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Abstract

The goal of this thesis is to understand the stability and the dynamics of robust heteroclinic cycles and
networks made up of hyperbolic saddle equilibra and one-dimensional heteroclinic connections.

We start by presenting the essential background in heteroclinic dynamics. Accordingly, the
stability of heteroclinic cycles can be obtained from the value of the local stability index along each
heteroclinic connection. We develop a systematic method to compute the local stability index for a new
class of robust heteroclinic cycles that we call quasi-simple heteroclinic cycles. A heteroclinic cycle
is quasi-simple if the heteroclinic connections are one-dimensional and contained in flow-invariant
spaces of equal dimension. They occur both in symmetric and non-symmetric contexts. We make
one assumption on the dynamics along the heteroclinic connections to ensure that transition matrices
to cross sections around the heteroclinic cycle exist and have a convenient form. Our results are
constructive in the sense that we define a function whose images provide the value of the local stability
index. Such a method applies to all simple heteroclinic cycles of type Z and to various heteroclinic
cycles arising in game theory and population dynamics, namely non-simple heteroclinic cycles, as
well as to heteroclinic cycles that are part of a heteroclinic network.

The dynamics near robust heteroclinic networks has been studied extensively due to its complexity.
The occurrence of infinite switching near a heteroclinic network can induce chaotic behaviour. The
mechanism seems to be related to transverse intersections between stable and unstable manifolds
and/or rotating nodes (either with complex eigenvalues or periodic orbits). To our knowledge no
consistent information is known about infinite switching near heteroclinic networks whose linearisation
at equilibria has only real eigenvalues. We actually prove that there is no infinite switching.

We proceed with the illustration of our results for heteroclinic cycles in the heteroclinic network
arising from a two-person parametrised Rock-Scissors-Paper game, and also for two abstract examples.
We particularly survey the dynamics of the game because of the fact that those heteroclinic cycles
are not simple in spite of the symmetry in the problem. We show that cyclic behaviour is a dominant
feature of the dynamics. This follows from the essential asymptotic stability of the heteroclinic cycle
where agents switch to best responses. We propose a first approach to an extension to two independent
agents for two price setting models and interpret the results in light of empirical evidences.





Resumo

O propósito desta tese é compreender a estabilidade e dinâmica de ciclos e redes heteroclínicos
formados por equilíbrios hiperbólicos do tipo sela e ligações heteroclínicas unidimensionais.

Começamos por apresentar as bases essenciais das dinâmicas heteroclínicas. Conformemente, a
estabilidade de ciclos heteroclínicos pode ser obtida a partir do valor do índice de estabilidade local ao
longo de cada ligação heteroclínica. Desenvolvemos um método sistemático de calcular o índice de
estabilidade local para uma nova classe de ciclos heteroclínicos robustos que denominamos de ciclos
heteroclínicos quasi-simples. Um ciclo heteroclínico é quasi-simples se as ligações heteroclínicas são
unidimensionais e estão contidas em espaços invariantes pelo fluxo de igual dimensão. Os mesmos
ocorrem em contextos simétricos e não simétricos. Estabelecemos um pressuposto sobre a dinâmica
ao longo das ligações heteroclínicas para assegurar que matrizes de transição para secções transversais
em torno do ciclo heteroclínico existam e tenham a forma conveniente. Os nossos resultados são
construtivos no sentido em que definimos uma função cujas imagens fornecem o valor do índice de
estabilidade local. Tal método aplica-se a todos os ciclos heteroclínicos simples do tipo Z e a vários
ciclos heteroclínicos que surgem da teoria de jogos e dinâmica de populações, nomeadamente ciclos
heteroclínicos não simples, assim como a ciclos heteroclínicos que fazem parte de redes heteroclínicas.

A dinâmica perto de redes heteroclínicas tem sido extensamente estudada devido à sua
complexidade. A ocorrência de comutação infinita perto de uma rede heteroclínica pode induzir
comportamento caótico. O mecanismo parece estar relacionado com intersecções transversais de
variedades estável e instável e/ou selas de rotação (selas com valores próprios complexos ou órbitas
periódicas). Até onde sabemos nenhuma informação consistente é conhecida sobre a comutação
infinita perto de redes heteroclínicas cuja linearização nos equilíbrios apenas admite valores próprios
reais. Na verdade provamos que aí não existe comutação infinita.

Prosseguimos com a ilustração dos nossos resultados para os ciclos heteroclínicos na rede
heteroclínica que surge do jogo Pedra-Papel-Tesoura parametrizado para dois jogadores, e também para
dois exemplos abstratos. Examinamos particularmente a dinâmica do jogo pelo facto daqueles ciclos
heteroclínicos não serem simples apesar da simetria no problema. Mostramos que o comportamento
ciclíco é uma característica dominante da dinâmica. Isto segue da estabilidade assintótica essencial
do ciclo heteroclínico onde os agentes avançam para as suas melhores respostas. Propomos uma
primeira abordagem para a extensão a dois agentes independentes em dois modelos de fixação de
preços e interpretamos os resultados à luz das evidências empíricas.
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Chapter 1

Introduction

1.1 Overview of Heteroclinic Dynamics

Heteroclinic objects (cycles and networks) have attracted the interest of researchers for playing a
role in a wide range of applications. Some examples can be found in game theory and population
models (e.g., [5, 32, 33]), neural circuits (e.g., [1, 2, 12]), geomagnetic field (e.g., [21, 49, 59]),
and coupled cell structures (e.g., [4, 11, 25]). For our purpose we define a heteroclinic cycle as
a collection of equilibria of a system of ordinary differential equations joined by sets of solution
trajectories in a topological circle. Equilibria are therein called nodes. Refined definitions allow
nodes to be any flow-invariant set. We do not consider this possibility here. All solution trajectories
connecting consecutive nodes are contained in the non-trivial intersection of the unstable and stable
manifolds of the connected nodes. A connected submanifold of this intersection outlines a heteroclinic
connection. A heteroclinic orbit refers to an isolated connecting trajectory, always of dimension
one. Heteroclinic connections and heteroclinic orbits are interchangeable terms when the former is
one-dimensional. Ashwin and Chossat [10] name higher dimensional heteroclinic connections as
continua of connections. In generic systems, heteroclinic connections are of saddle-saddle type and
do not persist for small perturbations of the vector field. Since dos Reis [58] and Field [23] it is well
known that systems preserving flow-invariant spaces1 impart robustness to heteroclinic connections.
In fact, restricted to a flow-invariant space the stable and unstable manifolds of nodes may intersect
transversally. This holds in particular when a saddle connects to a sink inside the flow-invariant
space. A heteroclinic cycle made up of robust heteroclinic connections is itself robust. Flow-invariant
spaces appear naturally in symmetric systems as fixed-point subspaces for some symmetry group.
Two other important class of examples are Lotka-Volterra-type models and coupled cell systems
where invariance under the flow is controlled by biological and structural restrictions, respectively.
An extensive review of early results on robust heteroclinic cycles is presented in Krupa [40].

One of the most popular robust heteroclinic cycle is first observed by May and Leonard [47] in a
nonlinear model of competition among three species. Looking at the positive octant in R3 it consists
of three nodes on the coordinate axes connected by three trajectories in the coordinate planes. The
same heteroclinic cycle is discussed by Busse and Heikes [16] for a thermal convection in a rotating
fluid layer. Guckenheimer and Holmes [30] further prove its existence in the setting of systems with

1Throughout this work, by space we mean any set with some added structure.
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2 Introduction

symmetry. Equivalent dynamics occur in the one-person Rock-Scissors-Paper (henceforth, RSP) game
(e.g., [33]).

When various heteroclinic cycles coexist they may be put together comprising of a heteroclinic
network. The study of robust heteroclinic cycles and networks has been focused on two subjects:
stability and dynamics. The dynamic behaviour near a stable heteroclinic cycle is known by a
mechanism of intermittency. Every solution approaching it spends a long time near nodes and makes
fast transitions from one node to the next. The transition times increase monotonically and converge
to infinity under asymptotic stability. Heteroclinic cycles that are not asymptotically stable can still be
locally attracting. The strongest intermediate notion of stability is that of essencial asymptotic stability,
e.a.s in the sequel. It is introduced in Melbourne [48] but reformulated accurately in Brannath [15].
An e.a.s. heteroclinic cycle attracts a full neighbourhood up to a thin cusp-shaped region. A form of
weak attractiveness is equivalent to attracting any positive measure set. Podvigina [52] refers to it as
fragmentarily asymptotic stability, f.a.s in the sequel. If a heteroclinic cycle is not f.a.s, then it is said
to be completely unstable, c.u in the sequel. Within a heteroclinic network heteroclinic cycles are
never asymptotically stable. The reason is that each heteroclinic cycle must have at least one node
with an unstable direction to a node from a different heteroclinic cycle.

Krupa and Melbourne [41] derive a general sufficient criterion for asymptotic stability of
heteroclinic cycles forced by symmetry. It is given in terms of the eigenvalues of the linearisation of
the vector field about each node. These are divided into four classes depending on the geometry of
their eigenspaces: radial, contracting, expanding and transverse. In most of the examples transverse
eigenvalues are assumed to be negative when possible (e.g. [19, 39, 41, 43]). In Krupa and Melbourne
[43] a robust heteroclinic cycle in R4 whose heteroclinic connections lie in two-dimensional fixed-point
subspaces is called simple. The authors propose a classification into types A, B and C, and obtain
sufficient and necessary conditions for asymptotic stability of such heteroclinic cycles. Optimal
conditions for e.a.s and f.a.s of simple heteroclinic cycles in R4 are established in Podvigina and
Ashwin [53]. Podvigina [52] extends the definition of simple heteroclinic cycle to Rn and groups
them into two types: A as before, and Z. Asymptotic stability and f.a.s properties of type-Z cycles are
examined herein.

Methods for stability computations have recourse to Lyapunov functions (e.g. [32, 35]) and return
maps to cross sections to the flow (e.g. [41–43, 48]). Lyapunov functions have only been applied in
the context of mathematical biology and game theory. The approach of return maps may be combined
with the transition-matrix technique, rediscovered by Field and Swift [24], whenever the form of the
return map is relatively simple. Podvigina and Ashwin [53] define a stability index that provides a
relative measure of the basin of attraction for any compact invariant set. The local version of this index
is particularly useful for characterising stability properties of robust heteroclinic cycles and networks.2

The fact that it is constant along trajectories of the flow allows to keep track of a finite number of
indices, one for each heteroclinic connection. Calculations in this respect have been performed for
simple heteroclinic cycles in R4 by Podvigina and Ashwin [53] and, more recently, for non-simple
heteroclinic cycles making up a heteroclinic network in a case study from Boussinesq convection by
Podvigina et al. [54]. The greater the value of the stability index is, the stronger is the form of stability.

2See Keller [36] and Roslan and Ashwin [62] for distinct contexts of application.
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Lohse [46] proves that e.a.s of a heteroclinic cycle or network is equivalent to positive local stability
indices along its heteroclinic connections completing the results in Podvigina and Ashwin [53].

Stability of robust heteroclinic networks is of difficult treatment due to a greater number of
possible visiting routes by nearby trajectories. Castro and Lohse [17] make use of the stability index
and distinguish when it is computed with respect to a heteroclinic cycle (c-index) and the whole
heteroclinic network (n-index). Comparison of both quantities says that along the same heteroclinic
connection the n-index exceeds the c-index. Even so, the way by which the stability of individual
heteroclinic cycles in a heteroclinic network may affect the stability of the whole heteroclinic network
is not systematic. Kirk and Silber [39] address the competition between two heteroclinic cycles
sharing a heteroclinic connection. According to their analysis the resulting heteroclinic network can
be e.a.s while either one heteroclinic cycle is e.a.s and the other is f.a.s, or one of the two heteroclinic
cycles is c.u. Other possible stability combinations for this example are explored in Castro and Lohse
[17] by means of the violation of the assumption about transverse eigenvalues. They deduce that
an e.a.s heteroclinic network can also be obtained from two f.a.s heteroclinic cycles. Besides, the
co-existing of an e.a.s heteroclinic cycle is not sufficient to the entire network be e.a.s.

In another spirit, the interplay among various robust heteroclinic cycles in a heteroclinic network
can produce increasingly complex dynamics. This raises the issue of determining the admissible
sequences of visits to the nodes within each part of the heteroclinic network. The set of all such
sequences describes switching behaviour in the vicinity of the heteroclinic network. There are different
types of switching: at a node, along a heteroclinic connection, or infinite. The occurrence of infinite
switching entails switching along every heteroclinic connection, which in turn entails switching at
every node. Infinite switching actually ensures the existence of nearby trajectories following each
infinite sequence of heteroclinic connections in the heteroclinic network in any prescribed order.

Aguiar et al. [6, 7], Homburg and Knobloch [34], Labouriau and Rodrigues [44], and Rodrigues
and Labouriau [61] provide examples of heteroclinic networks for which infinite switching evolves to
chaos and complicated structures, including suspended Smale horseshoes, that accumulate on them.
The mechanisms for infinite switching are therein transverse intersections between stable and unstable
manifolds combined with rotating nodes, either nodes with complex eigenvalues or periodic orbits.
Kirk et al. [37] and Rodrigues [60] illustrate that the spiralling effect due to the presence of a pair
of complex eigenvalues gives rise by itself to rich dynamics associated with infinite switching near
a heteroclinic network. In the latter reference it is shown particularly that infinite switching holds
without suspended horseshoes. Further constructions supporting infinite switching take the effect of
noise and symmetry breaking as the main drivers behind it. See Armbruster et al. [8] and Kirk and
Rucklidge [38], respectively.

Few results are known about the realisation of infinite switching for heteroclinic networks where
all nodes are equilibria with real eigenvalues. On the contrary, it seems such heteroclinic networks
are able to display solely simpler variants of switching. This is the case for Kirk and Silber [39] in
which a nearby trajectory may switch from one heteroclinic cycle to the other but may not switch
back again; for Postlethwaite and Dawes [57] near a heteroclinic network with three heteroclinic
cycles unstable along a transversal direction, who found trajectories that visit all heteroclinic cycles
sequentially, the number of loops around each being either constant or irregular. Aguiar [3] proves
that infinite switching does not occur near a heteroclinic network with a Kirk and Silber subnetwork.
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The argument is the absence of switching along the common heteroclinic connection in the Kirk and
Silber subnetwork. Castro and Lohse [19] generalise it and have regard to the role of a heteroclinic
connection or, more generally a finite sequence of heteroclinic connections, shared by two heteroclinic
cycles within a heteroclinic network. As long as incoming and outgoing directions of the first and last
nodes in the common part span the same space there is no switching along it. The works of Aguiar [3]
and Aguiar and Castro [5] are apparently the only that establish conditions for infinite switching near
edge heteroclinic networks in product of simplices for bimatrix games.

Game theory concerns interactions among agents. The dynamics of these interactions can be
modelled using replicator dynamics through differential equations. In a two-person RSP game where
the reward for ties is parametrised for each agent by a quantity strictly between −1 and +1, Aguiar and
Castro [5] have shown the existence of a robust heteroclinic network in R6 nearby which long-term
complex behaviour takes place. Such a heteroclinic network can be seen as made of two or three
heteroclinic cycles. Heteroclinic connections are one-dimensional and contained in flow-invariant
affine subspaces of equal dimension. Linearisation of the vector field about each node admits only real
eigenvalues. By making use of the symmetry of the problem every node is identified with the group
orbit. The heteroclinic network and its heteroclinic cycles are then restricted to the quotient space in
R4. Stability properties of the individual quotient cycles add information to the dynamics. Those can
be described by the local stability index along each heteroclinic connection with respect to the quotient
cycle in question. It is important to note that the quotient cycles are not simple because heteroclinic
connections do not belong to fixed-point spaces. They do not fit into the type A, B or C classification
of Krupa and Melbourne [43], and calculations of the indices have to be explicit. The study of the
stability and dynamics of non-simple robust heteroclinic cycles and networks like the ones of the
two-person RSP game has been done on a case-by-case basis. The main features are one-dimensional
heteroclinic connections and real eigenvalues at each node. Apart from simple heteroclinic cycles and
networks these settings actually predominate in game theory and population dynamics. Heteroclinic
dynamics in game theory as a motivation thus leads to two main research questions:

Q1. Is there a systematic way to compute local stability indices along one-dimensional heteroclinic
connections between two hyperbolic non-resonant saddle equilibria?

Q2. Is there infinite switching near a robust heteroclinic network involving a finite number of
hyperbolic non-resonant saddle equilibria whose linearisation has only real eigenvalues?

As we have reviewed the literature is scarce in this context reporting partial results confined to specific
examples.

1.2 Organisation and Contributions

We outline the thesis organisation and research contributions in order to answer the questions raised
above.

The thesis is divided into seven chapters. After this introduction and problem formulation,
Chapter 2 reviews the relevant background. In Section 2.1 we set up the definitions of a heteroclinic
connection, a heteroclinic cycle and a heterocinic network, and list factors determining their robustness.
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We classify the eigenvalues of the linearisation of the vector field about nodes composing a heteroclinic
cycle based on the geometry of their eigenspaces. Section 2.2 distinguishes simple from pseudo-simple
heteroclinic cycles in R4. We present the division of simple heteroclinic cycles in R4 into types A, B
and C, and the respective generalisation to Rn grouping into types A and Z. We look at the attempt to
characterise heteroclinic connections by types B and C for a simple heteroclinic cycle in Rn by Krupa
and Melbourne [43]. Section 2.3 introduces the notions of e.a.s and f.a.s for an arbitrary compact
flow-invariant set. The stability index and its local version are enunciated in Section 2.4. We describe
their properties and relation with different forms of stability. Section 2.5 contains a brief summary of
switching behaviour near a heteroclinic network. We clarify switching concepts at a node, along a
heteroclinic connection and infinite.

Chapter 3 discusses our first question. In the motivation two-person RSP game the structure of
the quotient cycles arising from the dynamics is relatively straightforward. This supports the need
to define a new class of robust heteroclinic cycles that morally resemble simple heteroclinic cycles
but whose existence is not solely restricted to systems with symmetry. We name it quasi-simple
and give the precise definition in Section 3.1: a robust heteroclinic cycle in Rn is said to be
quasi-simple if its heteroclinic connections are one-dimensional and contained in flow-invariant
spaces of equal dimension. From the linearisation at each node of a quasi-simple heteroclinic cycle
results one contracting and one expanding eigenvalues, and a constant number of radial (nr) and
transverse (nt) eigenvalues such that n = nt +nr +2. We are interested in the case of real eigenvalues
(Assumption 3.1.4). Our purpose is to calculate the local stability index along each heteroclinic
connection in a quasi-simple heteroclinic cycle. To this end, Section 3.2 is devoted to the construction
of return maps (also called Poincaré maps), via the composition of local and global maps, for
approximating the dynamics around the entire heteroclinic cycle. It is assumed that the global maps
behave as permutations (Assumption 3.2.1). This has been largely taken in the literature. We observe
that radial eigenvalues are irrelevant, which allows us to reduce the dimension of the problem to
N = nt +1. Accordingly, we show in Section 3.3 that the transition between incoming cross sections at
pairs of adjacent nodes can be described using basic transition matrices after a change of coordinates
(Theorem 3.8). Section 3.4 considers separately the cases when transverse eigenvalues at nodes
either are or are not all negative (Theorems 3.4.2 and 3.4.9). For instance, heteroclinic cycles in a
heteroclinic network fall in the second case. From the former we deduce that f.a.s implies asymptotic
stability. The latter requires the characterisation of the local basin of attraction of the heteroclinic
cycle in a neighbourhood of any heteroclinic connection. Under some conditions expressed in terms
of eigenvalues and eigenvectors of transition matrices we write it down as the intersection of suitable
sets bounded by power curves (Lemma 3.4.6). To evaluate the stability of each set we construct the
function F index whose arguments are the exponents of a curve coming from rows of transition matrices
with negative entries (Lemma 3.4.8). The local stability index along the heteroclinic connection is
then the minimum of those measures. Section 3.5 concludes with an illustration of our results for
the simplest non-simple heteroclinic cycle consisting of two nodes and two heteroclinic connections.
It is obtained from the translation of the simple heteroclinic cycle of type B+

2 through the cylinder
realisation in Ashwin and Postlethwaite [13]. We join two of such heteroclinic cycles in a heteroclinic
network by a common heteroclinic connection looking like the

(
B+

2 ,B
+
2

)
-network of Castro and

Lohse [17]. We calculate the local stability indices with respect to each heteroclinic cycle and see that
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they equal the ones concerning the B+
2 -cycles by Podvigina and Ashwin [53] (Lemma 3.5.1). Hence

the value of the local stability index does not depend on the position of the node.
Chapter 4 addresses our second question. Aguiar and Castro [5] prove that the RSP quotient

network exhibits infinite switching. We observe that the authors have not been considering an intrinsic
permutation of axes into the global maps. The same occurs in Aguiar [3]. In order to show that
effectively there is no infinite switching near heteroclinic networks whose linearisations at nodes have
only real eigenvalues we start by investigating weaker forms of switching. Section 4.1 introduces two
types of heteroclinic connections, contracting-to-expanding and contracting-to-transverse, generalising
types B and C of Krupa and Melbourne [43]. We discuss the construction of building blocks
of quasi-simple heteroclinic cycles in Rn such that the nodes lie on the coordinate axes and the
heteroclinic connections occur in coordinate planes (Assumption 4.1.4). We examine the geometry of
a quasi-simple heteroclinic cycle so obtained according to the type of its heteroclinic connections.
The following two sections focus on heteroclinic networks made up of quasi-simple heteroclinic
cycles satisfying the three Assumptions 3.1.4, 3.2.1 and 4.1.4. Section 4.2 establishes whether or not
switching along a common heteroclinic connection takes place. We extend the result of Castro and
Lohse [19] by relaxing their assumption on the global map near the common heteroclinic connection.
In the first case we assume that there exists a single incoming direction at the first node in the common
heteroclinic connection that is mapped by the global map into the outgoing space at the next node.
The existence of switching along the common heteroclinic connection is controled by the ratios of the
eigenvalues associated with the incoming directions at the first node and the eigenvalues associated
with the outgoing directions at the next node (Theorem 4.2.4). The second case assumes that none
of the incoming directions at the first node in the common heteroclinic connection is mapped by the
global map into the outgoing space at the next node. We prove here that switching along the common
heteroclinic connection always occurs (Theorem 4.2.6). Subsection 4.2.1 briefly looks at the House
network as an illustrative example. Similar conclusions concerning switching along heteroclinic
connections leading to a single common node are deduced in Subsection 4.2.2 (Propositions 4.2.9
and 4.2.10). Section 4.3 deals with switching along a heteroclinic cycle. We see that the type of a
heteroclinic connection affects the way by which sets of points in an outgoing cross section hit the next
one (Lemmas 4.3.1 and 4.3.3). Even so the image of the entire domain of a return map near a node
is a topological cone-shaped region with its apex at the origin (Lemma 4.3.6). We give a sufficient
condition depending on this set that precludes switching along a heteroclinic cycle (Lemma 4.3.8).
Section 4.4 proves generally our claim through the form of stability of the heteroclinic cycles and the
resulting heteroclinic network (Theorem 4.4.4).

Chapter 5 attends to the stability of cyclic behaviour in the dynamic two-person RSP game
through the stability of the quotient cycles. Section 5.1 first gives a brief exposition of the two-person
RSP game describing the original heteroclinic network and the one induced by symmetry. Section 5.2
surveys the stability properties of the quotient cycles. We check that these are quasi-simple heteroclinic
cycles and calculate the local stability indices for the heteroclinic connections of every quotient cycle.
To do this we employ directly the method developed in Chapter 3. Therefore we conclude that:
the quotient cycle where agents never tie is e.a.s when the sum of payoffs for a tie is negative
(Theorem 5.2.1); the two quotient cycles involving a tie and a loss by only one agent may be f.a.s
when the sum of payoffs for a tie is positive (Theorems 5.2.3 and 5.2.4); and the two quotient cycles
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for which play goes through all possible combinations of outcomes in the two possible orders are
always c.u (Theorems 5.2.5 and 5.2.6). Our results indicate that the two-person RSP game is a good
tool for modelling cyclic dominance where agents change a winning position cyclically. Section 5.3
proposes an application of the two-person RSP game to price setting by extending the models of Noel
[51] and Hopkins and Seymour [35]. For each case we define three choices for the actions of sellers
and consumers in a retail market with the cyclical best-response structure of the RSP game. The
dynamics of the gasoline retail market in [51] report that the major and independent firms alternate
in setting the highest price. If we assume that consumers buy at the lowest price, then the major
and independent firms alternate in winning and losing in an RSP game where the actions are “fix
lowest price”, “fix highest price” and “fix intermediate price”. This corresponds to the win-loss
cycle for which e.a.s is possible (Table 5.2). Considering the pricing model of [35] the two-person
RSP game allows the introduction of consumers as active and independent agents by choosing to be
“uninformed”, “reasonably informed” and “fully informed” about prices. We show that the interaction
between profit-maximising sellers and utility-maximising consumers can also be explained according
to the dynamics near the win-loss cycle (Table 5.3).

Chapter 6 contains two abstract examples of heteroclinic networks comprising of two
quasi-simple heteroclinic cycles connected by one node. Section 6.1 is devoted to the Bowtie
network. We adopt the procedure in Chapter 3 in view of working out the local stability indices with
respect to each heteroclinic cycle (Proposition 6.1.2). We also compute the local stability indices with
respect to the whole heteroclinic network following [17] (Propositions 6.1.3–6.1.5). We prove that
the heteroclinic cycle evolving in the weakest expanding direction at the common node, the L-cycle,
is never e.a.s. However the entire heteroclinic network is e.a.s showing that trajectories that leave
a neighbourhood of the L-cycle are attracted to the remaining heteroclinic cycle. We compare the
results with those obtained for the Kirk and Silber network in [39]. In spite of some similarities
we figure out, that unlike the Kirk and Silber network, the Bowtie network can be e.a.s even when
both hetroclinic cycles are c.u. Section 6.2 presents the

(
C−

2 ,C
−
2

)
-network. The possible stability

properties of the heteroclinic cycles are analogously determined by means of the local stability indices
(Proposition 6.2.1). None of the indices can be +∞ as opposed to the

(
B+

2 ,B
+
2

)
-network whose graph

coincides with the one of the
(
C−

2 ,C
−
2

)
-network. Moreover, we illustrate some results of Chapter 4,

namely the existence of switching along a heteroclinic cycle (Lemma 6.2.2).
Chapter 7 concludes the thesis.





Chapter 2

Preliminaries

In this chapter we summarise the relevant material on stability and dynamics of heteroclinic objects.

2.1 Basic definitions

Consider a smooth vector field f : Rn → Rn described by a system of ordinary differential equations

ẋ = f (x) , x ∈ Rn. (2.1)

An equilibrium1 ξ ∈ Rn of (2.1) satisfies f (ξ ) = 0. The stable and unstable manifolds of ξ are
denoted by W s (ξ ) and W u (ξ ) in the usual way. Let n+ and n− be the dimension of W s (ξ ) and
W u (ξ ), respectively. We say that ξ is a hyperbolic saddle if n = n++n− and n+n− ̸= 0.

For two hyperbolic saddles ξ1 and ξ2 of (2.1) the intersection W u (ξ1)∩W s (ξ2) provides the set
of all solution trajectories of (2.1) from ξ1 to ξ2.

Definition 2.1.1. If W u (ξ1)∩W s (ξ2) ̸= /0, then a heteroclinic connection from ξ1 to ξ2 is a connected
flow-invariant manifold κ1,2 = [ξ1 → ξ2] contained in W u (ξ1)∩W s (ξ2).

Definition 2.1.2. A heteroclinic cycle is a flow-invariant set X in Rn consisting of an ordered collection
of mutually distinct hyperbolic saddles {ξ1, . . . ,ξm} and heteroclinic connections κ j, j+1 = [ξ j → ξ j+1],
j = 1, . . . ,m, where ξm+1 ≡ ξ1.

Definition 2.1.3. A heteroclinic network X in Rn is a connected union X =
⋃

iCi of finitely many
heteroclinic cycles C1,C2, . . ..

Hyperbolic saddles making up a heteroclinic cycle are also called nodes. In the literature there are
more complicated definitions where nodes can be any flow-invariant set other than equilibria, such as
periodic orbis or chaotic saddles. We do not consider this for our purposes.

In generic dynamical systems heteroclinic cycles are unlikely to exist because heteroclinic
connections between saddles are broken when f is slightly perturbed. They can however be robust
(or structurally stable) to restricted perturbations that respect a specific set of flow-invariant spaces.
Heteroclinic connections of saddle-sink or source-saddle type contained in flow-invariant spaces

1Equilibria are sometimes called fixed points or steady states.

9
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Table 2.1 Types of flow-invariant spaces.

Systems Description

Symmetric Fixed-point subspace

Lotka-Volterra Extinction affine subspace

Coupled cell Synchrony subspace

ensure the robustness of these objects. The existence of flow-invariant spaces appears in vector fields
with additional structure either inherited from symmetry (e.g. [41, 43]), or modelling assumptions
required in Lotka-Volterra models in ecology and game dynamics (e.g. [32, 33]), or the realisation of
coupled cell systems (e.g. [4]).

Throughout this work, by robust heteroclinic cycle we mean the following:

Definition 2.1.4. A heteroclinic cycle in Rn is robust if for all j = 1, . . . ,m there exists a flow-invariant
space Pj ⊂ Rn such that

• ξ j is a saddle and ξ j+1 is a sink in Pj;

• κ j, j+1 is contained in Pj.

Table 2.1 provides types of flow-invariant spaces Pj arising as an intrinsic feature of each
application above.

Let S ⊆Rn be the state-space of (2.1). Whenever S is not Euclidean, Rn is naturally the Euclidean
space of the smallest dimension containing the former. Without loss of generality we assume that S is
an n̄-manifold embedded in Rn for some n̄ ≤ n.

Given two vector spaces A,B ⊂ Rn, denote by A⊖B the orthogonal complement to B in A. For a
manifold M ⊆ Rn we write Tξ j M for the tangent space of M at ξ j. As usual d f (ξ j) is the Jacobian
matrix of f evaluated at ξ j.

The geometry of a robust heteroclinic cycle imposes constraints on the eigenvalues and associated
eigenvectors of d f (ξ j). Let L̂ j be the flow-invariant vector space connecting the node ξ j to the
origin in Rn. We can group the eigenvalues into four classes according to the vector subspaces
in which the eigenspaces lie, see Table 2.2. We refer to all non-radial eigenvalues in Tξ j Pj−1 and
Tξ j Pj as contracting and expanding, respectively. Define −r j, −c j, e j and t j to be the real part of a
representative type of radial, contracting, expanding and transverse eigenvalue. Since ξ j is a sink in
Pj−1 and a saddle in Pj, we have −r j < 0, −c j < 0 and at least one e j > 0 while t j can have either
sign.

Note that there may be no radial eigenvalues depending on whether the origin belongs to S or
not. In the same way, when the entire Rn is spanned by Tξ j (Pj−1 +Pj), transverse eigenvalues are
inexistent. For example, a heteroclinic cycle for the dynamic one-player Rock-Scissors-Paper game in
the two-dimensional simplex admits neither radial nor transverse eigenvalues.

The tangent space of Rn at ξ j is trivially isomorphic to Rn and can be decomposed into

Rn = L̂ j ⊕Vj ⊕Wj ⊕Tj.
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Table 2.2 Classification of eigenvalues of d f (ξ j).

Eigenvalue class Real part Subspace

Radial −r j < 0 L̂ j

Contracting −c j < 0 Vj = Tξ j Pj−1 ⊖ L̂ j

Expanding e j > 0 Wj = Tξ j Pj ⊖ L̂ j

Transverse t j ∈ R Tj = Rn ⊖
(

Tξ j Pj−1 +Tξ j Pj

)

2.2 Simple heteroclinic cycles

Robust heteroclinic cycles have been classified in low-dimensional vector spaces and in a symmetric
setting, where f is equivariant under the action of a finite Lie group Γ ⊂ O(n), i.e

f (γ · x) = γ · f (x) for all x ∈ Rn, for all γ ∈ Γ. (2.2)

We say that γ ∈ Γ satisfying (2.2) is a symmetry of f . Background on group theory and equivariant
dynamis can be found in [22, 29]. We recall the following concepts.

A (linear) representation of Γ on Rn is a homomorphism ρ : Γ → GL(Rn) describing how a group
element γ ∈ Γ transforms the whole Rn. A vector subspace U ⊆ Rn is Γ-invariant if γ · x ∈U for all
x ∈U , γ ∈ Γ. We say that ρ is irreducible if the only Γ-invariant vector subspaces of Rn are the origin
and Rn. A vector subspace U ⊆ Rn is Γ-irreducible if U is Γ-invariant and the representation of Γ on
U is irreducible.

One of the basic results in representation theory concerns the existence and uniqueness of the
isotypic decomposition of a finite-dimensional vector space for a compact Lie group, which we state
next

Lemma 2.2.1 (adapted from Theorem 2.5 in [29]). Let Γ be a compact Lie group acting on Rn.

(a) For any representation of Γ on Rn there are a finite number of distinct Γ-irreducible vector
subspaces of Rn up to isomorphism. Call these U1, . . . ,UK .

(b) Define Ûi the sum of all Γ-irreducible vector subspaces of Rn isomorphic to Ui. Then,

Rn = Û1 ⊕·· ·⊕ÛK . (2.3)

The vector subspaces Ûi are called the isotypic components of Rn of type Ui and (2.3) expresses
the isotypic decomposition of Rn for Γ.

Definition 2.2.2 ([29]). Let x ∈ Rn and Σ be a subgroup of Γ.

• The Γ-orbit of x is the set Γ(x) = {γ · x : γ ∈ Γ}.

• The isotropy group of x is the subgroup of Γ satisfying Σx = {γ ∈ Γ : γ · x = x}.
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• The fixed-point subspace of Σ is the vector subspace of Rn satisfying

Fix(Σ) = {x ∈ Rn : σ · x = x for all σ ∈ Σ} .

The elements in the Γ-orbit of an equilibrium ξ of (2.1) are also equilibria. We call to the group
orbit Γ(ξ ) a relative equilibrium.

We now distinguish between homoclinic and heteroclinic cycles.

Definition 2.2.3. A heteroclinic cycle in Rn is called homoclinic if either m = 1 or ξ j ∈ Γ(ξ1) for all
j = 1, . . . ,m.

Krupa and Melbourne [41] propose the first classification of robust heteroclinic cycles in R4

introducing the so-called simple heteroclinic cycles. Suppose that an equivariant system (2.1) with
finite Γ ⊂ O(4) possesses a robust heteroclinic cycle whose heteroclinic connections κ j, j+1 lie in
Pj = Fix(Σ j) for a sequence of non-trivial isotropy groups Σ j ⊂ Γ, j = 1, . . . ,m. We use the notation
L j = Pj−1 ∩Pj = Fix(∆ j) where ∆ j ⊂ Γ is a subgroup.

Definition 2.2.4 ([41]). A robust heteroclinic cycle X in R4 is simple if for any j

• dim(Pj) = 2;

• X intersects each connected component of L j\{0} at most once.

Here L j is a one-dimensional vector subspace of R4. Setting L̂ j = L j the linearisation d f (ξ j) has
one real eigenvalue of each type. Such heteroclinic cycles are categorised into types A, B and C by
Krupa and Melbourne [43] in line with the trichotomy of homoclinic cycles established by Chossat
et al. [20].

Definition 2.2.5 ([43]). Let X be a simple robust heteroclinic cycle in R4.

1. X is of type A if Σ j ∼= Z2 for all j.

2. X is of type B if there is a fixed-point subspace Q with dim(Q) = 3 and X ⊂ Q.

3. X is of type C if it is neither of type A nor of type B.

Krupa and Melbourne [43] enumerate simple heteroclinic cycles of types B and C according to the
action of the symmetry group in R4. In their notation B±

m and C±
m indicate respectively heteroclinic

cycles of type B and C with m different types of nodes and either −Id ∈ Γ (sign −) or not (sign +).

Theorem 2.2.6 ([43, 55]). There are four different types of simple heteroclinic cycles of type B and
three types of simple heteroclinic cycles of type C.

1. B+
2 with Γ = Z3

2 consisting of the reflections (x1,±x2,±x3,±x4). There are three different
hyperplanes and in each of them, a heteroclinic cycle with two equilibria, one on each connected
component of L1 \{0}.

2. B+
1 with Γ = Z2 nZ3

2 where Z3
2 acts as above and Z2 is generated by (−x1,x2,x3,x4). The

structure of the heteroclinic cycle is the same as above but ξ1 and ξ2 are interchanged by Z2,
hence the cycle is homoclinic.
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3. B−
3 with Γ = Z4

2 generated by reflexions through the four hyperplanes of coordinates. Similar
heteroclinic cycles exist in each hyperplane. For example in the hyperplane (x1,x2,x3,0)
heteroclinic cycles connect the equilibria lying on any three axes x1, x2, x3 and the heteroclinic
connections lie in the corresponding planes of coordinates.

4. B−
1 with Γ = Z3 nZ4

2 where Z3 is generated by the circular permutation of x1, x2, x3. Same as
above but with all three equilibria in the same Z3-orbit, hence the cycle is homoclinic.

5. C−
4 with Γ = Z4

2 acting as in 3. These cycles connect equilibria lying on the four coordinate
axes.

6. C−
1 with Γ = Z4 nZ4

2 with Z4 acting by circular permutation of the coordinates. Same as above
but with all equilibria in the same group orbit, hence the cycle is homoclinic.

7. C−
2 with Γ = Z2 nZ4

2 and Z2 generated by the permutation (x1,x2) 7→ (x3,x4). Same as above
but the four equilibria are pairwise of the same type.

Podvigina and Chossat [55] point out that Definition 2.2.4 implicitly assume the existence of
distinct eigenvalues of d f (ξ j) for every j = 1, . . . ,m. The authors show that this assumption is not
generic. When it fails, at least one pair of consecutive nodes is such that the Jacobian matrix of f taken
at these has, respectively, a double negative and positive eigenvalue. This prompts them to identify a
new class of heteroclinic cycles in R4 called pseudo-simple by means of isotypic decomposition.

Lemma 2.2.7 (Lemma 1 in [55]). Let a robust heteroclinic cycle in R4 be such that for all j: (i)
dim(Pj) = 2, (ii) each connected component of L j\{0} is intersected at most at one point by the
heteroclinic cycle. Then, the isotypic decomposition of the representation of ∆ j in R4 is of one of the
following types:

1. L j ⊕Vj ⊕Wj ⊕Tj;

2. L j ⊕Vj ⊕W̃j where W̃j =Wj ⊕Tj has dimension 2;

3. L j ⊕Vj ⊕Ṽj where Ṽj =Vj ⊕Tj has dimension 2.

In cases 2 and 3, ∆ j acts in W̃j (respectively, Ṽj) as a dihedral group Dm in R2 for some m ≥ 3.
Note that the representations W̃j and Ṽj are irreducible. Therefore, the respective eigenvalues have
algebraic and geometric multiplicity 2, namely e j = t j in case 2 and −c j = t j in case 3.

We notice that L j is ∆ j-irreducible. Together with dim(L j) = 1, it follows that L j is an isotypic
component of R4 for ∆ j. Due to the uniqueness of both eigen and isotypic decompositions of the
tangent space at ξ j (here, R4), they must be the same.

Definition 2.2.8 ([55]). A robust heteroclinic cycle in R4 satisfying the conditions (i) and (ii) of
Lemma 2.2.7 is called simple if case 1 holds true for all j, and pseudo-simple otherwise.

Krupa and Melbourne [43] generalise to higher dimensions the classification of heteroclinic cycles
into types A, B and C. In particular, they provide an alternative local approach assigning a type to a
heteroclinic connection in Rn.
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Definition 2.2.9 ([43]). Let X be a robust heteroclinic cycle in Rn.

1. The jth connection is of type B if there are fixed-point subspaces Q j, R j such that

Q j = Pj ⊕Vj = Pj ⊕Wj+1 and R j = Pj ⊕Tj = Pj ⊕Tj+1

2. The jth connection is of type C if there are fixed-point subspaces Q j, R j such that

Q j = Pj ⊕Vj = Pj ⊕Tj+1 and R j = Pj ⊕Tj = Pj ⊕Wj+1.

Denote by P⊥ the orthogonal complement to P in Rn.

Definition 2.2.10 ([43]). For a robust heteroclinic cycle in Rn, let λ c
j and λ t

j be, respectively, the
contracting and transverse eigenvalues of d f (ξ j) with the minimum real parts and λ e

j the expanding
eigenvalue with the maximum real part.

