Conversão e Execução de Planos de Processo
CEPP

Dissertação de Mestrado em
Engenharia Electrotécnica e de Computadores de

Lino Manuel Baptista Figueiredo

Novembro de 1996
Conversão e Execução de Planos de Processo

CEPP

Lino Manuel Baptista Figueiredo
Licenciado em Engenharia Informática Industrial pelo
Instituto Superior de Engenharia do Instituto Politécnico do Porto

Dissertação submetida para satisfação parcial
dos requisitos do grau de Mestre em
Engenharia Electrotécnica e de Computadores
(Area de Especialização de Automação Industrial)

Dissertação realizada sob a supervisão do
da Professora Doutora Zita Maria Almeida do Vale
do Departamento de Engenharia Electrotécnica e de Computadores
da Faculdade de Engenharia da Universidade do Porto

Porto, Novembro de 1996
Aos meus Pais
e à Ana
RESUMO

A crescente diversificação de mercados e a constante modificação de necessidades provocam um aumento de competitividade que passa a ser o objectivo principal da indústria. A flexibilidade é a chave para o atingir e o progresso tecnológico o meio de o conseguir.

Um dos aspectos fundamentais a considerar será a necessidade de uma resposta rápida em termos de novos produtos o que provoca o encurtamento do seu ciclo de vida. Assim é essencial a diminuição da duração das fases de concepção, especificação e planeamento do processo de fabrico. A automatização destas funções tem sido objecto de vários trabalhos, no entanto não é tarefa fácil, uma vez que a introdução de uma novo produto ou a redefinição de um produto já existente acarreta um conjunto de alterações no plano de fabrico onde se especifica como será fabricado o produto e implica a programação adequada das máquinas por onde o produto vai passar. A existência de um ferramenta que permita fazer a ponte entre a concepção de produto e a execução do seu plano de fabrico gerando inclusivamente os programas NC necessários para as máquinas utilizadas permite a obtenção de planos mais consistentes e optimizados assim como ganhos de tempo significativos.

Nesta dissertação apresenta-se um método para gerar automaticamente um programa em linguagem NC a partir de um desenho de uma peça criado num software de CAD. Este método aplica-se a qualquer tipo de peça com eixo de revolução que possa ser maquinada numa máquina CNC - Torno. O método aqui apresentado envolve três fases: na primeira é feita a interpretação e o tratamento do ficheiro de intercâmbio gerado pelo software de CAD, na segunda é elaborado um plano do processo, e na terceira é gerado um ficheiro contendo o programa em linguagem NC adequado para a execução da peça numa máquina CNC - Torno. O método foi desenvolvido com o objectivo de ser integrado no software de controlo do sistema flexível de fabrico existente no Centro CIM do ISEP.
ABSTRACT

The increasing diversity of markets and the permanent changes of the client needs result in the raise of industrial competitiveness which became the goal of organisations. Flexibility is the key to achieve competitiveness while technological progress the mean to do it.

One of the most important items to consider is the rapid delivery of products to the client, this means to reduce the life cycle of products. Designing, planning and manufacturing have to be reduced in terms of time. Automating these functions have been object of research though it is not an easy task. Redesigning an existing product or designing a new one involves major changes in process plans or even making new ones, and a redefinition of the programming code to the machines involved in the process. The use of an application to make the bridge between design and execution of the resultant process plan, automatically reprogramming the machines, allow to obtain more consistent and optimized plans as well as a significant gain of time.

In this thesis it is presented a method to automatic generate a NC program from the drawing of a part created in a CAD software. The referred method is suitable to any kind of rotational part to be machined in a CNC lathe. It involves three phases. In the first one it is done the interpretation of the interchange file, with information of the part, created in a CAD software. In the second phase it is created the process plan and the third phase corresponds to the generation of NC code to program the lathe where the part is to be machined. This method was developed with the purpose of being integrated in the control software of the Flexible Manufacturing System of ISEP.
Agradecimentos

Em primeiro lugar quero agradecer aos supervisores deste trabalho, à Professora Zita Vale e ao Professor Carlos Ramos pela sua colaboração, disponibilidade e excelente orientação ao longo de todo o trabalho, sem os quais a realização desta dissertação de mestrado nunca teria sido possível.

Um agradecimento muito especial à Ana, a sua colaboração, incentivo e paciência foram preponderantes para a realização deste trabalho.

Aos meus colegas do Centro CIM do ISEP, nomeadamente à Ana, ao João e ao Fernando por todo o apoio e colaboração prestados ao longo da realização do trabalho.

Ao Instituto Superior de Engenharia do Porto pela disponibilização dos recursos e das instalações, em particular do Centro CIM e seu equipamento.

A todos quantos de alguma forma contribuíram para a realização desta dissertação.
ÍNDICE

CAPÍTULO 1 - INTRODUÇÃO

1

CAPÍTULO 2 - SISTEMAS DE PRODUÇÃO E FLEXIBILIDADE

2.1 SISTEMAS DE PRODUÇÃO

6

2.1.1 Tipos de sistemas de produção

2.1.1.1 Produção contínua

2.1.1.2 Produção descontínua ou discreta

6

8

2.2 A IMPORTÂNCIA DA FLEXIBILIDADE

10

2.2.1 Métodos de produção

2.2.1.1 NC - Máquinas de Controlo Numérico

2.2.1.2 Célula de Fabrico

2.2.1.3 Sistema de Fabrico Flexível

2.2.1.4 Linhas de fluxo Batch

2.2.1.5 Linhas de transferência

11

12

12

12

12

12

13

14

2.3 O CONCEITO CIM

14

2.3.1 Áreas funcionais

2.3.1.1 Projecto e Especificação do produto

2.3.1.2 Projecto de ferramentas e equipamento auxiliar

2.3.1.3 Planeamento do processo

2.3.1.4 Planeamento da produção

2.3.1.5 Maquinagem

2.3.1.6 Montagem

2.3.1.7 Manutenção

2.3.1.8 Controlo de Qualidade

2.3.1.9 Inspeção e teste

2.3.1.10 Armazenamento e transporte

15

15

16

16

16

17

18

18

18

19

19

19

19

20

21

21

22

22

22

23

24

2.3.2 Módulos, subsistemas ou Componentes CIM

2.3.2.1 CAD - Computer Aided Design

2.3.2.2 CAPP - (Computer Aided Process Planning)

2.3.2.3 CAM - Computer Aided Manufacturing

2.3.2.4 CAQ - Computer Aided Quality Control

2.3.2.5 CAD/CAM - Base da Integração da Produção

2.3.2.6 PP&C - Production Planning and Control

24

24

24
2.4 FABRICO FLEXIVEL

2.4.1 - Elementos da Producau Automatizada
 2.4.1.1 Mquinas de Controle Numrico - CNC
 2.4.1.2 - Robots e Manipuladores
 2.4.1.3 Autmnatos Programveis - PLC (Programable Logic Controllers)
 2.4.1.4 Armazenamento e Transporte

2.4.2 FMS - Flexible Machining Systems
 2.4.2.1 Nivel de automatizao
 2.4.2.2 Quantidade de maquinas
 2.4.2.3 Configuraao de um FMS - Layout
 2.4.2.4 Plano de processo
 2.4.2.5 Tempo de processamento
 2.4.2.6 Volume de Informao
 2.4.2.7 Tamanho do lote
 2.4.2.8 Impacto do projecto e layout do sistema na sua eficiencia

2.4.3 FAS - Flexible Assembly Systems

CAPITULO 3 - INTEGRACAO CAD/CAM

3.1 CAD/CAM E O CICLO DO PRODUTO

3.2 PROJECTO ASSISTIDO POR COMPUTADOR (CAD)

3.2.1 Projecto convencional versus projecto assistido por computador
 3.2.1.1 Definiio do problema
 3.2.1.2 Modelaio geomtrica
 3.2.1.3 Anlia
 3.2.1.4 Simulaio e correio
 3.2.1.5 Desenhos e base de dados

3.2.2 Interfaces para sistemas CAD/CAM

3.2.3 Tipos de interface
 3.2.3.1 Interfaces de linguagem
 3.2.3.2 Interfaces de programas
 3.2.3.3 Interfaces descriptivos

3.2.4 Descriio de vrios tipos de interfaces
 3.2.4.1 IGES (Initial Graphics Exchange Specifications)
 3.2.4.2 PDDI (Product Definition Data Interface)
 3.2.4.3 PDES (Product Data Exchange Specification)
 3.2.4.4 SET (Standard d'Echange et de Transfert)
 3.2.4.5 VDAFS (Verband Der Automobilindustrie Flchenschnittstelle)
 3.2.4.6 CAD*1 interface
 3.2.4.7 STEP (Standard for External representation of Product data)

3.3 FABRICO ASSISTIDO POR COMPUTADOR (CAM)

3.3.1 Planeamento do fabrico
3.3.2 Controlo do fabrico
3.3.3 Controlo Numerico (NC)
3.3.4 Tipos de controladores numéricos
 3.3.4.1 Controlo Numérico Directo (DNC)
 3.3.4.2 Controlo Numérico Computorizado (CNC)
3.3.5 Integração CAD/NC

3.4 PLANEAMENTO DE PROCESSO ASSISTIDO POR COMPUTADOR

3.4.1 Sistema variante
3.4.2 Sistema generativo
3.4.3 Alguns exemplos de sistemas automáticos de planeamento de processo
 3.4.3.1 TOM
 3.4.3.2 PROPLAN
 3.4.3.3 EXCAP
 3.4.3.4 CUTTECH
 3.4.3.5 CIMS
 3.4.3.6 TPMS (Task and Execution Planning for Manufacturing Systems)
 3.4.3.7 MACHINIST

CAPÍTULO 4 - O CENTRO CIM DO ISEP

4.1 CONSTITUIÇÃO DO CENTRO CIM

4.2 ARQUITETURA DE SOFTWARE

4.2.1 HOST
4.2.2 Gestor de Célula (Cell Manager)
4.2.3 Activadores dos Dispositivos (Device Drivers)
4.2.4 Base de Dados de Interbloqueio (Interlock Database)
4.2.5 Módulo de Comunicações (Communications Module)

4.3 HARDWARE

4.3.1 Robot - Scorbot - ER VII
 4.3.1.1 Manipulador
 4.3.1.2 Base Linear
 4.3.1.3 Sistema de Controlo
 4.3.1.4 Software
4.3.2 Armazém automático ASRS
4.3.3 AGV - Automated Guided Vehicle
4.3.4 Sistema de Visão
4.3.5 Máquinas CNC - Torno e Fresadora
 4.3.5.1 Torno
 4.3.5.2 Fresadora
 4.3.5.3 Componentes
 4.3.5.4 Comunicações
 4.3.5.5 Programação

CAPÍTULO 5 - CONVERSÃO E EXECUÇÃO DE PLANOS DE PROCESSO

5.1 FICHEIROS DE INTERCÂMBIO
 5.1.1 Ficheiro com formato IGES
 5.1.2 Ficheiro com formato DXF

5.2 FUNÇÕES PREPARATORIÁS
 5.2.1 G00 - Posicionamento rápido
 5.2.2 G01 - Interpolação linear
 5.2.3 G02 e G03 - Interpolação circular
 5.2.4 Ciclos de maquinagem
 5.2.4.1 G71 - Ciclo de torneamento
 5.2.4.2 G72 - Ciclo de facejamento
 5.2.4.3 G73 - Ciclo de repetição do contorno
 5.2.4.4 G70 - Ciclo de acabamento
 5.2.4.5 G74 - Ciclo de ranhurar ou furar
 5.2.4.6 G75 - Ciclo de ranhurar ou furar

5.3 ESPECIFICAÇÃO DO ZERO DA PEÇA

5.4 ALGUMAS NOÇÕES SOBRE A ESCOLHA DA FERRAMENTA MAIS ADEQUADA

5.5 MÉTODO DESENVOLVIDO
 5.5.1 Fase 1 - Interpretação e tratamento de ficheiros gerados por software de CAD
 5.5.2 Fase 2 - Planeamento do Processo
 5.5.2.1 Exemplo 1
 5.5.2.1 Exemplo 2
 5.5.3 Fase 3 - Geração de um ficheiro contendo a linguagem NC adequada para a execução da peça

5.6 EXEMPLOS DE APLICAÇÃO DO MÉTODO DESENVOLVIDO
 5.6.1 Exemplo 1
5.6.2 Exemplo 2

5.6.3 Exemplo 3

CAPÍTULO 6 - CONCLUSÕES

BIBLIOGRAFIA

ANEXOS
A manutenção da competitividade deve ser assegurada por uma inovação constante em termos de produtos, serviços e processos de produção. O tempo de vida dos produtos diminuiu, assim como a duração das suas fases de projecto e lançamento. O emprego de computadores, automatas programáveis, Máquinas de Controlo Numérico (CNC) e robots, fez com que em poucos anos se modificasse todo o contexto produtivo. Através da informática tudo passou a ser possível, desde a concepção de novos produtos, passando pela sua fabricação até à confirmação da encomenda e envio da factura ao cliente.

Os Sistemas de Fabrico têm evoluído no sentido de uma crescente automatização e integração de processos, dando origem a um conceito novo, produção integrada por computador ou como é mais conhecido CIM (Computer Integrated Manufacturing). No entanto ele não abrange só os aspectos relacionados com as actividades de projecto e fabrico do produto, mas também todas as questões de marketing, vendas, finanças, etc.

O processo de modernização é lento e tão abrangente quanto possível, assim implica acções de robotização, utilização de células flexíveis, recurso a sistemas informatizados de planeamento e controlo da produção, sistemas de gestão da produção assistida por computador, CAD/CAM (projecto e fabrico assistido por computador). Por fim, a fábrica do futuro, envolvendo o conceito CIM, pretende possibilitar a realização simultânea da automatização das tarefas e da gestão centralizada através de sistemas informáticos.

A possibilidade de utilizar as novas soluções tecnológicas torna-se um factor de êxito essencial. É desse modo, normal o aparecimento de novos conceitos, como Reengenharia, Fabrico Flexível, Fabrico Ágil, Fabrico “Suportado” (Lean Manufacturing), Fabrico
Inteligente, Engenharia Concorrente, “Projecto para Fabrico” (Design for Manufacturing), etc.

A introdução destas novas soluções proporciona o aumento dos lucros e da produtividade ao mesmo tempo que assegura à empresa a obtenção de posições estratégicas essenciais à sua sobrevivência. Como novos objectivos pode-se citar:

- regularidade na qualidade, obtida pelo controlo de processos,
- aumento de flexibilidade em termos de prazos de fabrico, prazos de resposta a mudanças frequentes, prazos de concepção de novos produtos,
- capacidade para enfrentar as proaturas específicas dos clientes.

A satisfação do cliente passou a ser um dos objectivos principais que deve ser garantido para a sobrevivência da empresa num mercado tão competitivo.

Um dos aspectos fundamentais dos Sistemas de Fabrico actuais é a necessidade de uma resposta rápida em termos de novos produtos face às flutuações do mercado. A diminuição do prazo de introdução de novos produtos depende essencialmente do tempo de concepção, especificação e planeamento de processo de fabrico, sendo de realçar a ponte entre as fases de projecto e fabrico. O objectivo desta Tese de Mestrado é o desenvolvimento de um método de Conversão e Execução de Planos de Processo, ou seja, recorrendo a ferramentas de projecto assistido por computador (CAD) e conhecendo restrições associadas aos processos de fabrico iremos gerar e executar automaticamente um programa que fabrique numa máquina CNC uma peça especificada geometricamente num desenho de CAD.

No capítulo 2 faz-se uma introdução aos Sistemas de Produção, uma abordagem genérica ao conceito CIM, referindo os vários componentes e a sua importância na produção integrada e para terminar uma referência aos Sistemas Flexíveis de Maquinação e aos Sistemas Flexíveis de Montagem.

No capítulo 3 referem-se alguns aspectos a considerar na integração CAD/CAM, nomeadamente os interfaces CAD/CAM, a integração CAD/NC e o Planeamento de Processo.

No capítulo 4 dá-se uma panorâmica geral do Centro CIM do ISEP e do Sistema de fabrico flexível (FMS) af existente, referindo os seus componentes a nível de software e hardware, uma vez que o trabalho desenvolvido nesta Tese de Mestrado foi efectuado sobre uma das máquinas CNC do FMS, de forma a estabelecer a integração entre o projecto de
peças e a sua maquinão directa, sem se recorrer à fase intermédia de programação das máquinas e especificação das ferramentas a utilizar como até aqui tem sido feito.

No capítulo 5 apresenta-se o método de conversão e execução de planos de processo desenvolvido, referindo as conceitos associados e expondo alguns casos exemplificativos que permitam ao leitor uma melhor compreensão do método. A máquina sobre a qual o método foi testado é um torno.

No capítulo 6 tiram-se conclusões sobre o método desenvolvido e apresentado e a sua aplicação, salientando-se ainda algumas perspectivas de desenvolvimento futuro do trabalho.
CAPÍTULO 2

Sistemas de Produção e Flexibilidade

Nos países industrializados, os Sistemas de Fabrico tornaram-se o principal factor para o desenvolvimento e prosperidade. Contudo é cada vez mais difícil satisfazer as necessidades do cliente e manter a posição num mercado tão adverso e competitivo. Os meios convencionais de automatização já não conseguem suportar este desafio, mas o avanço tecnológico a nível de hardware e software permitiu a existência de ferramentas que melhoram o desempenho dos sistemas de produção, providenciando uma maior rapidez no projecto e desenvolvimento de novos produtos, bem como na melhoria no planeamento de processo e principalmente um aumento de flexibilidade.

2.1 Sistemas de Produção

Um Sistema de Produção fixo é constituído por um conjunto de recursos que efectuam um ou mais Processos de Transformação. Estes operating sobre a "matéria prima" de entrada originam como saída um conjunto de produtos [Riggs-87]. Se o Sistema de Produção for reconfigurável os recursos também poderão ser tomados como entradas do Sistema.

![Diagrama de Produção](image-url)

Figura 2.1 Sistema de produção visto como um processo de transformação
O sistema encontra-se permanentemente em contacto com o meio ambiente envolvente com o qual realiza operações de troca nas quais estão presentes três tipos de fluxos, que a maior parte das vezes se confundem: fluxo de materiais, fluxo de informação e fluxo financeiro.

As entradas variam conforme o tipo de Sistema e função das saídas, assim em sistemas cujas saídas sejam produtos as entradas podem ser materiais, equipamento, tecnologia, informação, trabalho e tempo. Em sistemas cujas saídas sejam serviços, a entrada é essencialmente trabalho.

O processo de transformação global consiste num conjunto de operações, onde cada operação é um passo elementar do processo global de produzir um produto ou um serviço e representa um processo individual.

Neste trabalho serão abordados só os sistemas produtivos, assim pode-se dizer que a fábrica só pode ser compreendida como um sistema complexo com muitas actividades e componentes. Não faz sentido considerar apenas uma actividade ou um componente isoladamente, na realidade existe uma forte interdependência entre todas as funções da produção e os fluxos de materiais e de informação que a ela digam respeito, permitindo assim o controlo do processo de transformação e o seu desempenho.

2.1.1 Tipos de sistemas de produção

Cada sistema produtivo é único pela sua organização e especificidade de produtos que fabrica. Contudo, é possível estabelecer uma classificação dos sistemas em função dos seguintes critérios [Almeida-95]:

- quantidades fabricadas e repetitividade,
- relação com o cliente.

No entanto os dois critérios referidos são normalmente conjugados para a classificação de um determinado sistema de produção. São basicamente quatro os tipos de Sistemas de Produção produção contínua em linha, flow shop, batch e job shop, [Groover e Zimmers-84], estes podem no entanto ser agrupados em duas categorias função da organização dos fluxos de produção, são elas a produção contínua e a produção descontínua. Esta classificação é fundamental porque condiciona a escolha do tipo de layout e dos meios de automatização a implementar para um sistema particular.
2.1.1.1 Produção contínua

Considera-se uma produção contínua aquela que trata grandes quantidades de um produto ou famílias de produtos. Pode-se ainda distinguir dois tipos: produção contínua em linha e flow shop.

2.1.1.1.1 Produção contínua em linha

Representa a produção em massa de um só produto ou de um reduzido conjunto de produtos, por exemplo, as refinarias na indústria petrolífera, a indústria cerâmica e a indústria alimentar. São sistemas que utilizam um ou mais materiais de base, que passam por várias etapas gerando um ou mais produtos.

A implementação é efectuada em linha de produção o que torna o fluxo de produtos linear. As características deste sistema produtivo são um grande volume de produção, pouca variedade de materiais, reduzida incorporação de mão-de-obra, apenas utilizada na monitorização e manutenção do sistema. O principal objectivo é a obtenção de baixos custos de produção, embora presente pouca ou nenhuma flexibilidade.

Na figura 2.2, pode-se observar um sistema de produção contínua, com um layout em linha orientado ao produto.

![Figura 2.2 - Produção em linha](image)

2.1.1.2 Flow shop

Representa a produção em massa dedicada a grandes quantidades de uma pequena variedade de produtos, por exemplo a indústria automóvel. O fundo é uma produção discreta (peças individuais) baseada na filosofia da produção contínua.

Devido à necessidade de grandes volumes de produção o processamento é totalmente adaptado ao produto sendo acompanhado por uma intensa automatização dos processos de produção. Os processos de fabrico são arranjados fisicamente na sequência requerida, dando origem às chamadas células de fabrico. Consegue-se desta forma uma grande
normalização com um nível de flexibilidade muito reduzido, sendo mesmo nulo em alguns casos.

Neste tipo de sistema produtivo o fluxo de produtos é sempre o mesmo, conseguindo-se desta forma um mais baixo custo e diminuição dos prazos de entrega. Qualquer alteração do fluxo é demorada e implica elevados custos.

Considere-se o caso da figura 2.3, onde se pode observar um sistema de produção do tipo *flow shop*, constituído por duas células de fabrico, cada uma das quais adaptada para o fabrico de um produto específico.

![Diagrama de um sistema de produção tipo *flow shop*]

Figura 2.3 - Flow shop com células de fabrico

2.1.1.2 Produção descontínua ou discreta

Caracteriza-se por pequenas quantidade de produtos, podendo haver uma grande ou pequena variedade de produtos. Pode-se fazer uma distinção entre dois tipos de produção descontínua: produção *batch* e *job shop*.

2.1.1.2.1 Produção *Batch*

Representa a produção por lotes de uma pequena variedade de produto, cuja produção se repete periodicamente, por exemplo a indústria têxtil. Os produtos são normalmente produzidos para stock, sendo a taxa de produção superior à procura.
Neste sistema de produção a mão-de-obra e as máquinas são especializadas para um pequeno número de operações. O layout é efectuado em linha da fabrico e montagem sendo adaptadas para cada lote do produto em processamento.

Este tipo de sistema de produção permite uma elevada taxa de produção para um determinado produto e consequente minimização dos custos de preparação das máquinas. A flexibilidade não é muito elevada, no entanto é superior à dos sistemas referidos anteriormente.

2.1.1.2.2 Job shop

Representa a produção de pequenas quantidades de uma grande gama de produtos complexos, por exemplo a construção de protótipos, aviões

A implementação é efectuada com uma organização funcional permitindo o reagrupamento do equipamento em função do processo tecnológico a executar. O fluxo de produtos é função do encausamento dos processos a realizar.

Neste tipo de sistema de produção o layout e o equipamento estão vocacionados para realizar um elevado número de operações consoante as necessidades, o que lhes confere uma grande flexibilidade.

Considere-se por exemplo a figura 2.4, onde se pode observar um sistema de produção com um layout do tipo funcional, com seis centros de trabalho. Os produtos fluem de um centro para outro conforme a sua rota de processamento.

Figura 2.4 - centros de trabalho para job shop e batch
A figura 2.5 pretende mostrar a relação entre quantidade e variedade de produtos em cada um dos tipos de Sistema de Produção referidos.

![Diagrama de tipos de sistemas de produção](image)

Figura 2.5 - Tipos de sistemas de produção

2.2 A importância da flexibilidade

Atualmente e cada vez mais os sistemas de produção têm que ser flexíveis, e por isso devem ser reprogramáveis, mas qualquer aumento de flexibilidade acarreta um aumento dos custos de instalação, assim é necessário providenciar um processo de produção que seja altamente eficiente e fiável com uma correcta manutenção do fluxo de informação. A informação é um dos recursos mais importantes cujo valor real é, a maior parte das vezes difícil de estimar. A recolha, o processamento e a avaliação de informação constituem a tarefa chave em muitos novos conceitos tais como prototipagem rápida, engenharia simultânea, projecto para fabrico e montagem e modularidade, por isso deve ser um foco de especial atenção quando se fala em flexibilidade.

Nos últimos anos o aumento da competitividade forçou muitas empresas a modificarem a sua estratégia de produção de forma a acompanham a evolução do mercado, adoptando uma de duas posturas possíveis:

- aproximar o mais possível os produtos das necessidades do cliente - cumprimento de prazos e requisitos de qualidade e custo,

- fabricar os produtos com o mínimo de esforços de toda a ordem - melhorar a produtividade, diminuindo os custos.
A primeira solução implica flexibilidade, mas esta flexibilidade tem restrições, por exemplo o equipamento só pode ser reconfigurado para fabricar outros produtos similares aquele para o qual foi concebido. A necessidade de um aumento de flexibilidade implica grandes modificações não só a nível de equipamento como também a nível de layout do sistema. O processo torna-se mais lento e acarreta um aumento dos custos, por isso tem que existir um coeficiente de relação entre os custos e os lucros obtidos com a reconfiguração do sistema de forma a concluir-se sobre os benefícios do aumento de flexibilidade.

O equipamento adequado para o processo de fabrico de um determinado produto deve ser criteriosamente selecionado e adaptado aos requisitos do produto em questão. Em muitas situações é possível utilizar equipamento normalizado (standard) a configurá-lo de acordo com o sistema de produção onde vai ser aplicado, noutros casos o equipamento tem que ser feito à medida para o fabrico de um determinado produto. A selecção do equipamento a utilizar depende do tipo de Sistema e do seu método de produção.

2.2.1 Métodos de produção

Os Sistema de Produção actuais baseiam-se em cinco métodos ou princípios de produção [Rembold et al. - 94] como se pode observar na figura 2.6. Nesta figura faz-se uma relação entre a taxa de produção anual e a quantidade de produtos diferentes que podem ser fabricados utilizando os vários métodos. Os valores representados são aproximados, uma vez que dependem da taxa de produção, do tamanho do lote, da complexidade do produto, etc. Por observação da figura pode-se ver que a flexibilidade aumenta da esquerda para a direita.

![Figura 2.6 - Métodos de produção (Rembold - 94)](image-url)
2.2.1.1 NC - Máquinas de Controlo Numérico

Estas máquinas executam as operações típicas dos Sistemas *job shop*. A flexibilidade destas máquinas de ferramentas é muito elevada. A troca de ferramentas é um processo fácil e rápido. É possível a troca de programa no controlador de forma a adaptar o processo ao produto a fabricar. O custo de instalação é elevado por isso estas máquinas devem ser aplicadas quando se prevê obter um bom retorno.

2.2.1.2 Célula de Fabrico

Uma célula pode ter várias máquina NC ou uma máquina com várias funções, de forma a permitir a execução de diferentes operações sobre a mesma peça. O manuseamento da peça pode ser feito por um dispositivo específico ou por um robot. A programação deste sistema é similar à programação das máquinas NC, só é necessário incluir o sistema de manuseamento da peça. Com este tipo de sistema consegue-se obter uma boa taxa de produção com o custo correspondente a um baixo nível de flexibilização.

2.2.1.3 Sistema de Fabrico Flexível

É constituído por um conjunto de máquina NC interligadas através de um sistema de transporte. Utiliza-se o princípio das linhas de produção, onde cada máquina pode ter uma ou mais funções. A cada peça está associada uma rota de processamento específica. Na programação deste sistema há que ter em atenção o sistema de transporte e o percurso das peças. Taxas de produção elevadas podem ser obtidas com um custo relativamente baixo.

2.2.1.4 Linhas de fluxo *Batch*

São normalmente utilizadas em conjunto com o Sistema Flexível de Fabrico. A sua função é agrupar as peças em lotes de forma a minimizar os tempos de activação e mudança de ferramentas.

2.2.1.5 Linhas de transferência

Assenta no mais antigo princípio de produção em massa. Os centros de trabalho são totalmente dedicados e qualquer mudança de operações só ocorre quando existe alguma modificação no próprio produto. Consegue-se obter uma elevada taxa de produção com o mínimo de custos.
2.2.2 Evolução para a Fábrica Automatizada

No passado o objectivo principal era obter a máxima taxa de utilização do equipamento instalado e todos os esforços eram no sentido de melhorar o processo físico de fabrico [Neunheuser-84], assim alguns bons resultados foram atingidos, nomeadamente com a introdução da tecnologia NC, que entre outros, permitiu um aumento de qualidade e rapidez no fabrico de peças.

Actualmente os métodos convencionais de fabrico mudaram consideravelmente e a evolução dos Sistema de Fabrício é em direcção a uma crescente flexibilização de forma a obterem uma rápida capacidade de resposta às flutuações do mercado, com o mínimo de custos possível. Por isso convém reduzir o mais possível qualquer causa de perdas. A evolução tecnológica tem sido orientada no sentido de dotar os Sistemas de Fabrico com a flexibilidade que se referiu para que os objectivos possam ser atingidos.

