
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

A Software Repository for Live
Software Development

Gil Manuel Oliveira de Almeida Domingues

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Ademar Aguiar

Co-Supervisor: Hugo Sereno

June 27, 2018

A Software Repository for Live Software Development

Gil Manuel Oliveira de Almeida Domingues

Mestrado Integrado em Engenharia Informática e Computação

June 27, 2018

Abstract

The concept of Live Programming exists since the genesis of some of the first programming en-
vironments such as Lisp machines, Smalltalk, among others. There are multiple characteristics
that can be associated with it, specifically liveness, that is, the almost instantaneous nature of the
feedback, as well as reflection, which allows for the software to modify its own implementation at
runtime. For the new concept Live Software Development to be possible, the environment needs
to allow the modification of the running software.

One way to facilitate Live Software Development would be to provide a visualization interface
through which the developers could see and directly manipulate the running system. The visual-
ization engine would have to receive detailed information about the system, in order to generate
the visual representation of the system. As the required information is not only present in the static
representation of the system - in source code files - but also generated dynamically at runtime, it
becomes necessary to have an accessible software repository to store and allow the access to this
information.

There have been many examples described in literature of software analysis techniques to
improve software comprehension. These either analyze the structure of the software at several
levels of abstraction or analyze the behavior of the software, ideally at runtime. There are also
several works in literature comparing different database technologies, such as SQL, graph based
databases and time series databases, how these differ in performance and which are the best fit
for different types of data.

The goal of this thesis is threefold. The first goal is to determine which metrics best represent
a running software system. Secondly, it is to implement software analysis tools which are most
useful for the context of Live Software Development. The third goal is to implement a software
repository which would be capable of storing the information obtained via these tools and provide
access to that data, enabling its use for Live Software Development tools and environments.

The resulting framework from this thesis will then be used by a parallel dissertation which
provides a virtual reality environment for visualizing this data.

i

ii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation and Goals . 2
1.3 Project . 2
1.4 Dissertation Structure . 3

2 Literature Review 5
2.1 Software Visualization . 5

2.1.1 Static Visualization . 6
2.1.2 Dynamic Visualization . 6
2.1.3 3D Visualization . 6

2.2 Software Structure . 7
2.2.1 Reverse Engineering . 8
2.2.2 Abstract Syntax Trees . 8
2.2.3 Design Patterns . 9
2.2.4 Tools . 10

2.3 Dynamic Analysis . 10
2.3.1 Instrumentation . 11
2.3.2 Virtual Machine Profiler . 12
2.3.3 Aspect Oriented Programming . 12

2.4 Database Technologies . 13
2.4.1 Real Time Data . 13
2.4.2 Structure Data . 14

2.5 Summary . 16

3 Proposed Solution 19
3.1 Contextualization . 19
3.2 Goals and Research Questions . 20
3.3 Requirements . 20

3.3.1 Functional Requirements . 20
3.3.2 Non-functional Requirements . 22

3.4 Architecture . 23
3.5 Summary . 25

4 Static and Dynamic Software Analysis 27
4.1 Problem . 27
4.2 Extracting Software Information . 28

4.2.1 Reverse Engineering . 28

iii

CONTENTS

4.2.2 Forward Engineering . 28
4.3 Assumptions . 28
4.4 Structural Analysis . 29

4.4.1 Structure . 30
4.4.2 Plug-in Generated Project Structure . 31
4.4.3 Communication . 32
4.4.4 Generating the Representation . 33
4.4.5 Live changes . 35

