
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Writing Efficient JavaScript Programs:
a Performance and Optimization Study

Filipe Miguel Leitão Ribeiro

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: André Monteiro de Oliveira Restivo

Supervisor: António Pedro Freitas Fortuna dos Santos

February 25, 2019

Writing Efficient JavaScript Programs: a Performance
and Optimization Study

Filipe Miguel Leitão Ribeiro

Mestrado Integrado em Engenharia Informática e Computação

February 25, 2019

Resumo

O número de websites existentes tem aumentado a um ritmo maior que o aumento verificado no
número de utilizadores da internet, o que leva a que haja uma grande competição entre os propri-
etários dos websites pelos seus utilizadores. A melhor forma de um website ganhar vantagem em
relação aos seus concorrentes, é fornecendo uma user experience superior, o que pode ser atingido
através do aumento da performance da sua aplicação.

Como a maioria dos websites atualmente ativos inclui JavaScript, o conhecimento de boas
práticas e de como otimizat esta linguagem são de extrema importância. Existe um conjunto
de regras, as Bentley Rules, que visa melhorar a performance de programas. No entanto, estas
regras foram definidas antes da linguagem JavaScript ter sido criada, e a sua aplicabilidade a esta
linguagem ainda não foi estudada.

A ideia para esta dissertação veio da Jscrambler, uma empresa cujo principal serviço é a ofus-
cação de aplicações JavaScript, assim como outras soluções de segurança para este tipo de apli-
cações. No entanto, técnicas de ofuscação têm geralmente um impacto negativo na performance
dos programas, o que gera a necessidade de otimizar o desempenho dos mesmos.

Assim sendo, os principais objetivos desta dissertação são estudar as Bentley Rules e a sua
aplicabilidade a JavaScript, verificar quais têm o maior impacto na performance de programas
JavaScript e finalmente implementar uma transformação de código, tirando proveito de uma fer-
ramenta de transformação de código JavaScript, a ferramenta Jscrambler.

Na primeira fase deste projeto, a aplicabilidade de cada regra foi estudada. 19 das 26 regras
estudadas foram consideradas aplicáveis. Para estas regras, foram criadas test fixtures para medir
o impacto de cada uma na performance de programas JavaScript. Quatro regras sobressaíram em
termos de resultados obtidos, e elas são, em ordem decrescente de impacto, Precompute Logical
Functions, Data Structure Augmentation, Loop Unrolling, Store Precomputed Results.

Na segunda fase do projeto, a regra Store Precomputed Results foi escolhida, de entre as qua-
tro mencionadas, para ser traduzida numa transformação de código. Depois de o desenvolvimento
ter sido concluído, foram realizados testes com um jogo JavaScript open source, e ficou demon-
strado que esta transformação, embora com alguma interação humana, foi capaz de aumentar a
performance do jogo em cerca de 7 %, o que pode ser a diferença entre uma boa ou má user
experience.

Esta dissertação prova, então, que as Bentley Rules são aplicáveis à linguagem JavaScript, e
que elas podem ser benéficas sempre que lhe são aplicadas. Além disso, prova, também, que é
possível desenvolver uma transformação de código semi-automática para melhorar o desempenho
de programas JavaScript.

i

ii

Abstract

The increase in the number of websites has been increasing at a faster pace than that of the increase
in internet users, which leads to a fiercer competition between website owners for users. The best
way for a website to gain the upper-hand on a competitor is by providing superior user experience,
and this can be achieved by having a more performing application.

As the majority of websites includes JavaScript, the knowledge of good practices and how to
optimize this language are of utmost importance. There is a set of rules, the Bentley Rules, which
is aimed at improving the performance of programs. However, they were defined before JavaScript
was created, and their applicability to this language has not been studied.

This idea for this dissertation came from Jscrambler, a company whose service is the obfus-
cation of JavaScript applications, as well as other security solutions. However, obfuscation tech-
niques usually have a negative impact on the programs’ performance, which is why optimizing the
code’s performance is of high priority.

Therefore, the main goals of this dissertation are to study the Bentley Rules and their applica-
bility to JavaScript, verify which have the biggest impact on this language’s programs, and conse-
quently implement a code transformation by taking advantage of an already developed JavaScript
transformation tool, the Jscrambler tool.

In the first phase of this project, the applicability of each rule was studied. 19 out of the total 26
rules were considered to be applicable. For these rules, test fixtures were created to measure their
impact on JavaScript code’s performance. Four rules stood out with their results, and these rules
are, in decrescent order of impact, Precompute Logical Functions, Data Structure Augmentation,
Loop Unrolling, Store Precomputed Results.

In the second phase of the project, the Store Precomputed Results was chosen, out of the
aforementioned rules, to be translated into a code transformation. After the development was
concluded, tests were made with an open source JavaScript game, and it showed that this trans-
formation, although with guidance, was able to increase the performance of the game around 7%
which can be the difference between a good user experience or a bad one.

This dissertation thus proves that the Bentley Rules are applicable to the JavaScript language
and that they can be beneficial whenever applied to it. Furthermore, it proves that it is possible to
develop a semi-automatic code transformation to improve the performance of JavaScript programs.

iii

iv

Acknowledgments

I cannot consider this dissertation complete without, before, expressing my deepest gratitude to-
wards some people who have been crucial to my development both personally and professionally,
during the last few months — some during my entire life. And these people are, in chronological
order:

My entire family, who has provided massive support, sometimes when even I did not know it
was needed. A special word to my mother, Margarida, who has always fought and done everything
in her power so I could have the brightest future possible, and my sister, who has helped me grow
into who I am today.

Secondly, my friends, some of whom I don’t even remember not being a part of my life.
They’ve always provided me with laughs when I was in need of destressing, and incentivized me
when I needed a push in the pursuit of my dreams.

Juliana, who was by my side since before I started this journey at FEUP. She always incited
me to become a better and more ambitious professional, as well as a more responsible and caring
person.

Everyone at FEUP, from the teachers to every colleague who has helped me in this long jour-
ney. A big ‘thank you’ to my supervisor, André Restivo, for his knowledge and availability to help
me whenever I was in need.

And finally, last but not least, everyone at Jscrambler, who provided me with an amazing
environment for the development of this dissertation. They’re amazing professionals, as well as
amazing people, from whom I’ve learned a lot during these months.

Filipe Ribeiro

v

vi

“Before I learned to walk,
I dreamed about running, one day.

Now I walk, run and jump,
Not that special, dare I say.”

Filipe M. Ribeiro

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 A Performance Problem . 2
1.3 Need for Performance . 2
1.4 Main Goals . 3
1.5 Document Outline . 3

2 Background and State of the Art 5
2.1 Source Code Analysis . 5

2.1.1 Dynamic Analysis . 6
2.1.2 Static Analysis . 6

2.2 Optimization of Programs . 7
2.2.1 Design Level . 7
2.2.2 Algorithm and Data Structure . 8
2.2.3 Source Code . 8
2.2.4 Build . 8
2.2.5 Compilation . 8
2.2.6 Assembly . 8
2.2.7 Run Time . 9

2.3 Bentley Rules . 9
2.3.1 Space-for-Time Rules . 9
2.3.2 Time-for-Space Rules . 10
2.3.3 Loop Rules . 10
2.3.4 Logic Rules . 11
2.3.5 Procedure Design Rules . 13
2.3.6 Expression Rules . 14

2.4 Source Code Optimization . 15
2.5 Code Obfuscation . 16
2.6 Pure Functions . 17
2.7 Support Technologies . 17

2.7.1 Esprima . 18
2.7.2 Jscrambler . 19
2.7.3 JSPerf . 20
2.7.4 Browserstack . 20

2.8 JavaScript Optimization Tools . 21
2.8.1 Closure Compiler . 21
2.8.2 Prepack . 22

ix

x CONTENTS

3 A Performance Problem 23
3.1 Problem Description . 23
3.2 Proposal . 23
3.3 Hypothesis & Research Questions . 24
3.4 Assumptions . 24
3.5 Validation . 25

4 Bentley Rules Study 27
4.1 Study of the Bentley Rules . 27

4.1.1 Space-for-Time Rules . 27
4.1.2 Time-for-Space Rules . 28
4.1.3 Loop Rules . 28
4.1.4 Logic Rules . 29
4.1.5 Procedure Design Rules . 30
4.1.6 Expression Rules . 30
4.1.7 Summary of Decisions . 31

4.2 Test Fixtures Creation . 31
4.3 Development of Performance Evaluating Application 31
4.4 Browsers Selection & Test Automation . 34
4.5 Results . 35
4.6 Conclusions . 35
4.7 Limitations . 40

5 Implementation of Code Transformation 43
5.1 Choice of the Transformation . 43
5.2 Memoization Transformation . 45

5.2.1 Target Definition . 45
5.2.2 Data Structure Selection and Prototype 46
5.2.3 Transformation Development . 47
5.2.4 Compliance Testing . 48

5.3 Testing the Transformation . 50
5.3.1 Project & Browser Selection . 51
5.3.2 Setup . 51
5.3.3 Performing the tests . 51

5.4 Results . 52
5.5 Conclusions . 52
5.6 Limitations . 54

6 Conclusions and Future Work 55
6.1 Main Difficulties . 55
6.2 Main Contributions . 55
6.3 Conclusions . 56
6.4 Future Work . 56

A Bentley Rules Test Fixtures 59
A.1 Data Structure Augmentation . 60

A.1.1 Setup . 60
A.1.2 Before . 60
A.1.3 After . 61

CONTENTS xi

A.2 Store Precomputed Results . 61
A.2.1 Setup . 61
A.2.2 Before . 62
A.2.3 After . 62

A.3 Lazy Evaluation . 62
A.3.1 Before . 62
A.3.2 After . 63

A.4 Code Motion Out of Loops . 63
A.4.1 Setup . 63
A.4.2 Before . 63
A.4.3 After . 63

A.5 Combining Tests . 64
A.5.1 Setup . 64
A.5.2 Before . 64
A.5.3 After . 64

A.6 Loop Unrolling . 64
A.7 Transfer-Driven Loop Unrolling . 65

A.7.1 Setup . 65
A.7.2 Before . 65
A.7.3 After . 66

A.8 Loop Fusion . 66
A.8.1 Setup . 66
A.8.2 Before . 67
A.8.3 After . 67

A.9 Exploit Algebraic Identities . 68
A.9.1 Before . 68
A.9.2 After . 68

A.10 Short-Circuit Monotone Functions . 68
A.10.1 Setup . 68
A.10.2 Before . 69
A.10.3 After . 69

A.11 Reorder Tests . 70
A.11.1 Before . 70
A.11.2 After . 71

A.12 Precompute Logical Functions . 71
A.12.1 Setup . 71
A.12.2 Before . 72
A.12.3 After . 72

A.13 Control Variable Eliminations . 73
A.13.1 Setup . 73
A.13.2 Before . 73
A.13.3 After . 73

A.14 Collapse Procedure Hierarchies . 74
A.14.1 Setup . 74
A.14.2 Before . 74
A.14.3 After . 74

A.15 Exploit Common Cases . 75
A.15.1 Setup . 75

xii CONTENTS

A.15.2 Before . 76
A.15.3 After . 76

A.16 Compile-Time Initialization . 76
A.16.1 Before . 76
A.16.2 After . 76

A.17 Eliminate Common Subexpressions . 77
A.17.1 Setup . 77
A.17.2 Before . 78
A.17.3 After . 79

A.18 Pairing Computation . 80
A.18.1 Setup . 80
A.18.2 Before . 80
A.18.3 After . 80

B Data Structures Test Fixtures 81
B.1 Array Test Fixture . 81
B.2 Map Test Fixture . 82
B.3 Object Test Fixture . 82

References 83

List of Figures

2.1 AST resultant of an Esprima transformation . 18
2.2 Jscrambler’s data flow for a transformation . 19

xiii

xiv LIST OF FIGURES

List of Tables

4.1 Summary of verdicts on the applicability of each rule to the JavaScript language . 32
4.2 Results obtained in the Chrome browser . 36
4.3 Results obtained in the Firefox browser . 37
4.4 Results obtained in the Edge browser . 38
4.5 Results obtained in the Safari browser . 39
4.6 Average of the worst, average and best cases in all the browsers tested. 40

5.1 Data Structure results . 46
5.2 Results obtained in the runs without transformation 52
5.3 Results obtained in the runs with transformation 53
5.4 Results obtained by combination . 53

xv

Chapter 1

Introduction

This initial chapter has the purpose of giving the reader a better understanding of the context of this

dissertation, the problem trying to be solved, the motivation behind it, and its goals. Section 1.1

describes the context which this dissertation is inserted into. Section 1.2 describes the problem

being tackled by this dissertation and the causes of this problem.

Section 1.3 presents the motivation behind this project and functions as a link between the

problem of this dissertation and its main goals, which are then presented in Section 1.4. Finally,

as a means to guide the reader through the document, the structure of the document is thoroughly

explained in the last section of this chapter, Section 1.5.

1.1 Context

The internet is in vogue, having more users with each passing year (Stats, 2017). This requires

more web applications to be developed to attend to every user’s needs and preferences. In web

development, one of the most used programming languages used is JavaScript, as it is present in

nearly every active website today (W3Techs).

With the use of different tools, platforms or frameworks in the development phase of a website,

as well as the developers’ own skill and preference, source code may be written in many different

ways. Consequently, the same website, when developed in different ways, will have different

performances.

Throughout this dissertation, the term performance will be used multiple times, and it refers

to the execution time of programs. In that sense, the faster a program is to execute, the more

performing it is considered to be.

Many website owners are concerned about their websites’ performance and protection, and

Jscrambler is a company that provides a product, which is homonymous to the company, that guar-

antees code and data protection, by means of code obfuscation, to the clients’ websites (Jscram-

bler). Applying techniques such as these causes overhead in the application and that has a big

1

2 Introduction

impact on the code’s performance. Therefore, it is of utmost interest for the company to try and

reduce the overhead by being able to apply code optimization techniques along with the obfusca-

tion. The Bentley Rules are the starting point of this search for possible optimizations.

This dissertation is a consequence of this desire from the Jscrambler company, and the starting

point in this search for code optimization was the Bentley Rules. They are a set of rules defined

by Jon Lewis Bentley to help developers improve the efficiency of their programs, and are seen in

more detail in Chapter 4.

1.2 A Performance Problem

A major concern in software development is that developers tend to care first about functionality,

and later about the performance of the programs they are developing. This may be because of short

deadlines, or simply lack of awareness for performance needs. Regardless of why this happens, it

causes some of the programs developed to not be as performing as they could, or should.

The following section explains why user experience dictates the loyalty of users towards web-

sites, and why users may opt for faster websites for the same purpose. Therefore, it is of utmost

importance that websites are as performing as possible to maintain their users, and possibly attract

new ones.

1.3 Need for Performance

The previous section mentions that the low performance on programs, specifically in websites,

have a great influence in user-experience. However, it only scratches the surface on explaining

why that is believed. In the year 2000 it was estimated that, for each active website, there were

24 users on average (Stats, 2017). The same measure in 2015 states that the number of users per

website is around 15% that of 15 years prior. This, coupled with the fact that many businesses

depend on the number of active users on their websites, leads to a fiercer competition between

websites for users, whether they are active users or just occasional ones.

Owners of websites that are original, or provide a unique service might assume performance

is not something they should bother about, as users may have no other reliable option if they want

to use said service. However, this is not the case with the majority of websites. Therefore, website

owners with many competitors should focus on improved performances, as the users’ decision

on which website to use may come down to which one is the most performing and provides the

best user experience. The reasoning behind this comes from the fact that, for several users, a

delay of just a few seconds or even less than a second can, sometimes, cause the user to lose a

business opportunity or other type of opportunity available from websites. It is estimated that a

staggering 53% of users abandon websites that take more than 3 seconds to load (Shellhammer).

Moreover, real-time web applications such as games, betting, or stock market applications, require

high performance, as any delay could ruin the experience for its users.

1.4 Main Goals 3

Low performance generates high computational costs, which is undesirable for any user or any

owner of a website. The expression Computational Costs is referent to the amount of resources

used to execute the programs. Some machines may have a hard time executing very demanding

programs, affecting user experience as well. As a further matter, code obfuscation done by Jscram-

bler’s product has a damaging effect on performance. This is an incentive for the company to look

for ways to optimize the code, so the effects of obfuscation do less damage to the user experience

of their clients’ product users.

1.4 Main Goals

The main goal of any dissertation is to enrich the field or area in which it is focused on. In this

sense, this dissertation does not go astray from this rule, as the hopes are that it enriches the field

of Software Engineering with the following contributions:

1. Study the Bentley Rules and their applicability to the JavaScript language. The inspi-

ration for this dissertation was the set of rules known as Bentley Rules, and the first goal is

to study if each individual rule is applicable to the JavaScript language. If a rule is deemed

to be applicable, then its impact on the aforementioned language will also be studied, with

the aid of tests performed in different JavaScript engines.

2. Apply the studied rules to JavaScript programs using a code optimization tool. This

can be achieved by taking advantage of Jscrambler’s obfuscation tool, which is capable of

analyzing programs, and transform them according to specified patterns. This will be done

for the rules that are deemed to be the most advantageous, according to the results of the

first main goal.

1.5 Document Outline

This document contains six total chapters and is structured in the ensuing manner:

Chapter 1, "Introduction", which is the present chapter, gives an introduction to the topic of

this dissertation. It includes the context, the problem, motivation and the expected contributions.

Chapter 2, "Background & State of the Art", contains all the theoretical foundations support-

ing this dissertation and required for the reader to fully understand everything being discussed

throughout the document, and references what is being done in the same field of work. Different

solutions to the same problem are reviewed as well.

Chapter 3, "Performance Problem", is where the problem to be solved is stated and explained

in a more extensive manner, after being briefly described in Section 1.2.

Chapter 4 and Chapter 5 describe the steps taken into the achievement of the goals described

in Section 1.4, and the results obtained in each part of this dissertation.

Chapter 6, "Conclusions and Future Work", contains the author’s insight on the results ob-

tained and points to future work on this subject.

4 Introduction

Chapter 2

Background and State of the Art

This chapter contains the theory required to both enable the reader to understand and support the

methodologies to be implemented.

Section 2.1 provides the reader with a better understanding of Source-Code Analysis. Sec-

tion 2.4 provides the reader with a better understanding of Source-Code Optimization, the different

techniques used

Each section explains the importance of the subject in the context of this dissertation.

2.1 Source Code Analysis

Source-code analysis has a crucial role in programming today. It is mostly used as means to an

end, as the possibilities after it has been performed are immense. David Binkley makes a very

compelling case regarding this subject (Binkley, 2007):

“... source-code analysis is a means to an end. Under this view, the end is of

paramount importance. It first must be defined. Only then can techniques for ana-

lyzing the source code in order to achieve this end be considered.”