A figura 2.7 de [Fukushi et al. - 85] pretende ilustrar a evolução tecnológica que tem acompanhado os Sistemas de Fabrico desde 1950.

Por observação da figura pode-se ver que os Sistemas Flexíveis de Fabrico constituem-se no patamar imediatamente anterior ao que se denomina CIM (Computer Integrated Manufacturing) e combinam máquinas NC, robots, sistemas automáticos de controlo, armazenamento e transporte etc.

Figura 2.7 - Evolução tecnológica [Fukushi - 85]
A concepção (projecto) com auxílio do computador corresponde ao CAD (Computer Aided Design) que automatiza e optimiza as concepções dos projectistas.

Feito o projecto, computacionalmente os dados são fornecidos ao CAE (Computer Aided Engineering) para verificação da exequibilidade técnica e económica do projecto concebido e simulado.

Os dados são enviados ao CAM (Computer Aided Manufacturing) que envia os sinais para as máquinas ferramenta controladas por computador, aos robots, AGV's, sistemas automáticos de armazenamento, etc. para fabrico do produto.

O processo de consumo de matérias primas e ocupação de centros de trabalho é acompanhado em tempo real por sistemas do tipo MRP II (Manufacturing Resources Planning).

A actualização da Base de Dados do sistema é simultânea, integrando em tempo real os diversos departamentos (finanças, marketing, compras, etc).

2.2.2.1 Requisitos de um Sistema Flexível de Fabrico

São três os principais requisitos de um Sistema Flexível de Fabrico, produtividade, qualidade e flexibilidade. [Hirschberg - 89].

Os factores que permitem satisfazer cada um destes requisitos são:

- **Produtividade** - elevada disponibilidade, elevada taxa de utilização do equipamento, nível baixo de inventário e tempos de fabrico curtos,
- **Qualidade** - produção isenta de erros, fabrico com qualidade uniforme e reconhecimento e correcção automática de erros,
- **Flexibilidade** - ciclo de vida do produto curto, capacidade de resposta rápida às modificações do mercado e lotes com tamanhos pequenos.

2.3 O Conceito CIM

A produção integrada por computador - CIM, é um conceito que refere a completa automatização da fábrica, na qual todos os processos e actividades são controlados por computador, existindo em permanente circulação um grande fluxo de informação
proveniente de todos os níveis, sendo o seu processamento efectuado de uma forma integrada, dado que terá que haver uma total de integração das bases de dados dos vários níveis, de maneira a evitar a redundância de informação e a providenciar a coerência dos dados. Só assim se pode considerar a produção integrada.

Um Sistema de Produção corresponde a um grande conjunto de funções que interagem entre si, tornando possível a articulação de todo o sistema. Estas funções dependem do tipo de Sistema de Produção em questão, do método de produção utilizado e do tipo de produto.

Como se pode observar em [Kusiak-90], as áreas funcionais integradas num sistema CIM são as seguintes: projecto e especificação do produto, projecto de ferramentas e meios auxiliares, planeamento do processo, programação de máquinas NC, sistemas de manuseamento de materiais, planeamento da produção, maquinção de peças, montagem, manutenção, controlo de qualidade, inspecção e teste, armazenamento.

2.3.1 Áreas funcionais

Para que se possa compreender a compartimentação do sistema global nos seus vários módulos constituintes e a respectiva integração faz-se a seguir uma descrição sumária de cada uma das áreas funcionais referidas no ponto 2.3.

2.3.1.1 Projecto e Especificação do produto

Um produto é normalmente constituído por uma conjunto de componentes. O projecto de produto consiste na determinação da forma, dimensões e tolerâncias de cada um dos seus componentes, ou seja na criação dos seus projectos individuais. A criação do projecto é uma tarefa complexa que requer a intuição e a criatividade do engenheiro de projecto, este deve ter um profundo conhecimento dos processos de fabrico e ferramentas de forma a certificar-se que cada componente pode ser executado eficientemente de acordo com as especificações. O processo de criação de um projecto deve ser dividido nas seguintes fases: projecto preliminar, refinamento, análise e implementação [Dixon e Simmons- 83].
2.3.1.2 Projecto de ferramentas e equipamento auxiliar

Com base na informação gerada a partir do projecto de cada componente é possível projectar as ferramentas necessárias para a execução do componente em questão. Um sistema de CAD permite obter uma redução do tempo necessário para o projecto de ferramentas para cerca de 12 a 25% do tempo gasto quando se utiliza o sistema tradicional, [Preston, Crawford, e Cotichia - 84]. A representação geométrica do componente disponível num sistema de CAD é muito útil, uma vez que permite a rápida obtenção das suas características geométricas, requisitos essenciais para o desenvolvimento das ferramentas.

2.3.1.2 Planeamento do processo

Consiste na elaboração do plano que define a rota, as operações, as máquinas e as ferramentas necessárias para a execução do produto, [Chang e Wysk - 85], ou seja, a sua gama operatória. Com base nas especificações do projecto, o responsável pelo planeamento do processo elabora o plano que minimiza os custos de produção e o tempo de fabrico, e maximize as taxas de produção e de utilização das máquinas. É uma tarefa abrangente que requer um bom conhecimento dos processos de produção, das capacidades das máquinas e do produto. Muitas tentativas têm sido feitas no sentido de automatizar esta tarefa, é um processo que continua ainda em desenvolvimento.

2.3.1.3 Programação

Existem dois tipos básicos de programação que podem ser considerados:
- programação de máquinas NC
- programação de sistemas de manuseamento e transporte de material

A programação de máquinas NC consta da elaboração de uma programa com as instruções exactas para a maquinación de uma determinada peça. Estas instruções incluem a sequência de operações, as ferramentas adequadas, a velocidade de corte e a sequência de troca de ferramentas.

Os sistemas CNC (Controlo Numérico Computorizado) constituem um dos primeiros passos tecnológicos no sentido da evolução da produção. Têm uma unidade central de processamento que supervisiona o controlo lógico, o processamento dos dados geométricos e a execução dos programas NC, são sistemas controlados por software e podem ser
integrados com sistemas DNC (Controlo Numérico Directo), [Rembold, Blume e Dilmann - 85]. Um sistema DNC escalona e supervisiona várias máquinas NC directamente com a ajuda do computador.

A programação de sistemas de transporte e manuseamento de material permite fazer a definição do caminho seguido pelo produto ao longo de todo o seu processo de fabrico, os elementos responsáveis pelo seu movimento podem ser AGVs (Automated Guided Vehicles), manipuladores robóticos, passadeiras e tapetes rolantes.

2.3.1.4 Planeamento da produção

O planeamento da produção envolve o estabelecimento de níveis de produção ao longo de um determinado período de tempo, [Groover e Zimmers - 84]. Podem-se definir duas funções básicas:

- planeamento de recursos (materiais e capacidades) - MRPII (Manufacturing Resources Planning) constituído por MRP (Material Requirements Planning) e CRP (Capacity Requirements Planning)
- escalonamento e sequenciamento

"O MRPII é um sistema onde o MPS (Master Production Scheduling), o MRP, o CRP e outras funções associadas estão integradas com o plano estratégico da empresa", [Issa e Czajkiewicz - 87]. Por este motivo é necessário processar grandes volumes de informação.

A função do MRP é determinar quais os componentes e materiais que é necessário aprovisionar ou fabricar, em que quantidade e para que data, em função da informação recebida do MPS que por sua vez estabeleceu um plano de fabrico a médio/longo prazo a partir dos dados do plano industrial e comercial e dos recursos disponíveis. A função do CRP é assegurar que o MPS é compatível com os recursos disponíveis. A partir da informação recebida do MRP determina as cargas resultantes para cada centro de trabalho face à atribuição de recursos permitindo o ajuste de cargas.

A função da actividade de escalonamento é garantir que "as tarefas adequadas são executadas no momento exacto e sobre as peças certas", [Meredith-92], permitindo que se obtenha uma utilização eficiente dos recursos, uma resposta rápida aos pedidos efectuados ao sistema e se cumpra o Plano Director de Produção.
A actividade de escalonamento não é mais do que a afectação específica e detalhada das tarefas aos centros de trabalho e aos instantes de tempo. Assim pode-se considerar dividida em duas fases:

- Atribuição das tarefas aos recursos do sistema (por exemplo máquinas, robots, AGV’s, etc).
- Sequenciamento das tarefas.

“Os elementos vitais dos modelos de escalonamento são os recursos e as tarefas”, [Baker-74]. A utilização de métodos formais para o sequenciamento depende do tipo e dimensão do sistema produtivo, podendo ser mais ou menos detalhada.

2.3.1.5 Maquinção

Todas as operações de remoção de material se designam por actividades de maquinação. Exemplos deste tipo de tarefas podem ser tornear, furar, facejar e fresar. A introdução de máquinas NC no processo de fabrico conduziu à automatização destas tarefas, assim a velocidade da ferramenta e a velocidade de rotação da peça são parâmetros calculados automaticamente sendo a informação resultante transmitida ao controlador que por sua vez fornece as instruções necessárias para a execução da peça à máquina.

2.3.1.6 Montagem

Após a maquinação de cada um dos componentes do produto é necessário proceder à sua montagem. Para que esta tarefa seja cumprida eficientemente a maquinação deve ter ocorrido respeitando as especificações e tolerâncias definidas. Da mesma forma é importante o projecto do produto, que deve ter em consideração a simetria da forma de cada componente e do produto final de maneira a facilitar a tarefa de montagem. Actualmente, e cada vez com mais força são utilizados robots na execução da tarefa de montagem. Através da utilização de códigos de barras para distinguir cada componente, scanners e sistemas de visão, os robots são instruídos sobre a sequência de montagem.

2.3.1.7 Manutenção

Envolve a prevenção, diagnóstico e correcção de possíveis falhas que possam ocorrer em qualquer um dos componentes do sistema de produção. Nos sistemas tradicionais esta função é executada por técnicos da área de engenharia mecânica, num sistema CAM é feita por técnicos das áreas de engenharia electrónica, de informática e mecânica. A tendência futura é de que esta tarefa seja executada automaticamente por Sistemas Inteligentes.
2.3.1.8 Controlo de Qualidade

O objectivo da função Controlo da Qualidade é o fabrico de produtos em conformidade com os requisitos exigidos. Para tal esta função deve ser aplicada logo na fase de projecto e continuar para as fases seguintes (planeamento de processo, maquinção e montagem). Mas o ideal é começar com o projecto do sistema. Relacionado com o ciclo de vida do produto, durante a fase de projecto do produto, podem-se desenvolver protótipos e determinar os materiais e métodos de fabrico mais adequados. As tarefas de Controlo de Qualidade realizadas durante as fases de planeamento de produto, projecto, planeamento de processo e planeamento da produção são designadas por controlo de qualidade off-line, sendo designada por controlo de qualidade on-line as tarefas de controlo de qualidade realizadas durante as fases de fabrico.

2.3.1.9 Inspeção e teste

A inspeção de componentes e produtos é feita com o objectivo de determinar possíveis defeitos resultantes das operações de fabrico. A informação obtida é importante para que os erros existentes em qualquer das fases da fabrico possam ser eliminados. Desta forma propicia-se um melhor ambiente para a obtenção de uma maior qualidade. O nível de automatização de sistemas deste tipo está ainda em franca expansão.

2.3.1.10 Armazenamento e transporte

Encontram-se neste grupo os elementos integradores do processo síncrono. Em ambos os casos existem elementos de automatização que permitem e efectivam as suas funções, permitindo assim um controlo da disposição de componentes e produtos, bem como o seu transporte aos pontos necessários.

Os armazéns automáticos (AS/RS) servem para armazenar materiais e produtos e facilitar o seu acesso automático. Geralmente incorporam um microcomputador, que é encarregue de conhecer a localização e disponibilidade de componentes das células que formam o armazém, este controla um transportador que se encarrega de transportar os produtos entre os pontos onde estão a ser necessários e as células de armazenamento, optimizando factores como: tempos de acesso, utilização de intervalos de tempo e agrupamento de produtos.

Os AGV's são veículos capazes de transportar qualquer tipo de carga (podendo atingir até as três toneladas). Baseiam o seu funcionamento no seguimento de trajetórias, utilizando um computador de controlo, e no estabelecimento de redes (sob terra) que
servem de guia para o seu deslocamento, onde estão marcados os caminhos e os pontos de acesso conflituoso assim como os pontos de carga e descarga.

As passadeiras e tapetes rolantes são normalmente utilizados no transporte de peças sujeitas a operações em série ao longo de uma linha de fábrico.

Os manipuladores robóticos permitem um transporte localizado entre entidades próximas. Pois estes são assentes num dispositivo de deslocamento linear (por exemplo, carril) para aumentar a sua zona da actuação.

2.3.2 Módulos, subsistemas ou Componentes CIM

O princípio de integração de dados utilizado com o conceito CIM pressupõe uma interdependência organizacional e técnica. Assim, divide-se o processo de produção global segundo um critério técnico sendo a integração dos módulos resultantes realizada sob o ponto de vista organizacional, recorrendo à utilização de um sistema de informação coerente. Pode então dizer-se que o Sistema está "compartimentado" em vários módulos interdependentes, os quais se poderão designar por "componentes CIM" [Kusiak and Heragu - 88], como se pode observar na figura 2.8.

![Figura 2.8 - Componentes CIM](attachment:figura2.8.png)

Os módulos ou subsistemas representados na figura são explicados a seguir.
2.3.2.1 CAD - Computer Aided Design

O primeiro passo ao nível do fabrico, num sistema produtivo é a definição e especificação do produto a fabricar. A função de um sistema de CAD é:

- definir uma estratégia de concepção,
- especificar o produto e definir quais os seus requisitos,
- formalizar a concepção, através de elaboração da documentação necessária,
- proceder à tradução das especificações do produto em informação para o fabrico,

Um sistema deste tipo permite ainda além da concepção do produto, a concepção das ferramentas adequadas para a sua execução.

A implementação de sistemas CAD provoca um significativo melhoramento no que respeita à eficiência do projecto e especificação do produto tendo como resultado:

- diminuição dos custos de especificação e desenvolvimento,
- redução do tempo que decorre desde o início da concepção até ao início da produção,
- aumento da produtividade,
- maior precisão e qualidade das especificações.

2.3.2.2 CAPP - (Computer Aided Process Planning)

Na análise do produto e especificação do processo são pretendidas as funções de:

- avaliar o resultado da concepção,
- facilitar o processo de conversão da informação das especificações para o fabrico,
- determinar a sequência de processos a efectuar para o fabrico de produto, procedendo desta forma à elaboração de um plano de fabrico.

Existem dois tipos de abordagens possíveis para a geração automática do plano de processo, sistemas variantes e sistemas generativos, que serão detalhados no Capítulo 3.

É uma tarefa complexa e por isso bastante difícil de automatizar, no entanto alguns passos têm sido dados nesse sentido, assim pode-se referir como exemplos de sistemas automáticos de geração de plano do processo os seguintes CPP [Dunn e Mann - 78],
MIPLAN [Schaffer - 80], GENPLAN [Tulkoff - 81], MACHINIST [Hayes - 95] e TMPS [Rocha e Ramos - 95]. Alguns destes sistemas serão detalhados no Capítulo 3.

2.3.2.3 CAM - Computer Aided Manufacturing

A meta da produção automatizada é reduzir ao mínimo a intervenção humana, minimizando assim o tempo de produção. Consequentemente a aplicação do que se pode fazer actualmente conduz à junção de várias máquinas, diferentes ou não, para se proceder à realização de diversas operações sobre o mesmo produto, sem a intervenção manual e com o mínimo tempo possível de mudança de máquina conduzindo ao fabrício flexível.

A principal função deste módulo é o controlo automático das actividades de fabrício, incluindo o controlo directo do equipamento, a gestão dos materiais em curso de fabrício, das ferramentas e a própria manutenção.

2.3.2.4 CAQ - Computer Aided Quality Control

Os assuntos relacionados com o controlo de qualidade estão sempre presentes no processo produtivo, desde a verificação das matérias primas até à garantia de qualidade do produto final.

A utilização do computador pode ser efectuada a dois níveis: o controlo directo do estado das máquinas e ferramentas e o controlo da qualidade das peças produzidas durante cada processo. Desta forma os erros podem ser detectados na fonte e imediatamente corrigidos, havendo economia de tempo e eliminação de desperdícios, o que implica uma enorme diminuição dos custos.

A automatização do processo de fabrício exige a integração de elementos de controlo de qualidade que acrescentem uma nova função aos sistemas tradicionais: a realimentação automática dos parâmetros observados de forma a efectuar as correções oportunas no processo desenvolvido por cada célula.

2.3.2.5 CAD/CAM - Base da Integração da Produção

Cada subsistema desenvolve-se e cresce autonomamente, elaborando uma informação em grande parte comum mas de uma forma distinta, emitindo um sistema de documentação impressa que deverá ser gravada e elaborada num outro sistema e de novo documentada
para iniciar outro ciclo num outro sistema diferente. Como resultado destas transposições vão ser cometidos erros cujos efeitos se farão sentir na produtividade e qualidade do produto, a solução é a integração destes subsistemas.

A introdução das tecnologias CAD/CAM é a solução para a integração dos módulos de CAD, CAPP, CAM e CAQ que cobrem todas as áreas de produção, desde a sua concepção até à entrega do produto final passando por todas as áreas intermédias do processo com exceção das áreas de gestão e controlo.

2.3.2.6 PP&C - Production Planning and Control

Este módulo concentra as actividades organizacionais de um sistema CIM, faz a integração dos principais domínios da função da produção: a natureza dos processos produtivos, a capacidade de produção a nível de recursos, a programação da produção (escalonamento e sequenciamento), os stocks e a organização. Por outras palavras integra o MRP, o CRP, o escalonamento e sequenciamento e o acompanhamento e controlo da produção.

O funcionamento da produção assenta num princípio de análise, planeamento e controlo, não constituindo estes uma sequência rígida pois que continuamente se salta de uma fase para outra, assim desvios na execução poderão levar a refazer o plano, dificuldades no planeamento implicam a re-análise das estratégias, verificando-se a interacção entre os agentes de decisão e os sistemas que levam aqueles a reverem as decisões anteriores à medida que os resultados se vão tornando conhecidos. Então, é efectuada uma análise técnica dos processos de fabrico associados a cada tarefa a realizar, o plano de fabrico distribui as tarefas ao longo do tempo por forma a cumprir os prazos de entrega e utilizar convenientemente o equipamento e o pessoal, o controlo das operações garante que estas são executadas nas formas e datas estabelecidas.

O PP&C tem portanto uma dupla função dentro da produção, por um lado estabelece antecipadamente o que a empresa deve produzir e, consequentemente, os recursos de que deverá dispor, matérias-primas e materiais necessários, equipamentos e pessoas envolvidos, etc. Por outro lado, monitoriza e controla o desempenho da produção em relação ao que foi planeado, corrigindo eventuais desvios ou erros que possam surgir.

Pode-se dizer que o PP&C actua antes, durante e depois do processo produtivo. Antes, planeando o processo produtivo, programando as necessidades de materiais e
recursos. Durante e depois, controlando o funcionamento do processo para o manter de acordo com o que foi planeado e analisando os resultados que se obtiveram. Desta forma é possível assegurar a obtenção da máxima eficiência e eficácia do processo de produção da empresa.

2.3.3 Benefícios

A implementação de sistemas CIM aumenta o potencial competitivo das empresas, na medida em que permite a obtenção de benefícios relativamente aos sistemas de produção tradicionais. Segundo [Rembold et al.-94] alguns dos benefícios resultantes da substituição dos sistemas tradicionais por sistemas CIM são:

- redução dos custos de concepção e projecto em 15 a 30%,
- redução do tempo total de fabrico em 30 a 60%,
- aumento de produtividade na ordem dos 40 a 70%,
- aumento de qualidade reduzindo os desperdícios de 20 a 50%,
- melhor qualidade na concepção e especificação do produto.

2.3.4 Estratégias de implementação

Dependendo do tipo de mercado, do trabalho disponível, ordenados, etc, a implementação de sistemas CIM tem sido feita de formas distintas em diferentes países.

Na Europa o objectivo principal é a automatização flexível abrangendo todo o sistema de fabrico. Na maior parte dos países europeus o mercado é pequeno, originando desta forma pedidos relativamente pequenos que na maior parte das vezes resultam em lotes de fabrico de tamanhos reduzidos. Na Europa há já uma experiência considerável em sistemas flexíveis de fabrico tendo sido desenvolvidos vários conceitos de integração, actualmente a tendência é a integração de pessoal especializado no sistema de forma a criar uma perfeita simbiose.

No Japão a estratégia adoptada foi diferente, a maior parte das empresas Japonesas pensam em termos de produção em massa, por este motivo a automatização está mais relacionada com a parte operacional do processo de fabrico, onde se integram máquinas NC, centros flexíveis de maquinação e sistemas de montagem convertíveis. Partindo deste
tipo de atitude não é possível obter uma grande quantidade de variações do mesmo produto.

A filosofia de produção Americana assenta nos relatórios de desempenho trimestralmente apresentados aos accionistas de empresa. É necessário uniformizar os ciclos de produção e rentabilizar a utilização do equipamento. A estratégia é implementar no sistema CIM o máximo possível do Know-how humano sobre o processo de fabrico, de forma a reduzir o risco de ocorrência de falhas humanas e minimizar a necessidade de intervenção humana no processo de fabrico.

2.4 Fabrico Flexível

Os sistemas de fabrico flexível integram os recursos que se encarregam do processo de fabrico propriamente dito, isto é, as máquinas, os robots, os AGV's, os transportadores, os armazéns automático e todo o hardware adicional e software subjacentes à automatização e controlo do processo.

A decomposição do processo produtivo em operações elementares e o seu relacionamento, requer um estudo dedicado baseando-se na análise das aplicações técnicas do tipo "grupos tecnológicos", fruto da qual surgiram as "células de fabrico".

Conseguir que estas sejam flexíveis depende, por um lado do próprio processo e dos produtos para os quais estão destinadas e por outro dos elementos de produção que incorporam, assim como do corrente intercâmbio de informação entre eles.

A arquitectura de um sistema de fabrico flexível assenta no seguintes princípios:

- utilização de centros de maquinação ou células automatizadas, programáveis, capazes de "tomarem conta de si próprias" (utilização de sistemas potentes de controlo e auto-diagnóstico), de operar mudanças automáticas de ferramentas e peças mantendo contacto com o computador central ou nó controlador com o qual trocam informação (plano de produção, programas, etc),

- ligação destas células a um sistema capaz de assegurar o acesso directo e a manipulação dos dados,

- existência de sistemas de armazenamento controláveis quer pelo sistema global quer pela célula,
• alto nível de controlo por computador (interior e exterior à célula) baseado num sistema de processamento distribuído, em sistemas de gestão de base de dados e com as ligações necessárias aos outros subsistemas,

• capacidade de reprogramação, caso ocorra alguma avaria na célula.

O êxito da relação e coordenação das diferentes células entre si e com os restantes elementos intervenientes na produção (armazéns e sistemas de transporte) é o que permite configurar uma fábrica flexível, mas a disponibilidade e controlo de informação de todos os processos constitui o elemento chave integrador que garante a flexibilidade da fábrica.

2.4.1 - Elementos da Produção Automatizada

O funcionamento eficaz das células flexíveis exige um processo de fabricação sincronizada, no qual as células abastecedoras de produtos intermédios se regem por um planeamento coordenado para entregar ao mesmo tempo os seus produtos às células seguintes, que os vão agrupar e transformar. Assim, no processo global há uma tendência para que as células de níveis de transformação mais adiantados controlem o planeamento daquelas que as antecedem no processo, desta forma consegue-se reduzir substancialmente a quantidade de produtos em curso de fabrico, assim como os tempos de produção.

2.4.1.1 Máquinas de Controlo Numérico - CNC

O primeiro passo tecnológico dado no sentido da flexibilização da produção utilizando máquinas com ferramenta, foi a incorporação de máquinas governadas por um sistema interno que controla a actuação das ferramentas sobre a peça. Assim os tradicionais processos de ajuste de máquinas e comandos manuais foram substituídos por programas que actuavam directamente sobre os elementos pretendidos e permitiam, mediante uma simples mudança do programa escolhido e das ferramentas disponíveis, a troca de um produto por outro no menor tempo possível, praticamente sem a intervenção humana e evitando processos de ensaio e erro na preparação da máquina.

Os efeitos de racionalização nos quais se baseiam as máquinas CNC da última geração são:

• troca automática de ferramentas,
- substituição automática da peça a executar,
- redução dos tempos de preparação (set up),
- redução dos tempos de espera,
- troca de programas sem interrupção,
- administração automática das ferramentas e do seu transporte,
- entrada automática dos valores para correção das ferramentas,
- sistemas auxiliares de carga, descarga e fixação de materiais,
- incorporação de elementos de verificação de ferramentas,
- incorporação de programas directamente com o sistema externo DNC (*Direct Numeric Control*).

Este processo impõe-se em todas as gamas de máquinas com ferramentas, potencializando cada vez mais a independência da operação da máquina, constituindo a base para a redução dos tempos de paragem das máquinas e facilitando o caminho para um esquema de produção contínua, apenas com vigilância.

2.4.1.2 - Robots e Manipuladores

Os robots e os manipuladores robóticos são largamente utilizados em várias aplicações industriais em substituição do elemento humano, uma vez que são bastante mais rápidos, têm maior capacidade de carga, são mais precisos, não estão sujeitos ao cansaço e podem ser utilizados em ambientes adversos.

2.4.1.2.1 - Robots para Processamento Industrial

Os robots são os elementos de automatização mais conhecidos e que têm campos determinados de aplicação na indústria. A sua utilização é orientada para substituir o operário nas operações em ambientes perigosos ou desgastantes, assim como para realizar operações rotineiras com alta velocidade e precisão, acarretando menores custos.

Como elementos automáticos os robots são controlados por *software* próprio e específico, por isso tem cada vez mais importância o emprego de controladores abertos que permitam a auto aprendizagem. A um nível superior da célula transmitem-se os parâmetros de selecção do programa de trabalho em função da tarefa do robot executada em cada momento, estes programas de controlo residem no próprio sistema de comando do robot.
Os robots são accionados através de sistemas hidráulicos, pneumáticos ou eléctricos, usualmente controlados por áutomatics programáveis (PLC), que vão encadear as operações do manipulador e a sequência de trabalho na célula.

Os robots são utilizados para tarefas como a soldadura, pintura, corte (laser, água ou convencional), montagem e colagem.

2.4.1.2.2 Manipuladores

A independência de funcionamento de cada máquina em cada célula e o sincronismo de operações, exige em muitos casos a utilização de elementos de transporte internos conhecidos como manipuladores. É de salientar que nos processos habituais de produção, o transporte, carga e descarga de produtos pode ocupar até 70% do tempo total do ciclo de produção.

Os manipuladores realizam, de uma forma automatizada, estas funções dentro das células. São, geralmente, elementos simplificados, com poucas articulações.

2.4.1.3 Autómatos Programáveis - PLC (Programable Logic Controllers)

Os autómatos programáveis são elementos que intervêm decisivamente na automatização, realizando basicamente quatro tipos de funções: sequenciais, combinacionais, lógicas e temporizadoras.

À medida que as necessidades de automatização vão evoluindo também os autómatos vão evoluindo, a última inovação foi a incorporação de funções de cálculo convertendo-os em autênticos controladores de processos, são capazes de controlar e orientar sistemas de transporte, processos de montagem e selecção.

Graças aos métodos simples de programação que possuem e à sua adaptação para controlar múltiplos tipos de sinais recolhidos por sistemas e eles associados (sensores, medidores, reguladores automáticos, etc), são largamente utilizados como controladores de muitos dos elementos que constituem a célula. Refira-se, por exemplo, os robots, a actuação das máquinas de ferramenta, o encadeamento das operações e finalmente o sistema de transporte interno.
2.4.1.4 Armazenamento e Transporte

Encontram-se neste grupo os elementos integradores do processo síncrono. Em ambos os casos existem elementos de automatização que permitem e efectivam as suas funções, permitindo assim um controlo da disposição de componentes e produtos, bem como o seu transporte aos pontos necessários.

2.4.1.4.1 Armazéns Automáticos

Os armazéns automáticos servem para armazenar materiais e produtos e facilitar o seu acesso automático. Geralmente incorporam um microcomputador, que é encarregue de conhecer a localização e disponibilidade de componentes das células que formam o armazém, este controla um transportador que se encarrega de transportar os produtos entre os os pontos onde estão a ser necessários e as células de armazenamento, optimizando factores como: tempos de acesso, utilização de intervalos de tempo e agrupamento de produtos.

2.4.1.4.2 Veículos Guiados Automaticamente - AGV's (Automated Guided Vehicles)

São veículos capazes de transportar qualquer tipo de carga (podendo atingir até as três toneladas). Baseiam o seu funcionamento no seguimento de trajectórias, utilizando um computador de controlo, e no estabelecimento de redes (sob terra) que servem de guia para o seu deslocamento, onde estão marcados os caminhos e os pontos de acesso conflituoso assim como os pontos de carga e descarga.

O computador que controla o processo produtivo global recebe as comunicações de cada uma das células solicitando a entrega de componentes ou retirada de produtos, transmite esta informação ao computador de controlo dos AGV's e este selecciona o veículo adequado.