4.5 Runtime Analysis . 36
4.5.1 AspectJ . 36
4.5.2 Extracted data . 38
4.5.3 Communication . 39

4.6 Summary . 41

5 Repository for Software Metadata 43
5.1 Model Structure . 44
5.2 Websockets . 44

5.2.1 Event information . 45
5.2.2 Structural changes . 46

5.3 Repository API . 46
5.3.1 Storing projects . 47
5.3.2 Reading projects . 47

5.4 Implementation details . 47
5.5 Summary . 48

6 Experiments & Results 49
6.1 Case Studies . 49

6.1.1 Maze . 49
6.1.2 JUnit4 . 50

6.2 Functional Requirements . 50
6.3 Performance Evaluation . 50

6.3.1 Structural Analysis . 51
6.3.2 Execution Analysis . 54

6.4 Visualization Engine Validation . 58
6.5 Summary . 58

7 Conclusions 61
7.1 Main Contributions . 62
7.2 Future Work . 62

A Appendix A 65
A.1 tese-repository . 65

A.1.1 Description . 65
A.1.2 Write Access . 65
A.1.3 Read Access . 65
A.1.4 Installation . 67

iv

CONTENTS

B Appendix B 69
B.1 tese-static . 69

B.1.1 Description . 69
B.1.2 Installation . 69
B.1.3 Usage . 69

C Appendix C 71
C.1 tese-runtime . 71

C.1.1 Description . 71
C.1.2 Installation . 71
C.1.3 Usage . 71

D Appendix D 73
D.1 Projects . 73

D.1.1 GET . 73
D.1.2 POST . 75
D.1.3 DELETE . 76

D.2 Packages . 76
D.2.1 GET . 76
D.2.2 POST . 77
D.2.3 DELETE . 78

D.3 Classes . 78
D.3.1 GET . 78
D.3.2 POST . 79
D.3.3 DELETE . 80

D.4 Events . 80
D.4.1 GET . 80
D.4.2 POST . 81
D.4.3 DELETE . 82

D.5 WebSocket . 82
D.5.1 Events . 82
D.5.2 Structural Change Notification . 82

References 85

v

CONTENTS

vi

List of Figures

1.1 Diagram of the idealized Live Software Development Environment. 3

2.1 Extract-Abstract-Present model for system structural information recovery. . . . 8
2.2 Generalization of a sequence diagram from a program’s abstract syntax tree. . . . 9
2.3 Methods for software dynamic analysis. 11
2.4 Join point types and their definitions at runtime. 13
2.5 Software metamodel for object-oriented software. 15
2.6 Graph visualization generated by Magnify . 16

3.1 Use case diagram for the framework. 21
3.2 Components of the software analysis framework. 23
3.3 Architecture of a full live software development system. 24

4.1 Screenshot of the eclipse plugin for structural analysis 29
4.2 Class diagram for the Java project model. 31
4.3 Execution analyzer aspect definition. 38
4.4 Sequence diagram describing the communication between the runtime analyzer

and the repository during the former’s lifetime. 40

5.1 Interactions between the software analysis tools and the repository. 44
5.2 Database structure diagram containing the projects’ structure and runtime data. . 45

6.1 Timeline for the event set lifetime. 55
6.2 Scatterplot of the time values in relation to the event set size. 57
6.3 Timeline of the lifetime of an event. 57
6.4 Result of using the VR visualization tool on JUnit and Maze 59

vii

LIST OF FIGURES

viii

List of Tables

3.1 List of non-functional requirements . 22

4.1 Relevant classes from the Eclipse’s Java Model 30
4.2 Data extracted from each method call by the runtime analyzer. 39

6.1 Time monitoring points in the both the structural analysis tool and the repository,
as well as their location in the structural analysis process. 52

6.2 Performance metrics related to the structural analysis. 52
6.3 Results of the first structural analysis experiment. 53
6.4 Results of the second structural analysis experiment. 53
6.5 Results of the third structural analysis experiment. 54
6.6 Location and description of each of the checkpoints for the performance analysis

of the combined use of the runtime analyzer and repository. 55
6.7 Metrics generated from the checkpoint data regarding runtime analysis 56
6.8 Time intervals related with the lifetime of a single event. 56

ix

LIST OF TABLES

x

Abbreviations

API Application Programming Interface
AST Abstract Syntax Tree
IoT Internet of Things
IDE Integrated Development Environment
JVM Java Virtual Machine
REST Representational State Transfer
UML Unified Modeling Language
VM Virtual Machine
VR Virtual Reality

xi

Chapter 1

Introduction

The purpose of this first chapter is to introduce the context of this dissertation as well as the

motivation behind it and its goals. The structure of the dissertation will also be described in detail.

