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Abstract

In this PhD. thesis several areas of mathematics such as game theory and dynamical systems are

applied to social sciences, such as sociology, political science and economics, and to biological sciences.

We analyse a game theoretic model of corruption with two populations: a government (top political

elite) and officials appointed by the government that serve the public, and where both can choose

between being honest or corrupt. The government, supposed to be the controller of corruption can itself

be corrupted and arises the question of how to control the controller. We analyse the importance of

citizens in this question through their elective power and when they are active decision makers whose

behaviour is either complacent or nor with corruption. We characterize the evolution of corruption using

evolutionary dynamical models of the game and we characterize situations where corruption becomes

endemic and can become a social trap and perpetuate itself in some cases through cycles of corruption.

We also consider a three-population game where the citizens are full players of the game together with the

government and officials, and they have two behaviours that are compliance and non-compliance towards

corruption. We again study and characterize the evolutionary dynamics of corruption in this setting,

taking now into account the influence of citizenship and democracy, represented here by the compliance

or not of citizens towards corruption, in the outcomes of the long-term evolution of corruption.

We study the impact of the use of competitive Nash tariffs and social cooperative tariffs in a standard

international trade model where firstly countries choose tariffs and secondly firms compete in quantities

produced. We study when according to the comparison of competitive and cooperative tariffs the country

game is a social equilibrium, is like a prisoner’s dilemma or an asymmetrical dilemma where one country

is benefited while the other is harmed. Which situation occurs is very important in international trade

and in the making of trade agreements. We take into account these situations and we analyse, in

terms of the model parameters, other externalities that might arise when the countries choose to enforce

cooperative tariffs in a trade agreement, and we explain and interpret these externalities and how they

are relevant in the context of international trade.

We study an evolutionary nonlinear matrix model in discrete-time that in addition to a population

dynamics component also tracks Darwinian dynamics of the evolution of a suite of mean phenotypic traits

subject to natural selection that influence the population dynamics. We prove a bifurcation theorem

that characterizes the nature and stability of the fundamental bifurcation that consists of the appearance

of a continuum of positive (survival) equilibria that bifurcates from the extinction equilibria that loses

stability when the inherent growth rate increases through 1. We obtain that forward bifurcations are

stable whereas backward bifurcations are unstable. We apply the results to a modified version of the
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classic Ricker equation and study other features of the example such as backward bifurcation induce

Allee effects where a stable survival equilibrium coexists with a stable extinction equilibrium.

Keywords: Game Theory; dynamics; evolutionary game theory; Nash equilibria; dynamical equi-

libria; stability; bifurcations; corruption; citizenship; social traps; international trade; tariffs; welfare;

trade agreements; externalities; population dynamics; nonlinear matrix models; extinction; survival;

persistence.
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Resumo

Nesta tese de doutoramento aplicámos diversas áreas da matemática, como teoria de jogos e sistemas

dinâmicos às ciências sociais, como sociologia, ciência política e economia e à biologia.

Analisámos um modelo de teoria de jogos, com duas populações, aplicado à corrupção, onde um

governo (elite política) e oficiais nomeados pelo governo que servem o público podem ser honestos ou

corruptos. O governo é o presumível controlador da corrupção, mas pode também ser corrupto e por

isso surge a questão de como controlar o controlador. Analisámos a importância dos cidadãos nesta

questão através do seu poder electivo e quando os cidadãos tomam decisões e o seu comportamento é

de complacência ou não com a corrupção. Caracterizámos a evolução da corrupção usando modelos de

dinâmica evolutiva para o jogo considerado, e caracterizámos situações onde a corrupção se pode tornar

endémica e pode tornar-se uma armadilha social e se perpetuar, em alguns casos através de ciclos de

corrupção. Também estudámos um jogo com três populações onde os cidadãoes são jogadores plenos,

conjuntamente com o governo e os oficiais, e onde têm dois comportamentos: complacência e não-

complacência com a corrupção. De novo estudámos a dinâmica evolutiva da corrupção neste contexto,

tomando agora em atenção a influência da democracia e cidadania, representada aqui pela complacência

e não complacência dos cidadãos face à corrupção, nos resultados da evolução a longo prazo da corrupção.

Estudámos o impacto do uso de tarifas Nash competitivas e tarifas sociais cooperativas num modelo

standard the comércio internacional onde primeiramente os países escolhem tarifas e posteriormente

as firmas competem em termos de quantidades produzidas. Comparando as tarifas competitivas e

cooperativas estudámos quando o jogo entre países é um equilíbrio social, é um dilema do prisioneiro ou

um dilema assimétrico onde um país é beneficiado e o outro prejudicado. Analizámos estas situações bem

como outras externalidades em termos dos parâmetros do modelo, externalidades essas que podem surgir

quando os dois países pretendem aplicar as tarifas cooperativas num acordo comercial, e explicámos e

interpretámos estas externalidades e a sua relevância no contexto de comércio internacional.

Estudámos um modelo matricial evolutivo não-linear em tempo discreto que para além da dinâmica

populacional inclui também a dinâmica Darwiniana de um conjunto de fenótipos médios na população

que estão sujeitos a selecção natural e que influenciam a dinâmica populacional. Demonstrámos um

teorema de bifurcação que caracteriza a natureza e estabilidade da bifurcação fundamental que consiste

do surgimento de um contínuo de equilibrios positivos (de sobrevivência) que bifurcam do equilíbrio de

extinção quando a taxa de crescimento inerente ultrapassa o valor 1 e este último perde estabilidade.

Obtivemos que bifurcações para a direita são estáveis enquanto que bifurcações para a esquerda são

instáveis. Estudámos uma aplicação dos resultados a uma versão modificada da equação clássica de
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Ricker e estudámos outros fenómenos desta aplicação como efeitos de Allee associados a bifurcações para

a esquerda, onde um equilibrio de sobrevivência estável e um equilíbrio de extinção estável coexistem.

Palavras-chave: Teoria de jogos; dinâmica; teoria de jogos evolutivos; equilíbrios de Nash; equi-

líbrios dinâmicos; estabilidade; bifurcações; corrupção; cidadania; armadilhas sociais; comércio interna-

cional; tarifas; bem-estar (welfare); acordos de comércio; externalidades; dinâmica populacional; modelos

matriciais não lineares; extinção; sobrevivência; persistência.
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Chapter 1

Introduction

1.1 General aims and scope of the thesis

This thesis is the result of different projects I have been involved in. We make use of different areas
of mathematics, such as game theory, dynamical systems and evolutionary game theory and we use
them with the goal of developing mathematical models to address and study issues in very different and
distinct areas of knowledge such as social sciences, namely sociology, political science and economics,
and biological sciences.

This work is organized as follows. In chapter 2 we study evolutionary dynamics models of corruption.
The first part of this chapter is based on the joint work [5] with E. Accinelli, J. Oviedo, A. A. Pinto and
L. Quintas. In chapter 3 we study Nash and social tariffs in international trade and trade agreements.
The first part of this chapter is based on the joint work [69] with A. A. Pinto and J. P. Zubelli. In
chapter 4 we study the fundamental bifurcation of evolutionary nonlinear matrix models with multiple
evolutionary traits. This chapter is based on the joint work [29] with J. M. Cushing, A. A. Pinto and
A. Veprauskas.

We may say that the leitmotiv of this thesis is the application of mathematics to the modelling of
diverse problems in the aforementioned areas of knowledge by means of game theory, dynamics and
evolutionary game theory. Chapter 2 addresses the mathematical modelling of corruption using methods
from game theory and dynamics and in particular the theory of evolutionary games. In our study of
corruption we focus on the interplay between government and officials on one hand, and the citizens of
a country and their influence and complacency with corruption. Our main objective is to study how
can corruption become a self-enforcing mechanism, and to study the evolution of corruption and how
this evolution can be broken and how several feature observed in a society and its institutions can lead
to increasing corruption or even degeneration into autocratic political regimes. Citizen intervention is
central in our analysis and to allow for the possibility of breaking vicious cycles of corruption. In chapter
3 we study a standard model of international trade paying specific attention to game theoretic aspects,
or strategic aspects of tariffs choosing between countries. In our study of tariffs we make a comparison
between the results a country obtains in international trade from using the tariffs that yield them their
best result competitively and the tariffs that yield the best results when the country cooperates and joins
another country. So indeed we compare competition with cooperation. We make a proposal of trade
agreement to enhance cooperation and discuss how complicated and difficult its enforcement may be due

1



2 Chapter 1. Introduction

to externalities related to trade such as the national output in terms of quantities produced by a country
and surplus associated to the consumers. In chapter 4 we study an evolutionary version of a population
dynamics model. In our study of a population dynamics model we start by considering a variation of
the model to include components that model Darwinian evolution. We analyse and characterize when
population persistence and possible extinction occurs, and we do a specific study to an evolutionary
version of a classical population dynamics model known as the Ricker equation.

We model such problems using different areas of mathematics. More precisely, we use areas/modelling
techniques such game theory and dynamics, both in discrete-time and in continuous-time, i.e. using both
difference and differential equations.

Game theory is the study of strategic decision making, or the study of rational conflict. This field of
applied mathematics is usually considered to have started with the groundbreaking work of mathemati-
cian John von Neumann and economist Oskar Morgensten in the book [102]. Several classical references
in game theory were used in the making of this thesis. For the interested reader which is not familiar
with this area of we recommend for instance [40]. Some of the features from game theory that we used
in this work include modelling through normal-form games and multiple-stage games, computation and
analysis of Nash equilibria and Perfect Nash equilibria, social optimum equilibria, or Pareto optimum
(Pareto efficient) allocation. These classical concepts in game theory allow us to compute Nash equilibria
or conditions for a Nash equilibria and so study self-enforcing conditions of some outcomes of the games
we model. We apply these concepts to study equilibria in the corruption games that we constructed,
to study trade agreements and welfare sharing, that allow us to interpret the results of the models by
static analysis.

Another main area of mathematics that was used in this work is dynamical systems. We use dynam-
ical system to interpret dynamical models, using tools such as the study of steady-states, or dynamical
equilibria and their stability, or the study of periodic orbits and bifurcations. We also use bifurcation
theory, as tools such as Fredholm alternative and Lyapunov-Schmidt reduction to characterize properties
and characteristics of bifurcations. For the interest reader in continuous-time dynamics by means of dif-
ferential equations we recommend the classic reference [46]. For discrete-time dynamics we recommend
[37]. For a good introduction to bifurcation theory including the aforementioned tools we recommend
[52].

The dynamical models that we consider are not independent from game theory. Indeed, the dynamics
that we considered are derived from an extension of classical game theory known as evolutionary game
theory, that allows to render the classical, static nature of game theory into a dynamical and evolutionary
basis. Evolutionary game theory started in the 1970’s with the seminal work of biologists John Maynard
Smith and George Robert Price. Contrary to classical game theory which relies heavily on rationality
assumptions, evolutionary game theory focuses more on the dynamics of strategy change on a Darwinian
competition framework where strategies evolve along time influenced by the frequency of other strategies
and with selection of strategies taking place according to their fitness, which measures their ability to
survive and reproduce. Several dynamical models have been widely used, the most famous being probably
the replicator equation, which has been applied to very wide areas such as economics and other social
sciences. For the interested reader in evolutionary game theory we recommend [103] and [47], with the
latter also providing a good introduction to the topic of population dynamics. We also recommend
[100] for a good reference in evolutionary game theory with more emphasis in biological aspects, such as
Darwinian dynamics, evolution and co-evolution, fitness function and natural selection.
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In the remainder of this introduction we shall describe with more detail each one the subsequent chap-
ters of this thesis, by framing the work in its related scientific literature and emphasizing its objectives
and its main results, and also the prospectives of future works in related topics.

1.2 Detailed description of the thesis

Corruption is one of the most important issues nowadays with the public awareness to the subject
increasing even if the phenomena is difficult to overcome. It has been inreasingly studied by sociologists,
historians, political scientists and economists. The consequences of corruption are known to be severe.
Firstly, for example, corruption is costly for economies, as attested in several studies. The European
Union published its first ever anti-corruption report [38] in February 2014, where it concluded that
bribery, embezzlement, financial and tax fraud, money laundering, cronyism, etc., “cost the EU economy
120 billion euros per year, just a little less than the annual budget of the European Union”. Secondly,
apart from the fact that corruption is costly, it deprives citizens of more than money, since it may have
very deep sociological consequences. There is a lot of empirical and theoretical evidence showing that high
corruption levels are likely to increase income inequality and poverty, actually undermining democracy.
A good account of the effect of corruption on these two factors is provided in [44]. Furthermore, in [72] the
author presents an empirical account of the effect of corruption in investment, namely that corruption
lowers investment and growth. In addition to costs regarding the economy, frequently there are also
great political costs associated to corruption. In [91], using data from four Latin American countries,
the author asserts that corruption erodes confidence and belief in the legitimacy of the political system.

In general, corruption can be defined as the misuse of public power for private benefit. Different
ways of defining corruption and its limitations are discussed in [50] and [48]. In [50] the author divides
corruption into three types. First, ‘grand corruption’ involving political elites. Second, bureaucratic
corrupt practices involving appointed bureaucrats or officials that deal more directly with citizens and
the corrupt acts that occur when they meet the public. Third, legislative corruption, i.e., when voting
behaviour and policy making of the legislator are influenced by private interests and lobbies, eventually
benefiting private interest and harming public interest in exchange for benefits to politicians. The three
types of corruption there described are obviously interconnected.

There is a profuse economic literature related to the topic of administrative and political corruption.
Pioneering works in the area are [85] and [86]. A relevant insight that emerges from many studies is the
self-reinforcing nature of corruption: in an environment where corruption is the norm, corruption tends
to be imitated and to persist. See for instance [67], [68], [88] and [76]. In much of this literature, the
conditions under which people are willing to be corrupted are analysed. For instance, public servants
must ensure compliance with the law, payment of taxes by citizens, compliance with rules aimed at
preventing pollution, rules aimed at avoiding illegal rent-seeking activities (see for instance [56]), etc., but
may be willing to follow a corrupt behaviour in some cases where they may obtain personal gain. In recent
works, the evolution of the corruption in a given society is modelled using evolutionary game theory and
dynamics such as the replicator dynamics or imitative dynamics. In the evolutionary approach, strategies
in a population arise by a trial-and-error and learning process where the best performing strategies will
tend to be adopted or imitated. Under this evolutionary approach and under given social conditions,
corruption can become a dominant strategy and may be a dynamically stable outcome, in other words,
all-pervasive corruption in a country. In [3] the authors consider a model where individuals may have
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motivations to follow a corrupt behaviour and study how imitation may lead to increasing corruption.
In [4], the authors propose a model where income taxation and tax evasion are considered. In [6] the
authors propose a model to analyse the effects of corruption in environmental protection by analysing
a game between firms and public officials, where firms may pursue corrupt behaviour by bribing public
officials in order to get positive reports regarding the environmental status of the firm to avoid fines.

Furthermore, there is the phenomena of ‘grand corruption’ and/or legislative corruption. The central
authority or the government is a benevolent planner trying to maximize the social welfare and should
play an important role to deter and to control the evolution of corruption. However, individual members
of these political elites or the elite groups as a whole can benefit from the evolution of corruption. In
addition to their role as balancing the interests of society, they also want to remain in power and may
take decisions that serve their own interests at the cost of the society’s interest. In [78] the author does
a theoretical analysis of the appropriation of welfare by an autocratic elite, including how it is so and
the relation of security of property and contract rights, which enhances the economy, and democracy
itself. The relations between individual corruption and institutional corruption is very well exposed and
analysed in the books [62] and [96], which focus attentively in the case of the USA Congress. Political
elites’ legislative decisions are also influenced by interest and lobby groups that seek to have gains from
government’s policy making. Models for this kind of corruption and political influence are proposed
in [11] and [43]. Furthermore, a widely studied guise of corruption is vote buying. A classic work of
history that documents vote buying practices in the XIX century and before is [41]. A modern account
on voting fraud is [7]. An excellent work on the nature and forms that vote buying can assume is given
in [89].

The so called petty corruption, i.e., smaller scale corruption that occurs at the implementation end of
public services when officials meet citizens, creates incentives for the development of corrupt behaviour
at this level and in this way the society as a whole may become corrupt and a self-reinforcing mecha-
nism might be in place. In [96], the author goes beyond individual corruption to address institutional
corruption and the relations and possible collusion between these two forms of corruption and how petty
corruption may give rise to corrupt practices at a wider sphere. This possibility raises a question: who
and how controls the controller?, i.e., who and how should may we institutionally (in the sense of ’rules
of the game’ and institutional arrangements) can this be solved.

An interesting discussion on this point was introduced in a lecture by [49], at the occasion of the
Nobel Memorial Prize in Economic Sciences in 2007. In the lecture, Hurwicz retakes a question posed
by the Latin author Juvenal: Quis custodiet ipsos custodes? . This Latin locution has been variously
translated as “Who will guard the guardians?”, “Who can watch the watchmen?”, or “Who will guard
the guards themselves?”. The quotation is from one of Juvenalian satires from the 1st/2nd century CE
(see [51]). In the satire Juvenal refers to the inability of enforcing moral behaviour on women by using
an enforcer since they are corruptible as well (Satire VI, verses 346-348). The modern usage of the
quotation refers very often to the problematic of how to control political power that may be subject to
deviating behaviours. This interpretation resounds a passage of the Republic by Plato (see [79]) written
in 4th century BCE. In the Republic, Socrates describes a society with a class of guards to protect it and
that they will take care of themselves and should be trusted by people. Glaucon refers that it would
be absurd that a guardian would need another guardian. According to Plato, ideally, it would suffice
for the guards to perform their functions with honesty, to make them believe that they are better than
those to whom they render their services (this is Plato’s presentation of the political philosophy concept
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of ‘magnificent myth’, sometimes translated as the ‘noble lie’) and that therefore it is their responsibility
to watch and to protect the inferiors in the social hierarchy.

Therefore we can say that we have two different views regarding this question. On one hand, Plato’s
answer can be seen as optimistic. On the other hand, taking the lato sensu interpretation of the
Juvenalian quote we can say that his answer is pessimistic since it would require an infinite regress of
guardians. In the quoted lecture, Hurwicz suggests that the infinite regress might be avoided if the
guardians hold an elective office, since then citizens can act as a top guardian by means of their elective
power.

The aim of our work is to give a partial answer to this question in the spirit of Hurwicz. We propose
a model where we include the possibility that citizens act as a top guardian and we conclude that they
are key in the fight against corruption, because in a democratic country they have the possibility to exert
democratic pressure through elections, thereby demanding the first level of guardians, the government,
to fight corruption. This kind of influence of citizens fits in the literature of cyclic games, first introduced
in [80] that are part of the broader class of polymatrix games (see [81]). In cyclic games, players play
“pairwise”, thus forming a cycle.

We consider some of the forms of expression of corruption previously described in our model. More
precisely, in our work, we have petty corruption by public officials that may be more interested in their
own profits, rather than fulfilling their duties. We also consider corruption that occurs at a higher level,
such as the government or the ruler elite, that may collude with officials corruption and also has gains
from being maintained in power and eventual promiscuous relations with, for instance, economic elites,
or gains from it might get from their relations with interest groups and lobbyists. Hence, government
will be the first level of guardians. The second level of guardians is made up of citizens with elective
power. More precisely, we introduce a game with three players (populations): government, officials and
citizens, where the first two must choose between a corrupt or non-corrupt behaviour. Citizens have a
role influencing the prospective benefits government being maintained in power. This influence results
in a quantity that we call the index of intolerance to corruption. The persistence of corrupt behaviour
in a democratic country will depend on the degree of intolerance of citizens and other socio-economical
quantities of the model. Intolerance to corruption can take many forms and be related to a wide range
of causes. In future works, we will consider different versions of this index, for instance depending on
citizens perception of corruption by the media and other characteristics.

We also consider a modified game with three populations: the government, officials and citizens.
Unlike the game first described, citizens not only have an influence on the payoffs of government and
officials but are full players of the game. They have two strategies that we will designate by corrupt and
non-corrupt, in order not to cause confusion with the strategies of he government and officials, but that
may perhaps be more precisely interpreted as compliance and non-compliance towards corruption. Hence
the distribution of citizens among these two groups changes dynamically as the the other players. Citizens
participation in the game can be seen as representing citizenship and, to a higher extent democracy itself,
as it is known that there are historical periods when citizens compliance with some acts as corruption
increases or decreases depending on factors such as their perception, media attention and other aspects.

We consider an evolutionary version of the game by means of the replicator dynamics. This kind of
dynamics is also called myopic dynamics, since agents adjust their strategies according to a comparison
between their payoff and the average payoff. An strategy performing higher than average will tend to be
selected by evolution. For good introductions to the fascinating subjects of game theory and evolutionary
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game theory we recommend [47] or [103]. We obtain five steady states for the dynamics. Four of them are
pure equilibria where the government and officials population either choose to be corrupt or non-corrupt.
The other equilibrium corresponds to a mixed strategy where the government and officials choose to be
corrupt or not with a certain probability, or equivalently, to a certain ratio representing the proportion
between the two strategies within the population of officials and the government’s acts. The trajectories
of the system are initial condition dependent and we characterize the evolutionary outcomes of the
system, i.e., the corruption behaviour patterns that are selected by means of the replicator dynamics.
We do the stability analysis of the stationary points of the dynamical system and the Nash equilibrium
analysis according to the following quantities: i) the fines practised by the non-corrupt government;
ii) the re-election power of the government; iii) the welfare that a corrupted government takes from
officials; iv) the costs of a non-corrupt government in fighting corruption. We obtain three different
outcomes: i) two different Nash equilibria that are stable coexist; ii) only one Nash equilibrium that is
stable; iii) cycles of decreasing and increasing corruption. We show how a sudden change in the evolution
of corruption might occur as a consequence of changes in the intolerance index and might lead to the
non-corruption equilibrium. However, we observe that in some cases when the index of intolerance to
corruption is low, then corruption can persist for instance in the form of corruption cycles. More extreme
situations may also occur, where equilibria in which corruption exists are stable. That may be associated
with situations of declining democracy or even with dictatorships that might also occur when the index
of intolerance is not sufficiently high. Thus, an increase in this index, which can be then regarded as a
measure of popularity of the government, is essential to surpass those situations.

Game theory has been increasingly used in economic modelling and in problems related to interna-
tional trade. The strategic nature of international trade, for instance in the choice of tariffs makes it a
good field for the intervention of game theory, in other words, the study of strategic decision-making, or
the study of rational conflict.

One good reference of applications of game theory to international economics and international trade
is provided in [74]. We also recommend the classic reference [101] from the Austrian School for a theoreti-
cal analysis of international trade and commercial policy. There is a vast literature in international trade
models using game theoretic framework with both complete and incomplete information (uncertainty)
and including or not analysis of trade policy. A good review of stratgic/game theoretic aspects of trade
policy is provided in [33]. In [21] and [20] the authors consider a Cournot model with tariffs without and
with cost uncertainty respectively. In [94] the authors propose a model including government subsidies
to firms in the form of R&D subsidies and in [15] they study a model where governments subsidize firms
over the produced quantities to help them in competition against foreign producer and also study the
extension of the model to a supra-game between governments. The relation with the tariffs literature is
that when a negative optimal level of subsidy occurs, it is interpreted as an export tax. [64] extends this
work to study optimal export subsidies (and export taxes) under incomplete information. Regarding
the subject of export promotion see also [34] for a model where targeted export promotion policies are
studied and [42] for a critique of export promotion policies. In [8] the authors study dynamic patterns
of trade policy, namely protection with respect to trade volumes. Also on the subject of trade patterns
and gains see [45]. In [39] the authors study price competition (inspired from the Bertrand compe-
tition model) between two international firms with tariffs. Other works in multimarket/international
trade models under oligopoly are for instance [17], [35], [32]. In [14] a model for intra-industry trade is
proposed and analysed and in [55] a oligopolistic model with trade restriction is analysed.
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The question of the enforcement of trade agreements, i.e., the enforcement of cooperating strategies,
is also a very active research topic (see a review of early contributions to this topic in [95]). The
enforcement of trade agreements, i.e., the enforcement of cooperating strategies has two important
features. Firstly, is that at least one country may have an incentive to unilaterally deviate from its social
(cooperative) tariff to its Nash (competitive) tariff. Consequently, such country will eventually deviate
to its competitive tariff if there is no punishment associated to this. Therefore, it is important that trade
agreements present a mechanism to punish such deviations. Secondly, one must observe that there is not
a supra-national authority to enact the punishment mechanism of the violating country for its eventual
deviations from cooperation. This implies the need for international agreements to be self-enforcing.

These characteristics, particularly that of self-enforcing agreements lead to the study of the enforce-
ment issues by means of certain repeated games that possess and present a good deal of important
features of cooperative self-enforcing agreements. As a result, several instruments have been proposed
and studied with the objective of achieving the (self)-enforcement of international trade agreements, as
well as addressing the question of their efficiency, particularly when compared to the threat of tariff
retaliation. See for instance [9] for a study of enforcement in the context of the General Agreement on
Tariffs and Trade (GATT) and its successor, the World Trade Organization (WTO).

In [65] the authors adopt the repeated game approach and propos alternative instruments in the
context of a trade agreement between two symmetric countries. More precisely, the authors compare
the effectiveness of retaliatory tariffs with that of a financial compensation by means of a monetary fine
to the country that violates cooperation. Unlike the most common tariff retaliation, which is imposed
by the injured country and only depends on it, monetary fines have an enforcing problem because
they must be voluntarily paid by the country that has deviated from cooperation. They showed that
monetary fines yield the same cooperative outcome as tariff retaliation, except when a country deviated
from the agreement due to an unanticipated shock in the model parameters (in the case, a political-
economical parameter) with monetary fines being preferable to tariff retaliation in that situation. They
also studied the possibility of the countries exchanging bonds, and concluded that this yields the same
cooperation power as tariff retaliation not yielding a more cooperative outcome. In [66], the authors
introduce size inequality between countries, by considering one large country and a region of equal
market size with a number of identical small countries. The fact that in the second region countries are
individually small generates a coordination externality among themselves, as they cannot credibly threat
tariff retaliation, but they would if they act like a group. Thus, in trade agreements based solely on tariff
retaliation, coordination externalities generate asymmetric outcomes. They show that improvements in
efficiency and more symmetric outcomes can be obtained by including specific financial instruments
such as monetary fines and bonds in conventional trade agreements based only on the threat of tariff
retaliation. In [53], a model with two asymmetric countries is considered and it is shown that an efficient
trade agreement might not lead to free trade. Various types of transfers between countries are studied,
such as financial (monetary fines), foreign aid and side payments intended to offset a loss resulting from
a trade agreement.

Within the frame of repeated games, in [10] and [71] the authors consider a model with two firms
competing in the same country and they study the phenomena of dumping. They interpreted the
deviation from collusion by the foreign firm as dumping, with the foreign firm subsequently suffering a
period of punishment, where punishment results from the home firm lobby on its government, and the
imposition of a tariff that makes the foreign country unable to export during the period of punishment.
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The authors study two possibilities after the deviation and punishment periods, with both competing
in a Cournot way or the repetition of the deviation and punishment phases. In the former paper they
study the symmetrical countries case while in the latter they consider the asymmetrical countries case.
In [70] the authors consider a model where a firm has the monopoly in its home market, but divides the
market of the foreign country with a firm from that country. They study deviation from collusion in the
foreign market by the firm that sells in the two countries either by increasing production solely in its
foreign market to lower prices and thus making dumping, or by increasing production in both countries
and thus lowering prices in both markets and so deviating without making dumping.

In chapter 3, we consider a classic duopoly international trade model with complete information
where there are two countries and a firm in each country that sells in its own country and exports to
the other one. The exportation is subject to a tariff fixed by the government of the importing country.
The international trade model has two stages: in the first stage, the governments simultaneously choose
their tariff rates; and in the second stage, the firms observe the tariff rates and simultaneously choose
their quantities for home consumption and for export (see, for instance, [40]).

For the second stage, we consider always the classic competitive (Nash) equilibria that determines
uniquely the quantities for home consumption and for export. Now, for the first stage, the decision of the
governments to impose or not tariffs can be interpreted as the actions of a game specified by the utilities
considered for each country. The utilities (each corresponding to a different game) of the countries that
we analyse are the relevant economic quantities of the international trade model for the consumers and
firms. In particular, we consider the utilities given by the custom revenue of the countries, the consumer
surplus of each country, the profit of the firms and the welfare of the countries at the competitive Nash
equilibrium of the second stage game. We show that for each of the above utilities there is a Nash
(competitive) equilibrium and a social optimum equilibrium corresponding to the maximization of the
joint utility of the two governments. For each one of the utilities, we will compute the Nash and social
optimum tariffs and compare these social and Nash equilibria in terms of the economic relevant quantities
of the model.

There are three typical game outcomes: the social equilibrium (SE), where the social optimum
coincides with the Nash equilibrium; the prisoner’s dilemma (PD), where both utilities are bigger in
the social optimum than in the Nash equilibrium; and the lose-win social dilemma (LW), where the
utility of one of the countries is bigger in the social optimum tariffs and the utility of the other country
is bigger in the Nash equilibrium tariffs. For every pair of utilities, we will find which of the three types
of outcomes SE, PD or LW occurs in terms of the model parameters.

Which one of the three previously mentioned outcomes (SE, PD or LW) occurs presents qualitatively
different scenarios for the involved countries. If the game is of the social equilibrium (SE) type, then
there is a priori no need of a trade agreement, because the two countries are already in the social optimum
as the competitive equilibrium coincides with the social optimum that maximizes the joint utilities of
the two countries. If the game is of prisoner’s dilemma (PD) type or of lose-win social strategies (LW)
type, then at least one of the countries can improve its payoff if they choose to cooperate, and that
can be done by means of a trade agreement. In the first case, both governments can make a trade
agreement such that they choose the social tariffs, thereby improving the utilities of both countries.
However, even if both countries improve their utilities, there might be some externalities associated to
the trade agreement. In the second case, both governments can also make a trade agreement such that
the countries opt for the social tariffs. However, in this case, the situation is qualitatively different as
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one of the countries is injured by the change to the social tariffs. So in order to enforce cooperation there
is need to compensate that country, for instance, by means of a financial compensation or transfers or
in other terms stated in the agreement. In this case, as may happen in the previous case, there might
be some externalities associated to the trade agreement.

Indeed, in the first case both countries may improve their welfare but these gains may jeopardize the
dominant’s country position in international trade, albeit their welfare is improved. This may occur for
instance in situations where the country’s welfare is improved but other aspects such as their industrial
output measured in produced quantities may decrease while other components of the welfare increase,
such as, for instance, the consumers surplus due to increase in imports.

We consider a welfare balanced international trade agreement, whose main features are that it in-
creases the welfares of the two countries proportionally to the trade agreement index that is the ratio
between the total welfare with social tariffs and the total welfare with the Nash tariffs. With this, the
welfare shares of each country relative to the total social welfare is the same as the shares they had at
the Nash equilibrium. In other words, the relative welfare share or weight between the two countries
in terms of aggregate welfare when the social tariffs are enforced is the same as the relative welfare
share or weight between the two countries at a competitive (Nash) situation. So in the welfare balanced
trade agreement the balance of forces of each country in terms of welfare remains the same, although
each one gets an absolute increase in welfare. So there is an absolute benefit for both countries while
the welfare balance is maintained. However, as we argued above this trade agreement might have some
difficulty since some externalities may appear throughout the process. They are mainly due to the effects
of the enforcing of the social tariffs in some aspects of the country’s economy such as the surplus of its
consumers, their revenues from tariffs (which tend to be lower or zero when the social cooperative tariffs
are enforced), or the profits of its firms and their outputs, which relate to the productive or industrial
output of the country. We describe with detail the regions where according to our model, some of these
externalities, and hence difficulties in the construction of trade agreements may occur. We do not study
the problems of enforcing the trade agreement, and possible solutions to the externalities that arose,
that may perhaps be avoided with the addition of other features to the trade agreement.

There are some future work possibilities regarding this and related topics, such as the study of
the enforcing of trade agreements, and the study of how the compensation between countries in the
welfare balance trade agreement should be enhanced, as well as how to mitigate the externalities that
we identified. Some ways to mitigate the effect of the externalities might include agreements in specific
issues such as R&D, subsidies or fines to firms, or other kinds of transfer between countries.

Widely used models in ecology and biology are structured population discrete-time dynamical models
using matrices. In these models the population is divided into classes, the most common example are
age classes. Other examples include division into different sizes or different life stages, for instance
in epidemiological models, with different classes for the stages of the disease and their impact in the
population. The most classical examples of matrix models are perhaps the so-called Leslie matrix models
(see [60] and [61]), that are among the first example of population models using matrices. More recent
classical examples include [59] and [98]. A classical one-dimensional discrete-time model is the Ricker
equation [82], originally developed in 1954 to study the number o fish at a fishery. For the interested
reader in matrix modelling in biology we recommend [19], which surveys the classical results and the
effects of periodicity and stochasticity. The original models of Leslie are models with constant coefficient
matrices. One possibility to extend these kind of models is to include density effects, effectively rendering
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the matrix model non-linear (see [19], chapter 16). For a good survey on non-linear matrix models we
recommend [28]. For a more thorough study see [23].

One fundamental ecological and biological questions in is population extinction and persistence. This
can be mathematically formulated in terms of the stability and instability of the extinction equilibrium
and of non-extinction equilibria where the population densities are positive, or stability and instability
of non-extinction non-equilibria, such as stable cycles or other kind of attractors. In the case of non-
linear matrix models for structured populations, a bifurcation theorem answers this question when the
projection matrix is primitive by showing the existence of a continuum of positive equilibria that bifur-
cates from the extinction equilibrium as the inherent population growth rate passes through 1 (see [23]).
This theorem also characterizes the stability properties of the bifurcating equilibria by relating them
to the direction of bifurcation, which is forward (backward) if, near the bifurcation point, the positive
equilibria exist for inherent growth rates greater (less) than 1. More precisely, in a neighbourhood of
the bifurcation point, if the bifurcation is forward then the bifurcating equilibria are stable, and if the
bifurcation is backward then the bifurcating equilibria are unstable.

Matrix models can be assumed to be dependent on other features than the density effects only.
These might include stochastic effects due to environment and demography, periodicity effects, and
natural selection pressure from Darwinian evolution. For the interesting subject of Darwinian evolution
and dynamics modelling and its relation to evolutionary game theory we recommend the book [100].
Other good references are [83] and [31].

In chapter 4 we consider an evolutionary game theoretic version of a general nonlinear matrix model
that includes the dynamics of a vector of mean phenotypic traits subject to natural selection. We extend
the fundamental bifurcation theorem to this evolutionary model. The work in this chapter is the exten-
sion of the results in the non-evolutionary setting in [23] and [28] and the one-trait evolutionary results
in [24]. We model the evolutionary and population dynamics by assuming that they act on the same
time scales, which is in accordance to recent literature arguing on the consistency of the evolutionary
and populational dynamics time scales (see [2]). We apply the results to an evolutionary version of the
classical Ricker model (see [82]) with an added Allee component inspired by the model studied in [90].
This application illustrates the theoretical results and, in addition, several other interesting dynamic
phenomena, such as backward bifurcation induced strong Allee effects and survival when multiple traits
evolve. We obtain strong Allee effects associated to backward bifurcations where stable positive equi-
libria coexist with stable extinction equilibria. We also obtain strong Allee effects where other more
complicated non-equilibria attractors, such stable cycles coexist with stable extinction equilibria.

Future work in related topics might include the study of other bifurcations apart from the local
study about the fundamental bifurcation that we perform on this chapter. One possibility is the study
of backward bifurcation induced Allee effects where a blue-sky bifurcation where two equilibria of opposite
stability properties arise. Other is the study of evolutionary and non-evolutionary versions of population
dynamics of semelparous species, i.e., species with only one reproductive cycle. The population dynamics
of such species is more accurately described by irreducible non-primitive matrix models. In this cases
dynamical situation is more involved and it is not expected that the direction of the bifurcation is
enough to characterize stability as occurs in our work. This is due to the well-known fact that for
irreducible matrices a strictly dominant eigenvalue does not exist, and there are several eigenvalues with
the same modulus, associated to the h-roots of unity where h is the period of the matrix. So more
than one eigenvalue leaves the unit circle, unlike the primitive matrix case where, at least locally, only
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one eigenvalue (the strictly dominant one) leaves the unit circle simultaneously. The situation becomes
combinatorially more complicated as dimension increases. However, for low dimensions it may be able
to obtain characterizations of the fundamental bifurcation using methods similar to the ones that we
practise in our work.
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Chapter 2

Evolutionary dynamical modelling of
corruption

The first part of this chapter is based on the joint work:

E. Accinelli, F. Martins, J. Oviedo, A. A. Pinto, and L. Quintas. Who controls the controller? a
dynamical model of corruption. The Journal of Mathematical Sociology, 41(4):220–247, 2017.

The aim of this chapter is to study the evolution of corruption in a game theory setting. The
aim of the first part of this chapter is to try to give at least a partial answer to the question of who
will control the the controller supposed to prevent the spreading of corruption, since it can itself be
corrupted. In societies, citizens often play an important role that may control the controller since they
have voting power and their intolerance to corruption exerts democratic influence in maintenance or not
of a government in functions. To analyse this we introduce a normal-form game between a government
(that is elected by universal suffrage of citizens) and public officials where both can choose between a
corrupt behaviour and an honest behaviour. We build an evolutionary version of the game by means
of the replicator dynamics and we analyse and fully characterize the possible trajectories of the system
according to the index of intolerance to corruption and other relevant quantities of the model. We also
consider a tree-population game between government, officials and citizens who have two behaviours,
to be compliant or not with corruption. We show that politically active citizens with high index of
intolerance to corruption can effectively prevent the spreading of corruption. However, when intolerance
is not high enough it ensures situations where democracy is undermined, as corruption can be sustaining
either as a social trap, or in extreme situations such as dictatorships, or through cycles of diminishing
and increasing corruption, where corruption is endemic.

This chapter is organized in the following way: in the first part of the chapter, in section 2.1, we
address the question of controlling the controller of corruption, i.e., the government, or political elite
and the importance of citizens through voting power to, in a way, control the government. In the second
part of the chapter, in section 2.2 we extend the game to a situation where citizens are players in the
full sense of the word and have two behaviours, to be complacent or not with corruption and we analyse
the importance of this citizenship, or democratic intervention in the outcomes of the corruption game.
In section 2.3 we present some conclusions.

13
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2.1 Controlling the controller

In the first part of the chapter we try, through the modelling and analysis of a game between government
and officials, to answer the question of how is it possible to control the government, or the political elites,
which is the supposed controller of corruption, since it can also become corrupted. We introduce citizens
influence in the game by means of the probability of re-election of a government, which is related to
the intolerance of citizens towards corruption, and is like a measure of popularity of the elites. This
influence is crucial to answer the previous question since it allows, in some socio-political situations, to
control the controller effectively.

This first part is organized as follows: in section 2.1.1 we introduce a normal-form game where
the players are the government and officials, where citizens exert influence by means of their power to
maintain a government in power or not in a general election. In section 2.1.2 we analyse when corruption
can be a self-reinforcing mechanism. In section 2.1.3 we introduce the index of intolerance to corruption
and discuss some of its implications. In section 2.1.4 we consider a dynamical system given by the
replicator dynamics to explain the evolution of corruption in a society. In section 2.1.5 we analyse the
dynamical equilibria of the system, as well as their stability, and their relations with the Nash equilibria
of the game. These relations and the dynamical and Nash outcomes are obtained from the characteristic
parameters of the government and officials in the game. In section 2.1.6 we consider some particular cases
in which it is possible to describe the evolution of corruption by analytically computing the solution of
the dynamical system from given initial conditions. In section 2.1.7 we make some considerations about
the role of the index of intolerance of corruption and we mention some possible extensions of this index.

2.1.1 The model

Consider an economy or society where the central authority is elected by universal suffrage of citizens.
We identify this central authority with the national government, or in presidential regimes, with the
president and his/her administration. They make up the ruling elite. The government can be re-elected
or not after each electoral period. The government, in its turn, appoints public officials who may or
may not be renewed by the new government. These officials are in charge of carrying out the legal and
administrative management of the government and serve directly to the citizens when they require to
carry out a specific service.

In general, corruption can be defined as the misuse of public power for private benefit1. For instance,
officials collect bribes for providing permits, licences, passage through costumers, or avoiding the entrance
to competitors in a given market. So when an official is corrupt, it can be regarded as if the agent is
selling government corruption for personal gain. At the end of each election period, officials must choose
between two different behaviours, namely, properly fulfilling his/her role when his/her participation
is required by a citizen or, fulfilling his/her role as long as the citizen pays for it a certain amount
of money. We call an honest or non-corrupt official the one that chooses to unconditionally fulfil its
functions, otherwise we call the official a dishonest or corrupt official.

