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Resumo 
 

 

 
O sistema nervoso humano é de longe o sistema mais complexo conhecido pela ciência, e a 

comunidade neurocientífica está ainda a tentar compreender as dinâmicas neuronais em 

condições normais e patológicas. A natureza elétrica da dinâmica neuronal faz da 

eletrofisiologia a principal metodologia para compreender como é que a informação neuronal 

é transferida, integrada e processada. Contudo, a eletrofisiologia não é apenas registar a 

atividade neuronal. Um grande número crescente de evidências mostra as vantagens 

terapêuticas de estimular e modular com precisão a atividade neuronal em condições 

patológicas. A estimulação elétrica (EE) tem muito potencial em vários campos de investigação, 

principalmente em tratamentos médicos de neuroreabilitação. Um dos cenários de reabilitação 

melhor sucedidos é na doença de Parkinson (DP), através de Estimulação Cerebral Profunda. 

No entanto, apesar das melhorias clínicas significativas em estados iniciais da DP, com a 

progressão da doença, a tendência é para perder a sua eficácia devido à adaptação das células 

às características constantes dos estímulos elétricos. Uma das soluções para esta perda de 

eficácia da EE na DP, e em outras patologias beneficentes dos sistemas de EE aprovados, é o 

desenvolvimento de sistemas de malha fechada em tempo real, que automaticamente adaptam 

as características do seu estímulo para o individuo e para o estado corrente da doença. O 

principal objetivo do presente trabalho é a investigação de novos sistemas, métodos e 

protocolos para alcançar controlos ao nível da atividade em populações neuronais usando 

recorrentes configurações de matrizes de microeléctrodos de elevada densidade. Numa 

perspetiva clínica, o desenvolvimento de uma nova geração de dispositivos implantáveis 

baseados em sistemas de realimentação de malha fechada em tempo real, usando matrizes de 

microelétrodos capazes de interações bidirecionais com neurónios através de EE, são de 

importância fundamental para tratar doenças neurológicas. A característica principal desta 

dissertação é a sua natureza transdisciplinar, combinando neurobiologia, eletrofisiologia, 

culturas de células neuronais, programação e simulações, eletrónica e teoria de controlo. Um 

objetivo suplementar desta dissertação é o design e a construção de um sistema de 

eletrofisiologia de baixo custo e de fácil construção “Do-It-Yourself” (DIY). O sistema DIY é 

composto por um amplificador de baixo custo e um headstage de interface capaz de ler e 



 

transmitir sinais eletrofisiológicos de uma matriz de microelétrodos com 60 elétrodos para um 

sistema de aquisição de dados. 
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Abstract 
 

 

 
The human nervous system is by far the most complex system known to science, and the 

neuroscience community is still trying to understand neuronal dynamics in normal and 

pathological conditions. The electrical nature of neuronal dynamics makes electrophysiology 

the main methodology to understand how neuronal information is transferred, integrated and 

processed. But electrophysiology is not only recording activity from neurons; a growing body of 

evidence shows the therapeutic advantages of precisely stimulating/modulating the neuronal 

activity in pathological conditions. Electrical stimulation (ES) has a lot of potential in many 

research fields, mainly as a medical treatment in neurorehabilitation. One of the most well 

succeeded rehabilitation scenarios is in the Parkinson’s Disease (PD) through Deep Brain 

Stimulation (DBS). But despite significant clinical improvements at PD’s earlier stages, with the 

progression of the disease, the tendency is to lose its efficacy due to cell’s adaptation to the 

constant features of the electrical stimuli. A solution to this loss of efficacy of ES in PD, and in 

many other pathologies benefiting from approved ES systems is the development of real-time 

closed-loop systems that automatically adapt its stimuli features according to the individual 

and to the current state of the disease. The primary goal of the present work is the investigation 

of new systems, methods and protocols to achieve activity level control in neuronal populations 

using state-of-the-art high-density microelectrode arrays (MEAs) setups. In a clinical 

perspective, the development of a new generation of implantable devices based in real-time 

closed-loop feedback systems using MEAs capable of a bidirectional interaction with the neurons 

through ES, are of fundamental importance to treat neurological diseases. A core feature of 

this dissertation project is its transdisciplinary nature, combining neurobiology, 

electrophysiology, neuronal cell cultures, programming and simulations, electronics and control 

theory. A supplementary outcome of this thesis is the design and construction of a low cost and 

easy-to-build DIY (“Do-It-Yourself”) electrophysiology system. The DIY system is composed of a 

low-cost amplifier and an interface-headstage capable of reading and transmitting 

electrophysiological signals from a microelectrode array with 60 electrodes to a data acquisition 

system. 
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Chapter 1 
 
 

Introduction 
 

 

 

The human nervous system (NS) is the most complex structure known to man: currently, 

we know more about the dynamics of distant stars than what happens in a single neuron. The 

NS is divided into two main components: the central nervous system (CNS) and the peripheral 

nervous system (PNS). In the CNS is where the information received by the sensory receptors of 

the PNS is integrated, processed and the decisions of “what to do” are taken and after that, 

the “commands” are sent to effector organs [1]. To carry input and output information, the 

PNS has two distinct divisions: the afferent (sensorial) and the efferent (motor). However, 

despite this global and simple vision of the NS, to understand its complexity is necessary to look 

inside the human brain with more detail. It is constituted by billions of neurons differentiated 

into subtypes each one with thousands of cells similar in structure and genetics. These cells 

interact and communicate with each other resulting in quadrillions of synapses [1], [2]. Despite 

the very large number of neurons in the brain (~ 1011) [3], [4], they represent a small fraction 

of the total amount of cells in the brain. The majority of cells are glial cells consisting of 

microglia, astrocytes, and oligodendrocytes, not capable of generating action potentials (APs) 

[4].  

Among several methodologies, electrophysiology remains the standard approach to study 

the NS dynamics and analyze the electrical nature of neuronal cells [5]. The electrical 

properties of neuronal cells have been studied at different levels, from a single-ion channel to 

extensive neuronal networks, with the aim of elucidating the underlying mechanisms of brain-

like synaptic plasticity, AP propagation inside neuronal networks, among others [6], [7]. Despite 

the efforts to develop new technologies and techniques using electrodes, the conventional 

techniques such as the patch clamp, intracellular sharp microelectrodes and planar substrate 

integrated microelectrodes arrays (MEAs) are still the “gold standard” methods to perform 

neuronal electrophysiology [8], [9]. However, they have critical limitations that will be 

presented and discussed later. 



2   Introduction 
 

A major goal in neuroscience research is to understand the relation between specific 

neuronal circuits properties and dynamics, and associated normal physiological functions or 

pathologies [2], [8]. However, these tasks have a high level of difficulty due to the sheer volume 

of neuronal cells and synaptic events within neuronal networks and also due to the fact that 

neuronal activity is processed at different spatial and temporal scales [5], [7]. Current MEAs 

have key properties such as long-term, parallel and multisite simultaneous recordings, which 

makes them an ideal tool to record the spatiotemporal dynamics of neuronal populations. But 

by itself, recording is not enough and frequently it is necessary to create bidirectional 

interfaces between electrodes and cells capable to both record and stimulate the cells. Such 

interfaces are not only fundamental for basic neuroscience, they have also great therapeutic 

potential for the development of medical devices which address neurological diseases through 

the modulation of neuronal activity [2], [5]. 

 

 

1.1. Motivation 
 

Neuronal diseases and disorders have an enormous and increasing impact on an aging 

population, leading to an increase in mortality and morbidity [10], [11]. Furthermore, besides 

their impact on populations’ health, they have associated medical treatments costs [12], [13]. 

Figure 1.1 presents a projection of the impact and worldwide distribution of Parkinson disease 

(PD) in 2030, one key neurological disease in our current societies, as well as the annual costs 

of several disorders in the US. 

The integrity of the whole nervous system is crucial and damages in neuronal circuits from 

one region of the brain can lead to irreversible damages in other parts. The damages can occur 

due to internal or external factors like injury, inflammation, and trauma and also can be divided 

into different types such as neurological, neurodegenerative, psychiatric and neuromuscular 

conditions which correspond to the following respective examples, PD, Alzheimer disease, 

major depressive disorder and multiple sclerosis [2], [3]. 

 

 

 

 

 

 

 



Motivation  3 

 

 
 

 

Neurological impairments are often “fought” with neurological rehabilitation strategies, 

which aim to improve the patient’s life quality restoring their independence in daily tasks. 

Applied techniques make use of the brain’s plasticity which is a set of mechanisms that allow 

the brain to adapt and modify its functions according to a new scenario [12]. These 

modifications can be at the level of existing synapses (synaptic potentiation, depression or 

excitability changes) or morphological changes (number of dendrites, for instance) [12].  

As an alternative to the conventional pharmacological approaches (drugs), electrical 

stimulation (ES) is gaining attention as an effective therapeutic strategy. Currently, ES is widely 

used as a medical treatment in neurorehabilitation and therapeutic applications [14]–[16], for 

instance, to recover limbs’ control in case of nervous system injury and also to treat neuronal 

disorders. ES has been used to treat neurological damages through neuromodulation of brain’s 

plasticity by targeted and specific delivery of electrical stimuli. One of the most well-succeeded 

strategies is the Deep Brain Stimulation (DBS) [12], [13], [17]. It consists in the continuous 

application of small electrical pulses delivered by implanted stimulation electrodes near target 

specific regions of the brain to modulate or disrupt abnormal activity, for instance, by changing 

firing rate and/or firing patterns of individual neurons [12], [17], [18]. DBS is recognized by the 

US Food and Drug Administration, for application in neurological treatments and was first 

approved to treat Essential Tremor in 1997. Since 2002 has been applied to treat PD, in 2003 

was approved for clinical application in primary dystonia cases and since 2009 it started to be 

used to treat Obsessive Compulsive Disorder [13], [17]. Further, DBS has also been used as a 

treatment for other neurological disorders despite its therapeutic effect is not well understood 

yet. Other examples of ES based therapies include reduction of seizures in Epilepsy, to treat 

neuropathic pain, psychiatric disorders, depression, Alzheimer’s disease, to recover from stroke 

damages, among others [12], [17]. 

Figure 1.1 - Clinical impact of neurological diseases and injuries. (a) Worldwide distribution and 
population diagnosed with PD in 2005 (blue) and the corresponding projection for 2030 (light blue). (b) 
Estimation of annual costs of several disorders in the US. Adapted from [2]. 
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To elucidate a common problem of using ES to treat neurological disorders, it will be used 

the PD as an example. PD is a chronic neurodegenerative movement disorder that tends to 

evolve and getting worse. Despite treatments with medications are very successful and have 

significant improvements in many patients, for other patients or in advanced stages of the 

disease, medication practically loses its effect [18]. An alternative is the DBS which in PD 

treatment is one of the most well-established techniques capable to control motor symptoms 

and improve patients’ life quality [18]. However, as previous mentioned, PD is a progressive 

disease with dynamic features which bring constraints to the current open-loop DBS methods 

due the fact that optimization of stimulation parameters is, mainly, responsibility of clinician 

and patient’s experience which is a subjective parameter and ends up being an iterative process 

to achieve the adequate stimulation parameters. Also, after some time, the same static 

stimulation has a tendency to lost is effect and does not avoid the progression of the disease 

and, meanwhile the disease symptoms will appear again. So, contrariwise to traditional 

approaches, it is truly important the development of DBS real-time closed-loop systems capable 

to automatically adapt and adjust their stimulation parameters according to neuronal activity 

and disease changes to maximize therapeutic results [18].  

Another common disorder, and quite present in current populations, are deafness or 

blindness. By means of ES to sensory neurons is possible to transmit the information to the brain 

and keep the normal course of the information without significant losses. One famous and 

successful procedure are the cochlear implants [16], [19] and, not so usual but with great 

progress in the past years are the retinal implants to treat blindness [20], [21]. Depending on 

the type of application and the deepness of target neuronal cells, the amplitude of the stimuli 

can change [5]. 

By itself, ES is not enough to study the neuronal system but when allied at the same time 

with recordings of the stimulus-response activity, this is a very powerful technique [5], mainly 

in emerging areas like brain-computer interfacing and neuroprosthetics [16], [22]. Here, spatial 

precise stimulation is crucial [23]. 

The current technologies have limitations which do not enable a complete understanding 

of all neuronal processes, however, with the development of new technologies, especially, 

nanotechnologies, diagnosis, and treatment of neuronal pathologies may be achieved [9]. 

Despite that, current electrophysiological technologies to record neuronal activity as the ones 

produced by Multi Channels Systems (MCS) (Reutlingen, Germany), for instance, are very 

expensive which is a large barrier for many labs to acquire these systems and give their 

contribution in the neuroscience field.  
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1.2. Objectives 

 

Many NS pathologies can be corrected using ES in well-defined neuronal populations. 

Recent developments and improvements in microelectrodes fabrication allied to new 

knowledge about how to stimulate, record and decode neuronal activity have led to an 

increasing interest in the development of interface systems between populations of neurons 

and electronic circuits. Between the various types of arrays of microelectrodes that have been 

developed, there is a configuration with very promising features, in which the microelectrodes 

are fabricated with the shape of a mushroom with about 1 micrometer of height and width.  

 

The primary objective of this dissertation was the investigation of systems, methods 

and protocols to achieve activity level control in neuronal populations using state-of-the-

art high-density MEAs setups. These feedback control systems are of fundamental 

importance for the development of the new generation of implantable devices using ES to 

treat neurological diseases. A core feature of this dissertation project is its transdisciplinary 

nature, combining neurobiology, electrophysiology, neuronal cell cultures, programming 

and simulations, electronics and control theory. 

 

The main objective can be divided into two components: an experimental and a 

theoretical. The experimental part consisted of the design and implementation of an in vitro 

“real-time” closed-loop control system to attain constrained (controlled) global activity levels 

of a neuronal population cultured on the top of MEAs chips. To this purpose, the commercial 

MEA2100-System from MSC (Reutlingen, Germany), capable of record and stimulate 

simultaneously up to 252 microelectrodes, was used. This is only possible because the system 

has an integrated Digital Signal Processor (DSP), connected to the amplifiers and stimulators, 

which can be programmed for “real-time” signal detection, filtering and feedback stimulation. 

In order to accomplish this objective, several experiments were first done to validate the 

stimulus parameters in order to induce an inhibitory response in the neuronal cells within the 

range of the stimulation electrodes, reducing their global firing activity. After this validation, 

a set of experiments were performed to evaluate the stimulus efficacy in the context of a 

neuronal network. Although MEAs chips with 256 electrodes were used, the goal was to control 

the global activity level on the culture (population mean level), using feedback stimulation in 

response to the variation of neuronal populations mean firing rate and not control each 

microelectrode of the array individually. Different methodologies were also explored, including 

the development of an in silico control system. To achieve this, a canonical and versatile 

Proportional-Integral and Derivative (PID) control method was implemented in a simulated 

neuron, using the well-established integrate-and-fire (IF) model for neuronal dynamics. This in 

silico controller was simulated in MATLAB R2017b environment (The MathWorks Inc., USA) and 

aims to maintain the neuron’s firing rate at a certain well-defined level through the injection 
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of precise current (calculated by the PID controller) in the differential equation that 

characterizes the dynamics of the neuron. 

Also, motivated by the fact that equipment for electrophysiology with MEAs is quite 

expensive, and out of reach for many neuroscience/neuroengineering research labs, a 

supplementary goal of this dissertation was the design, construction and validation of a low 

cost and easy-to-build DIY (“Do-It-Yourself”) electrophysiology system. The DIY system was 

composed of a low-cost amplifier and an interface-headstage capable of reading and 

transmitting electrophysiological signals from an MEA with 60 electrodes to a data acquisition 

system. Despite relevant progress made in several components of the DIY system, being this a 

secondary goal, the available time did not allow its full conclusion and validation. The 

description of the developed prototype can be found in Appendix B. 

  

  

1.3. Document Structure  
 

The work is divided into six main chapters. Chapter 1 is the introduction and presents the 

motivations and objectives to elaborate the present work. Chapter 2 presents a review of the 

literature in the electrophysiology field. Section 2.1 makes an introduction to this topic, 

starting by describing the neuronal membrane and its properties. It also includes two basic 

mathematical models to describe neuronal dynamics. The historical transition from 

neuroscience to neuroengineering is also described in this section. Sections 2.2 – 2.2.3 review 

the electrophysiological standard devices/techniques and the different types of 

electrophysiological signals. Section 2.2.4 presents a new category of extracellular MEAs and 

describes a new configuration of microelectrodes with the shape of a mushroom, which have 

very promising features. Chapter 3 (section 3.1) makes an introduction to closed-loop systems 

and their importance in clinical applications in the treatment of neuronal disorders and even 

in the development of Brain-machine interfaces (BMI). Section 3.2 presents important 

considerations about signal processing and spike detection. Section 3.3 introduces the feedback 

principle and the theory behind the classical PID controllers. Chapter 4 presents the materials 

and methods used in this work. Section 4.1 describes the set of steps made to develop, tune 

and validate the in silico PID control system. Section 4.2.1 gives an overview of the MEA2100-

System. Sections 4.2.2 and 4.2.3 describe how to prepare the MEAs for neuronal cultures and 

the isolation protocol. Sections 4.2.4 – 4.2.6 describe the acquisition system setup and the 

protocol of the experiments. Section 4.2.7 describes the MATLAB code to analyze the recorded 

data. Sections 5.1 and 5.2 present and discuss the experimental results obtained in this work. 

Section 5.1 is dedicated to the in silico PID control system and, the “real-time” closed-loop 

experimental results and discussion are presented in section 5.2, followed by considerations 

about future work/directions presented in section 5.3. Chapter 6 presents the conclusions and 

final remarks of this dissertation work.  
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Chapter 2 
 
 

Electrophysiology 
 

 

 

2.1. Introduction to electrophysiology  
 

Electrophysiology is a field of science dedicated to the study of the electrical properties of 

cells and biological tissues, mainly in the neuroscience area where is considered the standard 

approach [5]. Changes in these properties, currents or voltages, can be measured at different 

scales, from ion channels to networks of neurons, and allow to the nervous system to perform 

and control its various functions such as sensory perception, memory, and motor action [3]. 

The study of these properties is quite important as it allows a better knowledge of the brain’s 

behavior and neuronal pathologies such as epilepsy, Parkinson's or Alzheimer's disease, for 

example. These measurements are only possible since neuronal cells, due to their electrical 

nature, are capable to generate and transmit electrical signals which can be detected by 

specific devices called electrodes, even at a distance from the source [5]. This electrical 

activity occurs because there is a difference in the potential across the cells’ membranes, 

namely between the inside and the outside of the cell. This difference results from different 

ionic concentrations on both sides of the cellular membrane. The flow of some ions as sodium 

(Na+) and potassium (K+) through the membrane by specific ionic channels causes alterations at 

the membrane potential, which can be measured through electronic circuits [7], [24]. The 

membrane potential is the key to neurons being able to transmit and integrate signals [7]. The 

membrane’s resting potential can be defined as the sum of the equilibrium potentials of the 

different ions and of their relative permeabilities and, under normal conditions, this value is 

about -65 mV [7]. When the membrane potential, for instance, through ES, reaches a certain 

threshold of depolarization, an AP is generated.  

An ideal electrophysiological system should have the capability to record a set of 

electrophysiological signals from individual neurons such as APs, subthreshold postsynaptic 

potentials (excitatory - EPSPs or inhibitory - IPSPs) and subthreshold membrane oscillations. 

Further, through electrical current application (stimulation) and simultaneously with the 
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recordings, the system should also be capable of modulating the activity of specific neurons 

within the neuronal network [8].  

 

2.1.1. Neuronal membrane 

The membrane of a neuron is composed by an impermeable lipid bilayer and proteins/ 

clusters of proteins denominated as ionic channels or ionic pumps, which are the responsible 

to maintain ions concentrations in both sides of the membrane, inside and outside the cell, and 

thus, these different concentrations result in an electrical potential across the membrane, the 

membrane potential. The presence of ionic channels and ionic pumps confers a semipermeable 

character to the membrane, which is permeable to specific ions [7]. As previously mentioned, 

in the rest state, the resting membrane potential value is negative which means that the 

intracellular potential is more negative in relation to the extracellular potential. This can result 

in an electrical field across the membrane and we can see the cell membrane as a natural 

capacitor. Another important concept is the equilibrium potential which is defined as “the 

membrane potential at which current flow due to electric forces cancels the diffusive flow” 

[25]. This is correlated with another two important events: ions diffusion and electrical drift of 

the ions. Simplifying, ions diffusion is the movement of particles according to their gradient of 

concentration, i.e., they diffuse from a region with high concentration to another with low 

concentration. However, this phenomenon is related to another one, the ions electrical drift. 

As ions are charged particles, as they move down the gradient, and once the ions concentrations 

are different in both sides of the membrane, the generated electrical field influences the 

movement of the ions which leads to an electrical drift of the ions according to their charges 

in an opposite direction despite their concentrations gradients. For instance, if one side of the 

membrane has an excess of positive charges in relation to the general amount of charges 

(positive and negative ones), the flow of ions positively charged even in favor of their gradient 

of concentration tend to invert and flow in the opposite direction of diffusion because, 

eventually, the amount of negative charges that stay in the initial side will increase the 

electrical field and as we know, opposite charges attract each other and same charges repel 

each other. So, this to say that the system is in equilibrium when the movement of ions due to 

electrical drift is equal but opposite to the movement due to diffusion [7]. At this point, it is 

possible to measure the equilibrium potential for a specific neuron. The equilibrium potential 

is also known as Nernst potential due the Walther Nernst, a German physical chemist who 

created, in 1888, the famous equation to compute the equilibrium potential for a single ion. 

The Nernst equation is described below: 

𝐸𝑥 =
𝑅𝑇

𝑧𝑥𝐹
ln

[𝑋]𝑜𝑢𝑡

[𝑋]𝑖𝑛

, (1) 

where, 𝐸𝑥 is the membrane potential of the membrane permeable ion (X), R is the universal 

gas constant, T is the temperature in Kelvins, 𝑧𝑥 is the valence of the ion, F is the Faraday´s 
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constant and [𝑋]𝑜𝑢𝑡 and [𝑋]𝑖𝑛 are the ion concentrations in the extracellular and intracellular 

fluid, respectively.  

The Goldman-Hodgkin-Katz (GHK) current equation, developed by Goldman in 1943 and 

Hodgkin and Katz in 1949, predicts the current of a specific ion (X) across the cell membrane 

for a specific value of membrane potential (V), per unit area of membrane (in 𝑐𝑚−2). This 

equation is presented below and has the following assumptions: ions pass through the 

membrane independently of each other and the electric field within the membrane is constant 

[7]: 

𝐼𝑋 = 𝑃𝑋𝑧𝑋𝐹
𝑧𝑋𝐹𝑉

𝑅𝑇
(

[𝑋]𝑖𝑛 − [𝑋]𝑜𝑢𝑡𝑒−𝑧𝑥𝐹𝑉 𝑅𝑇⁄

1 − 𝑒−𝑧𝑥𝐹𝑉 𝑅𝑇⁄
) . (2) 

The remaining parameter: 𝑃𝑋 is the permeability of the membrane to the abstract ion (ion X, 

for the example). This equation is often substituted by a simpler one:  

𝐼𝑋 = 𝑔𝑋(𝑉 − 𝐸𝑋), (3) 

where 𝑔𝑋 is the conductance per unit area (𝑚𝑆𝑐𝑚−2) and 𝐸𝑋 is the equilibrium potential. The 

total current flowing across the membrane is the sum of the GHK current equation for each ion, 

which cross the membrane. 

Another important concept is the reversal potential (𝐸𝑚) and is defined as “the membrane 

potential at which the current reverses direction” [7]. Despite its similarity with the equilibrium 

potential, when there are ion channels that are not truly selective to just one type of ion, its 

value will be in the middle of each equilibrium potentials of the ion types which can pass 

through the ion channel [25]. When the V is equal to the 𝐸𝑋, the current is zero as we can see 

in equation (3). So, this moment corresponds to the current turning point and by replace the 

membrane current by zero and solve the GHK current equation in order to voltage, it was 

created the GHK voltage equation presented below and applied to a membrane permeable to 

3 different ions (𝑁𝑎+, 𝐾+ , 𝐶𝑙−): 

𝐸𝑚 =
𝑅𝑇

𝐹
𝑙𝑛

𝑃𝑁𝑎[𝑁𝑎+]𝑜𝑢𝑡 + 𝑃𝐾[𝐾+]𝑜𝑢𝑡 + 𝑃𝐶𝑙[𝐶𝑙−]𝑜𝑢𝑡

𝑃𝑁𝑎[𝑁𝑎+]𝑖𝑛 + 𝑃𝐾[𝐾+]𝑖𝑛 + 𝑃𝐶𝑙[𝐶𝑙−]𝑖𝑛

. (4) 

 

2.1.2. Hodgkin and Huxley model  

An AP can be quantitatively described by a set of equations developed by Hodgkin and 

Huxley in 1952 [7], [26], and which are nowadays used as the basis of computational models in 

neuroscience. They proposed an equivalent electrical circuit for a membrane cell’s 

compartment and is present in figure 2.1. 
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Figure 2.1 - Hodgkin and Huxley equivalent electrical circuit for a membrane cell’s compartment. Adapted 
from [7]. 

First, to clarify,  ion channel is a term used nowadays but unknown to the authors of the 

model when they did their studies. I just will use it to facilitate the understanding of the 

readers. In this model, the cell membrane is represented by a capacitor (𝐶𝑚) and is also 

represented by three different ionic currents, the sodium current (𝐼𝑁𝑎), the potassium current 

(𝐼𝐾) and the leak current (𝐼𝐿), this one, is mostly due to the current resulting from the flow of 

chloride ions. The three ion channels are represented by a resistance in series with a battery. 