1.1 Context

Software maintenance is a crucial part of the software development process. It is of paramount im-

portance to follow the software performance after its deployment and take action to, for example,

fix bugs or improve functionality. As it is such a core stage of the software development process,

increasing the efficiency of this step is highly relevant.

A great part of the time spent maintaining a piece of software is used in the comprehension

of the software in question. As such, it is of utmost importance finding ways of improving the

efficiency of this process, decreasing the necessary time for a developer to understand the code one

is about to modify. With the increasing complexity of software systems, tools that help improve

the comprehension of a software system are a relevant investigation topic. One type of tools very

suitable for this task of improving comprehension are visualization tools.

Visualization tools facilitate the understanding of the inner mechanics of a system by providing

a tangible representation of the abstract concepts that compose the system. Both two dimensional

and three dimensional software visualization tools have been built and explored in literature, the

former more so than the latter, which leads us to believe there is still space for exploration in this

field.

Liveness is closely related to software visualization tools. Tanimoto [Tan13] describes liveness

as the ability to modify a running system, further detailing several degrees of liveness which vary

in the quickness of the system’s response to the change made to it. Ideally, the system will respond

almost instantaneously to changes. Live programming is not a recent notion; LISP machines, the

Smalltalk language and the Logo language are a few examples of uses of live programming in the

earlier days of computing. In addition to software visualization, liveness is also closely related to

1

Introduction

visual programming, which simply put provides a simpler, more intuitive interface to develop and

modify software.

The novel concept of Live Software Development incorporates liveness. It provides the devel-

oper a means to visualize the system at various levels of abstraction during runtime which enhance

software comprehension and allows the modification of software at runtime. It implies reflective-

ness, that is, the software should be able to have knowledge of its own implementation and to

change it during runtime.

In order to build a live software development environment, there are three main required com-

ponents: tools to retrieve information from the system, a software information repository and a

visualization engine. The tools used to collect information on the system should operate in two

domains, both the static and the dynamic domain, to extract both structural information about the

software (packages, classes, methods and others) and runtime information of the system (events,

messages between components, method calls and others). The software repository should be able

to efficiently receive and store this information, providing it to other tools which can use it. The

visualization engine is responsible for converting this data to a tangible visual metaphor, so the

users can observe the structure and behavior of the software during runtime.

1.2 Motivation and Goals

As mentioned in the previous section, increasing the efficiency in software comprehension dur-

ing the maintenance phase of software development is necessary to reduce the time costs of this

process. Live Software Development, being closely related to visualization tools and live pro-

gramming, provides a way to achieve this.

The goal of this dissertation is to move closer to creating a live software development envi-

ronment in two ways. The first one is the identification, adaptation and implementation of tools

which extract meaningful information from software systems, both statically and dynamically.

The second is to build a repository to collect the data gathered by these tools, store it and provide

an interface so that the visualization engine can access it efficiently.

Therefore, the research questions this dissertation intends to answer can be described as such:

• What important information can be extracted from a software system to improve the devel-

opers’ comprehension in the context of Live Software Development?

• How can that information be stored in a way that facilitates its fast storage, retrieval and

processing?

1.3 Project

This dissertation is done in the context of a Live Software Development research project from

the Software Engineering Research Group of FEUP. Concurrently with this dissertation there is

another dissertation belonging to the same project which covers a complementary topic .

2

Introduction

Software
System

Static
Software
Analysis

Tools

Dynamic
Software
Analysis

Tools

Repository
Visualization

Engine
User

Figure 1.1: Diagram of the idealized Live Software Development environment. The blue high-
lighted part corresponds to the focus of this dissertation, while the orange highlighted part is the
focus of the dissertation concurrent with this one.

This other dissertation has the goal of building a Live Software Development environment in

virtual reality, and determining how useful it is to improve software comprehension. The com-

bination of the work of these two dissertations will be a complete environment, from the data

extraction to the data visualization.

A general view of the complete idealized system, as well as the components which are the

focus of this dissertation can be seen in figure 1.1.