He then continues by mentioning the other cases in which source-code analysis is used, by

saying:

“The other end of the spectrum is captured by the saying “if you build it, they will

come.” Those who hold this perspective believe that a tool capable of extracting gen-

erally useful information from the source code will find application. One advantage of

this approach occurs when the information developed finds unforeseen application.”

This dissertation stands in the first case described, as the ultimate goal is the optimization of

source-code, and to achieve that, the analysis of said source-code is essential.

5

6 Background and State of the Art

In this section, two different types of source-code analysis will be explored. The first, in

Subsection 2.1.1, is Dynamic Analysis, and the second, in Subsection 2.1.2, is Static Analysis.

For each of these types, some techniques will be detailed in the respective subsection.

2.1.1 Dynamic Analysis

This type of code analysis is performed at runtime, i.e. when the program is executing. It is

useful to better understand the program’s behavior during execution Ball (1999), which is an

important trait to detect unexpected abnormal behavior, such as programming mistakes, bugs or

device failure, or even to detect the inability of the program to achieve the desired goal(s).

“Dynamic program instrumentation and analysis enables many applications including

intrusion detection and prevention, bug discovery and profiling. ” Chow et al. (2008)

Out of these mentioned applications of dynamic analysis, the most relevant in the context of

this dissertation is runtime profiling. This type of dynamic program analysis is able to gather very

useful information for a future optimization of the program Hauswirth and Chilimbi (2004):

1. Time complexity. Profiling is able to detect how much time is spent in the execution of

the complete application, a particular function of a specific block of code instructions. By

detecting this, it is possible to conclude what are the program’s bottlenecks, which are the

parts of the program that vastly hinder the program’s performance. With this information,

the user is able to know what parts of the program need to be improved more urgently to

increase the performance.

2. Code coverage. Profiling also allows an understanding of what parts of the program are

executed more often or even those that are not executed at all. This is important to detect

dead code, which is code that is never executed. This code can almost always be removed,

reducing the program’s size.

3. Functions usage. Profiling is not only able to detect how often a function is called, and

how long it takes to be executed, but it also detects what type of arguments it receives, their

values, and what the function returns in every execution.

2.1.2 Static Analysis

Unlike dynamic code analysis, this type of code analysis is performed without executing the pro-

gram. This has the advantage of being faster than its counterpart, as the need for executing is

non-existent, however, the information obtained if merely compile-time data, limiting the full un-

derstanding of runtime behavior of the program. But several techniques exist to improve this type

of code analysis and make its results come close to those achieved in dynamic code analysis. Some

of these techniques are:

2.2 Optimization of Programs 7

1. Abstract interpretation (Cousot and Cousot, 1992) is a method used for providing an idea

of how a program behaves during runtime. By means of abstraction, the goal is to ensure

the semantics of a given program is in accordance with the expected behavior.

2. Data flow analysis is a method used for a better understanding of the variables used in

the program and the parts of the code to which those variable might be propagated to. By

doing this, it is easy to understand which variables are not used during the execution of the

program, for example.

3. Control flow analysis is a method used to gather information on the impact of each instruc-

tion of a program, thus generating an understanding of how a program executes in terms of

which functions are called, and what parts of the code will or won’t be executed.

4. Hoare logic (Floyd, 1967) has the main objective of reasoning about the correctness, equiv-

alence and termination of programs, by means of a formal system.

5. Model checking (Baier and Katoen, 2008) is used for verifying every possible state in

which the program can be in, so then there can be certainty whether a program meets certain

specifications.

6. Symbolic Execution (Baldoni et al., 2018) is a technique used for understanding what the

program’s behavior is like for different inputs. This is useful for finding possible future

causes for an execution failure, for example.

2.2 Optimization of Programs

The optimization of programs can occur at different levels (Bentley, 1982). Depending on the time

of the optimization, at some of the levels, it becomes increasingly harder to implement. At a higher

level, optimization should be made as soon as possible, since the lower levels will depend on the

higher ones. Changes in higher levels of the program may cause the remainder of the program to

be altered as well.

The different levels of optimization are:

2.2.1 Design Level

Design level optimization (Samuel and Kovalan, 2016) is the highest level of optimization pos-

sible. Modifications to the design of a program might mean that the entire code of the program

has to be rewritten. However, small improvements in the architectural design of a program may

greatly increase performance.

It is believed that design modifications should be made before the development phase has

begun, to prevent the entire remodeling of the program’s code, which can be very costly. Because

of this, it is advisable that developers pay close attention to the design to be implemented, or

possibly follow design patterns applicable to the specific scenario.

8 Background and State of the Art

2.2.2 Algorithm and Data Structure

The choice of a data structure or algorithm can have a lesser impact than design choice, but still a

great impact nonetheless on a program’s performance (Wirth).

The general idea behind algorithm and data structure optimization is about balancing both

size and time performing operations. For example, the addition of information to a data structure

could mean less operation when trying to calculate it, but adding too much information to a data

structure may cause reading it to be too much time-consuming.

Some of these optimizations are included in the Bentley Rules.

2.2.3 Source Code

There are some ways to achieve optimization at the source code level, and this is the level of

optimization that will be studied in more detail in the next section, Section 2.4. Source code is

the implementation of the choices made in the design, and algorithm and data structure levels.

However, it can still be very influential towards the performance of the program.

Optimization at this level includes modifying loops, eliminating dead code, among other modi-

fications of the code that has been written by the developers of the program (Šimunić et al., 2000).

Several source code optimizations are included in the Bentley Rules, and will be studied more

thoroughly.

2.2.4 Build

Below the source code level is the build level. The building of a program encompasses processes

such as automated tests generation, which can be either helpful for debugging, or unhelpful in the

sense that they are time-consuming.

Optimization at this level does not usually have a staggering impact on the program’s perfor-

mance.

2.2.5 Compilation

During compilation, modifications to the source code can still be made. The predicted solution to

be achieved by this dissertation is done on this level, as the optimization tool will function as a

compiler.

Because of this, the source code optimizations mentioned in the respective subsection can also

be applied to this level.

2.2.6 Assembly

The assembly level is the lowest level where optimization can occur. At the moment, it is nearly

impossible to optimize code in assembly more than what the existing compilers do. Instead,

optimization is done at higher levels.

2.3 Bentley Rules 9

2.2.7 Run Time

Some compilers have the ability to perform optimization at runtime.

However, this type of optimization is usually only required when dealing with code that is

capable of reflection, that is, to modify its structure, generate more code or alter its behavior while

being executed.

2.3 Bentley Rules

This set of rules written by Jon Louis Bentley was the inspiration for this dissertation, as mentioned

in Chapter 1. The purpose of these rules is to give programmers some guidelines on how to write

their code with the goal of achieving superior programs in terms of performance.

In Subsections 2.3.1 and 2.3.2, two different types of Data Structure Modifications will be

introduced. The first section describes Space-for-Time rules, and the second section describes

Time-for-Space rules.

In Subsections 2.3.3, 2.3.4, 2.3.5 and 2.3.6, four different types of Code Modifications will

be introduced. The first of these subsections describes techniques for Loop modification and op-

timization. The next subsection describes techniques for Logic modification and optimization.

Then, the following subsections describes rules for Procedure Design optimization, and the last of

these subsections describes rules for the optimization of expressions.

2.3.1 Space-for-Time Rules

Space-for-Time rules have the sole purpose of reducing the time of execution of a program. How-

ever, in exchange, the size of the code may be increased. Bentley specified four different Space-

for-Time rules:

1. Data Structure Augmentation — The goal of this rule is to modify the structure of the

data, creating additional information, to prevent the operations required to calculate said

data on the program’s part, therefore reducing the execution time.

As an example, in a data structure which contains information about people, if the informa-

tion contains the birth date, and the zodiac sign has to be calculated from this date, the rule

suggests adding an additional field to the data structure with the zodiac sign of each person.

This would make accessing it easier, as the calculations are no longer necessary.

2. Store Precomputed Results — As the name of this rule suggests, the aim is to store the

results of functions, so that they can be used subsequently, whenever that function is called

again.

By doing so, repeated calls to a function do not require the execution of said function,

instead just looking up the result in the data structure where the results are stored.

An example of the application of this rule is the call to a function which returns the Fibonacci

numbers. Being a recursive function, if a large number was stored, and an even larger one

10 Background and State of the Art

was requested, there would be no need to recompute all the Fibonacci number until the

first one, instead acting as the starting point for that execution, and preventing unnecessary

computations.

3. Caching — This rule is based on the idea that data that is accessed more often should be the

cheapest to access. For this to be true, this data should be cached for easier access in future

uses.

4. Lazy Evaluation — This technique aims at avoiding the computation of instructions that

are not required at a given time, instead executing them only when it is essential.

A different application of this rule is memoization, which is a technique to store results, to

avoid future re-computations. However, it only works with pure functions.

2.3.2 Time-for-Space Rules

Time-for-Space rules have the sole purpose of reducing the size of the code of a program. However,

in exchange, the time of execution may be increased. Bentley specified two different Time-for-

Space rules:

1. Packing — This rule aims at reducing the storage costs, by increasing the time consumed

in storing and retrieving data. An approach to apply this technique is modifying the format

of the data that we want to store.

An example would be the opposite of that given in the Data Structure Augmentation rule.

If a database contains information related to users, and it contains both the date of birth and

the zodiac sign of a person, then the zodiac sign attribute should be removed, and whenever

it was required during the execution of the program, it would be calculated by using the date

of birth.

2. Interpreters — By using interpreters, it is possible to reduce the space of the program,

since interpreters have the ability to compact sequences of operations.

2.3.3 Loop Rules

Loop Rules have the purpose of attempting to improve the performance of the code by modifying,

or removing the loops detected in the program.

Loops are, in most cases, the part of the code that expends more time when executing a pro-

gram. Therefore, they require particular attention as optimization is concerned. Bentley specified

five different loop optimization rules:

1. Code Motion Out of Loops — This rule focuses on switching part of the code inside a

loop to outside of it. This prevents the same operation to be executed every time the loop

is executed, instead just being executed once, before the loop starts. This can only be done,

however, if that part of the code is an invariant1.
1An invariant is a variable inside the loop, whose value does not depend on the variable of the loop.

2.3 Bentley Rules 11

An example of the application of this rule would be the removal of a variable declaration

that is going to be used inside the loop. If it is not going to be changed between iterations,

then it can be defined before the loop starts.

2. Combining Tests — This rule focuses on removing any unnecessary tests from a loop. To

do so, it suggests finding ways to combine exit conditions, consequently only performing a

single verification.

An example of the application of this rule would be the search of a variable in an array.

Instead of performing the verification for each element of the array, and constantly verifying

both if the iterator is larger than the size of the array, and if the element of the array is equal

to the desired variable, the rule would suggest adding the variable to the array, and only

performing the verification related to each element being equal to the variable. In this case,

the variable would always be found on the array, only later performing the verification on

whether the element found was the one inserted beforehand. The loop has one less test in

every iteration, making it more performant.

3. Loop Unrolling — As the name indicates, this rule aims at unrolling unnecessary loops,

consequently removing the verification of the end of the loop.

Unrolling a loop consists of taking a loop with n iterations, and replacing it with the code

inside its body, repeating it n times.

4. Transfer-Driven Loop Unrolling — This rule states that whenever there is a part of the

code inside a loop with only trivial assignments, it is possible to duplicate the loop, but with

a different use of the variables, removing those trivial assignments as a consequence.

5. Unconditional Branch Removal — This rule aims at modifying the fast loops that contain

an unconditional branch at the end. Instead, it is preferable to have a conditional branch in

its place.

6. Loop Fusion — This rule is suited for programs that have more than one loop operating on

the same set of variables. It suggests fusing the loops, to prevent additional computations.

An example of the application of this rule would be having two loops, one which accesses a

data structure containing people’s personal information, and for each element in it, accesses

the name of each person, and a different loop which accesses the same structure and gets

the age of each person. Instead, having a single loop which does both those tasks would be

more performant.

2.3.4 Logic Rules

This group of rules has the purpose of optimizing the parts of the code related to the logic of

programs.

12 Background and State of the Art

It is expected that when these rules are applied in a program, the code becomes harder to

understand by anyone who tries to read it as they trade readability for efficiency. Bentley specified

five different Logic rules:

1. Exploit Algebraic Identities — This rule aims at replacing costly expressions in the code,

for equivalent, but less costly expressions.

A relevant example would be replacing the expression x2 < 100 with −10 < x < 10. Doing

so would reduce the cost since it would no longer be necessary to calculate the squared value

of x.

Another example of the application of this rule would be removing the last comparison in a

ternary comparison2. In this case, if the first two possibilities were not true, the third one is

always true. Therefore, removing it reduces the cost of the program.

2. Short-Circuit Monotone Functions — This rule prevents monotone functions from keep-

ing the execution going whenever the outcome has already been decided.

An example of this would be a function which goes through an array of arrays, where each

element is relative to an employee of a company, and contains their salary, bonuses and

other types of income, and that function intends to return the employee which received the

least of all employees. If the current element being compared has already surpassed the

current minimum’s total whenever the first value is accessed, then it is not required to verify

the other values on the same element, as its total will never be lower than the minimum’s,

therefore preventing unnecessary computations.

3. Reorder Tests — This rule states that tests that are more likely to pass should come before

the hardest ones.

As an example, in a function that receives a list of grades, in percentage, and associates each

percentage to a nominal scale (e.g. 0-39 = bad, 40-69 = average, 70-100 = good), then the

verification relative to the most usual interval for the scales given should be the first in the

code. In the case the numbers received are random, the first verification, in this case, would

be relative to the interval which covers more of the possible numbers.

4. Precompute Logical Functions — Whenever there is a logical function with a finite do-

main, in most cases it is more effective to precompute the function for every argument,

and replace it with a table. This way, instead of executing the entire function for a given

argument, it would just be necessary to perform a lookup on the generated table.

An example of the application of this rule would be to take a function that returns the

Fibonacci’s number of a given number, num. In this case, the computational costs of calling

this function for a large number may be too high as the function will be called recursively

num - 1 times. Hence, the solution of calculating every Fibonacci number, and storing the

result before execution would prevent these computations during execution.
2Ternary comparisons are the cases where the three possibilities >, < and = are tested for

2.3 Bentley Rules 13

5. Control Variable Elimination — This rule states that whenever there is a control boolean

variable, we can replace it in the code by an if-then-else statement, where instead of com-

paring the variable, we compare the expression or expressions that define the value of the

control boolean variable.

As an example, whenever a loop is trying to find a name in an array, instead of having

a variable which controls when the name has been found, and whose value needs to be

verified for every element searched in the array, have the function evaluate the value of the

expressions which would turn that variable true.

2.3.5 Procedure Design Rules

Procedure Design Rules do not focus on modifying the code in a way that it functions in a different

manner. Instead, these rules modify just the structure of the program. Bentley specified five

different Procedure Design rules:

1. Collapse Procedure Hierarchies — This rule states that, instead of having procedures call

other procedures, replacing those procedure calls with the body of the procedures them-

selves would save some time. This causes instructions to be removed from the code.

A very simple example of the application of this rule would be a function that, at a specific

point, calls a different function that returns the sum of two numbers. That function call

should, instead, be replaced by the instruction that performs the sum of the two numbers.

2. Exploit Common Cases — This rule aims at handling the common cases more efficiently.

The implementation of this rule is achieved by having a procedure that performs correctly

in every case, as well as having a second procedure that performs more efficiently, however

only for a few, special cases.

An example on the application of this rule is having a function which returns the Fibonacci

equivalent for a given number. If the developer has the information that the function is called

frequently for a specific set of numbers, then it can have the Fibonacci’s numbers specific to

those stored, and then it can return them without having to perform the calculations.

3. Use Coroutines — This rule states that whenever an algorithm has subroutines linked by

temporary files, they can be run as coroutines and communicate, therefore preventing the

need of the temporary files.

An example of the application of this rule is when a function writes into a file, and the only

use for that file is to be read by a consecutive function, then the writing and reading of said

file can be avoided by fusing the two functions.

4. Transform Recursive Procedures — The run time of procedures that perform recursion

can be very large, but there is a large number of techniques to improve the efficiency of

these types of procedures. Among them, the solution of replacing a procedure’s call to itself

as its last action with a goto command.

14 Background and State of the Art

5. Use Parallelism — This rule aims at taking full advantage of the hardware used to run the

program, more concretely taking advantage of multiprocessor architectures.

An example of its application is having a thread calculate all the Fibonacci sequence num-

bers for the even number indexes, and have a different thread perform the same action,

instead for the odd number indexes. This should reduce the time consumption by about

half.

2.3.6 Expression Rules

The last set of rules mentioned by Jon Bentley are the Expression Rules which focus on reducing

the cost related to the evaluation of expressions in the code. Four new, different rules have been

mentioned:

1. Compile-Time Initialization — As the name suggests, this rule aims at initializing every

possible variable before runtime, to save the respective time. As such, every variable whose

value is already known, and that remains unaltered throughout the execution of the program,

can be replaced by its value in every future expression it is used in.

2. Eliminate Common Subexpressions — Whenever there is an evaluation of an expression

that is made more than once throughout the program, and between any of them there is no

change made to any of the variables of the expression, the result can be stored to be used

the next time the same expression is evaluated.

As an example, if in the body of the program, it is evaluated whether a variable has a value

different than null, and it is detected that nothing in the code between those evaluations

altered the value of said variable to null, then the result of the first evaluation should be

stored and used, replacing the second evaluation, since it will always be the same result.

3. Pairing Computation — This rule states that whenever there are two expressions evaluated

together in more than one occasion, they should be put together in a new procedure, if

possible.

An example of this situation is when a program tries to access the x coordinate of an object,

and it usually accesses the y coordinate as well. Therefore, the best option would be to have

a routine that returns both coordinates, instead of having two different routines, one for each

of the variables.

4. Exploit Word Parallelism — This rule states that the underlying computer architecture’s

full width of words should be used when evaluating values in the binary notation. Exploiting

parallelism in cases like this should increase performance.

2.4 Source Code Optimization 15

2.4 Source Code Optimization

This section focuses on describing some source code optimization techniques. The Bentley Rules,

described in the last section include many optimizations of this type. Therefore, in this section,

two types of source code optimization techniques are described. These two techniques are not

included in the Bentley Rules:

1. Minification. This is the act of removing every, or a large number of unnecessary characters

from the source code of a program (Souders, 2008). These characters can be spaces, tabs,

line breaks, parenthesis, among others. This process of character elimination causes the

program to be minified, in other words, smaller in size, which generates both a gain in

performance, and decreased download time.

Minification, however, has the disadvantage of making the code harder to read for humans.

Human developers are generally accustomed to inserting line breaks, tabs, and even some

extra, unnecessary parenthesis to increase code readability and flow understanding. When

applying minification, these peculiarities are undone.

2. Refactoring. Martin Fowler, in his book, which made the process of refactoring popular

explains refactoring in a very clear way:

“Refactoring is the process of changing a software system in such a way that it

does not alter the external behavior of the code yet improves its internal structure.

