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Abstract 

 In this work, crystal growth from solution was investigated from an experimental and 
theoretical point of view. Particular emphasis was given to the crystallization of sucrose from 
pure and impure solutions. A progressive study of the factors influencing crystal growth was 
carried out, starting from industry oriented approaches and finishing at the molecular scale 
description of the phenomenon.  
 Accordingly, in the first part of the thesis, two methods were proposed for monitoring 
and management of sugar evaporative crystallizers. One of the methods is based in a set of 
equations balancing the amount of sucrose, impurities and water (mass balance method), 
whereas in the other, in situ images are captured and processed in order to determine the mean 
crystal size progress (image analysis method). Both methods were successfully applied to 
sugar boiling experiments carried out in a pilot vacuum pan with sugar cane syrups. The 
obtained evolution of parameters related with the crystal content, liquor purity and sucrose 
concentration, was subsequently used in equilibrium and kinetic studies. Sucrose growth rate 
curves were possible to be estimated under normal boiling conditions by representing the 
measured growth rates as a function of the liquor supersaturation during the experiments. 
Regardless of the significant practical interest of these results, their use in fundamental studies 
was at that time limited by the great number of variables in question.  
 In the subsequent chapters, most of those variables were independently assessed. 
Initially, sucrose growth experiments in a laboratory batch crystallizer were conceived to 
study the influence of the mass transfer resistance on the crystal growth rate. Soon it was 
noticed that existing diffusion-reaction theories would hardly explain the observed 
experimental evidences. The verified inconsistencies are probably related with the overlooked 
role of the interfacial adsorption in crystal growth from solution. As a result, an alternative 
physical and mathematical model was put forward, in which simultaneous occurrence of 
solute diffusion and adsorption is admitted to occur before the surface integration of adsorbed 
molecules. Contrarily to the classical theories, the new “parallel step model” demonstrated to 
be consistent with experimental results obtained at the laboratory and with published data 
regarding other systems than sucrose.  
 Next, crystal growth in the presence of impurities was investigated in the light of a 
new “competitive adsorption model”. This model emphasizes the competition between the 
crystallizing solute and the impurity for the occupation of active sites at crystal surface. By 
fitting the theoretical model to growth rate data measured at different supersaturations and 
impurity concentrations, it is possible to estimate the fraction of the crystal surface covered by 
the impurity and to characterize the impurity effectiveness on the growth rate lowering. The 
competitive adsorption model adequately explained unresolved mechanistic and kinetic 
evidences frequently reported in literature.  
 An important step forward was the proposal of a new atomistic theory called “spiral 
nucleation model” to look into the fundamental relationship between the crystal growth rate 
and key variables such as supersaturation, temperature, crystal size, interfacial properties, etc. 



 

 

The introduced concepts derive from latest developments on the characterization of the 
surface phenomena using advanced microscopic techniques. With the spiral nucleation model, 
identified limitations of the two-dimensional nucleation models and of the Burton-Cabrera-
Frank theory are responded, even though a common framework is shared by the new and the 
classical approaches. In a first application example of this model, important interfacial 
properties were possible to be calculated from the sucrose growth kinetics, and topological 
parameters of spiral growth were estimated without the use of microscopy.  
 In the concluding part of the thesis, the potential of the proposed models is illustrated 
in several application examples. By combining the parallel step model and the spiral 
nucleation model, an investigation was performed on the phenomenon of size dependent 
growth. Laboratory growth experiments were carried out in the batch crystallizer with crystals 
of different sizes. As expected by the new fundamental model, the integration rate was 
linearly dependent on crystal size. Consequently, a new formalism was proposed by 
expressing the mass deposition rate per crystal volume units. The “volumetric growth rate” 
demonstrated to be of great application to account for the kinetic effect of crystal size and in 
situations of unknown crystal number and size. This formalism was conveniently integrated in 
the competitive adsorption model to describe the effect of cane sugar impurities on the 
sucrose growth kinetics measured in the first part of the thesis. The theoretical model was 
found to be an excellent alternative to the empirical correlations traditionally used in sugar 
industry and a useful tool on the systematic characterisation of the impurities action. Finally, 
empirical, engineering and fundamental models were used in a unified vision of the effect of 
temperature and growth rate history on the sucrose growth kinetics. A relationship between 
the concepts of “true” and “apparent” activation energy was established according to the 
parallel step model. The temperature effect was further studied by performing innovative 
batch growth experiments, in which the crystal growth rates are continuously measured as the 
solution is cooled and at constant supersaturation. Different results were obtained by this 
method and by the conventional isothermal method; the spiral nucleation model suitably 
explained these differences according to different surface properties caused by the growth rate 
history in each case. The same arguments are believed to justify different growth rate curves 
measured in the batch crystallizer and in a fluidized bed crystallizer. This example 
additionally demonstrated how apparently divergent results can be rationally interpreted 
according to the new concepts introduced throughout this thesis.  
 
Keywords: Crystal growth, Growth rate, Growth kinetics, Sucrose, Mass transfer, Impurities, 
Adsorption, Evaporative crystallizer. 



 

 

Resumo 

 Neste trabalho investigou-se o crescimento cristalino sob os pontos de vista teórico e 
experimental, dando particular ênfase à cristalização da sacarose em soluções puras e 
impuras. Os factores que afectam o crescimento cristalino foram discutidos de uma forma 
progressiva, começando em perspectivas resultantes da indústria do açúcar e terminando com 
estudos fundamentais dos mecanismos de crescimento à escala molecular. 
 Assim sendo, na primeira parte da tese foram propostos dois métodos para a 
monitorização e gestão de cristalizadores evaporativos de açúcar. Um dos métodos baseia-se 
num conjunto de equações de balanço das quantidades de sacarose, impurezas e água (método 
dos balanços de massa), enquanto que no outro são captadas e processadas imagens in situ 
tendo em vista a determinação da evolução do tamanho médio dos cristais (método de análise 
de imagem). Ambos os métodos foram aplicados com sucesso em experiências de 
cristalização evaporativa de açúcar à escala piloto, usando xaropes industriais de cana. A 
evolução, daí resultante, de parâmetros relacionados com o conteúdo de cristais, pureza do 
licor e concentração de sacarose foi de seguida usada em estudos de equilíbrio e cinéticos. 
Através da representação das velocidades de crescimento de sacarose em função da 
sobressaturação do licor ao longo das experiências, foi possível estimar as curvas de 
crescimento em condições normais de cozedura do açúcar. Apesar do grande interesse prático 
destes resultados, o seu emprego em estudos fundamentais de crescimento foi na altura 
limitado pelo grande número de variáveis em jogo.  
 Nos capítulos que se seguiram, uma grande parte dessas variáveis foram 
descriminadamente analisadas. Numa primeira fase, experiências laboratoriais de crescimento 
de sacarose num cristalizador por partidas foram concebidas com a finalidade de estudar a 
influência da resistência de transferência de massa nas velocidades de crescimento cristalino. 
Depressa se notou que as teorias de difusão-reacção existentes dificilmente poderiam explicar 
as evidências experimentais observadas. Crê-se que a razão para as incoerências verificadas 
reside no papel, porventura desprezado, da adsorção interfacial. Consequentemente, foi 
sugerido um modelo físico e matemático alternativo, no qual se admite a ocorrência 
simultânea da difusão e adsorção do soluto, antes da integração à superfície das moléculas 
adsorvidas. Ao contrário do que aconteceu com as teorias clássicas, o novo “modelo dos 
passos em paralelo” provou ser consistente com os resultados experimentais obtidos no 
laboratório e com dados publicados referentes a outros sistemas que não a sacarose.  
 Seguidamente, o crescimento cristalino na presença de impurezas foi investigado à luz 
de um novo “modelo de adsorção competitiva”. Este modelo enfatiza a competição que ocorre 
entre o soluto a cristalizar e a impureza pela ocupação dos sítios activos à superfície do cristal. 
Através do ajuste do modelo teórico a dados de velocidade de crescimento medidos a 
diferentes sobressaturações e concentrações de impureza, é possível estimar a fracção da 
superfície cristalina ocupada pela impureza e caracterizar a eficiência da impureza na 
diminuição das velocidades de crescimento. O modelo de adsorção competitiva permitiu 
esclarecer questões frequentemente colocadas na literatura, relacionadas com as cinéticas e 
mecanismos de crescimento em soluções impuras.  



 

 

 A proposta de uma nova teoria atomística denominada “modelo da nucleação em 
espiral” é considerada um significativo avanço, pois permite estabelecer uma relação 
fundamental entre a velocidade de crescimento cristalino e variáveis chave como 
sobressaturação, temperatura, tamanho do cristal, propriedades interfaciais, etc. Os conceitos 
introduzidos surgem na sequência de recentes desenvolvimentos na caracterização dos 
fenómenos de superfície usando técnicas microscópicas. Com o modelo da nucleação em 
espiral, é dada resposta a conhecidas limitações dos modelos de nucleação bi-dimensional e 
da teoria de Burton-Cabrera-Frank, ainda que, fundamentos comuns sejam partilhados pela 
nova abordagem e pelas teorias clássicas. Num primeiro exemplo de aplicação deste modelo, 
foi possível calcular propriedades interfaciais importantes a partir de cinéticas de crescimento 
de sacarose, bem como estimar parâmetros topológicos associados ao crescimento em espiral, 
sem recurso à microscopia.  
 Na parte final da tese, o potencial dos modelos propostos é ilustrado através de vários 
exemplos de aplicação. Combinando os modelos dos passos em paralelo e da nucleação em 
espiral, foi investigada a influência do tamanho dos cristais nas cinéticas de crescimento. As 
experiências laboratoriais de crescimento foram desta feita realizadas com cristais de 
diferentes tamanhos. Como esperado pelo novo modelo fundamental, a velocidade de 
integração variou linearmente com o tamanho do cristal. Por conseguinte, um novo 
formalismo foi proposto no qual a velocidade de cristalização é expressa por unidade de 
volume de cristal. A “velocidade de crescimento volumétrica” provou ser de grande 
aplicabilidade na caracterização do efeito cinético do tamanho dos cristais e em situações nas 
quais o número e tamanho dos cristais não são conhecidos. Este formalismo foi integrado com 
êxito no modelo de adsorção competitiva, na descrição do efeito das impurezas do açúcar de 
cana na cinética de crescimento da sacarose medida na primeira parte da tese. O modelo 
teórico demonstrou ser uma excelente alternativa às correlações empíricas tradicionalmente 
usadas na indústria do açúcar e uma ferramenta útil na caracterização sistematizada da acção 
das impurezas. A concluir, modelos empíricos, de engenharia e fundamentais foram usados 
numa visão unificada do efeito da temperatura e do historial de velocidades de crescimento na 
cinética de crescimento da sacarose. Usando o modelo dos passos em paralelo foi estabelecida 
uma relação teórica entre os conceitos de energia de activação “verdadeira” e “aparente”. O 
estudo do efeito da temperatura foi complementado através da realização de experiências 
inovadoras, nas quais as velocidades de crescimento cristalino são continuamente estimadas à 
medida que a solução é arrefecida, a sobressaturação constante. Diferentes resultados foram 
obtidos através deste método e do método isotérmico convencional; tais diferenças foram 
adequadamente explicadas pelo modelo da nucleação em espiral com base nas diferentes 
propriedades superficiais causadas pelo historial de velocidades de crescimento em cada caso. 
Os mesmos argumentos foram depois usados para justificar diferentes curvas de crescimento 
medidas no cristalizador por partidas e num cristalizador de leito fluidizado. Este exemplo 
permitiu também demonstrar como resultados aparentemente divergentes podem ser 
racionalmente interpretados de acordo com os novos conceitos introduzidos ao longo da tese. 
 
Palavras chave: Crescimento cristalino, Velocidade de crescimento, Cinética de crescimento, 
Sacarose, Transferência de massa, Impurezas, Adsorção, Cristalizador evaporativo.



 

 

Résumé 

 Dans ce travail, la croissance des cristaux en solution a été étudiée d'un point de vue 
expérimental et théorique, donnant une particulière attention à la cristallisation du saccharose 
en solutions pures et impures. Les facteurs qui affectent la croissance cristalline sont discutés 
d'une forme progressive, commençant dans les perspectives résultant de l'industrie du sucre et 
en finissant avec la description moléculaire du phénomène. 
 En conséquence, dans la première partie de la thèse, on a proposé deux méthodes pour 
la surveillance et la gestion des appareils à cuire pour la cristallisation du sucre. Une des 
méthodes est basée dans un ensemble d'équations évaluant la quantité du saccharose, les 
impuretés et l'eau (méthode de bilan de matière), tandis que dans l'autre, des images in situ 
sont capturées et traitées afin de déterminer le progrès de la dimension moyenne des cristaux 
(méthode d'analyse d'image). Les deux méthodes ont été appliqués avec succès dans des 
expériences de cristallisation évaporative de sucre à l'échelle pilote, utilisant sirops industriels 
de canne. L'évolution obtenue des paramètres rapportés avec le contenu de cristaux, pureté de 
la liqueur et concentration du saccharose a ensuite été utilisée dans des études d'équilibre et 
cinétiques. C’est à travers la représentation des vitesses de cristallisation du saccharose en 
fonction de la sursaturation de la liqueur au long des expériences, que ceci a été possible 
d'estimer les courbes de croissance dans des conditions normales de cuisson du sucre. Malgré 
le grand intérêt pratique de ces résultats, son emploi dans des études fondamentales de 
croissance a été à l'occasion limitée par le grand nombre de variables en question. 
 Dans les chapitres suivants, une grande partie de ces variables ont été 
indépendamment analysées. Au début, des expériences en laboratoire de croissance du 
saccharose dans un cristalliseur discontinu ont été conçues avec la finalité d'étudier l'influence 
de la résistance de transfert de masse dans les vitesses de cristallisation. Rapidement, on a 
remarqué que les théories de diffusion-réaction existantes difficilement pourraient expliquer 
les évidences expérimentales observées. On pense que la raison pour les incohérences 
vérifiées sont dues au papier, par hasard méprisé, de l'adsorption interfaciale. En conséquence, 
on a été suggéré un modèle physique et mathématique alternatif, dans lequel s'admet la 
présence simultanée de la diffusion et l'adsorption du soluté, avant l'intégration à la surface 
des molécules adsorbées. Contraire aux théories classiques, le nouveau "modèle des étapes en 
parallèle" a prouvé être cohérent avec les résultats expérimentaux obtenus dans le laboratoire 
et les données publiées concernant d'autres systèmes que le saccharose.  
 Ensuite, la croissance des cristaux en présence d'impuretés a été étudiée s’inspirant 
d'un nouveau "modèle d'adsorption concurrentielle". Ce modèle souligne la concurrence entre 
le soluté à cristalliser et l'impureté par l'occupation des lieus actifs à la surface du cristal. À 
travers l'ajustement du modèle théorique à des données de vitesse de croissance mesurés à 
différentes sursaturations et concentrations d'impureté, c'est possible d'estimer la fraction de la 
surface cristalline couverte par l'impureté et de caractériser l'efficacité de l'impureté dans la 
diminution des vitesses de cristallisation. Le modèle d'adsorption concurrentielle a permis 
d'éclaircir des questions fréquemment posées dans la littérature, rapportées avec les cinétiques 
et mécanismes de croissance en solutions impures.  
 La proposition d'une nouvelle théorie atomistique appelée "modèle de nucléation en 
spirale" est considérée comme étant une significative avance, qui permet d'établir une relation 



 

 

fondamentale entre la vitesse de cristallisation et des variables clé comme la sursaturation, 
température, taille en cristal, propriétés interfaciales, etc. Les concepts présentés dérivent des 
récents développements dans la caractérisation des phénomènes de surface en utilisant 
techniques microscopiques. Avec le modèle de nucléation en spirale, des limitations 
identifiées des modèles bidimensionnels de nucléation et de la théorie Burton-Cabrera-Frank 
sont répondues, malgré cela, des fondements communs sont partagés par le nouvel abordage 
et par les théories classiques. Dans un premier exemple d'application de ce modèle, il a été 
possible de calculer des propriétés interfaciales importantes à partir de la cinétique de 
cristallisation de sucrose, ainsi que d'estimer des paramètres topologiques associés à la 
croissance en spirale, sans ressource à la microscopie.  
 En conclusion, le potentiel des modèles proposés est illustré dans plusieurs exemples 
d'application. En combinant les modèles des étapes en parallèle et de nucléation en spirale, 
une recherche a été effectuée sur l'influence de la taille des cristaux dans les cinétiques de 
cristallisation. Les expériences en laboratoire de croissance ont été cette fois réalisées avec 
des cristaux de différentes tailles. Comme attendu par le nouveau modèle fondamental, la 
vitesse d'intégration a varié linéairement avec la dimension du cristal. En conséquence, un 
nouveau formalisme a été proposé, dans lequel la vitesse de cristallisation est exprimée par 
unité de volume de cristal. La "vitesse de croissance volumétrique" a prouvé être de grande 
applicabilité dans la caractérisation de l'effet cinétique de la taille des cristaux, et dans les 
situations où le nombre et la dimension des cristaux ne sont pas connus. Ce formalisme a été 
intégré avec succès dans le modèle d'adsorption concurrentielle, dans la description de l'effet 
des impuretés du sucre de canne sur la cinétique de cristallisation du saccharose mesuré dans 
la première partie de la thèse. Le modèle théorique a démontré être une excellente alternative 
aux corrélations empiriques traditionnellement utilisées dans l'industrie du sucre et un outil 
utile dans la caractérisation systématisée de l'action des impuretés. Pour conclure, des 
modèles empiriques, d'ingénierie et fondamentaux ont été utilisés dans une vision unifiée de 
l'effet de la température et de l'histoire de vitesses de cristallisation dans la cinétique de 
croissance des cristaux du saccharose. Un rapport entre les concepts d'énergie d'activation 
"vraie" et "apparente" a été établi selon le modèle des étapes en parallèle. L'effet de la 
température a été encore étudié à travers la réalisation d'expériences innovatrices, dans 
lesquelles les vitesses de cristallisation sont mesurées sans interruption pendant que la 
solution est refroidie, à sursaturation constante. Différents résultats ont été obtenus par cette 
méthode et par la méthode isotherme conventionnelle; le modèle de nucléation en spirale a 
convenablement expliqué ces différences sur la base des différentes propriétés superficielles 
causées par l'histoire de vitesses de cristallisation en chaque cas. Les mêmes arguments ont 
été utilisés ensuite pour justifier les différentes courbes de croissance mesurées dans le 
cristalliseur discontinu et dans un cristalliseur de lit fluidisé. Cet exemple a permis aussi de 
démontrer comment des résultats apparemment divergents peuvent être rationnellement 
interprétés selon les nouveaux concepts présentés dans toute cette thèse. 
 
Mots-clés: Croissance des cristaux, Vitesse de cristallisation, Cinétique de cristallisation, 
Saccharose, Transfert de masse, Impuretés, Adsorption, Appareil à cuire. 
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1. Introduction 

1.1 Motivation and aim 

 When, in 1973, Ohara and Reid discussed the applicability and feasibility of 

sophisticated crystal growth models of surface diffusion growth and two-dimensional 

nucleation [1], they probably would not anticipate that the same theories would remain the 

fundamental basis of crystal growth science more than 50 years after their introduction. In 

fact, the means and instrumentation available nowadays regularly lead to important new 

findings that have not been considered in the classical models update. This is valid for both 

the physical premises of the crystal growth mechanisms and for the critical evaluation the 

growth models against experimental results. At the beginning of this study in 2001, the 

transfer of impurities into crystals in solution growth was the primary subject of study, as a 

natural sequence of previous works of Faria [2], Gonçalves [3] and Chorão [4] within the 

sugar system, and following the current trend in many research groups on industrial and 

fundamental crystallization. Nevertheless, as the work progressed, it became clear that 

considerable research in pure systems would have to be done before centering the attention on 

the impurity uptake. The alternative could be an essentially experimental work describing 

several pure solute/impurity systems; although interesting from a practical point of view, such 

a work would always have a limited application field. Presently, a great number of 

experimental data are published documenting the growth of crystals in the most diverse 

systems, by employing several growth techniques, and focusing the majority of growth 

variables. In so doing, the main emphasis is not anymore on the indiscriminate measurement 

of additional kinetic data of crystallization but instead on the development of new theoretical 

tools for their interpretation. This was a major conclusion from the panel discussion “Towards 

the Future of Industrial Crystallization” presented by Roger Davey, John Garside and Ronald 
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Rousseau in the last day of the 16th International Symposium on Industrial Crystallization 

held in Dresden, Germany [5]. In a time when this thesis was nearly finished (September of 

2005), it was satisfying to realize that the guidelines for forthcoming studies appointed by 

those recognized authors, corresponded to the main objective envisaged by us during 2001: 

To combine the new experimental insights and the accepted theoretical grounds on the 

development of new crystal growth models that are able to shorten the existing gap between 

theory and practice. In so doing, the ultimate goal of estimating crystal growth rates a priori 

would be gradually accomplished.  

 The objectives outlined are manifestly challenging. Yet, in a first phase, the concrete 

problems found in the design, operation and management of industrial crystallizers were 

thought to be more effectively approached through pilot scale experimental investigation. The 

established cooperation with the Audubon Sugar Institute at Louisiana State University would 

make possible to perform sugar crystallization experiments in a pilot evaporative crystallizer, 

thus providing the proper starting point for increasingly sophisticated studies. As suggested 

by Ohara and Reid, the development and verification of any crystal growth theory should be 

based on kinetic data documenting the influence of specific independent variables [1]. 

According to the same authors, the most important variables are supersaturation, temperature, 

crystal size, mass transfer, and impurity type and level. More recently, the growth rate history 

and the energetics of the crystal faces have also been found to have a considerable role during 

growth. Unfortunately, few experiments have been reported where all the main variables were 

considered. Moreover, growth rates measured at similar experimental conditions can diverge 

significantly, when different growth techniques are employed [6, 7]. As a consequence, 

laboratory growth experiments under well-defined conditions are still required to evaluate the 

isolated influence of some of the above mentioned variables. 

 In this regard, the mass transfer studies during crystal growth are an illustrative case: 

although this subject is been considered in many works, only a small fraction of these are 

suitable to be used in the rational assessment of diffusion-integration models. This happens 

because the evaluation of the mass transfer resistances is often merely qualitative, or else, 

their quantification is based on doubtful simplifying hypothesis. As illustrated by the well-

known series of 3 papers of Garside and Mullin dated from 1967/8 [8-10], the comprehensive 

modeling of the problem requires considerable amounts of growth and dissolution rate data, 

over a wide range of crystal-solution velocities. By this way, the relationship between the 

diffusional resistances during growth and dissolution can be clarified and, on the other hand, 
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important indications can be provided on how mass transfer is affected by surface adsorption 

during growth. The existence of a multilayered adsorption phase at the surface of growing 

crystals is admitted by many authors (see for example the revision made by Tai et al. [11]), 

but the incorporation of this concept in the crystal growth theories has not been effective [12-

14]. The adsorption step is also thought to play an important role on the growth of crystals in 

the presence of impurities. In this field of study, numerous authors are in accordance about 

the kinetic patterns obtained, even though the existing theories do not completely explain 

those evidences. It is considered that further investigation has to be performed on the 

competitive nature of surface adsorption when the crystallizing solute and the impurity are 

involved. The demand for new theoretical growth models results, to a great extent, from the 

perspectives provided by modern microscopic techniques on the molecular mechanism of 

crystal growth [15]. This is, therefore, an important source to be explored on the fundamental 

research envisaged for this thesis. 

1.2 Thesis layout 

 In this work, crystal growth from solution is progressively discussed from industrial, 

engineering and scientific perspectives. Following this order, new experimental methods and 

theoretical models are presented in the first three parts of the thesis, and in the last part, 

illustrative examples are given where the new concepts are jointly applied to crystallization 

data. 

 Part I, named “macro scale approach”, comprises Chapters 2 and 3 and deals with the 

evaporative crystallization of sucrose at pilot scale. In Chapter 2, new industry-oriented 

methods are purposed and applied to sugar boiling runs. The results obtained are then used in 

Chapter 3 on the estimation of the respective sucrose growth kinetics.  

 In Part II, “new engineering models” are introduced to describe diffusion-affected 

growth in pure solutions (Chapters 4 and 5) and crystal growth in the presence of impurities 

(Chapter 6). Chapter 4 is purely theoretical, providing the physical and mathematical 

concepts of the “parallel step model”. In Chapter 5 the validation of the model is made 

against experimental data taken from literature and obtained in sucrose growth experiments at 

laboratory scale. Chapter 6 is concerned with the proposal and validation of the “competitive 

adsorption model” about the effect of impurities on the crystal growth rates.  
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 Part III is named “crystal growth science”, since new fundamental perspectives 

documented in literature are discussed in the light of a new “spiral nucleation model”. In 

Chapter 7 the theoretical basis of the model is introduced and the model practical interest is 

pointed out. In Chapter 8, the phenomenon of size dependent growth is studied according to 

the spiral nucleation model. 

 The three chapters of Part IV consist in “application examples and conclusions”. In 

Chapter 9 the influence of cane sugar impurities on the sucrose growth kinetics is 

investigated using the kinetic data obtained in Part I and the theoretical background provided 

by the competitive adsorption model and the spiral nucleation model. In Chapter 10, a 

synthesis of the several approaches discussed in the thesis is made through their use on the 

interpretation of sucrose growth rate data. In particular, the effect of temperature and growth 

rate history on the crystallization kinetics is analyzed, and the importance of the growth rate 

measurement technique is discussed. Finally, in Chapter 11 the general conclusions and 

future work suggestions are referred. 

 All the main chapters are initiated with an overview of the theme and with a review of 

the respective state-of-the-art. After that, the novelty of the chapter is introduced and, in the 

case of experimental works, the experimental details and procedures are outlined. The results 

obtained experimentally or taken from the literature, are then presented and discussed. 

Finally, the main conclusions are summarized. 
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PART I 

 

MACRO SCALE APPROACH 





2. Vacuum pan monitoring by mass 

balance and image analysis methods 

Overview 

 Sugar boiling experiments are carried out in a pilot vacuum pan with the aim of 

developing new methods for monitoring and estimation of important variables in industrial 

crystallization. A mathematical model based on mass balances is applied, using typical on-

line data recorded during the boiling runs, to determine the evolution of parameters related to 

the crystal content and liquor purity. The conclusions resulting from the application of the 

mass balance method will be used in following chapters to study the crystal growth kinetics of 

sucrose in industrial and synthetic syrups. In a different approach, in situ images are captured 

and processed for the purpose of estimating the mean crystals size progress at the early stages 

of the strike – image analysis method. A strategy is proposed to solve the problems associated 

with the identification of crystals in images taken directly from the suspension. The results 

obtained by the two methods are compared, showing good agreement both in the range of the 

crystal sizes and in the way crystal size changes. 
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2.1 Vacuum pan monitoring 

 The change in the main properties and parameters during industrial crystallization is 

not always followed accurately because of the absence of suitable on-line measurements. This 

affects the product final quality, crystal yield, and the overall efficiency of the process. 

Consider, for example, the measurement of the degree of supersaturation. At a given 

temperature, a solution is supersaturated when the solute concentration is higher than 

saturation. In industry, supersaturation is achieved by evaporating the solvent, evaporative 

crystallization, or by cooling the solution, cooling crystallization. In either case, operators are 

still far from having a quantitative knowledge of this key parameter, and their actions are 

commonly empirically based. However, the temperature of the solutions is easily followed 

and the on-line measurement of solute concentration is well-established. The main difficulties 

in measuring the degree of supersaturation are related to the variation of variables that directly 

or indirectly alter the equilibrium conditions, as the crystallization advances. Namely, few 

alternatives are available to quantify the gradual drop of solution purity or the increase in 

crystal content. Two methods are here proposed for better monitoring and understanding of 

the process. The methods were applied to the evaporative crystallization of sugar from cane 

syrups. 

2.1.1 Recent developments 

 At a given pressure, the boiling point of solutions is increased by the presence of non-

volatile solutes. This basic principle has been used for a long time in the sugar industry for 

on-line measuring of the dissolved dry solids in liquors, correlating their concentration with 

the boiling point elevation and purity [1, 2]. The influence of the liquor purity on the boiling 

point elevation is considered a drawback of this inexpensive method, because such data are 

often unavailable. Refractometry is a classical analytical technique among sugar 

technologists. With the arrival of on-line refractometers [3], the amount of dissolved solids in 

the crystallizers can be measured independently of the amount of crystal, although impurity 

concentration has a small influence on the refractive index. Since the second half of the 

1990s, a new technique has been introduced in the sugar industry, based on microwave 

technology [4]. The microwave concentration corresponds to the total quantity of dry 

substance, so no differentiation is made between the dissolved solids and the crystallized 

matter. Other traditional techniques based on physical and electrical properties of the 
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massecuite (conductivity, radio frequency conductivity, viscosity/consistency, and density) 

are used as an indicative help to the pan boiler. Difficulties in quantifying the relative 

contribution of the several process variables are associated with these techniques.  

 The research on monitoring techniques has been recently focused on two important 

crystallization parameters: crystal content and supersaturation [5]. At the industrial level, 

those properties are traditionally followed by sample extractions or by approximate relations 

with other measurements [3]. Sometimes, the estimations are based on the experience and feel 

of the operators who relate the massecuite viscosity with crystal content and supersaturation. 

Attempts have been made to employ more sophisticated technology. For example, Vaccari et 

al. [6] utilized an NIR (near infrared) technique in the cooling crystallization of pure sugar, as 

a first approach to automatic crystallization management. Schultz and Edye [7] continuously 

measured the crystal content in a pilot vacuum pan using low resolution NMR (nuclear 

magnetic resonance) instrumentation. In their experiments, massecuite was continuously 

drawn from the vacuum pan, flowing through a cell for the NMR measurements, before 

returning to the pan. Rozsa [3] developed a mathematical model to be used with on-line 

refractometers for supersaturation measurements. In this method, the values of the liquor 

purity were approximated according to a presupposed profile of the crystal content. 

 Image analysis is an emerging technique, whose potential in particle size and shape 

detection is being applied to crystallization. A review of the main steps on particle 

morphology characterization using image analysis was made by Pons et al. [8]. Tadeo et al. 

[9] processed the images taken during sugar crystallization to identify the phases of the 

process. The morphology of sucrose crystals was studied by Faria et al. [10] using an 

automated image analysis procedure. In that work, the degree of agglomeration of crystal 

samples was quantified. Lionnet [11] measured by image analysis the length and width of 

crystals at the end of sugar boiling runs, for crystal growth rates measurements. Off-line 

crystal size distributions were calculated from image processing by Monnier et al. [12] for 

adipic acid crystallization in water. This information was used together with on-line 

calorimetry and laser granulometry for batch cooling crystallization modelling. 

2.2 Experimental section 

 Sugar boiling runs were conducted in the 50 L pilot vacuum pan shown in Figure 2.1 

at Audubon Sugar Institute, Louisiana.  
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Figure 2.1. Scheme of the pilot vacuum pan. 