𝐸𝑁𝑎, 𝐸𝐾 and 𝐸𝐿 are the equilibrium potentials correspondent to sodium, potassium and the leak 

ions and their respective conductances are 𝑔𝑁𝑎, 𝑔𝐾 and 𝑔𝐿. An important aspect is the arrow 

above the sodium and potassium resistors which means that the value of their conductances 

vary with voltage and we can see that solving the equation (3) in respect to 𝑔𝑋. Despite the 

lack of technology in that time, now we know that there are voltage-gated ion channels. The 

circuit in the figure 2.1 has the corresponding equation: 

𝐼 = 𝐼𝑐 + 𝐼𝑖 , (5) 

where 𝐼 is the membrane current, 𝐼𝑖 is the ionic current and corresponds to the sum of the 

individual ionic currents of the three types of currents previous mentioned and each individual 

current can be calculated through the equation (3) and, 𝐼𝑐 is the capacitive current which is 

given by the membrane capacitance multiplied by the voltage’s rate of change (
𝑑𝑉

𝑑𝑡
) as in the 

following equation:  

𝐼𝑐 = 𝐶𝑚

𝑑𝑉

𝑑𝑡
. (6) 

Hodgkin and Huxley after their experiments knew that sodium and potassium ions were 

responsible to generate an electrical impulse so they tried to fit the ionic current generated by 

each one. First, they noticed that the conductances of the ions depended on the membrane 

voltage. Additionally, they created the idea of gates on the membrane which enable the 

passage of ions across it and, the gates had two states, the open and the closed state. These 



12   Electrophysiology 
 

are controlled by a number of independent particles called by the authors as gating particles 

and they change their state according to the membrane potential. Like the gates, they have 

the same two states, open and closed and for an ion cross the gate, all the gating particles 

need to be in their open state. By calculation of the conductances for each ion (potassium and 

sodium) obtained in their voltage clamp experiments through isolation of the current 

corresponding to each ion, for the specific case of the potassium ions, they defined the gating 

variable 𝑛 as the probability of a potassium gating particle be in its open state and the 

probability of the gate be open is 𝑛𝑥. Thus, being 𝑔̅ the membrane maximum conductance, the 

membrane conductance for potassium, given the probability of the gate be open, is written as: 

𝑔𝐾 = 𝑔𝐾̅̅̅̅ 𝑛𝑥 . (7) 

By fitting the experimental potassium conductance curve obtained led the authors to assume 

that the potassium had four gating particles (𝑥 = 4). They did the same thing to the sodium 

ion, however, they observed that the behavior of the conductance curve was different of the 

potassium curve. They observed that despite the voltage continued being applied to the 

membrane, the sodium conductance after reached its maximum started to decay, a 

phenomenon named by the authors as inactivation. So, they conclude that instead one gating 

particle, they should use two. They introduced the gate type particle which characterizes the 

level of inactivation and it is represented by ℎ. Also, like the gating variable 𝑛 used for 

potassium ion, their homologous for sodium is the sodium activation particle 𝑚. Thus, by curve 

fitting they got to the following equation for sodium membrane conductance: 

𝑔𝑁𝑎 = 𝑔𝑁𝑎̅̅ ̅̅ ̅𝑚3ℎ. (8) 

The last current, as previously discussed, is the leak current resulting from the permeability of 

the membrane to chloride ions. Through the equation (3) it is possible to model the leak 

current. Just for a question of conformity with respect to the last equations, the membrane 

conductance 𝑔 will be replaced by 𝑔̅. Finally, Hodgkin and Huxley  equation [7], [26] to describe 

the membrane potential, in a small part of a squid giant axon, used in their experiments is 

present in the equation (9) and results in the combination of the equations (5), (6), (7) and (8): 

𝐶𝑚

𝑑𝑉

𝑑𝑡
= −𝑔𝐿̅̅ ̅(𝑉 − 𝐸𝐿) − 𝑔𝑁𝑎̅̅ ̅̅ ̅𝑚3ℎ(𝑉 − 𝐸𝑁𝑎) − 𝑔𝐾̅̅̅̅ 𝑛4(𝑉 − 𝐸𝐾) + 𝐼𝐿𝐶 . (9) 

Once this equation is just for a part of the axon, 𝐼𝐿𝐶 corresponds to the contribution of the axial 

current from the vicinity regions of the axon. Considering all extension of the axon, this current 

can be replaced by the second derivate of the membrane potential solved in order to space: 

𝑑

4𝑅𝑎

𝜕2𝑉

𝜕𝑥2. 
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2.1.3. Integrate and fire model 

Models capable of capturing the key elements of the dynamics of neuronal networks are 

challenging to develop and to analyze. Computational models which are appropriate to 

reproduce single cell’s behavior frequently fail in the context of neuronal network analysis 

simply because they are not adequate for representing network dynamics, or because they are 

computationally intensive (and do not scale up to population sizes). Further, depending on the 

scientific questions, for instance, understanding in detail the mechanisms of how neurons are 

capable to process and transmit APs, are not truly important [7]. These explanatory models can 

be replaced by descriptive models where it is described the essential function of the neuron, 

in this case, the genesis of APs through non-coupled differential equations which is 

computationally faster [7]. The construction of a model requires an active process of 

simplification, and a criterions judgment of what are the essential elements to capture in the 

model, and what elements are secondary. Therefore, simplified models are very useful, 

especially in neuronal networks simulations.  

The Hodgkin-Huxley model, HH-model, which describes AP generation using differential 

equations for each state variable, as previously addressed, is capable to explain with detail 

various events that occur in the membrane, such as the behavior of different ion channels due 

to the dynamics for the gating particles related with their conductances. Such mechanisms 

involving the voltage-dependent Na+ and K+ conductances to generate an AP are well-

understood. However, if the biophysical mechanisms responsible to generate an AP are not 

explicitly necessary in a model, the model can be simplified and simulations’ duration will 

reduce radically. The integrate-and-fire model, IF-model, which does not include gating 

variables, is a much simpler model capable of modeling the membrane potential dynamics. 

Lapicque proposed it in 1907 even when the mechanisms that generate an AP were not well-

understood yet [25]. Despite the complexity associated to the generation of an AP, this model 

sees it as a phenomenon that happens every time the membrane potential reaches a threshold 

value between -55 to -50 mV, and consequently, a spike is initiated [7], [25]. After that, the 

membrane potential is reset to a value below the threshold potential.  

There are many versions of this model. A version very similar to the original one proposed 

by Lapicque is used in this present dissertation work, the leaky IF-model, which only cares 

about the dynamics of subthreshold membrane potential. Unlike to what happens in the HH-

model, all active membrane conductances are ignored, being the membrane modeled as a 

passive leakage term [25]. The membrane´s current is given by the following equation: 

𝑖𝑚  =  𝑔𝐿̅̅ ̅(𝑉 − 𝐸𝐿), (10) 

where 𝑔𝐿̅̅ ̅ is the membrane leakage conductance, 𝑉 is the membrane potential and 𝐸𝐿 is the 

membrane equilibrium (or resting) potential. This current is called leakage current and is the 

current resultant from all elements that contribute to the membrane´s resting potential such 

as the different ionic channels [25]. Also, it is important to notice that both 𝐸𝐿 and 𝑔𝐿̅̅ ̅  are not 
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specific from any ion, and usually, they can be experimentally measured for the cell type which 

will be modelled [25].  

According to the leaky IF-model, there is a membrane which is being charged through 

currents, flowing into it until it fires an AP; when the potential threshold is reached, the 

membrane discharges [7]. To better understand how this model works we should look to the 

figure 2.2.  

 

Figure 2.2 – Schematic representation of the IF-model. a) Representation of the IF-model in the form of a 
circuit diagram. In blue is represented a switch which closes when the membrane potential reaches a 
threshold voltage, which means that the neuron fired a spike. The switch when closing causes a “short 
circuit” on the membrane resistance, taking the membrane potential back to the resting potential. (b) 
When a spike is fired, marked by the blue line, the membrane potential is reset to the resting potential 
and, despite the current still be injected in the circuit, the switch only opens after a certain time 
(refractory period), allowing the membrane potential to rise again and if it reaches the threshold, another 
spike will be fired. Adapted from [7]  

The model can be seen as an RC circuit, which is used to model the passive properties of 

the membrane, including a spike generation and a reset mechanism within it. A switch 

represents this last mechanism. When 𝑉 reaches a certain threshold level (𝑉𝑡ℎ), is considered 

that the neuron fired an AP and consequently the switch closes, bringing the membrane 

potential back to the resting potential (𝐸𝑚) [7]. After the refractory period, the switch opens 

letting the membrane to charge again and hence, the potential increases again [7]. This 

behavior is illustrated in the figure 2.2(b). 

The complete leaky IF-model equation is given by: 

𝜏𝑚  
𝑑𝑉

𝑑𝑡
=  𝐸𝐿 −  𝑉 + 𝑅𝑚𝐼 (11) 

 𝑖𝑓 V > 𝑉𝑡ℎ: "𝑠𝑝𝑖𝑘𝑒 𝑓𝑖𝑟𝑒𝑑" 𝑎𝑛𝑑 V = 𝐸𝐿 ,  

where 𝜏𝑚 is the membrane time constant of the neuron and is equal to 𝑅𝑚𝐶𝑚, 𝑅𝑚 is the 

membrane resistance, 𝐼 is the injected current (from an electrode or from other synapses) and 

𝐸𝐿 =  𝐸𝑚 [7], [25]. The figure 2.3 shows the behavior of this model when subject to a current 

from an electrode (𝐼𝑒), which changes in time. 
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Figure 2.3 – The leaky IF-model response to the variation of the electrode’s current over the time. The 
parameters used in the model were: 𝐸𝐿 = 𝑉𝑟𝑒𝑠𝑒𝑡 = −65 𝑚𝑉, 𝑉𝑡ℎ = −50 𝑚𝑉, 𝜏𝑚 = 10 𝑚𝑠 and 𝑅𝑚 = 10 𝑀𝛺. 
On the top, is the result of the membrane potential as result of the injected current (on the bottom). 
Adapted from [25]. 

By integrating the previous equation in a situation where the injected current is constant 

it is possible to obtain the membrane potential which is given by the equation 12 [7]. 

𝑉 =  𝐸𝑚 +  𝑅𝑚𝐼 (1 − exp (−
𝑡

𝜏𝑚

)) . (12) 

The greater the current is, the sooner the voltage will cross the threshold and the voltage is 

reset. And, the process starts again. If a constant current above the threshold is injected into 

the model, the simulated ”neuron” will fire at a constant frequency [7].  

The model’s firing rate can also be calculated using the equation 13 [25]: 

𝑟𝑖𝑠𝑖 =  
1

𝑡𝑖𝑠𝑖

=  [𝜏𝑚 ln (
𝑅𝑚𝐼 + 𝐸𝐿 − 𝑉𝑟𝑒𝑠𝑒𝑡

𝑅𝑚𝐼 + 𝐸𝐿 − 𝑉𝑡ℎ

)]
−1

, (13) 

where 𝑟𝑖𝑠𝑖 is the interspike-interval firing rate, 𝑡𝑖𝑠𝑖  is the spikes’ period and 𝑉𝑟𝑒𝑠𝑒𝑡 is the reset 

potential, which is typically made equal to 𝐸𝐿. The figure 2.4 shows the relation between the 

interspike-interval firing rate (𝑟𝑖𝑠𝑖), in Hz, and the injected current from an electrode, in nA, 

for an IF-model neuron and a cortical neuron measure in vivo. 

If we solve the equation 13 in order to 𝐼, it is possible to determinate the necessary current 

to inject in the system, capable to make the simulated neuron fire with a specific firing rate. 

Considering 𝐸𝐿 =  𝑉𝑟𝑒𝑠𝑒𝑡 and 𝑡𝑖𝑠𝑖 = (1/𝑟𝑖𝑠𝑖) × 1000 , in ms, the resultant equation (14) gives the 

current in nA: 

𝐼 =  

(𝐸𝐿 − 𝑉𝑡ℎ) × (𝑒
𝑡𝑖𝑠𝑖
𝜏𝑚 )

(1 − 𝑒
𝑡𝑖𝑠𝑖
𝜏𝑚 ) × 𝑅𝑚

. (14) 

Naturally, the leaky IF-model is not perfect, and one of its limitations is the absence of 

the experimentally observed spike rate adaptation. The figure 2.4 (a), compares the firing rates 
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as a function of injected current. Through the equation 13, it is possible to obtain this relation. 

In 2.4 (a), it is possible to observe that the IF-model, represented by the line, is in accordance 

with the rates between the first two spikes fired by a real neuron, after being stimulated with 

a constant current (filled circles). Although, for the same constant injected current in a real 

neuron, it adapts its firing rate in response to the stimulus, increasing the spikes period until 

hit a steady-state duration. The open circles represent the steady-state firing rate. In figure 

2.4 (b), it is demonstrated the spike-rate adaptation of the neuron. Still, there are more 

complex IF-models that could fit these more complex dynamics of the neurons [25]. 

 

Figure 2.4 – IF-model vs experimental results. (a) Relation between the interspike-interval firing rate 
(𝑟𝑖𝑠𝑖), in Hz, and injected current from an electrode, in nA, for an IF-model neuron and a cortical neuron 
measure in vivo. The parameters used in the model to draw the line were: 𝜏𝑚 = 30 𝑚𝑠, 𝐸𝐿 =  𝑉𝑟𝑒𝑠𝑒𝑡 =
−65 𝑚𝑉, 𝑅𝑚 = 90𝑀𝛺 and 𝑉𝑡ℎ = −50𝑚𝑉 [25]. The filled dots represent the 𝒓𝒊𝒔𝒊 between the first two 
spikes fired by the measure neuron in response to each level of constant injected current. On the other 
hand, the open circles show that the 𝒓𝒊𝒔𝒊 steady-state of the neuron is the result of its adaptation to the 
current. This spike-rate adaptation can be observed in (b), where is demonstrated the spiking behavior of 
a cortical neuron during a constant current. It is possible to observe the increase in the spikes period. 
Adapted from [25]. 

In summary, in this section, two different models were reviewed. The first one, HH-model 

uses a system of differential equations to characterize the membrane potential and the voltage-

dependent conductances from membrane’s ion channels which are responsible for the 

generation of spikes and, in the second model addressed, IF-model, it is imposed that every 

time the membrane potential reaches a certain threshold value, an AP occurs [7], [25].  

 

2.1.4. From neuroscience to neuroengineering 

Over the last 60/70 years, the NS has intrigued the neuroscientist community because of 

its complexity and lack of knowledge of its clear behavior, unlike other human systems. As 

result, the search for answers has led to the development of new technologies and approaches 

to study and better understand this human system [2]. Electrophysiology science dates back to 

the second half of the 18th century. Benjamin Franklin was one of the first electrotherapists 

who tried to use electricity with a medical purpose to treat neurologic disorders and in 1759 

he was capable to see muscles’ contraction due to an electrical shock [27], [28]. In 1780s, Luigi 

Aloisio Galvani during his experiment, he noticed that the leg muscles of a dead frog started to 
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twitch when an electrical shock was applied to its nerves and, later, in 1791, he introduced a 

new concept called as animal electricity, which involved physiological processes like muscle 

contraction and nerve conduction [29]–[31]. In the 1930s, Howard Curtis and Kenneth Cole, 

using an intracellular micropipette were capable to measure the full AP of a squid giant axon 

[29], [32]. Hodgkin and Huxley, in 1939, recorded an intracellular AP from a squid giant axon 

[33]. Also, both, in 1952 suggested the existence of “ion channels” [34]. This was later 

confirmed due to patch-clamp invention by Erwin Neher and Bert Sakmann in the late 1970s 

[35]. The first MEA was proposed by Thomas et al., in 1972, for extracellular recordings of in 

vitro cultured embryonic chick heart cells [36]. Gross et al. [37], [38] in 1977 developed a new 

MEA system capable of simultaneous single-unit recording of extracellular activity from snail‘s 

brain ganglia. Jerome Pine reported in [39] the usage of an array capable to record APs from 

single dissociated rat superior cervical ganglion neurons with a good signal-to-noise ratio (SNR), 

for cells at a maximal distance of 40 µm from the electrode. To be able to record signals, he 

penetrated the cell with an intracellular micropipette to stimulate a cell near an electrode. 

The APs generated were simultaneous extracellularly and intracellularly recorded and 

correlated [39]. After technological and materials’ advances, in 1994, Nisch et al. reported a 

new planar MEA with 60 gold microelectrodes to monitor the electrical activity of neurons in 

cell culture [40]. And, in 1998, Egert et al. using the planar MEA60 developed a novel system 

of organotypically cultured rat hippocampal slices [41], capable of simultaneous recording and 

stimulation of long-term cultures (4 weeks). They were able to record either spontaneous and 

evoked local field potentials (LFPs) and single-unit APs in all of 60 electrodes. The MEA60 is 

commercially available since 1996 by MCS and is one of the most requested MEA devices [3]. In 

1999, Oka et al. [42] developed a planar MEAwith 64 microelectrodes capable of 

electrophysiological recordings in acute hippocampal slices, which they called as Multielectrode 

dish (MED) probe and is commercially available as MED64 by Alpha MED Scientific Inc. (Japan). 

Figure 2.5 shows the differences between MEA60 and MED64 devices.  
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Figure 2.5 - Schematic representations of the planar MEA60 chip and the planar MED64 chip. The planar 
MEA60 chip (on top) is composed of 60 microelectrodes and the planar MED64 chip (on bottom) has 64 
microelectrodes. These models were the first versions of the current commercially available chips. On 
the right, are described the different layers and materials of each chip. Au is gold, 𝑆𝑖3𝑁4 is silicon nitride 
and Ni is nickel. Adapted from [3]. 

 

2.2. Introduction to standard electrophysiological devices and 

types of signals  
 

Although there are other methods to study neuronal activity, the more relevant methods 

within the neuroscience community are the intracellular recordings and stimulation by sharp or 

patch electrodes and extracellular recordings and stimulation by substrate-integrated MEAs [8]. 

Among the extensive repertoire of electrophysiological signals present in neuronal cells 

and populations, the most important to be considered in the present work are the APs, the LFPs 

and bursts, which will be discussed below. 

An AP is considered the code/language used by neurons to transmit information and is a 

biophysical phenomenon that happens when the transmembrane potential of a neuron reaches 

a certain threshold level. This can occur due to stimuli or other inputs like synapses. A signal 

from an AP is called a “spike” and is nothing more, nothing less than a voltage signal [5], [43], 

typically recorded as a millisecond-long 80-100 mV spike in cell’s membrane voltage [2]. This 

kind of event is of the all-or-nothing type and it has unidirectional propagation along the cell. 

The flow of currents in the extracellular space generated by APs events can be explained 

by the volume conductor theory. There is an extracellular medium with low uniform resistance 

surrounding the neuron, this medium is the volume conductor. The figure 2.6 exemplifies what 

is the current flow behavior around an isolated axon in a saline bath in two different situations. 

In the first, the axon is in its rest state (figure 2.6(a)), the membrane potential is uniform and 

there is no current flowing inside or outside the cell [43]. The second case is when the axon is 
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depolarized at some point in its membrane and the potential difference between the 

depolarized spot and the adjacent resting regions creates current flows (figure 2.6(b)). 

Heinricher [43] describes the depolarized region as a current “sink”, and the adjacent 

membrane to that region is called as “source” of current because it will be the origin of the 

current that will flow into the depolarized region. If an electrode is near the axon’s membrane 

in the depolarized region, it will record a negative signal in relation to a distant reference 

electrode. However, if the electrode is placed in the called “source regions”, the signal will be 

positive [43]. Figure 2.7 demonstrates this current flow in an easier way. 

   

 

 

 

 

 

 

 

Which ions are involved and what is the kinetics of ionic currents are two important 

questions. An AP is characterized by an initial and fast influx of sodium ions (Na+) which results 

in a large negative spike in extracellular recordings named extracellular action potential (EAP). 

Contrariwise, this Na+ influx is expressed as a positive spike in intracellular recordings and 

known as intracellular action potential (IAP). After this initial flux of Na+, the slow potassium 

(K+) channels enable the efflux of K+ which results in a small positive spike in the case of EAP 

and in a latter negative volley in IAP [5]. Figure 2.8 compares the shape of intracellular and 

extracellular APs over time. 

 

 

Figure 2.6 - Current flow around an axon 
described by the Volume Conductor Theory. 
(a) The axon is in its rest state and there is 
no current flowing. (b) One region of the 
axon is depolarized (“sink”) and there is a 
flow of current to that region from adjacent 
regions which act as a “source” of current. 
Adapted from [43]. 

Figure 2.7 - Recorded current flow along an isolated 
axon predicted by the Volume Conductor Theory 
results in a triphasic waveform. (a) An AP is moving in 
the direction of an electrode placed in a region acting 
as a “source”. The electrode records a positive 
potential in relation to distant reference electrode.  
(b) The AP reaches the electrode’s position which is 
near to a depolarized region and thus, the recorded 
potential is negative. (c) The AP continues its 
propagation along the axon and moves away from the 
electrode what results in another positive potential. 
Adapted from [43]. 
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IAP can only be detected intracellularly, this is, inside the neuron through a patch-clamp 

assay for instance. This direct access to the interior of the cell results in recordings of IAP at 

tens of millivolts. Whereas, EAP can be recorded putting an electrode near the site of spike’s 

source (~100 micrometers), and typically the electrodes are placed in the perisomatic area 

(around the soma or near the axon initial segment) [44]. EAP measurements are around tens to 

hundreds of microvolts. Both, IAP and EAP, have a duration inferior to 2 ms [45]. EAP frequency 

band is located between the 300 and 3000 Hz [46]. 

LFPs, also known as field potentials, is the name given to a set of electrical current 

synchronized events that occur in neuronal populations in both time and space and typically is 

due to spike activity of individual neurons (superposition of fast APs), synaptic potentials or 

even slow potentials of glia cells [8], [45], [47]. LFPs characteristic duration is about tens of 

milliseconds [47]. A study authored by Shoham et al. [48], reveals that some parts of the brain 

have high percentages of neurons that do not fire APs or are firing at very low rates (<0.16 

spikes per second) [48]. This emphasizes the importance of subthreshold synaptic potentials in 

signaling processes within the neuronal networks and that the neuroplasticity is influenced by 

variations in the amplitude of these signals [8], [49]. If they do not reach the threshold to fire 

an APs they are “ignored” by conventional extracellular electrodes [8], [48], [50] and important 

information may be lost. These signals are part of the content of recorded signals and appear 

in the low-frequency band, usually under the 300 Hz [45], [51]. Typically, when signals are 

analyzed, this content is filtered by a high-pass filter and frequency components below 300 Hz 

are removed.  

Bursting or burst firing is a phenomenon usually recorded in networks of neurons. To better 

understand this phenomenon, we should look at the single neuron scale. This occurs when a 

neuron fires APs at high frequency during a period of time and, after that, is proceeded by a 

quiet period. Burst activity and burst rates are two important features extracted in recorded 

data by MEAs,  both in single neurons and in networks of neurons. Two important factors that 

can trigger bursts are the environment, this is, the activity of neuronal networks and, the 

Figure 2.8 - Intracellular and extracellular spikes recorded simultaneously. The intracellular electrode 
records a monophasic depolarization wave which corresponds to a signal with a triphasic waveform in 
recordings using an extracellular electrode. Also, signals amplitudes are completely different. Adapted 
from [43]. 



Introduction to standard electrophysiological devices and types of signals  21 

 

 
 

neuron’s phenotype. In the point of view of a neuroscientist, burst activity is related to 

different functions such as synchronization of neurons populations activity, motor pattern 

generation and transport of information [5]. Also, scientists associate the repetition of specific 

patterns as memory traces that appear by similar stimulus or as a result of internal processes 

[52]–[54].  

 

2.2.1. Intracellular devices (patch-clamp and intracellular sharp 

microelectrodes) 

Development of intracellular recording and stimulation technologies enabled researchers 

to better interpret the “language” used by neurons to communicate and transmit/exchange 

information with each other, mainly the information behind subthreshold synaptic signals [33], 

[55]–[57]. Patch clamp and sharp-intracellular microelectrodes are powerful resources to 

record APs, subthreshold and synaptic potentials with a high SNR [8], [43], [55] and have a very 

good electrical coupling with the cell [8]. Patch-clamp or sharp microelectrodes enable the 

study of a single neuron and its functions through direct measurement of intracellular voltage 

and, patch-clamp is also used to measure the ionic currents of single ion channels [5]. The tips 

of sharp intracellular electrodes are pushed through the cell’s plasma membrane and contact 

directly with the cytosol. Patch electrodes tips when introduced break the plasma membrane 

of the cell and make direct contact between cell’s cytosol and the interior solution of the patch 

electrode [8], [55], [56]. Current injections through these electrodes can stimulate 

intracellularly the neurons and also study biophysical parameters such as membrane 

capacitance, input resistance and synaptic properties like the reversal potential [55]. Although 

this technique is a very powerful tool in electrophysiology to study neuronal activity, its usage 

is limited to a few neuronal cells per experiment [8], [58] and is impossible to record and 

stimulate hundreds of individual neurons simultaneously [8], [59]. 

The current bulky micromanipulators used to insert the electrode’s tip into the target cells 

limit the use of sharp or patch microelectrodes for parallel recordings or stimulation from many 

neurons [5], [8], [55]. Besides, intracellular recordings and stimulations provoke damages in 

the plasma membrane, which get worse with time and thus limit the duration of the studies. 

Also, perfusion of the cytoplasm in the case of patch electrodes can change the intracellular 

composition of the neurons [55], [56]. These mechanical instabilities in the cells are the major 

barriers of intracellular devices to perform investigations for long periods of time, namely when 

is necessary to monitor long-term events related to neuronal plasticity and learning [8]. 

Contrariwise, using extracellular and non-invasive technologies such as the extracellular MEAs 

can avoid these problems of mechanical and enable recordings and/or stimulations of large 

populations of electrogenic cells during days or even months [55], [60], [61]. 
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2.2.2. Extracellular devices: standard planar-MEAs 

The use of planar MEAs systems has been increasing in recent years due to their capability 

of simultaneous, parallel, non-invasive, multisite and long-term recordings of the electrical 

activity from populations of neurons at millisecond time scale [5], [62], [63]. This technology 

is capable of recording LFPs and EAPs and can also emit ES to modulate the normal/abnormal 

neuronal activity [5]. They can be used in in vitro recordings without inducing mechanical 

damages on the plasma membrane of the cells due to the extracellular position of the 

electrodes. This is one of the advantages of these systems that enables long-term recordings 

and stimulation of large populations of excitable cells [47], [60]–[62].  

Extracellular recording technologies have also critical disadvantages in relation to the 

conventional intracellular ones. The major disadvantage is the relative low SNR and the 

coupling coefficient between single neurons and extracellular electrodes [8], [55], [62], [63]. 