Normalmente, dispõe-se de um sistema de contentores nos pontos de carga e descarga para que o veículo proceda ao intercâmbio entre o contentor cheio e o vazio.

2.4.1.4.3 Passadeiras e Tapetes Rolantes

São elementos automatizados de transporte, normalmente utilizados no transporte de peças sujeitas a operações em série ao longo de uma linha de fábrico. Através da sua utilização consegue-se diminuir o tempo gasto no transporte de materiais.
2.4.1.4.4 Manipuladores Robóticos

Já foram referidos na secção 2.4.1.2.2 e permitem um transporte localizado entre entidades próximas. Pois estes são assentes num dispositivo de deslocamento linear (por exemplo, carril) para aumentar a sua zona da actuação.

2.4.2 FMS - Flexible Machining Systems

"O FMS (Sistema Flexível de Maquinação) é uma das formas de implementação do conceito CIM (Fabrico Assistido por Computador)", [Kusiak - 90]. O mesmo autor realizou um estudo com 50 FMS's existentes de onde pode tirar algumas ilações sobre as características mais importantes de um FMS e principais diferenças relativamente a um sistema tradicional equivalente. É de referir que dois sistemas de maquinação são ditos equivalentes se têm saídas iguais, nomeadamente tipo de produto e taxa de produção. Apresenta-se a seguir uma breve descrição das referidas características de um FMS, efectuando-se uma breve comparação com um sistema tradicional equivalente.

2.4.2.1 Nível de automatização

O nível de automatização do equipamento de um FMS no que diz respeito às máquinas e aos sistemas de manuseamento de material é incomparavelmente superior ao de um sistema de maquinação tradicional. Esta característica está implícita na própria definição de FMS. Este pode ser definido com um conjunto de máquinas cuja ligação é efectuada por um sistema flexível de manuseamento/transporte de material (manipulador robótico, AGV, etc.), tudo controlado informaticamente.

2.4.2.2 Quantidade de máquinas

Um FMS é constituído por muito menos máquinas do que um sistema de maquinação convencional equivalente, conforme se pode observar na figura 2.9.

Figura 2.9 - Célula de maquinação flexível versus sistema tradicional
O sistema tradicional representado na figura é constituído por uma máquina de furar (M1), duas fresadoras horizontais (M2 e M3) e duas fresadoras verticais (M4 e M5). Estas cinco máquinas são integradas numa célula de maquinagem flexível constituída por dois contros de maquinagem (MC1 e MC2), cuja ligação se efectua através da utilização de um AGV. A célula de maquinagem flexível reaperesentada na figura 2.8 pode ser um componente de um FMS que terá na sua constituição mais algumas células, conforme se pode observar na figura 2.10.

![Figura 2.10 - Representação do layout base de um FMS](image)

O FMS representado na figura é constituído por:

- três células de maquinagem,
- duas células de montagem automática,
- um centro de apoio à maquinagem,
- um centro de apoio à montagem,
- um armazém automático (ASRS),
- três AGV's.

2.4.2.3 Configuração de um FMS - Layout

A disposição e organização das máquinas num FMS é determinada pelo tipo de sistema de transporte de material utilizado. Os mais utilizados são os manipuladores robóticos, os robots articulados, os robots em pórtico, os AGV's e os empilhadores. Na figura 2.10 estão representados quatro tipos de layout de células de maquinagem flexível.

Por observação da figura 2.11 a) e b) pode-se verificar que quando o sistema de transporte é um AGV as máquinas tendem a ter uma organização em linha recta. Na figura
2.11 c) e d) pode-se ver que quando se utiliza um robot, as suas restrições de alcance provocam uma organização em círculo ou em grupo.

Figura 2.11 - Representação de alguns tipos de layout de um FMS

a) linear, em linha única
b) linear, em linha dupla
c) circular (robot articulado)
d) grupo (robot em pórtico)

Na figura 2.12 está representado um layout em dupla linha, onde as máquinas se encontram dispostas ao longo das prateleiras de um armazém automático.

Figura 2.12 - Layout de um FMS em dupla linha

As funções do sistema de transporte utilizado, neste caso um empilhador, são a carga das máquinas com o material e respectivas ferramentas, a recolha das peças maquinadas e o armazenamento e carga de matéria prima, peças semiacabadas, peças maquinadas e ferramentas.
2.4.2.4 Plano de processo

A quantidade de operações de setup existentes num plano de processo especificado para um FMS é significativamente mais pequeno do que num plano de processo equivalente para um sistema tradicional de maquinagem.

Num plano de processo para um sistema tradicional um número reduzido de operações (normalmente uma) estão associados a uma operação de setup. Este facto deve-se à limitada versatilidade do sistema tradicional de maquinagem e sistemas de manuseamento de materiais associados. Neste tipo de sistema pervalece o conceito de especialização.

A maior versatilidade e eficiência dos FMS provocou uma modificação na forma de realização do planeamento de processo, o objectivo é associar a uma operação de setup tantas operações quanto possível, é uma abordagem direccionada para a agregação em oposição à abordagem direccionada para a especialização praticada para os sistemas tradicionais.

Para ilustrar a diferença entre os planos de processo para a mesma peça mas realizados respectivamente para um sistema tradicional de maquinagem e para um FMS, considere-se a figura 2.13 de [Kusiak - 90] onde se encontra representada uma peça, a matéria prima e os respectivos volumes de remoção.

![Figura 2.13 - Peça a executar e volumes de remoção [Kusiak - 90]](image)

O plano de processo resultante para a referida peça estão representados na tabela 2.1 para um sistema tradicional de maquinagem e na tabela 2.2 para um sistema flexível de maquinagem.
Por observação das tabelas pode-se verificar que o plano para o FMS tem três vezes menos operações de setup que o plano do sistema tradicional, sendo também inferior a quantidade de suportes utilizados, no entanto são mais complexos e dispensiosos que os utilizados no sistema tradicional.

<table>
<thead>
<tr>
<th>Operação de Setup</th>
<th>Máquina</th>
<th>Operação</th>
<th>Volume de Remoção</th>
<th>Ferramentas</th>
<th>Suportes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M1</td>
<td>Fresar</td>
<td>v1, v4</td>
<td>T1, T2</td>
<td>F1</td>
</tr>
<tr>
<td>2</td>
<td>M2</td>
<td>Furar</td>
<td>v2, v3</td>
<td>T3, T4, T5</td>
<td>F1</td>
</tr>
<tr>
<td>3</td>
<td>M3</td>
<td>Fresar</td>
<td>v5</td>
<td>T6</td>
<td>F1</td>
</tr>
<tr>
<td>4</td>
<td>M4</td>
<td>Fresar</td>
<td>v6</td>
<td>T7</td>
<td>F2</td>
</tr>
<tr>
<td>5</td>
<td>M5</td>
<td>Fresar</td>
<td>v7</td>
<td>T8</td>
<td>F1</td>
</tr>
<tr>
<td>6</td>
<td>M6</td>
<td>Furar</td>
<td>v8</td>
<td>T9</td>
<td>F3</td>
</tr>
</tbody>
</table>

Tabela 2.1 - Plano de processo para sistema tradicional de maquinação

<table>
<thead>
<tr>
<th>Operação de Setup</th>
<th>Máquina</th>
<th>Operação</th>
<th>Volume de Remoção</th>
<th>Ferramentas</th>
<th>Palletes e Suportes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MC1</td>
<td>Fresar e Furar</td>
<td>v1, v2, v3, v4, v5 e v6</td>
<td>T1, T2, T3, T4, T5, T6 e T7</td>
<td>PF1</td>
</tr>
<tr>
<td>2</td>
<td>MC2</td>
<td>Fresar e Furar</td>
<td>v7, v8</td>
<td>T8, T9</td>
<td>PF1</td>
</tr>
</tbody>
</table>

Tabela 2.2 - Plano de processo para um FMS

2.4.2.5 Tempo de processamento

Por cada carga da máquina o tempo de processamento é, num FMS bastante superior ao de um sistema tradicional de maquinação equivalente. Isto deve-se essencialmente às diferenças verificadas entre os planos de processo obtidos para cada um dos sistemas. Num FMS encontra-se mais do que uma peça idêntica num mesmo suporte em cada carga da máquina, assim o tempo dispendido em carga/descarga por peça é diminuído, aumentando o tempo de maquinação por carga da máquina.
2.4.2.6 Volume de Informação

O volume e fluxo de informação circulante num FMS é incomparavelmente superior ao existente num sistema tradicional equivalente. Este aumento deve-se ao controlo central, à introdução de alguns novos elementos no FMS, tais como sistemas de manuseamento e transporte de material automáticos, palletes e suportes modulares, etc., ao aumento de variedades de peças executadas e à instalação de sensores para detecção de avarias, disponibilidades das máquinas, ferramentas, etc.

2.4.2.7 Tamanho do lote

Num FMS a determinação do tamanho do lote é realizada a partir do tamanho das encomendas, da capacidade dos suportes utilizados e do limitado tempo de vida das ferramentas. Pelo contrário, num sistema tradicional o tamanho do lote é determinado a partir da aplicação de alguns procedimentos de optimização de produção. O conceito básico de um FMS é a produção de lotes de tamanho reduzido, uma vez que o projecto das peças a executar pode variar frequentemente de acordo com as flutuações do mercado conferindo flexibilidade e capacidade de resposta rápida ao sistema.

2.4.2.8 Impacto do projecto e layout do sistema na sua eficiência

Considere-se o FMS representado na figura 2.14. Supondo que a célula representada tem que maquinar um lote de 60 peças idênticas e que cada suporte pode conter duas peças demorando 2 minutos a suas maquinção (1 minuto por peça), pode-se inferir que será necessária 1 hora de maquinção e 30 suportes para a execução do lote. Se se tiver em conta o custo elevado de cada suporte, conclui-se que para a situação em questão o projecto adoptado é ineficiente.

![Figura 2.14 - Célula Flexível de Maquinção - versão I](image)

Observando-se a figura 2.15 pode-se ver uma célula flexível de fabrico onde um robot articulado realiza a carga da máquina. Para maquinar um lote de 60 peças só é necessária uma pallete e um suporte demorando o processamento 1 hora exactamente como na

1 - Centro de maquinação
2 - Suporte
3 - Robot
4 - Palete com 60 peças

Figura 2.15 - Célula Flexível de Maquinação - versão II

2.4.3 FAS - Flexible Assembly Systems

Num Sistema Flexível de Montagem coexistem várias tarefas diferentes que devem ser executadas para a concretização da montagem de um determinado produto. A automatização das tarefas de fabrico tem sido essencialmente orientada no sentido das operações de maquinação, relegando para segundo plano as operações e montagem, no entanto actualmente e cada vez mais são feitos esforços direccionados para a aplicação dos princípios de automatização utilizados nas tarefas de maquinação nas tarefas de montagem. Desta forma o processo de fabrico poderá ser articulado como um todo coerente e flexível.

Todas as características referidas para um FMS se aplicam a um FAS com as devidas modificações que advêm das diferenças organizacionais existentes entre os dois sistemas. A principal diferença entre os dois sistemas refere-se à organização e fluxo de materiais. Enquanto que a maquinação está direccionada para o processamento de peças individuais (isoladas ou agrupadas em lotes), originando um fluxo divergente ou linear (conforme as situações), na montagem existem várias peças diferentes que montadas em conjunto segundo uma determinada ordem e hierarquia constituem um produto único, diz-se que é um fluxo convergente. Esta diferença provoca uma alteração na forma de controlo do sistema, no caso de um FMS o objectivo é controlar todas as etapas de processamento de uma peça, no caso de um FAS o objectivo é controlar todos os componentes e as várias operações de montagem realizadas até se obter o produto final.

A seguir dão-se dois exemplos de sistemas de montagem, um automático mas não flexível na medida em que só permite a montagem de um determinado produto, e outro flexível que mediante uma reorganização permite a montagem de diferentes variantes do mesmo produto. Na figura 2.16 pode-se observar o exemplo de um sistema de montagem
automático para montagem de detectores de fumo, onde existem duas estações manuais de controlo cuja automatização não foi ainda possível.

![Diagrama de Sistemas de Montagem Automática](image)

Figura 2.16 - Sistema de Montagem Automático [Groover - 86]

No sistema representado na figura 2.16 existem três estações, na primeira a base do detector é colocada na pellete de montagem, na segunda realizam-se duas tarefas, insere-se a bateria e o circuito impresso na base, finalmente na terceira estação procede-se à colocação da cobertura do detector e realizam-se alguns testes funcionais sendo o produto orientado para a saída conveniente (unidades boas ou unidades más) conforme o resultado dos testes e a pellete é reconduzida à primeira estação para nova utilização. O sistema de transporte é constituído por uma passadeira rolante que permite a circulação da pallete através das três estações de montagem.

Na figura 2.17 pode-se observar um exemplo de um sistema de montagem com mais estações que o exemplo anterior, existindo só uma estação manual.

![Diagrama de Sistemas de Montagem Flexível](image)

Figura 2.17 - Sistema de Montagem Flexível [Rembold - 94]
As tarefas de montagem a realizar são controladas por um computador central. Os componentes a montar circulam num passadeira rolante e podem passar por cada estação numa qualquer ordem. Os componentes são preparados para a operação que vão sofrer através da acção de um robot denominado setup robot (SR). Diferentes variantes do mesmo produto podem ser montadas simultaneamente dependendo da organização em cada momento, há um robot que procede à orientação dos componentes circulantes, encaminhado-os para a estação respectiva. A existência de um robot com dois braços proporciona a realização de algumas tarefas de montagem mais complexas, no entanto existe ainda uma estação manual para a realização de uma tarefa que não foi ainda possível automatizar. O sistema de transporte de carga/descarga deste sistema é efectuado por um AGV.
CAPÍTULO 3
Integração CAD/CAM

O CAD/CAM tem um papel preponderante na flexibilidade de um sistema de produção. Representa a integração entre as fases de projecto e fabrico facilitando o intercâmbio de informação entre as referidas fases. Neste capítulo pretende-se evidenciar a função do CAD/CAM referindo as funções de cada sistema isoladamente e ainda as funções do CAPP que permite estabelecer a ponte entre o CAD e o CAM.

O termo CAD/CAM significa a interligação entre o projecto assistido por computador (CAD - Computer Aided Design) e o fabrico assistido por computador (CAM - Computer Aided Manufacturing).

Esta tecnologia que utiliza sistemas computorizados para ajuda nas funções de projecto e de fabrico têm como finalidade criar uma cada vez maior integração entre estas duas actividades, eliminando desta forma uma série de “ilhas” de automação (onde é difícil e por vezes impossível fazer circular a informação), resultantes da aplicação não interligada de sistemas computorizados nas diversas áreas de produção.

É objectivo do CAD/CAM não só a automatização de algumas fases do projecto e do fabrico, mas principalmente a automatização da interligação entre o projecto e o fabrico. Num sistema CAD/CAM ideal é possível a partir da especificação do projecto do produto existente na base de dados de um sistema CAD, converte-lo num plano de processo capaz de produzir o produto, sendo esta conversão executada automaticamente pelo sistema CAD/CAM.
3.1 CAD/CAM e o ciclo do produto

Para se poder entender o âmbito da tecnologia CAD/CAM e o seu impacto no ciclo do produto é necessário fazer um paralelismo entre as funções de projecto e fabrico do produto realizadas de uma forma clássica e as mesmas funções realizadas sob a utilização desta tecnologia, como se pode observar em [Groover et al - 84].

O diagrama representando na figura 3.1 mostra as várias etapas que constituem o ciclo do produto. Este ciclo é inicializado através de um pedido do produto que surge para satisfazer uma necessidade de mercado ou de um cliente particular. O primeiro passo é a concepção do produto, que será posteriormente analisado, refinado, melhorado e traduzido num plano através da engenharia de projecto. Depois, este plano é documentado através de um conjunto de desenhos de engenharia que especificam as características do produto e do processo de fabrico a ele associado. Com a especificação do produto termina a fase de projecto, estando os próximos passos incluídos na fase de fabrico.

O planeamento do processo é o passo seguinte, aqui cria-se um plano onde se especifica a sequência de operações a realizar para o fabrico do produto, em alguns casos é necessário adquirir novo equipamento e ferramentas. O escalonamento providencia um plano para a produção de uma determinada quantidade de produto para um dado data. Após a geração destes planos o produto entra em produção, passando por testes de qualidade antes de ser entregue ao cliente.

Figura 3.1 - Ciclo do produto [Groover - 84]

O impacto do CAD/CAM manifesta-se a todos os níveis do ciclo do produto, como se pode observar na figura 3.2. O projecto assistido por computador e a especificação automática utiliza o computador na concepção, projecto e documentação do produto. No
planeamento da produção e no escalonamento a utilização do computador aumenta a eficiência destas funções. No fabrico do produto os computadores são utilizados para controlar e monitorizar todas as operações. Por último, no controlo de qualidade os computadores são utilizados para inspecionar e efectuar teste de desempenho do produto e de todos os seus componentes.

Como se pode observar na figura 3.2, o CAD/CAM cobre praticamente todas as actividades e funções do ciclo do produto. A utilização do computador torna-se desta forma uma ferramenta útil e indispensável nas operações de fabrico e projecto de um sistema de produção, aumentando o nível de automatização e integração.

O perfeito entendimento da tecnologia CAD/CAM por parte das empresas e dos seus colaboradores é um factor estratégicamente importante e um imperativo competitivo, contudo o êxito da implementação desta tecnologia reside basicamente na vontade e capacidade de integração do pessoal que as vai aplicar. É necessário um plano de formação cuidadoso e informação a todos os níveis, sobre as características, vantagens e objectivos inerentes a esta inovação.
3.2 Projecto Assistido por computador (CAD)

Projecto assistido por computador (CAD) pode ser definido como um sistema computorizado para ajuda na criação, modificação, análise e optimização do projecto, [Groover - 87].

Os sistemas de CAD são baseados em sistemas gráficos computorizados interactivos (ICG - Interactive Computer Graphics) nos quais o computador é utilizado para criar, transformar e visualizar informação sobre a forma de figuras e símbolos. O computador comunica com o utilizador através de um monitor CRT (Charode Ray Tube), onde as imagens são criadas. Elementos geométricos tais como pontos e segmentos de recta podem ser ampliados ou reduzidos, e movidos de um ponto para outro do monitor através dos processos de transformação (rotação e translação).

Um sistema ICG típico é composto por software e hardware especializado. O hardware é constituído por um CPU (Central Processing Unit), um ou mais terminais gráficos e um conjunto de periféricos de entrada e saída tais como, teclado, rato, impressoras, traçador de gráficos (plotter), etc. O software deve ser constituído por um conjunto de programas necessários para os vários tipos de processamento gráfico que podem aparecer no sistema. O software disponível num determinado sistema de CAD é muitas vezes função do tipo de hardware utilizado, por exemplo, o software utilizado para trabalhar com monitores de traço (Raster Scan) não é compatível com o software utilizado para trabalhar com os monitores vectoriais.

Pode-se dizer que num sistema de CAD se cria um efeito sinergético entre a máquina e o ser humano, com efeito o projectista realiza a parte do projecto em que são absolutamente necessárias as capacidades intelectuais humanas, por exemplo a conceptualização do produto, o computador realiza as tarefas para as quais está mais habilitado tais como a realização de cálculos complexos, a visualização do projecto e o armazenamento de toda a informação inerente e resultante.

Segundo [Groover et al - 84] existem várias razões para que se proceda à implementação de um sistema de CAD:

- **Aumento da produtividade**, ajudando o projectista a visualizar o produto e todos os seus componentes e reduzindo o tempo para efectuar as tarefas de síntese, análise e documentação,
- **Melhor qualidade do projecto**, um sistema de CAD permite efectuar uma análise mais completa e permite facilmente recorrer a alternativas,

- **Melhor documentação**, proporciona uma maior qualidade dos desenhos,

- **Criação de uma base de dados para o fabrico do produto**, muita da informação necessária para o fabrico do produto tais como, geometria, dimensões do produto e todos os seus componentes, especificações do material, etc, é obtida na fase de projecto do produto.

3.2.1 Projecto convencional versus projecto assistido por computador

O projecto convencional é definido por [Shigley et al - 83] como um processo interactivo constituído por seis fases:

- Reconhecimento das necessidades
- Definição do problema
- Síntese
- Análise e optimização
- Avaliação
- Conclusão

A sequência e a interactividade entre as diferentes fases do projecto estão representadas na figura 3.3.

![Figura 3.3 - Projecto convencional segundo Shigley](image-url)
Numa primeira fase começa-se por fazer um levantamento das necessidades de mercado ou de um cliente particular por forma a encontrar-se uma ideia para um novo produto ou, um conjunto de soluções para melhorar o processo produtivo, a qualidade ou outras características de um produto que já tenha sido alvo de um projecto anterior.

Na segunda fase, a definição do problema, é efectuada uma especificação do projecto que se pretende desenvolver. Esta especificação inclui a determinação das característica físicas e funcionais do produto, custos, qualidade, restrições e do desempenho operacional.

A terceira fase, a síntese, é a fase onde se efectua a concepção de um novo produto ou a síntese de projectos alternativos. Esta fase é tida como a fase mais crucial de um projecto, sendo também, aquela onde o projectista pode desenvolver toda a sua criatividade. A fase de síntese está normalmente ligada à quarta fase, a análise, uma vez que o projecto depois de concebido terá de ser submetido a uma análise. contudo pode-se chegar à conclusão, depois de analisadas todas as restrições, que o projecto deverá ser melhorado, voltando à fase da síntese. Este processo pode ser repetido várias vezes até à optimização do projecto.

Na fase cinco, avaliação, é efectuado um confronto entre o projecto e as especificações estabelecidas na fase de definição do problema, verificando-se se os requisitos foram cumpridos e se os critérios poderão ou não ser melhorados. Procede-se normalmente à construção de um protótipo para se efectuarem testes experimentais de forma a obterem-se dados sobre o desempenho, qualidade e fiabilidade ou segundo outros critérios.

Na última fase é feita a apresentação do projecto, para tal será necessário recorrer a um determinado número de documentos tais como desenhos, especificações de material, procedimentos de montagem, etc. Nos sistemas de produção mais evoluídos toda esta documentação pode ser transferida directamente para o sistema de planeamento de processo.

O projecto assistido por computador vai automatizar muitas das actividades do projecto convencional, no entanto, as várias fases do projecto vão permanecer inalteráveis. Segundo [Rembold et al - 94] a aplicação do computador ao projecto convencional divide-o em cinco áreas:
- Definição do problema
- Modelação geométrica
- Análise
- Simulação e correção
- Desenho e base de dados

Como se pode observar na figura 3.4, estas cinco áreas correspondem às últimas cinco fases do projecto convencional definido por [Shigley et al - 83].

![Diagrama de processos](image)

Figura 3.4 - Projecto convencional versus Projecto Assistido por Computador

3.2.1.1 Definição do problema

Nesta fase, no projecto convencional, o projectista deve ser um indivíduo bastante criativo para conseguir determinar as funções, o desempenho e o aspecto visual do produto. Facilmente se constata que a utilização do computador nesta fase do projecto não é o mais aconselhável uma vez que este não detém a experiência humana necessária. No entanto, se o produto já foi objecto de um projecto anterior o computador torna-se uma ferramenta indispensável, pois facilmente pode sugerir um projecto existente na base de dados com características semelhantes e pode inclusivamente procurar componentes e processos de fabrico normalizado.

3.2.1.2 Modelação geométrica

A modelação geométrica é uma descrição matemática da geometria do objecto normalmente designada por modelo. Esta forma matemática de representação permite que o utilizador de um sistema CAD visualize o modelo num terminal gráfico, podendo inclusive
efetuar algumas operações sobre o modelo. De entre essas operações pode-se destacar a translação, rotação, zoom e a modificação ou criação de um novo modelo com base em blocos básicos disponíveis (linhas, curvas, sólidos, etc).

3.2.1.3 Análise

Depois de passar pela fase de concepção um projecto requer normalmente alguma forma de análise, podendo envolver cálculos de esforço de pressão, transferência de calor, ou o recurso a equações diferenciais para descrever o comportamento dinâmico do sistema que se está a projectar. O computador, através da utilização de software que pode ser desenvolvido pelo grupo responsável pela análise do projecto ou adquirido a uma empresa de comercialização de software, assume-se como a ferramenta mais adequada para executar qualquer uma das tarefas referidas.

Qualquer que seja a solução adoptada, o software será sempre constituído por um conjunto de programas que permitam efectuar dois tipos de análises importantes:

- análise das propriedades mássicas,
- análise de elementos finitos (FEA - Finite-Elements Analysis)

No primeiro caso é feita uma análise às propriedades mássicas, nomeadamente volume, área da superfície, peso, centro de gravidade e momento de inércia.

O segundo caso, análise de elementos finitos, é provavelmente o tipo de análise mais poderosa que um sistema de CAD pode efectuar. Esta técnica divide o objecto numa grande quantidade de elementos finitos (normalmente rectângulos e triângulos), os quais formam uma rede interligada de nós. Através da utilização de um computador, com grandes capacidades computacionais, é possível analisar o esforço de pressão, transferência de calor, e outras características, calculando o comportamento de cada nó. O comportamento do objecto é obtido correlacionando os comportamentos de todos os nós que constituem o sistema. Alguns sistemas de CAD têm a capacidade de definirem automaticamente os nós e a estrutura da rede de um objecto, nestes casos o utilizador apenas necessita de especificar os parâmetros do modelo de elementos finitos (FEM - Finite Elements Model).
3.2.1.4 Simulação e correcção

A introdução do computador nesta fase vem ajudar o projectista a efectuar uma avaliação mais rigorosa e precisa do projecto através de um conjunto de aplicações das quais se destacam as seguintes:

- **dimensionamento automático**, permite a determinação de distâncias entre as superfícies do modelo criado,
- **rotinas de interferência**, faz a identificação automática de objectos que ocupem o mesmo volume no espaço, sendo também útil no desenho e projecto de montagem,
- **simulação, animação e rotinas cinemáticas**, permitem a simulação de mecanismos para análise de viabilidade usando a capacidade de animação, permitindo ao projectista visualizar a operacionalidade dos mecanismos.

No passado procedia-se à construção de um protótipo para se efectuarem testes experimentais, no entanto, com o avanço tecnológico, já é possível desenvolver e testar um protótipo através do computador com as consequentes diminuições de custos e tempo.

3.2.1.5 Desenhos e base de dados

Com a ajuda do computador conseguem-se executar automaticamente desenhos detalhados e outros documentos com informação recolhida durante as fases anteriores do projecto. Pode-se inclusivamente efectuar desenhos com vários tipos de vistas tais como, oblíquas, isométricas e perspectiva, assim como focalizar algum ponto de interesse no objecto, elaborar manuais de operação e montagem e criar bases de dados de desenhos e características.

3.2.2 Interfaces para sistemas CAD/CAM

Desde que se começou a utilizar o computador como uma ferramenta para automatizar o planeamento e o controlo da produção que o problema de interligar diferentes sistemas de *hardware* e *software* passou a ser um assunto de primordial importância. O primeiro sistema de planeamento e controlo assistido por computador foi desenvolvido e configurado para uma aplicação específica, sendo extremamente difícil e por vezes impossível a utilização de módulos de *hardware* e *software* em outros sistemas de planeamento e controlo diferentes daquele para o qual foram especificamente desenvolvidos. Este problema foi detectado há muitos anos sendo o principal responsável pelo desencadeamento de um esforço dos países mais industrializados no sentido de
desenvolverem actividades de normalização nos sistemas produtivos. De entre essas
atividades destaca-se a normalização de interfaces (interface standard) para interligar
sistemas de CAD e CAM, facilitando desta forma a transferência de informação entre a
engenharia de projecto e as actividades de planeamento da engenharia de fabrico.

A figura 3.5 pretende demonstrar o conceito associado a um sistema universal de
troca de informação, onde diferentes sistemas de CAD comunicam através de um interface
standard com o sistema de planeamento e controlo da produção.

![Figura 3.5 - Interface universal para interligar todas as actividades do sistema de fabrico](image)

Nestes sistemas, a adopção de protocolos, o tipo de formato de dados e a taxa de
transmissão é determinado pelo interface. Este deve ser compatível física e electricamente
com os sistemas aos quais se vai associar, sendo todo o tipo de conversão de dados
executado directamente pelo interface com a utilização de processadores ou pós-
processadores. Através da aplicação deste tipo de interface torna-se possível a aplicação de
módulos de software e hardware já existentes noutras áreas do sistema de produção,
podendo inclusive desenvolver-se sistemas de planeamento e controlo da produção
utilizando módulos heterogéneos fornecidos por diferentes fornecedores.

Há um determinado número de requisitos que um interface standard deve ser capaz
de cumprir [Rembold et al - 94]:

- deve ser capaz de suportar todo o tipo de dados necessários para o fabrico de um
 produto,
- a transferência de informação entre sistemas heterogéneos deve ser isenta de erros
 e perdas,
- o sistema deve ser capaz de responder em tempo real às necessidades do sistema
 de fabrico,
- o sistema deve poder ser adaptado a outros standards,
- o sistema deve ser independente do computador e da arquitetura de comunicações utilizados,
- deve codificar a informação na forma mais compacta possível, por forma a minimizar os custos de transmissão,
- deve evitar requisitos de processamento complexos nos sistemas origem e destino para evitar custos de processamento desnecessários,
- deve proceder a testes para verificar a eficiência e a precisão da informação transmitida.