Following [92], we define government corruption as the complicity of the government (the ruling
elite) with officials that sell government property for personal gain, since sometimes, a dishonest official
is colluded with a member of the central authority and both take advantage for this behaviour. We

1In [77] the author defines it as a deviation “from the formal duties of a public role (elective or appointive) because of
private-regarding (personal, close family, private clique) wealth or status gains.”
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summarize the activity of the government as follows: it must choose between following a corrupt be-
haviour or a non-corrupt behaviour, meaning to act in complicity with corrupt officials, or alternatively,
punishing them. Corrupt behaviour by the elite may also be seen as the appropriation of some welfare
from the officials whether the officials are honest or not2. Several examples as well studies of this kind of
collusion are considered in [96] and [62]. In [78] the author theorizes over the incentive that a autocrat
in doing this welfare appropriation, particularly when in a short-term tenure. The author also argues
about the existence of a “stationary bandit”, to use the terminology of the author who can somehow
stabilize corruption by practising it, thus given an argument for the existence of corruption at higher
levels such as a government.

Even when some members of the government can be attracted to act in collusion with dishonest
officials, it is necessary to consider that the government is interested in being re-elected for the next
period, and they know that this happens only if citizens are satisfied with the performance of the
government. Citizens will judge the performance of the central authority through the work of officials
who deal directly with them. Citizens prefer a non-corrupt government, but they do not have complete
information about the behaviour of the government. They know this information only in an indirect way,
and only if they have taken contact with some official. It may be difficult for citizens to refuse to pay
that amount in countries where officials corruption is frequent in society, otherwise they will not have
their needs fulfilled (see [92]). The fact that citizens have incomplete information results in probabilities
of re-electing or not the current government, being it corrupt or not. Since governments have a certain
valuation for being re-elected, this mechanism results in an externality for the government caused by
election. We will describe below how this externality (related to the index of intolerance to corruption)
will appear in the game as well as its main consequences in the following sections of this work. We also
assume that a corrupt government can try to corrupt the citizens by means of some kind of payment or
royalties in exchange for their vote as we will describe in the game model below 3.

The model can be formalized as a normal-form game. The sets of pure strategies are as follows:

1. Officials must choose between two pure strategies: to be corrupt or not, respectively symbolized
by Oc and Onc, so that we have ΓO = {Oc, Onc}.

2. The central authority or government must choose in the set of pure strategies ΓG = {Gc, Gnc}. A
corrupt policy is symbolized by Gc while an honest or non-corrupt policy is denoted by Gnc. This
represents the behaviour of the political elites.

The payoffs for officials and government are represented in the following table. At the end of every
period, the ruling elite must choose between to follow a corrupt or a non-corrupt behaviour (rows),
and officials must choose between a corrupt or non-corrupt behaviour (columns). In each cell, the first
quantity is the officials’ payoff and the second quantity is the government’s payoff.
where:

• W is the wage of the officials which is paid by the government.

• M is a fine (or welfare punishment) imposed by an honest government to a dishonest official.
2This situation may be also interpreted as a dictatorship where there is a small political elite that benefits from

corruption. We will explore this interpretation with more detail later.
3The vote buying consists in the bribery of a group of citizens with the aim of obtaining their vote in favour of re-

election. The voter would be compensated with cash or some bonus. This modus operandi is well documented in literature,
see for instance [41] and [7].
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O|G Gc Gnc

Oc W +Mc −Mg, Mg −W + VGc −KP W +Mc −M , M −W − e+ VGnc

Onc W −M ′g, M ′g −W + VGc
−KP W , −W + VGnc

Table 2.1: The payoff table of the government and officials game.

• Mc corresponds to the bribe (the direct benefit) that a dishonest official takes from a citizen when
his participation in a certain activity is required.

• Mg is the amount that the dishonest official must pay to his partner in the government when a
collusion occurs and both officials and government are corrupt. This quantity may be seen as a
fraction of the bribe that the corrupt official charges on citizens: Mg = θMc. More generally, it
can be seen as the appropriation by the government of an official’s welfare.

• M ′g is the amount that an honest official must pay to a dishonest government to keep his position
or because they do not want to be punished for breaching the rules of coexistence between the
two. We note that M ′g can be negative, i.e., a reward given by the corrupt government to honest
officials. When M ′g is positive, it can also be seen as a legal appropriation of the officials’ welfare
due to ideological reasons.

• e is the cost associated with the capture of corrupt officials4. This cost is a measure of the
governmental efficiency in the fight against corruption.

• VGc
and VGnc

are dichotomous random variables taking, respectively, the values VGc
and 0 with

probabilities qGc
and 1 − qGc

, and the values VGnc
and 0 with probabilities qGnc

and 1 − qGnc
.

For simplicity, we keep the same notation for the values the variables may take and the variables
themselves. These two random variables correspond, respectively, to the value that a corrupt gov-
ernment and a non-corrupt government assign to being maintained in power for the next period,
or as the valuations attributed to re-election. In the case of a corrupt government this valuation
might reflect its potential gains from future relations with, for instance, economic elites and lob-
bying and interest groups, as well as the government’s worries about eventual future prosecutions
in the event of an electoral defeat (as observed in countries where two parties alternate in power).

• By KP we symbolize the total amount of money that the ruler elite offers to the citizens to buy
their votes, where P is the unitary value paid to each person and K is the number of citizens
to which the government pays is such that 0 ≤ K ≤ H where H is the total number of citizens.
This may be regarded as the effort that a corrupt government makes to increase its chances of
re-election. For more about vote buying and its meaning we refer the reader to [89].

As mentioned previously, citizen are not players in the usual sense in our game, but have a decisive
influence on the game by means of the probabilities of re-election of a government.

4The costs associated with the capture of a corrupt official may be seen as funded by sanctions that a non-corrupt
government obtains from fines to corrupt officials. Certainly if this cost exceeds the total amount of fines collected, the
government will have to appeal to other sources to perform this task. This point and questions about the nature of the
funding associated to the system of prosecution of corrupt are not considered in this model.
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Definition 2.1. We shall symbolize by QGc = (qGc , 1 − qGc) and by QGnc = (qGnc , 1 − qGnc) the
probability distribution that a corrupt government, (respectively a non-corrupt one) be re-elected. These
probabilities can be considered as two different mixed strategies of the citizens.

We will assume in the first part of this chapter that these probabilities are given. The reason we do
this is because in the second part of this chapter we will consider a different game where the citizens will
be full players of the game, with two different behaviours, one complacent with corruption and other
that is not complacent. Hence the mixed strategy of this citizens will be a probability distribution over
these two behaviours. This mixed strategy will have an influence on government and officials and will
also dynamically evolve, in a way extending this first framework where the probabilities that are akin to
the mixed strategies of the citizens are given and the index of intolerance to corruption to be introduced
below is constant.

It is of course possible to endogeneize these probabilities, which can be achieved based on hetero-
geneous citizens’ preferences toward the direct corruption they perceive, that can be measured by the
relative amount or probability of finding a corrupt officials, and his/her preference towards the payment
P . We explain one possible way of doing this in the appendix 2.A. More precisely we can consider that
citizen’s preferences are defined by a utility function ui : [0, 1]×<+ → <+ that we assume to be contin-
uously differentiable, such that (nc, P ) ↪→ ui(nc, P ) where nc is the relative amount of corrupt officials
and P is the payment offered by the government for the vote of the citizen. In addition we consider that
∂ui(nc,P )

∂nc
< 0, ∂ui(nc,P )

∂P > 0. Note that under the usual assumptions relative to utilities, the marginal
rate of substitution of corruption for money MRSinc,P

i.e, the amount of money that a citizen hopes to
receive to accept a higher level of corruption, without changing his level of utility, is given (locally) by
the expression:

MRSinc,P = ∂P

∂nc
= −∂ui/∂nc

∂ui/∂P
> 0 . (2.1)

Our analysis mostly refers to the evolution of corruption in countries where citizens have the opportu-
nity to express themselves with relative independence in an election. The probabilities of a corrupt and
a non-corrupt government be maintained in power that we have described above may be interpreted as
probabilities of re-election, and we will frequently use this interpretation in the remainder of this work.
In a way, we can say that they reflect a measurement of the popularity of a government. The case of
countries under less democratic regimes or even dictatorial regimes can be considered as extremal cases
of our model, in which the probabilities of the government being maintained in power are altered ac-
cordingly to the (dictatorial) power of the government, since in most circumstances, a dictatorial regime
also has elections that are fraudulent (such as, for instance, Portugal before 1974, and the infamous 1958
Presidential election).

The reasoning for the variables V above is that it is clear that members of a corrupt government
have an interest in perpetuating themselves in power, either because of their interest in continuing to
be enriched or because of their fear of being penalized by a future government. On the other hand,
the interest that a non-corrupt government has in being maintained in power is based on the will its
members to fulfil a function of public interest. Eventually, in dictatorships, the government has total or
near total probability of being maintained in power unless an outside event such as a coup occurs, with
the government always achieving its externality values VGc

or VGnc
. Thus our model may also explain

these situations.
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The parameters of the model may be considered as an average of what is observed in the whole
society. For instance, it may be that an honest government dismisses some corrupt officials instead of
imposing fines on them. This situation may be interpreted as a fine that equals the wage of the official.
Another possibility, for instance, is when an honest official works for an honest government, and the
government may consider that this has a positive benefit apart from the wage he pays and give the
official this positive benefit. Thus, the wage parameter will reflect the average of these situations in the
whole society. Similarly for the order of magnitude of fines, briberies and punishments from the part
of the officials that may be different across society, with the parameter values representing a societal
average. In other words the parameter are for a certain focal or representative individual of a society,
and the same for the average/typical behaviour of a government. For the sake of simplicity, we consider
that the wages are the same whether officials and government are corrupt or not.

This game fits in the literature of cyclic games introduced in [80] as a 3-person cyclic game. Gov-
ernment acts corruptly or not, and plays a game with public officials. Officials act corrupt or not, thus
receiving or not bribes from citizens. Citizens exert influence and may punish the government, thereby
closing the cycle.

2.1.2 Corruption as a self-reinforcing mechanism

The Von Neumann-Morgenstern utility theorem shows that, under certain axioms of rational behaviour,
a decision-maker faced with risky outcomes of different choices will behave as if he is maximizing the
expected values of some function (the von Neumann-Morgenstern utility function) defined over the
potential outcomes at some specified point in the future (see [102]). We will follow this point of view
to describe the behaviour of the agents involved in our model. We assume that the values of the utility
function associated with each choice (for the ruling elite and for the officials) are the potential profits in
each state of the world.

Let nc(t) be the share of corrupt officials at time t and nnc(t) the share of honest officials at time
t. We are interested in modelling the evolution of these shares with time by means of the replicator
dynamics. We will have that nc(t) + nnc(t) = 1 for all time t. The quantities nc and nnc can be seen
as the probabilities of finding, respectively, a corrupt and a non-corrupt official in the population of
officials.

Taking into consideration that qGc and qGnc are respectively, the probabilities that a corrupt and a
non-corrupt government get re-elected, we obtain that the expected payoff of a dishonest government
corresponds to

E(Gc) = ncMg + nncM
′
g −W +RGc −KP , (2.2)

and the total payoff of a honest government corresponds to

E(Gnc) = −W + (M − e)nc +RGnc
, (2.3)

where RGc
and RGnc

are the expected values of governments in case of being maintained in power, i.e.,
RGc

= VGc
qGc

and analogously for a non-corrupt government RGnc
= VGnc

qGnc
.

We denote by P (Gc) the probability that the government follows a corrupt policy. We shall see later
that in our model this probability will be endogenously determined. Note that P (Gnc) = 1 − P (Gc) is
the probability that the government follows a non-corrupt policy. The expected profit of a dishonest
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official is given by

E(Oc) = (W +Mc −Mg)P (Gc) + (W +Mc −M)P (Gnc) . (2.4)

The expected profit of an honest official is given by

E(Onc) = (W −M ′g)P (Gc) +WP (Gnc) . (2.5)

Assuming that M −Mg + M ′g > 0 and Mg −M ′g −M + e > 0, after some algebra we obtain the
following statements E(Oc) > E(Onc) if and only if:

P (Gc) >
M −Mc

M −Mg +M ′g
, (2.6)

and E(Gc) > E(Gnc) if and only if

nc >
(RGnc −RGc)−M ′g +KP

Mg −M ′g −M + e
. (2.7)

The next proposition summarizes these facts:

Proposition 2.1. Officials prefer to choose a dishonest behaviour if and only if the government cor-
ruption is large enough, and reciprocally a high number of corrupt officials encourage governmental
corruption.

Remark 2.1. Note that if the fines are relatively low with respect to what a corrupt official can obtain
by an illegal payment for his services, i.e., if Mc ≥ M , then even when the government always prefers
to follow a non-corrupt behaviour (P (Gc) = 0), it is more profitable for the officials to follow a corrupt
conduct. So, along time, the amount of corrupt officials increases, and consequently, after some time the
government becomes corrupt. More precisely, this will change the governmental behaviour, and it will
happen as soon as inequality (2.7) is verified.

If together with the conditions above we have M −Mc < 0 then the threshold on the right hand side
is negative and the condition is always verified. Analogously, if (RGc̄ −RGc)−M ′g −KP < 0. In these
cases the two thresholds are always verified and independently of the proportion of corrupt officials and
the probabilities that the government acts corruptly then both players will always prefer to act in a
corrupt way. On the contrary if we also haveM−Mc > M−Mg+M ′g > 0 or (RGc̄−RGc)−M ′g−KP >

Mg −M ′g −M + e > 0 then the thresholds above are greater than 1. In these cases it is impossible for
the two inequalities to be verified independently of the proportion of corrupt officials and the probability
that the government acts corruptly. So that both players will prefer to act corruptly.

A general conclusion can be obtained from proposition (2.1) and summarized in the following way:
corruption corrupts. More explicitly, this proposition says that corruption is a self-reinforcing mechanism.
The question now is how to break down this process. The answer is in the degree of intolerance of citizens
to corruption. It should be considered that even when some elements of the ruling class are willing to
follow a corrupt behaviour, if this attitude favours an increase in the number of corrupt officials, their
government may not be re-elected, and in that case they do not obtain the value of the re-election
externality VGc

. This possibility depends on the interplay between the variables of the model. One
particular quantity is the index of intolerance of corruption that we now introduce.
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2.1.3 The index of intolerance to corruption

Corruption is wilfully hidden and is not easy to measure directly (see [91]). There have been many
attempts to solve this problem but they have all came up with limitations, see for instance [18]. In
particular, its perception may be distorted which may influence citizen intolerance towards it.

The intolerance of citizens towards corrupt acts plays a fundamental role regarding the evolution of
corruption in society. The possible expressions of this intolerance can take different forms under different
regimes. In general, in democratic countries, it manifests itself through citizen’s vote. In our analysis
we will refer to the expression of this intolerance in the form of citizens voting in an electoral process in
democratic countries.

Under this framework, now we define the index of intolerance to corruption as follows:

Definition 2.2. (The index of intolerance to corruption) Let qGnc be the probability that a corrupt
government is re-elected given that the percentage of corrupt officials is nc and let qGc be the probability
that a non-corrupt government is re-elected. We define the index of intolerance to corruption by the
difference:

Dit = qGnc
− qGc

. (2.8)

This index captures the social sensibility to the corruption. Note that −1 ≤ Dit ≤ 1 and that

RGnc −RGc = VGncqGnc − VGcqGc

= (VGnc − VGc) qGnc + VGc (qGnc − qGc)

= (VGnc − VGc) qGnc + VGcDit .

(2.9)

This expression shows that the difference between the expected value of a non-corrupt government
being re-elected and the one that corresponds to a non-corrupt government being re-elected grows with
the index of intolerance to corruption.

Substituting (2.9) in inequality (2.7) it follows that government prefers the corrupt strategy if and
only if

nc >
[(VGnc − VGc) qGnc + VGcDit]−M ′g +KP

Mg −M ′g −M + e
. (2.10)

If we consider the additional hypothesis that the valuations of a political group in power can obtain
in case of being maintained in power are the same whether it is corrupt or not, i.e. VG = VGc = VGnc ,
then equation (2.10) simplifies and the role of the index of intolerance is very clear:

nc >
VGDit −M ′g +KP

Mg −M ′g −M + e
. (2.11)

In the same conditions as proposition 2.1 the next corollary holds.

Corollary 2.1. If citizens are sufficiently intolerant with the bad services provided by corrupt officials,
then, according to (2.10) or (2.11), it becomes more unlikely that there are enough corrupt officials so
that governments prefer to be corrupt, so that the government loses incentives to tolerate or to allow
corruption. Insofar as that the degree of tolerance of citizens for the services of corrupt officials decreases
or, equivalently, insofar the degree of intolerance for corrupt services increases, the government prefers
to punish corrupt officials.
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However, note that the strategy “to be corrupt” can be a dominant strategy for the government if
its efficiency to capture corrupt officials is low, or equivalently the cost to catch the corrupt officials
is high, i.e., if e > M −Mg. The cost to catch the corrupt officials is higher in those countries where
the effectiveness of the justice system is low, and in this case, and also when the intolerance index is
low, we may be in presence of a negative cycle where an inefficient legal system becomes a cause and
a consequence of corruption. We will analyse how exogenous changes in these and other quantities can
change the processes of evolution of corruption and revert the spreading of corruption.

If we consider the probabilities of re-election as depending on the number of corrupt officials and
the payments, then the index is strongly related with the dis-utility that corruption provides to citizens
since the probability qGc

that a corrupt government is re-elected decreases with the share of corrupt
officials nc. If the dis-utility of an increase in corruption for the i − th citizen is very high, i.e., the
numerator in (2.1) is very low then the corrupt government must pay a very high price to buy his vote.
This could have as a result the impossibility of buying the vote of such citizen, decreasing in this way the
probability that the citizen votes for the corrupt government. Analogously for those citizens for whom
the marginal utility of money is lower, the denominator in (2.1) is lower, yielding a higher marginal rate
of substitution. These citizens are also less likely to vote for a corrupt government. The probability of a
non-corrupt government being re-elected should also decrease or do not depend on the number of corrupt
officials. In this case we would have that ∂

∂nc
(qGnc

−qGc
) > 0, i.e., the derivative of the intolerance index

with respect to the percentage of corrupt officials is positive. This means that because of the payments
that a corrupt government makes, citizens have an indirect perception of the government corruption,
resulting in the probability qGc decreasing more rapidly than qGnc ., which is obviously true if qGnc is
constant.

2.1.4 The evolution of corruption

To explain the social evolution of corruption we shall follow an evolutionary approach. This approach is
based on the fact that strategies that make an agent of the game do better than others will be retained,
while strategies that lead to lower payoffs will be abandoned. The success of a strategy is measured by
its relative frequency in the population at any given time. Strategies change over time as a function of
their relative success in an environment that is made up of other players that keep changing their own
strategies adaptively in the same fashion.

Initially, players decide their strategies independently. We assume that players have myopic be-
haviour, because officials and government can not forecast the consequences that changes in the relative
frequency of their strategies can provoke. As such, players analyse the payoffs of his/her strategies in
each moment without trying to look at a further horizon, thus the reason why we say the players act
myopically. So, in each period, the percentage of individuals that follows a given strategy increases
if the expected payoff of such strategy is greater than the average payoff obtained by the population.
Otherwise, if the expected payoff is performing worse than average, that strategy becomes less frequent
in the population. The dynamical system summarizing these facts is the replicator dynamics (see [103]).
In other words, the replicator dynamics considers that the difference between the expected payoff of a
strategy and the average payoff of all strategies is the per-capita change in the frequency of that strategy
in the population.

As before, we denote by ni(t) the percentage of officials following strategy i ∈ {Oc, Onc}. By n(t) =
(nc(t), nnc(t)) we symbolize the distribution of the officials over the set of pure strategies, and by g(t) =
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(gc(t), gnc(t)) the mixed strategy of the government.
The replicator dynamics is given by the following differential equation:

ṅc = nc[E(Oc|g)− Ē] ,

where Ē = ncE(Oc|g) +nncE(Onc|g) is the average payoff of the officials given a distribution of officials
and E(Oc|g) and E(Onc|g) denote, respectively, the expected value of corrupt and non-corrupt behaviour
for an official, given a distribution g over the government behaviour. Since nnc(t) = 1 − nc(t), the
evolution of the percentage of non-corrupt officials is determined by the previous equation, i.e.

ṅnc = −ṅc .

So for the officials, we need only to consider the equation for the percentage of corrupt officials nc. Since
there are only two pure strategies, after some algebra we obtain the equivalent differential equation:

ṅc = nc(1− nc)(E(Oc|g)− E(Onc|g)) . (2.12)

To measure the evolution of the governmental corruption we introduce gc as an index measuring the
percentage of corrupt acts committed in public offices regarding the total of acts performed in these
government agencies5 . We endogenize the probability of a government being corrupt by considering the
index gc as the probability that a government follows a corrupt strategy. In other words, this will be the
mixed strategy of the government over his set of pure strategies. In a similar way, the evolution of the
government policy can be represented by the following differential equation:

ġc = gc(1− gc)(E(Gc|n,Dit)− E(Gnc|n,Dit)) . (2.13)

where E(Gc|n,Dit) and E(Gnc|n,Dit) represent, respectively, the expected value of a corrupt behaviour
and a non-corrupt behaviour by the government, given a distribution n of the officials over their available
strategies and the degree of intolerance to corruption Dit. Similarly, as in the case of the officials we
have

ġnc = −ġc ,

so that for the government we need only consider the equation for the probability of acting corruption
and the probability of acting non-corruptly is determined by the first probability.

Using equalities (2.2), (2.3), (2.4) and (2.5), we obtain that (2.12) and (2.13) may be written.

ṅc = nc(1− nc)
[
(Mc −Mg −Mc +M +M ′g)gc +Mc −M

]
ġc = gc(1− gc)

[
nc
(
Mg −M ′g −M + e

)
+M ′g +RGc −RGnc −KP

] (2.14)

5Most indexes measuring corruption actually measure proxies for corruption because corruption is a difficult phenomenon
to measure. An example of such an empirical index of the perceived governmental corruption is Transparent International’s
(TI) Corruption Perceptions Index (CPI). This index captures information about administrative and political aspects of
corruption. However, its use has not come without criticism (see [18] and [97]). Another example is TI’s Global Corruption
Barometer which asks population directly about the payment of bribes and TI’s Bribe Payers Index which asks the business
sector about willingness to the payment of bribes for the countries operating with the country of their enterprises.
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To simplify the notation we write

A = −Mg +M +M ′g, B = Mc −M

A′ = Mg −M ′g −M + e, B′ = M ′g +RGc
−RGnc

−KP
(2.15)

The dynamical system (2.14) then takes the form:

ṅc = nc(1− nc) (Agc +B)

ġc = gc(1− gc) (A′nc +B′) .

(2.16)

2.1.5 Dynamical equilibria, stability and Nash equilibria

In this section we analyse the equilibria of the dynamical system given by equations (2.16) and analyse
their stability. In a neighbourhood of an equilibrium point we consider the values of the parameters of
the model and the value of the intolerance index as given. In a small neighbourhood of the equilibrium
they can be considered as constant, not affecting the stability analysis, which is a local property, i.e.,
it only concerns a neighbourhood of each equilibrium point. Note that in dynamical system 2.14 the
index of intolerance affects only the differential equation of the government. It is possible to consider
that the ruler elite doesn’t have exact knowledge of this index and considers it as an average value on
that neighbourhood. With this study, we characterize the long-term evolution of corruption.

Government and officials characteristics

To analyse the stability of the equilibria, we will use the following characterizations of corrupt and
non-corrupt governments.

(i) The non-corrupt government practices appropriate fines if M > Mc, (B < 0), and it practices
inadequate fines if M < Mc, (B > 0).

(ii) Let the re-election power threshold be

T1 = M ′g −KP .

The non-corrupt government has high re-election power if RGnc
−RGc

= VGnc
qGnc

−VGc
qGc

> T1,
(B′ < 0), and it has low re-election power if RGnc

− RGc
= VGnc

qGnc
− VGc

qGc
< T1, (B′ > 0).

It may also be interpreted as saying that the corrupt government has low (respectively high)
re-election power.

(iii) Let the non-corrupt government efficiency threshold be

T2 = RGnc
−RGc

+M −Mg +KP .

The non-corrupt government is cost efficient in fighting against corruption if e < T2, (A′+B′ < 0)
and it is cost inefficient in fighting against corruption if e > T2, (A′ +B′ > 0).
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(iv) The corrupt government penalizes honest officials more than dishonest officials if M ′g > Mg −
Mc, (A + B > 0), and penalizes dishonest officials more than honest officials if M ′g < Mg −
Mc, (A + B < 0). It may also be interpreted as saying that the corrupt government takes more
welfare from non-corrupt officials than from corrupt officials.

Remark 2.2. If the degree of intolerance to corruption is high enough then the non-corrupt government
has high re-election power. In other words, when the expected value RGc

of the valuation associated
with a corrupt government being maintained in power increases, then it is less likely that a non-corrupt
government has high re-election power. We see that the re-election power threshold decreases when the
total amount KP paid by the corrupt government to buy votes increases. Thus it is more likely that a
non-corrupt government has high re-election power when the amount of the payment increases and/or the
number of people that are paid increases. We may see this as a positive popularity effect on a non-corrupt
government, yielding a higher re-election power. Similarly, the threshold increases when the value M ′g of
the punishment that a corrupt government puts on honest officials increases. So it gets more likely that
a corrupt government has high re-election power since the welfare of a corrupt government has increased
due to an increase in M ′g.

Remark 2.3. If we interpret Mg as a fraction θ < 1 of Mc, then A+ B is positive. However, it could
happen that this quantity is negative if a corrupt government is charging corrupt officials (Mg) more
than the bribe that the corrupt officials receive (Mc), i.e., θ > 1, meaning that the government takes
the full bribe, plus some amount from the welfare of the official, or equivalently, that officials are paying
government a portion of their salaries to keep their jobs. Another possible interpretation is that the
amount M ′g is negative meaning that an honest official receives money from a dishonest government to
keep his position. This kind of corruption of the ruling elites can be considered like ‘legal’ corruption
associated to self-imposed laws charging severe fines to officials that are corrupt by breaking these laws
and so breaking the (ideological) solidarity with the government. We shall see that this condition may
lead to the equilibrium corresponding to a corrupt government with honest officials being stable.

Dynamical equilibria and Nash equilibria

The dynamical system (2.16) has the following four dynamic equilibria (or steady-states) corresponding
to pure strategies of the game.

1. The corruption (‘bad’) equilibrium (n1
c , g

1
c ) = (1, 1). This equilibrium may be interpreted a country

where the law is not respected and with general high levels of corrupt both at the officials’ and at
government’s level. This equilibrium is a Nash equilibrium if and only if

E(Oc|gc = 1) ≥ E(Onc|gc = 1) and E(Gc|nc = 1) ≥ E(Gnc|nc = 1) .

Equivalently
A+B ≥ 0 and A′ +B′ ≥ 0 .

2. The corrupt officials equilibrium (n2
c , g

2
c ) = (1, 0). The interpretation of this equilibrium is the case

of a de facto government of the officials. It corresponds to the case of a weak de jure government
that is unable to control the corruption of the officials and that it is maintained in power by them
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only to masque corruption. This equilibrium is a Nash equilibrium if and only if

E(Oc|gc = 0) ≥ E(Onc|gc = 0) and E(Gc|nc = 1) ≤ E(Gnc|nc = 1) .

Equivalently
B ≥ 0 and A′ +B′ ≤ 0 .

3. The corrupt government equilibrium (n3
c , g

3
c ) = (0, 1). The interpretation for this equilibrium is

the case of a strong ideological dictatorship that in fact does not allow (illegal) corruption. In other
words, where government corruption (that is, corruption by a usually small political elite) may be
seen as legal form of corruption. However, the government imposes its power by force with high
penalties for officials that deviate from honest behaviour. This equilibrium is a Nash equilibrium
if and only if

E(Oc|gc = 1) ≤ E(Onc|gc = 1) and E(Gc|nc = 0) ≥ E(Gnc|nc = 0) .

Equivalently
A+B ≤ 0 and B′ ≥ 0 .

4. The non-corruption (‘good’) equilibrium (n1
c , g

1
c ) = (0, 0). It corresponds to the case in which

government and officials fulfil their functions properly and general levels of corruption are low.
This equilibrium is a Nash equilibrium if and only if

E(Oc|gc = 0) ≤ E(Onc|gc = 0) and E(Gc|nc = 0) ≤ E(Gnc|nc = 0) .

Equivalently
B ≤ 0 and B′ ≤ 0 .

The corrupt officials equilibrium (n2
c , g

2
c ) = (1, 0) and the corrupt government equilibrium (n3

c , g
3
c ) =

(0, 1) will be designated in some situations as asymmetric pure equilibria, since both players choose
opposite pure strategies.

The dynamical system (2.16) also has another dynamical equilibrium that may correspond to a mixed
Nash equilibrium of the game. If A and A′ are not equal to zero, then the point (nTc , gTc ) is a steady
state, where

n̄Tc = −B
′

A′
=

(RGnc
−RGc

)−M ′g +KP

Mg −M ′g −M + e
and ḡTc = −B

A
= M −Mc

M −Mg +M ′g
.

In our framework, this equilibrium makes sense if 0 < n̄Tc < 1 and 0 < ḡTc < 1 are satisfied. Then the
steady state (n̄Tc , ḡTc ) is also a mixed Nash equilibria for the game. We note that if n̄Tc is equal to 0 or
1, then (n̄Tc , gc) is a steady state for any gc; and if ḡTc is equal to 0 or 1, then (nc, ḡTc ) is a steady state
for any nc.

Stability of dynamical equilibria

In this subsection we see how the stability of the steady-states mentioned above depends on the thresholds
characterizing government and officials.
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The Hartman-Grobman theorem states that the orbit structure of a dynamical system in a neighbour-
hood of a hyperbolic equilibrium point is topologically equivalent to the orbit structure of the linearised
dynamical system. (See [46] for more on the Hartman-Grobman theorem and stability).

Assuming that A and A′ are non-zero, then the point (nTc , gTc ) = (−B′/A′, −B/A) is a steady state
for the dynamical system. The linearisation at this point is given by the matrix:

J

(
−B

′

A′
,−B

A

)
=


0 −A

′B
A2 (B +A)

−AB
′

A′2 (B′ +A′) 0

 .

The eigenvalues of this matrix are:

λ = ±
√
B′B

AA′
(B′ +A′)(B +A) .

Thus, if B
′B

AA′ (B
′ +A′)(B +A) > 0 then this point is a saddle point for the dynamics. In other cases the

Hartman-Grobman theorem does not apply since the matrix above has eigenvalues with zero real part,
meaning that the point is not hyperbolic.

For the four pure equilibria we will see that the characterization of its asymptotic stability by means of
the linearisation is the same as the characterization of it being a strict Nash equilibria, i.e., its strategies
constitute strict best responses against each other, or in other words, the inequalities characterizing pure
Nash equilibria presented in section 2.1.5 are strict.

For the corruption equilibrium (nBc , gBc ) = (1, 1) the linearisation is

J(1, 1) =

 −(A+B) 0

0 −(A′ +B′)

 .

The eigenvalues are λ1 = −(A+B) and λ2 = −(A′+B′). Hence, the corruption equilibrium (nBc , gBc ) =
(1, 1) is stable if the non-corrupt government is cost inefficient in fighting against corruption and the
corrupt government penalizes honest officials more than dishonest officials. This is the same as saying
that to be corrupt is a strict best response against corrupt behaviour, both for the government and the
officials: i) when government is corrupt, officials are also corrupt because of the higher penalties for
corrupt officials; ii) when officials are corrupt, government is also corrupt due to its inefficiency.

For the corrupt officials equilibrium (n2
c , g

2
c ) = (1, 0) the linearisation is

J(1, 0) =

 −B A′

0 A′ +B′

 .

The eigenvalues are λ1 = −B and λ2 = (A′+B′). Hence, the equilibrium (n2
c , g

2
c ) = (1, 0) is stable if the

non-corrupt government is cost efficient in fighting against corruption but practices inadequate fines. In
terms of best responses this means that: i) when government is honest, officials are corrupt because of
inadequate fines; ii) when officials are corrupt government is honest since it is cost efficient and so it is



2.1. Controlling the controller 27

not costly to enhance anti-corruption mechanisms.
For the corrupt government equilibrium (n3

c , g
3
c ) = (0, 1) the linearisation is

J(0, 1) =

 A+B A′

0 −B′

 .

The eigenvalues are λ1 = (A+B) and λ2 = −B′. Hence, the corrupt government equilibrium (n3
c , g

3
c ) =

(0, 1) is stable if the corrupt government penalizes dishonest officials more than honest officials and
the non-corrupt government has low re-election power. In terms of best responses this means that: i)
when government is corrupt officials are honest because of lower penalties; ii) when officals are honest
government is corrupt since acting non-corruptly has low re-election power.

For the non-corruption equilibrium (n4
c , g

4
c ) = (0, 0) the linearisation is

J(0, 0) =

 B 0

0 B′

 .

The eigenvalues are λ1 = B and λ2 = B′. Hence, the non-corruption equilibrium (n4
c , g

4
c ) = (0, 0) is

stable if the non-corrupt government practices appropriate fines and has high re-election power. In terms
of best responses this means that: i) when government is honest officials are honest because of the fines
they have for corrupt behaviour; ii) when officials are honest government is also honest due to the high
re-election power of acting non-corruptly.

As we hinted before we note that a given pure dynamical equilibria of the above is asymptotically
stable if and only if it is a strict Nash equilibrium for the game. Recall that a strict Nash equilibrium is a
Nash equilibrium such that it is strict best response in the sense that every other strategy yields a lower
payoff that the choice in the specified mixed Nash equilibrium. This means that a pure Nash equilibrium
is strict if its component strategies are strict best responses against each other. Furthermore, since a
mixed Nash equilibrium is obtained when the player is indifferent towards two or more pure strategies,
i.e., they yield the same payoff, we have that a mixed Nash equilibrium is never a strict Nash equilibrium.
Furthermore, the mixed equilibrium is never asymptotically stable as we have seen above. So we conclude
that a dynamical equilibrium is asymptotically stable for our dynamics if and only if it is a strict Nash
equilibrium.

We observe that the corruption and non-corruption equilibria can be simultaneously stable, as well as
the other two asymmetric pure equilibria. We observe that when either the non-corruption equilibrium
or the corruption equilibrium are stable, then the two asymmetric equilibria can not be stable, and vice-
versa, if one of the asymmetric equilibria are stable then the non-corruption and corruption equilibria
can not be stable. In other words, a stable pure equilibrium immediately destabilizes the two adjacent
pure equilibria. Hence, we conclude that only three situations are possible: there is no stable pure
equilibrium; there is exactly one stable pure equilibrium; there are exactly two stable pure equilibria.

When only one of the four pure equilibria is stable, then it is globally asymptotically stable, meaning
that all trajectories inside the unit cube tend towards that equilibrium. In this case there is no ‘mixed’
equilibrium, or more correctly, it lies outside the unit square.

When there are exactly two stable pure equilibria, they must not be adjacent in the unit square, so
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they must be opposite vertexes of the square. This situation is when the corruption and non-corruption
equilibria are both stable, or when the two asymmetric equilibria are stable. When the corruption and
non-corruption equilibria are both stable we have that −(A+B) < 0, −(A′+B′) < 0, B < 0 and B′ < 0.
It is easy to see that these inequalities imply that 0 < n̄Tc < 1 and 0 < ḡTc < 1. Similarly, when the two
asymmetric equilibria are stable then the mixed equilibrium lies inside the unit cube. So when here are
exactly two stable pure equilibria, the mixed equilibrium lies inside the unit cube.

Hence the existence of two stable pure equilibria forces the existence of the mixed Nash equilibrium.
In this case it is possible to show that dynamically the mixed Nash equilibrium must be a saddle whose
stable manifold is the separatrix between the basins of attraction of the two stable pure equilibria. The
picture in this case is like figure 2.1 in the case where the two stable pure equilibria are the corruption
and non-corruption equilibria. For the case where the two stable pure equilibria are the two asymmetric
equilibria the figure is like figure 2.1 but with the arrows reverse and this time the stable manifold of the
mixed equilibrium connects the two asymmetric equilibria. We will see this with detail in the following
section in some examples. The other situation where a mixed equilibrium exists is when none of the
four pure equilibria are stable. In this case it is expected that, because there is no stable pure equilibria,
some oscillatory behaviour might occur. We will see in what follows that this is indeed the case, with
the appearance of periodic orbits.

Non-corrupt government with high re-election power and appropriate fines

In this subsection, we assume that B < 0 and B′ < 0. Hence the non-corrupt government has high
re-election power and uses appropriate fines. In this case the ‘good’ equilibrium (n4

c , g
4
c ) = (0, 0) is

always asymptotically stable.

(1) When A > −B and A′ > −B′ then A + B > 0 and A′ + B′ > 0. From these conditions
the following inequalities are verified: A > 0, A′ > 0, 0 < −BA < 1, and 0 < −B

′

A′ < 1,
implying the existence of a mixed equilibrium in the interior of the unit square. In this case we
also have that B′B

AA′ (B
′ + A′)(B + A) > 0, so the Hartman-Grobman theorem can be applied to

the mixed equilibrium, yielding a saddle point. In this case the ‘bad’ equilibrium and the ‘good’
equilibrium without corruption are asymptotically stable. See figure (2.1) for the general picture
of the dynamics in this case.

Note that this case corresponds to a social situation where:

1. The amount M of the fine imposed by a non-corrupt government to a corrupt official is
relatively high, meaning that it is greater than the bribe Mc the official takes from citizens,
i.e., M > Mc.

2. The inequalityM ′g > Mg−Mc is verified. Recall thatM ′g is the amount that an honest official
must pay to a dishonest government to keep his place. This means that a corrupt government
punishes honest behaviour more than dishonest behaviour.

3. The government is inefficient to catch corrupts officials, or equivalently, e is relatively high
(relatively high costs to combat corruption).

4. The non-corrupt government has high re-election power. This may be written as VGc
Dit >

M ′g −KP − (VGnc
−VGc

)qGnc
. This occurs if the index of intolerance is high enough, and the

corrupt government has a high valuation for being re-elected.
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Figure 2.1: The dynamics of the system, with the basin of attraction of the two stable pure equilibria
and the mixed Nash equilibrium in case (1).

This is a good example of ongoing spontaneous coordination because the non-corrupt equilibrium is
stable. However, if the initial distributions of officials and government’s actions correspond to a point in
the basin of attraction of the ‘bad’ equilibrium, then officials and government have incentives to act in a
corrupt way. Thus, the general levels of corruption will increase, and corruption becomes a self-enforcing
mechanism over time. In this case, as in the previously described case of corruption as a self-reinforcing
mechanism, we can regarded it as a social trap.

However, the basin of attraction of the ‘bad’ equilibrium (n1
c , g

1
c ) = (1, 1) decreases when the interior

equilibria gets closer to the ‘bad’ equilibrium (n1
c , g

1
c ), i.e., when A + B and A′ + B′ tend to zero.

Hence, the basin of attraction of the ‘good’ equilibrium (n4
c , g

4
c ) = (0, 0) is larger when the non-corrupt

government’s costs in fighting corruption are close to the non-corrupt government efficiency threshold,
i.e. e is closer to T2, and the corrupt government penalizes honest officials similarly to dishonest officials,
i.e. M ′g is closer to Mg −Mc.

The cost efficiency e can get closer to the threshold T2 because of different reasons: (a) non-corrupt
government is able to decrease the value of costs to capture corrupt officials, which can occur for instance
if the justice system becomes more reliable; (b) the efficiency threshold T2 rises due for instance to an
increase in the index of intolerance, an increase in the valuation of re-election by a corrupt government,
an increase in the probability of a non-corrupt government being re-elected, to an increase of the fine
imposed by a non-corrupt government to a dishonest official, or an increase in the vote buying by part
of the corrupt government.

Hence, the levels of corruption that were increasing can change if the degree of intolerance of citizens
increases. If the government believes that this change in intolerance can take place then (depending
also on the value that the government assigns to be re-elected), it may result in a change in the basin
of attractions of the ‘good’ and ‘bad’ equilibria, making some paths that would initially evolve towards
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the ‘bad’ equilibrium now evolve towards the ‘good’ equilibrium. This possibility is summarized in the
following fact:

Remark 2.4. The basin of attraction of the ‘bad’ equilibrium (nBc , gBc ) = (1, 1) decreases when the degree
of intolerance increases and/or the cost to capture the corrupt officials decreases.

Thus, the index of intolerance of citizens with respect to corruption, if high enough, and if the government
is interested in being re-elected can play an important role at the time to control the controller acting
as a servomechanism correcting the evolution of corruption. It acts as a barrier stopping corruption,
since, under several circumstances, it can reverse a process of growing corruption. The higher it is, the
more difficult it gets that corruptions grows and develops within the government. In figure (2.2) we plot
some trajectories of the system that exemplify the previous remark. For the same initial conditions with
different model parameters, corresponding to an increase in the degree of intolerance, we see that initial
conditions originally in the basin of attraction of the ‘bad’ equilibrium are instead converging to the
‘good’ equilibrium. This illustrates the shrinking of the basin of attraction of the corruption equilibrium
as the degree of intolerance grows.