Standard extracellular electrodes were limited to recordings of LFPs generated by APs [64], 

[65]. LFPs’ amplitudes vary between 10 µV to 1 mV [8]. Also, MEAs attenuate and temporally 

filter the electrical signals due to the averaging of LFPs which contributes to loss of information, 

changes in shapes, amplitudes, and patterns [8], [63]. Membrane level events from single 

neurons such excitatory or inhibitory subthreshold synaptic potentials, that can influence cell’s 

excitability without firing an AP or even, membrane voltage oscillations, cannot be detected 

by the standard MEAs [8], [43], [62], [66]. This limits the understanding of neuronal networks. 

If synaptic potentials, in a neuronal network, are generated synchronously by populations of 

neurons, they can be picked [67], but this is very rare [66], [68]. Despite the technological 

developments and efforts to increase the number, density and spatial organization of MEAs [5], 

[47], [60], the SNR is still poor [69]. Figure 2.9 presents an overview of the electrophysiological 

signals recorded by standard intracellular and extracellular electrodes. 
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2.2.2.1. Equivalent electrical circuit of the neuron-electrode interface 

In the figure 2.10, it is represented a passive equivalent electrical circuit of the interface 

between a planar MEA and a neuron. The interface is composed by a neuron, an electrode and 

the cleft between the neuron and the substrate surface where is insert the electrode. The clef 

is filled with an ionic solution [8]. About the circuit, considering a single neuron, its plasma 

membrane is divided into two different parts each one represented by an RC circuit: the 

junctional membrane (jm) which corresponds to the part of the membrane that contacts with 

the sensing pad where the electrode is inserted and its resistance and capacitance are 

represented by 𝑅𝑗𝑚 and 𝐶𝑗𝑚, respectively. The other part of the membrane that faces the 

bathing solution and the substrate (but not the sensing pad part) is the non-junctional 

membrane (njm) and its resistance and capacitance are represented by 𝑅𝑛𝑗𝑚 and 𝐶𝑛𝑗𝑚, 

respectively. The electrode is represented by the resistance 𝑅𝑒 and the capacitor 𝐶𝑒. Lastly, 

Figure 2.9 - Overview of intracellular and extracellular signals recorded by intracellular and extracellular 
devices. (a) The neuron (in blue) is regulated by endogenous excitatory and inhibitory synapses. In orange 
are represented an intracellular electrode (on the top) and a planar extracellular electrode (on the lower). 
Both to record and connected to an external amplifier (in yellow). (b) A train of APs is generated 
endogenously when the membrane depolarization reaches a specific threshold level. APs and all variations 
in the membrane potential resulting from subthreshold potentials are recorded by the intracellular 
electrode, the extracellular one is only capable to record LFPs resulting from generated APs. Note that 
the level of attenuation in extracellular recordings is very large compared with intracellular recordings, 
so, the recorded signals are not to scale. (c) APs are generated due to EPSPs and the sum of these inputs 
evoke the generation of APs while, in (d), when IPSPs inputs stop, there are generation of APs due dis-
inhibition. Despite these two scenarios are completely different, for the planar extracellular electrode 
are exactly the same once both result in the recording of identical LFPs. (e) There are no APs due to the 
inhibitory and excitatory inputs received by the neuron, however, contrariwise to the extracellular 
electrode, the intracellular device is capable to record the variation of subthreshold potentials. Adapted 
from [8]. 
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the cleft has a resistance called as seal resistance (𝑅𝑠). In simulation models, current injections 

are placed between 𝑅𝑛𝑗𝑚 and 𝑅𝑗𝑚 [8]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

One of the most critical electrical properties to consider when using extracellular 

electrodes, which limits the effective electrical recordings of cells’ activity is the value of the 

seal resistance (Rs).This value is determined by the thickness, the resistivity of the material 

within the cleft and the surface area of the cleft formed between the electrode and the cell’s 

membrane [55], [65], [70], [71]. According to Hai et al. [72], the cleft thickness between 

different cell types and sensing pads have an average value between 30-40 nm. Conventional 

intracellular techniques are capable to generate an effective 𝑅𝑠 with values ranging from 

hundreds of MΩ to a few GΩ [8]. More, the conductance of the junctional membrane is also 

important. 

 

2.2.3. Extracellular recordings with MEAs: technical considerations  

2.2.3.1.  Stimulation 

MEA systems can also include stimulation circuitry. Apart from allowing passive observation 

of neuronal activity through recordings, MEA systems can also influence actively and control 

the activity of neuronal cells and neuronal networks. These bidirectional systems should use 

the same electrodes to both stimulate and record, in order to reduce the number of electrodes 

and to achieve a high spatial coupling for input and output mapping of neuronal networks [22]. 

jj

m m 

Figure 2.10 - Passive equivalent electrical circuit of the interface between a planar MEA and a neuron. 
The neuron, in blue, is on the top of the culture substrate, in yellow, and the neuron’s body is over the 
electrode, in orange, which is inserted in the substrate. The electrode is connected to an amplifier. Cell´s 
membrane is divided in two parts: the junctional membrane (jm) - faces the electrode- and the non-
junctional membrane (njm) - faces the substrate and the bathing solution. The two parts of the membrane 

and the electrode are represented, each one, by a RC circuit where 𝑅𝑗𝑚 and 𝐶𝑗𝑚, 𝑅𝑛𝑗𝑚 and 𝐶𝑛𝑗𝑚, and 𝑅𝑒 

and 𝐶𝑒 are the resistances and capacitances of the jm, njm and the electrode, respectively. 𝑅𝑠 is the 
resistance generated by the physiological solution. Adapted from [8]. 
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There are two different modes to deliver stimulation pulses: voltage-mode stimulation or 

current-mode stimulation [5], [16]. In the first one, the voltage is set precisely as a function of 

time but the current can vary freely. In the second case, the roles are inverted and, the current 

is established as a function of time and, the voltage can vary between a range of safety pre-

defined values [16]. It is crucial that stimuli do not damage the cells [55]. Stimulations using 

intracellular sharp glass electrodes or patch electrodes are not difficult and there are well-

defined protocols to current injection in neuronal cells. However, the use of extracellular high 

impedance electrodes to stimulate is more complicated. Due to charge transfer to the plasma 

membrane it can causes damages to the cells by irreversible electroporation [8], [55], or by 

irreversible electrochemical reaction [8], [55]. To avoid these situations, delivery of weak 

capacity stimuli trains to the cells activate local sodium currents capable to generate cell’s 

depolarization and consequently reach APs’ firing threshold [55]. Despite this approach is safe 

in terms of cells viability, it can constrain stimulation protocols where precise timed and 

consecutive stimulations are needed [55]. 

One problem of ES is due to the fact that stimulation pulses’ amplitudes (volts) are much 

bigger than the recorded extracellular signals (microvolts), between three to four orders of 

magnitude, which results in stimulation artifacts in the recording electrodes during and after 

application of an ES pulse [5], [16], [22]. Some neuronal responses to a stimulus can occur in 

less than 1 ms after the delivered stimulus [73] and, in the case of the same recording and 

stimulation electrode, unless it is capable of rapid recovery from stimulation artifacts, the 

neuronal response will not be recorded [22], [73]. 

If the coupling between stimulation and recording is purely capacitive, the artifacts will 

only prevent recordings during the stimulation period. In addition, an artifact can have a big 

amplitude and cause the saturation of the amplification circuits of the recording electrode, 

which prevent recording for a period of time after the stimulation ended. This situation happens 

very often when a recording electrode is near a stimulation electrode [5].  

It is important to know how to deal with stimulation artifacts. If the stimulation artifacts 

do not completely saturate the amplifiers, it is possible to remove this non-desired information 

from the acquired data by subtracting the estimated artifact using templates, filters or local 

curve fitting in appropriate software [74], [75]. If saturation occurs, there are different 

manners to solve the problem. One of them is to return the normal state of the saturated 

amplifier in the fastest way, so that the recording may continue without interferences from 

undesired signals. This is achieved by resetting the high-pass filter of the front-end amplifier 

[76], [77], with a “reset” switch. Also, instead of removing the artifacts from the recording 

electrode, another option is to eliminate the origin of the artifacts in the stimulation electrode.  

 

2.2.3.2.  Noise and signal-to-noise ratio (SNR) 

SNR is one of the most important specifications of the MEA system and should be 

considered. When designing a MEA system is very important to realize what introduces 
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noise/interference to the circuit and where, and, if this noise will enter in the stage of 

amplification. Next, possible sources of noise will be discriminated:  

 Biological noise: this noise is also known as background noise and results from the 

electrical activity of other cells around the recording electrode, ionic activity and 

synaptic noise due to the stochastic nature of synaptic transmission. For instance, the 

same recording electrode could be detecting APs from distant neurons and also 

subthreshold events in neurites of cells near it. LFPs are considered biological noise 

and therefore they are removed by filters and, thereafter spike analysis is performed 

[5]. 

 Electrode-electrolyte interface noise: one source of noise is the liquid-metal interface 

between the electrodes and the biological environment. At frequencies below 10 Hz, 

the electrode generates noise with a steep roll-off of 1 𝑓⁄   or even 1 𝑓2⁄  [5], [78]. 

Frequencies above that are more relevant and are associated with thermal noise [79].  

 Device noise: the process of amplification and digitalization of the recorded signals also 

adds noise. The design of the front-end amplifier is extremely important because the 

amplification stage should guarantee that the acquisition system doesn’t limit the 

system’s performance due to the noise. Another step that introduces noise to the 

system is the analog-to-digital conversion (ADC) of the recorded signal by the ADC MEA 

system. This quantization noise is part of the quantization error introduced by ADCs 

when a continuous signal is sampled in amplitude into discrete steps and, the value of 

this noise is usually an approximation of 1/√12 times the magnitude of the least 

significant bit. ADCs used in MEA systems have at least 8-bit of resolution and, in the 

case of the ADCs are outside the MEA chip, are usually used ADCs with 16-bit or higher 

resolution [5]. The power supply line also contributes to noise. This noise is picked up 

between the microelectrode and the connection to the amplifier in the bandwidth 

between 50 to 60 Hz and is due to the high input impedance of the amplifier at that 

frequency. One mode to reduce this noise is to reduce the distance between the 

amplifier and the electrode [5]. More appropriate grounding and shielding can help to 

diminish the undesired recorded interferences. 

 

2.2.3.3.  Effect of electrode size, distribution and density 

Published works report microelectrodes sizes ranging from 5 to 50 micrometers in diameter 

[6]. Bigger electrodes have more possibility of reaching neuronal cells and even contact with 

them physically which will increase the recorded signals’ amplitudes, i.e., record higher spikes. 

Also, larger electrodes can reach more cells and consequently, pick up signals from different 

neurons at the same time. Still, these electrodes are not recommended to spatial studies once 

they can hide localized peak signal of a neuron more distant by smaller signals from a cell near 

the electrode [5]. 
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The size of the electrode has an influence on its impedance (𝑍𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒) and consequently 

influences electrode’s noise. Larger electrodes have better SNR and smaller attenuation of the 

signal due to large 𝑍𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 𝑍𝑎𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑟⁄  ratio. One disadvantage is that larger electrodes will 

pick signals from a bigger area and measure the average potential which results in a reduction 

of the peak signal amplitudes. However, smaller electrodes have higher noise levels, mainly 

due to thermal noise; 

In the frequency band of 300-3000 Hz, the band for EAP recordings, the noise associated 

to the electrode is mostly thermal noise. This noise is smaller but can be even less if the 

electrode is bigger than 5 micrometers of diameter and/or is treated with some sort of coating. 

The ideal electrode size for in vivo applications taking into consideration the neuronal 

background activity was studied by Camunãs-Mesa and his collaborator through simulations 

[80]. For their parameters and excluding the electrode’s noise, the optimum size is about 40 

micrometers.  

Active electronic components integrated on the substrate where are the electrodes give 

the possibility of a large increase in the number and density of electrodes in MEAs. 

Complementary metal-oxide-semiconductor based high-density MEAs (HDMEAs) have been 

emerging in electrophysiological studies to mapping neuronal activity including activation 

sequences, localize single cells and create full-compartmental neuronal models through high-

spatiotemporal-resolution data of single neurons, enabling the study of their contribution in 

the activity of the neuronal populations [5], [47]. Impact of spatial electrodes distribution and 

type of cells in recorded signals by HDMEAs [47]: (1) Electrode-neuron distance: the smaller the 

distance is, the higher is the recorded signal; (2) Extracellular space resistivity: the higher the 

resistivity is, the higher the signals; (3) Neuron size: larger cells need more membrane current 

to depolarize thus, produce bigger signals compared to small cells; (4) Type of “target” 

(cultures/tissue) [47]: dissociated cultures (the cells are closer to the electrodes what increases 

the signal); culture density (larger signals are recorded in cultures with high density in relation 

to low-density cultures. In high-density, cell’s membranes are very close to each other which 

increases the extracellular space resistance); tissue slices (compared to cells in culture, 

recordings with tissue yield significantly small signals. Cell debris between viable cells and the 

electrodes are the main responsible). 

 

2.2.3.4.  Electrodes’ impedance 

Electrodes’ impedance is one of the most important features to take into account when 

designing a MEA. Higher the electrodes’ impedance, higher is the Johsnson-Nyquist noise, in 

other words, is the thermal noise [16], [79].  

Impedance is inversely proportional in relation to the size of the electrodes, this is, 

increase the surface area reduces the impedance. Since the development of the first MEA [36], 

[37], increasing the number and density of electrodes, by reducing the surface area of the 

sensing pads, has been adopted by many labs [47], [60], [61], [81] with the goal of improving 
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the spatial resolution of the devices. MEA’s electrodes are built necessarily in the smallest size 

possible, micrometer scale and more recently nanoscale, which is a big limitation to achieve 

electrodes with low impedance. So, to reduce the electrode’s impedance and consequently 

improve neuronal recordings, one strategy is to increase the effective surface area of the 

electrodes [5], [16]. This is achieved by using conductive materials with porous to modify the 

surface of the electrode, which increases its surface area and decreases the impedance. Some 

examples of these materials are the Pt-black, Au, carbon and conductive polymers like poly(3,4-

ethylenedioxythiophene) [28], [82]. In addition, different nanostructures are often used to 

increase the electrode’s surface area, in literature we can find some examples as gold 

nanoflakes/nanopillars, carbon nanotubes, and nanostructures as spongy platinum black or 

𝑇𝑖3𝑁4 [28], [83], [84].  Besides electrodes should be fabricated with a low level of impedance, 

their value of impedance must be similar to all electrodes across an array to avoid discrepancies 

of readings inside the array and to get reliable and consistent data. Low impedance increases 

the SNR, with the usual target SNR of 5:1 or higher [5]. Electrodes with low impedance can 

deliver more current with a small voltage level, which reduces the stimulation artifacts and are 

safer for the tissue/cells [16]. 

 

2.2.3.5.  Electrical coupling coefficient in the neuro-electronic interface 

Electrical coupling coefficient (CC) is defined as “the ratio between the maximal voltage 

amplitude of a signal recorded by the device (electrode-amplifier system) and the voltage 

amplitude of the signal generated across the plasma membrane of a neuron/excitable cell” [8], 

[69]. The electrical CC is correlated with the concepts previously addressed.  

As discussed above, neuro-electronic devices for electrophysiological studies, namely the 

ones with an extracellular position suffer from a weak electrical coupling. When in contact with 

an extracellular device the cells tend to form and preserve an extracellular cleft between their 

membrane and the substrate where they attach. The problem is that when there is an AP, the 

resulted current generated by the propagation of the event is shunted by the cleft. Reducing 

the cleft thickness may improve the electrical coupling [72]. 

Electrode’s input impedance has a great impact on the electrical CC in the interface cell-

electrode. The geometry and material of the sensing pad have an influence in the electrical CC 

and also in the electrode’s impedance as previously mentioned.  

Another manner to improve the electrical coupling coefficient in the neuron-electrode 

interface is to reduce its resistance. For instance, in the case of a very high value of 𝑅𝑗𝑚 and a 

small value of 𝐶𝑗𝑚, just a small part of the current generated across the membrane of the 

neuron will flow through the junctional membrane and will be detected by the electrode [8].  

Localized electroporation has been used to temporally increase the electrical CC through 

local increases in junctional membrane conductance [85]. 
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The input impedance of amplifiers and the parasitic capacitance, also known as stray 

capacitance, of the conducting lines and electronic components are responsible for 

attenuations in recorded signals [8].  

 

2.2.3.6. MEAs’ Materials 

MEAs are composed by various components distributed in different layers: the insulator 

and conductor layers, the microelectrodes and the substrate. Choosing the materials for each 

component is a very important task when projecting a MEA device, not only in terms of their 

performance in transducing the biological signals but also with regards to aspects of 

biocompatibility. Materials that are in contact or near cells and tissue need to be approved in 

cytotoxicity tests. Moreover, is also important to take into account what type of experiments 

in what will the MEAs be used, i.e., in vivo or in vitro experiments, for cultures or acute 

preparations, and what type of signals will be recorded, this is, if are EAPs and/or LFPs or IAPs, 

single-cell resolution or not. Finally, despite recordings, there is also interest in MEAs for 

stimulation, and in this case, the charge capacity of electrodes is important. Typically, 

electrodes are made with metallic conductors such as gold (Au), titanium nitride (TiN), 

platinum (Pt), stainless steel, aluminum (Al), and alloys like iridium oxide (IrOx) [5]. 

 

2.2.3.7.  Amplifiers 

Typical neuronal amplifiers should have the following features: its input impedance must 

be significantly higher than the electrode´s impedance to guarantee the integrity of the input 

signals. In the case of the amplifier be in the same substrate where are the electrodes, 

temperature concerns are needed because substrate heating can damage cells or tissue which 

contacts. For that reason, should be taken into account the power characteristics of the 

amplifiers and chosen the ones which work with low power. Either, MEAs are used for a variety 

of applications which involve recordings of signals from a vast range of amplitudes, so, the 

amplifier’ gain should be adjustable in order to be applied in different situations. Another 

dynamic range requirement is the frequency bandwidth. This must be flexible and enable 

recordings in a variety of ranges. For instance, sometimes is necessary to capture only lower 

frequency signals or spikes in the EAP band [5].  

 

2.2.4. “In-cell” recordings using extracellular MEAs 

To fill the gaps and overcome the limitations of standard planar MEAs, many labs started 

to merge the advantages of standard planar MEAs devices and the conventional intracellular 

microelectrodes [8] with the purpose to achieve “in-cell” recordings using MEAs, i.e., 

recordings with quality similar to that ones obtained by the conventional intracellular methods 
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[8], [9], [86]. One of the strategies proposed by several groups led to the creation of a new 

category of MEA devices – the 3D structured MEAs - which use micro- or nanometer scale 

structures protruding from the sensing pads. Some examples of these 3D structured MEAs can 

be found in the literature, for instance, nanowires (nanopillars) that reach the cytosol by 

penetrating the plasma membrane [9], [87], [88] or due to membrane electroporation [85], 

[89]. I will focus on other 3D structured based MEAs which use micrometer-sized extracellular 

gold mushroom-shaped microelectrodes. 

There are three crucial aspects that should be respected to obtain this “in-cell” recordings 

using extracellular MEAs [8], [62]:  

1. Activation of cell conserved mechanisms such as phagocytosis by which the cultured cells 

actively engulf the microelectrodes (they must have a 3D-shape and protrude from the flat 

substrate to enable the engulfment); 

2. Establishment of a high seal resistance (𝑅𝑆) between the cell’s membrane and the engulfed 

electrode [72]; 

3. Localization of ion channels in the plasma membrane that interface with the electrode 

(activation or recruitment of ion channels in that region can increase the local conductance 

in the junctional membrane). 

 

2.2.4.1.  Gold Mushroom-shaped microelectrodes (gMµEs) 

The demand for new approaches that allow a better interface between neurons and sensing 

pads led two investigators, Micha E. Spira and Aviad Hai, and their co-workers to create what 

they call as the “in-cell recording approach” and developed this new type of microelectrodes 

[55], [62], [72], [90], [91]. They investigated what are the microelectrodes’ appropriate 3D 

geometry and dimensions to protrude from the flat glass substrate and have an intimate contact 

with the neurons. To achieve this contact, they created a micrometer-sized-3D-gold-

microelectrode with mushroom’s shape which protrudes from the substrate to a height of 1-1.5 

micrometers (figure 2.11). Other groups are also capable to fabricate this type of 

microelectrodes [92], [93]. Their shape and size were chosen to mimic the shape and 

dimensions of post synaptic spine structures of vertebrate neurons’ dendrites [72], [94], [95]. 

Also, the microelectrodes had their surface chemically functionalized with a specific peptide 

(RGD-based peptide) [96] to activate conserved cell biological mechanisms such as 

phagocytoses [97], which are induced in the interface microelectrode-neuron. Thus, instead of 

inserting a microelectrode into the cell, this process is done by the cell itself through 

phagocytosis (a conserved cell biological mechanism for the internalization of particles [98]).  

They found that the gMµEs maintain their extracellular position in relation to the neuron’s 

plasma membrane but the interface neuron-gMµEs presents a tight cleft and a larger area of 

contact [72], [91] compared with the standard extracellular microelectrodes. More, they 

noticed that when neurons grow on gMµEs there is an engulfment of the microelectrode by the 
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neuron and this results in a rearrangement of the actin cytoskeleton of the neuron which forms 

an actin ring around the stalk of the microelectrode [90]. The authors showed that arrays with 

these type of microelectrodes are capable of recordings with a good SNR of attenuated 

subthreshold synaptic potentials and APs from individual neurons comparable to intracellular 

recordings [8], [55], [62] and are also capable of effective stimulation [55], [62]. Through their 

efforts in several reported studies [55], [62], [72], [90], [91], they referred an increase of the 

electrical CC from a value of 0,1 % for experiments using planar extracellular MEAs to a 

significant value of 50% for experiments with chemically functionalized gMµEs. However, in 

those reports, they used cultures of Aplysia neurons, which have a big size and, was observed 

that neurons closely engulfed the mushroom-shaped microelectrodes what contributes to a high 

seal resistance (𝑅𝑠𝑒𝑎𝑙) [8]. However, other experiments conducted by Shmoel et al. with primary 

rat hippocampal neurons [63] using gMµEs, which surface was functionalized with 

polyethyleneimine (PEI) and laminin shown that there was a promotion of “self-assembly” of 

the gMµE by the cells however was not a complete engulfment of the electrode as happened 

with Aplysia neurons. Shmoel et al. called this “type of engulfment” as “loose-patch-like 

configuration”. The engulfment of gMµE by the cells allow multisite, high quality recordings of 

positive monophasic APs from mammalian neurons [63]. Reported studies where there is 

engulfment by mammalian cells can be found in literature for cardiac muscle cells (HL-1)[91], 

[93], embryonic fibroblast cells (NIH-3T3) [72], Chinese hamster ovary cells (CHO)[72], rat 

adrenal medulla cells (PC-12) [72], among others. 

 

 

 

The most considerable differences between “gold standard” planar MEAs and gold 

mushroom shaped MEAs in cultured rat hippocampal neurons are present in the amplitudes and 

shapes of the recorded signals. Planar MEAs record LFPs comprising amplitudes in the interval 

between 40 to 100 µV with a SNR up to 5 and mostly with a negative peak or biphasic signals 

[5], [81], whereas, recordings with gMµEs based MEAs are mainly characterized by positive 

monophasic APs, with amplitudes, reported by Shmoel et al. [63], bigger than 100 µV, where 

Figure 2.11 - Gold mushroom-shaped microelectrode (gMµE). (a) An example of gMµE’s dimensions. It is 
composed by a ellipse-shaped cap in the upper part and the stalk which protrudes from the substrate 
(Adapted from [72]). (b) A neurite of an Aplysia neuron interacting with a gMµE (Adapted from [90]). 
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34.48% of the recorded signals were equal or bigger than 200 µV and 10.64% were bigger than 

500 µV. Recorded signals’ shapes and amplitudes from cultures on planar MEAs tend to change 

over the days in culture [81]. Unlike, signals recorded with gMµE-MEAs maintain their spike 

shape (positive monophasic) over days [63]. However, their amplitudes can progressively 

increase, decrease or even disappear as consequence of the engulfment level between the 

neuron and the electrode, alterations in the cleft width formed in the interface neuron-

electrode, movement of the neuron in relation to the electrode’s position, changes in ionic 

channels distribution, expression and density in the neurons’ membrane interfacing the 

electrode or even due cells death [63]. 

 

2.2.4.1.1. Equivalent electrical circuit of the neuron - gMµE interface for recording and 

stimulation 

A recent study conducted by Ojovan et al. [69], using SPICE simulation system, proposed 

a passive equivalent electrical circuit for the gMµE-neuron interface and this model is presented 

in the figure 2.12. Next, the model will be described by authors’ words: “In the model, the 

neuron’s surface area is subdivided into a non-junctional membrane (njm, red) that faces the 

grounded culture medium, and a junctional membrane (jm, blue) that faces the electrode. 

Each of these membrane compartments is represented by a resistor and capacitor in parallel 

𝑅𝑛𝑗𝑚, 𝐶𝑛𝑗𝑚, 𝑅𝑗𝑚 and 𝐶𝑗𝑚, respectively. The cleft formed between the neuron and the electrode 

is represented by a resistor (the seal resistance - 𝑅𝑠). The electrode is represented by a resistor 

and capacitor (𝑅𝑒 and 𝐶𝑒 ,respectively)” [69].The values of the parameters can be obtained 

from direct measurements, normally by the use of classical intracellular recording electrodes 

such as patch or sharp microelectrodes, or even by calculations of the physical parameters that 

fit the specific geometry of the microelectrodes and the neuron-gMµE interface [55]. The value 

of the seal resistance determines the coupling between the neurons and the gMµE and, for 

values below 100 MΩ, the CC is drastically reduced [55]. The junction interface between the 

neurons and the microelectrodes has high bidirectional electrical coupling which enables 

recordings with quality and SNR similar to the classical intracellular methods and also 

stimulation with milliseconds duration of single pulses. Besides the engulfment suffered from 

the microelectrodes, another phenomena can be responsible for the improvement of the 

electrical coupling, and investigators have reported that the geometry of the gMµE can improve 

the conductance of plasma membrane in the junctional membrane (part of the cell’s membrane 

that faces the gMµE) [69] due to the activation or recruitment of ion channels in that 

localization [55], [90] (membrane convex curvature leads to local cytoskeleton rearrangements 

and alters the mechanical tension on the two sides of the lipid bilayer which activate ion 

channels or increase the local conductance [8], [99], [100]). Further, microelectrodes’ 

extracellular position is maintained which does not compromise the mechanical stability of the 

cell and so, the recordings can last for a longer period of time [55]. This set of modifications 

can be observed in the figure 2.13. 
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The main ideas retired from Ojovan et al. ’s study [69] are that increasing the diameter of 

the gMµE cap results in larger electrical CC values, however, increasing the stalk diameter 

decreases this effect. Also, the CC is inversely related with the thickness of the cleft formed 

between the neuron and the electrode, i.e., CC value declines as the thickness increases [69]. 