1. X is of type A if for any j

• the eigenspaces corresponding to λ c
j , λ t

j , λ e
j+1 and λ t

j+1 lie in the same isotypic component
in the decomposition of P⊥

j under Σ j;

• the eigenspaces corresponding to all transverse eigenvalues of d(ξ j) with positive real
part lie in the same isotypic component in the decomposition of P⊥

j under Σ j.

2. X is of type B if each connection is of type B.

3. X is of type C if each connection is of type B or C and at least one connection is of type C.

The generalisation of type-A cycles comes directly from the description by Krupa and Melbourne
[41]. In this regard Podvigina [52] extends explicitly to Rn the notion of simple heteroclinic cycle and
presents type-Z cycles as the opposite to type-A cycles. Heteroclinic cycles of types B and C belong
to type Z.

Definition 2.2.11 ([52]). A robust heteroclinic cycle in Rn is simple if for any j

• all eigenvalues of d f (ξ j) are distinct;

• dim(Pj−1 ⊖L j) = 1.

Definition 2.2.12 ([52]). A simple robust heteroclinic cycle in Rn is of type Z if for any j

• dim(Pj) = dim(Pj+1);

• the isotropy subgroup of Pj, Σ j, decomposes P⊥
j into one-dimensional isotypic components.
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2.3 Notions of stability

A robust heteroclinic cycle is asymptotically stable if all nearby trajectories remain close and converge
to it. Numerical simulations show that certain heteroclinic cycles may be observable even though they
are not asympotically stable. In this instance, intermediate measure-theoretic notions of stability have
been developed with the contribution of Melbourne [48], Brannath [15], Podvigina and Ashwin [53]
and Podvigina [52]. In [48] the author describes a stable heteroclinic cycle in the strong sense that it
is asymptotically stable almost everywhere. Such property is termed therein as essential asymptotic
stability and correctly formalised2 in [15]. A weaker form of stability attracts any positive measure set
in accordance with the concept fragmentarily asymptotic stability from [52]. If a heteroclinic cycle is
not fragmentarily asymptotically stable, then it is completely unstable.

Consider now a compact set X ⊂ Rn invariant under the flow of (2.1) Φt(x), t ∈ R, x ∈ Rn. We
use terminology of [52]. Given a metric d on Rn and ε > 0, denote an ε-neighbourhood of X by

Bε (X) = {x ∈ Rn : d(x,X)< ε} .

The (global) basin of attraction of X is

B (X) =
{

x ∈ Rn : lim
t→∞

d (Φt(x),X) = 0
}

and, for δ > 0, its δ -local basin of attraction is

Bδ (X) =
{

x ∈ Rn : d (Φt(x),X)< δ for any t ≥ 0 and lim
t→∞

d (Φt(x),X) = 0
}
.

Let ℓ(·) be the Lebesgue measure in the appropriate dimension. The following defines the stability
properties above for a more general set in terms of its local basin of attraction.

Definition 2.3.1 ([52]). Let X ⊂ Rn be a compact flow-invariant set.

1. X is asymptotically stable (a.s) if for any δ > 0 there exists ε > 0 such that Bε(X)⊂ Bδ (X).

2. X is essentially asymptotically stable (e.a.s) if lim
δ→0

lim
ε→0

[
ℓ(Bε(X)∩Bδ (X))

ℓ(Bε(X))

]
= 1.

3. X is fragmentarily asymptotically stable (f.a.s) if ℓ(Bδ (X))> 0 for any δ > 0.

4. X is completely unstable (c.u) if there exists δ > 0 such that ℓ(Bδ (X)) = 0.

The relation between different levels of stability is revisited in the next result.

Lemma 2.3.2. Suppose that X ⊂ Rn is a compact invariant set for a continuous flow Φt .

(a) If X is a.s, then it is e.a.s.

(b) If X is e.a.s, then it is f.a.s.
2Podvigina and Ashwin [53] distinguish Melbourne’s [48] definition from the one of Brannath [15] by renaming the

latter predominant asymptotic stability. We preserve the use of essentially asymptotically stability.
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Proof. For (a) this immediately follows from Definition 2.3.1. For (b) suppose that X is e.a.s. Fix δ > 0
small. Then, for any α > 0, there exists ε0 > 0 such that ℓ(Bε(X)∩Bδ (X))> (1−α)ℓ(Bε(X))> 0
for all ε < ε0. Since Bε(X)∩Bδ (X) ⊂ Bδ (X), we have ℓ(Bε(X)∩Bδ (X)) < ℓ(Bδ (X)). Hence
ℓ(Bδ (X))> 0 for any δ > 0 and X is f.a.s.

2.4 The stability index

Podvigina and Ashwin [53] introduce a stability index in order to characterise the local geometry of
basins of attraction of arbitrary compact flow-invariant sets. This can in turn be confined to a local
stability index by taking the limit of stability indices of local basins of attraction. In practice, the
two indices quantify respectively the level of attractivity and stability at some point of the set under
study. Lohse [46], Castro and Lohse [17] and the authors themselves make use of such indices to
examine the stability of simple heteroclinic cycles and networks. Other applications have arised in the
framework of chaotically driven concave maps (see [36]) and riddled basins of attraction (see [62]).

Below we rewrite the definition of stability index and its local version from [53] for a compact
flow-invariant set X in Rn. Given x ∈ X and ε,δ > 0, set

Σε(x) =
ℓ(Bε(x)∩B(X))

ℓ(Bε(x))
, Σε,δ (x) =

ℓ(Bε(x)∩Bδ (X))

ℓ(Bε(x))
.

Definition 2.4.1 ([53]). Let X ⊂Rn be a compact invariant set for a smooth flow Φt and x ∈ X . Define

σ−(x) = lim
ε→0

[
ln(Σε(x))

ln(ε)

]
, σ+(x) = lim

ε→0

[
ln(1−Σε(x))

ln(ε)

]
and

σloc,−(x) = lim
δ→0

lim
ε→0

[
ln
(
Σε,δ (x)

)
ln(ε)

]
, σloc,+(x) = lim

δ→0
lim
ε→0

[
ln
(
1−Σε,δ (x)

)
ln(ε)

]
.

The stability index of X at x is

σ(X ,x) = σ+(x)−σ−(x)

and the local stability index of X at x is

σloc(X ,x) = σloc,+(x)−σloc,−(x).

We use the convenction that σ−(x) = ∞ (resp. σloc,−(x) = ∞) if there is ε0 > 0 such that Σε(x) = 0
(resp. Σε,δ (x) = 0) for all ε < ε0. Analogously, σ+(x) = ∞ (resp. σloc,+(x) = ∞) if there is ε0 > 0
such that Σε(x) = 1 (resp. Σε,δ (x) = 1) for all ε < ε0. Notice that σ±(x)> 0 (resp. σloc,±(x)> 0) and
hence σ(X ,x) ∈ [−∞,∞] (resp. σloc(X ,x) ∈ [−∞,∞]).

We say that near a point x ∈ X the stability index σ (X ,x) quantifies the local extent of B (X)

in the following sense: for σ (X ,x) > 0 an increasingly large portion of points in small enough
neighbourhoods of x converge to X as they shrink; for σ (X ,x) < 0 the measure of the set of such
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ε

x

Basin of X

(a) σ(X ,x)> 0 or σloc(X ,x)> 0

ε

x

Basin of X

(b) σ(X ,x)< 0 or σloc(X ,x)< 0

Fig. 2.1 Schematic illustration of the stability index (cf. [53, Figure 1]).

points relative to the measure of the neighbourhoods goes to zero. In the same way, the local index
σloc (X ,x) quantifies the local extent of Bδ (X), see Figure 2.1.

We state the two main features of the stability index.

Theorem 2.4.2 (Theorems 2.2 and 2.4 in [53]). Suppose that X ⊂ Rn is a compact invariant set for a
C1-smooth flow Φt . For any x ∈ X let S be a codimension one surface that is transverse to the flow
at x. Then,

(a) the stability indices σ (X ,x) and σloc (X ,x) are constant on trajectories, whenever they exist.

(b) the stability indices σ (X ,x) and σloc (X ,x) can be computed on substituting Σε(x) and Σε,δ (x)
by

Σε,S(x) =
ℓ(Bε(x)∩B(X)∩S)

ℓ(Bε(x))
and Σε,δ ,S(x) =

ℓ(Bε(x)∩Bδ (X)∩S)
ℓ(Bε(x))

.

Accordingly, the stability index is an invariant of the dynamics and can be calculated with respect
to suitable transverse sections to the flow. From here stability properties of heteroclinic cycles are
described through a finite number of local stability indices, namely the ones along the connecting
trajectories.

Theorem 2.4.3 (Theorem 3.1(i) in [46]). Let X ⊂ Rn be a heteroclinic cycle or network with finitely
many equilibria and connecting trajectories. Suppose that for all x ∈ X the local stability index
σloc(X ,x) exists and is not equal to zero. Then, generically, X is e.a.s if and only if σloc(X ,x)> 0 for
x an arbitrary point on each connecting trajectory.

Lemma 2.4.4. Let X ⊂ Rn be a compact invariant set for a smooth flow Φt . Suppose that for all
x ∈ X the local stability index σloc (X ,x) ∈ [−∞,∞] is defined.

(a) If X is a.s, then σloc (X ,x) = ∞ for all x ∈ X.

(b) If there exists x ∈ X such that σloc (X ,x)>−∞, then X is f.a.s.

Proof. For (a) suppose that X is a.s. Pick x ∈ X and δ > 0. There is ε0 > 0 such that Bε0 (X)⊂Bδ (X).
Together with Bε0(x)⊂ Bε0 (X), we have ℓ(Bε0(x)∩Bδ (X)) = ℓ(Bε0(x)) so that Σε,δ (x) = 1 for all
ε < ε0. By the conjecture in Definition 2.4.1, it means that σloc (X ,x) = ∞. For (b) we note that
σloc(X ,x)>−∞ implies ℓ(Bδ (X))> 0 for small δ > 0. This is just the definition of f.a.s.
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Remark 2.4.5. The converse of Lemma 2.4.4(a) says σloc (X ,x) =−∞ for all x ∈ X if X is c.u.

The next two lemmas allow to determine stability indices with respect to heteroclinic networks as
a whole.

Lemma 2.4.6 (Lemma 2.4. in [17]). Let X be a heteroclinic network and C ⊂ X a heteroclinic cycle.
Then, for all x ∈C, we have σ (X ,x)≥ σ (C,x).

Lemma 2.4.7 (Lemma 2.5 in [17]). Let X ⊂ Rn be a heteroclinic cycle (or network) and x ∈ X a point
on a connecting trajectory. Suppose that for all points y = (y1, . . . ,yn) ∈ Bε (x), stability with respect
to X depends only on their (y1,y2)-components. Furthermore, assume that

B (X)∩Bε (x) = Bε (x)\
⋂

m∈N
Em,

where Em are non-empty, disjoint sets of the form

Em =
{

y ∈ Bε (x) : kmyαm
1 ≤ y2 ≤ k̂myαm

1

}
,

with constants km, k̂m > 0. Suppose that (αm)m∈N is bounded away from 1 and not all αm are negative.
Then, with αmax := max{αm : 0 < αm < 1} and αmin := min{αm : αm > 1}, we have

σ (X ,x) =−1+min
{

1
αmax

,αmin

}
> 0.

The results for the local stability index follow in the same way.

2.5 Switching

The interaction among various heteroclinic cycles composing a heteroclinic network can produce
increasingly complex dynamics that range from intermittency to chaos. An interesting phenomenon
is characterised by the way how nearby trajectories visit parts of the network, which is known as
switching. A heteroclinic network can exhibit different forms of switching as described below.

Consider a heteroclinic network X ⊂ Rn with a finite set of nodes for the flow Φt of (2.1).
Reordering if necessary, a (finite) heteroclinic path on X is a sequence of k < ∞ heteroclinic
connections (κ j, j+1) j∈{1,··· ,k} such that κ j, j+1 = [ξ j → ξ j+1] for consecutive nodes ξ j and ξ j+1. An
infinite path takes j ∈ N.

Given an initial condition x ∈ Rn, the trajectory Φt(x) follows (or shadows) a heteroclinic path on
X if, for every neighbourhood U of the path, there exists a time interval I ⊂ R0

+ such that Φt(x) ∈U
for all t ∈ I (see Figure 2.2).

Definition 2.5.1 ([6]). We say there is switching at a node ξ j of X if, for any neighbourhood of a point
in any connection leading to ξ j and sufficiently close to it, trajectories starting in that neighbourhood
follow along all the possible connections forward from ξ j.

Definition 2.5.2 ([6]). We say there is switching along a heteroclinic connection κi, j of X if, for
any neighbourhood of a point in any connection leading to ξi and sufficiently close to it, trajectories
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starting in that neighbourhood follow along κi, j and then along all the possible connections forward
from ξ j.

Definition 2.5.3 ([6]). We say there is finite (resp. infinite) switching near X if, for each finite (resp.
infinite) path on X , there exists a trajectory that follows it.

Of course, the existence of infinite switching implies switching along the heteroclinic connections,
which in turn implies switching at all nodes of the heteroclinic network.

ξ j−1 ξ j

ξ j+1

U

Φt(x)

Fig. 2.2 Solution trajectory following an heteroclinic path: given a neighbourhood U of the heteroclinic
path [ξ j−1 → ξ j → ξ j+1], the trajectory Φt(x) follows it in U .





Chapter 3

Stability of quasi-simple heteroclinic
cycles

1

Stability properties of heteroclinic cycles and networks can be quantified by the local stability
index of Podvigina and Ashwin [53]. Such an index has been defined for an arbitrary invariant set. To
the best of our knowledge, in the context of heteroclinic dynamics it has only been computed for some
types of simple heteroclinic cycles in [53] and [46], and used by [17] in simple heteroclinic networks.

The aim of this chapter is to extend the calculations of the local stability index to quasi-simple
heteroclinic cycles, a much wider collection of heteroclinic cycles. These include all simple
heteroclinic cycles of type Z, various non-simple heteroclinic cycles arising from a straightforward
generalisation of a construction method in [13], and heteroclinic cycles with heteroclinic connections
contained in flow-invariant spaces which are not vector spaces, as those arising from population
dynamics.

The chapter is organised as follows. In Section 3.1 we introduce the notion of quasi-simple
heteroclinic cycle in Rn. Section 3.2 describes the construction of local and global maps used to
approximate the flow near the heteroclinic cycle. We make one assumption on global maps to ensure
that basic transition matrices exist. These are presented in Section 3.3. In Section 3.4 we investigate
the properties of suitable products of basic transition matrices required for the calculation of the
local stability index along heteroclinic connections. The main achievements are the definition of a
function whose images provide the local stability index in Lemma 3.4.8, and Theorems 3.4.2 and
3.4.9. Section 3.5 illustrates our results with a heteroclinic network in R4 made of two quasi-simple
(non-simple) heteroclinic cycles.

1The content of this chapter is published in Garrido-da-Silva and Castro [28]. Definition 3.8 and Lemma 3.9 correspond
here to Lemma 3.4.8 and Definition 3.4.7, respectively. We believe that this slight change helps the reader to better
understand the construction of the function F index.

21
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3.1 Quasi-simple heteroclinic cycles

We define quasi-simple heteroclinic cycles so as to include all simple heteroclinic cycles and mainly
to be useful in a non-symmetric context. Recall that L̂ j is the vector space connecting the node ξ j to
the origin in Rn.

Definition 3.1.1 (Definition 2.1 in [28]). A robust heteroclinic cycle in Rn is quasi-simple if for any
j = 1, . . . ,m

• ξ j ∈ Pj−1 ∩Pj where Pj−1 and Pj are flow-invariant spaces;

• dim(Pj) = dim(Pj+1);

• dim
(
Pj ⊖ L̂ j

)
= 1.

The condition dim
(
Pj ⊖ L̂ j

)
= 1 means that for any j the dimension of the expanding eigenspace

at ξ j is one. This ensures that each heteroclinic connection κ j, j+1 ⊂ Pj is one-dimensional.

Set Q̂ j = L̂ j ⊕
(

Tξ j Pj ⊖ L̂ j

)
. We can certainly assume that Tξ j Pj ⊆ Q̂ j, since otherwise Tξ j Pj has

to comprise at least one transverse direction at ξ j. In addition, Q̂ j is the smallest vector subspace in
Rn locally coordinatised near ξ j that contains Pj when this is not itself a vector space. We can rewrite

Q̂ j = L̂ j+1 ⊕
(

Tξ j+1Pj ⊖ L̂ j+1

)
near ξ j+1.

Lemma 3.1.2. Let X be a quasi-simple heteroclinic cycle in Rn. Then, dim
(
Q̂ j
)
= dim

(
Q̂ j+1

)
for

all j = 1, . . . ,m.

Proof. As X is a quasi-simple heteroclinic cycle dim
(

Tξ j Pj ⊖ L̂ j

)
= 1 for all j = 1, . . . ,m. On account

of the types of eigenvalues, the dimension of the contracting eigenspace at ξ j is always greater than or
equal to one. We thus get

dim
(

Tξ j Pj−1 ⊖ L̂ j

)
≥ 1 = dim

(
Tξ j Pj ⊖ L̂ j

)
.

Taking Q̂ j−1 = L̂ j ⊕
(

Tξ j Pj−1 ⊖ L̂ j

)
and Q̂ j = L̂ j ⊕

(
Tξ j Pj ⊖ L̂ j

)
near ξ j yields

dim
(
Q̂ j−1

)
= dim

(
L̂ j
)
+dim

(
Tξ j Pj−1 ⊖ L̂ j

)
≥ dim

(
L̂ j
)
+dim

(
Tξ j Pj ⊖ L̂ j

)
= dim

(
Q̂ j
)
.

Now dim
(
Q̂1
)
≥ dim

(
Q̂2
)
≥ ·· · ≥ dim

(
Q̂m
)
≥ dim

(
Q̂1
)

forces the equality of all terms.

Let us mention a straightforward consequence of the lemma.

Corollary 3.1.3. Let X be a quasi-simple heteroclinic cycle in Rn. Then, for all j = 1, . . . ,m,
(i) dim

(
Tξ j Pj−1 ⊖ L̂ j

)
= 1; (ii) dim

(
L̂ j
)
= dim

(
L̂ j+1

)
; and (iii) dim(Tj) = dim(Tj+1).

Define nr and nt to be respectively the number of radial and transverse eigenvalues at each node.
Corollary 3.1.3 states these are the same for every node in a quasi-simple heteroclinic cycle while
contracting and expanding eigenvalues are simple. Thus n = nr + nt + 2. We make the following
assumption:
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Assumption 3.1.4. Transverse, contracting and expanding eigenvalues are real and distinct.

We focus on vector fields whose eigenvalues of the Jacobian matrix at the nodes are all real and
distinct. However, having complex radial eigenvalues does not change stability results in which we
are interested (see [52, Footnote 1]).

We denote the radial eigenvalues of d f (ξ j) by −r j,l (l = 1, . . . ,nr), the contracting one by −c j,
the expanding one by e j and the transverse ones by t j,s (s = 1, . . . ,nt). The constants r j,l , c j and e j

are positive but t j,s can have either sign.

3.2 Maps between cross sections

The standard way to address the dynamics of a heteroclinic cycle is to look at the return maps (also
called Poincaré maps) from and to cross sections to the flow close to each node around the entire
heteroclinic cycle.

Consider a neighbourhood of ξ j where Ruelle’s [63] sufficient condition for linearisation of the
vector field f is satisfied. We choose local coordinates (uuu,v,w,zzz) ∈ Rn in the basis of eigenvectors
where the radial direction comes first, followed by the contracting, expanding and transverse directions.
In particular, uuu = (u1, . . . ,unr) and zzz = (z1, . . . ,znt ) are vectors.2 The linearised system about ξ j is
given by

u̇l =−r j,lul, l =1, . . . ,nr

v̇ =−c jv

ẇ = e jw

żs = t j,szs, s =1, . . . ,nt .

(3.1)

We introduce (n−1)-dimensional cross sections to the flow near ξ j with the notation H in
j along the

incoming heteroclinic connection from ξ j−1 and Hout
j along the outgoing heteroclinic connection to

ξ j+1. Locally at ξ j the heteroclinic connection κ j−1, j is tangent to the subspace {uuu = 000,w = 0,zzz = 000}
whereas the heteroclinic connection κ j, j+1 is tangent to the subspace {uuu = 000,v = 0,zzz = 000} so that3

H in
j = {(uuu,1,w,zzz) : 0 ≤ ul,w,zs < 1 for all l = 1, . . . ,nr, s = 1, . . . ,nt}

Hout
j = {(uuu, v, 1,zzz) : 0 ≤ ul, v, zs < 1 for all l = 1, . . . ,nr, s = 1, . . . ,nt} .

Now we construct a local map φ j : H in
j → Hout

j to approximate the behaviour of trajectories passing
close to ξ j. Integrating (3.1) the local flow at time t takes the form

Ft (uuu,v,w,zzz) =
({

ul e−r j,l t}
l=1,...,nr

,ve−c j t ,wee j t ,
{

zs et j,s t}
s=1,...,nt

)
.

A trajectory with initial condition (uuu,v,w,zzz)∈ H in
j hits Hout

j when it satisfies wee jt = 1. The associated
transit time is then

t =− ln(w)
e j

.

2Here and subsequently, we use boldtype to indicate a vector.
3Because all points in each orthant of Rn−1 of H in

j follow the same path (see [52, p. 1894]), we only consider the
dynamics in the positive orthant.
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To leading order we find

φ j (uuu,w,zzz) =

{u0
j,l w

r j,l
e j

}
l=1,...,nr

,v0
j w

c j
e j ,

{
zs w

−
t j,s
e j

}
s=1,...,nt

 , (3.2)

where uuu0
j =

(
u0

j,1, . . . ,u
0
j,nr

)
and v0

j account for the coordinates of a point
(
uuu0

j ,v
0
j ,0,000

)
∈ Pj−1

sufficiently close to the intersection of κ j−1, j with H in
j . If t j,s is positive for some s = 1, . . . ,nt ,

the domain of definition of φ j in H in
j is constrained by the inequalities4

0 ≤ zs < w
t j,s
e j .

A global map (also called connecting diffeomorphism) ψ j : Hout
j → H in

j+1 further approximates
the flow along each heteroclinic connection κ j, j+1. We label the points at which κ j, j+1 crosses Hout

j

and H in
j+1 as

(
uuu•,0,1,000

)
near ξ j and

(
uuu⋆,1,0,000

)
near ξ j+1. Accordingly, ψ j maps neighbourhoods

of
(
uuu•,0,1,000

)
in Hout

j homeomorphically onto neighbourhoods of
(
uuu⋆,1,0,000

)
in H in

j+1. Write ψ j in
components

ψ j =

({
ψ

ul
j

}
l=1,...,nr

,ψw
j ,
{

ψ
zs
j

}
s=1,...,nt

)
.

The flow-invariance of Pj enables us to assert ψ j
(
Pj ∩Hout

j
)
⊂ Pj ∩H in

j+1, which in turn implies

ψ
w
j (uuu,0,000) = 0

ψ
zs
j (uuu,0,000) = 0, s = 1, . . . ,nt .

Using a Taylor series expansion we obtain up to linear terms

ψ j

uuu
v
zzz

=

uuu⋆

0
000

+

(
C∥

j D j

000 C j

)uuu
v
zzz

 .

Here the upper triangular block matrix comprises two squares blocks5 C∥
j and C j of order nr and

nt +1, respectively, and an nr × (nt +1) block D j such that det
(
C∥

j

)
̸= 0 and det(C j) ̸= 0.

Set g j = ψ j ◦φ j : H j → H j+1. A return or Poincaré map for a heteroclinic cycle connecting m
nodes is constructed by appropriately composing these maps

π j : H in
j → H in

j , π j = g j−1 ◦ · · · ◦g1 ◦gm ◦ · · · ◦g j+1 ◦g j.

Notice that φ j in (3.2) is independent of uuu and v. Therefore only the w and zs components of ψ j

are sent through φ j whenever the composition g j = ψ j ◦φ j is taken in the return maps. It means that
the relevant dimension of the maps is equal to the number of transverse eigenvalues plus one. We

4Strictly speaking, the maps are defined for zs < K (1− ε)w
t j,s
e j , where K is a constant and ε is small. For more details

we refer the reader to [39] and [53, Footnote 5].
5The notation C∥

j comes from [52].
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can thus restrict the cross sections above to an (nt +1)-dimensional subspace. The coordinates (w,zzz)
and (v,zzz) are respectively used in the incoming and outgoing cross sections. From now on we always
work in the significant subspaces preserving the notation in order to keep things simple. We write
Rnt+1 or RN (N = nt +1) in place of a cross section when no constrains are applied and no confusion
arises. The restricted local and global maps are then given by

φ j

(
w
zzz

)
=

 v0
j w

c j
e j{

zs w
−

t j,s
e j

}
s=1,...,nt

 , ψ j

(
v
zzz

)
=C j

(
v
zzz

)
. (3.3)

We need the following assumption:

Assumption 3.2.1 (Assumption 3.1 in [28]). The global maps consist of a rescaled permutation of
the local coordinate axes.

This assumption holds for simple heetroclinic cycles of types B and C in R4 (see [43]) and more
generally for simple heteroclinic cycles of type Z in Rn (see [52]). In the context of non-simple
heetroclinic cycles, a remark in [5, p.1603] argues that global maps are permutations without rescaling.

In Section 2.3 stability properties of a flow-invariant set are described in terms of its δ -local basin
of attraction. Now we see that the δ -local basin of attraction of a heteroclinic cycle can be related to
that of a fixed point of a suitable collection of return maps. In fact, each return map π j : RN → RN

generates a discrete dynamical system through the relation xxxk+1 = π j (xxxk) where xxxk = (wk,zzzk) denotes
the state at the discrete time k. By construction the origin in RN is a fixed point of π j. In this way
stability of a heteroclinic cycle follows from stability of the fixed point at the origin of return maps
around the heteroclinic cycle.

We call partial turns to the maps

g(l, j) : H in
j → H in

l+1, g(l, j) =


gl ◦ · · · ◦g j, l > j

gl ◦ · · · ◦g1 ◦gm ◦ · · · ◦g j, l < j

gl, l = j.

For δ > 0 let B
π j

δ
be the δ -local basin of attraction of 000 ∈ RN for the map π j. Roughly speaking,

B
π j

δ
is the set of all initial conditions near ξ j whose trajectories remain in a δ -neighbourhood of the

heteroclinic cycle and converge to it. We use ∥·∥ to denote the Euclidean norm in RN . According to
Definition 10 in [52], we have

B
π j

δ
=
{
(w,zzz) ∈ RN :

∥∥g(l, j) ◦π
k
j (w,zzz)

∥∥< δ for all l = 1, . . . ,m, and k ∈ N0

and lim
k→∞

∥∥g(l, j) ◦π
k
j (w,zzz)

∥∥= 0 for all l = 1, . . . ,m
}
.

(3.4)
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3.3 Transition matrices

From (3.3) the maps g j : H in
j → H in

j+1 may conveniently be written in matrix form as

g j (w,zzz) =C j

 v0
j w

c j
e j{

zs w
−

t j,s
e j

}
s=1,...,nt

 .

Under Assumption 3.2.1, each matrix C j in (3.3) is the product of a permutation matrix A j with a
diagonal matrix

B j =


a j,1 0 . . . 0
0 a j,2 . . . 0
. . . . . .

0 0 . . . a j,N

 .

The constants a j,i, i = 1, . . . ,N, are all positive due to the flow-invariance of Pj and uniqueness
of solutions. Formally, B j represents the rescaling of (v,zzz) in the basis of eigenvectors of d f (ξ j)

and A j is the transformation of (v,zzz) in the basis of eigenvectors of d f (ξ j) to (w,zzz) in the basis
of eigenvectors of d f (ξ j+1). There is no loss of generality in assuming ψ j in (3.3) as orientation
preserving because the change of direction of some vector is actually irrelevant in the study of stability
(see [52, Footnote 3]).

Remark 3.3.1. When the global map in Assumption 3.2.1 is the identity, the matrix A j need not be
the identity since it also accounts for the permutation between the local bases in Hout

j and H in
j+1. By

way of illustration, for simple heteroclinic cycles of type B the matrix A j is the identity; however, for
simple heteroclinic cycles of type C, it is not. In general, if the heteroclinic cycle is simple and nt = 1,
then Proposition 4.1 in [43] provides the form of the global maps.

As in [52], take new coordinates of the form

ηηη = (ln(w) , ln(z1) , . . . , ln(znt )) . (3.5)

The maps g j : ηηη 7→ ηηη become linear. We denote them by M j where

M jηηη = M jηηη +Fj (3.6)

such that

M j = A j


b j,1 0 0 . . . 0
b j,2 1 0 . . . 0
b j,3 0 1 . . . 0
. . . . . . .

b j,N 0 0 . . . 1

 , Fj = A j


ln
(
v0

j

)
+ ln(a j,1)

ln(a j,2)

ln(a j,3)
...

ln(a j,N)

 . (3.7)
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Since the matrix A j is a permutation it naturally remains the same in (3.7). The entries of M j depend
exclusively on the contracting, expanding and transverse eigenvalues at node ξ j with

b j,1 =
c j

e j
, b j,s+1 =−

t j,s

e j
, s = 1, . . . ,nt , j = 1, . . . ,m.

In [52] the matrices M j are called basic transition matrices of the maps g j. Based on the
expressions of the maps in (3.3) and the new coordinates (3.5) we have just proved the following

Theorem 3.3.2 (Theorem 3.1 in [28]). For a quasi-simple heteroclinic cycle satisfying
Assumption 3.2.1, the transition between incoming sections at consecutive equilibria can be described
using basic transition matrices of the form (3.7).

This matrix representation is essential for our results. In fact, if a heteroclinic cycle is neither
quasi-simple nor does it satisfy Assumption 3.2.1 but such a representation exists, then our results
are still true. Note that the dimension of a transition matrix is determined by the dimension of the
state-space, while the layout of its entries does not.

Transition matrices of the maps π j and g( j,l) are respectively the products of basic transition
matrices

M( j) = M j−1 · · ·M1Mm · · ·M j+1M j (3.8)

and

M(l, j) =


Ml · · ·M j, l > j

Ml · · ·M1Mm · · ·M j, l < j

M j, l = j.

The definition of the local stability index requires asymptotically small w and zs for any
s = 1, . . . ,nt , which is equivalent to asymptotically large negative ηηη . As noticed in [53, p. 903],
because Fj in (3.6) is finite we can ignore it6 so that the map g j asymptotically to leading order is
described by the matrix M j. The same holds true for their compositions. Then, the limit in (3.4) in
coordinates (3.5) becomes for all l = 1, . . . ,m

lim
k→∞

M(l, j)

(
M( j)

)k
ηηη =−∞∞∞. (3.9)

Setting M = M( j), we see that the points in B
π j

δ
are a subset of

U−∞ (M) =

{
yyy ∈ RN

− : lim
k→∞

Mkyyy =−∞∞∞

}
. (3.10)

Assume that M has eigenvalues λ1, . . . ,λN and corresponding linearly independent eigenvectors
www1, . . . ,wwwN . Let λmax be the maximum, in absolute value, eigenvalue of M such that |λmax| ̸= 1 and
wwwmax = (wmax

1 , . . . ,wmax
N ) the associated eigenvector.

6Alternatively, we may proceed as in [56] and rescale the coordinates such that all the coefficients of the map g j are one
yielding Fj = 000.
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Podvigina [52] claims that Lemma 3 provides only sufficient conditions in terms of λmax and
wwwmax that guarantee ℓ(U−∞ (M))> 0 for an arbitrary N ×N real matrix M (regardless of whether or
not |λmax| ̸= 1). However, it is straightforward to check that these are also necessary. For ease of
reference, we state the necessary and sufficient conditions in next lemma.

First observe that any vector yyy = (y1, . . . ,yN) ∈ RN
− can be written as a linear combination of the

eigenvectors of M as

yyy =
N

∑
i=1

aiwwwi = Paaa, (3.11)

where P is the matrix whose columns are wwwi, i = 1, . . . ,N, and aaa = (a1, . . . ,aN) ∈ RN is some vector.
For each k ∈ N the kth iterate of yyy under M is

Mkyyy =
N

∑
i=1

λ
k
i aiwwwi. (3.12)

Lemma 3.3.3 (adapted from Lemma 3 in [52]). The measure ℓ(U−∞(M)) is positive if and only if
the three following conditions are satisfied:

(i) λmax is real;

(ii) λmax > 1;

(iii) wmax
q wmax

p > 0 for all q, p = 1, . . . ,N.

Proof. Suppose that at least one of the conditions (i)–(iii) is violated. It follows from Lemma 3(i)–(iv)
in [52] that ℓ(U−∞ (M)) = 0.

The converse is already shown in Lemma 3(v) of [52].

Since the transformation (3.5) can turn a set of finite measure into one of infinite measure we
preserve the convention of [52, p. 1900] that the measure of a set is always its measure in the original
variables.

3.4 Calculation of stability indices

For R ∈ R let us introduce the subset of RN

UR =

{
yyy ∈ RN : max

i=1,...,N
yi < R

}
. (3.13)

Recall that the change of coordinates (3.5) transforms the origin into −∞∞∞. Together with (3.9), an
alternative way of describing B

π j

δ
for S = ln(δ ) is

U M( j)

S =

{
yyy ∈ RN

− : M(l, j)

(
M( j)

)k
yyy ∈US for all l = 1, . . . ,m, and k ∈ N0

and lim
k→∞

M(l, j)

(
M( j)

)k
yyy =−∞∞∞ for all l = 1, . . . ,m

}
.

(3.14)
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The set U M( j)

S is the S-local basin of attraction of the fixed point −∞∞∞ in RN for the matrix M( j)

representing the map π j.
Calculation of local stability indices is divided into two cases: when transverse eigenvalues at

all nodes are negative and when, for at least one node, there is one positive transverse eigenvalue.
In terms of transition matrices, this corresponds to basic transition matrices with only non-negative
entries and with at least one negative entry, respectively. The latter occurs naturally whenever the
cycle is part of a heteroclinic network. The two cases are addressed in Theorems 3.4.2 and 3.4.9.

The following is a useful auxiliary result for the proof of Theorem 3.4.2.

Lemma 3.4.1 (Lemma 3.3 in [28]). Let M be a transition matrix (3.8) with non-negative entries and
λmax > 1. Then, generically, U−∞(M) = RN

−.

Proof. Since |λmax| > 1, Theorem 3 in [52] guarantees that generically all components of the
eigenvector wwwmax are non-zero. Therefore U−∞ (M) = RN

− by Lemma 4(iii) in [52].

We point out that, in view of Lemma 4(i) in [52], the hypothesis λmax > 1 is equivalent to
|λmax|> 1.

Denote by σ j the local stability index along the heteroclinic connection leading to ξ j.

Theorem 3.4.2 (Theorem 3.4 in [28]). Let M j, j = 1, . . . ,m, be basic transition matrices of a collection
of maps associated with a heteroclinic cycle. Suppose that for all j = 1, . . . , ,m all entries of the
matrices are non-negative. Then:

(a) If the transition matrix M(1) = Mm . . .M1 satisfies |λmax|> 1, then σ j =+∞ for all j = 1, . . . ,m,
and the cycle is asymptotically stable.

(b) Otherwise, σ j =−∞ for all j = 1, . . . ,m and the cycle is not an attractor.

Proof. We treat each statement separately.

(a) Suppose that the matrix M ≡ M(1) satisfies |λmax|> 1. Similarity of the matrices M( j) ensures
that the same holds for all j = 1, . . . ,m.

The product of matrices with non-negative entries also has non-negative entries. This is the
case for M( j) and M(l, j) with j, l = 1, . . . ,m. By Lemma 3.4.1, U−∞(M( j)) = RN

−. Then, for any
yyy ∈ RN

−,

M(l, j)

(
M( j)

)k
yyy ∈ RN

− for all j, l = 1, . . . ,m, and k ∈ N0

and

lim
k→∞

M(l, j)

(
M( j)

)k
yyy =−∞∞∞ for all j, l = 1, . . . ,m.

Given S < 0 and the linearity of maps M j it follows that UR ∩U M( j)

S is reduced to UR for an
R-neighbourhood UR of −∞∞∞ with R < S. Taking the respective measures in original coordinates,
σ j,+ = ∞ and σ j,− = 0 for all j = 1, . . . ,m by the convention in Definition 2.4.1. In addition
UR ⊂ U M( j)

S and, by Definition 2.3.1, the heteroclinic cycle is a.s.
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(b) If the matrix M ≡ M(1) satisfies |λmax| ≤ 1, then U−∞ (M) is empty as proved in [52,
Lemma 3(i)]. Hence σ1,+ = 0 and σ1,− = ∞. Since the inequality |λmax| ≤ 1 is satisfied
for any M( j) we get σ j,+ = 0 and σ j,− = ∞ for all j = 1, . . . ,m.

Irrespectively of the sign of the entries of the basic transition matrices we have the following
generalisation of Corollary 4.1 in [53] to quasi-simple heteroclinic cycles.

Lemma 3.4.3 (Lemma 3.5 in [28]). Let M j, j = 1, . . . ,m, be basic transition matrices of a collection
of maps associated with a heteroclinic cycle. If ℓ

(
U−∞

(
M( j)

))
= 0 for some j ∈ {1, . . . ,m} then

ℓ
(
U M( j)

S

)
= 0 for all j = 1, . . . ,m and S < 0.

Proof. The contrapositive of Lemma 3.3.3 asserts that ℓ
(
U−∞

(
M( j)

))
= 0 if and only if M( j) violates

at least one condition (i) to (iii).
Recall that all matrices M( j) are similar so that (i)–(ii) of Lemma 3.3.3 either are, or are not,

simultaneously satisfied for all j = 1, . . . ,m. If either (i) or (ii) fail, we trivially get ℓ
(
U−∞

(
M( j)

))
= 0

for all j = 1, . . . ,m. As U M( j)

S ⊂U−∞
(
M( j)

)
the result is ℓ

(
U M( j)

S

)
= 0 for all j = 1, . . . ,m and S < 0.

Let wwwmax, j =
(
wmax, j

1 , . . . ,wmax, j
N

)
be the eigenvector of the matrix M( j) associated with the

eigenvalue λmax. Suppose now that (i)–(ii) hold for all j = 1, . . . ,m while (iii) is not satisfied for
some j ∈ {1, . . . ,m}. That is, λmax is real and greater than one and there exist q, p ∈ {1, . . . ,N}
such that wmax, j

q wmax, j
p ≤ 0. For a vector yyy ∈ RN expressed as in (3.11) the iterates

(
M( j)

)k
yyy become

asymptotically close to amaxλ k
maxwwwmax, j when k → ∞ (see (3.12)). Hence

(
M( j)

)k
yyy are not in RN

− for
sufficiently large k and any yyy ∈RN . The same reasoning applies to the iterates of M( j−1,l)yyy under M( j)

so that for all l = 1, . . . ,m

lim
k→∞

(
M( j)

)k
M( j−1,l)yyy = lim

k→∞

M( j−1,l)

(
M(l+1)

)k
yyy /∈ RN

−.

On account of (3.14), we have ℓ
(
U M(l+1)

S

)
= 0 for all l = 1, . . . ,m and S < 0.

Concerning local stability indices for quasi-simple heteroclinic cycles in general, we are led to
Theorem 3.4.9. Assume next that at least one entry of some basic transition matrix M j is negative. It
means that at least one transverse eigenvalue at ξ j is positive.

We need a couple of auxiliary results and notation as follows. Define the set

UR (ααα1;ααα2; . . . ;αααN) =

{
yyy ∈UR :

N

∑
i=1

αsiyi < 0 for αααs ̸= 000, s = 1, . . . ,N

}
(3.15)

where αααs = (αs1, . . . ,αsN) ∈RN and R < 0. If αsi > 0 for all s = 1, . . . ,N, then ∑
N
i=1 αsiyi < 0 trivially.

Regard yyy ∈ RN
− as a linear combination of the eigenvectors of M( j) such in (3.11). Hence

aaa =
(

P( j)
)−1

yyy. (3.16)

Let
vvvmax, j =

(
vmax, j

1 ,vmax, j
2 , . . . ,vmax, j

N

)
(3.17)
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be the line of
(
P( j)
)−1

corresponding to the position associated with λmax.

Lemma 3.4.4. If ℓ
(
U−∞

(
M( j)

))
> 0, then U−∞

(
M( j)

)
is either RN

− or given by U0
(
vvvmax, j;000; . . . ;000

)
such that vmax, j

i > 0 for some i = 1, . . . ,N.

