oncocyte.

For each attribute we add the labels that will be used for annotation. In this project, even

though we only want to identify oncocytic cells, we can create several labels that can be used for

further improvements in our framework, such as Bad Segmentation. Using this label we can mark

wrong segmentations and improve the segmentation model presented in Section 3.2. However, we

only used Oncocyte and Non-Oncocyte for this project purposes.

4.1.7 Label Image

Once the labels are created for our Region Attributes, the User can start the labelling processing

and press on the objects that are already annotated and classify them or draw its own annotations.

An example of the labelling feature can be seen in Figure 4.8.

4.1.8 Save Project

Save Project is a feature that lets the user save the current settings of the project creating a new

local file or updating the current project JSON file.

90 Oncofinder

Figure 4.7: Manage Attributes submenu

Figure 4.8: Label image interface

4.2 Chapter Summary

This web application was designed to make the annotation process easier to the pathologist. Basic

operations such as Open/Save Project and Import/Export Annotations were implemented in order

to keep track of the changes made in the project and use the annotations to create our framework

dataset. Since we wanted to maximize our time with the pathologist, we tried to avoid a com-

plex interface with too many tools and make the application ready-to-use providing a pre-created

project with all the images already loaded and annotated, displaying only the necessary features

for quick annotation. We concluded that the task of annotating each image with one of the drawing

tools could be too exhaustive and would not be as effective as a point by point segmentation. With

this approach, the pathologist only needs to access the web site, click on the nucleus, label and

save.

Chapter 5

Conclusions and Future Work

The importance of acquiring and processing information from WSI is increasing every day, espe-

cially in the medical and biological fields. Recent scanners are able to digitize slides from biopsies

at a very high magnification level which increases the amount of information present in the output

images. The analysis made by pathologists is based on a set of patterns and details that are not

always visible or can be damaged. These morphological characteristics can be of uttermost im-

portance in the analysis of a slide since they can change the perception of basic concepts needed

to classify the tissue. In this dissertation we addressed the problem of identifying oncocytic cells

in thyroid tumors. The identification and quantification of oncocytes can help to understand the

severity of the disease and improve the diagnosis [24, 10].

We now draw our conclusions, compare our results with the initial objectives determined for

this project and point out future work needed to improve further the presented framework.

5.1 Objectives Fulfillment

During the thesis work we have implemented a framework that allows the efficient identification

of the cell nucleus on a slide image, using state of art algorithms for object detection. We expect

the tool to be a quite valuate instrument for pathologits since it eases the examination of oncocytes

which is a fairly time-consuming and error-prone process. The tool provides an interface where

the expert classifies each nuclei as oncocytic or not. The result of the annotation is used to build a

model that outputs an heatmap with the regions of interest identified.

The automation of the segmentation step, an important step in the whole process is a very

important tool since it can speed up the annotation process and its efficiency.

The image processing module developed for this project increased our solution AUC metric for

0.4% proving that using several techniques that increase image quality and enhances the attributes

are of uttermost importance in the feature extraction process.

91

92 Conclusions and Future Work

The annotation tool provides an easy and friendly interface to label microscopic images and

was developed to be applied to any histologic slides. The only task required to the pathologist is

to label the nucleus by clicking on the correct option provided by the interface.

The image processing and the annotation tool can be seen as part of an exhaustive prepro-

cessing module which brings several benefits for classification part. Having an end-to-end image

processing helps to normalize the features that are extracted and creates a closed system where

classified images can be used for segmentation again. This is very helpful for rough patches, bad

annotations and faulty segmentations.

5.2 Future Work

Future work will focus on improvements utilizing larger datasets and higher computational power.

Deeper models could be used in order to extract more complex features and a lesser execution

time would make the model tuning more accurate.

Staining normalization was an addition that proved to be very helpful technique in the image

processing phase. Recent experiments on histopathological H&E images with high staining vari-

ations, collected from different laboratories, show that some neural networks models outperform

quantitatively traditional methods, i.e. standard image processing techniques, in the measure of

color constancy with at least 10-15%, while the converted images are visually in agreement with

this performance improvement [43]. It would be an improvement to our framework since image

degradation caused by external factors can substantially affect the feature extraction quality.

Data Augmentation is also used in this project in order to add diversity to our dataset. This

feature becomes handful in the classification process since we have data limitations. Adding

operations such as channel filtering, random rotations and random cropping adds new and different

patches that increase the number of features and consequently, the model does not generalize so

fast, helping to avoid overfitting.

Oncofinder, can also be improved in terms of usability. The feedback of the experts, of what

they would change/add to the tool, is fundamental to improve the tool. The experience of the

expert pathologists is also important to select data to train the learning classifiers, in the early

stages of the tool usage, where the available manually classified data may be little or nonexistent.

Working together with pathologists would also be a major advantage since there are different

approaches that can help to improve our results. A constant interaction and a better understanding

of the features that are more relevant can help to improve the image processing step, improving

the image quality and subsequently, the segmentation.