Hai et al. in their experiments [55], [62] were capable to record AP with amplitudes close to 

20 mV and synaptic potentials of approximate 2 mV, with an attenuation of approximately 25% 

with respect to the input potential [55], [62] that corresponds to a high CC level. Simulations 

performed by Ojovan et al. [69] suggested that to obtain this value of CC obtained by Hai et 

al., they needed to lower their value of 𝑅𝑗𝑚 by a factor of 1000, which emphasis even more the 

idea (described above) that when neurons engulf the electrode, the curvature formed in the 

junctional membrane contributes to increase the density of ion channels in that region [8], 

[62], [99], [100], which increases the membrane’s conductance and, in turn, reduces the value 

of the 𝑅𝑗𝑚, justifying in this way the differences of CC obtained in the simulations [69] in 

relation to that ones obtained experimentally.  

Hai and his collaborators [55] conclude that there is an unprecedented good CC between 

neurons and the engulfed mushroom-shaped microelectrodes in respect to other extracellular 

MEAs approaches and also, they reported that injections of current sufficient to reach the firing 

threshold of the neurons are possible without cause damages in the plasma membrane [55].  

It is important to understand that many times the electrodes are not engulfed by just one 

cell. One single electrode can be contacted or even partially engulfed by different neuronal 

elements such neurites or cell bodies, and therefore, this implies deep alterations in the CC in 

the interface neurons/neurites - gMµE [69]. For the case of the electrode is partially engulfed, 

the equivalent electrical circuit proposed by Ojovan et al. [69] is shown in the figure 2.13. 

Similar to the model presented in the figure 2.12, the cell membrane is represented by two 

parallel RC circuits. However, the electrode is represented by two RC circuits in series, one for 

Figure 2.12 - Passive equivalent electrical circuit for the gMµE-neuron interface when the neuron 
completely engulfs the gMµE. The neuron, in green, totally engulfs the gMµE, in yellow, which protrude 
from the substrate. The electrode is connected to an amplifier. Cell´s membrane is divided in two parts: 
the junctional membrane (jm, blue) - facing the electrode- and the non-junctional membrane (njm, red) 
- facing the culture medium. The two parts of the membrane and the electrode are represented, each 

one, by a RC circuit where 𝑅𝑗𝑚 and 𝐶𝑗𝑚, 𝑅𝑛𝑗𝑚 and 𝐶𝑛𝑗𝑚, and 𝑅𝑒 and 𝐶𝑒 are the resistances and capacitances 

of the jm, njm and the electrode, respectively. 𝑅𝑠 is a resistor and represents the cleft formed between 
the neuron and the gMµE. Adapted from [69]. 
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the electrode’s part engulfed by the neuron and the other circuit is for the part in contact with 

the grounded culture medium. Spike activity (APs recordings) of different neurons that partially 

engulf a single gMµE can be recorded [69]. 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.4.1.2. gMµEs based MEAs for in vivo applications  

Until now, and mostly due to the recent existence of gMµEs based MEAs, there is no in 

vivo applications using this type of microelectrodes, however, considering future in vivo 

applications, they need to overcome some expected difficulties. One of them is mushroom 

electrodes’ high impedance (≃ 30 MΩ) compared with neurons [2]. More, they should be capable 

to resist to sheer forces and maintain its mechanical stability during insertion into the brain 

tissue. Further, unlike in vitro applications where the cell culture is deposited over the MEAs’ 

platform and the initial contact occurs due to the effect of gravity, in in vivo applications this 

first contact probably will need strategies like molecular signaling to attract the neurons or 

chemical functionalization of the electrode’s surface to stabilize neuron-electrode bond, after 

contact [69]. Another issue present in in vivo is the presence of glia cells that tend to 

encapsulate foreign bodies, thus, they will compete with the neurons to engulf the gMµE and 

thereby, prevent the intimate contact between cells and the microelectrode [55], [69].  

 

 

 

 

Figure 2.13 - Passive equivalent electrical circuit for the gMµE-neuron interface when the neuron partially 
engulfs the gMµE. The neuron, in green, partially engulfs the gMµE, in yellow, which protrude from the 
substrate. The electrode is connected to an amplifier. Cell´s membrane is divided in two parts: the 
junctional membrane (jm, blue) - facing the electrode- and the non-junctional membrane (njm, red) - 
facing the culture medium. The two parts of the membrane, each one, are represented by a RC circuit 

where 𝑅𝑗𝑚, 𝐶𝑗𝑚, and, 𝑅𝑛𝑗𝑚, 𝐶𝑛𝑗𝑚, are the resistances and capacitances of the jm and the njm, 

respectively. The electrode is represented by two RC circuits in series. 𝑅𝑒 and 𝐶𝑒 are the resistance and 

capacitance of the part of the electrode which contacts with the neuron’s membrane and 𝑅𝑒𝑓 and 𝐶𝑒𝑓 are 

the resistance and capacitance of the part of the electrode in contact with the culture medium.  𝑅𝑠 is a 
resistor and represents the cleft formed between the neuron and the gMµE. Adapted from [69]. 
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Chapter 3 
 
 

Closed-loop system and PID controller 
 

 

 

This chapter introduces the importance of closed-loop systems in neuronal control 

experiments and some strategies to process the recorded signals including the detection of APs. 

More, it describes one of the most versatile and widely used controllers in the world, the PID 

controller, that was used in this work to develop an in silico control system to modulate the 

firing activity of a simulated neuron. 

 

3.1. Closed-loop systems  
 

To understand this concept of closed-loop systems applied to neuronal experiments, we 

have to look to the neuronal circuits as part of a continuous sensorial-motor loop: the brain 

(CNS) - body (efferent PNS) – environment constitute the motor cycle and, the sensorial 

information returns to the brain by the opposite direction, environment - body (afferent PNS) 

- brain (CNS) [16]. Therefore, the NS is capable to understand the surrounding environment and 

take decisions depending on the sensing (input) information taken from that. Now, we can 

compare what happens in the NS and what is a closed-loop. Rolston et al. [16] defined a closed-

loop as “a system where a sensed signal alters the system output which, in turn, may alter the 

sensed signals”. And, giving the example of the air conditioner, i.e., in a room, if a certain 

temperature is set, the thermometer sensor will determine if is necessary more or less cold air 

pumped by the device to reach that temperature, however, this is not a single event, is a 

continuous monitorization of the room’s temperature that can always be in constant change 

and adaptations have to be done by the equipment. This to say that we can use MEAs in closed-

loop systems where the afferent sensorial information can be carried to the neuronal cells 

through ES, inducing plasticity or modulate cells activity; and, the efferent information from 

the cultured neurons on the MEAs is recorded and used to trigger ES [16], [101], [102] in 

abnormal scenarios or to control robotic prostheses for example [16].  
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In the clinical point of view, is expected that closed-loop systems will be more effective 

to treat neuronal disorders since the stimulation parameters will be adapted according to the 

state of each patient, in a continuous, real-time and dynamic way [16], [18]. The majority of 

the medical treatments using ES are open-loop systems, i.e., “a system which creates output 

regardless of external conditions, or which reads input and takes no action to affect further 

input” [16], and for these ones, stimulation parameters remain constant despite the disease’s 

state, like what happens in current DBS treatments in PD [18]. Another area where these 

systems are truly important is in prosthetics, where sensorial feedback can be achieved, for 

instance in a prosthetic hand, and consequently improve patient’s rehabilitation [16].  

Real-time closed-loop experiments and BMI require the detection of spike trains in real-

time thus, time-consuming spike sorting methods are a great barrier to achieve all potential of 

MEA devices capable of recording and stimulation [59]. The plasticity of neuronal circuits is the 

study goal of many labs. Memory and learning are associated with the precise timing of neuronal 

activity of populations of neurons, i.e., temporal patterns, and even, the timing of activity 

between single neurons [101]. Sometimes, this spike sorting is just a voltage threshold 

detection. Stimulation of specific neurons which depend on other neurons activity was 

successfully tried to control the bursting activity of neurons cultured on MEAs [103].  

 

 

3.2. Signal processing and spike detection  
 

MEA signals are recorded in their raw state, noisy, distorted and convoluted, thus, they 

should be treated and processed in order to extract the relevant information from them. Spike 

sorting is a term used for a set of steps to extract single-neuron spike trains from raw data 

[104], one of which includes spike detection, an important step in the rest of the proposed 

dissertation. However, it will be also described the normal steps of signal processing which 

include: data filtering, spike detection, and spike sorting.  

 Filtering step: first of all, it is necessary to filter the raw data acquired by the MEA 

system. To do this is usually used a highpass or bandpass filter, usually with a bandwidth 

of 300-3000 Hz, with the purpose to remove the low-frequency components [65], [105]. 

Sometimes, the filtering process causes an alteration of the shape of the EAPs due to 

phase distortions.  

 Spike detection: the most common and easy manner to perform spike detection is using 

an amplitude threshold [5], [22], [66]. There are different methods but, typically, a 

voltage threshold is established as ±(𝐾 × 𝑇ℎ) where K is usually 5 and Th is the 

threshold calculated by the chosen method, normally is the baseline noise level (root 

mean square (RMS) of the signals with a mean value of zero) [5], [22]. The MEA2100 

system, that will be used in our experiments, follows this method. Another one, the 

adaptive median [105] is other method to define the threshold value but with a measure 
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based on the median and is used for recordings with a bigger number of spikes [22], 

[105].  

 Spike sorting: this phase consists in grouping the spikes according to their shapes in 

clusters and occurs after spike detection [5], [47]. A neuron will be distinguished 

according to the characteristics of its spike shape, grouped in the cluster with that 

features and separated from different neurons with other spike shapes. However, spike 

sorting methods/algorithms are not very optimized and effective yet and therefore 

they need user supervision to correct possible errors due for instance, it is possible to 

occur a mismatch of the electrodes relative to neurons due to some movement between 

them which will alter the recorded signal [5], [66]. This electrode’s drift is a big 

problem for long-term recordings, as well as changes in the environment surrounding 

the electrodes mostly because of growth or movement of glia cells [66]. Two examples 

of techniques for extract shape features that have been used are the principal 

component analysis or PCA [104] and the wavelet transform [106]. Ideally, the advances 

in such algorithms will be able to run in real-time to continuous monitoring the recorded 

data and be used in closed-loop therapeutic treatments which involve, for instance, 

ES, and be also applied in BMI such as neuroprosthetic devices [59], [66]. 

 

3.3. PID Control 
 

When talking about closed-loop systems is important to do a brief introduction to PID 

controllers. PID controllers are not the focus of this dissertation work, but they are used here 

in a proof-of-concept of how to control neuronal spiking behavior through a PID controller using 

a mathematical model, to simulate neuronal behavior. Yet, its features should be understood 

and, in this chapter, I will give a small introduction about how they work and their main 

components/variables. An example of how this classical control method can be used to control 

the firing rate by modulating the interspike interval of a neuron can be found in [107]. There, 

they used a linear proportional and integral (PI) controller to achieve that purpose. Another 

example, this time for application in PD can be found in [108]. Gorzelic et al. used a PID 

controller to obtain an improved DBS algorithm [108]. 

3.3.1. The feedback principle 

First, before talking about how PID controllers work, it is important to introduce a few 

concepts used in a closed-loop system to understand when these appear further ahead. In the 

figure 3.1 is presented a block diagram of an unity-feedback system. 
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Figure 3.1 - Block diagram of a simple feedback system. The larger boxes represent the two major 
components of the system, the controller and the process. The control variable u is the input of the 
process and y is the output. At the beginning of the system, r is the setpoint. The controller’s input is the 
control error e which is the difference between the process’ output and the setpoint. 

The larger boxes represent the two major components of the system, the controller and 

the process. These two components are related as we can see from the arrows that link them. 

Starting in the middle of the system, the control variable (or manipulated variable) u is the 

input of the process. Process’ output y is the process variable. This variable is the parameter 

of the system that needs to be controlled, for instance, temperature, pressure, etc. At the 

beginning of the system, r is the setpoint or the reference value and it is the desired value of 

the process variable. Finally, the controller’s input is the control error (e) which is the 

difference between the process variable and the setpoint (𝑒 = 𝑟 − 𝑦). The error will be used by 

the control algorithm of the system to compute an update of the control variable while the 

controller is turned on [109], [110]. Therefore, a feedback loop system has the purpose of 

keeping the process variable close to the setpoint, even when there is any disturbance in the 

system that could deviate the process value from the reference value.  

Many areas in electronics, communication or instrumentation make use of this powerful 

technique called feedback control. According to A ̊stro ̈m, K.J. and Ha ̈gglund, T., authors of the 

book “PID controllers: theory, design, and tuning” [109], the feedback control principle could 

be explained like this: “Increase the manipulated variable when the process variable is smaller 

than the setpoint and decrease the manipulated variable when the process variable is larger 

than the setpoint” [109]. If there is something that disturbs and affects the equilibrium of the 

system and, for some reason, the process variable becomes larger than the reference value (r), 

when the variable error is calculated, it will give a negative value that makes the controller 

output (u) to decrease and consequently, the process output (y) will also decrease. This 

particular type of feedback is called negative feedback because the control variable (u) moves 

in opposite direction to the process variable [109], and is usually represented in block diagrams 

by the sign-reversing block as we can see in the figure 3.1. Lastly, what makes feedback systems 

a really strong technique is that, despite the disturbance, the system will always try to bring 

the process variable the closest as possible to the setpoint, of course, if well designed and 

implemented [109], [111].  
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3.3.2. Components of a PID controller  

Basically, a PID controller is the most famous control algorithm used in the world: more 

than 90% of the current industrial controllers are based on PID controllers, predominantly at 

lowest levels [112]. This popularity is due to the fact that PID controllers are easy to use, 

simple, could be used in a vast amount of applications and, at the same time, its clear 

functionality is also associated with robust results and “can thus be said to be the ‘bread and 

butter’ of control engineering” [109], [112]. Further, despite the technological developments 

since that the PID controllers were invented (beginning of 20th century), they still by far the 

most popular control algorithm and should be part of control engineer’s toolbox [109], [112]. 

As its name says, the PID controller has three control components, the proportional (P), 

integral (I) and derivative (D), and the controller’s output is the result of the calculation of 

each component and the sum of these three components as shown in the following equation 

[111]: 

𝑢(𝑡) =  𝐾𝑃𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0

+ 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
. (15) 

The next figure shows how the controller can be introduced in the form of a block diagram 

of a feedback system where each component of the controller is described separately through 

each parcel of the equation above: 

 

Figure 3.2 - A block diagram of a PID controller in a feedback loop. Each component of the controller is 
described separately with different equations. r(t) is the setpoint, e(t) is the control error and y(t) is the 
measured process variable. Adapted from [113]. 

The three components in the equation act as separated modules of control and it is possible 

to have four different types of control: Proportional control (P), Proportional and Integral 

control (PI), Proportional and Derivative control (PD) and PID control. The type of controller 

should always be chosen according to the needs and properties of the system, it is not always 

possible to state that the three components together will do a better job that only two. More, 

keep the controller as simple as possible [112]. 

In the figure 3.3 is represented an example of a typical response of a PID control system 

in a closed-loop. Some terminologies that characterize the control system performance need 

to be introduced like the rise time which is the time that the system takes to go from 10% to 

90% of the stationary state (final value). The overshoot is the value that the process variable 
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exceeds the final value, the steady-state value. The settling time is the necessary time for the 

process variable to settle to within a certain percentage (commonly 5%) of the final value. The 

steady-state error is the final difference between the process variable and the setpoint. Lastly, 

the deadtime is the delay between when the process variable changes, and when that change 

can be observed and, it is an undesired behavior of a control system, this should not occur 

[109], [112], [110].  

 

 

Figure 3.3 - Typical response of a PID control system in a closed-loop [110]. 

The proportional action of the controller adjusts the control variable proportionately to 

the error, where 𝐾𝑃 is the proportional gain. Increasing this gain will increase the response 

velocity of the control system, however, if too high, the control variable could start oscillating 

and even, make the system unstable and stay out of control. Also, the overshoot tends to be 

larger. Further, if 𝐾𝑃 is too small, the controller could fail to overcome the disturbs and to 

restore the system´s equilibrium. It is important to highlight that the proportional control  is 

only capable to reduce the steady state error and not eliminate it [109]–[112]. 

 

Figure 3.4 – Example of a closed-loop system with a proportional control. The upper diagram shows the 
action of the proportional gain (K) in the response curve (setpoint = 1). The lower diagram shows the 
control signal u for the previous K. Adapted from [109]. 

The integral action of the controller is proportional to the integral of the error, it sums 

the error over time, removes completely the steady state error and makes sure that, in the 

steady state, the process’ output is equal to the setpoint. This integral component could 

compensate the steady state error of the proportional control since, no matter how small the 

error is, there is always an improvement of control. This component will increase or decrease 

over the time, unless the error is zero, what drives the steady state error to zero. But, it could 
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increase the overshoot. 𝐾𝑖 is the integral gain. The “integral correction” can occur during 

regular intervals of time called integral time constant (𝑇𝑖) and is defined as 𝑇𝑖 = 1/𝐾𝑖. This 

means that if the 𝐾𝑖  is low, the system could take much time to reach the setpoint however, if 

𝐾𝑖 is too high, the system could become unstable similar to what happens with 𝐾𝑝 [109], [111], 

[112], [110]. 

 

Figure 3.5 - Example of a closed-loop system with a proportional and integral control. The upper diagram 

shows the action of the integral component for different values of integral time 𝑇𝑖 in the response curve 
(proportional gain is constant and setpoint = 1). The lower diagram shows the control signal u for the 

previous 𝑇𝑖. Adapted from [109]. 

The derivative action is proportional to the rate of change of the control error and this 

component brings to the system the ability of the controller to anticipate the error. 𝐾𝑑 is the 

derivative gain. Thus, there is an anticipated correction of the error, which reduce the response 

time and improves the stability of the system. Similar to the integral component, the derivative 

controller also has a derivative time constant (𝑇𝑑) which is used to estimate the control error 

at time 𝑇𝑑 ahead. 𝑇𝑑 is equal to 𝐾𝑑/𝐾𝑝 [111]. This is useful because, looking to the case of the 

proportional control, the process dynamics will always take some time to react to the outcome 

that, the control variable will introduce in the process output. And, to see this “delay” in 

correcting the error, we just need to look to what happens in the case of an overshoot, for 

instance. Therefore, the derivative action will predict what will occur to the process output 

further ahead taking the current rate of variation and projecting it to the future, trying to avoid 

future errors. Due to the sensibility of the derivative action, in noisy systems or when the 

systems need to respond very fast to a disturb, this component could make the system unstable 

because the inclination of some peaks of the noise could change very quickly, overloading the 

derivative controller [109]–[112]. 

 

Figure 3.6 - Example of a closed-loop system with a proportional, integral and derivative control. The 
upper diagram shows the action of the derivative component for different values of the derivative time 
𝑇𝑑 in the response curve (proportional gain and integral time are constant and setpoint = 1). The lower 
diagram shows the control signal u for the previous 𝑇𝑑. Adapted from [109]. 
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After introduced 𝑇𝑑 and 𝑇𝑖, the controller can also be represented by the following 

equation [111]: 

𝑢(𝑡) =  𝐾𝑃 (𝑒(𝑡) +  
1

𝑇𝑖

∫ 𝑒(𝜏)𝑑𝜏
𝑡

0

+ 𝑇𝑑

𝑑𝑒(𝑡)

𝑑𝑡
) . (16) 

The theory of a PID controller is based on past, present, and prediction of future control 

errors as demonstrated in the figure 3.7. 

 

Figure 3.7 – PID controller’s theory. A PID controller takes control action based on past, present and 
prediction of future control errors. Adapted from [111]. 

The proportional part acts on the present value of the error, the integral represents an 

average of past errors and the derivative can be interpreted as a prediction of future errors 

based on linear extrapolation, as illustrated in figure 3.7 [111]. 

The table 3.1 summarizes the individual effects of each component of a PID controller in 

a closed-loop system. Although, all components depend on each other and must be 

parameterized together through the tuning process [112]. The next topic will approach the 

importance of tuning these parameters and how it should be done. 

 

Table 3.1- Effects of independent P, I and D tuning [112]. 

Closed-Loop 

Response 
Rise Time Overshoot Settling Time 

Steady-State 

Error 
Stability 

Increasing Kp Decrease Increase Small Increase Decrease Degrade 

Increasing KI 
Small 

Decrease 
Increase Increase 

Large 

Decrease 
Degrade 

Increasing KD 
Small 

Decrease 
Decrease Decrease Minor Change Improve 

 

3.3.3. Controller Tuning  

Despite the individual features of each controller component presented in the table 3.1 

seem to be clear, their effect could not be exactly like that when they are associated with each 

other. Thus, one of the most important things to do when designing a controller is to guarantee 

that each part improves the system’s performance without compromise the other components´ 

performance. Therefore, tuning the gains (𝐾𝑃, 𝐾𝑖 and 𝐾𝑑) is a crucial step to obtain the desired 

behavior. There are different ways to do that. I will only talk about two manual tuning methods. 

Although, in the literature can be found many others. For example, Panda et al. [114] provides 
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five different tuning rules, Shahrokhi, M. and Zomorrodi, A. [115] made a comparison between 

different tuning methods and the book “PID Controllers: Theory Design and Tuning” by A ̊stro ̈m, 

K.J. and Ha ̈gglund, T., [109] is also a good source of knowledge about different types of PID 

tuning methods.  

The first method could be considered primitive and consists of an adjustment of the 

parameters manually by a “trial and error” process like a step response method based on the 

input-output of the system. This is based on the fact that who is tuning the controller knows 

what the gains do to the system. First, the integral and derivative gains are set to zero and the 

proportional gain is increased until the system’s response starts to oscillate. Then the 𝐾𝑃 should 

be set to approximately half of that value for a "quarter amplitude decay" type response [113]. 

After that, the integral gain is increased to stop the oscillations and reduce the steady-state 

error but could increase the overshoot. Once defined the proportional and integral gains to get 

the desired response, if necessary, it is time to increase the derivative gain to reduce the 

overshoot and increase the stability [110], [111]. Again, the derivative action of the controller 

is difficult to tune and sometimes could also become the system unstable. This is one of the 

reasons why the majority of used controllers are PI type controllers [112]. 

The second method is the Ziegler-Nichols’ method developed in the 1940s by John G. 

Ziegler and Nathaniel B. Nichols and, is one of the most widely used methods. Similar to the 

previous method, the integral and derivative gains are set to zero and the proportional gain is 

increased until the system starts to oscillate with a constant amplitude oscillation. This gain 

corresponds to the critical gain (𝐾𝑐) and 𝑇𝑐 is the period of oscillation. After many experiments 

and simulations performed by the authors of this method, the controller parameters were 

obtained and, the table 3.2 gives these parameters in terms of 𝐾𝑐 and 𝑇𝑐 [110], [111]. 

Table 3.2 - Controller parameters for the Ziegler-Nichols frequency response method which gives 

controller parameters in terms of critical gain 𝐾𝑐 and critical period 𝑇𝑐. The parameter 𝑇𝑝 is an estimation 

of the period of damped oscillations of the closed-loop system [111]. 

Controller Kp/Kc Ti/Tc Td/Tc Tp/Tc 

P 0.5   1.0 

PI 0.4 0.8  1.4 

PID 0.6 0.5 0.125 0.85 

 

Although PID controllers are a classic method of control, the interest in this type of 

controllers has been growing through the recent years. This is mainly due to the appearance of 

automatic tuning. Sometimes there is no time, or even, lack of knowledge to develop detailed 

models of the processes of the systems [116]. Generally, engineers design their controllers in 

the frequency domain using the Laplace transform for continuous systems (described by 

differential equations) or the z-transform for discrete systems (described by discrete different 

equations). In the frequency domain, the system’s model is called a transfer function [107]. 

Many tuning methods assume that the process is completely known in terms of transfer 
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functions, step responses or frequency responses [116]. However, this is not true for the 

majority of people interested in design their own control systems. Although, today, there are 

available equipment and software with automatic tuning techniques capable to obtain process 

models quickly and easily; of course, it is only possible due to the current computational power, 

which did not exist when the classic tuning methods were developed. And, by tuning we are 

not talking only about of tuning the gains as previously addressed in this section. It refers to 

process identification and also controller’s design [116]. To finish, two examples of tuning 

software are the INTUNE® tuning software [117] and the Simulink (MathWorks).  
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Chapter 4 
 
 

Materials and Methods 
 

 

 

4.1. Integrate and Fire model with a PID controller  
 

One of the goals of this dissertation work is to create an in silico PID controller capable to 

modulate the neuronal activity of a simulated neuron through the injection of current, as a 

proof-of-concept. This section describes all the steps performed to reach this goal.  