Typical process parameters were controlled, displayed, and recorded by means of an Allen 

Bradley programmable control system and Rockwell automation software. The percentage of 

total dry solids in the massecuite ( TDSw ) was measured through the microwave density 

readings provided by a Pro-M-tec GmbH device, model uWA-2.5. The dissolved solids’ 

concentration ( DSw ) was calculated from the boiling point elevation ( bt∆ ), according to the 

integrated form of the Clausius-Clapeyron equation with the parameters found by Saska in 

similar conditions [2], 

 
1.1394 1.9735 0.1237273

0.1660
100 100 100

DS bw
b

DS

w t Purity
t

w

� � +� � � �∆ = � � � �� �− � �� �� �
 (2.1) 

where b b bwt t t∆ = − . The massecuite temperature ( bt ) was measured with a calibrated PT100 

sensor located in the bottom of the pan. The vapour temperature ( bwt ) is calculated as a 

function of the absolute pressure ( absP ) [2]: 
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 (ºC) 3.3374 (inHg) 40.746bw abst P= +  (2.2) 

The value of the liquor purity required in Eq. (2.1) was continuously updated according to the 

mass balance method (see below).  

The experimental procedure was planned according to the conditions required for the 

solubility and kinetic studies that will be presented in the Chapter 3. It is intended to perform 

successive crystal growth and dissolution experiments until near saturation and at a controlled 

amount of water. A typical run consisted of the following sequence of steps: 

1. Filling up. The absolute pressure inside the vacuum pan is set to a constant value ~17 kPa. 

The juice solenoid valve is then opened, allowing the syrup to enter until it reaches the 

desired level (~50 cm H2025ºC). 

2. Concentration phase. The mechanical agitation is turned on, and the steam pressure 

controller is started. The concentration of dry solids begins to increase because of the 

evaporation of water. 

3. Seeding. A suspension (5.0 ml) of sucrose crystals (seeds) in n-propanol was introduced in 

the vacuum pan, by opening the seed solenoid valve. The right moment to perform this action 

was determined by the concentration of dissolved dry solids in the mother liquor; usually 

seeding was made when the percentage of dissolved solids was near 75%. 

4. Building up. The automatic control of microwave density is started, and the seeds are 

allowed to grow at constant water content. Consequently, the admission of water is 

automatically controlled to balance the evaporation rate. Because of crystal growth, the 

concentration of dissolved sucrose decreases until near saturation. The transition to another 

growth experiment is made by changing the set point of TDSw  to a higher value; the admission 

of water is suppressed, and the rise in supersaturation causes the crystals to grow. In some 

runs, dissolution experiments were made by the inverse process: after the growth period had 

finished, a lower value of the TDSw  set point was established and water was fed to the pan. 

Undersaturation is established and the crystals start to dissolve. 

In all runs, industrial syrup with the same origin (Cora Texas mill) was used–apparent purity 

= 87.75% (sucrose content measured by the polarization method), brix = 65.42% (dissolved 

solids content measured by refractomery), glucose content = 1.12% (HPLC), fructose content 

= 1.16% (HPLC), and ash content = 2.22%. The propeller agitation speed was 650 rpm in all 

experiments. The concentration of seed in the n-propanol suspension was 0.411 kg/L. The 



Chapter 2 

 14 

volume mean diameter ( sL ) was measured by laser diffraction. The value found (13.33 µm) 

was used to estimate the number of crystals ( N ) inside the pan according to the introduced 

mass of seeds ( sm ): 

 3
s

s s

m
N

Lαρ
=  (2.3) 

In this equation, where sρ  is the density of sucrose crystals, the volume shape factor found by 

Bubnik and Kadlec [13], using a characteristic dimension that is a function of the crystal 

linear dimensions ( 0.31α = ), was used. 

2.3 New Methods of sugar crystallization 
management 

2.3.1 Mass balance method 

 This method relies on a set of equations that balance the amount of sucrose, impurities, 

and water in a vacuum pan during the crystallization of sugar. The syrup fed to the pan is the 

only source of sucrose and impurities, as long as the water used to control the total dry solids’ 

concentration is pure. In the massecuite, sucrose can be either dissolved in the mother liquor 

or crystallized, while the non-sucrose compounds are assumed to be all in the mother liquor, 

therefore neglecting the small amount transferred into crystals. Water is continuously 

evaporated and is supplied both in the syrup, at the beginning of the run, and at the stage of 

the water content control. 

 Crystal content (CC ), defined as the mass fraction of crystals in the massecuite, is 

calculated from the information of the total dry solids’ concentration ( TDSw ), given by the 

microwave concentration readings, and from the dissolved solids’ concentration ( DSw ) in the 

mother liquor, estimated from the boiling point elevation measurements. To calculate the 

mass of crystals, it is necessary to know, besides their fraction, the overall mass of the 

massecuite in the pan, which was determined from the massecuite level measurements. 

 Liquor purity corresponds to the percentage of sucrose in the total amount of dissolved 

dry solids. As the crystallization advances, sucrose concentration decreases, and thus, the 

liquor becomes less pure. The estimation of the liquor purity at any stage of the strike was 

done by evaluating the mass of crystals relative to the initial amount of dissolved sucrose. 
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Therefore, the initial purity of the used syrup had to be known. The non-sucrose to water ratio 

( NS W ) was also followed, since this is a parameter often required for solubility studies. The 

calculation used the value of the syrup purity and the microwave readings to determine the 

amount of impurities introduced in the pan and the water mass fraction. 

2.3.2 Image analysis method 

 Images from the inside of the vacuum pan were captured with a CCD (charge-coupled 

device) camera during the boiling runs, and then they were analyzed using a professional 

image analysis package (Visilog 5.4, Noesis, les Ulis, France). The 752×480 pixel RGB 

images were processed in order to correct differences in light intensity and to enhance the 

crystals edges (Figure 2.2a, b).  

 

Figure 2.2. Sequence of the main actions performed on the images taken from inside of the 

vacuum pan. The original image was captured 37 min after seeding (05/12GI experiment). 
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This phase involves the use of image filters and the adjustment of the background by 

subtracting to the original images the one taken before each seeding (without crystals). As the 

images are taken directly from the process without any kind of sample preparation, their 

quality improvement by software can affect the results significantly. The resulting images 

were converted into 256 grey levels and then, the individual crystals are separated from the 

background in a binary image – image segmentation (Figure 2.2b, c). An automatic 

segmentation algorithm based on a three-zone entropic criterion was used. After that, a series 

of classical image processing functions were applied [8], including the elimination of crystal 

transparencies by hole filling (Figure 2.2c, d), elimination of the objects in contact with the 

image frame (Figure 2.2d, e) and debris cleaning by erosion/reconstruction (Figure 2.2e, f). At 

that point, the several objects were identified. Before measuring the silhouette surface, two 

problems needed to be solved: (i) the incomplete silhouettes of crystals exemplified by 

objects number 2 and 3 in Figure 2.3 and (ii) the occurrence of overlaid crystals as in the case 

of objects number 4 and 5 in the same figure. These troubles are associated with the limited 

image acquisition conditions in features such as the angle of the incident light, which cannot 

be ideal for all the moving crystals, or the existence of various planes of crystal flowing.  

 

Figure 2.3. Identification of different types of silhouettes, from which, crystal equivalent 

diameters were calculated. 
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The procedure adopted for the equivalent mean diameter estimation is illustrated in Figure 2.4 

for the different types of elements pointed out in Figure 2.3. The complete silhouette of 

crystals was forecasted by creating the convex bounding polygon [10, 14]. Estimating the 

projected area ( projA ) of individual crystals by means of the area of the convex bounding 

polygon ( polA ) introduces an error by defect in the cases where the edges are poorly defined. 

This is possible to see in Figure 2.4b by comparing the original picture of the crystal (I) with 

the silhouette of the respective convex bounding polygon (III). The equivalent diameter is 

given by 

 2 pol
eq

A
D

π
=  (2.4) 

As shown in Figure 2.4a, for well-differentiated crystals the projected silhouette before the 

individual measurements (II) is equivalent to the silhouette of the convex bounding polygon 

(III): proj polA A= .  

 

Figure 2.4. Comparison between the (I) original picture of individual elements and (II) the 

silhouettes corresponding to the measurements of the projected area, (III) convex bounding 

polygon area and (IV) number of crystals within each element  – (a) well defined crystal; (b) 

poorly defined crystal; (c) two joined crystals; (d) three joined/overlapped crystals. 
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The same procedure was adopted in a first phase to solve the problem of the 

joined/overlapped crystals (Figure 2.4c, d). Here, the area of the polygon can be either higher 

or lower than the sum of the individual crystals areas, depending on the degree of overlap. 

The number of crystals contained in each bounding polygon ( Nc ) was then estimated by 

means of the number of different zones with the same gray level in the object (Figure 2.4c, d, 

step IV). Finally, a mean equivalent diameter was calculated as 

 
2 pol

eq

A

D
Nc

π=  (2.5) 

When 1Nc = , this equation reduces to Eq. (2.4), meaning that Eq. (2.5) is applicable to all 

types of objects shown in Figure 2.3.  

2.4 Results and discussion 

 Figures 2.5 and 2.6 show typical properties measured during the runs. Figure 2.5 

shows the good automatic control of total dry solids’ concentration ( TDSw ) attained for all 

conditions, by controlling the water flow rate (see Figure 2.6). 
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Figure 2.5. Record of the dissolved and total dry solids’ concentrations in the massecuite 

during the 05/12 run. The numbers in the boxes represent several stages and experiments: 1- 
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Concentrating phase and stabilization; 2- 05/12GI experiment; 3- 05/12GII experiment; 4- 

05/12GIII experiment; 5- 05/12DI experiment; 6- 05/12GIV experiment; 7- 05/12DII; 8- 

05/12GV experiment. 

In the majority of the runs, good agreement was obtained between TDSw  and DSw , once past 

the period of conditions stabilization after the vacuum pump start-up. This is expected in the 

absence of crystals. Every plateau on the value of TDSw  corresponds to growth or dissolution 

experiments at constant mass fraction of water. The experiments are named by (i) the day and 

month of the run, (ii) the letters “G” or “D”, depending on if it is a growth or dissolution 

experiment, respectively, and (iii) a Roman numeral corresponding to the chronological order 

at which they were performed (03/12DII is the second dissolution of the run of the 3rd of 

December).  
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Figure 2.6. Record of the water flow rate and massecuite level during the 05/12 run. 

Data resulting from the mass balance method are presented in Figures 2.7 and 2.8. To obtain 

these results, the experimental data shown in Figures 2.5 and 2.6, and the initial purity of the 

mother liquor were used. The derived equations can be implemented for on-line monitoring of 

CC , mass of crystals, liquor purity, and NS W  without making use of the historical record of 

the measurements. This way, the accumulation of systematic errors is minimized. The results 

are obviously affected by the quality of the measurements; for example, fluctuations in the 
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concentration measurement are reproduced and even amplified in the resulting CC  and liquor 

purity profiles of Figures 2.7 and 2.8. Because of the scatter in the purity results, moving 

averages for 40 points were calculated and presented in Figure 2.8. 
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Figure 2.7. Variation of the crystal content in the massecuite during the 05/12 run. 
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Figure 2.8. Variation of the liquor non-sucrose to water ratio and purity during the 05/12 run.  



Vacuum pan monitoring by mass balance and image analysis methods 

 21 

The image analysis method was applied to four growth experiments under similar 

experimental conditions. The results are shown in Figure 2.9. Each point of the graphic 

corresponds to the arithmetic mean of the crystals equivalent diameters, measured in 5 min 

intervals. Sometimes, bubbles and other foreign elements appear in the images, affecting the 

crystal size measurements. The Chauvenet rejection criterion was applied to eliminate these 

elements from the population of crystals [15]. The satisfactory agreement between the profiles 

of Figure 2.9 is good evidence of the consistency of the method.  
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Figure 2.9. Evolution of the mean equivalent crystal diameter obtained by the Image Analysis 

Method during four growth experiments. � - mean seed diameter obtained by laser light 

diffraction. 

The measurements by image processing were only possible for the first growth experiments 

(GI) of the runs, because high mass fractions of solid matter seriously affect the quality of the 

images. As explained in the method description, the difficulties in analyzing in situ images 

due to incomplete crystal silhouettes and joined/overlapped crystals were solved by 

estimating the approximate individual areas. Preferably, the number of these cases should be 

much lower than the well-defined isolated crystals, although as the crystals grow, the 

percentage of extrapolated silhouettes and joined units also increase (Figure 2.10). 
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Figure 2.10. Percentage of different types of particles along the time for the 03/12GI 

experiment. The bars refer to single and joined/overlapped crystals and the line to incomplete 

silhouettes. 

In Figure 2.10, “extrapolated size” corresponds to the percentage of isolated crystals whose 

extrapolated area is higher than the initial incomplete silhouette by more than 10%. In the first 

15-20 min of growth, the small crystals seldom appear joined or overlapped, but at the end, 

the percentage of isolated crystals decreases to 80%. The uncertainty of the measurements is, 

therefore, higher at the end of the GI experiments. Even so, in all experiments a clear 

maximum size limit was visible without significant scatter. 

 Image analysis techniques can be an important tool to describe the change in crystal 

size distribution (CSD) during crystallization and, consequently, can contribute to a better 

understanding of the process. Studies on crystal growth dispersion, nucleation, and 

agglomeration, among others, can be made from the dynamic CSDs and the statistical 

parameters of these distributions. The image analysis method was used to calculate the 

population density distributions with time, as shown in Figure 2.11.  
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Figure 2.11. Change in the crystal size distribution during the 03/12GI experiment. 

As the growth advances, CSD, expressed in Figure 2.11 by the number fraction of crystals 

with equivalent diameters comprised within a differential size fraction, becomes broader. 

Considering the specific experimental conditions at which the results were obtained, with low 

CC  and small crystals, the increasing spread of the CSD is a predictable consequence of the 

growth rate dispersion and of the size-dependent growth phenomena. Other events associated 

with this behavior, such as secondary nucleation, crystal breakage, and agglomeration, are 

less probable to occur to any extent under these boiling conditions. 

 In some of the trials, the mass balance method and the image analysis method were 

simultaneously employed. To compare the results of both methods, the evolution of the mean 

equivalent crystal diameter was determined. To do that, it is necessary to know the number of 

growing crystals inside the pan and to find in the literature an adequate volume shape factor. 

The mean equivalent diameter of the crystals is calculated from their mass according to 

 

1
3

eq
s

m
D

Nαρ
� �

= � �
� �

 (2.6) 

The number of crystals in the pan was approximately calculated as described in the 

Experimental Section. There is no unanimity in the literature about the volume shape factors 

of sugar crystals, simply because, depending of the method of size measuring, this parameter 
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has different values. From the review made, the value found by Bubnik and Kadlek [13] of 

0.750α =  led to the best results. In that work, the mass of crystals was related with a linear 

dimension consisting of the mean aperture of sieves. Apparently, other shape factors 

determined by image analysis techniques would be more suitable to compute eqD , but in those 

cases, the crystals are observed at their most stable position [11, 13]. This is a significant 

difference from the method here used, since the on-line images taken from the pan show the 

crystals flowing downward in the liquor, therefore assuming a variable position. With the 

values of α  and N , and knowing from literature the density of sugar crystals 

1587sρ = kg/m3 [13], it was possible to compare the two methods (see Figures 2.12–2.14). 

The confidence intervals of each mean equivalent diameter measured by image processing at 

a level of significance of 5% are represented by error bars. The number of crystals analyzed 

changed from ~50 to 400 per each 5 min interval. Increasing this number, which could be 

done by increasing the image capture frequency, the confidence interval would decrease, but 

at the same time, the possibility of analyzing repeated crystals would be higher. 
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Figure 2.12. Comparison between the mean equivalent diameters obtained by the Image 

Analysis Method and by the Mass Balance Method, for the 26/11GI experiment. � - mean 

seed diameter obtained by laser light diffraction. 
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Figure 2.13. Comparison between the mean equivalent diameters obtained by the Image 

Analysis Method and by the Mass Balance Method for the 03/12GI experiment. � - mean 

seed diameter obtained by laser light diffraction. 
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Figure 2.14. Comparison between the mean equivalent diameters obtained by the Image 

Analysis Method and by the Mass Balance Method for the 05/12GI experiment. � - mean 

seed diameter obtained by laser light diffraction. 

Considering the approximations made, good agreement between the methods was obtained, 

both in the range of the measured crystal size and in the way the crystal size changes. There is 
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a period of unstable conditions that follows seeding, caused by the effect of air entrance on 

the absolute pressure control. Disturbances of this kind have a strong impact on the 

calculation of the mass of crystals by the mass balance method, especially for low CC . 

Consequently, representative values of eqD  for the first minutes of the GI experiments were 

only possible to be obtained by the image analysis method. 

2.5 Conclusions 

 Two methods were proposed for vacuum pan monitoring: 

- By the mass balance method, the evolution of the crystal content, mass of crystals, liquor 

purity and liquor non-sucrose to water ratio during sugar boiling runs was determined. The 

information required consists of the purity of the syrup and typical boiling conditions. The 

robustness and applicability of this method make it suitable to be implemented for on-line 

measurements. 

 - By the image analysis method, images from the massecuite taken during the boiling runs 

were processed to calculate the mean crystal size. The applicability of this method was 

limited to small crystal contents; otherwise, the quality of the images gets too poor to be 

processed. In this work, the method was employed for crystal contents between 0 and 10%, 

approximately, and mean crystal sizes below 0.1 mm. Image analysis is a tool of growing 

interest in crystallization, since it also permits more fundamental studies based on the change 

of crystal size distribution with time.  

 A good agreement was found when comparing the crystal size profiles obtained by the 

two methods. 
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3. Investigation into crystal growth 

kinetics and solubility 

Overview 

 A methodology to calculate sucrose saturation concentration under normal conditions 

of evaporative crystallization of sugar was adopted and will be presented. Its practical 

application is supported in the sugar boiling experiments that were described in the previous 

chapter. The calculated profiles of mass of crystals and supersaturation with time are used to 

determine the crystal growth kinetics of sucrose, at different stages of the strikes. Published 

data confirm the equilibrium and kinetic results obtained for pure sucrose and industrial cane 

syrups. Increasing non-sucrose to water ratios in the molasses clearly lowered the sucrose 

solubility coefficients. A similar effect on the crystal growth rate was harder to identify, since 

other parameters, like the ones related with hydrodynamic conditions and crystal size, are 

known to also influence it. The methods proposed proved to be robust and of direct 

application to sugar process crystallization. 
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3.1 Sucrose solubility in cane molasses 

 As a parameter quantifying the deviation from the equilibrium conditions of the 

solutions, supersaturation requires the knowledge of solute solubility. Many experimental 

equations correlating solubility and temperature are available for the most common solutes. 

Depending on their nature and concentration, impurities can have a dramatic influence on the 

saturation limit, either increasing or decreasing it. This is well-known in the sugar industry, 

where the wide variability and quantity of non-sucrose compounds make accurate 

supersaturation measurements a difficult task. The variation of the sucrose saturation limit 

with purity is well-described for beet sugar molasses (concentrated impure solutions of 

sucrose) by the solubility coefficient ( SC ), defined as the quotient of the sucrose solubilities 

(expressed by (g of sucrose) (100 g of water)) in impure and pure solutions. Cane sugar 

solutions are a more problematic system. For this case, there are fewer equilibrium studies 

and there is a wide dispersion of results, as the review made by Love confirms (Figure 3.1) 

[1]. 
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Figure 3.1. Range of sucrose solubility coefficients in impure cane solutions (adapted from 

the review made by Love [1]).  

Sucrose solubility coefficients in cane molasses are often related to the non-sucrose to water 

ratio ( NS W ) and also to the reducing sugar to ash (inorganic constituents) ratio, contrary to 
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what happens for beet molasses, where only the first ratio is used. Also, cane molasses 

composition is less predictable than that in the beet case. The unpredictability of the 

equilibrium conditions makes it desirable for sugar technologists to be able to do periodic 

solubility tests. Unfortunately, the time and means required for these analyses make this an 

impracticable objective.  

 Crystal growth kinetics have an important role in the design and management of 

industrial crystallizers. Kinetic data determined in the laboratory may be used in industry. 

However, scale-up problems may result from this procedure, as it often occurs in the case of 

sucrose crystallization. In this work, crystal growth rate curves were obtained in a pilot plant 

pan, making use of the calculated profiles of supersaturation and mass of crystals. 

3.2 Estimation of solubility from crystallization 

curves 

 Solubility at a given temperature can be experimentally determined by allowing 

crystals to grow or dissolve until saturation is reached and measuring the solution 

concentration at that point. These experiments can take days, depending on the system studied 

and the technique chosen. A new procedure is proposed, which may be applied rapidly under 

normal crystallization conditions (e.g., application to evaporative crystallization). A typical 

crystallization curve is shown in Figure 3.2.  

time

c

c*

ci

 

Figure 3.2. Crystallization curve.  



Chapter 3 

 32 

The solute concentration starts to decrease when the crystallization begins ( ic ) and gradually 

tends toward saturation. Saturation is represented by the concentration at that point ( *c ). The 

idea behind the new method is to describe mathematically the progression of crystallization, 

so that it is not necessary to wait for saturation. Solubility can be estimated when the extent of 

the experiment is enough to adequately describe all the parameters of the concentration 

profile. 

 The following analysis will be done assuming a constant mass of water ( wm ), which 

makes it valid for cooling crystallization or for evaporative crystallization with automatic 

control of the water content. For convenience sake, the solute concentration ( c ) will be 

expressed in terms of mass of solute per mass of water, so its variation can be easily related 

with the change of the mass of crystals ( m ) with time ( t ): 

 w

dm dc
m

dt dt
= −  (3.1) 

If no nucleation occurs, the crystal mass increase per time and per unit area is given by a 

growth law, generally defined by a power law equation, 

 ( )1
* g

G

dm
K c c

A dt
= −  (3.2) 

where GK  and g  are kinetic parameters. Combining Eqs. (3.1) and (3.2) gives 

 ( *)gw
G

m dc
K c c

A dt
− = −  (3.3) 

This equation can be solved numerically after expressing the surface area of the crystals ( A ) 

as a function of time. It would be more suitable to have instead an analytical solution that 

could be fitted to experimental data to obtain *c . With that aim, a simplification will be made 

assuming a constant average crystal surface area ( A ) over the growth period. The 

consequences of this approximation will be discussed below, but it immediately simplifies the 

integration of Eq. (3.3): 

 
( ) 0*i

c t

Ggc
w

dc A
K dt

mc c
= −

−� �  (3.4) 

resulting from that the following concentration profile: 
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 ( ) ( )
1

1 11 * *g g
ic K g t c c c− −� 	= − − + − +


 �
 (3.5) 

with  

 G
w

A
K K

m
=  (3.6) 

The saturation concentration *c , and the other two parameters of Eq. (3.5) ( g  and K ) can 

now be obtained by minimizing the differences between the experimental c  vs t  curve and 

the calculated one. Maurandi et al. [2] calculated the sucrose saturation concentrations from 

crystallization curves using an analogous equation. However, in this case, the regression 

parameters obtained were essentially empirical, corresponding to a particular case of Eq. (3.5) 

when 2g = .  

 It is important to establish the reliability of the value found for *c , since it is 

calculated from an approximate solution assuming invariant crystal surface area. For doing 

that, the differential equation, which in fact describes the process (Eq. (3.3)), was numerically 

solved for several sets of parameters. These solutions, obtained with variable area, will be 

called “true profiles”. Equation (3.5) was fitted to the true profile and the resulting parameters 

( *adjc , adjg , and adjK ) were compared to the ones adopted when computing the differential 

equation (see Figure 3.3). 
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Figure 3.3. Numerical solution of Eq. (3.3) (“True” profile) and representation of its best fit, 

using Eq. (3.5).  
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The calculated solubility ( *adjc ), was in all cases, in close agreement with the assumed *c  

(relative differences ∼1%). The same cannot be said for the other parameters, since little 

differences in the adjustment, like the ones reported in Figure 3.3, considerably affect these 

parameters. From this, one can conclude that Eq. (3.5) may be useful for solubility estimation, 

as it is intended in this work. 

 When predicting *c  from a segment of the chart, the error of the extrapolation will be 

higher as the distance from equilibrium increases. Consider, for example, the case of Figure 

3.4, where only the data comprised between 60% and 90% of the full range of variation of c  

are used to fit Eq. (3.5). The errors found on the calculation of *c , using the range of data 

considered, are ∼5%, which is an acceptable result for engineering purposes. Nevertheless, the 

value of *c  will be more reliable if the time interval is longer and approaches saturation more 

closely. Solubility data can, therefore, be extrapolated from partial crystallization curves both 

for pure and impure solutions. 
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Figure 3.4. Extrapolation of *c  from a segment of the normalized crystallization curve. 

Certainly, the accuracy of the results will always depend on the instrumentation employed to 

measure the solute concentration and on temperature control. In this work, the proposed 

method will be applied to determine the solubility coefficients of sucrose in sugar cane 

solutions under normal boiling conditions. A similar approach was used by Lionnet and Rein 

[3] to evaluate solubility coefficients. However, they applied a model to cooling 
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crystallization of massecuites (mixture of sucrose crystals and their mother liquor during the 

crystallization process) with much higher non-sucrose to water ratios. 

3.2.1 Results and discussion 

 Solubilities were calculated for growth and dissolution experiments according to the 

method described above. The experimental data were obtained during the sugar boiling runs 

described in Chapter 2. An application example is given in Figure 3.5, where Eq. (3.5) was 

fitted to the sucrose crystallization curve to determine *c .  
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Figure 3.5. Plot of the dissolved sucrose concentration during the 05/12GII experiment and of 

the fit of Eq. (3.5). The solubility found, * (259.9c = kg sucrose) (100 kg water), is 

represented by the dashed line.  

Experimental results were considered after the automatic control of the amount of water was 

stabilized. The sucrose concentration at that moment corresponds to the ic  parameter of 

Eq. (3.5). In the case of Figure 3.5, (301.9ic = kg sucrose) (100 kg water). The sucrose 

solubility coefficients corresponding to the values of *c  obtained were then calculated, 

taking into account the sucrose solubilities in pure solutions given in the literature for the 

operating temperature [4]. The results were plotted against the non-sucrose to water ratio, as 

shown in Figure 3.6. Several experiments were performed for three levels of NS W : 0.434, 

0.490, and 0.596. These values correspond to the chosen steps on the total dry solids’ 
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concentration of 78.0%, 80.0%, and 83.0%, respectively. Each confidence interval of Figure 

3.6 is estimated with the sucrose solubility coefficients resulting from more than 6 different 

experiments. 
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Figure 3.6. Influence of NS W  on the measured sucrose solubility coefficients for three 

syrups. Confidence intervals of SC  at a level of significance of 5%, are represented for the 

three levels of NS W  at which experiments with cane syrup were most often carried out. 

For the range of non-sucrose to water ratios considered, SC  in cane solutions is expected to 

decrease with NS W , tending to unity when 0NS W =  (Figure 3.1). This is confirmed by 

Figure 3.6. The values of SC  obtained for synthetic syrup are slightly lower than 1. This 

could be explained by the existence, in small quantities, of impurities present in the 

commercial sugar and in the tap water used to prepare the synthetic syrup. The sucrose 

solubility coefficients obtained with cane syrups are lower than expected from the study 

summarized in Figure 3.1. For example, the lower value of SC  expected in that review for 

0.434NS W =  is ∼0.95, while the average value found here was 0.86. The differences 

reported may have their cause in the method used for SC  determinations. The published 

values are generally determined in the laboratory under experimental conditions that are very 

distinct from the ones at normal vacuum pan boiling. Schultz and Edye [5], using an 

innovative analytical technique (NMR) have also found SC values lower than other literature 

data (Figure 3.7). The non-equilibrium conditions during vacuum pan boiling and the 
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existence of systematic errors on calculating the solubility coefficients were admitted by the 

authors as possible explanations to those findings.  
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Figure 3.7. Comparison between the sucrose solubility coefficients found in this work and the 

results of Schultz and Edye [5]. The literature values were obtained with cane liquor and 

molasses of different grades (A, B and C). 

 Moreover, according to Figure 3.7, it seems that different SC  vs NS W  correlations 

can be obtained depending on the grade of the syrup/molasses boiled. The results of Figure 

3.6 also suggest this, since the equilibrium coefficients obtained with cane syrups suggest 

higher SC values than those registered with blended syrup. This may be related to other 

factors influencing the sucrose solubility in sugar cane solutions, like the reducing sugar to 

ash ratio ( RS A ) [6]. It is known in the cane sugar industry that sucrose solubility 

coefficients decrease as RS A  increases. 

3.3 Growth rate measurement 

 A means of calculating crystal growth kinetics will be described here and its 

application exemplified for the case of the evaporative crystallization of sugar. Information 
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about the change in the concentration of solute and mass of crystals with time must be 

available. Other prerequisites are the sucrose solubility (to calculate the supersaturation) and 

the parameters of crystals, such as their number and shape factors. 

 Crystal growth rate ( GR ) is conventionally defined in terms of mass deposition per 

unit time and per unit crystal area: 

 G

m
R

A t
∆=

∆
 (3.7) 

Existing experimental methods of growth rate measurement use the mass increment in a small 

time interval t∆  to calculate GR . In these cases, the crystal surface area is assumed to remain 

constant for that period of growth [7]. The use of a mean surface area was suggested by Ang 

and Mullin [8] for significant crystal size variation. A new approach is now proposed where 

such approximations are not needed. The surface area is expressed in terms of the mass of 

crystals according to the definitions of volume and surface area shape factors (α  and β , 

respectively), 

 
2/3

1/3

s

m
A N β

ρ α
� �
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� �

 (3.8) 

where N  is the number and sρ  the density of crystals. Substituting this equation in Eq. (3.7) 

gives 

 
( )2/3

1/3 2 /3
s

G

m
R

N m t

ρ α
β

∆=
∆

 (3.9) 

this reduces to 

 
( )2/3 1/3

1/33 s
G

m
R

N t

ρ α
β

∆=
∆

 (3.10) 

This way, the average growth rate for the period t∆  is given as a function of the change in the 

mass of crystals raised to the power of 1 3 . If data for the average supersaturation during the 

same period are available, crystal growth kinetics can be determined, representing GR  as a 

function of supersaturation. An analogous practice will be necessary for dissolution rates 

( DR ) determination, but in this case,  
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( )2/3 1/3

1/33 s
D

m
R

N t

ρ α
β

∆= −
∆

 (3.11) 

Improved accuracy of results arises when the time intervals considered in Eqs. (3.10) and 

(3.11) correspond to small variations in supersaturation. However, the quality of the analytical 

techniques ultimately determines the choice of interval extent, since short increments can 

amplify measurement errors. When growth experiments are carried out at constant 

supersaturation, Eq. (3.10) is integrated to give 

 
( ) ( ) ( )

2/3
1/3 1/3

1/3

1
3 s

G f i
f

R m m
N t

ρ α
β

� 	= ⋅ − �
 �
 (3.12) 

This result is well-known from literature for crystal growth rate measurements in fluidized 

beds [9]. 

3.3.1 Results and discussion 

 Crystal growth and dissolution rates were calculated according to Eqs. (3.10) and 

(3.11), respectively, for the sugar boiling experiments considered in the preceding solubility 

study. Examples of the results and the experimental conditions are summarized in Table 3.1. 

Table 3.1. Experimental conditions for the sucrose growth and dissolution experiments. 