Through this dissertation, we intend to understand how a repository for Live Software Devel-

opment should be developed by actively implementing and testing such a tool. In order to evaluate

the proper functioning of the implemented tools, these will be tested on JUnit, as this is a com-

monly used Java system case study, and Maze, a smaller project built by the author of this thesis,

providing a familiarity with it which will help in testing the implemented tools.

1.4 Dissertation Structure

This dissertation is composed of five chapters, including the present one. Chapter 2 will provide a

literature review on the topics of statical analysis of software characteristics, dynamic analysis of

software and database technologies.

In chapter 3 both the problem and the steps towards the proposed solution will be described

in detail. Chapter 4 presents how the software information extraction tools were implemented to

provide data to the repository and chapter 5 will describe how the repository prototype was build.

Chapter 6 will discuss if and how the solution built matches with what was originally intended.

3

Introduction

Finally, chapter 7 presents the conclusion and main contribution of the dissertation, discussing

possible future work.

4

Chapter 2

Literature Review

2.1 Software Visualization . 5

2.2 Software Structure . 7

2.3 Dynamic Analysis . 10

2.4 Database Technologies . 13

2.5 Summary . 16

This chapter of the dissertation will provide a description and short discussion on the current

state of the relevant topics. It will present related work in each of the subjects, such as tools and

methodologies correlated with the goals of this dissertation.

2.1 Software Visualization

Software visualization is an important tool to enhance comprehension. Software is inherently in-

visible, which does not help the task of understanding how a project functions. Visualization tools

are necessary to associate a tangible representation to the code and the program execution. This is

especially relevant in the maintenance, reverse engineering and re-engineering cases [Kos03].

The purpose of software visualization is not to create beautiful representations of systems but

rather to create informative and useful aids to the process of software perception, especially for

more complex systems [TC09].

A survey made by Bassil et al. determines functional aspects of software visualization tools

and analyses how useful each of these functional aspects is perceived as useful for the software

development process [BK].

5

Literature Review

2.1.1 Static Visualization

Static information is at the core of software comprehension. Even if a tool intends to provide

visualization of execution traces, without information on the static representation of the software

relating traces to specific parts of the system is not as intuitive.

Bassil et al. shows evidence that the most commonly used visualization methods are represen-

tations based on graphs. In fact, there are plenty of examples in literature [SJ15, BTDS13] which

output graphs to represent the relationships between levels of a system [BK].

These static representations are not limited to the data a code crawler can extract from source

code. Magnify [BTDS13] also attempts to extract metrics from components and present them in

the visualization, such as how important an artifact is and the quality of the code.

DocTool [SJ15] simplifies the automatic analysis by only extracting basic structural informa-

tion from the software in the form of a graph. To compensate for the lack of information resulting

from this simple analysis, it also provides a web interface for the user to input information on

higher level artifacts.

CodeCrawler [LD03, LDGP05] is a visualization tool which provides the possibility of visu-

alizing data retrieved from other reverse engineering tools, offering a visual encoding that allows

five metrics to be represented per entity. The visualization is deciding by choosing the layout, the

five metrics out of a defined list [LD03] and the entities for which to represent those metrics.

2.1.2 Dynamic Visualization

Static representation of the software is necessary for software visualization, but it is not enough to

fully understand the system. Not observing the behavior of a system would be wasting a valuable

source of information.

Jinsight is an example of a tool created for the purpose of visualizing program runtime data,

specifically geared towards multi-threaded Java applications. It provides multiple views to in-

crease the probability of the user being able to detect existing performance issues, unexpected

behavior or bugs. The information used by this tool is extracted from generated by a profiling

agent in a standard JVM [DPJM+02].

In Orso et al., a different approach is taken in the sense of data collection. Instead of focusing

in a single execution trace, it works best for already deployed software by analyzing a collection

of traces. To avoid cluttering the visualization two methods are used: the traces can be aggregated

and filtered, and the tool provides multiple levels of visualization (statement level, file level and

system level) [OJH03].