Proof. Suppose that the matrix M ≡ M( j) meets ℓ(U−∞ (M))> 0. Lemma 3.3.3 provides that

U−∞ (M) =
{

yyy ∈ RN
− : amax < 0

}
̸= /0 (3.18)

where amax is the coefficient in front of wwwmax in expansion (3.11) for yyy. If amax < 0 for any yyy ∈ RN
−,

then U−∞ (M) = RN
−. Otherwise we make use of (3.16) and the fact that U0 = RN

−, which establishes

U−∞ (M) =

{
yyy ∈U0 :

N

∑
i=1

vmax, j
i yi < 0

}
=U0

(
vvvmax, j;000; . . . ;000

)
. (3.19)

Of course U−∞ (M) ̸= /0 whenever there is some i = 1, . . . ,N for which vmax, j
i > 0.

Lemma 3.4.5 (Lemma 3.6 in [28]). Let q = j1, ..., jL, L ≥ 1, denote all the indices for which
Mq has at least one negative entry. Then, ℓ

(
U−∞

(
M( j)

))
> 0 for all j = 1, . . . ,m if and only if

ℓ
(
U−∞

(
M( j)

))
> 0 for all j = jp +1, p = 1, . . . ,L, such that jp +1 /∈ { j1, . . . , jL}.

Proof. The implication ⇒ is trivial.
For the implication ⇐, notice that ℓ

(
U−∞

(
M( j)

))
> 0 if and only if M( j) satisfies (i)–(iii) of

Lemma 3.3.3. Conditions (i)–(ii) hold simultaneously for every j = 1, . . . ,m since all matrices M( j)

are similar.
Suppose that for each p = 1, . . . ,L such that jp +1 /∈ { j1, . . . , jL} the matrix M( jp+1) satisfies (iii)

of Lemma 3.3.3. Without loss of generality, we assume that all entries of M j with j = jp +1, jp +

2, . . . , jp+1 −1 are non-negative. As a consequence, the product M( j−1, jp+1) = M j−1 · · ·M jp+2M jp+1

has non-negative entries for any j = jp + 2, . . . , jp+1. Now M( j−1, jp+1)M( jp+1) = M( j)M( j−1, jp+1)

and7

wwwmax, j = M( j−1, jp+1)www
max, jp+1.

Therefore if all components of wwwmax, jp+1 have the same sign, then all components of wwwmax, j have
similarly the same sign for all remaining j ∈ ∪L

p=1 { jp +2, . . . , jp+1}.

For each l = 1, . . . ,m denote by ααα l
s =
(
α l

s1, . . . ,α
l
sN
)
, s = 1, . . . ,N, the sth row of the matrix M(l, j).

Note that this implies ααα l
s ̸= 000 for all s = 1, . . . ,N.

Lemma 3.4.6 (Lemma 3.7 in [28]). Let q = j1, ..., jL, L ≥ 1, denote all the indices for which Mq has at
least one negative entry. Suppose that the matrices M( j) satisfy conditions (i)–(iii) of Lemma 3.3.3 for
all j = jp+1, p = 1, . . . ,L, such that jp+1 /∈ { j1, . . . , jL}. Then, yyy ∈RN

− such that for all l = 1, . . . ,m

lim
k→∞

M(l, j)

(
M( j)

)k
yyy =−∞∞∞ (3.20)

7If www is an eigenvector of M( j), that is, M( j)www = λwww for some scalar λ , then M(l)M(l−1, j)www = M(l−1, j)M
( j)www =

λM(l−1, j)www. It means that M(l−1, j)www is an eigenvector for M(l) associated to the same eigenvalue λ .
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is equivalent to

yyy ∈U−∞

(
M( j)

)
∩

(
L⋂

p=1

U0

(
ααα

jp
1 ;ααα

jp
2 ; . . . ;ααα

jp
N

))
.

Proof. Take yyy ∈ RN
−. For any l = 1, . . . ,m and k ∈ N0 we can write M(l, j)

(
M( j)

)k
=
(
M(l+1)

)k
M(l, j)

so that
lim
k→∞

M(l, j)

(
M( j)

)k
yyy = lim

k→∞

(
M(l+1)

)k
M(l, j)yyy.

From (3.10) the limit limk→∞

(
M(l+1)

)k
M(l, j)yyy =−∞∞∞ is true if and only if

M(l, j)yyy ∈U−∞

(
M(l+1)

)
.

By virtue of Lemma 3.4.5, ℓ
(
U−∞

(
M( j)

))
> 0 for all j = 1, . . . ,m and U−∞

(
M( j)

)
are of the

form (3.18). Considering yyy = P( j)aaa yields M(l, j)yyy = M(l, j)P( j)aaa = P(l+1)aaa (see Footnote 7). Hence
the component amax is the same in the description of yyy ∈U−∞

(
M( j)

)
and of M(l, j)yyy ∈U−∞

(
M(l+1)

)
.

Based on (3.18), if yyy ∈U−∞
(
M( j)

)
, it suffices to demand M(l, j)yyy ∈U0 = RN

− in order to guarantee
that M(l, j)yyy belongs to U−∞

(
M(l+1)

)
. We see at once that

M(l, j)yyy ∈U0 ⇔
N

∑
i=1

α
l
siyi < 0 for all s = 1, . . . ,N

is equivalent to yyy ∈U0
(
ααα l

1, . . . ,ααα
l
N
)

on account of (3.15).
We do not need all the m sets U0

(
ααα l

1, . . . ,ααα
l
N
)
. In fact, when M(q, j) is the product of matrices

with only non-negative entries, limk→∞ M(q, j)
(
M( j)

)k
yyy =−∞∞∞ holds naturally for any yyy ∈U−∞

(
M( j)

)
.

Suppose that the basic transition matrix Mq+1 with Mq+1M(q, j) = M(q+1, j) has at least one negative

entry. Then, limk→∞ M(q+1, j)
(
M( j)

)k
yyy = −∞∞∞ for any yyy ∈ U−∞

(
M( j)

)
∩U0

(
ααα

q+1
1 , . . . ,αααq+1

N

)
as

before. The set of points satisfying (3.20) for all l = 1, . . . ,m gets restricted to

U−∞

(
M( j)

)
∩

(
L⋂

p=1

U0

(
ααα

jp
1 ;ααα

jp
2 ; . . . ;ααα

jp
N

))
.

We compute the local stability index by means of the function F index, the analogue of the function
f index of [53, p. 905].

Definition 3.4.7 (Lemma 3.9 in [28]). Let the intersection of the local basin of attraction of a compact
flow-invariant set X with a cross section transverse to the flow at x ∈ X be given in coordinates (3.5)
by UR (ααα;000; . . . ;000) for some ααα = (α1,α2, . . . ,αN) ∈ RN and R < 0. The function ααα 7→ F index (ααα) is
the local stability index for X at x relative to this intersection, i.e. F index (ααα) = σloc(X ,x).

Lemma 3.4.6 and Theorem 3.4.9 show that in coordinates (3.5) the set B
π j

δ
in H in

j is of the form
UR (ααα1;ααα2; . . . ;αααN). By (3.15) we can set

UR (ααα1;ααα2; . . . ;αααN) =
N⋂

i=1

UR (ααα i;000; . . . ;000) .
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The local stability index for the heteroclinic connection that intersects H in
j enables us to characterise

the local geometry of B
π j

δ
. From Definition 3.4.7 its value is given by

min
i=1,...,N

{
F index (ααα i)

}
.

The function F index is used to determine the local stability index at any point of a heteroclinic cycle
through two components, F− and F+, related respectively to σloc,− and σloc,+ in Definition 2.4.1.

Lemma 3.4.8 (Definition 3.8 in [28]). Let ααα = (α1, . . . ,αN) ∈ RN and αmin = mini=1,...,N{αi}. The
values of the function F index : RN → R are

F index (ααα) = F+ (ααα)−F− (ααα)

where F− (ααα) = F+ (−ααα) and

F+ (ααα) =


+∞, if αmin ≥ 0

0, if ∑
N
i=1 αi ≤ 0

− 1
αmin

∑
N
i=1 αi, if αmin < 0 and ∑

N
i=1 αi ≥ 0.

See Appendix A for the detailed construction of F index as well as its explicit values when N = 3.

Theorem 3.4.9 (Theorem 3.10 in [28]). Let M j, j = 1, . . . ,m, be basic transition matrices of a
collection of maps associated with a heteroclinic cycle. Denote by q = j1, ..., jL, L ≥ 1, all the indices
for which Mq has at least one negative entry.

(a) If, for at least one j, the matrix M( j) does not satisfy conditions (i)–(iii) of Lemma 3.3.3, then
σ j =−∞ for all j = 1, . . . ,m and the cycle is not an attractor.

(b) If the matrices M( j) satisfy conditions (i)–(iii) of Lemma 3.3.3 for all j = jp +1, p = 1, . . . ,L,
such that jp +1 /∈ { j1, . . . , jL}, then the cycle is f.a.s. Furthermore, for each j = 1, . . . ,m, there
exist vectors βββ 1,βββ 2, . . . ,βββ K ∈ RN such that

σ j = min
i=1,...,K

{
F index (βββ i)

}
. (3.21)

Proof. Statement (a) follows immediately from Lemma 3.4.3.

(b) Under the hypotheses, Lemma 3.4.5 gives ℓ
(
U−∞

(
M( j)

))
> 0 for all j = 1, . . . ,m. The cycle is

then f.a.s.8

By Definition 2.4.1 the local stability index is computed for δ > 0 small leading to large
negative S = ln(δ ). We derive the S-local basin of attraction in (3.14) from (3.19) together with

8The implication is handled in much the same way as in [52, Theorem 5(b)]. The arguments therein involve exclusively
the maps associated with the heteroclinic cycle, which coincide with ours.
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Lemma 3.4.6 so that

U M( j)

S =U0
(
vvvmax, j;000; . . . ;000

)
∩

(
L⋂

p=1

U0

(
ααα

jp
1 ;ααα

jp
2 ; . . . ;ααα

jp
N

))

∩
{

yyy ∈ RN
− : M(l, j)

(
M( j)

)k
yyy ∈US for all l = 1, . . . ,m, and k ∈ N0

}
.

(3.22)

As S approaches −∞ the condition defining the third set above becomes redundant in the sense
that it holds true for all yyy ∈UR with R < S. Therefore UR ∩U M( j)

S is reduced to

UR
(
vvvmax, j;000; . . . ;000

)
∩

(
L⋂

p=1

UR

(
ααα

jp
1 ;ααα

jp
2 ; . . . ;ααα

jp
N

))
.

The local stability index relative to UR
(
vvvmax, j;000; . . . ;000

)
is F index

(
vvvmax, j

)
. Similarly, the local

stability index relative to UR

(
ααα

jp
1 ;ααα

jp
2 ; . . . ;ααα

jp
N

)
is given by

min
i=1,...,N

{
F index

(
ααα

jp
i

)}
for any p = 1, . . . ,L, and the local stability index relative to

⋂L
p=1UR

(
ααα

jp
1 ;ααα

jp
2 ; . . . ;ααα

jp
N

)
is

given by

min
p=1,...,L

{
min

i=1,...,N

{
F index

(
ααα

jp
i

)}}
.

We thus get, for each j = 1, . . . ,m,

σ j = min
{

F index (vvvmax, j) , min
p=1,...,L

{
min

i=1,...,N

{
F index

(
ααα

jp
i

)}}}
.

Remark 3.4.10. Equality U−∞(M( j)) = RN
− implies vmax, j

q vmax, j
p > 0 for all q, p = 1, . . . ,N by virtue

of (3.19). Applying Lemma 3.4.8 we find F index
(
vvvmax, j

)
= +∞, and the above expression can be

simplified.

We have shown that the local basin of attraction of heteroclinic cycles in Rn for which a
representation using basic transition matrices (3.8) exists is generically bounded by power curves.

Lemma 3.4.11. Let M j, j = 1, . . . ,m, be basic transition matrices of a collection of maps associated
with a heteroclinic cycle. Denote by q = j1, ..., jL, L ≥ 1, all the indices for which Mq has at least
one negative entry. Suppose that the matrices M( j) satisfy conditions (i)–(iii) of Lemma 3.3.3 for all
j = jp +1, p = 1, . . . ,L, such that jp +1 /∈ { j1, . . . , jL}. Then, σ j >−∞ for all j = 1, . . . ,m.

Proof. According to Theorem 3.4.9 the heteroclinic cycle is f.a.s. Suppose, contrary to the first
statement, that there is some j such that σ j =−∞. By (3.21) there is some vector βββ = (β1, . . . ,βN) ∈
RN such that F index (βββ ) = −∞. From Lemma 3.4.8 this occurs when βmax = maxi=1,...,N {βi} ≤ 0,
which implies βi ≤ 0 for all i = 1, . . . ,N. Then, U0 (βββ ;000; . . . ;000) = /0. Considering (3.22) we know
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that U M( j)

S ⊂ U0 (βββ ;000; . . . ;000) for S < 0 sufficiently large negative. Hence ℓ
(
U M( j)

S

)
= 0 and the

heteroclinic cycle is c.u by Definition 2.3.1. The proof is complete.

We thus extend Corollary 4.1 in [53] for simple heteroclinic cycles in R4.

Corollary 3.4.12. Let M j, j = 1, . . . ,m, be basic transition matrices of a collection of maps associated
with a heteroclinic cycle. Then, σ j = −∞ for some j ∈ {1, . . . ,m} if and only if σ j = −∞ for all
j = 1, . . . ,m.

Theorems 3.4.2 and 3.4.9, and Lemma 3.4.11 together with Lemma 2.4.4 imply the next corollary:

Corollary 3.4.13. Let X be a quasi-simple heteroclinic cycle in Rn satisfying Assumption 3.2.1.
Suppose that for all x ∈ X the local stability index σloc (X ,x) ∈ [−∞,∞] is defined.

(a) X is a.s if and only if σloc (X ,x) = ∞ for all x ∈ X.

(b) X is f.a.s if and only if there exists x ∈ X such that σloc (X ,x)>−∞.

(b) X is c.u if and only if σloc (X ,x) =−∞ for all x ∈ X.

The section finishes with a relation of the local stability index along a heteroclinic connection
shared by two quasi-simple heteroclinic cycles.

Lemma 3.4.14. Let κ1,2 = [ξ1 → ξ2] be a common heteroclinic connection between two quasi-simple
heteroclinic cycles satisfying Assumption 3.2.1. Then, the local stability index along κ1,2 is negative
with respect to the heteroclinic cycle whose the expanding eigenvalue at ξ2 is the weakest.

Proof. Consider two quasi-simple heteroclinic cycles C1 and C2 with sequences [ξa → ξ1 → ξ2 → ξb]

and
[
ξα → ξ1 → ξ2 → ξβ

]
, see Figure 4.9. Under Assumption 3.2.1, Theorem 3.3.2 ensures that

dynamics around C1 and C2 can be represented by basic transition matrices of the form (3.8). We
use the notation e2k for the eigenvalue at ξ2 to the unstable direction κ2,k, k ∈ {b,β}. Near ξ2, the
eigenvalue e2b (resp. e2β ) is expanding with respect to C1 (resp. C2) and transverse with respect to C2

(resp. C1). Assume that e2b > e2β and M2 : H in,1
2 → H in,β

2 is the basic transition matrix for C2 from ξ2

to ξβ . By (3.8) one of the rows of M2 is a permutation of the N-tuple(
− e2b

e2β

,1,0, . . . ,0
)
.

Denote by σ2 the local stability index along κ1,2 with respect to C2. From Theorem 3.4.9 either
σ2 =−∞ or σ2 >−∞ depending whether or not the transition matrix M(2) : H in,1

2 → H in,1
2 around C2

satisfies conditions (i)–(iii) of Lemma 3.3.3. The latter calculations take into account the rows of
M2 with negative entries since M(2) is the product of basic transition matrices wherein M2 is the first
factor (from right to left). We observe that F index is invariant under permutations so that

σ2 = min
{

F index
(
− e2b

e2β

,1,0, . . . ,0
)
, . . .

}
.

Lemma 3.4.8 yields

F index
(
− e2b

e2β

,1,0, . . . ,0
)
=− e2b

e2β

+1 < 0.
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Therefore, in either case, σ2 < 0 as claimed.

3.5 The simplest non-simple heteroclinic cycle

We illustrate the application of Theorem 3.4.9 by calculating the local stability indices for the
heteroclinic connections of two non-simple heteroclinic cycles in a heteroclinic network in R4. Each
heteroclinic cycle is made of two nodes and two heteroclinic connections. The heteroclinic network is
obtained from the so-called simple

(
B+

2 ,B
+
2

)
-network in R4 by a translation along the axis containing

the nodes. The simple
(
B+

2 ,B
+
2

)
-network consists of two simple heteroclinic cycles of type B+

2 with
a common heteroclinic connection. For more details we refer the reader to [17]. The translated
heteroclinic cycles are non-simple because the second condition in Definition 2.2.4 fails to hold. They
do satisfy Definition 3.1.1 and are therefore quasi-simple (see Figure 3.1).

In order to prove the existence of such a network we provide a vector field that supports it. Based
on the cylinder realisation in [13], for (xxx, p) with xxx = (x1,x2,x3) ∈ R3 and p ∈ R we write

ẋi =−xiGi (xxx, p) , i = 1,2,3

ṗ =−sin(2π p)+F (xxx, p)
(3.23)

where F,Gi : R3 ×R→ R are smooth functions and even in each of the xi, and F (000, p) = 0 for any
p ∈ R. See Proposition 2 in [13] for specific forms for F and Gi, i = 1,2,3. The vector field (3.23) is
equivariant under the action of Z3

2 (γ1,γ2,γ3) such that γi : xi 7→ −xi. We check at once that for each
i = 1,2,3

Pi = Fix
(
Z2

2 (γi+1,γi+2)
)
= {(xxx, p) : xi+1 = xi+2 = 0} (mod 3)

and

L = Fix
(
Z3

2 (γ1,γ2,γ3)
)
= {(xxx, p) : xxx = 000}

are flow-invariant spaces. In particular, equilibria of (3.23) are all on the axis L at p = n for every
n ∈ Z. We can choose the parameters appropriately so there are robust heteroclinic connections
between ξa = (000,a) and ξb = (000,b) for some 0 < a < b with

κa,b = [ξa → ξb]⊂ P1, κ̃b,a = [ξb → ξa]⊂ P2, κb,a = [ξb → ξa]⊂ P3.

We obtain two identical heteroclinic cycles sharing a heteroclinic connection in P1 as in the
(
B+

2 ,B
+
2

)
simple network. Set

C2 = [ξa → ξb → ξa]⊂ P1 ∪P2

C3 = [ξa → ξb → ξa]⊂ P1 ∪P3.

Near each ξ j, j = a,b, denote by −c jk the negative eigenvalue in the stable xk-direction and by e jl

the positive eigenvalue in the unstable xl-direction, k ̸= l ∈ {1,2,3}. We further write H in
jk and Hout

jl

for the cross sections to the flow approaching and leaving ξ j, respectively.
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x2

p

x1

x3

O

ξa

ξb

ξa

ξb

Fig. 3.1 A non-simple heteroclinic network in R4 constructed by an adaptation of the cylinder
realisation in [13].

Assumption 3.2.1 is satisfied due to the Z3
2-symmetry which must be preserved by the global maps.

In coordinates (3.5) the basic transition matrices are then: for C2

M̃a : H in
a2 → H in

b1, M̃b : H in
b1 → H in

a2

where

M̃a =


ca2

ea1
0

ca3

ea1
1

=

[
ã1 0
b̃1 1

]
, M̃b =


cb1

eb2
0

−eb3

eb2
1

=

[
ã2 0
b̃2 1

]

and, for C3,

Ma : H in
a3 → H in

b1, Mb : H in
b1 → H in

a3

where

Ma =


ca3

ea1
0

ca2

ea1
1

=

[
a1 0
b1 1

]
, Mb =


cb1

eb3
0

−eb2

eb3
1

=

[
a2 0
b2 1

]
.

The product of the matrices above in the appropriate order yields the transition matrices of the full
return maps associated to each cycle: for C2

M̃(a) : H in
a2 → H in

a2, M̃(a) = M̃bM̃a =

[
ã1ã2 0

b̃2ã1 + b̃1 1

]

M̃(b) : H in
b1 → H in

b1, M̃(b) = M̃aM̃b =

[
ã1ã2 0

b̃1ã2 + b̃2 1

] (3.24)
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and, for C3,

M(a) : H in
a3 → H in

a3, M(a) = MbMa =

[
a1a2 0

b2a1 +b1 1

]

M(b) : H in
b1 → H in

b1, M(b) = MaMb =

[
a1a2 0

b1a2 +b2 1

]
.

(3.25)

With this notation we have b1, b̃1 > 0 and b2, b̃2 < 0. The local stability indices follow from
Theorem 3.4.9. Here the function F index coincides with f index of [53]. We use σ jk,i to denote the local
stability index at a point on κ j,k with respect to the cycle Ci, j ̸= k ∈ {a,b} and i = 2,3.

Lemma 3.5.1. Suppose that eb2 > eb3.

(a) The local stability indices for the cycle C2 are:

• if either ã1ã2 < 1 or b̃2ã1 + b̃1 < 0, then σab,2 = σba,2 =−∞;

• if ã1ã2 > 1 and b̃2ã1 + b̃1 > 0, then

σba,2 =+∞, σab,2 = F index(b̃2,1) =
eb2

eb3
−1 > 0.

(b) The local stability indices for the cycle C3 are:

• if either a1a2 < 1 or b2a1 +b1 < 0, then σab,3 = σba,3 =−∞;

• if a1a2 > 1 and b2a1 +b1 > 0, then

σba,3 =+∞, σab,3 = F index (b2,1) =−eb2

eb3
+1 < 0.

Proof. We give the proof only for case (a); the remaining is similar.
Transition matrices in (3.24) are lower triangular making conditions (i)–(iii) of Lemma 3.3.3 of

easy verification. Their eigenvalues are λ1 = ã1ã2 and λ2 = 1. The associated eigenvectors for M̃(a)

are www1,a =
(
ã1ã2 −1, b̃2ã1 + b̃1

)
and www2,a = (0,1), respectively. It suffices to use M̃(a) according to

Lemma 3.4.5. Since the eigenvalues are all real the matrix M̃(a) does not satisfy either (ii) or (iii)
when either ã1ã2 < 1 or b̃2ã1 + b̃1 < 0. In both cases we get σab,2 = σba,2 = −∞ from part (a) of
Theorem 3.4.9.

Conversely, the hypotheses of part (b) of Theorem 3.4.9 hold if ã1ã2 > 1 and b̃2ã1 + b̃1 > 0. Then,
λmax = λ1 and wwwmax,a = www1,a. The arguments employed in the proof of Theorem 3.4.9(b) yield

σba,2 = min
{

F index (vvvmax,a) ,min
{

F index (ã1ã2,0) ,F index (b̃2ã1 + b̃1,1
)}}

σab,2 = min
{

F index(vvvmax,b),min
{

F index (ã2,0) ,F index (b̃2,1
)}}

.

By simple algebra we see that vvvmax,a and vvvmax,b in (3.19) are multiple of the vector(
0,

1
ã1ã2 −1

)



3.5 The simplest non-simple heteroclinic cycle 39

whose entries are all non-negative. Lemma 3.4.8 states

F index (vvvmax,a) = F index(vvvmax,b)=+∞.

In the same manner

F index (ã2,0) = F index (ã1ã2,0) = F index (b̃2ã1 + b̃1,1
)
=+∞.

Hence
σab,2 =+∞

and
σba,2 = F index (b̃2,1

)
= F+

(
b̃2,1

)
=− 1

b̃2
−1 =

eb2

eb3
−1 > 0.

Comparison with the corresponding maps in [17] shows that the transition matrices remain
unchanged. The content of Lemma 3.5.1 meets the results of [53] and [17] for simple heteroclinic
cycles of type B+

2 . Indeed, the systems realising the two heteroclinic networks, simple and non-simple,
are C1-conjugated. The values of the local stability index must be equal by the comment after
Theorem 2.2 in [53]. We provide here an alternative and direct way of calculating those indices.

An original application of Theorem 3.4.9 can be found in Chapter 5.





Chapter 4

Switching in heteroclinic networks

The study of the dynamics near heteroclinic networks has been of interest because of its degree of
complexity. A way of evaluate the complexity is through the occurrence of switching, which discloses
how nearby trajetories follow sequences of heteroclinic connections within a heteroclinic network.
Random-like visits to all nodes characterise infinite switching. For noise-free systems the general
features inducing infinite switching in the neighbourhood of a heteroclinic network are so far related
to transverse intersections of invariant manifolds and rotating nodes.

The aim of the chapter is to examine the existence of infinite switching near heteroclinic networks
whose linearisation of the vector field at nodes has no complex eigenvalues.

The chapter is organised as follows. Section 4.1 presents some results on the construction of
quasi-simple heteroclinic cycles. We proceed with the study of various types of switching near a
heteroclinic network comprising of two quasi-simple heteroclinic cycles, from switching along a
heteroclinic connection in Section 4.2 to switching along a heteroclinic cycle in Section 4.3. We treat
infinite switching near an arbitrary heteroclinic network with real eigenvalues in Section 4.4. The
main achievements are Theorems 4.2.4, 4.2.4 and 4.4.4.

4.1 Construction of quasi-simple heteroclinic cycles

We divide individual heteroclinic connections of quasi-simple heteroclinic cycles into two types
according to the transformation of the global map defined therein. Recall that a local map near ξ j and
a global map near κ j, j+1 = [ξ j → ξ j+1] are respectively such that

φ j : H in
j → Hout

j and ψ j : Hout
j → H in

j+1.

Definition 4.1.1. Let X be a quasi-simple heteroclinic cycle in Rn.

1. The jth connection is of type contracting-to-expanding if ψ j maps v to w.

2. The jth connection is of type contracting-to-transverse if ψ j maps v to z where z is spanned by
zs for s = 1, . . . ,nt .

Remark 4.1.2. Regarding the types of eigenvalues in Table 2.2 a quasi-simple heteroclinic cycle
is subject to dim(Tj) = nt for all j. Based on Assumption 3.1.4 we can write Tj = ⊕nt

s=1T s
j

41
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where T s
j is the generalised eigenspace for the transverse eigenvalue t j,s with dim

(
T s

j
)
= 1. When

Assumption 3.2.1 is in turn fulfilled, Definition 4.1.1 may be summarised by saying that: the jth
connection is of type contracting-to-expanding if Vj =Wj+1 and Tj = Tj+1; the jth connection is of
type contracting-to-transverse if Vj = T s1

j+1 and T s2
j =Wj+1 for some s1,s2 ∈ {1, . . . ,nt}.

Definition 2.2.9 distinguishes between type-B and type-C connections by means of fixed-point
subspaces. We further observe that a type-B connection is contracting-to-expanding and a type-C
connection is contracting-to-transverse.

It is worth pointing out that the local characterisation of individual heteroclinic connections
depends on which heteroclinic cycles one considers. Of course this gains in significance if heteroclinic
cycles coexist in a heteroclinic network. In particular a common heteroclinic connection may adopt
both types with respect to different heteroclinic cycles. Figure 4.1 represents the graph of the
simple

(
B−

3 ,C
−
4

)
-network as in [18, Figure 3]. The heteroclinic connections κ1,2 and κ2,3 are of type

contracting-to-expanding from the point of view of the B−
3 -cycle and of type contracting-to-transverse

from the point of view of the C−
4 -cycle. See also [45, Remark 2.10].

ξ1 ξ2

ξ3

ξ4

Fig. 4.1 The simple
(
B−

3 ,C
−
4

)
-network. The C−

4 -cycle is [ξ1 → ξ2 → ξ3 → ξ4 → ξ1] and the B−
3 -cycle

is [ξ1 → ξ2 → ξ3 → ξ1].

We look at minimal sequences of robust heteroclinic connections that makes up a quasi-simple
heteroclinic cycle. It meets the notion of building block. Under a symmetry group Γ ⊂ O(n) a
building bock, see [55, Definition 7], is a sequence of connections [ξ1 → ··· → ξm → ξm+1] where
ξm+1 = γξ1 for some γ ∈ Γ and ξi /∈ Γξ1 for all i = 2, . . . ,m. According to [18, p.3680] a building
block is called elementary if γ = Id and no two of the nodes ξ1, . . . ,ξm belong to the same group orbit.
In non-symmetric settings any heteroclinic cycle can be naturally regarded as an unique elementary
building block.

The next result is an extension of Lemma 3.2 in [18] to quasi-simple heteroclinic cycles. When
nr = dim

(
L̂ j
)
= 1 we recover the latter (see Figure 4.2).

Proposition 4.1.3. Let X be a quasi-simple heteroclinic cycle in Rn with only two nodes. Then, these
nodes belong to the same nr-dimensional vector subspace and all heteroclinic connections are of type
contracting-to-expanding.
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x2

y

x1

O

ξ1

ξ2

Fig. 4.2 A quasi-simple heteroclinic cycle with two nodes.

Proof. Suppose that ξ1 and ξ2 are the nodes of the quasi-simple cycle [ξ1 → ξ2 → ξ1]. By definition
κ1,2 ⊂ P1 and κ2,1 ⊂ P2 such that each Pj is contained in an (nr +1)-dimensional vector subspace Q̂ j

represented either by L̂ j ⊕
(

Tξ j Pj ⊖ L̂ j

)
in the local coordinates near ξ j or by L̂ j+1⊕

(
Tξ j+1Pj ⊖ L̂ j+1

)
near ξ j+1, j = 1,2. Now Q̂1 ∩ Q̂2 = L̂1 and Q̂1 ∩ Q̂2 = L̂2 since P1 ̸= P2. As ξ1,ξ2 ∈ L̂1 = L̂2 the first
claim follows. Due to Assumption 3.2.1, radial and expanding directions near ξ j must be respectively
in one-to-one correspondence with radial and contracting directions near ξ j+1, j = 1,2. Hence κ1,2

and κ2,1 are of type contracting-to-expanding.

The realisation of arbitrary directed graps as robust heteroclinic cycles and networks in the
phase space of coupled cells has recently been adressed by Ashwin and Postlethwaite [13, 14] and
Field [25, 26]. The authors present methods for designing coupled dynamical systems that embed a
prescribed one- or two-cycle free graph as a flow-invariant set. By making use of symmetry the result
is a robust heteroclinic object within an attractor.

Section 3.5 has shown that simple and quasi-simple (non-simple) heteroclinic cycles may have
an identical structure determined by the constraints and dimension of the system. Unless otherwise
stated we then adopt

Assumption 4.1.4. t

(i) All nodes in the heteroclinic cycle are on the coordinate axes.

(ii) All heteroclinic connections in the heteroclinic cycle are contained in coordinate planes.

The simplex and cylinder realisations in [13] generate quasi-simple heteroclinic cycles in Rn with
the desired properties. Hence dim

(
L̂ j
)
= 1 and dim(Pj) = 2 for any j. We take Pj to be the smallest

possible flow-invariant vector space in order to achieve a clear geometric construction. Moreover, this
permits a comparison with the well-known simple heteroclinic cycles.

Let (x1, . . . ,xn) denote the Euclidean coordinates in Rn. Under Assumptions 3.1.4, 3.2.1 and 4.1.4,
we study the ways in which heteroclinic connections can be put together to form a quasi-simple
heteroclinic cycle according to their type.
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x1

x2

xm

O

ξ1

ξ2

ξm1

ξm2

(a)

x1

x2

x3

O

ξ1

ξ2

ξ3

(b)

Fig. 4.3 Construction of a quasi-simple heteroclinic cycle with contracting-to-expanding connections.
(a) If κ1,2 ⊂ P1 = {(x1,x2)} is of type contracting-to-expanding, then there are nodes ξm1 and ξm2 on
the xm-axis such that κm1,1 ⊂ Pm = {(xm,x1)} and κ2,m2 ⊂ P2 = {(x2,xm)}; (b) If the nodes are all on
different axes, then ξm1 = ξm2 ≡ ξ3.

Proposition 4.1.5. Let X be a quasi-simple heteroclinic cycle in Rn fulfilling Assumptions 3.1.4, 3.2.1
and 4.1.4. Suppose that the nodes of X are all on different coordinate axes. Then, the heteroclinic
connections of X are all either of type contracting-to-expanding or of type contracting-to-transverse.

Proof. Suppose that X = [ξ1 → ··· → ξm → ξ1] is a quasi-simple heteroclinic cycle such that ξ j is
on the x j-axis and κ j, j+1 ⊂ Pj where Pj is the flow-invariant (x j,x j+1)-plane, j = 1, . . . ,m. Then,
n ≥ m ≥ 3 from Proposition 4.1.3.

Assume that at least one heteroclinic connection, say κ1,2, is of type contracting-to-expanding. It
follows that the expanding direction near ξ2 corresponds to the contracting direction near ξ1, which
is xm. Hence there is a node ξm on the xm-axis connected to either of ξ1 and ξ2 with κm,1 ⊂ Pm and
κ2,m ⊂ P2 (see Figure 4.3). We have m = 3 given the condition that all nodes belong to different axes.
From here the coordinate x1 spans the contracting eigenspace at ξ2 and the expanding eigenspace at
ξ3. In the same manner the coordinate x2 spans the contracting eigenspace at ξ3 and the expanding
eigenspace at ξ1. Thus κ2,3 and κ3,1 are also of type contracting-to-expanding.

Let now κ1,2 be of type contracting-to-transverse and assume that κm,1 is of type contracting
to-expanding. Thus ξm is in a transverse direction to ξ2 and ξ2 is in the contracting direction at ξm. So
ξ2 does not connect to ξm (see Figure 4.4). Another node in the x2-axis is required, contradicting the
assumption that nodes are on different coordinate axes.

As a direct consequence of the last proof we derive the number of nodes comprising of the
quasi-simple heteroclinic cycles under consideration.
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Fig. 4.4 Construction of a quasi-simple heteroclinic cycle with contracting-to-transverse connections.
If κ1,2 ⊂ P1 = {(x1,x2)} is of type contracting-to transverse and κm,1 ⊂ Pm = {(xm,x1)} is of type
contracting-to-expanding, then there must be a node ξ ∗ on the x2-axis such that [ξ ∗ → ξm] is contained
in the (x2,xm)-plane.

Corollary 4.1.6. Let X be a quasi-simple heteroclinic cycle in Rn fulfilling Assumptions 3.1.4, 3.2.1
and 4.1.4. Suppose that the nodes of X are all on different coordinate axes.

(a) The heteroclinic connections of X are all of type contracting-to-expanding if and only if X has
three nodes.

(b) The heteroclinic connections of X are all of type contracting-to-transverse if and only if X has
at least four nodes.

Every simple heteroclinic cycle in R4 lying in a three-dimensional vector space is of type B from
the classification of [43], see Definition 2.2.5. Their generalisation of heteroclinic cycles of type B
to higher dimensions implies the same property taking into account the Definition 2.2.9 of type-B
connection. We prove, more generally, that this also applies to quasi-simple heteroclinic cycles.

Proposition 4.1.7. Let X be a quasi-simple heteroclinic cycle in Rn fulfilling Assumptions 3.1.4, 3.2.1
and 4.1.4. The heteroclinic connections of X are all of type contracting-to-expanding if and only if
there exists a three-dimensional vector subspace Q such that X ⊂ Q.

Proof. Suppose that X = [ξ1 → ··· → ξm → ξ1] is a quasi-simple heteroclinic cycle such that each ξ j

is on a coordinate axis and κ j, j+1 lies in a flow-invariant coordinate plane Pj. Then, Pj = L̂ j ⊕Wj =

L̂ j+1 ⊕Vj+1 for all j = 1, . . . ,m.
Assume that κ j, j+1 is of type contracting-to-expanding for all j = 1, . . . ,m. Set Q j = Pj ⊕Vj.

Of course Q j is a three-dimensional vector subspace wherein Pj ⊂ Q j. Because Vj = Wj+1, see
Remark 4.1.2, we have Pj+1 = L̂ j+1 ⊕Wj+1 ⊂ Q j. Moreover, for all j = 1, . . . ,m,

Q j = Pj ⊕Vj = L̂ j ⊕Wj ⊕Vj = L̂ j+1 ⊕Vj+1 ⊕Wj+1 = Pj+1 ⊕Vj+1 = Q j+1
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and consequently Q = Q j.
Assume that X ⊂Q for some three-dimensional vector subspace Q. We must have Q= L̂ j⊕Wj⊕Vj

for all j = 1, . . . ,m according to the prescribed conditions. If there is j ∈ {1, . . . ,m} such that κ j, j+1

is of type contracting-to-transverse, then Pj ⊂ Q and Pj+1 ̸⊂ Q. This means that κ j+1, j+2 ⊂ Pj+1 ̸⊂ Q,
which is absurd.

x1

x2

x3

(a) (b)

Fig. 4.5 Examples of quasi-simple heteroclinic cycles (a) in [31]; (b) in [25]. The heteroclinic cycle
in (a) is not robust provided there are no extra non-trivial equilibria.

Figure 4.5 reproduces two examples of quasi-simple heteroclinic cycles by Hawker and Ashwin
[31, Figure 4] and Field [25, Figure 7]. Both are contained in R3 and so their heteroclinic connections
are all of type contracting-to-expanding following Proposition 4.1.7. Notice that the heteroclinic cycle
in (a) is not robust unless there exist non-trivial equilibria that are not part of the heteroclinic cycle.
Considering as usual that the origin is a source, the trajectory within the (x1,x2)-plane connecting two
nodes in the x1-axis is of saddle-saddle type. On the other hand, the heteroclinic cycle in (b) evidences
the existence of extra equilibria between each two nodes.

We have been working under the condition of nodes being on different coordinate axes. Now
suppose that this is no longer so and nodes are all on the same coordinate axis.

Proposition 4.1.8. Let X be a quasi-simple heteroclinic cycle in Rn fulfilling Assumptions 3.1.4, 3.2.1
and 4.1.4. Suppose that the nodes of X line up along the same coordinate axis and its heteroclinic
connections are all on different coordinate planes.

(a) The heteroclinic connections of X are all of type contracting-to-expanding if and only if X has
two nodes.

(b) The heteroclinic connections of X are all of type contracting-to-transverse if and only if X has
at least three nodes.
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Fig. 4.6 Construction of a quasi-simple heteroclinic cycle with both types of heteroclinic connections.
If κ1,2 ⊂ P1 = {(x1,x2)} is of type contracting-to-expanding and κ2,3 ⊂ P2 = {(x2,x3)} is of type
contracting-to-transverse, then the node ξm is on the x3-axis such that κm,1 is contained in the
(x1,x3)-plane and ξm ̸= ξ3.

Proof. Suppose that X = [ξ1 → ··· → ξm → ξ1] is a quasi-simple heteroclinic cycle such that all ξ j

are on the same axis, say y, and κ j, j+1 ⊂ Pj where Pj is the flow-invariant (y,x j)-plane, j = 1, · · · ,m.
In particular X ⊂ P1 + · · ·+Pm with m ≤ n. We denote by L̂ the line parametrised by y.

(a) The implication ⇐ comes directly from Proposition 4.1.3. Assume that κ j, j+1 are of type
contracting-to-expanding for all j = 1, · · · ,m. By Proposition 4.1.7 we get X ⊂ Q for some
three-dimensional vector subspace. This forces Q = P1+P2, each Pj supporting one heteroclinic
connection between exactly two nodes.

(b) We first assume that X has at least three nodes i.e. m ≥ 3. There are at least two distinct
heteroclinic connections: κm,1 ⊂ Pm, κ1,2 ⊂ P1 and κ2,3 ⊂ P2. To obtain a contradiction let κ1,2

be of type contracting-to-expanding. By definition, V1 =W2 (see Remark 4.1.2) and

Pm = L̂⊕Wm = L̂⊕V1 = L̂⊕W2 = P2.

Therefore κm,1 and κ2,3 belong to the same plane, which is absurd.

Assume that κ j, j+1 are of type contracting-to-transverse for all j = 1, · · · ,m. Proposition 4.1.7
implies that X ̸⊂ Pj +Pj+1. Since all heteroclinic connections are contained in coordinate
planes, X has at least three nodes and m ≥ 3.

Next we prove that, by relaxing the hypothesis that nodes are on different axes, it is possible to
construct quasi-simple heteroclinic cycles with heteroclinic connections of both types. For simple
heteroclinic cycles, Krupa and Melbourne [43] suggest that types-B and -C connections may coexist in
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dimensions greater than four. Definition 2.2.10 actually classifies such a heteroclinic cycle as type C.
As far as we know there are no examples in the literature capable of realising it.