References

[1] Saleh Albelwi and Ausif Mahmood. A framework for designing the architectures of deep
Convolutional Neural Networks. Entropy, 19(6), 2017.

[2] Felix Altenberger and Claus Lenz. A Non-Technical Survey on Deep Convolutional Neural
Network Architectures. 2018.

[3] Tashkandi F. M. & Mohammedsaleh Z. M. Alturkistani, H. A. Histological Stains: A
Literature Review and Case Study. Global journal of health science, 2015.

[4] Christopher M Bishop, C. M. (2006). Pattern Recognition and Machine Learning. (M.
Jordan, J. Kleinberg, & B. Schölkopf, Eds.)Pattern Recognition (Vol. 4). Springer.
doi:10.1117/1.2819119Bishop. Pattern Recognition and Machine Learning, volume 4. 2006.

[5] Liat Clark. Google’s artificial brain learns to find cat videos. Available at https://www.
wired.com/2012/06/google-x-neural-network/.

[6] Tiago Marques Dias da Mota. Identificação e Quantificação de Células Oncocíticas em
Imagens Microscópicas. 2014.

[7] Jeffrey Dean, Greg S Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V Le, Mark Z
Mao, Marc Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, and Andrew Y Ng.
Large Scale Distributed Deep Networks. NIPS 2012: Neural Information Processing Sys-
tems, pages 1–11, 2012.

[8] Yoram Duchi, John and Hazan, Elad and Singer. Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization. The Journal of Machine Learning Research, 12(1532-
4435):2121–2159, 2011.

[9] L Pereira et al. “somatic mitochondrial dna mutations in cancer escape purify- ing selection
and high pathogenicity mutations lead to the oncocytic phenotype: pathogenicity analysis of
reported somatic mtdna mutations in tumors.". BMC Cancer 12, page 53, 2012.

[10] Giuseppe Gasparre, Elena Bonora, Giovanni Tallini, and Giovanni Romeo. Molecular fea-
tures of thyroid oncocytic tumors. Molecular and Cellular Endocrinology, 321(1):67–76,
may 2010.

[11] Ross Girshick. Fast R-CNN. Proceedings of the IEEE International Conference on Computer
Vision, 2015 International Conference on Computer Vision, ICCV 2015:1440–1448, 2015.

[12] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pages 580–587, 2014.

93

https://www.wired.com/2012/06/google-x-neural-network/
https://www.wired.com/2012/06/google-x-neural-network/

94 REFERENCES

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[14] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask R-CNN. Proceedings
of the IEEE International Conference on Computer Vision, 2017-October:2980–2988, 2017.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE
International Conference on Computer Vision, volume 2015 International Conference on
Computer Vision, ICCV 2015, pages 1026–1034, 2015.

[16] Le Hou, Dimitris Samaras, Tahsin M. Kurc, Yi Gao, James E. Davis, and Joel H. Saltz.
Patch-based Convolutional Neural Network for Whole Slide Tissue Image Classification.
2015.

[17] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. Densely
connected convolutional networks. Proceedings - 30th IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017, 2017-January:2261–2269, 2017.

[18] Tomas Iesmantas and Robertas Alzbutas. Convolutional capsule network for classification
of breast cancer histology images. pages 1–8.

[19] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. feb 2015.

[20] Diederik P. Kingma and Jimmy Lei Ba. Adam: a Method for Stochastic Optimization.
International Conference on Learning Representations 2015, pages 1–15, 2015.

[21] Alex KrizhKrizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification
with Deep Convolutional Neural Networks. Advances In Neural Information Processing Sys-
tems, 1–9.evsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification with Deep
Convolutional Neural Networks. Advances In Neural Information Processing Systems, pages
1–9, 2012.

[22] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2323, 1998.

[23] et al. Macenko, Marc. A method for normalizing histology slides for quantitative analysis.
ISBI’09. IEEE International Symposium on. IEEE, 2009, 2009.

[24] Valdemar Máximo and Manuel Sobrinho-Simões. Hurthle cell tumours of the thyroid. A re-
view with emphasis on mitochondrial abnormalities with clinical relevance. Virchows Archiv,
437(2):107–115, 2000.

[25] Yurii Nesterov. A Method of Solving A Convex Programming Problem With Convergence
rate O(1/kˆ2). Soviet Mathematics Doklady, 27(2):372–376, 1983.

[26] NIH. Cancer statistics. Available at https://www.cancer.gov/about-cancer/
understanding/statistics.

[27] Shengxiao Niu, Jingjing Yang, Sheng Wang, and Gengsheng Chen. Improvement and paral-
lel implementation of canny edge detection algorithm based on GPU. Proceedings of Inter-
national Conference on ASIC, (6):641–644, 2011.

http://www.deeplearningbook.org
https://www.cancer.gov/about-cancer/understanding/statistics
https://www.cancer.gov/about-cancer/understanding/statistics

REFERENCES 95

[28] Liron Pantanowitz, Navid Farahani, and Anil Parwani. Whole slide imaging in pathology:
advantages, limitations, and emerging perspectives. Pathology and Laboratory Medicine
International, page 23, 2015.