It is a disciplined way to clean up code that minimizes the chances of introducing

bugs. In essence when you refactor you are improving the design of the code after

it has been written” (Fowler et al., 1999)

Besides minimizing the chances of introducing bugs, refactoring helps developers improve

the design of the software in question, making it easier in the process, which in turn can

also help find some previously unidentified ones. By having an improved software design,

it helps developing faster.

But, is refactoring really code optimization? Martin Fowler answers:

“I see optimization and refactoring as two separate things, even though they often

use the same transformations, and a particular transformation you do to your

program may be both.” (Fowler, 2004)

He, then, continues explaining that although some of the transformations to the code are

identical, the idea behind them is different. However, when doing refactoring, code in-

creases in performance, so it is the author’s belief that it should be considered a type of

source code optimization.

16 Background and State of the Art

2.5 Code Obfuscation

The knowledge of code obfuscation is very important in the context of this dissertation. Code

obfuscation is the act of modifying the code so that it becomes ineligible. Code ineligibility is

a means of security, as an attempted tampering with a website’s source-code may be rendered

useless if the attacker has no understanding of the program’s logic (Collberg et al., 2003).

Although obfuscation is often used as a security measure, it can also be used by malware, to

prevent being detected by any threat detection software (You and Yim, 2010).

Another use for obfuscation is in the protection of a program’s intellectual property, in this

case, preventing the source code being copied by competitors.

The program, despite its source code being modified, maintains the same logic and is func-

tionally equal to the original.

Many techniques exist to obfuscate a program’s source code, such as (CERT-UK, 2014):

1. Minification. Although mentioned as a source code optimization in Section 2.4, as it re-

duces the size of the program, it can also be considered a type of obfuscation of the code.

The removal of any blank spaces and line breaks makes the code harder to be read, and

consequently harder to understand its logic.

2. Names Modification. In a well-developed program, variables and functions have names

that describe their purpose. This makes code easier to understand, and by renaming them to

senseless names will create confusion to whoever is trying to read them. This, however does

not work with automated deobfuscators, which do not associate a name with the variable or

function’s utility.

3. Expression Replacement. Modifying some expressions in the code to equivalent but more

complex ones is a different way of making the code harder to read and understand.

4. Dead Code Insertion. Adding code that will have no impact in the logic of a program is

one technique that will create confusion to an attacker.

5. Control Flow Flattening. This technique encapsulates the entirety of the code in just a

single function, with each possible path inside a switch statement. That function is then

called recursively, with different parameters depending on the part of the code it is to execute

after. This generates confusion to anyone trying to reverse engineer it.

The application of obfuscation to a program has many advantages, as mentioned. However, it

has a major drawback, which is the program’s decrease in performance. This trade-off between

performance and readability is something developers or website owners have to be careful about.

This knowledge of obfuscation is relevant in the context of this dissertation, as the Jscrambler

tool has the main purpose of obfuscating web applications to protect their code, and privacy, which

in turn creates a need for performance optimization as well.

2.6 Pure Functions 17

2.6 Pure Functions

Pure functions are functions which always return the same result for the same set of arguments.

To guarantee that a function is pure, some things need to be considered:

1. The function must receive, at least, one argument. Without receiving arguments, the

function is either not pure, or it always returns the same value, which would not make much

sense in programming.

2. The function must always contain a return statement. Not only does a function need

to contain at least one return statement, but it also needs to contain one return statement in

every possible "route" taken inside its body.

3. The function’s return value must not depend on external variables, or calls to im-
pure functions. It is true that if the function depends on an external variable, not changed

throughout the execution of the program, the return value will not change as well. However,

this is a case that is impossible to predict with static analysis of the code. Therefore, once

the Jscrambler product is only capable of performing static analysis, whenever an external

variable is used, the function in question is considered impure. Calling functions that gen-

erate random numbers are an example of how the behavior of the function may vary for the

same arguments, making it impure in the process.

4. The function may not produce side effects on the program. Undesirable side effects

include the output of information to the user, the use of randomly generated numbers, ac-

cessing the current date, and/or time, manipulating the Document Object Model, or making

HTTP requests. All of these have the potential to make the result of a function in different

executions, for the same arguments.

This knowledge on pure functions will be important in Chapter 5, as the code transformation

implemented, and there described, is only applicable to this type of functions.

2.7 Support Technologies

During the development of this dissertation, some technologies were used that require previous

explanation on their means of operation or the goals they help to achieve.

In the first subsection, Esprima, an ECMAScript parser, is presented. This technology is used

by the tool presented in the second subsection, the Jscrambler tool. This tool is described, with an

in-depth explanation of its features.

The third and fourth subsections present JSPerf and Browserstack, respectively. These two

technologies were used in the validation part of this dissertation.

18 Background and State of the Art

2.7.1 Esprima

As can be read in the front page of the Esprima website, Hidayat:

“Esprima is a high performance, standard-compliant ECMAScript parser written in

ECMAScript (also popularly known as JavaScript).”

This technology has the ability to read a string of valid JavaScript code, and transform it into

an Abstract Syntax Tree (AST), which is a tree that represents the structure of the source code.

This transformation from source code into ASTs makes the analysis of the code and consequent

transformations much easier and more intuitive to perform.

The following JavaScript code excerpt shows a very simple program, to be transformed by

Esprima:

1 function sum(a, b) {

2 return a + b;

3 }

4

5 sum(1, 2);

Listing 2.1: Simple JavaScript program to be transformed into an AST

Figure 2.1: AST resultant of an Esprima transformation

Figure 2.1 represents the resulting AST from the parsing of the JavaScript code with Esprima.

2.7 Support Technologies 19

2.7.2 Jscrambler

The Jscrambler tool has the purpose of protecting JavaScript web applications from attacks, as well

as protect their data. To do so, it applies optimization and obfuscation techniques to JavaScript-

based code.

At the moment, the optimization techniques this tool uses include:

Assertion Removal, which is a technique that aims at removing any assertion in the code.

Assertions are statements that will always return true at their point in the code.

Constant Folding, which is a technique aimed at evaluating expressions at compile time,

instead of run time. If the program, before executing, already has the means to evaluate an expres-

sion, it is evaluated before the execution, to avoid unnecessary computations.

Dead Code Elimination, which is a technique that removes every part of the code that is never

executed.

Debug Code Elimination, which is the removal of any code whose purpose is only executed

in the debugging process.

Duplicate Literals Removal, which aims at removing any repeated literals in the code, by

assigning them to a variable and using the variable in their place.

Although the tool applies optimization techniques, it also applies many obfuscation techniques

to protect the code, which causes the programs to lose performance. Therefore, more, and more

impactful optimization techniques are required to counter the effect of the obfuscation ones.

Before applying any transformations to an application, some insight is gathered of the way

its executions occur, however the tool itself can only perform a static analysis of the code, more

specifically data flow analysis and control flow analysis, which were described in Section 2.1.

Figure 2.2: Jscrambler’s data flow for a transformation

Figure 2.2 shows a simplified data flow for a transformation, which follows the ensuing steps:

1. Receive the options and files to transform. The first step for a transformation is to receive

the files which are to be transformed, and options from the user. These options may be what

20 Background and State of the Art

transformations to apply to each part of the project, or not to apply, or other options related

to specific transformations.

2. Parse the code into ASTs. For each file received an AST is generated by using Esprima. A

file is not parsed into an AST if it is specified in the options that it shouldn’t be modified.

3. Modify the ASTs. For each AST, the Jscrambler tool will perform the transformations

required according to the options received. The transformation process is detailed in Chap-

ter 5.

4. Generate the modified source code. After the ASTs are modified, they are parsed into the

modified source code. This is accomplished by a parser developed by Jscrambler.

2.7.3 JSPerf

JSPerf is a tool that helps with testing the performance of pure JavaScript code. It executes the

tests specified by the user, and generates a small report on them.

By default, this tool runs each test at least 5 times, and for at least 5 seconds. This means that

faster code being tested may run hundreds of times, while slower ones may execute only 5 times.

However, it is possible to modify this, and have the tool execute every test the same number of

times, for more statistically relevant results.

To generate the reports of each test, the tool gathers the time of execution of each sample, then

combines them to calculate the operations per second for each test, as well as a relative margin of

error, for the confidence interval of 95%.

In the end of executing each test, it shows the results, and it highlights the test which achieved

the best results.

This tool was very useful in the development of this dissertation, as it was essential in the

evaluation of the performance gain of each Bentley Rule, when applied to the JavaScript language.

2.7.4 Browserstack

This tool is a web testing platform that is very useful in cross-browser test automation, as it gives

users access to hundreds of different browser versions, in different operating systems (OS), as

well as different devices (Kaalra and Gowthaman, 2014). It allows the easy testing of websites

or mobile applications in the required environment. This tool works by connecting the user’s

machine with a server, which performs all the actions, via RFB protocol.

Browserstack allows for both live testing, and automated testing. In live testing, a user is

capable of opening the desired device, running the desired OS, and open the desired browser, and

then use it at will. In automated testing, a user can develop the automated tests, with Selenium, and

then perform the required test. However, some of the browsers do not support Selenium automated

tests, as is the case with UC Browser. In that case, any test required, would have to be performed

in live mode.

2.8 JavaScript Optimization Tools 21

This tool was very useful in the development of this dissertation, because, along with JSPerf, it

helped in the evaluation of the performance changes for each Bentley Rule in different JavaScript

engines.

2.8 JavaScript Optimization Tools

This section has the purpose of providing some insight into what other solutions exist that try to

solve the same problem, the low performance of JavaScript programs. The different approaches

of each solution will be described.

Subsection 2.8.1 focuses on a tool called Closure Compiler, while Subsection 2.8.2 focuses on

a tool called Prepack.

2.8.1 Closure Compiler

The Closure Compiler tool is a JavaScript optimization and minification tool developed by Google (Google).

The tool was experimented with to better understand what types of optimization it is capable

of. The types of optimization tested were the ones mentioned in Section 2.3:

1. Time-for-space and space-for-time rules. It was not possible to understand whether the

Closure Compiler is capable of applying these types of rules to a JavaScript program or it

still needs upgrading in those cases.

As mentioned in their respective sections, these rules are intended for modifying not the

code itself, but the data structures behind a program.

2. Loop rules. The tool left much to be desired in terms of loop optimization, as it showed to

be capable of applying Code Motion Out of Loops, but was not able to unroll a simple loop,

as the one shown on code excerpt ??, not even when the loop was required to run only three

times. It was also unable to apply the Combining Tests or the Loop Fusion rules.

3. Logic rules. Very much like the Loop rules, this tool does not deliver in the Logic Rules

context. From the experimentation, it was clear that the tool does not have the ability to

perform code modifications regarding any of the five different specified rules.

4. Procedure design rules. The tool seems capable of performing the Inline Expansion tech-

nique.

5. Expression rules. The tool is capable of performing the Constant Propagation technique.

6. Other types of optimization. This tool is great at Dead Code Elimination, which, as the

name suggests, is a technique used to remove parts of the code that have no effect on the

result of the program. Such cases include variables that are never used, or unreachable parts

of the code.

22 Background and State of the Art

It also focuses on Code Minification, which is a technique that focuses on removing unnec-

essary spaces, line breaks, comments and other unnecessary characters in the code. This

allows the program to be smaller, which saves time, increasing performance.

2.8.2 Prepack

Like the Closure Compiler, Prepack is a tool for JavaScript optimization purposes. It was and is

still being developed by Facebook. It uses Abstract Syntax Trees for code analysis and transfor-

mation.

The tool was experimented with for a better understanding on the types of optimization it is

capable of performing:

1. Time-for-space and space-for-time rules. Very much like in the case of the last tool men-

tioned, it was not possible to understand whether Prepack is capable of applying these types

of rules to a JavaScript program or it still needs upgrading in those cases.

As mentioned in their respective sections, these rules are intended for modifying not the

code itself, but the data structures behind a program.

2. Loop rules. The tool was able to apply the Loop Unrolling rule. However, with loops with

more than 40000 iterations, the tool stopped working, returning an error. Also, for loops of

this size, it still unrolled them, which does not help the size of the code.

It does not seem able to perform Loop Fusion, as instead of fusing the two loops, it instead

unrolls both loops. The same is verified for the remainder of the Loop Rules.

3. Logic rules. From the tests made, it was concluded that the tool is not capable of applying

the Exploit Algebraic Identities, the Reorder Tests, nor the Control Variable Elimination

rules.

4. Procedure design rules. The tool does not seem capable of performing the Inline Expan-

sion technique. It was not possible to conclude anything about the other Procedure Design

rules.

5. Expression rules. From testing, the tool is capable of performing the Constant Propagation

technique and from the documentation reading, it is assumed it is also able to initialize data

before runtime.

6. Other types of optimization. This tool is great at Dead Code Elimination, which, as the

name suggests, is a technique used to remove parts of the code that have no effect on the

result of the program. Such cases include variables that are never used, or unreachable parts

of the code.

It also focuses on Code Minification, which is a technique that focuses on removing unnec-

essary spaces, line breaks, comments and other unnecessary characters in the code. This

allows the program to be smaller, which saves time, increasing performance.

Chapter 3

A Performance Problem

The goal of this chapter is to provide the reader with a better understanding of the problem being

tackled in this dissertation, along with the approach to be followed. The hypothesis to be proven

and the assumptions made are described in this chapter as well. Finally, this chapter contains the

methods to be used in the validation process of this dissertation.

3.1 Problem Description

As briefly mentioned in Chapter 1, the problem this dissertation is trying to tackle is the low

performance verified on JavaScript programs.

The growth of the number of websites has been superior to that of users, which causes com-

petition between websites for the user bases. Websites need users, usually to generate money.

Even websites that are free to use can generate money just by showing ads on its pages. So, the

important question on website owners’ minds may be how to attract these users to a website, and

the answer may very well be improving the performance of their websites

Low performance generates both higher computational costs and dissatisfaction on the user

base. A bad user experience due to high loading times on a website can lead to abandonment since

it is estimated that a staggering 53% of users abandon websites which take more than 3 seconds to

load (Shellhammer).

3.2 Proposal

As this dissertation intends to tackle the low performance of JavaScript programs, the main goals

are to study the Bentley Rules, their applicability and impact when applied to the JavaScript lan-

guage, and to conjugate that study with a JavaScript code transformation, that both analyses the

code and decides when to apply it.

23

24 A Performance Problem

In Chapter 1, the goals of this dissertation were mentioned. And, following that mention, in

this section, they will be explained.

To solve this problem, the applicability of a set of rules called the Bentley Rules to the

JavaScript language will be studied, and then, that application will be performed, with the de-

velopment of a JavaScript code optimizer.

3.3 Hypothesis & Research Questions

This dissertation has one major hypothesis, which is divided into three different research ques-

tions. The hypothesis trying to be proven is: the Bentley Rules are applicable to the JavaScript
language.

These rules were defined to be applicable to any program in any language, as they are very

generalist in the types of rules they contain. However, the programming language JavaScript only

first appeared in 1995 (Newswire, 1995), thirteen years after the Bentley Rules had been written.

As a consequence, their applicability may not be possible.

The research questions this dissertation is trying to answer all depend on the hypothesis being

true. The research questions are:

1. Do the Bentley Rules, when applied to JavaScript code, increase the code’s perfor-
mance? If the hypothesis is proven, then this is the first question to be answered. However,

if it is found that the Bentley Rules are not applicable to JavaScript, then the answer to this

question is automatically negative as well. This is because, if the rules cannot be applied to

the JavaScript language, then it is not possible they are able to improve performance.

2. Out of all the applicable Bentley Rules, which one has the best impact in the perfor-
mance of JavaScript programs? This question focuses on differentiating each Bentley

Rule in terms of potential impact in the JavaScript code when applied to it. Therefore, it

also depends on the hypothesis being proven.

3. Is it possible to translate the Bentley Rules into automatic code transformations? This

question focuses on trying to apply the rules to JavaScript programs, by automatically ana-

lyzing it and modifying it to improve its performance. Like the previous questions, it also

depends on the veracity of the hypothesis.

3.4 Assumptions

Throughout this dissertation, some assumptions will be made that are required to validate the

results:

1. The already developed tool used by Jscrambler in code analysis is perfect. It will be

assumed that the tool that transforms JavaScript code into Abstract Syntax Trees does not

3.5 Validation 25

fail or malfunction. The code written in the development of the optimization tool will not

take into account these cases.

2. The JavaScript programs that the optimization tool is going to be used on are well-
written and can be fully analyzed by the existing code analyzing tool. Although some

time will be spent in reading the code, the focus of this dissertation is for the tool to perform

optimizations and not to evaluate the accuracy of the code analyzing tool.

3. The JavaScript programs that the optimization tool is going to be used on are well-
behaved. By this, it is meant that the code is not capable of reflection. Reflection is the

program’s ability to modify itself at runtime Vinoski (2005). Since the optimization will

occur before runtime, these types of programs can be severely damaged if modified in the

same manner as others.

4. Although the JavaScript programs are well-written, their performance can always be
increased. If the program, after the tool modifies it, has not increased in performance, the

conclusion taken from it will be that the tool is not working properly. The tool should never

decrease a program’s performance.

5. The performance of a program is strictly related to its execution time. When evaluating

the performance gain or loss of each rule, the metric used to calculate this is the operations

per second.

3.5 Validation

In Chapter 1, the goals of this dissertation were set. The first goal mentioned was the study of

the applicability of each of the Bentley Rules to the JavaScript language, and the measurement

of the respective impacts on said language. To measure their impact, test fixtures will be created.

The validation of this goal is the creation of the test fixtures in itself, and their results, since if

it is possible to create the test fixtures representing each rule, it means that the respective rule is

applicable.

The second goal is the application of the results obtained in the path to achieving the first goal,

which is the implementation of a code transformation relating to one of the rules which showed

to generate a better improvement in the performance of JavaScript code. This will be done taking

advantage of Jscrambler’s product, which is capable of analyzing and transforming JavaScript

code. To validate this part of the work, one open-source JavaScript project will be transformed

with the newly created code transformation. Then, its performance will be compared with the

performance of the same project, unaltered.

26 A Performance Problem

Chapter 4

Bentley Rules Study

This chapter has the purpose of describing the steps taken to achieve the goals previously men-

tioned in Chapter 1, as well as explaining why the steps taken were thought to be adequate to their

specific situation. The first four sections are dedicated to the steps taken to achieve the first main

goal, "Study the Bentley Rules and their applicability to the JavaScript language":

Section 4.1 contains the author’s decision on the applicability of each Bentley Rule regarding

their applicability to the JavaScript language, as well as what supports said decisions. Section 4.2

describes the process of creating the test fixtures for each rule that was deemed to be applicable.

The next section, Section 4.3, describes the development process of the application which was

then used to evaluate the performance gain, or loss, of each rule, using the test fixtures described in

the previous section. Section 4.4 describes the methodology behind the selection of the browsers in

which the application would be tested in, as well as the steps taken for the testing of the application.