Proposition 4.1.9. Let X be a quasi-simple heteroclinic cycle in Rn fulfilling Assumptions 3.1.4, 3.2.1
and 4.1.4. If X comprises heteroclinic connections of each type, then at least two nodes are on the
same coordinate axis.

Proof. Suppose that X = [ξ1 → ··· → ξm → ξ1] is a quasi-simple heteroclinic cycle such that each ξ j

is on a coordinate axis and κ j, j+1 lies in a flow-invariant coordinate plane Pj with Pj ̸= Pj+1 for all
j = 1, · · · ,m. As X involves heteroclinic connections of both types we have m≥ 3 by Proposition 4.1.3.
We can assume that ξi is on the xi-axis, i = 1,2,3, with x1 ̸= x2 ̸= x3, since otherwise the assertion
follows trivially. In this case P1 and P2 are respectively the (x1,x2)- and (x2,x3)-plane.

Consider κ1,2 is of type contracting-to-expanding while κ2,3 is of type contracting-to-transverse.
The contracting eigenspace at ξ1 and the expanding eigenspace at ξ2 are spanned by the same
coordinate, say x3. It means that κm,1 must belong to the (x1,x3)-plane with ξm on the x3-axis. From
Corollary 4.1.6 we get ξm ̸= ξ3 as depicted in Figure 4.6.

In order to describe the dynamics near a heteroclinic cycle we find the form of the global maps
ψ j : H in

j → H in
j+1 determined by each type of the heteroclinic connection κ j, j+1. Recall that for

quasi-simple heteroclinic cycles we have deduced in (3.3) that restrictions of ψ j to the relevant
(v,zzz)-subspace are linear. To be specific these express rescaled permutations under Assumption 3.2.1.
However, constants arising from the rescaling can be ignored as argued in Section 3.3.

Proposition 4.1.10. Let X be a quasi-simple heteroclinic cycle in Rn fulfilling Assumptions 3.1.4, 3.2.1
and 4.1.4 and Rm̄ be the Euclidean space of the smallest dimension containing X where m̄ ≤ n.

(a) If the heteroclinic connection κ j, j+1 is of type contracting-to-expanding, then ψ j is represented
in the local coordinates (v,zzz) by the identity.

(b) If the heteroclinic connection κ j, j+1 is of type contracting-to-transverse, then ψ j is represented
in the local coordinates (v,zzz) by a block diagonal matrix

(
A 000
000 Id

)
, A =


0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . .

0 0 · · · 1 0


in which A is a permutation matrix of size m̄−2 and Id is the identity matrix of size nt − m̄+3.

Proof. Suppose that X = [ξ1 → ·· · → ξm → ξ1] is a quasi-simple heteroclinic cycle such that ξ j is on
a coordinate axis and κ j, j+1 lies in a flow-invariant coordinate plane Pj, j = 1, . . . ,m.

We use Remark 4.1.2. Assume that κ j, j+1 is of type contracting-to-expanding. We have Vj =Wj+1

and Tj = Tj+1. Relabelling transverse eigenvalues if necessary enables us to write

ψ j (v,zzz) = (v,zzz) .
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Fig. 4.7 Behaviour of trajectories inducing switching dynamics (a) at a node ξ j; (b) along a heteroclinic
connection κ j,k = [ξ j → ξk].

Assume that κ j, j+1 is of type contracting-to-transverse. There exist s1,s2 ∈ {1, . . . ,nt} such that
Vj = T s1

j+1 and T s2
j = Wj+1. Moreover Tj\T s2

j = Tj+1\T s1
j+1. Restricted to Rm̄ each node ξ j admits

m̄− 3 transverse eigenvalues. We can always reorder them where Vj = T 1
j+1, T m̄−3

j = Wj+1 and
T i

j = T i+1
j for every i = 2, . . . , m̄− 4. This choice guarantees that X is contained in the whole Rm̄,

m̄ being the smallest dimension. The remaining nt − m̄+3 transverse eigenvalues at ξ j are handled as
the case before. We thus get

ψ j (v,zzz) = (zm̄−3, v, z1, . . . ,zm̄−4,zm̄−2,zm̄−1, . . . ,znt ) .

4.2 Switching along common heteroclinic connections

In order to establish the setup for our study we use the notation from [19]. When a heteroclinic cycle
is part of a heteroclinic network and nodes have more than one incoming and/or outgoing connection,
it is convenient to distinguish cross sections by adding a second index. Near ξ j we set H in,i

j to be a

section transverse to the heteroclinic connection κi, j = [ξi → ξ j] and Hout,k
j to be a section transverse

to the heteroclinic connection κ j,k = [ξ j → ξk]. With this notation φi, j,k : H in,i
j → Hout,k

j stands for a

local map near ξ j and ψ j,k : Hout,k
j → H in, j

k for a global map1 near κ j,k. Write Ci, j,k and Fi, j,k for the
domain and range of definition of φi, j,k, respectively.

Trajectories in the vicinity of a heteroclinic cycle are accurately approximated by the composition
of local and global maps in the correct order. In this sense, Aguiar and Castro [5] make Definitions 2.5.1
and 2.5.2 of switching at nodes and along heteroclinic connections more technical as follows.

1Local and global maps are generically defined in Section 3.2
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• There is switching at a node ξ j if for any neighbourhood Up of a point p ∈ κi, j there exists
qk ∈Up ∩H in,i

j such that φi, j,k (qk) ∈ Hout,k
j for all the possible i and k. See Figure 4.7(a).

• There is switching along a heteroclinic connection κ j,k if for any neighbourhood Up of a point
p ∈ κi, j there exists ql ∈Up ∩H in,i

j such that φ j,k,l ◦ψ j,k ◦φi, j,k (ql) ∈ Hout,l
k for all the possible i

and l. See Figure 4.7(b).

Switching dynamics near a heteroclinic network involving nodes with real eigenvalues have been
explicitly addressed in [3], [5] and [19]. These works attend in particular to heteroclinic networks
comprising one-dimensional heteroclinic connections. The first two are interested in the so-called
edge networks in a simplex or product of simplices. One of the main results is Theorem 1 of [3]
excluding infinite switching near a heteroclinic network with a Kirk and Silber subnetwork because
there is no switching along the common heteroclinic connection (see Figure 4.8). Theorem 3.4 of [19]
gives general sufficient conditions for the absence of switching along a heteroclinic connection shared
by two simple heteroclinic cycles (see Figure 4.9).

ξ1 ξ2

ξ3

ξ4

Fig. 4.8 A Kirk and Silber network.

For ease of reference we reproduce the latter:

Theorem 4.2.1 (Theorem 3.4 in [19]). Consider a simple heteroclinic network in Rn, n ≥ 4, with
sequences

[
ξα → ξ1 → ξ2 → ξβ

]
and [ξa → ξ1 → ξ2 → ξb] such that each ξ j lies on the x j-axis.

Suppose that the (xa,xα)-plane is mapped into the
(
xb,xβ

)
-plane by the global map ψ1,2 along the

common connection κ1,2. Then, there is no switching along κ1,2.

From now on we are concerned with heteroclinic networks in Rn, n ≥ 4, made up of quasi-simple
heteroclinic cycles satisfying the standing Assumptions 3.1.4, 3.2.1 and 4.1.4. Nodes are labelled
accordingly where each ξ j lies on the x j-axis. Evidently L̂ j is the vector subspace spanned by x j. We
allow ξi ̸= ξ j and L̂i = L̂ j for i ̸= j.

We first investigate the presence of various type of switching near heteroclinic networks having a
common heteroclinic connection. For this purpose, the hypothesis of Theorem 4.2.1 is broken so that
in line with Assumption 3.2.1 one of two cases prevails:
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Case 4.2.2. there exists a direction xγ ̸= xα such that the
(
xa,xγ

)
-plane is mapped into the(

xb,xβ

)
-plane by ψ1,2.

Case 4.2.3. there exist directions xd ̸= xa and xγ ̸= xα such that the
(
xd ,xγ

)
-plane that is mapped into

the
(
xb,xβ

)
-plane by ψ1,2.

We adapt the description in [19]: suppose that two quasi-simple heteroclinic cycles[
ξα → ξξξ 111 →→→ ξξξ 222 → ξβ → ··· → ξα

]
and [ξa → ξξξ 111 →→→ ξξξ 222 → ξb → ··· → ξa]

share a heteroclinic connection κ1,2 in a heteroclinic network with ξα ̸= ξa and ξβ ̸= ξb as illustrated
in Figure 4.9.

ξ1 ξ2

ξα

ξa

ξβ

ξb

Fig. 4.9 A common heteroclinic connection κ1,2 = [ξ1 → ξ2].

Locally at ξ j denote by −c ji < 0 the eigenvalue in the stable xi-direction and by e jk > 0 the
eigenvalue in the unstable xk-direction. The type of the eigenvalues depends on the heteroclinic
cycle under consideration. Contracting or expanding eigenvalues with respect to one heteroclinic
cycle may be transverse with respect to another. Recall that the number of radial and transverse
eigenvalues is the same at every node in a quasi-simple heteroclinic cycle, say nr and nt , respectively.
Assumption 4.1.4 (i) asserts nr = dim

(
L̂ j
)
= 1 and so n = nt +3.

We recover the construction of suitable maps between cross sections in Section 3.2. We can omit
the radial direction and choose local coordinates (y1, . . . ,yn−1) such that the linearisation of the flow
about ξ j, j = 1,2, is given by

ξ1 : ẏ1 = e12 y1

ẏ2 =−c1a y2

ẏ3 =−c1α y3

ẏs = t1s ys, s = 4, . . . ,n−1,

ξ2 : ẏ1 =−c21 y1

ẏ2 = e2b y2

ẏ3 = e2β y3

ẏs = t2s ys, s = 4, . . . ,n−1.

The constants t js are the remaining nt −1 transverse eigenvalues at ξ j to either heteroclinic cycle. As
usual we require that transverse eigenvalues at nodes are negative whenever possible.2 Take then
t1s =−c1s < 0 and t2s =−c2s < 0 for all s = 4, . . . ,n−1.

2This requirement is widely accepted in the literature. See for instance [19, 39, 41, 43].
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Consider a neighbourhood of ξ j, j = 1,2, where the flow can be linearised and define a cross
section for each of the three heteroclinic connections as follows

H in,a
1 = {(y1,1,y3, . . . ,yn−1) : 0 ≤ yi < 1 for all i ̸= 2}

H in,α
1 = {(y1,y2,1, . . . ,yn−1) : 0 ≤ yi < 1 for all i ̸= 3}

Hout,2
1 = {(1,u2,u3, . . . ,un−1) : 0 ≤ ui < 1 for all i ̸= 1}

(4.1)

and
Hout,b

2 = {(u1,1,u3, . . . ,un−1) : 0 ≤ ui < 1 for all i ̸= 2}

Hout,β
2 = {(u1,u2,1, . . . ,un−1) : 0 ≤ ui < 1 for all i ̸= 3}
H in,1

2 = {(1,y2,y3, . . . ,yn−1) : 0 ≤ yi < 1 for all i ̸= 1} .

(4.2)

As in (3.3) we obtain

φa,1,2 :H in,a
1 → Hout,2

1

φa,1,2

(
y1,y3,{ys}s=4,...,n−1

)
=

(
y

c1a
e12
1 , y3 y

c1α

e12
1 ,

{
ys y

c1s
e12
1

}
s=4,...,n−1

)
φα,1,2 :H in,α

1 → Hout,2
1

φα,1,2

(
y1,y2,{ys}s=4,...,n−1

)
=

(
y2 y

c1a
e12
1 , y

c1α

e12
1 ,

{
ys y

c1s
e12
1

}
s=4,...,n−1

)

and
φ1,2,b :H in,1

2 → Hout,b
2

φ1,2,b

(
y2,y3,{ys}s=4,...,n−1

)
=

(
y

c21
e2b
2 , y3 y

−
e2β

e2b
2 ,

{
ys y

c2s
e2b
2

}
s=4,...,n−1

)
φ1,2,β :H in,1

2 → Hout,β
2

φ1,2,β

(
y2,y3,{ys}s=4,...,n−1

)
=

y
c21
e2β

3 , y2 y
− e2b

e2β

3 ,

{
ys y

c2s
e2β

3

}
s=4,...,n−1

 .

The domains of definition of φ1,2,k, k ∈ {b,β}, are the sets C1,2,k described in the respective local
coordinates by

C1,2,b =

{
(y1, . . . ,yn−1) ∈ H in,1

2 : y3 < y
e2β

e2b
2

}

C1,2,β =

{
(y1, . . . ,yn−1) ∈ H in,1

2 : y2 < y
e2b
e2β

3

}
.

(4.3)

Here C1,2,β is taken as the complement of C1,2,b and the other way around (recall Footnote 4 in
Chapter 3). An easy computation shows that the ranges of φi,1,2, i ∈ {a,α}, turn out to be the sets
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Fi,1,2 where

Fa,1,2 =

{
(u1, . . . ,un−1) ∈ Hout,2

1 : u3 < u
c1α

c1a
2 and us < u

c1s
c1a
2 for all s = 4, . . . ,n−1

}
Fα,1,2 =

{
(u1, . . . ,un−1) ∈ Hout,2

1 : u2 < u
c1a
c1α

3 and us < u
c1s
c1α

3 for all s = 4, . . . ,n−1
}
.

(4.4)

The surface y3 = y
e2β

e2b
2 divides H in,1

2 into the region of points that go from ξ1 to ξb and the region

of points that go from ξ1 to ξβ . The surface u3 = u
c1α

c1a
2 in Hout,2

1 separates points coming from ξa to ξ2

from those coming from ξα to ξ2.
We observe that the local coordinates (y2,y3) in H in,1

2 correspond to
(
xb,xβ

)
in the original

coordinate system and (u2,u3) in Hout,2
1 correspond to (xa,xα).

Theorem 4.2.4. Let X be a heteroclinic network in Rn with sequences
[
ξα → ξ1 → ξ2 → ξβ

]
and

[ξa → ξ1 → ξ2 → ξb] fulfilling Assumptions 3.1.4, 3.2.1 and 4.1.4. Suppose that Case 4.2.2 holds.
Then, there is no switching along κ1,2 if and only if

e2β

e2b
<

c1γ

c1a
. (4.5)

Proof. Switching along κ1,2 occurs if and only if ψ1,2 (Fi,1,2)∩C1,2,k ̸= /0 for all i ∈ {a,α} and
k ∈ {b,β}. Below we prove that ψ1,2

(
F̂a,1,2

)
∩Ĉ1,2,β may be empty.

For the points to be in Fi,1,2 the relevant directions are xa and xα while for the points to be in C1,2,k

the relevant directions are xb and xβ .
Suppose that ψ1,2 : Hout,2

1 → H in,1
2 maps respectively the xa- and xγ -axes with xγ ̸= xα into the xb-

and xβ -axes. Hence the xα -axis must be mapped by ψ1,2 into an axis other than xb and xβ , say the
xδ -axis with δ ̸= {b,β}. We can therefore reduce Hout,2

1 to the
(
xa,xα ,xγ

)
-subspace and H in,1

2 to the(
xb,xβ ,xδ

)
-subspace. These are locally coordinatised3 by

(
u2,u3,uγ

)
and (y2,y3,yδ ).

We use a “hat” for labelling sets restricted to the relevant coordinates so that

F̂a,1,2 =

{(
u2,u3,uγ

)
∈ Ĥout,2

1 : u3 < u
c1α

c1a
2 and uγ < u

c1γ

c1a
2

}

F̂α,1,2 =

{(
u2,u3,uγ

)
∈ Ĥout,2

1 : u2 < u
c1a
c1α

3 and uγ < u
c1γ

c1α

3

} (4.6)

and

Ĉ1,2,b =

{
(y2,y3,yδ ) ∈ Ĥ in,1

2 : y3 < y
e2β

e2b
2

}

Ĉ1,2,β =

{
(y2,y3,yδ ) ∈ Ĥ in,1

2 : y2 < y
e2b
e2β

3

}
.

(4.7)

3When no confusion arises we keep the same subscript to designate new axes in original and local coordinates.
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y3

yδ

y2

ψ1,2
(
F̂a,1,2

)
ψ1,2

(
F̂α,1,2

)
(a)

y3

yδ

y2

Ĉ1,2,b Ĉ1,2,β

(b)

Fig. 4.10 Representation of the sets (a) ψ1,2
(
F̂i,1,2

)
, i ∈ {a,α}; (b) Ĉ1,2,k, k ∈ {b,β}, inside Ĥ in,1

2 .

Up to rescaling constants the convenient restriction of ψ1,2 in local coordinates takes the form

ψ1,2
(
u2,u3,uγ

)
=
(
u2,uγ ,u3

)
= (y2,y3,yδ ) .

Geometric representations of ψ1,2
(
F̂i,1,2

)
and Ĉ1,2,k for all i ∈ {a,α} and k ∈ {b,β} are pictured

in Figure 4.10. It is sufficient to check the intersection ψ1,2
(
F̂a,1,2

)
∩ Ĉ1,2,β . The image of F̂a,1,2

under ψ1,2 is

ψ1,2
(
F̂a,1,2

)
=

{
(y2,y3,yδ ) ∈ Ĥ in,1

2 : yδ < y
c1α

c1a
2 and y3 < y

c1γ

c1a
2

}
and hence

ψ1,2
(
F̂a,1,2

)
∩Ĉ1,2,β =

{
(y2,y3,yδ ) ∈ Ĥ in,1

2 : yδ < y
c1α

c1a
2 and y

e2β

e2b
2 < y3 < y

c1γ

c1a
2

}
.

We see at once that ψ1,2
(
F̂a,1,2

)
∩Ĉ1,2,β = /0 whenever

y
e2β

e2b
2 > y

c1γ

c1a
2 ⇔

e2β

e2b
<

c1γ

c1a
(4.8)

which is the desired conclusion, see Figure 4.11.

Remark 4.2.5. Combining Case 4.2.2 with Assumption 3.2.1 in Theorem 4.2.4 we know that the
global map ψ1,2 sends coordinate axes into coordinate axes. The statement (4.5) implicitly considers
that the xa- and xγ -axes are respectively in one-to-one correspondence with the xb- and xβ -axes. When
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1

1

x

y

y3 = y
e2β

e2b
2

y3 = y
c1γ

c1a
2

Ĉ1,2,β

Ĉ1,2,b

ψ1,2
(
F̂a,1,2

)

Fig. 4.11 Restriction of ψ1,2
(
F̂a,1,2

)
∩Ĉ1,2,k to the (y2,y3)-plane, for k ∈ {b,β}. The plot suggests

ψ1,2
(
F̂a,1,2

)
⊂ Ĉ1,2,b and ψ1,2

(
F̂a,1,2

)
∩Ĉ1,2,β = /0.

ψ1,2 is assumed to map respectively the xa- and xγ -axes into the xβ - and xb-axes, the subscripts “γ”
and “a” must interchange in (4.5).

Theorem 4.2.6. Let X be a heteroclinic network in Rn with sequences
[
ξα → ξ1 → ξ2 → ξβ

]
and

[ξa → ξ1 → ξ2 → ξb] fulfilling Assumptions 3.1.4, 3.2.1 and 4.1.4. Suppose that Case 4.2.3 holds.
Then, there is switching along κ1,2.

Proof. Suppose that ψ1,2 : Hout,2
1 → H in,1

2 maps respectively the xd- and xγ -axes with d ̸= a and γ ̸= α

into the xb- and xβ -axes. It means the xa- and xα -axes are mapped by ψ1,2 into axes other than xb and
xβ , say the x f - and xδ -axes with f ,δ ̸= {b,β}.

We now restrict Hout,2
1 to the

(
xa,xα ,xd ,xγ

)
-subspace and H in,1

2 to the
(
xb,xβ ,x f ,xδ

)
-subspace.

These are expressed in local coordinates by
(
u2,u3,ud ,uγ

)
and (y2,y3,y f ,yδ ). Accordingly,

F̂a,1,2 =

{(
u2,u3,ud ,uγ

)
∈ Ĥout,2

1 : u3 < u
c1α

c1a
2 and ud < u

c1d
c1a
2 and uγ < u

c1γ

c1a
2

}

F̂α,1,2 =

{(
u2,u3,ud ,uγ

)
∈ Ĥout,2

1 : u2 < u
c1a
c1α

3 and ud < u
c1d
c1α

3 and uγ < u
c1γ

c1α

3

}
.

and

Ĉ1,2,b =

{
(y2,y3,y f ,yδ ) ∈ Ĥ in,1

2 : y3 < y
e2β

e2b
2

}

Ĉ1,2,β =

{
(y2,y3,y f ,yδ ) ∈ Ĥ in,1

2 : y2 < y
e2b
e2β

3

}
.

Up to rescaling constants we further write

ψ1,2
(
u2,u3,ud ,uγ

)
=
(
ud ,uγ ,u2,u3

)
= (y2,y3,y f ,yδ )
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such that

ψ1,2
(
F̂a,1,2

)
=

{
(y2,y3,y f ,yδ ) ∈ Ĥ in,1

2 : yδ < y
c1α

c1a
f and y2 < y

c1d
c1a
f and y3 < y

c1γ

c1a
f

}

ψ1,2
(
F̂α,1,2

)
=

{
(y2,y3,y f ,yδ ) ∈ Ĥ in,1

2 : y f < y
c1a
c1α

δ
and y2 < y

c1d
c1α

δ
and y3 < y

c1γ

c1α

δ

}
.

It follows that

ψ1,2
(
F̂a,1,2

)
∩Ĉ1,2,b =

{
(y2,y3,y f ,yδ ) ∈ Ĥ in,1

2 : yδ < y
c1α

c1a
f and y2 < y

c1d
c1a
f and y3 < min

{
y

c1γ

c1a
f ,y

e2β

e2b
2

}}

ψ1,2
(
F̂a,1,2

)
∩Ĉ1,2,β =

{
(y2,y3,y f ,yδ ) ∈ Ĥ in,1

2 : yδ < y
c1α

c1a
f and y2 < min

{
y

c1d
c1a
f ,y

e2b
e2β

3

}
and y3 < y

c1γ

c1a
f

}

and

ψ1,2
(
F̂α,1,2

)
∩Ĉ1,2,b =

{
(y2,y3,y f ,yδ ) ∈ Ĥ in,1

2 : y f < y
c1a
c1α

δ
and y2 < y

c1d
c1α

δ
and y3 < min

{
y

c1γ

c1α

δ
,y

e2β

e2b
2

}}

ψ1,2
(
F̂α,1,2

)
∩Ĉ1,2,β =

{
(y2,y3,y f ,yδ ) ∈ Ĥ in,1

2 : y f < y
c1a
c1α

δ
and y2 < min

{
y

c1d
c1α

δ
,y

e2b
e2β

3

}
and y3 < y

c1γ

c1α

δ

}
.

Clearly ψ1,2
(
F̂k,1,2

)
∩Ĉ1,2,k ̸= /0 for all i ∈ {a,α} and k ∈ {b,β}, so there is switching along κ1,2.

4.2.1 Switching in the House network

The House network consists of two heteroclinic cycles, a B−
3 - and a C−

4 -cycles each with an extra
transverse dimension, linked together via a heteroclinic connection, see Figure 4.12. We can use the
simplex realisation from [13] to generate it in R5 by choosing suitable parameters.4

The House network has five nodes arranged in the heteroclinic cycles [ξ1 → ξ2 → ξ3 → ξ1]

(B−
3 -cycle) and [ξ1 → ξ2 → ξ4 → ξ5 → ξ1] (C−

4 -cycle). The heteroclinic connection κ1,2 = [ξ1 → ξ2]

is common to both heteroclinic cycles.
Castro and Lohse [19] examine the House network as an example of illustrating the role of their

assumption with regard to the common heteroclinic connection. Recall Theorem 4.2.1.
Denote by (x1,x2,x3,x4,x5) the standard basis in R5. From Figure 4.9 and Theorem 4.2.1 the

(xa,xα) incoming directions at ξ1 correspond to (x3,x5). The
(
xb,xβ

)
outgoing directions at ξ2 are

now (x3,x4). The system is equivariant under the Z5
2-symmetry and the above-mentioned heteroclinic

cycles are naturally of type Z within R5. Global maps can be assumed to equal the identity.5 Each cross
section Hout,k

j in the relevant local coordinates is freely identified with H in, j
k . In particular the global

map ψ1,2 : Hout,2
1 → H in,1

2 along κ1,2 does not transform the (xa,xα)-plane into the
(
xb,xβ

)
-plane but

satisfies Case 4.2.2. Applying Theorem 4.2.4 we state

4A brief description of an application of the simplex realisation can be found in Section 6.1.
5For more details we refer the reader to [43] and [52].
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ξ1 ξ2

ξ3

ξ4ξ5

Fig. 4.12 The House network. The B−
3 -cycle is [ξ1 → ξ2 → ξ3 → ξ1] and the C−

4 -cycle is
[ξ1 → ξ2 → ξ4 → ξ5 → ξ1].

Corollary 4.2.7. There is no switching along the common heteroclinic connection κ1,2 in the House
network if and only if

e24

e23
<

c14

c13
.

Proof. Ignoring the radial direction every cross section is viewed as a cube in R3. We can write

Hout,2
1 ≡ H in,1

2 = {(x3,x4,x5) : 0 ≤ x3,x4,x5 < 1} .

On the one hand, the cross section Hout,2
1 is split into the set F3,1,2 whose points come from ξ3 and

the set F5,1,2 whose points come from ξ5. A trivial verification from (4.6) shows that

F3,1,2 =

{
(x3,x4,x5) ∈ Hout,2

1 : x4 < x
c14
c13
3 and x5 < x

c15
c13
3

}
F5,1,2 =

{
(x3,x4,x5) ∈ Hout,2

1 : x3 < x
c13
c15
5 and x4 < x

c14
c15
5

}
.

On the other hand, the cross section H in,1
2 is split into the set C1,2,3 whose points go to ξ3 and the set

C1,2,4 whose points go to ξ4. By (4.7) we get

C1,2,3 =

{
(x3,x4,x5) ∈ H in,1

2 : x4 < x
e24
e23
3

}
C1,2,4 =

{
(x3,x4,x5) ∈ H in,1

2 : x3 < x
e23
e24
4

}
.

The F- and C-sets are represented in Figure 4.13. The shape of the boundary surfaces depends
on the relative magnitudes of the eigenvalues. Since Hout,2

1 and H in,1
2 are indistinguishable we can

directly intersect the indicated sets, see Figure 4.14. Using the same reasoning as in the proof of
Theorem 4.2.4 we only need to look at the intersections Fi,1,2 ∩C1,2,k, i = 3,5, k = 3,4, restricted to
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the (x3,x4)-plane. The delimiting curves are x4 = x
c14
c13
3 for the F-sets and x4 = x

e24
e23
3 for the C-sets.

Thus switching along κ1,2 does not occurs if and only if

x
e24
e23
3 > x

c14
c13
3 ⇔ e24

e23
<

c14

c13
.

x3

x5

x4

F3,1,2 F5,1,2

(a)

x3

x5

x4

C1,2,4 C1,2,3

(b)

Fig. 4.13 Splitting of the cross sections (a) Hout,2
1 into the set F3,1,2 of points coming from ξ3 and the

set F5,1,2 of points coming from ξ5; (b) H in,1
2 into the set C1,2,3 of points going to ξ3 and the set C1,2,4

of points going to ξ4.

x3

x5

x4

x4 = x
e24
e23
3

F3,1,2

F5,1,2

Fig. 4.14 Intersection of the F-sets with the splitting boundary of the C-sets in H in,1
2 .
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Contrary to our claim, Lemma 3.7 in [19] asserts there is always switching along the common
heteroclinic connection in the House network. The proof has been supported by the Figure 6 therein,
which is incorrect in view of Figure 4.13(a).

4.2.2 A single common node

We proceed to show that the presence of a single common node instead of the whole heteroclinic
connection in Figure 4.9 can provide switching dynamics in much the same way as switching along
heteroclinic connections.

Consider a heteroclinic network in Rn with two quasi-simple heteroclinic cycles connected at a
node ξ2 as in Figure 4.15. We name the heteroclinic cycles[

ξα → ξξξ 222 → ξβ → ··· → ξα

]
and [ξ1 → ξξξ 222 → ξb → ·· · → ξ1]

where ξ1 ̸= ξα and ξβ ̸= ξb, the L-cycle (left) and the R-cycle (right), respectively. Notice that the
lowest dimension for this construction is five. As before we linearise the flow about ξ2 in non-radial
directions (y1, . . . ,yn−1) to obtain

ẏ1 =−c21 y1

ẏ2 = e2b y2

ẏ3 = e2β y3

ẏ4 =−c2α y4

ẏs =−c2s ys, s = 5, . . . ,n−1.

Recall that the constants −c2s < 0, s = 5, . . . ,n−1, are assumed to be negative transverse eigenvalues
at ξ2 to either heteroclinic cycle.

We introduce four cross sections near ξ2: Hout,b
2 , Hout,β

2 and H in,1
2 as in (4.2), and

H in,α
2 = {(y1,y2,y3,1, . . . ,yn−1) : 0 ≤ yi < 1 for all i ̸= 4} .

ξ2

ξα

ξβ

ξ1

ξb

Fig. 4.15 A common node of a heteroclinic network comprising of two heteroclinic cycles: L (left)
and R (right). The L-cycle involves the nodes ξ2 and those to its left. The R-cycle involves the nodes
ξ2 and those to its right.
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In a small neighbourhood of ξ2 the behaviour of trajectories is approximated by the local maps

φ1,2,b :H in,1
2 → Hout,b

2

φ1,2,b

(
y2,y3,y4 {ys}s=5,...,n−1

)
=

(
y

c21
e2b
2 , y3 y

−
e2β

e2b
2 , y4 y

c2α

e2b
2 ,

{
ys y

c2s
e2b
2

}
s=5,...,n−1

)
(4.9)

φ1,2,β :H in,1
2 → Hout,β

2

φ1,2,β

(
y2,y3,y4,{ys}s=5,...,n−1

)
=

y
c21
e2β

3 , y2 y
− e2b

e2β

3 , y4 y
c2α

e2β

3 ,

{
ys y

c2s
e2β

3

}
s=5,...,n−1


φα,2,b :H in,α

2 → Hout,b
2

φα,2,b

(
y1,y2,y3,{ys}s=5,...,n−1

)
=

(
y1 y

c21
e2b
2 , y3 y

−
e2β

e2b
2 , y

c2α

e2b
2 ,

{
ys y

c2s
e2b
2

}
s=5,...,n−1

)
φα,2,β :H in,α

2 → Hout,β
2

φα,2,β

(
y1,y2,y3,{ys}s=5,...,n−1

)
=

y1 y
c21
e2β

3 , y2 y
− e2b

e2β

3 , y
c2α

e2β

3 ,

{
ys y

c2s
e2β

3

}
s=5,...,n−1

 .

Points in H in,1
2 for which φ1,2,k, k ∈ {b,β}, are well defined constitute the set C1,2,k in (4.3).

The sets Cα,2,k describing the domains of definition of φα,2,k in H in,α
2 are constrained by identical

inequalities such that

Cα,2,b =

{
(y1, . . . ,yn−1) ∈ H in,α

2 : y3 < y
e2β

e2b
2

}

Cα,2,β =

{
(y1, . . . ,yn−1) ∈ H in,α

2 : y2 < y
e2b
e2β

3

}
.

Moreover, we find Fi,2,k = φi,2,k (Ci,2,k) for every i ∈ {1,α} and k ∈ {b,β} where

F1,2,b =

{
(u1, . . . ,un−1) ∈ Hout,b

2 : u4 < u
c2α

c21
1 and us < u

c2s
c21
1 for all s = 5, . . . ,n−1

}
F1,2,β =

{
(u1, . . . ,un−1) ∈ Hout,β

2 : u4 < u
c2α

c21
1 and us < u

c2s
c21
1 for all s = 5, . . . ,n−1

}
Fα,2,b =

{
(u1, . . . ,un−1) ∈ Hout,b

2 : u1 < u
c21
c2a
4 and us < u

c2s
c2α

4 for all s = 5, . . . ,n−1
}

Fα,2,β =

{
(u1, . . . ,un−1) ∈ Hout,β

2 : u1 < u
c21
c2a
4 and us < u

c2s
c2α

4 for all s = 5, . . . ,n−1
}
.

(4.10)

Lemma 4.2.8. Let X be a heteroclinic network in Rn with sequences [ξ1 → ξ2 → ξb] and[
ξα → ξ2 → ξβ

]
fulfilling Assumption 3.1.4. Then, there is switching at ξ2.

Proof. It suffices to note that around ξ2 the sets Ci,2,k and Fi,2,k for all i ∈ {1,α} and k ∈ {b,β} have
all positive measure. Points in H in,1

2 are thus sent through a suitable local map to both Hout,b
2 and Hout,β

2

depending on whether they belong to either C1,2,b or C1,2,β . The same is true for points in H in,α
2 .
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Without loss of generality we assume that the sequence [ξa → ξ1 → ξ2 → ξb] is part of the R-cycle
but allow ξa = ξb. The flow linearised about ξ1 in non-radial coordinates is given by

ẏ1 = e12 y1

ẏ2 =−c1a y2

ẏs =−c1s ys, s = 3, . . . ,n−1.

The coordinates y1, y2 and ys are respectively expanding, contracting and transverse at ξ1. Taking
H in,a

1 and Hout,2
1 in (4.1) we write down the local map φa,1,2 : H in,a

1 → Hout,2
1 with

φa,1,2

(
y1,{ys}s=3,...,n−1

)
=

(
y

c1a
e12
1 ,

{
ys y

c1s
e12
1

}
s=3,...,n−1

)
.

Such a map is defined in the whole H in,a
1 and its image yields

Fa,1,2 =

{
(u1, . . . ,un−1) ∈ Hout,2

1 : us < u
c1s
c1a
2 for all s = 3, . . . ,n−1

}
. (4.11)

Proposition 4.2.9. Let X be a heteroclinic network in Rn with sequences [ξa → ξ1 → ξ2 → ξb] and[
ξα → ξ2 → ξβ

]
fulfilling Assumptions 3.1.4, 3.2.1 and 4.1.4. Suppose that the xa-axis is mapped by

the global map ψ1,2 within the
(
xb,xβ

)
-plane. Then, there is no switching along κ1,2 if and only if

e2β

e2b
<

c1γ

c1a
.

Proof. We employ the arguments in the proof of Theorem 4.2.4: switching along κ1,2 occurs if and
only if ψ1,2 (Fa,1,2)∩C1,2,k ̸= /0 for all k ∈ {b,β}.

Only the coordinates
(
xb,xβ

)
in C1,2,k ⊂ H in,k

2 for k ∈ {b,β} are important. Suppose that
ψ1,2 : Hout,2

1 → H in,1
2 maps respectively the xa- and xγ -axes for some xγ ̸= xa into the xb- and

xβ -axes. Restricting Hout,2
1 to the

(
xa,xγ

)
-subspace and H in,1

2 to the
(
xb,xβ

)
-subspace we have

in local coordinates

F̂a,1,2 =

{(
u2,uγ

)
∈ Ĥout,2

1 : uγ < u
c1γ

c1a
2

}
and

Ĉ1,2,b =

{
(y2,y3) ∈ Ĥ in,1

2 : y3 < y
e2β

e2b
2

}

Ĉ1,2,β =

{
(y2,y3) ∈ Ĥ in,1

2 : y2 < y
e2b
e2β

3

}
.

The restriction of ψ1,2 to the relevant plane is the identity up to a rescaling, and therefore

ψ1,2
(
F̂a,1,2

)
=

{
(y2,y3) ∈ Ĥ in,1

2 : y3 < y
c1γ

c1a
2

}
.
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Now

ψ1,2
(
F̂a,1,2

)
∩Ĉ1,2,b =

{
(y2,y3) ∈ Ĥ in,1

2 : y3 < min

{
y

c1γ

c1a
2 , y

e2β

e2b
2

}}

ψ1,2
(
F̂a,1,2

)
∩Ĉ1,2,β =

{
(y2,y3) ∈ Ĥ in,1

2 : y
e2β

e2b
2 < y3 < y

c1γ

c1a
2

}
.

We conclude that ψ1,2
(
F̂a,1,2

)
⊂ Ĉ1,2,b and the intersection of ψ1,2

(
F̂a,1,2

)
and Ĉ1,2,β is always empty

provided

y
e2β

e2b
2 > y

c1γ

c1a
2 ⇔

e2β

e2b
<

c1γ

c1a
.

This excludes the occurrence of switching along κ1,2.

Proposition 4.2.10. Let X be a heteroclinic network in Rn with sequences [ξa → ξ1 → ξ2 → ξb] and[
ξα → ξ2 → ξβ

]
fulfilling Assumptions 3.1.4, 3.2.1 and 4.1.4. Suppose that the xa-axis is not mapped

by the global map ψ1,2 within the
(
xb,xβ

)
-plane. Then, there is switching along κ1,2.

Proof. Suppose that ψ1,2 : Hout,2
1 → H in,1

2 maps respectively the xa-, xd- and xγ -axes into the xδ -, xb-
and xβ -axes for some xd ̸= xγ ̸= xa and xδ ̸=

{
xb,xβ

}
. The

(
xa,xd ,xγ

)
-subspace corresponds locally

to
(
u2,ud ,uγ

)
in Ĥout,2

1 and the
(
xb,xβ ,xδ

)
-subspace to (y2,y3,yδ ) in Ĥ in,1

2 . We thus get

ψ1,2
(
u2,ud ,uγ

)
=
(
ud ,uγ ,u2

)
= (y2,y3,yδ ) .

From

F̂a,1,2 =

{(
u2,ud ,uγ

)
∈ Ĥout,2

1 : ud < u
c1d
c1a
2 and uγ < u

c1γ

c1a
2

}
it follows that

ψ1,2
(
F̂a,1,2

)
=

{
(y2,y3,yδ ) ∈ Ĥ in,1

2 : y2 < y
c1d
c1a
δ

and y3 < y
c1γ

c1a
δ

}
.

Together with (4.7) we assert that

ψ1,2
(
F̂a,1,2

)
∩Ĉ1,2,b =

{
(y2,y3,yδ ) ∈ Ĥ in,1

2 : y2 < y
c1d
c1a
δ

and y3 < min

{
y

c1γ

c1a
δ

,y
e2β

e2b
2

}}

ψ1,2
(
F̂a,1,2

)
∩Ĉ1,2,β =

{
(y2,y3,yδ ) ∈ Ĥ in,1

2 : y2 < min

{
y

c1d
c1a
δ

,y
e2b
e2β

3

}
and y3 < y

c1γ

c1a
δ

}
.

Because ψ1,2
(
F̂a,1,2

)
∩Ĉ1,2,k ̸= /0 for all k ∈ {b,β} there is switching along κ1,2.

Remark 4.2.11. The analogue of Propositions 4.2.9 and 4.2.10 can be stated in terms of the heteroclinic
connection κα,2 for the L-cycle.

We have shown that a heteroclinic connection leading to a singular common node that makes
up a heteroclinic network contributes likewise to the dynamics near the heteroclinic network as any
heteroclinic connection shared by two heteroclinic cycles. Indeed, the behaviour of trajectories in the
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vicinity of a heteroclinic network are controlled by the non-radial eigenvalues at the entrance and exit
of each node.

4.3 Switching along a heteroclinic cycle

We continue our study by describing the dynamics near the R- and L-cycles together in a heteroclinic
network in Rn by means of at least one node. Based on the comment at the end of the previous section
all the following results will hold whether there is a common heteroclinic connection or just a common
node.

Castro and Lohse [19] introduce the notion of switching along a cycle in the context of the Bowtie
network in R5 pictured in Figure 4.16. This consists of switching along a sequence of heteroclinic
connections forming a heteroclinic cycle.

ξ2

ξ5

ξ4

ξ1

ξ3

Fig. 4.16 The Bowtie network. The node ξ2 is common to the R and L-cycles. The R-cycle is
[ξ1 → ξ2 → ξ3 → ξ1] and the L-cycle is [ξ5 → ξ2 → ξ4 → ξ5].

Figure 4.15 exhibits the common node in a generalisation of the Bowtie network to any heteroclinic
network with two quasi-simple heteroclinic cycles each with arbitrary length. It is this figure that
illustrates the lemmas in the present section. To establish switching along the R-cycle we determine
how the sets C1,2,k, k ∈ {b,β}, in H in,1

2 are sent through composite maps around the heteroclinic cycle
and returned to H in,1

2 . Let us denote by πR : H in,1
2 → H in,1

2 the return map around the entire R-cycle
where

πR = ψ1,2 ◦φa,1,2 ◦ · · · ◦ψ2,b ◦φ1,2,b. (4.12)

First we check what exactly happens to the cusps defining the boundary of F1,2,b within Hout,b
2

in (4.10) when they move along the heteroclinic connection κ2,b until they hit Hout,d
b . This is described

by the composition of maps φ2,b,d ◦ψ2,b : Hout,b
2 → Hout,d

b . We require that ξd succeeds ξb such that ξd

might be ξa, and in turn ξ1. Near Hout,b
2 the local coordinates (u1,u4) match the original ones (x1,xα).