 

4.1.1. Choice of the mathematical model to simulate neuronal activity 

The two models described in the chapter 2, subsections 2.1.2 and 2.1.3, were chosen to 

simulate the behavior of a neuronal cell. Both, the HH-model and the IF-model were 

implemented and simulated in MATLAB R2017b (The MathWorks Inc., USA). Right away, it was 

clear that the HH-model was computationally heavier and time-consuming, which is normal 

because is a more complex and detailed model compared with the IF-model, as addressed 

before. Furthermore, this proof-of-concept of how to modulate neuronal activity through 

current injection is focused on the cell’s firing rate and thus, the only events that will be 

considered are the APs fired by the simulated neuron. Therefore, it is possible to extract the 

spikes using a model capable of modeling the membrane potential dynamics, without adding 

the dynamics of ion channels and their contribution to the membrane potential, which is the 

case of the IF-model. In addition, we noticed that the HH-model was very sensitive to the 

smallest current injected into the model by the simulated electrode. Such reasons led us to 

select the IF-model. 
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4.1.2. Integrate-and-Fire model implementation  

The IF-model was implemented and simulated in MATLAB R2017b with the following 

parameters: 𝐸𝐿 = −70.0 𝑚𝑉, 𝑅𝑚 = 20.0 𝑀𝑜ℎ𝑚, 𝜏𝑚 = 10.0 𝑚𝑠. The total current flowing into the 

cell (𝐼) is composed by the neuron’s intrinsic current defined by 𝐼𝑛𝑒𝑢𝑟𝑜𝑛 and the current injected 

by an external source, in this case, an electrode (𝐼𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒). Through the equation 14, it was 

set a firing rate of the simulated neuron of 10 Hz what corresponds to a current of 

approximately 1.000045 nA. At this point in the work, no external current source had been 

defined to inject current into the neuron. This current corresponds to 𝐼𝑛𝑒𝑢𝑟𝑜𝑛, being 𝐼𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 

equal to zero. The differential equation 𝑑𝑉/𝑑𝑡 was calculated using Euler’s method with 𝑉𝑡0
=

 −70.0 𝑚𝑉, during a simulation time of 10 seconds with a discretization time (𝑑𝑡) of 0.01 ms. 

According to Euler’s method, the code implemented to calculate the rate of change of 

membrane’s potential was: 

for i = 2 : nsteps 

     

    % Euler’s method     

    V(i) = V(i-1) + dt/tau_m * (- V(i-1) + E_L + I * R_m); 

         

    % Reset the membrane’s potential when the neuron fires an action 

potential.  

    if V(i) > E_thresh 

       V(i) = E_L; 

       spikes(i) = 1; 

    end 

   

end 

 

where nsteps is the total time of simulation in milliseconds divided by dt. When the potential 

reaches the threshold potential, the neuron fires an action potential and the event is stored in 

the events vector called “spikes”. This vector will be used posteriorly to calculate the firing 

rate of the simulated neuron. This is done using a Gaussian kernel with a sigma (σ) of 100.0 

milliseconds: 

% kernel size 

N = round(8*sigma/dt);  

  

% kernel size must be an odd number 

if mod( N, 2 ) == 0          

    N = N + 1; 

end 
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% Creates and applies the kernel  

kernel = fspecial('gaussian', [N, 1], sigma/dt); 

firing_rate= 1000/dt * conv(spikes, kernel, 'same');   %firing rate 

[Hz] 

 

4.1.3. Introduce the controller in the model 

The next step was the addition of an external electrode capable to inject current in the 

model and modulate its firing behavior. To do this, we tried to implement in the model a PID 

controller to adapt the electrode´s current in order to maintain the neuron’s firing rate around 

a certain pre-specified value. Based on the theory behind this type of controllers that can be 

found in the Chapter3, we started by defining the scheme of the controller, which is presented 

in the figure 4.1. 

 

Figure 4.1 - A block diagram of the in silico PID control model. The boxes represent the two major 
components of the system, the controller (PID controller) and the process (IF-model). The control variable 
u is the input of the process and in our model is the current of the simulated electrode, y is the output 
(calculated firing rate). At the beginning of the system, r is the setpoint (desired firing rate). The 
controller’s input is the control error e which is the difference between the firing rate computed at each 
iteration and the desired firing rate value. 

In the figure 4.1, r corresponds to de setpoint value, the reference value for the desired 

firing rate of the simulated neuron. The controller is the PID controller responsible to adjust 

the electrode’s current, which will be injected in the IF-model. 𝑦 is the firing rate after the 

current adjustment. The equation 15, presents the way that the current is adjusted over the 

simulation time: 

I_elect = (Kp * error(i)) + (Ki * integral_error(i)) + (Kd * 

derivative_error(i)) + d_electrode_dt(i-1); 

 

(15) 

First, starting with the proportional component of the controller, it is given by the 

proportional gain times the firing rate error. In the integral part of the controller, the strategy 

was to look to the integral as the sum of the errors over the simulation time, since 𝑡0 = 0 𝑚𝑠 

until 𝑡𝑖 (time of the current loop iteration), times the integral gain. Basically, the integral of 

the error is updated and stored in the vector called integral_error (integral_error(i) = error(i-

1) + error(i)) that will be used by the function responsible to adjust the electrode’s current.  

 The last component, the derivative term, is the derivative of the error times the derivative 

gain. First, we noticed that the error curve had some peaks that could introduce errors when 
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calculating the derivative. So, the next step was to apply a moving average filter to the vector 

where the errors had been stored and use the moving average of the error to calculate the 

derivative by calculating the rate of change of the error between the current iteration and a 

certain number of iterations before. This enables the controller to know how the error is varying 

over the time and tries to compensate it in the future. The last part was to update the 

electrode's current by adding the necessary current to compensate the error of the electrode's 

current that had been applied to the model in the iteration before.  

Another feature that should be explained is the mode how the code updates the firing rate 

during the simulation. Initially, the model did not have a controller implemented in the code 

and the firing rate was calculated in the final of the simulation through a Gaussian kernel that 

runs the vector where the spikes are stored and estimates the firing rate. However, after 

introducing a controller in the system, it is necessary that at each iteration of the simulation 

there is a control of the current injected by the electrode in the model, thus, the firing rate 

should be updated in each iteration. In this case, it cannot be done using a Gaussian kernel 

because it estimates the firing rate using spikes fired before and after the current time of 

simulation. The Gaussian kernel, a non-causal filter, is defined by the probability density 

function [25]: 

𝜔(𝜏) =  
1

√2𝜋𝜎𝜔

𝑒
(−

𝜏2

2𝜎𝜔
2 )

. (16) 

The temporal resolution is given by 𝜎𝜔. Reducing its value increases the temporal resolution, 

once the filter uses more finely spaced intervals of time to estimate the firing rate however, if 

the interval is very small it could not be capable to differentiate the transitions of the firing 

rates in a smooth way [25]. The next step was to change the type of filter used to calculate the 

firing rate and the encountered solution was to replace it for a causal kernel, instead of a 

Gaussian. This is truly important because, if we are monitoring the spiking behavior of the 

simulated neuron and using that to estimate the necessary current to modulate that behavior, 

we cannot use information about future spikes. One commonly form of a causal kernel is the 

α-function that is described by the equation 17 [25]. The temporal resolution is given by 1 𝛼⁄  

[25] and in this work, since the temporal resolution used in the Gaussian kernel was 100 ms, 

when replacing it by the causal kernel, and to maintain the same resolution, the value of α 

used to design the kernel through the equation below was 0.01. 

𝜔(𝜏) =  [𝛼2𝜏𝑒(−𝛼𝜏)]
+

. (17) 

The [ ]+ notation means that when the argument is negative, 𝜔(𝜏) is zero, it is called the half-

wave rectification [25] and can be expressed like this :  

[𝜔]+ =  {
𝜔 𝑖𝑓 𝜔 ≥ 0 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 
 

                                                                               (18) 
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Figure 4.2 – Firing rates estimation through two different methods. (a) Spike train recorded from a monkey 
cortical neuron. (b) Firing rate approximation using a Gaussian kernel with σ = 0.1s. (c) Firing rate 
estimation using a causal kernel (α-function window) with 1/α = 0.1 s. Adapted from [25]. (d) Example of 
a Gaussian kernel curve with σ = 0.1 s. (e) Example of a causal kernel (α-function) curve with 1/α = 0.1 
s. 

The figures 4.2 (b) and (c) show two different firing rates approximations of the spike train 

recorded from a cortical neuron (figure 4.2(a)). In (b), it was used a Gaussian kernel to compute 

the firing rate. Looking to a characteristic Gaussian curve (figure 4.2(d)), it follows a normal 

distribution (mean: µ = 0; standard deviation: σ = 1). In the figure 4.2(d), we observe its 

symmetry in relation to a middle center point. This means that when a Gaussian window 

function slides through the spike train, will be used any spike to the right or left of that point, 

as long as they are inside the window (under the curve), to estimate the firing rate. Considering 

that point as the present moment, the Gaussian kernel will use the past and the future spike 

events in relation to that point, which cannot be applied in a real-time estimation of the firing 

rate, for instance, using a device to monitor this rate, simply because the future events did not 

happen yet. In (c), a causal kernel (α-function) was used to estimate the firing rate. The word 

causal indicates that the output only depends on the present or past inputs, what make these 

types of filter ideal to be applied in real-time systems. As the figure 4.2(e) demonstrates, half 

of the kernel is zero which corresponds to the “future” part. This is very useful in this work 

because, at each iteration of the controller loop, the firing rate could not be estimated 

including the null part of the vector where the spikes are stored. Consequently, as result of the 

features of the two filters and once this spike train is complete, I mean, it is not an estimation 

where the spikes will continue to appear over the time, like what happens in a real-time 

situation, the Gaussian Kernel will always be one step forward in relation to the firing rate 

calculated through the causal kernel. This is notorious when comparing the figures 4.2(b) and 

(c), where the (c) rate tends to peak later in relation to (b) since the Gaussian kernel is always 

adding events that occur after time 𝑡 (𝑡-time in which the approximation is being done). While, 

the α-function only uses the spikes before 𝑡 to estimate the rate. In addition, its estimations 

suffer from a delay proportional to α.  
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4.1.4. Tuning the controller 

In this work was used a manual tuning due to the lack of a detailed linear process model 

to describe the system dynamics, which are usually used by practically all know tuning methods 

[108], [116]. To manually tune the gains of the controller the total time of simulation was 

reduced to 5 seconds and the discretization time to 0.1 ms because with the previous settings 

the model becomes computationally heavier and time-consuming, which are not the desired 

features for this tuning process where various trials are needed. The setpoint was defined to 

30.0 Hz, what means that the controller should adapt the electrode’s current to introduce the 

right current to maintain the simulated neuron firing with a rate of 30 spikes per second. It is 

also important to remember that the model continues with the neuron’s “intrinsic” current 

that is responsible to make the neuron fire at 10 Hz, value already defined in the subsection 

4.1.2.   

First, starting with the proportional gain, the integral and derivative gains were set to zero 

and 𝐾𝑃 was increased until obtain an oscillatory response. After that, 𝐾𝑃 was reduced to half 

of that value to obtain a “quarter amplitude decay" type response. Then, 𝐾𝑖 was increased in 

order to stop the oscillation in the firing rate response and try to reduce the steady state error. 

Lastly, afterdefined the values for 𝐾𝑃 and 𝐾𝑖, 𝐾𝑑 was also increased to try to remove the 

overshoot of the response. To figure out what type of controller fits better in the model, after 

chosen the value of 𝐾𝑃, we also tried a PD (Proportional and Derivative) approach, i.e., instead 

of increase 𝐾𝑖, it remained null and we started to increase 𝐾𝑑.  

In order to obtain a finer tuning of the parameters, for each gain was selected a range of 

values around the previously selected values for the gains. For each possible combination 

between the three gains, it was calculated the area between the response of the controller in 

relation to the setpoint value, as we can see in the figure 4.3. The triple combination 

corresponding to the smallest area was selected. 

 

Figure 4.3 – Area between the response curve of the system and the setpoint value (red line).  

 

4.1.5. Validation of the controller 

Before validating the response of the controller, it was necessary to validate the way that 

the firing rate was computed, i.e., verify whether the causal kernel was better than the 

Gaussian kernel to estimate the firing rate in a “real-time” situation (during the simulation). 

To find out how the two types of kernels were going to behave during the control cycle loop of 
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the simulation, we created a vector of zeros and ones with the size of the simulation (5 sec = 

50000 steps for dt = 0.1 ms), where the ones represent the occurrence of spikes. The ones were 

randomly distributed along the vector of zeros, about 60 spikes, less in the last 2 seconds (20000 

steps). The kernels and their firing rates’ approximation will be presented in the Results and 

Discussion section.  

After that, the controller’s performance was evaluated in two phases. The first validation 

process of the developed model consists in testing the model using a neuron that during the 

simulation time is changing its firing rate. The idea is to observe how the controller reacts to 

abrupt changes in the values of firing rate, and if its response is capable to recover from these 

variations bringing the neuron’s rate again to the reference value. To do that, it was created a 

function responsible to change the 𝐼𝑛𝑒𝑢𝑟𝑜𝑛 over the simulation during fixed periods of time. The 

values of current correspond to well-defined firing rates, which through the equation 14 were 

converted in current. The second step to validate the model involves the introduction of noise 

in the system to perturb the performance of the controller, mainly the derivative part that is 

more sensitive to noise. Nevertheless, the moving average filter used to remove the abrupt 

oscillation peaks in the error vector should be sufficient to stabilize the error curve and use it 

to calculate the derivative error of the system. This noise will be introduced in the model by 

adding it to 𝐼𝑛𝑒𝑢𝑟𝑜𝑛 and its biological meaning is related with the called “neuronal noise”. The 

neurons in the neuronal circuits are constantly receiving a large number of synaptic inputs that 

act as a source of noise, which can disturb the neuronal response. This noise is a combination 

of excitatory and inhibitory synaptic inputs [118]. The noise was created through the MATLAB 

function randn, which follows a standard normal distribution to distribute random numbers in 

a vector with the number of steps corresponding to the simulation duration time. In each cycle 

of the loop, the value of noise corresponding to that iteration is added to the current 𝐼, that 

will be used to compute the membrane potential in the IF-model. Of course, the values of noise 

were multiplied by a decimal factor to reduce its magnitude. The results will be presented in 

the Results and Discussion section.   
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4.2. “Real-time” closed-loop control  
 

The core goal of this dissertation work was the design and implementation of an in vitro 

“real-time” closed-loop control system using the commercial MEA2100-System from MCS. This 

section describes all the steps performed to reach this goal.  

4.2.1. Electrophysiological system overview 

The electrophysiological recordings carried out in this work were done using two 

commercially available in vitro systems for extracellular recordings using MEAs. These systems 

belong to MEA2100-System line from MCS (Reutlingen, Germany) [119]. These devices include 

two main components: a headstage and an interface board. Currently, there are available 6 

different types of headstages: for one 32, 60, 120 or 256-electrodes MEAs per headstage or for 

two 32-electrodes MEAs or 60-electrodes MEAs per headstage. The headstage corresponds to 

the part of the system where the MEA is positioned. It is the core element of the system and is 

responsible for data acquisition, signal amplification and also has an integrated stimulus 

generator. The acquisition is done through an A/D converter integrated into the headstage and 

the acquisition parameters such as the sampling rate (until 50 kHz per channel) can be set on 

the computer using the MCS software. The amplification process occurs before the acquisition 

and near the signal source to minimize the noise in the signals. The system as a fixed hardware 

gain of 10 and a resolution of 24 bits [119]. The stimulus generator consists in 3 independent 

integrated stimulus generator units (2 in the case of the MEA2100-256-System). It enables 

current or voltage stimulation, monophasic or biphasic pulses, and single pulses or pulse trains. 

Any MEAs’ electrode can be selected for stimulation, enabling a targeted stimulation, and can 

also record. Stimulus features, electrodes selection or other stimulation configurations are 

implemented in the MCS software [119]. The interface board is connected to the headstage and 

receives the signal from it. Also, it contains a DSP. This component is truly important in the 

present work because enables real-time signal detection, filtering, analysis of the acquired 

data and, the main tool of this work, the feedback stimulation in real-time. The filtering is 

done by a second order high and low pass filters integrated into the hardware. By default, the 

hardware filtering settings were a cut off frequency of 1 Hz to the high pass filter, which aims 

to prevent the baseline drift of the recorded signals and, the low pass filter had a cut off 

frequency of 3.3 kHz. These settings can be changed through a software (“MEA2100 

Configuration”) to configure the hardware filters bandwidth without any modification in the 

hardware. More, this interface connects to the computer and has other digital inputs and 

outputs for synchronization with additional instruments [119]. For more detailed information 

about the MEA2100-System, the datasheet with the technical specifications can be consulted 

in [120]. 

The experiments present in this dissertation were performed with the MEA2100-120-

System and MEA2100-256-System, i.e., using 120 and 256-electrodes MEAs chips.  
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4.2.2. Preparation of MEA for cell culture  

In this work were used substrate-integrated planar 120 and 256-electrodes MEAs (MCS) 

(Reutlingen, Germany) composed of 120 titanium nitride (TiN) recording electrodes and 4 

internal reference electrodes in a 12 × 12 grid [121], and 252 titanium nitride (TiN) recording 

electrodes and 4 internal reference electrodes in a 16 × 16 grid, respectively. TiN is a very 

stable material, giving a long life to MEAs and allow their re-use. Both MEAs have a silicon 

nitride (SiN) isolator. The tracks and contact pads of the 120-MEAs are made of TiN and in the 

256-MEAs, they are made of a transparent indium-tin-oxide (ITO) [122], perfect to see the 

culture on the microscope, otherwise, the tracks density would not allow it. Each electrode has 

30 µm in diameter with a center-to-center inter-electrode spacing of 100 or 200 µm (depends 

on the chip used), and an impedance of less than 100 𝐾𝛺 [122].  

The MEAs were prepared for cell culture by surface coating with 0.05% of PEI (25kDa, 

Sigma-Aldrich Co.) overnight at 37°C, followed by four washing steps with sterile water. After 

completely air-dried, MEAs were subsequently coated with 5 μg/ml laminin isolated from mouse 

Engelbreth-Holm-Swarm sarcoma (Sigma-Aldrich Co.) at 37°C, for at least 2h before cell 

seeding.  

 

4.2.3. Cell culture experiments  

Experimental procedures involving animals were carried out in accordance with current 

Portuguese laws on Animal Care (DL 113/2013) and with the European Union Directive 

(2010/63/EU) on the protection of animals used for experimental and other scientific purposes. 

The experimental protocol (reference 0421/000/000/2017) was approved by the ethics 

committee of the Portuguese official authority on animal welfare and experimentation 

(Direção-Geral de Alimentação e Veterinária). All efforts were made to minimize as possible 

the number of animals and their suffering.  

Unless otherwise stated, all reagents listed below are from Gibco, ThermoFisher Scientific. 

Primary embryonic rat cortical neurons were isolated from the prefrontal cortices of Wistar 

rat embryos (E-18). Embryos cortices were dissected in HEPES-Hanks' Balanced Salt Solution (H-

HBSS) and enzymatically digested in 0.5 mg/ml trypsin (1:250) in H-HBSS for 15 min at 37°C. 

Subsequently, tissue fragments were washed once with 10% (v/v) heat-inactivated fetal bovine 

serum (hiFBS, Biowest) in H-HBSS to inactivate trypsin, and twice with H-HBSS to remove hiFBS 

from the solution. Tissue fragments were then mechanically dissociated with 5 ml plastic 

pipette and subsequently with 1 ml pipette tips. Viable cells were counted using the trypan 

blue (0.4% (w/v), Sigma-Aldrich Co.) exclusion assay to determine the cell density of viable 

cells. Therefore, the laminin coating solution was removed from the MEAs and 3x105 of viable 

cells were seeded on the coated MEAs. Cells were cultured in Neurobasal medium supplemented 

with 0.5 mM glutamine, 2% B-27 supplement and 1% penicillin/streptomycin (P/S, 10,000 units 

ml−1 penicillin and 10,000 μg.ml−1 streptomycin), and kept in a humidified incubator at 37°C 
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supplied with 5% CO2. The experiments were performed using cells with 15 – 35 days in vitro 

(DIV). 

 

4.2.4. MEA2100 setup 

After introducing the system’s hardware, let’s focus on the software. To complete the 

system is necessary a computer, computationally powerful and with a high memory capacity, 

where the software package Multi-Channel Suite needs to be installed. This package includes 

three programs: the Multi-Channel Experimenter where the data is exhibited in real-time and 

the acquisition setup is set, for instance, apply filters, detect spikes, configure the stimulation 

settings, etc. Basically, it commands the MEA2100-system and is where the experimental 

protocol will be defined. The other program is the Multi-Channel Analyzer. As its name says, is 

a tool to analyze the data recorded from the Multi-Channel Experimenter. The files can be 

imported to it allowing an offline analysis, for example, to detect spikes or analyze bursts. 

Finally, the third program is the Multi-Channel DataManager. It allows the conversion of the 

data files recorded with the Multi-Channel Experimenter in other file extensions permitting us 

to export the files for analysis with other programs. It is the case of the extension HDF5, which 

can be used in MATLAB R2017b (The MathWorks, Inc., USA), where the data analysis of the 

recordings was made.  

Despite the use of two different MEA2100-Systems, the setup of the experiments is equal 

since both use the same software and the graphical user interface is practically equal, except 

the MEAs layout for obvious reasons and in the case of the MEA2100-256-System, it just has 2 

stimulator units instead of 3. Although, it is not relevant because just one stimulator is used 

during the experiments. The figure 4.4 shows the layout of the recording setup used in the 

experiments: 
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Figure 4.4 - Layout of the recording setup used in the experiments. 

The general setup of the experiments was designed in the Multi-Channel Experimenter 

software. The graphical interface of this program is very user-friendly and to mount the setup 

we just need to drag-and-drop the boxes in the left side of the panel to the white space and 

link them as shown in the figure. By double-clicking on the top of any instrument box, it will 

open a control window tab dedicated to that box. For instance, in the MEA2100 box is where 

the data acquisition settings are, such as the sample rate, and also has a separator to access 

the real-time feedback settings.  

Both, raw data and filtered data were recorded during the experiments. Note that these 

are digital filters and do not have any relation with the integrated hardware filters. More, the 

raw data could be filtered after the experiments using the Multi-Channel DataManager 

software. The digital filters implemented in the experiments’ setup were a second order high-

pass Butterworth filter with a cut off frequency of 200 Hz followed by a second-order low-pass 

Butterworth filter with a cut off frequency of 4000 Hz. Knowing that EAP frequency band is 

located between the 300 and 3000 Hz [46], the selected bandwidth does not present any 

restriction to the detection of APs. 
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With regard to the stimulation settings, they are accessible to the user by double-clicking 

in the stimulator box and will appear the control interface shown in the figure 4.5.  

In this control window, it is possible to select the electrodes used for stimulation. First, 

we choose the integrated stimulator that we want to use by clicking in one of the stimulators 

(stimulator 1 - green, stimulator 2 - blue or stimulator 3 - red) in (1) and after, we select the 

electrodes that will be used to trigger the stimulus. Remember that the stimulators are 

independent and each one has its own control tab; also, all the three could be used in the same 

experiment. Also, note that the figure is from the MEA2100-120-System as we can see by the 

MEAs’ layout and by the existence of three stimulators. The stimulation pulse parameters and 

the stimulus’ shape can be defined in (2) and (3). First, by drag-and-drop the boxes of 

predefined waveforms, below the number (3), to the rectangular space, in (4), it is possible to 

build the desired type and shape of the stimulus and create stimulation patterns by combining 

different stimulus [119], [123]. The stimulation parameters of the stimulation pulse can be 

adjusted in (5). Then, the stimulus is downloaded into the DSP by clicking in (6). For the current 

work, the manual trigger to stimulation is changed to feedback (7). In addition, there are two 

important features of the integrated stimulus generator that should be addressed. If the user 

press in (8), will be opened a small window relative to the stimulus generator settings. These 

settings include two output options, current or voltage, and two strategies to suppress 

Figure 4.5 – Screen capture of the stimulators settings control window tab. 
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stimulation artifacts. The “Blanking” option is referent to the blanking circuit integrated into 

the stimulator. This circuit, during the stimulation, disconnects the electrodes from the 

amplifiers avoiding stimulus artifacts on the recording electrodes. In addition, it prevents the 

saturation of the amplifiers, which means the reduction of the recovery time. The blanking 

period is about 600 𝜇𝑠 (currently) before and after the stimulus [119], [123]. During this time, 

a flat line is displayed in the recordings. The “Dedicated Stimulation Electrodes” option, as it 

says, the electrodes are just for stimulation. This option further prevents the presence of 

stimulation artifacts that are not completely eliminated, by the blanking circuit, on the 

surrounding recording electrodes. Sometimes, the blanking action of switching the stimulation 

electrode between the stimulator (during the stimulation pulse) and the amplifier (to record 

again), provokes switching artifacts which are not related with the given stimulation. Thus, if 

the stimulation electrodes are fully dedicated to stimulation, these kind of artifacts are 

practically removed from the surrounding recording electrodes once the stimulation electrodes 

are always connected to the stimulator. However, recordings using the stimulation electrodes 

are not possible due to the elevated noise levels in those electrodes [119], [123].  

After defined the stimulation parameters and downloaded the stimulus to the DSP, it is 

time to configure the “real-time” feedback settings.  

The “real-time” feedback is the most important feature of the MEA2100-system according 

to the main goal of this dissertation, which is the control of the global activity level on the 

culture (population mean level), using feedback stimulation in response to the variation of 

neuronal populations firing rate. In a typical situation using similar systems, the recordings are 

made, the signals are analyzed and afterward, the stimulation is manually triggered. However, 

this procedure introduces an enormous delay in the control process. The MEA2100-System 

integrated “real-time” feedback enables a more automated control capable to reduce the 

response delay to less than 1 ms. This is only possible because the interface board contains a 

DSP, which connects with the amplifiers and the stimulators and works independently. I.e., as 

mentioned before, the DSP has access to the recorded data in real-time. It can perform real-

time filtering, data analysis such as spike detection and, if a certain condition is satisfied, it 

can trigger a feedback stimulation according to the stimulation parameters defined in the 

software [119]. 

As said before, the feedback settings can be accessed in the MEA2100 box when we open 

that separator. These settings are displayed in the figure 4.6, and some important features will 

be described. 
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Figure 4.6 - Screen capture of the feedback control window. (1) Block to define the filters; (2) Block to 
choose whether the acquisition data is filtered or not; (3) Block to define the detection parameters; (4) 
Block to define the feedback logic. 