4.1 Study of the Bentley Rules

The author’s take on each of the Bentley Rules is present in this section. The decision on the pos-

sibility of application of each rule to the JavaScript language is also present as well, accompanied

by the reasons behind each decision.

The schema for this section follows the same schema as Section 2.3. At the end of the section,

in Subsection 4.1.7 there is a table containing the decision for each rule, which functions as a

summary of the entire section.

4.1.1 Space-for-Time Rules

Space-for-Time This subsection contains the decisions on the applicability of each Space-for-Time

rule.

27

28 Bentley Rules Study

1. Data Structure Augmentation — This rule is applicable to the JavaScript language, as

long as there is permission to access and modify the database. More than just the database

structure would need to be modified, but the code related to the insertion of new database

entries, as well as every entry already in the database tables that would be modified. If there

is not the possibility to modify everything mentioned, then this rule is not applicable for that

specific case.

2. Store Precomputed Results — The act of storing results during execution time for easier

access in a future call of a function is more commonly known as memoization, and it is

applicable to the JavaScript language. Similarly to the Store Precomputed Results rule, it

only targets pure functions. It requires the creation of a data structure to store the results,

as well as a verification, before the execution of a function, to decide whether it should be

executed normally, or, in the case it had already executed for the same set of arguments, use

the result stored in that execution.

3. Caching — This is not applicable to JavaScript, as the Cache object in this language is

still an experimental technology as of the time of development of this dissertation (Mozilla,

2018).

4. Lazy Evaluation — This rule is applicable to the JavaScript language, however it goes

against the idea behind the rules Precompute Logical Functions and Compile Time Initial-

ization, whose intention is to precompute certain instructions to avoid doing so during the

execution.

4.1.2 Time-for-Space Rules

This subsection contains the decisions on the applicability of each Time-for-Space rule.

1. Packing — Doing this may not decrease the space of the program structure, but instead

decreases the space of the program storage. Despite being applicable to the JavaScript, like

the Data Structure Augmentation, as long as there is access and permission to modify the

data structures, and the code specific to the insertion and access to them, the effects of the

application of this rule are not desired in the context of this dissertation, as it will increase

the execution time of a program by performing unnecessary computations.

2. Interpreters — Much like the other Time-for-Space rules, the impact this rule has on a

program is not desired in the context of this dissertation. Reducing the space of a program,

and increasing the execution time goes against the definition of performance defined in

Chapter 3.

4.1.3 Loop Rules

This subsection contains the decisions on the applicability of each Loop rule.

4.1 Study of the Bentley Rules 29

1. Code Motion Out of Loops — This rule is applicable to the JavaScript language, and

it can be very beneficial performance-wise, but it can only be applied when the code has

been poorly developed, as the code being moved out of a loop with n iterations would be,

unnecessarily, executing n - 1 times before the application.

2. Combining Tests — This rule is applicable to the JavaScript language, but its application

is not easy to generalize, as the combination of the tests is always dependent on the tests

themselves and it will vary from program to program.

3. Loop Unrolling — This rule is applicable to the JavaScript language, but its application

should not be made to every loop. Loops that perform few iterations and with not very large

bodies may be good candidates. However, loops with large bodies and several iterations

should not be targeted, as the repetition of the large body many times may increase the size

of the code to a point where it is no longer faster when compared to simply performing the

unaltered loop.

4. Transfer-Driven Loop Unrolling — Despite applicable to the JavaScript language, the

impact this rule is expected to have is nearly null, since the only thing it focuses on is the

removal of assignments from the code, whose impact is not that great.

5. Unconditional Branch Removal — This technique is only applicable to lower-level lan-

guages since high-level languages have compilers capable of handling these cases effec-

tively.

6. Loop Fusion — This rule is applicable to the JavaScript language. However, it can only be

done when there is a very clear idea of how the loops and the code inside them work. In

the example given, if accessing the age of a person would trigger an assignment to the next

person’s name, then those loops shouldn’t be fused.

4.1.4 Logic Rules

This subsection contains the decisions on the applicability of each Logic rule.

1. Exploit Algebraic Identities — This rule is applicable to the JavaScript language, how-

ever its impact should not be very large. Detecting the cases where an expression can be

simplified may not be straightforward, as well.

2. Short-Circuit Monotone Functions — This rule is applicable to the JavaScript language,

and in the cases where long and costly functions are brought to a halt preemptively, it could

have a very good impact on the performance of the program. However, in the cases where

the function cannot be terminated before its last command, having evaluations on whether

the function can be short-circuited, or not, throughout the function’s body may hinder the

performance.

30 Bentley Rules Study

3. Reorder Tests — This rule is applicable to the JavaScript language. For the cases where

there are very few tests, the impact expected should not be very high. However, when there

is a large sequence of tests being performed, placing the most probable at the top, thus

preventing the others to take place, could be very beneficial to the code’s performance.

4. Precompute Logical Functions — This rule is applicable to the JavaScript language, and

can be seen as a more specific application of the Store Precomputed Results, as it is ap-

plicable only to functions. The functions this rule targets must be pure — function purity

is explained in Section 2.6. Also, the domain of the function, as well as the type of the

arguments received, must be known for the application to be possible.

5. Control Variable Elimination — Although this rule is applicable to the JavaScript lan-

guage, it does not seem to have a very high potential in terms of performance gain as the

only difference would be the removal of the assignment to the control variable.

4.1.5 Procedure Design Rules

This subsection contains the decisions on the applicability of each Procedure Design rule.

1. Collapse Procedure Hierarchies — This rule is applicable to the JavaScript language, and

is commonly referred to as Inline Expansion. Although it reduces the number of instructions

in a program, if a procedure is called several times during the execution of a program,

inlining may not be the best approach, especially if it has a large body, as the program’s size

could increase drastically.

2. Exploit Common Cases — This rule is applicable to the JavaScript language. Predicting

the common cases may not be possible, or there may not be common cases for some func-

tions. However, when there are, this rule can have a very positive impact in the performance,

as it removes a lot of computations from the execution.

3. Use Coroutines — This rule is applicable to the JavaScript language.

4. Transform Recursive Procedures — This rule is not applicable to the JavaScript language,

as it focuses on modifying lower-level instructions.

5. Use Parallelism — This rule is not applicable to the JavaScript language, as it is a single

thread language. To apply parallelism, a multi-thread language is required.

4.1.6 Expression Rules

This subsection contains the decisions on the applicability of each Expression rule.

1. Compile-Time Initialization — Constant Propagation is how this rule is more commonly

known, and it is applicable to the JavaScript language. However, this is a technique that

every JavaScript engine should be able to apply in the compilation of programs.

4.2 Test Fixtures Creation 31

2. Eliminate Common Subexpressions — This rule is applicable to the JavaScript language.

However, unless the expressions are used a large number of times, the impact of its applica-

tion on the performance will be very small.

3. Pairing Computation — This rule is applicable to the JavaScript language. The possibility

of application of this rule in a program usually indicates that the program has not been very

well developed, since it should be a major concern of any developer to pair any computations

that have high computational costs.

4. Exploit Word Parallelism — This rule is not applicable to the JavaScript language, as there

is no way in this language to define the length of each word in the underlying architecture

of the machine.

4.1.7 Summary of Decisions

In Table 4.1 is a summary of the decisions made in this section.

4.2 Test Fixtures Creation

After understanding which Bentley Rules were applicable to the JavaScript language, was the

creation of test fixtures that accurately represent the before and after states of a part of a program

when each rule is applied to it. The main goal of the test fixtures was to evaluate the potential

change in performance that each rule has when applied to JavaScript.

The possible application scenarios of each rule is different, as some may have only one possi-

ble case of application, and others may have a very large number of possible applications. There-

fore, to achieve more conclusive results, an effort was made to create more than one possible

scenario for some of the rules. Hence, each rule has, at least, one test, which in turn contains two

different test fixtures, one representing the state of the code before a rule is applied to it, which is

the unoptimized code, and other representing the state of the code after the rule is applied, or the

same code, but optimized.

As mentioned, some rules have more than one test, which is the case with all the Loop Rules,

for example, as tests were made to test the impact of the rules in small loops and in large ones.

When the tests were executed, the part of the code that was considered to calculate the per-

formance impact was the body of the functions. All the other parts of code outside the function

bodies is neutral code, as it does not affect the calculations. Every test fixture that was created and

later used in the testing can be found in the Appendix A.

4.3 Development of Performance Evaluating Application

The third part of the implementation was the development of an application, in NodeJS, to help

with the evaluation of the performance gain or loss for each rule, resorting to the test fixtures

32 Bentley Rules Study

Name of the Rule Applicability
Data Structure Augmentation This rule is applicable to the JavaScript language.
Store Precomputed Results This rule is applicable to the JavaScript language.
Caching The application of this rule to the JavaScript language is impossi-

ble. This is due to the inability of this language of accessing the
cache.

Lazy Evaluation This rule is applicable to the JavaScript language.
Packing This rule is not applicable as it is part of the Space-for-Time rules

and they make programs slower.
Interpreters This rule is not applicable as it is part of the Space-for-Time rules

and they make programs slower.
Code Motion Out of Loops This rule is applicable to the JavaScript language.
Combining Tests This rule is applicable to the JavaScript language.
Loop Unrolling This rule is applicable to the JavaScript language.
Transfer-Driven Loop Unrolling This rule is applicable to the JavaScript language.
Unconditional Branch Removal This rule is not applicable to the JavaScript language as it is only

applicable to lower-level languages.
Loop Fusion This rule is applicable to the JavaScript language.
Exploit Algebraic Identities This rule is applicable to the JavaScript language.
Short-Circuit Monotone Functions This rule is applicable to the JavaScript language.
Reorder Tests This rule is applicable to the JavaScript language.
Precompute Logical Functions This rule is applicable to the JavaScript language.
Control Variable Elimination This rule is applicable to the JavaScript language.
Collapse Procedure Hierarchies This rule is applicable to the JavaScript language.
Exploit Common Cases This rule is applicable to the JavaScript language.
Use Coroutines This rule is applicable to the JavaScript language.
Transform Recursive Procedures This rule is not applicable to the JavaScript language as it is only

applicable to lower-level languages.
Use Parallelism This rule is not applicable to the JavaScript language.
Compile-Time Initialization This rule is applicable to the JavaScript language.
Eliminate Common Subexpressions This rule is applicable to the JavaScript language.
Pairing Computation This rule is applicable to the JavaScript language.
Exploit Word Parallelism This rule is not applicable, as JavaScript has no means to do this.

Table 4.1: Summary of verdicts on the applicability of each rule to the JavaScript language

4.3 Development of Performance Evaluating Application 33

created earlier, and to JSPerf, which is a JavaScript performance evaluator, thoroughly described

in Chapter 2.

The application developed requires the test fixtures to be in a specific folder and have specific

file names, and has several features. In ascending order of simplicity, the first of these features is

enabling the user to execute a test for a specific test of a chosen rule. After the application uses

JSPerf to evaluate the performance gain or loss, it generates a small report for that test. This report

contains the following parameters:

1. Ops/sec (Before & After). These two values are calculated by JSPerf and, as their name

indicates, it is the mean number of operations per second the test fixture achieved. This is

calculated resorting to the time of execution of each of the respective test fixture’s sample

runs. These values are used ahead and are represented as OpsB and OpsA, respectively.

2. Margin of Error (Before & After). These two values are also calculated by JSPerf resort-

ing to 95% confidence intervals. This means that there is a 95% chance that the real mean

of Ops/sec of a test fixture is in the following interval: [Ops/sec - MOE, Ops/sec + MOE]

These values are used ahead and are represented as MOEB and MOEA, respectively.

3. Performance Impact (Worst, Best and Average Cases). These three values are calculated

by the application, which makes use of the preceding values to calculate them. Together,

these three values represent a confidence interval for the performance impact of each rule.

This resulting interval, since it combines the intervals from the test fixtures representative of

Before and After, has a confidence of around 90%, which is the 95% squared. These values

are calculated using the following formulas:

WorstCaseBe f ore = OpsB(1−
MOEB

100
) (4.1)

BestCaseBe f ore = OpsB(1+
MOEB

100
) (4.2)

WorstCaseA f ter = OpsA(1−
MOEA

100
) (4.3)

BestCaseA f ter = OpsA(1+
MOEA

100
) (4.4)

WorstCase = 100(
WorstCaseA f ter
BestCaseBe f ore

−1) (4.5)

BestCase = 100(
BestCaseA f ter

WorstCaseBe f ore
−1) (4.6)

AverageCase = 100(
OpsA

OpsB
−1) (4.7)

The second of the features is the ability for the user to execute all the tests for a given rule.

This generates reports for each test, and then a report for the rule, which uses the individual test

reports. The report for the rule just contains three parameters, which are the averages of the best,

worst and average cases of each test in that rule.

34 Bentley Rules Study

The third feature is giving the user the ability to execute all tests for all the rules consecutively,

which generates all the reports mentioned before, as well as three different rankings for all the

rules. These rankings are for the best, average and worst case averages included in each rule’s

report. In these rankings, the rules are ordered from the rule which generated the most gain in

performance, to the rule which generated the least gain.

The final feature is giving the user the ability to check the reports generated for tests, rules or

the rankings.

4.4 Browsers Selection & Test Automation

The selection of the browsers where the tests were to be run in was based on the usage of those

browsers. Several sources were consulted to make a well-informed decision on this topic Stat-

counter (2018), Share (2018). According to these sources, the most used web browsers are

Chrome, Safari, UC Browser, Firefox, Opera, Internet Explorer, Samsung Internet, and Edge.

Considering Chrome, Opera and Samsung Internet all use the same JavaScript engine, the v8,

only the first was selected, since it was the most used. Another aspect to be taken into account is,

since Microsoft has ended support for most versions of Internet Explorer Microsoft (2015), and

is focusing more and more on the newer Edge browser, it was decided that the Internet Explorer

browser was not to be tested, but the Edge browser was, regardless of its usage percentage being

lower.

The UC Browser, at the time of this study did not allow for access to localhost, which made

the testing impossible. Therefore, it was excluded from consideration. All things considered, the

browsers selected for performing the tests were Chrome, Firefox, Edge and Safari.

After the selection of the browsers in which the application would run, it was time to do

so. This was done by automatic Selenium tests, which were run resorting to a very helpful tool,

BrowserStack, thoroughly described in Chapter 2, which supports test automation in several dif-

ferent browsers across several different devices and operating systems. The tests were developed

with Node.js.

The tests were executed in just one machine, the author’s personal computer. Before running

the tests, a server needed to be started, and it contained all the test fixtures and the application to

be run. This server was developed with the Express framework for Node.js. Then, in the same

machine, the tests would be run.

The application, when run, would use the Browserstack platform to open the browser se-

lected, access the local application previously created, and clicking the button which started the

performance tests. These tests consisted of running every test fixture found in the directory of

the application 100 times. When it was detected every test has been concluded, then the browser

would be closed. This was done for each of the four selected browsers.

The author’s machine, which was used to perform the testing, was an Asus GL552JX. It was

running the Windows 10.1 OS, and had an Intel R© CoreTM i7 4720HQ processor, as well as 8GB

RAM. The Performance Mode was active while the tests were running.

4.5 Results 35

4.5 Results

This section contains all the results obtained after running the automated tests on each of the four

selected browsers, Chrome, Firefox, Edge and Safari. Each test was executed 100 times, to make

sure the results are statistically significant, and the margin of error is relative to a 95% confidence

interval.

Tables 4.2, 4.3, 4.4 and 4.5 contain the results obtained in the Chrome, Firefox, Edge and

Safari browsers, respectively. Then, in Subsection 4.6, the global results are presented and the

author exposes his thoughts on these results, and their impact on the next part of this dissertation.

Table 4.6 shows the average of the worst, best and average cases for each rule in the four tested

browsers. Each result was obtained by calculating the worst, best, and the average case for each

rule in each of the browsers and calculating the average.

4.6 Conclusions

In this chapter, the hypothesis of this dissertation — "the Bentley Rules are applicable to the

JavaScript language" — was supported. The applicability of the Bentley Rules to the JavaScript

language was proven by the creation of the test fixtures. The possibility of recreating JavaScript

code representative of the before and after states of the application of a rule demonstrates that said

rule is applicable to the language.

Out of the 26 total rules, only 7 of them were considered inapplicable. Since these rules were

defined to be very generalist, it is not surprising that the majority is applicable to the language.

The answers to the first and second research questions — respectively "Do the Bentley Rules,

when applied to JavaScript code, increase the code’s performance?" and "Out of all the applicable

Bentley Rules, which one has the best impact in the performance of JavaScript programs?" —

were found as well.

In Table 4.6, it can be observed that, in the worst case scenario, 6 of the 18 applied rules have a

negative impact, while the other 12 have a positive one. In the average case, only 2 have a negative

impact, while this is only verified in 1 when calculations are made for the best case scenario. With

this data, it can be concluded that the impact of each rule always depend on the program, or part

of the program that they’re applied to. An example of this can be the Loop Unrolling rule, whose

verified impact increased between loops with 25 iterations and 1000 iterations, when the body of

the loop was a simple increment to a variable. However, between the same number of iterations,

it was verified a decrease in impact when the body of the loop included accessing an array.

The rule which achieved the best impact, across all the browsers, in the performance of

JavaScript code was Precompute Logical Functions, and it is due to the nature of the rule, which

is avoiding many computations during the execution time, by performing the same computations

in compilation time. Although it achieved outstanding results in Chrome, Firefox and Safari, in

the Edge browser it achieved negative impact results.