The result depends on the type of κ2,b.

Lemma 4.3.1. Let X be a heteroclinic network in Rn composed of two quasi-simple heteroclinic
cycles R and L with sequences [ξa → ξ1 → ξ2 → ξb → ξd ] and

[
ξα → ξ2 → ξβ

]
. Suppose that both

R and L-cycles satisfy Assumptions 3.1.4, 3.2.1 and 4.1.4. Suppose that

(i) xi is a transverse coordinate at ξ2 with respect to the R-cycle such that xi ̸= xβ ;

(ii) the heteroclinic connection κ2,b is of type contracting-to-expanding.
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The image of F1,2,b in (4.10) under φ2,b,d ◦ψ2,b is such that:

(a) the
(
xα ,xβ

)
-face is mapped into the origin of Rn−2.

(b) every (x1,xi)-face is mapped into a cuspoidal region bounded by the curve xγ = x
cbγ

cb2
2 in the(

x2,xγ

)
-face for some transverse coordinate xγ at ξb. Moreover, the image of the curve xi = x

c2i
c21
1

is the curve defined by xγ = x
eb1
cb2

c2i
c21

+
cbγ

cb2
2 .

(c) the
(
x1,xβ

)
-face is mapped into a cuspoidal region bounded by the curve xδ = x

cbδ

cb2
2 in the

(x2,xδ )-face for some transverse coordinate xδ at ξb.

Proof. We look at the R-cycle and assume that κ2,b is a contracting-to-expanding connection. The
expanding direction at ξb coincides with the contracting direction at ξ2, that is, x1. Transverse
directions at ξ2 and ξb are in one-to-one correspondence.

(a) The directions spanned by xα and xβ are transverse at ξ2 regarding the R-cycle. The(
xα ,xβ

)
-plane is first mapped by ψ2,b : Hout,b

2 → H int,2
b into the

(
xγ1 ,xγ2

)
-plane for some

coordinates, xγ1 and xγ2 , transverse at ξb. The image of the whole
(
x1,xα ,xβ

)
-subspace under

ψ2,b is the
(
x1,xγ1 ,xγ2

)
-subspace. Let (y1,y2,y3, . . . ,yn−1) be the local non-radial coordinates

near ξb in the associated eigenbasis where the expanding and the contracting directions are
followed by the transverse ones. The local flow near ξb

ẏ1 = eb1 y1

ẏ2 =−cb2 y2

ẏs =−cbs ys, s = 3, . . . ,n−1,

(4.13)

induces the map φ2,b,d : H in,2
b → Hout,d

b , which takes the form

φ2,b,d

(
y1,{ys}s=3,...,n−1

)
=

(
y

cb2
eb1
1 ,

{
ys y

cbs
eb1
1

}
s=3,...,n−1

)
=
(

u2,{us}s=3,...,n−1

)
. (4.14)

The
(
xα ,xβ

)
-face in Hout,b

2 belongs to the hyperplane x1 = 0. Therefore the
(
xγ1 ,xγ2

)
-face in

H in,2
b belongs to the hyperplane x1 = 0 locally coordinatised by y1 = 0. This forces the former

to be sent through φ2,b,d ◦ψ2,b to the origin of Rn−2.

(b) Pick a transverse coordinate xi at ξ2 with respect to the R-cycle. There exists a transverse
coordinate xγ at ξb for which ψ2,b maps the (x1,xi)-face into the

(
x1,xγ

)
-face. The image of the

curve xi = x
c2i
c21
1 under ψ2,b yieds the curve xγ = x

c2i
c21
1 .

We restrict the local map φ2,b,d in (4.14) to the
(
x1,xγ

)
-face so that it returns values in the(

x2,xγ

)
-face and

φ2,b,d
(
y1,yγ

)
=

(
y

cb2
eb1
1 , yγ y

cbγ

eb1
1

)
=
(
u2,uγ

)
.
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In the local coordinates near ξb the
(
x1,xγ

)
-face in H in,2

b is expressed as the
(
y1,yγ

)
-face and

the
(
x2,xγ

)
-face in Hout,d

b is expressed as the
(
u2,uγ

)
-face. The curve xγ = x

c2i
c21
1 is mapped by

φ2,b,d into the parametric curve

φ2,b,d

(
y1,y

c2i
c21
1

)
=

(
y

cb2
eb1
1 , y

c2i
c21

+
cbγ

eb1
1

)

leading to 
y

cb2
eb1
1 = u2

y
c2i
c21

+
cbγ

eb1
1 = uγ

⇔

y1 = u
eb1
cb2
2 ⇔

u
eb1
cb2

c2i
c21

+
cbγ

cb2
2 = uγ .

On the other hand, the
(
y1,yγ

)
-face is delimited by four edges:

(
0,yγ

)
, (y1,0),

(
1,yγ

)
, (y1,1).

In determining their images under φ2,b,d

φ2,b,d
(
0,yγ

)
= (0,0) , φ2,b,d (y1,0) =

(
y

cb2
eb1
1 , 0

)
,

φ2,b,d
(
1,yγ

)
=
(
1,yγ

)
, φ2,b,d (y1,1) =

(
y

cb2
eb1
1 , y

cbγ

eb1
1

)
,

we find that the edge (y1,1) is transformed into the curve
y

cb2
eb1
1 = u2

y
cbγ

eb1
1 = uγ

⇔

y1 = u
eb1
cb2
2 ⇔

u
cbγ

cb2
2 = uγ .

(c) The
(
x1,xβ

)
-face is mapped by ψ2,b into the (x1,xδ )-face where xδ is some transverse coordinate

at ξb. The rest of the proof runs as before.

Example 4.3.2. By construction, all heteroclinic connections in the Bowtie network in Figure 4.16 are
of type contracting-to-expanding. Global maps coincide with the identity so that Hout,k

j can be freely
identified with H in, j

k (recall Proposition 4.1.10). The sets F1,2,3 and F5,2,3 separate Hout,3
2 into points

leaving H in,1
2 from points leaving H in,5

2 ; these are divided by the surface x5 = x
c25
c21
1 . The transition

φ2,3,1 ◦ψ2,3 : Hout,3
2 → Hout,1

3 equates to g̃3 : H in,2
3 → H in,3

1 where Hout,3
2 ≡ H in,2

3 = {(x1,x4,x5)} and
Hout,1

3 ≡ H in,3
1 = {(x2,x4,x5)}. See Appendix C.1 for the maps near the Bowtie network.

Each square [ABCD] on the intersection of Hout,3
2 with a plane x1 = k for a constant k < 1 is shrunk

by φ2,3,1 ◦ψ2,3 into another square [A′B′C′D′] on the plane x2 = k′, see Figure 4.17 (a) and (b).
Each square [EFGH] on the intersection of Hout,3

2 with a plane x4 = k for a constant k < 1 is
transformed by φ2,3,1 ◦ψ2,3 into a cuspoidal surface [E ′F ′G′], see Figure 4.17 (c) and (d).

From the point of view of the R-cycle the transverse directions at ξ2 are spanned by x4 and x5.
We show that a visit to the R-cycle through φ2,3,1 ◦ψ2,3 ends up in the origin of Hout,1

3 for any initial
condition in the boundary face (0,x4,x5) of Hout,3

2 contained in the plane x1 = 0. In general, the whole
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x1

x5

x4

A

D

B

C

F1,2,3 F5,2,3

(a) Hout,3
2 ≡ H in,2

3

x2

x5

x4

A′

D′

C′

B′

g̃3
(
F1,2,3

)
g̃3
(
F5,2,3

)
(b) Hout,1

3 ≡ H in,3
1

x1

x5

x4

E F

H G

F1,2,3 F5,2,3

(c) Hout,3
2 ≡ H in,2

3

x2

x5

x4

E ′ = H ′

F ′

G′

g̃3
(
F1,2,3

)
g̃3
(
F5,2,3

)
(d) Hout,1

3 ≡ H in,3
1

Fig. 4.17 Transformation of the F-sets near ξ2 under φ2,3,1 ◦ψ2,3 ≡ g̃3 : H in,2
3 → H in,3

1 for the R-cycle
in the Bowtie network: the set F1,2,3 of points coming from ξ1 and the F5,2,3 of points coming from ξ5
on the left side, and their images under g̃3 on the right side. (a) and (b) each square [ABCD] on x1 = k
is shrunk and transformed into another square [A′B′C′D′]; (c) and (d) each square [EFGH] on x4 = k
is shrunk and transformed into a cuspoidal surface E ′F ′G′.
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Hout,3
2 ≡ H in,2

3 becomes a topological cone-shaped region fixed to the origin in Hout,1
3 ≡ H in,3

1 , and the
remaining conclusions of Lemma 4.3.1 follow.

Lemma 4.3.3. Let X be a heteroclinic network in Rn composed of two quasi-simple heteroclinic
cycles R and L with sequences [ξa → ξ1 → ξ2 → ξb → ξd ] and

[
ξα → ξ2 → ξβ

]
. Suppose that both

R- and L-cycles satisfy Assumptions 3.1.4, 3.2.1 and 4.1.4. Suppose that

(i) xi is a transverse coordinate at ξ2 with respect to the R-cycle;

(ii) xd is the expanding coordinate at ξb with respect to the R-cycle;

(iii) the heteroclinic connection κ2,b is of type contracting-to-transverse.

The image of F1,2,b in (4.10) under φ2,b,d ◦ψ2,b is such that:

(a) for every xi ̸= xd the (x1,xi)-face is mapped into the origin of Rn−2.

(b) for xi = xd the cuspoidal region bounded by the curve xd = x
c2d
c21
1 and the edges x1 = 1 and xd = 0

in the (x1,xd)-face is mapped into the conic region bounded by the curves x2 = x
ebd
cb2

c21
c2d

+
cbγ

cb2
γ and

x2 = x
cbγ

cb2
γ in the

(
x2,xγ

)
-face for some transverse coordinate xγ at ξb.

Proof. Assume that κ2,b is a contracting-to-transverse connection. The expanding direction xd at ξb

thus spans a transverse direction at ξ2 regarding the R-cycle.

(a) When xi ̸= xd there are transverse coordinates xγ1 ,xγ2 ̸= xi at ξb such that ψ2,b : Hout,b
2 → H in2

b

assigns axis by axis the (x1,xi,xd)-subspace to the
(
xγ1 ,xγ2 ,xd

)
-subspace. On substituting eb1

with ebd in (4.13) the local coordinate y1 near ξ2 agrees with xd . Because the (x1,xi)-face in
Hout,b

2 lies in the hyperplane xd = 0 the
(
xγ1 ,xγ2

)
-face in H in,2

b lies in the hyperplane xd = 0
by virtue of the form of ψ2,b. We apply φ2,b,d : H in,2

b → Hout,d
b and the

(
xγ1 ,xγ2

)
-face is further

mapped into the origin of Rn−2.

(b) Suppose that xi = xd . Now ψ2,b maps the (x1,xd)-face into the
(
xγ ,xd

)
-face where xγ is some

transverse coordinate at ξb. Restricting to these faces the curve xd = x
c2d
c21
1 and the edges x1 = 1

and xd = 0 in Hout,b
2 become xd = x

c2d
c21
γ , xγ = 1 and xd = 0 in H in,2

b , respectively. The restriction of
φ2,b,d to the

(
xd ,xγ

)
-face is in turn recovered from (4.14) replacing eb1 by ebd . The

(
xd ,xγ

)
-face

in H in,2
b is equipped with the local coordinates

(
y1,yγ

)
. We calculate the image of the curve

xd = x
c2d
c21
γ under φ2,b,d by means of

φ2,b,d

(
y

c2d
c21
γ ,yγ

)
=

(
y

c2d
c21

cb2
ebd

γ , y
1+

c2d
c21

cbγ

ebd
γ

)
=
(
u2,uγ

)
.

Coordinates
(
u2,uγ

)
parameterise locally the

(
x2,xγ

)
-face in Hout,d

b and we obtain the curve
y

cb2
ebd

c2d
c21

γ = u2

y
1+

cbγ

ebd

c2d
c21

γ = uγ

⇔

yγ = u
ebd
cb2

c21
c2d

2 ⇔

u
ebd
cb2

c21
c2d

+
cbγ

cb2
2 = uγ .
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In the same manner the edges xd = 0 and xγ = 1 are transformed by φ2,b,d into

φ2,b,d
(
0,yγ

)
= (0,0) and φ2,b,d (y1,1) =

(
y

cb2
ebd
1 , y

cbγ

ebd
1

)
,

the last equality resulting in the curve
y

cb2
ebd
1 = u2

y
cbγ

ebd
1 = uγ

⇔

y1 = u
ebd
cb2
2 ⇔

u
cbγ

cb2
2 = uγ .

Remark 4.3.4. Lemmas 4.3.1 and 4.3.3 apply analogously if we replace the heteroclinic connection
κ2,b by the heteroclinic connection κ2,β with respect to the L-cycle. They can also be reformulated in
order to describe what happens to Fα,2,b in Hout,b

2 when it is similarly transformed under φ2,b,d ◦ψ2,b.

Consider a set D ⊂ Rn and a map g : D → Rn. For A ⊂ D and B ⊂ g(D) we define

g∗ (A) =
{

xxx ∈ Rn : g−1 (xxx) ∈ A
}(

g−1)∗ (B) = {xxx ∈ Rn : g(xxx) ∈ B}

such that g(A) = g(D)∩g∗ (A) and g−1 (B) = D∩
(
g−1
)∗
(B).

Set g̃ j = ψ j,k ◦φi, j,k : H in,i
j → H in, j

k for the pairwise composite maps concerning the R-cycle.

Corollary 4.3.5. Let R be a quasi-simple heteroclinic cycle in Rn fulfilling Assumption 3.2.1. The
domain and the range of definition for the map g̃ j are given by the sets Ci, j,k and ψ j,k

(
Fi, j,k

)
,

respectively.

Proof. Consider the global map ψ j,k : Hout,k
j → H in, j

k for which Assumption 3.2.1 is true. Therefore

the domain and the range of ψ j,k are respectively the whole cross sections Hout,k
j and H in, j

k . Composing

ψ j,k after φi, j,k : H in,i
j → Hout,k

j we have that the domain of g̃ j is

dom(g̃ j) = dom
(
φi, j,k

)
∩
(

φ
−1
i, j,k

)∗ (
dom

(
ψ j,k

))
=Ci, j,k ∩

(
φ
−1
i, j,k

)∗(
Hout,k

j

)
=Ci, j,k.

The range of g̃ j is

im(g̃ j) = im
(
ψ j,k

)
∩ψ

∗
j,k
(
im
(
φi, j,k

))
= H in, j

k ∩ψ
∗
j,k
(
Fi, j,k

)
= ψ j,k

(
Fi, j,k

)
.

The return map πR : H in,1
2 → H in,1

2 around the R-cycle can be written as πR = g̃1 ◦ g̃a ◦ · · · ◦ g̃b ◦ g̃2.

Assuming that all transverse eigenvalues are negative whenever possible, the domain of definition CR
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of the map πR coincides with C1,2,b in (4.3). We call FR to the range of πR. Although the shape of the
set FR may depend on the type of heteroclinic connections (see Figures 4.18 and 6.5) we find that it
has in general a topological cone-shaped form with its apex at the origin.

Lemma 4.3.6. Let X be a heteroclinic network in Rn composed of two quasi-simple heteroclinic
cycles R and L with sequences [ξa → ξ1 → ξ2 → ξb → ξd ] and

[
ξα → ξ2 → ξβ

]
. Suppose that the

R-cycle satisfies Assumptions 3.1.4, 3.2.1 and 4.1.4. Then, the origin in Rn−2 belongs to the boundary
of FR.

Proof. By definition of πR it follows that

FR = (g̃1 ◦ g̃a ◦ · · · ◦ g̃b)(im(g̃2)) = im(g̃1)∩ g̃∗1 (im(g̃a))∩·· ·∩ (g̃1 ◦ g̃a ◦ · · · ◦ g̃b)
∗ (im(g̃2)) .

We begin by proving the claim for im(g̃1), i.e the range of g̃1. Corollary 4.3.5 states that im(g̃1)

equals ψ1,2 (Fa,1,2). From (4.11) the set Fa,1,2 contains the origin of Rn−2 in its boundary around the
xa-axis in Hout,2

1 . Since ψ1,2 : Hout,2
1 → H in,1

2 can be simply regarded as a permutation of the local
coordinate axes in Hout,2

1 , the set ψ1,2 (Fa,1,2) also contains the origin of Rn−2 in its boundary around
the image of the xa-axis under ψ1,2 in H in,1

2 .
The same reasoning applies to im(g̃ j) for every j. Regardless of the type of the heteroclinic

connection we deduce from Lemmas 4.3.1 and 4.3.3 that the origin belongs to the boundary of
g̃ j+1 (im(g̃ j)) = im(g̃ j+1)∩ g̃∗j+1 (im(g̃ j)). We proceed by induction on consecutive nodes of the
heteroclinic cycle. Assume that the claim holds for some k with(

g̃ j+k ◦ g̃ j+k−1 ◦ · · · ◦ g̃ j+1
)
(im(g̃ j)) .

Then, (
g̃ j+k+1 ◦ g̃ j+k ◦ · · · ◦ g̃ j+1

)
(im(g̃ j)) = g̃ j+k+1

[(
g̃ j+k ◦ g̃ j+k−1 ◦ · · · ◦ g̃ j+1

)
(im(g̃ j))

]
.

Combining the induction hypothesis and Lemmas 4.3.1 and 4.3.3 the claim also holds for k+1.

Example 4.3.7. Consider the transitions near the Bowtie network detailed in Appendix C.1. The
return map πR : H in,1

2 → H in,1
2 around the R-cycle coincides with π̃2 = g̃1 ◦ g̃3 ◦ g̃2 for which

g̃ j = ψ j, j+1 ◦ φ j−1, j, j+1 : H in, j−1
j → H in, j

j+1, j = 1,2,3 (mod 3). We write Fj−1, j, j+1 instead of
ψ j, j+1 (Fj−1, j, j+1) because the global maps ψ j, j+1 are the identity. We check at once that

FR = (g̃1 ◦ g̃3)(F1,2,3) = F3,1,2 ∩ g̃∗1 (F2,3,1)∩ (g̃1 ◦ g̃3)
∗ (F1,2,3)

where

F3,1,2 =

{
(x3,x4,x5) ∈ H in,1

2 : x4 < x
c14
c13
3 and x5 < x

c15
c13
3

}
g̃∗1 (F2,3,1) =

{
(x3,x4,x5) ∈ H in,1

2 : x4 < x
c14
c13

+
e12
c13

c34
c32

3 and x5 < x
c15
c13

+
e12
c13

c35
c32

3

}
(g̃1 ◦ g̃3)

∗ (F1,2,3) =

{
(x3,x4,x5) ∈ H in,1

2 : x5 < x
c15
c13

+
e12
c13

c35
c32

+
e12
c13

e31
c32

c25
c21

3

}
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leading to

FR =

{
(x3,x4,x5) ∈ H in,1

2 : x4 < x
c14
c13

+
e12
c13

c34
c32

3 and x5 < x
c15
c13

+
e12
c13

c35
c32

+
e12
c13

e31
c32

c25
c21

3

}
. (4.15)

Given the parameters in (C.7) we can simplify

c14

c13
+

e12

c13

c34

c32
=

ν̃ +
e23

e24
ρ̃

and
c15

c13
+

e12

c13

c35

c32
+

e12

c13

e31

c32

c25

c21
=

µ̃

ρ̃
.

Figure 4.18 illustrates the inequalities constraining the set FR. Its boundary is delimited by branches of
cuspoidal surfaces typically attached to the origin. The interior surrounds the image of the contracting
axis at ξ1 under ψ1,2, here the x3-axis, when extended to negative coordinates.

x3

x5

x4

F3,1,2

FR

Fig. 4.18 The set FR in H in,1
2 for the Bowtie network.

Lemma 4.3.8. Let X be a heteroclinic network in Rn composed of two heteroclinic cycles R and L
with sequences [ξ1 → ξ2 → ξb] and

[
ξα → ξ2 → ξβ

]
. Suppose that πR : H in,1

2 → H in,1
2 is the return

map around R. If the domain CR of πR is mapped into itself, that is FR ⊆CR, then there is no switching
along R.

Proof. Assume that πR = g̃1 ◦ · · · ◦ g̃b ◦ g̃2. The cross section Hout,b
2 is split into the set of points F1,2,b

coming from ξ1 and the set of points Fα,2,b coming from ξα . The cross section H in,1
2 is split into

the set of points C1,2,b going to ξb and the set of points C1,2,β going to ξβ . We have now to look
how Fi,2,b, i = 1,α , are sent to H in,1

2 . This is described by the composition (g̃1 ◦ · · · ◦ g̃b)(ψ2,b (Fi,2,b)).
We have defined CR = C1,2,b and so FR = (g̃1 ◦ · · · ◦ g̃b)(ψ2,b (F1,2,b)). Because FR ⊆ CR it implies
FR ∩C1,2,β = /0, which inhibits switching along the R-cycle.

Example 4.3.9. For the Bowtie network, switching along the R-cycle occurs if and only if
g̃1 ◦ g̃3 (Fi,2,3)∩C1,2,k ̸= /0 with i = 1,5 and k = 3,4. The sets C1,2,3 and g̃1 ◦ g̃3 (F1,2,3) correspond
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respectively to the domain CR and the range FR of the return map πR ≡ π̃2 = g̃1 ◦ g̃3 ◦ g̃2 around R.
From Appendix C.1 we derive

C1,2,3 =

{
(x3,x4,x5) ∈ H in,1

2 : x4 < x
e24
e23
3

}
(=CR)

C1,2,4 =

{
(x3,x4,x5) ∈ H in,1

2 : x3 < x
e23
e24
4

}
.

Together with (4.15) gives

g̃1 ◦ g̃3 (F1,2,3)∩C1,2,3 =

{
(x3,x4,x5) ∈ H in,1

2 : x4 < min
{

x

ν̃+
e23
e24

ρ̃

3 , x
e24
e23
3

}
and x5 < x

µ̃

ρ̃

3

}

g̃1 ◦ g̃3 (F1,2,3)∩C1,2,4 =

{
(x3,x4,x5) ∈ H in,1

2 : x
e24
e23
3 < x4 < x

ν̃+
e23
e24

ρ̃

3 and x5 < x
µ̃

ρ̃

3

}
.

It follows that FR ⊆CR, i.e g̃1 ◦ g̃3 (F1,2,3)⊆C1,2,3, provided

x

ν̃+
e23
e24

ρ̃

3 < x
e24
e23
3 ⇔ ν̃ +

e23

e24
>

e24

e23
ρ̃

⇔ 0 >
e23

e24
(ρ̃ −1)− ν̃ =−c21

e23
δ̃

⇔ δ̃ > 0.

Under this inequality g̃1 ◦ g̃3 (F1,2,3)∩C1,2,4 = /0, and the absence of switching along the R-cycle is
ensured. An equivalent formulation is to say:

Lemma 4.3.10. There is switching along each heteroclinic cycle in the Bowtie network if and only if
δ̃ ,δ < 0.

Proof. Based on previous considerations about the R-cycle we have seen g̃1 ◦ g̃3 (F1,2,3)∩C1,2,k ̸= /0,
k = 3,4 as long as δ̃ < 0. The respective proof is completed by showing that the same conclusion is
true for g̃1 ◦ g̃3 (F5,2,3)∩C1,2,k. Accordingly,

g̃1 ◦ g̃3 (F5,2,3) = F3,1,2 ∩ g̃∗1 (F2,3,1)∩ (g̃1 ◦ g̃3)
∗ (F5,2,3) .

We determine

(g̃1 ◦ g̃3)
∗ (F5,2,3) =

{
(x3,x4,x5) ∈ H in,1

2 : x
µ̃

ρ̃

3 < x5 < x

µ̃− c25
e23

ρ̃

3

}
so that

g̃1 ◦ g̃3 (F5,2,3) =

{
(x3,x4,x5) ∈ H in,1

2 : x4 < x

ν̃+
e23
e24

ρ̃

3 and x
µ̃

ρ̃

3 < x5 < x

µ̃− c25
e23

ρ̃

3

}
.

The condition that establishes whether or not the intersection g̃1 ◦ g̃3 (F5,2,3)∩C1,2,k is empty is exactly
the one for g̃1 ◦ g̃3 (F1,2,3)∩C1,2,k, k = 3,4.
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The result improves Lemma 4.1 in [19] that suggests the existence of switching along each
heteroclinic cycle in the Bowtie network regardless of the parameter values.

4.4 Infinite switching

Infinite switching is characterised by shadowing all possible heteroclinic paths on a heteroclinic
network. We investigate the (in)existence of infinite switching near the heteroclinic networks that have
been a subject of study throughout this chapter and, more generally, near an arbitrary heteroclinic
network involving equilibria whose linearisation satisfies Assumption 3.1.4. To this end we identify
the stability properties for which visible switching dynamics may prevail. By visible we mean there
exists a positive Lebesgue measure set of nearby initial conditions on a section transverse to the
heteroclinic network exhibiting switching. This description intends to enhance the pratical effects of
switching capable of being observed in numerical experiments.

Corollary 4.4.1. Let X be a heteroclinic network in Rn and C ⊂ X a quasi-simple heteroclinic cycle.
If X is c.u, then C is c.u.

Proof. Suppose that X is c.u. Remark 2.4.5 asserts that σloc (X ,x) =−∞ for all x ∈ X . Since C ⊂ X ,
σloc (X ,x) = −∞ for all x ∈ C. Therefore σloc (C,x) = −∞ for all x ∈ C by Lemma 2.4.6. From
Corollary 3.4.13 we deduce that C is c.u.

Lemma 4.4.2. Let X be a heteroclinic network in Rn. If X is c.u, then there is no infinite switching
near X almost everywhere.

Proof. Suppose that X is c.u. By definition, there are a neighbourhood V of X and a set D with
ℓ(D) = 0 such that all trajectories starting in V \D leave V from some positive time onwards. As
trajectories do not stay near X any longer they can not follow every feasible heteroclinic path.

Lemma 4.4.3. Let X be a heteroclinic network in Rn and C ⊂ X a heteroclinic cycle. If C is c.u, then
there is no infinite switching near X almost everywhere.

Proof. Since C is c.u. there are a neighbourhood U of C and a set D with ℓ(D) = 0 such that no
trajectory starting in U \D remains in U from some positive time onwards. Take a neighbourhood V
of X such that U ⊂V . The heteroclinic path described by infinite turns around C is not followed by
any trajectory with initial condition on V . This excludes infinite switching.

What is left is to show that infinite switching does not occur near a f.a.s heteroclinic network
whose heteroclinic cycles are f.a.s. Recover now Figure 4.15 where the common element between the
L- and the R-cycle is reduced to a node.

Theorem 4.4.4. Let ξ2 be a common node between two heteroclinic cycles R and L constituting a
heteroclinic network X in Rn. Suppose that Assumption 3.1.4 holds. If both R- and L-cycles are f.a.s,
then there is no infinite switching near X almost everywhere.
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Proof. Suppose that the R- and L-cycles are f.a.s. Now X is either c.u or f.a.s. By Lemma 4.4.2 the
assertion follows immediately when X is c.u. We then assume that X is f.a.s. The procedure is to find
a heteroclinic path and a neighbourhood V of X such that any trajectory does not follow it in V .

Consider the return map πR : H in,1
2 → H in,1

2 around the R-cycle as in (4.12). Recall that its domain
of definition is denoted by CR. We write the set of points taking at least k ∈ N turns around R as

Ẽk =
{

yyy ∈ H in,1
2 : yyy ∈ dom

(
π

k−1
R

)
and π

k−1
R (yyy) ∈CR

}
(4.16)

It is easy to check that Ẽk coincides with the domain of definition of the iterate πk
R and Ẽk+1 ⊆ Ẽk for

all k ∈ N. In particular, Ẽ1 =CR.
Let πRL : H in,1

2 → H in,α
2 be the map modelling the dynamics of trajectories that visit the L-cycle

from a neighbourhood of the R-cycle, see Figure 4.19. We call CRL the set of points in H in,1
2 for which

πRL is well defined. Since trajectories that get lost once they hit H in,1
2 are not relevant here we can

assume that CRL = H in,1
2 \CR. For each k ∈N, the set Ẽk \ Ẽk+1 corresponds to the domain of definition

of πRL ◦πk
R. Indeed,

yyy ∈ Ẽk \ Ẽk+1 ⇔ yyy ∈ Ẽk and yyy /∈ Ẽk+1

⇔ yyy ∈ dom
(
π

k
R
)

and π
k
R (yyy) ∈ H in,1

2 \CR

⇔ yyy ∈ dom
(
π

k
R
)

and π
k
R (yyy) ∈CRL

⇔ yyy ∈ dom
(
πRL ◦π

k
R
)
.

By construction,
(
Ẽk
)

k∈N is a nested decreasing sequence of sets and converges to

lim
k→∞

Ẽk =
∞⋂

k=1

Ẽk.

We can express
∞⋃

k=1

(
Ẽk \ Ẽk+1

)
=CR \

∞⋂
k=1

Ẽk.

ξ2

ξα

ξβ

ξ1

ξb

H in,1
2H in,α

2

πRL

Fig. 4.19 The map πRL from H in,1
2 (near R) to H in,α

2 (near L).
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Next we show that
lim
k→∞

Ẽk \ Ẽk+1 = /0.

Define

lim inf
k→∞

Ẽk \ Ẽk+1 =
∞⋃

k=1

∞⋂
j=k

Ẽ j \ Ẽ j+1

lim sup
k→∞

Ẽk \ Ẽk+1 =
∞⋂

k=1

∞⋃
j=k

Ẽ j \ Ẽ j+1.

The sets in
(
Ẽk \ Ẽk+1

)
k∈N are mutually disjoint. It is immediate that for any k ∈ N

∞⋂
j=k

Ẽ j \ Ẽ j+1 = /0

and hence
∞⋃

k=1

∞⋂
j=k

Ẽ j \ Ẽ j+1 = /0.

On the other hand,
∞⋃

j=k

Ẽ j \ Ẽ j+1 = Ẽk \
∞⋂

i=1

Ẽi

yielding
∞⋂

k=1

∞⋃
j=k

Ẽ j \ Ẽ j+1 =
∞⋂

k=1

(
Ẽk \

∞⋂
i=1

Ẽi

)
=

(
∞⋂

k=1

Ẽk

)
\

(
∞⋂

i=1

Ẽi

)
= /0.

Then,
lim inf

k→∞

Ẽk \ Ẽk+1 = lim sup
k→∞

Ẽk \ Ẽk+1 = /0.

The limit of
(
Ẽk \ Ẽk+1

)
k∈N exists and equals

lim
k→∞

Ẽk \ Ẽk+1 = lim inf
k→∞

Ẽk \ Ẽk+1 = lim sup
k→∞

Ẽk \ Ẽk+1 = /0. (4.17)

The proof falls naturally into two cases depending on the measure6 of
⋂

∞
k=0 Ẽk. Accordingly, if

ℓ
(⋂

∞
k=1 Ẽk

)
= 0, the heteroclinic path moving infinite turns around R is not followed by trajectories

with initial condition on CR \
⋂

∞
k=0 Ẽk. Otherwise, there is k0 ∈ N such that ℓ

(⋂
∞
k=1 Ẽk

)
> 0 together

with (4.17) rule out the heteroclinic path that takes k0 turns around the R-cycle before visiting
the L-cycle. We thus choose the neighbourhood Ẽk0 provided Ẽk0 =

⋂
∞
k=0 Ẽk or else Ẽk0 \

⋂
∞
k=0 Ẽk.

Figure 4.20 illustrates the accumulation of the sets Ẽk on the plane. Notice that every path of the form

R · · · R︸ ︷︷ ︸
k0+ j

L · · ·

for j ≥ 1 is not followed by any trajectory either.

6We refer ℓ(·) to the Lebesgue measure in the appropriate context and dimension.
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1

1

x

y

Ẽ1

Ẽ1 \ Ẽ2

Ẽ2 \ Ẽ3

Ẽk0 \
⋂

∞
k=1 Ẽk⋂

∞
k=1 Ẽk

Fig. 4.20 Accumulation of the sets Ẽk as k tends to infinity.

Example 4.4.5. Proposition 4.3 in [19] asserts that infinite switching does not occur near the Bowtie
network if δ̃ ,δ < 0. Sequences of visits turning infinitely many times around the same heteroclinic
cycle are not followed by any trajectory with initial condition either in CR = dom(πR) ⊂ H in,1

2

or in CL = dom(πL) ⊂ H in,5
2 . The proof consists of showing that

⋂
∞
k=1 Ẽk =

⋂
∞
k=1 Ek = /0 where

Ẽk = dom
(
πk

R
)

and Ek = dom
(
πk

L
)
. But when δ̃ ,δ < 0 both heteroclinic cycles are c.u by virtue of

Proposition 6.1.2. The result in question is further a direct consequence of Lemma 4.4.3.





Chapter 5

Cyclic dominance in a two-person
Rock-Scissors-Paper game

1

The Rock-Scissors-Paper game (henceforth, RSP) has been used to understand competition issues
in both economics and life sciences. In the context of one-person or population, it provides a good
model for convergent and oscillating dynamics, the type being determined by the parameters. In life
sciences, a classic example is that of the evolution of three color morphs of male side-blotched lizards
Uta Stansburiana. See Sinervo and Lively [65]. In economics, market pricing drives a dynamic RSP
game attempting to explain why prices vary among different sellers and over time. Cyclic dominance
of prices are empirically reported by Noel [50, 51] in retail gasoline markets. Hopkins and Seymour
[35] introduce the search behaviour of consumers and show its influence in the equilibrium price
distribution. Accordingly, the evidence of price dispersion persists when the amount of information
held by consumers is sufficiently small.

Social and economic dilemmas between consumers and sellers, or firms and workers are examples
of strategic interactions where agents frequently adopt asymmetric positions. We are then interested
in investigating cyclic dominance in a two-person parametrised RSP game and its application to price
dispersion modelling. The parameters are the agents’ payoffs when there is a tie. They range from
the penalty for losing to the reward for winning. Asymptotic behaviour in the RSP version with two
independent agents can be very complex. Numerical simulations by Sato et al. [64] provide various
types of low-dimensional chaos due to the existence of a heteroclinic network. Aguiar and Castro [5]
give the theoretical proof by reducing to the study of the dynamics near a heteroclinic network with
three nodes in a suitable quotient space. This can be regarded as made of three or two heteroclinic
cycles depending on convenient combinations of outcomes the agents go through.

The aim of this chapter is to address the stability of the heteroclinic cycles comprising of the
RSP network. We observe they are quasi-simple (non-simple) and make use of the explicit stability
index achieved in Chapter 3. The resulting conclusions allow us to discuss the contribution of the
two-person RSP game in a concrete economics problem.

1The content of this chapter appears in Garrido-da-Silva and Castro [27].
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The chapter is organised as follows. Section 5.1 describes the two-person RSP game and the
heteroclinic cycles arising from the dynamics. In Section 5.2 we proceed with a thorough study of the
stability properties of such heteroclinic cycles. The main results are Theorems 5.2.1 to 5.2.6, which
state sufficient conditions for various types of stability. Section 5.3 suggests a possible first approach
to an extension to two agents of the price setting models by Noel [51] and by Hopkins and Seymour
[35].

5.1 A two-person Rock-Scissors-Paper game

We examine the long-term dynamics for the two-person Rock-Scissors-Paper (RSP) game. Three
possible actions R (rock), S (scissors) and P (paper) engage in a cyclic relation where R beats S, S
beats P, P beats R. Our description of the RSP interaction is based on [5] and [64]: two agents, say X
and Y , choose simultaneously one action among {R, S, P}. The payoff of the winning action is +1
while the payoff of the losing action is −1. If a tie occurs with both agents choosing the same action,
the respective payoffs are parametrised by quantities εx,εy ∈ (−1,1). The normal form representation
of the game is given by two normalised payoff matrices

A =

 0 1− εx −1− εx

−1− εx 0 1− εx

1− εx −1− εx 0

 , B =

 0 1− εy −1− εy

−1− εy 0 1− εy

1− εy −1− εy 0

 ,

whose columns and rows respect the order of actions R, S, P. Each element of the matrix A (resp. B) is
the payoff of the row agent X (resp. Y ) playing against the column agent Y (resp. X).

The agents’ choices are expressed in the form of state probabilities of playing R, S and P. At time
t ≥ 0, these are xxxT = (x1,x2,x3) ∈ ∆X for agent X and yyyT = (y1,y2,y3) ∈ ∆Y for agent Y , where ∆X

and ∆Y denote the unit simplex in R3 associated to each agent.2 We define xxx and yyy as column vectors.
The three vertices of each ∆X and ∆Y correspond to the choice of a pure strategy. We then refer to

those only as R, S and P.
The pair (xxx,yyy) ∈ ∆ = ∆X ×∆Y ⊂ R6 stands for the state of the game at a particular time. The

game dynamics evolves according to the reinforcement learning governed by the coupled replicator
equations

dxi

dt
= xi

[
(Ayyy)i − xxxT Ayyy

]
, i = 1,2,3,

dy j

dt
= y j

[
(Bxxx) j − yyyT Bxxx

]
, j = 1,2,3.

(5.1)

Here (Ayyy)i and (Byyy) j are respectively the ith and jth element of the vectors Ayyy and Bxxx.
The unique Nash equilibrium is (xxx∗,yyy∗) =

(1
3 ,

1
3 ,

1
3 ; 1

3 ,
1
3 ,

1
3

)
at which both agents are indiferent

among all three actions. This is also a steady state of the dynamics. There are nine additional steady
states corresponding to the vertices of ∆ . All steady states are saddles.

The nine vertices together with the edges of ∆ form a heteroclinic network. Aguiar and Castro [5]
analitically prove its existence. This heteroclinic network can be described both as the union of three

2The superscript T indicates the transpose of a matrix in general.
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heteroclinic cycles C0, C1 and C2, with

C0 = [(R,P)→ (S,P)→ (S,R)→ (P,R)→ (P,S)→ (R,S)→ (R,P)]

C1 = [(R,S)→ (R,R)→ (P,R)→ (P,P)→ (S,P)→ (S,S)→ (R,S)]

C2 = [(S,R)→ (R,R)→ (R,P)→ (P,P)→ (P,S)→ (S,S)→ (S,R)] ,

and as the union of two heteroclinic cycles C3 and C4, with

C3 = [(R,S) → (R,R)→ (R,P)→ (S,P)→ (S,S)→ (S,R)→ (P,R)

→ (P,P)→ (P,S)→ (R,S)]

C4 = [(S,R) → (R,R)→ (P,R)→ (P,S)→ (S,S)→ (R,S)→ (R,P)

→ (P,P)→ (S,P)→ (S,R)] .

ξ0 ξ2

ξ1

(a) C0 ∪C1 ∪C2

ξ0 ξ2

ξ1

(b) C3 ∪C4

Fig. 5.1 Heteroclinic cycles in the quotient network. Each style identifies a quotient cycle: (a) C0 is
represented by a solid green line, C1 by a dash-dot orange line, and C2 by a dashed blue line; (b) C3 is
represented by a solid yellow line, and C4 by a dashed red line.

The vector field associated to (5.1) is equivariant under the action of the symmetry group Γ = Z3

generated by
γ : (x1,x2,x3;y1,y2,y3) 7→ (x3,x1,x2;y3,y1,y2) .

The Γ-orbits of the steady states (R,P), (R,S) and (R,R) are the following relative steady states:

ξ0 ≡ Γ(R,P) = {(R,P) ,(S,R) ,(P,S)}
ξ1 ≡ Γ(R,S) = {(R,S) ,(S,P) ,(P,R)}
ξ2 ≡ Γ(R,R) = {(R,R) ,(S,S) ,(P,P)} .

These represent the three possible outcomes: loss, win and tie. For instance, agent X loses at ξ0, wins
at ξ1 and ties at ξ2.