Figure 2.2: Some trajectories of the system for the same initial conditions with different parameters.
Left-hand side: lower degree of intolerance. Right-hand side: higher degree of intolerance.

(2) Assuming that A > −B and A′ < −B′ it follows that (A+B) > 0, (A′ +B′) < 0 then there is no
mixed Nash equilibrium because either−B

′

A′ > 1 or−B
′

A′ < 0. The ‘bad’ equilibrium (n1
c , g

1
c ) = (1, 1)

is a saddle point, as well as the equilibrium (n2
c , g

2
c ) = (1, 0), and the equilibrium (n3

c , g
3
c ) = (0, 1) is

a repulsor. In this case there is a unique asymptotically stable dynamic equilibrium and this is the
Nash equilibrium without corruption, i.e., (n4

c , g
4
c ) = (0, 0), with all the interior initial conditions

being attracted to this point. See figure (2.3). This conditions correspond to a well ruled society.

(3) Assuming that A < −B and A′ < −B′ it follows that (A+ B) < 0, (A′ + B′) < 0 then the ‘bad’
equilibrium is a repulsor, there is no mixed equilibrium, and there is a unique equilibrium that
is asymptotically stable, that is the ‘good’ equilibrium (n4

c , g
4
c ) = (0, 0), with all interior initial

conditions being attracted to this point. The equilibria (n2
c , g

2
c ) = (1, 0) and (n3

c , g
3
c ) = (0, 1) are

saddle points.

(4) Assuming that A < −B and A′ > −B′ it follows that (A + B) < 0, (A′ + B′) > 0. Then, there
is no mixed equilibrium and the ‘bad’ equilibrium (n1

c , g
1
c ) = (1, 1) is a saddle point as well as
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the equilibrium (n3
c , g

3
c ) = (0, 1), and the equilibrium (n2

c , g
2
c ) = (1, 0) is a repulsor. The only

asymptotically stable equilibrium is the ‘good’ equilibrium (n4
c ; g4

c ) = (0, 0), with all interior initial
conditions being attracted to this point. This corresponds to the case of a well ruled society.

Figure 2.3: Some trajectories of the system for case (2): a well ruled society.

In cases (2), (3) and (4) the outcome of the dynamics is similar since there is no mixed equilibrium
and the ‘good’ equilibrium is globally asymptotically stable. However, in cases (3) and (4) the quantity
A+B = M ′g + (Mc−Mg) is negative, that is M ′g < Mg −Mc, i.e., the penalties are higher for dishonest
officials (see remark (2.3)).

In case (2) the assumptions are describing a socio-political situation corresponding to: (a) a corrupt
government that penalizes honest officials more than dishonest officials; (b) an index of intolerance
relatively high; and/or (c) a governmental elite with a high interest in being re-elected; and/or (d) the
non-corrupt government is highly efficient in fighting corruption, i.e., low values of e. In this case the
punishments are higher for honest officials than for corrupt officials, but then government efficiency
plays an important role since government’s costs are low so that it is better for the government to fight
corruption at the officials’ level rather than complying with them.

In case (3) we have that in addition to appropriate fines and high re-election power for the non-
corrupt government the non-corrupt government has cost efficiency and higher punishments for corrupt
officials than for honest officials. We may refer to this case as the ideal parameters case. As one should
expect, the ‘good’ equilibrium is globally asymptotically stable.

In case (4) we have that the non-corrupt government is cost inefficient in fighting corruption, but
since the punishments by a corrupt government for corrupt officials are high when compared to honest
officials, so there will be less corrupt officials and the government inefficiency plays a lesser role, so that
the ‘good’ equilibrium is still globally stable.
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Non-corrupt government with low re-election power and inappropriate fines

In this subsection, we assume that B > 0 and B′ > 0. Hence the non-corrupt government has low
re-election power and uses inappropriate fines. We have the following four cases.

(5) Assuming that A < −B,A′ < B′ then the inequalities (A + B) < 0, (A′ + B′) < 0 hold. In
this situation both the ‘good’ non-corruption equilibrium (n4

c , g
4
c ) = (0, 0) and the ‘bad’ corrupt

equilibrium (n1
c , g

1
c ) = (1, 1) are repulsors and the mixed Nash equilibrium is a saddle point. The

equilibria (n2
c , g

2
c ) = (1, 0) and (n3

c , g
3
c ) = (0, 1), i.e., the equilibria where government prefers to be

honest but officials prefer to be corrupt, and reciprocally, where government prefers to be corrupt
but officials prefer to be honest, are local attractors. Which one of these two situations occurs is
initial condition dependent. In figure (2.4) we plot some transition paths of the system. Depending
on the initial condition, the transition path approaches either (n2

c , g
2
c ) = (1, 0) or (n3

c , g
3
c ) = (0, 1).

The exception is one initial condition that approaches the mixed equilibrium, since that initial
condition lies on the stable manifold of the mixed equilibrium. We observe that the stable manifold
of the mixed equilibrium is a curve passing through the mixed equilibrium that connects the ‘bad’
and the ‘good’ equilibrium.

Figure 2.4: Some trajectories of the system for case (5).

(6) Assuming that A > −B,A′ < −B′ then A + B > 0 and A′ + B′ < 0. There is no mixed Nash
equilibrium and the equilibrium (n2

c , g
2
c ) = (1, 0) is the only equilibrium point that is asymptotically

stable, and all initial conditions in the interior of the unit square are attracted to this equilibrium.
We plot some trajectories of the system for this case in figure (2.5).

(7) Assuming that A < −B, A′ > −B′ then A + B < 0 and A′ + B′ > 0. There is no mixed Nash
equilibrium and the equilibrium (n3

c , g
3
c ) = (0, 1) is the only equilibrium point that is asymptotically

stable, and all initial conditions in the interior of the unit square are attracted to this equilibrium.
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(8) Assuming that A > −B, A′ > −B′ then A + B > 0 and A′ + B′ > 0. In this case the ‘good’
equilibrium (n4

c , g
4
c ) = (0, 0) is a repulsor and the corner equilibria (n3

c , g
3
c ) = (0, 1) and (n2

c , g
2
c ) =

(1, 0) are saddle points. The only equilibrium point that is asymptotically stable is the ‘bad’
equilibrium (n1

c , g
1
c ) = (1, 1), with all interior initial conditions being attracted to this point. We

plot some trajectories of the system in figure (2.6).

In case (6) society is evolving to an equilibrium where officials prefer to be corrupt, even with an
honest government. As we argued above this can be seen as a de facto government of the officials. Our
assumptions imply that governmental fines to punish corrupt behaviour are relatively low, and that
the government has low re-election power, because citizens perceive this government as a corrupt one.
However, the government is unable to diminish officials’ corruption because of the government: (a) being
focused on re-election; (b) being inefficient; or (c) practising low fines on corrupt officials.

In order to have long term evolution to the equilibrium where officials are corrupt but government
is honest, i.e., to have asymptotic stability of the corrupt officials equilibrium (n2

c , g
2
c ) = (1, 0) (cases (5)

and (6)), it is necessary that B > 0 and A′ + B′ < 0, i.e., that the non-corrupt government practices
inappropriate fines, so that officials will want to be corrupt since their fines are not very high, and that
the non-corrupt government is cost efficient in fighting corruption, and so prefers to be honest. In this
situation the fines that a non-corrupt government practices are low, so a large number of officials will
choose to be corrupt. The government makes little effort to fight corruption at the officials level since
they have a low cost e or equivalently, they are efficient in fighting corruption. So they prefer to do it
and act non-corruptly and fight corruption. If they are not efficient, i.e., the cost e is high, then the
government would get higher utility by acting corruptly and henceforth destabilize the equilibrium.

Cases (5) and (7) may occur only when A + B < 0 (as in cases (3) and (4)). This means that in
order to have long term evolution to an equilibrium where government is corrupt but officials prefer to
be honest it is necessary that a corrupt government penalizes corrupt officials more than honest officials.
See remark (2.3).

Figure 2.5: Some trajectories of the system for case (6): de facto government of the officials.
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Figure 2.6: Some trajectories of the system for case (8): badly ruled society.

In case (8) we have an unruled society where the corruption equilibrium is stable thus ensuing a
social trap. The society is evolving towards full corruption both on the governmental level and on the
officials’ level, due to low fines to punish corrupt officials, higher penalties for honest officials than for
corrupt officials, high costs to capture corrupt officials and because of low re-election power, for instance
because of a culture of impunity due to low intolerance index. This extreme situation may occur in a
dictatorship. However, and most importantly it may occur in democratic societies where, for instance,
citizens’ perception of corruption is not clear, and where corruption is deeply and culturally rooted in
society, making it very difficult to eradicate. The term endemic or systemic corruption has been used to
designate this kind of corruption phenomena. In this case, corruption becomes a cause of several social
and economic ills, such as increasing levels of inequality, poverty and lack of social mobility.

Corruption cycles

Recent works show that alternation in power can delay or stop processes of increasing corruption. How-
ever, this alternation can give place to a cyclical process of corruption, in which periods of increasing
corruption alternate with periods in which it decreases. As previously mentioned, this represents a situ-
ation of endemic corruption, in this case where periods with high levels of corruption repeatedly occur.
These periods are limited by the change of the ruler elite. Such is the case of Mexico in the period in
which the alternation in power took place between the PRI (Partido Revolucionario Institucional) and
the opposition party, PAN (Partido Acción Nacional). While we are witnessing a first period in which
corruption descends, then this process accelerates, growing until the moment when the PAN is replaced
in power by its competitor, the PRI. From the new triumph of the PRI we witness a new process of
restraint and subsequent expansion of the corruption process. See [93] for a good empirical study of
cycles in Mexican politics and its relation to the phenomena of corruption. In [13] the authors propose
a game between politicians and contractors with the assumptions of material compensations to voters,
and obtain corruption cycles in a discrete setting by analysing the repeated game. As we shall show the
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possibility of such cyclical process appear as a particular case of our model.
Periodic orbits appear when the radicand in the expression for the eigenvalues of the mixed Nash

equilibrium is negative, i.e. B′B
AA′ (B

′+A′)(B+A) < 0. Note that in this case Hartman-Grobman’s theorem
is not applicable, because the eigenvalues of the mixed equilibrium are purely imaginary numbers, i.e.,
have zero real part. We will now analyse and interpret the circumstances where this value happens to
be negative.

The reasoning behind the existence of cycles of corruption is basically a restatement of the fact that
in these two situations there is no pure strategy Nash equilibrium.

Let us consider the case where B < 0, B′ > 0 and A > −B, A′ < −B′. These inequalities imply
that the corruption equilibrium (n1

c , g
1
c ) = (1, 1) and the non-corruption equilibrium (n4

c , g
4
c ) = (0, 0)

are saddle points. The asymmetric equilibria (n2
c , g

2
c ) = (1, 0) and (n3

c , g
3
c ) = (0, 1) are also saddle

points. These inequalities imply the existence of a mixed Nash equilibrium in the interior of the unit
square, and by the previous formula, the eigenvalues of its linearisation are purely imaginary numbers,
so that Hartman-Grobman theorem does not apply. In this case the dynamics are given by periodic
orbit oscillating around the mixed interior Nash equilibrium, which is the focus of such periodic orbits.
This situation corresponds to cycles of growth and decline of corruption. Recall that in this case the
assumptions imply that there are low costs to capture corrupt officials, resulting in high efficiency, and
there are high fines to punish corrupt officials, but the intolerance index is low. This interplay between
these quantities results in the appearance of periodic orbits, as shown in figure (2.7). The periodic
orbits in the figure rotate clockwise. The rationale behind this situation is the following. When general
levels of corruption are low, because of low intolerance to corruption, a non-corrupt government has
low re-election power, which causes an increase in government corruption, which in turn causes more
officials to prefer to be corrupt since a corrupt government punishes honest officials more than corrupt
officials. So the general levels of corruption have risen. As such, facing an increasingly number of corrupt
officials, government becomes less corrupt, taking advantage of low costs to capture corrupt officials, and
subsequently, because of the high fines the non-corrupt government practices, officials have a disincentive
to be corruption, thus increasing the number of honest officials. Hence, the overall levels of corruption
in society have declined to the original levels and the cycle restarts again.

A similar situation occurs if B > 0, B′ < 0 and A < −B, A′ > −B′. This situation corresponds to
high re-election power, but the costs of the non-corrupt government in fighting corruption are high and
fines practised are low. This again results in the appearance of periodic orbits, as shown in figure (2.7),
but this time the periodic orbits in the figure rotate counter-clockwise. The rationale in this situation
is the following. When corruption is generally high at both government and officials level, officials have
an incentive to be honest, since the corrupt government penalizes corrupt behaviour more than honest
behaviour since A+B < 0. But when more officials are honest, because of high re-election power by the
non-corrupt government (or low re-election power by the corrupt government), governmental corruption
decreases. On the other hand, while the general levels of corruption are low, since the fines practised
are low, officials have an incentive to be corrupt, and the non-corrupt government, facing an increasing
number of corrupt officials, and since it has low efficiency in prosecuting them subsequently becomes
more corrupt. So, the general levels of corruption are high again and the cycle restarts.

Periodic orbits may appear naturally if the intolerance index is a function of the percentage of corrupt
agents. In this situation the index increases when the number of corrupt officials grows, and decreases
as does the percentage of corrupt officials. The corrupt political elite feels the pressure of a high index
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Figure 2.7: Some trajectories of the system (2.16) showing periodic orbits.

of intolerance, possibly reducing its expected value in this case of re-election, because the probability
of being re-elected is reduced. As a result, the government corruption is reduced, and government will
seek to punish corrupt officials more severely. But by reducing the amount of corrupt officials, the index
of intolerance decreases, and therefore the pressure on the government declines, again permitting an
increase in governmental corruption and allowing for an increase in the number of corrupt officials, thus
restarting the cycle of corruption.

Game outcomes

Depending on the characteristics of the society, the dynamical equilibria may be or not Nash equilibria
of the game.

Analysing the best responses of the players of the game, or using formulas (2.2),(2.3),(2.4),(2.5)
instead, we have that each one of the four dynamical equilibria corresponding to pure strategies of the
game is stable if and only if it is a (strict) Nash equilibrium. The other dynamical equilibrium, when it
is interior, is always a Nash equilibrium of the game, but since it is mixed, it is never strict, so it can be
a saddle or stable but is not asymptotically stable.

Hence, regarding the Nash/dynamical equilibria of the game, we have the following possibilities:

1. There is only one pure Nash equilibrium that is also asymptotically stable for the dynamics. This
situation corresponds to cases (2),(3),(4),(6),(7) and (8).

2. There are two pure Nash equilibria that are both asymptotically stable for the dynamics. There
are two possibilities for this case: either the two Nash equilibria are the non-corruption and the
corruption equilibrium, or the government corruption equilibrium and the officials’ corruption
equilibrium. In this situation there is also a third mixed Nash equilibrium which is a saddle point
of the dynamics whose stable manifold separates between the two pure Nash equilibria. This occurs
in cases (1) and (5).

3. There is no pure Nash equilibrium. In this case the only Nash equilibrium is the mixed strategy
that dynamically corresponds to a focus point for periodic orbits. This is the case of corruption
cycles.
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2.1.6 Some particular cases

For each time t we say that the pair (nc(t), gc(t)) defines the state of corruption of the society in time
t. Thus, given the dynamical system (2.16) and an initial condition in time t = t0 (i.e., an initial
state of corruption), (nc(t0), gc(t0)) = (nc0 , gc0), we say that ξ(·, (nc0 , gc0)) → <2 is a solution of the
dynamical system with such initial condition if and only if ξ(t, (nc0 , gc0)) verifies the system (2.16), and
ξ(t0, (nc0 , gc0)) = (nc0 , gc0). Classic theorems in the theory of differential equations show that once an
initial condition is fixed, there is a unique solution for the differential equation and that the function
ξ(t, ·) : <2 → <2 is smooth, i.e., the solution of the dynamical system (2.16) is smooth with respect to
initial conditions (see, for instance [46]).

Definition 2.3. (The trajectory of corruption) Given the dynamical system (2.16) and an initial
condition in time t = t0, we define the trajectory of the corruption, as the set Γ ⊂ <2 given by:

Γ = {(nc(t), gc(t)) = ξ(t, (nc(t0), gc(t0))), ∀ t ≥ t0} .

Note that each trajectory defines a set of possible future states of corruption, i.e., for each initial
condition, there is only one set of possible future states (since we do not consider shocks and stochastic
effects in this work). So, the corruption in a given society, once the initial condition is fixed, evolves
along a trajectory.

Definition 2.4. (The transition path) Given the dynamical system (2.16) and an initial condition
the set of possible states for all t > t0 will be called the transition path.

This transition path is given by the set of possible states (nc(t), gc(t)) that represents the evolution
of the corruption, from a fixed initial time t = t0 until the system rests in a dynamical equilibrium. To
obtain the possible transition path explicitly as a function is equivalent to obtain the analytical solutions
of the dynamical system (2.13).

In general, for a dynamical system, it is not possible to obtain a complete analytical solution, how-
ever, like we did in the previous sections in some cases it is possible to analyse the behaviour of the
solution close to each dynamical equilibrium. Certainly, to use this approach we need to assume that
the parameters are given, or that they can be considered in a neighbourhood of each one of this points
as constant.

However, in some particular cases it is possible to obtain analytical solutions. We will now consider
some of these cases.

We consider here the case where A = 0 or A′ = 0. Note that A = 0 is equivalent toMg = M+M ′g and
A′ = 0 is equivalent to Mg + e = M +M ′g. To simplify the notation consider the case VGc

= VGnc
= VG.

In these cases, since the system (2.16) turns out to be uncoupled and its solution is relatively simple,
and once the initial conditions nc(0) and gc(0) in t = 0 are fixed we obtain the classical logistic solution.

nc(t) = nc(0)eBt

(1− nc(0)) + nc(0)eBt , and gc(t) = gc(0)e(M ′g−KP )t+
∫ t

0
DitVGdt

(1− gc(0)) + gc(0)e(M ′g−KP )t−
∫ t

0
DitVGdt

.

The evolution depends on the signs of B and (M ′g −KP )t+
∫ t

0 DitVGdt.

Recall that B = Mc−M and B′(t) = M ′g−KP −VgDit(nc(t)). Then, B < 0 if and only the valueM
of the fine is high enough, i.e., if and only if M > Mc. Moreover, B′(t) < 0 if and only if the intolerance
index Dit(nc(t)) is for all time t > 0 high enough i.e,; DitVg(nc(t)) > M ′g −KP .
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More in detail, the following cases are possible and particularly interesting:

• If B < 0 and for all time B′(t) = M ′g −KP − VgDit(nc(t)) < 0 i.e, if Dit(nc(t)) > 1
VG

(M ′g −KP )
for all the t > 0. The ‘good’ equilibrium (n4

c , g
4
c ) = (0, 0) is globally asymptotically stable, and

independently of the initial condition inside the unit square, society is evolving to a situation where
officials and government prefer to follow an honest behaviour, i.e., gc(t) → 0 and nc(t) → 0,, so
ξ(t, nc0 , gc0)→ (0, 0), when t→ +∞.

• If B > 0 and is for al time B′(t) = M ′g −KP −VgDit(nc(t)) > 0 i.e, if Dit(nc(t)) < 1
VG

(M ′g −KP )
for all the t > 0. the ‘bad’ equilibrium (n1

c , g
1
c ) = (1, 1) is globally asymptotically stable, and

independently of the initial condition inside the unit square, society is evolving to a situation
where officials and government prefer to follow a corrupt behaviour, i.e, gc(t)→ 1, and nc(t)→ 1,
so ξ(t, nc0 , gc0)→ (1, 1), when t→ +∞.

• If B > 0 and for all time t B′(t) < 0 then the equilibrium (n2
c , g

2
c ) = (1, 0) is globally asymptotically

stable, i.e., gc(t)→ 0, and nc(t)→ 1, so ξ(t, nc0 , gc0)→ (1, 0), when t→∞.

• If B < 0 and for all t B′(t) > 0 then the equilibrium (n3
c , g

3
c ) = (0, 1) is asymptotically stable, i.e.,

gc(t)→ 1, and nc(t)→ 0, so ξ(t, nc0 , gc0)→ (0, 1), when t→∞.

Note that the index of intolerance and the value that the current government assign to the re-election
play a central role in the possible evolution of corruption. The greater his interest in re-election, the
more he will tend to control corruption, at least that which directly affects voters. In all the above cases,
the basin of attraction of the asymptotically stable equilibria is the whole interior of the unit square.

In the degenerate cases when B = 0 or B′ = 0, we have that, respectively, nc(t) or gc(t) is constant.

2.1.7 The role of the index of intolerance revisited

In some cases, corruption can be considered as a social trap [87]. Under several circumstances, the
‘bad’ equilibrium is asymptotically stable. In this case, if the initial distribution of corrupt officials
and government’s corrupt acts are in the basin of attraction of this equilibrium, neither official nor
the government have incentives to act in a non-corrupt way. It is in this sense that we consider the
corruption as a self- reinforcing mechanism and may say that a social trap is in place. In other words,
an equilibrium that is Pareto dominated, is a Nash equilibrium and is dynamically stable. Corrupt
actions by a party encourage corrupt actions by the other. If everybody is corrupt, nobody wants to
be honest. To be corrupt is the rational way, because under these initial conditions, the expected value
of this behaviour is higher than the expected value of the non-corrupt behaviour. Under this prospect,
corruption looks like a sticky problem that can not be changed internally by agents. This grim prospect
is analysed in several works such as in the cited work about social traps or in situations where practices
such as gratitude payments (that can be regarded as a kind of ’black’ market rent) are deeply rooted
(see [54] for a very interesting study on the case of medical doctors gratitude payments in Hungary).
In cases where corruption has advanced in different areas of society, neither alternation in power may
be a guarantee against corruption, since a corrupt ruler elite can buy the vote of hopeless citizens and
alternation in power might not really signify any deep change in the economic/societal structure where
corruption develops. However, the degree of intolerance of citizens to corruption plays an important
role to deter corruption. In these cases, when the annoyance of citizens over corruption is high enough,
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the process can be reversed as we have seen above. This is precisely what the Index of Intolerance
measures. The recent events in Brazil show the evolution of society towards a low equilibrium, in which
corruption seems to reach the different political elites, as well as officials, and where the high degree of
nonconformity of citizens restrains a given party elite who appears as an accomplice of corrupt acts and
ends up imposing another political group in government. The high degree of corruption of the different
political sectors calls into question the possible curbing of the evolution of corruption. However, the
high degree of intolerance of corruption demonstrated by citizens patent in massive demonstration that
took place in Brasil in the last few years may force the political sectors now in the government to take
precaution, if they intend to remain in power or even in some cases avoid imprisonment or prosecution for
corruption offences, after some possible (or even probable) subsequent changes in the forces in power (see
Brazil Corruption Report - Business Anti-Corruption Portal in [16] and [104]). See also the discussion
about Mexican politics in [93] and in the preceding section on corruption cycles. There are examples of
success in deterrence of corruption, for instance the cases of Singapore and Honk Kong (see [84]). These
examples show that only when the rate of intolerance to corruption is high these processes of increasing
corruption can be stopped.

Now consider that the intolerance index is an increasing and convex function of the number of corrupt
officials and assume that VGnc

= VGc
= VG. Then there exist ncmax such that for all nc(t) > ncmax the

inequality
VGDit(nc(t)) >

[
nc(t)

(
Mg −M ′g −M + e

)
+M ′g −KP

]
,

or equivalently
Dit(nc(t)) >

1
VG

[
nc(t)

(
Mg −M ′g −M + e

)
+M ′g −KP

]
holds, then taking in to account equation (2.10) it follows that E(Gnc) > E(Gc). Note that this ncmax
will be the maximum percentage of corrupt officials that a government interested in being re-elected can
tolerate, and corresponds to the point where the convex function y = Dit(nc) intercepts the straight
line y = 1

VG
(Mg −M ′g −M + e)nc + 1

VG
(M ′g −KP ). So, a rational elite ruler must be receptive to the

unhappiness of citizens if she has some interest in being re-elected.
Note that under the hypothesis of our model, it is natural to assume that the Intolerance Index

grows with the amount of corrupt officials, because citizens perceive the corruption through the actions
of the officials. When the amount of corrupts officials increases, the perception of corruption increases,
increasing the intolerance of the population. However in future works it will be necessary to complete
this index, considering other sources of information for citizens, for instance the press, rumours and
investigations about vote buying, about government corruption and other aspects.
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2.2 Democracy and citizenship in the evolution of corruption

In the second part of the chapter we consider that citizens are full players of the game. They have
two behaviours or strategies, to be complacent with corruption, which we will call corrupt, or not be
complacent, which we will call non-corrupt. We will analyse the evolution of corruption by means of the
replicator dynamics.

This second part is structured in the following way: in section 2.2.1 we introduce the model as a
normal-form game between three players or populations: the government, the officials and the citizens.
Successively, in the next sections we shall describe the main characteristics of these different players of
the game. In section 2.2.2 we discuss the characteristics of citizens, its strategies or behaviours and the
associated payoffs. The description of the participation of the government is introduced in 2.2.3 and in
section 2.2.4 we describe the action of the officials. In section 2.2.5 we introduce a dynamical system,
consisting of the replicator equation describing the evolution of the corruption on society. In section 2.2.6
we discuss the socio-political characterizations of the players of the game according to the parameters
of our model. The dynamical equilibria of the dynamical system are described in section 2.2.7. We
study the stability of the pure equilibria and the stability and existence of the other mixed equilibria. In
section 2.2.8 we analyse the dynamics on the edges of the cube, how they are enough to characterize the
asymptotic stability of the vertexes and their relation to the socio-political characterization of the game.
In section 2.2.9 we analyse when the pure strategy profiles are dynamical attractors and in section 2.2.10
we provide some graphical examples.

2.2.1 The model

We consider a three-population, two-strategy normal-form game where the populations are: the citizens,
the government i.e., the political elite (elected directly by universal suffrage of citizens), and the officials
named directly by the current government to carry out the administrative tasks of the state. The
government may be regarded as a first level ruler elite. The officials may be regarded as a second level
elite. For simplicity we assume that the group of officials is small while compared to the citizens group.
In other words, since the group of officials is small, it has a negligible influence in elections since they
are heavily outnumbered by citizens. At the end of each electoral period, citizens re-elect the current
government or not. The officials must choose between to accomplish their task in an honest way or to
require citizens an illegal payment for the purpose of performing some task. It may be for the fulfillment
of some service or the payment of some bribe after some infraction by a citizen. It is up to the ruler
elite or government to choose between punishing or being an accomplice of corrupt officials. In the first
case we say that the government acts in an honest or non-corrupt way and in the second one we say
that the government is acting in a corrupt way. We say that a citizen acts in a corrupt way (or briefly
we will say that it is corrupt) if he is willing to sell his vote to a corrupt government, which can also
be interpreted latu sensu as being complacent with corruption, in other case we will say that he is an
honest or non-corrupt citizen.

Summarizing, we have a game with three populations: citizens, government, and officials, where
each one must choose between two pure strategies. This game is symbolized by the formal expression:
Γ = {P, S, U}, where

• P = {O,G,C} represents the players or populations of the game. By C we denote the citizens, by
O the officials and by G the government.
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• S = SO×SG×SC is the strategy space where SO = {Oc, Onc}, SG = {Gc, Gnc} and SC = {Cc, Cnc}
represents the set of pure strategies for each player, namely, to be corrupt or not-corrupt.

• U represents utility, or payoff obtained by each player depending on his/her own strategy and on
the strategies followed by the other players. We will describe the payoffs in the next subsections.

Furthermore, as usual, a mixed strategy for each player, in our case for each population, is a prob-
ability distribution over his/her set of pure strategies. As previously, we will denote by n = (nc, nnc)
a distribution of the officials over the two strategies described above, by g = (gc, gnc) represents the
percentage of corrupt and non-corrupt acts of the government and by c = (cc, cnc) we represent a distri-
bution of probabilities over the set of pure strategies of the citizens. In this case cc corresponds to the
percentage of citizens in the first group, or equivalently the probability that the average citizen follows
a compliant behaviour and cnc the percentage of citizens in the second group, i.e., the probability that
the average citizen follows a non- compliant behaviour.

In the next three section we shall describe the payoffs of the game Γ.

2.2.2 The citizens

We assume that there are two types of citizens. Those of the first group are willing to give their vote
to a corrupt government in exchange for receiving a monetary compensation. The citizens of the second
group are not willing to sell their vote to a corrupt government. This may also be interpreted as saying
that one group has some compliance with corruption while the other has not.

It may of course be argued that under rationality no citizen would like to be compliant with a corrupt
government. However, for some reasons, he/she might be compelled to have some degree of compliance
towards a corrupt government. Indeed, we may re-interpret social inaction by citizens as a a kind of
silent compliance.

The number of citizens in one group or another may change according to the amount that a corrupt
government is willing to pay for the vote. To simplify, we assume that this amount is fixed and equal
to P . We also assume that citizens who are not willing to accept government corruption by selling
their vote will receive benefits only when the government is an honest government with which they feel
represented. These citizens have preferences for an honest government, to which they assign a value of
satisfaction α > 0. They also assign a level of dissatisfaction β > 0 to a corrupt government. In addition,
we assume that when a citizen meets a corrupt official, the citizen has to make a payment, that we
assume normalized as equal to −1. This payment is caused by the necessity of bribing the official in
order to make him fulfill or accelerate the fulfillment of a given service. Furthermore, we also assume
that when the citizen is honest and has to make such a payment to a corrupt official we consider that
he has a level of dissatisfaction measured by γ > 0.

We consider that citizens can choose between two possible strategies by choosing to which one of
the previously described groups they belong: the one of complicity with a corrupt government, or the
rejection of this type of government. Hence, the citizens in the first group may be seen as having
a compliant behaviour with corruption, while the citizens in the second group do not. The profits
corresponding to each type of citizen are represented in the following table.

Regarding the parameters that feature in the payoff table we have the following:

• α > 0 is the utility or satisfaction that a honest citizen assigns to a non-corrupt government.
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Gc, Oc Gc, Onc Gnc, Oc Gnc, Onc

Cc P − 1 P −1 0

Cnc −β − 1− γ −β α− 1− γ α

Table 2.2: The payoff table of the citizens in the three-population game.

• β > 0 is the disutility or dissatisfaction that a honest citizen assigns to a corrupt government.

• +1 corresponds to the normalized payment that a citizen must make when he encounters a corrupt
official.

• P > 0 is the payment that a corrupt government makes to buy the vote of a citizens. It may
be interpreted latu sensu as a welfare gain of a corrupt or compliant citizen with governmental
corruption.

• γ > 0 is the dis-utility or dissatisfaction that a honest citizen assigns when he/she encounters a
corrupt official. This value adds to the payment that he has to make to the official and represents
the dislike of corruption by a honest citizen.

Instead of assigning the payoff 0 to a corrupt citizen when the government and officials are non-corrupt
we could have assigned the payoff αc, as a satisfaction that the citizen attains, and the satisfaction αnc
when the citizen is not compliant. In order to simplify notation we consider the first value as 0, so that
α may be seen as α = αnc − αc. It is clear that αnc > αc.

We observe that the payoffs in the previous matrix may be thought as being in units of dis-utility
obtained from the payment of a bribe, since the payment of the bribe to a corrupt official is −1. It can
also be argued that a citizen, even if compliant with corruption also gets a dis-utility when meeting a
corrupt official. In order to simplify notation we consider that this dis-utility is already included in the
−1, so that when the citizen is honest he also gets an increment γ > 0 of dis-utility to the −1. As in
the case of the satisfaction α we may regard γ as γ = γnc− γc. It is clear that one should have γnc > γc

since the dissatisfaction for meeting a corrupt official should be bigger for the non-compliant citizen.
To simplify we assumed that to every corrupt citizen is offered the same amount P of monetary

compensation for the vote in a corrupt government, which certainly limits the possible actions of a
corrupt government, a fact that, as we shall see, may not be minor. This amount P corresponds to a
simplified version of possible royalties granted by corrupt governments to possible electors. In the case
of entrepreneurs, it may correspond to public concessions or, in the case of poor families of developing
countries to consumption bundles. More generically it corresponds to a welfare gain that a citizen that
is compliant to corruption has when a corrupt government is in charge, even if this welfare gain is
unexpected by the citizen or inadvertently obtained. We can thus say that these payoffs are implicit
when a citizen is compliant with corruption. The same occurs for the factors of dissatisfaction with
corrupt government β and satisfaction with honest government α.

Different groups or individuals can typically receive different personal profits from a corrupt govern-
ment. These individual profits are far from being favourable to the development of social welfare, and
moreover, they are antagonistic to the social interest. Again, given this disparity, the amount P can be
regarded as the average of such welfare gain in a country, or in other words the gain of a representative,
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or focal, compliant citizen when a corrupt government is in charge. The same with the payments of
bribes which may be different so that we consider an average value that we normalize to 1. This is just
a simplification of the notation Mc we used in the first part of the chapter in order to avoid cumbersome
expressions and facilitate interpretation.

The expected payoffs of each strategy of the citizens depends on the strategy followed by the other
players of the game, the officials and the government, so they are the conditional expected values
E(Cj |n, g) of the pure strategies j ∈ {c, nc}, given that the distribution of the officials is n and the mixed
strategy of the government is g. To simplify the notation we shall denote this by E(Cj), j ∈ {c, nc}.
Then we have:

E(Cc) = (P − 1)gcnc + Pgc(1− nc)− (1− gc)nc

E(Cnc) = −(β + 1 + γ)gcnc − βgc(1− nc) + (α− 1− γ)(1− gc)nc + α(1− gc)(1− nc) .
(2.17)

where n = (nc, 1− nc) is a distribution of the official over the set of pure strategies or a mixed strategy
for the officials. Similarly g = (gc, 1− gc) represents a mixed strategy for the government.

If we consider that citizens’ preferences over the result of their actions are given by a Von Neumann-
Morgentern utility function then they will chose to accept the governmental corruption if E(Cc) >

E(Cnc) and in this case they will prefer to be corrupt. In the case where the reciprocal inequality is
verified, citizens will choose a non corrupt behaviour. They are indifferent in the case where the equality
is verified. This equality defines a threshold such that if the corruption of the officials and government
is over this threshold, citizens will also choose a corrupt behaviour.

Again it can be argued that even if they can act compliantly towards corruption, citizens tend to
act irrationally in this situation since they would not like to act compliantly even if this yields them a
better payoff. Indeed, as we explained in the introduction to this work, evolutionary game theory allows
to relax the rationality assumption and focus on the dynamics of change in behaviours even if they are
no rational. The insight of evolutionary game theory is that having more than one possible strategies,
or behaviour, through some fitness and evaluation of performance, selection will act to select the best
options, which will survive in the population.

According to the replicator dynamics, the evolution of the citizens strategies over time is given by
the following the differential equations system:

ċc = cc(1− cc)[E(Cc)− E(Cnc)]

ċnc = −ċc .
(2.18)

2.2.3 The government

The payoffs for the government are similar to the ones in the first part of this chapter. The payoff table
is as follows:

More precisely we have that:

• W is the wage paid by the government to an official.
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Oc, Cc Oc, Cnc Onc, Cc Onc, Cnc

Gc Mg −W − P + Vc,c Mg −W + Vnc,c M ′g −W − P + Vc,c M ′g −W + Vnc,c

Gnc M −W − e+ Vc,nc M −W − e+ Vnc,nc −W + Vc,nc −W + Vnc,nc

Table 2.3: The payoff table of the government in the three population game.

• P is the amount paid by government to buy votes. It may be interpreted as the amount paid by
government to influence and increase its chances of remaining in power.

• Mg is the punishment that a corrupt government imposes to a corrupt official (for instance for the
governmental complicity with corruption of the official).

• M ′g is the punishment that a corrupt government imposes to an honest official (for instance for the
honest official to keep his place).

• M is the fine imposed by an honest government to a corrupt official.

• e is the cost of a non-corrupt government in fighting corruption. This is a measure of a non-corrupt
government’s efficiency in fighting corruption.

• Vi,j are the valuations of a government of type j when encountering a citizen of type i, or in other
words, when citizens of type i votes for it. This represents a voting externality of the government
related with both the valuation that a government assigns to being maintained in power for one
period more and the probability of that occurring according to the vote in an election, and an
externality parameter related with citizen compliance.

As usual, we consider for simplicity that the values of wage, fines and P correspond to average values
observed in society. In other words it represent the average/typical payoffs for government in a society.

Furthermore, observe that as in the interpretation of α and γ we can think of the valuation Vi,j

analogously. Indeed we can think of Vc,nc and Vnc,c as being zero, which is the same as seeing Vc,c

and Vnc,nc as the differences Vc,c − Vc,nc and Vnc,nc − Vnc,c respectively, so that we would only have
the valuation of an honest government towards a non-compliant citizen and the valuation of a corrupt
government towards a compliant citizen, and the other valuations being zero. A simplification of this
would be o consider that the valuations o the government only depend on the government type and not
on the citizen’s type. This would mean that Vc,c = Vnc,c = Ṽc and Vc,nc = Vnc,nc = Ṽnc.

Remark 2.5 (A consideration on the punishments of the corrupt government). It is often observed that
whenever a corrupt ruler elite has a sufficiently short time horizon, it is in his interest to confiscate
the property of his subjects, or to abrogate previously signed contracts and generally to ignore the long-
run economic consequences of his choices. This point is widely discussed in [78]. A corrupt elite with
such short time horizon takes welfare from all aspects of society, even from those who could act as his
accomplices, in our case the corrupt officials. This welfare is measured by Mg and M ′g.

The expected payoffs for pure strategies of the government are:
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E(Gc) = (Mg −W − P + Vc,c)nccc + (Mg −W + Vnc,c)nc(1− cc) +

+ (M ′g −W − P + Vc,c)(1− nc)cc + (M ′g −W + Vnc,c)(1− nc)(1− cc)

E(Gnc) = (M −W − e+ Vc,nc)nccc + (M −W − e+ Vnc,nc)nc(1− cc) +

+ (−W + Vc,nc)(1− nc)cc + (−W + Vnc,nc)(1− nc)(1− cc) .

(2.19)

Considering the expected utilities of the government we have that it chooses to follow a corrupt
strategy if E(Gc) > E(Gnc). Otherwise, if E(Gc) < E(Gnc) the ruler elite prefers to follow a non-
corrupt behaviour. In the case of equality, i.e; E(Gc) = E(Gnc) the government is indifferent between
the two. This threshold is surpassed if the citizens don’t have a high level of rejection of corruption, i.e.,
if the group Cc is large and if for example punishing corrupt officials has a high cost for the government,
because it is inefficient in the fight against corruption.

As in the case of citizens, following the replicator dynamics, the evolution of the strategic decision
of the government will be given by the differential equations system:

ġc = gc(1− gc)[E(Gc)− E(Gc̄)]

ġc̄ = −ġc .
(2.20)

2.2.4 The officials

The payoffs of the officials only depend on the strategy followed by the government and their own
strategy, and not on the citizens behaviour, which only interferes with the government in the way we
have seen before in the previous section. Their payoffs are similar to those we discussed in the first part
of this chapter. The payoffs of the officials are given in the following table.

Gc, Cc Gc, Cnc Gnc, Cc Gnc, Cnc

Oc W −Mg + 1 W −Mg + 1 W −M + 1 W −M + 1

Onc W −M ′g W −M ′g W W

Table 2.4: The payoff table of the officials in the three population game.

Note that regardless of whether the citizen is honest or not, a corrupt officer will always demand a
payment to the citizen for performing the required management. This assumption is represented by the
+1, which always appears in the row corresponding to the official’s corrupt strategy.

As before, officials are in direct contact with the citizens whom they bribe in the case officials act
corruptly, and they can be punished by the ruling elite. Eventually, such punishment may be zero, i.e.
the official may be fired, so as previously, we consider the parameters in the table as averages among
the populations in consideration in the game.

The expected payoffs associated with each strategy are given by:
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E(Oc) = (W −Mg + 1)gc + (W −M + 1)(1− gc)

E(Onc) = (W −M ′g)gc +W (1− gc) .
(2.21)

They will choose a corrupt strategy if and only if E(Oc) > E(Onc). Similar considerations that in
the case of citizens and government can be given for the choice of officials.

The dynamics for the choice of the officials is given by the replicator dynamics, which is the the
following system of differential equations

ṅc = nc(1− nc)[E(Oc)− E(Oc̄)]

ṅc̄ = −ṅc .
(2.22)

2.2.5 The evolutionary dynamics of corruption in society

The tables above show that different groups of officials typically benefit in different way from different
types of government. In turn different types of government can be promoted for different kind of citizens
and institutions. Citizens obviously have different preferences towards the government. There is generally
a conflict between individual or political interest and social interest, and this conflict is aggravated by
corrupt governments and institutions that pursue spurious interests such as the officials. According to
the interests of the ruler elite, i.e. a corrupt government may try to appear honest by punishing officials
that have been found in acts of corruption, although this punishment has only a propaganda end to
potential voters. In other words, under certain conditions it can be difficult to decrease government
corruption.