CC  (%) 
Experiment Syrup 

Absolute 
Pressure 

(kPa) 

Average 
Temperature 

(ºC) 

Mass of 
Massecuite 

(kg) 
Min Max 

NS W
 

26/11GI Cane 18.56 65.7 31.8 0 8.1 0.434 

26/11GII Cane 18.56 65.6 30.2 8.1 16.9 0.490 

26/11GIII Cane 18.56 66.1 28.0 16.9 23.8 0.596 

05/12GI Cane 17.20 64.5 35.1 0 6.3 0.434 

05/12GII Cane 17.20 64.2 34.2 6.3 17.0 0.490 

05/12GIII Cane 17.20 64.5 32.9 17.0 28.1 0.596 

11/12GI Synthetic 15.58 62.3 36.2 0 13.6 0 

11/12GII Synthetic 15.58 62.3 34.1 13.6 22.5 0 

03/12DII Cane 17.85 64.6 36.1 9.3 16.2 0.434 

05/12DI Cane 17.20 63.7 34.2 18.1 28.1 0.490 

15/12DI Cane 15.24 62.0 36.0 18.5 28.9 0.490 

15/12DII Cane 15.24 63.3 36.0 20.2 31.0 0.490 
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The sucrose crystal properties are represented by the crystal shape factor, F , defined as, 

 
( )2/3

s

F
β

αρ
=  (3.13) 

The average value of F  found by Bubník and Kadlec [10] (4.47 mm2mg2/3) was used. The 

number of growing crystals was calculated using the seed mean diameter measured by laser 

light diffraction (see Chapter 2), and it is assumed to remain constant during the 

growth/dissolution. Through the mass balance method, the change in the mass of crystals 

during the experiments was calculated. As is shown in Figure 3.8, the experimental results 

have a certain degree of scatter. Therefore, moving averages of 1 3m  and c  were calculated 

using a variable number of data points, depending on the overall duration of the experiment. 

This value corresponds to the number of readings in the time interval t∆  chosen to evaluate 

the crystal growth and dissolution rates. In the example considered, the mass of sucrose 

crystals increased from tm  to t tm +∆  at an average crystal growth rate of GR′  that is given by 

Eq. (3.10). The corresponding average sucrose concentration is, as Figure 3.8b illustrates, c′ . 

Following this methodology, information was gathered in order to determine the kinetic 

curves representing the influence of supersaturation (and undersaturation) on the crystal 

growth (and dissolution) rates. Supersaturation is here defined by *c c c∆ = − , where *c  is 

the sucrose solubility found for each experiment according to the method formerly presented 

. 

 

Figure 3.8. Representation of (a) the mass of crystals raised to the power of 1/3 and (b) 

sucrose concentration during the 05/12GII experiment, and the respective 40 point moving 

averages.  
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Crystal growth kinetics presented in Figure 3.9 were obtained from the experimental data 

represented in Figure 3.8. 
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Figure 3.9. Crystal growth rates of sucrose calculated from the boiling data of the 05/12GII 

experiment (experimental conditions in Table 3.1).  

In general, the kinetic behaviour depicted is expected from growth theories. The observed 

curve fluctuations may be caused by gradients on the massecuite temperature, which affect 

the concentration estimation through the boiling point elevation and, indirectly, the 

calculation of the mass of crystals by mass balance. Deviations from homogeneous conditions 

inside the pan will aggravate these effects. It should be noticed that each curve is obtained 

under varying experimental conditions of solid matter content, mother liquor purity, and other 

physical properties of the massecuite. For instance, the growth rates of Figure 3.9 

corresponding to higher supersaturations were obtained at the beginning of the experiment, 

when the crystal content, crystal size, and impurity concentration in solution were the lowest. 

The differences on the operating conditions are more notorious among experiments carried 

out at different stages of the strike. The kinetic consequences are, however, difficult to 

distinguish, as in the case represented in Figure 3.10. It can be seen that growth rates are in 

fair agreement throughout the run, despite the different experimental conditions summarized 

in Table 3.1.  
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Figure 3.10. Crystal growth rates of sucrose obtained during the run of 05/12 (experimental 

conditions in Table 3.1).  

 The impurity concentration in the mother liquor exponentially decreases the growth 

rate [11]: 

 1

2 1 2

exp 1.75G

G

R NS NS
R W W

� �� 	� �� � � �= − −� �� � � � �
� � � �� �
 �� �

 (3.14) 

Following that, for the same supersaturation, the rates measured at 0.434NS W =  (05/12GI) 

should be 10% higher than the ones at 0.490NS W =  (05/12GII) and 30% higher than the 

ones at 0.596NS W =  (05/12GIII). Instead, the last experiment had the faster growth kinetics 

of the run, certainly as a consequence of other variables influencing the process. Below, it is 

shown that crystallization was also affected by diffusional limitations and, therefore, by the 

pan circulation. Hydrodynamic conditions are a complex function of variables such as crystal 

content, overall mass of massecuite, evaporation rate, efficiency of the mechanical stirring, 

massecuite density and viscosity, etc. In brief, as the run evolves, the increasing mass fraction 

of solids turns the massecuite thicker, decreasing the rate of mass transfer. Bigger crystals are 

frequently assumed to grow faster [12, 13], so the enlargement of the crystals during the run 

also will favor the growth kinetics. 
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 Definitive conclusions on the effect of each process variable, separately, are not easily 

taken because of other interactions, like secondary nucleation or agglomeration. These 

disturbances will become more significant for high contents of solid matter. Even so, the 

kinetic results for cane syrups showed a good general agreement in all runs. The values taken 

from literature of crystal growth rate in pan operation (Table 3.2) fall in the range of the 

measured rates summarized in Figure 3.10. Linear growth rates (G ) were gathered from the 

literature, at comparable experimental conditions of temperature and mother liquor purity, and 

converted into overall mass growth rates ( GR ) according to the following expression, 

 3 s
GR G

αρ
β

=  (3.15) 

using the shape factors found by Bubník and Kadlec [10]. 

Table 3.2. Literature values of linear and mass growth rates of sucrose crystals, for the 

evaporative crystallization of sugar. 

Source G (µm/hr) 510GR × (kg/m2/s) 
Wright [14] 150 3.0 

Miller and Broadfoot [15] 52 – 121 1.0 – 2.4 

Lionnet [16] 40 – 144 0.8 – 2.9 

  

As mentioned by Georgieva et al. [17], there are few studies describing the sucrose growth 

rate under industrial conditions. Wright and White [11] summarized the effect of 

supersaturation ( S ), temperature (T ), and non-sucrose to water ratio on the crystallization 

rate in vacuum pans through a general equation: 

 ( )( )1 0 2 31 exp
NS

G K S K K K
W

� �= − + −� �
� �

 (3.16) 

The constant 2K  is an Arrhenius-type function of the temperature and activation energy. It 

was found that the original parameters 0K , 1K , 2K , and 3K  overestimate the crystal growth 

rates [1]. Using, instead, the values found by Li-Wu and Corripio [18] ( 0 0.005K = ; 

1 6000K = µm/h; 2 0.37K = ; 3 2.45K = ) for the same parameters, the predicted growth rates 

are still above the measured ones, as illustrated in Figure 3.11 for the run of 26/11. The 

differences found are not surprising, taking into account all the factors affecting the final 

kinetics, namely differences in experimental conditions. 
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Figure 3.11. Crystal growth rates of sucrose obtained during the run of 26/11 (experimental 

conditions in Table 3.1) and predicted curve according to Eq. (3.16) ( 66T = ºC and 

0.490NS W = ) with the parameters found by Li-Wu and Corripio [18]. 

The results obtained in the run performed with synthetic syrup show good agreement with the 

laboratory data taken from Smythe [19] (see Figure 3.12).  
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Figure 3.12. Comparison between crystal growth rates of sucrose obtained during the run of 

11/12 (experimental conditions in Table 3.1) and the results found by Smythe [19] at 60.5 ºC. 
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The literature values were obtained at slightly lower solution temperature (60.5 ºC) and for 

small diffusional resistances (stirring speed = 3000 rpm). When “pure” syrup was used, 

crystal growth rates were higher than those obtained with factory liquors. Comparing the 

growth rates at the same supersaturation of the 1112GI (synthetic syrup) and 0512GII (cane 

syrup) experiments, it was found that the former are 2 2.5− ×  faster. According to Eq. (3.14), 

the expected rate increase when changing from 0.490NS W =  to 0NS W =  is 2.36× . The 

range of supersaturations covered during the 11/12 run (Figure 3.12) is smaller than that in the 

experiments with impure syrups as a consequence of the higher solubilities found in that case.  

 The measurement of the dissolution rates was not always possible, because of the 

rapidity of the process when the crystal surface area is high. Sometimes substantial 

dissolution occurred before the control of the amount of water was fully stabilized. The 

kinetic curves obtained are represented in Figure 3.13, showing significant agreement 

between the data of different runs. As conventionally assumed by theories of mass transfer, 

the results are well-described by straight lines passing through the origin. This evidence 

supports not only the method of calculation of crystal growth/dissolution rates but also the 

calculation of sucrose solubilities.  
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Figure 3.13. Dissolution rates of sucrose crystals obtained during different boiling 

experiments (experimental conditions in Table 3.1). 
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Comparing with the other dissolutions experiments, the 03/12DII experiment corresponds to 

lower NS W  and crystal mass fraction. Nevertheless, the results are very close, indicating 

that different hydrodynamic and purity conditions did not appear to have an effect on the 

dissolution rate. 

 The results show that crystals dissolve faster than they grow. Considering the 0512DI 

and 0512GII experiments, the D GR R  ratio evaluated for an undersaturation/supersaturation 

of (5kg of sucrose) (100 kg of water) is 4.5. Under these circumstances, the surface 

integration resistance is dominant, but diffusion can have an influence on the sucrose crystal 

growth, especially at higher driving forces [20]. 

3.4 Conclusions 

 Experiments on evaporative crystallization of sugar were carried out in a pilot vacuum 

pan using synthetic and industrial syrups. The results obtained by the mass balance method 

presented in Chapter 2 were used to determine equilibrium data and growth and dissolution 

rates.  

 Sucrose solubilities, and hence the solubility coefficients, were determined using the 

concentration profiles fitted to an appropriate model. The effect of the non-sucrose to water 

ratio on the sucrose solubility coefficient was investigated. Increasing the non-sucrose to 

water ratio from 0 to 0.6 decreased the sucrose solubility coefficient from near 1.0 to ∼0.84. 

These results compare well with literature data for similar experimental conditions. 

 Crystal growth rates were determined from the increase in the crystal mass with time. 

The equation used was derived taking into account the variation of the crystal surface area, 

instead of assuming a mean surface area. Values up to 52 10−×  kg/m2/s were found with 

industrial syrups, while with pure syrup, the crystal growth rates were 2 to 2.5×  faster. 

Growth kinetic curves were obtained that represent the crystal growth rates as a function of 

sucrose supersaturation. The growth rates showed reasonable agreement with data in the 

existing literature. 

 Dissolution rates determined for different experiments are close, indicating that, for 

the experimental conditions used, different hydrodynamic and purity values did not appear to 

have a significant effect on the dissolution rate. 
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 The new methodologies proposed to calculate sucrose saturation concentrations and 

dissolution and growth rates proved to be robust and of direct application to sugar process 

crystallization. The results of this work were obtained under normal boiling conditions; their 

straightforward application to industrial conditions can be done with less scale-up problems 

than seen with conventional data measured at laboratory. 
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PART II 

 

NEW ENGINEERING MODELS 





4. Parallel step model 

Overview 

 In this chapter, the theoretical analysis of the factors influencing crystal growth is 

started. Conventional theories of mass diffusion and solute integration into the crystal lattice 

are the basis of a new model on the influence of the diffusional resistance on the crystal 

growth rate. Here, two resistances are assumed to coexist in parallel (solute diffusion and 

adsorption) before the integration step. The new arrangement of the processes involved and 

the estimation of crystallization kinetics as a function of what is adsorbed are thought as being 

the main differences of the parallel step model relatively to the classical diffusion-reaction 

theories. The physical concepts are presented in the first part of the chapter, following a 

methodology comparable to well-known derivations of adsorption isotherms. Supported on 

that theoretical background, shell mass conservation balances are formulated, with resulting 

second-order differential equations for the concentration profile around the crystals. The 

model characteristic equations are then derived for different crystal geometries, diffusional 

resistances and kinetic orders. Finally, a simplified growth rate equation is deduced, providing 

a generic way of relating the crystallization variables. 
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4.1 Introduction 

 Crystal growth theories and catalytic reaction mechanisms share common 

fundamentals on mass transfer, and the integration of solute in the crystal lattice is frequently 

seen as a chemical reaction with its characteristic kinetic parameters. In crystallization, it is 

admitted that the molecules adsorb at the crystal surface before being incorporated into the 

lattice and after being transported from the bulk of the solution. However, the weight of this 

intermediate adsorption step on the formulation of theoretical models is not the same in those 

two types of heterogeneous systems. It is recognized that the development of concepts like 

chemisorption and physisorption was a significant contribution to the understanding of 

catalytic kinetics, not only for the cases where the adsorption is rate controlling, but also for 

relating superficial to bulk concentrations, establishing overall reaction kinetics and 

characterizing solid surface properties [1]. On the opposite, adsorption has been vaguely 

considered on the major models describing the development of crystals in solution, remaining 

as a theoretical concept that is not clearly related to the process. Recent progresses on the 

characterization of growth kinetics of crystals in the presence of impurities renewed the 

interest on this phenomenon. For example, Kubota and Mullin suggested the use of a 

Langmuir adsorption isotherm for quantifying the coverage of the active sites at the crystal 

surface by impurities [2]. Based on the pinning mechanism originally proposed by Cabrera 

and Vermilyea [3], it was established how the amount of adsorbed impurities interferes with 

the growth rate of the crystal. Further developments of this model considered a non-

equilibrium adsorption model, where the coverage is calculated as a function of time [4]. 

Reported cases of crystal growth rate hysteresis could be explained by slow adsorption 

kinetics [5, 6]. In other works, different equations describing the adsorption equilibrium of the 

impurities, such as Temkin isotherms and Freundlich isotherms were also studied [7, 8]. In 

this work, the adsorption of the solute itself on the faces of the growing crystal will be 

considered, and a new physical and mathematical model for crystal growth from pure 

solutions will be presented. The mathematical treatment here presented shares common 

features with classical diffusion-reaction theories of crystal growth. Nevertheless, instead of 

the typical association in series of the diffusional and kinetic resistances, the proposed model 

considers two resistances coexisting in parallel (diffusion and adsorption) followed by the 

surface integration of adsorbed units into the crystal structure. In the subsequent chapter, the 
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practical consequences and benefits arising from this new theoretical concept are emphasized 

by testing it against experimental results on crystal growth kinetics. 

4.1.1 Two step model 

 It is generally considered that crystal growth from solution is the result of the 

existence of two steps in series: bulk or volume diffusion through a hypothetical stagnant film 

(diffusional step), followed by the integration of growth elements into the crystal lattice 

(“kinetic” step or surface “reaction” step). The associated resistances will determinate the 

overall growth rate:  

 ( )G d b iR k c cρ ′= −  (4.1) 

 ( )* r
G r iR k c cρ ′′= −  (4.2) 

In the case of simple integration kinetics, it is possible to find an analytical relation between 

GR  and the overall concentration driving force, *b bc c c∆ = −  [9]. Yet, a semi-empirical 

overall growth rate equation is frequently employed: 

 g
G G bR K c= ∆  (4.3) 

This equation has no theoretical background and the role of the kinetic and diffusional 

parameters is not established. In 1971, a way to quantify the involved resistances adopting the 

concept of “effectiveness factor” ( Cη ) from reactions on porous catalyst and non-catalytic 

gas-solid reactions to crystal growth was introduced [9]. This parameter can be defined as the 

ratio between the measured growth rate and the one expected in the absence of significant 

diffusional resistance, i.e., in the bulk conditions. The generally unknown interfacial 

concentration ic , can be eliminated by combining Eqs. (4.1) and (4.2): 

 
r

G
G r b

d

R
R k c

k

′
� 	′= ∆ − �′
 �

 (4.4) 

which can be rewritten as follows 

 ' 1
r

G G
r

r b d b

R R
k c k c

′
� 	

= − �′ ′∆ ∆
 �
 (4.5) 

and, at the same time, an equation for Cη  is obtained:  
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 ( )1 r
C Chη η ′= −  (4.6) 

where, 

 
'r

r b

d b

k c
h

k c
′∆=
′∆

 (4.7) 

This parameter is also known as “Damköhler number” [10, 11]. The so-called “two step 

model” is of great application for chemical engineering purposes, providing a simple and 

intuitive arrangement of the processes involved. Despite of that, difficulties in the scale up of 

crystallizers are often reported, due to uncertainties in the prediction of growth rates.  

 The main issues of an alternative diffusion-adsorption-integration theory will now be 

developed in a physical and mathematical point of view. Ideally, the proposed crystal growth 

model should eliminate the limitations and inconsistencies of the two step model, without 

significant losses in the simplicity of the concepts. 

4.2 Parallel step model – physical fundamentals 

 The adsorption of molecules at the crystal surface is of key importance in this model – 

the existence of non-compensate attractive forces leads to the existence of an adsorbed phase 

that works as a precursor of the incorporation of growth elements into the solid. The 

interactions should be essentially van der Waals forces, diminishing rapidly with the crystal 

surface distance. Based on that, a multi-layer adsorption disposition is assumed, where the 

sorbate concentration is considerably higher in the superficial layers than in the outer ones.  

 A connection between adsorption kinetics and crystal growth velocities can be 

demonstrated. For doing that, let us assume the following approximations for the adsorbed 

layers: 

1. The adsorption occurs in a defined number of places called “active sites”. 

2. Each active site can only accommodate one adsorbed unit. 

3. All active sites are energetically equivalent. 

4. There is no interaction between adsorbed units on neighbouring active sites. 
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These hypotheses can be found in typical adsorption isotherms derivations such as the 

Langmuir isotherm and the Brunauer-Emmett-Teller (BET) isotherm [1, 12, 13]. 

Representing by MA the active sites occupied by the solute A and by M the unoccupied ones, 

it can be said that the adsorption rate in each layer ( ads
nJ + ) is proportional to the concentration 

of A in solution and to the number of unoccupied active sites, M. On the other hand, the 

velocity of the inverse process of desorption ( ads
nJ − ) increases with the MA concentration. 

Schematically this equilibrium can be represented for the nth layer by 

 
ads

n

ads
n

n n n

J

J
A M MA

+

−

→+ ←  

where n = 1, 2, ... l , and l  is the total number of adsorbed layers. Consider now two 

successive layers, n  and 1n + . It is expected that the tendency of transferring adsorbed units 

from the ( )1n + th to the n th layer ( mig
nJ + ) will increase as the 1nMA +  and/or nM  

concentrations increase. The migration of adsorbed solute in the opposite direction ( mig
nJ − ) is 

promoted by high nMA  concentrations: 

 1

mig
n

n n nmig
n

J
MA M MA

J

+

+ −
→+ ←  

In addiction to this, in the first layer, the integration of the adsorbed units into the crystal 

structure should be taken into account. The higher the occupation of adsorption active sites, 

the faster the crystal grows, which leads to higher integration velocity (Jint): 

 
int

1
J

MA Crystal→  

This step is described in the literature through mechanisms like mononuclear two-dimensional 

nucleation, polynuclear two-dimensional nucleation or surface diffusion [14, 15]. Under 

steady state, the total number of occupied sites (and therefore, the total number of unoccupied 

sites) remains unchangeable. This means that 
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with mig
l

migmig JJJ +−+ ,, 00  and 0=−mig
lJ . Therefore 

 ( )int

1

l
ads ads

n n
n

J J J+ −

=

= −�  (4.9) 

Equation (4.9) will be very important on the physical support of the mathematical model. 

From it, one can infer that:  

1. The crystallization rate corresponds to the sum of the net adsorption velocities in every 

adsorbed layer.  

2. In each layer, the number of adsorbed units is certainly influenced by the proximity of the 

crystal; however, the integration velocity of the molecules into the crystal lattice could also 

have a role on it.  

3. Unlike what happens in the two step model, there is not a strict differentiation between the 

stagnant film and the adsorbed layer. Indeed, in the stagnant film the solute units are assumed 

to be in a diffusive movement, but also, in an adsorbing/desorbing equilibrium with the 

crystal surface.  

The same conclusions could have been drawn from the steady state balance to the free active 

sites, M . On the other hand, care must be taken when balancing the non-adsorbed solute A  

because, in this case, there is an additional source that takes into account the diffusional 

transport from the bulk of the solution. 

4.3 Mathematical model 

 From the preceding hypothesis of the physical model and using basic principles of 

mass conservation, the objective is now to obtain the model characteristic equations. 

Relations between crystal growth rate and factors like bulk supersaturation, temperature and 

hydrodynamic parameters should be clarified. 

 Some approximations or simplifying hypothesis will be assumed in this derivation. 

Despite of its frequent usage on mass transfer characterization, the stagnant film concept is an 

example of such idealizations [16]. Mass balances will be applied to an infinitesimal portion 

of that film, with the purpose of deriving concentration and flux profiles: 



Parallel step model 

 59 

 

Input of Output of

solute A solute A

per time unit per time unit

Amount of

solute A adsorbed

per time unit

� � � �
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� � � �
� � � �

� �
� �= � �
� �
� �

 (4.10) 

Some considerations should be taken into account regarding the quantification of Eq. (4.10): 

1. The chemical species A  enters and leaves the shell by a diffusive movement through the 

binary mixture of A  and B , according to Fick’s first law: 

 ( ) A
A A A B AB

dC
N x N N

dz
= + − D  (4.11) 

When the molar fraction of solute is low enough, one can write: 

 A
A AB

dC
N

dz
= −D  (4.12) 

In crystallization this is true only for sparingly solutes. It is likely that solute molecular 

diffusion during crystal growth can be affected by the existence of the adsorbed layer, 

especially in the cases of big molecules and thick adsorbed layers. 

2. For the conditions considered, there is a lack of theoretical foundations describing the 

transfer of solute from the solution to the adsorbed phase. As in similar situations, the right 

term of the material balance can be described via a kinetic law: 

 r
r

Mass fraction of

solute A adsorbed k c

per time unit

� �
� � = ∆� �
� �
� �

 (4.13) 

3. The kinetic constant rk  is temperature and distance-to-surface dependent. The former 

relation is given by an Arrhenius-type equation: 

 0 exp T
r r

E
k k

RT
� �= −� �
� �

 (4.14) 

However, the function relating rk  and the position in the film is more difficult to find. A 

solution to this problem will be suggested below. 
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4. Crystal geometry will affect the mass and flux distributions [10, 17]. A simple geometric 

approach will be assumed, followed by a generalization with respect to the crystal shape.  

4.3.1 Flat face growth 

 Consider in a first stage, the simplest situation of flat face growth (Figure 4.1), with a 

linear kinetic law.  

 

Figure 4.1. Growth of a crystal with a flat face. Sketch of the concentration profile in the 

stagnant film. 

For this geometry the area of mass transfer remains constant along the stagnant film. The 

mass balance applied to a slab of volume comprised between z  and z z+ ∆  is: 

 AB AB r
z z z

d c d c
A A k c A z

dz dz+∆

∆ ∆� � � �− = ∆ ∆� � � �
� � � �

D D  (4.15) 

In the limiting situation, when 0z∆ → , it becomes: 
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2

2 0r

AB

kd c
c

dz
∆ − ∆ =

D
 (4.16) 

or in dimensionless form: 

 
22

2
r

AB

kd f
f

dx
δ=

D
 (4.17) 

with x z δ=  and bf c c= ∆ ∆ . The boundary conditions refer to the concentration at the 

crystal-solution interface ( 0z = ), which is assumed to be the equilibrium saturation 

concentration ( *c c= ), and at the stagnant film-solution interface ( z δ= ), where the 

concentration is the same as in the bulk of solution ( bc c= ): 

 
( )
( )

1 , 1 ( )

0 0 , 0 ( 0)
bf c c x z

f c x z

δ= ∆ = ∆ = =��
�

= ∆ = = =��
 (4.18) 

The overall growth rate is the integral of the solute transfer rate over the volume of the 

stagnant film ( fV ): 

 
1

0 0 0

fV

G r f r b rR k cdV k cdz c k fdx
A

δρ ρ ρδ= ∆ = ∆ = ∆� � �  (4.19) 

The solution of Eq. (4.17) is only possible after knowing the function ( )rk x . Therefore, 

information about the change in the adsorption rate with the crystal distance would be 

necessary. As such is not possible, an equivalent kinetic constant ek  will be considered, that 

gives the same overall growth rate but with the difference of being constant along the film: 

 
1 1

0 0
G b r b e eR c k fdx c k f dxρδ ρδ= ∆ = ∆� �  (4.20) 

In the previous equation, ( )ef x  is the equivalent supersaturation profile, obtained from the 

following material balance 

 
2 2

2 0e e
e

AB

d f k
f

dx
δ− =

D
 (4.21) 

The solution of the differential equation, for the boundary conditions given in Eq. (4.18), is 

 
( )
( )

sinh
sinhe

x
f

φ
φ

=  (4.22) 
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where φ  is a dimensionless parameter, representing the kinetic step/diffusional step ratio: 

 
2

e e re

ABAB d

k k k
k

δ δφ
δ

= = =
DD

 (4.23) 

This definition has analogies with the Hatta number used in gas-liquid reactions and with the 

Thiele modulus well known in heterogeneous catalysis [13]. Furthermore, there is a 

correspondence between φ  and the parameter h  of Eq. (4.7). The overall rate equation results 

from Eqs. (4.20) and (4.22): 

 ( ) ( )
1 1 1

tanh sinhG re bR k cρ
φ φ φ
� �� �= ∆ ⋅ −� �
� �� �

 (4.24) 

This equation establishes both the relation GR  vs bc∆  and the role of the parameters rek  and 

dk  in the process. 

4.3.2 Influence of diffusional limitations 

 Diffusional limitations can be accounted through parameter φ . High φ  values mean 

slow diffusion comparatively with the kinetic step (diffusional regime). On the other hand, 

when the diffusional resistance is negligible the value of φ  is low (chemical regime). The 

thickness of the adsorbed layer would be related to the relative rates of diffusion and surface 

integration [18]. Growth rate equations for the limiting situations can be calculated from 

Eq. (4.24): 

In the diffusional regime, φ → ∞ , therefore 

 
1

diffG re bR k cρ
φ

= ∆ ⋅  (4.25) 

In chemical regime, 0φ → , and 

 
1
2chemG re bR k cρ= ∆ ⋅  (4.26) 

Diffusion-affected growth rate can be compared with the one predicted for chemical regime, 

through an effectiveness factor: 

 
chem

G

G

R
R

η =  (4.27) 
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For the current case of a slab crystal and a first order kinetics, this is the same as: 
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 (4.28) 

For chemical regime, 1chemη = , and when strong diffusional limitations are imposed, 

2diffη φ= . 

4.3.3 Generalized growth rate equations - Crystal geometry factor 

 The equations derived so far are for the planar case; the corresponding results for 

spherical and cylindrical crystals will now be considered. Applying the continuity equation to 

a spherical shell (Figure 4.2), gives 
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 (4.29) 

Similarly to what was done for the flat face growth, a kinetic constant that is independent of 

the position in the stagnant film is assumed. Again the concentration profiles are called 

“equivalent”, since they lead to the same growth rate as for the case of the true kinetic 

constant, rk . Simplifying Eq. (4.29) and letting ppf Rrr −= , one obtains 

 
2

2

2
0e e e

e
f f p f AB

d c d c k
c

dr r R dr
∆ ∆+ − ∆ =

+ D
 (4.30) 

Rendering this equation dimensionless, by setting e e bf c c= ∆ ∆ , fx r δ= , and using 

Eq. (4.23) becomes 
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2
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2
0e e

e
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d f df
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Rdx dxx
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δ

+ − =
+

 (4.31) 

Applying the same procedure to an infinitely long cylindrical crystal gives 
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 (4.32) 

 

Figure 4.2. Growth of a spherical crystal. Sketch of the concentration profile in the stagnant 

film. 

Complicated analytical growth equations can be deduced for spherical and cylindrical crystals 

expressions. Comparing Eqs. (4.21), (4.31) and (4.32) it is possible to deduce a general 

second-order differential equation, valid for the crystal shapes under study: 

 
2

2
2 0e e

e
p

d f df
f

Rdx dxx

κ φ

δ

+ − =
+

 (4.33) 

where 

 
or fz r

x
δ

=  (4.34) 

and κ  is a function of the shape factor for each geometry, 

 ( )Area
or 1

Volume pL Rκ = ⋅ −  (4.35) 
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The boundary conditions are defined by Eq. (4.18). For a given value of φ , the differences 

between equivalent concentration profiles, and consequently between effectiveness factor 

profiles for each geometry, arise from the values of κ  and pR δ  considered (Figure 4.3).  

 

Figure 4.3. Effectiveness factor versus φ for presented geometries and Rp/δ values. 

The overlapping profiles of Figure 4.3c can be understood from Eq. (4.33), since for high 

values of pR δ , the relative weight of the second term of this equation becomes negligible. It 

is believed that this is the common case in crystal growth since, for the majority of 

experimental conditions, high values of the Sherwood number are reported (at least 2Sh = , 

for natural convection conditions) [11] and  

 d p

AB

k RL
Sh L δδ

= = ≈
D

 (4.36) 
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It is, therefore, a good approximation to use the equations derived for flat face growth in any 

crystal geometry. 

4.3.4 Generalized growth rate equations - Kinetic order factor 

 Consider now a generalized kinetic order r . For a sufficiently high value of pR δ , 

the mass conservation law in the dimensionless form is 

 
( )2

2 1
2 0e r r

b e

d f x
c f

dx
φ −− ∆ =  (4.37) 

and the boundary conditions are defined by Eq. (4.18). In this case there is not an analytical 

solution, although it is possible to find an expression of η  (and therefore of GR ) accounting 

the asymptotic limits [19]. 

In the diffusional regime, φ  is high and  
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On the other hand, from Eqs. (4.27) and (4.37), 
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and the following expression can be derived 
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Manipulating the differential equation, becomes 
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and, 
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Replacing Eq. (4.42) in Eq. (4.40), results that 

 
( )

1

2 11
diff r

b

r

c
η

φ −

+
=

∆
 (4.43) 

This equation can be re-written in a form that is similar to the definition of diffη  when 1r = : 

 2diff gη φ=  (4.44) 

with 
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In the chemical regime, the solution is independent of the kinetic order r , i.e., 0φ →  and 

1η = . 

 The limiting cases obtained for a given kinetic order r , are comparable with what was 

deduced when 1r = . An approximate equation for the effectiveness factor can therefore be 

obtained by analogy with Eq (4.28): 

 ( ) ( )
2 1 1

tanh sinhg g g

η
φ φ φ

� �� �= −� �
� �� �

 (4.46) 

As illustrated in Figure 4.4, the major differences between the preceding equation and the true 

profile obtained numerically from Eqs. (4.37) and (4.39) occur for intermediate values of gφ  

The generalized growth rate equation results from Eq. (4.27) and from Eq. (4.46), 

 ( ) ( )
2 1 1 1

1 tanh sinh
r

G re b
g g g

R k c
r

ρ
φ φ φ

� �� �= ∆ ⋅ −� �+ � �� �

 (4.47) 

This equation can be widely used despite of experimental conditions and crystal shapes. 
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Figure 4.4. Approximate effectiveness factor (Eq. (4.46)) and the true effectiveness factor 

(numerical solution) vs gφ . 