Due to symmetry the dynamics of (5.1) can be studied from the dynamics on a quotient space.
The restricted flow to this space contains the quotient network with one-dimensional heteroclinic
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connections between every pair of relative steady states: ξ0, ξ1 and ξ2. The quotient cycles are defined
by the sequences (see Figure 5.1)

C0 = [ξ0 → ξ1 → ξ0]

C1 = [ξ1 → ξ2 → ξ1]

C2 = [ξ0 → ξ2 → ξ0]

and
C3 = [ξ0 → ξ1 → ξ2 → ξ0]

C4 = [ξ0 → ξ2 → ξ1 → ξ0] .

In the context of the game, the C0-cycle involves alternate win-loss of both agents; the C1- and
C2-cycles involve a tie and a loss by one agent; the C3- and C4-cycles go through all possible outcomes
(loss, win, tie) in the two possible orders.

Notice that the coordinate hyperplanes as well as all sub-simplices of ∆ are flow-invariant spaces.
In particular, every heteroclinic connection κi, j = [ξi → ξ j], i ̸= j = 0,1,2, is of saddle-sink type in a
two-dimensional face boundary of ∆ . Denote this face boundary by Pi j. Evidently, Pi j is not a vector
subspace of R6. For convenience we find a three-dimensional vector subspace Qi j of R6 invariant
under the flow such that Pi j ⊂ Qi j and κi, j persists in a robust way. Representatives of all heteroclinic
connections in the quotient network and respective flow-invariant spaces are listed in Table 5.1.

Connection Representative 2-dim space Pi j 3-dim vector space Qi j

[ξ0 → ξ1] [(R,P)→ (S,P)] {(x1,x2,0;0,0,1)} {(x1,x2,0;0,0,y3)}
[ξ1 → ξ0] [(S,P)→ (S,R)] {(0,1,0;y1,0,y3)} {(0,x2,0;y1,0,y3)}
[ξ1 → ξ2] [(R,S)→ (R,R)] {(1,0,0;y1,y2,0)} {(x1,0,0;y1,y2,0)}
[ξ2 → ξ1] [(R,R)→ (P,R)] {(x1,0,x3;1,0,0)} {(x1,0,x3;y1,0,0)}
[ξ0 → ξ2] [(S,R)→ (R,R)] {(x1,x2,0;1,0,0)} {(x1,x2,0;y1,0,0)}
[ξ2 → ξ0] [(R,R)→ (R,P)] {(1,0,0;y1,0,y3)} {(x1,0,0;y1,0,y3)}

Table 5.1 Flow-invariant spaces and representatives for the heteroclinic connections in the quotient
network.

5.2 Stability of the RSP cycles

In this section we establish the stability properties of the (quotient) heteroclinic cycles Ck, k = 0, . . . ,4,
by looking at the stability of the individual heteroclinic connections. For this purpose the behaviour of
trajectories passing close to each heteroclinic cycle is captured by return maps defined on suitable
cross sections to the heteroclinic connections. Due to an appropriate change of coordinates such maps
are the product of basic transition matrices. Appendix B provides all details.

For every Ck, k = 0, . . . ,4, we compute the local stability indices along its heteroclinic connections.
First observe that the Ck-cycles are not simple heteroclinic cycles: although the heteroclinic
connections lie in two-dimensional flow-invariant spaces, these are not fixed-point spaces. A trivial
verification confirms that Ck are in turn quasi-simple heteroclinic cycles. We then make use of the
results of Section 3.4. The main tool is the function F index : R3 → [−∞,∞], which is related to the
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local stability index in Definition 3.4.7. For ααα = (α1,α2,α3) ∈ R3 we employ the explicit form of
F index (ααα) in Appendix A.2.

Let us denote by σi j the local stability index along the heteroclinic connection κi, j = [ξi → ξ j].

Theorem 5.2.1. Suppose that εx,εy ∈ (−1,1). The local stability indices for the C0-cycle are:

(i) if εx + εy > 0, then σ10 = σ01 =−∞;

(ii) if εx + εy < 0, then

σ10 =min

{
1− εx

1+ εx
,
(1− εy)

2

2(1+ εy)

}
> 0

σ01 =min

{
1− εy

1+ εy
,
(1− εx)

2

2(1+ εx)

}
> 0.

Proof. In Step 1, we establish that Lemma 3.3.3 holds if and only if εx + εy < 0. This is enough to
prove part (i) according to Theorem 3.4.9(a). In Step 2, when εx+εy < 0, we apply the function F index

to evaluate the local stability index for each heteroclinic connection in the C0-cycle.

Step 1: Consider the transition matrices M(0) and M(1) in (B.7) associated with the C0-cycle. Since
they are similar3, conditions (i)–(ii) of Lemma 3.3.3 are satisfied, or not, for either matrices. Set
M ≡ M(0). The eigenvalues of M are the roots of the characteristic polynomial

p(λ ) =−λ
3 +Tr(M)λ

2 −B(M)λ +Det(M) , (5.2)

where Tr(M) and Det(M) are respectively the trace and the determinant of M, and

B(M) =

∣∣∣∣∣∣∣∣
−1−3εx − εy + εxεy

4
1− εx

2

3+ ε2
y

4
−

1+ εy

2

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
−

1+ εy

2
0

1 0

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣
−1−3εx − εy + εxεy

4
1

1− εy

2
0

∣∣∣∣∣∣∣∣ .
The Fundamental Theorem of Algebra states that p(λ ) = 0 has precisely three roots λ1,λ2,λ3 ∈ C
such that

Tr(M) = λ1 +λ2 +λ3 =
−3−3εx −3εy + εxεy

4
, (5.3)

B(M) = λ1λ2 +λ1λ3 +λ2λ3 =
−3+3εx +3εy + εxεy

4
, (5.4)

Det(M) = λ1λ2λ3 = 1.

By virtue of the Routh-Hurwitz Criterion (see [9]), the number of roots with positive real part
equals the number of sign changes of the sequence

−1, Tr(M) ,
1−B(M)Tr(M)

Tr(M)
, 1.

3We say that two square matrices of the same order, A and B, are similar if there exists an invertible matrix P such that
B = P−1AP. In particular, similar matrices have the same characteristic polynomial.
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For all εx,εy ∈ (−1,1) we have

Tr(M)B(M) =
1
16

(3− εxεy)
2 − 9

16
(εx + εy)

2 ∈ (−2,1) ,

yielding

sgn
(

1−B(M)Tr(M)

Tr(M)

)
= sgn(Tr(M)) .

Hence, there is a single root with positive real part. It is, in fact, purely real because p(λ ) admits only
three roots. Let λ1 ∈ R and λ1 > 0. We make the following

Claim: The characteristic polynomial p(λ ) has one real root, λ1, and a pair of complex roots, α ±β i.

Let λmax be the maximum root in absolute value of p(λ ). Since

det(M) = λ1(α
2 +β

2) = 1 ⇔ λ1 =
1

α2 +β 2 > 0

it follows that
λ1 = λmax ⇔ λ1 > 1.

We then prove that εx + εy > 0 is equivalent to λ1 ̸= λmax. Given that

B(M)> 0 ⇒ εx + εy > 0 ⇒ tr(M)< 0

and

tr(M)> 0 ⇒ εx + εy < 0 ⇒ B(M)< 0

one of three possible situations takes place:

Case 1: suppose that Tr(M)< 0 and B(M)> 0, that is, εx + εy > 0; thus

Tr(M) = λ1 +2α < 0 ⇔ 2αλ1 <−λ
2
1

B(M) = 2αλ1 +α
2 +β

2 > 0.

Replacing the first in the second equation we obtain λ 2
1 < α2 +β 2, and therefore λ1 ̸= λmax.

Case 2: suppose that tr(M)> 0 and B(M)< 0, that is, εx + εy < 0; a procedure analogous to the one
above shows now that λ1 = λmax.

Case 3: suppose that Tr(M)< 0 and B(M)< 0; from (5.3) and (5.4), we can write

B(M)−Tr(M) = 2α(λ1 −1)+α
2 +β

2 −λ1 =
3
2
(εx + εy),

and proceed by contradiction.

(a) if εx + εy > 0 and λ1 > 1, then λ1 = λmax and

2α(λ1 −1)> λ1 − (α2 +β
2)> 0.
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However, the left-hand side is negative as α < 0, which is absurd. Accordingly, if εx + εy > 0,
then λ1 ̸= λmax.

(b) if εx + εy < 0 and 0 < λ1 < 1, then |λmax|= α2 +β 2 and

2α(λ1 −1)< λ1 − (α2 +β
2)< 0.

But the left-hand side is positive as α < 0. Hence, if εx + εy < 0, then λ1 = λmax.

We have seen that (i) and (ii) of Lemma 3.3.3 are true if and only if εx + εy < 0. Next we prove
that (i)–(ii) guarantee condition (iii) of Lemma 3.3.3 for every M( j), j = 0,1. Let wwwmax, j be the
eigenvector of M( j) corresponding to λmax. In particular, (iii) holds if all the coordinates of wwwmax, j

have the same sign. Note that we need to check (iii) for both wwwmax, j because every basic transition
matrix Mq, q = 0,1, in (B.6) has one negative entry.

Assume that M ≡ M(0) satisfies (i)–(ii) with λmax = λ1, i.e., λ1 ∈ R and λ1 > 1. Again, by
similarity, the same remains valid for M(1). Direct computation reveals that wwwmax,0 has coordinates
multiple of (

λ1 +
1+ εy

2
,

3+ ε2
y

4
, λ

2
1 −Tr(M)λ1 +B(M)+

1− εy

2

)
.

Due to λ1 > 1 and εy ∈ (−1,1) the first two coordinates have positive signs. From Det(M) = 1 and
p(λ1) = 0 we get λ1

(
λ 2

1 −Tr(M)λ1 +B(M)
)
= 1, and therefore the third coordinate is also positive.

The coordinates of wwwmax,1 can be obtained from those for wwwmax,0 if we replace εy by εx. All coordinates
of wwwmax,1 are analogously positive.

We prove the claim. The discriminant of p(λ ) in (5.2), being a real cubic polynomial, is

∆(εx,εy)

= 18Tr(M)B(M)−4Tr(M)3 +Tr(M)2 B(M)2 −4B(M)3 −27

=
1

256

[(
ε

2
x −9

)2
ε

4
y +
(
−80ε

3
x −432εx

)
ε

3
y

+
(
−18ε

4
x −396ε

2
x −162

)
ε

2
y +
(
−432ε

3
x −3024εx

)
εy

+81ε
4
x −162ε

2
x −3375

]
.

For each value of εx ∈ (−1,1) we can regard ∆(εx, ·) as a real quartic polynomial in the variable εy.
Its discriminant is in turn given by

− 59049
67108864

(
ε

2
x +15

)3 (
ε

2
x +3

)8
.

This is negative for every εx ∈ (−1,1) and hence ∆(εx, ·) has two distinct real roots and two complex
conjugate non-real roots. The coefficient of the leading term of ∆(εx, ·) is positive. Together with

∆(εx,−1) =−1
4
(1− εx)

(
ε

3
x +9ε

2
x +54

)
< 0

∆(εx,1) =−1
4
(1+ εx)

(
−ε

3
x +9ε

2
x +54

)
< 0
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for all εx ∈ (−1,1) implies
∆(εx,εy)< 0

for all εx,εy ∈ (−1,1). Accordingly, p(λ ) has one real root and two complex conjugate non-real
roots.

Step 2: From (3.14) the local basin Bπ0
δ

for points near ξ0 in coordinates (3.5) is defined by the

sequences
(
M(0)

)k
ηηη and M0

(
M(0)

)k
ηηη with k ∈ N0. Theorem 3.4.9 says that

σ0 = min

{
F index (vvvmax,0) ,
min

{
F index

(
1− εy

2
,1,0

)
,F index

(
−1+ εx

2
,0,1

)
,F index (1,0,0)

}
,

min
{

F index
(
−1−3εx − εy + εxεy

4
,
1− εx

2
,1
)
,

F index

(
3+ ε2

y

4
,−

1+ εy

2
,0

)
,F index

(
1− εy

2
,1,0

)}}
.

(5.5)

Recall that vvvmax,0 is the line of the change of basis matrix from the basis of eigenvectors for M(0) to
the canonical basis for R3 in the position associated with λmax. As one entry of each Mq, q = 0,1, is
negative we have taken the lines of the matrices M0 and M(0) = M1M0 into account in (5.5).

Simple algebra attests that vvvmax,0 is a constant multiple of the vector λ1

(α −λ1)
2 +β 2

,

4
3+ε2

y

[(
α +

1+εy
2

)2
+β 2

]
+ 1−εx

2

(α −λ1)
2 +β 2

,

4
3+ε2

y

(α −λ1)
2 +β 2

 .

Therefore its entries are all non-negative for any εx,εy ∈ (−1,1). Using Lemma 3.4.8

F index (vvvmax,0)= F index
(

1− εy

2
,1,0

)
= F index (1,0,0) = +∞.

On the other hand, we get

F index
(
−1+ εx

2
,0,1

)
=

1− εx

1+ εx

F index

(
3+ ε2

y

4
,−

1+ εy

2
,0

)
=

(1− εy)
2

2(1+ εy)
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and

F index
(
−1−3εx − εy + εxεy

4
,
1− εx

2
,1
)
=


+∞ if −1−3εx − εy + εxεy ≥ 0

(5− εy)(1− εx)

1+3εx + εy − εxεy
if −1−3εx − εy + εxεy < 0.

It follows that

F index
(
−1−3εx − εy + εxεy

4
,
1− εx

2
,1
)
> F index

(
−1+ εx

2
,0,1

)
for all εx,εy ∈ (−1,1), and so

σ10 = min

{
1− εx

1+ εx
,
(1− εy)

2

2(1+ εy)

}
> 0.

The rest of the proof for σ01 runs as before by interchanging εx and εy.

We are thus led to the following consequence from Theorem 2.4.3.

Theorem 5.2.2. Suppose that εx,εy ∈ (−1,1). If εx + εy < 0, then the C0-cycle is e.a.s.

The stability of the remaining heteroclinic cycles in the RSP quotient network is given in Theorems
5.2.3–5.2.6. The proofs are omitted because they are similar to that of Theorem 5.2.1 with the
appropriate transition matrices in Appendix B.2. In the statement of these results it is useful to define

b1 (εx,εy) = (5− εx)ε
2
y +
(
ε

2
x +10εx +1

)
εy − (1− εx)(4+5εx)

b2 (εx,εy) = (5+ εx)ε
2
y +
(
−ε

2
x +10εx −1

)
εy − (1+ εx)(4−5εx) .

Theorem 5.2.3. Suppose that εx,εy ∈ (−1,1). The local stability indices for the C1-cycle are:

(a) if either εx + εy < 0, or b1 (εx,εy) < 0, or εx − εy > 0, then σ21 = σ12 = −∞ and the cycle is
c.u;

(b) if εx + εy > 0, and b1 (εx,εy)> 0, and εx − εy < 0, then

σ21 =
−4+ εx +(3− εx)εy + ε2

y

(1− εx)(1+ εy)
< 0

σ12 =min

{
εy − εx

1− εy
,
1+2εx + ε2

y

2(1− εx)

}
> 0

and the cycle is f.a.s.

Theorem 5.2.4. Suppose that εx,εy ∈ (−1,1). The local stability indices for the C2-cycle are:

(a) if either εx + εy < 0, or b2 (εx,εy) < 0, or εx − εy < 0, then σ20 = σ02 = −∞ and the cycle is
c.u;
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(a)

(b)

(c)

(d)

1-1

1

-1

εx

εy

C0
C1
C2

Fig. 5.2 Stability regions for the C0-, C1- and C2-cycles in the two-parameter space. The lines in

the interior are: (a) εx + εy = 0; (b) εx − εy = 0; (c) εy =
1−10εx+ε2

x +
√

81−24εx−2ε2
x −40ε3

x +ε4
x

2(5+εx)
; (d) εy =

−(1+10εx+ε2
x )+

√
81+24εx−2ε2

x +40ε3
x +ε4

x
2(5−εx)

.

(b) if εx + εy > 0, and b2 (εx,εy)> 0, and εx − εy > 0, then

σ20 =
−4+ εy +(3− εy)εx + ε2

x

(1− εy)(1+ εx)
< 0

σ02 =min
{

εx − εy

1− εx
,
1+2εy + ε2

x

2(1− εy)

}
> 0

and the cycle is f.a.s.

Theorem 5.2.5. Suppose that εx,εy ∈ (−1,1). Then, the local stability indices for the C3-cycle are
all −∞ and the cycle is c.u.

Theorem 5.2.6. Suppose that εx,εy ∈ (−1,1). Then, the local stability indices for the C4-cycle are
all −∞ and the cycle is c.u.

Notice the C3- and C4-cycles never exhibit any kind of stability. This justifies their total absence
from the numerical observations by Sato et al. [64]. The C1- and C2-cycles are not e.a.s making
them difficult to detect in simulations. They are f.a.s in a subset of the complement of the stability
region for the C0-cycle in the two-parameter space. Figure 5.2 divides the entire two-parameter
space (−1,1)× (−1,1) into admissible regions where the C0-, C1-, and C2-cycles are attracting. Our
analysis allows us to determine the exact expressions for the delimiting curves.

Recall that the two parameters, εx and εy, are the agents’ payoffs when the outcome of their actions
is a tie. They range from almost as bad as a loss to almost as good as a win. Under the C0-cycle
agents never tie. The associated dynamic behaviour is as stable as possible when the sum of payoffs
for a tie is negative. In that case, a tie is not an attractive outcome for at least one agent for whom
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the payoff is negative and both avoid it unilaterally. The C0-cycle models the existence of alternating
dominance between two agents. On the other hand, either C1 or C2 involve a tie and a loss by a single
agent. These cycles disclose some stability if the payoffs for a tie are high enough and its sum is
itself positive. Here the agent that never wins is more rewarded than the other is penalised for the tie
action. He has further an incentive to deviate and draws the game. The opponent not satisfied with the
outcome tries to win successively.

We end with two brief comments concerning Lemma 4.9 in [5] that states that none of the
heteroclinic cycles in the RSP network is e.a.s, and which must be incorrect in view of Theorem 5.2.2.
The first comment is that the stability index provides a very powerful and systematic tool for the study
of stability and it was not available at the time of [5]. The second is that the authors of [5] missed to
take into account the permutation between consecutive cross sections.

5.3 An application to an economics problem

We show how the two-person RSP game provides a useful model to study strategic interactions in
economics. The use of the game itself to support the cyclic behaviour of prices can be found in
[35] and [51] among others. Price cycles were observed by Noel [51] in the Toronto retail gasoline
market where major and independent firms alternate in charging the highest retail price (see Figure 1
therein). Firms undercut each other over subsequent periods to steal market share until prices reach
a competitive level at which they make no profit. Margins become so low that some firm suddenly
increases its price and the others follow it triggering the undercutting phase again. On the other hand,
Hopkins and Seymour [35] address market price competition under seller and consumer learning.
The existence of price dispersion where rival sellers offer the same good at different prices seems to
depend on the absence of informed consumers.

We discuss the above-mentioned models in light of the results obtained for the two-person RSP
game. Consider a market for a homogeneous good. In the model proposed by Noel [51] the agents
are a major firm (Agent X) and an independent firm (Agent Y ). We assume that they compete in a
dynamic two-person RSP game by alternately setting prices. Firm’s payoff corresponds to the current
profit. In order to maximise it prices are chosen from three possible level:

R: Low S: Intermediate P: High

with a cyclical best-response structure. A Low price (R) beats an Intermediate price (S) because the
higher number of consumers compensates for the loss in price. An Intermediate price (S) beats a High
price (P) for the same reason. A High price (P) beats a Low price (R) because, even though it may
attract less consumers, the price difference makes up for the reduction in sales.

Let us suppose that there are many consumers who seek to buy at most one unit of the good. Each
firm takes as given consumer demand and the pricing strategies chosen by the opponent. Consumers
have all relevant information about prices and product quality. In this regard they have a tendency
to purchase from the cheapest firm. When faced with extreme prices they believe the good sold by
the high-priced firm is of better quality. For example, brand-name products are more expensive than
private labels but the former are typically associated to a higher level of quality.
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Agent X (major firm) chooses Agent Y (independent firm) chooses Winner
Low price High price Y

Intermediate price High price X
Intermediate price Low price Y

High price Low price X
High price Intermediate price Y
Low price Intermediate price X
Low price High price Y

Table 5.2 Interpretation of the C0-cycle in the context of Noel’s model.

As we know long run equilibrium dynamics for our model consists of the heteroclinic network
described by the C0-, C1- and C2-cycles in Figure 5.1. According to the stability results in the previous
section only C0 can be empirically observed whenever the sum of the payoffs for a tie is negative.
We see that the cycling phenomenon reported in [51] can be explained by the win-loss pattern of C0.
Indeed, this corresponds to the sequence of outcomes expressed in Table 5.2.

If the sum of the firms payoffs when they charge the same price is negative, then at least one firm
earns a negative profit. This gives to both firms an incentive to deviate from equal prices. Suppose that
X chooses Low. It is better for Y to choose High because the price war has become too costly. Then,
X follows suit but chooses strategically an Intermediate price, and Y responds with Low to steal the
market. Firm X next raises its price to a High level in the direction of exploiting profits. Undercutting
starts again with Y fixing an Intermediate price and X lowers it further to its best advantage. In short,
firms end up out of phase with respect to each other and alternate winning and losing each turn as the
C0-cycle predicts.

We look now to the Hopkins and Seymour [35] model where consumers engage in costly search
for getting price quotations. Consider the following extension under the two-person RSP game: let a
continuum of sellers be Agent X and a continuum of consumers be Agent Y . As before seller’s payoff
is its current profit. Consumer’s payoff is the utility (or total satisfaction) from the good. At each
point in time, sellers choose a level of price

R-s: Low S-s: Intermediate P-s: High

while consumers choose a level of information about prices

R-c: Poor S-c: Reasonable P-c: Full.

We assume that information is not freely available incurring in a search cost proportional to the
attainable levels. Full information allows for knowledge of the whole distribution of price. Reasonable
information says which sellers charge the highest price. Poor information does not distinguish sellers.

Within sellers, the relation among the possible actions is as suggested for the model of Noel [51].
Within consumers, being Poorly informed (R-c) beats being Reasonably informed (S-c) because the
good might be bought anywhere spending the least on information. Being Reasonably informed (S-c)
beats being Fully informed (P-c) for the same reason. Being Fully informed (P-c) beats being Poorly
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Agent X (sellers) chooses Agent Y (consumers) chooses Winner
Low price Fully informed Y

Intermediate price Fully informed X
Intermediate price Poorly informed Y

High price Poorly informed X
High price Reasonably informed Y
Low price Reasonably informed X
Low price Fully informed Y

Table 5.3 Interpretation of the C0-cycle in the context of Hopkins and Seymour model.

informed (R-c) because the good is always purchased at the lowest advertised price. The underlying
goals behind the actions of the agents is based on the maximisation of their payoffs.

In our model suppose that sellers interact actively with consumers based on the dynamic driven
by the two-person RSP game. We examine the C0-cycle constituted by the choices in Table 5.3. The
outcomes in each line are justified as follows. Given a market with Fully informed consumers and
Low-price sellers it is eligible to say that

• R-s is beaten by P-c because Fully informed consumers cause the price charged by sellers to
decrease.

Once markups are sufficiently small Low-price sellers have a greater incentive to raise their prices.

• S-s beats P-c because Intermediate-price sellers stay in business with Reasonably and Poorly
informed consumers.

It is in the interest of Fully informed consumers to be Poorly informed to acquire the good without
supporting search costs.

• S-s is beaten by R-c because Poorly informed consumers pay less for the good than they could.

Intermediate-price sellers make larger profits by charging a High price.

• P-s beats R-c because High-price sellers’ clientele consists only of Poorly informed consumers.

Poorly informed consumers have an incentive to search for a lower price. They access Reasonable
information at a relatively small cost.

• P-s is beaten by S-c because Reasonable informed consumers do not buy at a High price.

High-price sellers cut drastically the price in order to compete for all consumers and manage the
losses.

• R-s beats S-c because Low-price sellers serve Reasonably and Fully informed consumers.

It is better for Reasonably informed consumers have Full information about prices to take best
advantage of the current market. This initiates a new round of the joint seller-consumer interaction
where Low-price sellers face Fully informed consumers.
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Price dispersion appears here not because several sellers set different prices but because they
choose different prices over time. Our price dispersion is then in line with the temporal price dispersion
of Varian [66].

By way of conclusion, the description of our models by means of the RSP heteroclinic cycles may
help to clarify real world retailing behaviour.



Chapter 6

Examples

The aim of the chapter is to work out two abstract examples for illustrating the practical use of the
results achieved in Chapters 3 and 4.

We calculate the local stability indices for two particular heteroclinic networks involving a node
in common. Both consist of two heteroclinic cycles of type Z, and so quasi-simple heteroclinic
cycles. One is the Bowtie network with two heteroclinic cyles of type B−

3 in R5 and the other is the(
C−

2 ,C
−
2

)
-network in R6 whose name is self-explanatory.

The chapter is organised as follows. In Section 6.1 we study the stability of the heteroclinic cycles
in the Bowtie network, and the stability of the heteroclinic network as a whole. We then employ
the local stability index with respect to a heteroclinic cycle, the c-index, and with respect to the
heteroclinic network, the n-index. The influence of a common node instead of a common heteroclinic
connection regarding the stability properties is examined in comparison with the Kirk and Silber
network in [39]. Section 6.2 provides the construction of the

(
C−

2 ,C
−
2

)
-network by making use of the

symmetry. We describe each heteroclinic cycle in term of the stability and relate the results to the
ones of the

(
B+

2 ,B
+
2

)
-network in [17]. We examine the shape of the range of the return map around

the R-cycle and the occurrence of switching along the heteroclinic cycles. The main achievements are
Proposition 6.1.2, Theorem 6.1.6, Proposition 6.2.1 and Lemma 6.2.2.

6.1 The Bowtie network

The Bowtie network is made up of two B−
3 -cycles joined by one common node as depicted in

Figure 4.16. This construction can be performed in R5 using the simplex realisation from [13] as
follows. In the absence of noise we consider the vector field on xxx = (x1,x2,x3,x4,x5) ∈ R5 with

ẋ j = x j

(
1+

5

∑
i=1

(ai j −1)x2
i

)
, j = 1,2,3,4,5, (6.1)

which admits non-trivial equilibria ξ j of saddle type on every x j-axis. The system is equivariant under
the symmetry group Z5

2 where each Z2 acts by a reflection γ j : x j 7→ −x j. All coordinate subspaces
are fixed-point subspaces of appropriate isotropy subgroups and so invariant under the flow of (6.1).
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In the notation of [39] we set

Pi j = Fix
(
Z3

2 (γk, k ̸= i, j)
)
=
{

xxx ∈ R5 : xk = 0 for all k ̸= i, j
}

(i < j)

and

Si jk = Fix
(
Z2

2 (γl, l ̸= i, j,k)
)
=
{

xxx ∈ R5 : xl = 0 for all l ̸= i, j,k
}

(i < j < k)

for which dim(Pi j) = 2 and dim
(
Si jk
)
= 3. The coefficients ai j in (6.1) can be chosen such that there

are two robust heteroclinic cycles

R = [ξ1 → ξ2 → ξ3 → ξ1]⊂ S123

L = [ξ2 → ξ4 → ξ5 → ξ2]⊂ S245,

each with three nodes and three one-dimensional (saddle-sink) heteroclinic connections

κ1,2 = [ξ1 → ξ2]⊂ P12, κ2,3 = [ξ2 → ξ3]⊂ P23, κ3,1 = [ξ3 → ξ1]⊂ P13,

κ2,4 = [ξ2 → ξ4]⊂ P24, κ4,5 = [ξ4 → ξ5]⊂ P45, κ5,2 = [ξ5 → ξ2]⊂ P25.

As both heteroclinic cycles lie entirely in a three-dimensional fixed-point subspace and −I ∈ Z5
2 they

are of type B−
3 , and so of type Z. They are simple heteroclinic cycles and naturally fulfill the definition

of quasi-simple heteroclinic cycle.
We are interested in the stability of the individual heteroclinic cycles and the Bowtie network as a

whole. For this purpose, consider the construction of partial and full return maps in Appendix C.1
describing the flow near the network. Castro and Lohse [19] have strategically labelled the nodes of
the Bowtie network to provide a correspondence with the parameters pertaining to the heteroclinic
cycles in the original Kirk and Silber [39] network. The R-cycle is exactly the ξ3-cycle in [39] in such
a way that parameters coincide.

It is well known that contraction maps are an essential tool for evaluating attraction properties of
dynamical systems. By contraction map we mean the following:

Consider a set D ⊂ Rn and a map g : D → Rn. We say that g is a contraction on D if

• g(D)⊆ D;

• there exists 0 < q < 1 such that ∥g(xxx)−g(yyy)∥ ≤ q∥xxx− yyy∥ for all xxx,yyy ∈ D.

We next discuss whether or not the return maps associated with each heteroclinic cycle can be
contractions.

Lemma 6.1.1. Suppose that ρ̃,ρ > 1 and e23 > e24. If δ̃ > 0, then the return maps π̃ j around the
R-cycle in (C.1)–(C.3) are contractions. If δ > 0, then the return maps π j around the L-cycle in
(C.4)–(C.6) are contractions.

Proof. We prove the claim only for the R-cycle; analogous considerations apply to the L-cycle. As
ρ̃ > 1 and δ̃ > 0 we have

ν̃ =
e24

e23
(ρ̃ −1)+

c21

e23
δ̃ > 0 (6.2)
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and

τ̃ = σ̃ (ρ̃ −1)+
c13

e12

c21

e23
δ̃ =−σ̃ + ρ̃

c34

c32
> 0, (6.3)

regardless the sign of σ̃ .1 Combining with θ̃ , µ̃, γ̃ > 0 we deduce that π̃ j in (C.1)–(C.3) are contracting
in each component. What is left is to show that the domains of definition of π̃ j are mapped into
themselves. The return map π̃3 in (C.3) is well-defined in the entire H in,2

3 when δ̃ > 0 and so this is
immediate. Now

π̃1 (x2,x4,x5) ∈ dom(π̃1)⇔ 0 ≤ x4 < xσ̃ ρ̃−τ̃

2

π̃2 (x3,x4,x5) ∈ dom(π̃2)⇔ 0 ≤ x4 < x
e24
e23

ρ̃−ν̃

3

implies that the regions delimited by each inequality in (C.1) and (C.2) are mapped into themselves if

xρ̃σ̃−τ̃

2 > xσ̃
2 ⇔ σ̃ ρ̃ − τ̃ < σ̃ ⇔ −c13

e12

c21

e23
δ̃ < 0

x
e24
e23

ρ̃−ν̃

3 > x
e24
e23
3 ⇔ e24

e23
ρ̃ − ν̃ <

e24

e23
⇔ −c21

e23
δ̃ < 0.

Hence every π̃ j in (C.1)–(C.3) is a contraction mapping under the condition δ̃ > 0.

We use σi j to denote the local stability index at a point on κi, j with respect to the appropriate
heteroclinic cycle.

Proposition 6.1.2. Suppose that e23 > e24.

(a) The local stability indices for the R-cycle are:

• if either ρ̃ < 1 or δ̃ < 0, then σ12 = σ23 = σ31 =−∞;

• if ρ̃ > 1 and δ̃ > 0, then

σ12 = F index
(
−e24

e23
,1,0

)
=

e23

e24
−1 > 0,

σ23 =+∞,

σ31 = F index (−σ̃ ,1,0) =


+∞ if σ̃ ≤ 0
1
σ̃
−1 > 0 if 0 < σ̃ < 1

−σ̃ +1 < 0 if σ̃ > 1.

(b) The local stability indices for the L-cycle are:

• if either ρ < 1 or δ < 0, then σ52 = σ24 = σ45 =−∞;

1Recall that the transverse eigenvalues are negative when possible. Hence c34 > 0.



94 Examples

• if ρ > 1 and δ > 0, then

σ52 = F index
(
−e23

e24
,0,1

)
=−e24

e23
+1 < 0,

σ24 =+∞,

σ45 = F index (−σ ,0,1) =


+∞ if σ ≤ 0
1
σ
−1 > 0 if 0 < σ < 1

σ +1 < 0 if σ > 1.

Proof. We prove case (a); calculations for case (b) are identical.
The procedure is to apply Theorem 3.4.9. On account of Lemma 3.4.5 we need to check conditions

(i)–(iii) of Lemma 3.3.3 for the transition matrix M̃(3) in (C.8). Since this is a lower triangular matrix
its eigenvalues are the entries in the main diagonal: λ1 = ρ̃ , λ2 = 1 and λ3 = 1. The associated
eigenvectors are www1,3 =

(
ρ̃ −1, δ̃ , γ̃

)
, www2,3 = (0,1,0) and www3,3 = (0,0,1). We see that condition (i) is

trivially fulfilled but either (ii) or (iii) do not hold when either ρ̃ < 1 or δ̃ < 0. Under these inequalities
part (a) of Theorem 3.4.9 gives σ12 = σ23 = σ31 =−∞.

Now M̃(3) satisfies (i)–(iii) of Lemma 3.3.3 with λmax = λ1 and wwwmax,3 = www1,3 if ρ̃ > 1 and δ̃ > 0.
We illustrate how to compute σ12 along the heteroclinic connection κ1,2. By virtue of (3.14) the
matrices describing the local basin of attraction near ξ2 are M̃2, M̃3M̃2 and M̃(2) = M̃1M̃3M̃2. From
those only M̃2 has a basic transition matrix with negative entries as first factor. Besides vvvmax,2 defined
in (3.19) Lemma 3.4.6 establishes that F index must be evaluated at the lines of the matrix M2 such that

σ12 = min
{

F index (vvvmax,2) ,min
{

F index
(

c21

e23
,0,0

)
,F index

(
−e24

e23
,1,0

)
,F index

(
c25

e23
,0,1

)}}
.

A trivial verification shows that for each j = 1,2,3 the vector vvvmax, j is multiple of(
1

ρ̃ −1
,0,0

)
.

Therefore vvvmax, j has non-negative entries whenever ρ̃ > 1. Lemma 3.4.8 further attests

F index (vvvmax, j)= F index
(

c21

e23
,0,0

)
= F index

(
c25

e23
,0,1

)
=+∞

so that

σ12 = F index
(
−e24

e23
,1,0

)
=

e23

e24
−1 > 0.

Similar arguments lead to

σ23 = min
{

F index (vvvmax,3) ,min
{

F index (ρ̃,0,0) ,F index (ν̃ ,1,0) ,F index (µ̃,0,1)
}}
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and

σ31 = min
{

F index (vvvmax,1) ,
min

{
F index

(
c21

e23

c13

e12
,0,0

)
,F index (−σ̃ ,1,0) ,F index

(
c15

e12
+

c25

e23

c13

e12
,0,1

)}}
.

Here the arguments other than vvvmax,3 and vvvmax,1 are respectively the lines of the matrices
M̃(3) = M̃2M̃1M̃3 and M̃2M̃1. Recall that ν̃ > 0 when ρ̃ > 1 and δ̃ > 0 from (6.2). Therefore

F index (ρ̃,0,0) = F index (ν̃ ,1,0) = F index (µ̃,0,1) = +∞

as well as

F index
(

c21

e23

c13

e12
,0,0

)
= F index

(
c15

e12
+

c25

e23

c13

e12
,0,1

)
=+∞.

It follows that
σ23 =+∞ and σ31 = F index (−σ̃ ,1,0) .

The results above are depicted in Figure 6.1 and comparable with Propositions 5.2 and 5.3 in
[17] concerning the local stability indices for the Kirk and Silber network. By imposing the same
assumptions the Bowtie network provides greater freedom of the parameters because the sign of σ̃

(resp. δ̃ ) becomes independent of that of σ (resp. δ ).

ξ2

ξ5

ξ4

ξ1

ξ3

< 0

+∞

> 0

+∞

>−∞ >−∞

Fig. 6.1 The local stability indices for the Bowtie network when ρ, ρ̃ > 1 and δ , δ̃ > 0. The symbols
“< 0” and “> 0” denote finite indices.

In the notation of [17] we have σn
i j to distinguish when the local stability index along κi, j is

calculated with respect to the whole heteroclinic network. The authors refer to it as an n-index.
Below we adhere to Footnote 4 in Chapter 3 introducing the factor (1− ε) with 0 < ε < 1 into the

inequalities that define the domains of the local and return maps in Appendix C.1.

Proposition 6.1.3. Suppose that ρ̃,ρ > 1 and e23 > e24. If δ̃ > 0 and δ > 0, then the local stability
indices with respect to the Bowtie network are

σ
n
23 = σ

n
24 =+∞, σ

n
12, σ

n
52 > 0, σ

n
31 =

+∞ if σ̃ ≤ 0

> 0 if σ̃ > 0
and σ

n
45 =

+∞ if σ ≤ 0

> 0 if σ > 0.
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Proof. Assume that δ̃ > 0 and δ > 0. Lemma 2.4.6 together with Proposition 6.1.2 guarantee
σn

23 = σn
24 =+∞ and σn

12 > 0. The remaining calculations run as in the proof of Lemma 5.4 of [17].
Return maps around both heteroclinic cycles are contractions by Lemma 6.1.1. Any trajectory
that passes through their domains is then asymptotic to the corresponding heteroclinic cycle. It
suffices to look at the set of points along each heteroclinic connection whose trajectories cross
outside dom(π̃2)∪dom(πRL)⊂ H in,1

2 or dom(π2)∪dom(πLR)⊂ H in,5
2 whether starting near R or L,

respectively.
We proceed by dealing with σn

52, σn
45 and σn

31. For σn
52 we examine the measure of F0 in H in,5

2

across the heteroclinic connection κ5,2 where

F0 =
{
(x1,x3,x4) ∈ H in,5

2 : (x1,x3,x4) /∈ dom(π2)∪dom(πLR)
}

=

{
(x1,x3,x4) ∈ H in,5

2 : (1− ε)
− e23

e24 x
e23
e24
4 ≤ x3 ≤ (1− ε)x

e23
e24
4

}
.

(6.4)

Because this describes a thin cusp-shaped region we obtain σn
52 > 0 and finite. To compute σn

45 regard
the set G0 in H in,4

5 across the heteroclinic connection κ4,5 where

G0 =
{
(x1,x2,x3) ∈ H in,4

5 : g5 (x1,x2,x3) /∈ dom(π2)∪dom(πLR)
}

=

{
(x1,x2,x3) ∈ H in,4

5 : (1− ε)
− e23

e24 xσ
2 ≤ x3 ≤ (1− ε)xσ

2

}
.

(6.5)

It is clear that G0 is empty whenever σ ≤ 0 and, in consequence, σn
45 =+∞. Otherwise σn

45 > 0 and
finite due to the fact that G0 depicts a thin cusp-shaped region for every σ > 0. Next σn

31 is evaluated
by means of the measure of H0 in H in,3

1 across the heteroclinic connection κ3,1 where

H0 =
{
(x2,x4,x5) ∈ H in,3

1 : g̃1 (x2,x4,x5) /∈ dom(π̃2)∪dom(πRL)
}

=

{
(x2,x4,x5) ∈ H in,3

1 : (1− ε)xσ̃
2 ≤ x4 ≤ (1− ε)

− e24
e23 xσ̃

2

}
.

(6.6)

As before σ̃ ≤ 0 forces σn
31 =+∞, while σ̃ > 0 forces σn

31 > 0 and finite.
Notice also that σn

12 is finite taking into account the region I0 in H in,1
2 naturally excluded from

the domains of π̃2 and πRL:

I0 =
{
(x3,x4,x5) ∈ H in,1

2 : (x1,x4,x5) /∈ dom(π̃2)∪dom(πRL)
}

=

{
(x3,x4,x5) ∈ H in,1

2 : (1− ε)x
e24
e23
3 ≤ x4 ≤ (1− ε)

− e24
e23 x

e24
e23
3

}
.

(6.7)

Changing the sign of either δ̃ or δ makes the Bowtie network less stable as shown next.

Proposition 6.1.4. Suppose that ρ̃,ρ > 1 and e23 > e24. If δ̃ δ < 0, then the local stability indices
with respect to the Bowtie network are



6.1 The Bowtie network 97

• if δ̃ < 0 and δ > 0, then

σ
n
24 =+∞, σ

n
23, σ

n
31, σ

n
12, σ

n
52 > 0 and σ

n
45 =

+∞ if σ ≤ 0

> 0 if σ > 0;

• if δ̃ > 0 and δ < 0, then

σ
n
23 =+∞, σ

n
24, σ

n
45, σ

n
12, σ

n
52 > 0 and σ

n
31 =

+∞ if σ̃ ≤ 0

> 0 if σ̃ > 0.