The selected options and the values presented in the figure 4.6 do not characterize the 

feedback settings used in the experiments of this work thus, let's focus on the boxes delimited 

in blue and their functions. In (1), the DSP filtering settings can be set; it is not required to use 

both filters and, actually, it is not even necessary to fill in this field since in (2), as you can 

see, the “real-time” feedback can also be performed using raw data. However, in the closed-

loop experiments performed in this work, it was used a second order high pass filter with a cut 

off frequency of 300 Hz to remove the slow wave fluctuations from the recorded signal and the 

baseline characteristic oscillations resulting from burst activity. This filter is extremely 

important due to the fact that in (3) when defining an amplitude threshold to detect spikes, it 

is calculated individually for each channel based on a user-defined factor times the standard 

deviation of the noise [119], [123]. Thus, if the baseline level of the recorded signal moves up 

or down mainly due to burst activity, some spikes could not be counted or even some could be 

wrongly counted. The detection threshold can be either positive or negative, but not both at 

the same time. The system also allows a manual threshold [119], [123]. In the experiments 

carried out in this work, the threshold level to detect spikes was negative since all recordings 

presented mainly falling spikes, and the threshold value was set to five times the standard 

deviation of the noise. 

The most complex part of the real-time feedback is the “Feedback logic” in (4), which 

defines the condition to trigger feedback stimulation. This logic is made in the DSP. Regarding 
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the condition defined by the user, the logical state could be TRUE or FALSE, which confirms if 

the feedback stimulation is triggered or not. First, we will start by the different fields available 

to fill or select. Starting with the electrodes layout, there could be selected one or more 

electrodes, which will be used by the DSP to compute the feedback logic and verify if the 

feedback conditions are or not satisfied. The “Time Window”, in milliseconds, defines the 

duration time of a moving window that will be used to count the spike rate in the signals. I.e., 

imagine that for a “Time Window” of 1000 ms we want a “Spike Count” of 10 spikes, this means 

a firing rate of 10 Hz. This condition just is fulfilled when detected 10 spikes in a second. This 

window is limited to 1000 ms [123]. The “Event Duration”, in milliseconds, is the time after the 

detection of a spike that determines that the detection condition is considered satisfied. At 

that moment the logical state referent to the detection condition becomes TRUE until the end 

of the event duration. If there is a minimum number of TRUEs equal to the “Spike Count” within 

the “Time Window”, the feedback stimulation is triggered [123]. When using the option “Single 

Rates” and more than one electrode, it is necessary to combine the logical states of the 

selected electrodes with the options “AND” or “OR”, however, this is more complicated to 

explain and it was not used in our experiments but, for more information you can consult the 

Multi-Channel Experimenter manual [123]. For “Overall Rate” option or just one electrode 

selected, the options “AND” or “OR” are not applicable and is exactly what happens in this 

work experiments. More, the “Event Duration” used in our experiments was 1 ms, which is the 

approximate duration of APs observed in the recordings. 

Finally, to ensure that the experiments have the lowest possible impact on cell viability 

and to record over longer periods of time, an external temperature controller (TC02) was 

connected to the MEA2100-System headstage which has a heating element right beneath the 

MEA. Controlled by the TC02, the heating element enables constant temperature conditions for 

the cells cultured on the MEAs. The temperature was set to 37°C to mimic the biological 

conditions. The figure below shows the MEA2100-System setup used in our experiments, 

including the external temperature controller and shows the schematic model of the “real-

time” feedback process. 
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Figure 4.7 - Setup of the MEA2100-System and “real-time” feedback scheme. (a-c) setup of the MEA2100-
System available in our lab. (a) external temperature controller (TC02), (b) MCS Interface Board, (c) 
MEA2100-headstage to record data from one 120MEA chip. (d) Schematic representation of the “real-
time” feedback process integrated into MEA2100-120-System. First, we define the condition for the 
feedback and download it to the interface board (1). During recording (2), the DSP filters the data and 
detects spikes (3). When the event is detected, the integrated stimulus generator generates the stimulus 
pulse (4) [124]. 

 

4.2.5. Stimuli Validation protocol 

First of all, it is important to emphasize that, although these type of MEA-Systems are 

commercially available and have been used in electrophysiological experiments for a 

considerable time already (2 decades), the integrated real-time feedback is a feature recently 

added to these systems. Currently, I can affirm that there are only a few research groups that 

have this electrophysiological system (MEA2100-System), being the research group where this 

dissertation work was elaborated, one of them. For these reasons, some difficulties were 

encountered when defined the stimulation protocols since, so far, there is little available 

literature about experiments using the real-time feedback of 2100MEA-System. However, we 

are here to create and not to copy so, the stimulation protocols were created based on 

published stimulation studies in dissociated cultures on MEAs.  

The electrical stimulation in neuronal networks or in single neuronal cells has been used 

since electrophysiology early days due to the electrical nature of these cells. Therefore, the 

stimulation effects are well documented in the literature. For instance, Gertz et al. [125] 

proposed a stimulation protocol to train networks to respond to patterns of stimulation applied 

to the culture over the MEAs electrodes. Still, the majority of well-defined stimulation 

protocols to modulate neuronal activity include a set of steps with precise durations of 

stimulation and specific stimuli frequencies. Those stimulation periods are long, which does 

not enable their use in our experiments once we are trying to implement a real-time feedback 

control. This means that this control should have the fastest impact on the modulation of the 

neuronal activity, i.e., the response to the triggered stimulus should have an “immediate” 

effect in the activity. Because, unlike what happened in those mentioned protocols where the 

stimulation is constant during the experiments, in our experiments, the stimulation is given 
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when the DSP pre-defined condition is satisfied. We cannot ensure that stimulation always 

occurs at a given frequency throughout the experiment.  

The MEA2100-System, as mentioned before, is capable of current or voltage stimulation 

modes. Although, there are some aspects that should be considered before choosing the type 

of stimulation. According to the manufacturer's recommendations, the stimuli must be negative 

monophasic voltage pulses or biphasic voltage pulses (negative phase first) to ensure that the 

electrode is discharged at the end of the pulse [122]. When applied current pulses, they should 

be biphasic to actively discharge the electrodes at the end of the stimulation. The easy way is 

to set the same signal amplitude and duration for each phase. Alternatively, ensure that the 

product of amplitude and time for each phase is matching, avoiding electrode’s damages by 

electrolysis [122]. For these reasons, voltage pulses were used since with current pulses we 

would be limited only to biphasic pulses.  

Even for the voltage pulses is necessary to pay attention to a few recommendations. 

Starting with the amplitude of the pulses, this one should be smaller than 1 V for neuronal 

applications. Bigger values are harmful to the cells and, can also damage the electrodes by 

electrolysis [122], [126]. The width stimuli pulses are usually between 100 𝜇𝑠 and 500 𝜇𝑠 [122]. 

More, the amplitude and duration of the stimulus must be balanced, i.e., a big amplitude should 

be combined with a small pulse duration.  

Wagenaar et al. did a great study of electrical stimulation through MEAs in dissociated 

cortical neurons cultures [126]. They tested a range of rectangular pulses (current and voltage) 

with different shapes, amplitudes and durations to study their efficacy. In addition, they 

determined the parameters’ ranges that improve stimulus efficacy without provoking damages 

in the cells or electrodes. In their studies, for biphasic voltage pulses, they used a range of 

amplitudes between 100 to 1000 mV with durations of 100 to 800 𝜇𝑠 per phase. And, for 

monophasic voltage pulses, they tested pulses with amplitudes also ranging from 100 to 1000 

mV but with a fixed duration of 400 𝜇𝑠. Each pulse was fired 50 times with 1 second between 

trials [126]. They reported that positive-than-negative biphasic voltage pulses were the most 

effective tested pulse to evoke activity. By activity, they want to mean APs. Biphasic negative-

than-positive voltage pulses were also capable to elicit APs if sufficiently strong [126]. 

Monophasic negative voltage pulses could also evoke activity but were less effective than the 

biphasic pulses. The positive monophasic pulses were not capable to evoke many responses. At 

a fixed duration, activity increased with the increase of the amplitude but, for the same 

amplitude, the activity do not depend strongly on the duration [126]. More, with similar 

features, the voltage pulses were more effective than the current pulses [126]. Despite their 

results shown to be reliable and consistent, they represent an increase in the difficulty of our 

work since they demonstrated that these vast ranges of tested pulses were always capable to 

increase the activity of the neuronal cells, with the exception of the positive monophasic 

pulses. However, these ones could not be used in our system for equipment safety reasons as 

said before. In this point of work, we were in an impasse since to be able to modulate the 

neuronal activity we need stimuli to evoke activity but also to inhibit it. Another important 
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aspect is the manner how the “real-time” feedback of our system works. Since it triggers a 

stimulus when a certain number of spikes are present within a pre-defined time window, if we 

increase the activity of the neuronal population by applying a stimulus, that condition tend to 

be more and more times satisfied which leads to a cascade of triggered stimuli and it is not 

what we define as control. Thus, for our experiments, we needed stimuli capable to inhibit 

cells activity. Despite Wagenaar et al. results were a bit demotivating at the beginning of our 

experiments, they gave us confidence about the type of parameters we could use to define the 

shape, amplitude, and duration of the stimulation pulses. For these reasons, many experiments 

were performed ( >  750 𝐺𝐵 of data) and many of them were discarded. Thus, for obvious 

reasons, not all experiments are here. 

Our initial trials to set up a viable stimulation protocol led us to 4 different types of 

stimulus in order to try to understand if any of them was able to reduce the firing rate of the 

primary cortical neuronal cells cultured on the MEAs in an effective and reliable way. The four 

types of voltage stimulation pulses are displayed in the table 4.1. For the recordings were used 

different cultures with 15 to 35 DIV. This type of cultures start to firing after approximately 4 

DIV and shortly after that time, synchronizes its activity across all culture, resulting mainly in 

burst activity [103]. Just to clarify, the interval of DIVs used in this work does not mean that 

during that interval of time were performed recordings every day. It is just an interval to give 

the indication of how long the neurons were in culture when the recordings were made, and 

also to ensure that the cells do not die after the stimulation trials. More, the recordings were 

only performed when the activity on the electrodes seemed to be good. I.e., the electrode 

displayed an observable spiking activity over the time with a good SNR and, did not fired only 

when there were global bursts all over the network. Only in that way, with a relatively 

“constant” firing rate, it was possible to evaluate the stimulation effect. Lastly, small things 

as the medium change could silence the neuronal activity and the “adaption” phase of the cells 

to the chips could result in longer periods of weak activity and after a certain time they could 

“wake-up”. The signals were sampled at 10 kHz (this value is the minimum recommended value 

to use). This rate is enough to record spikes however, their shape is not very realistic. Although, 

it is not important in our experiments since we do not do spike sorting or use a detection 

algorithm based on shape. 

 
Table 4.1 - Summary of voltage stimulation pulses tested.  

Pulse shape 
Peak-to-peak amplitudes 

(mV) 
Pulse widths (µs) (per phase) 

1- Biphasic negative-than-positive 600 200 

2 - Biphasic negative-than-positive 400 500 

3 - Monophasic negative 550 180 

4 - Monophasic negative 800 280 

 

 

 



“Real-time” closed-loop control  65 

 

 
 

The complete protocol consisted of the following steps:  

(1) Basal activity: after inserting the chip in the MEA2100-system headstage, wait about 10 

minutes to give time to the culture to adapt to its move from the incubator to the 

system. Next, the spontaneous activity of one electrode is recorded 3 times during 200 

s. The interval time between recordings should be as small as possible; 

(2) Feedback stimulation: the activity of the previous electrode during the “real-time” 

feedback stimulation is recorded 3 times during 200 s. The stimulation is given by 4 

electrodes adjacent to the recording electrode distributed in a diamond pattern with 

the recording electrode in the middle; The feedback “Spike Count” parameter is chosen 

according to the user's estimation of the firing rate and should be a value capable to 

trigger a stimulation pulse. I.e, if the approximated firing rate is 5 Hz, we cannot choose 

a “Spike Count” of 10 for a “Time Window” of 1000 ms, for instance. 

(3) Basal activity post-stimulation: wait 5 minutes to let the cells recover from the 

stimulation. Repeat the step (1) and record spontaneous activity. 

 

4.2.6. Neuronal network experiments protocol 

According to the results of the stimuli validation, the most reliable and effective stimulus 

was chosen to use in neuronal network experiments control. The protocol is the same with some 

differences with regard to the number of electrodes. In the previous section, it was used only 

one recording electrode and 4 stimulation electrodes. Despite the goal was the control of all 

neuronal population cultured over the MEAs, it was difficult to have all the recording electrodes 

with a considerable activity. Sometimes the cells are silent in some parts of the electrodes’ 

array, in other cases, by looking the MEAs chips on the microscope, we realized that there were 

no cells on the top of some electrodes. In those cases, instead of using all the electrodes, we 

selected a block of electrodes with activity to perform the experiments. Within that block, we 

chose strategically the stimulation electrodes to ensure that any recording electrode has one 

adjacent stimulation electrode. For the recordings were used different cultures with DIVs 

between 15 to 25.  

 

4.2.7. Data analysis code 

The analysis of the results of the experiment was made in a MATLAB environment. To do 

that, it was necessary to install the MCS MATLAB toolbox “McsMatlabDataTools”. This toolbox 

allows us to import HDF5 files. Thus, first we need to convert the recording files created by the 

MCS Experimenter software using the MCS DataManager software. The spikes were detected 

just by a  threshold crossing. The detection threshold 𝑉𝐷 was calculated using the median 𝑀𝑠 

and the standard deviation 𝜎𝑠 of the recorded signal: 
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𝑉𝐷 = 𝑀𝑠 ± 5 × 𝜎𝑠. (19) 

 

Ideally, the median and the standard deviation should be calculated with the baseline noise 

level [5], [22]. However, in our recordings, we did not have the occurrence of a large frequency 

of large spikes that could be wrongly inflated the 𝑀𝑠 and 𝜎𝑠 values, being the baseline noise 

dominant in the signals. More, the data analysis uses the recorded filtered signals where the 

signal fluctuations have been removed. The detection threshold is always calculated 

individually for each recording electrode.  

Although the spikes recorded were mostly falling spikes, both, falling and rising spikes 

were detected through our spikes’ detector algorithm since we realized that even a small 

number of rising spikes could make the difference posteriorly when the firing rate was 

calculated once the recordings just have 200 s. Despite it is a small interval of time to calculate 

the firing rate for each recording, very long experiments are not good for cell viability and after 

some trials, we considered that this time reached a balance between the approximation of the 

firing rate with enough confidence without conditioning the viability of the cells. Remember 

that the total time of the experiment is approximately 45 min. 

After detecting the spikes, we faced another problem. The positive and negative threshold 

could detect the same spike two times when the spikes have a biphasic shape. The spikes are 

mainly monophasic negative or positive but in fact, there are biphasic spikes. To ensure that 

the algorithm did not detect two times the same spike, it uses a window function that runs the 

vector where the spikes are stored and, any time that more than one spike appears within that 

window, it guarantees that the first spike is maintained in its position and the other is removed. 

According to the sampling rate of the recordings, it creates a window with a size corresponding 

to 1 ms. The reason behind this interval of time it is because we noticed that the difference 

between the positive and negative shape peaks of biphasic spikes, in general, was less than 1 

ms (with some margin of error). We cannot ensure that all spikes comply with this condition 

because it was impossible to see each one individually but in general, this interval should work 

perfectly from what we saw.  

The next step was to create a mask with the size of the duration of the stimulus pulse. 

This is because we noticed that even with our experiments being performed with the options 

“Blanking” and “Dedicated Stimulation Electrodes” selected, all the artifacts sometimes were 

not removed and could lead us to a wrong firing rate estimation. The system’s manufacturer 

itself says that these options remove the majority of the stimulation artifacts; however, some 

may be present in the recordings. Therefore, to create the mask we use one stimulation 

electrode. As a result of the “Blanking” option, during the stimulation period, a “flat line” is 

exhibited in the signal. Thus, by using a local standard deviation filter twice in the signal and 

find the places in which the filtered signal is small than 0.1, we could identify the flat lines 

periods on the stimulation electrode that may be a stimulus. After, to remove the false-

negatives, we applied a moving average filter to remove the “fast” flat lines that were not 

stimulus. Lastly, the zeros and ones mask was created, the zeros correspond to the locations 
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of the stimuli and when the mask is multiplied by the recorded signals, it is possible to remove 

completely the stimulation artifacts. This mask is only applied to the feedback recordings. 

Finally, the firing rate, in Hz, is calculated by dividing the number of detected spikes by 

the duration time of the recordings, in seconds.  
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Chapter 5 
 

 

Results and Discussion 
 

 

 

5.1. Integrate and Fire model with a PID controller  
 

This part of the work consisted in the development of an in silico PID controller capable 

to modulate the neuronal activity of a simulated neuron through the injection of current. The 

results will be now presented and discussed.   

 

5.1.1. Integrate-and-Fire model implementation 

As described in the section 4.1, before introducing the controller component we first 

needed to implement the in silico neuronal model (IF-model). The figure 5.1 (a) shows the 

result of the simulation using the IF-model implemented in MATLAB. Simulation parameters are 

described in the legend of the figure. It is possible to notice that neither the form of the curves 

or their amplitudes can be compared to the characteristic curves of APs. However, it is quite 

simple to know when an AP occurs. Also, the curve’s behavior was previously explained in the 

figure 2.2 (b). The figure 5.1 (b) gives the firing rate calculated through a Gaussian kernel with 

a σ of 100.0 milliseconds. In this situation, the Gaussian kernel fits perfectly because the firing 

rate is only calculated at the end of the simulation. In this part of the work there is no external 

current injected into the model, the only source of current is the membrane’s current intrinsic 

to the neuron, that was manipulated using the equation 14 to make the simulated neuron fires 

at 10 Hz what is exactly what gives the kernel’s approximation, increasing the confidence in 

the temporal resolution chosen. Looking at the figure 5.1 (c), it is clear that there are 10 spikes 

in a window of 1 second. 
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Figure 5.1 – Simulation of a neuron using the IF-model. The parameters used in the simulation were 𝐸𝐿 =
𝑉𝑟𝑒𝑠𝑒𝑡 = −70 𝑚𝑉, 𝑉𝑡ℎ = −50 𝑚𝑉, 𝜏𝑚 = 10 𝑚𝑠, 𝑅𝑚 = 20 𝑀𝛺 and 𝑑𝑡 = 0.01 𝑚𝑠. The firing rate was defined 
as 10 Hz. (a) Simulation of spiking behavior during 10000 ms. (b) Firing rate calculated through a Gaussian 
kernel with a σ of 100 ms. (c) Simulation of spiking behavior during a time window of 1000 ms.  

 

5.1.2. Controller’s implementation – “real-time” firing rate calculation 

To obtain good control results, the controller needs to have a good approximation of the 

firing rate at each iteration of the cycle loop, since the control error (e) is the difference 

between the process variable (firing rate calculated at each iteration) and the setpoint value 

(𝑒 = 𝑟 − 𝑦). The validation of the two types of kernels (Gaussian and causal α-function kernel) 

was performed according to what is described in the Materials and Methods section. The figure 

5.2 shows the both kernels created and how they run the vector where the spikes will be stored 

during the simulation. 

 

Figure 5.2 – Gaussian and α-function causal kernels curves. (a) Gaussian kernel with a temporal resolution 

of 𝜎 = 100 𝑚𝑠. (b) Causal kernel in the form of an α-function with α = 0.01 and a temporal resolution 
given by 1/ 𝛼 =  100 𝑚𝑠. Both kernels were created in MATLAB. (c) Example of how the kernels run the 
vector of spikes in a real-time estimation. The blue arrow indicates the direction in which the kernel’s 
window is “sliding” the vector and the black arrow indicates the actual iteration of the control loop. This 
image is not in scale. 

The results from the simulations to validate and compare both the kernels are presented 

in the figure 5.3. In green is represented a spike train of 60 spikes generated and distributed 
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randomly until reach the 3 seconds of simulation. The black line shows the firing rate estimation 

of the Gaussian kernel and the purple line the approximation of the α-function kernel. Both 

kernels have the same temporal resolution, however, their estimations are considerably 

different. The reasons why this occur were already explained in this work but with the drawings 

of the kernels filters, in the figure 5.2, is easier to understand. In general, both are capable to 

make good estimations despite the Gaussian kernel is always a step forward in relation to the 

α-function kernel and the continuous transitions are softer. This is due to the smooth nature of 

the Gaussian curve; when we look at the figure 5.2 (c), it can “predict” what is going to happen 

after the time 𝑡 (where the arrow is positioned), integrating the spikes after that time according 

to its probability density function contributing to a smooth passage. Unlike, the causal kernel 

has its negative part null and the peak of its curve is located practically above time 𝑡, as 

observed in the figure 5.2(c). Thus, according to its probability density function, if during a 

transition in the spikes vector from t to t+1 corresponds to 0 → 1, the weight of this passage 

has much more impact in the integration what makes those oscillations in the firing rate 

estimation. In addition, there is a delay proportional to α. These behaviors are in accordance 

with the figure 4.2. 

Now, let’s interpret what happens at 𝑡 = 3 𝑠 of simulation. Imagine that in a real-time 

control situation, the current position of the cycle loop is in the iteration that corresponds to 

3 seconds. At this point, the black line is in decline since it uses the zeros from the vector after 

time 𝑡 to estimate the firing rate. This could influence the error (e) and lead the controller to 

inject a wrong current in the system. On the other hand, the 𝛼-function kernel is more sensitive 

to the changes in the firing rate as we can see from the blue line, the integration of new spikes 

that occur over the simulation is noticeable by the small peaks in the curve. Yet, the last peak 

only occurs after time 𝑡 due to the delay proportional to α. However, it is still a more realistic 

approach to a firing rate real-time estimation.  

 

Figure 5.3 – Validation and comparison between both kernels. In green is represented a spike train of 60 
spikes generated and distributed randomly until reach the 3 seconds of simulation. The black line shows 
the firing rate estimation of the Gaussian Kernel and the purple line the approximation of the α-function 
kernel. Both kernels have the same temporal resolution (100 ms) however, their estimations are 
considerably different. 
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5.1.3. PID controller tuning 

As addressed before in the section Materials and Methods, the tuning of the gains of the 

controller was done manually. Starting with the proportional gain (𝐾𝑝), the results are 

presented in the figure 5.4. 

 

Figure 5.4 – Proportional gain (𝐾𝑝) tuning of the PID controller. The figure shows the different curve 

responses (blue line) for different values of 𝐾𝑝. The integral and derivative gains, 𝐾𝑖 and 𝐾𝑑, were set to 

0. The setpoint value is 30 Hz (red line) and the simulation period was 5000 ms with dt = 0.1 ms. 

These results were obtained during a simulation period of 5 seconds. Just note that 

during the first second there is no calculation of the firing rate because this period of time 

corresponds to the window size of the kernel (10𝜎 = 1000 𝑠𝑡𝑒𝑝𝑠), and the control only starts 

after that time. For small values of 𝐾𝑝, in this case, until 𝐾𝑝 = 4 × 10−7 , the system cannot 

reach the setpoint value (30 Hz). If the simulation time was larger it eventually would reach 

that value and stay stable. However, a control system should be fast and one of the aspects 

that contributes to the velocity of the response is the proportional gain. Thus, increasing 𝐾𝑝 

becomes the response faster but also increases the overshoot. This is demonstrated in the figure 

5.4 with 𝐾𝑝 = 1 × 10−6. The first time that the firing rate equals the reference value of 30 Hz 

occurs at 𝑡 = 1.5 𝑠, what gives a response time of 0.5 s. In this situation, there is a small 

overshoot. If we continue to increase 𝐾𝑝, the response starts to oscillate at 𝐾𝑝 = 3 × 10−6. From 

this value, the system becomes unstable as shown in the figure above. The value of 𝐾𝑝 at which 

the response started to oscillate was reduced to half (𝐾𝑝 = 1.5 × 10−6) to obtain a “quarter 

amplitude decay" type response. Then, 𝐾𝑖 was increased within a range of values. The results 

are presented in the figure 5.5. 
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Figure 5.5 - Integral gain (𝐾𝑖) tuning of the PID controller. The figure shows the different curve responses 

(blue line) for different values of 𝐾𝑖. The proportional gain, 𝐾𝑝, was set to 1.5 x 10-6 and the derivative 

gain, 𝐾𝑑, was set to 0. The setpoint value is 30 Hz (red line) and the simulation period was 5000 ms with 
dt = 0.1 ms.  

After introduced the integral component of the controller there were no significant 

improvements in the response. The higher the value of 𝐾𝑖, higher is the overshoot, the response 

starts to oscillate and eventually becomes unstable. The main goal of the integral component 

is to remove the steady state error. However, in this case, it is not evident. 

After, the derivative component was introduced. The value of 𝐾𝑝 remained the same and 

the value of 𝐾𝑖 chosen was 𝐾𝑖 = 1 × 10−7. The introduction of this component had as a goal the 

reduction of the overshoot of the response, anticipating its behavior in advance. Again, we 

tried a range of values and the results can be observed in the figure 5.7. In addition, we noticed 

that, there was an oscillation resultant from the delay proportional to α during the firing rate 

approximation. The figure 5.6 shows this oscillatory behavior of the firing rate curve, as well 

as in the error curve. These fast changes in the error curve (figure 5.6(e)) could have a 

significant effect in the derivative component since the rate of change of the error could vary 

a lot. I.e., it can give the indication to the system that the error is increasing very fast due to 

a positive accentuated slope but, actually, it is only because of these oscillation peaks of the 

error curve. To avoid this kind of deregulated action of the derivative part of the controller, it 

was applied a moving average filter to the error curve that aims to smooth the oscillations, I 

mean, remove the peaks of the curve and ensure that the tendency of error’s variation is 

maintained but without peaks. We used two different windows to compute this and they are 

presented in the figure 5.6(f). 
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Figure 5.6 – Action of the moving average filter in the control error e of the PID controller. (a) Firing rate 

curve response (blue line) using the following gains: 𝐾𝑝 = 1.5 x 10-6; 𝐾𝑖=1.0 x 10-7 and 𝐾𝑑=0. (b) Steady-

state error of the response. (c) Error variation during the simulation time. (d) Oscillatory behavior of the 
error. (e, f) Two different size moving average filters applied to the error variation curve.  

 

The results of the figure 5.7 show that until a certain value (𝐾𝑑 = 3 × 10−4), the derivative 

action of the controller is capable to reduce the overshoot, however, does not eliminate it 

completely. The settling time is also reduced.  
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Figure 5.7 - Derivative gain (𝐾𝑑) tuning of the PID controller. The figure shows the different curve 

responses (blue line) for different values of 𝐾𝑑. The parameters used were 𝐾𝑝 = 1.5 x 10-6 and 𝐾𝑖 = 1.0 x 

10-7, and the variation of 𝐾𝑑 is described in each graph. The setpoint value is 30 Hz and the simulation 
time was 5 s.  