4.4 Conclusions 

 An alternative model characterizing the physical processes during crystallization is 

presented. The Langmuir theory for monolayer surface adsorption is extended to the 

multilayer case following a method which can be related to the derivation of the BET 

equation. With this approach, the crystal growth rate corresponds to the net adsorption 

velocities extended to all adsorbed layers. The mathematical description of the process 

assumes the simultaneous occurrence of solute diffusion and adsorption, followed by the 

surface integration of the adsorbed molecules. The equivalent concentration profiles and 

growth rate equations are estimated. From the analysis of different cases concerning crystal 

shape, kinetic law, and diffusional resistance, a generalized overall growth rate equation is 

obtained – Eq. (4.47). 
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5. Interpretation of diffusion-

affected growth rate data 

Overview 

 Experimental results on crystal growth and dissolutions kinetics are taken from 

literature to test the novel parallel step model (PSM) and the well-established two step model 

(TSM). The chosen literature data allowed calculating the mass transfer coefficients during 

crystal growth, for different hydrodynamic conditions. The obtained results are compared 

with estimates from the  mass transfer theories. According to the TSM, the measured crystal 

growth kinetics can only be explained by means of an unrealistic variation of the mass 

transfer coefficient with the relative crystal-solution velocity. Conversely, mass transfer 

coefficients obtained by the PSM were confirmed by appropriate semi-theoretical 

correlations, both in their order of magnitude and in their behaviour. In addition, crystal 

growth and dissolution experiments of sucrose were carried out at 40 ºC in a batch crystallizer 

for different agitation speeds. The resulting kinetics are used to test the PSM in a system that 

is significantly different from the inorganic salts used in the analysed literature works. As 

predicted by this model, the existence of an adsorbed layer in the crystal surrounding is likely 

to affect the solute molecular diffusivity in the medium. Based on this premise, the results 

obtained with sucrose are well described by the PSM. 
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5.1 The role of diffusion during crystal growth 

 The growth of crystals from solution is known to be affected by mass transport 

processes. When mass transfer resistances are strong, changes in the hydrodynamic conditions 

of the solution will have a direct impact on the crystallization kinetics. The several theoretical 

models considering this subject admit the existence of a diffusive flux of the solute towards 

the crystal, according to Fick’s first law of diffusion. Yet, the way this step is related with 

other phenomena occurring during crystal growth (solute adsorption, surface diffusion, 

integration in crystal lattice, etc) is described by distinct viewpoints. More fundamental 

approaches depart from the work of Burton, Cabrera and Frank [1], where the growth of 

crystals at low supersaturations was successfully explained by the spiral movement of steps 

originated from surface imperfections. The original model was derived for crystals growing 

from vapour with dominant resistances taking place at their surface. In subsequent 

modifications to the Burton, Cabrera and Frank theory, the role of volume diffusion was 

further discussed [2, 3]. Despite of the theoretical and mechanistic interest of the atomic-scale 

models, soon it was noticed that their complexity would not facilitate the practical analysis of 

experimental data [4]. Instead, the use of empirical mass transfer relations between the 

Sherwood number ( Sh ), the crystal Reynolds number ( pRe ) and the solution Schmidt number 

( Sc ) was preferred for engineering purposes. This procedure is still adopted nowadays [5]. 

 Typically, crystals dissolve faster than they grow and the respective rates depend 

differently on the concentration driving force. These experimental evidences suggest that 

crystallization is not a pure mass transfer process (or a reciprocal process of dissolution), and 

so, care must be taken when analysing the overall kinetics through mass transfer correlations 

alone. The simple arrangement in series of the volume diffusion step followed by the solute 

integration at crystal surface (“kinetic” step) has found great applicability on the interpretation 

of crystal growth rates from solution. According to the already described two step model 

(TSM), the crystal growth rate ( GR ) is related with the kinetic ( rk ′ and r′ ) and diffusional 

parameters ( dk′ ) through the following equation (see Chapter 4):  

 ' 1
r

G G
r

r b d b

R R
k c k c

′
� 	

= − �′ ′∆ ∆
 �
 (5.1) 

The isolated role of supersaturation ( *b bc c c∆ = − ) on the crystal growth rate is usually given 

by a semi-theoretical law: 
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 g
G G bR K c= ∆  (5.2) 

For a given system, the parameters GK  and g  would assume different values depending on 

the temperature and diffusional resistance at which crystal growth rates were measured. 

Sometimes, the latter experimental condition is neglected or non-specified leading to 

reproducibility problems. As seen in Chapter 4, the mass transfer resistance during crystal 

growth can be quantified by means of the “effectiveness factor” ( Cη ), defined as the ratio 

between the measured growth rate and the one expected in the absence of significant 

diffusional resistance [6]:  

 
chem

g
G G b

C r
G r b

R K c
R k c

η ′
∆= =

′∆
 (5.3) 

As demonstrated, Eq. (5.1) can be conveniently rearranged in order to include the preceding 

definition, so that: 

 ( )1 r
C Chη η ′= − ⋅  (5.4) 

and h  represents the ratio between the kinetic and the diffusional steps (Chapter 4): 
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r b

d b

k c
h

k c

′′∆=
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 (5.5) 

The concept of effectiveness factor is been widely used, not only as a direct measure of the 

mass transfer influence on crystal growth, but also on the study of the growth kinetics change 

due to the presence of impurities [7-12]. 

 The effectiveness factor corresponding to a given overall crystal growth can be 

calculated by one of the following alternatives:  

I. If the crystal growth rate without diffusional limitations is known, Cη  can be computed 

from Eq. (5.3). 

II. If the mass transfer coefficient ( dk′ ) is known, the true kinetic parameters ( rk ′  and r′ ) can 

be determined by curve fitting of Eq. (5.1) to the crystal growth rate data. Once determined all 

the parameters, Cη  is again given by Eq. (5.3).  

These two cases will be hereafter called “type I” and “type II” problems. Type II problems are 

more often found, since dissolution experiments carried out under equivalent conditions of the 
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crystal growth give a prompt estimation of dk′  (the validity of this estimation will be later 

discussed). On its turn, true kinetic parameters are more demanding to obtain from crystal 

growth experiments. Previous studies must be made on when crystal growth rates start to be 

independent of the diffusional resistance. Type I problems are, consequently, less common. 

 An alternative perspective on the role of the diffusional resistance during crystal 

growth was presented in the preceding chapter. According to the new parallel step model 

(PSM), the following generalized growth rate expression can be used to relate GR  with 

supersaturation, mass transfer coefficient ( dk ) and the true kinetic parameters associated to 

the adsorption rate ( rek  and r ): 

 
1

r
G re bR k c

r
ηρ= ∆ ⋅
+

 (5.6) 

with ρ  being the solution density and η  the PSM effectiveness factor, 
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and  
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As indicated by Eqs. (5.3) and (5.7), the meaning of the effectiveness factor is the same 

independently if the model considered is the TSM ( Cη ) or the PSM (η ). What differentiates 

the two models is how the several variables and parameters affect the effectiveness factor, and 

hence, how they affect the crystal growth rate. For a better understanding of the different 

behaviours, the so-called Damköhler number ( Da ), relating the growth rate in absence of 

diffusional limitation (“chemical” regime) with the pure diffusional rate ( dR ) will now be 

used: 

 G chem

d

R
Da

R
=  (5.9) 

In what concerns with the TSM, the Damköhler number corresponds to the parameter h  

defined in Eq. (5.5). As a consequence, Eq. (5.4) relating Cη  with h  is also valid for Da : 

 ( )1 r
C CDaη η ′= − ⋅  (5.10) 
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In the case of the PSM, it should be noted that,  

 2g Daφ =  (5.11) 

And so, 

 ( ) ( )
2 1 1

2 tanh 2 sinh 2Da Da Da
η

� �
� �= −� �
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 (5.12) 

The two definitions of effectiveness factor given by Eqs. (5.10) and (5.12) are represented in 

Figure 5.1.  
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Figure 5.1. Influence of the Damköhler number on the effectiveness factor according to Eq. 

(5.10) (TSM) and to Eq. (5.12) (PSM). 

As shown, the region of low Da  values where the crystal growth rate is insensitive to 

changes in the mass transfer coefficient is smaller in the TSM case. In fact, the growth rate 

slowing down effect caused by the progressive increase of the boundary layer thickness is 

expected to occur much sooner by the TSM than by PSM. For example, if 0.5Da =  the 

crystal growth rate predicted by the TSM will be only 54% of the one expected in chemical 

regime, while by the PSM this percentage increases to 92%.  

 In the following section it will be investigated which of theoretical predictions 

represented in Figure 5.1 is closer to typical experimental evidences taken from literature. 

Additionally, experiments on the influence of hydrodynamics on sucrose crystal growth and 
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dissolution rates were carried out and the resulting data will be interpreted in the light of the 

PSM. 

5.2 Analysis of literature data 

 Many experimental works have been published on the factors influencing crystal 

growth such as supersaturation, temperature, impurities concentration, crystal size, 

hydrodynamic conditions, etc. However, most of the resulting conclusions are not suitable to 

compare the TSM against PSM. For example, very distinct effectiveness factors would result 

from each model if they were applied to a type II problem (where mass transfer coefficients 

obtained from dissolution experiences are used to estimate the weight of the diffusional 

resistance during crystal growth); however, it would not be possible to know if any of the 

solutions would be the correct one. To compare the models, crystal growth data obtained 

under different and well-defined diffusional conditions have to be known. Ideally, 

information on the limiting cases (pure chemical and diffusional regimes) should also be 

available. Variations on the growth behaviour due to different hydrodynamics could this way 

be compared with the two theoretical predictions. Among the experimental studies that were 

consulted, the comprehensive work of Mullin and Garside on the crystallization of aluminium 

potassium sulphate (potash alum) [13-15] appears to be indicated for these purposes. The 

effect of the solution velocity on the linear growth rate of the (111) faces measured in a single 

crystal growth cell [13] is of particular interest to determine the mechanism of growth. These 

results were obtained for the pure system, at constant temperature (32.0 ºC) and for crystal 

sizes around 2 mm. As both TSM and PSM admit, growth rate increased with solution 

velocity – Figure 5.2 and Table 5.1. For higher solution velocities this effect became less 

evident indicating that, under those conditions, the process started to be controlled by the 

kinetic step. The estimated crystal growth rate in absence of diffusional resistances was given 

by, 

 ( ) ( )1.62 0.02517.4 0.2 10chemG
b

s

R
c

ρ
±−= ± × ∆  (5.13) 

where sρ  is the crystal density.  
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Figure 5.2. Effect of solution velocity on the growth rates of single crystals of potash alum at 

32.0 ºC. Solution velocity (m/s): � = 0.217, � = 0.120, � = 0.064, � = 0.022, � = 0.006 [13]. 

Table 5.1. Parameters of the Eq. (5.2) (empirical growth rate law) that best fit the 

experimental results represented in Figure 5.2 [13]. 

u  (m/s) 510G sK ρ ×  (m/s) g  ± standard error 

0.006 2.93 1.39 ± 0.09 

0.022 4.31 1.41 ± 0.12 

0.064 14.4 1.63 ± 0.09 

0.120 16.4 1.62 ± 0.02 

0.217 19.4 1.65 ± 0.05 

 

Information provided by Eq. (5.13) and Table 5.1 allows calculating the effectiveness factor 

for each set of experimental conditions (type I problem),  

 ( )1.625
or

17.4 10
chem

G G
C g

G b

R K
R c

η η −−
= =

× ∆
 (5.14) 

According to the previous equation, crystal growth rate is more influenced by diffusional 

limitations at higher supersaturations. This effect is more pronounced in diffusional regime, 

when 1.62g � . Type I problems lead to the same effectiveness factor values, independently 

if the model considered is the TSM or the PSM. Despite of that, distinct consequences arise 

from each of the situations in terms of the importance of the mass transfer resistance. 

Recalling the two profiles represented in Figure 5.1, for a given value of effectiveness factor 
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it is expected the Damköhler number to be smaller when calculated through the TSM 

equations. Table 5.2 shows the effectiveness factors calculated for each solution velocity by 

using Eq. (5.14) and the corresponding values of Da  given by Eq. (5.10) (TSM) and by Eq. 

(5.12) (PSM). At same time, the definition of Damköhler number (Eq. (5.9)) is used to 

compute the mass transfer coefficients at the considered driving force of (0.010 kg 

hydrate) (kg  solution). 

Table 5.2. Values of effectiveness factor, Damköhler number and mass transfer coefficient 

obtained by the TSM and PSM for each solution velocity. The driving force for diffusion and 

crystallization was in all cases, (0.010bc∆ = kg hydrate) (kg  solution).  

TSM PSM u (m/s) η or ηC 
Da  dk′  (kg/m2

�s) Da  
dk  (kg/m2

�s) 

0.006 0.486 0.741 0.0238 7.860 0.0022 

0.022 0.652 0.357 0.0493 3.573 0.0049 

0.064 0.790 0.171 0.1028 1.679 0.0105 

0.120 0.943 0.038 0.4622 0.370 0.0475 

0.217 0.971 0.018 0.9514 0.180 0.0978 

 

Mass transfer coefficients obtained by the TSM were higher and more steeply dependent of 

the solution velocity than the ones given by the PSM. Semi-theoretical correlations for mass 

transfer in liquid-solid systems will be used to interpret the results of Table 5.2. Dissolution 

experiments were carried out with potash alum in a fluidized-bed crystallizer to determine the 

correlations parameters that best describe the dissolution rate data [15]. The results obtained 

with mean crystal sizes between 510 and 1750 µm and at different temperatures (between 15 

and 47 ºC) were well described by the following equation:  

 0.33 0.620.37 pSh Sc Re=  (5.15) 

This relationship allows estimating mass transfer coefficients for the set of experimental 

conditions and solution physical properties of the crystal growth experiments. Although 

crystallization and dissolution data were measured by different techniques (single crystal 

growth cell and fluidized-bed crystallizer, respectively), it has been concluded that the crystal 

growth behaviour obtained by one of the methods can be directly predicted by the results of 

the other [14]. Accordingly, mass transfer coefficients resulting from the growth experiments 
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(Table 5.2) were compared with the estimations of Eq. (5.15) at the same solution velocity. 

The obtained results are shown in Figure 5.3.  
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Figure 5.3. Comparison of mass transfer coefficients estimated from dissolution ( Dk ) and 

growth ( dk′  and dk ) experiments. 

Considering the degree of uncertainty associated to the determination of diffusional 

parameters, a good agreement was found between mass transfer coefficients calculated by the 

PSM ( dk ) and by mass transfer correlations ( Dk ). Contrarily, values resulting from the TSM 

( dk′ ) were always higher than Dk , with the differences getting significantly higher as the 

solution velocity increases. The order of magnitude of the calculated Dk  (and dk ) was in all 

cases below 210 10−×  kg/m2
�s, corresponding approximately to the range of experimental 

values obtained during dissolutions in the fluidized bed crystallizer [15]. Comparatively, the 

evolution of mass transfer coefficients foreseen by the TSM do not seem realistic, with dk ′  

rapidly increasing to near 2100 10−×  kg/m2
�s for higher solution velocities.  

 From these results it is evident that mass transfer coefficients obtained from semi-

theoretical correlations or directly from dissolution data should not be used to describe the 

diffusion step during crystal growth as conceived by the TSM. Garside and Mullin have 

drawn a similar conclusion by comparing the results from crystal growth and dissolution 

measurements in the fluidized-bed crystallizer [15]. Yet, besides supersaturation and 
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hydrodynamics, size dependent growth is an additional factor that should be accounted on the 

interpretation of those results. It is likely that the observed growth rate enhancement with 

increasing crystal sizes is not exclusively due to higher solution velocities (required to 

suspend bigger crystals) but also to variations on the surface integration kinetics.  

 In a later work, Clontz et al. [16] also employed the growth cell technique to measure 

crystal growth rates of magnesium sulphate heptahydrate. Kinetic and diffusional parameters 

of the TSM were determined for the (110) faces according to the procedure previously 

described for potash alum. Again, the obtained mass transfer coefficients were considerably 

above the values indicated by standard mass transfer correlations. Moreover, mass transfer 

resistances provided by the TSM are unusually influenced by hydrodynamics by means of a 

rapid increase of dk ′  with solution velocity. Both indications coincide with the behaviour 

observed in Figure 5.3, for the potash alum system. A number of potential causes for the 

reported differences have been suggested in literature. Mullin and Garside [15] admit that 

electrostatic charges attracting solute molecules towards the crystal surface would accelerate 

the diffusion rate during crystal growth. Other processes occurring in the surroundings of 

crystal surface, such as desolvation and partial ordering of growth units, might as well affect 

this step [17]. It is also possible that dissolution is not a purely diffusional phenomenon due to 

the existence of a surface disintegration step [7, 15]. Despite of all the evidences supporting 

the non-correspondence between standard mass transfer coefficients and the diffusional 

parameter of the TSM, it is a common procedure to admit the contrary. The inexistence of a 

practical alternative to predict crystal growth rates at different operating conditions is 

probably the main reason why that happens. From the preliminary tests against crystal growth 

and dissolution data taken from literature, the recently introduced parallel step model have 

confirmed to be a credible option to fulfil this gap. The adequacy of the PSM to experimental 

evidences was quantitatively and qualitatively demonstrated with the potash alum and the 

magnesium sulphate heptahydrate systems, respectively. 

 An interesting divergence arises from the two conceptions of crystal growth provided 

by the TSM and the PSM: while in the first case it is physically impossible the overall crystal 

growth rate to be faster than the rate of the diffusional step, by the PSM this hypothesis is 

perfectly admissible. This happens because by the TSM the only way the solute is transported 

to crystal surface is by the diffusional movement. If by some hypothetical reason the diffusive 

flux was stopped the integration of units into crystal lattice would also stop. According to the 

PSM, the adsorption of solute in the vicinity of the crystal is an additional way to carry the 
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solute to the surface. In this case, even for very small diffusion rates, crystal growth can be 

assured by the adsorptive flux. In the above mentioned work of Clontz et al. [16], the TSM 

surface integration coefficients were calculated for the (111) faces of magnesium sulphate 

heptahydrate crystals. A simplified expression was used resulting from the fact that the 

measured crystal growth rates were linearly dependent on supersaturation: 
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−
 (5.16) 

Surprisingly, negative surface integration coefficients resulted from those calculations. From 

Eq. (5.16) this means that d Gk K′ < . At that time this physical impossibility was considered to 

be caused by the use of an inappropriate mass transfer coefficient. Perhaps the adopted value 

of dk ′  would not be applicable to the (111) faces since it was obtained from the growth 

experiments performed with the (110) faces. Nevertheless, as it was referred by the authors it 

does not seem likely that the diffusion conditions in the two faces would greatly differ [16]. 

Using mass transfer coefficients given by typical correlations would not solve the problem 

since, as it was previously mentioned, these values were even lower than dk ′ . In accordance 

with the PSM the obtained results can be seen from another perspective. Possibly this is one 

of the cases where the diffusion step is indeed slower than the overall crystal growth rate. In 

other words, if dk  and Dk  are admitted to be equivalent, crystals will grow faster than they 

dissolve for the same driving force and for the considered operating conditions. Definitive 

conclusions about the validity of such argument need further experimental confirmation. 

5.3 Experimental section 

 Growth and dissolution rates of sucrose crystals were measured at 40.0 0.1±  ºC, in the 

3 L jacketed batch crystallizer represented in Figure 5.4, at different agitation speeds. 

Solutions were prepared at 60 ºC by dissolving refinery white sugar in ultra-pure water. 

Supersaturation was obtained by cooling down the solutions to the working temperature. 

Once the temperature was stable, an accurately known weight of seed crystals (about 5 g) 

with sieve sizes between 0.250 and 0.300 mm was introduced into the crystallizer. In all 

experiments, the initial percentage of dissolved sucrose was of 73.4% in weight. The crystals 

were allowed to grow, leaving the sucrose concentration to decrease until near the saturation. 

The concentration profile was continuously followed by an on-line refractometer. Each 

growth experiment took near 15 h, although, the calculation of the growth rate is limited to a 
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period of 5�  h, which was preceded by a pre-growth period of about 40 min. At the end of 

the growth, the approximate mass fraction of sucrose crystals was 10.4%. Dissolution 

experiments immediately followed these periods by adding to the slightly supersaturated 

solution a rigorously weighted amount (about 100 g) of ultra-pure water at the working 

temperature. An initial drop on the sucrose concentration occurs due to the introduction of 

water and the solution becomes undersatureated. The subsequent crystals dissolution 

gradually increases the dissolved sucrose concentration. As expected for the sucrose system, 

dissolution experiments were much faster than the preceding crystal growth. Generally, 

saturation was possible to be achieved in about 1 h. The percentage of dissolved sucrose 

corresponding to the steady conditions was 69.98% in weight. This value is close to the 

solubility sucrose in water at 40 ºC (70.01%) obtained in literature [18]. During the 

dissolution experiments the mass fraction of sucrose crystals decreased from 10.4% to 5.1%. 

Experiments were carried out at different agitation speeds.  

 

Figure 5.4. Crystallizer used for growth and dissolution experiments (all dimensions in mm). 
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 The amount of crystallized matter was continuously calculated from the change of the 

solution concentration throughout the experiments [19]. The respective profiles are 

represented for a given experiment in Figure 5.5.  
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Figure 5.5. Experimental data used to compute crystal growth kinetics. Evolution of the mass 

of crystals and sucrose concentration during a growth experiment. 

Crystal growth and dissolution kinetics were determined based on this information. In a given 

period t∆ , the average crystal growth rate at which the mass of crystals increases from tm  to 

t tm +∆  is given by: 

 
( )2/3 1/3

1/33 s
G

m
R

N t

ρ α
β

∆=
∆

 (5.17) 

where α  and β  are volume and surface area shape factor and N  the number of crystals. This 

equation was previously derived in Chapter 3 to account for the variation of the crystals 

surface area during t∆ . According to Figure 5.5, the corresponding average solute 

concentration during the same period is bc′  (average supersaturation *b bc c c′ ′∆ = − ). Repeating 

this procedure all over the chosen range of concentrations, information is gathered about the 

influence of supersaturation (and undersaturation) on the crystal growth (and dissolution) 

rates. The physical properties of sucrose crystals to be used in Eq. (5.17) were taken from the 

work of Bubnik and Kadlek [20]. The number of growing/dissolving crystals is assumed to 

remain constant during the experiments (significant nucleation, crystal breakage or 

agglomeration is not admitted to occur). The estimation of this number was based on the mass 
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of seeds ( sm ) and on their mean size obtained from sieve fractions ( sL ), so that 

( )30.75s s sN m Lρ=  [20]. 

5.4 Results and discussion 

 Figure 5.6a shows the variation of overall growth rate at 40 ºC with the concentration 

driving force, for different sets of hydrodynamic conditions. Only results corresponding to 

equally spaced supersaturations are represented. The average difference between successive 

supersaturations is approximately 4(5 10−× kg sucrose) (kg  solution). Dissolution 

experiments were performed once finished the growth period, after adding 100 g of water to 

the crystallizer content. The obtained dissolution rates ( DR ) are shown in Figure 5.6b. 
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Figure 5.6. Effect of the agitation speed on the (a) growth and (b) dissolution rates of sucrose 

in a batch crystallizer at 40 ºC. 

Growth and dissolution rates of sucrose generally increased with agitation speed. The 

exceptions to this tendency are probably due to mixing phenomena. Still, every time the 

hydrodynamics promoted the dissolution rates, crystal growth was also promoted. Differences 

between crystallization rates measured at approximate stirring speeds are sometimes hardly 

distinguishable. From the reproducibility analyses made, even these small differences can be 

attributed to changes in the crystal-solution velocity. In fact, very good accordance is obtained 

when the experimental conditions are kept constant. An example is given in Figure 5.7 where 
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the crystal growth rates measured at 300 rpm are confirmed by the results obtained in a 

replicate experience.  
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Figure 5.7. Comparison between two growth kinetics obtained at equivalent experimental 

conditions. Eq. (5.2) is used to fit the results from one of the experiments (replicate). 

In the same figure, Eq. (5.2) is represented for the set of parameters GK  and g  that best fit 

one of the experimental growth curves. It can be seen that the power-law equation does not 

give a completely satisfactory representation of the results. Apparently, the growth kinetics 

changes throughout the supersaturation range. An overall parabolic ( 2g = ) relation between 

crystal growth rate and supersaturation was obtained, however, for low bc∆ , 2g >  and for 

high bc∆ , 2g < . The same behaviour was verified with the other curves represented in 

Figure 5.6a.  

 According to the Burton Cabrera and Frank theory [1] the growth rate law is expected 

to change from parabolic to linear with increasing supersaturation. Therefore, the variation of 

the apparent kinetic order with supersaturation may possibly be explained by different 

integration kinetics. Other probable causes are related with the adopted method of growth rate 

measurement. Results obtained at high supersaturations correspond to the beginning of the 

experiences, with small crystals and low crystals mass fractions. During growth there is a 

significant change of the suspension conditions and crystals more than duplicate their size. It 

is likely that the changing kinetics observed in each curve results from the changing 
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experimental conditions at which they were measured. Figure 5.8a shows the initial and final 

crystal size distributions measured by laser light diffraction. The grown crystals were filtered, 

washed successively with a saturated sucrose solution and with pure ethanol, and then dried at 

room temperature. Particles in Figure 5.8a with sizes above 1.5 mm are essentially 

conglomerates formed during this process. The population of crystals with sizes below 

0.4 mm results from the occurrence of primary nucleation and crystal breakage. The small 

percentage of these cases (in Figure 5.8, less than 5% in volume during a growth period of 5h) 

does not significantly affect the growth rate results. With Figure 5.8b it is intended to 

emphasize the role of crystals size on growth kinetics. The distributions shown are obtained 

by normalizing the horizontal axis of Figure 5.8a by the corresponding volume median size 

( 0.314medL = mm before the experiment and 0.802medL = mm after it). In these scaled 

representations the traditional spread of crystal size distributions after the growth is no longer 

evident. 
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Figure 5.8. (a) Crystal size distributions in a volume basis and (b) scaled size distributions 

measured by laser light diffraction, before and after a typical growth experiment. 

Apparently, if conglomerates and nucleated/broken crystals were eliminated, the distributions 

of sieved seeds and grown crystals would be superimposed. Such evidence was previously 

reported in sugar crystallization [21]. From it, one can conclude that crystals grow 

proportionally to their size, i.e., GR  seems to vary linearly with L . The variation of crystals 

size during the experiments affect differently the growth kinetics, leading to deviations from 

the power law rate equation as reported in Figure 5.7.  
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 Despite the effect of the hydrodynamic conditions on the sucrose crystallization and 

dissolution being clearly visible in Figure 5.6, the test of theoretical crystal growth models 

with these experimental results cannot be done in the same terms as in a preceding section, 

when literature data were used. On the one hand, growth rate curves were obtained under 

changing kinetic constrains, disallowing the determination of the models parameters. On the 

other hand, crystal growth rates in chemical regime were not possible to obtain: changes in 

the diffusional conditions always led to changes in the crystallization rate. The approach that 

will be adopted consists in the study of the relative kinetics of growth, by comparing the 

values of GR  measured at same supersaturation. Since the initial sucrose concentration and 

seed size were the same in all experiments, these relative rates are as well evaluated at 

equivalent conditions of crystals size and mass fraction. Table 5.3 shows the mean growth and 

dissolution rate ratios calculated in relation to the slowest kinetics (obtained with an agitation 

speed of 200 rpm).  

Table 5.3. Mean ratios between crystal growth (and dissolution) rates measured at different 

agitation speeds and the ones measured at 200 rpm. 

Agitation Speed (rpm) 
200

G

G rpm

R
R  

200

D

D rpm

R
R  

200

D

D rpm

R
R  

200 1 1 1 

160 1.03 1.13 1.06 

250 1.12 1.25 1.12 

300 1.24 1.54 1.24 

500 1.42 1.88 1.37 

400 1.42 2.01 1.42 

 

The given values did not change considerably along the supersaturation (and undersaturation) 

range. Their magnitude is exclusively due to the effect of agitation speed (all other factors 

remain unchanged). Dissolution rate ratios are greater than the corresponding values for 

growth. The influence of hydrodynamics was consequently more marked in the former case. 

Although not so strong as during dissolutions, the increase of the growth rate ratios with the 

agitation speed was also significant. Comparing the second and fourth columns of Table 5.3 it 

appears that GR  varies in the same proportion of the square root of DR . Such dependence of 

GR  on the diffusional conditions means that the results are far from the chemical regime, 
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independently of the theoretical model considered. Apparently, this is in contradiction with 

the fact that dissolution rates are more than 20×  higher than the crystal growth rates 

evaluated at same driving force and agitation speeds; for this situation it would be expected 

GR  to remain almost insensible to changes in the mass transfer resistance. The contradiction 

found suggests that mass transfer coefficients during crystal growth are not equivalent to the 

ones found for dissolution. As previously demonstrated, such correspondence is only 

admissible to happen in the light of the PSM. Nevertheless, on the derivation of the PSM it 

was also admitted that the existence of an adsorbed layer may influence the diffusivity of the 

molecules in the medium (Chapter 4). In systems with the specificity of the sucrose solutions 

(high solubility, high viscosity, strongly non-ideal solute, etc.) an effective mass transfer 

coefficient should be considered for crystallization, in order to account with the extra 

resistance caused by the adsorbed molecules ( d Dk kω= × ). In the case of moderately soluble 

substances, the movement of elements towards the surface is not significantly affected by the 

solution conditions around the growing crystals and the proportionality factor ω  is 1 (see the 

examples previously given in the analysis of literature data). The values of dk  will not be 

determined for the sucrose system because of the lack of information about the crystal growth 

kinetics in chemical regime. Even so, according to the PSM, the effective mass transfer 

coefficient during crystal growth will have to be much lower than Dk , since the results shown 

in Table 5.3 correspond to a situation of diffusional regime. To demonstrate it, consider the 

crystal growth rate equation for high mass transfer resistances (
diffGR ): 

 122 1
1 1diff

r rre d
G re b b

g

k k
R k c c

r r
ρ ρ

φ
+= ∆ ⋅ = ∆

+ +
 (5.18) 

When calculating the ratio between two crystal growth rates measured at same supersaturation 

and temperature, it will result that 

 
1 1

2 2

G diff d

G ddiff

R k
R k

=  (5.19) 

or, as d Dk kω= ×  and generally, D D bR k c= ∆ : 

 
1 1

2 2

G diff D

G Ddiff

R R
R R

=  (5.20) 

Results of Table 5.3 confirm what is expected by the previous equation. Indeed, the growth 

rate ratios were independent of the value of supersaturation and correspond to the square root 
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of the dissolution rate ratios. This was valid even for higher agitation speeds, so it is admitted 

that all the experiences were carried out under diffusional regime. If the mass transfer 

resistances continued to be decreased, it would be expected GR  to become progressively less 

interrelated with DR . Once reached the chemical regime, GR  would be totally independent of 

changes in the mass transfer coefficient. 