Proof. Assume that δ̃ < 0 and δ > 0. That σn
24 = +∞ follows directly from Lemma 2.4.6 and

Proposition 6.1.2. Lemma 6.1.1 asserts that the return maps around the L-cycle are contractions. The
values of σn

52 and σn
45 thus equal the ones in Proposition 6.1.3. All n-indices along the heteroclinic

connections of the R-cycle can be handled in much the same way as in the proof of Lemma 3 of [39].
We must determine the set of points in each incoming cross section that are not attracted to the Bowtie
network while trajectories through them move around R.

For σn
31 we soon lose track of trajectories starting from H0 ⊂ H in,3

1 in (6.6). Now H0 ̸= /0 as
σ̃ > 0 holds when δ̃ < 0. Given k ∈N let us denote by Hk the kth preimage of H0 under π̃1. We have

H1 = π̃
−1
1 (H0)

=
{
(x2,x4,x5) ∈ H in,3

1 : (x2,x4,x5) ∈ dom(π̃1) and π̃1 (x2,x4,x5) ∈ H0

}
=

{
(x2,x4,x5) ∈ H in,3

1 : x4 < (1− ε)xσ̃
2 and (1− ε)xσ̃ ρ̃−τ̃

2 ≤ x4 ≤ (1− ε)
− e24

e23 xσ̃ ρ̃−τ̃

2

}
. (6.8)

Since δ̃ < 0, (6.3) shows that σ̃ ρ̃ − τ̃ > σ̃ . The intersection of H1 with a sufficiently small
neighbourhood of the origin is reduced to the second condition in (6.8). See Figure 6.2 where
Proj2,4 : (x2,x4,x5) 7→ (x2,x4,0) denotes the projection mapping to the (x2,x4)-plane.

1

1

x2

x4

x4 = (1− ε)xσ̃ ρ̃−τ̃

2

x4 = (1− ε)
− e24

e23 xσ̃ ρ̃−τ̃

2

x4 = (1− ε)xσ̃
2

Proj2,4 (H1)

Fig. 6.2 Projection of H1 onto the (x2,x4)-plane within H in,3
1 .
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Iteration of π̃1 for k ≥ 2 yields

π̃
k
1 (x2,x4,x5) =

(
xρ̃k

2 , x4 xτ̃ ∑
k−1
i=0 ρ̃ i

2 , x5 xθ̃ ∑
k−1
i=0 ρ̃ i

2

)
, 0 ≤ x4 < (1− ε)xσ̃ ρ̃k−1−τ̃ ∑

k−2
i=0 ρ̃ i

2 ,

so that

Hk = π̃
−k
1 (H0)

=
{
(x2,x4,x5) ∈ H in,3

1 : (x2,x4,x5) ∈ dom
(
π̃

k
1
)

and π̃
k
1 (x2,x4,x5) ∈ H0

}
=

{
(x2,x4,x5) ∈ H in,3

1 : x4 <(1− ε)xσ̃ ρ̃k−1−τ̃ ∑
k−2
i=0 ρ̃ i

2 and

(1− ε)xσ̃ ρ̃k−τ̃ ∑
k−1
i=0 ρ̃ i

2 ≤ x4 ≤ (1− ε)
− e24

e23 xσ̃ ρ̃k−τ̃ ∑
k−1
i=0 ρ̃ i

2

}
.

All possible trajectories in H in,3
1 that leave any neigbourhood of the Bowtie network are those that

lie in
⋃

k∈N0
Hk. The others belong to the basin of attraction of the heteroclinic network given by

B (R∪L) at which

B (R∪L)∩Bε (000) = Bε (000)\
∞⋃

k=0

Hk

where Bε (000) is an open ε-ball around the origin in H in,3
1 . The sequence of exponents (αk)k∈N0

with
αk = σ̃ ρ̃k − τ̃ ∑

k−1
i=0 ρ̃ i is positive, monotonically increasing and unbounded because α0 = σ̃ > 0 and

αk+1 −αk = σ̃ ρ̃
k+1 − τ̃

k

∑
i=0

ρ̃
i −

(
σ̃ ρ̃

k − τ̃

k−1

∑
i=0

ρ̃
i

)
= ρ̃

k (σ̃ ρ̃ − τ̃ − σ̃)

=−c13

e12

c21

e23
δ̃ ρ̃

k > 0

whenever ρ̃ > 1 and δ̃ < 0. Therefore we obtain σn
31 > 0 by Lemma 2.4.7.

In the same manner to calculate σn
12 we need the preimages of I0 ⊂ H in,1

2 in (6.7) under the
appropriate return map π̃2. First

I1 = π̃
−1
2 (I0)

=
{
(x3,x4,x5) ∈ H in,1

2 : (x3,x4,x5) ∈ dom(π̃2) and π̃2 (x3,x4,x5) ∈ I0

}
=

{
(x3,x4,x5) ∈ H in,1

2 : x4 < (1− ε)x
e24
e23
3 and (1− ε)x

e24
e23

ρ̃−ν̃

2 ≤ x4 ≤ (1− ε)
− e24

e23 x
e24
e23

ρ̃−ν̃

2

}
.

With

π̃
k
2 (x3,x4,x5) =

(
xρ̃k

3 , x4 xν̃ ∑
k−1
i=0 ρ̃ i

3 , x5 xµ̃ ∑
k−1
i=0 ρ̃ i

3

)
, 0 ≤ x4 < (1− ε)x

e24
e23

ρ̃k−1−ν̃ ∑
k−2
i=0 ρ̃ i

3 ,
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we get

Ik = π̃
−k
2 (I0)

=
{
(x3,x4,x5) ∈ H in,1

2 : (x3,x4,x5) ∈ dom
(
π̃

k
2
)

and π̃
k
2 (x3,x4,x5) ∈ I0

}
=

{
(x3,x4,x5) ∈ H in,1

2 : x4 <(1− ε)x
e24
e23

ρ̃k−1−ν̃ ∑
k−2
i=0 ρ̃ i

3 and

(1− ε)x
e24
e23

ρ̃k−ν̃ ∑
k−1
i=0 ρ̃ i

3 ≤ x4 ≤ (1− ε)
− e24

e23 x
e24
e23

ρ̃k−ν̃ ∑
k−1
i=0 ρ̃ i

3

}
.

But (βk)k∈N0
where βk =

e24

e23
ρ̃k − ν̃ ∑

k−1
i=0 ρ̃ i is an unbounded monotone increasing sequence since

β0 =
e24

e23
> 0 and

βk+1 −βk =
e24

e23
ρ̃

k+1 − ν̃

k

∑
i=0

ρ̃
i −

(
e24

e23
ρ̃

k − ν̃

k−1

∑
i=0

ρ̃
i

)

= ρ̃
k
(

e24

e23
ρ̃ − ν̃ − e24

e23

)
=−c21

e23
δ̃ ρ̃

k > 0.

Again by Lemma 2.4.7, it follows that σn
21 > 0.

The last index remaining is σn
23. Similarly we determine the set J0 of points in H in,2

3 that hit H in,1
2

in neither dom(π̃2) nor dom(πRL) and its preimages under π̃3. We have

J0 =
{
(x1,x4,x5) ∈ H in,2

3 : g̃1 ◦ g̃3 (x1,x4,x5) /∈ dom(π̃2)∪dom(πRL)
}

=

{
(x1,x4,x5) ∈ H in,2

3 : (1− ε)x−δ̃

1 ≤ x4 ≤ (1− ε)
− e24

e23 x−δ̃

1

}
and

J1 = π̃
−1
3 (J0)

=
{
(x1,x4,x5) ∈ H in,2

3 : (x1,x4,x5) ∈ dom(π̃3) and π̃3 (x1,x4,x5) ∈ J0

}
=

{
(x1,x4,x5) ∈ H in,2

3 : x4 < (1− ε)x−δ̃

1 and (1− ε)x−δ̃ ρ̃−δ̃

1 ≤ x4 ≤ (1− ε)
− e24

e23 x−δ̃ ρ̃−δ̃

1

}
.

For every k ≥ 2 we write down

π̃
k
3 (x1,x4,x5) =

(
xρ̃k

1 , x4 xδ̃ ∑
k−1
i=0 ρ̃ i

1 , x5 xγ̃ ∑
k−1
i=0 ρ̃ i

1

)
, 0 ≤ x4 < (1− ε)x−δ̃ ∑

k−1
i=0 ρ̃ i

1 ,
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and so

Jk = π̃
−k
3 (J0)

=
{
(x1,x4,x5) ∈ H in,2

3 : (x1,x4,x5) ∈ dom
(
π̃

k
3
)

and π̃
k
3 (x1,x4,x5) ∈ J0

}
=

{
(x1,x4,x5) ∈ H in,2

3 : x4 <(1− ε)x−δ̃ ∑
k−1
i=0 ρ̃ i

1 and

(1− ε)x−δ̃ ∑
k
i=0 ρ̃ i

1 ≤ x4 ≤ (1− ε)
− e24

e23 x−δ̃ ∑
k
i=0 ρ̃ i

1

}
.

The sequence of exponents (γk)k∈N0
with γk = −δ̃ ∑

k
i=0 ρ̃ i is positive and increases monotonically

because γ0 =−δ̃ > 0 and

γk+1 − γk =−δ̃

k+1

∑
i=0

ρ̃
i −

(
−δ̃

k

∑
i=0

ρ̃
i

)
=−δ̃ ρ̃

k+1 > 0.

Then, σn
23 > 0 from Lemma 2.4.7.

The case δ̃ > 0 and δ < 0 is analogous and we address it briefly. All return maps around the R-cycle
are contractions according to Lemma 6.1.1. The associated n-indices are as in Proposition 6.1.3. For
the L-cycle we compute σn

52, σn
45 and σn

24 using along each heteroclinic connection the sets of points
whose trajectories next intersect the complement of dom(π2)∪dom(πLR) in H in,5

2 . So they do not
stay near the heteroclinic network any longer. These are, respectively, F0 ⊂ H in,5

2 in (6.4), G0 ⊂ H in,4
5

in (6.5) and

K0 =
{
(x1,x3,x5) ∈ H in,2

4 : g5 ◦g4 (x1,x3,x5) /∈ dom(π2)∪dom(πLR)
}

=

{
(x1,x3,x5) ∈ H in,2

4 : (1− ε)x−δ

5 ≤ x3 ≤ (1− ε)
− e23

e24 x−δ

5

}
.

In order to find all points that do not remain close to the heteroclinic network as they turn around L
we take the preimages of the excluded sets under the appropriate return map. We have σ > 0 due to
δ < 0. By Lemma 2.4.7 we check at once that σn

52,σ
n
45,σ

n
24 > 0.

Proposition 6.1.5. Suppose that ρ̃,ρ > 1 and e23 > e24. If δ̃ < 0 and δ < 0, then the local stability
indices with respect to the Bowtie network are all positive and finite.

Proof. Since δ̃ and δ are independent the proof consists of joining the arguments applied to the R-
and L-cycles in Proposition 6.1.4 given the imposed signs of the parameters.

As a consequence of the last three results and Theorem 2.4.3 we establish the generic stability
configuration of the Bowtie network.

Theorem 6.1.6. Suppose that ρ̃,ρ > 1 and e23 > e24. Then, the Bowtie network is e.a.s.

The stability of the network as a whole is as robust a phenomenon in the Bowtie as in the Kirk and
Silber network. In either case, it only depends on the magnitude of ρ̃ and ρ . However, unlike the Kirk
and Silber network, in the Bowtie both heteroclinic cycles can be c.u while the whole heteroclinic
network is e.a.s
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6.2 The
(
C−

2 ,C
−
2
)
-network

The
(
C−

2 ,C
−
2

)
-network consists of two C−

2 -cycles connected at two nodes related by symmetry, see
Figure 6.3(a). It can be realised in R6 through the extension of the symmetry group that admits a
single heteroclinic cycle of type C−

2 in R4, the latter found in [43, 56].
Consider a system of ordinary differential equations ẋxx= f (xxx) where xxx= (x1,x2,x3,x4,x5,x6)∈R6.

We require f : R6 → R6 to be a Γ-equivariant vector field with Γ = Z2 nZ6
2 generated by

ϕ : (x1,x2,x3,x4,x5,x6) 7→ (x4,x5,x6,x1,x2,x3)

and

γ j : x j 7→ −x j, j = 1, . . . ,6.

The action of Z6
2 in R6 guarantees that each coordinate subspace is invariant under the flow. In

particular, we only need to take the dynamics in the positive orthant. Let us denote

Pi j = Fix
(
Z4

2 (γk, k ̸= i, j)
)
=
{

xxx ∈ R6 : xk = 0 for all k ̸= i, j
}

(i < j)

and

Qi jkl = Fix
(
Z2

2 (γs, s ̸= i, j,k, l)
)
=
{

xxx ∈ R6 : xs = 0 for all s ̸= i, j,k, l
}

(i < j < k < l).

We assume that there are six saddle-type equilibria ξ j on the (positive) coordinate x j-axes composing
of two robust heteroclinic cycles

R = [ξ1 → ξ2 → ξ4 → ξ5 → ξ1]⊂ Q1245

L = [ξ2 → ξ3 → ξ5 → ξ6 → ξ2]⊂ Q2356.

Each heteroclinic connection κi, j = [ξi → ξ j] belongs to the coordinate plane Pi j if i < j, or Pji

otherwise, such that ξ j is a sink therein.
The heteroclinic cycles are invariant by the action of Γ. Given that ξ j = ϕξ j+3 we find the

corresponding building blocks satisfying

Γ [ξ1 → ξ2 → ϕξ1] = R

Γ [ξ2 → ξ3 → ϕξ2] = L.

By construction, both heteroclinic cycles are contained in a four-dimensional fixed-point subspace of
the form Qi jkl . When restricting the representation of Γ to it they are of type C−

2 in the classification of
[43]. We make use of the symmetry so that the original heteroclinic network quotients to a heteroclinic
network with three nodes as illustrated in Figure 6.3(b). The quotient cycles are regarded as

R = [ξ1 → ξ2 → ξ1]

L = [ξ2 → ξ3 → ξ2] .
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ξ6 ξ1

ξ2

ξ3

ξ5

ξ4

(a)

ξ3 ξ1

ξ2

(b)

Fig. 6.3 (a) The
(
C−

2 ,C
−
2

)
-network and (b) its quotient. The equilibria are such that ξ j = ϕξ j+3,

j = 1,2,3, so the quotient network comprises of three relative equilibria.

All the information concerning the dynamic transitions near the
(
C−

2 ,C
−
2

)
-network can be found

in Appendix D.1. First we check Lemma 4.3.3 pointing out that all heteroclinic connections in
this example are of type contracting-to-transverse. Write Fi, j,k for the range of the local map
φi, j,k : H in,i

j → Hout,k
j just as before. In Hout,4

2 we find

F1,2,4 =

{
(x1,x3,x5,x6) ∈ Hout,4

2 : x5 < x
c25
c21
1 and x6 < x

c26
c21
1

}
F6,2,4 =

{
(x1,x3,x5,x6) ∈ Hout,4

2 : x1 < x
c21
c26
6 and x5 < x

c25
c26
6

}
.

Figure 6.4 shows how the F-sets are taken close to ξ1 through φ5,1,2 ◦ψ2,1 : Hout,4
2 → Hout,2

1 . We
consider the restriction of the sets to a convenient three-dimensional subspace. The transverse
eigenspace at ξ2 with respect to the R-cycle is spanned by x3, x5 and x6. At the following node ξ4

the expanding eigenspace is spanned by x5. Every boundary of F1,2,4 contained in the (x1,x3)- and
(x1,x6)-faces are sent through φ5,1,2 ◦ψ2,1 to the origin of Hout,2

1 . The cusp-shaped region that delimits
F1,2,4 in the (x1,x5)-face becomes a conic region in the (x5,x4)-face of Hout,2

1 . A similar conclusion
can be drawn for the transformation of F6,2,4.

As the global map ψ1,2 : Hout,2
1 → H in,1

2 is the identity we get directly the form of the range FR

under the return map πR ≡ π̃2 : H in,1
2 → H in,1

2 defined in (D.2). In fact, it corresponds to the blue
cone-shaped region in Figure 6.4(b) and (d). Analytically, we have

FR = im(g̃1)∩ g̃∗1 (im(g̃2)) = ψ1,2 (F5,1,2)∩ g̃∗1 (ψ2,1 (F1,2,4)) .

The respective expressions in Appendix D.1 allow us to determine

im(g̃1) =

{
(x3,x4,x5,x6) ∈ H in,1

2 : x3 < x
c13
c15
5 and x4 < x

c14
c15
5 and x6 < x

c16
c15
5

}
g̃∗1 (im(g̃2)) =

{
(x3,x4,x5,x6) ∈ H in,1

2 : x4 > x
c14
c15

+
e12
c15

c21
c25

5 and x3 < x
c26
c21
4 x

c13
c15

− c14
c15

c26
c21

5

}
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x1

x6

x5

E

F

D

C

B

A

F1,2,4

F6,2,4

(a) Hout,4
2

x4

x3

x5

E ′ =A′ = D′

C

B

F

φ5,1,2 ◦ψ2,1
(
F1,2,4

)
φ5,1,2 ◦ψ2,1

(
F6,2,4

)
(b) Hout,2

1 ≡ H in,1
2

x1

x6

x5

E

F C

B
A

D

F1,2,4

F6,2,4

(c) Hout,4
2

x4

x3

x5

F

E

C

B
A

D

φ5,1,2 ◦ψ2,1
(
F1,2,4

)
φ5,1,2 ◦ψ2,1

(
F6,2,4

)
(d) Hout,2

1 ≡ H in,1
2

Fig. 6.4 Transformation of the F-sets near ξ2 under φ5,1,2 ◦ψ2,1 : Hout,4
2 → Hout,2

1 for the R-cycle in
the
(
C−

2 ,C
−
2

)
-network: the set F1,2,4 of points coming from ξ1 and the F6,2,4 of points coming from ξ6

on the left side, and their images under φ5,1,2 ◦ψ2,1 on the right side. (a) and (b) each square [ABCD]
on x1 = k is shrunk and transformed into a cusp-shaped surface A′B′C′ and each square [CDEF ] on
x6 = k is shrunk and transformed into a cusp-shaped surface C′D′F ′; (c) and (d) each surface ABCD
and CDEF on x5 = k are shrunk and transformed into surfaces A′B′C′D′ and C′D′E ′F ′.
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such that

FR =

{
(x3,x4,x5,x6) ∈ H in,1

2 : x3 < x
c26
c21
4 x

c13
c15

− c14
c15

c26
c21

5 and x
c14
c15

+
e12
c15

c21
c25

5 < x4 < x
c14
c15
5 and x6 < x

c16
c15
5

}
.

Figure 6.5 highlights FR within im(g̃1) restricted to the (x3,x4,x5)-subspace of H in,1
2 . It is

interesting to compare the set FR with the analogous set for the Bowtie network in Figure 4.18. The
shape of the sets is quite different and appears to depend on the type of the heteroclinic connections.
Even so both are topologically identical to a cone.

x4

x3

x5

im(g̃1)

FR

Fig. 6.5 The set FR in H in,1
2 for the

(
C−

2 ,C
−
2

)
-network.

The following result provides the local stability indices of each heteroclinic cycle in the(
C−

2 ,C
−
2

)
-network. These are reproduced in Figure 6.6(a) when the indices are not all −∞.

We continue to use σi j for the local stability index along the heteroclinic connection κi, j with
respect to the appropriate heteroclinic cycle.

Proposition 6.2.1. Suppose that e23 < e24.

(a) The local stability indices for the R-cycle are:

• if either

α̃ +
c21

e24
< min

{
2,1+

c21

e24

c15

e12

}
,

or wmax,1
2 < 0 for the transition matrix M̃(1), then σ12 = σ21 =−∞;

• if

α̃ +
c21

e24
> min

{
2,1+

c21

e24

c15

e12

}
,



6.2 The
(
C−

2 ,C
−
2

)
-network 105

and wmax,1
4 > 0 for the transition matrix M̃(1), then

σ12 = F index
(

1,−e23

e24
,0,0

)
=

e24

e23
−1 > 0

σ21 = F index
(

δ̃ ,1,−e23

e24
,0
)
=



δ̃ +1− e23

e24

max
{

δ̃ ,1
} < 0 if δ̃ +1− e23

e24
< 0

0 if δ̃ +1− e23

e24
= 0

−δ̃ −1+
e23

e24

min
{

δ̃ ,−e23

e24

} > 0 if δ̃ +1− e23

e24
> 0.

(b) The local stability indices for the L-cycle are:

• if either

α +
c26

e23
< min

{
2,1+

c26

e23

c32

e35

}
,

or wmax,3
1 < 0 for the transition matrix M(3), then σ32 = σ23 =−∞;

• if

α +
c26

e23
> min

{
2,1+

c26

e23

c32

e35

}
,

and wmax,3
2 > 0 for the transition matrix M(3), then

σ32 = F index
(

0,−e24

e23
,1,0

)
= 1− e24

e23
< 0

σ23 = F index
(

1,0,δ ,−e24

e23

)
=



1+δ − e24

e23
max{δ ,1}

< 0 if 1+δ − e24

e23
< 0

0 if 1+δ − e24

e23
= 0

−1−δ +
e24

e23

min
{

δ ,−e24

e23

} > 0 if 1+δ − e24

e23
> 0.

Proof. We give the proof only for the case (a); similar arguments apply to the case (b).
In line with Theorem 3.4.9 we must find when conditions (i)–(iii) of Lemma 3.3.3 for the transition

matrix M̃(1) in (D.3) are satisfied. The eigenvalues of M̃(1) are the roots of the characteristic polynomial

p(λ ) = (λ −1)(λ +1)
[

λ
2 −
(

α̃ +
c21

e24

)
λ +

c21

e24
α̃ − c25

e24
β̃

]
with

c21

e24
α̃ − c25

e24
β̃ =−c21

e24

c15

e12
.
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They are λ1 = 1, λ2 =−1,

λ3 =

α̃ +
c21

e24
+

√(
α̃ − c21

e24

)2

+4
c25

e24
β̃

2
and

λ4 =

α̃ +
c21

e24
−

√(
α̃ − c21

e24

)2

+4
c25

e24
β̃

2
.

Since β̃ > 0 we have λi ∈ R for all i = 1,2,3,4, and condition (i) is immediate. The candidate for
λmax, the maximum eigenvalue in absolute value of M̃(1), is λ3. In particular, λ3 > |λ4| because
α̃ +

c21

e24
> 0. Observe that λ3 and λ4 are also the eigenvalues of the 2×2 submatrix

 α̃
c25

e24

β̃
c21

e24

 .
By Lemma B.2 in [53] we know that λ3 > 1 if and only if

max


α̃ +

c21

e24
2

, α̃ +
c21

e24
− c21

e24

c15

e12

> 1, (6.9)

which is equivalent to

α̃ +
c21

e24
> min

{
2,1+

c21

e24

c15

e12

}
.

Denote by www3,1 =
(

w3,1
1 ,w3,1

2 ,w3,1
3 ,w3,1

4

)
the eigenvector of M̃(1) associated with the eigenvalue λ3.

Simple algebra attests that

w3,1
1 =

c25

e24

(
λ

2
3 −1

)
w3,1

2 =
c25

e24

(
δ̃ +λ3η̃

)
+(λ3 − α̃)

(
−e23

e24
+

c26

e24
λ3

)
w3,1

3 = (λ3 − α̃)
(
λ

2
3 −1

)
w3,1

4 =
c25

e24

(
λ3δ̃ + η̃

)
+(λ3 − α̃)

(
−e23

e24
λ3 +

c26

e24

)
and

λ3 − α̃ =

−α̃ +
c21

e24
+

√(
α̃ − c21

e24

)2

+4
c25

e24
β̃

2
>

−α̃ +
c21

e24
+

∣∣∣∣α̃ − c21

e24

∣∣∣∣
2

≥ 0.
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Hence the first and third components of www3,1 are always positive whenever λ3 > 1. The same is not so
obvious for the second and fourth components of www3,1. But, from the relation M̃(1)www3,1 = λ3www3,1, we
have seen that

η̃w3,1
1 +

c26

e24
w3,1

3 +w3,1
4 = λ3w3,1

2 .

If λ3 > 1, then η̃w3,1
1 +

c26

e24
w3,1

3 > 0 and w3,1
4 > 0 implies w3,1

2 > 0. We deduce that condition (iii) of

Lemma 3.3.3 is violated for either λ3 < 1, namely (6.9) does not hold, or w3,1
2 < 0. These restrictions

leads to σ12 = σ21 =−∞ according to part (a) of Theorem 3.4.9.
On the contrary, M̃(1) satisfies (i)–(iii) of Lemma 3.3.3 with λmax = λ3 and wwwmax,1 = www3,1 provided

(6.9) is true and w3,1
4 > 0. We further calculate the local stability indices along the heteroclinic

connections of R. For σ12 we consider the matrices M̃2 and M̃(2) = M̃1M̃2 whose transition starts near
ξ2. Lemma 3.4.6 states that

σ12 = min
{

F index (vvvmax,2) ,
min

{
F index

(
0,

c25

e24
,1,0

)
,F index

(
0,

c26

e24
,0,1

)
,F index

(
0,

c21

e24
,0,0

)
,

F index
(

1,−e23

e24
,0,0

)}}
,

where vvvmax,2 is the vector defined in (3.19) and the remaining arguments are the lines of the matrix
M̃2. It is easy to check that vvvmax,2 is multiple of(

0,
e12

c14

µ̃ −λ4

(λ3 −λ4)
(
λ 2

3 −1
) , 1

(λ3 −λ4)
(
λ 2

3 −1
) ,0) .

By similarity M̃(1) and M̃(2) have equal eigenvalues in such a way that λi, i = 3,4, is also expressed as

λ3,4 =

µ̃ +
c15

e12
±

√(
µ̃ − c15

e12

)2

+4
c14

e12
ρ̃

2
.

Then,

µ̃ −λ4 =

µ̃ − c15

e12
+

√(
µ̃ − c15

e12

)2

+4
c14

e12
ρ̃

2
>

µ̃ − c15

e12
+

∣∣∣∣µ̃ − c15

e12

∣∣∣∣
2

≥ 0.

We can certainly take vvvmax,2 with non-negative entries because λ3 > λ4. We now employ Lemma 3.4.8
yielding

F index (vvvmax,2)= F index
(

0,
c25

e24
,1,0

)
= F index

(
0,

c26

e24
,0,1

)
= F index

(
0,

c21

e24
,0,0

)
=+∞

and

σ12 = F index
(

1,−e23

e24
,0,0

)
=

e24

e23
−1 > 0.
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In the same manner we find

σ21 = min
{

F index (vvvmax,1) ,
min

{
F index

(
α̃,0,

c25

e24
,0
)
,F index

(
η̃ ,0,

c26

e24
,1
)
,F index

(
β̃ ,0,

c21

e24
,0
)
,

F index
(

δ̃ ,1,−e23

e24
,0
)}}

,

the vector vvvmax,1 being multiple of(
e24

c25

α̃ −λ4

(λ3 −λ4)
(
λ 2

3 −1
) ,0, 1

(λ3 −λ4)
(
λ 2

3 −1
) ,0)

with

α̃ −λ4 =

α̃ − c21

e24
+

√(
α̃ − c21

e24

)2

+4
c25

e24
β̃

2
>

α̃ − c21

e24
+

∣∣∣∣α̃ − c21

e24

∣∣∣∣
2

≥ 0.

As a result

F index (vvvmax,1)= F index
(

α̃,0,
c25

e24
,0
)
= F index

(
η̃ ,0,

c26

e24
,1
)
= F index

(
β̃ ,0,

c21

e24
,0
)
=+∞

and

σ21 = F index
(

δ̃ ,1,−e23

e24
,0
)
.

The graph in Figure 6.3(b) may represent the translated
(
B+

2 ,B
+
2

)
-network of Section 3.5 wherein

the shared heteroclinic connection is reduced to a node. Fix here ξb = ξ2. Its existence is supported in
R5 by the cylinder realisation in [13] as well. The local stability indices for the new R and L-cycles
coincide respectively with the ones for the so-called C2 and C3-cycles in Lemma 3.5.1. The same
graph describes two heteroclinic networks whose corresponding heteroclinic cycles can hold different
levels of attraction. In fact, under the stability of the heteroclinic cycles the indices σ21 an σ23 for the(
C−

2 ,C
−
2

)
-network assign any value in (−∞,+∞). Those exhibit the strongest form of local stability

ξ3 ξ1

ξ2

̸=±∞

< 0

̸=±∞

> 0

(a)

ξ3 ξ1

ξ2

+∞

< 0

+∞

> 0

(b)

Fig. 6.6 The local stability indices for (a) the
(
C−

2 ,C
−
2

)
-network in Proposition 6.2.1 and (b) the

translated
(
B+

2 ,B
+
2

)
-network in Lemma 3.5.1. The symbols “< 0” and “> 0” denote finite indices.
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in the presence of heteroclinic cycles of type B+
2 , see Figure 6.6(b). Calculations in [53] suggest that

single type-B and type-C cycles in R4 distinguish themselves by its local stability indices.
We end this section by examining the conditions that induce switching along one heteroclinic

cycle in the
(
C−

2 ,C
−
2

)
-network, say the R-cycle.

Lemma 6.2.2. There is switching along the R-cycle in the
(
C−

2 ,C
−
2

)
-network if and only if

c13

c14
<

e23

e24
<

θ̃

µ̃
or

θ̃

µ̃
<

e23

e24
<

c13

c14
.

Proof. Switching along the R-cycle occurs if and only if g̃1 (ψ2,1 (Fi,2,4))∩C1,2,k ̸= /0 with i = 1,6 and
k = 3,4. Using information of Appendix D.1 we find

C1,2,3 =

{
(x3,x4,x5,x6) ∈ H in,1

2 : x4 < x
e24
e23
3

}
C1,2,4 =

{
(x3,x4,x5,x6) ∈ H in,1

2 : x3 < x
e23
e24
4

}
and

g̃1 (ψ2,1 (F1,2,4)) =

{
(x3,x4,x5,x6) ∈ H in,1

2 : x3 < x
c26
c21
4 x

c13
c15

− c14
c15

c26
c21

5

and x
c14
c15

+
e12
c15

c21
c25

5 < x4 < x
c14
c15
5 and x6 < x

c16
c15
5

}
g̃1 (ψ2,1 (F6,2,4)) =

{
(x3,x4,x5,x6) ∈ H in,1

2 : x4 < x
c21
c26
3 x

c14
c15

− c13
c15

c21
c26

5

and x
c13
c15

+
e12
c15

c26
c25

5 < x3 < x
c13
c15
5 and x6 < x

c16
c15
5

}
.

It is worth pointing out that C1,2,4 and g̃1 (ψ2,1 (F1,2,4)) are respectively the domain and the range
of the return map πR ≡ π̃2 = g̃1 ◦ g̃2 : H in,1

2 → H in,1
2 around R. Moreover, the sets g̃1 (ψ2,1 (F1,2,4)) and

1

1

x4

x3

x3 = x
c13
c14
4
(
resp. x3 = x

θ̃

µ̃

4
)

x3 = x
θ̃

µ̃

4
(
resp. x3 = x

c13
c14
4
)

Proj3,4
[
g̃1
(
ψ2,1

(
F1,2,4

))]
Proj3,4

[
g̃1
(
ψ2,1

(
F6,2,4

))]

Fig. 6.7 Projection of g̃1 (ψ2,1 (Fi,2,4)), i = 1,6, onto the (x3,x4)-plane within H in,1
2 .
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1

1

x4

x3

1

1

x4

x3

x3 = x
e23
e24
4

Proj3,4
[
C1,2,4

]
x3 = x

c13
c14
4
(
resp. x3 = x

θ̃

µ̃

4
) Proj3,4

[
g̃1
(
ψ2,1

(
F1,2,4

))]
∩Proj3,4

[
g̃1
(
ψ2,1

(
F6,2,4

))]
x3 = x

θ̃

µ̃

4
(
resp. x3 = x

c13
c14
4
)

Fig. 6.8 Intersection of the projected sets g̃1 (ψ2,1 (F1,2,4)) and g̃1 (ψ2,1 (F6,2,4)) with C1,2,4 on
the (x3,x4)-plane within H in,1

2 . On the left side g̃1 (ψ2,1 (F1,2,4)) is contained in C1,2,4 and then
g̃1 (ψ2,1 (F1,2,4))∩C1,2,3 = /0. On the right side g̃1 (ψ2,1 (Fi,2,4))∩C1,2,k ̸= /0, i = 1,6 and k = 3,4.

g̃1 (ψ2,1 (F6,2,4)) coincide geometrically with the blue and green cone-shaped regions in Figure 6.4(b)
and (d).

In order to determine the desired intersections we project on the (x3,x4)-plane the boundary curves
that separate g̃1 (ψ2,1 (F1,2,4)) from g̃1 (ψ2,1 (F6,2,4)) inside H in,1

2 . The latter arex3 = x
c26
c21
4 x

c13
c15

− c14
c15

c26
c21

5

x4 = x
c14
c15

+
e12
c15

c21
c25

5

⇔ x3 = x
θ̃

µ̃

4 and

x3 = x
c26
c21
4 x

c13
c15

− c14
c15

c26
c21

5

x4 = x
c14
c15
5

⇔ x3 = x
c13
c14
4 .

Regardless of the relation between such curves the projection of g̃1 (ψ2,1 (Fi,2,4)), i = 1,6, on
the (x3,x4)-plane has the configuration of Figure 6.7. Let Proj3,4 : (x3,x4,x5,x6) 7→ (x3,x4,0,0) be
the projection mapping to the (x3,x4)-subspace. It suffices to check when Proj3,4 [g̃1 (ψ2,1 (F1,2,4))]∩
Proj3,4 [g̃1 (ψ2,1 (F6,2,4))]∩Proj3,4 [C1,2,4] ̸= /0 because we take C1,2,3 as the complement of C1,2,4 in
H in,1

2 . Figure 6.8 depicts two possible situations. Of course the one capable of inducing switching
along the R-cycle is that on the right. This occus whenever

x
θ̃

µ̃

4 < x
e23
e24
4 < x

c13
c14
4 ⇔ θ̃

µ̃
>

e23

e24
>

c13

c14
or

x
c13
c14
4 < x

e23
e24
4 < x

θ̃

µ̃

4 ⇔ c13

c14
>

e23

e24
>

θ̃

µ̃
.
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In Lemma 4.3.10 we have seen that switching along the R-cycle in the Bowtie network occurs
whenever the condition δ̃ < 0 is satisfied. This implies that the R-cycle is c.u from Proposition 6.1.2.
We notice that, unlike for the Bowtie network, the conditions for the existence of switching in
Lemma 6.2.2 appear to be unrelated to those for the stability of each heteroclinic cycle.





Chapter 7

Conclusions and Prospects

We conclude this work by answering to our research questions:

Q1. YES Q2. NO

Our first aim was to provide a systematic study of the stability of robust heteroclinic cycles
made up of one-dimensional heteroclinic connections and hyperbolic non-resonant saddle equilibria
(Chapter 3). In the context of systems with symmetry such heteroclinic cycles are known as simple
heteroclinic cycles. We started by introducing a new class of heteroclinic cycles bringing together the
desired chacteristics in other settings than the symmetric one. We called it quasi-simple heteroclinic
cycles. In order to address the stability of a quasi-simple heteroclinic cycle we quantified the
stability of the individual heteroclinic connections using the local stability index of Podvigina and
Ashwin [53]. Application of this tool in heteroclinic dynamics has been actually limited to simple
heteroclinic cycles in dimension four. We then took advantage of its potential and showed that the
calculations can be performed for a much wider collection of heteroclinic cycles. To be specific we
developed a method that, under one mild assumption, yields an explicit expression for the values of
the local stability index at a point of a heteroclinic connection in a quasi-simple heteroclinic cycle.
Assumption 3.2.1 guarantees that the dynamics between incoming cross sections at consecutive nodes
can be accurately approximated using basic transition matrices.1 They are crucial to implement the
methodical procedure. In fact, our results still hold as long as such a matricial representation exists
whether or not the assumption is satisfied. We constructed a function that assigns to each vector the
local stability index of a flow-invariant set whose basin of attraction is locally bounded by a power
curve. Its exponents are the entries of the vector output. According to the geometry of the local basin
of attraction of a quasi-simple heteroclinic cycle we obtained the local stability index along one of its
heteroclinic connections by applying this function to the rows of some transition matrices. These are
at most as many as the number of heteroclinic connections.

We have confirmed the views of [53, p. 910] in that “transition matrices can be used to study
the stability of simple cycles in higher-dimensional systems” while contradicting their expectation
that “we expect such a classification to be so complex that the results can hardly be enlightening”. Of
course our method recovers results previously obtained by other authors for simple heteroclinic cycles
in dimension four.

1The form of a basic transition matrix is given in (3.8).
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Our second aim was to prove the absence of infinite switching near a heteroclinic network
involving a finite number of hyperbolic non-resonant saddle equilibria whose linearisation has only
real eigenvalues (Chapter 4). It was achieved by looking at the different form of stability of a
heteroclinic cycle within a heteroclinic network and of the whole heteroclinic network. Along the
way, we addressed the construction of quasi-simple heteroclinic cycles according to the type of their
heteroclinic connections. This provides quite simple examples of interesting dynamics and allows
us to compose them in heteroclinic networks. The absence of infinite switching does not preclude
weaker forms of switching. Considering two quasi-simple heteroclinic cycles connected either by
a heteroclinic connection or by a node we examined the occurrence of switching at nodes, along
heteroclinic connections, and along an entire heteroclinic cycle.

We illustrated our results with a two-person parametrised RSP game (Chapter 5) and two abstract
examples (Chapter 6). The former was in fact the motivation behind this work. We saw that the
dynamics and stability properties of the RSP cycles in the quotient network depend strongly on the
parameters describing the rewards for ties. We proved that only the heteroclinic cycle where the
two agents alternate in winning and losing can be e.a.s. This is in accordance with the numerical
simulations of Sato et al. [64], which show this heteroclinic cycle as possessing some attracting
properties (see Figure 15 on the top therein). An interpretation of the results adds to the understanding
of the game and its applications. However those are so far constrained to a single population of
individuals rather than the strategic interaction of two (or more) independent individuals or populations.
We then proposed an application to a real-world economic problem of the two-person RSP game. We
hope that this first approach and its results can open the door to further research in this context.

This work has a potentially novel and useful contribution to the stability and dynamics of robust
heteroclinic cycles in systems with or without symmetry. Examples of heteroclinic cycles falling
into quasi-simple but not simple category are abundant in the literature, namely from game theory,
population dynamics, winnerless competition or Lotka-Volterra-type models, and coupled cells
systems. Many interesting questions concerning dynamics have a natural starting point in the study of
stability. For example, stability can provide a description of the dynamics near a heteroclinic cycle in
a heteroclinic network. Stability is also essential in the study of bifurcations from heteroclinic cycles.
We believe that our results may give insight to others working on stability and dynamics in nonlinear
dynamical systems.

Some suggestions for future work concern the following comments and open questions:

1. Roslan and Ashwin [62] have distinguished the stability index of an attractor at a point from
the global stability index of an attractor as a set. For a class of piecewise expanding linear skew
product maps Corrolary 2.1 in [62] relates these two measures. Can we relate similarly the
stability index of a heteroclinic cycle at a point with the global stability index of the heteroclinic
cycle as a whole? We guess that an e.a.s heteroclinic cycle would be equivalent to a positive
global stability index.

2. Assumption 3.2.1 can be weakened such that the global maps consist of a linear transformation.
This is satisfied, for instance, by simple heteroclinic cycles of type A. It would be interesting to
extend our results in such a case for understanding the stability of those heteroclinic cycles.
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3. We have focused on real eigenvalues at nodes. Can we calculate systematically the local stability
index for heteroclinic connections of a heteroclinic cycle or network involving at least one node
with complex eigenvalues?

4. We have supported the construction of quasi-simple heteroclinic cycles in the simplex and
cylinder realisations of [13]. Specifically in the latter heteroclinic connections are contained
in different coordinate planes such that the entire heteroclinic cycle is embedded in a vector
space of dimension one plus the number of heteroclinic connections. How can we optimise the
cylinder method in order to use the minimum number of planes?

5. The design of an algorithm to compute directly the local stability index along a heteroclinic
connection in line with our method would be very useful mainly for systems in higher
dimensions.
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Appendix A

The function F index

A.1 Proof of Lemma 3.4.8

Consider a return map π ≡ π1 : RN → RN associated with a point on a heteroclinic connection that
intersects H in

1 . For small δ > 0, let Bπ

δ
be the δ -local basin of attraction of 000 ∈ RN for the map π .