In order to try to remove the overshoot of the response, and verify if a PD controller has 

a better performance instead of a PI controller or a PID controller, 𝐾𝑖 was set to zero since the 

integral action contributes to increase the overshoot and 𝐾𝑑 was increased, remaining 𝐾𝑝 =

1.5 × 10−6. The results are accessible in the figure 5.8.  

 

Figure 5.8 –Panel with the different graphs of firing rate (Hz) obtained with derivative gain (𝐾𝑑) tuning of 
the PD controller. The figure shows the different curve responses (blue line) for different values of 𝐾𝑑. 

The parameters used were 𝐾𝑝= 1.5 x 10-6 and 𝐾𝑖= 0, and the variation of 𝐾𝑑  is described in each graph. 

The setpoint value is 30 Hz and the simulation period was 5 s. 
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The results indicate that there is a decrease in the overshoot of the response. Still, it was 

not completely removed. In general, a rapid response has always associated an overshoot. To 

eliminate it, 𝐾𝑝 and/or 𝐾𝑖 should be smaller because these two gains are the main responsible 

to the occurrence of an overshoot. If we look to the figure 5.4, with only a proportional 

controller, we realize that, for a 𝐾𝑝 = 6 × 10−7 there is no overshoot and the desired firing rate 

is reached in less than 1 s. However, as said before, the parameters and the type of controller 

should be chosen according to the needs projected to the developed system that will be 

controlled. I.e., if the response velocity is extremely important, 𝐾𝑝 should be set to obtain that 

kind of response; if the error elimination is more critical to the system, 𝐾𝑖 is the parameter to 

adjust; if is necessary to reduce the overshoot and make the system more stable, we need to 

play with 𝐾𝑑. We also noticed that, for a derivative gain bigger than 4 × 10−4, the response 

started to oscillate.  

Based on the results of the figure 5.7, in our point of view, the values of the parameters 

that provide the best response are: 𝐾𝑝 = 1.5 × 10−6, 𝐾𝑖 = 1.0 × 10−7 and 𝐾𝑑 = 2.5 × 10−4. The 

figure 5.9, provides a detailed vision of what happen to the main components of the model 

during the simulation. This includes the spiking behavior of the simulated neuron, the variation 

of the firing rate as well as the change in the current injected in the neuron, error variation, 

rate of change of the error and neuron’s membrane current. 

 

 

Figure 5.9 – Summary of the results obtained with the model during the simulation. (a) Adaptation of the 
spiking behavior of the simulated neuron during the simulation. (b) Firing rate curve response (blue line) 
in relation to the setpoint value – 30 Hz (red line). (c) Error variation curve during the simulation. (d) 
Adjustment of the electrode’s injected current during the simulation. (e) Neuron’s membrane current 
variation over time. (f) Rate of change of the error during the simulation.  

The figure above contains a set of subplots to evaluate the performance and the feasibility 

of the developed control system. In (a), it is possible to see the adaptation of the neuron to 

the injected current. Again, note that until 1 sec of simulation there is no control and the firing 
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rate is 10 Hz, as explained at the beginning of this section. After this time, the period between 

spikes is shorter, a consequence of the injected current to achieve the desired firing rate. In 

(c), the error is varying throughout the simulation. Here we need to be careful when analyzing 

this curve because, since the controller is off during the first second, the error is not being 

calculated in that period. Thus, that's why the curve is at zero. From there, the error is 

approximately 20 Hz (remember that the neuron is initially firing at 10 Hz and the setpoint 

value is 30 Hz). The error should be exactly 20 Hz, although, due to the delay of the α-function 

kernel used to estimate the firing rate, this value is slightly different. Next, when the controller 

starts operating, the error begins to decrease and, before stabilizing around zero, we can see 

the error due to the response’s overshoot. In (d) is shown the variation of the electrode’s 

current to compensate the error. (e) shows the change in the membrane current over the 

simulation time. This current is the sum between neuron’s intrinsic current and the current 

injected by the electrode. In (f) is presented the rate of change of the error; the derivative 

component of the controller is estimated through this curve after filtered, as demonstrated 

before. Once again, in these 3 last graphs, the tracing before 𝑡 = 1 𝑠 does not have significant 

meaning, it just marks the time during which the controller is turned off.  

The evolution of our tuning process can be observed in the figure 5.10. There, the impact 

of introducing each one of the controller’s components is noticeable. 

 

Figure 5.10 – Summary of the tuning process evolution. (a) Action of the proportional component (Ki and 
Kd were set to 0). (b) Action of the integral component (Kp is constant and Kd is 0). (c) Action of the 
derivative component (Kp and Ki are constant). 

The other strategy used to tune the gains (𝐾𝑝, 𝐾𝑖 and 𝐾𝑑), as mentioned before in the 

section 4.1, consisted in the evaluation of the area between the setpoint line and the firing 

rate curve response. This aims to verify which parameters fit a better curve response in relation 

to the setpoint, to produce the minimum area between them. Based on the results of the 

previous simulations presented here, a set of values for the gains were selected, 15 values for 

each one of the gains what results in 3375 combinations. The values used are in the table 5.1.  
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Table 5.1 - Gains and respective values used in area tuning process. 

Gains Values 

𝐾𝑝 

× 10−7 
5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 15.0 20.0 25.0 30.0 

𝐾𝑖 

× 10−8 
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 20.0 30.0 40.0 50.0 

𝐾𝑑 

× 10−5 
0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 20.0 30.0 40.0 50.0 60.0 

 

The results of the tuning simulations using the values of the table 5.1 demonstrated that 

the values of the gains which create a response that better fits the setpoint value are 𝐾𝑝 =

5.0 × 10−7, 𝐾𝑖 = 1.0 × 10−8 and 𝐾𝑑 = 0. I.e., these values correspond to the small area between 

the response curve and the setpoint line, as demonstrated in the figure 4.3. The simulation 

using these parameters is shown in the figure 5.11. 

 

Figure 5.11 – Summary of the results obtained with the model using the parameters obtained using the 
area tuning process. (a) Adaptation of the spiking behavior of the simulated neuron during the simulation. 
(b) Firing rate curve response (blue line) in relation to the setpoint value – 30 Hz (red line). (c) Error 
variation curve during the simulation. (d) Adjustment of the electrode’s injected current during the 
simulation. (e) Neuron’s membrane current variation over time. (f) Rate of change of the error during the 
simulation.  

Despite these parameters produce a response that is the closest to the setpoint line (in 

red), the velocity of the response is not satisfactory. If we look to the first time that the 

response reaches the reference value, it took more than 1 s to reach that value. In this case, 

it is our preference to have a faster response, even with a little overshoot since we are talking 

about events that occur in the millisecond time scale. Therefore, for these reasons the 

parameters chosen through the manual tuning were selected to continue the validation process 

of the control system. 
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The next step of this work was to test if the control system was capable to respond quickly 

to sudden changes in the firing rate and adapt its response to keep the spiking rate as close as 

possible to the desired value. During a simulation time of 28 s, it was changed the natural 

current of the neuron to obtain different firings rates. Each firing rate has a duration of 4 s. 

Thus, in the total, the firing rate changes 7 times during the simulation period and the firing 

rate values, in Hz, and, in the order that they appear are the following ones: 45 → 20 → 10 →

40 → 50 → 70 → 25. The results of the simulation are in the figure 5.12. 

 

 

Figure 5.12 – PID controller response to abrupt changes in the firing rate. (a) Firing rate curve response 
during the simulation. (b) Electrode’s current adjustment. (c) Variation in the neuron’s intrinsic current 
to produce well-defined firing rates “steps” on the simulated neuron. 

The results show that, despite the abrupt changes in the firing rate of the neuron, the 

controller is capable to modulate its activity and return the rate to the reference value (30 

Hz). Starting with (c), this graph displays the current necessary to the neuron to fire at those 

values of firing rate (above the curve) over the simulation. We manipulated those values of 

current. The variation of the electrode’s current is demonstrated in (b). This current is 

manipulated by the controller and is injected into the model to cancel the changes in the firing 

rate. We see that if the value of the firing rate is greater than the reference value, the current’s 

signal of the electrode is negative and vice-versa. If we look to the response of the system (a), 

it is clear that the controller is working well since there is a big tendency of the controller to 

push the firing rate to the setpoint value. The peaks of the curve represent the time where the 

steps of firing rate are changed, according to (c). As mentioned before, all controllers need a 

certain time to stabilize its respond (the settling time); of course, it depends on how big is the 

error. In this case, despite the controller is quick to respond, it could suffer from a delay or an 

advance when the firing rate is changed (steps of rates in (c)). The first time the control reacts 

to the firing rate of 45 Hz is in 𝑡 > 1 𝑠 (once again, note that the control loop just starts in 

𝑡 > 1 𝑠). If we look to the value of the peak in that instant, the value is 45 Hz, exactly what 

should be. However, if we look to the second transition of the current to 20 Hz, the peak goes 
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below this value because, in our code, the calculation of the electrode’s current necessary to 

bring the firing rate back to the reference value is only calculated in the final of the loop. I.e., 

in the next iteration, despite the adjustment of the current is correct for the time at it was 

calculated, the controller “does not know” that we decided to abruptly change the firing rate 

in the next iteration. Thus, if the current that enters in the IF-model is the result of 

𝐼 =  𝐼𝑛𝑒𝑢𝑟𝑜𝑛 + 𝐼𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒, until that transition, the current of the electrode is negative. And, when 

summed to the current of the neuron calculated to fire at 20 Hz, it will decrease that value 

and 𝐼 is not enough to make the neuron firing at 20 Hz, as it is possible to observe in (a). Hence, 

in this case, the system will take more time to restore the firing rate to the reference value. 

However, it could happen the opposite, which is the case of what happens in the transition to 

70 Hz since the controller has been contradicting the 50 Hz rate and that negative current ends 

up to increase the velocity of the response once the peak of that transition does not reach the 

70 Hz.  

The results referent to the second validation step can be consulted in the figure 5.13. This 

validation consisted of the introduction of noise in the developed model, to mimic the neuronal 

noise in biological neuronal circuits. This “synaptic” noise was added to 𝐼 and the simulation 

was performed for a duration time of 10 s.  

 

 

Figure 5.13 – Results of the PID controller response to noise introduction in the simulated neuronal model. 
(a) Firing rate curve response during the simulation (blue line) in relation to the setpoint (red line). (b) 
Membrane’s current variation with normally distributed random noise (c) Error variation during the 
simulation (blue line) and corrective action of the moving average filter (red line). 

These results demonstrate that even with the presence of disturbances in the system, the 

controller presents a satisfactory response considering the fact that it is still capable to 

maintain the firing rate values around the reference value as we can see in (a). It is also 

necessary to know that unlike the previous validation step with the abrupt changes in the 

neuron’s firing rate, where sufficient time was given to the controller to correct those abrupt 

changes, that does not happen in this situation. Here, in every iteration of the loop, the 
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controller is subjected to a new scenario, different from the last iteration. In addition, as shown 

in (c), the action of the moving average filter applied to the error of the system is fundamental 

to the performance of the controller by removing those small peak oscillations that could bring 

additional errors and interferences to the control process. The figure 5.13(b) shows the 

variation of the membrane current. These values of current are the result of 𝐼𝑛𝑒𝑢𝑟𝑜𝑛 + 𝐼𝑛𝑜𝑖𝑠𝑒 +

𝐼𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒. The noise levels in this simulation vary between -0.5 to 0.5 nA which are significant 

values considering the sensitivity of the model since a value of 𝐼 =  1.000045 nA corresponds to 

a firing rate of 10 Hz, as previous used and demonstrated in this work.  

Finally, according to Miranda-Domínguez et al. in [107], a good closed-loop performance 

of the controller implies the correction of the error rapidly, the closed-loop system must be 

stable and there is on average no error [107]. We think that our results agree with these 

assumptions.  

 

 

5.2. “Real-time” closed-loop control 
 

This experimental part of the work consisted in a first validation of four different stimuli 

to verify what stimulus was more effective and, the second part involves the use of the selected 

stimulus in neuronal networks control studies. 

 

5.2.1. Stimuli validation experiments 

The figure 5.14 (a) shows a real-time recording using the MEA2100-120-System  and the 

figures  5.14 (b) and (c) show microscope images of cultured primary cortical neuron cells over 

the microelectrodes of a 120MEA chip with a center-to-center inter-electrode spacing of 100 

and 200 µm, respectively. 

The table 5.2 presents a summary of the performed experiments. In this table can be found 

specific information of each experiment such as the type of MEAs chips, the electrodes used to 

record and to stimulate, the type of stimulus applied, the “Spike Count” defined in the 

feedback control settings and what was the aim of the experiment.  
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Figure 5.14 – Example of a real-time recording using the MEA2100-120-System. (a) Screen capture of the 
data acquisition window (on top); recording in a specific electrode (E6) showing spiking activity (on 
bottom). (b, c) Microscope images of the cultured primary cortical neuron cells over the microelectrodes 
array of a 120MEA chip with a center-to-center inter-electrode spacing of 100 and 200 µm, respectively. 
(b)  Scale bars 100 µm.  

 

Table 5.2 - Summary of the experiments features. 

Trial MEAs chip 
Recording 

electrode(s) 
Stimulation 
electrodes 

Stimulus 
pulse 

Spike 
Count 

Goal 

1 120MEA  B5 B4, A5, B6, C5 1 * 3 Stimulus validation 
2 120MEA H2 H1, G2, H3, J2 2 * 5 Stimulus validation 

3 
120MEA 

 
H6 H5, G6, H7, J6 3 * 4 Stimulus validation 

4 
120MEA 

 
K10 K9, J10, K11, L10 4 * 3 Stimulus validation 

5 
120MEA 

 
E6 E5, D6, E7, F6 1 * 3 Stimulus validation 

6 
120MEA 

 
H2 H1, G2, H3, J2 2 * 5 Stimulus validation 

7 
120MEA 

 
B7 B6, A7, B8, C7 3 * 5 Stimulus validation 

8 
120MEA 

 
K5 K4 ,J5, K6, L5 4 * 5 Stimulus validation 

9 
120MEA 

 
B5 B4, A5, B6, C5 1 ** 3 Stimulus validation 

10 
120MEA 

 
H2 H1, G2, H3, J2 2 ** 4 Stimulus validation 

11 
120MEA 

 
L4 L3, K4, L5, M4 3 ** 3 Stimulus validation 

12 
120MEA 

 
K10 K9, J10, K11, L10 4 ** 3 Stimulus validation 

13 
120MEA 

 
E6 E5, D6, E7, F6 1 ** 5 Stimulus validation 

14 
120MEA 

 
H2 H1, G2, H3, J2 2 ** 5 Stimulus validation 

15 
120MEA 

 
L7 L6, K7, L8, M7 3 ** 3 Stimulus validation 

16 
120MEA 

 
H6 H5, G6, H7, J6 4 ** 4 Stimulus validation 
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17 
256MEA 

 
A2 … L2 

A13 … L13 

A3, D3, G3, K3 
A6, D6, G6, K6 
A9, D9, G9, K9 
A12, D12, G12, 

K12 

1 ** 11 Network control 

18 
256MEA 

 
A7 … F7 

A12 … F12 
B8, B11 
E8, E11 

1 ** 10 Network control 

19 
256MEA 

 
A7 … F7 

A12 … F12 
B8, B11 
E8, E11 

1 ** 10 Network control 

20 
256MEA 

 
A7 … F7 

A12 … F12 
B8, B11 
E8, E11 

1 ** 8 Network control 

21 
256MEA 

 
K9 … K14 
P9 … P14 

L10, L13 
O10, O13 

1 ** 9 Network control 

22 
256MEA 

 
A7 … F7 

A12 … F12 
B8, B11 
E8, E11 

1 ** 7 Network control 

23 
120MEA 

 
D2 D1, C2, D3, E2 1 *** 8 Stimulus validation 

24 
120MEA 

 
D2 D1, C2, D3, E2 1 *** 10 Stimulus validation 

25 
256MEA 

 
K9 … K14 
P9 … P14 

L10, L13 
O10, O13 

1 *** 8 Network control 

*   Stimulus with an initial stationary phase of 50 ms and amplitude 0 mV 

**  Stimulus without an initial stationary phase 

***  Recordings with normalized baseline noise level conditions 

 

Before discussing the results, it is necessary to explain the asterisks (*) in front of each 

stimulus number. This explanation will be given throughout the text. In the case of one (*), this 

means that the pulse has an initial stationary phase with 50 ms of duration and 0 mV of 

amplitude. The reasons to use this stationary phase to precede the stimulus were: first, we 

needed a way to easily identify the stimulus when we were looking to the recordings. We could 

look to the signals from the stimulation electrodes and see the flat line that corresponds to the 

triggered stimulation instant. In addition, we could see in the recording an artificat. Despite 

this visual identification, our main concern was to ensure that the stimulus was really well 

identified in our MATLAB code to create the mask to remove stimuli from the recordings. As 

the sampling rate used was 10 kHz, and the stimulus pulse duration is just a few hundreds of 

microseconds, the stimuli detection could not be successful. The last reason was to avoid 

applying a stimulus during an AP, although, this would not happen since the “real-time” 

feedback, in reality, has a delay of 1 ms as previously mentioned. The experiments with this 

type of stimuli were performed in an early phase of the work, when we were exploring the 

2100MEA-System “real-time” feedback. The results of the experiments performed with this 

type of stimuli are displayed in the figure 5.15 (experiments 1 - 8). Following the protocol, in 

each experiment, 3 assays were used to estimate the mean firing rate of the primary cortical 

neuronal cells in three different conditions: (1) spontaneous activity (basal activity), (2) “real-

time” feedback stimulation and (3) post-feedback spontaneous activity. These preliminary 

results indicated that the stimuli 1 (biphasic negative-than-positive with a pulse duration of 

200 µs per phase and an amplitude peak-to-peak of 600 mV) could be capable of inhibiting the 

spiking activity of the neuronal cells cultured on the top of the electrodes. In the figure 5.15 

(a) the firing rate was reduced in spite of the initial basal activity being already quite small. In 

(b) we see an abrupt reduction in the firing rate during the “real-time” feedback. From a 

considerable rate on average around 3 Hz, the rate suffers a reduction of more than 50 %. The 

other results did not satisfy our goal, which was to find an inhibitory stimulus.  
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Figure 5.15 – Activity mean levels and respective standard deviations of the experiments (1 – 8) to validate 
the stimuli (with a stationary phase of 50 ms). (a,b) Biphasic negative-than-positive pulse with a width 
of 200 𝜇𝑠 and 300 𝑚𝑉 per phase. (c,d) Biphasic negative-than-positive pulse with a width of 500 𝜇𝑠 and 
200 𝑚𝑉 per phase. (e,f) Monophasic negative pulse with a width of 180 𝜇𝑠 and 550 𝑚𝑉. (g,h) Monophasic 
negative pulse with a width of 280 𝜇𝑠 and 800 𝑚𝑉. (a, c, e, g) Cells at 30DIV. (b, d, f, h) Cells at 31DIV.  

Even though we consider that the stationary phase of the stimuli was not a sufficient 

justification for obtaining such a large discrepancy in the results of the stimulus 1 compared to 

the other tested stimuli, the truth is that the occurrence of bursts within those 50 ms windows 

could, in fact, make the difference since the recordings are only about 200 s. To be sure that 

it is not the cause of such discrepancies, we followed the same protocol but this time using the 

same stimuli without the stationary phase. Due to the blanking time before and after the 

stimulus, they are easily identified by our code to create the mask. These stimuli are marked 

in the table 5.2 by two asterisks (**). The results of those experiments (9 – 16) can be consulted 

in the figure 5.16. Once again, the stimulus 1 was able to inhibit cell’s activity. In figure 5.16 

(a) it is possible to see that the mean value of the feedback trials is smaller than the mean 

value of the basal activity pre-feedback although, the standard deviation is quite large. This 

could be the result of bursting activity in the trial, for instance. Still, the results in the figure 

5.16 (b) show a strong reduction in the firing rate during the feedback trials and reinforces 

once again that this stimulus could be exactly what we were looking for. More, in both, figures 

5.15 (b) and 5.16 (b), the cells were almost completely silenced after the feedback stimulation. 

We were not surprised by the results of the figures 5.16 (c) and (d) since in the figure 5.15 (d) 

we already saw a slight reduction of the mean firing rate during the “real-time” feedback 

assays. More, both stimuli 1 and 2 are biphasic negative-then-positive with similar parameters 

and it was expected that they had similar behaviors in respect to their effects in neuronal 

activity modulation. We need just to highlight the fact that in figure 5.15 (b), in concordance 

with the firing rate significant reduction, it reveals a very small standard deviation indicating 

a possible fine control of cell’s activity. The experiments where the stimuli 3 and 4 were used, 
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revealed inconsistency during the trials and for this reason, they were excluded from the next 

phase of our work.  

Lastly, just to emphasize that the results displayed in the upper line of the figures 5.15 and 

5.16 were performed using the same MEA chip and the same happened to the bottom lines. The 

stimulation effect is reversible and the activity tends to return or overcome the basal level, 

even during the course of the experiment or in the next day as shown in the mentioned figures. 

We did not make viability assays during the experiments although, during the days that the 

cells have been in culture, we monitored their state through observations of the culture under 

the microscope and also, we monitored their electrical properties through the MEA2100-

System, to ensure that the cultures were in a good state to be used in our experiments.   

 

 

Figure 5.16 - Activity mean levels and respective standard deviations of the experiments (9 – 16) to 
validate the stimuli (without a stationary phase). (a,b) Biphasic negative-than-positive pulse with a width 
of 200 𝜇𝑠 and 300 𝑚𝑉 per phase. (c,d) Biphasic negative-than-positive pulse with a width of 500 𝜇𝑠 and 
200 𝑚𝑉 per phase. (e,f) Monophasic negative pulse with a width of 180 𝜇𝑠 and 550 𝑚𝑉. (g,h) Monophasic 
negative pulse with a width of 280 𝜇𝑠 and 800 𝑚𝑉. (a, c, e, g) Cells at 31DIV. (b, d, f, h) Cells at 32DIV. 

The results previously presented are exhibited in the figure 5.17 in the form of a ratio 

interval between the feedback mean firing rates and the basal pre-feedback mean firing rates. 

In this way is easier to see the effect of the stimuli in the previous experiments. One ratio 

interval inferior to one means that the stimulus tends to inhibit the spiking activity, otherwise, 

it tends to evoke APs (increase the activity).  



86   Results and Discussion 
 

 

Figure 5.17 – Stimuli effect in the form of a ratio interval calculated between the feedback mean firing 
rates and the basal pre-feedback mean firing rates. (a) Ratio calculated from the results of the figure 
5.15 (experiments 1 – 8). (b) Ratio calculated from the results of the figure 5.16 (experiments 9 – 16). 

Before taking the last considerations about the validation of the stimuli, is only missing 

the explanation for the stimulus with three asterisks (***). As you can see from the table 5.2, 

these experiments (23 – 24) were one of the last experiments to be performed. Although, it 

says “Stimulus validation”. The reason to repeat the stimulus 1 validation was due to the fact 

that during our experiments using the MEA2100-256-System to try to control the activity of the 

network, or just part of that, we realized that (for reasons intrinsic to the system that we could 

not control), the baseline noise of the recording electrodes increased with the number of 

dedicated stimulation electrodes selected. This noise was not visually perceptible when using 

a scale in the range of the recorded APs amplitudes (~ 100 𝜇𝑉). Although, during one 

experiment setup, we noticed a small noise elevation. Therefore, to have sure that our choice 

of the stimulus to use in the neuronal population activity control experiments (stimulus 1) was 

right, we repeated once again the stimuli validation protocol for the stimulus 1 (but in the 

MEA2100-120-System like the other experiments to validate the stimulus).  

The three asterisks (***) in front of the stimulus 1 mean that in all the 3 phases of the 

protocol, the stimulation electrodes were always selected. Thus, the noise would be always 

present in the recordings and we did not take the risk of losing spikes due to a wrong detection 

threshold estimation caused by the increase of noise with consequences in the standard 

deviation value. The results are presented in the figure 5.18. 
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Figure 5.18 – Results of experiments 23 and 24 with a normalized noise level. (a, b) Activity mean levels 
and respective standard deviations using a biphasic negative-than-positive pulse with a width of 200 𝜇𝑠 
and 300 𝑚𝑉 per phase. (a) Cells at 20DIV. (b) Cells at 21DIV. (c) Stimuli effect in the form of a ratio 
interval calculated between the feedback mean firing rates and the basal pre-feedback mean firing rates 
using the results of a and b. (d) Example of the variation curve of the number of detected spikes in relation 
to sigma 𝜎.  

These results confirm that a possible increase in the noise levels was not significant to be 

considered the main cause of the reduction in the firing rate on the previous results. At least, 

capable to provoke inhibitions in such large scales. More, by looking to the recorded signals we 

could not identify any perceptible increase in the baseline level of the signal in the MEA2100-

120-System. The figure 5.18 (d) shows the variation in the number of spikes detected for 

different values of 𝜎. It is noticeable that the accentuated decrease in the spikes number is 

between 3 and 4 𝜎, after that the curve tends to stabilize. Since we used a factor of 5 times 𝜎 

to detect APs in our experiments, the small increase of the noise levels did not have such 

significant impact in the reduction of the activity. In addition, with these results, it is clear 

that the stimulus 1 is capable to reduce the neuronal activity of the cells over/near the 

recording electrode. 