36 Bentley Rules Study

Name of the Rule Test Number Before MOE After MOE
Code Motion Out of Loops 1 125,696,361 3.32% 131,989,906 3.33%
Code Motion Out of Loops 2 296,054 3.02% 296,497 2.60%
Code Motion Out of Loops 3 3,014 2.61% 2,837 2.83%
Code Motion Out of Loops 4 1.52 2.82% 1.50 3.77%

Collapse Procedure Hierarchies 1 309,902 1.88% 285,873 2.74%
Collapse Procedure Hierarchies 2 30.53 2.31% 31.18 2.29%

Combining Tests 1 32,043,080 6.87% 36,707,254 2.33%
Combining Tests 2 5,188,075 2.24% 6,139,281 2.27%
Combining Tests 3 107,766 2.53% 145,320 2.47%

Compile Time Initialization 1 578,705,075 2.25% 575,141,451 2.50%
Control Variable Elimination 1 4,027,271 3.37% 6,319,409 2.63%
Data Structure Augmentation 1 1,406,673 2.49% 585,721,452 2.13%
Data Structure Augmentation 2 147,629,612 2.30% 575,407,159 2.85%

Eliminate Common Subexpressions 1 19,968,010 2.25% 32,361,442 2.52%
Eliminate Common Subexpressions 2 2,227,129 2.85% 6,515,513 2.83%

Exploit Algebraic Identities 1 41,782,328 3.09% 48,181,780 2.47%
Exploit Algebraic Identities 2 27,989,845 2.22% 27,964,205 2.19%

Exploit Common Cases 1 5,408,797 2.26% 8,288,166 2.30%
Lazy Evaluation 1 510,280,159 2.35% 479,822,945 2.58%
Lazy Evaluation 2 516,824,691 2.44% 502,551,590 2.01%
Lazy Evaluation 3 491,837,681 2.26% 492,034,119 2.14%

Loop Fusion 1 27,943,219 6.89% 32,360,123 4.70%
Loop Fusion 2 873,456 2.42% 1,628,160 2.30%
Loop Fusion 3 4,287 2.86% 5,888 2.51%
Loop Fusion 4 45.63 2.21% 56.04 1.90%

Loop Unrolling 1 26,994,911 3.69% 567,919,967 2.57%
Loop Unrolling 2 807,892 2.15% 143,520,045 3.01%
Loop Unrolling 3 2,303,995 2.49% 6,876,300 11.43%
Loop Unrolling 4 71,453 2.84% 2,325 2.86%

Pairing Computation 1 12,374,978 3.09% 15,735,046 2.74%
Precompute Logical Functions 1 129,000,145 2.72% 620,796,220 1.13%
Precompute Logical Functions 2 411,152 1.72% 569,000,420 2.46%

Reorder Tests 1 28,554,649 2.37% 30,054,661 2.37%
Reorder Tests 2 21,279,974 2.56% 21,124,386 2.27%

Short-Circuit Monotone Functions 1 93,995,809 4.35% 91,194,978 6.53%
Short-Circuit Monotone Functions 2 1,237,734 7.44% 1,295,604 6.84%
Short-Circuit Monotone Functions 3 14,973 3.59% 14,273 5.41%

Store Precomputed Results 1 69.10 2.46% 2,002 2.04%
Transfer-Driven Loop Unrolling 1 130,662,304 2.95% 133,872,749 1.84%
Transfer-Driven Loop Unrolling 2 827,475 2.16% 877,896 2.51%
Transfer-Driven Loop Unrolling 3 368,134 2.56% 406,771 2.93%

Table 4.2: Results obtained in the Chrome browser

4.6 Conclusions 37

Name of the Rule Test Number Before MOE After MOE
Code Motion Out of Loops 1 10,162,014 6.01% 11,489,761 4.02%
Code Motion Out of Loops 2 109,271 2.66% 117,863 2.28%
Code Motion Out of Loops 3 842 2.56% 817 3.22%
Code Motion Out of Loops 4 8.79 2.17% 7.88 5.87%

Collapse Procedure Hierarchies 1 520,306 4.28% 537,656 2.39%
Collapse Procedure Hierarchies 2 56.87 2.37% 56.29 2.59%

Combining Tests 1 76,821,013 1.72% 68,033,114 1.54%
Combining Tests 2 4,854,205 1.37% 5,331,111 1.81%
Combining Tests 3 93,824 1.27% 109,811 1.93%

Compile Time Initialization 1 903,323,917 1.57% 847,413,233 2.23%
Control Variable Elimination 1 5,094,295 2.04% 5,249,417 2.15%
Data Structure Augmentation 1 568,436 1.47% 879,420,626 1.28%
Data Structure Augmentation 2 14,539,447 1.81% 880,020,894 1.27%

Eliminate Common Subexpressions 1 1,098,418 59.27% 30,656,228 3.58%
Eliminate Common Subexpressions 2 1,940,560 3.83% 4,253,820 4.18%

Exploit Algebraic Identities 1 853,676,645 1.11% 849,576,661 0.99%
Exploit Algebraic Identities 2 45,478,281 1.89% 40,237,141 1.81%

Exploit Common Cases 1 3,816,731 1.16% 6,373,330 1.14%
Lazy Evaluation 1 689,752,348 1.24% 697,953,815 1.04%
Lazy Evaluation 2 720,027,153 1.07% 696,782,160 1.20%
Lazy Evaluation 3 715,810,961 1.27% 716,954,162 1.12%

Loop Fusion 1 61,622,536 1.31% 96,538,598 2.73%
Loop Fusion 2 1,366,437 1.66% 2,291,314 1.67%
Loop Fusion 3 4,996 1.29% 5,923 3.28%
Loop Fusion 4 4.39 1.33% 4.50 1.01%

Loop Unrolling 1 22,737,412 1.43% 870,597,229 1.27%
Loop Unrolling 2 994,934 2.05% 79,040,913 1.15%
Loop Unrolling 3 1,591,801 14.48% 808,749,933 1.55%
Loop Unrolling 4 17,296 2.81% 6,758 3.03%

Pairing Computation 1 23,709,165 1.20% 32,122,333 1.16%
Precompute Logical Functions 1 241,134,138 1.04% 735,233,103 1.55%
Precompute Logical Functions 2 243,800 1.23% 730,325,108 1.78%

Reorder Tests 1 46,972,727 1.24% 50,334,302 1.74%
Reorder Tests 2 31,784,168 1.47% 31,420,998 1.08%

Short-Circuit Monotone Functions 1 89,604,650 3.30% 91,185,112 3.25%
Short-Circuit Monotone Functions 2 1,503,710 3.16% 1,511,820 3.98%
Short-Circuit Monotone Functions 3 15,112 3.55% 14,042 7.18%

Store Precomputed Results 1 33.49 0.41% 1,012 12.13%
Transfer-Driven Loop Unrolling 1 174,604,570 1.75% 146,114,700 1.62%
Transfer-Driven Loop Unrolling 2 345,657 0.80% 796,956 0.66%
Transfer-Driven Loop Unrolling 3 157,922 1.38% 369,222 0.98%

Table 4.3: Results obtained in the Firefox browser

38 Bentley Rules Study

Name of the Rule Test Number Before MOE After MOE
Code Motion Out of Loops 1 3,758,524 6.62% 4,145,297 5.20%
Code Motion Out of Loops 2 47,229 5.32% 47,537 5.45%
Code Motion Out of Loops 3 394 3.56% 404 3.48%
Code Motion Out of Loops 4 2.56 2.59% 2.57 3.01%

Collapse Procedure Hierarchies 1 94,105 2.71% 93,044 2.65%
Collapse Procedure Hierarchies 2 9.72 1.81% 9.66 1.56%

Combining Tests 1 14,252,576 1.72% 13,997,040 1.85%
Combining Tests 2 5,829,983 1.43% 5,747,877 1.27%
Combining Tests 3 168,186 1.01% 168,386 1.15%

Compile Time Initialization 1 184,848,485 1.79% 185,641,528 1.71%
Control Variable Elimination 1 4,861,558 2.76% 6,537,230 2.30%
Data Structure Augmentation 1 1,473,967 3.03% 109,434,557 2.20%
Data Structure Augmentation 2 30,787,106 1.89% 112,438,518 1.27%

Eliminate Common Subexpressions 1 6,868,635 4.62% 7,797,483 5.65%
Eliminate Common Subexpressions 2 1,066,877 3.87% 1,357,913 4.62%

Exploit Algebraic Identities 1 9,231,635 1.58% 16,637,344 1.22%
Exploit Algebraic Identities 2 7,656,607 2.26% 7,826,759 2.67%

Exploit Common Cases 1 1,682,806 1.65% 2,462,874 1.27%
Lazy Evaluation 1 123,276,652 1.39% 77,096,419 1.56%
Lazy Evaluation 2 124,872,958 1.27% 62,713,721 1.04%
Lazy Evaluation 3 124,991,459 1.09% 62,256,201 1.06%

Loop Fusion 1 9,880,779 5.03% 10,949,437 4.33%
Loop Fusion 2 794,074 1.95% 1,390,869 2.28%
Loop Fusion 3 3,838 1.94% 6,297 1.60%
Loop Fusion 4 8.31 1.76% 8.32 1.46%

Loop Unrolling 1 32,994,750 0.85% 191,949,969 1.97%
Loop Unrolling 2 1,050,108 2.25% 182,407,355 1.23%
Loop Unrolling 3 559,904 3.35% 579,277 3.35%
Loop Unrolling 4 10,993 3.69% 3,195 3.73%

Pairing Computation 1 4,330,325 4.05% 4,700,689 3.46%
Precompute Logical Functions 1 83,033,312 1.06% 71,458,598 2.32%
Precompute Logical Functions 2 79,468 1.19% 73,270 1.24%

Reorder Tests 1 13,130,701 3.17% 13,568,624 1.54%
Reorder Tests 2 11,637,619 1.37% 11,609,489 1.43%

Short-Circuit Monotone Functions 1 35,240,372 1.79% 35,109,751 1.79%
Short-Circuit Monotone Functions 2 1,436,168 2.56% 1,615,754 1.96%
Short-Circuit Monotone Functions 3 13,223 3.23% 14,001 2.12%

Store Precomputed Results 1 14.79 1.58% 339 3.72%
Transfer-Driven Loop Unrolling 1 82,572,417 1.10% 74,847,832 0.92%
Transfer-Driven Loop Unrolling 2 161,141 1.17% 164,347 0.90%
Transfer-Driven Loop Unrolling 3 73,916 2.01% 77,997 2.12%

Table 4.4: Results obtained in the Edge browser

4.6 Conclusions 39

Name of the Rule Test Number Before MOE After MOE
Code Motion Out of Loops 1 13,829,087 10.37% 15,865,364 6.85%
Code Motion Out of Loops 2 104,245 2.07% 101,206 1.68%
Code Motion Out of Loops 3 600 1.83% 590 1.59%
Code Motion Out of Loops 4 4.74 4.57% 4.42 4.30%

Collapse Procedure Hierarchies 1 44,357 1.57% 46,508 1.63%
Collapse Procedure Hierarchies 2 4.77 1.55% 4.80 1.29%

Combining Tests 1 3,690,433 3.99% 2,807,379 1.62%
Combining Tests 2 2,421,575 1.91% 2,725,508 2.04%
Combining Tests 3 98,116 2.04% 145,298 1.66%

Compile Time Initialization 1 71,587,096 3.33% 74,045,579 3.48%
Control Variable Elimination 1 6,182,508 1.73% 6,976,488 2.61%
Data Structure Augmentation 1 2,382,842 2.00% 63,765,448 3.75%
Data Structure Augmentation 2 34,253,400 4.27% 64,335,290 3.83%

Eliminate Common Subexpressions 1 8,398,570 7.14% 11,752,608 4.62%
Eliminate Common Subexpressions 2 969,922 2.92% 2,270,026 3.13%

Exploit Algebraic Identities 1 2,960,825 2.62% 4,418,621 2.42%
Exploit Algebraic Identities 2 2,155,635 2.62% 2,091,502 3.19%

Exploit Common Cases 1 2,572,488 2.72% 2,985,550 2.90%
Lazy Evaluation 1 66,965,305 5.45% 53,951,503 17.46%
Lazy Evaluation 2 66,501,213 5.94% 28,676,573 7.92%
Lazy Evaluation 3 65,965,533 5.31% 29,131,641 7.74%

Loop Fusion 1 18,465,952 2.77% 20,052,793 2.77%
Loop Fusion 2 1,098,505 1.60% 1,277,101 1.74%
Loop Fusion 3 5,725 1.07% 6,339 1.42%
Loop Fusion 4 7.75 1.69% 8.65 1.80%

Loop Unrolling 1 35,571,517 1.39% 64,837,950 19.16%
Loop Unrolling 2 2,051,344 1.46% 70,437,105 2.07%
Loop Unrolling 3 725,580 1.82% 695,016 2.89%
Loop Unrolling 4 7,261 2.01% 4,061 1.63%

Pairing Computation 1 12,644,734 11.29% 10,355,592 8.56%
Precompute Logical Functions 1 49,898,706 8.31% 63,282,949 4.49%
Precompute Logical Functions 2 399,787 4.32% 62,413,385 5.19%

Reorder Tests 1 4,065,615 2.90% 3,996,868 2.76%
Reorder Tests 2 3,843,740 2.85% 3,848,426 2.22%

Short-Circuit Monotone Functions 1 40,512,947 2.25% 38,295,402 2.67%
Short-Circuit Monotone Functions 2 1,928,322 2.22% 2,025,259 3.20%
Short-Circuit Monotone Functions 3 17,666 2.21% 19,509 2.74%

Store Precomputed Results 1 46.15 2.57% 415 1.53%
Transfer-Driven Loop Unrolling 1 59,376,994 5.95% 45,183,276 13.09%
Transfer-Driven Loop Unrolling 2 680,379 9.49% 1,151,423 1.54%
Transfer-Driven Loop Unrolling 3 129,500 1.61% 154,417 1.22%

Table 4.5: Results obtained in the Safari browser

40 Bentley Rules Study

Name of the Rule Worst Case Average Best Case
Code Motion Out of Loops -3.24% 1.43% 6.26%

Collapse Procedure Hierarchies -2.20% 0.05% 2.31%
Combining Tests 7.57% 9.73% 11.90%

Compile-Time Initialization -3.21% -0.74% 1.74%
Control Variable Elimination 23.72% 26.82% 29.91%
Data Structure Augmentation 26,176.61% 26,580.44% 26,984.28%

Eliminate Common Subexpressions 88.42% 95.60% 102.79%
Exploit Algebraic Identities 14.08% 16.49% 18.90%

Exploit Common Cases 42.99% 45.66% 48.32%
Lazy Evaluation -26.08% -23.35% -20.61%

Loop Fusion 28.44% 31.57% 34.71%
Loop Unrolling 6,321.94% 6,440.13% 6,558.32%

Pairing Computation 9.32% 13.27% 17.23%
Precompute Logical Functions 55,535.98% 56,731.72% 57,927.45%

Reorder Tests -0.45% 1.51% 3.46%
Short-Circuit Monotone Functions -2.29% 1.69% 5.67%

Store Precomputed Results 2,042.56% 2,177.59% 2,313.13%
Transfer-Driven Loop Unrolling 24.90% 27.48% 30.07%

Table 4.6: Average of the worst, average and best cases in all the browsers tested.

Considering it achieved similar results with the After test fixtures, when accessing the 3rd or

the 1400th elements in the three first mentioned browsers, and there was a large gap in operations

per second in the latter, it was likely that the negative impact of the rule was due to the Edge

browser’s engine inability to efficiently reading from very large arrays.

Besides this rule, three other rules generated an improvement of over one thousand percent

(1000%), which means that they improve the operations per second by more than ten times. These

other rules were Data Structure Augmentation, Loop Unrolling, and Store Precomputed Re-
sults.

There is a fifth rule which stands out, Eliminate Common Subexpressions, which achieved

an improvement of nearly one hundred percent (100%), meaning that the operations per second

were nearly doubled.

4.7 Limitations

In this chapter, the test fixtures created either came from ideas the author had at the time of studying

each rule, or were examples given by Jon Bentley, together with the description of the rules.

However, many other cases for each rule may be possible, and different test fixtures might have

achieved different results.

The final results do not represent the true impact of each rule in a complete JavaScript pro-

gram, instead representing the impact in the specific instructions’ modification or replacement. To

achieve a better understanding of each rule’s impact on JavaScript programs, it would be required

4.7 Limitations 41

to apply each rule to programs developed in this language, and these programs would need to rep-

resent the average JavaScript program. This, however, is not possible to predict, and as such, it is

never possible to calculate the true impact of a rule and its application.

As mentioned in Section 4.4, the UC Browser does not allow localhost access. Therefore, the

application developed to test the impact of each rule was not tested on this browser. Although very

different results were not expected on this browser, it would have been interesting to test on more

browsers.

42 Bentley Rules Study

Chapter 5

Implementation of Code
Transformation

This chapter contains the steps taken into achieving the second goal of this dissertation, which in-

tends to take advantage of the Jscrambler product’s code analysis and transformation capabilities,

to develop a code transformation based on the results obtained in the last chapter, and to validate

its performance gain potential.

The first section contains the steps taken to choose the rule which would be translated to a

code transformation, and the last section has the analysis of the impact that transformation has on

some JavaScript projects.

5.1 Choice of the Transformation

Having achieved the first goal of this dissertation, it was then time to apply the newly acquired

knowledge regarding which Bentley Rules produces the most gain in performance when applied

to JavaScript code. As stated in Chapter 1, the second goal of this dissertation was to implement

a transformation, taking advantage of Jscrambler’s code obfuscation tool, which is capable of

applying transformations to JavaScript code.

The choice of which Bentley Rule to be translated into a code transformation was based on the

following parameters:

1. Applicability to the JavaScript language. The rules that were considered not to be appli-

cable to the JavaScript language were not considered in this part of the dissertation.

This parameter sees 6 of the 26 total rules automatically out of contention.

2. Performance gain potential. The rules that were proven to be more impactful in a positive

manner to JavaScript code would have preference over the less impactful ones.

43

44 Implementation of Code Transformation

Looking at the results obtained in the last chapter, 5 rules stand out in terms of performance

gain. These rules are, in descending order of the results observed, Precompute Logical

Functions, Data Structure Augmentation, Loop Unrolling, Store Precomputed Results, and

Eliminate Common Subexpressions.

3. Generalization Possibility. Generalization is essential when implementing code transfor-

mations as there is a need to catch every case in which the transformation is to be applied.

Also, if a rule is not generalizable – is only applicable in some specific cases – perhaps it

will not really have a great impact.

To generalize Precompute Logical Functions, every time a pure function is detected and

its domain is known, the results for the function should be calculated, and the function call

should be replaced by a look-up on the data structure used to store the results. The main

possible complications with the generalization of this rule are determining the purity of a

function and its domain.

The generalization of Data Structure Augmentation is done by detecting database accesses

and detecting how the data received is handled. Whenever it is detected that the data received

is used to perform further calculations, then the database should be augmented to include

these new values. However, this may not even be possible to implement, since there may

not be permission to change the database or even change the parts of the code which add

new entries to the database. Therefore, this rule is excluded from consideration.

From the 5 rules mentioned, Loop Unrolling is the easiest to generalize, as it is simply

needed to take the code inside a loop and repeat it for the number of iterations the loop is

supposed to perform. However, in some cases, it might be difficult to predict the loop’s

behavior since it may jump some iterations, either backward or forward, and it is also hard

to predict when the overhead generated by repeating the lines of code stop being beneficial.

The generalization of the Store Precomputed Results rule is done by transforming pure

functions. Instead of their normal behavior, they first verify if the function has already been

called with the same set of arguments before. If it has, then returns the result, which had been

stored, otherwise it executes normally, storing the result in the end. Like the Precompute

Logical Functions rule, there is also the need to determine the purity of a function.

Finally, the generalization of the Eliminate Common Subexpressions rule is achieved by

detecting repeated evaluations of the same expression throughout the code. When its value is

not altered, then the result of the first evaluation is stored, and used instead of the following

evaluations. However, in JavaScript is impossible to predict, with static analysis, whether

the result of an evaluation will be changed. Therefore, and since this rule has the lowest

performance gain of all the 5 being considered, it is excluded from consideration.