2.1.3 3D Visualization

While the most commons software visualization methods are two-dimensional representations,

there is also a valid reasoning behind using three-dimensional representations. Three dimensions

provides the possibility of building visualization metaphors that are much more familiar to us.

6

Literature Review

For example, Wettel et al. presents a representation of the architecture of software as a city,

where the user can freely move around and observe and interact with the system [WLR11].

Teyseyre et al. [TC09] discusses the use of 3D software representations and how they have

been approach up until this point. Representations have mostly been in one of two ways: abstract

visual or real world representations. Abstract visual representations are graphs, trees and other

abstract geometric shapes, while an example of real world representations is a city metaphor.

It also describes three different types of user interactions with the visualization: directly ma-

nipulating the objects, user navigation so the user can view the system from multiple perspectives

and system control through widgets.

In Okamura et al., a 3D tool for execution analysis is presented. Data is sourced from a

combination of data monitoring, control flow monitoring and component testing. As the data

collected is all time based, the tool builds a 3D animated scene, providing the user with navigation

functions such as suspend, replay and rewind. For the purpose of debugging, the user is able to

mark data and rules so it is highlighted throughout the animation and thus more easily identifiable

[OST04].

There have also been cases where combined static and dynamic analysis is the source of infor-

mation for the visualization. In Greevy et al., a combined static and dynamic data model merges

information from both static and dynamic analysis, which is then displayed in multiple views. This

is done in the context of feature centric reverse engineering, so the collected static data provides a

single level of abstraction of the system [GLW06].

2.2 Software Structure

Source code is the software representation most familiar for a developer. It is how software is built

and modified. However, it is not necessarily the best way to represent software when the goal is

easier comprehension.

For that purpose, different and higher levels of abstraction are useful in order to increase the

developers’ understanding of the software, by elevating above the finer grained implementation

details. UML is an example of a higher level representation of a system’s structure and behavior

[RJB04], being amongst the most popular for object-oriented systems.

To develop a higher level abstraction, it is required to obtain the existent structural information

from the system. The focus of this section is to find how a software’s structural information can

be obtained.

Feijs et al. [FKO98] describes a model for analyzing architecture: the Extract-Abstract-Present

model. Extraction consists on retrieving structural information from the system, abstraction is the

derivation of new relationships between the components obtained in the earlier phase (that is, a

further analysis of those components) and the presentation of that information through a graphical

format. Figure 2.1 shows a diagram representation of this model.

7

Literature Review

Figure 2.1: Diagram describing the process for the Extract-Abstract-Present model for system
structural information recovery [FKO98].

2.2.1 Reverse Engineering

Reverse engineering can be described as the process through which design elements are recovered

from the implementation. The abstraction resulting from reverse engineering is not a new or

modified system. Rather, it is a process of examination [CC90].

The usefulness of this approach is demonstrated by literature on the subject. In Fauzi et al.

[FHS16], reverse engineering is used to generate sequence diagrams that reflect a system’s behav-

ior, process that can be seen in figure 2.2. For this, the authors use a software’s abstract syntax

tree.

Although one may assume reverse engineering makes use solely of static representations, such

as source code or byte code, this is not the case. There are instances in literature where static and

dynamic analysis are combined. Guéhéneuc et al. [Gué04] demonstrates how a mixture of static

and dynamic models allows for a more precise automatic generation of class diagrams.

Another kind of abstraction that is possible to retrieve from a system’s implementation is

design patterns. Shi et al. [SO06] describes PINOT, a tool to automatically detect design patterns

from both the source code and the system’s behavior.

2.2.2 Abstract Syntax Trees

Abstract syntax trees (AST) are one of the data structures used by compilers to create an interme-

diate representation of the software, thus becoming an interesting starting point for analyzing the

8

Literature Review

Figure 2.2: Diagram describing the generation of a sequence diagram from a program’s abstract
syntax tree [FHS16].

structure of a software system. It creates a structure from the input (source code) which ignores

unnecessary syntactic details [Jon03].

The literature provides plenty of examples of the use of abstract syntax trees for code analysis.

For instance, it has more than once been used to detect cloned code to prevent plagiarism [LB14,

FCX13, TGHB13].