Finally, the last considerations about the validation of the stimuli are the following: 

- These results show that the stimulus 1 was more consistent in inhibiting neuronal 

activity among all trials. Although the stimulus 2 also demonstrated good results in 

figure 5.16, we chose the stimuli 1 to the next set of experiments (network activity 

control) by the consistency demonstrated. Moreover, the product between its duration 

and amplitude is smaller compared with the stimulus 2, which is safer for the cells. In 

addition, its duration is smaller which reduces the time without recording signals by 

the blanking action of the system; 



88   Results and Discussion 
 

- We did not expect these results since according to Wagenaar et al. [126], ES by MEAs 

has been used to elicit activity in dissociated cultures and in their study, using cortical 

neurons, both biphasic negative-than-positive and monophasic negative voltage pulses 

were effective in evoking action potentials. In each trial, they tested the response 

(number of spikes) in the first 20 ms after stimulation. These responses to single events 

stimulations could not be compared with our “real-time” feedback stimulation. In 

addition, Vardi et al. in [127] did a study to understand the mechanisms underlying the 

low firing rates in neuronal networks (1 – 3 Hz) where were used monophasic negative 

pulses with similar parameters (width and amplitude) to the ones used in stimuli 3 and 

4. This low firing rate results from the balance between excitatory and inhibitory 

synapses and their neuronal temporal coding, with a millisecond precision [127]. They 

reported that a stimulus similar to stimulus 3 enhances the inhibitory effect and another 

stimulus similar to stimulus 4 evoked neuronal response. However, the difference 

between their stimuli parameters and ours is in the width of the pulse. Our system has 

a delay of 40 𝜇𝑠 in each rising and falling phase of the pulse, to reach the maximum 

amplitude and to return to zero, respectively, which gives a difference of 80 𝜇𝑠 in 

relation to their stimuli. That difference in the pulses’ duration could be one of the 

factors that contribute to the disparity between our results and the results from their 

study. More, their results were obtained using low stimulation rates with the precision 

of neuronal response timings [127] and, in our experiments, we do not control the 

stimuli frequency since a stimulus is triggered when the feedback condition is fulfilled.  

-  Dissociated cortical cultures have a high propensity to bursting. According to Wagenaar 

et al. in [103], global bursts start to appear approximately at 7 DIV and after 

approximately 20 – 25 DIV, they start to dominate the culture activity [103]. In our 

experiments we started to see activity approximately at 7 DIV and the first bursts at 11 

– 12 DIV. Although, this global synchronized bursting activity is more evident in high-

density cultures [103]. Since burst activity depends on the formation of a network 

between the isolated and cultured cells, this behaviour may not be observed exactly 

after this mentioned DIV; in fact, our cultures, in general, took more time. Despite we 

did not use cultures with a dominant bursting activity, it is normal the occurrence of 

some burst activity during our experiments. Therefore, the frequency of triggered 

stimuli could be changed by bursting activity, which is a factor that we cannot control. 

For instance, during a burst, the feedback condition could be fulfilled many times and 

various stimuli could be triggered even if the rate (defined by the “Time Window” and 

the “Spike Count”) until the burst occurrence was lower than that defined rate. 

Moreover, periods with rare occurrence of spikes can also not trigger stimulation. 

According to Vardi et al. study [127], stimulation frequency has a great impact on 

neuronal activity control and if we cannot control it, it is one more challenge to 

modulate neuronal activity.  
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- The cultures variability should always be considered in this type of experiments. Despite 

the use of different cultures, more experiments need to be done to ensure the 

effectiveness of the stimulus to inhibit neuronal activity.  

- Finally, the neuronal behavior post-stimulation demonstrated that the stimulation 

effect is reversible and the stimuli did not kill the cells. They maintained their electrical 

activity. In some cases, the cells were almost completely silenced, which is the case of 

the recordings where the stimulus 1 was applied, although, in the following day the 

cells returned to their normal activity level. In other cases, their activity started to 

increase immediately after the end of the feedback stimulation.  

 

5.2.2. Neuronal network control experiments 

The next set of results addresses some experiments where we applied the previously chosen 

stimulus to a large area of the neuronal culture through various stimulation electrodes 

uniformly distributed within the array of recording electrodes. The distribution of the 

stimulation electrodes was done in a way that ensures that each recording electrode has one 

stimulation electrode in its vicinity. The figure 5.19, display the two MEA layouts used in the 

experiments. The blue “boxes” correspond to the MEAs area that exhibited more activity during 

our experiments. The blue circles are the recording electrodes and the green ones are the 

electrodes used to stimulate. Here they are in green to be easily identified but in the software, 

they will appear in blue like the others because this window is just to select the electrodes 

that we want to use in the recordings. The other areas of the two used 256MEA chips had poor 

activity and, since the recordings produce a considerable amount of data, we opted to deselect 

the other electrodes. 

 

 

Figure 5.19 – Screen capture of the selected electrodes used in the experiments (18-22, 25). Recording 
electrodes (blue circles); Stimulation electrodes (green circles). 
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The results presented in the figure 5.20 compare three experiments using the same primary 

neuronal culture. These experiments correspond in the table 5.2 to the numbers 18, 20 and 22 

(DIV19 - 22) and were performed with the MEA layout of the figure 5.19(a). The experiment 19 

was also performed with the same MEA chip however, just a small number of electrodes had a 

considerable activity and for this reason, it is not shown in the figure below. To evaluate the 

neuronal activity of the network we only selected the electrodes with an activity larger than 1 

Hz (at least in one of the plots) and correspond to approximately 12 electrodes.   

 

 

Figure 5.20 – Bar plot graphs showing the activity mean levels and respective standard deviations of the 
neuronal network experiments (18,20,22). In the figure are only present the electrodes that exhibited 
more than 1 Hz of activity. The respective DIVs are shown in the graphs.  

In general, all the mean firing rates computed for each electrode were reduced during the 

“real-time” feedback. If we compare the “1st Basal” bar with the “Feedback” bar, the only two 

electrodes that disagree with the previous statement are the electrodes A10 at 19DIV and A7 

at 21DIV. In the experiment 19 (data not shown), in 20DIV, despite the poor activity on almost 

all electrodes, overall, electrodes’ activity decreased, less in the electrode A7, similar to 21DIV 

results. However, the “Feedback” rate is in a small step below the spontaneous basal activity 

pre-feedback stimulation similar to DIV20 results. If we look at the following DIVs, A10 

“Feedback” firing rate has a significant decrease as it is possible to see. There are several 

factors that may have contributed to this different behavior of the electrodes A10 and A7 in 

relation to the others; they were addressed before in this section when discussed the results of 

the stimuli validation. Another hypothesis can be the fact that these two electrodes are in the 



“Real-time” closed-loop control  91 

 

 
 

border of the MEA. I.e, cultures of dissociated neurons after the isolation process adhere to the 

substrate and start to create connections between them to create the neuronal network 

characteristic of neurons. The area of the MEAs only corresponds to approximately 2% of the 

area of the chip where the neurons are cultured. Therefore, the neurons near/top of the 

electrodes A10 and A7 could be receiving more synaptic excitatory inputs from the rest of the 

culture (that did not receive any type of direct stimulation through the electrodes). In addition, 

in these experiments is even more complicated to set the “Spikes Count” value since we need 

to look for a larger number of electrodes and estimate the number of spikes within a 1000 ms 

window, which is not the ideal method. Lastly, it is fair to say that, in general, the feedback 

stimulation was capable to inhibit part of the activity of the neuronal network over the 

stimulation electrodes range, not only in each experiment but also, throughout the days of 

experiments, the studied network is moving towards a decrease in its global activity. Despite 

the stimulation, this also could be a result of the consecutive and relatively longer (> 30 𝑚𝑖𝑛) 

experiments. With the temperature regulator we expect to minimaze the temperature impact 

in the culture, however, there are a lot of other factors such as the lack of a controlled 

athmosphere like the one encountered in an incubator, among others, that could lead to the 

decline of the activity, or even of the culture. The response post-feedback was inconsistent, 

sometimes the activity surpassed the basal activity pre-feedback. The results of the figure 5.21 

show exactly this behavior. Although, in other cases, this did not happen and we will not take 

considerations from that. Again, plasticity studies are required to evaluate these events and, 

plasticity is not the focus of this work.  

 

Figure 5.21 – Complementary results of the experiment 20 (at 21DIV). (a) Histograms (in the form of bar 
plots) showing the variation in the firing rates of all recording electrodes during the experiment. (b) Color 
maps showing the spatial distribution of the activity in the recording electrodes over the experiment. The 
green squares correspond to the stimulation electrodes. 

The figure above completes the results obtained from the experiment 20 (21DIV). In figure 

5.21 (a), the histograms (in the form of bar plots), distribute the firing rates calculated in our 
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experiment by their number of occurrences within well-defined rate intervals. In the feedback 

plot, we can see a shift in the frequencies to the left side of the graph in the direction of small 

frequency values when compared with the basal activity pre-stimulation graph. This behavior 

is also observed in the histogram plots of the other experiments presented in the figures 1, 2 

and 3 (available in Appendix A). The colormaps (figure 5.21(b)), give us a visual perception of 

the firing rate spatially distributed over the recording electrodes. The green squares are the 

stimulation electrodes. Once again, the colormaps of the remaining experiments can be 

consulted in Appendix A. 

The MEA layout of the figure 5.19 (b) was used in the experiments 21 and 25. Another 

primary cortical culture was made in a different 256MEA chip and the experiments were 

performed in DIV21 and 22. Note that the experiment 25 has the three asterisks (***) in the 

stimulus column of the table 5.2. This means that this last experiment, similar to the 

experiments 23 and 24, was also made with the stimulation electrodes selected since the 

beginning of the experiments. I.e., like the feedback recordings, both basal activity (1st and 

2nd) had the stimulation electrodes always dedicated to stimulation. This enables us to 

normalize the 3 trials for each protocol phase (“1st Basal”, “Feedback” and “2nd Basal) in 

relation to the system noise levels. These results can be consulted in the figure 5.22. To analyze 

the data were only considered the electrodes with a firing rate larger than 0.5 Hz (at least in 

one of the compared DIVs), which are half of the recorded electrodes (16 in 32). 

 

Figure 5.22 - Bar plot graphs showing the activity mean levels and respective standard deviations of the 
neuronal network experiments (23,24). In the figure are only present the electrodes that exhibited more 
than 0.5 Hz of activity. The respective DIVs are shown in the graphs. The bottom graph results were 
obtained in normalized noise conditions. 
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Once again the results exhibited a reduction in the firing rate in all electrodes, according 

to what we had seen in the results previously shown. Despite the reduction in the overall firing 

rate in DIV22 compared with DIV21, the experiment 25 (DIV22) is truly relevant in the sense 

that with a normalized noise throughout all the 9 recordings of this experiment, we can see an 

inhibition of the network activity. The only electrode with a significant standard deviation from 

the mean is the electrode N12. The complementary analysis of the experiment 25 is presented 

in the figure 5.23 and, in the case of experiment 21, it can be found in Appendix A.  

 

Figure 5.23 - Complementary results of the experiment 25 (at 22DIV) with normalized noise conditions. 
(a) Histograms (in the form of bar plots) showing the variation in the firing rates of all recording electrodes 
during the experiment. (b) Color maps showing the spatial distribution of the activity in the recording 
electrodes over the experiment. The green squares correspond to the stimulation electrodes. 

It is important to discuss the reduction of the activity from DIV21 to DIV22. This reduction 

may be a result of the day before experiment similar to what happened in the course of the 

experiments 18, 20 and 22 (figure 5.20). Although, the other hypothesis is that the non-

standardization of the noise levels throughout the entire experiment could contribute to a 

bigger level of activity during the Basal recordings. The noise levels without select dedicated 

stimulation electrodes and with their selection are presented in the figure 5.24, as well as the 

curves which characterize the number of spikes detected with the sigma variation. 
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Figure 5.24 – Baseline noise levels of the system using dedicated and not dedicated stimulation electrodes. 
(a) Comparison between the baseline noise levels in basal recordings without select dedicated electrodes 
to stimulation (~  ± 10 𝜇𝑉) and in feedback recordings with dedicated stimulation electrodes (~  ± 20 𝜇𝑉). 
(b) Example of the variation curve of the number of detected spikes in relation to sigma 𝜎, in both cases.  

 In the figure 5.24 (a-Basal) is compared the baseline level of our recordings without 

select dedicated stimulation electrodes (Basal recordings) and, this level ranges around ± 10 𝑢𝑉 

while in the figure 5.24 (a-Feedback), this value ranges around ± 20 𝑢𝑉 when the stimulation 

electrodes are dedicated to stimulation (Feedback recordings), which is a considerable 

difference. If we compare the curves in the figure 5.24 (b) (for the same electrode), the curves 

have similar behavior and for a factor of 5 times the 𝜎, the spikes number is similar but slightly 

inferior to the dedicated stimulation electrodes. It is possible that, using the MEA2100-256-

System some small APs will not be counted in the Feedback recordings however, we do not 

believe that such large reductions in some cases were due to this undetection of some APs. In 

addition, the experiment 25 with noise normalized conditions give us a lot of confidence in the 

ability of the stimulus 1 to inibith the activity of the neuronal network.  

The experiment 17 will not be discussed here since were used 12 dedicated stimulation 

electrodes which, increased the systems’ noise (± 25 − 30 𝑢𝑉 signal’s baseline level). However, 

it was used an area of 132 electrodes which enabled the study of a large neuronal network. For 

these reasons, the results are available in the Appendix A.  

Finally, to conclude this section, with the MEA2100-System we can close the loop between 

recording and “real-time” feedback stimulation even though, in a limited way. It should be 

noted that the system has a delay of about 1 ms, however, it is very small. Although we 

demonstrated that we can inhibit the activity of neuronal cells with our protocol and validated 

stimulus, it was very limited in the sense that we did not have a fine control of the activity 

levels. I. e., we could not maintain the cells firing within a well-defined interval of firing rates. 

The lack of a more precise tool to estimate the mean firing rate of the neuronal cells (instead 

of a small window of time that count the number of spikes within it) is also another restriction 

to achieve a good control. To overcome these limitations our work is going beyond a control 

using only the MCS Experimenter software to apply the closed-loop control. We are progressing 

to a direct control of the DSP of the MEA2100-System through MATLAB to design and implement 

our own closed-loop control system. More details will be presented further ahead.  
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5.3. Future Perspectives 
 

The MEA2100-System is equipped with a freely programmable DSP that allows the access to 

the data stream from all electrodes in real-time and, it also can access the stimulators. Thus, 

the next step of this work will be the creation of a closed-loop control system by controlling 

directly the DSP via MATLAB. This will reduce the time delay of about 1 ms when controlled by 

the data acquisition software (MSC Experimenter). So far, with MATLAB we are able to initialize 

the system, set up the recording parameters like the sample rate, convert the recorded data 

units to 𝜇𝑉, select the electrodes and plot the recorded data in real-time. Future work will go 

through the implementation of an algorithm to make a feasibility estimation of the firing rate 

in real-time, capable to lead with some limitations of the current acquisition software as the 

occurrence of burst activity. In an initial phase of the work, the feedback should be capable to 

maintain the firing rate values within a range defined by the user. This will be done by 

implement at least two feedback conditions: one to trigger an excitatory stimulation every time 

the firing rate is below the minimum range limit and another condition to do the opposite, i.e., 

trigger an inhibitory stimulation when the firing rate overcomes the maximum defined value. 

More, the data stream for each electrode must be individually monitored and if any of the 

feedback conditions is fulfilled, a targeted stimulation should be triggered in that electrode. 

To do that, the electrodes cannot be dedicated only to stimulation, they also need to record. 

Maybe, instead of an individual monitoring added to an individual stimulation of each electrode, 

we should start to divide the MEA in small regions and try to modulate their activity. 

Finally, in this dissertation, we already have shown a proof-of-concept of how to control 

and modulate the firing rate using a classical PID controller implemented in an in silico model 

of a neuron. Another daring step could be the design and implementation of a controller of this 

type in MATLAB capable to modulate the stimulus parameters according to the controlling needs 

to maintain the firing rate at a stable level. On the other hand, impose specific behaviors, for 

instance, originate a burst in a precise part of the neuronal culture or even detect a 

recognizable electrical signature such as an epileptiform activity and trigger a specific stimulus. 

This could be hard and too ambitious goals to achieve but let's see what the future holds… 
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Chapter 6 
 
 

Conclusion 
 

 

 

The majority of medical treatments using ES are open-loop systems where the stimulation 

parameters remain constant despite the brain’s state or the disease progress level. From a 

clinical point of view, it is expected that real-time closed-loop systems will be more effective 

to treat neuronal disorders since stimulation will be adapted according to the state of each 

patient, in a continuous and dynamic way, similar to what happens in a normal brain circuitry. 

Although to autonomously control and modulate neuronal activity, new neuro-electronic 

interfaces are needed, capable of both recording and stimulating.  

In electrophysiology, MEAs are the best platforms at network-level used to simultaneous, 

parallel, multisite and long-term recordings and stimulations of neuronal populations. However, 

as reviewed in the present work, the standard MEAs have many limitations such as their low 

level of electrical coupling with the cells and their SNR. Despite closed-loop systems have the 

potential to be the true solution for the identified problem in current neurorehabilitation 

treatments, significant improvements in neuro-electronic interfaces should be done. Many labs 

already started to improve this by developing a new type of microelectrodes- 3D-structured 

microelectrodes - which protrude from a planar substrate. 

This work demonstrates two different control methodologies using closed-loop systems to 

control neuronal activity. The first one is a theoretical proof-of-concept that shows that 

classical PID controllers have the potential to be implemented in closed-loop control systems 

to modulate neuronal activity. The results of the simulations prove that despite abrupt changes 

in the firing rate of the simulated neuron or, the introduction of noise in the system, the 

controller is always capable to adjust the current injected in the model according to the 

system’s needs to bring back the firing rate to the reference value. The controller demonstrated 

a fast response and the closed-loop system stayed stable during the simulations. Although, it is 

important to emphasize that this was only a proof-of-concept and for a clinical application, the 

controller should be much more robust. 
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The results of the “real-time” closed-loop experiments using the MEA2100-System are 

consistent. The experiments to validate the stimuli show that a biphasic negative-than-positive 

stimulation pulse with an amplitude of 300 mV and 200 𝜇𝑠 of duration per phase was the most 

effective stimulus to inhibit the neuronal activity. Moreover, when used the same stimulus in 

the experiments to modulate the mean activity at the network level, the results are once again 

in accordance with the stimuli validation studies. Despite the listed limitations of this control 

system, it was demonstrated that is possible to close the loop between recording and “real-

time” feedback stimulation to constrain the global activity below its spontaneous basal level 

of firing rate. In addition, the freely programmable MEA2100-System’s DSP could be explored 

to significantly improve the performance of the “real-time” feedback and, possible future work 

should take this into account.  
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Figure 1 – Complementary results of the experiment 18 (at 19DIV). (a) Histograms (in the form of bar 

plots) showing the variation in the firing rates of all recording electrodes during the experiment. (b) Color 

maps showing the spatial distribution of the activity in the recording electrodes over the experiment. The 

green squares correspond to the stimulation electrodes.   
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Figure 2 – Complementary results of the experiment 22 (at 22DIV). (a) Histograms (in the form of bar 

plots) showing the variation in the firing rates of all recording electrodes during the experiment. (b) Color 

maps showing the spatial distribution of the activity in the recording electrodes over the experiment. The 

green squares correspond to the stimulation electrodes.   

 

 

Figure 3 – Complementary results of the experiment 21 (at 21DIV). (a) Histograms (in the form of bar 

plots) showing the variation in the firing rates of all recording electrodes during the experiment. (b) Color 

maps showing the spatial distribution of the activity in the recording electrodes over the experiment. The 

green squares correspond to the stimulation electrodes.  
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Figure 4 - Bar plot graphs showing the activity mean levels and respective standard deviations of the 

neuronal network experiment (17). Cell’s at 17DIV. 

 

 

Figure 5 - Complementary results of the experiment 17 (at 17DIV). (a) Histograms (in the form of bar 

plots) showing the variation in the firing rates of all recording electrodes during the experiment. (b) Color 

maps showing the spatial distribution of the activity in the recording electrodes over the experiment. The 

green squares correspond to the stimulation electrodes. 
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As previously mentioned in the objectives section, a supplementary goal of this dissertation 

was the design and construction of a low cost and easy-to-build DIY (“Do-It-Yourself”) 

electrophysiology system. This was motivated by the fact that equipment for electrophysiology 

with microelectrode arrays is quite expensive, and out of reach for many 

neuroscience/neuroengineering research labs. The DIY system was composed by two 

components: a low-cost amplifier and an electronic interface-headstage capable of reading and 

transmitting electrophysiological signals from a multielectrode array with 60 electrodes (60MEA 

chip) to a data acquisition system. 

The first component is a high-precision amplifier circuit to amplify, filter and detect 

electrophysiological signals. This circuit was built within the scope of a course of the first year 

of the Biomedical Engineering masters, which aimed to develop a project related to the 

dissertation’s area. The circuit used to build the amplifier is in the figure 6. Its schematic was 

designed using the freely available EAGLE 8.2.0. software, as well as the design of the PCB 

(Printed Circuit Board). The mounted circuit and the PCB are in the figure 7.  This circuit can 

be divided into two stages as shown in the figure below. In respect to the components, since 

this is a circuit of high precision to measure signals with amplitudes with a very low order of 

magnitude, were used low-noise components. Taking this into account, were used resistors with 

tolerances of 1 % to ensure that the values of the resistances vary the minimum as possible. 

The amplifiers should also have low noise features.  
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Figure 6 - Circuit diagram of the amplifier designed in the Eagle 8.2.0 software. (a) Pre-amplifier circuit 
with a passive high-pass filter. (b) Amplifier with second-order active low-pass filter.  

 

The first stage (a) aims to amplify the signal and remove the DC component of the input 

signals through the application of a high-pass filter in each input. For the amplification of the 

signal was used an instrumentation amplifier, the AD620. This is a low noise amplifier with a 

high performance, which common applications are medical instrumentation and data 

acquisition systems. The amplification gain is defined by an external resistor connected to the 

terminals 1 and 8 of the amplifier, in this case, is represented in the figure by the resistor RGIA. 

The value of the gain was set to 500. To obtain this gain, the value of the resistor RGIA was 

calculated through the next equation,  according to the instructions available in the amplifier’s 

datasheet. The calculated value was 99.0 Ω, however, due to unavailability of that value of 

resistance, it was used a resistor of 100.0 Ω ± 1%, which gives a theoretical gain of 495 V/V. 

This high-pass filter has a cutoff frequency of 0.34 Hz.  

𝐺1𝑠𝑡 𝑠𝑡𝑎𝑔𝑒 = 1 +
49.4𝐾Ω

𝑅𝐺𝐼𝐴
   

The second stage aims to amplify and filter the signal. Here, was used an operational 

amplifier of high precision, the OPA277, which also has an ultralow offset voltage. This stage 

contains a second order low-pass filter in a well-known configuration, is a Sallen-Key filter, 

with a cutoff frequency of 4109 𝐻𝑧. The amplification gain is defined by the resistors 𝑅3 and 

𝑅4 as shown in the following equation and, was defined a theoretical gain of 11 V/V. Thus, the 

gain of the entire circuit is given by multiplying the individual gains of each stage, which results 

in a theoretical gain of 5445 V/V.   

𝐺2𝑛𝑑 𝑠𝑡𝑎𝑔𝑒 = 1 +
𝑅4

𝑅3

  

The experimental results showed a total experimental gain of approximately 5260 V/V. In 

addition, the frequency response results confirmed that the cutoff frequency of the low-pass 

filter was well established.    
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Figure 7 – Electrophysiology amplifier. (a) Design of the PCB (Printed Circuit Board). (b) Assembly of 
components on the PCB. 

This was only a prototype and, the integration of SMD (surface mount devices) components 

could considerably improve the performance of the amplifier circuit.  

 

The second component of the low cost and easy-to-build DIY electrophysiology system is 

an electronic interface-headstage for a 60MEA chip. The aim of this interface was to do the 

“bridge” between the MEA chip with 60 microelectrodes (where the cells are cultured) and the 

amplifier. Despite the time did not allow the conclusion of this project, a first prototype was 

built. The headstage has multiplexing capabilities. In the circuit were used two ADG726 (Analog 

Devices, Inc) multiplexers which are used in applications like medical instrumentation and data 

acquisition systems. According to Wang et al. in [128], these multiplexers have a noise of only 

1.6 𝜇𝑉 RMS.  In addition, they are dual 16:1 multiplexers, i.e., each multiplexer has two 

independent circuits that have 16 inputs and 1 output. Thus, from the 60 microelectrodes of 

the MEA chip, the multiplexer will be capable to transmit signals from 4 electrodes through 

four independent output channels. The headstage printed circuit board (PCB) was designed in 

the open-source software Eagle 8.3.2. However, the free open-source version has space 

constrains which increased the difficulty of the PCB’s design. The PCB design is in the figure 8. 

The center square (green) corresponds to the places were the gold pins will be inserted to 

contact with the sensing pads of the MEA chips. This square was designed by hand according to 

the dimension specifications of a commercial 60MEA chip. 
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Figure 8 - Headstage's Printed Circuit Board (PCB). The red lines correspond to the vias on the top of the 
PCB and the blue lines to the vias on the bottom. 

 

One of the steps of this work consisted in learning how to control National Instruments 

data acquisition boards (NI-DAQs) using MATLAB. The focus was to create a toolbox with specific 

commands to acquire electrophysiological signals through NI-DAQ devices. Despite its use to 

acquire data, this board will also be used to control the DIY headstage. The switching control 

of the multiplexers’ channels is done through the digital outputs of the DAQ. To do the switching 

of 16 channels, each multiplexer uses 4 bits. The only problem of this type of multiplexers is 

that we cannot control the dual multiplexers integrated in each multiplexer separately. I.e., 

within each multiplexer exists the circuit A and B (output A and B) that transmit in parallel 

their correspondent channel according to the sequence of bits introduced in the multiplexer. 

A friendly graphical user interface (GUI) was developed in MATLAB to give instructions to the 

headstage through the NI-DAQ device. It enables the selection of the readout channels, record 

and plot the signal according to a specific acquisition rate and duration settled by the user. 

The user also has the option to save the data of each independent readout channel or all at 

once, in a user-chosen directory.  

The figure 9 shows the final result of the circuit construction. A case to support the 

headstage was built using a 3D-printer. 
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Figure 9-  Headstage circuit in a case (white) 3D-printer. 

 

 Until now, it is possible to select the desired channels of the multiplexer using the 

developed GUI. The tests demonstrated that the switching is working exactly as it should. 

However, the DC/DC converters (TSRN -1 – Traco Power)  used to regulate the voltages to supply 

the multiplexers ( ± 2.5 𝑉) are the main responsible for the noise introduced into the system 

which did not allow us to see the neuronal activity because, this headstage does not have any 

type of pre-amplification of the signals until the signal enters in the multiplexers.  However, 

despite design problems, a lot of skills in different areas were improved.   