4. Usefulness in Jscrambler’s context. Considering Jscrambler has a product being sold to

several companies throughout the world, and that this product is being used to help with the

5.2 Memoization Transformation 45

implementation, it would make sense to implement a transformation that could help improve

the product further.

From the 3 rules still in contention, the Jscrambler product is already capable of perform-

ing Loop Unrolling, which excludes it from consideration. Therefore, remain two rules,

Precompute Logical Functions and Store Precomputed Results, and the difference between

them is that the first requires knowledge on the domain of the function. Since this may rarely

be possible, the picked rule was Store Precomputed Results, as it is most likely applicable

to more functions than the Precompute Logical Functions rule.

5.2 Memoization Transformation

As mentioned in the last chapter, Store Precomputed Results is more commonly known as mem-

oization, and as such, throughout the remainder of this document, this rule will be described as

memoization.

The first step in implementing a code transformation was defining what parts of JavaScript

code the transformation should target. In the case of memoization, it should only be applied to

pure functions. Therefore, this generates the consequent question of whether all pure functions or

just a specific set of pure functions should be targeted.

5.2.1 Target Definition

Summing up, memoization stores every computed result from a function during the execution, to

access those results in a future occasion when the same set of arguments is used, which renders

memoization useless whenever a function is called only once throughout the execution of the

program or is called once for each set of arguments.

An example of this would be a function that receives a number, returns its square, but the

program uses it to calculate the square of every number from 1 to 100. In this case, the function

will never be called twice for the same arguments, not only making memoization useless but

having the opposite effect to what was pretended. The additional verification of whether there is

already a stored result for the arguments received will make the program increasingly slower, the

more stored results there are.

Another concern regarding the application of memoization is the overhead caused by storing

too many entries in the data structure specific for that purpose, consequently making the searches

on the data structure more costly.

Considering the examples given, it is easy to understand that memoization will not have a

positive effect in every pure function when applied, and should not be applied to any function that

is considered pure.

However, despite the Jscrambler tool’s capabilities of recognizing pure functions and trans-

form them, it is still not able to predict when one of the concerning cases is going to happen. This

is due to the nature of static analysis, which does not allow data and control flow analysis.

46 Implementation of Code Transformation

Data Structure Num. of Samples Average Ops/sec Margin of Error
Array 100 1.246.218 0,99%
Map 100 1.414.216 0,84%

Object 100 1.223.003 1,52%
Table 5.1: Data Structure results

Therefore, it was decided that without user interaction, the tool would apply the transformation

to every pure function that was detected. The users still have the ability to perform annotations,

and disable a specific transformation for the entirety of the program, or for specific functions.

5.2.2 Data Structure Selection and Prototype

The first idea for the transformation was the creation of a memoization wrapper function, which

can then be used by every function to be memoized. The wrapper function would create a data

structure in which the results would be stored for the arguments received, and the return statement

of the wrapper function would be the verification of the existence of a result for the arguments

received, return it in case it existed, or executing the function normally in case it did not.

That raised the question as to which data structure would be more suitable for this case, in

which there is a pair of key and value needing to be stored, and the key to be searched.

Once again JSPerf was used, this time to compare the performance of different data structures

in JavaScript, by performing insertions and searches on them. The data structures considered were

Arrays, Maps and Objects, and the test fixtures used to evaluate them are shown in Appendix B.

Table 5.1 shows the results obtained on the tests made to the different data structures, and it

can be concluded that having a Map as the structure to store the results of the functions is the most

performing of the options.

After selecting the Map data structure, which was proven to be the best choice, there was the

possibility of designing a prototype of the memoization function, which would be used. Note that

in this function, the key is a serialization of the arguments received.

5.2 Memoization Transformation 47

1 var memoization = function (func) {

2 var map = new Map();

3 return function () {

4 var key = JSON.stringify(arguments);

5 var value = map.get(key);

6 if (value == undefined) {

7 value = func.apply(null, arguments);

8 map.set(key, value);

9 }

10 return value;

11 };

12 };

Listing 5.1: Prototype of the memoization function

5.2.3 Transformation Development

Having defined the target for our transformation, as well as how the code is supposed to look like

after a transformation has occurred, it was then time to use the Jscrambler tool to develop the trans-

formation. As the tool transforms the code into Abstract Syntax Trees, and the transformations are

accomplished by modifying those AST.

The first goal of the transformation is detecting the pure functions, and to do so, the following

steps were followed:

1. Find the function declarations. Function declarations in the Abstract Syntax are nodes

called "FunctionDeclaration", and for this transformation, they are the only nodes the Jscram-

bler tool visits, ignoring all other types of nodes.

2. Create auxiliary variables. Some variables had to be created to help with the detection

of impure functions. Initially, an array to store every function declaration that was found,

then, inside the node of each function, arrays to store all variables that were either initialized

inside the function’s body or received as an argument and every function call inside the body.

Lastly, a variable which would work as a flag and that stored the decision on the eligibility

of the function. Whenever a red flag was found inside the function’s body, it would mark

this variable as true, and it would not be targeted.

3. Verifying number of arguments, and return statements. For each function, the first

thing the tool does besides the creation of the auxiliary variables, is the verification on the

number of arguments received by the function, which was achieved by simply evaluating

the expression: "node.params.length > 0", and the verification of the presence of at least one

"ReturnStatement" node inside the body of the function. If one of these two conditions is

not verified, the function is considered ineligible.

48 Implementation of Code Transformation

4. Verifying the function is pure. To do this, the initialized variables will be of use. To

detect when the function modifies or accesses variables outside its scope, whenever a node

with a variable that is not present in the array for the acceptable variables, the function

is immediately considered impure. The same goes for functions called inside its body. If

they are not present in the array where the function declarations were stored, then the caller

is instantly considered impure. In the case they are included in the array, then the called

function’s node is verified for its purity. If it’s impure, so is the caller function.

5. Inserting the memoization function node. After every function has been verified for their

purity, in the case there’s at least one function considered eligible, or pure, then a node is

inserted in the tree, containing the memoization wrapper function, as shown in the excerpt

in the last subsection.

6. Modifying the eligible functions’ declarations. Every function that is considered eligible

is then modified so that it calls the memoization function, passing the function as argument.

The following JavaScript code excerpt shows a pure function declaration, before and after

the transformation:

1 function beforeMemoization(n) {

2 if (n === 0 || n === 1)

3 return n;

4 else

5 return fibonacci(n - 1) + fibonacci(n - 2);

6 }

7

8 var afterMemoization = memoization(function(n) {

9 if (n === 0 || n === 1)

10 return n;

11 else

12 return fibonacci(n - 1) + fibonacci(n - 2);

13 });

Listing 5.2: Prototype of the memoization function

As mentioned in the previous steps, whenever a red-flag was detected, the functions were

always considered to be impure. This pessimistic approach had to be followed, due to the

impossibility of performing dynamic analysis. With static analysis alone it is not possible

to predict the impact a single instruction will have later in the code.

5.2.4 Compliance Testing

The Jscrambler product has the ability to test the transformations developed with compliance tests,

which apply the desired transformations to several libraries and then test them to verify that their

behavior remains unaltered. The libraries the transformation was applied to are: Esprima, Lebab,

Acorn, Moment, jQuery, Knockout, Express, SVG.js, Chart.js and jsdom. During the compliance

5.2 Memoization Transformation 49

tests, it was discovered that the memoization function idealized would need to suffer some changes

to cover some specific cases:

1. Circular references in objects. Circular references happen when an object contains a refer-

ence to itself. Usually these cases were due to the fact that some objects in the test libraries

were trees, whose nodes had references to the parent nodes, which in their turn had ref-

erences to the child nodes. This brought the need of creating a function to detect object

type variables and serialize them. To prevent circular references, the newly created func-

tion searches through the objects, storing every property in an array, and when a repeated

property is detected, then it is ignored, not being serialized.

2. Serialization of maps. It is not possible to serialize maps using JSON.stringify(map), where

map is the name of the variable, in the same way as other objects or even primitives, instead

being necessary to create a verification for these cases, and handle them accordingly, using

JSON.stringify([...map]).

3. Serialization of objects with non-enumerable properties. Serializing was perhaps the

major obstacle on the development of the transformation. The serialization is not possible by

simply using JSON.stringify(map). The transformation does not handle these cases, which

is why the transformation requires annotations from the user to prevent functions which

use objects with non-enumerable props that are required in the serialization from being

transformed.

Code Listing 5.3 shows the memoization function that resulted in considering the mentioned

cases, and it covers the first two, as the third was not implemented.

Seeing that the three mentioned cases together were not detected very often, and that in the

majority of the cases where the memoization function was applied, it worked without any problem,

it was decided that two different memoization function were to be used. The default, the function

shown in Code Listing 5.3, was to be applied to every pure function detected, in case no annotation

was found or other functions which had been enabled for memoization. The memoization function

shown in Code Listing 5.1 was to be applied to function which was enabled for it, with annotations.

50 Implementation of Code Transformation

1 var memoization = function (func) {

2 var map = new Map();

3

4 function generateKey(args) {

5 let str = ’’; let i = 0;

6 [].forEach.call(args, function (el) {

7 str += ’[’ + i + ’]:’; i++;

8 if(typeof el === ’object’){

9 if(el instanceof Map){

10 str += JSON.stringify([...el]);

11 } else {

12 let cache = [];

13 str += JSON.stringify(el, function(key, value) {

14 if (typeof value === ’object’ && value !== null) {

15 if (cache.indexOf(value) !== -1) return;

16 cache.push(value); }

17 return value; });}

18 } else str += JSON.stringify(el);

19 }); return str;

20 }

21

22 return function () {

23 var key = generateKey(arguments);

24 var value = map.get(key);

25 if (value == undefined) {

26 value = func.apply(null, arguments);

27 map.set(key, value);

28 }

29 return value;

30 };

31 };

Listing 5.3: Memoization function after compliance testing

5.3 Testing the Transformation

This section focuses on describing the steps taken to test the impact of the transformation devel-

oped, and it contains three subsections.

Subsection 5.3.1 describes the process of selecting the project to which the transformation

was applied. Subsection 5.3.2 describes the process of applying the transformation to the selected

project, and Subsection 5.3.3 describes the process of measuring the impact of the transformation.

5.3 Testing the Transformation 51

5.3.1 Project & Browser Selection

The project selected was a car racing, open source game. Besides this being a well-known

type game, the reasoning behind this choice was that games usually have higher requirements

in terms of performance, and the one selected is part of a repository of a selection of different

HTML5/JavaScript games (Gordon).

To test the application, the Chrome browser was used. This was due to this browser being the

most used browser, as mentioned in the last chapter, and the nature of the game, which does not

allow for automatic testing.

5.3.2 Setup

After cloning the repository into the machine where the tests would occur — the same machine

described in Chapter 4 — the game was running at 60 frames per second (fps). To verify some

improvement, it was necessary to cause the frame rate to be lower, otherwise, in the Chrome

browser, any optimization would not be noticed.

To lower the frame rate, the number of cars was increased to 4000, the resolution was increased

to 1920x1080, and the number of lanes in the road was also increased to 10. Then, in-game, it was

possible to increase some sliders, which would decrease the performance of the game.

The next step was to apply memoization to the game. When the obfuscation and optimization

tool was applied to the program, only enabling memoization, it targeted several different functions

in the project. However, when the game was launched, the frame rate was 0 fps. This was due

to some of the functions being constantly called, for every car in the game, which at this time

were 4000, for every frame. Storing so much data caused the application to have this terrible

performance.

After analysing the code, and realizing this, it was possible to disable memoization to some

of the functions which were causing this. Then, the frame rate went up again. To measure the

frame rate, a console.log() instruction was added to the function that was calculating it every

second. A different console.log() instruction was added whenever the car crossed the finish line,

to differentiate the frame rate in each lap.

5.3.3 Performing the tests

The tests were executed by the author, by playing the game. To prevent differences in style of play

between executions, the approach followed was to always go in a straight line, unless when cars

were in front. In these cases, a lane switch would have to occur.

As the game does not end, since it does not have a concrete goal, besides trying to beat a

previous lap-time record, two laps were completed per execution. The two laps serve to notice if

there are differences from one lap to another, as one of the functions which was modified stored

values in the first lap, that were then used on the ensuing ones.

52 Implementation of Code Transformation

Run Number Lap Number FPS Average
1 1 42,24
1 2 42,94
2 1 44,65
2 2 45,25
3 1 45,18
3 2 46,48
4 1 42,91
4 2 43,31
5 1 46,13
5 2 46,61
6 1 45,91
6 2 46,81
7 1 42,59
7 2 43,80
8 1 46,97
8 2 46,54
9 1 46,44
9 2 45,26

10 1 46,80
10 2 45,53

Table 5.2: Results obtained in the runs without transformation

The game was executed 20 times, 10 of which without the transformation applied, and the

other 10 with memoization applied. The executions were intercalated as to avoid one of the test

cases to benefit from a better performance from the machine.

5.4 Results

In Table 5.2, it is possible to see the average frames per second obtained in each run, and each lap

performed with the game without the transformation applied. Table 5.3 shows the same results but

for the runs made with the game which had the transformation applied.

Then, in Table 5.4, it is possible to observe the combined results. These results are, in order

seen in the table, the average fps obtained in all the first laps performed with the game without

transformation, then the same for the second lap. The third row shows the average for all the

measured fps in the 10 runs without transformation. This includes all the laps performed. The

next three rows of the table show these results but with the transformation applied to the game.

5.5 Conclusions

In Table 5.2, it is possible to observe that the average fps count increased between the first and

second laps of almost every run. The same can be observed in Table 5.3. This increase, when

5.5 Conclusions 53

Run Number Lap Number FPS Average
1 1 46,66
1 2 49,34
2 1 47,81
2 2 48,66
3 1 47,28
3 2 49,04
4 1 47,78
4 2 48,31
5 1 47,53
5 2 48,41
6 1 48,73
6 2 48,45
7 1 48,34
7 2 48,38
8 1 47,72
8 2 48,10
9 1 47,88
9 2 48,38
10 1 47,70
10 2 48,63

Table 5.3: Results obtained in the runs with transformation

Transformation Lap FPS Average
No 1st 44,67
No 2nd 45,06
No 1st & 2nd 44,86
Yes 1st 47,67
Yes 2nd 48,57
Yes 1st & 2nd 48,11

Table 5.4: Results obtained by combination

54 Implementation of Code Transformation

combining all the first laps, and the second laps is only equivalent to a one percent increase in

the game without the transformation. However, in the transformed game, the verified increase is

nearly two percent.

This increase is believed to be because there is a function which was transformed, which is

responsible for the formatting of the time of each lap. During the first lap of each run, that function

is storing every result, as the same value is not repeated during that lap. But in the second run, it

will use the results stored, until the time of the first lap is exceeded. Although the computations

required to format the time of a lap are not extensive, avoiding them can cause this slight increase.

The most interesting data that can be gathered from the results tables is the increase in average

fps between the non-transformed and the transformed games. While the first only achieved 44,86,

the second was able to achieve an average of 48,11. This equals a 7,24% increase in average fps.

The increase verified between the non-transformed game’s first laps and the transformed game’s

first laps is around 6,72%, while the value observed for the second laps is 7,79%. The difference

in the increases can be the cause of the already mentioned function.

Therefore, it can be concluded that this transformation, when applied to some functions, can

have a very positive impact in the performance of JavaScript programs.

5.6 Limitations

With the compliance testing some cases where functions were wrongly considered pure were

detected, and promptly corrected. However, it is believed there may be some very specific cases

where the tool will consider impure functions as pure. The other side of the coin is verified as well,

as a pessimistic approach was followed. Whenever something was detected in the code that had

the potential to make the function impure, the function was always considered impure. With these

limitations, it is believed dynamic analysis is required to detect function purity more accurately.

The transformation was applied and tested with only one project, as this is very time consum-

ing, without the ability to perform automatic testing. With different projects, results may have

been very different, for better or worse.

Although this transformation achieved positive results, this was only achieved after the author

explored the program’s code, as some of the functions that were transformed made the game

unplayable. This was due to the overhead caused by storing so many values. With profiling, this

could be avoided and the transformation of these functions could be avoided.

Chapter 6

Conclusions and Future Work

This chapter is a reflection upon the work done throughout the development of the dissertation.

In the first section, the main difficulties felt with the development are described, followed by the

main contributions of this work, the conclusions drawn, as well as ideas for possible future work

in the last section.

6.1 Main Difficulties

The major challenge of this dissertation was in the creation of the test fixtures aimed at verifying

the impact each of the rules has on JavaScript programs. This challenge comes from the fact that

no program is equal to another, and the verified impact of a rule will always depend on the program

itself, on the way the rule is applied to it, and on the engine the program will be running on, as

well.

The detection of a function’s purity in a language such as JavaScript was undoubtedly one

of the hardest tasks of this dissertation. The dynamic nature of this language makes it nearly

impossible to detect pure functions with static analysis. By running the compliance tests, many

cases which made functions impure were detected, and changes were made to the code which

applies the transformation. However, it is still believed that not all cases of impure functions

are detected. Another effect of the same difficulty was the pessimist approach followed in the

detection of pure functions. Therefore, some pure functions may not be detected as well.

The selection of the open-source project to apply the transformation to was also a difficult task.

Although there are many open-source projects, a popular game project was preferred. This was due

to the fact that performance is even more important in games, compared to websites. However,

many of the games found either required really intricate playing skills, or did not contain any

function that was targeted by the transformation.

6.2 Main Contributions

The main contributions of this dissertation to the field of Software Engineering are the following:

55

56 Conclusions and Future Work

1. A study about the applicability of the Bentley Rules to JavaScript. Although some of the

Bentley Rules are commonly applied to JavaScript, as is the case with Store Precomputed

Results, or Loop Unrolling, among others, there has not been a study focused in all the

rules’ application.

2. An application for performance evaluation across different browsers. This application

was used to test the impact of the Bentley Rules in four different browsers. By creating

different test fixtures, it is possible to do the same for any possible code transformations.

3. A code transformation. By using the Jscrambler tool, the code transformation imple-

mented has the potential to be applied to, and increase the performance of a wide variety of

websites and applications.

6.3 Conclusions

The main conclusion drawn after the development of this dissertation is that the Bentley Rules,

despite defined before its creation, are, in their majority, applicable to the JavaScript language.

The hypothesis of this dissertation, described in Chapter 3, is therefore supported.

Moreover, it was shown that even popular, open-source JavaScript projects can be improved

performance-wise. Spending time considering improvements to a program’s code can have a very

positive impact in the user experience, which can lead to having a more loyal user base.

With the tests made with the test fixtures for the Bentley Rules, described in Chapter 4, it was

shown that the answer to the first research question is positive — the Bentley Rules, when applied

to the JavaScript language, can have a positive impact in the performance. The Bentley Rule

which showed the biggest impact was Precompute Logical Functions, thus being the answer to

the second research question.