Returning now to each of the systems of differential equations previously considered, we will analyse
the evolution of corruption in society. Precisely the possible solutions of a system conformed by the three
differential equations above introduced will represent the evolution of corruption in the society in the
three levels corresponding to each one of the players or populations of the game. Taking into account the
classification of various types of corruption presented in [50], we have that our dynamical system tracks
the evolution of grand corruption at the level of the political elites, such as the government, tracks the
dynamics of petty corruption that occurs at the level of officials, and finally the dynamics of the citizen’s
willingness to sell their vote, which contrary to the first part of this chapter will now dynamically evolve.
In this case, this last part corresponds to the willingness of citizen’s to engage in vote buying which may
also be seen as the dynamics of citizen’s compliance with governmental corruption. So that the role of
citizen’s intolerance that we described in section 2.1 is now in the three population game a dynamically
evolving mixed strategy, or distribution of the action, or influence/pressure that citizen’s and democracy
exert in corruption at the government’s level. The valuations Vi,j of the government are also related to
the citizen type, and can be extended to situations where they do depend on other parameters, or in the
number of corrupt officials, for instance.

The evolution of corruption in the society is given by the three differential equation systems (2.18,
2.20, 2.22). Each one of these systems of differential equations has only one free equation since the
second one is determined by the first. So we obtain a system with three differential equations.



2.2. Democracy and citizenship in the evolution of corruption 47


ṅc = nc(1− nc)(E(Oc)− E(Onc))

ġc = gc(1− gc)(E(Gc)− E(Gnc))

ċc = cc(1− cc)(E(Cc)− E(Cnc))

(2.23)

Taking into account equations (2.17), (2.19) and (2.21), after some algebra we have


ṅc = nc(1− nc)

[
(M +M ′g −Mg)gc + 1−M

]
ġc = gc(1− gc)

[
(e+Mg −M −M ′g)nc+ (Vc,c − Vc,nc − Vnc,c + Vnc,nc − P )cc + Vnc,c − Vnc,nc −M ′g

]
ċc = cc(1− cc) [(P + β + α)gc + γnc − α]

(2.24)
These equations may be written in the following form:

ṅc = nc(1− nc) (Aogc +Do)

ġc = gc(1− gc) (Egnc +Bgcc +Dg)

ċc = cc(1− cc) [Acgc + γnc − α]

(2.25)

where

Ao = M +M ′g −Mg

Do = 1−M

Eg = e+Mg −M −M ′g

Bg = Vc,c − Vc,nc − Vnc,c + Vnc,nc − P

Dg = Vnc,c − Vnc,nc +M ′g

Ac = P + β + α

If the parameters of the model are known, then the dynamical system is well defined and if in addition
the initial conditions are given, this system has an unique solution. Thus the possible solutions of this
dynamical system will reflect the possible trajectories of evolution of corruption in the society. Since in
general it is not possible to compute the solutions of a dynamical system we will have to rely heavily in
stability analysis of the equilibria, or stationary states of the system.

So if our interest is to analyse the evolution of corruption from some time t = t0 we need to know
the state of the system at the moment t0, i.e., the initial distributions c(t0), n(t0) and g(t0). The time
t0 represents the initial moment from which we are interested in reflecting on the future development
of corruption. Let assume that in time t0 c(t0) = c0, n(t0) = n0 and g(t0) = g0 we denote these
initial conditions by d0 = (c0, n0, g0). Fixed the initial conditions, the solution of the system (2.23) is
a unique function ξ(t; t0, d0) : [t0,∞) → R3 representing the states of the system in each time t after
t0. So ξ(t; t0, d0) = (n(t), g(t), c(t)) represents for each t ≥ t0 the state of the system. In our case that
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corresponds to the instantaneous distributions over the set of possible behaviours of the players.
It is worth to say that a change in the parameters of the model can give place to a change in the

evolution of corruption, qualitatively changing the trajectories of corruption and other dynamical feature
such as the attractor. Societies with similar or even equal initial conditions can evolve to very different
steady states. This means that changes in public policies with repercussion in the values of parameters
of the model can give place to changes in the future evolution of the corruption. The dynamical system
shows the role of each of these parameters and its relevance in the fight against corruption or in the
perpetuation of corruption. We will precisely discuss in the remainder of this chapter the effect of
the model parameters in such outcomes and interpret the diverse situations corresponding to different
socio-political conditions that may arise and what the limit behaviour of the dynamics would be.

As we said, in general it is not possible to obtain the analytic solutions of the system, but we can
analyse the behaviour of solutions in a neighbourhood of each stationary state, by means of Hartman
Grobman’s theorem when it is applicable, i.e., when the equilibrium is hyperbolic. With this objective
let us consider the dynamical equilibria, or steady-states of the system.

2.2.6 Socio-political characteristics of government, officials and citizens

We now write the characteristics of each player of the game according to the parameters of model. The
inequalities that follow and which characterize the players will be crucial in the subsequent analysis
that we will do regarding the stability ff the equilibria of the system and the evolution of corruption
and outcomes that occur since they will allow us to interpret each scenario corresponding to different
socio-political conditions.

Each one of the inequalities corresponds to one of the pure strategy best-responses of the game.
Hence a priori there would be 12 different inequalities. However, since we observed that the payoffs
of the officials are independent of the citizens behaviour then we only have 10 different inequalities
regarding the best-responses of the game.

Of these 10 inequalities, 3 of them are mandatory with respect to our assumptions, and we will
always assume they occur. We start with them.

(i) α > 0. This is the utility or satisfaction that a honest citizen drives from a non-corrupt government.
This means that the best response of citizens when facing honest government and officials is to be
honest. Recall that writing α as a difference as we explained before this is equivalent to αnc > αc,
meaning that the valuation towards a non-corrupt government by a honest citizen is greater than
that of a compliant citizen.

(ii) Ac − α > 0 since Ac − α = P + β > 0. This case corresponds to the best response when the
government is corrupt and officials are honest.

(iii) Ac+γ−α > 0 since Ac+γ−α = P +β+γ > 0. This case corresponds to the best response when
the government and officials are corrupt.

The last two inequalities mean that the citizens best-response when government is corrupt is to be
corrupt, or in other words to be compliant with it. This is because since the government is corrupt,
it is always willing to lose some welfare P corresponding to vote buying. Furthermore, a non-corrupt
citizen, or non-compliant, always has a dis-utility associated to a corrupt government, and in the case
the officials are corrupt citizens have a further dis-utility associated to this. However this does not
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mean that a corrupt outcome is inevitable since the valuations Vi,j (or externalities) in the government
payoffs may force corruption to decrease. Indeed, whether or not the government and officials have these
incentives is characterized by the following inequalities.

(i) γ −α > 0. This inequality has a clear interpretation which is that the dissatisfaction or dis-utility
that a honest citizen gets from encountering a corrupt official is smaller than preference of the
honest citizen to have a honest government. Interpreting this in another way as we suggested
before we have that αc − γc > αnc − γnc meaning that the net satisfaction of a compliant citizen
is greater than that of a non-compliant citizen. Conversely, if γ −α < 0 the non-compliant citizen
gets a higher satisfaction.

(ii) Do > 0, or equivalently 1 > M . This means that the non-corrupt government practices inappro-
priate fines towards a corrupt official, since the fine is lower than the value of the bribe a corrupt
official gets from a citizen, i.e., +1. Respectively, Do < 0, equivalently 1 < M means that the
no-corrupt government practices appropriate fines.

(iii) Ao+Do > 0, or equivalentlyM ′g > Mg−1. This means that a corrupt government penalizes honest
officials more than dishonest officials. Conversely, if Ao + Do < 0, or equivalently M ′g < Mg − 1
mean that a corrupt government penalizes dishonest officials more than honest officials. We may
say that in this case the corrupt government takes more welfare from non-corrupt officials than
from corrupt officials.

(iv) Eg +Dg > 0, or equivalently e+Mg −M +Vnc,c−Vnc,nc > 0. This inequality concerns the choice
of the government when officials are corrupt and citizens are non-compliant with corruption. It
reflects the efficiency of the non-corrupt government in fighting corruption when citizens are non-
compliant. In the previous case the parameter e is high so that the costs of fighting corruptions
are high, which means low efficiency. If Eg +Dg < 0 the non-corrupt government is cost efficient
in fighting officials corruption when citizens are non-compliant.

(v) Eg + Bg + Dg > 0, or equivalently e + Mg −M − P + Vc,c − Vc,nc > 0. This inequality concerns
the choice of the government when officials are corrupt and citizens are compliant with corruption.
It reflects the efficiency of the non-corrupt government in fighting corruption when citizens are
compliant. In this case the non-corrupt government is cost inefficient in fighting corruption. If
Eg +Bg +Dg < 0 the non-corrupt government is cost efficient in fighting officials’ corruption when
citizens are compliant.

(vi) Dg > 0, or equivalently Vnc,c+M ′g > Vnc,nc. This inequality concerns the choice of the government
when officials are non-corrupt and citizens are non-compliant with corruption. In this case the
valuation that non-compliant citizens give to a corrupt government plus the value of the punishment
to the non-corrupt officials is higher than the valuation that non-compliant citizens give to a
non-corrupt government. It reflects the re-election power of a government when citizens are non-
compliant. In this case the non-corrupt government has low re-election power, or in other words,
the corrupt government has high re-election power when citizens are compliant. If Dg < 0 the
non-corrupt government has high re-election power.

(vii) Bg + Dg > 0, or equivalently Vc,c + M ′g − P > Vc,nc. This inequality concerns the choice of the
government when officials are non-corrupt and citizens are compliant with corruption. In this case
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the valuation that compliant citizens give to a corrupt government plus the value of the punishment
to the non-corrupt officials and minus the welfare loss P corresponding to vote buying is higher than
the valuation that compliant citizens give to a non-corrupt government. It reflects the re-election
power of a government when citizens are compliant. In this case the non-corrupt government has
low re-election power, or in other words, the corrupt government has high re-election power when
citizens are compliant. If Bg +Dg < 0 the non-corrupt government has high re-election power.

Inequality (i) concerns the preference of the citizen when facing an honest government and corrupt
officials. His preference thus depends of the satisfaction drawn from the non-corrupt government and
the dis-utility of facing a corrupt official.

We observe that inequalities (ii) and (iii) are similar to the ones we had when considering the two
population game in the first part of this chapter. These two inequalities refer to best responses of the
officials when facing a corrupt government and a non-corrupt government. Citizens choice does not
influence the best response of the officials. What officials do is: when the government is non-corrupt,
they compare the fines the he incurs to the payment he receives from the bribe; when the government
is corrupt he compares the penalties he would get when the government is corrupt to the penalty when
the government is not corrupt.

We observe that we have two inequalities, (iv) and (v), including the parameter e which measures
the cost of a non-corrupt government in fighting corruption, instead of only one we had in the first part
of this chapter. This is due to the fact that there are now two possible citizen behaviours, compliance
or not. Observe that (iv) and (v) are very similar but that in (v), the inequality for the efficiency of
the government when citizens are compliant with corruption, there is an extra term P that corresponds
to the vote buying parameter. If we consider the special case where the valuations of the government
only depend on the government strategy and not on citizens type, then the term P becomes the only
difference between (iv) and (v). Indeed, if we define the efficiency threshold of a non-corrupt government:

Te = Ṽnc − Ṽc +M −Mg

the two inequalities become respectively e > Te and e > Te + P . So we have that P > 0 pushes the
efficiency threshold to the right, which means that an efficient non-corrupt government when citizens
are non-compliant with corruption is also efficient when citizens are compliant. In other words, a non-
corrupt government that is inefficient when citizens are compliant is also inefficient when citizens are
non-compliant. The reason is that while a non-corrupt government might not be sufficiently efficient
when citizens are not-compliant, because the cost e is too high, and hence prefers to act corruptly, it
may be efficient when citizens are compliant since in that case there is a loss in government’s welfare of
magnitude P > 0 if the government strategy is to be corrupt, so that the cost e is not so high, and so
the best choice would be to be non-corrupt. Actually, in this case, even with a slightly higher cost, say
e2 ' e such that e2 < Te + P , the government would still be efficient when citizens are compliant. If
P = 0 then there is no difference between the two inequalities.

Similarly for inequalities (vi) and (vii) which can be interpreted as characterizing the re-election
power of a government. We also had one inequality that we interpreted as measuring the re-election
power of a government in the first part of this chapter. This time we have two inequalities regarding this
characteristic of the government since one of them regards the re-election power of the government under
citizen compliance with corruption while the other regards the re-election power of the government when
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citizens are not compliant with corruption. Inequalities (vi) and (vii) are relatively similar apart from
the fact that the vote buying parameter P appears in (vii). To better understand these two inequalities
again consider the special case where the valuations of the government only depend on the government
strategy. Now observe that (vi) can be written as

Ṽnc − Ṽc < M ′g

and that (vii) can be written as

Ṽnc − Ṽc < M ′g − P .

So we have that the value P > 0 pushes the threshold to the left, and so we have that if a non-corrupt
has high re-election power (or that a corrupt government government has low re-election power) when
citizens are not-compliant with corruption, then the non-corrupt government also has high re-election
power when citizens are compliant with corruption. So it is more likely that a non-corrupt government
has high re-election when citizens are compliant with corruption since while the government might prefer
to be corrupt because its re-election power is low when citizens are compliant, the government might
prefer to be honest when citizens are not compliant while his re-election power is high. This is due to
the fact that in this last case government has a welfare loss of P > 0 if he decides to be corrupt, and if P
is high enough then the damage to the government’s payoff would increase so that it would be better to
chose the strategy non-corrupt, which means high re-election power for the non-corrupt government. In
other words, a given re-election power of a non-corrupt government might be too low when citizens are
non-compliant, but because when citizen’s are compliant the government incurs in a loss of welfare equal
to P > 0 if it decides to be corrupt, then the same re-election power is enough to make the government
prefer to be non-corrupt, i.e. it then has high re-election power.

2.2.7 The steady-states of the system

It is clear that the vertices of the three-dimensional unit cube C = [0, 1]3 are equilibria of the system
(2.25). The vertexes correspond to pure strategy profiles of the game. Depending on the values of the
parameters considered in tables 2.2, 2.3 and 2.4, these points could be also pure Nash equilibria for the
game.

Apart from these equilibria there could be others corresponding to situations where some or all the
players of the game randomize between the two pure strategies when they are indifferent between them.
For instance the point N∗ = (n∗c , g∗c , c∗c) where the identities

E(O∗c )− E(O∗nc) = E(G∗c)− E(G∗nc) = E(C∗c )− E(C∗nc) = 0

are verified, can be an interior point of the cube C, so that the system would have an interior stationary
state.

In such case, the corresponding distributions

n∗ = (n∗c , n∗nc); g∗ = (g∗c , g∗nc); c∗ = (c∗c , c∗nc)

that solve the previous equations constitute a mixed Nash equilibria for the game. We will refer to
this equilibrium as the strictly mixed equilibrium of the game. If the system is in this stationary state
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then the government, officials and citizens are indifferent between acting in a corrupt or honest manner
so that they randomize between the two behaviours in the proportion given by the distribution of the
steady state.

Furthermore, we may have situation where not all players randomize but only one or two of them, or
in other words, at least one of the population has only one type of individuals, since they all choose the
same strategy while the other populations randomize. In our case this yields equilibria that lie on faces
of the unit cube C or on edges. More specifically, the stationary states of the system are characterized
by the following relationships:

ṅc = 0 ⇐⇒ nc = 0 or nc = 1 or Aogc +Do = 0

ġc = 0 ⇐⇒ gc = 0 or gc = 1 or Egnc +Bgcc +Dg = 0

ċc = 0 ⇐⇒ cc = 0 or cc = 1 or Acgc + γnc − α = 0

The vertexes of the cube readily solve these three equations. Furthermore we obtain the completely
mixed equilibrium N∗ given by:

n∗c = Aoα+AcDo

Aoγ

g∗c = −Do

Ao

c∗c = −AoDgγ +AoEgα+AcEgDo

AoBgγ

(2.26)

As we said above if the parameters of the model are such that the inequalities 0 < n∗c , g
∗
c , c

∗
c , < 1

hold, then N∗ is a steady state for the dynamical system that is completely mixed and so it is at the same
time a Nash equilibrium for the game. Of course, the parameters may be such that this equilibrium
is outside of the unit cube, in which case it makes no sense in our context and we will say that the
completely mixed equilibrium does not exist.

The other solutions of the three previously equations correspond to situations where not every pop-
ulation of the game mixes between the two pure strategies. These solutions lie on faces of the unit cube.
As in the case of the completely mixed Nash equilibrium we have that these face equilibria might be
outside the unit cube in which case they do not make sense to our analysis and we will say that the face
equilibria do not exist. These face equilibria are given by the following expressions:

(n∗c , g∗c , c∗c) =
(
−Dg

Eg
,−Do

Ao
, 0
)

(n∗c , g∗c , c∗c) =
(
−Dg +Bg

Eg
,−Do

Ao
, 1
)

(n∗c , g∗c , c∗c) =
(

0, α
Ac
,−Dg

Bg

)
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(n∗c , g∗c , c∗c) =
(

1,−γ − α
Ac

,−Eg +Dg

Bg

)
Let us now consider the stability of the pure equilibria as well as the stability and existence of the

mixed equilibria.

Stability of the pure equilibria

Using Hartman-Grobman’s theorem it is possible to obtain some conclusions about the behaviour of the
dynamical system (2.25) in neighbourhoods of the stationary states corresponding to the vertices of the
cube.

We begin by obtaining the eigenvalues of the linearisations corresponding to each one of the pure
equilibria.

(n1
c , g

1
c , c

1
c) = (0, 0, 0), λ1 = Dg, λ2,3 = ±

√
−αDo

(n2
c , g

2
c , c

2
c) = (0, 1, 0), λ1 = −Dg, λ2,3 = ±

√
(Ao +Do)(Ac − α)

(n3
c , g

3
c , c

3
c) = (1, 0, 0), λ1 = Eg +Dg, λ2,3 = ±

√
−Do(γ − α)

(n4
c , g

4
c , c

4
c) = (1, 1, 0), λ1 = −(Eg +Dg), λ2,3 = ±

√
−(Ao +Do)(Ac + γ − α)

(n5
c , g

5
c , c

5
c) = (0, 0, 1), λ1 = Bg +Dg, λ2,3 = ±

√
αDo

(n6
c , g

6
c , c

6
c) = (0, 1, 1), λ1 = −(Bg +Dg), λ2,3 = ±

√
−(Ao +Do)(Ac − α)

(n7
c , g

7
c , c

7
c) = (1, 0, 1), λ1 = Eg +Bg +Dg, λ2,3 = ±

√
Do(γ − α)

(n8
c , g

8
c , c

8
c) = (1, 1, 1), λ1 = −(Eg +Bg +Dg), λ2,3 = ±

√
(Ao +Do)(Ac + γ − α)

Hence we have that the pure equilibria are always saddle points, which occurs when the radicand in
the square root is positive, or have a pair of pure imaginary numbers, which occurs when the radicand
in the square root is negative, in which case Hartman-Grobman’s theorem is inconclusive.

The quantities that appear in the eigenvalues above are deeply related with the behaviour of the
dynamics along the three edges that are incident on that vertex as we will see later.

Stability and existence of the completely mixed equilibrium

Let us now study the stability and existence of the completely mixed equilibrium of the system.
The mixed equilibrium exists if and only if (n∗, g∗, c∗) ∈ (0, 1)3. Let us consider the following

notation:
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N∗ = n∗c(1− n∗c) > 0 ; G∗ = g∗c (1− g∗c ) > 0 ; C∗ = c∗c(1− c∗c) > 0 .

To analyse the stability we will consider the linear approximation of the system (2.25). The Jacobian
matrix of this linearisation at the mixed equilibrium is equal to

0 N∗Ao 0

G∗Eg 0 G∗Bg

C∗γ C∗Ac 0


The eigenvalues are the roots of the characteristic polynomial:

λ3 − λ(N∗G∗EgAo −G∗C∗BgAc)−N∗G∗C∗BgAoγ = 0 .

Recall that Vieta’s formulas provide some relations between the roots of a polynomial which may
allow us to derive some knowledge of the sign of the solutions, which is precisely what we want to know
the stability of equilibrium. Consider a generic polynomial

p(λ) = λ3 + a2λ
2 + a1λ+ a0 .

Vieta’s formulas say that if x, y, z are roots of the polynomial then

x+ y + z = −a2

xy + xz + yz = a1

xyz = −a0

Vieta’s formulas imply that the sum of the three roots of the above polynomial is zero. So there is
a root with positive real part and a root with negative real part, or otherwise the three roots have zero
real part, in which case the roots are a pair of pure imaginary numbers and a root that equals zero. We
must consider two cases:

1. BgAoγ = 0 then one of the solutions is zero. The other two are either two pure imaginary numbers
that are conjugate, or two symmetric real numbers. In this case the point is not hyperbolic and
Hartman-Grobman’s is not applicable.

2. BgAoγ 6= 0. Then zero is not a solution. So the polynomial has a real solution with non-zero
real part, and so must have another with non-zero real part with opposed sign, and so the mixed
equilibrium is a saddle. The roots may have non-zero imaginary part, in which case we have a
spiralling saddle.

When BgAoγ = 0 we are in a degenerate case in which either Ao = 0 or Bg = 0 (since we assumed
γ 6= 0). It can be readily seen from the expressions (2.26) that we computed for the mixed equilibrium
that when Ao = 0 or Bg = 0 the equilibrium does not exist since it is outside the unit cube.

So we conclude that when the completely mixed equilibrium exists, i.e. it is in the interior of the
unit cube, then it is a saddle and in some cases it may be a spiralling saddle.
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We finish by observing that when N∗G∗C∗ = 0 then at least one of these is zero which means that
the mixed equilibrium is on the boundary of the cube, which may be a face, and edge, or even in a
vertex. When N∗G∗C∗ = 0, then zero is again a solution of the characteristic polynomial, so that
Hartman-Grobman’s theorem is not applicable.

Stability and existence of the face mixed equilibria

Let us now study the stability and existence of the mixed equilibria in the faces of the unit cube. We
will make use the same notation as before for each one of the four face equilibria.

N∗ = n∗c(1− n∗c) > 0 ; G∗ = g∗c (1− g∗c ) > 0 ; C∗ = c∗c(1− c∗c) > 0 .

For each equilibria in the faces one of this quantities is zero.
We begin by observing that there are no mixed equilibria in the faces corresponding to gc = 0 and

gc = 1.
We consider each one of the four remaining faces separately:

1. Consider the face such that nc = 0. In this face we have that N∗ = 0. The Jacobian matrix is

Jnc=0 =


AoG

∗ +Do 0 0

G∗Eg 0 G∗Bg

C∗γ C∗Ac 0


The characteristic polynomial is

(AoG∗ +Do − λ)(λ2 − (G∗C∗AcBg)

and the eigenvalues are:

λ = AoG
∗ +Do, and λ = ±

√
G∗C∗AcBg) .

2. Consider the face such that nc = 1. In this face we have that N∗ = 0. The Jacobian matrix is

Jnc=1 =


−(AoG∗ +Do) 0 0

G∗Eg 0 G∗Bg

C∗γ C∗Ac 0


The characteristic polynomial is

(−(AoG∗ +Do)− λ)(λ2 − (G∗C∗AcBg)

and the eigenvalues are:
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λ = −(AoG∗ +Do), and λ = ±
√
G∗C∗AcBg) .

3. Consider the face such that cc = 0. In this face we have that C∗ = 0. The Jacobian matrix is

Jcc=0 =


0 N∗Ao 0

G∗Eg 0 G∗Bg

0 0 AcG
∗ + γN∗ − α


The characteristic polynomial is

(AcG∗ + γN∗ − α− λ)(λ2 −N∗G∗EgAo)

and the eigenvalues are:

λ = AcG
∗ + γN∗ − α, and λ = ±

√
N∗G∗EgAo .

4. Consider the face such that cc = 1. In this face we have that C∗ = 0. The Jacobian matrix is

Jcc=1 =


0 N∗Ao 0

G∗Eg 0 G∗Bg

0 0 −(AcG∗ + γN∗ − α)


The characteristic polynomial is

(−(AcG∗ + γN∗ − α)− λ)(λ2 −N∗G∗EgAo)

and the eigenvalues are:

λ = −(AcG∗ + γN∗ − α), and λ = ±
√
N∗G∗EgAo .

We conclude that every face mixed equilibria is either a saddle point or else has a pair of conjugate
pure imaginary numbers. In this second case Hartman-Grobman’s theorem is not applicable because the
point is not hyperbolic.

2.2.8 The dynamics on the edges of the cube

Each edge of the unit cube has two fixed coordinates and one free coordinate. The dynamics along an
edge is obtained by looking at the relevant equation of the dynamical system (2.25), i.e. the equation of
the free coordinate and substituting the values of the fixed coordinates. After substitution, the value of
the free coordinate will increase if the obtained quantity is positive and it will decrease if the quantity
is negative. A special feature of the replicator dynamics is that this value is constant along the edge,
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so what matters is the sign of this quantity. These quantities that tell the behaviour of the vector field
that defines the differential equation along the edges of the unit cube are precisely the quantities that
appear in the socio-political characterization of government, officials and citizens that we have done in
section 2.2.6, which, we recall, also characterize the best-responses against each pure strategy profile.
After doing this study of the vector field in each edge of the unit cube we obtain the information that
is summarized in the next figure (2.8).

Figure 2.8: The behaviour of the dynamics along the edges of the unit cube.

The edges in red correspond to the three mandatory inequalities that we have identified in section
2.2.6. These three edges always point in the directions that are shown in the figure. The edges with
direction (0, 1, 0) that we have painted in blue and yellow correspond to the choices of the officials, and
we observe that the values in such edges do not depend on the height, i.e., they do not depend on the
citizens distribution. The other edges that are painted in black correspond to the other inequalities
identified in section 2.2.6. The edges in blue, yellow and black are free in the sense that according to
the model parameters they may go in either direction, although as we observed the two blue edges and
the two yellow edges need to agree.

From figure 2.8 we also see that the quantities that appeared in the eigenvalues of the linearisation
of each pure equilibrium above are deeply related with the behaviour of the dynamics along the three
edges that are incident on that pure equilibrium.
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As we have seen above the vertexes of the cube are either saddle points or have a pair of pure
imaginary numbers. It is possible for a given vertex to be an attractor along its three incident edges
without contradicting the fact that it is a saddle. Indeed, for a vertex to be an attractor it is necessary
that the trajectories along the three incident edges approach the vertex but this is not sufficient, since for
it to be an attractor it should be so in a small sphere in R3 around the point. However, in our case, only
the intersection of this sphere with the unit cube matters. So using a continuity argument, if there are
no other equilibria in the edges and if the edges are attracted towards the vertex, then it can be shown
that the vertex is asymptotically stable for initial conditions in a neighbourhood that are in the unit
cube, that is, for initial conditions that matter to our analysis. So we have that the dynamical behaviour
in the incident edges is also sufficient to characterize the local stability of the vertex. We prove this in
the appendix 2.B. The reason for this is that the edges incident on a vertex are not eigenvectors of the
linearisation, so those eigenvectors that represent the unstable directions of the vertex “exit” the cube,
and so they will not be relevant to our analysis.

The simple eigenvalue associated to a pure equilibria, i.e., the one that is not a square root always
has an eigenvector which is (0, 1, 0). This eigenvalue has modulus equal to the quantity that corresponds
to the edge with that direction that is incident on the vertex.

The other two eigenvalues that are a pair of square roots are related with the values along edges
with directions (1, 0, 0) and (0, 0, 1), although these directions are not eigenvectors. The expression in
the radicand is precisely the product of the quantities relative to these two edges with a signal. The
eigenvectors associated to these eigenvalues are of the form (1, 0,±z). In the case where the three
incident edges are attracted to the vertex, the eigenvector that is associated to the positive eigenvalue,
hence unstable, has a direction that “leaves” the unit cube as expected.

It is also worth noting that a stable equilibrium, since all its incident edges are attracted towards it
immediately implies the instability of all its neighbours (adjacent) vertexes. This, together with the fact
that, as we discussed, not all combinations of dynamics on the edges are possible, implies that there are,
at most, two pure attractors.

We also have the following assertions whose proofs can be seen in [103]:

Theorem 2.1. For the replicator dynamics we have the following:

1. A dominated pure strategy are asymptotically eliminated. In other words, pure strategies that are
dominated will vanish in the limit.

2. A pure strategies that is iteratively eliminated will vanish in the limit.

3. A Nash equilibrium is Lyapunov stable.

4. A strategy is asymptotically stable if and only if it is a strict Nash equilibrium.

The first assertion in this theorem implies that when there exists a dominated strategy then the
trajectories approach a face of the cube, so that the limit, if it exists, would lie on that face. This
implies that there cannot be a completely mixed equilibrium when there is a dominated strategy, since
the trajectory starting at that point would always stay at the same point so that the dominated strategy
would not vanish. However, this does no imply that the limit exists in that face since the interior
trajectory might approach a cycle in the face. From the second assertion we have that if one can find
dominated strategies, successively, then the remaining pure vertex would be a global attractor. From
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the third assertion we have that a mixed strategy cannot be an attractor. So only the vertexes of the
cube can be asymptotically stable. When a vertex is Nash but not strict Nash, then it is Lyapunov
stable but not an attractor, in which case we conclude that there must be an edge made of equilibria,
i.e., one where the respective quantity showed in figure 2.8 vanishes.

So we now have that the stability of the vertexes may be characterized by the behaviour of the
incident edges. Hence, each one of the possible cases that we mentioned corresponding to a specific
behaviour along the edges, and hence corresponding to a specific socio-political characterization allows
us to know the stability of the pure equilibria. We may also know the nature of the other equilibria and
characterize the evolution of corruption. We will present some examples of these cases in the following
sections.

2.2.9 Pure strategy attractors

We now discuss the three inequalities that need to verify to have asymptotic stability for each of the
pure strategies of the game. This can be readily done by looking at figure 2.8.

1. (n1
c , g

1
c , c

1
c) = (0, 0, 0). This is the ‘good’ equilibrium where general levels of corruption are low and

citizens are non-compliant. Inequality α < 0 is always verified so that a non-corrupt government
and officials will make more citizens less compliant with corruption. Furthermore, one needs
Do < 0, which is appropriate fines to punish corrupt officials and Dg < 0 which means efficiency,
or low costs in fighting corruption.

2. (n2
c , g

2
c , c

2
c) = (0, 1, 0). This is the equilibrium where only government is corrupt. This equilibrium

is never stable since the citizen compliance will increase. This may be seen as if the citizens have no
other possibility than being compliant, which may even be inadvertently or unintentionally since
it will be a more profitable strategy because of the welfare gain P citizens have plus the dis-utility
β he has because the government is corrupt.

3. (n3
c , g

3
c , c

3
c) = (1, 0, 0). This is the equilibrium where only the officials are corrupt. This equilibrium

is stable if the fines for corrupt officials are not very high and since there are a lot of corrupt officials
because of low fines, the government prefers to act honestly since it is efficient and so makes little
effort to fight corruption. Furthermore, for this equilibrium to be stable citizens need to value the
dis-utility of finding corrupt officials less than the valuation of their satisfaction with an honest
government.

4. (n4
c , g

4
c , c

4
c) = (1, 1, 0). This is the equilibrium where both government and officials are corrupt.

This equilibrium is unstable since in this case, again citizen will be, even if inadvertently or
unintentionally, compliant, since it will be a more profitable strategy because because of the welfare
gain P citizens have plus the dis-utilities β and
gamma he has because the government is corrupt and officials are corrupt respectively.

5. (n5
c , g

5
c , c

5
c) = (0, 0, 1). This is the equilibrium where only citizens are compliant with corruption

and officials and government are honest. This equilibrium is always unstable since citizens will
always change strategy because of the fact that the government is honest, which means their (even
if implicit) valuation α > 0 will make them want to be non-compliant.
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6. (n6
c , g

6
c , c

6
c) = (0, 1, 1). This is the equilibrium where government is corrupt and citizens compliant.

The stability of this equilibrium depends on the re-election power of the government and on the
penalties imposed on corrupt officials, which would need to be high.

7. (n7
c , g

7
c , c

7
c) = (1, 0, 1). This is the equilibrium where only officials are corrupt. For this equilibrium

to be stable one would need to have low costs for the government to fight corruption, but still
unable to lower officials corruption because the fines practised are low. Furthermore one would
need citizens to have lower dis-utility caused by facing corrupt officials than the valuation they
give to having a honest government.

8. (n8
c , g

8
c , c

8
c) = (1, 1, 1). This is the equilibrium where all agents are corrupt and citizens are also

compliant. It can be stable when the government punishes honest behaviour more than corrupt
behaviour by the officials, in which case officials prefer to be corrupt and when government has
high inefficiency in fighting corruption. In this situation the citizens will also be compliant.

2.2.10 Some examples

We now provide some graphical examples of the dynamics in some cases.
Let us consider the case where the following inequalities are verified: the fines from a non-corrupt

government are appropriate, meaning that for a non-corrupt government, officials will prefer to be honest.
This is Do < 0. Corrupt government punishments are higher for corrupt officials, i.e. Do +Ao < 0. The
dissatisfaction γ is lower than α so that γ − α < 0. Furthermore, the re-election power of a non-corrupt
government is higher, meaning that Dg < 0 and Bg+D<0 and the efficiency of a non-corrupt government
is high, meaning that Eg +Dg < 0 and Eg +Bg +Dg < 0.

In this case the corrupt strategy is strictly dominated for the government, and after this strategy
is eliminated, the strategy to be corrupt is also eliminated for the officials because of the high fines.
After this, citizens will be non-compliant, so from theorem 2.1 we conclude that the ‘good’ equilibrium
(n1
c , g

1
c , c

1
c) = (0, 0, 0) is the unique global attractor of the dynamics. We plot some trajectories of the

system in this case in figure 2.9.
Let us now consider the case where the following inequalities are verified: the fines from a non-

corrupt government are appropriate, meaning that for a non-corrupt government, officials will prefer
to be honest. This is Do < 0. Corrupt government punishments are higher for honest officials, i.e.
Do+Ao > 0. The dissatisfaction γ is lower than α so that γ−α < 0. Furthermore, the re-election power
of a non-corrupt government is higher, meaning that Dg < 0 and Bg +D<0, but now the efficiency of a
non-corrupt government is low, meaning that Eg +Dg > 0 and Eg +Bg +Dg > 0.

Since the respective incident edges are attractor, we conclude from the theorem in appendix 2.B
that there are two stable pure attractors: the “good equilibrium” (n1

c , g
1
c , c

1
c) = (0, 0, 0) and the bad

equilibrium (n8
c , g

8
c , c

8
c) = (1, 1, 1). Dynamically, this also implies the existence of a completely mixed

equilibrium in the interior of the cube, which is, as we discussed previously, a saddle equilibrium point.
We plot some trajectories of the system in this case in figure 2.10.

Let us now consider a case inspired from the two-dimensional case discussed in chapter 2.1 where we
obtained cycles of corruption. Let us then consider that the following inequalities hold: the fines from
a non-corrupt government are inappropriate, meaning that for a non-corrupt government, officials will
prefer to be corrupt. This is Do > 0. Corrupt government punishments are higher for corrupt officials,
i.e. Do + Ao < 0. The dissatisfaction γ is lower than α so that γ − α < 0. But consider now that
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the re-election power of a non-corrupt government is higher, meaning that Dg < 0 and Bg + D<0, but
the efficiency of a non-corrupt government is low, meaning that Eg + Dg > 0 and Eg + Bg + Dg > 0.
This makes he dynamics turn around the cube at the edges at the top of the cube and at the bottom
of the cube. The rationale in the two cases is similar: officials have an incentive to be corrupt because
of low fines, to which the government responds with increasing corruption because of its inefficiency.
The officials corruption decreases because punishments for corrupt officials are high, and finally, high
re-election power forces the government to be honest. This gives rise to two-dimensional, clockwise cycles
in the top and bottom faces of the unit cube. Indeed, in this case, the interior trajectories approach
these two cycles as shown in figure 2.11. Dynamically we also have that there must be a completely
mixed equilibrium in the interior of the unit cube, which is this case is also a spiralling saddle. The long
run behaviour of trajectories inside the unit cube is shown in figure 2.11.

Figure 2.9: Some trajectories of the system when the “good” equilibrium is the unique global attractor.
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Figure 2.10: Some trajectories of the system when both the “good” equilibrium and the ‘bad” equilibrium
are attractors.
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Figure 2.11: The long run behaviour of the trajectories towards cyles of governmental and officials
corruption.



64 Chapter 2. Evolutionary dynamical modelling of corruption

2.3 Conclusions

As it is well known, many politicians and ruling elites across the world and from the whole of the political
spectrum are involved in processes of corruption. Is it possible to deter this process? To give an answer to
this question is the main concern of this paper. In order to do this, we considered an evolutionary model,
where the political agents (considered as players of a game in normal-form) compare their respective
expected payoffs, and they choose their strategies according to their average performances and the most
profitable behaviours end by prevailing. Hence the replicator dynamics appear as a natural mathematical
tool to describe the evolution of corruption inside a society.

We first obtained that corruption corrupts, so that corruption is a self-reinforcing mechanism (see
Proposition (2.1). When the degree of intolerance is relatively low and the political elite in the govern-
ment has good prospects of being re-elected and a large interest in gain immediate benefits, the country
can be in a corruption social trap, i.e., a self-reinforcing mechanism where corruption generates more
corruption.

We constructed an evolutionary version of the game by means of the replicator dynamics. The
dynamics has five equilibria, four of them corresponding to pure strategies: i) where both government
and officials are corrupt; ii) where both are non-corrupt; iii) where only government is corrupt and
officials are not; iv) where government is honest and officials are corrupt. The other equilibrium is a
mixed strategy, that is always a Nash equilibrium of the game, where government and officials choose to
be corrupt with a given probability. We then did the stability analysis of these equilibria according to
the characteristics of government and officials. These characteristics are: a) the fines practised by the
non-corrupt government on corrupt officials, that may be appropriate or not; b) the re-election power of
government; c) the relative welfare that a corrupt government takes from honest and dishonest officials;
d) the efficiency of government in fighting corruption.

We obtained three outcomes: i) the mixed interior equilibrium is a saddle point; ii) the mixed interior
equilibrium is a focus point around which solutions of the differential equation oscillate, corresponding
to cycles of corruption over time; iii) there is no mixed interior equilibrium and there is a unique pure
Nash equilibrium.

When there is a mixed equilibrium that is a saddle point, it is such that its stable manifold separates
two different outcomes which correspond to pure Nash equilibria that are stable in the dynamics. In
one case, it separates initial conditions that will lead to a general increase in corruption levels and those
that will lead to a general decrease in corruption. In the other case, it separates between conditions
that will lead to an increase in government corruption and a decrease of corruption by officials and those
that will lead to a decrease in government corruption and an increase in officials’ corruption. These two
asymmetrical situations where corruption increases in one of the populations of the game and decreases
in the other, and that correspond to equilibria of the game may be interpreted as situations usually
observed in dictatorial regimes. The first one generally corresponds to a political elite that benefits from
corruption that is practically confined to the elite itself, together with an efficient censorship system
and control of its employees. This corresponds in our model to the punishment of officials for being
corrupt and breaking the rules. The other generally corresponds to a situation where there is a de facto
government of the officials sustained by a power above the law, with a complacent de jure government.

The second case occurs when the mixed interior is a focus point of periodic orbits. Corruption cycles
arise when government is cost efficient and practices high fines but re-election power is low and penalties
of a corrupt government are higher for honest officials. They also arise when re-election power is high
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but fines and efficiency are low, and penalties are higher for corrupt officials. When corruption cycles
occur, the focus point is the only Nash equilibrium since there are no pure Nash equilibria in those cases.

In the third case there is no mixed interior equilibrium. In this case, there is a unique pure Nash
equilibrium for the game, and it is stable in the dynamics. The characteristics of the population determine
which of the pure strategies of the game is a Nash equilibrium (and stable).

We have that not all situations are compatible with each other. When the non-corruption equilibrium
or the corruption equilibrium are stable then the asymmetrical equilibria described above can not be
stable, and vice-versa. More precisely, when there are appropriate fines practised by the government that
has high re-election power, then only the non-corruption equilibrium and the corruption equilibrium may
be stable. If the costs to catch corrupt officials are high, then both are stable and the mixed equilibrium
separates initial conditions leading to them. So for some initial conditions, the society may be in a
social trap that increases the general levels of corruption and maintains such levels illustrating once
again that corruption may be a self-reinforcing mechanism. On the other hand, when re-election power
is low and fines are inappropriate, then the non-corruption equilibrium is not stable. Furthermore, in
this case, when there are high penalties for corrupt officials by a corrupt government (see remark 2.3),
the equilibrium where government is corrupt and officials honest is stable. When penalties are higher
for corrupt officials, then either officials corruption equilibrium is stable or the corruption equilibrium
is stable, depending on whether there is cost efficiency or inefficiency, respectively. The situation of
the corruption equilibrium being stable illustrates a society with high levels of corruption at both the
officials’ and government’s level.