5.5 Conclusions 

 Theoretical models such the TSM are generally used to interpret crystal growth 

kinetics without guarantees of being adequate for that purposes. To test the validity of those 

models, the experimental data required goes beyond the conventional relation between crystal 

growth rates and supersaturation. In this work, the TSM and the recently introduced PSM 

were tested against experimental data taken from literature. Particular emphasis was given to 

the works of Mullin and Garside on the influence of hydrodynamics on crystal growth and 

dissolution kinetics. Mass transfer coefficients obtained by the two models from the published 

results were interpreted taking into account standard mass transfer theories. According to the 

TSM, the measured growth rate increase with the relative crystal-solution velocity can only be 

explained by means of an unrealistic behaviour of the mass transfer coefficient during 

crystallization. On the contrary, mass transfer coefficients obtained by the PSM were 

confirmed by appropriate semi-theoretical correlations. The coefficients were in agreement 

both in their order of magnitude and in the way they were influenced by the relative crystal-

solution velocity. The PSM was further tested against sucrose crystal growth kinetics at 40 ºC, 

measured in a batch crystallizer at different hydrodynamic conditions. This system 

significantly differs from the inorganic salts used in the literature works here analysed. 

Although the dissolution rates were several times faster than growth rates, a significant 

influence of the mass transfer resistance was possible to be identified on the crystal growth 

kinetics. Following the physical arrangement provided by the PSM, the existence of an 

adsorbed layer in the crystal surroundings is likely to have changed the molecular diffusivity 

of sucrose in that medium. This way the mass transfer resistance during growth is 

considerably higher than the expected from the dissolution rates. Based on this premise, the 

results were well described by the PSM. As predicted by this model for diffusional regime, 

the relative growth rates were independent of supersaturation and correspond to the square 

root of the dissolution rate ratios. 
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6. On the kinetic effect of impurities 

− the competitive adsorption model 

Overview 

 A mathematical model describing the growth of crystals in impure solutions is 

presented. Evidences of competitive surface adsorption involving the crystallizing solute and 

impurities are discussed in terms of the adsorption isotherm in equilibrium and of the 

mechanism of occupation of active sites for growth. The impurity effect on the crystal growth 

rates is characterized by the Langmuirian adsorption constants, and by the parameter β  

measuring the ability of the foreign species to move across the surface and occupy a stable 

position at the surface steps. Experimental growth rate data taken from literature is used to 

test the proposed competitive adsorption model (CAM). The reported effects of the impurity 

concentration on the crystal growth rate at constant supersaturation are quantitatively 

interpreted. Additionally, growth rate curves obtained in pure and impure solutions are used 

to investigate the influence of supersaturation on the relative growth rates. Several examples 

are considered concerning the impurity adsorption extension and the impurity activity. In all 

cases the CAM adequately describes the experimental data. 



Chapter 6 

 94 

6.1 Introduction 

 The occupation by impurities of preferential places for solute incorporation into the 

crystal lattice is known to have a strong effect on crystal growth. Small quantities of specific 

impurities can suppress the growth, while others, being crystallographic face-selective, can be 

used as habit modifiers. Cabrera and Vermilyea introduced the pinning mechanism to explain 

the action of the impurities on the advancement of the surface steps [1]. They depart from the 

representation of crystal growth from pure solution by the addition of new molecules at active 

sites (kinks) in the steps. When the impurity is adsorbed at those places, the steps flowing at 

crystal surface are hindered and tend to curl around. If the average distance between adsorbed 

impurities along the step is smaller than 2×  the critical radius for two-dimensional nucleation 

( 2i cl ρ< ) the step will stop. The relationship between the velocity of advancement of steps 

and the radius of curvature is given by the also-called Gibbs-Thomson formula: 

 1 c
V

V
ρ ρ

ρ∞

= −  (6.1) 

where V∞  stands for the movement of a straight step. At low supersaturations ( 1S � ) cρ  is 

given by 

 
1

c kT S
γρ Ω=  (6.2) 

When, in Eq. (6.1) / 2ilρ = , a minimum step velocity is reached ( minV ). Originally, Cabrera 

and Vermilyea considered the average step velocity during the time of step squeezing as the 

geometric mean of V∞  and minV  ( minV V V∞= ) [1], so that,  

 1 2 c

i

V
V l

ρ
∞

= −  (6.3) 

More recently, Kubota and Mullin proposed the use of an arithmetic mean of the same limit 

velocities to describe V  ( ( )min 2V V V∞= + ) [2]. In this case, 

 1 c

i

V
V l

ρ
∞

= −  (6.4) 
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and i cl ρ≥ . By assuming (1) the step advancement velocity, V , to be proportional to the face 

growth rate, R , and (2) infinite radius of curvature of the steps in pure system ( 0V V∞= ), one 

can express Eq. (6.4) in terms of the growth rate ratio in impure and pure systems 

( 0/ /V V R R∞ � ). The second assumption is open to criticism, particularly if spiral growth 

mechanisms are assumed [3]. From simple geometric considerations, one can say that the 

equilibrium coverage of adsorption sites by impurities ( lθ ) corresponds to the ratio of the 

average distance between active sites to the average distance between neighboring adsorbed 

impurities, /l a iL lθ = . This fraction is commonly given by a Langmuirian adsorption 

isotherm: 

 
1

a i
l

a i

K c
K c

θ =
+

 (6.5) 

Nevertheless, Temkin isotherms [4] and Freundlich isotherms [5] have been also used. The 

typical form of the Kubota-Mullin equation is obtained by rewriting Eq. (6.4) as follows: 

 
0

1
1

a i

a i

K cR
R K c

α= −
+

 (6.6) 

with α  being the “impurity effectiveness factor”, defined as 

 
1

akTL S
γα Ω=  (6.7) 

According to the value of α , equally adsorbed impurity species can affect very differently the 

growth kinetics. The determination of α  and aK  is generally done by fitting the model 

equations to experimental data on the influence of ic  and S  on the relative growth rates. 

Alternatively, aK  can be determined by performing independent adsorption experiments, 

where the impurity uptake into crystal is measured as a function of ic  [6, 7]. 

 Despite the current interest in this field of crystallization, the existing theories are not 

yet capable to answer to all questions [8-10]. In this paper, a new engineering approach is 

proposed and validated against experimental growth rate data in the presence of impurities. 

The new model is believed to contribute for a better understanding of the mechanism by 

which impurities affect crystal growth from solution. 
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6.2 Competitive adsorption model 

 In the competitive adsorption model (CAM), crystal growth in the presence of an 

impurity is seen as a competition between the crystallizing solute units and the foreign species 

for the preferential adsorption sites. The factors determining the success of each type of 

molecules are related with their concentration, mobility and physico-chemical affinity with 

the crystal surface. When a simple Langmuir adsorption isotherm is considered (Eq. (6.5)), lθ  

is assumed to be exclusively dependent of the impurity concentration. This is not likely to be 

true since the number of kink sites occupied by impurities is certainly lowered as the 

supersaturation increases. For high supersaturation all the active sites would be occupied by 

the crystallizing solute, and 0lθ � . The new perspectives on the impurity adsorption 

mechanism provided by the CAM will be complemented by an alternative description of the 

impurity effect on the crystal growth rate. This new approach considerably differs from the 

pinning mechanism proposed by Cabrera and Vermilyea and developed by Kubota and 

Mullin. In this regard, recent atomic force microscopy evidences go against the validity of the 

Gibbs-Thomson formula (Eq. (6.1)) upon which the pinning mechanism is based [11-13]. 

Instead of a gradual increase of v  with ρ , an abrupt increase of v  occurs when the step 

exceeds a critical dimension ( cρ ). The CAM is concerned with the impurity kinetic effect and 

not with modifications of the solution properties by the impurity.  

 The Langmuir adsorption isotherm is conventionally used to quantify the fraction of 

the solid surface covered by a monolayer of adsorbed species. As referred, crystal growth in 

impure solution comprises a multicomponent sorption phenomenon, where the adsorption 

sites are disputed by both the impurity and the pure solute. In equilibrium, the fraction of the 

surface occupied by impurities is given by the extension of the basic Langmuir model to 

competitive adsorptions [14]:  

 
1

i i
s

i i p

K c
K c K c

θ =
+ +

 (6.8) 

Expressing this equation as a function of supersaturation ( / * 1S c c= − ) gives 

 
1

i i
s

i i p

k c
k c k S

θ =
+ +

 (6.9) 

where ( )1 *i i pk K K c= +  and ( )* 1 *p p pk K c K c= + . Low surface impurity coverage 

( 1sθ � ) is expected when the dimensionless concentration. i ik c  is also low. Even in these 
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cases of barely adsorbed impurities, crystal growth rates can be drastically affected by 

impurities. This is certainly related with the mechanism of surface integration, and in 

particular, with the surface mobility of the different molecules.  

 According to the so-called Kossel model of a growing crystal face in pure solution, 

molecules entering a terrace near a step can be loosely adsorbed, diffuse across the surface 

and reach an energetically favorable place (kink) to integrate the crystal. Although well-

established in crystal growth from vapour, the existence of significant surface diffusion 

during solution growth is open to discussion [15-17]. In the case of crystal growth in impure 

solution the kinetic effect of an impurity involves three analogous stages [4]: 

1. Surface adsorption of the impurity molecules diffusing from solution. 

2. Migration of impurity molecules across the surface. 

3. Step/kink adsorption of impurity molecules migrating on the surface. 

Each of these stages has an associated thermodynamic energy change, whose relative values 

determine if and how adsorption occurs. The coverage of active sites by an impurity ( lθ ) will 

be proportional to the corresponding overall surface coverage ( sθ ): 

 l sθ βθ=  (6.10) 

The parameter β  here introduced, takes higher values when the second and third stages are 

thermodynamically favorable relatively to the first one. For very mobile impurities, β  is 

much greater than 1, i.e., impurities will be mainly concentrated in the preferential adsorption 

sites. Conversely, in the case of favorable surface adsorption and low mobility of the adsorbed 

impurities, β  is expected to take small positive values. The density of adsorbed molecules of 

crystallizing solute at the surface ( sn ) is generally thought to decrease toward the equilibrium 

concentration sen  as we approach the step. The intrusion of impurities on the adsorption 

equilibrium at the step will decrease from sen  to ( )1se ln θ− , and consequently, the growth 

rate perpendicular to the surface defined as [3] 

 
2

0 2 tanhs
se

e s

hD S C
R n

n x C S
χ � � � �= � � � �

� �� �
 (6.11) 

will decrease in the same proportion. Equation (6.11) results from the Burton Cabrera and 

Frank surface diffusion mechanism, wherein the constant C  is defined by 



Chapter 6 

 98 

 
2

s

C
kTx
πγΩ=  (6.12) 

In accordance to what is stated, the ratio between growth rates in impure and pure solution is 

given by the following equation: 

 
0

1 l

R
R

θ= −  (6.13) 

which, according to Eqs. (6.9) and (6.10) can be rewritten as  

 
0

1
1

i i

i i p

k cR
R k c k S

β= −
+ +

 (6.14) 

New perspectives about the role of important variables in crystal growth from impure 

solutions (supersaturation, impurity concentration, temperature, surface mobility, etc) arise 

from Eq. (6.14). Nevertheless, evidences of competitive adsorption have been previously 

reported (Sangwal 2000). For example, crystal growth stoppage after previous dissolution in 

contaminated solutions suggests the occupation by impurities of the active sites for pure 

solute integration [18, 19]. The observation of different growth rates when experiments are 

carried out at increasing or decreasing supersaturation, indicates, not only the existence of 

non-steady state impurity adsorption [20], but also the competitive nature of this step and the 

crystallizing species attachment.[21] Indeed, the theoretical treatment of the growth rate 

hysteresis proposed by Guzman et al. [20] and Kubota et al. [8] points out a time constant for 

impurity adsorption “τ ” that is supposed be a function of supersaturation. Such dependence 

can only be explained assuming that the adsorption isotherm is also a function of the 

crystallizing solute concentration [8]. In the present study, we will not be concerned with non-

steady state adsorption, therefore, equilibrium conditions are assumed. 

6.3 Analysis of literature data 

 In the following analysis it is not intended to carry out a general review of the 

published work in the field (for this purpose, see the works of Kubota [22], and Sangwal [23, 

24]) but instead a selection of typical trends on the influence of supersaturation and impurity 

concentration on the relative growth rates 0/R R . Our main emphasis is on the CAM 

differences and common aspects to existing theories, as well as, on the contribution of the 
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new model to solve unanswered questions. In a first phase, the case of weak impurity 

adsorption (low sθ ) is studied, since its quantitative treatment is analogous to the one 

followed in the Kubota-Mullin model. The novelty of the CAM is then highlighted by 

analyzing the growth rate dependence on the impurity concentration and supersaturation, 

when strong impurity adsorption occurs. 

6.3.1 Barely adsorbed impurity 

 According to the definition of sθ  given in Eq. (6.9), low surface coverage is expected 

when the impurity affinity with crystal is low (low ik ), when the solubility of the crystallizing 

solute is high (high *c , high pk  and low ik ) and for small impurity concentration (low ic ). If 

the conditions are such that ( )1p i ik S k c +� , Eq. (6.14) simplifies to 

 
0

1 i i

p

k cR
R k S

β≈ −  (6.15) 

For this combination of factors, the relative growth rate measured at constant supersaturation 

is linearly dependent on ic . This corresponds to the case shown in Figure 6.1a, about the 

crystal growth of sucrose in the presence of raffinose [25]. As expected, deviations from the 

linearity start to be pronounced at low supersaturations and high ic . From Eq. (6.15) it also 

arises that relative growth rates measured at constant ic  would be linearly dependent on the 

reciprocal of supersaturation (Figure 6.1b). The effect that trace amounts of raffinose have on 

0/R R  is explained by the strong capacity of the impurity to occupy the active sites for 

growth, at the surface of the sucrose crystal (high β  value). To provoke similar sucrose 

growth rate lowering, other impurities such as invert sugars, inorganic salts, oligosaccharides 

and carbohydrates would have to occur in solution in much higher concentrations [26]. The 

behavior shown in Figure 6.1 was also identified for potassium sulfate growing in the 

presence of iron(III) [27], for trinitrotoluene in the presence of 2,2-dinitropropane ( 0R R  vs 

ic  relationship) [28], and for 3NaClO  in the presence of 2-
6S2O  ( 0R R  vs 1/ S  relationship) 

[29]. These results are as well explained by the Kubota-Mullin model, assuming 1a iK c �  in 

Eq. (6.5). 
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Figure 6.1. Effect of (a) the raffinose concentration and (b) the reciprocal of supersaturation 

on the relative growth rate of sucrose at 30 ºC [25]. 

6.3.2 Widespread impurity adsorption 

 Deviations from linearity on the representation of 0R R  as a function of ic  are 

indicative of significant impurity adsorption at the crystal surface. When the crystal surface is 
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extensively covered by the impurity (high sθ ), even moderately active impurities (low β ) 

would influence the growth kinetics. In these cases, i ik c  is of comparable order of magnitude 

of 1pk S +  in Eq. (6.9). The concept of competitive adsorption is here properly used since 

there is not a clear dominance of any of the adsorbates at the surface. Distinct supersaturation 

dependences of 0/R R  at constant ic  are expected by the CAM and by non-competitive 

adsorption models, while the parameters of the Kubota-Mullin can be re-interpreted in the 

light of the CAM when analyzing the influence of ic  on 0/R R  at constant supersaturation.  

Let us consider in first place the example of Figure 6.2 about the influence of ic  on the 

relative growth rates of trinitrotoluene growing in the presence of two distinct impurities [28]. 
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Figure 6.2. Effect of different additives on the relative growth rates of trinitrotoluene at 

74.0 ºC [28], and respective fit to Eq. (6.6): (i) 2,4,6-trinitrodiphenyl ether; (ii) 2-chloro-2,4,6-

trinitrostilbene.  

As shown, the results follow the trend expected by Eq. (6.6) (Kubota-Mullin model) and the 

obtained value of α  more than duplicates from one additive to the other. The difference 

between the obtained effectiveness factors should not be surprising, since different physico-

chemical properties of the additives are expected to influence differently the growth rate 

mechanism. Nevertheless, if we attend to the definition of the impurity effectiveness factor 

given in Eq. (6.7), α  is a function of the molecular volume of the crystallizing solute, of the 
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crystal surface and interfacial properties, and of temperature and supersaturation, but is not 

supposed to change with any characteristic property of the impurity. In other words, 

according to its classical definition, α  is not expected to vary significantly with the impurity 

type. An alternative perspective of the physical meaning of α  and aK  results from the 

competitive adsorption theory. At constant supersaturation, Eq. (6.14) of the CAM can be 

rewritten assuming pk S  as another constant: 
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1
1

1
1

i
i

p

i
i

p

k
c

k SR
kR c

k S

β
+

= −
+

+

 (6.16) 

By comparing this equation with the Kubota-Mullin definition given in Eq. (6.6), one realizes 

that α β=  and ( )/ 1a i pK k k S= + . The equivalence between the impurity effectiveness factor 

and the parameter β  solves the dilemma of unchanging α  among impurities. As referred, in 

the CAM β  is a function of specific properties of the impurity (e.g., surface mobility), and 

thus it can be considered an intrinsic effectiveness factor of the pure solute-impurity system. 

The competitive adsorption constants pk  and ik  can be estimated either by fitting Eq. (6.14) 

to additional growth data on the influence of S  on 0R R  at constant ic  or by performing 

separate adsorption experiments. 

 When extensive impurity adsorption occurs, contrasting positions on the 

supersaturation dependence of the crystal growth rate result from the pinning mechanism 

theories and the CAM. The concept of critical supersaturation ( cS ), defined by Kubota et al. 

[21] as the limit supersaturation below which 0R = , can be conveniently used to illustrate the 

differences. In the Kubota-Mullin model, cS  is obtained by setting 0 0R R =  in Eq. (6.6), and 

using the definition of α  given in Eq. (6.7), so that 

 
1

a i
c

a i

K c
S

kTL K c
γ Ω=

+
 (6.17) 

The stronger is the impurity kinetic effect, the wider is the supersaturation range of no 

growth, 0 cS S≤ ≤ . The relative growth rate is easily expressed as a function of cS  using 

Eqs. (6.17) and (6.7): 

 
0

1 cSR
R S

= −  (6.18) 
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In Figure 6.3, the type-1 curve represents the theoretical influence of an active impurity on the 

crystal growth kinetics as stated by the Kubota-Mullin model; crystals would start to grow at 

supersaturations above cS , and for cS S�  the growth rate curve is approximately parallel to 

the one of the pure system. In the example given, a second order rate equation was used for 

pure system. The behavior illustrated by type-1 curve can be found in literature when very 

active impurities are investigated, such in the case of ammonium oxalate monohydrate 

growing in the presence of Cr(III) ions [5], or the already mentioned example of the sucrose-

raffinose impurity system [25]. Even so, the other type of impurity-affected kinetics 

exemplified in Figure 6.3 (type-2 curve) is also frequently reported in literature [26, 30-32]. 

Despite of the marked growth rate lowering ( 0/ 1R R < ), there is not a clear supersaturation 

limit below which growth stops, which makes 0cS = . This fact is not explained by pinning 

mechanism theories. Following, for example, the Kubota-Mullin model, if 0cS =  it results 

from Eq. (6.18) that 0R R= , whichever the supersaturation considered.  

S

R

Pure
Type I
Type II

R = K0S
2(1-Sc/S)

R0 = K0S
2

Sc

 

Figure 6.3. Typical growth rate curves in the presence of impurities. 

Considering now the new model, the CAM mathematical definition of critical supersaturation 

is obtained by setting 0 0R R =  in Eq. (6.14), 

 
( )1 1i i

c
p

k c
S

k

β − −
=  (6.19) 

By combining this equation with Eq. (6.14), an alternative equation for 0R R  results: 
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with 

 
1

p
si

i i

k
k

k c
=

+
 (6.21) 

From Eq. (6.19) one can establish two distinct situations: (i) if besides being extensively 

adsorbed (high i ik c  product), the impurity is also active ( 1β > ), cS  will assume positive 

values; (ii) if the impurity is slightly active, 1β < , and the critical supersaturation given by 

Eq. 19 will be negative. The first case roughly corresponds to type-1 curve in Figure 6.3. As 

for the Kubota-Mullin model, there is a zone of no growth for cS S<  and for cS S� , R  

tends to be parallel to 0R . Despite of the common limit cases, distinct supersaturation 

dependences of R  are expected by the two theoretical models for intermediate 

supersaturations. Comparing Eqs. (6.18) and (6.20), one finds that a linear 0R R  vs 1 S  

relationship is expected by the Kubota-Mullin model, while in the CAM, the relative growth 

rates decrease with 1 S  in a more gradual way. Both trends are represented in Figure 6.4 for 

the case of sodium chloride growing in the presence of lead(II) [6].  
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Figure 6.4. Representation of Eqs. (6.18) (Kubota-Mullin model) and (6.20) (CAM) for the 

set of parameters that best fit the data of Kubota et al. [6] on the effect of lead(II) on the 

growth of sodium chloride crystals at 35 ºC. The results are estimated for 
60.25 10ic −= × mol/dm3. The vertical error bars indicate standard errors. 
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The other situation resulting from the CAM definition of critical supersaturation corresponds 

to poorly active impurities, so that 1β ≤  and 0cS ≤ . In physical terms, negative critical 

supersaturations mean that growth will always occur at positive supersaturations, even if at 

growth rates much smaller than 0R  (see type-2 curve in Figure 6.3). As mentioned before, 

this behavior is not expected by the traditional pinning mechanisms, even though the great 

number of published data reporting it. Examples of type-2 curves can be found for the sodium 

chloride growth in the presence of impurities like MgCl2, PbCl2, K4Fe(CN)6⋅H2O, [30] for 

potassium sulphate growth in the presence of chromium(III) [31], for hydroxyapatite (0001) 

face growth in the presence of magnesium and zinc [32], and for sucrose crystal growth in the 

presence of several poorly active impurities [26]. A particular case of impurity affected 

growth curves is observed when the growth kinetic order remains unchanged in pure and 

impure solutions, i.e., when 0R R  is independent of supersaturation, even at low S . In 

Chapter 9, one of these situations will be used to illustrate the CAM applicability to industry 

purposes. 

6.4 Conclusions 

 An expression establishing the dependence of the relative growth rates in impure and 

pure solutions on supersaturation and impurity concentration is proposed (Eq. (6.14)). A 

mechanism of competitive adsorption is assumed, where the crystallizing solute and the 

impurity dispute (1) the coverage of the crystal surface and (2) the occupation of energetically 

favourable places at surface steps. The first stage is quantified by a Langmuir isotherm for 

competitive adsorption, while the second is a function of the thermodynamic energy change 

of the surface processes. According to classical theories of crystal growth, the growth rate 

varies in the same proportion of the number of adsorbed molecules at the step. At a given 

surface coverage, the impurity activity reflects the tendency to replace the crystallizing solute 

at the active sites and is measured by means of the parameter β . In systems exhibiting 1β >  

the fraction of active sites occupied by the impurity is higher than the surface coverage. This 

can lead to crystal growth suppression at supersaturation below a critical limit given by 

Eq. (6.19). For 1β < , crystal growth can be slowed by the presence of impurities, but is not 

suppressed. The role of supersaturation and impurity concentration on the crystal growth rates 

significantly changes with the impurity adsorption extension and impurity activity. Published 

experimental data showing different types of impurity-affected kinetics was adequately 

described by the CAM. Differences and common aspects between the new competitive model 
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and existing theories based on the pinning mechanism were discussed, and the CAM 

contribution to solve unanswered questions was highlighted. 
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7. Spiral nucleation model 

Overview 

 In the preceding chapters, new theories were proposed with the aim of quantifying and 

understand the effect of the diffusional resistance and of the impurity concentration on the 

crystal growth rate. Nevertheless, crystal growth is known to be influenced by a number of 

other factors related with physical fundamentals that go beyond what is comprised in 

engineering models. Examples of these factors are, among others, crystal-solution interface 

properties, growth rate history, crystal topological properties and crystal size. In this chapter, 

classical concepts of two dimensional nucleation and spiral growth are used together with 

recent findings on the dynamics of dislocation spirals to derive a new fundamental crystal 

growth model. Hopefully, this new theory would contribute for the clarification of the 

“fundamental factors” affecting crystal growth. In a first application example, the 

crystallization kinetics of sucrose measured at 40 ºC is interpreted in the light of the new 

perspectives resulting from the proposed model. Using the measured experimental data, the 

variation of the sucrose interfacial tension with supersaturation was estimated, and topological 

parameters of growing crystals such as the height and length of the surface steps were able to 

be predicted. The validation of the new model will proceed in the following chapters by 

analysing the influence of additional crystal growth variables. 
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7.1 Introduction 

 The atomistic representation of crystal growth has been subject of many studies in the 

past half century. The thermodynamic and kinetic theories on two-dimensional (2D) 

nucleation [1] and especially, the dislocation mechanism of Burton, Cabrera and Frank (BCF) 

[2] were key advances leading to nowadays understanding of the phenomenon.  

 In the 2D nucleation models, the growth of a new layer on a flat face starts with the 

formation of 2D islands on the surface. To be stable, the initial nucleus must be constituted by 

a given number of molecules below which it would disintegrate. The critical number 

corresponds to a critical nucleus size ( cr ) that can be determined based on the calculation of 

the Gibbs free energy change. The overall free energy difference ( G∆ ) between the elements 

of the nucleus and the solute molecules in the supersaturated solution results from the sum of 

the surface excess free energy (positive quantity) and the volume excess free energy (negative 

quantity) [3]: 

 ( )ln 1n n

kT
G a v Sγ∆ = − +

Ω
 (7.1) 

The first term accounts for the isothermal compression when packing the solute molecules on 

the surface in a nucleus of peripheral area na , and is proportional to the solid-liquid 

interfacial tension, γ . The volume excess free energy refers to the transfer of molecules from 

the supersaturated solution (solute activity, ba ) to a saturated state at crystal surface (solute 

activity, ea ). Supersaturation is defined by 1b eS a a= − , k  is the Boltzmann constant and T  

the temperature. The number of molecules transferred is given by the ratio nv Ω , where nv  is 

the nucleus volume and Ω  is the molecular volume. Conventionally, the nucleus is assumed 

to be a circular disc of radius r  and height h  (Figure 7.1a), so the area and volume in 

Eq. (7.1) are given by 2na rhπ=  and 2
nv r hπ= . As Figure 7.1b shows, G∆  will initially 

increase with r  until reaching the critical size. In this range, the process spontaneously 

evolves in the direction of decreasing r  . Above cr , more molecules will tend to integrate the 

nucleus, since the free energy decreases with r . Setting 0d G dr∆ = , the value of cr  for 2D 

nucleation is given by: 

 
( )2 ln 1Dcr kT S

γ Ω=
+

 (7.2) 
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From this equation, the critical radius of the nucleus is expected to be progressively smaller as 

the supersaturation increases. Replacing this result in Eq. (7.1) one obtains the amount of 

energy necessary to form a stable nucleus:  

 
( )2

2

ln 1DcG h
kT S

γπ Ω∆ =
+

 (7.3) 

 
r

∆G

∆Gc 2D

rc 2D0
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Figure 7.1. Two-dimensional nucleation. (a) 2D nucleus on the crystal surface. (b) Free 

energy diagram reporting the existence of a critical size of the nucleus. 

The thermodynamic basis of the 2D nucleation theory is used to estimate the equilibrium 

concentration of critical sized nuclei ( cn ) as a function of the concentration of monomer on 

the surface ( 1n ) [4]: 

 2
1 exp Dc

c

G
n n

kT

∆� �
= −� �

� �
 (7.4) 

In its turn, cn  is an important parameter on the determination of the rate of nuclei formation 

and subsequently, of the growth rates in the perpendicular direction to the surface. Depending 

on the model assumed to describe the spreading of the 2D islands on the surface, different 

crystal growth rates are obtained. Ohara and Reid [1] comprehensively revised the different 

2D nucleation models (mononuclear model, polynuclear model, birth and spread model, etc.) 

and the approximations taken on the derivation of the respective equations. The major 

limitation of all 2D nucleation theories is related with the energy requirements for the growth 

to occur. At low supersaturation the 2D nucleation barrier cG∆  is too high for admitting the 

occurrence of significant crystal growth. This is in contradiction with most of the 

experimental facts, leading many investigators to loose interest in two dimensional models [1, 

3]. Further modifications of the Polynuclear model [5, 6] have proven to adequately describe 
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experimental growth rates. According to Liu et al. [7], the occurrence of foreign particles on 

growing surfaces induces a special type of surface instability that could explain crystal growth 

at low supersaturations. Two-dimensional nucleation mechanisms are currently used on the 

determination of fundamental parameters like the interfacial tension [8-10] and on the 

characterization of crystal growth in conjunction with other mechanisms [11]. 

 With the BCF dislocation mechanism the dilemma caused by crystal growth at low 

supersaturations was solved by postulating that sources of surface steps would exist in real 

crystals due the presence of imperfections (dislocations) in their lattice. When dislocations 

have a screw component, the existence of steps in the surface would be assured during growth 

[12], obviating the necessity of surface nucleation. Growth would occur by the incorporation 

of molecules into steps disposed in spirals, in a self-perpetuating process (Figure 7.2).  

 

Figure 7.2. Spiral growth. 

The advancing velocity of steps (V ) was determined assuming that the rate limiting process is 

the surface diffusion of adsorbed molecules. The Gibbs-Thomson formula was used to relate 

the velocity of the step with its radius of curvature ( ρ ): 

 1 cV
V

ρ
ρ∞

= −  (7.5) 

where V∞  refers to a straight step and cρ  corresponds to the critical radius of the 2D nucleus 

given by Eq. (7.2). From very early the validity of this equation was questioned because of its 

tenuous theoretical grounds and lack of experimental verification [1]. Recently, its 

inconsistency was demonstrated by using atomic-force microscopy on the investigation of the 

spirals structure [13-16].  
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 Considering a parallel sequence of steps separated by a constant distance of 0y , the 

two dimensional equations for surface diffusion were solved to obtain an expression for V∞  

[2]:  

 02 exp tanh
2s

s

yW
V S x v

kT x
χ∞

� �� �= − � �� �
� � � �

 (7.6) 

In this equation, χ  is a factor accounting the possibility of non-equilibrium state, sx  is the 

mean displacement of adsorbed molecules, v  the vibrational frequency of the surface 

adsorbed molecule and W  the evaporation energy (in the case of growth from vapour). The 

growth rate perpendicular to the surface ( R ) was obtained taken into account Eqs. (7.5) and 

(7.6), and the geometry of the rotating spirals: 

 
2

exp tanh
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R hv
kT C S
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 (7.7) 

with, 

 
2

s

h
C

kTx
πγ=  (7.8) 

According to the BCF relationship, the dependence of R  on supersaturation is expected to 

change from parabolic to linear as the supersaturation increases. The remarkable importance 

of the BCF theories is recognized until nowadays [17, 18] and it is demonstrated by the great 

number of experimental data on growth kinetics that are still interpreted based on these 

concepts [19-21]. 

 In spite of all fundamental advancements in the crystal growth science, several 

unsolved issues do not allow crystallization results to be predicted under specific growth 

conditions [18, 22]. In the following section, general principles of the 2D nucleation and BCF 

mechanisms are used to derive a new molecular-kinetic model in which the inconsistencies of 

existing theories are avoided and recent experimental findings are taken into account.  