Baxter et al. [BYM+98] states that the reduction of duplicated code, which composes 5-

10% of the code in large scale software, leads to reduced maintenance costs, and describes the

application of a tool that uses abstract syntax trees to detect said duplicates. In this case, the AST

provides a representation that is easier to compare, as opposed to lines of code, where changing

variable names or inserting comments, for example, would increase the number of false negatives.

There have also been efforts in visualizing the evolution of a software project by analyzing

the AST between commits, as opposed to the typical file diffs done by version control systems

[FSWH16].

It is thus evident that this type of structure is incredibly relevant for the purpose of software

structural analysis.

2.2.3 Design Patterns

When implementing a piece of software, design patterns provide a template for standard solutions

known to work for certain problems. These patterns are not usually easy to perceive from the

9

Literature Review

source code, so developers rely on documentation to preserve the knowledge of the implemented

patterns. However, documentation is commonly left behind when changing code in the software

system during maintenance [FWG07].

Design pattern extraction from existing software artifacts becomes relevant to recover details

from the design stage of the system.

In Nakayama et al. [NS14], an anchored AST is used to incrementally define patterns in code.

Another method is used in Tsantalis et al., where class relationships mapped onto matrices and a

similarity score is calculated to predefined matrices that represent patterns [TCSH06].

Antoniol et al. [AFC98] proposes an approach to recovering design patterns by extracting the

software’s representation in an intermediate language based on UML (in which there are already

predefined pattern representations), extracting metrics from the software’s classes and applying

pattern recognition techniques to the results.

Another approach described in literature by Flores et al. [Flo06] involves the recovery of

design patterns in frameworks by reverse engineering through multiple layers of high level ab-

straction. This is done by first recovering meta-patterns and then using these meta-patterns to

recover design patterns, which will then be used to document the framework.

Finally, Shi et al. [SO06] claims to detect a majority of the design patterns defined in the GoF

book [GHJV95] by reclassifying the patterns as either behavioral or structural, and making use of

a mixture of static and dynamic analysis to identify the patterns.

2.2.4 Tools

For the purpose of structure analysis and reverse engineering, mature tools have already been de-

veloped and used. In this section an overview of some of these tools will be provided.

Reverse Engineering Environment
Rigi is a mature tool for research purposes, providing a complete environment for reverse en-

gineering and analyzing large software systems. It includes parsers to extract information from

the source code, a file-based central repository to aggregate the data, ways to analyze said data,

a scripting language to automate these processes and its own graph visualization engine [KM10].

Structure Analysis
STAN is a tool aimed towards structural analysis of Java software. It uses the Java byte code

instead of the actual source code. As an end result, it provides multiple views, such as dependency

view or composition view, several established static metrics about the software and reports. It is

available as a standalone app or integrates with the Eclipse IDE [STA09].

2.3 Dynamic Analysis

Obtaining a software system’s structure is not sufficient to understand how it behaves. There

are multiple sources of variability that cannot be taken into account during a static analysis. User

10

Literature Review

Figure 2.3: Table with a brief characterization of each method for software dynamic analysis
[GS15].

input, performance of shared resources and variable control flow paths all contribute to the fact that

the source code does not predict the exact behavior during the execution of the program [GS15].

To compensate for this lack of information, the system should be observed during runtime.

For example, logging is a very common practice in software development to record dynamic in-

formation of a program’s execution [YPZ12].

Dynamic analysis can be implemented in three different ways. Gosain et al. describes the

different approaches and tools associated. An overview can be seen in figure 2.3.

2.3.1 Instrumentation

A first approach would be to instrument the software by using a Java byte code rewriting library.

This could be done at source level, by modifying the source code, at binary level, by rewriting

compiled code, or at byte code level, by inserting new code either during compilation (statically)

or at load time (dynamically).

Source-to-source transformation tools, originally used for the purpose of code generation,

started being used for the purpose of maintenance and software evolution [BPM04]. This high

level approach offers some other advantages, like the possibility of removing redundant source

code and facilitating software comprehension [WY05].