We also constructed a variation of the first game as well as a dynamics for the evolution of corruption
where, apart from the evolution governmental grand corruption and corruption at the scale of officials,
we also track the evolution of citizen compliance towards corruption. We state the characterization of
social and political features that have an influence on the dynamics of such game, now also including
parameters relative to citizen’s relation to corrupt governments and officials. We explain some feature of
this new dynamics, particularly the behaviour that occurs at the edges of the unit cube and represents
the best responses of the players of the game and its relation to the listed social and political features of
the game. We explain the stability of the vertexes, or pure strategy profiles of the game and we provide
and interpret some interesting graphical examples of the dynamics.

For the case where the country may be in a social trap with increasing levels of corruption, an external
event may be a necessary condition for the country to leave this trap. This social trap may escape any
self-monitoring mechanism, and then there is no way to control the controller. However, if the ruling elite
has some interest in the re-election this self-reinforcing mechanism can be weakened or broken by a high
enough degree of intolerance to corruption by the citizens. The degree of intolerance to corruption plays
an important role to make the government fulfil the role that society has assigned it, even when some
of its members are attracted by the individual benefits that corruption offers. Even in situations where
corruption tends to expand, if the intolerance index has an abrupt change, the regressive process can be
reversed6. Moreover, we also have seen that cyclical processes may appear in which periods of diminishing
corruption are followed by periods of increasing corruption. However, if the corruption index is not high
enough, corruption can be self-sustaining by means of cycles of corruption with alternation in power by

6Recent events in South Korea, where citizens reacted to the corrupt practices of Prime Minister Park Geun-hye
suggest that, if the Index of Intolerance of citizens to Corruption is high enough, it is possible to exert political
pressure that can maybe result in stopping the growth of corruption. See http://www.abc.net.au/news/2016-11-15/
south-korea-park-geun-hye-hopes-political-crisis-be-contained/8024978.

http://www.abc.net.au/news/2016-11-15/south-korea-park-geun-hye-hopes-political-crisis-be-contained/8024978
http://www.abc.net.au/news/2016-11-15/south-korea-park-geun-hye-hopes-political-crisis-be-contained/8024978
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the elites, or situations where the long-term behaviour approaches equilibria where corruption exists,
whether by the officials, the government or both. Furthermore, as we have said when we interpreted
those equilibria, they can correspond to situations of democratic deficit due to corrupted institutions
and their inability to fulfil their roles, and more extreme situations as dictatorships.

Thus, how to maintain a high index of intolerance to corruption is a fundamental question. Re-
sponding correctly to this question may be the key to avoid increasing corruption and cyclical corrup-
tion processes. The index of intolerance to corruption depends on the citizen’s perception of corruption
and decreases when the number of corrupt acts decreases. Since this index reflects a perception of the
citizens it can be exploited by a ruling elite to gain personal benefits from corrupt acts. Furthermore,
it can depend on other political and economical variables not included in the index of intolerance we
introduced, and not addressed in this paper. Another issue is the media coverage and pressure about
corruption and the very relevant aspect of how corruption perceived in society. We plan to address some
of these in future works.

Confirmation of results by empirical testing and statistical methods is surely a very important issue.
However, this was not our goal in this work. We focused instead on a game theoretical model of
conflict between several levels of controllers, with the objective of obtaining some insight and a game
theoretic and evolutionary reasoning for the question posed in the title of this work, and to capture some
essential features of this conflict between over the question of controlling honest vs. corrupt behaviours
in employees of the central government (that may be lured into dishonest behaviour). There have been
some previous approaches to corruption via game theory, as for instance in [6], focused on the problem
of environment protection. As far as we know, our game theoretic approach to corruption through the
problem of who will be controlling the controller is new. It should be noted that this work points towards
a game theoretical and dynamical approach and methodology that drew some fundamental features of
the conflict between agents, so that it might require some changes to the model to proceed to some kind
of empirical testing. We will try to address this in future works. It should also be noted that there are
statistical studies and case studies in specific countries yielding results that go in different directions.
The observance or not of some effects of corruption depend greatly on the underlying social, political
and economic structures of the countries. For example, see the introduction of [93] and the references
therein about corruption and economic growth. In [72] the author has shown the negative effects of
corruption on investment and economic growth, while in [36] the authors show the positive correlation of
corruption and direct foreign investment. Some studies conclude that corruption is a cyclical phenomena,
associated with alternation in power of the ruling elites (see [93] for the case of this alternation and its
relation to corruption in Mexico). Others, in which citizen participation reduces general corruption levels
(see [84], where South-Eastern Asian countries are analysed). Thus our model gives a game theoretical
background to these different situations.

We can say that we have given at least a partial answer to the question that motivated this paper
and the answer is quasi-optimistic, because it seems possible to control the controller. The citizens are
the main protagonists in this control process, although, certainly, for citizen participation to be effective,
a high index of intolerance to corruption is required.

Summarizing, in this paper we gave a first step to recognize the possibility of fight with success
against the corruption and in the knowledge of possible trajectories of the evolution of a corruption
process. However, as we said in section 2.1.6 to obtain the analytical solution of the dynamical system
is generically not possible, but we can obtain some approximation using numerical methods and do
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stability and qualitative analysis of the trajectories of the system.
The model can be improved by further studying on the characteristics ofithout the parameters con-

sidered. For instance, the degree of intolerance of citizens, that may be modelled as depending on other
political, social and economic variables. It will be necessary to consider also cross terms and the corre-
sponding non-linear effects, and to study other types of dynamics, for instance, the role of the imitative
behaviour (see [3]). Other accesses to information, like the press and modern media, that can exert
relevant influence in the the index of intolerance should also be incorporated in future developments of
the model.
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2.A Appendix: Citizens Choice

As stated above, citizens are not decision makers in the game we considered in section 2.1, but their
choice has a political influence in the the outcome of the game by means of the probabilities of re-election
of a corrupt and a non-corrupt government, and so have decisive influence in the decisions of government
and officials.

The ruler elite must undergo an electoral process on which it will seek to influence in various ways.
We show a possible way to endogenize the choice of citizens, i.e., the probabilities of re-election for a
corrupt and a non-corrupt government using the utility functions of the citizens.

For instance in case of a corrupt government buying votes. Note that, even in this case, not necessarily
all citizens will receive some payment from a corrupt government. The ruling elite chooses who and how
much to pay. To simplify we will consider that some citizens will receive an amount equal to P > 0
monetary units and others receive 0.

We have that, fixed p ∈ {0, P} each citizen prefers an honest government to a non-corrupt one, i.e.

if n̄c < n′c then ui(n̄c, p) > ui(n′c, p) .

Citizens measure the level of corruption by the percentage of corrupt officials acting in the public
administration. This is a natural assumption, because for a citizen, corruption means having to pay for
a service that must be provided free of charge.

Let K be the subset of citizens receiving the amount P. The subset K and the value of P are fixed
by the ruler elite and depend on the estimates that this elite does.

• Not necessarily all citizen will receive some payment made by a corrupt government. The ruling
elite chooses who to pay. Some citizens will receive an amount equal to P > 0 monetary units,
and others will receive 0.

• The ruler elite of a corrupt government will offer an amount P = P (nc) to each citizen in a
subgroup K ⊂ H in the sense that ui(nc, P ) > ui(n′c, 0) for all i ∈ K and for all n′c < nc. In
other words, a citizen in K prefers to receive the amount of money P and bear the amount nc of
corrupt officers more than a lower amount n′c of corrupt officials and not receive money from the
government.

• The value of P (nc) may be assumed to increase with nc. We also assume that the utility function
ui(nc, P (nc)) is decreasing in nc. In other words, the amount P is enough to convince the citizen
to vote when the number of corrupt officials is higher since it yields a higher utility than lower
corruption without any payment, but still, in this situation, the citizen places greater importance
in the amount of corrupt officials, and this is why ui(nc, P (nc)) is decreasing.

• Let P̄ be the maximum amount that a corrupt government can offer to citizens in exchange for
their votes. Note that for all i ∈ K we have that ui(1, 0) ≤ ui(nc, P (nc)) ≤ ui(0, P̄ ) and for all
i 6∈ K we have that ui(1, 0) ≤ ui(nc, 0) ≤ ui(0, 0).

So the choice of citizens is randomized because the information they have is not complete. We
consider that the probability of re-electing the government or not depends directly on their relationship
with the officials, and this probability decreases as the number of corrupt officers increases, so that this
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may be distorted by personal experience. In this case, even high values of P, will not give the result
sought by the ruling elite and the citizens will vote for not re-electing a corrupt government.

Let us introduce the following boundary values:

mK = mini∈K ui(1, 0) andMK = maxi∈K ui(0, P̄ )

mnK = mini 6∈K ui(1, 0) andMnK = maxi6∈K ui(0, 0) .

We consider that the probability that a citizen votes for the re-election of a government is proportional
to the utility function. Then, for a fixed nc and P (nc) we can make the following:

• The probability that a citizen votes for the re-election of a corrupt government is given by:

mK

MK
≤ qiGc

= αi

MK
ui(nc, P (nc)) , ∀i ∈ K and

mnK

MnK
≤ qiGc

= αi

MnK
ui(nc, 0) , ∀i 6∈ K

• The probability that a citizen votes for the re-election of a non-corrupt government is given by:

m
M ≤ q

i
GnK

= αi

M ui(nc, 0)

where m = mini∈H ui(1, 0), M = maxi∈H ui(0, 0) .

And so

qGc
= Πi∈Hq

i
Gc

= Πi∈K
αi

MK
ui(nc, P (nc))Πi 6∈K

αi

MK
ui(nc, 0)

qGnc
= Πi∈Hq

i
Gnc

= Πi∈H
αi

M ui(nc, 0) .
(2.27)



70 Chapter 2. Evolutionary dynamical modelling of corruption

2.B Appendix: Dynamics on the edges of the cube

Consider a dynamics of the form:
ẋ1 = x1(1− x1)F1(x1, . . . , xn),

. . .

ẋn = xn(1− xn)Fn(x1, . . . , xn),

(2.28)

where for all j ∈ {1, . . . , n}, Fj(x1, . . . , xn) are Lipschitz continuous functions.
We will use the following nomenclature:

• Equilibria of the form (x̄1, . . . , x̄n) where for all i ∈ {1, . . . , n}, x̄i ∈ {0, 1} will be called pure
equilibria. These points correspond to the vertexes of the n−cube C = [0, 1]n.

• The segments (x̄1, . . . , xi, . . . , x̄n) where 0 ≤ xi ≤ 1 and x̄j ∈ {0, 1}, j 6= i are the edges of the
n−cube. Observe that each vertex has n incident edges and that for each edge we have that all
except one of its coordinates is free. We will call this the free coordinate of the edge. The other
n−1 coordinates will be called the fixed coordinates of the edge. We also observe that we consider
the vertexes to be part of the edges that are incident on it.

• The sets of points of the form (x1, . . . , x̄i, . . . , xn) where for some i we have x̄i ∈ {0, 1}, and the
other coordinates are free is a face of the cube. Observe that a face of a n-dimensional cube is a
(n− 1)-dimensional cube.

Remark. In many situations, the setting described above becomes simpler. For instance, in the replicator
dynamics, the function Fi is the difference between the expected values of the two strategies available to
population i. So the functions Fi do not depend on the distribution/strategy of population i. In other
words, we have that Fi(xi, x−i) = Fi(x−i). In this case the value of Fi is constant along each edge of the
unit cube whose free coordinate is the i-th coordinate.

We have that the unit cube C is invariant for the dynamics, i.e., if the initial condition lies in the
unit cube C then the solution of the system will remain in the cube forever. Analogously, the edges of
the unit cube are also invariant since if xi equals 0 or 1 then ẋi = 0, so that xi remains constant equal
to 0 or 1. Similarly, the faces are also invariant by the same reasons.

According to the notation previously introduced we will sometimes write F (x) = Fi(x1, ..., xn) =
Fi(xi, x−i). The following theorem is straightforward.

Theorem. Consider a pure equilibrium x̄ = (x̄1, ..., x̄n), i.e., a vertex of the cube. Assume that, as
in remark 2.B that the functions Fi are constant along edges, i.e., Fi(x̄i, x̄−i) = Fi(x̄−i). If for some
i ∈ {1, ..., n} such that x̄i = 0 we have that Fi(x̄−i) > 0 then x̄ is unstable in the Lyapunov sense.
Analogously, if for some i ∈ {1, ..., n} such that x̄i = 1 we have that Fi(x̄−i) < 0 then x̄ is unstable in
the Lyapunov sense.

Proof. It is clear that if x̄i = 0 and Fi(x̄−i) > 0 then along the edge (xi, x̄−i) where the free coordinate
is xi the trajectory ‘goes away’ from the pure equilibrium. So x̄i cannot be stable. With a similar
argument we prove that when x̄i = 1 and Fi(x̄−i) < 0 the vertex x̄ is unstable.
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The previous theorem states that for a vertex to be stable is necessary that restricted to edges be an
attractor. The characterization of whether along the edges a solution of the dynamical system converges
or “go away” from a vertex depend on the functions sign of the functions Fi in a neighbourhood of this
vertex.

Indeed, by a continuity argument we also have the following theorem, which is a converse to the
previous result.

Theorem. Assume there are no equilibria in the edges apart from the pure equilibria, i.e., apart from
the vertexes of the cube. Consider a pure equilibrium point x̄ = (x̄i, x̄−i). Assume that

1. if x̄i = 0 then Fi(0, x̄−i) < 0 and that

2. if x̄i = 1 then Fi(1, x̄−i) > 0.

Then the pure equilibrium x̄ is a local attractor relative to the unit cube, i.e., it is an attractor for initial
conditions in a neighbourhood in the unit cube.

Proof. Let x̄ = (x̄i, x̄−i) be a pure equilibrium for the system (2.28). Since for all i ∈ {1, ..., n}, Fi are
continuous functions we have that:

• when x̄i = 0, we have that Fi(0, x̄−i) < 0, so there is a ball Bi with center at x̄ = (0, x̄−i) and
radius εi > 0 such that Fi(xi, x̄−i) < 0 for all x ∈ Bi;

• when x̄i = 1 we have that Fi(1, x̄−i) > 0 so there is a ball Bi with center at x̄ = (1, x̄−i) and
radius εi > 0 such that Fi(xi, x̄−i) > 0 for all x ∈ Bi.

Now consider the intersection of such balls for every i ∈ {1, . . . , n}, i.e., V = ∩ni=1Bi. This set is
open so there exists a ball B ⊂ V such that the sign of each Fi in B remains the same as in Bi. So in
the intersection of this ball with the unit cube, i.e. in B∩C, which contains the vertex x̄, the sign of the
functions Fi remains the same as in the hypothesis of the theorem. So if x̄i = 0 then Fi(x) < 0 for all
x ∈ B ∩ C and if x̄1 = 1 then Fi(x) > 0 for all x ∈ B ∩ C. Then

(I) if x̄i = 0, ẋi < 0 for all x ∈ B ∩ C such that xi 6= 0 and

(II) if x̄i = 1, ẋi > 0 for all x ∈ B ∩ C such that xi 6= 1.

When x ∈ B ∩ C is such that its i coordinate is xi = 0 or xi = 1 then ẋi = 0, and that coordinate
remains fixed for all time and xi = x̄i. So we need only to look at those points in B∩C with xi /∈ {0, 1}.

So if we denote by ξ(t, t0, x0) the solution of the system (2.28) with initial condition x(t0) = x0, it
follows from (I) and (II) that ξ(t, t0, x0)→ x̄ for all x0 ∈ B ∩ C.

By putting these two theorems together we have that the behaviour along the incident edges is
necessary and sufficient to characterize whether the vertex is an attractor or not in the case where there
are no other equilibria in the edges apart from the vertexes, for dynamics where the vector field is
constant along each edge, for instance, for the replicator dynamics.
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Chapter 3

Nash and social tariffs impact in
international trade

The first part of this chapter is based on the joint work:
F. Martins, A. A. Pinto, and J. P. Zubelli. Nash and social welfare impact in an international trade

model. Journal of Dynamics and Games, 4(2):149–173, April 2017.

In this chapter we study a classic international trade model consisting of a strategic game in the
tariffs of the governments. The model is a two-stage game where, at the first stage, governments of each
country use their welfare functions to choose their tariffs either (i) competitively (Nash equilibrium)
or (ii) cooperatively (social optimum). In the second stage, firms choose competitively (Nash) their
home and export quantities. We compare the competitive (Nash) tariffs with the cooperative (social)
tariffs and we classify the game type according to the coincidence or not of these equilibria as a social
equilibrium (when they coincide), a prisoner’s dilemma (when they do not coincide and the competitive
outcome is dominated by the social) or a lose-win dilemma (when they do not coincide but one of the
countries is damaged in terms of welfare in the social optimum). We do this comparison for several
relevant utility functions that are economic relevant quantities for the two countries such as the custom
revenue of the countries, the consumer surplus of each country, the profit of the firms and the welfare
of the countries. The lack of coincidence of these equilibria for the welfare of the governments is a main
difficulty in international trade that can be partially dealt with the use of trade agreements that impose
the social tariffs and rule the distribution of the corresponding externalities among the two countries.
We consider a welfare balanced trade agreement that has the feature of maintaining the welfare shares
of the two countries when the social tariffs are enforced. We analyse some possible externalities that
may be caused by such trade agreement at the level of relevant quantities such as profits and consumer
surplus by also analysing shares of these quantities between the two countries and we analyse the gain
obtained by the countries by using such a trade agreement. We conclude that the enforcing of a trade
agreement may be a difficult issue because of some powerful externalities that might arise.

This chapter is structured in the following way. In section 3.1 we present the fundamental concepts
of Nash and Social tariffs and the comparison between these two equilibria and the type of game that is
obtained according to this comparison. In section 3.2 we present the international duopoly model and the
most relevant economic quantities of the model. In section 3.3 we solve the second stage game between

73



74 Chapter 3. Nash and social tariffs impact in international trade

the firms. In section 3.4 we compute the Nash and Social tariffs for each relevant economic quantity of
the duopoly model, considering each one as the utility function of the countries. We compare such tariffs
and classify the games according to their types. We summarize the results in tables (3.1), (3.2) and
(3.3). In section 3.5 we focus on the case of the welfare of the two countries, showing that the outcome
is either of lose-win type (LW) or prisoner’s dilemma type (PD). We present a full characterization of
the game outcomes in terms of the tax-free home production indexes (see figure (3.1) and table (3.4)).
In section 3.6, instead of the absolute comparison of economic quantities of the two countries at the
Nash and social optimum we compute the relative share for these economic quantities and the difference
between the Nash and social shares to measure the harm or benefit that the enforcing of the social
tariffs can present to each country (see figures (3.2), (3.3) and (3.4)). In section 3.7 we propose a welfare
balanced trade agreement, in the sense that it maintains the same welfare shares that were observed at
the Nash tariffs. We analyse some possible externalities that arise in such a trade agreement using the
shares computed at the previous section. We present some conclusions in section 3.8.

3.1 Strategic tariffs

In this section, we introduce the most relevant game theoretical concepts that we will use in the other
sections to understand the strategic behaviour of firms, consumers and governments of the countries.
Several classical books in game theory are available. For the interested reader not familiar with the
fundamentals of game theory we refer to one of these classics, for instance [40].

We will present some fundamental concepts of game theory such as that of best response, Nash
equilibrium and social optimum. We present them in the framework of government’s choice of tariffs,
although the definitions for other contexts are the same, for instance in terms of the choice of produced
quantities by firms in competition, which we will see in sections 3.2 and 3.3.

Let ui(ti, tj) and uj(ti, tj) be two relevant economic quantities of the countries Xi and Xj depending
only upon the tariffs ti and tj imposed by the governments of the two countries. For instance, for every
pair of tariffs (ti, tj), the functions ui(ti, tj) and uj(ti, tj) can be the profit of the firms or the consumer
surplus at the competitive Nash equilibrium for the quantities produced by the firms.

We are going to interpret ui(ti, tj) and uj(ti, tj) as the utilities of a game where the players are the
governments of the countries and their actions are the tariffs (ti, tj).

The quantity tBRi (tj) ≡ tBRi (tj ;u) is a best response of the country Xi for the utility ui, if for all
tariffs ti,

ui(tBRi (tj), tj) ≥ ui(ti, tj) .

A pair of tariffs (tNi , tNj ) ≡ (tNi (u), tNj (u)) is a Nash equilibrium or a global strategic optimum, if for all
tariffs ti

ui(tNi , tNj ) ≥ ui(ti, tNj ) ,

and for all tariffs tj
uj(tNi , tNj ) ≥ ui(tNi , tj) .

In other words, a pair of tariffs (tNi , tNj ) is a Nash equilibrium, if

tNi = tBRi (tNj ) and tNj = tBRj (tNi ) .
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A pair of tariffs (tPi , tPj ) ≡ (tPi (u), tPj (u)) is a Pareto optimum, if there is no pair (ti, tj) of tariffs such
that

ui(ti, tj) ≥ ui(tPi , tPj ) for all i, j ∈ {1, 2},

and at least one utility ui, i ∈ {1, 2} gets a better payoff with (ti, tj) than with (tPi , tPj ), i.e.

ui(ti, tj) > ui(tPi , tPj ) .

The social utility (or total utility) uT is

uT (ti, tj) = ui(ti, tj) + uj(ti, tj) .

The quantity tSRi (tj) ≡ tSRi (tj ;u) is a social best response, if for all tariffs ti

uT (tSRi (tj), tj) ≥ uT (ti, tj) .

A pair of tariffs (tSi , tSj ) ≡ (tSi (u), tSj (u)) is a social optimum, if for all tariffs ti

uT (tSi , tSj ) ≥ uT (ti, tSj ) ,

and for all tariffs tj
uT (tSi , tSj ) ≥ uT (tSi , tj) .

In other words, a pair of tariffs (tSi , tSj ) is a social optimum, if

tSi = tSRi (tSj ) and tSj = tSRj (tSi ) .

We observe that a social optimum is a Pareto optimum. For games with a unique Nash equilibrium,
we describe the three typical games outcomes when we compare the social optimum with the Nash
equilibrium.

(SE) Social equilibrium: When the social optimum coincides with the Nash equilibrium

(tSi , tSj ) = (tNi , tNj )

and the social optimum is the only Pareto optimum. In this case, the individualist Nash choice of
the tariffs by the governments leads to a social equilibrium. Hence, a priori there is no need of a
trade agreement between the two governments of the two countries.

(PD) Prisoner’s dilemma: When the social optimum (tSi , tSj ) is different from the Nash equilib-
rium

tSi 6= tNi or tSj 6= tNj

and both utilities are bigger in the social optimum than in the Nash equilibrium,

ui(tSi , tSj ) > ui(tNi , tNj ) and uj(tSi , tSj ) > uj(tNi , tNj ) .

In this case, the game is like the Prisoner’s dilemma, where the Nash strategy leads to a lower
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outcome for both countries than if they would agree among therein (through a trade agreement)
in opting for the social optimum. When we obtain

ui(tSi , tSj ) = ui(tNi , tNj ) and uj(tSi , tSj ) > uj(tNi , tNj ) .

or
ui(tSi , tSj ) > ui(tNi , tNj ) and uj(tSi , tSj ) = uj(tNi , tNj ) .

we say the game is a (weak) Prisoner’s dilemma.

(LW) Lose-win social dilemma: When the social optimum (tSi , tSj ) is different from the Nash
equilibrium

tSi 6= tNi or tSj 6= tNj

and one of the utilities is bigger in the social optimum and the other utility is bigger in the Nash
equilibrium, i.e.,

ui(tSi , tSj ) < ui(tNi , tNj ) and uj(tSi , tSj ) > uj(tNi , tNj ) ,

or
ui(tSi , tSj ) > ui(tNi , tNj ) and uj(tSi , tSj ) < uj(tNi , tNj ) .

When the game is of lose-win type there are two possible outcomes as described above. We will
denote such outcomes respectively by LiWj and LjWi. The first indicates that the country Xi

has a utility loss and country Xj has a utility gain while enforcing the social optimum, and the
second indicates the opposite situation.

In this case, the governments can implement an external mechanism (trade agreement) that will
make them to opt for the social optimum in such a way that the country that gets an advantage
in its utility compensates the loss in the utility of the other country and can also give some extra
benefit in order to persuade the other country to implement the social equilibrium.

3.2 International duopoly model

In this section, we introduce the relevant economic quantities of the international duopoly model.
The international duopoly model is a game with two stages (sub-games). In the first stage, both

governments choose simultaneously their Nash or social tariffs for a utility given by a relevant economic
quantity; and, in the second stage, the firms choose simultaneously their home and export quantities to
maximize competitively their profits.

The home consumption hi is the quantity produced by the firm Fi and consumed in its own country
Xi. The export ei is the quantity produced by the firm Fi and consumed in the country Xj of the other
firm Fj , where i, j ∈ {1, 2} with i 6= j. The tariff rate ti is determined by the government of country Xi

on the import quantity ej . The total quantity qi produced by firm Fi is

qi ≡ qi(hi, ei) = hi + ei .
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The aggregate quantity Qi sold on the market in the country Xi is

Qi ≡ Qi(hi, ej) = hi + ej .

The inverse demand pi in the country Xi is

pi ≡ pi(hi, ej) = αi −Qi ,

where αi is the demand intercept of country Xi.
The payoff πi of firm Fi is

πi ≡ πi(hi, ei, hj , ej ; ti, tj) = (pi − ci)hi + (pj − ci)ei − tjei ,

where ci ≥ 0 is the firm Fi’s unitary production cost such that αi − ci > 0, and tj ≥ 0 is the tariff fixed
by the government of country Xj .

The custom revenue CRi of the country Xi is given by

CRi ≡ CRi(ej ; ti) = tiej .

The consumer surplus CSi in the country Xi is given by

CSi ≡ CSi(hi, ej) = 1
2Q

2
i .

The welfare Wi of the country Xi is

Wi ≡Wi(hi, ei, hj , ej ; ti, tj) = CRi + CSi + πi .

3.3 Second stage Nash equilibrium

In this section, we give a presentation of the well-known Nash equilibrium of the second sub-game, i.e.,
firms choose the home and export quantities that competitively maximize their profits, in the case of
complete information, i.e. when both firms have full information on their and others utility functions.

Let i, j ∈ {1, 2} with i 6= j. Define

Ti ≡ Ti(ci, cj) = (αi + ci − 2cj)/2 ,

Tj ≡ Tj(ci, cj) = (αj + cj − 2ci)/2 .

We also define
T ∗i ≡ T ∗i (ci, cj) = (αi + cj − 2ci)/2 ,

T ∗j ≡ T ∗j (ci, cj) = (αj + ci − 2cj)/2 .

Denoting ∆α := αi − αj , we have that
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T ∗i = Tj + ∆α/2 ,

T ∗j = Ti −∆α/2 .

This yields

Ti + Tj = T ∗i + T ∗j . (3.1)

We also have that
αi − ci = 2(Ti + 2T ∗i )

3 ,

αj − cj =
2(Tj + 2T ∗j )

3 .

Denoting ∆c := ci − cj we have

∆c =
2(T ∗j − Tj)

3 = 2(Ti − T ∗i )
3 .

Assumption (A). Ti > 0, Tj > 0, T ∗i > 0 and T ∗j > 0.
We observe that under assumption (A), αi − ci > 0 and αj − cj > 0.
The best response (hBRi (ej), eBRi (hj ; tj)) of the firm Fi is the solution of

(hBRi (ej), eBRi (hj ; tj)) = arg max(hi,ei)πi(hi, ei, hj , ej ; ti, tj).

Hence 
hBRi (ej) = αi−ej−ci

2

eBRi (hj ; tj) = αj−hj−ci−tj
2 .

The Nash equilibrium (hi(ti), ei(tj);hj(tj), ej(ti)) is the solution of
(hi(ti), ei(tj)) = (hBRi (ej(ti)), eBRi (hj(tj); tj))

(hj(tj), ej(ti)) = (hBRj (ei(tj)), eBRj (hi(ti); ti)) .

So, for every ti ∈ [0, Ti] and every tj ∈ [0, Tj ], the home hi(ti) and export ei(tj) quantities for the
firms at the Nash equilibrium (see [40]) are

hi(ti) ≡ hi(ci, cj ; ti) = 2T ∗i + ti
3

ei(tj) ≡ ei(ci, cj ; tj) = 2(Tj − tj)
3

hj(tj) ≡ hi(ci, cj ; ti) =
2T ∗j + tj

3

ej(ti) ≡ ei(ci, cj ; tj) = 2(Ti − ti)
3
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We note that an increase in the quantities T ∗i and T ∗j generates an increase in the home quantities
produced by the firms at a given tariff level. The quantities T ∗i and T ∗j have a clear economic inter-
pretation. An increase in quantity T ∗i is good for firm Fi since this can occur due to three different
possibilities, all of whom favour firm Fi: an increase in the home market size αi of country Xi; an
increase in the production costs of the opponent firm cj ; a decrease in firm i own production cost ci.
So any of these three situations generates an increase in home quantities, albeit at different rates: at
a given tariff level, a reduction in the own costs increases home production at twice the speed as an
increase in the home market size or an increase in the opponent’s production costs.

Since the export quantities are non-negative, Ti and Tj are the maximal tariffs. When country Xi is
tax-free, then firm Fj exports 2/3 of the admissible maximal tariff Ti. The maximal tariff Ti can increase
due to several reasons: an increase in the market size αi of country Xi; an increase in costs ci of firm
Fi; a decrease in the costs cj of firm Fj . We further observe that at a fixed tariff rate, a decrease in the
production cost cj of firm Fj increases its export quantity faster, as the rate of change in the maximal
tariff Ti due to a decrease in cj is twice as big as the rate of change due to an increase in the market
size of country Xi or a competitive loss in firm Fi because of increased production costs.

We also observe that the decrease in one country’s export quantity due to an increase in the tariff
that is practised by the other country is twice the increment that is provoked in the home quantity of
the other country by the same increase in the tariff. In other words, an increase in tariffs lowers export
quantities more rapidly than it enhances the home quantities.

Let

Ri = T ∗i
Ti

and Rj =
T ∗j
Tj

.

We observe that under assumption (A), Ri > 0 and Rj > 0. Using equality (3.1) we obtain

(1−Ri)Ti = (Rj − 1)Tj .

Hence, the ratios Ri and Rj satisfy the relation

Ri < 1⇔ Rj > 1 .

Furthermore, we have that Ri = 1 if and only if Rj = 1, meaning that for every Ti and Tj , T ∗i = Ti and
T ∗j = Tj . When Ri 6= 1

Ti
Tj

= (Rj − 1)
(1−Ri)

.

The tax-free home production index is

Hi = hNi (0)
hNi (Ti)

= 2T ∗i
Ti + 2T ∗i

= 2Ri
1 + 2Ri

,

where hNi (0) corresponds to the home production of country i when there are tax-free exports from
country j to country i, and hNi (Ti) to the monopoly home production of country i when j does not
export. We have

Ri = Hi

2(1−Hi)
.
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Hence, the indexes Hi and Hj satisfy 0 < Hi < 1, 0 < Hj < 1 and the relation

0 < Hi < 2/3⇔ 2/3 < Hj < 1 .

Furthermore, we have that Hi = 2/3 if and only if Hj = 2/3, meaning that for every Ti and Tj , T ∗i = Ti

and T ∗j = Tj (and Ri = 1 = Rj). When Hi 6= 2/3,

Ti
Tj

= (Hi − 1)(3Hj − 2)
(Hj − 1)(2− 3Hi)

.

We observe that the country whose tax-free home production index is closer to 1 is the country that
faces a lower decrease in their home production quantities while changing from a monopoly situation to
a tax-free situation where the other country exports freely.

3.4 Strategic games

In this section, we will analyse the advantages and disadvantages of the use of tariffs for the firms, the
consumers and the governments of the countries. To do it, we will use the relevant economic quantities
as utilities ui(ti, tj) and uj(ti, tj) of a game where the players are the governments of the countries and
their actions are the tariffs (ti, tj). For each pair of utilities that we will consider, we will find which
of the three typical games occurs: social equilibrium (SE), prisoner’s dilemma (PD), or lose-win social
dilemma (LW).

3.4.1 Tariff effects in produced quantities and prices

We first consider the case where the utilities are the home quantities, i.e., ui = hi. The home quantity
hi(ti) increases with the tariff ti and the home quantity hj(tj) increases with the tariff tj , and so

tBRi (tj ;h) = Ti , t
BR
j (ti;h) = Tj and (tNi (h), tNj (h)) = (Ti, Tj) .

The social utility hT (ti, tj) is

hT (ti, tj) =
2(T ∗i + T ∗j ) + ti + tj

3
and so the social utility also increases with both tariffs ti and tj , so

tSRi (tj ;h) = Ti , t
SR
j (ti;h) = Tj and (tSi (h), tSj (h)) = (Ti, Tj) .

Hence, there is a unique social optimum (that is the unique Pareto optimum) and coincides with the
Nash equilibrium

tSi (h) = tNi (h) = Ti .

Therefore, the game with utility ui = hi, is of the type SE.

When we consider the utilities to be the export quantities, i.e. ui = ei, we see that the export
quantity ei(tj) decreases with the tariff tj , but does not depend upon tariff ti. The same occurs with the
export quantity ej(ti) that decreases with tariff ti, but does not depend upon tariff tj . Hence, every tariff
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ti is a best response to any tariff tj , and vice-versa, and so every pair of tariffs is a Nash equilibrium:

tBRi (tj ; e) ∈ [0, Ti] , tBRj (ti; e) ∈ [0, Tj ] and (tNi (e), tNj (e)) ∈ [0, Ti]× [0, Tj ] .

The social utility eT (ti, tj) is

eT (ti, tj) = 2(Ti + Tj)− 2(ti + tj)
3

and so
tSRi (tj ; e) = 0 , tSRj (ti; e) = 0 and (tSi (e), tSj (e)) = (0, 0) .

Hence, there is a unique social optimum, that is the unique Pareto optimum

tSi (e) = 0 .

Therefore, for the game with utility ui = ei, we have:

1. For the Nash tariff (tNi , tNj ) = (0, 0), the game is of SE type;

2. For all other Nash tariffs the game is of PD type.

We now consider the case where the utilities are the total quantities produced by the firms, i.e.,
ui = qi. The total quantity qi(ti, tj) produced by firm Fi is given by

qi(ti, tj) ≡ qi(ci, cj ; ti, tj) = 1
3(2T ∗i + 2Tj + ti − 2tj)

and so the total quantity qNi (ti, tj) increases with ti and decreases with tj . For firm Fj we have

qj(ti, tj) ≡ qj(ci, cj ; ti, tj) = 1
3(2T ∗j + 2Ti + tj − 2ti)

so the total quantity increases with tj and decreases with ti. Thus, there is a unique Nash equilibrium

tBRi (tj ; q) = Ti , t
BR
j (ti; q) = Tj and (tNi (q), tNj (q)) = (Ti, Tj) .

The social utility qT (ti, tj) is

qT (ti, tj) = 4(Ti + Tj)− (ti + tj)
3

and so
tSRi (tj ; q) = 0 , tSRj (ti; q) = 0 and (tSi (q), tSj (q)) = (0, 0) .

Hence, there is a unique social optimum but it does not coincide with the Nash equilibrium

tSi (q) 6= tNi (q) .

We have that

qi(tNi , tNj ) < qi(tSi , tSj ) if and only if Ti < 2Tj .

qj(tNi , tNj ) < qj(tSi , tSj ) if and only if Tj < 2Ti .
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Hence, we have two possible cases:

Case I. Ti/2 ≤ Tj ≤ 2Ti. Then we have

qi(tNi , tNj ) ≤ qi(tSi , tSj ) and qj(tNi , tNj ) ≤ qj(tSi , tSj ) .

Therefore, the game is of the type PD.

Case II. Tj < Ti/2. (The case 2Ti < Tj is similar.) Then we have

qi(tNi , tNj ) > qi(tSi , tSj ) and qj(tNi , tNj ) < qj(tSi , tSj ) .

Therefore, the game is of the type LW. More precisely, the outcome is LiWj .

We now consider the utilities to be the aggregate quantities in each country, i.e., ui = Qi. The
aggregate quantity QNi (ti) in the market of country Xi is

Qi(ti) ≡ Qi(ci, cj ; ti) = 2(Ti + T ∗i )− ti
3 ,

and the aggregate quantity Qj(tj) in the market of country Xj is

Qj(tj) ≡ Qj(ci, cj ; tj) =
2(Tj + T ∗j )− tj

3 ,

and so the aggregate quantities decrease with the respective tariffs. So, we have

tBRi (tj ;Q) = 0 , tBRj (ti;Q) = 0 and (tNi (Q), tNj (Q)) = (0, 0) .

The social utility QT (ti, tj) is
QT (ti, tj) = qT (ti, tj)

and so
(tSi (Q), tSj (Q)) = (0, 0) .

Hence, there is a unique social optimum (that is the unique Pareto optimum) and coincides with the
Nash equilibrium

tSi (Q) = tNi (Q) = 0 .

Therefore, the game with utility ui = Qi, is of the type SE.

We now consider the utility of the countries to be the symmetric of the prices, i.e., ui = pi. The
inverse demand function pi(ti) in the country Xi is

pi(ti) ≡ pi(ci, cj ; ti) = αi −
2(T ∗i + Ti)− ti

3

and the inverse demand function pj(tj) in the country Xj is

pj(ti) ≡ pj(ci, cj ; tj) = αj −
2(T ∗j + Tj)− tj

3 ,
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and so the inverse demand functions of the two countries increase with the respective tariffs. So we have

tBRi (tj ; p) = Ti , t
BR
j (ti; p) = Tj and (tNi (p), tNj (p)) = (Ti, Tj) .

The social utility pT (ti, tj) is

pT (ti, tj) = αi + αj −
2(Ti + Tj + T ∗i + T ∗j )− (ti + tj)

3

and so
tSRi (tj ; p) = Ti , t

SR
j (ti; p) = Tj and (tSi (p), tSj (p)) = (Ti, Tj) .

Hence, there is a unique social optimum (that is the unique Pareto optimum) and coincides with the
Nash equilibrium

tSi (p) = tNi (p) = Ti .

Therefore, the game with utility ui = pi, is of the type SE. When the utility is ui = −pi then the
solution is the same as the aggregate quantity in the market of country Xi, yielding a SE type game
with equilibrium (0, 0).

3.4.2 Governments direct gains from using tariffs

We now analyse the government’s direct gains from using tariffs, i.e., the case where the utilities are
given by the custom revenues, ui = CRi.

The custom revenue CRi(ti) of country Xi is given by

CRi(ti) ≡ CRi(ci, cj ; ti) = 2ti(Ti − ti)
3 ,

and the custom revenue CRj(tj) of country Xj is given by

CRj(tj) ≡ CRj(ci, cj ; tj) = 2tj(Tj − tj)
3 .

We have that CRi(ti) ≥ 0 and CRj(tj) ≥ 0. In both cases, first-order conditions yield the critical
points Ti/2 and Tj/2, which are indeed maximum points. The custom revenue increases with the tariff
ti ∈ [0, Ti/2], and it decreases with the tariff ti ∈ [Ti/2, Ti],

0 = CRi(0) = CRi(Ti) ≤ CRi(ti) ≤ CRi
(
Ti
2

)
= T 2

i

6 ,

and so

tBRi (tj , CR) = Ti
2 , tBRj (ti, CR) = Tj

2 and (tNi (CR), tNj (CR)) =
(
Ti
2 ,

Tj
2

)
.

The social utility CRT (ti, tj) is

CRT (ti, tj) = 2ti(Ti − ti)
3 + 2tj(Tj − tj)

3
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and so

tSRi (tj ;CR) = Ti
2 , tSRj (ti;CR) = Tj

2 and
(
tSi (CR), tSj (CR)

)
=
(
Ti
2 ,

Tj
2

)
.

Hence, there is a unique social optimum (that is the unique Pareto optimum) and coincides with the
Nash equilibrium

tSi (CR) = tNi (CR) = Ti
2 .

Therefore, the game with utility ui = CRi, is of the type SE.

3.4.3 Consumers savings effects from the use of tariffs

We now analyse the consumer’s savings, i.e., the case where the utilities are given by the consumers
surplus, ui = CSi.

The consumer surplus CSi(ti) of country Xi is

CSi(ti) ≡ CSi(ci, cj ; ti) =
(
2(Ti + T ∗i )− ti

)2
18 ,

and the consumer surplus CSj(tj) of country Xj is

CSj(tj) ≡ CSj(ci, cj ; tj) =
(
2(Tj + T ∗j )− tj

)2
18 .