3.2.3 Tipos de interface

Um interface pode ser visto como um conjunto de condições, regras e convenções as quais descrevem o processo de troca de informação entre dois objetos que podem comunicar entre si. Neste contexto um objecto pode ser um humano, software, hardware ou qualquer processo de fabrico, [Rembold et al - 94].

Todos os sistemas de CAD devem ser capazes de trocar informação com o sistema de fabrico, funcionando o interface como uma espécie de janela para esse sistema. A figura 3.6 representa as interligações entre um modulo de CAD e os vários componentes de um sistema de fabrico.

Figura 3.6 - Tipos de Interfaces [Rembold - 94]
Existem três tipos de interfaces: interface de linguagem, interface de programas e interface descritivo, que se descrevem a seguir.

3.2.3.1 Interfaces de linguagem

Os interfaces de linguagem são a janela através da qual o utilizador consegue comunicar com o módulo de CAD. Esta comunicação pode ser feita através de icons, menus, linguagem textual ou linguagem gráfica, sendo esta última a que tem registado maior preferência uma vez que é de fácil aprendizagem e oferece um método mais natural de comunicação utilizador/agente.

3.2.3.2 Interfaces de programas

Os interfaces de programas são utilizados para possibilitar a execução de várias tarefas tais como, cálculos técnicos, modelação CAD, planeamento do processo e programação das máquinas. Estes interfaces poderão recorrer a subprogramas, a descrições de parâmetros ou a linguagens residentes por forma a poderem realizar cada uma das diferentes actividades de CAD.

3.2.3.3 Interfaces descritivos

Os interfaces descritivos são a janela para outros sistemas de CAD, para bases de dados e para as actividades de fabrico. O conceito básico de um interface descritivo está representado na figura 3.7 [Grabowski et al - 86].

![Figura 3.7 - Troca de informação entre dois sistemas de CAD diferentes](image)

Com este conceito é possível a troca de modelos entre dois sistemas de CAD diferentes. Por exemplo, se se pretende transferir um modelo de dados do sistema de CAD 1 para o sistema de CAD 2 representados na figura 3.7, ter-se-á de se converter o modelo...
de dados do sistema de CAD 1 através de um pré-processador para um formato neutro sendo este posteriormente, através de um pós-processador, tratado por forma a poder ser interpretado pelo sistema de CAD 2.

3.2.4 Descrição de vários tipos de interfaces

Algumas dos vários tipos de interfaces de CAD/CAD e CAD/CAM desenvolvidos por alguns dos países mais industrializados segundo normas internas, alguns dos quais referidos em [Rembold - 94] e que vão ser resumidamente descritos a seguir, encontram-se representados na figura 3.8. Regista-se ainda a tendência de convergência das diferentes normas no sentido de adoptar uma norma internacional para definição da estrutura de dados do produto através do STEP (STandard for External representation of Produt data).

![Diagrama de interfaces CAD/CAD e CAD/CAM](image)

Figura 3.8 - Desenvolvimento de normas CAD/CAD e CAD/CAM

3.2.4.1 IGES (Initial Graphics Exchange Specifications)

Este tipo de interface é correntemente utilizado a nível mundial para a transferência de dados gráficos entre sistemas de CAD idênticos ou diferentes. Consiste basicamente num procedimento para o armazenamento e transferência de primitivas geométricas tais como pontos, linhas e superfícies.

Este tipo de interface, designado no capítulo 5 como ficheiro de intercâmbio, vai ser nesse capítulo objecto de uma descrição mais aprofundada uma vez que é um dos dois tipos de interface utilizados pelo módulo conversão e execução de planos de processo desenvolvido no âmbito desta tese de dissertação.
3.2.4.2 PDDI (*Product Definition Data Interface*)

O interface PDDI foi desenvolvido em conjunto com o projecto ICAM fundado pela força aérea dos Estados Unidos com o objectivo de melhorar os métodos de fabrico da industria aeronáutica desse país.

O PDDI tem como principal objectivo a criação de um interface entre um sistema CAD e um sistema CAM, através de uma especificação formal do modelo do produto e de todos os seus submodelos, com as seguintes características:

- geometria 3D do produto, ao qual deve ser definida através de um conjunto de curvas, superfícies e volumes,
- topologia que descreve um conjunto de elementos e relações que concorrem para definição dos limites do produto,
- tolerância da qual vai depender a exactidão dos processos de fabrico,
- os elementos que irão ser necessários para a definição das operações de fabrico,
- informação não geométrica para descrição do material e suas propriedades.

3.2.4.3 PDES (*Product Data Exchange Specification*)

O objectivo do PDES é proporcionar um interface que permita a troca de informação sobre o ciclo de desenvolvimento do produto e o ciclo de produção. É basicamente uma expansão do interface IGES, pois foi um projecto iniciado pela mesma organização para suprir as limitações do IGES, uma vez que este não possui qualquer tipo de informação organizacional e tecnológica.

O PDES, recentemente designado por *Product Data Exchange using STEP*, representa a resposta da indústria Americana no sentido de desenvolver e implementar o interface STEP.

3.2.4.4 SET (*Standard d’Echange et de Transfert*)

O SET é o interface proposto pela indústria Francesa para a troca de todo o tipo de informação necessária para a implementação de um sistema CAD/CAM. A informação transferida por este tipo de interface é composta essencialmente por arames (wireframes), superfícies, *B-representation* (B-rep) e modelos de elementos finitos (FEM), assim como desenhos técnicos e dados científicos. Todo o tipo de informação sobre a organização,
propriedades do material e tolerâncias não pode ser especificado individualmente, por isso essa informação terá de ser incluída nos desenhos técnicos para se poder efectivar a sua transferência.

O interface SET permite a troca de informação entre diferentes sistemas CAD/CAM e entre sistemas CAD/CAM e bases de dados centrais. Tem uma estrutura de dados muito mais abrangente do que o interface IGES, sendo a sua informação armazenada num formato comprimido, com a consequente diminuição do tamanho do ficheiro neutro e do tempo de processamento.

3.2.4.5 VDAFS (Verband Der Automobilindustrie Flächenschnittstelle)

Este interface foi desenvolvido pela associação da indústria automóvel alemã para efectuar a transferência de curvas 3D e superfícies, uma vez que o interface IGES apresentava soluções pouco satisfatórias.

O interface VDAFS é similar ao IGES pois, tal como este, cada linha do ficheiro tem um comprimento fixo de 80 caracteres, sendo constituído por um cabeçalho (header) onde é descrito o nome do projecto, fonte de informação, data de criação, data de validação, o sistema CAD que lhe deu origem e o utilizador, e por uma secção de dados (data section) onde é descrito através de entidades cada um dos objectos geométricos. Com este tipo de interface pode-se transferir a descrição de qualquer peça incluindo a orientação da ferramenta de corte. No entanto surgem, alguns problemas quando se pretende transferir texto e dimensões, revelando ainda uma insuficiência relativamente à organização dos dados.

3.2.3.6 CAD*I interface

O interface CAD*I foi desenvolvido pelo projecto ESPRIT 322 da comissão Europeia, e tem como objectivos possibilitar a troca de informação entre vários sistemas de CAD e entre sistemas de CAD e modelos FEM, assim como a concepção de uma base de dados onde será armazenada informação CAD.

Para que a troca de informação possa ser realizável foram criados vários modelos com uma arquitectura de referência para arames (wireframe), superfícies e B-rep, assim como a especificação de um interface para aplicações FEM.
Um dos propósitos do desenvolvimento deste interface foi o de melhorar as deficiências dos interfaces IGES, SET e VDAFS, os quais possuam os seguintes problemas:

- muitas das especificações eram imprecisas,
- os formatos dos ficheiros não são os mais apropriados para serem eficientemente processados,
- o âmbito destes interfaces é bastante restrito.

O trabalho desenvolvido neste projecto incidiu nas seguintes áreas:

- investigação de estruturas de dados CAD e na representação de modelos 2D e 3D recorrendo a novas técnicas de modelização,
- especificação de um ficheiro com formato neutro,
- desenvolvimento de pré e pós-processadores para interligar vários sistemas de CAD,
- Desenvolvimento de métodos para testar interfaces.

Uma meta do projecto CAD*I era possibilitar uma interacção com o interface STEP no sentido de se desenvolverem soluções que pudessem ser implementadas directamente no STEP.

3.2.3.7 STEP (STandard for External representation of Product data)

O interface STEP é uma norma internacional (ISO 10303) para a representação e troca de informação (física e funcional) de um produto. Resumidamente este interface reúne uma serie de normas que pretendem fornecer um mecanismo comum para representação do modelo do produto ao longo do seu ciclo de vida, e que deve ser independente do software utilizado para o processar.

Este tipo de interface deve possibilitar o intercâmbio de ficheiros neutros assim como disponibilizar a base que permita a implementação e partilha de bases de dados do produto.

A caracterização da norma STEP é composta por cinco pontos, descritos a seguir:

1- no primeiro ponto descreve-se a aplicação da norma, sendo feita uma descrição geral de todos os fundamentos da norma. Apresenta-se também uma linguagem formal para a especificação das estruturas de informação necessárias para a
definição de um modelo do produto utilizando esta norma (EXPRESS - linguagem orientada ao objecto similar à linguagem PASCAL desenvolvida especificamente para a norma STEP). É ainda referido o esquema de modelização do produto especificando os métodos básicos de modelização utilizados,

2 - neste ponto são definidas as normas de implementação,

3 - no terceiro ponto especificam-se os testes de conformidade e a respectiva sequência de aplicação, definindo-se as regras de teste para verificação da conformidade com a norma,

![Diagrama de modelos do interface STEP](image)

Figura 3.9 - Modelos do interface STEP [Rembold - 94]

4 - neste ponto definem-se as normas de modelização do produto, (figura 3.9):

- *modelo de apresentação*, especifica a forma como é feita a apresentação da informação, nomeadamente como visualizar o produto num monitor ou em papel, determinando várias características tais como, cores, iluminação, fonte do texto, vistas, etc, (figura 3.9 a)),

Conversão e Execução de Planos de Processo
- *modelo de materiais*, descreve as características do material, por exemplo, a determinação dos coeficientes de especificação do material tais como, coeficiente de expansão, condutividade térmica, transferência de calor, etc, (figura 3.9 b)),
- *modelo de tolerâncias*, onde se definem as margens de tolerância, relativamente às formas, dimensões, geometria, etc, (figura 3.9 c)),
- *modelo de superfície*, onde se encontra a especificação dos acabamentos da superfície (figura 3.9 d)),
- *modelo de caracterização das formas*, aqui faz-se uma descrição do objecto relativamente à sua maquinção, para tal é necessário especificar o padrão da forma ou o método de maquinção a adoptar. Entre as características mais importantes destacam-se os buracos e as rosca como se pode observar na figura 3.9 e),
- *modelo de representação da forma*, baseado nos elementos geométricos e no modelo topológico. Existem três maneiras de representar a forma de um objecto: por arames, superfícies e volumes, (figura 3.9 f)),
- *modelo topológico*, especifica as entidades e as suas relações de vizinhança, referindo-se as superfícies, vértices e arestas associando-as aos elementos geométricos correspondentes, (figura 3.9 g)),
- *modelo geométrico*, contém toda a informação geométrica necessária para a definição de linhas e superfícies. As curvas e as superfícies podem ser representadas através de estruturas, pontos, vectores, sistemas coordenados e transformações, (figura 3.9 h)).

5 - especificação de normas para aplicação às áreas técnicas específicas. Estas normas baseiam-se nos modelos descritos no ponto quatro podendo ser divididas nas quatro categorias que a seguir se descrevem:

- *project*, onde se descreve o tipo de dados e as estruturas necessárias para o *layout* do desenho e para a representação dos elementos técnicos,
- *configuração da estrutura do produto*, onde se define a estrutura de dados para o armazenamento da informação caracterizadora do produto, tornando possível a comparação de vários modelos do mesmo produto. É a partir daqui que se obtém a árvore do produto, com especificação de componente e quantidades,
- *análise de elementos finitos*, que permite a análise parcial do modelo,
- *cinemática*, onde se mantém a informação necessária para o trabalho de componentes como os manipuladores robóticos.
3.3 Fabrico Assistido por Computador (CAM)

O Fabrico Assistido por Computador (CAM) pode ser definido como um conjunto de sistemas computorizados para ajuda no planeamento, gestão e controlo das funções de fabrico, [Groover - 87].

Estes sistemas são compostos por hardware e software especializado e adaptado ao fabrico da empresa. O hardware é o mesmo que o utilizado nos sistemas CAD (CPU, monitor, teclado, etc), acrescido de todo o equipamento industrial computorizado tais como, máquinas de ferramentas, controladores numéricos, etc. O software deve ser constituído por um conjunto de programas que ajudem nas funções de planeamento e controlo do fabrico, através de pós-processadores específicos, simulação, controlo de processos, etc.

Segundo o modelo da produção definido por [Groover et al - 84] a aplicação de um sistema CAM a um sistema produtivo, divide-se em duas grandes categorias: Planeamento do fabrico e controlo do fabrico, como se pode observar na figura 3.10.

![Figura 3.10 - Modelo da produção][Groover - 84]

3.3.1 Planeamento do fabrico

O planeamento de fabrico é muitas vezes também referido como planeamento de processo, processamento de materiais, engenharia de processo e determinação do percurso de maquinação (machine routing). Consiste basicamente na utilização off-line dos computadores para ajudar na especificação dos processos e parâmetros que devem ser utilizados para converter materiais de um estado inicial para um estado final pré-determinado. De entre essas especificações pode-se referir:
- sequência de operações, escolha do ciclo de produção ao produto, em função do parque de máquinas existente,
- especificação de maquinagem, escolha de máquinas, ferramentas, materiais, tolerâncias, parâmetros de corte (velocidade e profundidade de corte), etc,
- distribuição de tarefas, distribuição dos trabalhos parciais pelas diferentes máquinas (ou secções) disponíveis, por forma a executar o trabalho pretendido,
- estimação de custos, por simulação da tarefa a executar pela máquina, sabendo o custo/hora podem estimar-se:
 ⇒ custo de cada peça
 ⇒ custo total do produto
- planeamento das operações de maquinagem, definição dos comandos (instruções) a fornecer à máquina, por forma a executar o trabalho pretendido.

O planeamento do fabrico ou planeamento de processo pode ser considerado como um dos factores chave da integração CAD/CAM, uma vez que representa o elo de ligação entre o projecto e o fabrico de um sistema produtivo. A sua função é converter o projecto do produto em instruções para o seu fabrico.

A automatização deste processo dá origem ao denominado CAPP (Computer Aided Process Planning) que constitui o módulo de integração entre o CAD e o CAM num sistema CIM, contribuindo assim para o aumento da flexibilidade de um sistema de produção. Este tema (CAPP) será objecto de uma análise mais detalhada, posteriormente neste capítulo.

3.3.2 Controlo do fabrico

O controlo de fabrico engloba um conjunto de actividades dedicadas à gestão e controlo das operações físicas da fabrica. É possível avaliar os progressos de fabrico através da monitorização permanentemente do estado dos processos de fabrico em relação ao que foi planeado, estabelecendo uma comparação entre o avanço das operações e as previsões efectuadas. O controlo de fabrico compreende três áreas indissociáveis: fluxo físico de materiais, tempos e operações.

Na figura 3.11 pode-se observar de uma forma simplificada quais os componentes que são utilizados no controlo computorizado de um processo industrial.
O processo industrial a ser controlado pode ser qualquer, nomeadamente processo químico, transporte automático (AGV, tapetes rolantes), máquinas de ferramentas de controlo numérico (fresadora, torno), robots aplicados a diversos fins (montagem, soldadura) e sistemas de inspecção automática (controlo de qualidade).

Para se efectuar o controlo computorizado pode-se utilizar diversos tipos de controladores, estando a opção dependente do sistema que se vai controlar. Alguns exemplos de controladores são o computador (com uma placa de I/O para dados analógicos e digitais), o controlador numérico, o controlador robótico e o controlador lógico programável (PLC - Programmable Logic Controller).

Os sensores são transdutores eléctricos que transformam uma grandeza física (ex. temperatura, posição) numa grandeza eléctrica (ex. resistência, tensão), sendo a transformação inversa efectuada pelos actuadores. São estes componentes que permitem efectuar a interligação (interface) entre o processo a controlar e o equipamento computorizado de controlo.

3.3.3 Controlo Numerico (NC)

O controlo numérico (NC - Numerical Control) é uma forma de automação em que o equipamento de processamento é controlado por meio de um programa baseado em números letras e outros símbolos, [Groover - 87]. Este conjunto de números, letras e símbolos são codificados num formato apropriado de maneira a definir um programa de instruções que será posteriormente transmitido electronicamente ao equipamento de produção por forma a regular as suas funções e operações. O programa de instruções deve reflectir as operações que se pretende que o equipamento de produção execute, ou seja, sempre que se pretenda modificar alguma operação basta alterar o programa de instruções.
Esta capacidade de alteração do programa é que torna o controlo numérico apropriado para pequenos e médios volumes de produção.

As aplicações de Controlo Numérico cobrem uma grande variedade de processos de fabrico. Essas aplicações podem ser divididas em dois grupos: aplicações que utilizam máquinas e ferramentas, tais como torneamento, fresagem, furação e outras que envolvam remoção de metal; e aplicações que não utilizam máquinas de ferramentas, tais como montagem e inspecção.

A aplicação mais comum do Controlo Numérico é no controlo de máquinas de ferramentas. Esta foi inclusivamente a primeira aplicação deste tipo de controlo sendo hoje considerada comercialmente como a mais importante.

Neste trabalho a abordagem a este tema apenas considerará as aplicações que utilizam máquinas de ferramentas, com especial ênfase nas máquinas para maquinação de peças metálicas, uma vez que é a este tipo de máquinas que o método proposto no capítulo 5 se aplica.

Um sistema de Controlo Numérico é composto pelos seguintes componentes básicos: programa de instruções, unidade de controlo da máquina e equipamento de processamento.

O programa de instruções consiste numa sequência detalhada de comandos passo a passo que controlam o equipamento de processamento. Os comandos mais comuns referem-se à posições da árvore da máquina ferramenta em relação à mesa de trabalho, onde se encontra a peça ou componente fixado. Existem ainda outros comandos que permitem selecionar a velocidade de corte, ferramenta de corte, avanço da ferramenta e outras funções relevantes para a operação de maquinação. O programa deve ser codificado num meio que permita a sua preservação e respectiva transmissão. O meio mais comum tem sido o suporte magnético (cassetes e disquetes), no entanto com o aparecimento das redes industriais o armazenamento em computador assume-se como o meio mais utilizado.

A unidade de controlo da máquina (controlador) é constituída por equipamentos electrónicos que fazem a leitura e interpretação do programa de instruções, convertendo-o em acções mecânicas da máquina de ferramentas ou de outro equipamento de processamento.

O equipamento de processamento é o componente que realiza o trabalho útil. No exemplo mais comum das máquinas de ferramentas, o equipamento de processamento
consiste na mesa de trabalho, na árvore, no eixo ou cabeçote porta-ferramentas, bem como nos motores e nos controladores que os conduzem.

Uma máquina de controlo numérico deve ser capaz de controlar o movimento da ferramenta por forma a maquinar a peça de acordo com o programa de instruções, para tal esta deve ser capaz de executar três tipos de operações típicas:

- **ponto a ponto (PTP Point To Point)**, movimento de posicionamento (absoluto ou relativo), normalmente executado a alta velocidade,
- **corte a direito (Straingth Cut)**, movimentação entre pontos (linha recta) com ferramenta em corte, sendo efectuado a uma velocidade definida pelo tipo de corte, ferramenta e acabamento desejado,
- **corte em contorno (Contouring)**, movimento em corte segundo um contorno pré-determinado.

A escolha da máquina de ferramentas de controlo numérico está dependente do tipo de operação que se pretende executar na peça. As duas máquinas de controlo numérico normalmente mais utilizadas são: o torno (Lathe) e a fresa (Mill).

O torno é a máquina de ferramentas mais antiga, sendo utilizada para efectuar operações de torneamento. A peça é segura e rodada enquanto uma ferramenta cortante se move para produzir a forma desejada. Estas máquinas normalmente têm dois eixos (o número de eixos determina-se somando o número de movimentos que a peça pode efectuar com o número de movimentos da ferramenta),

A fresa é utilizada para efectuar operações de fresagem, a peça é fixa numa mesa (poderá ter dois ou três eixos) e trabalhada por uma ferramenta rotativa. É a máquina de ferramentas mais versátil pois pode produzir formas de contorno plano, formas com superfícies tridimensionais e formas cilíndricas.

Como foi referido anteriormente, as aplicações típicas do controlo numérico encontram-se na produção de pequenos lotes de peças. Segundo [Groover et al - 84], existem várias razões que levam à utilização do controlo numérico neste tipo de produção:

- **redução dos tempos não produtivos**, o controlo numérico não altera os processos básicos de maquinagem, no entanto consegue aumentar o tempo produtivo da máquina através da redução do tempo e do número de setups, diminuição do tempo de manuseamento da peça, mudanças automáticas de ferramenta, etc,
- **redução das operações de pré-fixação**,
- redução de lead time, com o controlo numérico as operações de setup podem ser realizadas mais rapidamente,
- grande flexibilidade de fabricação, o controlo numérico adapta-se facilmente às alterações do sistema de fabrico, do escalonamento, etc,
- fácil resposta a alterações do projecto de engenharia da peça, bastando para tal alterar o programa de instruções,
- aumento da precisão e repetibilidade com diminuição do erro humano, o controlo numérico é ideal para componentes complexos onde a probabilidade de erro humano é elevada.

3.3.4 Tipos de controladores numéricos

A evolução da tecnologia do controlo numérico está intimamente ligada e dependente do desenvolvimento da tecnologia dos computadores. O aparecimento de novos tipos de controladores numéricos, como é o caso do controlo numérico directo (DNC - Direct Numerical Control) nos anos 60, e o controlo numérico computorizado (CNC - Computer Numerical Control) nos anos 70, são os resultados dessa ligação.

A introdução do computador no controlo numérico verificou-se devido a uma série de problemas que o controlo numérico convencional não era capaz de dar resposta.

- fita perfurada, este tipo suporte físico de programas tem bastantes inconvenientes, pois sendo feito de papel torna-se bastante frágil podendo facilmente deteriorar-se com as várias utilizações,
- leitor de fita perfurada, o leitor que interpreta a fita perfurada é o componente com menor fiabilidade no sistema, sendo normalmente o responsável pela maior parte das paragens da máquina de ferramentas,
- erros de programação, na preparação da fita perfurada, que contém o programa, é normal a ocorrência de erros, sendo muitas vezes necessário efectuar dois ou três testes para se ter a certeza que a fita perfurada está correctamente elaborada,
- controlador, o controlo numérico convencional é efectuado por comando electrónico não microprocessado e sem capacidade de memória, tornando desta forma o sistema pouco flexível,
- controlo deficiente da velocidade de corte, a função do controlo numérico convencional é apenas controlar a posição de ferramenta relativamente à peça que se está a maquinar, não existindo qualquer forma de optimizar, através de “software” (fita perfurada), a velocidade de corte durante a execução da peça, contribuindo desta forma para uma diminuição da produtividade.
Foi tomando consciência destes problemas que os fabricantes de máquinas de ferramentas e os responsáveis pelos projectos de sistemas de controlo optaram por, em conjunto, trabalharem no sentido de desenvolverem os sistemas DNC e CNC.

3.3.4.1 Controlo Numérico Directo (DNC)

O controlo numérico directo pode ser definido como um sistema de fabrico no qual um conjunto de máquinas de ferramentas são controladas por um computador central através de uma ligação directa e em tempo real. No DNC não é normalmente utilizado o leitor de fita perfurada uma vez que o programa pode ser transmitido directamente à máquina de ferramentas a partir da memória do computador. O computador central, responsável pelo controlo do sistema DNC, é programado por forma a enviar as instruções a cada máquina a partir do momento em que elas necessitam, podendo controlar mais de 100 máquinas diferentes. O computador tem acesso a uma base de dados onde se encontram armazenados os programas NC que poderão ser posteriormente transmitidos às máquinas de ferramentas.

3.3.4.2 Controlo Numérico Computorizado (CNC)

O controlo numérico computorizado é um sistema NC que utiliza o microcomputador como unidade de controlo de uma máquina de ferramentas. A opção por este tipo de sistema de NC aconteceu devido aos avanços registados na tecnologia dos computadores, nomeadamente na diminuição do tamanho e custo dos computadores acompanhada com um aumento das suas capacidades computacionais.

Embora o computador seja utilizado tanto nos sistemas DNC como nos CNC, existem diferenças de fundo entre estes dois sistemas, nomeadamente:

- o computador num sistema CNC controla apenas uma máquina enquanto nos sistemas DNC poderá controlar várias máquinas,
- nos sistemas NC o computador encontra-se junto à máquina que controla, nos sistemas DNC estes encontram-se afastados das várias máquinas que controlam,
- o software CNC é desenvolvido especificamente, tendo como objectivo explorar ao máximo as capacidades da máquina de ferramentas que se encontra sob seu controlo, nos sistemas DNC o software é mais genérico.
Os sistemas CNC tiveram um grande impacto nos sistemas de produção pois com a sua utilização conseguia-se diminuir o tempo de fabrico e melhorar a qualidade do produto. As características que levaram ao sucesso deste tipo de sistema NC são:

- **possibilidade de armazenar em memória mais do que um programa NC**, peritem a edição, modificação e teste de programas NC junto à máquina de ferramentas, permitindo facilmente optimizar as condições de maquinacao,
- **utilização de ciclos e subrotinas**, evitando assim a repetição de reescrita de código que é frequentemente utilizado,
- **facilidades no setup de posicionamento e alinhamento**, possibilidade de recurso a software para efectuar estas operações, tornando-as mais precisas e rápidas,
- **diagnósticos**, as máquinas CNC podem efectuar diagnósticos on-line, permitindo desta forma a detecção de avarias, ou de sinais de uma avaria iminente,
- **interface de comunicações**, a maior parte dos sistemas CNC vêm equipados com interfaces de comunicação normalizadas que permitem a fácil ligação com outros sistemas de produção.

O futuro tende a caminhar para uma maior integração entre os sistemas CNC e DNC, assim o computador CNC terá a função de controlar a máquina de ferramentas enquanto que as informações de gestão/produção acerca do desempenho do processo serão encaminhadas para o computador DNC.

3.3.5 Integração CAD/NC

A interligação automática de um sistema CAD com sistemas de programação NC é um importante passo no sentido da implementação do conceito CIM. No passado esta interligação era executada pelo programador NC que elaborava um programa com o formato ISO, manualmente ou com a ajuda de um computador (CAPP - Computer Aided Process Planning), através da consulta de desenhos que eram executados manualmente ou num sistema de CAD.

Na automatização da interligação CAD/NC a geração do código de instruções que vai ser transmitido à máquina NC é efectuada com base num ficheiro interface normalizado (IGES, STEP, etc) contendo as características do produto e que foi elaborado na fase de projecto, como se pode observar na figura 3.12.
Figura 3.12 - Integração CAD/NC

No passo seguinte é aplicado um algoritmo de reconhecimento das características do produto por forma a que a informação possa ser interpretada por um sistema CAPP. O *tool path* (encaminhamento de ferramenta) determina qual deve ser o percurso da ferramenta, gerando as instruções para o corte da peça assim como a sua sequência. Posteriormente, o processo que a máquina NC vai executar irá ser simulado por animação gráfica, podendo voltar à fase de *tool path* se não forem cumpridos os requisitos pretendidos. Depois de correctamente definido e validado, o percurso da ferramenta é convertido, através de um pós-processador, em instruções que serão interpretadas pela máquina NC.

Segundo [Rembold et al. - 94], as vantagens decorrentes da integração CAD/NC são:

- minimização das falhas,
- redução dos custos associados à geração e aquisição de informação,
- garantia de consistência entre o modelo e os dados,
- melhor qualidade dos programas NC e dos planos de trabalho,
- redução do tempo para planeamento de tarefas.

3.4 Planeamento de Processo Assistido por Computador (CAPP)

O planeamento de processo para o fabrico de componentes discretos envolve a preparação de um plano que descreva as operações e respectiva sequência, as máquinas de ferramentas, as ferramentas e os parâmetros necessários à transformação de um
componente ou componentes num produto final [Kusiak - 90]. Durante a fase de planeamento de processo pode não ser associado nenhum elemento temporal, sendo apenas especificado o tempo na fase de escalonamento. Contudo se for pretendida a optimização no fabrico as referências ao tempo deverão ter lugar ainda na fase de planeamento de processo.

A função da actividade de escalonamento é garantir que as tarefas (uma ou mais operações) adequadas são executadas no momento exacto e sobre as peças certas, [Meredith-92], permitindo que se obtenha uma utilização eficiente dos recursos e uma resposta rápida aos pedidos efectuados ao sistema. A actividade de escalonamento não é mais do que a afectação específica e detalhada das tarefas aos centros de trabalho e aos instantes de tempo. Pode-se dizer que enquanto o planeamento de processo determina “como” fazer o escalonamento determinará “onde” e “quando” fazer os produtos.