The answer to the third research question is also positive, as a code transformation was imple-

mented, which improves JavaScript programs’ performance. Although, without further improve-

ment, it can target certain functions which will cause the program to run much more slowly. With

a good knowledge of the code, however, it is possible to apply it to the most convenient functions,

which will generate more gains performance-wise.

Both goals set in Chapter 1 were achieved, however some improvements could be made, which

is the next section’s focus.

6.4 Future Work

The following ideas for future work are believed to be, by the author, the next steps to be taken for

the improvement of this project:

1. Improving the methodology. The methodology followed for this dissertation, with the

creation of the test fixtures can be improved. Instead, modifying existing JavaScript project

6.4 Future Work 57

in accordance with each rule would be a more reliable way to measure the impact of each

of the rules.

2. Testing for the combination of rules. Some rules did not show to have a great impact on

JavaScript code’s performance. However, combining two rules could perhaps have a greater

impact than the sum of the two impacts combined.

3. Improve the understanding of analyzed code for increased customization of the mem-
oization functions. Profiling would allow a better understanding of how a certain program

behaves, and, consequently, annotations would not be needed. Furthermore, having specific

memoization functions for some functions, as is the case with functions which use non-

enumerable props from an object, would mean a better performance gain. Storing simply

the props of the object that make it different from others, would save some storage space,

and make the reading and writing faster.

4. Study the relation between overhead and time saved. Although memoization has the

potential to improve the speed of the execution of JavaScript code, the memory it consumes

may be too large. Studying this trade-off between speed and memory should generate good

knowledge on when to apply memoization.

5. Implementing more code transformations. Code transformations help developers im-

prove their code’s performance without having to spend much time worrying about it. A

code transformation was implemented in the development of this dissertation, but there

were some rules which showed a greater impact in JavaScript code, and translating them to

code transformations is an idea for future work.

6. Combine the code transformation with obfuscation. Applying the code transformation

along with code obfuscation could provide better insight to the code transformation’s real

impact in Jscrambler’s context, as the optimization is seen as a measure to counter the

negative impact of obfuscation in the programs’ performance.

7. Test the impact of the code transformation combined with other optimization tools.
Seeing the difference in impact of the code transformation when applied before, and after

other JavaScript optimization tools have done their work, could prove to be even more bene-

ficial for the performance of JavaScript programs. Tools as the ones mentioned in Chapter 2

could be a good starting point.

8. Account for energy consumption. As it was mentioned in Chapter 3, in this dissertation it

was assumed that the performance of a program was only dependent of its execution time.

However, taking into account both memory and energy consumption would perhaps lead to

different results.

58 Conclusions and Future Work

Appendix A

Bentley Rules Test Fixtures

This appendix contains the test fixtures for the Bentley Rules. The order in which they are pre-

sented follows the order they were mentioned and described in chapter 2. Not all of the Bentley

Rules’ test fixtures that were tested are present in this appendix, as is the case of the rule Loop

Unrolling, instead containing a brief explanation of the test fixtures.

Each section in this appendix contains up to three subsections, named "Setup", "Before" and

"After". The "Setup" subsection represents the parts of the test fixtures that are required for them

to be executed, and do not have any influence in the results obtained, as the execution of these parts

is not considered in the calculation of the time. The "Before" and "After" subsections represent,

respectively, and as the names suggest, parts of code before and after a rule is applied to it, and are

the parts that are executed and used to calculate the gain or loss in performance for the respective

rule.

In the cases where only one test was created for each rule, or more than one test where the

function called is the same, the name of said function is before() and after(). When there is more

than one example and each one has a different function, the function names are the same as in the

first case, but followed by the ordinal number correspondent to the test, for example, beforeFirst(),

afterSecond().

59

60 Bentley Rules Test Fixtures

A.1 Data Structure Augmentation

A.1.1 Setup

1 function Person1 (info) {

2 this.name = info[0];

3 this.birthDate = info[1];

4 }

5

6 function Person2 (info) {

7 this.name = info[0];

8 this.birthDate = info[1];

9 this.age = 0;

10 this.birthDay = this.birthDate.getDate();

11 let today = new Date();

12 if(today.getFullYear() > this.birthDate.getFullYear()) {

13 if(today.getMonth() > this.birthDate.getMonth() || (today.getMonth() ===

this.birthDate.getMonth() && today.getDate() >= this.birthDate.getDate

())) {

14 this.age = today.getFullYear() - this.birthDate.getFullYear();

15 } else this.age = today.getFullYear() - this.birthDate.getFullYear() - 1;

16 } else this.age = 0;

17 }

18

19 let name = ’Filipe’;

20 let birth = new Date(Date.UTC(2017,8,12,6));

21 var person = new Person1([name, birth]);

22 var person2 = new Person1([name, birth]);

A.1.2 Before

1 function beforeFirst() {

2 let today = new Date();

3 if(today.getFullYear() > person.birthDate.getFullYear()) {

4 if(today.getMonth() > person.birthDate.getMonth() || (today.getMonth() ===

person.birthDate.getMonth() && today.getDate() >= person.birthDate.

getDate())) {

5 return(today.getFullYear() - person.birthDate.getFullYear());

6 } else return(today.getFullYear() - person.birthDate.getFullYear() - 1);

7 } else return(0);

8 }

9

10 function beforeSecond() {

11 return person.birthDate.getDate();

12 }

A.2 Store Precomputed Results 61

A.1.3 After

1 function afterFirst() {

2 return person2.age;

3 }

4

5 function afterSecond() {

6 return person2.birthDay;

7 }

A.2 Store Precomputed Results

A.2.1 Setup

1 var max_fibonacci = 1476;

2 var fibonacciArray = [];

3

4 function fibonacci(num) {

5 var a;

6 var b;

7 var c;

8 if(num === 0 || num > max_fibonacci)

9 return 0;

10 else if(num <= 2)

11 return 1;

12 else{

13 a = 1;

14 b = 1;

15 for(var i = 3; i <= num; i++){

16 c = a + b;

17 a = b;

18 b = c;

19 }

20 return c;

21 }

22 }

62 Bentley Rules Test Fixtures

A.2.2 Before

1 function before() {

2 var results = [];

3 for(let i = 0; i < 10000; i++) {

4 let num = Math.floor(Math.random() * max_fibonacci) + 1;

5 results.push(fibonacci(num));

6 }

7

8 return results;

9 }

A.2.3 After

1 function after() {

2 var results = [];

3 for(let i = 0; i < 10000; i++) {

4 let num = Math.floor(Math.random() * max_fibonacci) + 1;

5 if(fibonacciArray[num] == null) {

6 fibonacciArray[num] = fibonacci(num);

7 }

8 results.push(fibonacciArray[num]);

9 }

10

11 return results;

12 }

A.3 Lazy Evaluation

A.3.1 Before

1 function before(rate) {

2 var sum = 1 + 1;

3 for (let i = 0; i < 10; i++) {

4 if(i >= rate)

5 return 3;

6 else return sum;

7 }

8 }

A.4 Code Motion Out of Loops 63

A.3.2 After

1 function after(rate) {

2 var sum = () => 1 + 1;

3 for (let i = 0; i < 10; i++) {

4 if(i >= rate)

5 return 3;

6 else return sum();

7 }

8 }

A.4 Code Motion Out of Loops

A.4.1 Setup

1 var final = "";

A.4.2 Before

1 function before(num_iterations) {

2 for (var i = 0; i < num_iterations; i++) {

3 var str1 = "Iteration";

4 var str2 = " Number = ";

5 var str4 = str1 + str2;

6 final += str4 + i + "\n";

7 }

8 }

A.4.3 After

1 function after(num_iterations) {

2 var str1 = "Iteration";

3 var str2 = " Number = ";

4 var str4 = str1 + str2;

5

6 for (var i = 0; i < num_iterations; i++) {

7 final += str4 + i + "\n";

8 }

9 }

64 Bentley Rules Test Fixtures

A.5 Combining Tests

A.5.1 Setup

1 var numbersList = [];

2

3 for(var i = 0; i < 10000; i++) {

4 numbersList.push(Math.floor((Math.random() * 10000) + 1));

5 }

A.5.2 Before

1 function before(numElements) {

2 var i = 0;

3 var numToSearch = Math.floor(Math.random() * 10000) + 1;

4

5 while(i < numElements && numbersList[i] != numToSearch) {

6 i++;

7 }

8 return i;

9 }

A.5.3 After

1 function after(numElements) {

2 var i = 0;

3 var numToSearch = Math.floor(Math.random() * numElements) + 1;

4

5 numbersList[numElements] = numToSearch;

6

7 while(numbersList[i] != numToSearch) {

8 i++;

9 }

10 return i;

11 }

A.6 Loop Unrolling

This section does not contain the test fixtures for the Loop Unrolling rule, instead containing a

brief explanation of what the test fixtures consisted of, as the test fixtures themselves would take

an astounding amount of space in the document. In the "after" cases of this rule, instead of having

a loop with n iterations, the code inside the loop was just repeated n times.

A.7 Transfer-Driven Loop Unrolling 65

In this rule’s test fixtures, four different cases were considered. Two of them are loops where a

variable is increased by 1 each time the loop in executed. The number of iterations varied in each

case. The other two cases consisted of loops which would iterate over an array and calculate the

sum of its elements, each with a different number of iterations.

A.7 Transfer-Driven Loop Unrolling

A.7.1 Setup

1 var max_fibonacci = 1476;

A.7.2 Before

1 function before(num) {

2 var a;

3 var b;

4 var c;

5 if(num == 0 || num > max_fibonacci)

6 return 0;

7 else if(num <= 2) return 1;

8 else{

9 a = 1; b = 1;

10 for(var i = 3; i <= num; i++){

11 c = a + b;

12 a = b; b = c;

13 }

14 return c;

15 }

16 }

66 Bentley Rules Test Fixtures

A.7.3 After

1 function after(num) {

2 var a;

3 var b;

4 if(num == 0 || num > max_fibonacci)

5 return 0;

6 else if (num <= 2)

7 return 1;

8 else {

9 a = 1; b = 1;

10 for (var i = 1; i < num / 2; i++) {

11 a = a + b;

12 b = b + a;

13 }

14 if(num % 2) return a;

15 return b;

16 }

17 }

A.8 Loop Fusion

A.8.1 Setup

1 var numbersList = [];

2

3 for (var i = 0; i < 10000; i++){

4 numbersList.push(Math.floor(Math.random() * 10000) + 1);

5 }

A.8 Loop Fusion 67

A.8.2 Before

1 function before(numElements) {

2 var nums = [0 , 0];

3

4 for (i = 0; i < numElements; i++) {

5 if(numbersList[i] % 2)

6 nums[0]++;

7 }

8

9 for (i = 0; i < numElements; i++) {

10 if(numbersList[i] > (numElements / 2))

11 nums[1]++;

12 }

13 }

A.8.3 After

1 function after(numElements) {

2 var nums = [0 , 0];

3

4 for (i = 0; i < numElements; i++) {

5 if(numbersList[i] % 2)

6 nums[0]++;

7 if(numbersList[i] > (numElements / 2))

8 nums[1]++;

9 }

10 }

68 Bentley Rules Test Fixtures

A.9 Exploit Algebraic Identities

A.9.1 Before

1 function beforeFirst() {

2 var num = Math.floor(Math.random() * 20) + 1;

3

4 return(Math.pow(num, 2) > 100);

5 }

6

7 function before() {

8 var a = Math.floor(Math.random() * 2);

9 var b = Math.floor(Math.random() * 2);

10

11 return(!a && !b);

12 }

A.9.2 After

1 function afterFirst() {

2 var num = Math.floor(Math.random() * 20) + 1;

3

4 return(num > 10);

5 }

6

7 function afterSecond() {

8 var a = Math.floor(Math.random() * 2);

9 var b = Math.floor(Math.random() * 2);

10

11 return(!(a || b));

12 }

A.10 Short-Circuit Monotone Functions

A.10.1 Setup

1 var numbersList = [];

2 for(var i = 0; i < 1000000; i++){

3 var num1 = Math.floor(Math.random() * 100000) + 1;

4 var num2 = Math.floor(Math.random() * 100000) + 1;

5 var pair = [num1, num2];

6 numbersList.push(pair);

7 }

A.10 Short-Circuit Monotone Functions 69

A.10.2 Before

1 function before(numElements) {

2 var minIndex = 0;

3 var minSum = numbersList[0][0] + numbersList[0][1];

4

5 for(i = 0; i < numElements; i++) {

6 var thisSum = numbersList[i][0] + numbersList[i][1];

7 if (thisSum < minSum) {

8 minIndex = i;

9 minSum = thisSum;

10 }

11 }

12 }

A.10.3 After

1 function after(numElements) {

2 var minIndex = 0;

3 var minSum = numbersList[0][0] + numbersList[0][1];

4

5 for(i = 0; i < numElements; i++) {

6 if(numbersList[i][0] < minSum) {

7 var thisSum = numbersList[i][0] + numbersList[i][1];

8 if(thisSum < minSum) {

9 minIndex = i;

10 minSum = thisSum;

11 }

12 }

13 }

14 }

70 Bentley Rules Test Fixtures

A.11 Reorder Tests

A.11.1 Before

1 function beforeFirst() {

2 var num = Math.floor(Math.random() * 100);

3

4 if(num <= 15)

5 return 1;

6 else if(num <= 50)

7 return 2;

8 else if (num > 50)

9 return 3;

10 }

11

12 function beforeSecond() {

13 var num = Math.floor(Math.random() * 55);

14

15 if(num == 0)

16 return 1;

17 else if (num <= 2)

18 return 2;

19 else if (num <= 5)

20 return 3;

21 else if (num <= 9)

22 return 4;

23 else if (num <= 14)

24 return 5;

25 else if (num <= 20)

26 return 6;

27 else if (num <= 27)

28 return 7;

29 else if (num <= 35)

30 return 8;

31 else if (num <= 44)

32 return 9;

33 else if (num <= 54)

34 return 10;

35 }

A.12 Precompute Logical Functions 71

A.11.2 After

1 function afterFirst() {

2 var num = Math.floor(Math.random() * 100);

3

4 if(num > 50)

5 return 3;

6 else if(num > 15)

7 return 2;

8 else

9 return 1;

10 }

11 function afterSecond() {

12 var num = Math.floor(Math.random() * 55);

13

14 if(num > 44)

15 return 10;

16 else if (num > 35)

17 return 9;

18 else if (num > 27)

19 return 8;

20 else if (num > 20)

21 return 7;

22 else if (num > 14)

23 return 6;

24 else if (num > 9)

25 return 5;

26 else if (num > 5)

27 return 4;

28 else if (num > 2)

29 return 3;

30 else if (num > 0)

31 return 2;

32 else if (num == 0)

33 return 1;

34 }

A.12 Precompute Logical Functions

A.12.1 Setup

The setup for this rule is not present in this appendix as it is way too large. The before function

returns the fibonacci number for a given index, which is calculated recursively. The after function

simply gets the number from an array, which contains all possible fibonacci numbers.

72 Bentley Rules Test Fixtures

As such, the setup was simply an array which contained every possible fibonacci number, in

order of their index, up until the index 1476, which was the maximum allowed, before the program

started considering the result to be an infinite number.

A.12.2 Before

1 function before(num) {

2 var a;

3 var b;

4 var c;

5 if(num === 0 || num > max_fibonacci)

6 return 0;

7 else if(num <= 2)

8 return 1;

9 else{

10 a = 1;

11 b = 1;

12 for(var i = 3; i <= num; i++){

13 c = a + b;

14 a = b;

15 b = c;

16 }

17 return c;

18 }

19 }

A.12.3 After

1 function after(num) {

2 if(num > max_fibonacci)

3 return 0;

4 return fibonacci_array[num];

5 }

A.13 Control Variable Eliminations 73

A.13 Control Variable Eliminations

A.13.1 Setup

1 var numbersList = [];

2

3 for(var i = 0; i < 1000; i++) {

4 numbersList.push(Math.floor(Math.random() * 1000) + 1);

5 }

6 var numToSearch = Math.floor(Math.random() * 1000) + 1;

A.13.2 Before

1 function before() {

2 var i = 0;

3 var keepGoing = true;

4 while(keepGoing) {

5 if(i >= numbersList.length)

6 keepGoing = false;

7 else if (numbersList[i] == numToSearch)

8 keepGoing = false;

9 else

10 i++;

11 }

12 return i;

13 }

A.13.3 After

1 function after() {

2 var i = 0;

3 numbersList.push(numToSearch);

4 while(numbersList[i] != numToSearch) {

5 i++;

6 }

7 return i;

8 }

74 Bentley Rules Test Fixtures

A.14 Collapse Procedure Hierarchies

A.14.1 Setup

1 var numbersList = [];

2 function generateNewList(numElements) {

3 numbersList = [];

4 for(var i = 0; i < numElements; i++) {

5 numbersList.push(Math.floor(Math.random() * 10000) + 1);

6 }

7 }

A.14.2 Before

1 function beforeFirst(numElements) {

2 generateNewList(numElements);

3 return numbersList.length;

4 }

5 function beforeSecond(numElements, numIterations) {

6 for(var i = 0; i < numIterations; i++) {

7 generateNewList(numElements);

8 }

9 return numbersList.length;

10 }

A.14.3 After

1 function afterFirst(numElements) {

2 numbersList = [];

3 for(var i = 0; i < numElements; i++) {

4 numbersList.push(Math.floor(Math.random() * 10000) + 1);

5 }

6 return numbersList.length;

7 }

8 function afterSecond(numElements, numIterations) {

9 for(var i = 0; i < numIterations; i++) {

10 numbersList = [];

11 for(let i = 0; i < numElements; i++) {

12 numbersList.push(Math.floor(Math.random() * 10000) + 1);

13 }

14 }

15 return numbersList.length;

16 }

A.15 Exploit Common Cases 75

A.15 Exploit Common Cases

A.15.1 Setup

1 var max_fibonacci = 1476;

2 var fibonacci_array = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610,

987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393,

196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465,

14930352, 24157817, 39088169, 63245986, 102334155 165580141, 267914296,

433494437, 701408733, 1134903170, 1836311903, 2971215073, 4807526976,

7778742049, 12586269025, 20365011074, 32951280099, 53316291173, 86267571272,

139583862445, 225851433717, 365435296162, 591286729879, 956722026041,

1548008755920, 2504730781961, 4052739537881, 6557470319842, 10610209857723,

17167680177565, 27777890035288, 44945570212853, 72723460248141,

117669030460994, 190392490709135, 308061521170129, 498454011879264,

806515533049393, 1304969544928657, 2111485077978050, 3416454622906707,

5527939700884757, 8944394323791464, 14472334024676220, 23416728348467684,

37889062373143900, 61305790721611580, 99194853094755490, 160500643816367070,

259695496911122560, 420196140727489660, 679891637638612200,

1100087778366101900, 1779979416004714000, 2880067194370816000,

4660046610375530000, 7540113804746346000, 12200160415121877000,

19740274219868226000, 31940434634990100000, 51680708854858330000,

83621143489848430000, 135301852344706760000, 218922995834555200000,

354224848179262000000];