The first-order conditions to minimize these quantities are

ti = 2(Ti + T ∗i ) and tj = 2(Tj + T ∗j ) .

which are respectively bigger than Ti and Tj . So we have that

tBRi (tj ;CS) = 0 , tBRj (ti;CS) = 0 and (tNi (CS), tNj (CS)) = (0, 0) .

The social utility CST (ti, tj) is

CST (ti, tj) =
(
2(Ti + T ∗i )− ti

)2
18 +

(
2(Tj + T ∗j )− tj

)2
18

and so
tSRi (tj ;CS) = 0 , tSRj (ti;CS) = 0 and (tSi (CS), tSj (CS)) = (0, 0) .

Hence, there is a unique social optimum (that is the unique Pareto optimum) and coincides with the
Nash equilibrium

tSi (CS) = tNi (CS) = 0 .

Therefore, the game with utility ui = CSi, is of the type SE.

3.4.4 Firms profits effects from the use of tariffs

We now consider the case where the utilities are the profits of the firms, i.e., ui = πi.
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The profit πi(ti, tj) of the firm Fi is

πi(ti, tj) ≡ πi(ci, cj ; ti, tj) = 1
9 [(2T ∗i + ti)2 + 4(Tj − tj)2] .

and the profit of the firm Fj is

πj(ti, tj) ≡ πj(ci, cj ; ti, tj) = 1
9 [(2T ∗j + tj)2 + 4(Ti − ti)2] .

Thus, the profit πi(ti, tj) increases with ti and decreases with tj , and vice-versa for the profit πj(ti, tj).
So

tBRi (tj , π) = Ti , t
BR
j (ti, π) = Tj and (tNi (π), tNj (π)) = (Ti, Tj) .

The social utility πT (ti, tj) is

πT (ti, tj) = 1
9 [(2T ∗i + ti)2 + (2T ∗j + tj)2 + 4(Ti − ti)2 + 4(Tj − tj)2] .

Hence,
∂πT
∂ti

= 4(T ∗i − 2Ti) + 10ti
9 .

Noting that
∂2πT
∂t2i

= 10
9 > 0 ,

we obtain that the local maxima of πT is attained at the boundary points of the admissible tariffs

tSRi (tj ;π) ∈ {0, Ti} .

Similarly,
tSRj (ti;π) ∈ {0, Tj} .

We have that
πT (Ti, tj)− πT (0, tj) = Ti

9 (4T ∗i − 3Ti) .

and
πT (ti, Tj)− πT (ti, 0) = Tj

9 (4T ∗j − 3Tj) .

Hence, a priori, there are four possibilities for the social optimum. However, the tariff pair (0, 0) cannot
be achieved as a social optimum because the conditions 4T ∗i < 3Ti and 4T ∗j < 3Tj are incompatible. So
we are left with three possible cases:

Case I. 4T ∗i > 3Ti and 4T ∗j > 3Tj . Equivalently, Ri > 3/4 and Rj > 3/4 or Hi > 3/5 and Hj > 3/5.
We have

tSRi (tj ;π) = Ti and tSRj (ti;π) = Tj .

Thus,
(tSi (π), tSj (π)) = (Ti, Tj) .

Hence, there is a unique social optimum (that is the unique Pareto optimum) and coincides with the
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Nash equilibrium
tSi (π) = tNi (π) = Ti .

Therefore, the game is of the type SE.

Case II. 4T ∗i < 3Ti. Equivalently, Ri < 3/4 or Hi < 3/5. The case 4T ∗j < 3Tj , or equivalently,
Rj > 3/4 or Hi > 3/5 is similar. We have

tSRi (tj ;π) = 0 and tSRj (ti;π) = Tj .

Therefore,
(tSi (π), tSj (π)) = (0, Tj) .

Hence, there is a unique social optimum but it does not coincide with the Nash equilibrium

tNi (π) 6= tSi (π) and tNj (π) = tSj (π) = Tj .

Furthermore,
πi(tNi , tNj ) > πi(tSi , tSj ) and πj(tNi , tNj ) < πj(tSi , tSj ) .

Therefore, the game is of the type LW. More precisely, the outcome is LiWj .

Case III. 4T ∗i = 3Ti. or equivalently Ri = 3/4 or Hi = 3/5. The case 4T ∗j = 3Tj or equivalently,
Rj = 3/4 or Hj = 3/5 is similar. In this case

πT (Ti, tj) = πT (0, tj) .

So that

tSRi (tj ;π) = {0, Ti} and tSRj (ti;π) = Tj .

Therefore, there are two social optima.

(tSi (π), tSj (π)) = (0, Tj) and (tSi (π), tSj (π)) = (Ti, Tj) .

One of them (tSi (π), tSj (π)) = (Ti, Tj) coincides with the Nash equilibrium, in which case the game is of
SE type.

In the other social optimum, (tSi (π), tSj (π)) = (0, Tj), by definition of Nash equilibrium we have that

πi(tNi , tNj ) > πi(tSi , tSj ) .

So, also by definition of social optimum we have

πj(tNi , tNj ) < πj(tSi , tSj ) ,

and hence the game is of LW type. More precisely, the outcome is LiWj .
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3.4.5 Game outcomes

In this section we further discuss the game outcomes obtained for different utilities given by relevant
economic quantities.

For every pair of tariffs (ti, tj), we found the Nash equilibrium for the second sub-game, i.e. the
home and export quantities such that firms competitively maximize their profits. Then, using the Nash
equilibrium for the home and export quantities we found the tariffs that lead to a Nash equilibria or to
a social equilibria for different utilities.

We observed that for the home quantities the Nash equilibria and the social optimal tariffs are the
same and equal to the maximal tariffs. So, countries decide to block exports, both when in competition
and in cooperation. For the export quantities all tariffs lead to a Nash equilibrium but only the (0, 0)
tariffs is a social optimum, with all the others yielding a prisoner’s dilemma game. For the aggregate
quantities in the market of each country, prices, custom revenues and consumer surpluses we found
that the Nash tariffs coincide with the social tariffs, thus, the games with these utilities are of Social
Equilibrium (SE) type. For the aggregate quantities and the consumer surpluses the tariffs are zero,
corresponding to free export; for the custom revenues they are half of the maximal tariffs; and for prices
they are the maximal tariffs. Hence, some of the difficulties of imposing tariffs arise from these social
equilibria having different tariffs. We summarize these results in table (3.1).

SE game

Economic quantity h e Q p CR CS

Nash (Social) tariff of country Xi Ti 0 0 Ti Ti/2 0

Nash (Social) tariff of country Xj Tj 0 0 Tj Tj/2 0

Table 3.1: The Nash (Social) tariffs for the home quantity, export quantity, total quantity in the market,
inverse demand, custom revenue and consumer surplus, resulting in a social equilibrium. h - Home
quantities; e - Export quantities; Q - Aggregate quantity in each country; p - Inverse demand (price);
CR - Custom revenue; CS - Consumer surplus.

For the total quantities produced by the firms we found that the Nash tariffs are the maximal tariffs,
and the social tariffs are the zero tariffs. The game can be either of Prisoner’s Dilemma (PD) type or of
Lose-Win (LW) type, depending on the maximal tariffs. When the maximal tariffs of the two countries
are sufficiently similar, then the game is of PD type. The game is LW for the bounds presented in table
(3.2). When the game is of LW type then the country that is in a losing position is the one that has
the highest maximal tariff. The reason for this is that the social tariffs are the zero tariffs, so that both
countries become tax-free and so export more, but produce less for the home market. When the maximal
tariffs are relatively similar, the effect of the increase in exports is more relevant since as we observed
exports change more than the home quantity when maximal tariffs change, and so both countries would
be better at the social optimum hence yielding PD. When one of the maximal tariffs is sufficiently larger
then the one with the largest maximal tariff has a large decrease in home production which puts it in a
losing position in terms of total output of the firms.

For the profits of the firms we found that the Nash tariffs are the maximal tariffs and the social
tariffs can be either the maximal tariffs, or one of the two symmetrical cases where one country chooses
the maximal tariff and the other chooses the zero tariff. Which one of the cases occurs depends on the
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Total quantities (qi, qj) produced by the firms

Condition Nash tariffs Social tariffs Game type

If 2Tj < Ti (Ti, Tj) (0, 0) LiWj

If Ti/2 ≤ Tj ≤ 2Ti (Ti, Tj) (0, 0) PD

If 2Ti < Tj (Ti, Tj) (0, 0) LjWi

Table 3.2: Comparing total quantities (qi, qj) of the two countries with Nash tariffs and social tariffs
with different cost similarities and concluding the game type.

tax-free home production indexes. When a firm has a tax-free home production index lower than the
threshold 3/5, the game is of LW type, and this firm has a profit loss. In these cases, the country with
the higher tax-free home production index earns more profit at the social optimum. The social optimum
tariff for that country with the tax-free home production index below the threshold is to become tax-free,
and he has a loss in profit, and for the country with the highest index is to block exports from the other
country. For the country that has a lower tax-free home production index this means it has greater
loss while becoming tax-free, meaning that the firm is less competitive when his home market is shared
between the two countries. Hence, its firm produces its tax-free home production quantity and does not
export, while the firm of the other country has the monopoly in its own market and exports for the
tax-free country. Even if the country with the lowest index produces much less for its home market in a
tax-free situation, it is socially more profitable to allow the more competitive foreign country to enter he
market and not allow the weaker country to export. So, the less competitive firm has interest in becoming
tax-free if he gets some compensation by the other firm. Possibilities that may be discussed between
the two countries might include merging of the two firms, R&D exchange, or allowing representation of
the more competitive firm to be settled in the less competitive country. When both firms have a high
tax-free home production index the game is of SE type. In this case both firms produce their monopoly
quantities. We summarize these results in table (3.3).

Profits (πi, πj) of the firms

Condition Nash tariffs Social tariffs Game type

If Hi < 3/5 (Ti, Tj) (0, Tj) LiWj

If Hi > 3/5 and Hj > 3/5 (Ti, Tj) (Ti, Tj) SE

If Hj < 3/5 (Ti, Tj) (Ti, 0) LjWi

Table 3.3: Comparing profits of the firms of the two countries with Nash tariffs and social tariffs, where
Hi and Hj are the tax-free home production indexes.

3.5 Nash and social welfares

In this section, we consider the utility of the governments to be the welfare of the country, i.e. ui = Wi.
We will compute the Nash equilibrium tariffs and the social tariffs and analyse the game type obtained
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according to the tax-free home production index.

3.5.1 Computation of the equilibria

The welfare Wi(ti, tj) of the country Xi is given by

Wi(ti, tj) = 1
9

[
(2T ∗i + ti)2 + 4(Tj − tj)2

]
+ 2

3 ti(Ti − ti)

+ 1
18 (2(Ti + T ∗i )− ti)2 .

The welfare Wj(ti, tj) of the country Xj is given by

Wj(ti, tj) = 1
9

[
(2T ∗j + tj)2 + 4(Ti − ti)2

]
+ 2

3 tj(Tj − tj)

+ 1
18 (2(Tj + T ∗j )− tj)2 .

We have that
∂Wi

∂ti
= 4Ti + 2T ∗i

9 − ti ,
∂Wj

∂tj
=

4Tj + 2T ∗j
9 − tj ,

and
∂2Wi

∂t2i
= −1 , ∂2Wj

∂t2j
= −1 .

Therefore, the maximum points of the polynomials Wi(ti, tj) and Wj(ti, tj) in ti and tj are, respectively

AW,i = 2(T ∗i + 2Ti)
9 > 0 and AW,j =

2(T ∗j + 2Tj)
9 > 0 .

Noting that AW,i < Ti is equivalent to 2T ∗i < 5Ti, and that AW,j < Tj is equivalent to 2T ∗j < 5Tj , we
get that the best responses are

tBRi (tj ,W ) =


AW,i , if T ∗i < 5Ti

2 ;

Ti , otherwise .

tBRj (ti,W ) =


AW,j , if T ∗j <

5Tj

2 ;

Tj , otherwise .

The social utility WT (ti, tj) is

WT (ti, tj) = Wi(ti, tj) +Wj(ti, tj) .

Hence, we have that
∂WT

∂ti
= 2T ∗i − 4Ti − ti

9 .

and
∂2WT

∂t2i
= −1

9 .

Let
BWS ,i = 2(T ∗i − 2Ti) ,
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and analogously,
BWS ,j = 2(T ∗j − 2Tj) .

Noting that 0 < BWS ,i < Ti is equivalent to 2Ti < T ∗i < 5Ti/2, we get that the social best responses are

tSRi (tj ;W ) =



0 , if T ∗i ≤ 2Ti ;

BWS ,i , if 2Ti < T ∗i <
5Ti

2 ;

Ti , if T ∗i ≥ 5Ti

2 .

Similarly, we get

tSRj (ti;W ) =



0 , if T ∗j ≤ 2Tj ;

BWS ,j , if 2Tj < T ∗j <
5Tj

2 ;

Tj , if T ∗j ≥
5Tj

2 .

Hence, there are several possible cases when comparing the Nash and social tariffs. Since 0 ≤ Hi ≤
2/3 ≤ Hj ≤ 1 or 0 ≤ Hj ≤ 2/3 ≤ Hi ≤ 1 some possibilities are incompatible with each other. We will
make use of the notation ∆W to denote the difference between the welfare of a country when applying
the Nash tariffs and when applying the social tariffs. We are left with five cases:

Case I. T ∗i ≤ 2Ti and T ∗j ≤ 2Tj . Equivalently, Ri ≤ 2 and Rj ≤ 2 or Hi ≤ 4/5 and Hj ≤ 4/5. The
Nash equilibrium is

(tNi (W ), tNj (W )) = (AW,i, AW,j) .

The social optimum is
(tSi (W ), tSj (W )) = (0, 0) .

The social optimum does not coincide with the Nash equilibrium.
The welfare at the Nash equilibrium is

Wj(AW,i, AW,j) = CRj(AW,j) + CSj(AW,j) + πj(AW,i, AW,j) ,

where
CRj(AW,j) = −

4(T ∗j + 2Tj)(2T ∗j − 5Tj)
243 ,

CSj(AW,j) =
2(8T ∗j + 7Tj)2

729

and
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πj(AW,i, AW,j) =
4
(
4(5T ∗j + Tj)2 + (2T ∗i − 5Ti)2)

729 .

The welfare at the social optimum is

Wj(0, 0) = CSj(0) + πj(0, 0) ,

where
CSj(0) =

2(T ∗j + Tj)2

9
and

πj(0, 0) = 4
9
(
(T ∗j )2 + T 2

j

)
.

Letting
∆W1,j = Wj(AW,i, AW,j)−Wj(0, 0) ,

we have

∆W1,j =
2
(
9(T ∗j + 2Tj)2 − 8(2Ti + T ∗i )(7Ti − T ∗i )

)
729 .

Case Ia). When Ri 6= 1, and so Rj 6= 1,

∆W1,j = 2
729

(
9(Ri − 1)2(Rj + 2)2

(Rj − 1)2 + 8(Ri + 2)(Ri − 7)
)
.

Hence, depending on the ratios Ri and Rj , or the tax-free home production indexed Hi and j , the game
has three outcomes (see figure (3.1)): (1) If Ri = 1− β and Rj = 1 + β, with β close to 0, the game is
of Prisoner’s dilemma (PD) type; (2) If Ri is closer to 1 than Rj , the outcome is (LiWj); (3) If Rj is
closer to 1 than Ri the outcome is (LjWi) .

Case Ib). If Ri = 1 (equivalently Rj = 1), or Hi = 2/3 and Hj = 2/3, we have that Ti = T ∗i and
Tj = T ∗j . This means that the two countries have the same production costs ci = cj = c, and Ti = αi−c

2
and Tj = αj−c

2 . As before, we compute the welfare deltas

∆W1,i =
2(9T 2

i − 16T 2
j )

81 ,

∆W1,j =
2(9T 2

j − 16T 2
i )

81 .

So, we have that

∆W1,i > 0 iff 3/4Ti > Tj ,

∆W1,j > 0 iff Tj > 4/3Ti ,
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Hence, depending on Ti and Tj , the game has three outcomes: (1) if Ti is close to Tj , the game is of
Prisoner’s dilemma (PD) type; (2) when Ti is sufficiently larger than Tj , the outcome is (LiWj); (3)
when Tj is sufficiently larger than Ti, the outcome is (LjWi).

Recall that in this case countries have the same production costs, so their difference arises solely
from the demand intercepts. So equivalently, we have the following three cases: (1) if the two demand
intercepts of the two countries are similar, then the game is of Prisoner’s dilemma (PD) type; (2) when
the demand intercept αi of country Xi is sufficiently larger than the demand intercept αj of country
Xj , the outcome is (LiWj); (3) when the demand intercept αj of country Xj is sufficiently larger than
the demand intercept αi of country Xi, the outcome is (LjWi). The country with the greatest demand
intercept has greater market size since it has greater demand than the other country. So if countries have
similar demand intercepts and consequently similar market sizes then they are in a Prisoner’s dilemma
situation, otherwise the country with the greatest market size (i.e. greatest demand) will be harmed by
the enforcing of the social tariffs and the country will be benefited by such enforcement.

Case II. 2Tj < T ∗j < 5Tj/2. Equivalently, 2 < Rj < 5/2 or 4/5 < Hj < 5/6. In this case we also have
that T ∗i ≤ 2Ti, equivalently, Ri ≤ 2 or Hi ≤ 4/5. The Nash equilibrium is

(tNi (W ), tNj (W )) = (AW,i, AW,j) .

Hence, the welfare at the Nash equilibrium is the same as in case ia). The social optimum is

(tSi (W ), tSj (W )) = (0, BWS ,j) .

Since
BWS ,j < AW,j

is equivalent to
T ∗j < 5/2Tj

which is verified in this case, then

tSi (W ) 6= tNi (W ) and tSj (W ) 6= tNj (W ) .

The welfare at the social optimum is

Wj(0, BWS ,j) = CRj(BWS ,j) + CSj(BWS ,j) + πj(0, BWS ,j) ,

where
CRj(BWS ,j) = −

4(T ∗j − 2Tj)(2T ∗j − 5Tj)
3 ,

CSj(BWS ,j) = 2T 2
j

and

πj(0, BWS ,j) =
4
(
4(T ∗j − Tj)2 + T 2

i

)
9 .
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Letting

∆W2,i = Wi(AW,i, AW,j)−Wi(0, BWS ,j)

and
∆W2,j = Wj(AW,i, AW,j)−Wj(0, BWS ,j) .

We have

∆W2,i =
2
(
9(2Ti + T ∗i )2 − 160(2T ∗j − 5Tj)2)

729

∆W2,j =
16
(
18(2T ∗j − 5Tj)2 − (2Ti + T ∗i )(7Ti − T ∗i )

)
729 .

Hence,

∆W2,i = 2
729

(
9(Rj − 1)2(Ri + 2)2

(Ri − 1)2 − 160(2Rj − 5)2
)

∆W2,j = 16
729

(
18(Ri − 1)2(2Rj − 5)2

(Rj − 1)2 − (Ri + 2)(7−Ri)
)
.

Thus, depending on the ratios Ri and Rj , the game has three outcomes (see figure (3.1)): (i) For instance,
if Ri is close to 0 and Rj close to 2 the outcome is LjWi; (ii) For instance, if Ri is close to 0, but not
too close, and Rj is close to 2, but not too close, the game is of Prisoner’s dilemma (PD) type; (iii) For
the majority of values of Ri and Rj the outcome is LiWj .

Case III. 0 < 5Tj/2 ≤ T ∗j . Equivalently, Rj > 5/2 or 5/6 < Hj < 1. In this case we also have that
T ∗i ≤ 2Ti, equivalently, Ri ≤ 2 or Hi ≤ 4/5. The Nash equilibrium is

(tNi (W ), tNj (W )) = (AW,i, Tj) .

The social optimum is
(tSi (W ), tSj (W )) = (0, Tj) .

The Welfare at the Nash equilibrium is

Wj(AW,i, Tj) = CSj(Tj) + πj(AW,i, Tj) ,

where
CSj(Tj) =

(2T ∗j + Tj)2

18
and

πj(AW,i, Tj) =
81(2T ∗j + Tj)2 + 4(2T ∗i − 5Ti)2

729 .

The welfare at the social optimum is
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Wj(0, Tj) = CSj(Tj) + πj(0, Tj) ,

where

πj(0, Tj) =
(2T ∗j + Tj)2 + 4T 2

i

9 .

Furthermore, by definition of Nash equilibrium, clearly we have that

Wi(AW,i, Tj) > Wi(0, Tj) .

The fact that the social optimum is (0, Tj) together with this last inequality yields

Wj(AW,i, Tj) < Wj(0, Tj) .

Hence, in this case there is a unique social optimum that does not coincide with the Nash equilibrium.
Furthermore, the game is of the type LW. More precisely, the outcome is LiWj .

Case IV. 2Ti < T ∗i < 5Ti/2. This case is dual to case II.

Case V. 0 < 5Ti/2 ≤ T ∗i . This case is dual to case III.

3.5.2 Welfare game outcomes

Here, we present the regions where the outcomes are of type LiWj , PD and LjWi. We will analyse the
case 0 < Hi < 2/3 < Hj < 1, the other case is dual to this one. Observe that in the case we study, since
Hi is lower than Hj , country Xi has a higher decrease in home quantities when changing from maximal
tariffs to a tax-free situation. The corner point Hi = 2/3 and Hj = 2/3 was analysed separately before
(case Ib)). We summarize the game type obtained in table (3.4).

Welfares (Wi,Wj) of the countries

Condition Nash tariffs Social tariffs Game type

Hj ≥ 5/6 (AW,i, Tj) (0, Tj) LiWj

4/5 < Hj < 5/6 (AW,i, AW,j) (0, BWS ,j) LW or PD

Hj ≤ 4/5 (AW,i, AW,j) (0, 0) LW or PD

Table 3.4: Comparing welfares of the two countries with Nash tariffs and social tariffs where Hi and Hj

are the tax-free home production indexes satisfying 0 < Hi < 2/3 < Hj < 1.

For the welfare of the countries we found two thresholds for the tax-free home production index Hj :
the social monopoly-tax threshold 5/6 and the social tax-free threshold 4/5 (see figure (3.1)). For all
values of the tax-free home production indexes Hi and Hj , the firm Fi chooses the Nash tariff AW,i

and vanishes its tariff at the social equilibrium. In case III, when Hj ≥ 5/6, the game is of LiWj type
and the country Xj has a welfare gain. The country Xj applies the maximal tariff both at the Nash
and Social equilibria. When Hj < 5/6, the game has three outcomes: prisoner’s dilemma PD, and
lose-win LiWj and LjWi. In this case, firm Fj chooses the Nash tariff AW,j . Its social tariff is BWS ,j
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if 4/5 < Hj < 5/6, and it vanishes its tariff at the social equilibrium if 2/3 < Hj ≤ 4/5 (see table
(3.4)). We observe from figure (3.1) that in case II the majority of the parameter yields either a PD
or a LiWj type game, meaning that country Xj has a welfare gain, except for a very small parameter
region where country Xj has a welfare loss. In case I, the three game types may occur. When Hj gets
lower and closer to 2/3 (meaning that the tax-free home production of Xj gets lower in comparison to
the monopoly home quantity), it gets more likely that the game type is LjWi, with country Xj losing
welfare. For lower values of Hi, Hj doesn’t need to be so lower in order to have a LjWi type game, and
there is a threshold in Hi (approximately 0.2) such that the game is always of this type in case I.

Figure 3.1: The Welfare Game Type: Green - LjWi; Red - PD; Yellow - LiWj .

We have observed that BWS ,j < AW,j . So, we have that for both countries the social tariffs are
lower than the Nash tariffs, and they are lower or both countries except for the situation where one
of the countries plays its maximal tariff. So, any trade agreement that enforces the social tariffs will
therefore yield lower tariffs than the tariffs used at a competitive (Nash) equilibrium for at least one of
the countries. By direct inspection of the custom revenue, consumer surplus and profit functions, we find
that if the two countries decide to impose the social tariffs the following holds: a) the custom revenue of
country Xi vanishes, since his tariff vanishes at the social optimum, and in some situations (cases I and
III), it also vanishes for country Xj , since country Xj ’s social tariff is, respectively, 0 and the maximal
tariff. When it doesn’t vanish, which occurs only for values of Hj between the two thresholds, then the
its custom revenue may increase or decrease; b) the consumer surplus of the countries always increases;
and c) the profits may increase or decrease.
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3.6 Nash and social welfare shares

In absolute terms, if the countries decide to impose the social tariffs the following hold: a) the custom
revenue of country Xi vanishes, since his tariff vanishes at the social optimum, and in some situations it
also vanishes for country Xj . When it doesn’t vanish for country Xj , which occurs only for values of Hj

between the two thresholds, then it may increase or decrease; b) the consumer surplus of the countries
increases; and c) the profits may increase or decrease. However, perhaps more important than the
absolute value of gains or losses in these economic quantities are the relative shares of these quantities.
For instance, even if the consumer surplus always increases, the relative share of the consumer surplus
may change with the application of the social tariffs, thus resulting in a change in the balance between
the two countries, since a dominant country in one aspect may cease to be dominant with the social
tariffs. Because of this, in this section we will focus on the shares of the economic quantities considered
above.

In order to simplify the notation in the following, we will make the following convention: a superscript
N will denote evaluation at the Nash equilibrium tariffs, while a superscript S wil denote evaluation at
the social optimum tariffs. For instance, in the case of the welfare we will denote by WN

i = Wi(tNi , tNj )
the Nash equilibrium welfare, i.e., the welfare at the Nash equilibrium tariffs, and by WS

i = Wi(tSi , tSj )
the social optimum welfare, i.e., the welfare at the social optimum tariffs that maximize the joint welfare
of the two countries. Analogously, we will use the same notation to the other quantities, such as profits,
consumer surplus and custom revenue.

Using the previous notation, the joint Nash welfare is WN
T = WN

i +WN
j and the joint social welfare

is WS
T = WS

i +WS
j . The Nash welfare share and the social welfare share are

ShWN
j =

WN
j

WN
T

and ShWS
j =

WS
j

WS
T

.

So ShWN
i + ShWN

j = 1 and ShWS
i + ShWS

j = 1. The Nash-social welfare share difference is

∆ShWS
j = ShWN

j − ShWS
j ,

and so ShWN
j = ShWS

j + ∆ShWS
j , and ∆ShWj = −∆ShWi. The Nash-social welfare share difference

is very relevant to compare the relative advantage of one country over the other country between the
Nash and Social equilibria.

Similarly we define the Nash consumer surplus share and the Social Consumer surplus share

ShCSNj = CSNj /CS
N
T and ShCSSj = CSSj /CS

S
T .

Hence, the Nash-social consumer surplus share difference is

∆ShCSSj = ShCSNj − ShCSSj .

We also define the Nash profit share and the Social profit share

ShπNj = πNj /π
N
T and ShπSj = πSj /π

S
T .
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Hence, the Nash-social profit share difference is

∆ShπSj = ShπNj − ShπSj .

The Nash custom revenue share is defined by

ShCRNj = CRNj /CR
S
N .

We will not compute the Social custom revenue share since in the social tariffs this share is either
undefined, because both countries have zero custom revenue, or it is equal to 0 for one country and 1 for
the other country in the case when the tax-free home production index is between the two thresholds
we described above.

The Nash-social consumer surplus share difference and Nash-social profit share difference are also
very relevant to compare the relative advantage of one country over the other country between Nash
and Social equilibrium from the perspective of the consumer and of the firm. Therefore, we will present
in several figures the shares and the share differences of these relevant economical quantities to exhibit
their properties in terms of the tax free home production indices (Hi, Hj), for 0 ≤ Hi ≤ 2/3 ≤ Hj ≤ 1.
We will consider the case where Hi = 2/3 and Hj = 2/3 separately since the computations simplify
significantly and we are able to obtain workable and simple expressions for the shares.

Figure 3.2: Left: The Nash welfare share ShWN
j of country Xj . Right: The Social welfare share ShWS

j

of country Xj .

Figure 3.3: Left: The Nash profit share ShπNj of country Xj . Right: The Social profit share ShπSj of
country Xj .



98 Chapter 3. Nash and social tariffs impact in international trade

SPECIAL CASE: If Hi = 2/3 and Hj = 2/3 depending on Ti and Tj , then as we have seen previously
the game has three outcomes: (1) If Ti is close to Tj , the game is of Prisoner’s dilemma (PD) type; (2)
when Ti is sufficiently larger than Tj , the outcome is (LiWj); (3) when Tj is sufficiently larger than Ti,
the outcome is (LjWi).

The Nash and social Welfare shares are

ShWN
j =

63T 2
j + 2T 2

i

65(T 2
j + T 2

i ) and ShWS
j =

3T 2
j + T 2

i

4(T 2
j + T 2

i ) .

The Nash-social welfare share difference is

∆ShWj = 57(Tj − Ti)(Tj + Ti)
260(T 2

j + T 2
i ) .

The Nash and social profit shares are

ShπNj =
16T 2

j + T 2
i

17(T 2
j + T 2

i ) and ShπSj = 1
2 .

The Nash-social profit share difference is

∆Shπj = 15(Tj − Ti)(Tj + Ti)
34(T 2

j + T 2
i ) .

The Nash and social consumer surplus shares are

ShCSNj = ShCSSj =
T 2
j

T 2
j + T 2

i

.

The Nash custom revenue share is

ShCRNj =
T 2
j

T 2
j + T 2

i

.

The Nash and social welfare shares exhibit similar behaviours with both shares being higher for bigger
values of Tj . However, for the the Nash welfare share, its maximum value is 1, while for the social welfare
share, the maximum is 0.75. The Nash profit share is higher for bigger values of Tj and its maximum
value is 16/17. The social profit share is equal 1/2, meaning that at the social tariffs profit is evenly
split between the two firms. The Nash-social welfare share difference and the Nash-social profit share
difference are respectively between −50/260 and 50/260 (approximately 19%), and between −15/34 and
15/34 (approximately 44%). They are 0 along the line Ti = Tj , and when Ti > Tj , country Xi has a
positive share difference, while for Ti < Tj country Xj has a positive share difference. The Nash and
social consumer surplus shares are the same, and are equal to the Nash custom revenue share. These
shares are higher for bigger values of Tj and its maximum is 1.

In figures (3.2),(3.3),(3.4), we exhibit low values of Hi with the following properties: a) the Nash and
social welfares, profits, and consumer surpluses shares of country Xj are higher than 1/2; b) country Xj

is the looser in game type for low values of Hj and country Xi is the looser in game type for high values
of Hj . We exhibit high values of Hi with the following properties: a) the Nash and social welfares,
profits, and consumer surpluses shares of country Xi are higher than 1/2; b) country Xi is the loser.

The Nash and social welfare, profit and consumer surplus shares show similar qualitative features
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Figure 3.4: Left: The Nash Consumer Surplus share ShCSNj of country Xj . Right: The Social consumer
surplus share ShCSSj of country Xj .

Figure 3.5: Left: The Nash-social welfare share difference ∆ShWj of countryXj . Right: The Nash-social
profit share difference ∆Shπj of country Xj .

but significantly different quantitative properties (see figures (3.2),(3.3),(3.4). For all these shares: a)
for low values of Hi the shares are higher for country Xj ; b) for high values of Hi and high values of Hj ,
the shares are higher for country Xi; and c) for high values of Hi and low values of Hj , both cases occur.
The isocurves of equal share (0.5) are close to segment lines starting at point (2/3, 2/3) but finishing
at different points: for the Nash welfare, it finishes close to the point (2/3, 1); for the social welfare, it
finishes close to the point (0.5, 1); for the Nash consumer surplus, it finishes close to the point (0.2, 1);
for the social consumer surplus, it finishes close to the point (0, 1); for the Nash profits, it finishes close
to the point (0.5, 1). For the custom revenue the situation is different, as the isocurve is not close to
being a straight line and it finishes at point (0, 7/9). The social profit share of country Xj is always
at least 0.5, attaining its minimum 0.5 at the segment lines Hi = 2/3 and Hj = 2/3, and attaining its
maximum 1 at the segment line with endpoints (0, 5/6) and (0, 1).

The Nash-social welfare share difference and the Nash-social profit share difference show similar
qualitative features but significantly different quantitative properties (see figure (3.5)). All the isocurves
(0) corresponding to equal Nash and social shares are in the prisoner’s dilemma region or close to it and
start at the point (2/3, 2/3). However, the Nash-social welfare share difference isocurve (0) finishes close
to (0, 0.81), more precisely, between 0.81 and 0.815, and the Nash-social profit share difference isocurve
(0) finishes close to (0, 5/6). The Nash-social welfare share difference varies approximately between
−0, 25 and 0, 25, and the Nash-social profit share difference varies approximately between −0, 5 and 0, 5.
The Nash-social consumer surplus share difference is qualitatively different from the previous two share
differences since it is always positive. The Nash-social consumer surplus share difference for country Xj
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Figure 3.6: Left: The Nash custom revenue share ShCRNj of country Xj . Right: The Nash-social
consumer surplus share difference ∆ShCSj of country Xj .

varies approximately between 0 and 0, 15. The LjWi and the prisoner’s dilemma PD regions can be
noticed as corresponding to lower values of the Nash-social consumer surplus share difference for country
Xj (see figure (3.6)).

3.7 Welfare balanced international trade agreements

In this section we indicate some of the positive and negative externalities of a welfare balanced interna-
tional trade agreement between the two countries.

Let ∆WT be the difference between the joint welfare computed at the social equilibrium and the
joint welfare at the Nash equilibrium

∆WT = WS
T −WN

T .

A γ-trade agreement determines the following γ-payoffs Vi and Vj for the countries Xi and Xj :

Vi = WN
i + γ∆WT

Vj = WN
j + (1− γ)∆WT .

where γ is the countries’ bargaining power index and ∆WT is the trade agreement welfare gain.
Let the trade agreement index be

g = g(Hi, Hj) = WS
T

WN
T

.

For the welfare balanced bargaining power index

γN = WN
i

WN
T

,

the γN -payoffs of the welfare balanced trade agreement are

V Ni = gWN
i

V Nj = gWN
j .
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Figure 3.7: The Nash share isocurves and the social share isocurves (0.5) and the share difference
isocurves (1) for welfare, profit, consumer surplus and custom revenue.

The total welfare of the trade agreement is the total social welfare:

V Ni + V Nj = WS
T .

The compensations of the trade agreement in units of the welfare of the trade agreement, i.e., in total
social welfare units, are the share differences

V Ni −WS
i

WS
T

= ∆ShWi ,
V Nj −WS

j

WS
T

= ∆ShWj .

The welfare balanced trade agreement has two sides: a) the two countries impose the welfare social
tariffs; b) the two countries attain the joint welfare at the social optimum that is g > 1 times higher
than the joint Nash equilibrium welfare, and the joint social welfare is split in a way such that both
countries keep the same welfare shares that they had at the Nash equilibrium. Thus, the country with
positive Nash-social welfare share difference must be indemnified by the other country and the amount
of this compensation in units of the total welfare of the trade agreement (i.e., in units of joint social
welfare) is determined exactly by the Nash-social welfare share difference.

The two countries enforce the social tariffs, so each country obtains the social profits, consumer
surplus and custom revenue. This may cause some collateral effects in the economy of the countries. For
instance, its produced quantities may change so that one of the countries is no longer the dominant force
in terms of output. This influences other relevant economic quantities such as profits, consumer surplus
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and custom revenue. These effects, that we may call the externalities of the trade agreement, are decisive
to whether or not the country signs the trade agreement, in the sense that the country may consider that
the welfare compensation stated above is not sufficient to outweigh such collateral effects. Possible effects
might include, for instance, unemployment raise in the country due to a decrease in production, and a
subsequent wave of migration from that country to the other, or the effect of a decrease in the profits of
firms, that may cause firms to invest abroad, also possibly triggering the problem of unemployment in
the home country. Other consequences may be a fall of the consumer’s surplus of one country relative to
the other country, and a fall in revenues from using tariffs. Countries may try to mitigate and overcome
these difficulties by including other features (that we do not explore in this work) in the trade agreement
apart from the welfare compensation. For example, these features may be financing to the industry of
the impaired country; R&D exchange between countries; compensation and investment in other sectors
of the economy of the impaired country; etc..

In light of this, we identify and analyse parameter regions where these difficulties occur. More
precisely, these are the regions where the relevant economics we have considered above, such as profits,
consumer surplus and custom revenue are such that the social shares are higher for one country while the
Nash shares are higher for the other country. When this occurs, then there is a change in the dominant
force with respect to that economic quantity, and these externalities are a disincentive for that country
to sign the trade agreement, and might cause that country to not sign it, even in situations where he is
compensated in welfare by the other country as ruled by the welfare balanced trade agreement. Other
situations that may occur is that one of the countries may have a benefit in some economic quantity
when the social tariffs are put into practice, but simultaneously have to to indemnify the other country.
Thus, the country must perform a thorough analysis of the consequences to know if that benefit is worthy
while compared to the obligation of compensating the other country.

In figure (3.7) we plot all the isocurves for the share differences (0), the Nash shares and the social
shares (0.5). The violet region is delimited by the isocurve of the Nash custom revenue share. The
blue region is delimited from the grey region by the isocurve of the Nash-social welfare share difference,
and the grey region is delimited from the yellow region by the isocurve of the Nash-social profit share
difference. From the yellow region we have the brown, cyan, black, pink and orange regions which are
respectively delimited by: the isocurve of the social consumer surplus share; the isocurve of the Nash
consumer surplus share; the isocurve of the Nash welfare share; the isocurve of the Nash profit share;
the isocurve of the social welfare share.

The relation of the isocurves with the frontiers of the LW and PD regions presented in figure (3.1) is
relatively complex. The violet and blue regions are completely contained in the union of the LiWj and
PD regions. The grey region intersects the three game type regions. The PD region is not contained in
the grey region and below. In figure (3.8), we represent the decomposition of the PD region according
to the violet, blue and grey regions, and in red is the portion of the PD that lies outside of the union
of the violet, blue and grey regions. The upper frontier of the PD region enters through the grey region
and finishes just above the frontier between the blue and grey regions. It always remains above the blue
region since the blue region never intercepts the LiWj region. Also, the violet region is almost totally
inside the LjWi region, except for a small portion that is of PD type, as represented in the left figure.
Regarding the other regions, we first observe that the brown, cyan, black, pink and orange regions do
not intercept the LiWj regions. This means that in these regions, country Xi is always a winner in
terms of absolute welfare. They do intercept the PD regions, although the parameter region for which
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Figure 3.8: Left: The decomposition of the PD region according to the violet, blue and grey regions;
Right: In red, the portion of the brown, cyan, black, pink and orange regions that intersects the PD
region.

this occurs is very small, as we show in figure (3.8).

Since the trade agreement is based on the welfare of the two countries, we start by analysing the
welfare. The Nash welfare share of country Xj is higher than that of Xi in and below the cyan region.
The social welfare share is higher for country Xj except in the orange region. The Nash-social welfare
share difference of country Xj is negative above the union of the violet and blue regions. Hence, in this
region, by the welfare balanced trade agreement, country Xj must compensate Xi, but since the welfare
balanced trade agreement maintains the Nash welfare share, he still has higher welfare share up to the
cyan region. In the union of the black, pink and orange regions country Xi is compensated and retains
its higher welfare share. The advantage of the welfare balanced trade agreement is that country Xi

remains with a higher welfare share not only in the orange region but also in the pink and black regions
where he had a higher Nash welfare share, but a lower social welfare share. In and below the blue region,
country Xj has a positive Nash-social profit share difference and so is compensated by Xi and he has
a higher welfare share. When the game type is LiWj or LjWi the country that has a loss in absolute
welfare also has a loss in share and so is compensated by the other country in the welfare balanced
trade agreement. When the game type is PD, so that both countries have an absolute gain, then the
Nash-social share difference can be positive or negative, so country Xj may be asked to indemnify Xi

or may be indemnified by Xi.

Regarding the custom revenue isocurves, we have that in the violet region country Xj has a higher
Nash custom revenue share than country Xi. At the social optimum, country Xi always gives up its
custom revenue in favour of going tax-free, which improves its consumer surplus in absolute terms, and
in terms of share as we will see below. Country Xj does not apply tariffs in the region below the social
tax-free threshold, but prefers to apply the maximal tax in the region above the social monopoly-tax
threshold not allowing Xi to export both at the Nash and at the social optimum. It makes its tariff
move from 0 to the maximal tariff in between these two regions, with this being the only region where
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there is a positive custom revenue at the social optimum for one of the countries, in the case, country
Xj (and his share is 1). As a result, for values of Hj between these two thresholds, county Xj has some
positive revenue, which may be important for his decision of signing or not the trade agreement, since it
may be seen as an advantage against, for instance, the compensation that he must do to other country,
which occurs outside the blue region, or the loss in share profit that occurs in the grey region, or in the
brown region where his Nash consumer surplus share is higher than Xi’s, but his social share is not. As
noted before, the violet region is contained in the union of the LjWi and PD regions, so, in absolute
terms regarding welfare, country Xi is a winner, or equivalently, in the LiWj region, country Xj has a
lower Nash custom revenue share. We observe that it is possible for country Xj to have a lower share
within the LjWi region.