A principal diferença entre as funções de planeamento de processo e de escalonamento é que neste último o tempo assume-se como o elemento mais importante, enquanto que no primeiro se estabelece quais as operações a realizar e como serão realizadas.

No passado as actividades do planeamento de processo eram elaboradas manualmente por um perito humano. Este, normalmente um operário com bastante experiência e com conhecimentos sobre as capacidades de fabrico da fábrica, desenvolvia as instruções necessárias ao plano de fabrico analisando o projecto (desenhos) do produto. Com este sistema o plano de fabrico dependia quase exclusivamente do conhecimento do perito, podendo para o mesmo produto existir planos de fabrico diferentes se estes fossem elaborados por vários peritos. A informação muitas vezes não era totalmente documentada ficando apenas no conhecimento do perito.

Com o objectivo de eliminar os problemas do planeamento de processo manual foi, ao longos dos últimos anos, desenvolvido um conjunto de acções no sentido de dotar os programas com a experiência, bom senso e lógica que um perito humano detém, por forma a se conseguir gerar automaticamente a sequência de operações de fabrico a partir da informação sobre as características do produto, disponibilizada pela engenharia de projecto.

A automatização do planeamento de processo, designada por planeamento do processo assistido por computador (CAPP - Computer Aided Process Planning), representa a ligação entre o projecto e o fabrico num sistema CAD/CAM. O sistema CAPP reduz ao
mínimo o trabalho fastidioso de secretária normalmente atribuído à engenharia de fabrico, ao mesmo tempo que elabora planos de fabrico racionais, consistentes e optimizados.

Existem duas técnicas de planeamento de processo, que alguns autores consideram como dois sistemas: sistema variante e sistema generativo.

3.4.1 Sistema variante

O sistema variante é constituído por uma base de dados onde estão armazenados os planos de fabrico normalizados para cada uma das famílias de produtos. Uma família de produtos consiste num conjunto de componentes que têm características de fabrico semelhantes. Quando se pretende gerar um plano de fabrico para um novo produto, este é normalmente uma variação do plano de fabrico normalizado para a família de produtos à qual pertence o novo produto. Se o novo produto não se identificar com nenhuma das famílias de produtos existentes terá de se criar uma nova família para a qual se desenvolverá um plano de fabrico normalizado. Este tipo de sistema é aplicado nos casos em que existe um elevado grau de similaridade entre os diferentes produtos.

3.4.2 Sistema generativo

O sistema generativo deve ser capaz de gerar um plano de fabrico a partir de informações, armazenadas na base de dados, sobre a geometria da peça (ex. ficheiros de intercâmbio, IGES, DXF), máquinas, ferramentas, assim como regras de planeamento de processo. Este sistema, ao contrário do anterior, não necessita de intervenção humana nem de planos de fabrico normalizados para famílias de produtos.

Não se pode considerar que os sistemas CAPP actualmente existentes sejam verdadeiramente generativos, porque na realidade requerem a intervenção humana para a descrição e caracterização da peça, e aplicam-se apenas a formas geométricas de pequena complexidade.

Segundo [Rembold - 94] os benefícios da aplicação do CAPP são:

- redução do tempo de planeamento de processo,
- desenvolvimento de planos de fabrico óptimos e consistentes,
- redução dos custos de fabrico e planeamento,
- aumento da produtividade,
- reduzir o nível de perícia necessária para elaborar um plano de fabrico
- facilidade de integração CAD/CAM.
3.4.3 Alguns exemplos de sistemas automáticos de planeamento de processo

Desde 1965 até aos dias de hoje, muitos foram os sistemas automáticos de planeamento de processo desenvolvidos. Os primeiros sistemas com relativo sucesso surgiram na década de 70 dos quais se pode destacar, APPAS [Wysk - 77], CAPP [Link - 78], e AUTAP [Evershein et al - 79], no entanto os maiores progressos no desenvolvimento deste tipo de sistemas registaram-se ao longo dos últimos 15 anos.

Os vários sistemas de planeamento de processo automatizado desenvolvidos diferem significativamente uns dos outros relativamente aos métodos utilizados e aos domínios em que são aplicados. Por exemplo: TOM [Matsushima et al - 82] aborda apenas o planeamento de processos de furação, PROPLAN [Philips et al - 84] e EXCAP [Davis et al - 84] aplicam-se a peças com eixo de revolução, CUTTECH [Barkocy et al - 84] é um sistema de planeamento das operações de maquinagem que determina a sequência de operações, as ferramentas, as velocidades, etc, SIPS [Nau - 87] tem como objectivo elaborar o plano que represente o menor custo para cada uma das operações, o que é diferente de determinar o menor custo total, [Bourjault - 84] e [Homem de Mello - 89] desenvolveram dois sistemas de geração da melhor sequência de montagem de um produto, o primeiro usando grafos de ligações e o segundo utilizando grafos AND/OR, no entanto nenhum dos sistemas elabora um plano de execução que indique como programar os robots e as máquinas de ferramentas por forma a cumprirem o plano simbólico gerado, AMRF [Kramer et al - 86] e XCUt [Brooks et al - 87] são sistemas que geram plans para peças que apenas necessitam de um setup, pois estas só são maquinadas num dos lados.

Os sistemas GARI [Descotte et al - 81], Hi.MAPP [Berenji et al - 86], QTC [Chang et al - 92], Das [Das et al - 94] e MACHINIST [Hayes - 95] são exemplos de geradores de planos com vários procedimentos de setup para peças prismaticas (que sofrem operações de maquinagem em vários lados). Por exemplo o sistema Das permite obter o plano com o menor custo, ou seja aquele que necessita de um menor número de procedimentos de setup, no entanto, não considera os diferentes tipos de fixação da peça quando determina quais as operações de maquinagem que vão ser incluídas no mesmo procedimento desetup.

O sistema TPMS [Rocha et al - 95] tem como objectivo final a geração de um programa ou conjunto de programas para robots, AGV’s, máquinas de controlo numérico e outros componentes do sistema, por forma a minimizar o tempo despendido na programação dos vários componentes de um sistema FMS.
Descrevem-se a seguir alguns exemplos de sistemas de planeamento de processo automático com domínios de aplicação distintos e metodologias diversas. Desta forma pretende-se dar uma panorâmica geral e tão abrangente quanto possível daquilo que tem sido feito nesta área.

3.4.3.1 TOM

É um sistema baseado em conhecimento que se aplica apenas a processos de furação. A partir da geometria final da peça o sistema TOM gera o plano de processo apropriado. A base de conhecimento sobre a qual assenta este sistema funciona com base em regras de produção. O método utilizado para a geração do plano é a inferência inversa (backward). A partir da geometria final da peça determinam-se, utilizando as regras de produção, a geometria anterior e a operação de maquinação mais adequada. Num passo seguinte a geometria que era antecedente passa a final determinando-se para esta nova situação a geometria antecedente e a respectiva operação de maquinação, e assim sucessivamente até se encontrar a regra que determine não haver geometria antecedente. Em algumas situações pode gerar-se conflito devido ao facto de existir mais do que uma regra aplicável a um caso específico. Para a resolução do conflito recorre-se à utilização de métodos heurísticos tais como "regra encontrada primeiro", última regra utilizada" e "regra mais utilizada". Este sistema tem o objectivo de gerar o plano que gaste o menor tempo de maquinação.

3.4.3.2 PROPLAN

É um sistema inteligente de planeamento de processo que apenas se aplica a peças com eixo de revolução. A base de conhecimento do PROPLAN é constituída por um conjunto de regras de produção. Utiliza como fonte de informação a base de dados de um sistema CAD. A geometria da peça é armazenada sob a forma de primitivas tais como linhas e arcos. Uma linha serve para representar segmentos de recta, sendo caracterizada através da especificação dos seus pontos inicial e final. Um arco serve para representar superfícies curvas, sendo caracterizado por parâmetros tais como, pontos inicial e final, centro de curvatura e ângulo do arco. As características de forma da peça são guardadas como vértices de um grafo. Para a geração do plano este sistema utiliza o método de pesquisa de grafos. Este método torna-se bastante pesado e lento quando utilizado em grafos grandes resultantes de peças muito complexas. Por este motivo o sistema PROPLAN só é utilizado com peças de geometria simples.
3.4.3.3 EXCAP

Tal como o sistema anterior, o EXCAP é um sistema inteligente de planeamento de processo que apenas se aplica a peças com eixo de revolução. Também não pode ser aplicado a peças com geometrias complexas, mas devido ao formato utilizado para a descrição da geometria. O processo de geração do plano é constituído por duas fases. Na primeira, também chamada de macro fase, determina-se a sequência das operações de remoção de volume. Na segunda, denominada de micro fase, determinam-se os parâmetros tais como velocidade e profundidade para cada uma das operações definidas na fase anterior. O método utilizado para a geração do plano é a inferência inversa (backward). Para cada operação determina-se a geometria resultante que será utilizada como base do nível seguinte. Desta forma obtém-se uma árvore cujos nós representam as diversas geometrias, e cujos ramos representam as operações a realizar. O primeiro nó representa a peça final, o último nó representa a matéria prima e os restantes as geometrias intermédias. Com este sistema é possível gerar mais do que um plano cabendo ao utilizador a escolha do plano a realizar.

3.4.3.4 CUTTECH

É um sistema para o planeamento de operações de maquinação, ou seja, para selecionar ferramentas, determinar a sequência das operações e alguns parâmetros tais como velocidade para a maquinação de uma determinada peça. Este sistema é constituído por quatro componentes:

- um módulo de recolha de informação, onde é possível representar as características da peça, da matéria prima e da máquina.
- uma base de conhecimento com regras de maquinação, que contém algoritmos e tabelas de decisão que permitem a selecção da ferramenta adequada, a sequência de operações e os parâmetros de maquinação para as operações definidas.
- uma base de dados que contém informação sobre os recursos disponíveis a nível de máquina e ferramentas, assim como dados sobre a maquinação, por exemplo a velocidade da ferramenta.
- um programa de controlo para coordenar os acessos e respectiva sequência a cada um dos três módulos anteriores.

O sistema recolhe a informação necessária sobre as características da peça a maquinar e da máquina. Utilizando as regras de maquinação da base de conhecimento e a informação disponível na base de dados gera uma saída com as máquina adequadas e respectivos parâmetros de maquinação para a execução da peça em questão.
3.4.3.5 CIMS

Iwata e Sugimura desenvolveram em 1985 um sistema inteligente para o planeamento de processo constituído por três subsistemas:

- um sistema de modelação interactivo que constrói modelos tridimensionais com informação geométrica e tecnológica (tipo de material, rugosidade) das peças a executar,
- um sistema de planeamento de processo que a partir da peça a executar e da matéria prima disponível gera um plano de maquinagem,
- um sistema baseado em conhecimento constituído por regras de produção que representam o know-how de um técnico especialista responsável pelo planeamento do processo.

A geração do plano é constituída por cinco etapas. Na primeira determinam-se as superfícies a maquinar a partir das características da peça e da matéria prima disponível. Na segunda etapa decidem-se quais as máquinas adequadas para a realização das operações de maquinagem. Na terceira etapa determinam-se quais as operações de maquinagem que podem ser executadas num mesmo processo de maquinagem. Na etapa quatro sequenciam-se as operações com base na precisão da maquinagem e na rugosidade da superfície. Na última etapa procede-se à geração do plano com base na informação resultante das fases anteriores.

3.4.3.6 TPMS (Task and Execution Planning for Manufacturing Systems)

O TPMS é um método que se encontra ainda em fase de desenvolvimento e envolve duas fases. Na primeira é gerado um plano de alto nível composto por um conjunto de operações simbólicas (ex: soldar A c/ B, inserir C em D); na segunda fase criam-se os programas, instruções e comandos adequados para controlar as várias máquinas intervenientes no processo a partir do plano gerado na fase anterior.

Na fase de planeamento de alto nível é possível a geração de vários planos que podem ser activados dinamicamente conforme as necessidades. Neste método consideram-se todas as restrições de processamento, exequibilidade e geométricas, implicando a existência de relações de precedência entre as várias operações de forma a garantir-se que estas são executadas na ordem correcta, assim a sequência de operações a considerar depende das restrições associadas à tarefa, sendo o plano da tarefa representado através de um grafo de precedências.
O sistema dispõe de várias políticas de geração de planos (geração de todos os planos, geração rápida de um bom plano e geração do melhor plano). Para certas situações pode ocorrer a explosão combinacional se se tentar gerar todos os planos a alto nível. Por essa razão o sistema TMPS dispõe de um módulo de cálculo de complexidade que com base na análise do grafo de precedências permite identificar quantos planos existem, o que é útil para a escolha da política de geração de planos. Neste momento o TPMS ainda não efectua a conversão automática do plano a alto nível nos programas de controlo dos diversos recursos do Sistema de Fabrico.

3.4.3.7 MACHINIST

O MACHINIST é um sistema de planeamento de processo baseado em conhecimento capaz de gerar planos para executar peças em máquinas CNC de 3 eixos (fresadora) com várias operações de set-up. O plano final gerado é obtido através da convergência de dois planos: o plano de formas (feature plan) onde todas as formas geométricas são removidas (uma forma geométrica corresponde a um volume de remoção), e o plano de esquadria (squearing plan) onde são preparadas todas as superfícies para que se possa efectuar a remoção das formas geométricas.

O melhor plano de esquadria é seleccionado de uma biblioteca constituída por 14 planos de esquadria que cobrem a maior parte das diferentes formas geométricas. A escolha de um bom plano de esquadria irá garantir a perpendicularidade e a precisão do resto do plano.

O plano de formas é gerado utilizando a estratégia de pesquisa designada por LCOS (Least Commitment to Operator Selection) constituída pelas seguintes fases:

1. Geração de um ou vários modos possíveis de remoção (operadores) para cada uma das formas geométricas (objectivos).
2. Análise das interferências ou iterações negativas por forma a ordenar as restrições existentes entre os diferentes operadores. Adicionalmente está feita uma análise das iterações positivas ou oportunidades de partilha de trabalho entre os operadores.
3. Depois de gerados todos os operadores possíveis e de analisadas todas as restrições é escolhido um conjunto de operadores que minimizam o custo global do plano.

A qualidade dos planos desenvolvidos por este método foi medida através do QUEM (QUality and Experience Metric) tendo-se verificado que 95% dos planos gerados são equivalentes em qualidade aos planos desenvolvidos por especialistas com 6 a 8,5 anos de experiência.
CAPÍTULO 4
O Centro CIM do ISEP

Os FMS (Sistemas de Fabrico Flexível) efectuam a integração do processo de fabrico isto é, os robots, as máquinas, o transporte de peças, o armazenamento e todo o hardware adicional e software subjacentes à automatização e controlo do processo. O êxito da relação e coordenação das diferentes células entre si e com os restantes elementos intervenientes na produção é o que permite configurar uma fábrica flexível.

O centro CIM do ISEP surgiu de um esforço conjunto dos Departamentos de Electrotecnia, Mecânica e Informática no sentido de dotar a Escola de condições que potenciassem um melhor ensino e melhores condições para o desenvolvimento da Investigação Científica em áreas ligadas ao sector produtivo.

Figura 4.1 - Layout do Centro CIM do ISEP (cortesia do Centro CIM do ISEP)
4.1 Constituição do centro CIM

A arquitectura do Sistema Flexível existente no Centro CIM do ISEP assenta no princípio da utilização de células automatizadas, programáveis, sob a supervisão do computador central. É um sistema modular podendo ser facilmente expandido sem envolver grandes alterações a nível de software. O software utilizado corre no sistema operativo Windows NT, que sendo multitarefa permite um controlo em tempo real com capacidade de reprogramação, caso ocorra alguma avaria em qualquer das células.

O Sistema é constituído por uma Estação de Maquinagem, uma Estação de Controlo de Qualidade, um Sistema de Armazenamento, um Sistema de Transporte e um Sistema de Controlo, cuja constituição individual se passa a referir:

⇒ Estação de Maquinagem

- um Robot Scorbot-ER VII com garra pneumática e “Teach Pendant”
- um controlador para o Robot
- uma Base Linear para o Robot
- um Torno CNC FANUC série OT-C
- uma Fresadora CNC FANUC série OM
- uma estação para o AGV

⇒ Estação de Controlo de Qualidade e Identificação de Peças / Sistema de Visão

- um Robot Scorbot-ER VII com garra pneumática e Teach Pendant’
- um controlador para o Robot
- uma Base Linear para o Robot
- um Sistema de Visão “ROBVISIONpro” com:
 * câmera e monitor
 * computador e software de controlo
- uma estação para o AGV

⇒ Sistema de Armazenamento

- Armazém Rectangular com 39 células
- 39 paletes para o Armazém/AGV
- Sistema de Código de Barras - Escrita/Leitura
- uma estação para o AGV
⇒ Sistema de Transporte

- um AGV com percurso orientado por seguimento de uma fita branca
- três Estações para controlo

⇒ Sistema de Controlo

- rede de Comunicações RS232
- dois módulos de interface I/O para controlo das células
- três computadores para controlo das células
- um computador para o HOST - software CIM da Denford

⇒ Software utilizado

- software de CAD Autocad 12+ Genius 12
- software para CNC - PAMS
- software de Gestão da Produção em plataforma Informix
- software de programação de robots off-line e simulação Workspace3
- software de simulação de sistemas Automod

4.2 Arquitetura de Software

O Centro CIM do ISEP foi concebido com três níveis hierárquicos, desde as máquinas de ferramentas, armazém automático e sistema de visão, que fazem parte do nível mais baixo, até ao Sistema Supervisor, que é o software do HOST.

![Figura 4.2 - Arquitectura do software](image-url)
4.2.1 HOST

É o supervisor do Centro, pode comunicar directamente com os controladores das células, mas não com as máquinas em particular. É composto por cinco módulos de software:

- Configurator, destinado à concepção e análise do layout do Centro,
- Process Planner, utilizado para descrever as ações a realizar para produzir um componente,
- Route Planner, que define o percurso de uma peça no layout,
- Scheduler, que procede ao escalonamento das operações a realizar sobre a peça,
- Dispatcher, tem a função enviar ordens de trabalho e controlar a funcionamento das células durante a produção.

4.2.2 Gestor de Célula (Cell Manager)

É um módulo de software responsável pelo controlo global de uma célula de fabrico. O sequenciamento das máquinas existentes na célula é executado pelo cell manager através de ações coordenadas sobre as várias máquinas, sendo essas ações baseadas numa lista de instruções pré-determinada que se encontra armazenada num ficheiro designado por Cell sequence. O cell manager envia instruções, na sequência indicada pela lista de instruções, para os vários device drivers que estão sob seu controlo fazendo posteriormente uma monitorização por forma a adquirir informação sobre os seus estados. Para finalizar este ciclo de monitorização o cell manager envia para o Host informação sobre o seu estado e sobre o estado dos diferentes device drivers.

4.2.3 Activadores dos Dispositivos (Device Drivers)

Os device drivers encontram-se no nível mais baixo da arquitectura de software do centro CIM. Cada device driver é responsável pela monitorização e envio de instruções para a máquina à qual se encontra associado, notar que deve existir um device driver por máquina. O envio de instruções compreende a descarga de programas através de portas série RS232, ou o envio de sinais eléctricos através de portas de I/O. A monitorização resume-se ao envio para o cell manager de informação sobre os três estados possíveis da máquina.
• **BUSY**, este estado é enviado para o *cell manager* sempre que a máquina se
encontra a executar um determinado comando, não podendo executar outro
comando até que este esteja concluído,
• **IDLE**, este estado indica que a máquina finalizou um comando encontrando-se
preparada para novas ordens,
• **ERROR**, indica a ocorrência de um erro.

4.2.4 Base de Dados de Interbloqueio (*Interlock Database*)

Estes elementos efectuam a sincronização das operações de cada máquina de forma a
evitar colisões. Por exemplo, considere-se o caso de um robot ir pegar numa peça que se
encontra no interior de uma máquina CNC (ex. torno), antes de o robot entrar na máquina
deve-se ter a informação de que a porta está aberta e que a máquina não se encontra em
funcionamento (*BUSY*), obtém-se essa informação através de um sistema de *interlocks* com
uma estrutura do tipo semáforos binários. Para este exemplo seria necessário o *interlock*
“acesso à máquina torno”. Este *interlock* será requisitado sempre que o robot coloque ou
retire uma peça da máquina, ou quando a própria máquina começa a executar um programa
de maquinção. Qualquer uma destas operações só pode ser executada se o correspondente
interlock estiver disponível. A segurança é garantida, porque só uma máquina de cada vez
tem acesso a um determinado *interlock*. A gestão dos *Interlocks* é realizada por o *Interlock
Manager*.

4.2.5 Módulo de Comunicações (*Communications Module*)

É constituído por várias bibliotecas que garantem as comunicações requeridas pelo
sistema. Uma porta de I/O permite aos vários *Device Drivers* enviar e receber sinais
eletrônicos (0-24v) directamente de e para as máquinas, estes sinais são utilizados para enviar
inturações para as máquinas ou para receber informação sobre os seus estados. O *I/O Port
Module* pode operar de duas formas: *Emulation Mode*, faz a emulação dos sinais elétricos
no *software*; ou *Interface Mode*, o *software* reflecte exactamente os sinais elétricos
recebidos e enviados pelas máquinas para a carta I/O do PC.

4.3 Hardware

No que respeita a Hardware existem no centro duas máquinas CNC FANUC (uma
tresadora e um torno), dois robots Scorbot-ER VII, um armazém automático, um sistema
de visão ROBOTVISIONpro e um AGV (*Automated Guided Vehicle*).
4.3.1 Robot - Scorbot - ER VII

É um robot com 5+1 graus de liberdade e sensores internos para controlo da posição. É constituído por:
- manipulador
- base linear
- sistema de controlo
 ✤ controlador
 ✤ software

4.3.1.1 Manipulador

É constituído por cinco articulações e tem cinco graus de liberdade, pode mover um objecto em qualquer uma das seguintes direcções:

1º grau de liberdade - base, tem um movimento vertical segundo o eixo doszz,
2º grau de liberdade - braço, tem um movimento radial segundo o eixo doszz,
3º grau de liberdade - ombro, tem um movimento radial segundo o eixo dosyy,
4º grau de liberdade - pulso, pitch, tem um movimento vertical segundo o eixo doszz,
5º grau de liberdade - pulso, roll, tem um movimento para a esquerda e para a direita segundo o eixo dos xx.

Este robot tem uma garra (gripper) pneumática e pode sustentar até um peso de 2 Kgf, estando a garra na sua posição mais desfavorável, atinge uma velocidade máxima de 1m/s e tem uma repetibilidade de 0,2mm.

Figura 4.3 - Robot SCORBOT-ER VII
4.3.1.2 Base Linear

É utilizada para mover o robot aumentando o seu alcance de trabalho, permitindo que este sirva mais do que uma máquina. O posicionamento de robot pode ser feito com uma precisão de 0,05mm.

4.3.1.3 Sistema de Controlo

Este robot pode efectuar dois tipos de movimento (parabólico ou trapezoidal) através de um controlo de posição e velocidade. Os parâmetros do controlador incluem factores de cálculo, limites de velocidade, impacto térmico e protecção de limites de operação e as constantes proporcional e integral (para controlo) da posição e diferencial (para controlo da velocidade) para cada um dos 11 eixos que permitem ao controlador uma adaptação às diferentes condições de operação.

Estes parâmetros são definidos através de comandos em ACL (Advanced Control Language) enviados para o controlador via RS232 a partir do software ATS (Advanced Terminal Software - software de apoio à linguagem ACL) existente no PC.

4.3.1.4 Software

A linguagem de programação para controlo interno do controlador é o ACL (Advanced Control Language), permite o desenvolvimento de programas complexos, proporcionando um bom controlo do robot e permitindo operações internas no controlador.

4.3.2 Armazém automático ASRS

O armazém é constituído por 39 lugares de paletes com um lado de carga e descarga. Tem um braço que se movimento segundo os três eixos X, Y e Z, e 41 posições pré-definidas (39 para as paletes, uma para o leitor de código de barras e outra para o AGV). Cada uma destas posições tem um movimento de carga e descarga relativo ao braço do armazém.
4.3.3 AGV - Automated Guided Vehicle

É o sistema de transporte de paletes utilizado. O AGV movimenta-se entre três estações, uma para cada célula, seguindo uma faixa adesiva reflectora. Antes e depois de cada estação existem uns ímans que são identificados por sensores do AGV levando a que acelerem ou travem para que quando este passe pela estação possa receber um sinal de ON ou OFF emitido por um sensor de infravermelhos que é controlado através de uma porta I/O, e que lhe dá a ordem se deve parar ou seguir para a próxima estação.

4.3.4 Sistema de Visão

É constituído por uma câmara CCD, uma mesa de iluminação em contra-luz, uma placa Framegrabber, um monitor o um software de processamento. É um sistema bidimensional que permite efectuar o controlo de qualidade procedendo à aquisição e
digitalização da imagem, à sua análise e processamento e finalmente à sua interpretação. Este sistema permite uma resolução de 512 x 512 pixéis, a aquisição da imagem pode ser feita até 256 níveis de cinzento e com uma frequência de uma aquisição a cada 30 ms.

4.3.5 Máquinas CNC - Torno e Fresadora

São máquinas de Controlo Numérico, a linguagem de controlo envolve números, letras e outros símbolos que codificados num formato apropriado definem um conjunto de instruções (programa em linguagem NC) que permitem controlar as suas funções e operações.

4.3.5.1 Torno

É uma máquina de dois eixos com controlador FANUC série OT com capacidade de 210 mm entre pontos e potência de 3 cv. Tem um porta ferramentas de troca unidireccional de 8 posições e a bucha é pneumática de controlo integrado.

![Figura 4.6 - Máquina CNC - torno](image)

4.3.5.2 Fresadora

É uma máquina de três eixos com controlador FANUC série OM e potência de 4.2 cv. Tem um armazém automático de troca unidireccional de 12 ferramentas, o mordente é hidráulico com controlo integrado.
4.3.5.3 Componentes

As máquinas CNC têm três componentes básicos:

- **Programa de instruções**, é um conjunto de comandos que controlam o equipamento de operação. Os comandos "G" referem-se às funções preparatórias ou de movimento segundo os eixos. Os comandos "M" são funções auxiliares particulares da máquina.

- **Unidade de Controlo da máquina**, consiste na parte electrónica e de controlo de hardware que lê e interpreta o programa de instruções convertendo-o em acções mecânicas para o equipamento de operação. Esta unidade está dividida em seis partes distintas, monitor, painel de aquisição de dados, painel de operação automática, painel de operação manual, protecção de programas e controlo manual.

- **Equipamento de operação**, consiste em toda a parte mecânica, assim como motores, fins de curso e todos os componentes necessários ao controlo da máquina e à maquinção de peças.

4.3.5.4 Comunicações

As máquinas CNC podem ser operadas de duas formas, ou seja, individualmente ou integradas no centro CIM. A comunicação entre o PC e as CNC é feita através do Device Driver de duas maneiras distintas, por porta série RS232 ligando a célula supervisor de PC à máquina, por onde são enviados grandes volumes de informação (download dos programas), ou por um interface I/O. Existem duas linhas para sinais de input e duas para sinais de output utilizadas para transmitir informação de baixo nível, tal com o fecho da bucha, abertura e fecho da porta, etc.

4.3.5.5 Programação

Existem duas formas de programar as máquinas para a maquinção de peças:

- programação manual, que requer um programador que escreva as instruções directamente na máquina ou através de um PC, fazendo posteriormente a descarga
do programa através de uma porta serie RS232, utilizando uma linguagem baixo nível (linguagem NC),

- programação assistida por computador, ou seja, a geração de código é efectuada a partir da especificação das trajectórias de corte para remover as diferentes áreas, e das ferramentas a utilizar.

O objectivo desta Dissertação foi criar uma forma de programação interactiva CAD/CAM, ou seja, a criação de uma ferramenta computacional que consiga gerar automaticamente o programa de instruções em linguagem NC para a maquinação de uma peça, a partir de um modelo geométrico definido numa ferramenta de CAD, com a especificação da matéria prima, da peça a produzir e das diferentes áreas a remover. Esta ferramenta será explicada em pormenor no capítulo seguinte.
CAPÍTULO 5

Conversão e Execução de Planos de Processo

Neste capítulo descreve-se um método para conversão e execução de planos de processo que foi aplicado a um Sistema Flexível de Fábrica contribuindo para um aumento do seu grau de inteligência e automatização, uma vez que permite a realização da integração CAD/CAM para uma máquina CNC (torno). O método aqui proposto aplica-se a qualquer tipo de peça com eixo de revolução, no entanto, antes de descrever o método é necessário dar uma perspectiva de alguns conceitos básicos utilizados para a compreensão da metodologia utilizada.

A integração CAD/CAM recorre com frequência a ficheiros de intercâmbio com formatos diversificados (IGES, DXF) que serão estudados neste capítulo. Serão explicados detalhes relacionados com as funções de preparação e de maquinagem usadas na componente prática deste trabalho. Aspectos como a escolha do ponto de referência da peça a maquinar ou como noções associadas às ferramentas a utilizar serão abordados neste capítulo. Finalmente será apresentado o método propriamente dito, ilustrado com exemplos.