7.2 Spiral nucleation model 

 The advent of atomic force microscopy (AFM) made possible to infer the mechanisms 

of crystal growth from the examination of growth features on crystal surfaces. By Employing 
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this technique, Rashkovich et al. [15] followed the process of formation of a dislocation spiral 

on the (010) face of a potassium hydrogen phthalate crystal. From their observations, 

important conclusions were drawn concerning the relation between the velocity of segments 

of steps and their length. The movement of a given segment only started after a critical length 

was reached and the rate of elongation of each segment was also determined by the 

displacement of the neighbouring segments. As already referred, the Gibbs-Thomson 

Eq. (7.5) was not in conformity with the experimental results. The identification of a critical 

length of the segments is also surprising, since the steps having their origin in screw 

dislocations are traditionally thought to move freely, once provided that supersaturation is 

created [2]. The idea of an energy-activated spiral growth is the basis for the spiral nucleation 

model (SNM) here proposed. Screw dislocations are considered privileged points to start 

crystal growth due to the smaller energy required to activate the process relatively to the case 

of flat “perfect” face. A representation of the mechanism would initially consist in the 

organization of the adsorbed molecules in a spiral, induced by the screw component of the 

lattice imperfection. Comparatively to the classical 2D nucleation models, the initial island on 

the surface is no longer assumed to be a circular disc but, instead, a conical spiral (hillock). 

Besides being consistent with AFM observations of the surface morphology of growing 

crystals at low supersaturations, this geometric formalism has significant consequences in 

terms of the energy barrier to form a critical sized nucleus. For simplicity, let us consider an 

Archimedean-type spiral (polar equation 0 / 2r y θ π= ) circumscribed in a hillock of radius r  

(Figure 7.2). The peripheral area of the hillock is given by  

 ( )2 20 1 ln 1
4n

y
a hθ θ θ θ

π
� 	= + + + + �
 �

 (7.9) 

where h  is the step elementary height and 0y  is the distance between steps ( 0h y� ), and the 

hillock volume corresponds to 

 
3

03n

r h
v

y
π=  (7.10) 

The Gibbs free energy change on the formation of this nucleus is given by Eq. (7.1), using the 

geometric definitions of the spiral: 

 ( ) ( )
3

2 20

0

1 ln 1 ln 1
4 3
y r h kT

G h S
y

πθ θ θ θ γ
π
� 	∆ = + + + + − +
 �
 � Ω

 (7.11) 
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Such as it was described for the 2D nucleation, there is a minimum size cr  above which the 

nuclei continue to grow. This dimension corresponds to a critical number of spiral turns 

/ 2cθ π  that can be determined by maximizing Eq. (7.11) with respect to θ . For a given value 

of cθ , the energetic barrier for spiral nucleation is as well influenced by the separation 

between steps, hereafter expressed in relation to the size of the 2D nucleus: 

 0 2c Dy rα=  (7.12) 

where α  is a proportionality factor. The combined effect of θ  and α  on the normalized 

Gibbs free energy change is shown in Figure 7.3.  
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Figure 7.3. Influence of θ  and α  on the normalized Gibbs free energy change according to 

Eq. (7.11) and the definitions of 0y  and 
2 Dcr . 

For the range of α  values considered, the maximum free energy change takes place when θ  

is about 2 (114º). Under these conditions, there is an optimum interstep distance 

corresponding to 7.26α =  (highlighted in the figure) that leads to minimum critical free 

energy change. This value is considerably lower than the result of 19α = , obtained from 

admitting direct correspondence between velocity of advance and radius of curvature of the 
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step (Eq. (7.5)) [1]. At the optimum conditions for the formation of the spiral, 1.95cθ =  

independently of the system studied, 
2

2.25
Dc cr r=  and 

 ( )
2

1.64
ln 1cG h

kT S
γ Ω∆ =

+
 (7.13) 

Comparing this result with Eq. (7.3) one obtains that the energy required for 2D nucleation is 

about two times higher than the one needed for spiral nucleation. Therefore, the formation of 

nuclei at crystal surface is expected to occur preferentially by a spiral growth mechanism. 

 Once established the thermodynamics of the SNM, the derivation of the relation 

between the crystal growth rate and growth affecting variables will follow. After the 

formation of stable spirals, crystal growth occurs by the integration of adsorbed units into 

their steps. To start, let us consider the rate at which molecules integrate a particular spiral, 

from a geometrical point of view. The variation of the number of incorporated molecules ( N ) 

during an infinitesimal time interval dt  is proportional to the corresponding increase of the 

peripheral area, 

 
dN h da
dt dt

=
Ω

 (7.14) 

In the case of a well developed spiral hillock (high θ ) it results from Eq. (7.9) that 

 
0

2da rh dr
dt y dt

π=  (7.15) 

with dr dt  corresponding to the rate of advancement of the step (V ). Combining Eqs. (7.14) 

and (7.15), and assuming V  to be independent of the spiral size one obtains that the 

incorporation rate is higher for bigger hillocks, i.e., dN dt  increases with r : 

 
2

0

2dN rh
V

dt y
π=
Ω

 (7.16) 

Although the Gibbs-Thomson Eq. (7.5) predicts V  to be directly dependent of ρ , it has been 

recently demonstrated that the step velocity abruptly changes to a maximum (V∞ ) once 

surpassed the segment critical size [14, 16]. Accordingly [18], 
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 (7.17) 
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The dependence of dN dt  on r  and 0y  leads us to the importance of understanding the 

disposition of spirals on the surface and how spirals originated from different dislocations 

coexist. Apparently, the behaviour of a crystal face with many dislocations is the same as if it 

had just one. Nevertheless, from topological considerations Burton et al. [2] demonstrated that 

the activity of a group of dislocations is greater than that of a dislocation alone by a factor of 

ε , which can be approximated to the number of dislocations. With the activity enhancement, 

the distance 0y  between steps decreases ε  times and the number of steps passing in a given 

point increases in the same proportion. From what was said, the general case of spiral growth 

due to a group of dislocations can be described considering a single spiral, after correcting the 

distance between steps by the number of dislocations. For convenience, let us assume a 

crystal with a circular face of radius L , covered by a group of ε  sources of active spirals. The 

incorporation rate is here given by the corrected form of Eq. (7.16): 

 
2

0

2dN Lh
V

dt y
π ε=
Ω

 (7.18) 

Note that if the distance between steps was measured, for example by AFM, the obtained 

value would correspond to 0y ε . Converting the previous expression in order to obtain the 

more conventional mass deposition rate per surface area units, GR , one gets 
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0

2 s
G sp

Lh
R n V

y
πρ=  (7.19) 

Where sρ  is the crystal density and spn  the number of active spiral sources per surface area 

units. This number corresponds to the fraction of the total number of dislocations per m2 ( λ ), 

whose resulting spirals reached the thermodynamic barrier cG∆  defined in Eq. (7.13) and 

continued on growing. If the dislocations centres are closer together than half of the radial 

distance between successive turns ( 0 / 2y ), the activity of the group of dislocations is changed 

in a factor of approximately 0 / 2y l , where l  is the average distance between dislocations 

[2]. Consequently, the density of stable spirals in equilibrium is given by  

 0 exp
2

c
sp

y G
n

l kT
λ ∆� �= −� �

� �
 (7.20) 

This expression is similar to Eq. (7.4), used to estimate the concentration of critical sized 

nuclei in the classical 2D nucleation mechanism. In the derivation of the BCF theory it was 

found that, in spite of the activity of a group can be several times greater than that of a single 
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dislocation, a maximum on the activity enhancement with the number of dislocations in a 

group is obtained. Indeed, as a consequence of the key role that surface diffusion has in that 

model, the rate of step advancement was established to decrease as the distance between steps 

decreases [2]. Distinct kinetic approaches to the movement of steps will be considered in the 

SNM depending if crystals grow from solution or from vapour. The importance of surface 

diffusion considerably differs from one growth processes to the other. In the case of growth 

from solution the velocity of advancement of steps is not expected to decrease with the 

proximity of steps. Hence, according to Eq. (7.19), the new proposed model expects GR  to 

increase as the number of dislocations contained in a group increases. Such behaviour is in 

accordance with what is experimentally known [23, 24]. Later modifications to the BCF 

model were introduced to quantify the growth rate enhancement caused by groups of 

dislocations [25] and to take into account the level of strains in the crystal [26]. 

 To conclude the SNM crystal growth rate expression it is necessary to quantify the 

forward speed of a step, V , in Eq. (7.19). The mechanism that will be adopted describing the 

integration of units into the crystal is, in the case of growth from solution, roughly 

comparable to the adhesive growth pattern and, in the case of growth from vapour, similar to 

the lateral growth pattern [27]. In this approach, the volume diffusion resistance will not be 

considered on the derivation of the kinetic equations, that is to say, the integration step is 

analysed separately from the mass transfer step. 

 Starting with crystal growth from solution, molecules leave the solution and reach the 

crystal surface at a maximum rate given by the Wilson-Frenkel relation (or by the Hertz-

Knudsen formula, in the case of vapour) [27]. The corresponding current of molecules maxJ  

(molecules/m/s) entering in a given terrace of length 0y ε  is 

 0se
max

s

n S y
J

τ ε
=  (7.21) 

where sen  is the number of adsorbed molecules in equilibrium, per unit of surface area, and 

sτ  is the mean life time of an adsorbed molecule before desorbing, so that: 

 expse
e

s

n W
n v

kTτ
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 (7.22) 

Here, en  corresponds to the number of molecular positions on the surface per m2 and W  is 

the energy of adsorbing onto the surface (as previously seen, W  corresponds to the 
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evaporation energy when considering growth from vapour). Unless the crystals planes are 

very rough, growth will take place at a rate below maxJ . This should be the most common 

situation since rough, uneven surfaces tend to disappear and only flat, slow growing surfaces 

remain. The fraction of maxJ  integrating the crystal lattice accounts for the molecules that 

have reached a position in the terrace near the step. The other adsorbed molecules do not have 

enough mobility to achieve a more energetically favourable position within a mean time 

interval sτ  and become desorbed. Assuming that no significant surface diffusion occurs, the 

active area for incorporation into the step would be the perimeter of the spiral ( 2
0L yπε ) 

multiplied by the molecular length (approximately, h ). The active area to total surface area 

ratio ( 0h yε ) corresponds therefore to the probability of integration of a molecule arriving 

from solution. The velocity of step is then ( )0max eJ h y nε , or, using Eqs. (7.21) and (7.22),  

 exp
W

V v hS
kT

� �= −� �
� �

 (7.23) 

The existence of significant surface diffusion during growth from solution is hard to conceive 

[1, 18, 28]. Nevertheless, Land et al. [29] explained the homogenization of initially 

nonuniform double step current through the occurrence of surface diffusion during canavalin 

crystal growth. For these cases, larger active area for incorporation would be expected, and 

consequently, the obtained velocity of step advancement would be higher than the one 

predicted by Eq. (7.23). 

 Contrarily to what happens in crystal growth from solution, the existence of surface 

diffusion during growth from vapour is well-established. Here, molecules reaching a terrace 

can diffuse across the surface and integrate into the step in an energetically favourable place, 

following the so-called Kossel mechanism [27]. The steady state continuity equation for 

surface diffusion regarding the density of adsorbed molecules is given by, 

 
2

2
s
s

d
x

dy
ψ ψ=  (7.24) 

where ψ  is the difference between the supersaturation in the vapour and on the surface, 

sS Sψ = −  and sx  is the average distance that molecules diffuse during the residence time sτ . 

The vapour supersaturation is defined in terms of the actual vapour pressure ( p ) and the 

equilibrium value ( ep ), / 1eS p p= − , and the surface supersaturation is defined by means of 

the actual and equilibrium density of adsorbed molecules ( sn  and sen , respectively), 
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/ 1s s seS n n= − . Considering a parallel sequence of steps separated by equal distances 0y ε , 

the boundary conditions of Eq. (7.24) are: 
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 (7.25) 

In this situation, y  is the distance from the midpoint between two steps ( ( )0 2y ε ). The 

current of molecules, J  (molecules/m/s), integrating the crystal lattice can be obtained from 

the gradient at the step position: 
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Replacing the solution of Eq. (7.24) in the previous equation one gets 
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where sD  is the surface diffusion coefficient. Using the Einstein’s expression 2
s s xD xτ =  and 

knowing the total number of molecules reaching the terrace maxJ  from Eq. (7.21), Eq. (7.27) 

can be rewritten as 
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 (7.28) 

Figure 7.4 shows the expected influence of the average step semi-distance to the average 

diffusion distance ratio ( ( )0 / 2 sy xε ) on the fraction of adsorbed molecules integrating the 

step ( maxJ J ).For a given system, diminishing the distance between steps will progressively 

increase the maxJ J  ratio until reaching the unity. As shown in Figure 7.4, for 

( )0 / 2 0.1sy xε <  the current integrating the step reaches its maximum and becomes 

practically insensitive to variations in the interstep distance. Estimations of the order of 

magnitude of sx  and 0y ε  make us believe that the integration current would frequently 

correspond to maxJ . In fact, for a surface of large interplanar distance in a face-centred cubic 

crystal, Burton et al. estimated 3~ 3 10sx a′× , where a′  is the distance between two 

neighbouring adsorption positions. At the ambient temperature, a′  corresponds practically to 

the diameter of the growth unit, h  [30]. Assuming as a reference AFM measurements of 

interstep distances taken from literature ( )0 / ~ 30 to 400y hε  [31, 32], the dimensionless 
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parameter in the x-axis of Figure 7.4 will range from 0.005 to 0.07 and 1maxJ J � . For close-

packed surfaces sx  is much lower than the value of 33 10 a′×  and so, higher values of the 

( )0 / 2 sy xε  parameter are expected. Even for these surfaces of low morphological importance 

[33], the fraction of integrating molecules would be more than 80% of the estimated 

maximum flux. In the general case, the velocity of advancement of step during growth from 

vapour is 

 02 exp tanh
2s

e s

yJ W
V x v S

n kT xε
� �� �= = − � �� �
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 (7.29) 
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Figure 7.4. Variation on a log-log scale of the J/Jmax ratio as a function of the ( )0 / 2y ε to xs 

ratio, according to Eq. (7.28). 

At this point we are able to obtain the generalized crystal growth rate equation by replacing 

the derived definitions of step advancement velocity in Eq. (7.19):  
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expG sp
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The parameter β  is here introduced to distinguish solution growth ( hβ = ) from vapour 

growth ( ( )( )0 02 tanh / 2 /s sx y x yβ ε ε= ≈ ). The density of spirals sn  is a function of 

supersaturation, temperature and physical properties of the crystal (Eq. (7.20)). New insights 

on the role of supersaturation, temperature, crystal size, topological parameters of the crystal, 
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number of surface dislocations, interfacial tension, etc., result from the SNM growth rate 

equation. Hopefully the resulting conclusions will contribute for a better understanding of 

unresolved problems in crystal growth science such as spirals formation and development, 

step bunching, abnormal growth kinetics, size-dependent growth or growth rate dispersion. In 

the following section an example of application of the SNM to sucrose crystal growth kinetics 

will be given. It is intended to determine the sucrose interfacial tension and to calculate 

topological parameters from the measured dependence of GR L  on the supersaturation.  

7.3 Application of the SNM to growth rate data 

 In this section, the interpretation of crystallization data according to the SNM will be 

exemplified using the sucrose growth curve obtained at 40 ºC and 300 rpm in the batch 

growth experiments described in Chapter 5. Crystal growth rates are normalized by the 

instantaneous equivalent size of the crystals given by mass balance. This procedure is based 

on the assumption of linear ( )GR L  dependence suggested in Eq. (7.30), and afterwards 

confirmed in Chapter 6. In conformity with the same equation, supersaturation is expressed as 

a function of the solute molar fraction, using the measured sucrose solubility at 40 ºC 

( 0.1093ex = ), so that / 1b eS x x= − . Figure 7.5 shows the sucrose growth curve calculated 

accordingly. The average difference between successive mean supersaturations is 

approximately 32.3 10−× .  
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Figure 7.5. Effect of supersaturation on the normalized sucrose growth rates in batch 

crystallization experiments at 40 ºC. A power law equation is used to fit the data.  

The volume median size measured by laser light diffraction changed from 0.314 mm to 0.802 

mm during the growth experiment. Crystal growth rates obtained at high supersaturations 

correspond to the beginning of the experiment and to smaller crystals. As shown in Figure 

7.5, the results were well fitted by the following empirical equation: 

 VnG
G

R
k S

L
=  (7.31) 

where Gk  and Vn  are the empirical kinetic constant and kinetic order, respectively. The 

parameters of Eq. (7.31) can be interpreted in the light of the SNM and of the respective 

fundamental growth rate expression, given by Eq. (7.30). This correspondence will be used to 

estimate the influence of supersaturation on the interfacial tension between sucrose crystals 

and the supersaturated sucrose solutions. Other existing methods for interfacial tension 

determination using crystallization kinetics were previously reviewed by Wu and Nancollas 

[10]. Usually, the experimentally determined kinetic order Vn  is compared with the γ –

dependent theoretical expression corresponding to the growth mechanism accepted. On the 

derivation of the ( )Vn γ  relations, the interfacial tension is assumed to be independent of 

supersaturation. According to the Gibbs adsorption isotherm theory, this has to be considered 
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a gross approximation. For ideal systems, the variation of the interfacial tension with solute 

concentration is given by [34-36]:,  

 2
2 ,

ln
p T

RT
x

γ� �∂ = −Γ� �∂� �
 (7.32) 

where 2x  is the solute mole fraction, R  is the gas constant and 2Γ  is the Gibbs excess 

concentration of solute on the interface (mol/m2). The Gibbs adsorption isotherm is often 

applied on liquid-fluid interfaces to calculate the solute adsorption, since the interfacial 

tension can be measured. On solid-fluid interfaces the same isotherm is used to calculate the 

interfacial tension, because adsorption can be measured [37]. Bearing in mind that γ  is not 

constant over a range of supersaturations, the slope of the log-log plot of the normalized 

growth rate /GR L  against S  is, in the case of the SNM, 
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This equation results from Eq. (7.30) for solution growth, from the definitions of spn , 0y  and 

cG∆  and from the approximation ( )ln 1 S S+ ≈ . In its turn, the inclination of growth hillocks, 

0/p h yε=  is proportional to 1VnS −  because of its dependence on the ( )exp cG kT− ∆  factor. 

Frequently the value of Vn  is comprised between 1 and 2, so, p  can be nearly constant or 

vary linearly with S , depending on the growth kinetic order. This is consistent with AFM 

observations of the topology of the (101) face of KDP made by De Yoreo et al. [38, 39], over 

the range of supersaturation between 0.03S =  and 0.30S = , and with the subsequent analysis 

of published data made by Sangwal [40]. Evidences of both linear [41] and sublinear [42] 

( )p S  dependence were also found by applying in-situ Michelson interferometry to study the 

(001) and the (101) ADP face, respectively. 

 The data shown in Figure 7.5 indicate that 2.41Vn =  over the supersaturation range 

considered. As a result, the inclination of the growth hillocks for sucrose at 40 ºC should 

increase with supersaturation according to a power law with an exponent of 1.41. Replacing 

the measured value of Vn  in Eq. (7.33) one obtains a first-order ordinary differential equation 

(ODE) relating γ  and S , with no analytical solution. Setting instead the condition of constant 

kinetic order over the range of supersaturation in study ( / 0Vn S∂ ∂ = ), one obtains the 

following analytical solution from the second-order ODE:  

 1 2 lnC S C S Sγ = −  (7.34) 
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Where 1C  and 2C  are constants. The value of 2C  can be directly obtained by replacing the 

derived ( )Sγ  relation in Eq. (7.33), so that 

 
( ) 22

1.64
1 2V

h
n C

kT

Ω= +  (7.35) 

Using 30715.04 10−Ω = ×  m3 [43] and letting 1 3h ≈ Ω , it results that 5
2 1.08 10C −= × for the 

system in study. Note that Vn  is independent of the value of 1C  and, for 1Vn = , the crystal 

growth kinetics from solution is not affected by the interfacial tension. The knowledge of 1C  

is, however, essential to determine the behaviour of the interfacial tension for changing 

supersaturation. Figure 7.6 is a representation of Eq. (7.34) assuming 4
1 9.75 10C −= × . This 

value was chosen in order to reproduce rough estimations taken from literature indicating that 
35 10 /N mγ −≈ ×  for saturated sucrose solutions [44]. As shown, the interfacial tension 

markedly increases with supersaturation. According to the Gibbs adsorption isotherm given 

by Eq. (7.32), the Gibbs excess concentration of sucrose is a negative value ( 2 0Γ < ), i.e., for 

a given supersaturation, the concentration of sucrose on the crystal surface decreases 

relatively to solution. Since 2/ ln /x Sγ γ∂ ∂ ≈ ∂ ∂  and 2Γ  is a constant, the Gibbs adsorption 

isotherm predicts the interfacial tension to vary linearly with supersaturation.  
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Figure 7.6. Influence of supersaturation on the interfacial tension between sucrose crystals 

and aqueous solutions of sucrose at 40 ºC according to Eq. (7.34). 
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The slope of the ( )Sγ  curve shown in Figure 7.6 decreases as the supersaturation increases, 

indicating that the sucrose system at 40 ºC diverges from the ideal behaviour. After the 

influence of supersaturation on the interfacial tension is established, critical parameters of the 

SNM such as the critical radius of the nuclei or the energetic barrier for the nuclei formation 

can be determined for the operating conditions. An application example will follow, where 

the influence of supersaturation on the ratio between the interstep distance of spirals resulting 

from one dislocation source and the step height ( 0 /y h ) is determined. The profile shown in 

Figure 7.7 results from the definition 
20 7.26

Dcy r=  and from Eqs (7.2) and (7.34). Increasing 

the supersaturation would decrease the 0 /y h  ratio, because of the lower energetic barrier to 

form a spiral nucleus. The range of values represented in Figure 7.7 compares well with the 

average ratio measured by AFM on (100) faces of KDP grown from aqueous solutions at 

0.03S =  [31]. Under those conditions, the average value of 0 /y h  was approximately 200. 

Observations of lower step length-to-height ratio are, however, likely to occur due to the 

phenomenon of step bunching and to multiple-source steps. 
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Figure 7.7. Influence of supersaturation on the step length-to-height ratio of spirals resulting 

from one dislocation source. 

 Presently, there is a renewed interest on the determination of interfacial tension at 

solid-liquid interfaces [10] and a great number of works have been published about the 

topological properties of the surface of growing crystals. More than accurately determine 

these parameters, the example here presented has the purpose of illustrating how they can be 
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estimated from crystallization data using the SNM growth equation. Better estimations of the 

interfacial properties would have to account for the deviations from ideality of the water-

sucrose mixture [34, 35]. Moreover, the crystal growth rates of sucrose are known to be 

affected by volume diffusion resistances that are not considered in present approach. In 

following chapters, the combined use of the SNM with diffusion-reaction models will be 

illustrated. In spite of the simplifications made, the SNM has proven to be a valuable tool for 

characterizing the interface phenomena during crystal growth and on the determination of the 

morphology of growing hillocks by a non-microscopic method. 

7.4 Conclusions 

 The formation and development of surface dislocation spirals during crystal growth 

was revised from the thermodynamic and kinetic point of view. Spiral growth is not seen as a 

spontaneous process in supersaturated media, although the energy requirements for the 

formation of the initial nuclei are considerably lower than in other energy-activated models. 

Following recent AFM observations of the growth mechanism, the velocity of step 

advancement was calculated independently of the step radius of curvature. Conversely, it was 

found that the overall integration rate increases with the number of surface dislocations and 

with the interface size. It is believed that the distance between steps resulting from the same 

dislocation source is independent of supersaturation. However, increasing the supersaturation, 

the number of cooperating active sources may increase and consequently decrease the 

measured interstep distance. Because of the low mobility of the adsorbed molecules during 

solution growth, only a small fraction of the current reaching the crystal surface is integrated 

into the steps. The contrary happens during vapour growth, where high mean displacements 

of condensed molecules lead to high integration efficiencies. Eq. (7.30) provides a generalized 

relation between crystal growth rate and the main variables that are recognized to influence it. 

The spiral nucleation model was used to calculate the influence of supersaturation on the 

interfacial tension from the measured crystal growth kinetics of sucrose at 40 ºC. Other 

interfacial phenomena such as solute adsorption were also analyzed, and the morphology of 

growth hillocks was possible to be inferred without using microscopic techniques. The 

consistency of the proposed model was demonstrated in terms of general microscopic 

evidences and of growth kinetic behaviour. The potential of the spiral nucleation mechanism 

will continue to be explored on the interpretation of some unresolved questions in crystal 

growth science.  
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8. Size-dependent growth 

Overview 

 The effect of crystal size on the growth rate of sucrose at 40 ºC is investigated from a 

theoretical and an experimental point of view. Based on the principles of the spiral nucleation 

model, crystal growth rates are expressed in terms of mass deposition per time and crystal 

volume units. This alternative definition is demonstrated to be size-independent over the 

considered supersaturation range. The conventional overall growth rate expressed per surface 

area units is found to be linearly dependent on crystal size. The advantages of the 

“volumetric” growth rate concept are discussed. Sucrose dissolution rates were measured 

under reciprocal conditions of the growth experiments in order to investigate the two-way 

effect of crystal size on the mass transfer rates and on the integration kinetics. Both effects are 

adequately described by combining a well-established diffusion-integration model and the 

spiral nucleation mechanism. 
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8.1 Introduction 

 In systems exhibiting size-dependent growth (SDG), crystal growth rates are 

influenced by the size of crystals. A good understanding of SDG is essential on the analysis of 

crystal growth kinetics and crystal size distributions [1], on the interpretation of growth rate 

dispersion [2] and to develop better seeding policies [3]. The influence of crystal size on the 

growth rates has been mainly described through empirical formulations. Most of these 

correlations were previously reviewed in the works of Abegg et al. [4], Mitrovic et al. [5] and 

White et al. [6]. Garside and Jancic [1] suggested that for larger crystals higher crystal 

collisions and mechanical stress would increase the surface dislocation density and 

consequently enhance the crystal growth rate. In fact, according to the classical Burton 

Cabrera and Frank (BCF) theory [7, 8] the growth rate perpendicular to the surface (R) can be 

enhanced by a factor of ε , which is proportional to the number of dislocations in a group, so 

that 

 
2

exp tanh
W S C

R hv
kT C S

εχ
ε

� �� � � �= − � �� � � �
� � � �� �

 (8.1) 

where  

 
2

s

h
C

kTx
πγ=  (8.2) 

and k  is the Boltzmann constant, T  is the temperature, W  is the energy of adsorbing onto the 

surface (in the case of growth from solution), χ  is a factor accounting the possibility of non-

equilibrium state, h  is the step height, v  is the vibrational frequency of the surface adsorbed 

molecule, γ  is the solid-liquid interfacial tension and sx  is the mean displacement of 

adsorbed molecules. Supersaturation is defined by / 1b eS a a= − , where ba and ea  are the 

solute activity in the supersaturated solution and in the equilibrium, respectively. Using the 

BCF equation and assuming the number of dislocations in a dominant group to be 

proportional to the initial crystal size, Zeckic and Mitrovic [9] concluded that the mean 

growth rate is directly proportional to the mean initial crystal sizes at low supersaturation. 

This was experimentally confirmed for crystals belonging to one growth rate distribution 

maximum [10].  
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 In the previous chapter, a new fundamental crystal growth model was derived taking 

into account recent findings on the dynamics of dislocation spirals and classical concepts of 

two dimensional nucleation and spiral growth. In this spiral nucleation model (SNM), the 

mass deposition rate per surface area units ( GR ) is explicitly given as a function of the crystal 

size ( L ) and of other variables such as the density of activated spirals ( spn ) and the interstep 

distance ( 0y ): 

 
3
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2
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G sp

Lh W
R n v S

y kT
πρ � �= −� �

� �
 (8.3) 

Here, sρ  is the crystal density and spn  is a function of the total number of dislocations per m2 

( λ ) and of the critical energy required for the formation of a stable spiral ( cG∆ ), 
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with, 
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+
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Equation (8.3) sets that growth rates of crystals having similar dislocation density and 

topological properties are in direct proportion to crystal size. Although linear dependences of 

GR  on the crystal size are often reported in the literature, it is also common to use more 

complex empirical relations. According to Mitrovic et al. [5] there is no reason for their use. 

Deviations from linearity may well result from the procedures adopted when measuring and 

analysing crystal growth kinetics in features like the duration of the experiments, the use of 

initial, instantaneous or mean crystal size over the runs, the way the mean crystal size is 

estimated, etc. This was illustrated by the work of Laguerie et al. [11] with citric acid 

monohydrate, when remarkably different GR  vs L  relations were obtained by treating 

differently the experimental data. To avoid this kind of ambiguities one proposes to express 

the crystal growth rates in terms of mass deposition rate per unit of crystal volume ( VR ). The 

“volumetric” growth rate can be directly computed from the variation of the crystal mass ( m ) 

in a given period t∆ , regardless of the size, number and surface area of crystals during the 

experiments:  

 
1 lns

V s

m m m
R

V t m t t
ρ ρ∆ ∆ ∆= = =
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 (8.6) 
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where V is the crystal volume. Assuming the validity of the SNM and of Eq. (8.3), VR  can be 

seen as the inherent growth rate of crystals having similar dislocation densities, since it can be 

calculated for a given temperature and supersaturation independently of the crystals size: 
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V sp
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R n v S

L y kT
πρβ β

α α
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where α  and β  are the volume and surface area shape factors. In a first application example 

of the SNM, interfacial properties were estimated from the measured dependence of /GR L  on 

the supersaturation (Chapter 7). In this chapter, the potential of this model will continue to be 

explored on the interpretation of SDG data of sucrose at 40 ºC. 

8.2 Experimental section 

 Crystal growth and dissolution rates of sucrose were measured at 40.0 0.1±  ºC, in a 

3 L jacketed batch crystallizer for different crystal sizes. The detailed experimental apparatus 

and procedures are described in Chapter 5. Briefly, an accurately known weight of seed 

crystals ( 5�  g) was introduced into the supersaturated solution and were allowed to grow at 

an agitation speed of 300 rpm and at controlled temperature during approximately 15 h. At the 

end of the growth period, the mass fraction of sucrose crystals was approximately 10%. 

Dissolution experiments immediately followed these periods by adding to the slightly 

supersaturated solution a rigorously weighted amount (about 100g) of ultra-pure water at the 

working temperature. An initial drop on the sucrose concentration occurs due to the 

introduction of water and the solution becomes undersaturated. Dissolution experiments were 

much faster than the preceding crystal growth. Generally, saturation was possible to be 

achieved in about 1 h. 

 The sucrose concentration was followed by an on-line refractometer and the mass of 

crystals was continuously computed by mass balance. Experiments were carried out with 

“small” seed crystals (sieve sizes between 0.125 and 0.250 mm), “medium” seed crystals 

(sieve sizes between 0.250 and 0.300 mm), and “large” seed crystals (sieve sizes between 

0.300 and 0.425 mm). The instantaneous mean equivalent size of the crystals ( L ) was 

calculated every 10 seconds interval using the shape factors of sucrose crystals found by 

Bubnik and Kadlec [12]. The respective profiles are shown in Figure 8.1 for the three classes 

of seeds. 
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Figure 8.1. Evolution of the mean equivalent size of crystals during the growth experiments. 

 The overall crystal growth rate for a given time interval t∆  was calculated considering 

the variation of the mass of crystals during that period, the crystal shape factors and the 

number of introduced crystals ( N ):  

 
( )2/3 1/3

1/33 s
G

m
R

N t

ρ α
β

∆=
∆

 (8.8) 

In its turn, the volumetric growth rate VR  was calculated using Eq. (8.6). The corresponding 

supersaturation for the period t∆  was estimated from the average mole fraction ( bx ) during 

that period and from the measured sucrose solubility at 40 ºC ( 0.1093ex = ). Significant 

nucleation, crystal breakage and/or agglomeration were not found to have occurred. 