3

4 function fibonacciSlow(num) {

5 var a;

6 var b;

7 var c;

8 if(num === 0 || num > max_fibonacci)

9 return 0;

10 else if(num <= 2)

11 return 1;

12 else{

13 a = 1;

14 b = 1;

15 for(var i = 3; i <= num; i++){

16 c = a + b;

17 a = b;

18 b = c;

19 }

20 return c;

21 }

22 }

23 function fibonacciFast(num) {

24 return fibonacci_array[num];

25 }

76 Bentley Rules Test Fixtures

A.15.2 Before

1 function before() {

2 let num = Math.floor(Math.random() * 150) + 1;

3 return fibonacciSlow(num);

4 }

A.15.3 After

1 function after () {

2 let num = Math.floor(Math.random() * 150) + 1;

3 if(num <= 100)

4 return fibonacciFast(num);

5 else return fibonacciSlow(num);

6 }

A.16 Compile-Time Initialization

A.16.1 Before

1 function before() {

2 var a = 10;

3 var b = 15;

4 var sum = a + b;

5

6 return sum;

7 }

A.16.2 After

1 function after() {

2 return 25;

3 }

A.17 Eliminate Common Subexpressions 77

A.17 Eliminate Common Subexpressions

A.17.1 Setup

1 var list1 = generateNewList(10);

2 var list2 = generateNewList(10);

3 function generateNewList(numElements) {

4 numbersList = [];

5 for(var i = 1; i <= numElements; i++) {

6 numbersList.push(i);

7 }

8 return numbersList;

9 }

10 function areEqual(list1, list2) {

11 if(list1.length === list2.length) {

12 for(let i = 0; i < list1.length; i++) {

13 if(list1[i] !== list2[i])

14 return false;

15 }

16 } else return false;

17 return true;

18 }

78 Bentley Rules Test Fixtures

A.17.2 Before

1 function beforeFirst() {

2 let string = ’’;

3 if(areEqual(list1, list2)) string += ’The lists are equal...\n’;

4 string += ’How about now?\n’;

5 if(areEqual(list1, list2)) string += ’The lists are still equal...’;

6

7 return string;

8 }

9 function beforeSecond() {

10 let string = ’’;

11 if(areEqual(list1, list2)) string += ’The lists are equal...\n’;

12 string += ’How about now?\n’;

13 if(areEqual(list1, list2)) string += ’The lists are still equal...’;

14 string += ’How about now?\n’;

15 if(areEqual(list1, list2)) string += ’The lists are still equal...’;

16 string += ’How about now?\n’;

17 if(areEqual(list1, list2)) string += ’The lists are still equal...’;

18 string += ’How about now?\n’;

19 if(areEqual(list1, list2)) string += ’The lists are still equal...’;

20 string += ’How about now?\n’;

21 if(areEqual(list1, list2)) string += ’The lists are still equal...’;

22 string += ’How about now?\n’;

23 if(areEqual(list1, list2)) string += ’The lists are still equal...’;

24 string += ’How about now?\n’;

25 if(areEqual(list1, list2)) string += ’The lists are still equal...’;

26 string += ’How about now?\n’;

27 if(areEqual(list1, list2)) string += ’The lists are still equal...’;

28 string += ’How about now?\n’;

29 if(areEqual(list1, list2)) string += ’The lists are still equal...’;

30

31 return string;

32 }

A.17 Eliminate Common Subexpressions 79

A.17.3 After

1 function afterFirst() {

2 let evaluation = areEqual(list1, list2);

3 let string = ’’;

4

5 if(evaluation) string += ’The lists are equal...\n’;

6 string += ’How about now?\n’;

7 if(evaluation) string += ’The lists are still equal...’;

8

9 return string;

10 }

11 function afterSecond() {

12 let evaluation = areEqual(list1, list2);

13 let string = ’’;

14

15 if(evaluation) string += ’The lists are equal...\n’;

16 string += ’How about now?\n’;

17 if(evaluation) string += ’The lists are still equal...’;

18 string += ’How about now?\n’;

19 if(evaluation) string += ’The lists are still equal...’;

20 string += ’How about now?\n’;

21 if(evaluation) string += ’The lists are still equal...’;

22 string += ’How about now?\n’;

23 if(evaluation) string += ’The lists are still equal...’;

24 string += ’How about now?\n’;

25 if(evaluation) string += ’The lists are still equal...’;

26 string += ’How about now?\n’;

27 if(evaluation) string += ’The lists are still equal...’;

28 string += ’How about now?\n’;

29 if(evaluation) string += ’The lists are still equal...’;

30 string += ’How about now?\n’;

31 if(evaluation) string += ’The lists are still equal...’;

32 string += ’How about now?\n’;

33 if(evaluation) string += ’The lists are still equal...’;

34

35 return string;

36 }

80 Bentley Rules Test Fixtures

A.18 Pairing Computation

A.18.1 Setup

1 function ObjectOne() {

2 var num1 = 10;

3 var num2 = 10;

4

5 this.getNum1 = function() {

6 return num1;

7 }

8 this.getNum2 = function() {

9 return num2;

10 }

11 }

12 function ObjectTwo() {

13 var num1 = 10;

14 var num2 = 10;

15

16 this.getNums = function() {

17 return [num1, num2];

18 }

19 }

A.18.2 Before

1 function before() {

2 var obj = new ObjectOne();

3 var num1 = obj.getNum1();

4 var num2 = obj.getNum2();

5 var sum = num1 + num2;

6 return sum;

7 }

A.18.3 After

1 function after() {

2 var obj = new ObjectTwo();

3 var nums = obj.getNums();

4 var sum = nums[0] + nums[1];

5 return sum;

6 }

Appendix B

Data Structures Test Fixtures

This appendix contains the test fixtures for the testing of different data structures to be used on

the memoization transformation, as described in Chapter 5. These test fixture pretend to test

the performance of arrays, maps and objects, by executing insertions and searches on these data

structures.

B.1 Array Test Fixture

1 var memo_array = function (func) {

2 var array = [];

3 return function () {

4 var key = JSON.stringify(arguments);

5 if (key in array) {} else {

6 array[key] = func.apply("null", arguments);;

7 }

8 return array[key];

9 };

10 };

11

12 var fibo_array = memo_array(function(n) {

13 if (n === 0 || n === 1)

14 return n;

15 else

16 return fibo_array(n - 1) + fibo_array(n - 2);

17 });

18

19 fibo_array(1476);

81

82 Data Structures Test Fixtures

B.2 Map Test Fixture

1 var memo_map = function (func) {

2 var map = new Map();

3 return function () {

4 var key = JSON.stringify(arguments);

5 if (map.get(key) == undefined) {

6 map.set(key, func.apply("null", arguments));

7 }

8 return map.get(key);

9 };

10 };

11

12 var fibo_map = memo_map(function(n) {

13 if (n === 0 || n === 1)

14 return n;

15 else

16 return fibo_map(n - 1) + fibo_map(n - 2);

17 });

18

19 fibo_map(1476);

B.3 Object Test Fixture

1 var memo_object = function (func) {

2 var obj = {};

3 return function () {

4 var key = JSON.stringify(arguments);

5 if (key in obj) {} else {

6 obj[key] = func.apply("null", arguments);;

7 }

8 return obj[key];

9 };

10 };

11

12 var fibo_object = memo_object(function(n) {

13 if (n === 0 || n === 1)

14 return n;

15 else

16 return fibo_object(n - 1) + fibo_object(n - 2);

17 });

18

19 fibo_object(1476);

References

Christel Baier and Joost-Pieter Katoen. Principles of model checking. 2008.

Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi. A
survey of symbolic execution techniques. ACM Computing Surveys (CSUR), 51(3):50, 2018.

Thoms Ball. The concept of dynamic analysis. In ACM SIGSOFT Software Engineering Notes,
volume 24, pages 216–234. Springer-Verlag, 1999.

Jon Louis Bentley. Writing Efficient Programs. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1982. ISBN 0-13-970251-2.

David Binkley. Source code analysis: A road map. In 2007 Future of Software Engineering, FOSE
’07, pages 104–119, Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-
2829-5. doi: 10.1109/FOSE.2007.27. URL https://doi.org/10.1109/FOSE.2007.
27.

CERT-UK. Code obfuscation. https://www.ncsc.gov.uk/content/files/
protected_files/guidance_files/Code-obfuscation.pdf, 2014.

Jim Chow, Tal Garfinkel, and Peter M Chen. Decoupling dynamic program analysis from ex-
ecution in virtual environments. In USENIX 2008 Annual Technical Conference on Annual
Technical Conference, pages 1–14, 2008.

Christian Sven Collberg, Clark David Thomborson, and Douglas Wai Kok Low. Obfuscation
techniques for enhancing software security, December 23 2003. US Patent 6,668,325.

Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks. Journal of logic and
computation, 2(4):511–547, 1992.

Robert W Floyd. Assigning meanings to programs. Mathematical aspects of computer science,
19(19-32):1, 1967.

Martin Fowler. Isoptimizationrefactoring. https://martinfowler.com/bliki/
IsOptimizationRefactoring.html, 2004. Accessed: 2018-07-12.

Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactoring: improv-
ing the design of existing code. Addison-Wesley Professional, 1999.

Google. The google closure compiler. https://developers.google.com/closure/
compiler/. Accessed: 2018-07-11.

Jake Gordon. Code incomplete. https://codeincomplete.com/games/.

83

https://doi.org/10.1109/FOSE.2007.27
https://doi.org/10.1109/FOSE.2007.27
https://www.ncsc.gov.uk/content/files/protected_files/guidance_files/Code-obfuscation.pdf
https://www.ncsc.gov.uk/content/files/protected_files/guidance_files/Code-obfuscation.pdf
https://martinfowler.com/bliki/IsOptimizationRefactoring.html
https://martinfowler.com/bliki/IsOptimizationRefactoring.html
https://developers.google.com/closure/compiler/
https://developers.google.com/closure/compiler/
https://codeincomplete.com/games/

84 REFERENCES

Matthias Hauswirth and Trishul M Chilimbi. Low-overhead memory leak detection using adaptive
statistical profiling. In Acm Sigplan Notices, volume 39, pages 156–164. ACM, 2004.

Ariya Hidayat. Esprima. http://esprima.org/.

Jscrambler. Jscrambler. https://docs.jscrambler.com/?_ga=2.127463757.
1333255579.1531439490-705390441.1528977856], note = Accessed: 2018-07-12.

Bhavnesh Kaalra and K Gowthaman. Cross browser testing using automated test tools. Interna-
tional Journal of Advanced Studies in Computers, Science and Engineering, 3(10):7, 2014.

Microsoft. Support for older versions of internet explorer ended. https://www.microsoft.
com/en-us/windowsforbusiness/end-of-ie-support, 2015. Accessed: 2018-08-
18.

Mozilla. Mdn web docs - cache. https://developer.mozilla.org/en-US/docs/Web/
API/Cache, 2018.

PR Newswire. Press release announcing javascript. https://web.archive.org/web/
20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67.
html, 1995. Accessed: 2018-07-12.

Selvakumar Samuel and A. Kovalan. A design level optimization approach for functional
paradigm software designs considering low resource devices development. Indian Journal of
Science and Technology, 9(21), 2016. ISSN 0974 -5645. URL http://www.indjst.org/
index.php/indjst/article/view/95208.

Net Market Share. Browser market share. https://netmarketshare.com/, 2018. Accessed:
2018-08-17.

Alex Shellhammer. The need for mobile speed: How mobile latency impacts publisher revenue.
https://www.doubleclickbygoogle.com/articles/mobile-speed-matters/.
Accessed: 2018-06-25.

Steve Souders. High-performance web sites. Commun. ACM, 51(12):36–41, December 2008.
ISSN 0001-0782. doi: 10.1145/1409360.1409374. URL http://doi.acm.org/10.1145/
1409360.1409374.

Statcounter. Browser market share worldwide. http://gs.statcounter.com/, 2018. Ac-
cessed: 2018-08-17.

IL Stats. Internet live stats. Pobrano z lokalizacji Internet Live Stats: http://internetlivestats. com
(20.02. 2017), 2017.

S. Vinoski. A time for reflection [software reflection]. IEEE Internet Computing, 9(1):86–89, Jan
2005. ISSN 1089-7801. doi: 10.1109/MIC.2005.3.

Tajana Šimunić, Luca Benini, Giovanni De Micheli, and Mat Hans. Source code optimization and
profiling of energy consumption in embedded systems. In Proceedings of the 13th International
Symposium on System Synthesis, ISSS ’00, pages 193–198, Washington, DC, USA, 2000. IEEE
Computer Society. ISBN 1-58113-267-0. doi: 10.1145/501790.501831. URL http://dx.
doi.org/10.1145/501790.501831.

http://esprima.org/
https://docs.jscrambler.com/?_ga=2.127463757.1333255579.1531439490-705390441.1528977856]
https://docs.jscrambler.com/?_ga=2.127463757.1333255579.1531439490-705390441.1528977856]
https://www.microsoft.com/en-us/windowsforbusiness/end-of-ie-support
https://www.microsoft.com/en-us/windowsforbusiness/end-of-ie-support
https://developer.mozilla.org/en-US/docs/Web/API/Cache
https://developer.mozilla.org/en-US/docs/Web/API/Cache
https://web.archive.org/web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67.html
https://web.archive.org/web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67.html
https://web.archive.org/web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67.html
http://www.indjst.org/index.php/indjst/article/view/95208
http://www.indjst.org/index.php/indjst/article/view/95208
https://netmarketshare.com/
https://www.doubleclickbygoogle.com/articles/mobile-speed-matters/
http://doi.acm.org/10.1145/1409360.1409374
http://doi.acm.org/10.1145/1409360.1409374
http://gs.statcounter.com/
http://dx.doi.org/10.1145/501790.501831
http://dx.doi.org/10.1145/501790.501831

REFERENCES 85

W3Techs. Usage of javascript for websites. https://w3techs.com/technologies/
details/cp-javascript/all/all. Accessed: 2018-06-25.

Niklaus Wirth. Algorithms+ Data Structures= Programs Prentice-Hall Series in Automatic Com-
putation.

Ilsun You and Kangbin Yim. Malware obfuscation techniques: A brief survey. In Broadband,
Wireless Computing, Communication and Applications (BWCCA), 2010 International Confer-
ence on, pages 297–300. IEEE, 2010.

https://w3techs.com/technologies/details/cp-javascript/all/all
https://w3techs.com/technologies/details/cp-javascript/all/all

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 A Performance Problem
	1.3 Need for Performance
	1.4 Main Goals
	1.5 Document Outline

	2 Background and State of the Art
	2.1 Source Code Analysis
	2.1.1 Dynamic Analysis
	2.1.2 Static Analysis

	2.2 Optimization of Programs
	2.2.1 Design Level
	2.2.2 Algorithm and Data Structure
	2.2.3 Source Code
	2.2.4 Build
	2.2.5 Compilation
	2.2.6 Assembly
	2.2.7 Run Time

	2.3 Bentley Rules
	2.3.1 Space-for-Time Rules
	2.3.2 Time-for-Space Rules
	2.3.3 Loop Rules
	2.3.4 Logic Rules
	2.3.5 Procedure Design Rules
	2.3.6 Expression Rules

	2.4 Source Code Optimization
	2.5 Code Obfuscation
	2.6 Pure Functions
	2.7 Support Technologies
	2.7.1 Esprima
	2.7.2 Jscrambler
	2.7.3 JSPerf
	2.7.4 Browserstack

	2.8 JavaScript Optimization Tools
	2.8.1 Closure Compiler
	2.8.2 Prepack

	3 A Performance Problem
	3.1 Problem Description
	3.2 Proposal
	3.3 Hypothesis & Research Questions
	3.4 Assumptions
	3.5 Validation

	4 Bentley Rules Study
	4.1 Study of the Bentley Rules
	4.1.1 Space-for-Time Rules
	4.1.2 Time-for-Space Rules
	4.1.3 Loop Rules
	4.1.4 Logic Rules
	4.1.5 Procedure Design Rules
	4.1.6 Expression Rules
	4.1.7 Summary of Decisions

	4.2 Test Fixtures Creation
	4.3 Development of Performance Evaluating Application
	4.4 Browsers Selection & Test Automation
	4.5 Results
	4.6 Conclusions
	4.7 Limitations

	5 Implementation of Code Transformation
	5.1 Choice of the Transformation
	5.2 Memoization Transformation
	5.2.1 Target Definition
	5.2.2 Data Structure Selection and Prototype
	5.2.3 Transformation Development
	5.2.4 Compliance Testing

	5.3 Testing the Transformation
	5.3.1 Project & Browser Selection
	5.3.2 Setup
	5.3.3 Performing the tests

	5.4 Results
	5.5 Conclusions
	5.6 Limitations

	6 Conclusions and Future Work
	6.1 Main Difficulties
	6.2 Main Contributions
	6.3 Conclusions
	6.4 Future Work

	A Bentley Rules Test Fixtures
	A.1 Data Structure Augmentation
	A.1.1 Setup
	A.1.2 Before
	A.1.3 After

	A.2 Store Precomputed Results
	A.2.1 Setup
	A.2.2 Before
	A.2.3 After

	A.3 Lazy Evaluation
	A.3.1 Before
	A.3.2 After

	A.4 Code Motion Out of Loops
	A.4.1 Setup
	A.4.2 Before
	A.4.3 After

	A.5 Combining Tests
	A.5.1 Setup
	A.5.2 Before
	A.5.3 After

	A.6 Loop Unrolling
	A.7 Transfer-Driven Loop Unrolling
	A.7.1 Setup
	A.7.2 Before
	A.7.3 After

	A.8 Loop Fusion
	A.8.1 Setup
	A.8.2 Before
	A.8.3 After

	A.9 Exploit Algebraic Identities
	A.9.1 Before
	A.9.2 After

	A.10 Short-Circuit Monotone Functions
	A.10.1 Setup
	A.10.2 Before
	A.10.3 After

	A.11 Reorder Tests
	A.11.1 Before
	A.11.2 After

	A.12 Precompute Logical Functions
	A.12.1 Setup
	A.12.2 Before
	A.12.3 After

	A.13 Control Variable Eliminations
	A.13.1 Setup
	A.13.2 Before
	A.13.3 After

	A.14 Collapse Procedure Hierarchies
	A.14.1 Setup
	A.14.2 Before
	A.14.3 After

	A.15 Exploit Common Cases
	A.15.1 Setup
	A.15.2 Before
	A.15.3 After

	A.16 Compile-Time Initialization
	A.16.1 Before
	A.16.2 After

	A.17 Eliminate Common Subexpressions
	A.17.1 Setup
	A.17.2 Before
	A.17.3 After

	A.18 Pairing Computation
	A.18.1 Setup
	A.18.2 Before
	A.18.3 After

	B Data Structures Test Fixtures
	B.1 Array Test Fixture
	B.2 Map Test Fixture
	B.3 Object Test Fixture

	References