The Nash consumer surplus share of country Xj is higher than that of country Xi in and below the
brown region. The Social consumer surplus share of country Xj is higher than that of Xi in and below
the yellow region. We have observed previously that the consumer surplus increases for both countries
when the social tariffs are applied. In spite of this increase in absolute terms, the Nash-social consumer
surplus share difference of country Xj is always positive (see figure (3.6)), meaning that his share of
consumer surplus at the Nash equilibrium is bigger than at the social optimum. This loss is, at most,
approximately 0.14. This occurs mainly because country Xj exports more, since country Xi is tax-free
at the social optimum, increasing the consumer surplus of Xi. Country Xi also exports more to Xj since
the tariffs are lowered, but Xj only goes tax free for Hj below the tax-free threshold, so his consumer
consumer surplus also increases, but his share diminishes.

For regions above the brown, country Xj already has a lower share than Xi at the Nash equilibrium,
and will get an even lower share with the trade agreement. In the brown region, Xj has a higher share
at the Nash equilibrium, but no longer has advantage at the social optimum. In the yellow regions and
below, country Xj has a bigger share at the Nash equilibrium, and in spite of the loss in share, he still
has a higher social share. In the regions where Xj has a lower social share, that is, in and above the
brown regions, the trade agreement rules that he indemnifies Xi. This might be a difficulty for country
Xj , that might have to use his custom revenue (that is positive for Hj between the two thresholds as
we noted above), or somehow use the increase in the profits share in these regions (which occurs since
they lie above the grey region), possibly through taxation, as well the fact that its firm always has the
most part of the joint profits of the two countries at the social optimum.

Regarding this last observation, we now analyse the profits shares. The Nash profit share of the
country Xj is higher than that of country Xi in and below the black region and it is lower in the union
of the pink and orange regions. The social profit share of country Xj is always bigger for country Xj

(see figure (3.3)). The Nash-social profit share difference of country Xj is always negative above the grey
region, so the profit share increases with the use of social tariffs. For this region the game type is LiWj

except for the small red region in figure (3.8) where the game type is PD, so Xj always has a gain in
absolute welfare. In these regions the trade agreement presents an advantage for the firm of country Xj ,
since it increases its profit share. In the yellow, brown, cyan and black regions, country Xj has a higher
profit share and reinforces its position with the trade agreement, getting a higher share. The advantage
for the firm is also evident in the pink and orange regions, where the firm of Xj is not the dominant
firm in terms of Nash profit share, but does become dominant with the trade agreement. However, in
these regions, country Xj has to compensate country Xi according to the trade agreement. Because
of this, country might have to impose taxes on the profits of the firms to fulfil the trade agreement.
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In the yellow, brown and cyan regions, after the compensation, Xj has a higher welfare share. In the
black, pink and orange regions, he has no that advantage in welfare share. In and below the grey region,
country Xj has a decrease in profit share, but always has a higher social share. In the blue and violet
regions country Xj is indemnified by country Xi. This compensation may be used by the country to
compensate the loss of the profit share of its firm by investing in it. In the grey region, the opposite
occurs, and country Xj has to indemnify Xi. In this case he may need to use its custom revenue, or tax
the profits to indemnify Xi. This might prove difficult for the country since in the grey region the firm
faces a decline in its profit share (although he is still the dominant firm).

We observe that in the LjWi region, meaning that country Xj is a loser in absolute terms, he has
a higher Nash welfare, profit and consumer surplus shares. In fact, this occurs for a wider region, since
when country Xj is indemnified by Xi (which occurs below the blue region), he has an advantage in
Nash shares in all these quantities: welfare, profits and consumer surplus. In these regions, country Xj

also has a higher social profit and consumer surplus shares, so, with the use of the social tariffs, he also
is the dominating country in consumer surplus and has the dominating firm. If the trade agreement is
not balanced and just applies the social tariffs, he would remain as the dominating country in terms of
welfare, since his social welfare share is higher than Xi’s in this region. Hence, country Xi (which is
the country with greatest decline in home production in a tax-free situation, since Hi is lower than Xj)
can’t simultaneously be a winner and have higher shares. This advantage of Xj in all shares occurs up
to the frontier of yellow and brown regions. But when the game type is LiWj then the Nash and social
welfare, consumer surplus shares, and the Nash profit share of country Xj may be higher or lower than
the ones of Xi. These shares are higher for Xi for higher values of Hi and lower when Hi is lower. When
Hj increases, then Hi does not need to be so high in order to assure higher shares for country Xi. For
the Nash custom revenue share the situation is different, since in the LjWi and PD regions country Xi

can have a higher share than country Xj . However, in the LiWj region, he always has the lower Nash
custom revenue share.

If the Nash-social welfare share difference or the Nash-social consumer surplus share difference or
the Nash-social profit share difference is large then the countries have to be very careful in making
a trade agreement because small differences in the trade agreement can mean significant social and
economic changes for the countries. For values of (Hi, Hj) in the prisoner’s dilemma region or close
to the prisoner’s dilemma region, the Nash-social welfare share difference, the Nash-social consumer
surplus share difference and the Nash-social profit share difference have lower values than away from the
prisoner’s dilemma region (see figures (3.5), (3.6)). When Hj gets closer to 2/3 the welfare compensation
that Xi has to give to Xj gets higher, making the agreement more risky for Xj . We note that one of
the countries might have to pay up to 25% of the joint social welfare to the other government, making
the agreement very relevant and difficult to establish.

By plotting the values of the trade agreement index g we see that it attains lower values for values of
(Hi, Hj) in the prisoner’s dilemma region or close to the prisoner’s dilemma region and it attains higher
values away from the prisoner’s dilemma region (see figure (3.9)). The trade agreement index attains
its maximum (approximately 1.22) near the point (0.37, 1). Hence, in the region where the game is of
prisoner’s dilemma type, or where it is close to prisoner’s dilemma, albeit all difficulties that may arise
to achieve a welfare balanced trade agreement, the gain will be lower than in other regions away from
the prisoner’s dilemma region. Furthermore, in most part of the union of the violet and blue regions
(i.e., the region where country Xj is indemnified in its welfare by country Xi) country Xj is also the
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Figure 3.9: The Trade Agreement Index g.

loser, so that he might get greedy (and even more greedy in the violet region because of its higher Nash
custom revenue share) and prefer a bargaining power index that is more favourable to him, i.e., a γ
smaller than g, rendering the welfare balanced trade agreement unstable. However, when Hj gets closer
to 2/3, the value of g can increase slightly, thus improving the advantage of the agreement and perhaps
work as an incentive to its enforcement.

3.8 Conclusions

We have considered an international trade model with two countries, where the governments of each
country choose whether or not to impose tariffs in the import. We have considered a two-stage game,
where in the first stage, governments choose their tariffs and in the second stage, firms in each country
competitively choose their home and export quantities. For every pair of tariffs, we found the Nash
equilibria for the second sub-game. For the first sub-game the governments can choose competitive
(Nash) tariffs or social (cooperative) tariffs. We considered different economic quantities as the utility
of the governments, namely, total quantities in the market of a country, total quantities produced by
the firms, prices, profits of the firms, consumer’s savings, custom revenues of the countries and the
welfare of the countries. For each utility we have classified the game according to the social and Nash
tariffs of the governments. For the welfare of the countries we proved that the outcome of the game
is either a prisoner’s dilemma or a lose-win dilemma. This classification for the different utilities and
for the welfare suggests where the difficulties in establishing trade agreements may appear, since in
a loose-win dilemma the losing country has to be somehow compensated by means of clauses in trade
agreement in order to accept the enforcement of the social tariffs. Furthermore, a trade agreement might
present some externalities that need to be considered. We considered a welfare balanced trade agreement
between the two countries, where each countries maintains its competitive (Nash) shares when the social
tariffs are enforced. The gain of each country is proportional to the trade agreement index that we



3.8. Conclusions 107

have explicitly computed and analysed. Even with a welfare balanced trade agreement, some important
negative externalities arise, related to the productive capacity of the country, whether in profits or
quantities produced, or in the consumer surplus. We discussed some of these negative externalities that
present major difficulties for the establishment of the welfare balanced trade agreement by both parties,
and the parameter regions where they occur. Regarding the externalities, the following questions, among
others, can be raised about the trade agreement: a) what additional measures should be part of the trade
agreement to mitigate the negative externalities of the country that has a decrease in his production
and/or the profits of his firm, his custom revenue or the surplus of his consumers. These measures may
include: R&D swap between both countries, financing to industry and financing in other economical
sectors, among others. We note that countries that can make balanced trade agreements in more than
one sector such that the total compensation of the agreements is not relevant might be in a better
position to negotiate; b) what additional measures should be part of the trade agreement to force both
countries to agree to set the social tariffs in such a way that the agreement is theoretically durable and
sustainable in time, preferably rendering it self-enforcing.

Future work can consist for instance in introducing some of the features mentioned above, such
as studying conditions for the self-enforcing the agreement, ideally rendering it durable and stable in
time, to study the effects of the swap of R&D between the two firms to decrease their production costs,
or to include the effects of subsidies, fines, price dumping and merging and shut-down of firms. The
inclusion of one or more of these features into the trade agreement may be a way to overcome some of
the externality effects that may arise.
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Chapter 4

The fundamental bifurcation for
evolutionary matrix models with
multiple traits

This chapter is based on the joint work:
J. M. Cushing, A. A. Pinto F. Martins, and A. Veprauskas. A bifurcation theorem for evolutionary

matrix models with multiple traits. The Journal of Mathematical Biology, 75(2):491–520, August 2017.

In this chapter we consider an evolutionary game theoretic version of a general nonlinear matrix model
that includes the dynamics of a vector of mean phenotypic traits subject to natural selection. We prove a
fundamental bifurcation theorem for this evolutionary model when the projection matrix is primitive by
showing the existence of a continuum of positive equilibria that bifurcates from the extinction equilibrium
as the inherent population growth rate passes through 1, in which case the extinction equilibrium loses
stability. We also study the stability of the bifurcating equilibria by relating it to the direction of the
bifurcation, which is forward (backward) if, near the bifurcation point, the positive equilibria exist for
inherent growth rates greater (less) than 1. We obtain that forward bifurcations are stable whereas
backward bifurcations are unstable. We apply the results to an evolutionary version of a modified
Ricker model with an added Allee component. This application illustrates the theoretical results and,
in addition, several other interesting dynamic phenomena, such as period-doubling bifurcations, and
backward bifurcation induced strong Allee effects, i.e. coexistence of a stable extinction equilibrium with
a stable positive (survival) equilibria attractor or with positive (survival) non-equilibrium attractors such
as cycles or more complicated attractors.

This chapter is structured in the following way. We start by discussing the problem in the non-
evolutionary setting in section 4.1. We provide the results regarding the fundamental bifurcation of
the model in this setting. In section 4.2 we describe the evolutionary model. We then study the
stability of the extinction equilibrium in section 4.3 and in Section 4.4 we determine the nature of the
fundamental bifurcation, i.e. the bifurcation that occurs when extinction stability is lost. In Section
4.5 an application is made to an evolutionary version of a modified Ricker model with an added Allee
component (low density positive feedback effect). We finish with some concluding remarks in section
4.6.
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4.1 A bifurcation theorem for the non-evolutionary matrix model.

We consider a discrete time model

x̂(t+ 1) = P (x̂(t))x̂(t), t ∈ N0 = {0, 1, 2, . . .} (4.1)

for the dynamics of a biological population whose individuals are classified into a finite number of discrete
classes. Here x̂ : N0 → Rm+ is a sequence of m-dimensional column vectors consisting of class specific
population densities, where Rm+ is the closure of the positive cone Rm+ in m-dimensional Euclidean space
Rm. Recursive formulas (4.1), called matrix models, are widely utilized to describe the dynamics of
populations in which individuals are classified according to age, size, life cycle stage, spatial location,
genetic composition, etc., indeed virtually any classification scheme of interest [19, 23].

The entries pij(x̂) of the projection matrix P (x̂) are chosen by a modeller to describe class-specific,
per capita (individual) birth and survival rates and to account for transitions of individuals from one
class to another. As indicated, these entries can be dependent on the densities in the demographic
vector x̂, dependencies that make the dynamic model nonlinear. Classic examples of matrix models for
structured population dynamics include the age, size, and stage structured models of Leslie and Lewis
[60, 61, 63], Usher [98], and Lefkovitch [59].

Of fundamental importance to a biological population is its avoidance of extinction. We refer to
the equilibrium x̂ = 0̂ solution of (4.1) as the extinction equilibrium. If the extinction equilibrium is an
attractor, then the population is threatened with extinction. This leads to the study of the stability
properties (local and global) of the extinction equilibrium. An equilibrium x̂ is locally stable if given any
ε > 0 there exists a δ > 0 such that for any initial condition satisfying |x̂ (0)− x̂| < δ it follows that the
solution satisfies |x̂ (t)− x̂| < ε for all t ∈ N0. An equilibrium is a local attractor if there exists a δ0 > 0
such that |x̂ (0)− x̂| < δ implies limt→+∞ x̂ (t) = x̂. An equilibrium is locally asymptotically stable if it
is both locally stable and a local attractor. Throughout this chapter, stable (or stability) means local
asymptotically stable (or local asymptotic stability). Unstable means not locally asymptotically stable.
The linearisation principle [37] leads one to consider the eigenvalues of the Jacobian obtained from (4.1)
evaluated at the extinction equilibrium, which is the inherent projection matrix P (0̂) (inherent means
density free). If all eigenvalues of P (0̂) lie in the complex unit circle, then the extinction equilibrium is
locally asymptotically stable, which threatens the model population with (asymptotic) extinction. If at
least one eigenvalue is outside the complex unit circle, then the extinction equilibrium is unstable, which
opens the possibility of population persistence. The nature of the bifurcation that occurs when the
extinction equilibrium loses stability forms a fundamental bifurcation theorem in population dynamics.
We describe this theorem below (Theorem 4.1). For a good introduction to bifurcation theory with
applications, and also a description of some usual methods used in the theory, such as the Lyapunov-
Schmidt method that we will make use of in our main results, we refer the interested reader to [52].

We make the following assumptions on the entries pij(x̂) in the projection matrix P (x̂). Let Ω ⊆ Rm

denote an open neighbourhood of 0̂ ∈ Rm and C2(Ω → R+) denote the set of twice continuously
differentiable functions that map Ω to R+.

H1: P (x̂) = [pij (x̂)] is primitive for all x̂ ∈ Ω and pij ∈ C2(Ω→ R+).

Recall that a nonnegative matrix (i.e. one all of whose entries are nonnegative) is primitive if it is
irreducible and has a strictly dominant eigenvalue. Another common definition of primitivity is that there
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is a power of the matrix such that all its entries are positive. Perron-Frobenius theory implies that the
spectral radius ρ [A] of a primitive matrix A is a strictly dominant, positive and simple eigenvalue which
possesses a positive eigenvector in Rm+ . Moreover, no other eigenvalue has a nonnegative eigenvector,
i.e. an eigenvector in Rm+ . See [12]. We denote the strictly dominant eigenvalue of P (x̂) by

r(x̂) := ρ [P (x̂)] .

Observe that r (·) ∈ C2(Ω → R1
+). The number r(0̂) is the inherent growth rate of the population (the

growth rate in the absence of density effects). For notational simplicity we denote this number by

r0 := r(0̂).

For our purposes, we normalize the entries of P in a way that

P (x̂) = r0Q(x̂)

where the normalized matrix Q (x̂) = [qij (x̂)] satisfies H1 and

ρ[Q(0̂)] = 1.

Then the matrix equation (4.1) becomes

x̂(t+ 1) = r0Q(x̂(t))x̂(t), t ∈ N0. (4.2)

We denote the entries of the matrix Q(x̂) by qij(x̂).

Definition 4.1. We say that a pair (r0, x̂) ∈ R × Ω is an equilibrium pair of (4.2) (or equivalently of
(4.1)) if x̂ = r0Q(x̂)x̂. Observe that (r0, 0̂) is an equilibrium pair for every r0 ∈ R; we call (r0, 0̂) an
extinction equilibrium pair. An equilibrium pair (r0, x̂) is a positive equilibrium pair if x̂ ∈ Rm+ and it is
stable if x̂ is a locally asymptotically stable equilibrium of (4.2) (equivalently (4.1)).

We need the quantity
κ := −ŵTL

[
∇0
x̂q
T
ijŵR

]
ŵR

where T denotes transposition, the gradient ∇x̂ of qij(x̂) with respect to x̂ is a column m-vector, and
∇0
x̂q
T
ij denotes the transpose of the gradient evaluated at the bifurcation point (r0, x̂) = (1, 0̂). With this

superscript notational convention, we can equivalently write

κ = −ŵTL
[
∇0
x̂p
T
ijŵR

]
ŵR. (4.3)

Here the vectors ŵTL and ŵR are the (positive) left and right eigenvectors of Q(0̂) (equivalently of P (0̂)
when r0 = 1) associated with eigenvalue 1, normalized so that

ŵTL ŵR = 1.

Note that [∇0
x̂p
T
ijŵR] is an m ×m matrix. The derivative ∂0

xk
pij measures the effect that an increase

in the density of class k has on the entry pij of the population projection matrix P (at low population
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density). The number ŵTL
[
∇0
x̂p
T
ijŵR

]
ŵR is a weighted sum (with positive coefficients) of all density

effects on all entries pij . This number therefore represents a summary measure of the effects that (low
level) class densities has on the population (as does κ, the minus sign being introduced only for notational
convenience in Theorem 4.1.)

From the linearisation principle and from Theorems 1.2.4 and 1.2.5 in [23] we have the following
result.

Theorem 4.1. Assume the matrix P (x̂) in (4.1) satisfies H1.
(a) The extinction equilibrium (r0, 0̂) is stable for r0 < 1 and is unstable for r0 > 1.
(b) There exists a continuum C of positive equilibrium pairs (r0, x̂) ∈ R+×Rm+ of the matrix equation

(4.1) which bifurcates from (1, 0̂) (i.e. contains the extinction pair (1, 0̂) in its closure). Near the
bifurcation point, the positive equilibrium pairs on C have the parameterization

x̂(ε) = ŵRε+O(ε2)

r∗0(ε) = 1 + κε+O(ε2)

for ε ' 0.
(c) We say the bifurcation of positive equilibria is forward (respectively, backward) if, in a neighbour-

hood of (1, 0̂), the positive equilibrium pairs on C are such that r0 > 1 (respectively, r0 < 1). If κ > 0
then the bifurcation of C at (1, 0̂) is forward and the equilibrium pairs on C in a neighbourhood of (1, 0̂)
are (locally asymptotically) stable. If κ < 0 then the bifurcation is backward and the equilibrium pairs
on C in a neighbourhood of (1, 0̂) are unstable.

Note how, in this Theorem, the direction of the bifurcation determines the stability of the bifur-
cating equilibria. A forward bifurcation, occurring when the extinction equilibrium loses its stability
as r0 increases through 1 (removing the threat of extinction), creates stable positive (non-extinction)
equilibrium states.

Theorem 4.1 asserts stability or instability of the bifurcating positive equilibria C locally only, i.e. for
equilibrium pairs on C near the extinction equilibrium (1, 0̂) only. However, the continuum C is known
to exist globally in the sense that it connects to the boundary of the set on which the matrix model is
defined, i.e., it connects to the set {+∞}× (∂Ω ∩ Rm+ ), where ∂Ω denotes the boundary of Ω . In most
applications, Ω includes the closure Rm+ of the positive cone, which implies that either the component r0

is unbounded or the norm |x̂| is unbounded in R+ (or both). When r0 is unbounded we have that there
is at least one non-extinction equilibrium for each r0 > 1 [23, 28].

A derivative ∂xk
pij is often negative in population models because of an assumption that an increase

in density xk will have a deleterious effect on some vital rate (birth rate, survival probability, growth rate,
metabolic rates, and so on). These kinds of negative feedback phenomena are common in population
models that describe density regulation mechanisms for population growth. If all the derivatives ∂0

xk
pij

are negative (or zero), that is to say, if all density effects in a model are negative feedback effects, then
clearly κ > 0 and the bifurcation of the continuum C is forward and hence stable.

A positive derivative ∂0
xk
pij is called a component Allee effect [22]. Clearly, the existence of a com-

ponent Allee effect is necessary for a backward bifurcation (i.e. for κ < 0). If all component Allee
effects are sufficiently large so that κ < 0, then the bifurcation of positive equilibria at (1, 0̂) is backward
and hence unstable. A common occurrence in this case is the creation of a strong Allee effect, i.e. the
presence of two attractors, one of which is an extinction equilibrium and the other of which is positive.
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Thus, population survival is initial condition dependent. This scenario can only occur when r0 < 1 and
the extinction equilibrium is stable. A backward bifurcation does not create a stable positive equilibrium,
however. A strong Allee effect usually arises in models with backward bifurcations. This is because it
is usually assumed that negative feedback effects predominate at high densities (even if they do not at
low densities) which has the consequence of “turning” the continuum C around at a critical (saddle-node
bifurcation) value of r0 < 1 with a concomitant stabilization of the positive equilibria. We will not
pursue this phenomena here, which occurs outside a neighbourhood of the bifurcation point. See [26].

In the matrix model (4.1), the vital rates and transitions modelled by the entries pij(x̂) of the pro-
jection matrix P (x̂) change temporally only due to changes in the demographic vector x̂ = x̂(t). There
are, of course, numerous other reasons why these vital rates and transitions might change in time, for
example, they might fluctuate randomly due to demographic or environmental stochasticity or periodi-
cally due to regular environmental oscillations (seasonal, monthly or daily fluctuations). Another reason
these vital rates and transitions might change in time is that they are subject to selective pressures from
Darwinian evolution. Our goal in this chapter is to investigate an extension of the fundamental bifur-
cation theorem for the non-evolutionary model (4.1), as given in theorem 4.1 above, to an evolutionary
game theoretic version of (4.1). modelling the dynamics of natural selection from Darwinian evolution.

More precisely we extend the fundamental bifurcation Theorem 4.1 to an evolutionary version of the
matrix model (4.2) under the assumption that the projection matrix depends on a suite of phenotypic
traits subject to natural selection. This generalizes the results in [24] where models with only a single
trait are considered.

4.2 Darwinian dynamics with multiple evolutionary traits

We consider an evolutionary version of the matrix model (4.1) developed in [100]. In that modeling
methodology a (focal) individual’s vital rates, as described by the entries of the projection matrix,
are influenced by a collection of scalar traits v̂ = (v1, . . . , vn)T and the population means of these
traits û = (u1, . . . , un)T . By this assumption, an individual’s fitness depends on both its own suite of
traits v̂ and the traits possessed by other individuals in the population û (frequency dependence). We
indicate this by the notation P (x̂, û, v̂), which in turn implies that the spectral radius of P (x̂, û, v̂) is
also dependent on v̂ and û:

r(x̂, û, v̂) := ρ[P (x̂, û, v̂)].

Darwinian dynamics track the dynamics of the structured population x̂(t) and the vector of population
mean traits û (t) = (u1(t), . . . , un(t))T , the latter by means of the assumption that changes in the mean
trait are proportional to the fitness gradient of the focal individual [1, 31, 2, 57, 58, 73, 100]. We extend
the resulting evolutionary matrix model, as found in [100], to include a vector of traits v̂ = (v1, . . . , vn)T .
Different fitness functions can be found throughout the literature, but the most common choice is the
exponential growth rate ln r [83].

Another choice used by some researchers is the net reproduction number R0(x̂, û, v̂), which is widely
used in epidemiological models. In many applications it is quite common that the net reproduction
number is easier to compute than the inherent growth rate and that there are tractable analytical
formulas for R0 in terms of the entries of the projection matrix, which is not always the case for r.
However, for the net reproduction number to be well defined some extra condition must be imposed in
the model. In this work we will use the inherent growth rate r(x̂, û, v̂), but by the results in [25], our
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results remain unchanged if, when the net reproduction number is well-defined, r(x̂, û, v̂) is replaced by
R0(x̂, û, v̂).

The model equations for the coupled population and trait dynamics provided by evolutionary game
theory are [73, 100]

x̂(t+ 1) = P (x̂, û, v̂)|
(x̂,û,v̂)=(x̂(t),û(t),û(t))

x̂(t) (4.4)

û(t+ 1) = û(t) +M ∇v̂ ln r(x̂, û, v̂)|(x̂,û,v̂)=(x̂(t),û(t),û(t)) (4.5)

where M = (σij) is a symmetric n × n variance-covariance matrix for trait evolution and the gradient
∇v̂ ln r(x̂, û, v̂) is a column n-vector, whose ith entry is

∂
vi

ln r(x̂, û, v̂) := ∂ ln r(x̂, û, v̂)
∂vi

.

The entry σij of M , i 6= j, is the covariance of the ith phenotypic trait and the jth phenotypic trait.
The diagonal entries

σ2
i := σii ≥ 0

are the variances of the ith trait (from its mean ui) occurring in the population at each time t (which
are assumed constant). We assume the usual conditions for a covariance matrix, namely that M is
positive semi-definite and symmetric. Recall that M is a positive semi-definite matrix if v̂TMv̂ ≥ 0 for
all v̂ ∈ Rm, and that M is symmetric if σij = σji for all 1 ≤ i, j ≤ m. If the matrix M is the null
matrix, then no evolution occurs and û(t) remains constant for all t. In this case Theorem 4.1 holds
when applied to (4.4) with the mean trait û(t) ≡ û(0) held fixed.

We write (4.4) and (4.5) as

x̂(t+ 1) = P (x̂(t), û(t), û(t))x̂(t) (4.6a)

û(t+ 1) = û(t) +M ∇v̂ ln r(x̂ (t) , û (t) , û (t)) (4.6b)

where we use the simplifying notation

P (x̂(t), û(t), û(t)) := P (x̂, û, v̂)|
(x̂,û,v̂)=(x̂(t),û(t),û(t))

∇v̂ ln r(x̂(t), û(t), û(t)) := [∇v̂ ln r(x̂, û, v̂)]|(x̂,û,v̂)=(x̂(t),û(t),û(t)) .

Remark 4.1. We will need to differentiate functions of the three variables (x̂, û, v̂) after letting v̂ = û

with respect to the components ui of û and from them construct gradients and Jacobians with respect to
û. Such a derivative is the sum of the partial derivatives with respect to ui and vi. For example, the
derivative of r(x̂, û, û) := r(x̂, û, v̂)|v̂=û with respect to ui is

∂

∂ui
[r(x̂, û, v̂)|v̂=û] + d

dvi
[r(x̂, û, v̂)|v̂=û]

which we write as
∂r(x̂, û, û)

∂ui
+ ∂r(x̂, û, û)

∂vi
.

With this notation, the gradient of r(x̂, û, û) with respect to the components ui of û constructed from
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these partial derivatives is
∇ûr(x̂, û, û) +∇v̂r(x̂, û, û).

Let V be an open connected set in Rn and let Ω ⊆ Rm be an open set containing the origin 0̂ ∈ Rm.
We assume the following about the projection matrix P (x̂, û, v̂) and the variance-covariance matrix M .

H2. P (x̂, û, v̂) is primitive for (x̂, û, v̂) ∈ Ω×V ×V , pij ∈ C2(Ω×V ×V → R+), pij(x̂, û, v̂) =
p̃ij(v̂)p̄ij(x̂, û, v̂) such that p̄ij(0̂, û, v̂) ≡ 1, and M is invertible.

Remark 4.2. The assumption on pij in H2 implies that trait frequency dependence has no effect in
the absence of density effects. Specifically, pij(0̂, û, v̂) = p̃ij(v̂). A mathematical implication of this
assumption is that all derivatives of pij(0̂, û, v̂) with respect to components ui of û are identically equal
to 0 for all v̂ :

∇ûpij(0̂, û, v̂) ≡ 0n. (4.7)

This means the inherent projection matrix P (0̂, û, v̂) is independent of û and hence so is its dominant
eigenvalue r(0̂, û, v̂). Thus ∇ûr(0̂, û, v̂) ≡ 0n for all v̂ hence ∇û

[
r(0̂, û, v̂)

∣∣
v̂=û

]
≡ 0n. Using the notation

convention in Remark 4.1 we have
∇ûr(0̂, û, û) ≡ 0n. (4.8)

Remark 4.3. The assumption on M in H2, that it is invertible, is for example satisfied if traits are not
strongly correlated.

Our approach is to consider the bifurcation of equilibria from an extinction equilibrium which, by
definition, is an equilibrium (x̂, û) = (0̂, û) of (4.6). From (4.6b) we find that (0̂, û∗) is an equilibrium if
and only if

∇v̂r(0̂, û∗, û∗) = 0̂n

(where 0̂n is the origin in Rn), in which case we say û∗ is a critical trait. As a bifurcation parameter we
use the dominant eigenvalue of P (0̂, û∗, û∗), which we denote by

r∗0 := ρ[P (0̂, û∗, û∗)].

This is the inherent growth rate of the population when the trait is held fixed at the critical trait û = û∗.
As in the non-evolutionary case, we normalize the entries of the projection matrix so that

P (x̂, û, v̂) = r∗0Q(x̂, û, v̂)

where Q satisfies H2 and
ρ[Q(0̂, û∗, û∗)] = 1.

Letting
r̄(x̂, û, v̂) := ρ[Q(x̂, û, v̂)]

we have
r(x̂, û, v̂) = r∗0 r̄(x̂, û, v̂), r̄(0̂, û∗, û∗) = 1. (4.9)
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The Darwinian equations (4.6) are now

x̂(t+ 1) = r∗0Q(x̂(t), û(t), û(t))x̂(t) (4.10a)

û(t+ 1) = û(t) + 1
r̄(x̂, û, û)M ∇v̂ r̄(x̂, û, û). (4.10b)

Note that the bifurcation parameter r∗0 does not appear in the trait equation (4.10b). This is because
in the trait equation (4.6b) we have

∇v̂ ln r(x̂ (t) , û (t) , û (t)) = 1
r(x̂, û, û)∇v̂r (x̂, û, û) = 1

r∗0 r̄(x̂, û, û)r
∗
0∇v̂ r̄ (x̂, û, û)

in which r∗0 cancels.

We say that a pair (r∗0 , (x̂, û)) ∈ R× (Ω× V ) is an equilibrium pair if

x̂ = r∗0Q(x̂, û, û)x̂ (4.11a)

0̂n = ∇v̂ r̄(x̂, û, û). (4.11b)

Note that
∇v̂ r̄(x̂, û, û) = 0̂n if and only if ∇v̂r(x̂, û, û) = 0̂n.

Definition 4.2. We say an equilibrium pair (r∗0 , (x̂, û)) is a positive equilibrium if x̂ ∈ Rm+ . An extinction
equilibrium pair is an equilibrium pair of the form (r∗0 , (0̂, û)).

Observe that (r∗0 , (0̂, û)) is an extinction equilibrium pair if and only if û = û∗ is a critical trait and,
conversely, if û = û∗ is a critical trait, then (r∗0 , (0̂, û∗)) is an extinction equilibrium pair for all values of
r∗0 .

4.3 Stability of extinction equilibria

We want to analyze the stability properties of an extinction equilibrium pair.

Definition 4.3. We say that an equilibrium pair (r∗0 , (x̂, û)) is stable if (x̂, û) is (locally asymptotically)
stable as an equilibrium of the Darwinian dynamics (4.6).

To use the Linearisation Principle, we compute the Jacobian matrix for the system (4.10a)-(4.10b)

J (r∗0 , x̂, û) =

r∗0J(x̂, û, û) r∗0Ψ(x̂, û, û)

Υ(x̂, û, û) Φ(x̂, û, û)


where J(x̂, û, û) is the m × m Jacobian matrix of Q(x̂, û, û)x̂ with respect to x̂ and Ψ(x̂, û, û) is the
m× n matrix whose n columns are

∂ui
Q(x̂, û, û)x̂+ ∂vi

Q(x̂, û, û)x̂, i = 1, 2, · · · , n. (4.12)
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The dynamics of the ith mean trait ui are given by

ui(t+ 1) = ui(t) +
n∑
k=1

σik∂vk
ln r̄(x̂, û, û).

and therefore Υ(x̂, û, û) is the n × m matrix whose ith row (i = 1, 2, · · · , n) is the transpose of the
gradient

∇x̂
n∑
k=1

σik∂vk
ln r̄(x̂, û, û) =

n∑
k=1

σik∇x̂∂vk
ln r̄(x̂, û, v̂)

∣∣∣∣∣
v̂=û

and
Φ(x̂, û, û) = In×n +MH(x̂, û, û) (4.13)

where H(x̂, û, û) is a n× n matrix whose kjth entry is the uk derivative of ∂vj
ln r̄(x̂, û, û), i.e.

H(x̂, û, û) :=
[
∂ukvj

ln r̄(x̂, û, v̂)
∣∣
v̂=û + ∂vkvj

ln r̄(x̂, û, v̂)
∣∣
v̂=û

]
By assumption H2, the projection matrix P (0̂, û, v̂) = [p̃ij (v̂)] is independent of û and as a result

∂ukvj
ln r̄(x̂, û, v̂)

∣∣
(x̂,û,v̂)=(0̂,û,û) ≡ 0

for all û. It follows that
H(0̂, û∗, û∗) =

[
∂0
vkvj

ln r̄
]

(4.14)

where we have adopted the superscript notation

∂0
vkvj

ln r̄ := ∂vkvj
ln r̄(x̂, û, v̂)

∣∣
(x̂,û,v̂)=(0̂,û∗,û∗) .

Thus, the matrix H(0̂, û∗, û∗) is the Hessian of ln r̄(x̂, û, v̂) with respect to v̂ evaluated at (x̂, û, v̂) =
(0̂, û∗, û∗).

The Jacobian J evaluated at an extinction equilibrium pair (r∗0 , (x̂, û)) = (r∗0 , (0̂, û∗)) is

J (r∗0 , 0̂, û∗) =

r∗0J(0̂, û∗, û∗) 0m×n

Υ(0̂, û∗, û∗) Φ(0̂, û∗, û∗)

 =

r∗0Q(0̂, û∗, û∗) 0m×n

Υ(0̂, û∗, û∗) Φ(0̂, û∗, û∗)

 (4.15)

where 0m×n denotes the null matrix with dimension m × n. We note that J(0̂, û∗, û∗) is the Jacobian
with respect to x̂ of (4.10a) when the trait is held fixed at û∗. The eigenvalues of (4.15) are the m
eigenvalues of r∗0Q(0̂, û∗, û∗) and the n eigenvalues of Φ(0̂, û∗, û∗).

Recall that r∗0 is the (strictly) dominant eigenvalue of r∗0Q(0̂, û∗, û∗). Thus, if r∗0 > 1 the extinction
equilibrium (0̂, û∗) is unstable. On the other hand, if r∗0 < 1 then stability (by linearisation) is determined
by the n eigenvalues of Φ(0̂, û∗, û∗). Using the linearisation principle for discrete dynamical systems [37],
we obtain the following result, which is an extension, for the evolutionary case with multiple traits, of
the first statement in Theorem 4.1.

Theorem 4.2. Assume H2 holds and that û∗ ∈ V is a critical trait.
(a) If r∗0 < 1 and ρ[Φ(0̂, û∗, û∗)] < 1, then the extinction equilibrium pair (r∗0 , (0̂, û∗)) is stable.
(b) If r∗0 < 1 and ρ[Φ(0̂, û∗, û∗)] > 1, then the extinction equilibrium pair (r∗0 , (0̂, û∗)) is unstable.
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(c) If r∗0 > 1, then the extinction equilibrium pair (r∗0 , (0̂, û∗)) is unstable.

To investigate the spectral radius ρ[Φ(0̂, û∗, û∗)], which appears in Theorem 4.2, we make further as-
sumptions on the matrix M .

H3. The variance-covariance matrix M is diagonally dominant: σ2
i ≥

∑
j 6=i |σij | .

In [99] it is shown, under assumption H3, that ρ[Φ(0̂, û∗, û∗)] < 1 if H(0̂, û∗, û∗) is negative definite and
that ρ[Φ(0̂, û∗, û∗)] > 1 if H(0̂, û∗, û∗) is positive semi-definite or indefinite provided the variances σ2

i

are small.

Corollary 4.1. Assume H2 and H3 hold and that û∗ ∈ V is a critical trait. If the variances σ2
i are

small, then the extinction equilibrium pair (r∗0 , (0̂, û∗)) is
(a) stable if r∗0 < 1 and the Hessian (4.14) is negative definite;
(b) unstable if r∗0 > 1 or if the Hessian (4.14) is either indefinite or positive semi-definite.

With regard to the variances, the assumption σ2
i < 1/ρ

[
H(0̂, û∗, û∗)

]
is sufficient in Corollary 4.1. We

are particularly interested in the case when the extinction equilibrium (r∗0 , (0̂, û∗)) loses stability as r∗0
increases through 1. This occurs in Theorem 4.2 when ρ

[
Φ(0̂, û∗, û∗)

]
< 1. It also occurs in Corollary

4.1, when H(0̂, û∗, û∗) is negative definite. This suggests the possibility of a (transcritical) bifurcation
occurring at r∗0 = 1 that can result in a branch of stable positive (non-extinction) equilibria. We address
this question in Section 4.4.

As an example consider the case when there is no covariant evolution of the traits (i.e. that the off
diagonal terms in M are all equal to 0 and the diagonal terms σ2

i are positive) and when

∂0
vivj

r̄ = 0 for i 6= j, (4.16)

so that traits evolve nearly independently in a neighbourhood of (x̂, û) = (0̂, û∗). With these assumptions
the matrix Φ(0̂, û∗, û∗) is diagonal and its eigenvalues are 1 +σ2

i ∂
0
vivi

r̄. From Theorem 4.2 we obtain the
following corollary.

Corollary 4.2. Assume H2 holds and that û∗ ∈ V is a critical trait. Further assume σij = 0 and (4.16)
for all i 6= j. The extinction equilibrium pair (r∗0 , (0̂, û∗)) is

(a) stable if r∗0 < 1 and
∣∣1 + σ2

i ∂
0
vivi

r̄
∣∣ < 1 for all i;

(b) unstable if r∗0 > 1;
(c) unstable for any r∗0 > 0 if

∣∣1 + σ2
i ∂

0
vivi

r̄
∣∣ > 1 for at least one i.

Note. In Corollary 4.2(c) the extinction equilibrium pair (r∗0 , (0̂, û∗)) is unstable, for any value of r∗0 ,
if ∂0

vivi
r̄ > 0 for at least one i. On the other hand, if ∂0

vivi
r̄ < 0 for all values of i, then extinction

equilibrium pair (r∗0 , (0̂, û∗)) is stable for r∗0 < 1 and small variances σ2
i .

4.4 A bifurcation theorem for the evolutionary model

The loss of stability by the extinction equilibrium pair when r∗0 increases through 1 suggests the possibility
of a (transcritical) bifurcation at the value r∗0 = 1. This is due to the fact that an eigenvalue of the
Jacobian leaves the complex unit circle as r∗0 increases through 1. In this section we establish a bifurcation
theorem for the evolutionary model (4.10).
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We begin by assuming that û can be expressed as a function of x̂ by means of the equilibrium equation
(4.11b).

H4. Let û∗ ∈ V be a critical trait. Assume there exists a function ξ̂ ∈ C2(N → V ), where
N is a open neighbourhood of 0̂ in Rm, such that ξ̂(0̂) = û∗ and ∇v̂ r̄(x̂, ξ̂(x̂), ξ̂(x̂)) = 0̂n for
x̂ ∈ N .

Let J0
û(∇v̂ r̄) and J0

x̂(∇v̂ r̄) denote the Jacobian matrices of the gradient ∇v̂ r̄(x̂, û, û) with respect to û and
x̂ respectively evaluated at (x̂, û, û) = (0̂, û∗, û∗). The following assumption and the Implicit Function
Theorem guarantee that H4 holds.

H5. Let u∗ ∈ V be a critical trait for which J0
û(∇v̂ r̄) is a non-singular matrix.

Remark 4.4. The product rule applied to

∇v̂ ln r̄(x̂, û, v̂)|v̂=û = 1
r̄
∇v̂ r̄(x̂, û, v̂)|v̂=û

evaluated at x̂ = 0̂ implies, together with r̄0 = 1 and ∇0
v̂ r̄ = 0̂ (by the definition of a critical trait), that

J0
û∇v̂ ln r̄ = J0

û∇v̂ r̄. Now we have that

J0
û∇v̂ ln r̄ =

[
∂0
vkvj

ln r̄
]
.

Thus, under assumption H2 we see (from (4.14)) that in H5

J0
û(∇v̂ r̄) = H(0̂, û∗, û∗).