5.1 Ficheiros de Intercâmbio

Os ficheiros de intercâmbio permitem efectuar a troca de informação entre sistemas e aplicações de CAD, e entre sistemas de CAD e de CAM. Estes ficheiros são uma das principais fontes de informação para que seja possível efectuar a integração CAD/CAM.

Faz-se a seguir uma breve descrição dos dois tipos de ficheiros de intercâmbio que podem ser interpretados pelo método desenvolvido.
5.1.1 Ficheiro com formato IGES

Em 1980 foi desenvolvida a primeira versão IGES (Initial Graphics Exchange Specification) como resposta a um pedido da indústria para a criação de um ficheiro com formato neutro que permitisse a troca de informação entre diferentes sistemas CAD e CAM, sendo em 1981 aprovado como um standard ANSI (Y14.26M).

Existem dois tipos de formatos IGES. O formato ASCII com comprimento fixo, que armazena a informação em linhas de 80 caracteres cada, e o formato ASCII comprimido. O método desenvolvido interpreta os ficheiros IGES ASCII com comprimento fixo.

Os ficheiros com formato IGES são constituídos por seis secções (section) sendo apenas uma delas opcional. As secções são identificadas através de uma letra colocada na coluna 73 de cada linha do ficheiro (como se pode observar na figura 5.1). Cada linha do ficheiro tem um número nas colunas 74-80 que é inicializado a 1 no início de cada secção permitindo desta forma identificar qual a sequência e quais os números das linhas que constituem cada uma das secções.

Faz-se a seguir uma breve descrição de todas as secções que compõem um ficheiro IGES.

Flag section - Esta é a secção opcional referida anteriormente. Esta secção não aparece no ficheiros IGES com comprimento fixo, mas existe nos ficheiros IGES comprimidos sendo identificada através do caracter ‘C’ na coluna 73. Esta secção indica que o ficheiro IGES é um ficheiro ASCII comprimido.

Start section (S) - Esta secção é identificada através do caracter ‘S’ na coluna 73. Contém informação diversa sobre o desenho, assim como a identificação do software de CAD em que foi executado o desenho.

Global section (G) - Esta secção é identificada através do caracter ‘G’ na coluna 73. É constituída por um conjunto de informação sobre as características do ficheiro IGES, tais como, nome do ficheiro, o sistema de CAD que o gerou, o sistema de unidades de medida, escala, precisão, etc.

Directory Entry section (DE) - Esta secção é identificada através do caracter ‘D’ na coluna 73. Contém uma descrição de todas a entidades que constituem o desenho de CAD. A descrição de cada entidade é feita à custa de duas linhas, sendo a segunda linha uma continuação da primeira e inclui informação sobre tipo de entidade, cor, tipo de linha, nível
(layer), ponteiro para matrizes de transformação, ponteiro para a Parameter data Section onde são especificados os parâmetros de cada entidade, etc.

Parameter Data section (PD) - Esta secção é identificada através do caractere 'P' na coluna 73. É composta por dados que permitem descrever cada entidade, tais como, pontos coordenados, ponteiros para outras entidades, caracteres de texto, equações de superfícies, etc. Cada entidade referida na secção anterior terá pelo menos uma linha nesta secção com informação que será uma combinação de números reais, inteiros e texto.

Terminate section (T) - Esta secção é identificada através do caractere 'T' na coluna 73. É constituída apenas por uma linha com 10 campos de oito caracteres cada. Os quatro primeiros campos contêm o número da última linha de cada uma das quatro secções referidas anteriormente, os cinco campos seguintes não são utilizados sendo o último campo utilizado para indicar o número de linhas da secção Termination section, que terá que conter sempre o valor 1.

![Figura 5.1 - Formato IGES](image)

A figura 5.2 representa o desenho efectuado num software de CAD (AutoCAD) que deu origem ao ficheiro IGES da figura 5.1.

![Figura 5.2 - Desenho executado em AutoCAD](image)
Para se poder caracterizar completamente uma entidade descrita através de um ficheiro IGES terá que se reunir a informação proveniente de duas das secções que o constituem, a Directory Entry (DE) e a Parameter Data (DT). A relação entre estas duas secções está exemplificada na figura 5.1 para a entidade 110 (segmento de recta) através das setas.

Cada registo de uma determinada entidade existente na secção DE é constituído por duas linhas. Na primeira linha encontram-se os campos 1 a 10, estando os campos 11 a 20 representados na segunda linha (cada campo pode conter até oito caracteres). Por exemplo, para a segunda entidade 110 (segmento de recta) existente na secção DE, pode-se retirar a seguinte informação:

Da análise do registo da secção PD correspondente à segunda entidade 110 da secção DE, retira-se a seguinte informação:

110, 25.0, 10.0, 0.0, 10.0, 10.0, 0.0; 5P0000003

Valor do campo 10 da secção DE

110 - tipo da entidade (segmento de recta)
25.0, 10.0, 0.0 - coordenada X,Y,Z do ponto inicial
10.0, 10.0, 0.0 - coordenada X,Y,Z do ponto final.

5.1.2 Ficheiro com formato DXF

O ficheiro de intercâmbio com formato DXF (Drawing Interchange Files) foi desenvolvido pela AUTODESK para permitir a transferência de informação relativa a um desenho desenvolvido na ferramenta de CAD AutoCAD para outros sistemas de CAD ou CAM que estejam preparados para interpretar um ficheiro com este formato.

Este tipo de formato, embora não seja um standard ANSI, como acontece com o formato IGES, foi desenvolvido por um dos mais bem sucedidos software de CAD a nível mundial o AutoCAD, o que o torna uma referência.
Os ficheiros com formato DXF são ficheiros de texto ASCII standard divididos em quatro secções (sections) terminando com a indicação de fim de ficheiro ‘EOF’. Faz-se a seguir uma descrição sumária de cada uma das secções e sua sequência.

HEADER section - Contém parâmetros associados ao desenho, a maior parte dos quais podem ser visualizados no ecrã com o comando STATUS.

TABLES section - Nesta secção estão especificadas todos os tipos de tabelas que compõem o desenho em AutoCAD, tais como:
- tabela de linetypes (tipos de linhas)
- tabela de layer (níveis)
- tabela style (estilos)
- tabela view (vistas)

BLOCKS section - Esta secção contém a definição das entidades block descrevendo as entidades que as compõem.

ENTITIES section - Esta secção contém as entidades do desenho incluindo qualquer referência a block.

EOF - END OF FILE - Fim do ficheiro.

O método desenvolvido apenas interpreta a informação armazenada na secção ENTITIES pois é nesta secção que são especificadas todas as entidades (segmentos de recta, arcos e texto) que fazem parte do desenho.

Apresenta-se a seguir, como exemplo, a secção ENTITIES do ficheiro DXF correspondente ao desenho da figura 5.2.
<table>
<thead>
<tr>
<th>nívele</th>
</tr>
</thead>
<tbody>
<tr>
<td>nivel 1</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>16.031995</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>7.799832</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>0.804068</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>texto</th>
</tr>
</thead>
<tbody>
<tr>
<td>início especificação</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>segmento de recta</th>
</tr>
</thead>
<tbody>
<tr>
<td>nível 1</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>25.0</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>10.0</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>10.0</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>10.0</td>
</tr>
<tr>
<td>31</td>
</tr>
<tr>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>início de especificação arco</th>
</tr>
</thead>
<tbody>
<tr>
<td>nível 8</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>20.0</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>10.0</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>5.0</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>51</td>
</tr>
<tr>
<td>90.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>coordenada x do ponto inicial</th>
</tr>
</thead>
<tbody>
<tr>
<td>coordenada y do ponto inicial</td>
</tr>
<tr>
<td>coordenada z do ponto inicial</td>
</tr>
<tr>
<td>coordenada x do ponto final</td>
</tr>
<tr>
<td>coordenada y do ponto final</td>
</tr>
<tr>
<td>coordenada z do ponto final</td>
</tr>
</tbody>
</table>

| raio |
| ángulo inicial |
| ángulo final |

Se todas as entidades simples (segmentos de recta e arcos) que constituem o desenho da figura 5.2 fossem agrupadas dando origem a uma única entidade (POLYLINE), a secção ENTITIES do ficheiro DXF resultante teria uma estrutura diferente, como se mostra a seguir.

| início |
| secção |
| secção |

| ENTITIES |
| ENTITIES |
| ENTITIES |

| fim da secção ENTITIES |
| fim do ficheiro |
POLYLINE (constituída por dois segmentos de recta e um arco)
 nível
 0
 66 1
 10
 0.0
 20
 0.0
 30
 0.0
 70 1
 0
 vértice da polyline
 coordenada x
 coordenada y
 coordenada z

definição de um arco

fim da especificação da polyline

caracterização texto
 nível
 1
 10,20,30 coordenadas do ponto de inserção

altura do texto

texto

caracterização do texto
 nível
 1

texto

fim secção ENTITIES

fim do ficheiro
5.2 Funções preparatórias

Aqui iremos apresentar as principais funções preparatórias disponíveis na máquina ferramenta GE FANUC SERIES OT, e que são utilizadas pelo método desenvolvido.

5.2.1 G00 - Posicionamento rápido

Este comando permite executar o movimento rápido da ferramenta para qualquer posição da área de trabalho. A trajectória descrita pela ferramenta não será uma linha recta pois o movimento não é uma interpolação linear uma vez que o posicionamento é feito independentemente para cada um dos eixos coordenados, resultando portanto uma combinação de movimentos que faz com que geralmente a ferramenta não se movimente em linha recta.

As coordenadas do ponto final podem ser especificadas em valor absoluto ou em valor incremental, neste caso é especificada a distância entre o ponto inicial e o ponto final.

O formato do código em linguagem NC, será: G00 X(U)_ Z(W)_;

Deverá ser usado X e Z para especificar as coordenadas absolutas do ponto final, e os endereços U e W para especificar as coordenadas incrementais do ponto final. No lugar dos “sublinhados” (_ _) deverão estar os valores numéricos das coordenadas.

Neste comando não é possível especificar um valor para a velocidade de avanço da ferramenta através do endereço F, este é atribuído pelo fabricante da máquina podendo ter um valor diferente para cada um dos eixos coordenados.

A figura 5.3 exemplifica o posicionamento rápido da ferramenta.

![Figura 5.3 - Posicionamento rápido](image-url)
A linha (bloco) de comando em linguagem NC para efectuar o movimento da figura anterior será:

- em coordenadas absolutas: \(\text{G00 X40.0 Z56.0;} \)
- em coordenadas incrementais: \(\text{G00 U30.0 W30.5;} \)

O valor de \(X \) terá de ser sempre especificado como um diâmetro, ou seja, se se pretender posicionar a ferramenta a uma distância de 20.0 do eixo \(Z \) o valor de \(X \) será 40.0. Note-se que no caso do posicionamento absoluto usa-se como referência o sistema de eixos fixo \(xz \) enquanto para o posicionamento incremental o sistema de eixos variável \(uw \) está ligado à ferramenta.

5.2.2 G01 - Interpolação linear

Este comando permite executar o movimento em linha recta da ferramenta para qualquer posição da área de trabalho com uma velocidade de avanço especificada pelo endereço \(F \).

O formato do código em linguagem NC será: \(\text{G01 X(U)__ Z(W)__ F(f);} \)

O significado dos endereços \(X(U) \) e \(Z(W) \) é o mesmo que no caso do comando G00 explicado anteriormente. O endereço \(F \) especifica o avanço \(f \) da ferramenta (distância percorrida pela ferramenta por rotação), esta especificação permanece activa até que seja dado novo valor para \(f \), não sendo necessário especificar sempre o seu valor quando se pretende efectuar uma interpolação linear com um avanço igual ao avanço da interpolação anterior.

Na figura 5.4 mostra-se o movimento em linha recta efectuado pela ferramenta.

![Figura 5.4 - Interpolação linear](image-url)
A linha de comando em linguagem NC para efetuar o movimento da figura anterior será:

em coordenadas absolutas G01 X40.0 Z20.1 F20;
em coordenadas incrementais G01 U20.0 W-25.9 F20;

5.2.3 G02 e G03 - Interpolação circular

Estes comandos permitem executar o movimento circular da ferramenta. Este movimento será efectuado no sentido horário se o comando for G02 e no sentido anti-horário se o comando for G03.

A estrutura do código em linguagem NC que permite efectuar o movimento circular terá de conter, além do sentido do arco descrito pela ferramenta, as coordenadas do ponto final que puderem ser especificadas em valor absoluto (X,Z) ou incremental (U,W), o raio da circunferência (R) ou a distância do ponto inicial ao centro da circunferência (I,K) e por fim poder-se-á especificar um valor para a velocidade de avanço da ferramenta, caso seja necessário.

A figura 5.5 mostra duas formas diferentes de especificar um arco descrito no sentido horário (G72).

![Figura 5.5 - Duas formas de especificar um arco descrito no sentido horário](image)

Apresentam-se a seguir as quatro diferentes formas que o comando G02 poderá assumir para que seja possível executar o arco representado na figura 5.6.

G02 X5.0 Z3.0 I2.5 F0.3;
G02 U2.0 W-2.0 I2.5 F0.3;
G02 X5.0 Z3.0 R2.5 F0.3;
G02 U2.0 W-2.0 R2.5 F0.3;
5.2.4 Ciclos de maquinação

Os ciclos de maquinação permitem programar as operações de tornear, facejar, ranhurar, furar, cortar, etc, de uma forma simples e eficiente. A utilização de ciclos de maquinação torna os programas menos extensos e mais fáceis de interpretar. Por exemplo, para remover uma grande quantidade de metal (área de remoção) seria necessário criar várias trajectórias de corte sendo necessários vários blocos no programa NC para as especificar, no entanto utilizando os ciclos de maquinação podem especificar-se as várias trajectórias de corte em apenas um bloco.

Faz-se a seguir uma breve descrição dos ciclos de maquinação mais importantes e que são utilizados pelo método desenvolvido.

5.2.4.1 G71 - Ciclo de torneamento

Este ciclo efectua o torneamento de uma peça desde que seja previamente especificado o seu contorno final. Supondo que o contorno final é definido pela sequência de pontos A-A’-B, como se pode observar na figura 5.7, o ciclo de maquinação irá executar a remoção da área correspondente, com uma profundidade de corte de Δd, deixando uma margem para acabamento final de Δu/2 e Δw.
Figura 5.7 - Ciclo de torneamento

Apresenta-se a seguir a estrutura do código em linguagem NC para executar este ciclo de maquinagem:

N.... G71 U(Δd) R(e);
N.... G71 P(ns) Q(nf) U(Δu) W(Δw) F(f) S(s) T(t);
N(ns)
................. a especificação do
................. contorno que se
................. pretende executar
................. tem de ser efectuado entre
................. as linhas ns e nf
N(nf)

Δd - Profundidade de corte
designação sem sinal. A direcção de corte depende da direcção do segmento de recta AA'.
e - Define o recuo da ferramenta entre duas trajectórias de corte.
ns - Número da linha onde se inicia a definição do contorno final.
nf - Número da linha onde termina a definição do contorno final.
Δu - Direcção de corte e margem para acabamento final na direcção de x.
Δw - Direcção de corte e margem para acabamento final na direcção de z.
f,s,t - Define respectivamente o avanço, a velocidade de rotação e a posição da ferramenta no armazém de ferramentas. Qualquer definição das funções F,S,T que esteja
colocada entre as linhas \(ns \) e \(nf \) será ignorada pelo ciclo de maquinação G71. Apenas serão aceites as funções F, S, T que estiverem definidas na linha onde é especificada a função G71 ou que tenham sido definidas anteriormente.

No ciclo G71 podem definir-se quatro modelos de corte diferentes dependendo do sinal que se atribui a \(\Delta u \) e \(\Delta w \), como se pode observar na figura 5.8, sendo a trajectória de corte para todos os modelos paralela ao eixo zz.

![Figura 5.8 - modelos de corte para o ciclo G71](image)

O movimento da ferramenta entre A e A' é especificado na linha de programa com o número ns, através das funções G00 ou G01, no entanto o valor da coordenada z do ponto A' deve ser igual ao valor da coordenada z do ponto A, pois o movimento tem de ser paralelo ao eixo xx. O movimento da ferramenta entre A' e B é especificado entre as linhas de programa ns + 1 e nf através das funções G01, G02 ou G03, dependendo do contorno quer se pretende executar, não havendo neste caso qualquer restrição a impor ao movimento da ferramenta.

O ciclo G71 é utilizado quando a maior direcção de corte é paralela ao eixo do zz. Quando o ciclo de maquinação terminar a ferramenta retorna para o ponto A.

5.2.4.2 G72 - Ciclo de facejamento

Este ciclo é idêntico ao ciclo de maquinação G71, diferindo apenas na direcção da trajectória de corte, esta passa a ser paralela ao eixo xx.

O movimento que a ferramenta efectua para remoção de material utilizando o ciclo G72 está representado na figura 5.9.
O código, em linguagem NC, para executar o ciclo de maquinagem G72 terá de ter a seguinte estrutura:

```
N.... G72 U(Δd) R(r);
N.... G72 P(ns) Q(nf) U(Δu) W(Δw) F(f) S(s) T(t);
N(ns) ................
..................... a especificação do
............F ........ contorno que se
............S ........ pretende executar
............T ........ tem de ser efectuado entre
..................... as linhas ns e nf
N(nf) ................
```

O significado das variáveis Δd, e, ns, nf, Δu, Δw, f, s e t é o mesmo que no ciclo de maquinagem G71 explicado anteriormente.

No ciclo G72, tal como no ciclo G71, podem-se definir quatro modelos de corte diferentes dependendo do sinal que se atribui a Δu e Δw, como se pode observar na figura 5.10, sendo a trajectória de corte para todos os modelos paralela ao eixo xx.
As observações feitas no ciclo G71, explicado anteriormente, relativamente ao movimento da ferramenta para executar o contorno A-A'-B, são as mesmas para o ciclo de maquinação G72.

O ciclo G72 é utilizado quando a maior direcção de corte é paralela ao eixo do xx. Quando o ciclo de maquinação terminar a ferramenta retorna para o ponto A.

5.2.4.3 G73 - Ciclo de repetição do contorno

Este ciclo faz a remoção do material através da execução de várias trajectórias de corte cuja direcção não tem que ser paralela ao eixo xx ou ao eixo zz, como acontecia nos dois ciclos anteriores, mas toma uma direcção variável dependendo do contorno que se pretende efectuar na peça, originando que a ferramenta efectue várias repetições do contorno até atingir a posição final A'B, conforme se pode observar na figura 5.11.
A estrutura do comando, em linguagem NC, que permite executar o ciclo de maquinação G73 é a seguinte:

N..., G73 U(Δi) W(Δk) R(d);
N..., G73 P(ns) Q(nf) U(Δu) W(Δw) F(f) S(s) T(t);
N(ns)
...................... a especificação do
........F contorno que se
........S pretende executar
........T tem de ser efectuado entre
...................... as linhas ns e nf
N(nf)

Δi - Direcção e margem de recuo da ferramenta para executar as d repetições do contorno relativamente ao eixo do xx.
Δk - Direcção e margem de recuo da ferramenta para executar as d repetições do contorno relativamente ao eixo do zz.
d - Número de repetições do contorno (para o exemplo da figura 5.11 d teria o valor 3).

O significado das variáveis ns, nf, Δu, Δw, f, s e t é o mesmo que no ciclo de maquinação G71 já explicado.

O ciclo G73 também permite definir quatro modelos de corte diferentes, dependendo do sinal que se atribui a Δu, Δw, Δi, Δk. Este ciclo é utilizado para maquinação de peças que apresentem uma geometria idêntica à geometria final, como por exemplo, peças de fundição e peças moldadas. Quando o ciclo de maquinação termina a ferramenta retorna para o ponto A.

5.2.4.4 G70 - Ciclo de acabamento

O ciclo de maquinação G70 faz o acabamento final da peça depois de efectuado o desbaste através da utilização dos ciclos de maquinação G71, G72 ou G73.

A estrutura do comando em linguagem NC é a seguinte:

G70 P(ns) Q(nf);
Em que o significado das variáveis ns e nf é o mesmo que no ciclo de maquinação G71 já explicado.

As funções F,S e T especificadas na mesma linha em que são especificadas as funções G71, G72 ou G73, serão ignoradas pelo ciclo de maquinação G70, Estas só serão interpretadas se forem especificadas entre as linhas ns e nf.

Quando o ciclo de maquinação G70 terminar a ferramenta retorna para o ponto inicial, sendo executada a próxima linha do programa.

Apresenta-se a seguir um exemplo onde são utilizados os ciclos de maquinação G71 e G70 para fabrico de uma peça cujo modelo geométrico e trajetória da ferramenta se encontram representados na figura 5.12:

![Figura 5.12 - Ciclo de torneamento e ciclo de acabamento](image)

O correspondente código em linguagem NC será:

```
N10 G00 X160.0 Z180.0;
N15 G71 U7.0 R1.0;
N20 G71 P25 Q55 U4.0 W2.0 F0.3 S55;
N25 G00 X40.0 F0.15 S58;
N30 G01 W-40;
N35 G01 X60.0 W-30.0;
N40 G01 W-20;
N45 G01 X100.0 W-10.0;
```
5.2.4.5 G74 - Ciclo de ranhurar ou furar

O ciclo G74 permite efectuar as operações de ranhurar ou furar numa direcção paralela ao eixo do z, conforme se pode observar na figura 5.13.

![Figura 5.13 - Ciclo de ranhurar ou furar](image)

A estrutura do comando em linguagem NC é a seguinte:

G74 R(e);
G74 X(U)_ Z(W)_ P(Δi) Q(Δk) R(Δd) F(f);

e - Alívio da ferramenta para efectuar nova operação de corte.
X - Coordenada x do ponto B.
U - Distância entre os pontos A e B.
Z - Coordenada z do ponto C.
W - Distância entre os pontos A e C.
Δi - Distância percorrida pela ferramenta de corte ao longo do eixo do x.
Δk - Profundidade de corte na direcção do eixo z.
Δd - Recuo da ferramenta no final de cada trajectória de corte.
f - Avanço por rotação da ferramenta.
Só um dos endereços X ou U podem ser especificados no comado G74, o mesmo acontecendo para os endereços Z e W.

Para executar um furo com uma direção paralela ao eixo do zz, através da utilização do ciclo de maquinação G74, terá de se omitir os endereços P e X(U).

A operação de corte da peça (chip breaking) também é possível através do ciclo G74, mas neste caso terá que se omitir os endereços Z(W) e Q.

5.2.4.6 G75 - Ciclo de ranhurar ou furar

O ciclo de maquinação G75 é idêntico ao ciclo G74, diferindo apenas nos eixos coordenados sendo o eixo xx substituído pelo eixo zz, como se pode observar na figura 5.14.

![Figura 5.14 - Ciclo de ranhurar ou furar](image)

A estrutura do comando em linguagem NC é a seguinte:

\[
\begin{align*}
G75 & \ R(e); \\
G75 & \ X(U)_\Delta_\text{Z}(W)_\Delta_\text{P}(\Delta i) \ Q(\Delta k) \ R(\Delta d) \ F(f); \\
\end{align*}
\]

O significado das variáveis e, X(U), Z(W), Δi, Δk, Δd e f, é o mesmo que no ciclo de maquinação G74 já explicado.

Neste ciclo também é possível executar a operação de corte da peça (chip breaking) desde que se omitam os endereços Z(W) e Q, como acontecia no caso anterior.
5.3 Especificação do zero da peça

O zero da peça é o ponto de referência, dentro da área de trabalho definida para a maquinação da peça, a partir do qual vão ser referenciados todos os pontos que definem a geometria da peça. O valor atribuído ao ponto de referência terá que ter uma relação directa com o valor atribuído pelo fabricante para zero da máquina (por exemplo, no torno existente no centro de CIM do ISEP o zero da máquina está nas coordenadas X=152 Z=0).

A coordenada Z do ponto de referência deve ser escolhida de forma a facilitar a especificação das várias coordenadas Z da peça, desta análise resulta que os extremos da peça são as duas opções mais favoráveis. Relativamente à coordenada X do ponto de referência esta deve ter um valor coincidente com o eixo de rotação da peça.

A figura 5.15 mostra as duas hipóteses mais favoráveis para a colocação do ponto de referência (zero da peça).

![Figura 5.15 - Hipóteses para colocação do zero da peça](image)

No caso de se optar pela hipótese A a posição do zero da peça vai depender das dimensões da peça em bruto, assim todas as coordenadas z dos pontos que definem a geometria da peça terão valores negativos. No caso da hipótese B ser a escolhida o zero da peça é independente das dimensões da peça em bruto e todas as coordenadas z que definem a geometria da peça terão valores positivos.

A especificação do ponto de referência (zero da peça) é introduzida via teclado e é considerada um dos procedimentos de setup da máquina CNC.

O método desenvolvido define como zero da peça o ponto de referência posicionado na face da peça que se encontra a uma maior distância da garra da peça (hipótese A).
O zero da peça terá que ser especificado individualmente para cada uma ferramentas utilizadas na maquinagem da peça. Os valores serão posteriormente guardados nos registos de offset de cada ferramenta.

Para especificar o zero da peça, representado na figura 5.16, para uma determinada ferramenta será necessário determinar as distâncias (offset) em x e z desde o zero da máquina até ao zero da peça.

![Figura 5.16 - Especificação do zero da peça](image)

O valor de offset em x é obtido fazendo deslocar a ferramenta, através das teclas de controlo de movimento, desde o zero da máquina até tocar na face 1 da peça, ao valor em x deste movimento adiciona-se o diâmetro da peça sendo este o valor que se guarda no registo de offset. Para determinar o valor de offset em z faz-se deslocar a ferramenta desde do zero da máquina até tocar na face 2 da peça, ao valor em z deste movimento não é adicionado qualquer valor uma vez que o zero da peça está posicionado na face 2 da peça, neste caso o valor guardado no registo de offset será apenas o valor em z do movimento da ferramenta. Notar que caso se opte pela hipótese B tem que se adicionar ao valor em z do movimento o comprimento da peça.

A activação do offset de uma ferramenta verifica-se sempre que durante a execução de um programa aparece a instrução para se efectuar uma mudança de ferramenta. A instrução em linguagem NC tem a seguinte estrutura.

```
M06 T0306;
```

M06 - função para mudança automática de ferramenta
03 - posição no armazém de ferramentas onde está colocada a ferramenta
06 - nome do registo onde está armazenado o valor de offset para a ferramenta 03.
5.4 Algumas noções sobre a escolha da ferramenta mais adequada

É designado por ferramenta o conjunto formado por um porta pastilha e por uma pastilha, como se pode observar na figura 5.17.

![figura de ferramenta](image)

_Figura 5.17 - Ferramenta [Corokey - 96]

Para a escolha da ferramenta mais adequada a execução de uma determinada operação de maquinação concorrem vários factores, tais como:

- o tipo de material de trabalho
- o tipo de operação de torneamento
- o tipo de porta pastilha

O norma ISO divide os materiais de trabalho em três grandes áreas (P - M - K), sendo incluídos em cada uma das áreas os seguintes materiais:

P - Materiais de cavacos longos, aços fundidos e aços inoxidáveis martensítico/ferríticos

M - Aços inoxidáveis austeníticos, super ligas e titânio

K - Materiais de cavacos curtos, ferros fundidos, materiais endurecidos e materiais não ferrosos.

As várias operações de torneamento podem ser agrupadas em três categorias principais as quais cobrem as áreas mais comuns de maquinação. A figura 5.18 mostra as três operações de torneamento relacionando-as com a profundidade de corte e com o avanço.
Desbaste (D) - operações para a máxima remoção de material e/ou condições severas. Combinações de profundidade de corte e avanço altos.

Maquinação média (M) - maioria das aplicações, desde uso geral a desbaste leve. Ampla gama de combinações de profundidade de corte e avanço.

Acabamento (A) - Operações com profundidades de corte e avanços leves, para produzir uma alta qualidade de superfície.

A especificação do tipo de material de trabalho e do tipo de operação de torneamento permite determinar qual a pastilha mais adequada para executar a operação em causa. A escolha da pastilha é feita através da consulta a tabelas fornecidas pelo fabricante de pastilhas, no caso do método desenvolvido a consulta faz-se a uma base de dados (com a estrutura representada na tabela 5.1) onde está armazenada informação sobre as características de corte das pastilhas. Para permitir uma maior liberdade de escolha de pastilhas ao programador NC é indicado, juntamente com as características de corte mais adequadas, as tolerâncias aceitáveis.
<table>
<thead>
<tr>
<th>Material</th>
<th>Tipo Torneamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>A</td>
</tr>
<tr>
<td>P</td>
<td>M</td>
</tr>
<tr>
<td>P</td>
<td>D</td>
</tr>
<tr>
<td>M</td>
<td>A</td>
</tr>
<tr>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>M</td>
<td>D</td>
</tr>
<tr>
<td>K</td>
<td>A</td>
</tr>
<tr>
<td>K</td>
<td>M</td>
</tr>
<tr>
<td>K</td>
<td>D</td>
</tr>
</tbody>
</table>

Tabela 5.1 - Características de corte das pastilhas

Para as operações especiais de torneamento tais como, cortar (C), ranhurar (R) e tornear/rebaixar (TR), a informação armazenada tem a estrutura da tabela 5.2.