Given ααα = (α1,α2, . . . ,αN) ∈ RN , suppose that Bπ

δ
in H in

1 in the new coordinates (3.5) is
UR (ααα;000; . . . ;000) for some large R < 0. Since the measure of a set is always regarded as its measure in
the original variables, we represent the latter set in original coordinates (w,zzz) = (x1,x2, . . . ,xN)≡ xxx as
ŨR (ααα). Then,

ŨR (ααα) =
{

xxx ∈ ŨR :
∣∣xα1

1 xα2
2 · · ·xαN

N

∣∣< 1
}
. (A.1)

where

ŨR =

{
xxx : max

i
|xi|< eR

}
.

In particular, the set ŨR is an open ball of radius ε = eR > 0 centred at 000 ∈RN for the maximum norm.
Hence, by virtue of Definition 3.4.7, the value of F index (ααα) = F+ (ααα)−F− (ααα) quantifies the local
extent of ŨR (ααα) such that

F− (ααα) = lim
R→−∞

ln(ΣR)

R
, F+ (ααα) = lim

R→−∞

ln(1−ΣR)

R

with

ΣR =
ℓ
(
ŨR (ααα)

)
ℓ
(
ŨR
) .

Notice that the region in RN determined by the whole ŨR (ααα) is invariant with respect to the
reflections x j 7→ −x j, j = 1, . . . ,N. Thus, we only consider xxx ∈RN

+. Define αmin = mini=1,...,N αi. The
construction of F+ proceeds in three cases.

Case 1: If αmin ≥ 0, then αi ≥ 0 for all i = 1, . . . ,N. Given (A.1), we have αi > 0 for at least
one i = 1, . . . ,N. Then, for sufficiently large negative R, ŨR (ααα) is reduced to ŨR. Thus, ΣR = 1 and
F+ (ααα) = +∞.
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Case 2: If αmin < 0 and ∑
N
i=1 αi > 0, then there exist K ≥ 1 and i1, . . . , iK ∈ {1, . . . ,N} such that

αi1 , . . . ,αiK < 0 and αi ≥ 0 for any i ̸= i1, . . . , iK or αi1 , . . . ,αiK ≥ 0 and αi < 0 for any i ̸= i1, . . . , iK .
We provide the proof when K = iK = 1 as the technique remains the same but the calculations are
unnecessarily complicated.

Suppose first that α1 < 0, αi ≥ 0 for all i = 2, . . . ,N. Then, αmin = α1. Given xxx ∈ ŨR (ααα), we have
xxx ∈ ŨR and

x1 > x
− α2

α1
2 x

− α3
α1

3 · · ·x
− αN

α1
N

xi < x
−

αi1
αi

i1 x
−

αi2
αi

i2 · · ·x
−

αiN−1
αi

iN−1
, i = 2, . . . ,N; i ̸= il, l = 1, . . . ,N −1,

so that

ℓ
(

ŨR
∖

ŨR (ααα)
)
=
∫

ε

0

∫
ε

0
· · ·
∫

ε

0

∫ x
− α2

α1
2 x

− α3
α1

3 ···x
− αN

α1
N

0
dx1dx2 . . .dxN−1dxN

=
ε

N− 1
α1

∑
N
i=1 αi

∏
N
i=2

(
− αi

α1
+1
)

and

1−ΣR =
ℓ
(

ŨR
∖

ŨR (ααα)
)

ℓ
(
ŨR
) =

ε
N− 1

α1 ∑
N
i=1 αi

∏
N
i=2

(
− αi

α1
+1
)

εN =
ε
− 1

α1
∑

N
i=1 αi

∏
N
i=2

(
− αi

α1
+1
) .

Therefore

ln(1−ΣR)

R
=− 1

α1

N

∑
i=1

αi −
ln
(

∏
N
i=2

(
− αi

α1
+1
))

R

and

F+ (ααα) =− 1
α1

N

∑
i=1

αi − lim
R→−∞

ln
(

∏
N
i=2

(
− αi

α1
+1
))

R
=− 1

αmin

N

∑
i=1

αi > 0.

Suppose now that α1 ≥ 0, αi < 0 for all i = 2, . . . ,N. If xxx ∈ ŨR (ααα), then xxx ∈ ŨR and

x1 < x
− α2

α1
2 x

− α3
α1

3 · · ·x
− αN

α1
N

xi > x
−

αi1
αi

i1 x
−

αi2
αi

i2 · · ·x
−

αiN−1
αi

iN−1
, i = 2, . . . ,N; i ̸= il, l = 1, . . . ,N −1.

In calculating the measure of the set determined by these inequalities, we must take into account how
the respective boundaries intersect the boundaries of ŨR. These intersections lead to a splitting of the
integral that expresses the measure of ŨR\ŨR (ααα) (and of ŨR (ααα)) which was not necessary before.



A.1 Proof of Lemma 3.4.8 123

Accordingly, the integrals that follow have a rather daunting aspect. Indeed,

ℓ
(

ŨR
∖

ŨR (ααα)
)
=

=
∫

ε

0

∫
ε

0

∫ min

{
ε,ε

−∑
N
i=4

αi
α3 x

− α1
α3

1 x
− α2

α3
2

}
0

∫ min

{
ε,ε

−∑
N
i=5

αi
α4 x

− α1
α4

1 x
− α2

α4
2 x

− α3
α4

3

}
0

· · ·

· · ·
∫ min

{
ε,ε

− αN
αN−1 x

− α1
αN−1

1 ...x
−

αN−2
αN−1

N−2

}
0

∫ min

{
ε,x

− α1
αN

1 ...x
−

αN−1
αN

N−1

}
0

dxNdxN−1 . . .dx4dx3dx2dx1

=
∫

ε

0


∫

ε
−∑

N
i=3

αi
α2 x

− α1
α2

1

0

∫
ε

0
· · ·
∫

ε

0
dxN . . .dx3dx2+

+
∫

ε

ε
−∑

N
i=3

αi
α2 x

− α1
α2

1

∫
ε
−∑

N
i=4

αi
α3 x

− α1
α3

1 x
− α2

α3
2

0

∫
ε

0
· · ·
∫

ε

0
dxN . . .dx4dx3dx2+

+
∫

ε

ε
−∑

N
i=3

αi
α2 x

− α1
α2

1

∫
ε

ε
−∑

N
i=4

αi
α3 x

− α1
α3

1 x
− α2

α3
2

∫
ε
−∑

N
i=5

αi
α4 x

− α1
α4

1 x
− α2

α4
2 x

− α3
α4

3

0∫
ε

0
· · ·
∫

ε

0
dxN . . .dx5dx4dx3dx2+

+ · · ·+

+
∫

ε

ε
−∑

N
i=3

αi
α2 x

− α1
α2

1

. . .
∫

ε

ε
−∑

N
i=N−1

αi
αN−2 x

− α1
αN−2

1 ...x
−

αN−3
αN−2

N−3∫
ε
− αN

αN−1 x
− α1

αN−1
1 ...x

−
αN−2
αN−1

N−2

0

∫
ε

0
dxNdxN−1dxN−2 . . .dx2+

+
∫

ε

ε
−∑

N
i=3

αi
α2 x

− α1
α2

1

. . .
∫

ε

ε
−∑

N
i=N−1

αi
αN−2 x

− α1
αN−2

1 ...x
−

αN−3
αN−2

N−3∫
ε

ε
− αN

αN−1 x
− α1

αN−1
1 ...x

−
αN−2
αN−1

N−2

∫ x
− α1

αN
1 ...x

−
αN−1

αN
N−1

0
dxNdxN−1dxN−2 . . .dx2

dx1

=
ε

N− 1
α2

∑
N
i=1 αi

∏
N
i=1,i ̸=2

(
− αi

α2
+1
) +

ε
N− 1

α3
∑

N
i=1 αi

∏
N
i=1,i ̸=3

(
− αi

α3
+1
) + · · ·+ ε

N− 1
αN

∑
N
i=1 αi

∏
N
i=1,i ̸=N

(
− αi

αN
+1
)

and

1−ΣR =
ℓ
(

ŨR
∖

ŨR (ααα)
)

ℓ
(
ŨR
) =

N

∑
j=2

ε
− 1

α j
∑

N
i=1 αi

∏
N
i=1̸= j

(
− αi

α j
+1
) .

Consequently, ln(1−ΣR)
R →

R→−∞

∞

∞
. Using L’Hôpital’s rule, we obtain

d
dR ln(1−ΣR)

d
dR R

=

∑
N
j=2

(
− 1

α j
∑

N
i=1 αi

)
ε
− 1

α j ∑
N
i=1 αi

∏
N
i=1̸= j

(
− αi

α j
+1
)

∑
N
j=2

ε
− 1

α j ∑
N
i=1 αi

∏
N
i=1 ̸= j

(
− αi

α j
+1
) . (A.2)
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Since R < 0 is sufficiently large and therefore ε = eR > 0 is sufficiently small, the highest power of ε

in (A.2) is the one with lowest exponent, that is,

max
j=2,...,N

{
ε
− 1

α j
∑

N
i=1 αi

}
= ε

min j=2,...,N

{
− 1

α j
∑

N
i=1 αi

}
= ε

− 1
αmin

∑
N
i=1 αi .

For R →−∞, i.e. ε = eR → 0, (A.2) becomes asymptotically close to

− 1
αmin

N

∑
i=1

αi,

which yields

F+ (ααα) =− 1
αmin

N

∑
i=1

αi > 0.

Case 3: If ∑
N
i=1 αi < 0, then αi ≤ 0 for all i= 1, . . . ,N or there exist K ≥ 1 and i1, . . . , iK ∈ {1, . . . ,N}

such that either αi1 , . . . ,αiK ≤ 0 and αi < 0 for any i ̸= i1, . . . , iK or αi1 , . . . ,αiK > 0 and αi ≤ 0 for any
i ̸= i1, . . . , iK . From the two previous cases and the fact that F+ (−ααα) = F− (ααα), we have immediately
F+ (ααα) = 0 and F− (ααα)> 0.

Observe that if ∑
N
i=1 αi = 0, then F+ (ααα) = F− (ααα) = 0 in Cases 2 and 3.

A.2 The function F index when N = 3

We see at once that the function F+ (ααα) is invariant under permutations of αi, i = 1, . . . ,N. In
particular, for N = 3, it follows that

F+ (α1,α2,α3) =


+∞, if min{α1,α2,α3} ≥ 0

0, if α1 +α2 +α3 ≤ 0

− α1 +α2 +α3

min{α1,α2,α3}
, if min{α1,α2,α3}< 0 and α1 +α2 +α3 ≥ 0

and

F− (α1,α2,α3) =


+∞, if max{α1,α2,α3} ≤ 0

0, if α1 +α2 +α3 ≥ 0

− α1 +α2 +α3

max{α1,α2,α3}
, if max{α1,α2,α3}> 0 and α1 +α2 +α3 ≤ 0
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such that

F index (α1,α2,α3) =



+∞, if min{α1,α2,α3} ≥ 0

−∞, if max{α1,α2,α3} ≤ 0

0, if α1 +α2 +α3 = 0
α1 +α2 +α3

max{α1,α2,α3}
, if max{α1,α2,α3}> 0 and α1 +α2 +α3 < 0

− α1 +α2 +α3

min{α1,α2,α3}
, if min{α1,α2,α3}< 0 and α1 +α2 +α3 > 0.





Appendix B

Transitions near the RSP cycles

In this section we describe the construction of Poincaré maps (also called return maps) from and
to cross sections of the flow near each equilibrium once around the entire heteroclinic cycle. The
Poincaré maps are the composition of local and global maps. The local maps approximate the flow
in a neighbourhood of an equilibrium. The global maps approximate the flow along a heteroclinic
connection between two consecutive equilibria.

Near ξ j, we introduce an incoming cross section H in,i
j across the heteroclinic connection [ξi → ξ j]

and an outgoing cross section Hout,k
j across the heteroclinic connection [ξ j → ξk], j ̸= i,k. By

definition, these are five-dimensional subspaces in R6. However, Krupa and Melbourne [43] show
that not all dimensions are important in the study of stability as followed.

B.1 Poincaré maps

Assume that the flow is linearisable about each equilibrium. Locally at ξ j, we denote by −c ji < 0
the eigenvalue in the stable direction through the heteroclinic connection [ξi → ξ j] and e jk > 0 the
eigenvalue in the unstable direction through the heteroclinic connection [ξ j → ξk]. Each equilibrium
actually has two outgoing connections emanating from it and two incoming connections leading to it.
Looking at ξ j from the point of view of the sequence of heteroclinic connections [ξi → ξ j → ξk], we
say that −c ji is contracting, e jk is expanding, −c jl and e jm are transverse with j ̸= i,k, l,m, i ̸= l and
k ̸= m (see [27, 43, 52, 53]). The linearised flow in relevant local coordinates near ξ j is given by

v̇ = − c jiv

ẇ = e jkw

ż1 = − c jlz1

ż2 = e jmz2,

(B.1)

such that v, w and (z1,z2) correspond, respectively, to the contracting, expanding and transverse
directions. Table B.1 provides all eigenvalues restricted to those directions for the three equilibria ξ0,
ξ1 and ξ2.

127
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ξ0 e01 = 1 e02 =
1+ εx

2
−c01 =−1 −c02 =−

1− εy

2

ξ1 e12 =
1+ εy

2
e10 = 1 −c12 =−1− εx

2
−c10 = 1

ξ2 e20 =
1− εy

2
e21 =

1− εx

2
−c20 =−1+ εx

2
−c21 =−1− εx

2

Table B.1 Eigenvalues of the linearisation of the flow about each equilibrium in a system of local
coordinates in the basis of the associated contracting, expanding and transverse eigenvectors.

The cross sections above are reduced to a three-dimensional subspace and can be expressed as

H in,i
j = {(1,w,z1,z2) : 0 < w,z1,z2 < 1}

Hout,k
j = {(v,1,z1,z2) : 0 < v,z1,z2 < 1} .

We construct local maps φi jk : H in,i
j → Hout,k

j near each ξ j, global maps ψ jk : Hout,k
j → H in, j

k

near each heteroclinic connection [ξ j → ξk] and their compositions g j = ψ jk ◦ φi jk : H in,i
j → H in, j

k ,
j ̸= i,k. Composing the latter in the correct order gives Poincaré maps π j : H in,i

j → H in,i
j , one for each

heteroclinic connection belonging to the heteroclinic cycle.
Integrating (B.1) we find

φi jk (w,z1,z2) =

(
w

c ji
e jk , z1w

c jl
e jk , z2w

−
e jm
e jk

)
, for 0 < z2 < w

e jm
e jk .

Expressions for global maps depend both on which heteroclinic connection and heteroclinic cycle
one considers. Following [5, Remark, p. 1603], in the leading order any global map ψ jk is well
represented by a permutation.

We describe the details for the heteroclinic cycle C0 = [ξ0 → ξ1 → ξ0]. The other cases are similar
and therefore we omit the calculations. Notice that

Γ((R,P)→ (S,P)→ (S,R)) =C0.

We pick, respectively, the heteroclinic connections [(R,P)→ (S,P)] and [(S,P)→ (S,R)] as
representatives of [ξ0 → ξ1] and [ξ1 → ξ0], see Table 5.1. Considering the flow linearised about
each representative heteroclinic connection, the global maps have the form

ψ01 :Hout,1
0 → H in,0

1 , ψ10 (v,z1,z2) = (z1,z2,v)

ψ10 :Hout,0
1 → H in,1

0 , ψ01 (v,z1,z2) = (z1,z2,v) .
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The pairwise composite maps g0 = ψ01 ◦φ101 and g1 = ψ10 ◦φ010 are

g0 :H in,1
0 → H in,0

1 , g0 (w,z1,z2) =

(
z1w

1−εy
2 , z2w−1+εx

2 , w
)
,

for 0 < z2 < w
1+εx

2 ,

g1 :H in,0
1 → H in,1

0 , g1 (w,z1,z2) =

(
z1w

1−εx
2 , z2w−

1+εy
2 , w

)
,

for 0 < z2 < w
1+εy

2 .

(B.2)

The dynamics in the vicinity of the C0-cycle is accurately approximated by the two Poincaré maps
π0 = g1 ◦g0 and π1 = g0 ◦g1 with

π0 : H in,1
0 → H in,1

0 ,

π0 (w,z1,z2) =

(
z2z

1−εx
2

1 w
−1−3εx−εy+εxεy

4 , z
−

1+εy
2

1 w
3+ε2

y
4 , z1w

1−εy
2

)
,

(B.3)

for 0 < z2 < w
1+εx

2 and z1 > w
3+ε2

y
2(1+εy) ,

π1 : H in,0
1 → H in,0

1 ,

π1 (w,z1,z2) =

(
z2z

1−εy
2

1 w
−1−εx−3εy+εxεy

4 , z
−1+εx

2
1 w

3+ε2
y

4 , z1w
1−εx

2

)
,

(B.4)

for 0 < z2 < w
1+εy

2 and z1 > w
3+ε2

x
2(1+εx) .

B.2 Transition matrices

Consider the change of coordinates

ηηη ≡ (η1,η2,η3) = (lnv, lnz1, lnz2) . (B.5)

The maps g j : H in,i
j → H in, j

k , j ̸= i,k, become linear such that

g j (ηηη) = M jηηη ,

where M j are called the basic transition matrices. For the Poincaré maps π j : H in,i
j → H in,i

j the
transition matrices are the product of basic transition matrices in the appropriate order. We denote
them by M( j).
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In particular, the basic transition matrices of the maps g0 and g1 in (B.2) with respect to C0 are

M0 =



1− εy

2
1 0

−1+ εx

2
0 1

1 0 0

 , M1 =



1− εx

2
1 0

−
1+ εy

2
0 1

1 0 0

 . (B.6)

Then, the products M(0) = M1M0 and M(1) = M0M1 provide the transition matrices of the Poincaré
maps π0 in (B.3) and π1 in (B.4):

M(0) =



−1−3εx − εy + εxεy

4
1− εx

2
1

3+ ε2
y

4
−

1+ εy

2
0

1− εy

2
1 0



M(1) =



−1− εx −3εy + εxεy

4
1− εy

2
1

3+ ε2
x

4
−1+ εx

2
0

1− εx

2
1 0


.

(B.7)

Analogously, this process yields the transition matrices for the remaining heteroclinic cycles. We
use different accents according to the heteroclinic cycle: for C1,

M̃(1) :H in,2
1 → H in,2

1 , M̃(1) = M̃2M̃1

M̃(2) :H in,1
2 → H in,1

2 , M̃(2) = M̃1M̃2

where

M̃1 =



2
1+ εy

1 0

1− εx

1+ εy
0 0

− 2
1+ εy

0 1


, M̃2 =



−
1− εy

1− εx
0 1

1+ εx

1− εx
1 0

1+ εy

1− εx
0 0


;

for C2, ˜̃M(0)
:H in,2

0 → H in,2
0 ,

˜̃M(0)
=
˜̃M2
˜̃M0˜̃M(2)

:H in,0
2 → H in,0

2 ,
˜̃M(2)

=
˜̃M0
˜̃M2
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where

˜̃M0 =



2
1+ εx

1 0

1− εy

1+ εx
0 0

− 2
1+ εx

0 1


,
˜̃M2 =



−1− εx

1− εy
0 1

1+ εy

1− εy
1 0

1+ εx

1− εy
0 0


;

for C3,
M̂(1) :H in,0

1 → H in,0
1 , M̂(1) = M̂2M̂0M̂1

M̂(2) :H in,1
2 → H in,1

2 , M̂(2) = M̂0M̂1M̂2

M̂(0) :H in,2
0 → H in,2

0 , M̂(0) = M̂1M̂2M̂0

where

M̂1 =



− 2
1+ εy

0 1

1− εx

1+ εy
1 0

2
1+ εy

0 0


, M̂2 =



1+ εx

1− εy
1 0

1+ εy

1− εy
0 0

−1− εx

1− εy
0 1


, M̂0 =


1 1 0

−1+ εx

2
0 1

1− εy

2
0 0

 ;

and, for C4, ̂̂M(0)
:H in,1

0 → H in,1
0 ,

̂̂M(0)
=
̂̂M2
̂̂M1
̂̂M0̂̂M(2)

:H in,0
2 → H in,0

2 ,
̂̂M(2)

=
̂̂M1
̂̂M0
̂̂M2̂̂M(1)

:H in,2
1 → H in,2

1 ,
̂̂M(1)

=
̂̂M0
̂̂M2
̂̂M1

where

̂̂M0 =



− 2
1+ εx

0 1

1− εy

1+ εx
1 0

2
1+ εx

0 0


,
̂̂M2 =



1+ εy

1− εx
1 0

1+ εx

1− εx
0 0

−
1− εy

1− εx
0 1


,
̂̂M1 =


1 1 0

−
1+ εy

2
0 1

1− εx

2
0 0

 .





Appendix C

Transitions near the Bowtie network

C.1 Maps between cross sections

The dynamics near the Bowtie network was already studied in [19]. We recall their general setting
and terminology.

Ensuring that all transverse eigenvalues are negative whenever possible, the linearisation of the
flow at ξ3, for instance, is assumed to be given by

ẋ1 = e31 x1

ẋ2 =−c32 x2

ẋ3 =−r3 x3

ẋ4 =−c34 x4

ẋ5 =−c35 x5

for some positive constants e31, c32, r3, c34, c35. Similar equations define the flow linearised about the
other nodes labeling the associated eigenvalues accordingly.

We introduce cross sections H in,i
j and Hout,k

j at incoming and outgoing connections near each ξ j

as in (4.1)–(4.2). Near ξ3 these are

H in,2
3 = {(x1,x4,x5) : 0 ≤ x1,x4,x5 < 1}

Hout,1
3 = {(u2,u4,u5) : 0 ≤ u2,u4,u5 < 1}

after selecting the relevant coordinates.
Local and global maps are constructed in the standard way. We list the former in order to ease of

reference; for the R-cycle,

φ3,1,2 : H in,3
1 → Hout,2

1 , φ3,1,2 (x2,x4,x5) =

(
x

c13
e12
2 , x4 x

c14
e12
2 , x5 x

c15
e12
2

)
φ1,2,3 : H in,1

2 → Hout,3
2 , φ1,2,3 (x3,x4,x5) =

(
x

c21
e23
3 , x4 x

− e24
e23

3 , x5 x
c25
e23
3

)
, 0 ≤ x4 < x

e24
e23
3

φ2,3,1 : H in,2
3 → Hout,1

3 , φ2,3,1 (x1,x4,x5) =

(
x

c32
e31
1 , x4 x

c34
e31
1 , x5 x

c35
e31
1

)
133
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for the L-cycle,

φ5,2,4 : H in,5
2 → Hout,4

2 , φ5,2,4 (x1,x3,x4) =

(
x1 x

c21
e24
4 , x3 x

− e23
e24

4 , x
c25
e24
4

)
, 0 ≤ x3 < x

e23
e24
4

φ2,4,5 : H in,2
4 → Hout,5

4 , φ2,4,5 (x1,x3,x5) =

(
x1 x

c41
e45
5 , x

c42
e45
5 , x3 x

c43
e45
5

)
φ4,5,2 : H in,4

5 → Hout,2
5 , φ4,5,2 (x1,x2,x3) =

(
x1 x

c51
e52
2 , x3 x

c53
e52
2 , x

c54
e52
2

)
and, for the transition between cycles,

φ1,2,4 : H in,1
2 → Hout,4

2 , φ1,2,4 (x3,x4,x5) =

(
x

c21
e24
4 , x3 x

− e23
e24

4 , x5 x
c25
e24
4

)
, 0 ≤ x3 < x

e23
e24
4

φ5,2,3 : H in,5
2 → Hout,3

2 , φ5,2,3 (x1,x3,x4) =

(
x1 x

c21
e23
3 , x4 x

− e24
e23

3 , x
c25
e23
3

)
, 0 ≤ x4 < x

e24
e23
3 .

Following the usual notation ψ j,k : Hout,k
j → H in, j

k stands for the global map along the connection
κ j,k. They can be taken as the identity due to the Z5

2 symmetry. See [43] and [52] for more details.
Thus Hout,k

j and H in, j
k are freely identified with each other. We compose the local and global maps

pairwaise to give
g̃1 : H in,3

1 → H in,1
2 , g̃1 = ψ1,2 ◦φ3,1,2

g̃2 : H in,1
2 → H in,2

3 , g̃2 = ψ2,3 ◦φ1,2,3

g̃3 : H in,2
3 → H in,3

1 , g̃3 = ψ3,1 ◦φ2,3,1

about the R-cycle, and
g2 : H in,5

2 → H in,2
4 , g2 = ψ2,4 ◦φ5,2,4

g4 : H in,2
4 → H in,4

5 , g4 = ψ4,5 ◦φ2,4,5

g5 : H in,4
5 → H in,5

2 , g5 = ψ5,2 ◦φ4,5,2

about the L-cycle. From one cycle to the other we obtain

gRL : H in,1
2 → H in,2

4 , gRL = ψ2,4 ◦φ1,2,4

gLR : H in,5
2 → H in,2

3 , gLR = ψ2,3 ◦φ5,2,3.

Of course their expressions match those of the local maps involved. Composition of the resulting
maps in the correct order yields the full return maps π̃1, π̃2, π̃3 around R and π2, π4, π5 around L:

π̃1 = g̃3 ◦ g̃2 ◦ g̃1 : H in,3
1 → H in,3

1 , π̃1 (x2,x4,x5) =
(

xρ̃

2 ,x4 xτ̃
2,x5 xθ̃

2

)
, 0 ≤ x4 < xσ̃

2 (C.1)

π̃2 = g̃1 ◦ g̃3 ◦ g̃2 : H in,1
2 → H in,1

2 , π̃2 (x3,x4,x5) =
(

xρ̃

3 ,x4 xν̃
3 ,x5 xµ̃

3

)
, 0 ≤ x4 < x

e24
e23
3 (C.2)

π̃3 = g̃2 ◦ g̃1 ◦ g̃3 : H in,2
3 → H in,2

3 , π̃3 (x1,x4,x5) =
(

xρ̃

1 ,x4 xδ̃
1 ,x5 xγ̃

1

)
, 0 ≤ x4 < x−δ̃

1 (C.3)
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and

π2 = g5 ◦g4 ◦g2 : H in,5
2 → H in,5

2 , π2 (x1,x3,x4) =
(
x1 xµ

4 ,x3 xν
4 ,x

ρ

4

)
, 0 ≤ x3 < x

e23
e24
4 (C.4)

π4 = g2 ◦g5 ◦g4 : H in,2
4 → H in,2

4 , π4 (x1,x3,x5) =
(

x1 xγ

5,x3 xδ
5 ,x

ρ

5

)
, 0 ≤ x3 < x−δ

5 (C.5)

π5 = g4 ◦g2 ◦g5 : H in,4
5 → H in,4

5 , π5 (x1,x2,x3) =
(

x1 xθ
2 ,x

ρ

2 ,x3 xτ
2

)
, 0 ≤ x3 < xσ

2 (C.6)

where

ρ̃ =
c21

e23

c32

e31

c13

e12
> 0 ρ =

c42

e45

c54

e52

c25

e24
> 0

ν̃ =−e24

e23
+

c21

e23

c34

e31
+

c21

e23

c32

e31

c14

e12
ν =−e23

e24
+

c25

e24

c43

e45
+

c25

e24

c42

e45

c53

e52

µ̃ =
c25

e23
+

c21

e23

c35

e31
+

c21

e23

c32

e31

c15

e12
> 0 µ =

c21

e24
+

c25

e24

c41

e45
+

c25

e24

c42

e45

c51

e52
> 0

δ̃ =
c34

e31
+

c32

e31

c14

e12
− c32

e31

c13

e12

e24

e23
δ =

c43

e45
+

c42

e45

c53

e52
− c42

e45

c54

e52

e23

e24

γ̃ =
c35

e31
+

c32

e31

c15

e12
+

c32

e31

c13

e12

c25

e23
> 0 γ =

c41

e45
+

c42

e45

c51

e52
+

c42

e45

c54

e52

c21

e24
> 0

τ̃ =
c14

e12
− c13

e12

e24

e23
+

c13

e12

c21

e23

c34

e31
τ =

c53

e52
− c54

e52

e23

e24
+

c54

e52

c25

e24

c43

e45

θ̃ =
c15

e12
+

c13

e12

e25

e23
+

c13

e12

c21

e23

c35

e31
> 0 θ =

c51

e52
+

c54

e52

e21

e24
+

c54

e52

c25

e24

c41

e45
> 0

σ̃ =
c13

e12

(
e24

e23
− c14

c13

)
, σ =

c54

e52

(
e23

e24
− c53

c54

)
.

(C.7)

In addition the behaviour of trajectories that start close to one cycle and visit the other is modelled by
the maps

πRL = g5 ◦g4 ◦gRL : H in,1
2 → H in,5

2 , πRL (x3,x4,x5) =

(
xµ

4 xα
5 ,x3xν

4 xβ

5 ,x
ρ

4 x
e24
c25

ρ

5

)
, 0 ≤ x3 < x

e23
e24
4

πLR = g̃1 ◦ g̃3 ◦gLR : H in,5
2 → H in,1

2 , πLR (x1,x3,x4) =

(
x

e23
c21

ρ̃

1 xρ̃

1 ,x
β̃

1 xν̃
3 x4,xα̃

1 xµ̃

3

)
, 0 ≤ x4 < x

e24
e23
3

where
α̃ =

c35

e31
+

c32

e31

c15

e12
> 0 α =

c41

e45
+

c42

e45

c51

e52
> 0

β̃ =
c34

e31
+

c32

e31

c14

e12
> 0, β =

c43

e45
+

c42

e45

c53

e52
> 0.

Our choice of label for the parameters above-mentioned comes originally from [19] and [39].
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C.2 Transition matrices

By applying the transformation (3.5) to the maps g̃ j and g j we find the respective basic transition
matrices M̃ j and M j regarding each cycle. These are, for R,

M̃1 =



c13

e12
0 0

c14

e12
1 0

c15

e12
0 1

 , M̃2 =



c21

e23
0 0

−e24

e23
1 0

c25

e23
0 1

 , M̃3 =



c32

e31
0 0

c34

e31
1 0

c35

e31
0 1


and, for L,

M2 =


1 0

c21

e24

0 1 −e23

e24

0 0
c25

e24

 , M4 =


1 0

c41

e45

0 0
c42

e45

0 1
c43

e45

 , M5 =


1

c51

e52
0

0
c53

e52
1

0
c54

e52
0

 .

In the same manner let M̃( j) and M( j) denote the transition matrices for the return maps π̃ j and π j.
Then,

M̃(1) = M̃3M̃2M̃1 =

 ρ̃ 0 0
τ̃ 1 0
θ̃ 0 1

 M(2) = M5M4M2 =

 1 0 µ

0 1 ν

0 0 ρ


M̃(2) = M̃1M̃3M̃2 =

 ρ̃ 0 0
ν̃ 1 0
µ̃ 0 1

 M(4) = M2M5M4 =

 1 0 γ

0 1 δ

0 0 ρ


M̃(3) = M̃2M̃1M̃3 =

 ρ̃ 0 0
δ̃ 1 0
γ̃ 0 1

 , M(5) = M4M2M5 =

 1 θ 0
0 ρ 0
0 τ 1

 .
(C.8)



Appendix D

Transitions near the
(
C−

2 ,C
−
2

)
-network

D.1 Maps between cross sections

We describe the construction of the return maps around the two heteroclinic cycles comprising of the(
C−

2 ,C
−
2

)
-network:

R = [ξ1 → ξ2 → ξ4 → ξ5 → ξ1]≡ [ξ1 → ξ2 → ξ1]

L = [ξ2 → ξ3 → ξ5 → ξ6 → ξ2]≡ [ξ2 → ξ3 → ξ2] .

To this end we write down the local and global maps, which approximate the dynamics of trajectories
close to each heteroclinic cycle. As usual we assume that all transverse eigenvalues are negative
whenever possible. Restricting to the relevant coordinates, local maps are, for the R-cycle,

φ5,1,2 : H in,5
1 → Hout,2

1 , φ5,1,2 (x2,x3,x4,x6) =

(
x3 x

c13
e12
2 , x4 x

c14
e12
2 , x

c15
e12
2 , x6 x

c16
e12
2

)
φ1,2,4 : H in,1

2 → Hout,4
2 , φ1,2,4 (x3,x4,x5,x6) =

(
x

c21
e24
4 , x3 x

− e23
e24

4 , x5 x
c25
e24
4 , x6 x

c26
e24
4

)
, 0 ≤ x3 < x

e23
e24
4 ,

for the L-cycle,

φ6,2,3 : H in,6
2 → Hout,3

2 , φ6,2,3 (x1,x3,x4,x5) =

(
x1 x

c21
e23
3 , x4 x

− e24
e23

3 , x5 x
c25
e23
3 , x

c26
e23
3

)
, 0 ≤ x4 < x

e24
e23
3

φ2,3,5 : H in,2
3 → Hout,5

3 , φ2,3,5 (x1,x4,x5,x6) =

(
x1 x

c31
e35
5 , x

c32
e35
5 , x4 x

c34
e35
5 , x6 x

c36
e35
5

)
and, for the transition between cycles,

φ1,2,3 : H in,1
2 → Hout,3

2 , φ1,2,3 (x3,x4,x5,x6) =

(
x

c21
e23
3 , x4 x

− e24
e23

3 , x5 x
c25
e23
3 , x6 x

c26
e23
3

)
, 0 ≤ x4 < x

e24
e23
3

φ6,2,4 : H in,6
2 → Hout,4

2 , φ6,2,4 (x1,x3,x4,x5) =

(
x1 x

c21
e24
4 , x3 x

− e23
e24

4 , x5 x
c25
e24
4 , x

c26
e24
4

)
, 0 ≤ x3 < x

e23
e24
4 .

We derive the global maps by means of the symmetries. The equivariance of the vector field
under Z6

2 implies that to leading order they are the identity map. Recall that the nodes are pairwise
related by the symmetry ϕ (x1,x2,x3,x4,x5,x6) = (x4,x5,x6,x1,x2,x3). We further use it to go back to
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2
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the representative cross section in view of H in,2
4 = γH in,5

1 and H in,3
5 = γH in,6

2 . For each heteroclinic
connection the global maps take the form

ψ1,2 : Hout,2
1 → H in,1

2 , ψ1,2 (x3,x4,x5,x6) = (x3,x4,x5,x6)

ψ2,1 : Hout,4
2 → H in,5

1 , ψ2,1 (x1,x3,x5,x6) = (x5,x6,x1,x3)

along the R-cycle, and

ψ2,3 : Hout,3
2 → H in,2

3 , ψ2,3 (x1,x4,x5,x6) = (x1,x4,x5,x6)

ψ3,2 : Hout,5
3 → H in,6

2 , ψ3,2 (x1,x2,x4,x6) = (x4,x6,x1,x2)

along the L-cycle. We define the composition of the above-mentioned maps yielding for R

g̃1 : H in,5
1 → H in,1

2 , g̃1 = ψ1,2 ◦φ5,1,2

g̃2 : H in,1
2 → H in,5

1 , g̃2 = ψ2,1 ◦φ1,2,4,

for L,
g2 : H in,6

2 → H in,2
3 , g2 = ψ2,3 ◦φ6,2,3

g3 : H in,2
3 → H in,6

2 , g3 = ψ3,2 ◦φ2,3,5,

and, from one heteroclinic cycle to the other,

gRL : H in,1
2 → H in,2

3 , gRL = ψ2,3 ◦φ1,2,3

gLR : H in,6
2 → H in,5

1 , gLR = ψ2,1 ◦φ6,2,4.

Then, the return maps around the R- and L-cycles are, respectively, given by

π̃1 = g̃2 ◦ g̃1 : H in,5
1 → H in,5

1 , π̃1 (x2,x3,x4,x6) =

(
x

c25
e24
4 xα̃

2 , x6 x
c26
e24
4 xη̃

2 , x
c21
e24
4 xβ̃

2 , x3 x
− e23

e24
4 xδ̃

2

)
,

0 ≤ x3 < x
e23
e24
4 x−δ̃

2 , (D.1)

π̃2 = g̃1 ◦ g̃2 : H in,1
2 → H in,1

2 , π̃2 (x3,x4,x5,x6) =

(
x6 x

c13
e12
5 xθ̃

4 , x
c14
e12
5 xµ̃

4 , x
c15
e12
5 xρ̃

4 , x3 x
c16
e12
5 xν̃

4

)
,

0 ≤ x3 < x
e23
e24
4 (D.2)

and

π2 = g3 ◦g2 : H in,6
2 → H in,6

2 , π2 (x1,x3,x4,x5) =

(
x4 x

c34
e35
5 xν

3 , x
c36
e35
5 xµ

3 , x1 x
c31
e35
5 xθ

3 , x
c32
e35
5 xρ

3

)
,

0 ≤ x4 < x
e24
e23
3 ,

π3 = g2 ◦g3 : H in,2
3 → H in,2

3 , π3 (x1,x4,x5,x6) =

(
x4 x

c21
e23
6 xη

5 , x1 x
− e24

e23
6 xδ

5 , x
c25
e23
6 xα

5 , x
c26
e23
6 xβ

5

)
,

0 ≤ x1 < x
e24
e23
6 x−δ

5
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where
ρ̃ =

c25

e24

c15

e12
> 0 ρ =

c25

e23

c32

e35
> 0

ν̃ =−e23

e24
+

c25

e24

c16

e12
ν =−e24

e23
+

c25

e23

c34

c35

µ̃ =
c21

e24
+

c25

e24

c14

e12
> 0 µ =

c26

e23
+

c25

e23

c36

e35
> 0

δ̃ =
c13

e12
− c14

e12

e23

e24
δ =

c31

e35
− c36

e35

e24

e23

θ̃ =
c26

e24
+

c25

e24

c13

e12
> 0 θ =

c21

e23
+

c25

e23

c31

e35
> 0

η̃ =
c16

e12
+

c14

e12

c26

e24
> 0 η =

c34

e35
+

c36

e35

c21

e23
> 0

α̃ =
c15

e12
+

c14

e12

c25

e24
> 0 α =

c32

e35
+

c36

e35

c25

e23
> 0

β̃ =
c14

e12

c21

e24
> 0, β =

c36

e35

c26

e23
> 0.

We describe the visit to each heteroclinic cycle starting close to the other through the maps

πRL = g3 ◦gRL : H in,1
2 → H in,6

2 , πRL (x3,x4,x5,x6) =

(
x4 x

c34
e35
5 xµ

3 , x6 x
c36
e35
5 xν

3 , x
c31
e35
5 xθ

3 , x
c32
e35
5 xρ

3

)
,

0 ≤ x4 < x
e24
e23
3 ,

πLR = g̃1 ◦gLR : H in,6
2 → H in,1

2 , πLR (x1,x3,x4,x5) =

(
x

c13
e12
5 xθ̃

4 , x1 x
c14
e12
5 xµ̃

4 , x
c15
e12
5 xρ̃

4 , x3 x
c13
e12
5 xν̃

4

)
,

0 ≤ x3 < x
e23
e24
4 .

D.2 Transition matrices

In the new coordinates (3.5) the maps g̃ j and g j become linear, their structure being represented by
basic transition matrices M̃ j and M j. These are, for R,

M̃1 =



c13

e12
1 0 0

c14

e12
0 1 0

c15

e12
0 0 0

c16

e12
0 0 1


, M̃2 =



0
c25

e24
1 0

0
c26

e24
0 1

0
c21

e24
0 0

1 −e23

e24
0 0


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and, for L,

M2 =



1
c21

e23
0 0

0 −e24

e23
1 0

0
c25

e23
0 1

0
c26

e23
0 0


, M3 =



0 1
c34

e35
0

0 0
c36

e35
1

1 0
c31

e35
0

0 0
c32

e35
0


.

Transition matrices of the return maps π̃ j and π j are the products of the basic transition matrices of
the form

M̃(1) = M̃2M̃1 =



α̃ 0
c25

e24
0

η̃ 0
c26

e24
1

β̃ 0
c21

e24
0

δ̃ 1 −e23

e24
0


, M̃(2) = M̃1M̃2 =



0 θ̃
c13

e12
1

0 µ̃
c14

e12
0

0 ρ̃
c15

e12
0

1 ν̃
c16

e12
0


(D.3)

and

M(2) = M3M2 =



0 ν 1
c34

e35

0 µ 0
c36

e35

1 θ 0
c31

e35

0 ρ 0
c32

e35


, M(3) = M2M3 =



0 1 η
c21

e23

1 0 δ −e24

e23

0 0 α
c25

e23

0 0 β
c26

e23


,

respectively.
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