8.3 Results and discussion 

 Figure 8.2 shows that both growth and dissolution rates increase with crystal size. The 

interpretation of SDG data of Figure 8.2a should not be detached from the effect of crystal 

size on mass transfer rates shown in Figure 8.2b.  
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Figure 8.2. (a) Growth and (b) dissolution rates of sucrose in a batch crystallizer at 40ºC for 

different crystal sizes. 

In Chapter 5, the importance of the diffusional resistance during growth of sucrose at 40 ºC 

was investigated by performing several growth and dissolution experiments of equally sized 
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crystals at different agitation speeds. It was found that crystal growth rates vary with agitation 

speed in the same proportion of the square root of the corresponding dissolution rates, i.e.,  

 1 1

2 2

G D

G D

R R

R R
=  (8.9) 

where the subscripts “1” and “2” correspond to two sets of hydrodynamic conditions and DR  

is the dissolution rate. Based on this premise, one can conclude from Figure 8.2 that crystal 

size influences not only the system hydrodynamics but also the surface integration step during 

growth. If only the first effect was considered, the variation of the growth rate with crystal 

size (Figure 8.2a) would be smoother than the correspondent variation of the dissolution rates 

(Figure 8.2b). Instead of that, GR  strongly increases as the crystal size increases, suggesting a 

size-dependent integration kinetics. This is in accordance with other evidences previously 

reported by other authors [1, 13-16] and goes against the initial justification of SDG by means 

of variations on the diffusional resistance, alone [17].  

 With the purpose of quantifying the role of crystal size on the crystallization kinetics, 

the experimental results were expressed in terms of the volumetric growth rate (Figure 8.3).  
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Figure 8.3. Volumetric growth rates of sucrose for different crystal sizes. One of the curves 

was obtained after the occurrence of spontaneous nucleation in the beginning of the 

experiment. 
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As shown in the figure, besides the experiments already presented in Figure 8.2, an additional 

growth result was considered, in which spontaneous nucleation have occurred at the 

beginning of the experiment. In this case, the initial crystal size distribution was strongly 

affected by the generation of new micro-particles at high supersaturation. After the abrupt 

crystal mass increase (and supersaturation decrease), VR  was possible to be computed taking 

into account the variation of the mass of crystals with time. The applicability of volumetric 

growth rates can therefore be extended to a great number of practical situations where the 

number and size of crystals are not known.  

 Changing the crystal size did not affect significantly the volumetric growth rate in the 

absence of nucleation. Contrarily to the strong dependence of GR  on the crystal size (Figure 

8.2a), VR  is apparently size-independent over the considered range of supersaturation. The 

growth experiment preceded by spontaneous nucleation was the only exception to the 

apparent agreement between the results of Figure 8.3. Relatively to the standard growth 

experiments, the hydrodynamic conditions of the suspension were significantly altered by the 

presence of a great number of micro-crystals in solution, leading to much higher diffusional 

resistances during growth (see below). From the apparent independence of VR  on L  and 

since /G VR LRα β= , one concludes that the overall growth rate, GR , is linearly dependent of 

crystal size. A similar conclusion can be drawn by analysing the variation of the particle size 

distributions through a growth experiment. Figure 8.4 shows the size distributions at the 

beginning (medium seed crystals) and the end of an experiment, after normalizing the crystal 

sizes by the corresponding median size ( 0.314medL = mm before the experiment and 

0.802medL = mm after it). Grown crystals for which / 0.5medL L <  result from the occurrence 

of primary nucleation and crystal breakage. The small percentage of these cases does not 

significantly affect the growth rate results. Crystals having / 1.5medL L >  are essentially 

conglomerates formed during the filtration, washing and drying of the grown crystals. 

Apparently, if one excludes these abnormal particles, the distributions of sieved seeds and 

grown crystals would be superimposed. The relation between growth rates of different sized 

crystals within a population corresponds, therefore, to the relation between the respective 

overall growth rates [18]. Once more, the linear correspondence between GR  and L  is 

confirmed.  
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Figure 8.4. Scaled size distribution in a volume basis measured by laser light diffraction, 

before and after a growth experiment. 

 Empirical equations are commonly used to describe crystal growth kinetics in a 

straightforward way. Of the experimental curves shown in Figure 8.2 ( GR ) and Figure 8.3 

( VR ), only the latter ones are well described by a conventional power-law equation: 

 Vn
V VR K S=  (8.10) 

where VK  and Vn  are the empirical kinetic constant and kinetic order, respectively. Figure 

8.5a illustrates the behaviour of the GR  vs. S  curves. Although the overall rate equation is 

parabolic the apparent kinetic order is higher than 2 for low S  and lower than 2 for high S . 

The observed changing growth kinetics is certainly related with the variation of crystal size 

during the experiments. Expressing the growth rates in terms of VR  one normalizes the 

kinetic effect of crystal size, with resulting invariant power-law rate equation over the 

supersaturation range (Figure 8.5b). Table 8.1 lists the fitting results for all growth 

experiments. 



Chapter 8 

 146 

S

R
G

(k
g/

m
2 /s

)×
10

5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

2

4

6

8

10

(a)

Growth order > 2

Growth order < 2

 

S

R
V

(k
g/

m
3 /s

)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.2

0.4

0.6

0.8

1

(b)

RV=82.8×S2.39

 

Figure 8.5. Plots of the (a) conventional and (b) volumetric growth rate of sucrose at 40 ºC 

and of the respective fits to a power-law equation. Seed crystals with sieve sizes between 

0.250 and 0.300 mm were used. 
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Table 8.1. Parameters of Eq. (8.10) that best fit the experimental results presented in Figure 

8.3. 

Mean seed size (mm) VK  Vn  2R  
0.362 85.6 2.43 0.998 

0.275 82.8 2.39 0.999 

0.188 81.8 2.39 0.997 

0.362 43.0 2.21 0.997 

 

 The concept of volumetric growth rate follows from the recently introduced spiral 

nucleation model (SNM) establishing a linear dependence of the integration rate on the crystal 

size. This model characterizes crystal growth without taking into account eventual mass 

transfer limitations, which in the case of sucrose at 40 ºC are known to exist. The relative 

weight of the kinetic and mass transfer steps are, however, well established for this system in 

Chapter 5. In the absence of significant diffusional resistances the crystal growth rate would 

be given by an equation of the type 

 
1

rre
G

k
R S

r
=

+
 (8.11) 

where rek  and r  are the kinetic constants. Nevertheless, by comparing growth and dissolution 

kinetics measured under different hydrodynamic conditions, the crystal growth rate of sucrose 

was found to be considerably affected by the mass transfer coefficient during growth ( dk ), so 

that 

 12
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G
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R S
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In Chapter 5, the successive growth experiments were performed keeping the same conditions 

of crystal size and number, with the purpose of avoiding SDG to interfere on the study of 

diffusional resistances during growth. Admitting now the validity of the SNM, the influence 

of crystal size on the kinetic step can be emphasized by letting re rek k L′= , where rek′  is a 

function of the physical and topological parameters of the crystal, and temperature. As a 

result, the relationship between growth rates obtained at same supersaturation and temperature 

but for different crystal size and hydrodynamic conditions will be given by 
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 1 1 1

2 2 2

1 1

2 2

G d D

G d D

R k L R L

R k L R L
= =  (8.13) 

where the second equality results from considering the mass transfer coefficients during 

growth and dissolution to be correspondent (see Chapter 5 for more details). Note that the 

equation previously used to investigate whether the influence of crystal size on the sucrose 

growth rate was merely diffusional or also kinetic (Eq. (8.9)) is a particular case of Eq. (8.13) 

when 1 2L L= , i.e., when growth rates of equivalent sized crystals are compared. Rewriting 

Eq. (8.13) in order to obtain the corresponding ratio between volumetric growth rates, gives 

 1 1

2 2

1

2

V D

V D

R R L

R R L
=  (8.14) 

The verification of this relationship will be done by comparing the VR  vs. S  curves presented 

in Figure 8.3 with the corresponding dissolution kinetics recalculated in terms of the DR L  

ratio: 

 
lnsDR m

L t
αρ

β
∆= −

∆
 (8.15) 

This definition can as well be used when the number and size of crystals are not known. The 

obtained dissolution data are shown in Figure 8.6. 
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Figure 8.6. Representation of the dissolution rates of sucrose normalized by the mean 

equivalent crystal size, for different crystal sizes and for the nucleation-preceded experiment. 
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An equation of the type ( )1D D b eR L K x x= −  was used to fit the results – Table 8.2.  

Table 8.2. Dissolution coefficients that best fit the experimental results shown in Figure 8.6. 

Mean seed size (mm) DK  2R  
0.362 0.151 0.990 

0.275 0.168 0.993 

0.188 0.155 0.969 

0.362 0.097 0.998 

 

The influence of crystal size on the normalized dissolution rate is hardly distinguishable 

among experiences with controlled crystal size and number. This pattern entirely confirms 

what would be expected from Eq. (8.14) and from the growth kinetics shown in Figure 8.3. In 

fact, the small differences between the dissolution rates of Figure 8.6 are even smaller in the 

corresponding representation of volumetric growth rates. The differences found in each plot 

may well be interrelated by the square-root factor expected by Eq. (8.14). An additional 

confirmation of this equation results from the relation between growth and dissolution rates 

obtained after the occurrence of spontaneous nucleation: using the kinetic constants of Table 

8.1 corresponding to large seeds, with and without nucleation one obtains 

 , . , .

, . , .

1.2V without n D without n

V with n D with n

R K

R K
= =  (8.16) 

for a reference supersaturation of 0.1. This example illustrates how the crystallization of 

sucrose at 40 ºC can be successfully explained in terms of the influence of supersaturation, 

diffusional resistance and crystal size on the growth rate by combining an engineering model 

concerned with the relative importance of the mass transfer and kinetic steps, with the 

fundamental perspective of crystal growth given by the SNM.  

 Summing up, the characterization of SDG started by using Eq. (8.9) to identify this 

phenomenon in the results of Figure 8.2a; the origin of the different growth kinetics obtained 

was shown to be diffusional and kinetic. Then, the overall growth rate was found to increase 

about linearly with crystal size according to the representation of the volumetric growth rates 

(Figure 8.3) and subsequently, from the normalized crystal size distributions shown in Figure 

8.4. Finally, the confirmation of Eq. (8.14) proved that, besides the overall growth rate, the 
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integration step rate is also linearly dependent of the crystal size in accordance to what is 

expected by the SNM. Other theoretical models admitting this correspondence only partially 

explain the obtained results. In particular, in the BCF mechanism as seen by Zeckic and 

Mitrovic [9] the direct influence of crystal size on GR  is restricted to a limit case of the 

growth rate equation (Eq. (8.1)). As shown in the analysis of Figure 8.2a and Figure 8.3, the 

linearity of the ( )GR L  dependence was verified in spite of the supersaturation range and 

kinetic behaviour.  

8.4 Conclusions 

 In the present work, the influence of the crystal size on the growth kinetics of sucrose 

at 40 ºC is characterized in a systematic way. Crystal size has a two-way effect on the mass 

transfer rate and on the integration mechanism during growth. The introduced spiral 

nucleation model provides a fundamental basis for the latter effect, proposing a linear 

dependence of the integration rate on the crystal size. Accordingly, an alternative growth rate 

definition is put forward, where the mass deposition rate is expressed per crystal volume 

units. Besides being theoretically consistent, the volumetric growth rate concept is of great 

practical interest since crystal growth kinetics can be calculated in situations of unknown 

crystal number and size. The growth data of sucrose expressed in terms of the volumetric 

growth rates are size-independent at comparable hydrodynamic conditions. This shows that 

the overall growth rate varies linearly with the crystal characteristic dimension. The same can 

be confirmed from the superposition of the normalized crystal size distributions before and 

after the growth experiments. By combining the spiral nucleation model with an established 

diffusion-integration engineering model, the crystallization of sucrose at 40 ºC was 

successfully explained in terms of the combined influence of supersaturation, diffusional 

resistance and crystal size. 
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9. Effect of cane sugar impurities on 

the sucrose growth kinetics 

Overview 

 In Chapter 6, the effect of impurities on the crystal growth rate was described by 

means of a new kinetic model called “competitive adsorption model” (CAM). The validation 

of this theory was made with experimental data taken from literature reporting several 

examples on how impurities can interfere with the growth mechanism. In this chapter, the 

CAM is applied to the sucrose growth kinetics measured in a pilot evaporative crystallizer, 

under industry-like conditions. In accordance with the general pattern expected by empirical 

correlations used in sugar industry, crystal growth rates decrease as the non-sucrose 

concentration increases. The kinetic effect of the impurities existing in cane sugar solutions is 

characterized from a fundamental point of view, by estimating the corresponding average 

CAM parameters. The obtained results indicate that this type of impurities can be greatly 

adsorbed at the sugar crystal surface, even though their effectiveness on the growth rate 

lowering is low.  
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9.1 Introduction 

 According to the competitive adsorption model (CAM), the action of a given impurity 

during crystal growth is mainly dependent on its capability of adsorbing at crystal surface and 

on the capacity of the adsorbed molecule to migrate across the surface and occupy potential 

active sites for the crystallizing solute integration. The first step is quantified by the impurity 

surface coverage for competitive adsorption,  

 
1

i i
s

i i p

k c
k c k S

θ =
+ +

 (9.1) 

while the relative weight of the thermodynamic processes occurring at the surface, 

determinates the impurity activity given in terms of the β  parameter (Chapter 6). The growth 

rate decrease relatively to pure solutions is proportional to the number of active sites occupied 

by the impurity. As a result, the relative growth rate in impure and pure systems is given by 

the following CAM equation: 
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i i p

k cR
R k c k S

β= −
+ +

 (9.2) 

In Chapter 6, we discussed the action of single impurities during crystal growth, but in most 

applications, different impurities are present simultaneously and have a combined effect on 

the growth kinetics. In the industrial crystallization of sucrose, empirical equations are used to 

describe the variation of sucrose solubility and growth rate with the solution purity, generally 

expressed in terms of the non-sucrose to water ratio ( NS W ). The estimated empirical 

parameters are valid for the specific composition of the syrup used on the measurements. It is 

reported that in beet sugar industry, raffinose is the most influencing impurity, while in cane 

sugar, oligosaccharides and the dextran polysaccharide are suspected to be the ones having a 

determinant role [1, 2]. From the study carried out by Smythe on the isolated influence of 

some of these species on the sucrose growth kinetics, one may expect active sugar beet 

impurities (high β ) and poorly active sugar cane impurities (low β ) [3]. Using crystal 

growth rates of sucrose measured in a pilot vacuum pan (evaporative crystallizer), an 

application example of the CAM is now given in order to characterize the kinetic influence of 

non-sucrose compounds in typical cane sugar syrups. 
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9.2 Experimental section 

 Crystal growth rates of sucrose were measured in a 50 L pilot vacuum pan at different 

NS W  levels. The detailed procedure and experimental apparatus are described in Chapters 2 

and 3. The experiments were carried out at constant amount of water by means of an 

automatic control of the microwave density. Water was continuously admitted into the pan in 

order to balance the evaporation rate. Three types of syrups were used: industrial cane syrup 

from Cora Texas mill (Louisiana), synthetic syrup, prepared with refinery white sugar and tap 

water , and blended syrup obtained by adding 1 part of the industrial syrup to approximately 8 

parts of synthetic syrup. Composition analysis indicates that the industrial syrup has 87.75% 

apparent purity (sucrose content measured by the polarization method), 65.42% of dissolved 

solids measured by refractometry, 1.12% of glucose and 1.16% of fructose measured by 

HPLC, and 2.22% of ash content. In the experiments with industrial syrup, different /NS W  

levels correspond to different boiling stages. Initially, the crystallized matter content (CC ) is 

lower and the mother liquor purity is higher; as the crystallization proceeds, supersaturation is 

achieved by means of increasingly higher amounts of evaporated water, and the /NS W  level 

is increased. Table 9.1 summarizes the main experimental conditions at which growth rates 

were measured. 

Table 9.1. Experimental conditions of the sucrose growth experiments.  

CC  (%) Experiment 
# NS W  Syrup 

Average 
Temperature 

(ºC) 
Min Max 

1 0 Synthetic 62.3 0 13.6 

2 0 Synthetic 62.3 13.6 22.5 

3 0.058 Blended 62.1 0 17.1 

4 0.434 Cane 62.0 0 11.0 

5 0.490 Cane 65.6 8.1 16.9 

6 0.597 Cane 62.2 18.5 31.0 

 

 Our previous growth experiments at laboratory scale suggest a linear dependence of 

the overall growth rate of sucrose ( GR ) on the instantaneous crystal size ( L ) (Chapter 8). 

Based on this premise, the kinetic effect of crystal size was normalized by calculating the 

crystal growth rates in a volumetric basis: 
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 6G
V s

R R
R

L L
β ρ
α

= =  (9.3) 

where α  and β  are the volume and surface area shape factors. The volumetric growth rate is 

directly computed from the variation of the mass of crystals, regardless of their size, number 

and surface area during the experiments, according to the following definition: 

 
ln

V s

m
R

t
ρ ∆=

∆
 (9.4) 

The average supersaturation in the time interval t∆  is calculated from the average dissolved 

sucrose concentration ( c ) in the same period, and from the sucrose solubility ( *c ) obtained 

for the set of conditions of each experiment according to the method described in Chapter 3. 

9.3 Results and discussion 

 Figure 9.1 shows the growth rate curves obtained with synthetic syrup (“pure” case) at 

different experimental conditions (see Table 9.1). Equally spaced data points are considered.  

c-c* (kg sucrose/100 kg water)

R
V

(k
g/

m
3 /s

)

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Experience #1
Experience #2
Linear fit (experience #1)

 

Figure 9.1. Volumetric growth rates of sucrose obtained with synthetic syrup ( / 0NS W � ). 

Both curves are in good agreement, despite of the differences of crystal size and mass 

fraction, and of hydrodynamic conditions. This fact sustains the use of volumetric growth 
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rates to account for the kinetic influence of crystal size, as well as, our previous results 

reporting almost invariable mass transfer resistances at different hydrodynamic conditions 

inside the pan. (see Chapter 3 for more details). Variations on the volumetric growth rate of 

sucrose with /NS W  can therefore be attributed to the impurities influence on the crystal 

growth kinetics. The differences found are represented in Figure 9.2. All the curves were well 

fitted by a rate law of the form 

 V VR K c= ∆  (9.5) 
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Figure 9.2. Volumetric growth rates of sucrose obtained at different /NS W  levels.  

A linear relationship between crystal growth rates and supersaturation was already reported 

by Wright and White in their mathematical model of vacuum pan crystallization [4]. At same 

time, they found an exponential dependence of the growth rate on /NS W : 

 1

1 22

exp 1.75
R NS NS
R W W

� �� 	� �� � � �= − −� � �� � � �
� � � �� �
 �� �

 (9.6) 

Since the publication of the work of Wright and White, other authors have been proposing 

alternative empirical parameters for the same relationships [2, 5]. Using Eq. (9.6) and the 

equivalence given in Eq. (9.3), one can estimate the relative growth rate in impure and pure 

solutions, irrespective of the crystal size: 
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R NS
R W

� �= −� �
� �

 (9.7) 

The form of Eq. (9.7) can be tested against the results of Figure 9.2. With that purpose, the 

relative volumetric growth rates were calculated using the rate constants that best fit the 

experimental curves (Table 9.2). The obtained results are plotted as a function of /NS W  in 

Figure 9.3. A fairly good adjustment was obtained using an exponential constant of 1.45− . 

This indicates a somewhat lower growth rate variation with /NS W  than Eq. (9.7).  

Table 9.2 Volumetric rate constants that best fitted the results of Figures 9.1 and 9.2, and 

relative volumetric growth rates, at different /NS W  levels. 

Experiment 
# 

NS W  VK  2R  0V VR R  

1 0 0.0842 0.974 1 

3 0.058 0.0707 0.994 0.840 

4 0.434 0.0469 0.948 0.557 

5 0.490 0.0440 0.980 0.522 

6 0.597 0.0328 0.971 0.390 
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Figure 9.3. Influence of /NS W  on the relative volumetric growth rates of sucrose, and 

respective fit using an exponential curve.  
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 Although useful for sugar industry, the exponential-type equation correlating the 

relative growth rates and the impurity concentration lacks of physical meaning. The 

competitive adsorption theory can be applied to sugar crystallization by characterizing the 

overall action of the non-sucrose compounds through average CAM parameters. Linearizing 

Eq. (9.2) and expressing it in terms of volumetric rates yields: 
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V V i i

k S

R R k cβ β
+

= +
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 (9.8) 

The dimensionless impurity concentration i ik c  can be conveniently given as a function of the 

non-sucrose to water ratio, by letting ( )i i ik c k NS W′= . The relative growth rates of sucrose 

are a strong function of /NS W  but did not change significantly with supersaturation. At low 

supersaturations, this fact is explained by the simplified form of Eq. (9.8), admitting 1pk S � : 

 
0

1 1 1 1
1 V V iR R k NS Wβ β

= +
′−

 (9.9) 

The parameters β  and ik ′  are easily obtained by fitting Eq. (9.9) to the data of Table 9.2. In 

so doing, the average impurity activity of the compounds in the cane solutions is 

characterized by 0.90β =  and 2.64ik′ = . In Figure 9.4, the obtained influence of /NS W  on 

the relative growth rates can be compared with the one given by the CAM using the fitted 

parameters. The good agreement found, confirms that the new model is a valuable alternative 

to the empirical correlations used so far in sugar industry. As expected, the impurities in sugar 

cane solutions are moderately active in suppressing the sucrose growth rate. Since 1β < , this 

example corresponds to a system exhibiting negative critical supersaturation (see Chapter 6 

for more details): 
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k

β − −
=  (9.10) 

The marked growth rate decrease is due do the extensive impurity adsorption in the 

considered range of /NS W . For example, for / 0.6NS W = , the overall surface coverage is 

given by 
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 (9.11) 
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which is equivalent to say that, under these conditions, more than 60% of the sucrose crystal 

surface is covered by non-sucrose compounds. 
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Figure 9.4. Experimental and theoretical influence of /NS W  on the relative volumetric 

growth rates of sucrose. The CAM curve is represented for the parameters of Eq. (9.9) that 

best fit the experimental data. 

9.4 Conclusions 

Crystal growth rates of sucrose measured in a pilot vacuum pan at different impurity 

concentrations were well described by the CAM. The average activity of the non-sucrose 

compounds in cane sugar syrups was estimated to be 0.90β = , which confirms the low 

kinetic effect predicted in literature for these compounds. Using the fitted parameters, it was 

possible to calculate the fraction of the crystals surface occupied by adsorbed impurities as a 

function of their concentration in solution. This application example illustrates the robustness 

of the new model and demonstrates the CAM to be a valuable alternative to the empirical 

correlations used so far in sugar industry. 
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10. The influence of temperature 

and growth rate history on crystal 

growth 

Overview 

 Crystallization experiments of sucrose are carried out in a batch crystallizer to study 

the effect of temperature and growth rate history on the crystal growth kinetics. In one of the 

growth methods adopted, the isothermal volumetric growth rate ( VR ) is determined as a 

function of supersaturation ( S ) at 35, 40 and 45 ºC. In the other, crystals are allowed to grow 

at constant supersaturation by automatically controlling the solution temperature as the solute 

concentration decreased. Using the latter method, VR  is continuously calculated as the 

solution is cooled. The obtained results are interpreted using empirical, engineering and 

fundamental perspectives of crystal growth. Firstly, the overall activation energy ( AE ) is 

determined from the empirical growth constants obtained in the isothermal method. The 

concept of falsified kinetics, widely used in chemical reaction engineering, is then extended to 

the crystal growth of sucrose in order to estimate the true activation energy ( TE ) from the 

diffusion-affected constant, AE . Considerably different ln VR  vs 1 T  curves are obtained in 

the isothermal and constant supersaturation methods. The differences found are explained 

from the viewpoint of the spiral nucleation mechanism, taking into account different crystal 

surface properties caused by the growth rate history in each method. Finally, the crystal 

growth curve obtained in the batch crystallizer at 40 ºC is compared with the one obtained in a 

fluidized bed crystallizer at the same temperature. Apparently divergent results are explained 
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by the effects of crystal size, hydrodynamic conditions and growth rate history on the 

crystallization kinetics of sucrose. 

10.1 Introduction 

 Crystal growth from solution has been described by empirical, engineering or 

fundamental models depending on the purposes and degree of detail envisaged. Theoretical 

relations between crystal growth rate and main variables such as supersaturation or 

temperature often involve complex parameters and mathematics which are not suitable for 

practical purposes [1]. In those cases, the simple arrangement in series of a volume diffusion 

step and the solute integration at crystal surface is preferred to describe crystal growth, since 

only kinetic and mass transfer parameters are involved [2]. As discussed in Chapters 4 and 5, 

for simple integration kinetics this two step model can be simplified to the form of the most 

widely used growth rate equation: 

 g
G GR K S=  (10.1) 

In most applications the parameters of this equation are, however, assumed to be purely 

empirical [3, 4]. Modifications to Eq. (10.1) are frequently made to account for the effect of 

crystal size on the growth rates. Some of the correlations used were previously reviewed in 

the works of Abegg et al. [5], Mitrovic et al. [6] and White et al. [7]. According to Mitrovic et 

al. [6], there is no reason for using complex relations between growth rate and crystal size 

since this dependence is, in general, linear. Based on fundamental arguments supporting this 

linearity, one proposed the crystal growth rates to be expressed in terms of mass deposition 

rate per unit of crystal volume (Chapter 8), 
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so that GR  and VR  can be related using the volume and surface area shape factors (α  and β , 

respectively): 
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The volumetric growth rate VR  can be directly computed from the variation of the mass of 

crystals with time, regardless of their size, number and surface area. The kinetic constant VK  

is related with temperature by an Arrhenius-type equation: 

 0 exp A
V V

E
K K

RT
� �= −� �
� �

 (10.4) 

where 0VK  is a constant and AE  is the overall activation energy. 

 In Chapter 4, an alternative engineering approach to the role of diffusional resistance 

during growth from solution was presented. The incorporation of molecules into the crystal 

lattice is assumed to be preceded by volume diffusion and solute adsorption along the 

stagnant film surrounding the particle. Based on these simultaneous resistances, a generalized 

growth rate expression was found relating GR  with supersaturation, mass transfer coefficient 

( dk ), and the kinetic parameters associated to the adsorption rate ( rk  and r ): 
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 (10.5) 

where η  is called the effectiveness factor and corresponds to 
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with 
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The validity of this parallel step model (PSM) was confirmed against experimental data taken 

from literature and from growth experiments with sucrose in a batch crystallizer (Chapter 5). 

 In the last years, a great number of works have been published reporting the 

observation of growth features on crystal surfaces using atomic force microscopy. The new 

perspectives provided do not always confirm classical fundamental theories suggested more 

than 50 years ago. In Chapter 7, a new atomistic representation of crystal growth was 

proposed where classical concepts of two dimensional nucleation and spiral growth were 

combined with recent findings on the formation and development of steps from surface 

dislocations. Through the so-called spiral nucleation model (SNM), the crystal growth rate is 
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related with conventional variables such as supersaturation, temperature and crystal size, and 

with surface properties such as the interfacial tension (γ ), and the width and height of steps 

( h  and 0y , respectively):  
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� �
 (10.8) 

In this equation, spn  corresponds to the fraction of total dislocation density on the surface λ , 

whose resulting spirals reached the thermodynamic barrier cG∆  and continued on growing: 
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and 
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 Theoretical and empirical models are conventionally used in an unrelated way, which 

contributes to the existing gap between micro and macro scale models [8]. Equations (10.1), 

(10.5) and (10.8) provide three distinct definitions of GR  corresponding to increasingly 

refined perspectives of the crystal growth physics and chemistry. In this chapter, it is aimed to 

link up these definitions on the interpretation of the influence of temperature on the growth 

kinetics of sucrose. Additionally, differences between results obtained using different growth 

techniques are discussed in the light of the new theories under consideration. 

10.2 Experimental section 

10.2.1 Growth in a batch crystallizer at constant temperature 

 Crystal growth rates of sucrose were measured in a 3 L jacketed batch crystallizer as a 

function of supersaturation at 35, 40 and 45 ºC. The detailed experimental apparatus and 

procedures are described in Chapter 5. In these experiments, temperature was automatically 

controlled by regulating the hot to cold water ratio circulating in the crystallizer jacket via a 

three way electronic valve. The volumetric growth rate for a given time interval t∆  was 

calculated from the variation of the logarithm of the mass of crystals during that period: 
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V s

m
R

t
ρ ∆=

∆
 (10.11) 

The corresponding supersaturation was estimated from the average mole fraction ( bx ) during 

the time interval t∆  and from the sucrose solubility expressed in terms of mole fraction ( ex ). 

The sucrose solubility was calculated at the operating temperature according to the relation 

found by Maurandi et al. [9]. Significant variation of the crystal mass occurred throughout a 

period of about 5 h and it was preceded by a pre-growth period of about 40 min. 

10.2.2 Growth in a batch crystallizer at constant supersaturation 

The influence of temperature on the crystal growth rate of sucrose was measured at constant 

supersaturation ( 0.114S = ) by adopting an analogous procedure to that just described for 

isothermal growth rates. The automatic controller of the 3 L jacketed batch crystallizer was 

this time set to control the supersaturation, using as inputs the solute concentration and the 

sucrose solubility at the solution temperature. The aqueous solution of sucrose with 

0.1270bx =  was prepared at 60 ºC by dissolving refinery white sugar in ultra-pure water. 

Once the automatic control was started, the solution was cooled down to 44.0 ºC in order to 

achieve the supersaturation set-point. At that point, 5g of seed crystals with sieve sizes 

between 0.250 and 0.300 mm were introduced into the supersaturated solution and were 

allowed to grow at an agitation speed of 300 rpm. As the growth proceeded, the solution was 

slowly cooled down (Figure 10.1a) in order to balance the sucrose concentration decrease and 

keep the supersaturation constant (Figure 10.1b). Again, the volumetric growth rate for a 

given time interval t∆  was calculated from Eq. (10.11), using the variation of the mass of 

crystals obtained by mass balance. The corresponding solution temperature is given by the 

average temperature during the time interval t∆ . The growth experiment ended when the 

solution reached the room temperature.  



Chapter 10 

 170 

Time (h)

S
ol

ut
io

n
T

em
pe

ra
tu

re
(º

C
)

0 1 2 3 4 5
25

30

35

40

45

50

(a)
 

Time (h)

S
uc

ro
se

M
ol

e
F

ra
ct

io
n

S
up

er
sa

tu
ra

tio
n

1 2 3 4 5
0.11

0.115

0.12

0.125

0.13

0

0.04

0.08

0.12

0.16

xb
S

(b)
 

Figure 10.1. Evolution of (a) the solution temperature, and (b) the sucrose mole fraction and 

supersaturation during the batch growth experience at controlled supersaturation. 