We now recall a basic alternative result from linear algebra, known as the Fredholm Alternative that
we shall use the proof of our main theorem. The Fredholm Alternative holds in infinite dimensional
spaces but this formulation is enough for our needs.

Theorem 4.3 (Fredholm Alternative). Consider a linear map in Rn represented by a matrix A. Given
a column vector b, exactly one of the following holds:

1. Ax = b has a solution x;

2. AT y = 0 has a solution y such that yT b 6= 0.

Analogously, the linear equation Ax = b is solvable if and only if for every solution y of the equation
AT y = 0 one has that yT b = 0, i.e., b is orthogonal to the kernel of AT .

Proof. If Ax = b is solvable and y is such that AT y = 0 then yT b = (yTA)x = 0 so that 2 doesn’t
hold. Conversely if 2 holds then if 1 is solvable then 0 = xT (AT y) = yTAx = yT b 6= 0 which is a
contradiction.

Remark 4.5. If condition 1 in the theorem holds, then the equation is solvable so that A is surjective.
Since A is a linear map in Rn then A is also injective, so given b the solution x of the equation is unique.
So, for each b the orthogonality in condition 2 guarantees unique solvability of the equation in condition
1.
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We now state and prove the main theorem of this work, which characterizes the fundamental bifur-
cation of equilibria and its stability.

Theorem 4.4. Assume û∗ ∈ V is a critical trait. Assume H2 and H4 hold and that κ∗ 6= 0.
(1) There exists a continuum C∗ of positive equilibrium pairs (r∗0 , (x̂, û)) ∈ R+ × (Rm+ × V ) of (4.10)

that bifurcates from the extinction pair (1, (0̂, û∗)) (i.e. that contains the extinction pair in its closure).
(2) Assume H2 and H5 hold. In a neighbourhood of (1, (0̂, û∗)), the positive equilibrium pairs have

the parametric representation

x̂(ε) = ŵRε+O(ε2) (4.17a)

û(ε) = û∗ + û1ε+O(ε2) (4.17b)

r∗0(ε) = 1 + κ∗ε+O(ε2) (4.17c)

for small ε ' 0 where ŵL and ŵR are, respectively, a positive left and right eigenvector of Q(0̂, û∗, û∗)
associated with eigenvalue 1 (equivalently of P (0̂, û∗, û∗) when r∗0 = 1) normalized so that ŵTL ŵR = 1
and

û1 := −
[
J0
û(∇v̂ r̄)

]−1
J0
x̂(∇v̂ r̄)ŵR. (4.18)

κ∗ := −ŵTL
([
∇0
x̂q
T
ijŵR

])
ŵR . (4.19)

Furthermore, we have the following alternatives.
(a) If ρ[Φ(0̂, û∗, û∗)] < 1 and κ∗ > 0, then the bifurcation of C∗ is forward and the positive equilibrium

pairs on C∗ are stable.
(b) If ρ[Φ(0̂, û∗, û∗)] < 1 and κ∗ < 0, then the bifurcation is backward and the positive equilibrium

pairs on C∗ are unstable.
(c) If ρ[Φ(0̂, û∗, û∗)] > 1, then positive equilibrium pairs in the continuum C∗ are unstable regardless

of the direction of bifurcation.

Remark 4.6. Because κ∗ is calculated from evaluations at the bifurcation point (r∗0 , (x̂, û)) = (1, (0̂, û∗))
and because only the sign of κ∗ is involved in determining the direction of bifurcation and stability,
Theorem 4.4, parts (a) and (b), remains valid if in the formula (4.19) and in H4 and H5 we replace qij
by pij and r̄ by r.

Proof. (1) Under H4, the equilibrium equations (4.11) reduce to the single equation

x̂ = r∗0Q(x̂, ξ̂(x̂), ξ̂(x̂))x̂ (4.20)

for x̂ ∈ N . Theorem 4.1 applies to this equation with matrix Q(x̂, ξ̂(x̂), ξ̂(x̂)) in place of Q(x̂) (and N
in place of Ω). This results in the existence of a continuum C of positive solution pairs (r∗0 , x̂) of (4.20)
that bifurcates from (1, 0̂). The continuum C in turn gives rise to a continuum

C∗ := {(r∗0 , (x̂, û)) | (r∗0 , x̂) ∈ C, û = ξ̂(x̂)}

of equilibrium pairs (r∗0 , (x̂, û)) of (4.10) that bifurcates from the extinction equilibrium (1, (0̂, û∗)) at
r∗0 = 1

(2) The parametrisation of C Theorem 4.1 implies that, near the bifurcation point, the positive
equilibrium pairs on the continuum C∗ have a parametrisation (4.17). The coefficient κ∗ is given by
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the formula (4.3) for κ but with pij(x̂) replaced by pij(x̂, ξ̂(x̂), ξ̂(x̂)). The gradient of pij(x̂, ξ̂(x̂), ξ̂(x̂))
relative to x̂ is

∇0
x̂p
T
ij +∇0

ûp
T
ij∇0

x̂ξ̂ +∇0
v̂p
T
ij∇0

x̂ξ̂ .

The second term is zero by remark 4.2. To make this calculation we start by noting that the coefficient
û1 = ∇0

x̂ξ̂ŵR can be calculated by an implicit differentiation of the equation∇v̂ r̄(x̂(ε), ξ̂(x̂(ε)), ξ̂(x̂(ε))) =
0̂n with respect to ε and a subsequent evaluation at ε = 0. From this calculation we obtain the formula
(4.18) for û1. So we obtain

κ∗ = −ŵTL
[
∇0
x̂p
T
ijŵR

]
ŵR − ŵTL

[
∇0
v̂p
T
ij û1

]
ŵR .

The second term in this formula is zero as we shall prove in Lemma 4.1. So we obtain formula (4.19) for
κ∗.

To investigate the stability of bifurcating positive equilibrium pairs we make use of the parametrisa-
tion (4.17) which allows us to parametrise by ε the Jacobian J(r, x̂, û) when it is evaluated at the equilib-
ria (4.17) and, subsequently, to parametrise this Jacobian’s eigenvalues by ε. From this parametrisation
we can approximate the eigenvalues of the Jacobian for ε ' 0.

At ε = 0 the eigenvalues of the Jacobian J(1, 0̂, û∗) are the eigenvalues of J(0̂, û∗, û∗) and the
eigenvalues of Φ(0̂, û∗, û∗). The spectrum of the Jacobian J(r∗0(ε), x̂(ε), û(ε)) approaches, by continuity,
the spectrum of J(1, 0̂, û∗) as ε tends to 0. Therefore, if ρ[Φ(0̂, û∗, û∗)] > 1 then for ε ' 0 the Jacobian
J(r∗0(ε), x̂(ε), u(ε)) also has spectral radius greater than 1. Consequently, the positive equilibria are
unstable near the bifurcation point. This establishes 2(c).

Suppose ρ[Φ(0̂, û∗, û∗)] < 1. Since the strictly dominant eigenvalue of J(0̂, û∗, û∗) is 1, it follows
that the dominant eigenvalue of J (1, 0̂, u∗) is 1. To determine stability of the bifurcating positive
equilibria, by means of the linearisation principle, we must investigate if the dominant eigenvalue of
J (r∗0(ε), x̂(ε), û(ε)), which equals 1 when ε = 0, is greater or less than 1 for ε ' 0. Using the aforemen-
tioned parametrisations we can obtain a parametrisation of the strictly dominant eigenvalue for small
perturbations ε by means of the Lyapunov-Schmidt method (also called Lyapunov-Schmidt reduction).
Using this reduction technique we are able to reduce the problem of studying the dominant eigenvalue
of of J (r∗0(ε), x̂(ε), û(ε)) and its associated eigenvector to a lower dimensional problem involving the
eigenvector of matrix J , whose eigenvector structure we know. This reduction involves the derivative û1

of the implicit function ξ̂ that we have computed above.

Let
µ(ε) = 1 + µ1ε+O(ε2)

denote the dominant eigenvalue of J (r∗0(ε), x̂(ε), û(ε)). Whether µ (ε) is less than or greater than 1 for
ε ' 0, and hence whether the bifurcating positive equilibria are stable or unstable near the bifurcation
point, can be determined by the sign of µ1: for ε ' 0, the bifurcating positive equilibria are stable if
µ1 < 0 and unstable if µ1 > 0.

To calculate a formula for µ1 we begin by letting

ŴR(ε) = ŴR0 + ŴR1ε+O(ε2)
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denote a right eigenvector of the Jacobian J associated with the dominant eigenvalue µ(ε), so that

J (r∗0(ε), x̂(ε), û(ε))ŴR(ε) = µ(ε)ŴR(ε). (4.21)

Setting ε = 0 in (4.21) we obtain
J (1, 0̂, û∗)ŴR0 = ŴR0.

We can write

ŴR0 =

ŵmR0

ŵnR0


where ŵmR0 and ŵnR0, are column vectors with m and n entries respectively. The vector ŵmR0 is a right
eigenvector of J(0̂, û∗, û∗) = Q(0̂, û∗, û∗) associated with the eigenvalue 1 and consequently ŵmR0 = ŵR.
A calculation shows

ŴR0 =

ŵR
û1

 .

The vector ŴT
L0 where

ŴL0 =

ŵL
0̂n


is a left eigenvector of J (1, 0̂, û∗) (where ŵTL is a left eigenvector of J(0̂, û∗, û∗)). Note that ŴT

L0ŴR0 =
ŵTL ŵR = 1.

If we differentiate (4.21) with respect to ε and set ε = 0 in the result, we obtain

(
J (1, 0̂, û∗)− Im+n

)
ŴR1 = µ1ŴR0 −

d

dε
J (r∗0(ε), x̂(ε), û(ε))

∣∣∣∣
ε=0

ŴR0

where Im+n denotes the identity matrix of size m+n. According to Fredholm alternative, this equation
is solvable for ŴR1 if and only if the right hand side is orthogonal to the kernel of (J (1, 0̂, û∗)− Im+n)T .
This kernel is spanned by the left eigenvectors of J (1, 0̂, û∗) associated with the eigenvalue 1. Therefore,
the right hand side must be orthogonal to ŴL0. This implies

µ1 = ŴT
L0

d

dε
J (r∗0(ε), x̂(ε), û(ε))

∣∣∣∣
ε=0

ŴR0

=

ŵL
0̂n


T

d

dε

r∗0 (ε) J(x̂(ε), û(ε), û(ε)) r∗0 (ε) Ψ(x̂(ε), û(ε), û(ε))

Υ(x̂(ε), û(ε), û(ε)) Φ(x̂(ε), û(ε), û(ε))


∣∣∣∣∣∣∣
ε=0

ŵR
û1


or

µ1 = ŵTL
d

dε
[r∗0 (ε) J(x̂(ε), û(ε), û(ε))]

∣∣∣∣
ε=0

ŵR + ŵTL
d

dε
[r∗0 (ε) Ψ(x̂(ε), û(ε), û(ε))]

∣∣∣∣
ε=0

û1.

We consider the two terms in this sum separately. With regard to the first term in µ1, the product and
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chain rules imply

ŵTL
d

dε
[r∗0 (ε) J(x̂(ε), û(ε), û(ε))]

∣∣∣∣
ε=0

ŵR

= κ∗ŵTLQ(0̂, û∗, û∗)ŵR + ŵTL
d

dε
J(x̂(ε), û(ε), û(ε))

∣∣∣∣
ε=0

ŵR

= κ∗ + ŵTL
([
∇0
x̂q
T
ijŵR

]
+
[
∇0
ûq
T
ij û1

]
+
[
∇0
v̂q
T
ij û1

]
+
[
∂0
xi
qjŵR

])
ŵR

where we have defined the row vector

∂0
xi
qj :=

[
∂0
xi
qj1 ∂0

xi
qj2 · · · ∂0

xi
qjm

]
.

With regard to the second term in µ1, we recall that Ψ(x̂, û, û) is the m×n matrix whose n columns are
(4.12) and as a result, upon evaluation at the bifurcation point, the only contribution to the derivative in
the second term arises from the derivatives of Ψ(x̂, û, û) = [ψij(x̂, û, û)] with respect to the components
of x̂. Therefore the second term in µ1 is

ŵTL
d

dε
[r∗0 (ε) Ψ(x̂(ε), û(ε), û(ε))]

∣∣∣∣
ε=0

û1 = ŵTL
[
∇0
x̂ψ

T
ijŵR

]
û1

= ŵTL
([
∂0
ui
qjŵR

]
+
[
∂0
vi
qjŵR

])
û1

where we have defined the row vectors

∂0
ui
qj :=

[
∂0
ui
qj1 ∂0

ui
qj2 · · · ∂0

ui
qjm

]
, ∂0

vi
qj :=

[
∂0
vi
qj1 ∂0

vi
qj2 · · · ∂0

vi
qjm

]
.

H2 implies ∂0
uk
qij = 0 for all uk and all i, j, and so

µ1 = κ∗ + ŵTL
[
∇0
x̂q
T
ijŵR

]
ŵR + ŵTL

[
∇0
v̂q
T
ij û1

]
ŵR + ŵTL

[
∂0
xi
qjŵR

]
ŵR + ŵTL

[
∂0
vi
qjŵR

]
û1.

Noting that

ŵTL
[
∇0
x̂q
T
ijŵR

]
ŵR = ŵTL

[
∂0
xi
qjŵR

]
ŵR, ŵTL

[
∇0
v̂q
T
ij û1

]
ŵR = ŵTL

[
∂0
vi
qjŵR

]
û1

we have
µ1 = κ∗ + 2

(
ŵTL
[
∇0
x̂q
T
ijŵR

]
ŵR + ŵTL

[
∇0
v̂q
T
ij û1

]
ŵR
)
.

By Lemma 4.1 the last term in this formula is zero so we get

µ1 = κ∗ + 2ŵTL
[
∇0
x̂q
T
ijŵR

]
ŵR

which, by (4.19), implies µ1 = −κ∗. As a result, κ∗ > 0 implies both that the bifurcation is forward and
that the bifurcating positive equilibria are stable for ε ' 0. On the other hand, κ∗ < 0 implies that the
bifurcation is backward and that the bifurcating positive equilibria are unstable for ε ' 0.

The only piece missing in the proof of the theorem is the formula that we prove in the following
lemma.
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Lemma 4.1. Assume H2 and H5 hold. Then ŵTL [∇0
v̂q
T
ij û1]ŵR = 0.

Proof. Consider the equality

P (0̂, û, û)ŵR(0̂, û) = r(0̂, û, û)ŵR(0̂, û). (4.22)

which holds by the definition of r(0̂, û, û) as an eigenvalue with a positive right eigenvector ŵR(0̂, û). Let
p̂i = p̂i(0̂, û, û) denote the i-th column of P = P (0̂, û, û). We want to take the Jacobian of both sides
of equation (4.22) with respect to û. To do this we let Jŷ[ω̂(ŷ)] denote the Jacobian of a vector valued
function ω̂(ŷ) of a vector ŷ.

The right side of (4.22) is a vector valued function of the form τ(ŷ)ω̂(ŷ) for a scalar valued function
τ(ŷ). Applying the general formula

Jŷ[τ(ŷ)ω̂(ŷ)] = ω̂(ŷ)∇ŷτ(ŷ)T + τ(ŷ)Jŷ[ω̂(ŷ)] (4.23)

and recalling (4.8) in Remark 4.2, we find that the Jacobian of the right side of (4.22) with respect to û
is

ŵR(0̂, û)
(
∇ûrT +∇v̂rT

)
+ rJû[ŵR(0̂, û)] = ŵR(0̂, û)∇v̂rT + rJû[ŵR(0̂, û)].

To calculate the Jacobian of the left-hand side of (4.22), we write

PŵR(0̂, û) =
m∑
i=1

wRi (0̂, û)p̂i

where wRi (0̂, û) are the components of the vector ŵR(0̂, û) and apply the product rule (4.23) to each
term. Noting (4.7) in Remark 4.2 we get

PJû[ŵR(0̂, û)] +
m∑
i=1

wRi (0̂, û)Jv̂[p̂i].

Equating the Jacobians of the left and right sides of (4.22) we have

PJû[ŵR(0̂, û)] +
m∑
i=1

wRi (0̂, û)Jv̂[p̂i] = ŵR(0̂, û)∇v̂rT + rJû[ŵR(0̂, û)]. (4.24)

or

(P − rIm)Jû[ŵR(0̂, û)] = ŵR(0̂, û)∇v̂rT −
m∑
i=1

wRi (0̂, û)Jv̂[p̂i]

which in turn can be rewritten as the m equations

(P − rIm)∂ui(ŵR(0̂, û)) = (∂virIm − ∂viP )ŵR(0̂, û) for 1 ≤ i ≤ n.

The matrix P − rIm is singular and the kernel of its transpose, or equivalently its left kernel is spanned
by the left eigenvector ŵTL(0̂, û). By the Fredholm alternative, the solvability of these equations imply
the m orthogonality conditions

ŵTL(0̂, û)(∂vi
rIm − ∂vi

P )ŵR(0̂, û) = 0
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are satisfied. Solving for ∂vir and recalling that the eigenvectors are normalized so that ŵL(0̂, û)T ŵR(0̂, û) =
1, we find

∂vir = ŵTL(0̂, û)∂viPŵR(0̂, û) for 1 ≤ i ≤ n.

Since ∂0
vi
r = 0 by definition of a critical trait vector û∗, when setting û = û∗ and r∗0 = 1 in these

expressions we get
ŵTL∂

0
vk
QŵR = 0 for 1 ≤ k ≤ n. (4.25)

Let u1,k denote the scalar components of the vector û1. Then

∇0
v̂q
T
ij û1 =

n∑
k=1

u1,k∂
0
vk
qij

and [
∇0
v̂q
T
ij û1

]
=

n∑
k=1

u1,k
[
∂0
vk
qij
]

=
n∑
k=1

u1,k∂
0
vk
Q.

From
ŵTL [∇0

v̂qij û1]ŵR =
∑
k

u1,k
(
ŵL∂0

vk
QŵR

)
and (4.25) it follows that ŵTL [∇0

v̂qij û1]ŵR = 0.

From (4.13) we obtain (as in [99]) the following corollary of Theorem 4.4.

Corollary 4.3. Assume H2, H3 and H5 hold and that û∗ ∈ V is a critical trait. Let C∗ be the continuum
of positive equilibrium pairs that bifurcates from the extinction pair (1, (0̂, û∗)) guaranteed by Theorem
4.4. If the variances σ2

i are small, then in a neighbourhood of the bifurcation point (1, (0̂, û∗)) we have
the following alternatives.

(a) The bifurcation of C∗ is forward and stable if the Hessian (4.14) is negative definite and κ∗ > 0.
(b) The bifurcation of C∗ is backward and unstable if the Hessian (4.14) is negative definite and

κ∗ < 0.
(c) The positive equilibrium pairs in the continuum C∗ are unstable if the Hessian (4.14) is positive

semi-definite or indefinite (regardless of the direction of bifurcation).

For the case of no trait covariance considered in Corollary 4.2, we obtain the following result from
Corollary 4.3.

Corollary 4.4. Assume H2 and H5 hold and that û∗ ∈ V is a critical trait. Further assume σij = 0
and (4.16) for all i 6= j. Let C∗ be the continuum of positive equilibrium pairs that bifurcates from the
extinction pair (1, (0̂, û∗)) guaranteed by Theorem 4.4. Then in a neighbourhood of the bifurcation point
(1, (0̂, û∗)) we have the following alternatives.

(a) The bifurcation of C∗ is forward and stable if κ∗ > 0 and
∣∣1 + σ2

i ∂
0
vivi

r̄
∣∣ < 1 for all i.

(b) The bifurcation of C∗ is backward and unstable if κ∗ < 0 and
∣∣1 + σ2

i ∂
0
vivi

r̄
∣∣ < 1 for all i.

(c) The positive equilibrium pairs in the continuum C∗ are unstable if
∣∣1 + σ2

i ∂
0
vivi

r̄
∣∣ > 1 for at least

one i (regardless of the direction of bifurcation).

Note. In Corollary 4.4 we see that the positive equilibrium pairs in the continuum C∗ are unstable
if ∂0

vivi
r̄ > 0 for at least one i. On the other hand, if ∂0

vivi
r̄ < 0 for all values of i, then the positive
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equilibrium pairs in the continuum C∗ are stable if κ∗ > 0 and the variances σ2
i are small enough so that∣∣1 + σ2

i ∂
0
vivi

r̄
∣∣ < 1, i.e. σ2

i < −2/∂0
vivi

r̄.

4.5 An application

Consider the single difference equation

x (t+ 1) = bx (t) exp (−cx (t)) exp
(
− α

1 + sx (t)

)
(4.26)

with coefficients b, c > 0 and α, s ≥ 0. When α = 0 this map is the famous Ricker equation (see
[82]) which is one of the most well known equations that incorporates negative effects that population
density can have on population growth. Equation (4.26) is studied in [90] as a model equation that
incorporates a positive effect of increased population density (a so-called component Allee effect [22]) in
the presence of a predator. This is the well-known predator-saturation effect in ecology and is one of
the most commonly attributed causes of Allee effects [30], [22].

The factor exp (−α/ (1 + sx)) in (4.26) is an increasing function of x and represents the probability
of escaping predation. We can interpret α as the intensity of predation and s a measure of how effective
the protection from predation attributed to population density x, which we will refer to as the predation
protection factor. Re-writing (4.26) as

x (t+ 1) = r0r̄(x)x (t) (4.27)

with
r0 := b exp (−α) , r̄(x) := exp

(
−cx (t) + α

sx (t)
1 + sx (t)

)
we see that r0 is the inherent (density-free) per capita birth rate, which equals b in the absence of
predation α = 0. This equation, studied in [90], not surprisingly can exhibit the same kind of period-
doubling route-to-chaos as r0 increases as does the famous Ricker equation when α = 0. (The right side of
(4.27) defines a unimodal map). The bifurcation that occurs at r0 = 1 where the extinction equilibrium
x = 0 destabilizes is, according to Theorem 4.1, forward and therefore stable if κ = c − αs > 0. This
inequality holds if the effect of predation, as measured by the product of the predation intensity α and
(per capita) predation protection factor s, is small compared to that of the negative density effects
measured by c. This occurs, of course, for the Ricker equation when α = 0.

On the other, if the reverse is true and the effect of predation αs is large compared to c, then by
Theorem 4.1 the bifurcation at r0 = 1 is backward and unstable. In this case, i.e. when αs > c, we can
also say some things about the bifurcating continuum C of positive equilibrium pairs (r0, x) outside the
neighbourhood of the bifurcation point (r0, x) = (1, 0). The equation

1 = r0 exp
(
−cx+ α

sx

1 + sx

)
satisfied by positive equilibria x > 0, when re-written as

r0 = exp
(
cx− α sx

1 + sx

)
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describes the continuum C of positive equilibrium pairs (r0, x). The graph of r0 as a function of x
contains the point r0 = 1 at x = 0, decreases as x increases to a unique critical point xcr > 0 at which
r0 attains a global minimum rcr > 0, and increases without bound for x > xcr. See figure (4.1).

Figure 4.1: Generic plot of the bifurcating continuum C for equation (4.27) when αs > c and, con-
sequently, a backward (unstable) bifurcation occurs at the point (r0, x) = (1, 0). The question mark
indicates that although the positive equilibria on the upper branch x2(r0) are (locally asymptotically)
stable near the saddle-node bifurcation point (rcr, xcr), they can, depending on model parameter values,
destabilize further along the continuum C.

From the parabola-like shape of this graph, we see that the inverse function, treating x as a function
of r0, has two branches: an upper branch of positive equilibria x2 (r0) for r0 ≥ rcr and a lower branch
of positive equilibria x1 (r0) < x2(r0) for rcr ≤ r0 < 1 which satisfies x1(1) = 0. The value r0 = rcr is a
saddle-node (blue-sky) bifurcation (or tipping) point at which the lower branch x1 (r0) and and upper
branch x2 (r0) coalesce. The following facts follow from general results in [27]: for r0 < rcr0 the extinction
equilibrium is globally asymptotically stable; the equilibria x1 (r0) are unstable and the equilibria x2(r0)
are (locally asymptotically) stable for r0 ' rcr. The upper branch x2(r0) might not remain stable for
all r0 > rcr, however, but might undergo a period doubling cascade to chaos. If a destabilization of
x2(r0) occurs at a point r0 ≥ 1, then on the interval rcr < r0 < 1 there are two stable equilibria, the
extinction equilibrium and the positive equilibrium x2(r0). This scenario is called a strong Allee effect.
It asserts that survival is possible for some r0 < 1 provided a population’s initial condition lies outside
the basin of attractor of the extinction equilibrium (the Allee basin). If, on the other hand, x2(r0) loses
stability at a point in the interval rcr < r0 < 1, then there still occurs a strong Allee effect but one with
a non-equilibrium survival attractor (e.g. a periodic cycle or a more complicated attractors).

Sample forward and backward bifurcation diagrams are shown in figure (4.2). That secondary period-
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doubling bifurcations cascade to complex (presumably chaotic) dynamics in both cases is not unexpected,
given that (4.27) is based on the Ricker nonlinearity. The backward bifurcation in figure (4.2B) is an
example illustrating a saddle-node bifurcation (at r0 ≈ 0.4) that results a multi-stable equilibrium (strong
Allee) scenario, as shown in figure (4.1). In this example the positive equilibria destabilize (into a period
doubling route to chaos) just outside the Allee interval 0.4 < r0 < 1. In other examples, using different
parameter values, this destabilization can occur at a value of r0 < 1 so that the multi-attractor scenario
of the strong Allee effect involves a stable cycle or even more complicated attractor. For examples and
further results concerning the relationship between backward bifurcations and strong Allee effects, see
[26]. The complex dynamics that can arise in this model, particularly when positive non-equilibrium
attractors are present for r0 < 1 are studied in [90], although not from this bifurcation point-of-view.

Figure 4.2: Sample bifurcation diagrams for equation (4.27) with c = 0.3 and α = 3 and different values
of the protection from predation parameter s.
A. s = 0.05 and κ = c− αs = 0.15 > 0 so that the bifurcation at r0 = βe−3 = 1 is forward and stable.
B. s = 1 and κ = −2.7 < 0 so that the bifurcation at r0 = βe−3 = 1 is backward and unstable (dashed
line).

We now consider an evolutionary version of equation (4.27) to which we can apply the results of
Sections 4.3 and 4.4. For our application we consider the case when the inherent (density and predation
free) per capita birth rate b and the predation protection factor s are subject to evolutionary adaptation.
We think of these per capita quantities as characteristics of an individual and that they are determined
by a suite of phenotypic traits v̂ of the individual. Thus, b = b (v̂) and s = s (v̂). We assume that
there is a trait vector that maximizes b and one that maximizes s, but these optimizing trait vectors are
not the same. The idea is that there are trade-offs in the allocation of energy, behavioural activities,
and resources towards reproduction and towards the avoidance of predators. For example, traits that
promote physiological and behavioural characteristics promote successful herding or flocking or schooling
in order to avoid predation are not necessarily traits that make for optimal reproduction.

Since we have set no units or scales for the traits, we assume without loss in generality that b is
maximal at v̂ = 0̂ and s is maximal at v̂ = (1, 1, · · · , 1)T . Specifically, we assume (as is often done in
evolutionary models [100]) that these coefficients have a multi-variate Gaussian-type distribution about
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these maximal points:

b(v̂) = β exp
(
−

n∑
i=1

v2
i

2bi

)
, s(v̂) = s0 exp

(
−

n∑
i=1

(vi − 1)2

2si

)

where bi and si are positive real numbers (variances), β > 0 is the maximal possible value of b(v̂), and
s0 ≥ 0 is the maximal possible value of s(v̂). The resulting 1× 1 projection matrix P (x, û, v̂) for (4.27)
is independent of û and its single entry p11 (x, v̂) equals the dominant eigenvalue, i.e. p11 (x, v̂) = r(x, v̂)
where

r(x, v̂) = βe−α exp
(
−

n∑
i=1

v2
i

2bi

)
exp

(
−cx+ α

s(v̂)x
1 + s(v̂)x

)
.

The Darwinian equations (4.6) are

x (t+ 1) = r (x (t) , û (t))x (t)

û(t+ 1) = û(t) +M ∇v̂ ln r(x (t) , û (t))

with

∇v̂ ln r (x, v̂) = −


v1
b1

...

vn

bn

− α
s (v̂)x

(1 + s (v̂)x)2


v1−1
s1

...

vn−1
sn

 .

Since

∇v̂ ln r (0, v̂)|v̂=û = −


u1
b1

...

un

bn


we see that the only critical trait is

û∗ = 0̂.

and hence the only extinction equilibrium is (x, û) = (0, 0̂). Our bifurcation parameter r∗0 = r(0, 0̂)
reduces to

r∗0 = βe−α.

Under the added assumption that the traits are not correlated, so that the variance-covariance matrix
M = diag

(
σ2
i

)
is a diagonal matrix, the model equations for our evolutionary version of (4.27) are

x (t+ 1) = r∗0 exp
(
−

n∑
i=1

u2
i (t)
2bi

)
x (t) exp

(
−cx (t) + α

s(û (t))x (t)
1 + s(û (t))x (t)

)
(4.28a)

ui (t+ 1) = ui (t)− σ2
i

(
ui (t)
bi

+ α
ui (t)− 1

si

s(û (t))x (t)
(1 + s(û (t))x (t))2

)
(4.28b)

for i = 1, · · · , n. Our goal is to apply Corollary 4.4 to these difference equations, toward which end we
must consider H2 and H5.

H2 holds with p̃11(v̂) = r0(v̂) and p̄(x, û, v̂) = r̄ (x, v̂), since r̄ (0, v̂) ≡ 1. A calculation shows that
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the Hessian H(0, û∗, û∗) = [∂0
vivj

ln r̄] is the diagonal matrix

H(0, û∗, û∗) = diag

[
− 1
bi

]
.

Thus, H5 holds (see Remark 4.4). By Theorem 4.4 the bifurcating continuum of positive equilibrium
pairs (r∗0 , (x, û)), near the bifurcation point (1, (0, 0̂)), has the parametric representation

r∗0 (ε) = 1 + κ∗ε+O(ε2) (4.29a)

x (ε) = ε+O(ε2) (4.29b)

û (ε) = û1ε+O(ε2) (4.29c)

for ε ' 0 where, by the formulas (4.18) and (4.19),

κ∗ = c− αs0 exp
(
−
∑n

i=1

1
2si

)
(4.30)

û1 = αs0 exp
(
−
∑n

i=1

1
2si

)


b1
s1

...

bn

sn

 ∈ Rn+.

By Corollary 4.4(a,b), the direction of bifurcation determines the stability of the bifurcating positive
equilibria provided

σ2
i < 2bi for all i = 1, · · · , n

that is to say, provided the speed of evolution is not too fast. Under this assumption, we have the
following conclusions concerning the bifurcation at r∗0 = 1 for the Darwinian model (4.28).

1. (Forward bifurcations) The bifurcation of the continuum C of positive equilibria for (4.28b) is
forward and consequently stable if

αs0 exp
(
−
∑n

i=1

1
2si

)
< c. (4.31)

This occurs if the negative density effects, as described by the Ricker coefficient c, are large enough to
dominate the positive effects from the Allee effect attributed to density protection from predation, as
encapsulated by the quantity on the left side of the inequality (4.31). Thus, mechanisms that promote
a forward bifurcation are: a low predation intensity α, a low maximum possible predation protection
coefficient s0, and small variances si (i.e. the largest predator protection coefficients s (v̂) are attained
only for trait vectors narrowly distributed around the maximal trait vector v̂ = (1, · · · , 1)T ).

Note that the entries in û1 in (4.29c) are positive if αs0 > 0, i.e. if both predation and predation
protection are present. In this case, we see that near the bifurcation point, the trait components ui(ε) of
the bifurcating positive equilibria are positive. As a result, for r∗0 ' 1 the stable, positive equilibria have
trait components that do not maximize the inherent birth rate. Indeed, an even stronger conclusion
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follows directly from the trait equilibrium equations (4.28b):

ui
bi

+ α
ui − 1
si

s(û)x
(1 + s(û)x)2 = 0 for all i = 1, . . . , n. (4.32)

This shows, when α > 0 and s0 > 0, that for any positive equilibrium (x, û) of (4.28), the equilibrium
trait components ui cannot equal 0 or 1. For those equilibrium pairs from the continuum C the trait
components form a continuum of equilibrium trait vectors û which must, therefore, have components
that lie entirely in the interval 0 < ui < 1 (whether the equilibria are stable or not). It follows that
for those positive equilibria from C which are in fact stable (such as those for r∗0 ' 1), we can say that
evolution selects a vector of traits that neither maximizes the inherent birth rate b (û) (which occurs at
û = 0̂) nor the predator protection coefficient s (û) (which occurs at û = (1, 1, · · · , 1)T ). One might say,
then, that evolution trades-off a smaller inherent birth rate in favor of some predator protection.

When predation and/or predation protection is absent (α = 0 and/or s0 = 0) in the model, then
clearly inequality (4.31) holds and the bifurcation at r∗0 = 1 is forward and stable. In this case, the
equilibrium equation (4.32) for the traits ui implies ui = 0 for any positive equilibrium pair and, not
surprisingly, evolution selects to maximize the inherent bifurcation rate b (û). �

(2) (Backward bifurcations). The bifurcation of the continuum C of positive equilibria for (4.28b) is
backward and consequently unstable if

αs0 exp
(
−
∑n

i=1

1
2si

)
> c. (4.33)

This occurs only if predation is present α > 0 and density protection from predation is also present
s0 > 0. Inequality (4.33) holds if predation intensity α and/or predator protection s0 are large (relative
to the negative density effects c). Also promoting a backward bifurcation are large variances si, that is
to say, when a high level of predator protection s(v̂) is attained for a wide distribution of trait vectors
v̂. �

Our general results in Section 4.4 concern equilibrium properties in a neighbourhood of the bifurcation
point and do not imply anything about the dynamics outside such a neighbourhood. As in the non-
evolutionary model (4.27), we expect it to be true that the positive equilibria on the continuum C for
the evolutionary model (4.28) do not necessarily retain the stability properties that they possess near
the bifurcation point. In particular, in the case of a forward/stable bifurcation we would expect that, at
least for some model parameter values, the stable positive equilibria will destabilize with increasing r∗0
and even give rise to a sequence of bifurcations that result complicated, chaotic dynamics. In the case of
a backward/unstable bifurcation, in addition to this phenomenon, we would also anticipate the potential
for strong Allee effects on an interval of r∗0 values less than 1. We will not study these questions about
the dynamics of (4.28) in this work where our theory is focussed on the local bifurcation at r∗0 = 1.

However, we can provide a few selected numerical simulations that, in addition to illustrating the
local bifurcation predicted by our theorems, also illustrate the kinds of secondary bifurcations and strong
Allee effects as in the non-evolutionary case (cf. figure (4.2)). Figure (4.3) shows two sample bifurcation
diagrams for the evolutionary model (4.28) with two traits, i.e. n = 2. We observe that the oscillations
of the traits ui as the bifurcation parameter changes are of small amplitude. The plots in figure (4.3A)
are from parameter values for which κ∗ > 0 and, hence, a forward, stable bifurcation occurs at r∗0 = 1.
As with the non-evolutionary version of the model in figure (4.1), further increases in r∗0 result in the
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familiar period doubling route to chaotic dynamics. In figure (4.3B) the same parameter values are
used except that the predator protection coefficient s0 is increased to the extent that κ∗ < 0 and, as a
result, a backward, unstable bifurcation occurs. The result is a bifurcation diagram that shows a saddle-
node bifurcation (at r∗0 ≈ 0.3) creating an interval of strong Allee effects with both a stable extinction
equilibrium (x, û) = (0, 0̂) and a stable positive equilibrium. In this example, one sees from figure (4.3B)
that the positive equilibrium loses stability through a period doubling at a value of r∗0 less than 1. This
results in an interval of r∗0 values less than 1 for which there is a strong Allee effect that involves a
stable positive 2-cycle instead of a positive equilibrium. Indeed, in figure (4.4A) we observe that the
sample orbits approach a stable positive equilibrium so that we have a strong Allee effect involving stable
positive equilibria whereas in figure (4.4B) we observe that the sample orbits approach a stable 2-cycle
so that we witness a strong Allee effect involving stable 2-cycles.

Figure 4.3: Sample bifurcation diagrams for equations (4.28) with c = 0.3, α = 3, b1 = 3, b2 = 1, s1 = 1,
and s2 = 3 and variances σ1 = 0.45 and σ2 = 0.2 for different values of the maximal protection from
predation parameter s0 .
A. s0 = 0.1 and κ∗ = 0.3 − 0.3e−2/3 ≈ 1.46 × 10−1 > 0 so that the bifurcation at r∗0 = βe−3 = 1 is
forward and stable.
B. s0 = 1 and κ∗ = 0.3− 3e−2/3 ≈ −1.24 < 0 so that the bifurcation at r∗0 = βe−3 = 1 is backward and
unstable (dashed lines).
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Figure 4.4: Shown are sample orbits for equations (4.28) with the same parameter values used in Figure
3B when a backward bifurcation creates an interval of r∗0 < 1 for which there is a strong Allee effect.
A. For r∗0 = βe−3 = 0.4 the bifurcation diagram Figure 3B shows a stable extinction equilibrium and
a stable positive equilibrium. The upper graph in column A shows plots of the solution with initial
conditions x = 2.35, u1 = u2 = 1 and that tends to the positive equilibrium. The lower graph shows
plots of the solution with initial conditions x = 2.33, u1 = u2 = 1 and that tends to the extinction
equilibrium (x, û) = (0, 0̂).
B. For r∗0 = βe−3 = 0.9 the bifurcation diagram Figure 3B shows a stable extinction equilibrium and
a stable 2-cycle. The upper graph in column B shows plots are of the solution with initial conditions
x = 2.35, u1 = u2 = 1 and that tends to the positive 2-cycle. The lower graph in column B shows plots
of the solution with initial conditions x = 0.33, u1 = u2 = 1 and that tends to the extinction equilibrium
(x, û) = (0, 0̂).
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4.6 Concluding remarks

A fundamental property of population dynamic models, when the extinction state destabilizes due to a
change in a model parameter, is the occurrence of a bifurcation which results in the presence of positive
equilibria. Typically the stability of these bifurcating equilibria depend on the direction of bifurcation
(Theorem 4.1). In this chapter we investigate this basic bifurcation phenomenon for an evolutionary
version of a general matrix model for the dynamics of a structured population. The model assumes that
the entries of the model’s projection matrix (i.e. the per capita birth, survival and class transition rates)
depend on a vector of phenotypic traits, each of which is subject to Darwinian evolution, and tracks
the dynamics of the population and the vector of mean traits [100]. We define the notion of a critical
trait vector, which is associated with the existence of an extinction equilibrium in the model, and obtain
conditions under which an extinction equilibrium destabilizes (Theorem 4.2) and conditions under which
a continuum of positive equilibria bifurcates from the extinction equilibrium, as the inherent population
growth rate (at the critical trait) increases through 1 (Theorem 4.4). We further obtain conditions under
which stability of the bifurcating equilibria is determined by the direction of bifurcation and conditions
under which it is not (Theorem 4.4).

It is shown in [75] that the bifurcating continuum C∗ of positive equilibria in Theorem 4.4 has a global
extent in R+×(Rm+×V ) in that it connects to the boundary of this cone (∞ is included in the boundary).
In general, however, the stability/instability results in Theorem 4.4 hold only in a neighbourhood of the
bifurcation point. This is illustrated in the example studied in Section 4.5 where secondary bifurcations
occur outside the neighbourhood of the bifurcation point. Whether or not such bifurcations occur are
model dependent (which is true in non-evolutionary matrix models as well).

In non-evolutionary matrix models, backward bifurcations are often associated with strong Allee
effects, i.e. multiple attractors for values of r∗0 < 1 one of which is extinction and the other which is
a survival attractor [26]. While conditions sufficient for the occurrence of a backward bifurcation are
given in Section 4.4, its relation to strong Allee effects is not investigated in this work and may present a
possibility of future work. A backward induced strong Allee effect is shown to occur, by simulations, in
the example studied in Section 4.5. Furthermore, other possibilities of future work in related areas might
include the study of other types of bifurcations, such as bifurcation of cycles, which have a very relevant
biological meaning, to both non-evolutionary and evolutionary models and study situations where the
projection matrix is not primitive but only irreducible. When the projection matrix is primitive, then the
direction of the bifurcation determines the stability of the bifurcating equilibria as we have seen. This
is due to the fact that at least locally around the bifurcation point only one eigenvalue of the projection
matrix leaves the unit circle, that is the strictly dominant eigenvalue provided by Perron-Frobenius
theorem. When the matrix is not primitive certainly this situation is a greater challenge and it is not
expected that stability would be determined solely by the direction of bifurcation since the bifurcation
would have higher co-dimension with more than one eigenvalue leaving the unit circle simultaneously,
according to Perron-Frobenius theorem.
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