<table>
<thead>
<tr>
<th>Material</th>
<th>Tipo Torneamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>P e K</td>
<td>C</td>
</tr>
<tr>
<td>M</td>
<td>C</td>
</tr>
<tr>
<td>P M e K</td>
<td>R</td>
</tr>
<tr>
<td>P M e K</td>
<td>T/R</td>
</tr>
</tbody>
</table>

Tabela 5.2 - Características de corte das pastilhas para corte, ranhurar e tornear/ranhurar

A escolha do tipo de porta pastilha é feita depois da análise das características do contorno que se pretende executar na peça. Terá de se encontrar um porta pastilha com uma geometria tal que permita que o seu movimento ao executar o contorno não danifique o contorno anteriormente executado. A figura 5.19 mostra um exemplo de um porta pastilha inadequado.

Figura 5.19 - Porta pastilha inadequado

A figura 5.20 mostra os tipos de porta pastilhas utilizados e considerados no método desenvolvido assim como a sua identificação.
Figura 5.20 - Tipos de porta pastilhas [Corokey - 96]

Para as operações de torneamento, cortar, ranhurar e tornear/ranhurar é utilizado o porta pastilha da figura 5.21, sendo designado pela letra C.

Figura 5.21 - Porta pastilha tipo C [Corokey - 96]

A informação, armazenada na base de dados, relativa ao porta pastilha terá de conter além do tipo de porta pastilha e do ângulo inicial informação sobre o ângulo final, uma vez que existem porta pastilhas que são designados pela mesma letra mas têm ângulos finais diferentes, como se pode observar na figura 5.22 para o caso do porta pastilha do tipo J.

Figura 5.22 - Porta pastilha do tipo J [Corokey - 96]
Para caracterizar completamente um porta pastilha terá de se especificar, além do que foi referido anteriormente, o sentido da direcção de corte (esquerda, direita, neutro) e a sua posição de trabalho (vertical, horizontal). No método desenvolvido adoptou-se um código (valor numérico) para caracterizar estas duas funções, sendo atribuídos os valores representados na tabela 5.3.

<table>
<thead>
<tr>
<th>Código</th>
<th>Sentido da direcção de corte</th>
<th>Posição de trabalho</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>esquerda</td>
<td>vertical</td>
</tr>
<tr>
<td>1</td>
<td>direita</td>
<td>vertical</td>
</tr>
<tr>
<td>2</td>
<td>neutro</td>
<td>vertical</td>
</tr>
<tr>
<td>3</td>
<td>esquerda</td>
<td>horizontal</td>
</tr>
<tr>
<td>4</td>
<td>direita</td>
<td>horizontal</td>
</tr>
<tr>
<td>5</td>
<td>neutro</td>
<td>horizontal</td>
</tr>
</tbody>
</table>

Tabela 5.3 - Códigos dos porta pastilhas

A figura 5.23 exemplifica dois tipos de porta pastilha, sendo o primeiro do tipo V 2 (sentido da direcção de corte - neutro e posição de trabalho - vertical) e o segundo do tipo L 3 (sentido da direcção de corte - esquerda e posição de trabalho - horizontal).

Figura 5.23 - Diferentes tipos de porta pastilha [Corokey - 96]
5.5 Método desenvolvido

O método proposto (CEPP - Conversão e Execução de Planos de Processo) tem como objectivo a geração automática de um ficheiro com a linguagem NC, para máquinas CNC-Torno, adequada para a execução de qualquer tipo de peça com eixo de revolução.

O método proposta envolve três fases:

Fase 1 - Interpretação e tratamento de ficheiros gerados por *software* de CAD com informação sobre a geometria da peça que se pretende executar

Fase 2 - Planeamento do Processo

Fase 3 - Geração de um ficheiro contendo a linguagem NC adequada para a execução da peça.

5.5.1 Fase 1 - Interpretação e tratamento de ficheiros gerados por *software* de CAD

O primeiro passo desta fase será a interpretação de um ficheiro com formato IGES ou DXF gerado pelo *software* de CAD, permitindo deste modo efectuar a interligação (*interface*) entre a concepção e projecto assistido por computador e as funções de engenharia de fabricação (CAD/CAM).

Para que este interface seja isento de erros deve-se atender a um determinado conjunto de requisitos aquando da execução do desenho da peça a produzir em CAD. O desenho terá de conter diferentes níveis (*layers*) onde estarão representados, a matéria prima (*stock*), a peça final a produzir e as diferentes áreas a remover. Os níveis também servem para indicar as precedências que existem entre as áreas de remoção. Por exemplo, supondo que se pretende executar uma peça a partir de uma determinada matéria prima, conforme representado na figura 5.24.
O correspondente desenho em CAD está representado na figura 5.25, é de salientar que apenas será necessário representar metade do corte da peça a produzir, uma vez que sendo uma peça com eixo de revolução existe uma simetria do contorno.

Para se remover a área A2 primeiro será necessário remover área A1, portanto no desenho de CAD a representação da área de remoção A1 terá de estar num nível inferior relativamente ao nível onde está representada área de remoção A2. De notar que no caso de entre duas áreas distintas não existirem precedências estas devem ser representadas no mesmo nível, como acontece com as áreas A2 e A3, sendo a decisão de escolher qual a área a remover em primeiro lugar determinada na fase de planeamento de processo.

Para representar a geometria da matéria prima e da peça a produzir foram reservados os níveis 0 e 1 respectivamente.

A figura 5.26 apresenta a forma como devem ser constituídos os diferentes níveis que compõem o desenho da peça em CAD;
Nível 0 - Matéria prima (stock)

Nível 1 - Peça a produzir

Nível 2 - Primeira área a remover

Nível 3 - Áreas a remover en segundo lugar

Figura 5.26 - Constituição dos diferentes níveis do desenho

A determinação das áreas de remoção é efectuada pelo programador de NC, e é a primeira das duas únicas tarefas que ele tem de realizar, a outra será a validação do código gerado por este método (após a fase 3). Uma boa escolha das áreas e sequência de remoção por parte de programador de NC poderá ditar o bom desempenho desta ferramenta.

A definição das áreas de remoção deve ser feita de forma que possuam características idênticas às áreas base definidas no método. São quatro as áreas base como se pode ver na figura 5.27:
Em cada uma das diferentes áreas base existem determinados segmentos de recta cuja orientação não pode ser modificada, como é o caso dos segmentos representados a vermelho na figura anterior. Esta obrigatoriedade deve-se ao facto da utilização dos ciclos de maquinação Gx, pré-definidos pelo fabricante de máquinas CNC para remoção das áreas. Todos os outros segmentos de recta ou arcos que constituem a geometria da peça, poderão ter uma orientação variável.

Um segmento de recta ou arco que caracteriza a geometria final da peça a produzir deve ser integrado dentro da mesma área de remoção como se pode observar na figura 5.28, ou seja, o mesmo segmento de recta ou arco não pode ter uma parte pertencente a uma área de remoção e o restante pertencente a outra. Isto porque quando se efectua a maquinação do referido elemento, ele vai ser executado por dois ciclos de maquinação diferentes podendo originar uma qualidade de acabamento inferior do que se fosse executado num único ciclo.
Depois de efectuado o armazenamento de toda a informação importante recolhida através da análise do ficheiro de CAD com formato DXF ou IGES, atinge-se o segundo passo desta fase que inclui o tratamento da informação através de rotinas que permitem uma reorganização dos vértices de forma a facilitar o tratamento destas áreas, podendo desta forma efectuar a passagem para a fase de planeamento de processo.

5.5.2 Fase 2 - Planeamento do Processo

Nesta fase procede-se à elaboração de um plano onde se determina:

- o tipo de áreas a remover,
- as ferramentas necessárias,
- as operações a efectuar para remoção das áreas,
- a sequência de áreas a remover.

Efectuar o reconhecimento das áreas de remoção é o primeiro passo desta fase. Como foi referido anteriormente são quatro as áreas base de reconhecimento representadas na figura 5.27. O algoritmo de reconhecimento bascia-se num conjunto de regras pré-definidas que permitem determinar o tipo de área em questão.

Considerando o exemplo de duas áreas de remoção, a step e a de desbaste vertical, representadas na figura 5.29.

As duas regras que permitem chegar à conclusão de que tipo de áreas se tratam são:

regra 1 (reconhecimento de step)

IF vértice v1 área Ax igual vértice v1 área MP
 AND declive segmento de recta s1 igual declive segmento de recta s3
 AND declive segmento de recta s2 igual declive segmento de recta s4
 AND coordenada x de v3 maior que coordenada x de v5
 AND coordenada y de v2 maior que coordenada y de v4
THEN a área Ax é do tipo step

regra 2 (reconhecimento de desbaste vertical)

IF vértice v1 área Ax igual vértice v1 área MP
AND vértice v2 área Ax igual vértice v2 área MP
AND declive segmento de recta s1 igual declive segmento de recta s3
AND declive segmento de recta s2 igual declive segmento de recta s4
AND coordenada x de v3 maior que coordenada x de v5
THEN a área Ax é do tipo desbaste vertical

Para remoção de cada uma das áreas base escolhe-se um ciclo de maquinagem e um porta pastilha (ferro) mais adequado. Concorrem para essa escolha factores tais como tipo de área a remover, tipo de maquinagem (tornear, facejar, ranhurar, cortar) e as restrições geométricas do porta pastilha. Existem, no entanto, determinadas áreas de remoção em que apenas um ciclo de maquinagem e um tipo de porta pastilha não é suficiente para efectuar a remoção da área, conforme se pode observar nos exemplos a seguir representados.

5.5.2.1 Exemplo 1

Para remover uma área do tipo slot rectângulo existem dois tipos de maquinagem possíveis, ranhurar ou tornear em duas etapas, como mostra a figura 5.30. Determinar por qual dos tipos de maquinagem optar é uma das várias decisões que o programador de NC poderá tomar durante a fase de planeamento de processo. Caso o programador não opte por qualquer das opções disponíveis é escolhida aquela que tiver um tempo de maquinagem menor, que neste caso será ranhurar, pois tornear em duas etapas necessitará de uma mudança de ferramenta, o que deve ser evitado sempre que possível pois implica tempos não produtivos.

![Diagrama de remoção de áreas](image)

Figura 5.30- Ranhurar e tornear em duas etapas
5.5.2.1 Exemplo 2

Para remover uma área do tipo slot representada na figura 5.31, apenas se poderá efectuar a operação de tornear, no entanto, devido à característica da área não é possível encontrar na biblioteca de ferramentas um porta pastilha capaz de executar esta operação em apenas um ciclo de maquinação. Para este caso e em casos semelhantes divide-se a operação de remoção da área em duas etapas, criando para tal duas áreas de remoção em que se atribuirá a cada uma delas o ciclo de maquinação e o porta pastilha mais adequados.

![Figura 5.31 - Remoção da área tipo slot em duas etapas](image)

A sequência de remoção será, primeiro a área A11 e depois a área A12 com uma mudança de ferramenta entre os dois ciclos de maquinação.

Existem no entanto situações em que apenas um porta pastilha e um ciclo de maquinação são suficientes para efectuar a remoção de uma área do tipo slot, como é o caso representado na figura 5.32:

![Figura 5.32 - remoção da área tipo slot em apenas uma etapa](image)

Os procedimentos exemplificados para tratamento de áreas do tipo slot serão também aplicados para o caso das áreas do tipo step, sempre que um ciclo de maquinação e um porta pastilha não sejam suficientes para efectuar a remoção da área.

A escolha da ferramenta mais adequada é feita através da consulta a uma base de dados (biblioteca de ferramentas) onde está armazenada informação sobre as características geométricas do porta pastilha e informações de corte sobre a pastilha para facilitar a decisão de entre as ferramentas disponíveis qual a mais apropriada para a operação em causa. Se a ferramenta seleccionada não existir na biblioteca, uma ferramenta apropriada pode ser
especificada pelo programador NC, passando esta a pertencer à biblioteca para utilização futura.

Depois de determinados qual o porta pastilha, a pastilha e o ciclo de maquinação mais adequados para a execução de todas as áreas de remoção sugeridas pelo programador NC e pelo método, efectua-se o sequenciamento das áreas a remover representadas no mesmo nível. Este sequenciamento é feito através de um algoritmo de ordenação que tem como função minimizar o número de mudanças de ferramenta, permitindo desta forma minimizar o tempo para a execução da peça.

Na fase de planeamento de processo o programador de NC poderá atribuir a cada uma das áreas de remoção por si determinadas a ferramenta que considere mais adequada, nesta situação verifica-se se a atribuição é válida, caso contrário pede-se ao programador nova sugestão ou então sugere-se a ferramenta mais adequada dentro das disponíveis na biblioteca de ferramentas.

5.5.3 Fase 3 - Geração de um ficheiro contendo a linguagem NC adequada para a execução da peça

Depois de concluída a fase de planeamento de processo, atinge-se a última fase do método onde se procede à geração de um ficheiro contendo o programa NC. Para que seja possível a sua integração com o software de controlo do Sistema Flexível de Fabrico existente no centro CIM do ISEP, o ficheiro gerado deverá obedecer aos seguintes requisitos:

- ter um formato ASCII com extensão FNC,

- ser composto por comandos interpretáveis pela máquina ferramenta GE FANUC SERIES OT existente no referido centro,

- ter no início e no final a sequência de comandos representada a seguir.

 M62 (auxiliar 1 ON)
 M39 (fechar a porta)

Código NC gerado pelo método para maquinação das áreas de remoção
M38 (abrir a porta)
M64 (auxiliar 1 OFF)
M15 (função especial de controlo)
% (fim do programa)

O código NC gerado está devidamente comentado, permitindo ao programador NC efectuar uma validação mais rápida e eficiente. Os comentários surgem no início de cada bloco de código

5.6 Exemplos de aplicação do método desenvolvido

Para ilustrar a aplicação e respectivos resultados obtidos com a aplicação do método aqui proposto consideram-se dois exemplos que a seguir se detalham. O primeiro é a maquinagem de uma peça cujo modelo geométrico é constituído apenas por segmentos de recta. O segundo refere-se a uma peça mais complexa que além de segmentos de recta exige também arcos na constituição do seu modelo.

5.6.1 Exemplo 1

Supondo que se pretende executar a maquinagem, num torno CNC, de um peça com eixo de revolução cujo modelo geométrico é constituído apenas por segmentos de recta, como se pode ver na figura 5.33;

![Figura 5.33 - modelo geométrico da peça que se pretende executar](image)

Com base no desenho da peça a produzir, nas características da matéria prima disponível e atendendo aos requisitos descritos no ponto 5.5.1, o programador NC irá
elaborar um novo desenho onde definirá as áreas de remoção e a respectiva sequência de remoção. Para a mesma peça podem existir várias alternativas, assim para a peça em questão uma das hipóteses possíveis está representada na figura 5.34:

![Figura 5.34 - modelo geométrico da peça e das diferentes áreas de remoção](image)

O ficheiro com formato DXF resultante do projecto de maquinação criado pelo programador de NC para a peça representada na figura 5.33 encontra-se representado a seguir. (acrescentaram-se ao ficheiro alguns comentários para facilitar ao leitor uma melhor compreensão dos dados que compõem um ficheiro com formato DXF).

```
0
SECTION
2
ENTITIES início da section entities
0
TEXT característica do texto no nível
8
2
10
8.583858
20
65.258877
30
40
8.123757
1
A1 texto início da identificação da geometria da peça nível
8
1
66
1
10
0.0
20
0.0
30
0.0
0
VE T E R X
8
1
10
70.0
7.0
20
60.0
30
0.0
0
VE T E R X
8
1
10
77.0
20
60.0
30
0.0
0
VE T E R X
8
1
10
85.0
20
50.0
30
0.0
0
VE T E R X
8
1
10
90.0
20
25.0
30
0.0
0
VE T E R X
8
1
10
100.0
0.0
20
25.0
30
0.0
0
VE T E R X
8
1
10
100.0
0.0
20
25.0
30
0.0
0
VE T E R X
8
1
10
100.0
0.0
20
25.0
30
0.0
0
VE T E R X
8
1
10
100.0
0.0
20
25.0
30
0.0
0
VE T E R X
8
1
10
100.0
```
<table>
<thead>
<tr>
<th>Nível</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>área A1</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>área A2</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>área A3</td>
<td>8</td>
<td>30</td>
</tr>
</tbody>
</table>

SEQEND

- fim área A1
- início identificação materia prima
- nível

POLYLINE

- área A1
- nível

VERTEX

- fim da geometria da peça
- início da identificação da área A3
Fase I

O primeiro passo desta fase é a interpretação do ficheiro DXF. Esta interpretação consiste na análise detalhada do ficheiro permitindo efectuar a recolha de informação sobre a geometria e identificação de cada uma das áreas constituintes do desenho. Num segundo
passo procede-se à organização dos vértices de uma mesma área de forma que a representação da área se inicie a partir do vértice com maior coordenada em X, no caso de haver mais do que um vértice com igual coordenada em X, a representação da área iniciar-se-á com aquele que tiver maior coordenada em Y.

Por exemplo, pela interpretação directa do ficheiro DXF para a área A3 obtém-se a seguinte sequência de vértices:

40,60 70,60 70,50 40,50 40,60

depois da aplicação do algoritmo de organização dos vértices a nova sequência será:

70,60 70,50 40,50 40,60 70,60

Depois de concluída a aplicação do algoritmo de organização de vértices a todas as áreas de remoção, matéria prima e peça a produzir, a informação armazenada fica preparada para a fase de planeamento de processo.

Fase 2

Nesta fase aplica-se o algoritmo de reconhecimento para se saber qual o tipo de áreas de remoção definidas pelo programador NC. O resultado da aplicação do algoritmo para este caso foi o seguinte:

- a área A1 é do tipo *desbaste horizontal*,
- a área A2 é do tipo *desbaste vertical*,
- a área A3 é do tipo *slot*,
- a área A4 é do tipo *step*.

O passo seguinte, depois de efectuado o reconhecimento de todas as áreas é a escolha do tipo de ferramenta a utilizar para executar cada uma das áreas definidas. É atribuída a cada tipo de área uma ferramenta que se encontra já pré-definida na biblioteca de ferramentas como sendo a adequada para o respectivo tipo de área, no entanto, e dependendo das características da cada área, a ferramenta escolhida pode não ser a mais adequada, assim efectua-se uma validação verificando se existe alguma restrição geométrica que possa impedir a ferramenta seleccionada de remover a área pretendida. Se tal acontecer procura-se outra ferramenta que permita efectuar a remoção da área em questão. Se mesmo assim não houver qualquer ferramenta que permita remover essa área, então procede-se à divisão da área de forma que se encontrem ferramentas adequadas para a remoção de cada uma das partes em que a área foi dividida. Para cada uma das áreas do exemplo da figura 5.33 as ferramentas seleccionadas são:
área A1 - porta pastilha tipo L0
área A2 - porta pastilha tipo L3
área A3 - porta pastilha tipo C2
área A4 - porta pastilha tipo L3

Após a seleção das ferramentas definem-se os ciclos de maquinação a efectuar para a remoção das áreas. Esta definição está dependente do tipo de área que se pretende remover, assim para executar a área A1 efectua-se uma operação de torneamento cujo ciclo de maquinação é G71, para as áreas A2 e A4 a operação será de facejamento que corresponde ao ciclo de maquinação G72 e para a área A3 a operação é ranhurar, o que corresponde ao ciclo de maquinação G74.

O último passo desta fase é a determinação da sequência de remoção de áreas representadas no mesmo nível, uma vez que para áreas no mesmo nível não existe uma relação de precedência. A sequência obtém-se respeitando a regra de minimizar o número de mudanças de ferramenta. O resultado obtido para o exemplo em questão será: A1, A3, A2 e A4.

Fase 3

Nesta fase procede-se à geração do ficheiro com o programa NC, tendo em atenção a informação obtida e respeitando os requisitos específicos para integração no software de controlo do Sistema Flexível de Fabrico do centro CIM do ISEP. Para o caso em questão o resultado desta fase é o ficheiro NC que se encontra representado a seguir.

```plaintext
(sequência inicial para integração com software de controlo FMS)
O0001;
N5 M62;
N10 M39;

(Preparação da máquina para maquinação de uma peça do tipo K)
N15 G99 G21 G96 G00 X145.000000 Z0.000000;

(mudança de ferramenta para efectuar uma operação de M)
(na área A1 do tipo D. horizontal no layer 2 com um porta pastilha do tipo L 0)
(para efectuar uma p.corte de 3.700000 com avanco 0.350000 e vc 170)
(as tolerâncias aceitáveis são: pc 0.4-6.0, av 0.15-0.60, vc 215-140)
N20 MO6 T0101;
N25 MO3 S170;
N30 MO8;

(para efectuar a operação seguinte não é necessário mudar a ferramenta)
```
(ciclo de torneamento para remove a area A1 no layer 2)
N35 G00 X140.000000 Z0.000000;
N40 G71 U3.700000 R0.1;
N45 G71 P50 Q60 U4.000000 W2.000000 F0.350000 S170;
N50 G00 X100.000000 Z0.000000 F0.200000 S215;
N55 G01 X100.000000 Z-110.000000;
N60 G01 X140.000000 Z-110.000000;
(se pretende eliminar o acabamento elimina a linha seguinte)
N65 G70 P50 Q60;
N70 G00 X145.000000 Z0.000000;

(mudança de ferramenta para efectuar uma operacao de R)
(na area A3 do tipo slot no layer 3 com um porta pastilha do tipo C 2)
(para efectuar uma p.corte de 3.700000 com avanco 0.180000 e vc 175)
(as tolerancias aceitaveis sao: pc 0.4-6.0, av 0.05-0.15, vc 270-130)
N75 MO6 T0202;

(ciclo de torneamento para remove a area A3 no layer 3)
N80 G00 X100.000000 Z-50.000000;
N85 G74 R0.500000;
N90 G74 X80.000000 Z-80.000000 P3.5 Q3.5 R1.0 F0.180000;
N95 G00 X145.000000 Z0.000000;

(mudança de ferramenta para efectuar uma operacao de M)
(na area A2 do tipo D. vertical no layer 3 com um porta pastilha do tipo L 3)
(para efectuar uma p.corte de 3.700000 com avanco 0.350000 e vc 170)
(as tolerancias aceitaveis sao: pc 0.4-6.0, av 0.15-0.60, vc 215-140)
N100 MO6 T0303;

(ciclo de torneamento para remove a area A2 no layer 3)
N115 G00 X100.000000 Z0.000000;
N120 G72 U3.700000 R0.1;
N125 G72 P130 Q140 U4.000000 W2.000000 F0.350000 S170;
N130 G00 X100.000000 Z-20.000000 F0.200000 S215;
N135 G01 X0.000000 Z-20.000000;
N140 G01 X0.000000 Z0.000000;
(se pretende eliminar o acabamento elimina a linha seguinte)
N145 G70 P130 Q140;
N150 G00 X145.000000 Z0.000000;

(para efectuar a operacão seguinte não e necessario mudar a ferramenta)

(ciclo de torneamento para remover a area A4 no layer 4)
N155 G00 X100.000000 Z-20.000000;
N160 G72 U3.700000 R0.1;
N165 G72 P170 Q185 U4.000000 W2.000000 F0.350000 S170;
N170 G00 X100.000000 Z-43.000000 F0.200000 S215;
N175 G01 X80.000000 Z-35.000000;
N180 G01 X30.000000 Z-30.000000;
N185 G01 X20.000000 Z-20.000000;
(se pretende eliminar o acabamento elimina a linha seguinte)
N190 G70 P170 Q185;
N195 G00 X145.000000 Z0.000000;

(mudança de ferramenta para efectuar uma operacao de C)
(da peça com um porta pastilha do tipo C 2)
(para efectuar uma p.corte de 3.700000 com avanco 0.150000 e vc 115)
(as tolerancias aceitaveis sao: pc 0.4-6.0, av 0.10-0.30, vc 140-100)
N100 MO6 T0404;
(ciclo para efectuar o corte da peça)
N200 G00 X140.000000 Z-110.000000;
N205 G75 R0.500000;
N210 G75 X-1.000000 P3.500000 R1.000000 F0.150000;

(retorno para posição de segurança)
N215 G00 X145.000000 Z-30.000000;

(sequência final de comandos para integração com software de controlo)
N220 M05;
N225 M38;
N230 M64;
N235 M15;
%

5.6.2 Exemplo 2

Supondo que se pretende executar num torno CNC um peão do jogo de xadrez cujo modelo geométrico é constituído por segmentos de recta e arcos, e se encontra representado na figura 5.35:

Figura 5.35 - modelo geométrico do peão

Com base no desenho da peça a produzir, nas características da matéria prima disponível e atendendo aos requisitos descritos no ponto 5.5.1, o programador NC irá elaborar um novo desenho onde definirá as áreas de remoção e a respectiva sequência de remoção. Como foi referido anteriormente para a mesma peça podem existir várias alternativas possíveis, assim para a peça em questão uma das hipóteses possíveis está representada na figura 5.36:
O ficheiro com formato DXF resultante do projecto de maquinção criado pelo programador de NC para a peça representada na figura 5.35 encontra-se representado a seguir. Notar que neste caso são utilizadas entidades simples (segmentos de recta e arcos) para definir o modelo geométrico da peça a produzir, estas entidades não são agrupadas em polylines como acontecia no exemplo anterior.
<table>
<thead>
<tr>
<th>LINE</th>
<th>segmento de recta</th>
<th>nivel</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>14.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LINE</th>
<th>segmento de recta</th>
<th>nivel</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARC</th>
<th>arco</th>
<th>nivel</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>9.7</td>
<td>9.7</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>1.824829</td>
<td>1.824829</td>
<td></td>
</tr>
<tr>
<td>9.462322</td>
<td>9.462322</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>80.537678</td>
<td>80.537678</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ARC</td>
<td>arco</td>
<td>nivel</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>9.7</td>
<td>9.7</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>1.824829</td>
<td>1.824829</td>
<td></td>
</tr>
<tr>
<td>9.462322</td>
<td>9.462322</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>80.537678</td>
<td>80.537678</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

0.0	0	1.235561
10	10	50
45.0	45.0	189.462322
20	20	51
0.0	0	283.157543
0.0	0	0
21	21	ARC
0.0	0	8
0.0	0	10
31	31	5.71875
0.0	0	20
0.0	0	10.203125
0.0	0	30
0.0	0	0
31	31	40
Fase 1

Nesta fase começa-se por fazer uma interpretação do ficheiro DXF. Embora o ficheiro tenha o mesmo formato que o ficheiro do exemplo anterior, a recolha de informação sobre a geometria e identificação de cada uma das áreas constituintes do desenho é efetuada de uma forma diferente, uma vez que, as entidades que definem uma determinada área não estão agrupadas numa polyline, como acontecia no exemplo anterior, é obrigatória a execução prévia de um algoritmo que agrupe sequencialmente essas entidades, pois estas encontram-se aleatoriamente descritas no ficheiro DXF.

O segundo passo desta fase faz a ordenação dos vértices de uma mesma área de forma que a descrição da área se inicie a partir do vértice com maior coordenada em X, como explicado no exemplo anterior.
Fase 2

No primeiro passo da fase 2 faz-se o reconhecimento do tipo de áreas de remoção definidas pelo programador NC, obtendo-se o seguinte resultado:

- a área A1 é do tipo desbaste horizontal,
- a área A2 é do tipo desbaste vertical,
- a área A3 é do tipo step,
- a área A4 é do tipo slot,
- a área A5 é do tipo step.

No passo seguinte é feita a escolha do tipo de ferramenta a utilizar para executar cada uma das áreas definidas. É atribuída a cada tipo de área uma ferramenta que se encontra já pré-definida na biblioteca de ferramentas como sendo a mais adequada para o respectivo tipo de área. Para cada uma das áreas as ferramentas selecionadas são:

- área A1 - porta pastilha L0
- área A2 - porta pastilha L0
- área A3 - porta pastilha L0
- área A4 - porta pastilha E2
- área A5 - porta pastilha L3

A seguir efectua-se uma validação dos porta pastilhas atribuídos, verificando-se que para o caso das áreas A4 e A5 existem restrições geométricas que impedem a ferramenta selecionada de remover a área em questão. Neste caso e em casos semelhantes faz-se uma consulta à biblioteca de ferramentas, procurando encontrar um porta pastilha que permita efectuar a operação em causa.

Neste exemplo a consulta revelou-se infrutífera pois não foi encontrado nenhum tipo de porta pastilha capaz de remover qualquer destas duas áreas. Em situações destas a solução passa por se efectuar uma divisão da área de remoção.

Para o caso da área A4 a divisão efectuada automaticamente deu origem às áreas A41 e A42 representadas na figura 5.37.

![Figura 5.37 - Divisão da área A4](image-url)
A cada uma das áreas é atribuído um porta pastilha verificando-se se existe qualquer tipo de restrição geométrica. Neste caso não houve qualquer restrição geométrica à atribuição inicial, assim o resultado obtido foi:

área A41 - porta pastilha J0
área A42 - porta pastilha J1.

Para o caso da área A5 a divisão efectuada deu origem às áreas A51 e A52 representadas na figura 5.38.

![Figura 5.38 - Divisão da área A5](image)

Os porta pastilhas atribuídos a cada uma das áreas foram os seguintes:

área A51 - porta pastilha L3.
área A52 - porta pastilha L3.

Verificando-se em seguida a existência ou não de qualquer restrição geométrica do porta pastilha atribuído a cada uma das áreas.