[29] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global Vectors for
Word Representation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1532–1543, 2014.

[30] Ankit Rathi. Capsule neural networks (capsnets). Available at https://medium.com/
@rathi.ankit/capsule-neural-networks-capsnets-6fc5d8071671.

[31] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 39(6):1137–1149, 2017.

[32] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for
Biomedical Image Segmentation. pages 1–8, 2015.

[33] Sebastian Ruder. An overview of gradient descent optimization algorithms. pages 1–14,
2016.

[34] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-
Scale Image Recognition. sep 2014.

[35] Leslie N. Smith. Cyclical Learning Rates for Training Neural Networks. (April), 2015.

[36] Richard S Sutton. Two problems with backpropagation and other steepest-descent learning
procedures for networks, 1986.

[37] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going Deeper with Convolu-
tions. sep 2014.

[38] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna.
Rethinking the Inception Architecture for Computer Vision. 2015.

[39] SH Tsang. Review: Densenet - dense convolutional network (im-
age classification). Available at https://towardsdatascience.com/
review-densenet-image-classification-b6631a8ef803.

[40] SH Tsang. Review resnet - winner of ilsvrc 2015 (image classification, lo-
calization, detection). Available at https://towardsdatascience.com/
review-resnet-winner-of-ilsvrc-2015-image-classification-localization-detection-e39402bfa5d8.

[41] J R R Uijlings, K E A Van De Sande, T Gevers, and A W M Smeulders. Selective Search for
Object Recognition. 2012.

[42] Wikipedia. Oncocyte. Available at https://en.wikipedia.org/wiki/Cancer.

[43] Farhad Ghazvinian Zanjani. Histopathology Stain-Color Normalization Using Deep Gener-
ative Models. Medical Imaging with Deep Learning, (Midl):1–11, 2018.

[44] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks.
In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics), volume 8689 LNCS, pages 818–833, 2014.

https://medium.com/@rathi.ankit/capsule-neural-networks-capsnets-6fc5d8071671
https://medium.com/@rathi.ankit/capsule-neural-networks-capsnets-6fc5d8071671
https://towardsdatascience.com/review-densenet-image-classification-b6631a8ef803
https://towardsdatascience.com/review-densenet-image-classification-b6631a8ef803
https://towardsdatascience.com/review-resnet-winner-of-ilsvrc-2015-image-classification-localization-detection-e39402bfa5d8
https://towardsdatascience.com/review-resnet-winner-of-ilsvrc-2015-image-classification-localization-detection-e39402bfa5d8
https://en.wikipedia.org/wiki/Cancer

96 REFERENCES

[45] Guangyong Zeng, Yi He, Zongxue Yu, Xi Yang, Ranran Yang, and Lei Zhang. Preparation
of novel high copper ions removal membranes by embedding organosilane-functionalized
multi-walled carbon nanotube. Journal of Chemical Technology and Biotechnology,
91(8):2322–2330, 2016.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context and Framing
	1.2 Problem Description
	1.3 Motivation
	1.4 Goals
	1.5 Thesis Contribution
	1.6 Structure of the Report

	2 Domain and technological background
	2.1 Biological Background
	2.2 Image Data and Pre-Processing
	2.3 Deep Learning Background
	2.3.1 Convolutional Neural Networks
	2.3.2 ResNet
	2.3.3 DenseNet
	2.3.4 InceptionV3
	2.3.5 R-CNN
	2.3.6 Fast R-CNN
	2.3.7 Faster R-CNN
	2.3.8 Mask R-CNN
	2.3.9 U-Net
	2.3.10 Capsule Networks

	2.4 Image Processing
	2.4.1 Canny Edge Detection
	2.4.2 Color
	2.4.3 Contrast
	2.4.4 Morphology
	2.4.5 Watershed
	2.4.6 Normalizing Staining

	2.5 Chapter Summary

	3 Methodology
	3.1 Data Loading and Preprocessing
	3.2 Nuclei identification
	3.3 Experimental Procedure
	3.3.1 Dataset
	3.3.2 Data Augmentation
	3.3.3 Hardware Specification
	3.3.4 Deep Learning Software
	3.3.5 Experimental Setup

	4 Oncofinder
	4.1 Overall Interface
	4.1.1 Open Project
	4.1.2 Manage Images
	4.1.3 Load Annotations
	4.1.4 Draw Section
	4.1.5 Save Annotations
	4.1.6 Manage Attributes
	4.1.7 Label Image
	4.1.8 Save Project

	4.2 Chapter Summary

	5 Conclusions and Future Work
	5.1 Objectives Fulfillment
	5.2 Future Work

	References