10.3 Results and discussion 

Figure 10.2 shows the variation of the volumetric growth rate with supersaturation, for the 

three temperatures adopted in the isothermal method.  
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Figure 10.2. Volumetric growth rates of sucrose measured by the isothermal method at 

different temperatures.  
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The experimental data are represented for an average difference between successive mean 

supersaturations of 32.3 10−× . Growth rate increases with both supersaturation and 

temperature. The first effect was well described through the supersaturation ranges by the 

semi-empirical relation given in Eq. (10.2). The respective fitting results are shown in Table 

10.1.  

Table 10.1. Parameters of Eq. (10.2) that best fit the experimental results presented in Figure 

10.2. 

Temperature (ºC) VK  Vn  2R  

35 35.5 2.08 0.999 

40 57.4 2.13 0.999 

45 88.9 2.21 0.998 

 

 The influence of the temperature on the growth rates is typically given by an 

Arrhenius relationship of the form of Eq. (10.4). The higher the overall activation energy AE , 

the stronger is the influence of T  on the volumetric growth constant VK . The representation 

of the logarithm of VK  against 1 T  provides a straight line with slope AE R− . The solid 

points in Figure 10.3 illustrate this behavior for the growth rate constants obtained at 35, 40 

and 45 ºC (curve 1).  
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Figure 10.3. Effect of the inverse of temperature on the volumetric growth rate constant and 

on the volumetric growth rates inferred at 0.114S = . 

The estimated overall activation energy 74.8AE =  KJ/mol is slightly above the values found 

by Smythe [10] (62.8 KJ/mol) and by Maurandi et al [11] (69.8 KJ/mol), for temperatures 

below 40 ºC. In those works, a weighing method was employed to measure GR  at high 

crystal-solution velocities. According to the relationship between VR  and GR  given in 

Eq. (10.3), equivalent temperature dependences result from the use of both formalisms, as 

long as GR  is measured at constant average crystal size in all experiments: 

 
( )

( ) ( ) ( )

ln
ln ln

1/ 1/ 1/

G
G V A

L
K

K K E
T T T R

α
β
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∂ ∂ ∂

 (10.12) 

The open points in Figure 10.3 represent the influence of temperature on the volumetric 

growth rate itself (curve 2). According to Eqs. (10.3) and (10.4) one obtains: 

 
( ) ( )
ln ln

ln
1/ 1/

V VAR nE
S

T R T
∂ ∂= − +
∂ ∂

 (10.13) 

Accordingly, the difference between the slopes of the straight lines in Figure 10.3 provides 

the variation of the growth kinetic order Vn  with temperature. If Vn  was constant over the 
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temperature range, the slopes would both correspond to AE R− . In the present case, one 

obtained the slope of curve 1, −8999.8 K and of curve 2 −6345.1 K, which makes 

( )ln 1Vn T∂ ∂ = 1222.5−  K. The overall kinetic order is therefore expected to increase from 

about 2.0 to 2.3 when increasing the temperature from 35 to 45 ºC. This is roughly confirmed 

by the results of Table 10.1. 

10.3.1 Falsified kinetics 

 In Chapter 5, the crystal growth rates of sucrose at 40 ºC were found to be strongly 

affected by mass transfer resistances. The variation of the growth kinetics with the agitation 

speed followed the behavior expected by the novel parallel step model (PSM) for the case of 

diffusional regime. In chemical reaction engineering, the concept of falsified kinetics is 

widely used to distinguish the reaction rate constants affected by diffusional limitations from 

the true, purely chemical, kinetic constants [12]. Extending this concept to the ongoing 

characterization of the sucrose growth rate dependence on temperature, one must consider the 

obtained activation energy as an apparent value. The true kinetic parameters are obtained 

from growth experiments carried out under sufficiently high crystal-solution velocities to 

eliminate the mass transfer resistances (chemical regime). In that case, the apparent and true 

activation energies are equivalent ( A TE E= ) and  

 0 exp
chem

T
G r r

E
K k k

RT
� �= = −� �
� �

 (10.14) 

Conversely, under diffusional regime the overall growth rate is given by 

 12
1diff

rr d
G

k k
R S

r
ρ +=

+
 (10.15) 

so that the overall growth rate constant corresponds to ( )2 1G r dK k k rρ= + . In the 

preceding equation dk  is the mass transfer coefficient during growth. This is a temperature-

dependent constant given by 

 0 exp D
d d

E
k k

RT
� �= −� �
� �

 (10.16) 

If one assumes the true kinetic order r  to be constant over the temperature range, the apparent 

activation energy in diffusional regime will correspond to the arithmetic mean of the 

activation energies for adsorption and diffusion: 
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Using standard mass transfer correlations, Maurandi et al. estimated 16.4DE = KJ/mol for 

temperatures between 30 and 40 ºC and 13.1DE = KJ/mol for temperatures between 40 and 

50 ºC. Assuming an average value of 15 KJ/mol for the working temperature range, and since 

74.8AE = KJ/mol, it results from Eq. (10.17) that 135TE = KJ/mol. This value is considerably 

higher than DE , indicating that the rate of the kinetic step during growth increases more 

strongly with temperature than the mass transfer rate. Therefore, the sucrose growth kinetics 

would remain highly affected by diffusional limitations for temperatures above 40 ºC, while 

for lower temperatures the process is expected to gradually become less influenced by 

diffusion. 

 In general terms, the true and apparent activation energies can be related once the 

effectiveness factor is known, i.e., once the role of the mass transfer resistance is established. 

In fact, if the overall growth rate order does not change significantly over the temperature 

range, it results from the definitions given in Eqs. (10.1), (10.5), (10.12) and (10.14) that 

 
( ) ( )

lnln ln
1/ ln 1/

gA T T

g

E E E
R R T R T

φη η
φ

∂∂ ∂− = − + = − +
∂ ∂ ∂

 (10.18) 

The constant kinetic order condition is verified in some works [11, 13, 14] but, as previously 

seen, one cannot assume it as a general rule. Substituting now the definitions of η  (Eq. (10.6)

) and gφ  (Eq. (10.7)) in Eq. (10.18) one obtains that 

 
( )sinh

sinh 2
g g T D

A T
g

E E
E E

φ φ
φ

− −
= +  (10.19) 

This equation is plotted in Figure 10.4 in conjunction with the definition of the effectiveness 

factor given by Eq. (10.6). For small mass transfer resistances, the value of gφ  is also small 

and the apparent activation energy tends to the true one ( 1η = ). As the mass transfer 

resistances become higher, gφ  increases and the apparent activation energy tends to the 

arithmetic mean of TE  and DE . This corresponds to the limit case of diffusional regime 

obtained with pure sucrose at 40 ºC. Parameter gφ  can be decreased by increasing the crystal-

solution velocity (increasing dk ) and/or by decreasing the temperature (lowering the r dk k  

ratio).  
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Figure 10.4. Influence of the parameter gφ  on the apparent activation energy and on the 

effectiveness factor for sucrose crystal growth. 

10.3.2 Surface effects 

 So far, only the growth rate results obtained by the isothermal method have been 

discussed. In this work, the influence of temperature on the crystal growth rate was further 

characterized using an innovative measurement method in which VR  (or GR ) is obtained at 

constant supersaturation, as the temperature decreases. Figure 10.5 illustrates that the ln VR  vs 

1 T  curves resulting from both methods significantly differ. Apart from the fair agreement 

between growth rates verified in the beginning of the constant supersaturation experiment (at 

44–40 ºC), as the temperature decreases, progressively lower rates are obtained by the novel 

method. Consequently, the absolute of the slope ( )ln 1VR T∂ ∂  is in this case higher than the 

obtained from the measurements at constant temperature. Both types of batch growth 

experiments were carried out under comparable experimental conditions so that the 

differences found cannot be explained by simple engineering models.  
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Figure 10.5. Effect of the reciprocal of temperature on the volumetric growth rates measured 

by the constant supersaturation method and by the isothermal method at 0.114S = . 

The results of Figure 10.5 are likely to be explained by surface effects provoked by the 

different growth rate histories in each method. Following recent findings of Pantaraks and 

Flood [15], rapid crystal growth of sucrose causes a roughening of the crystal surface, so that 

subsequent growth occurs at lower rates than would be expected without this growth history. 

The same authors observed that posterior periods of growth at low growth rates may heal the 

surface after its roughening, and allow the crystal to return its normal kinetics. Nevertheless, 

the time required for healing is of the order of several hours. In the constant supersaturation 

method, the seed crystals are introduced at the highest temperature ( iT ) of the studied range. 

Hence, the period at which crystals grow faster corresponds to the beginning of the 

experiment. This fact would certainly affect the surface features of the crystals during the 

remaining growth. In particular, at a given iT T<  the surface roughness would be higher than 

if the crystals had been growing at the temperature T . As a result, the measured growth rates 

would be lower than the ones obtained isothermally. Since the process of crystal healing is 

slow comparatively to the cooling rate, the differences between rate histories, and thus, 

between the measured growth rates become more marked as the temperature decreases and 

1 T  increases (Figure 10.5).  
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 Going a step further, the role of temperature and growth rate history will now be 

interpreted in the light of the fundamental perspective of the integration kinetics provided by 

the spiral nucleation model (SNM). From the definitions given in Eqs. (10.8), (10.9) and 

(10.10) the following result is obtained: 

 ( ) ( ) ( )
2ln 1.64 ln

2
1/ ln 1 1/

VR W h
T

T k S kT T
γ γ� �∂ Ω ∂� �= − − +� �� � � �∂ + ∂� � � �

 (10.20) 

The term dependent on the adsorbing energy (W ) accounts for the velocity of advancement of 

steps, while the second term stands for the activation energy of formation of stable spirals 

( cG∆ ). In the cases where the first term is not clearly dominant relatively to the second, 

( )ln 1VR T∂ ∂  will change with T  and S  in a manner that is also function of the ( ),T Sγ  

relationship. In this concern, the interfacial tension γ  is normally thought to decrease linearly 

with T  (Eötvös rule) [16], while the following ( )Sγ  function results, from the SNM, when 

the condition of constant growth kinetic order over the supersaturation range is observed (see 

Chapter 7 for more details): 

 1 2 lnC S C S Sγ = −  (10.21) 

where 1C  and 2C  are constants. Minor variations of the overall activation energy over the 

temperature and supersaturation ranges are expected form Eq. (10.20) when cW G∆� . From 

our study in Chapter 7, 14cG kT∆ �  at 0.1S = , which is of the same order of magnitude of 

estimations of 24W kT �  [17]. In these cases of high energetic barrier for spiral nucleation, 

the importance of the interfacial tension on the growth kinetics is also reinforced. Changes on 

the surface properties of the crystal as the ones caused by different growth rate histories 

would affect VR  and its dependence on T . As seen, crystals having a history of fast growth 

have rougher surfaces and lower growth rates. The connection between surface roughness and 

crystal growth kinetics can be explained by combining the SNM with the Wenzel roughness 

factor ( wr ), defined as the ratio between the true and the apparent (geometric) surface area of 

the solid [18-20]. The wetting properties of rough solids are directly proportional to wr  so as 

to account for the enhancement of the microscope surface area. Accordingly, the effective 

interfacial tension of a growing crystal is given by 

 w SLrγ γ=  (10.22) 

where SLγ  is the solid-liquid interfacial tension on a smooth surface ( 1wr = ). As the values of 

wr  and γ  increase, the energetic barrier for spiral nucleation given by Eq. (10.10) increases 
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and the crystal tends to grow more slowly. Higher interfacial tensions would also increase the 

absolute of the slope ( )ln 1VR T∂ ∂  given by Eq. (10.20). This is well illustrated by the data 

of Figure 10.5 obtained by the constant supersaturation method. In a first phase of the 

experiment, there is a rapid surface roughening that leads to high values of γ  . The strong 

decrease of the initial growth rate shown in Figure 10.5 reflects not only the temperature 

decrease but also the development of a more heterogeneous surface. As the growth proceeds 

at lower temperatures and growth rates, the crystals become gradually healed and wr  slowly 

decreases. As a consequence the ( )ln 1VR T∂ ∂  slope seems to progressively decrease as the 

experience progresses. If the surface properties were constant throughout the experiment, the 

slope would instead increase as the 1 T  increases because of less dominant mass transfer 

resistances at lower temperatures. This trend was previously verified in the works of Smythe 

[10] and Maurandi et al. [11]. 

10.3.3 Comparison of crystal growth rates measured by different  
techniques 

 Scale up problems and low reproducibility are frequently associated to growth rate 

measurements using different techniques. In previous chapters, we have been focusing 

important (but sometimes overlooked) crystallization variables such as the mass transfer 

resistance (Chapter 5), interfacial properties (Chapter 7) and crystal size (Chapter 8) based on 

sucrose growth experiments at 40 ºC in a batch crystallizer. These studies were now 

complemented by characterizing the influence of temperature and growth rate history on the 

sucrose crystallization kinetics. At this point, we are able to investigate why growth rates 

measured at same supersaturation and temperature can be apparently very divergent when 

employing distinct growth techniques [21, 22]. In particular, the results of Figure 10.2 

obtained by the isothermal method at 40 ºC will be compared with the crystal growth rates of 

sucrose measured by Guimarães et al. [23] in a 0.5 L fluidized bed crystallizer at the same 

temperature. In both cases, sieved white sugar with 99.98 % purity was used as seed crystals 

(sieve sizes between 0.250 and 0.300 mm in the batch experiment and between 0.710 and 

0.850 mm in the fluidized bed case). The results taken from literature were converted into 

volumetric growth rates through Eq. (10.3), using the sucrose shape factors found by Bubnik 

and Kadlec [24], and 0.853L =  mm. By using the volumetric formalism it is aimed to 

normalize the effect of crystal size on both results. Even so, Figure 10.6 shows very distinct 

growth curves depending on the measurement technique employed.  
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Figure 10.6. Volumetric growth rates of sucrose at 40 ºC measured in a batch crystallizer 

(isothermal method) and in a fluidized bed crystallizer [23].  

The reasons previously suggested for the contrasting influence of T  on VR  obtained in Figure 

10.5 keep in essence valid for the results of Figure 10.6. The crystals growth rate history in 

each type of experiment is only comparable for 0.14S � , when the batch isothermal 

experience is starting. At that time, the seed crystals in the batch crystallizer had already 

grown during 40 min at a supersaturation slightly above 0.14. Although the subsequent 

growth occurs at progressively lower supersaturations, the surface properties of the crystals 

would keep associated to a fast growth history. In its turn, the fluidized bed experiments are 

carried at constant supersaturation and each point in Figure 10.6 corresponds to a different 

experiment of 40 min duration. The surface properties change is therefore limited to that 

growth period. Thinking in terms of the evolution of the roughness factor, high values of wr  

are expected over the entire supersaturation range of the batch experiment. This happens 

because of the initial rapid growth period (roughening) and subsequent slow surface healing. 

On the other hand, in the measurements of Guimarães et al. the wr  factor is supposed to 

abruptly decrease as the supersaturation decreases; for 0.14S < , the crystals surface would be 

smoother than in the batch case, with the differences becoming more marked as the 

supersaturation decreases. In the case of the fluidized bed experiments, the growth rate 
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enhancement with supersaturation is partially opposed by the effect of wr  on the effective 

interfacial tension (Eq. (10.22)) and on the energetic barrier for growth (Eq. (10.10)). As a 

result, comparatively weaker VR  vs S  dependence is obtained in Figure 10.6. Conversely, 

since wr  does not change significantly over the batch experiment the effect of the 

supersaturation on the volumetric growth rates is not masked, and a strong VR  vs S  

dependence is obtained. 

 Crystal surface properties affect the energetic barrier for integration, and thus the 

dependence of VR  on supersaturation. This explains the divergence between the apparent 

kinetic orders obtained with the literature results ( 1.3Vn = ) and in these experiments 

( 2.1Vn = ). Nevertheless, one important question remains unanswered: why the growth rates 

are so different in the supersaturation range of comparable growth rate histories ( 0.08S � )? 

Certainly the explanation for this fact is not related with the integration mechanism but 

instead with the relative weight of the mass transfer resistance in each method. While the 

batch growth experiment was carried out under vigorous agitation (300 rpm), in the fluidized 

bed crystallizer the crystals were suspended by the upwards flow of solution along with gentle 

agitation [23]. Following the previous studies in this work, the relationship between 

volumetric growth rates obtained under different hydrodynamic conditions is given by:  

 
( )
( )

1

2

1

2

/

/
V D

V D

R R L

R R L
=  (10.23) 

In this equation DR  is the dissolution rate under corresponding hydrodynamic conditions of 

growth. These data are shown for the two methods in question in Figure 10.7 after 

normalizing DR  by the instantaneous (batch) or the average (fluidized bed) crystal size during 

the dissolution experiments. With the additional representation of dissolution rates obtained at 

200 and 250 rpm it is aimed to demonstrate the strong influence of the agitation speed on the 

mass transfer resistance.  
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Figure 10.7. Comparison between the normalized dissolution rates of sucrose at 40 ºC 

measured in the batch crystallizer at different agitation speeds (Chapter 5) and the ones 

estimated for the fluidized bed crystallizer [25].  

Comparing the differences between the growth rates highlighted in Figure 10.6 by a dashed 

line, and between the dissolution rates shown in Figure 10.7, one obtains that in fact 
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V batch D batch
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R R L

R R L
� �  (10.24) 

As expected, this correspondence is obtained when the volumetric growth rates are evaluated 

at 0.14S � , i.e., for crystals with similar growth rate history. For 0.14S < , the differences 

between growth rates result from different diffusional conditions and crystal surface 

properties. The correspondence given in Eq. (10.24) confirms not only the diffusion-

integration models from which the relationship was derived, but also the connection between 

growth rate history, surface properties and crystal growth rates suggested in this work. The 

significance of this conclusion is emphasized by the fact that growth results obtained by very 

distinct measurement techniques were used to its drawing.  
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10.4 Conclusions 

Empirical, engineering and fundamental models of crystal growth were combined on the 

interpretation of the kinetic effect of temperature and growth rate history. Growth rate data 

obtained in a batch crystallizer at 35, 40 and 40 ºC by an isothermal method was used to 

determine the apparent activation energy. The temperature dependence of the empirical 

kinetic order Vn  is determined from the slope of the plots of ln VK  and ln VR  as a function of 

1/T . Following the recently introduced parallel step model, a theoretical relationship between 

apparent and true activation energy is proposed (Eq. (10.19)). For small mass transfer 

resistances, AE  and TE  are equivalent. As the mass transfer resistances become higher, TE  

tends to the arithmetic mean of the activation energies for adsorption and diffusion. The 

influence of temperature on the sucrose growth rate was measured by an alternative method, 

by allowing the crystals to grow at constant supersaturation ( 0.114S = ) as the temperature 

decreased from ∼44 to 25 ºC. The different results obtained by the isothermal and constant 

supersaturation methods were explained by different surface roughness of the crystals in each 

type of experiments. Crystals with a history of rapid growth are believed to have higher 

roughness factors, and therefore, higher effective interfacial tensions. According to the spiral 

nucleation mechanism, this increases the energetic barrier for growth and decreases the crystal 

growth rate. Information about the growth rate dependence on the crystal size, hydrodynamic 

conditions and growth rate history was used to explain the sucrose growth rate curves 

obtained at 40 ºC in a batch crystallizer and in a fluidized bed crystallizer. The differences 

found by employing the two techniques satisfactorily correspond to the theoretical 

predictions. 
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11. General conclusions and 

suggestions for future work 

11.1 General conclusions 

 The measurement of reliable crystal growth kinetics and subsequent rational 

interpretation were discussed according to classical and newly proposed perspectives. The 

crystallization of sucrose is used as a case study in laboratory and pilot scale experiments. 

Departing from identified limitations of the existing crystal growth theories, alternatives were 

proposed to characterize the influence of growth parameters such as supersaturation, 

temperature, hydrodynamic conditions, impurity concentration and crystal size. 

Developments on the molecular description of the crystal growth phenomenon provided new 

tools for the determination of interfacial and topological properties from growth rate data.  

 Practical difficulties found in industry-like environment were the starting point for a 

systematic study of the factors affecting crystal growth. In Part I of the thesis, new methods 

were proposed for characterization and management of sugar evaporative crystallizers: by the 

mass balance method, the vacuum pan content of sucrose, impurities, and water was 

dynamically computed using typical sugar boiling data and the initial parameters of the cane 

syrups. This way, the evolution of the crystal content, mass of crystals, liquor purity, and 

liquor non-sucrose to water ratio was possible to be determined during sugar boiling runs. 

Using modern image processing techniques, the progress of the mean crystal size in the first 

phases of sugar boiling experiments was followed. The results obtained in this image analysis 
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method compared well with the ones calculated by mass balance. The next challenge was to 

process the obtained supplementary boiling data so as to estimate sucrose growth kinetics in 

other conditions than of conventional laboratory experiments. This was firstly done by 

determining equilibrium data at the particular conditions of the pilot pan experiments. The 

estimation of sucrose solubility from crystallization curves was accomplished by fitting 

the derived theoretical concentration profile to the sucrose concentration curves calculated by 

the mass balance method. The resulting sucrose solubility coefficients were in good 

agreement with published data measured at similar conditions of sugar cane boiling. Then, a 

new growth rate measurement method was proposed, where the measured evolution of 

mass of crystals with time was used to calculate the corresponding variation of the sucrose 

growth rate. The used equation takes into account the variation of the crystal surface area, 

instead of assuming a mean surface area over the growth period. Kinetic curves were obtained 

by representing the sucrose growth rates as a function of the liquor supersaturation during the 

experiments. The methods for equilibrium and kinetic data determination proved to be robust 

and of direct application to large-scale sugar crystallization. 

 A number of different factors affected the growth rates of sucrose obtained in the first 

part of thesis. Thus, the isolated role of important variables such as supersaturation, crystal 

size, impurity concentration, hydrodynamic conditions, etc, is difficult to be inferred from 

those results. In the succeeding chapters, new theoretical and experimental studies focusing 

some of the most important crystallization variables were presented. In spite of the 

importance of the transport phenomena during crystal growth, significant limitations of 

typical diffusion-reaction models were identified when confronting the theory against 

experimental data. An attempt was made to fulfil this gap by means of the novel parallel step 

model. In this model, the existence of interfacial adsorption is considered not only in physical 

terms, but also in the mathematical derivation of the growth rate equations. Adopting a 

methodology comparable to the derivation of the Brunauer-Emmett-Teller isotherm, it was 

concluded that the rate at which molecules integrate the crystal lattice corresponds to the net 

adsorption velocities extended to the thickness of the adsorbed multilayer. Consequently, 

simultaneous occurrence of solute diffusion and adsorption was assumed to occur before the 

integration of the adsorbed molecules at crystal surface. Different situations were analysed 

concerning the crystal shape, integration kinetic order and diffusional resistance, and a 

generalized overall growth rate equation was proposed. The comprehensive test of the new 
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model was carried out using crystallization data obtained under different and well-defined 

diffusional conditions, and available information about limiting cases of pure chemical and 

diffusional regimes. Mass transfer coefficients were determined from the growth rate data 

using the conventional two-step model and the parallel step model. In the first case, an 

unrealistic variation of the coefficients with the relative crystal-solution velocity was obtained 

when compared with the behaviour expected from standard mass transfer correlations. 

Conversely, the mass transfer coefficients obtained by the parallel step model were confirmed 

both in their order of magnitude and in the way they were influenced by the hydrodynamic 

conditions. Closely controlled laboratory experiments were conceived to study the 

influence of agitation speed on the sucrose growth rates in a batch crystallizer. Contrarily to 

what happened in the pilot-scale runs, this procedure allowed accurate investigations on the 

kinetic influence of isolated growth variables. As predicted by the parallel step model, the 

presence of a thick adsorbed layer around the sucrose crystals is likely to have affected the 

solute molecular diffusivity in the medium. According to that, the results obtained were well 

described by the parallel step model. 

 The other engineering approach in Part II consists in a new competitive adsorption 

model to describe the growth of crystals in impure solutions. A dispute between the 

crystallizing solute and the impurity was considered to exist for the surface coverage and for 

the occupation of energetically favourable places at surface steps. The impurity effect on the 

crystal growth rates is characterized by a Langmuirian isotherm for competitive adsorption 

and by the parameter β , accounting for the impurity ability to move across the surface and 

occupy a stable position at the active sites. Published experimental data showing different 

types of impurity-affected kinetics were adequately described by the competitive adsorption 

model. The contribution of the new model on explaining unresolved mechanistic and kinetic 

evidences was highlighted.  

 Regardless of the advancements on crystal growth characterization provided by the 

new engineering models, many questions can only be answered through molecular scale 

fundamentals of the phenomenon. In Part III of the thesis, the limitations of classical two-

dimensional nucleation models and of the Burton-Cabrera-Frank theory were recalled in view 

of recent observations of growth features using modern microscopic techniques. An 

alternative theory was proposed in which new and classical concepts were combined in the 

so-called “spiral nucleation model”. Initial growth nuclei are assumed to result from the 

organization of adsorbed molecules in spirals around surface dislocations. The energetic 



Chapter 11 

 

 

188 

barrier for the activation of the spiral nuclei is considerably lower than the admitted in other 

energy-activated mechanisms. Stable nuclei evolve into bigger growth hillocks in 

supersaturated media through the incorporation of adsorbed units into their steps. The 

displacement velocity of steps in solution and vapour growth is calculated under different 

kinetic premises, taking into consideration the importance of surface diffusion in each 

process. A generalized expression was obtained relating the crystal growth rate with main 

variables such as supersaturation, temperature, crystal size, surface topology and interfacial 

properties. An application example was given, where the supersaturation-dependence of the 

interfacial tension is determined from the crystal growth kinetics of sucrose at 40 ºC. 

Additionally, the spiral nucleation model was applied on the estimation of the optimum 

interstep distance and of critical parameters of the growing hillocks without the use of 

microscopic techniques. The published data in this field support the consistency of those 

findings.  

 Finally, in Part IV of the thesis, the potential of the new fundamental end engineering 

models was illustrated in several application examples. The occurrence of size-dependent 

growth in the crystallization of sucrose was investigated according to the new insights 

provided by the spiral nucleation model. Laboratory growth experiments carried out with 

crystals of different size confirmed that the integration rate is linearly dependent on the crystal 

characteristic dimension. Accordingly, an innovative growth rate definition was put forward 

by expressing the mass deposition rate per crystal volume units. The volumetric growth 

rates demonstrated to be size independent over the considered supersaturation range. 

Moreover, this formalism is of great practical interest since it can be used in situations of 

unknown crystal number and size. Since crystal size also affects the mass transfer processes, 

the parallel step model was recalled for the diffusional effect quantification. The conventional 

growth rates measured in the sugar boiling experiments of Part I were conveniently converted 

into volumetric growth rates to study the isolated influence of cane sugar impurities on the 

sucrose growth kinetics. Empirical correlations used in sugar industry satisfactorily 

described the growth rate decrease with the non-sucrose compounds concentration. On the 

other hand, besides being consistent with the experimental findings, the proposed competitive 

adsorption model additionally contributed for the logical understanding of the impurities 

action. The estimated model parameters indicate that cane sugar impurities can be greatly 

adsorbed at the sugar crystal surface, even though their kinetic effectiveness is low. In a 
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concluding example, empirical, engineering and fundamental models were combined on the 

interpretation of the effect of temperature and growth rate history on the growth kinetics. 

The apparent and true activation energies of sucrose were determined from the growth rate 

curves measured at different temperatures. A theoretical relationship between the two 

activation energies was derived from the parallel step model. The influence of temperature on 

the crystal growth rates was measured by the innovative constant supersaturation method 

by allowing the crystals to grow at controlled supersaturation and decreasing temperature. 

Differences between the results of the isothermal and constant supersaturation methods were 

explained from the viewpoint of the spiral nucleation mechanism, taking into account 

different crystal surface properties caused by the growth rate history in each case. The 

same framework was used to explain the growth rate curves measured in the batch crystallizer 

and in a fluidized bed crystallizer at the same temperature. Apparently divergent results were 

successfully described by the combined effects of crystal size, hydrodynamic conditions and 

growth rate history that have been proposed throughout this thesis. 

11.2 Suggestions for future work 

 More than setting the end of the thesis, the conclusions summarized above are 

expected to provide some of the guidelines for future works in this field. Desirably, the 

presented methods and theories will continue to be developed through their application to new 

systems and purposes.  

 In the near future, it is intended to implement the mass balance method in sugar 

evaporative crystallizers for on-line measurement of important process variables. The results 

of Chapter 2 were obtained at the end of the sugar boiling runs, after processing the 

experimental data according to the set of equations of the model. By incorporating these 

equations in the pan automation software, it would be possible to follow the progress of 

supersaturation, crystal content, mass of crystals, liquor purity and liquor non-sucrose to 

water ratio as the run evolves. Nowadays, there is a great interest in sugar industry to improve 

the monitoring techniques and considerable research has been devoted to the variables 

discussed here. In its turn, the image analysis method should also be improved in terms of the 

results accuracy and in the method application range. Improvements can be made in the image 

acquisition probe to allow good crystals differentiation at crystal mass fractions above 10%. 

The potential of the method in following the crystal size distribution with time may well be 
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used on the study of the crystallization kinetics, size-dependent growth, crystal growth 

dispersion, primary nucleation, particle agglomeration, etc.  

 From the literature reviews made, the new engineering models will be very welcomed 

in other systems than sucrose. For example, the parallel step model demonstrated to be of 

great applicability in the crystallization of inorganic salts from solution, and the competitive 

adsorption model adequately described uncharacteristic crystal growth curves in the presence 

of impurities. In addition, the parallel step model can be further explored in view of 

straightforward determinations of the diffusional resistance. It would be interesting to 

combine the parallel step model and the competitive adsorption model on the investigation of 

the impurity effect at different mass transfer resistances. A natural follow-up of the 

competitive adsorption model would be the study of non-equilibrium impurity adsorption 

during crystal growth. In this concern, the occurrence in some systems of growth rate 

hysteresis is a good experimental evidence of the impurity adsorption kinetics. So far, the 

existing theoretical models did not give a completely satisfactory justification for this fact, 

possibly because the competitive nature of surface adsorption has been disregard. 

 The fundamental views provided by the spiral nucleation model can be extended 

through many branches of crystal growth science. In this thesis, some application examples 

were given by applying the new theory to crystal growth from solution, using the pure sucrose 

system. In the future, the spiral nucleation model might be useful in varied fields such as 

molecular beam epitaxy, chemical vapour deposition, crystal growth of metals, minerals, 

semiconductors, superconductors, magnetics and biological substances, either in bulk or as 

thin films. The availability of new microscopic techniques (e.g., atomic force microscopy, 

electron microscopy, X-ray diffraction, etc) represents a valuable tool for consolidating the 

theoretical concepts introduced here. Advances in the molecular modeling of the crystals 

structure can be suitably combined with the spiral nucleation model on the investigation of 

less studied variables like the surface mobility of adsorbed molecules, dislocation density and 

other interfacial properties. The new atomistic model can as well be improved to account for 

the phenomena of step bunching and non-spiral growth occurring at high supersaturations. 

The current quest for large protein crystals with low defect contents is believed to be a 

privileged application field of the new growth theories. Such crystals are of key importance in 

contemporary molecular biology or in drug discovery, for suitable protein structure 

determinations by diffraction of X-rays, electrons or neutrons. A good understanding of the 
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factors influencing crystal growth is therefore essential for biochemical and biomedical 

research, and can contribute to find alternatives to the expensive microgravity techniques of 

producing well grown crystals. 
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