Para a área A52 não houve problema, mas para o caso da área A51 o porta pastilha seleccionado revelou-se inadequado, pelo que se efectua uma pesquisa na biblioteca de ferramentas de outro porta pastilha mais adequado. O único porta pastilha existente na biblioteca de ferramentas que poderá executar a operação é o do tipo C, no entanto, este só é aplicado para as operações de ranhurar, cortar e tornear/ranhurar, o que não é o caso da operação em causa. Nestas casos é pedido ao programador NC a validação da opção apresentada ou então a definição de um novo porta pastilha que permita remover a área em questão. Supondo que o programador NC validou a ferramenta sugerida, o porta pastilha para remover a área A52 é do tipo C.

Após a selecção das ferramentas é definido um ciclo de maquinação para cada uma das áreas de remoção. Esta definição esta dependente do tipo de área que se pretende remover e do tipo de porta pastilha atribuído, assim para o exemplo em análise definiu-se os seguintes ciclos de maquinação.
área A1 - ciclo de maquinação G71
área A2 - ciclo de maquinação G71
área A3 - ciclo de maquinação G71
área A41 - ciclo de maquinação G71
área A42 - ciclo de maquinação G71
área A51 - ciclo de maquinação G72
área A52 - ciclo de maquinação G72

No último passo desta fase determina-se a sequência de remoção das áreas representadas no mesmo nível. Como foi referido anteriormente a sequência obtém-se depois de aplicada a regra que minimiza o número de mudanças de ferramenta. Notar que para o caso das áreas A2 e A3, embora o porta pastilha seja o mesmo, a pastilha é diferente, pois na primeira área é efectuada uma operação de desbaste enquanto na segunda é uma operação de maquinação média, sendo assim é necessário duas ferramentas distintas. O resultado obtido para o exemplo em questão será:

Fase 3

Encontra-se representado a seguir o programa NC gerado pelo método para executar numa máquina CNC (Torno) o peão do jogo de xadrez. Este código depois de validado será transmitido para a máquina CNC pelo sistema de controlo do FMS.

(sequência inicial para integração com software de controlo FMS)
O0001;
N5 M62;
N10 M39;

(Preparação da máquina para maquinação de uma peça do tipo M)
N15 G99 G21 G96 G00 X33.000000 Z0.000000;

(mudança de ferramenta para efectuar uma operação de D)
(numa área do tipo D horizontal no layer 2 com um porta pastilha do tipo L 0)
(para efectuar uma p.corte de 5.000000 com avanço 0.450000 e vc 140)
(as tolerancias aceitáveis sao: pc 2.0-10.5, av 0.35-0.70, vc 175-115)
N20 MO6 T0101;
N25 MO3 S140;
N30 MO8;

(para efectuar a operação seguinte não e necessário mudar a ferramenta)
(ciclo de torneamento para remover a área A1 no layer 2)
N35 G00 X28.000000 Z0.000000;
N40 G71 U5.000000 R0.1;
N45 G71 P50 Q60 U0.0 W0.0 F0.450000 S140;
N50 G00 X24.000000 Z0.000000;
N55 G01 X24.000000 Z-45.000000;
N60 G01 X28.0000000 Z-45.000000;
N65 G00 X33.000000 Z0.000000;

(para efectuar a operação seguinte não e necessário mudar a ferramenta)

(ciclo de torneamento para remover a area A2 no layer 3)
N70 G00 X24.000000 Z0.000000;
N75 G71 U5.000000 R0.1;
N80 G71 P85 Q95 U0.0 W0.0 F0.450000 S140;
N85 G00 X0.000000 Z0.000000;
N90 G01 X0.000000 Z-2.000000;
N95 G01 X24.000000 Z-2.000000;
N100 G00 X33.000000 Z0.000000;

(mudança de ferramenta para efectuar uma operação de M)
(numa área do tipo step no layer 4 com um porta pastilha do tipo L 0)
(para efectuar uma p.corte de 3.000000 com avanço 0.300000 e vc 175)
(as tolerancias aceitáveis sao: pc 1.0-6.0, av 0.25-0.50, vc 180-150)
N105 MO6 T0202;

(ciclo de torneamento para remover a area A3 no layer 4)
N110 G00 X24.000000 Z-2.000000;
N115 G71 U3.000000 R0.1;
N120 G71 P125 Q145 U2.000000 W1.000000 F0.300000 S175;
N125 G00 X18.000000 Z-2.000000 F0.200000 S245;
N130 G01 X18.000000 Z-39.000000;
N135 G03 X20.000000 Z-40.500000 R1.240000;
N140 G02 X23.000000 Z-42.000000 R1.820000;
N145 G01 X24.000000 Z-45.000000;
(se pretende eliminar o acabamento elimine a linha seguinte)
N150 G70 P125 Q145;
N155 G00 X33.000000 Z0.000000;

(mudança de ferramenta para efectuar uma operação de M)
(numa área do tipo slot no layer 5 com um porta pastilha do tipo J 0)
(para efectuar uma p.corte de 3.000000 com avanço 0.300000 e vc 175)
(as tolerancias aceitáveis sao: pc 1.0-6.0, av 0.25-0.50, vc 180-150)
N160 MO6 T0303;

(ciclo de torneamento para remover a area A41 no layer 5)
N165 G00 X18.000000 Z-25.000000;
N170 G71 U3.000000 R0.1;
N175 G71 P175 Q180 U2.000000 W1.000000 F0.300000 S175;
N180 G00 X12.000000 Z-25.000000 F0.200000 S245;
N185 G01 X18.000000 Z-39.000000;
(se pretende eliminar o acabamento elimine a linha seguinte)
N190 G70 P180 Q185;
N195 G00 X33.000000 Z0.000000;

(mudança de ferramenta para efectuar uma operação de M)
(numa área do tipo slot no layer 5 com um porta pastilha do tipo J 1)
(para efectuar uma p.corte de 3.000000 com avanço 0.300000 e vc 175)
(as tolerancias aceitáveis sao: pc 1.0-6.0, av 0.25-0.50, vc 180-150)
N200 MO6 T0404;

(ciclo de torneamento para remover a area A42 no layer 5)
N205 G00 X18.000000 Z-25.000000;
N210 G71 U3.000000 R0.1;
N215 G71 P220 Q230 U2.000000 W1.000000 F0.300000 S175;
N220 G00 X12.000000 Z-25.000000 F0.200000 S245;
N225 G02 X7.029438 Z-19.000000 R8.4800000;
N230 G01 X18.000000 Z-17.000000;
(se pretende eliminar o acabamento elimine a linha seguinte)
N235 G70 P220 Q230;
N240 G00 X33.000000 Z0.000000;

(mudança de ferramenta para efectuar uma operação de M)
(numa área da tipo step no layer 5 com um porta pastilha do tipo L 3)
(para efectuar uma p.corte de 3.000000 com avanço 0.300000 e vc 175)
(as tolerancias aceitáveis sao: pc 1.0-6.0, av 0.25-0.50, vc 180-150)
N245 MO6 T0505;

(ciclo de torneamento para remover a area A52 no layer 5)
N250 G00 X18.000000 Z-2.000000;
N255 G72 U3.000000 R0.1;
N260 G72 P265 Q275 U2.000000 W1.000000 F0.300000 S175;
N265 G00 X18.000000 Z-8.000000 F0.200000 S245;
N270 G01 X12.000000 Z-8.000000;
N275 G02 X0.000000 Z-2.000000 R6.000000;
(se pretende eliminar o acabamento elimine a linha seguinte)
N280 G70 P265 Q275;
N285 G00 X33.000000 Z0.000000;

(mudança de ferramenta para efectuar uma operação de T)
(numa área da tipo step no layer 5 com um porta pastilha do tipo C 2)
(para efectuar uma p.corte de 3.000000 com avanço 0.180000 e vc 175)
(as tolerancias aceitáveis sao: pc 1.0-6.0, av 0.12-0.25, vc 270-130)
N290 MO6 T0606;

(ciclo de torneamento para remover a area A51 no layer 5)
N295 G00 X18.000000 Z-8.000000;
N300 G72 U3.000000 R0.1;
N305 G72 P310 Q325 U2.000000 W-1.000000 F0.180000 S175;
N310 G00 X18.000000 Z-16.000000 F0.200000 S245;
N315 G01 X7.000000 Z-14.000000;
N320 G01 X7.856378 Z-12.535343;
N325 G02 X12.000000 Z-8.000000 R6.000000;
(se pretende eliminar o acabamento elimine a linha seguinte)
N330 G70 P310 Q325;
N335 G00 X33.000000 Z0.000000;

(para efectuar a operação seguinte não e necessário mudar a ferramenta)

(ciclo para efectuar o corte da peça)
N340 G00 X26 Z-45;
N345 G75 R0.500000;
N350 G75 X-1.000000 P3.500000 R1.000000 F0.120000;

(retorno para posição de segurança)
N355 G00 X100.000000 Z-30.000000;

(sequência final de comandos para integração com software de controlo)
N360 M05;
N365 M38;
N370 M64;
N375 M15;
%
5.6.3 Exemplo 3

Supondo que se pretende executar num torno CNC a peça cujo modelo geométrico se encontra representado na figura 5.39.

![Figura 5.39 - Modelo geométrico da peça a pretende executar](image)

O programador NC com base no modelo geométrico, nas características da matéria prima e nos requisitos descritos no ponto 5.5.1, irá elaborar um novo desenho onde definirá as áreas de remoção e a sua sequência. A figura 5.40 representa uma das alternativas possíveis. Notar que as áreas representadas no mesmo nível têm as linhas com a mesma cor.

![Figura 5.40 - Modelo geométrico da peça e das áreas de remoção](image)

O ficheiro com formato IGES resultante do projecto de maquinção, criado pelo programador NC para a peça representada na figura 5.39 encontra-se representado a seguir (acrescentaram-se ao ficheiro alguns comentários para facilitar ao leitor uma melhor compreensão dos dados que compõem um ficheiro com formato IGES).

```
IGES file generated from an AutoCAD drawing by the IGES
translator from Autodesk, Inc., translator version IGESOUT-3.04.

Segment 110
  1 1 1 Nivel1 000000D00000001
direc 110
  2 1
```
Ano	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300	310	320	330	340	350	360	370	380	390	400	410	420				
	2	1	1	1																																	
100																																					
110																																					
120																																					

Notas:
- Os números na coluna 100 são os anos.
- Os números na coluna 110 são os dados relativos ao ano respectivo.
- Os dados na coluna 120 a 420 correspondem aos números de registro para aquele ano.
Fase 1

O primeiro passo é a interpretação do ficheiro IGES que contém informação sobre a geometria da peça que se pretende executar e das várias áreas de remoção. O algoritmo que efectua a interpretação do formato IGES é diferente daquele que é utilizado para fazer a interpretação do formato DXF, uma vez que estes ficheiros têm uma estrutura de dados diferente. Depois de recolhida toda a informação de interesse existente no ficheiro IGES, passa-se para o segundo passo onde, tal como no exemplo anterior, se procede à ordenação dos vértices de uma mesma área de formas a que a descrição da área se inicie a partir do vértice com maior coordenada em X.

Fase 2

Nesta fase começa-se por aplicar o algoritmo de reconhecimento das áreas de remoção. Para este caso o resultado obtido foi o seguinte:

- a área A1 é do tipo desbaste horizontal,
- a área A2 é do tipo desbaste vertical,
- a área A3 é do tipo slot,
- a área A4 é do tipo slot,
- a área A1 é do tipo step,

No passo seguinte é atribuída a cada uma das áreas identificadas a ferramenta que foi definida como sendo a mais adequada. O resultado dessa atribuição foi o seguinte:

- área A1 - porta pastilha L0
- área A2 - porta pastilha L3
- área A3 - porta pastilha E2
- área A4 - porta pastilha C2
- área A5 - porta pastilha L0

A seguir efectua-se a validação dos porta pastilhas atribuídos, verificando-se que, a única incompatibilidade é a da E2 que devido à sua geometria não permite remover a área A3. Neste caso efectua-se uma consulta à biblioteca de ferramentas, procurando encontrar-se um porta pastilha que permita efectuar a operação em causa. Como não existe na biblioteca nenhuma ferramenta com tais características a solução passa por se efectuar uma divisão da área de remoção.
A divisão da área A3 resultou nas áreas A31 e A32 representadas na figura 5.41.

![Figura 5.41 - Divisão da área A3](image)

A cada uma das áreas é atribuído um porta pastilha verificando-se posteriormente se existe qualquer tipo de restrição geométrica. Como a divisão resultou em duas áreas com a forma de rectângulo o porta pastilha atribuído a cada uma das áreas vai ser do tipo C2, não apresentando este qualquer tipo de restrição geométrica.

Após a selecção das ferramentas é definido um ciclo de maquinação para cada uma das áreas de remoção seguindo o mesmo critério dos exemplos anteriores, assim para o exemplo em questão definiram-se os seguintes ciclos de maquinação.

- área A1 - ciclo de maquinação G71
- área A2 - ciclo de maquinação G72
- área A31 - ciclo de maquinação G74
- área A32 - ciclo de maquinação G74
- área A4 - ciclo de maquinação G74
- área A5 - ciclo de maquinação G71

No último passo desta fase determina-se a sequência de remoção das áreas representadas no mesmo nível com o objectivo de minimizar o número de mudanças de ferramenta. O sequência obtida foi:

A1, A2, A31, A32, A4, A5.

Fase 3

O ficheiro com o programa NC gerado nesta fase encontra-se representado a seguir.

```
(sequência inicial para integração com software de controlo FMS)
O0001;
N5 M62;
N10 M39;

(Preparação da máquina para maquinação de uma peça do tipo K)
N15 G99 G21 G96 G00 X39.000000 Z0.000000;
```
(mudança de ferramenta para efectuar uma operação de M)
(na área A1 do tipo D. horizontal no layer 2 com um porta pastilha do tipo L 0)
(para efectuar uma p.corte de 3.700000 com avanco 0.350000 e vc 170)
(as tolerancias aceitáveis sao: pc 0.4-6.0, av 0.15-0.60, vc 215-140)
N20 MO6 T0101;
N25 MO3 S170;
N30 MO8;

(para efectuar a operação seguinte não e necessário mudar a ferramenta)

(ciclo de torneamento para remover a area A1 no layer 2)
N35 G00 X34.000000 Z0.000000;
N40 G71 U3.700000 R0.1;
N45 G71 P50 Q60 U4.000000 W2.000000 F0.350000 S170;
N50 G00 X30.000000 Z0.000000 F0.200000 S215;
N55 G01 X30.000000 Z-44.000000;
N60 G01 X34.000000 Z-44.000000;
(se pretende eliminar o acabamento elimine a linha seguinte)
N65 G70 P50 Q60;
N70 G00 X39.000000 Z0.000000;

(mudança de ferramenta para efectuar uma operação de M)
(na área A2 do tipo D. vertical no layer 3 com um porta pastilha do tipo L 3)
(para efectuar uma p.corte de 3.700000 com avanco 0.350000 e vc 170)
(as tolerancias aceitáveis sao: pc 0.4-6.0, av 0.15-0.60, vc 215-140)
N75 MO6 T0202;

(ciclo de torneamento para remover a area A2 no layer 3)
N80 G00 X30.000000 Z0.000000;
N85 G72 U3.700000 R0.1;
N90 G72 P95 Q105 U4.000000 W2.000000 F0.350000 S170;
N95 G00 X30.000000 Z-2.000000 F0.200000 S215;
N100 G01 X0.000000 Z-2.000000;
N105 G01 X0.000000 Z0.000000;
(se pretende eliminar o acabamento elimine a linha seguinte)
N110 G70 P95 Q105;
N115 G00 X34.000000 Z0.000000;

(mudança de ferramenta para efectuar uma operação de R)
(na área A31 do tipo slot no layer 4 com um porta pastilha do tipo C. 2)
(para efectuar uma p.corte de 3.700000 com avanco 0.180000 e vc 175)
(as tolerancias aceitáveis sao: pc 0.4-6.0, av 0.05-0.15, vc 270-130)
N120 MO6 T0303;

(ciclo de torneamento para remover a area A31 no layer 4)
N125 G00 X30.000000 Z-34.000000;
N130 G74 R0.500000;
N135 G74 X20.000000 Z-44.000000 P3.5 Q3.5 R1.0 F0.180000 ;
N140 G00 X39.000000 Z0.000000;

(para efectuar a operação seguinte não e necessário mudar a ferramenta)

(ciclo de torneamento para remover a area A32 no layer 4)
N145 G00 X30.000000 Z-29.000000;
N150 G74 R0.500000;
N155 G74 X14.000000 Z-34.000000 P3.5 Q3.5 R1.0 F0.180000 ;
N160 G00 X39.000000 Z0.000000;
(para efectuar a operação seguinte não e necessário mudar a ferramenta)

(ciclo de torneamento para remover a area A4 no layer 4)
N165 G00 X30.000000 Z-19.000000;
N170 G74 R0.500000;
N175 G74 X10.000000 Z-24.000000 P3.5 Q3.5 R1.0 F0.180000 ;
N180 G00 X39.000000 Z0.000000;

(mudança de ferramenta para efectuar uma operação de M)
(na area A5 do tipo step no layer 5 com um porta pastilha do tipo L 0)
(para efectuar uma p.corte de 3.700000 com avanco 0.350000 e vc 170)
(as tolerancias aceitaveis sao: pc 0.4-6.0, av 0.15-0.60, vc 215-140)
N185 MO6 T0404;

(ciclo de torneamento para remover a area A5 no layer 5)
N190 G00 X30.000000 Z-2.000000;
N195 G71 U3.700000 R0.1;
N200 G71 P205 Q230 U4.000000 W2.000000 F0.350000 S170;
N205 G00 X8.000000 Z-2.000000 F0.200000 S215;
N210 G02 X12.000000 Z-4.000000 R2.000000;
N215 G01 X20.000000 Z-10.000000;
N220 G02 X24.000000 Z-12.000000 R2.000000;
N225 G01 X24.000000 Z-19.000000;
N230 G01 X30.000000 Z-19.000000;
(se pretende eliminar o acabamento elimine a linha seguinte)
N235 G70 P205 Q230;
N240 G00 X39.000000 Z0.000000;

(mudança de ferramenta para efectuar uma operação de C)
(da peça com um porta pastilha do tipo C 2)
(para efectuar uma p.corte de 3.700000 com avanco 0.150000 e vc 115)
(as tolerancias aceitaveis sao: pc 0.4-6.0, av 0.10-0.30, vc 140-100)
N245 MO6 T0505;

(ciclo para efectuar o corte da peça)
N250 G00 X34.000000 Z-44.000000;
N255 G75 R0.500000;
N260 G75 X-1.000000 P3.500000 R1.000000 F0.150000;

(retorno para posição de segurança)
N265 G00 X100.000000 Z-30.000000;

(sequência final de comandos para integração com software de controlo)
N270 M05;
N275 M38;
N280 M64;
N285 M15;
%
CAPÍTULO 6

Conclusões

Neste capítulo tiram-se conclusões sobre o trabalho desenvolvido no âmbito desta tese. Faz-se referência a alguns aspectos originais e algumas limitações que o método proposto apresenta e perspectivam-se desenvolvimentos futuros.

Nesta tese de mestrado começou-se por fazer uma abordagem genérica ao conceito CIM, com especial ênfase na questão da flexibilidade dos sistemas de fabrico. Posteriormente referiram-se alguns aspectos importantes da integração CAD/CAM, nomeadamente os interfaces CAD/CAM, a integração CAD/NC e o planeamento de processo assistido por computador (CAPP). Relativamente a este último foi estabelecida uma comparação entre alguns dos sistemas de planeamento de processo automáticos existentes, referindo-se os métodos utilizados e os domínios em que são aplicados, sendo alguns deles descritos mais em pormenor.

Esta abordagem, embora resumida em alguns pontos, permitiu fazer o enquadramento para a apresentação de um método para conversão e execução de planos de processo (CEPP). Este método, que constitui o principal contributo deste trabalho, auxilia o programador NC na geração do conjunto de instruções adequado para executar, numa máquina CNC - Torno, uma peça cujo modelo geométrico e respectivas áreas de remoção tenham sido previamente especificadas num software de CAD.

Este método, embora não seja totalmente automático, uma vez que necessita da intervenção de alguém especializado na maquinação de peças que defina as diferentes áreas de remoção, faz a geração de programas optimizados relativamente ao tempo de execução, através da utilização dos ciclos de maquinação e do seu sequenciamento por forma a minimizar o número de mudanças de ferramenta entre ciclos. No entanto, o bom ou mau
desempenho deste método vai estar directamente relacionado com o tipo e a sequência das áreas de remoção definidas pelo especialista citado.

A completa automatização dos sistemas de planeamento de processo (por exemplo, maquinação) envolve normalmente duas fases: numa primeira fase é elaborado um plano a alto nível onde se define as operações e a sua sequência, sendo na segunda fase definido um plano que permita a execução do plano a alto nível gerado, através da elaboração do programa que irá ser posteriormente transmitido à máquina. Uma grande parte dos sistemas existentes, alguns dos quais referidos na secção 3.4.3 como, por exemplo, os sistemas TOM e PROPLAN, apenas elaboram um plano a alto nível para a execução da peça.

No caso do CEPP é elaborado um plano a alto nível e um plano de execução, no entanto, a geração do plano a alto nível não é totalmente automática uma vez que as áreas de remoção e sua sequência são determinadas pelo programador NC, cabendo ao método as decisões relativamente à determinação da sequência das áreas representadas no mesmo nível do desenho, assim como a divisão de uma área de remoção quando existirem restrições geométricas relativamente à ferramenta utilizada para a remoção da área.

Os sistemas mais similares ao CEPP são o PROPLAN e o EXCAP, descritos na secção 3.4.3, uma vez que também estes se aplicam apenas a peças com eixo de revolução. Estes dois sistemas embora possuam um maior grau de automatização na fase de elaboração do plano a alto nível, relativamente ao método apresentado, não podem, no entanto, ser aplicados a peças com uma geometria complexa.

Uma limitação do método proposto prende-se com o facto de este apenas se aplicar a peças com eixo de revolução não sendo possível a sua utilização na elaboração de um plano de processo para peças que possam, por exemplo, ser maquinadas numa fresadora.

Foi um objectivo inicial deste trabalho a aplicação do método ao sistema flexível de fabrico existente no centro CIM do ISEP que embora académico, recria o ambiente industrial, permitindo desta forma desenvolver soluções mais enquadradas com a realidade industrial.

Como desenvolvimentos futuros para este trabalho pode-se referir o aumento do grau de automatização, através da determinação automática das áreas de remoção por forma a atingir-se a completa automatização, e a incorporação de um ambiente gráfico por forma a facilitar a interacção com o programador NC (por exemplo, uma biblioteca de ferramentas gráfica ou a simulação gráfica da execução do plano).
Um dos objectivos futuros deste trabalho é a sua integração com o TPMS, também desenvolvido no ISEP, do modo a que se contemple a geração automática de planos, segundo diversas políticas de geração e com análise da complexidade, e a execução automática do plano gerado.

Pensa-se contudo ter contribuído com mais um método para auxiliar na sempre difícil tarefa de planeamento do processo, uma das características do CEPP é o facto de efectuar a escolha automática de ferramentas, no entanto o principal contributo do método corresponde ao facto de tratar com maior profundidade o problema do planeamento de execução, pois não é só importante a elaboração de bons planos mas também a possibilidade de se efectuar uma rápida reconfiguração do sistema produtivo, através da reprogramação das máquinas envolvidas no processo.
BIBLIOGRAFIA

Berengi e Khoshnevis, [1986], " Use of artificial intelligence in automated process planning", Computers in Mechanical Engineering,., pp. 47-55.

Bourjault A., [1984], "Contribution a une approche méthodologique de l'assemblage automatisé: Elaboration automatique des séquences opératoires, Thèse d'État, Univ. de Franche-Comté, Besançon, France.

Grabowski H., Glatz R., [1986], "Interfaces for the exchange of data to describe a product", VDI - Zeitschrift

Hayes C. C., [1995], "MACHINIST: A Process Planner for Manufacturability Analysis"

Hirschberg G., [1989], "Produktionsautomatisierung und Flexibilität aus der Sicht des Informatikers", VDI Bericht, pp. 723, VDI Verlag, Düsseldorf, Germany.

Horn K., [1987], "Flexible Fertigungssysteme für Flachbaugruppen", Technische Rundschau, pp. 36.

Moura Ana, “Centro CIM do Isep”, *ISEP, IPP 1996.*

Neunheuser B. [1984], "Materialflu in Fertigung und Montage", *VDI Bericht pp. 520, VDI Verlag*, Düsseldorf, Germany.

ANEXOS

Listas de figuras, tabelas e abreviaturas
FIGURAS

Figura 2.1 - Sistema de produção visto como um processo de transformação 5
Figura 2.2 - Produção em linha 7
Figura 2.3 - Flow shop com células de fabrico 8
Figura 2.4 - Centros de trabalho para job shop e batch 9
Figura 2.5 - Tipos e sistemas de produção 10
Figura 2.6 - Métodos de produção 11
Figura 2.7 - Evolução tecnológica 13
Figura 2.8 - Componentes CIM 20
Figura 2.9 - Célula de maquinção flexível versus sistema tradicional 30
Figura 2.10 - Representação do layout base de um FMS 31
Figura 2.11 - Representação de alguns tipos de layout de um FMS 32
Figura 2.12 - Layout de um FMS em dupla linha 32
Figura 2.13 - Peça a executar e volumes de remoção 33
Figura 2.14 - Célula flexível de Maquinacao - versão I 35
Figura 2.15 - Célula flexível de Maquinacao - versão II 36
Figura 2.16 - Sistema de Montagem semi-automático 37
Figura 2.17 - Sistema de Montagem Flexível 37
Figura 3.1 - Ciclo do produto 40
Figura 3.2 - Impacto do CAD/CAM no ciclo do produto 41
Figura 3.3 - Projecto convencional segundo Shigley 43
Figura 3.4 - Projecto convencional versus Projecto Assistido por Computador 45
Figura 3.5 - Interface universal p/ interligar todas as actividades de um sistema de fabrico 48
Figura 3.6 - Tipos de Interfaces 49
Figura 3.7 - Troca de informação entre dois sistemas de CAD diferentes 50
Figura 3.8 - Desenvolvimento de normas CAD/CAD e CAD/CAM 51
Figura 3.9 - Modelos de interfaces STEP 55
Figura 3.10 - Modelo da produção 57
Figura 3.11 - Controlo computorizado de um processo 59
Figura 3.12 - Integração CAD/NC 65
Figura 5.27 - Áreas base
Figura 5.28 - Restrição na escolha da área de remoção
Figura 5.29 - Áreas de remoção
Figura 5.30 - Ranhurar e tornear em duas etapas
Figura 5.31 - Remoção da área tipo slot em duas etapas
Figura 5.32 - Remoção da área tipo slot em apenas uma etapa
Figura 5.33 - Modelo geométrico da peça que se pretende executar
Figura 5.34 - Modelo geométrico da peça e das diferentes áreas de remoção
Figura 5.35 - Modelo geométrico do peão
Figura 5.36 - Modelo geométrico do peão e das áreas de remoção
Figura 5.37 - Divisão da área A4
Figura 5.38 - Divisão da área A5
Figura 5.39 - Modelo geométrico da peça a executar
Figura 5.40 - Modelo geométrico da peça a executar e das áreas de remoção
Figura 5.41 - Divisão da área A3
TABELAS

Tabela 2.1 - Plano de processo para sistema tradicional de maquinagem 34
Tabela 2.2 - Plano de processo para um FMS 34
Tabela 5.1 - Características de corte das pastilhas 108
Tabela 5.2 - Características de corte das pastilhas para corte, ranhurar e tornear/ranhurar 108
Tabela 5.3 - Códigos de porta pastilhas 110
ABREVIATURAS

ACL - Advanced Control Language
AGV - Automated Guided Vehicles
ASRS - Automated Storage and Retrieval System
ATS - Advanced Terminal Software
CAD - Computer Aided Design
CAM - Computer Aided Manufacturing
CAPP - Computer Aided Process Planning
CAQ - Computer Aided Manufacturing
CIM - Computer Integrated Manufacturing
CNC - Computer Numeric Control
CPU - Central Processing Unit
CRP - Capacity Requirements Planning
CRT - Cathode Ray Tube
DNC - Direct Numeric Control
DXF - Drawing Interchange File
FAS - Flexible Assembly Systems
FEA - Finit Elements Analysis
FEM - Finit Elements Model
FMS - Flexible Machining Systems
ICG - Interactive Computer Graphics
IGES - Initial Graphics Exchange Specification
MPS - Master Production Scheduling
MRP - Material Requirements Planning
MRP II - Manufacturing Resources Planning
NC - Numeric Control
PC - Personal Computer
PDDI - Product Definition Data Interface
PDES - product Data Exchange Specification
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLC</td>
<td>Programable Logic Controllers</td>
</tr>
<tr>
<td>PP&C</td>
<td>Production Planning and Control</td>
</tr>
<tr>
<td>SET</td>
<td>Standard d’Echange et de Transfer</td>
</tr>
<tr>
<td>VDAFS</td>
<td>Verband Der Automobilindustrie Flächenschnittstelle</td>
</tr>
</tbody>
</table>