Binary code transformation occurs after the compilation process. It can be done statically, us-

ing tools such as EEL [LS95] which provide a library for executable modification, or dynamically

with tools like MDL [HNM+97], which perform an incremental instrumentation of the executable

at runtime.

Finally, instrumenting byte code can be done with tools such as Javassist, which makes use

of Java’s reflective capabilities to provide a higher level API to instrument code [Chi00], or BIT,

11

Literature Review

which allows instrumentation at any point during byte code execution [LZ97]. In the case of

Javassist this structural reflection is only possible before load time, being unable to compensate

for dynamic loading of modified classes.

2.3.2 Virtual Machine Profiler

This method is dependent on the Virtual Machine used to run the compile code. In the case of the

Java programming language, it would be the JVM.

By making use of the environment responsible for executing the code, it provides the possi-

bility of having an in depth perspective of the behavior of the program. Tools like JPDA, whose

original purpose is debugging, provide an interface (in this case JMVTI) through which one can

apply profiling agents to extract information from the software running in the virtual machine

[GS15].

One of the major advantages of this approach is that the analysis is independent of the soft-

ware’s code, avoiding complications which could stem from needing to merge the code responsible

for the analysis with the code to be analyzed.

JMV-TI is capable of providing information to tools responsible for monitoring, profiling,

debugging and other types of analysis [jvm].

2.3.3 Aspect Oriented Programming

Aspect oriented programming enables decoupling crosscutting concerns. It circumvents the need

for instrumentation as the language already takes responsibility for that part of the implementation

of the dynamic analysis.

This approach can be done in Java by using AspectJ [KHH+01]. AspectJ defines a series of

concepts to establish how the results are produced: join points, pointcuts, advices and aspects.

Join points are the points of interest in the original source code, such as method calls, class

definitions and others which are listed on figure 2.4. These are well defined points in the execution

of a program. Figure 2.4 shows the join points AspectJ identifies.

Pointcuts are sets of join points which can be built using designators in order to provide match-

ing of multiple join points at once.

Advices are the method-like mechanism which will be run at each join point of the specified

pointcut. It provides execution before, during and after the join point.

Finally, aspects are the combination of all these components in a class like modular unit in

order to specify the implementation of the crosscutting concern. Aspects can declare pointcuts

and advices, as a class would be able to implement fields and methods [KHH+01, HH04].

Richters et al. uses aspect oriented programming to monitor a systems compliance with UML

and OCL constraints [RG03]. In Gschwind et al., the usage of AspectJ allows the developed tool

to obtain information about method calls and each argument used in said calls [GO03].

12

Literature Review

Figure 2.4: Table containing the types of join point and the definitions of each join point at runtime
[KHH+01].

2.4 Database Technologies

Developing a repository requires choosing which technology should be used for storing the data.

There are several options from which to choose. File based repositories, relational databases,

graph based databases, among others, are examples of databases that should be considered when

making the design decision for what is one of the most important single points in the system.

The existing trade-offs should be analyzed, taking into consideration the goal of the system

being developed. Volume of values inserted at once, volume of queries performed at once and

whether it is necessary to enforce relationship constraints are some examples of requirements

which affect the choice of database.

2.4.1 Real Time Data

Collecting and providing access to real time data in an efficient manner is one of the main chal-

lenges in database technologies. From infrastructure and system monitoring to the current trend of

applying sensors for real world objects to report their status in real time, these applications require

low latency for high volume data transfers, which continuously test the limits of the current state

of database technologies.

Stonebraker et al. presents eight distinct requirements for storing and consuming real time

data [ScZ05]. These requirements are:

13

Literature Review

Keep Data Moving: a system should process messages without having a costly write opera-

tion blocking the process. That is, ideally, messages should be processed on-the-fly by providing

access to the data stream, avoiding a "polling" approach.

Query using SQL on streams: a high level query language with adequate stream-oriented

capabilities should be supported, in order to provide the capability of finding messages of interest.

Handle Stream Imperfections: the system should be able to compensate for problems that

typically occur in real time data streams, such as out-of-order, delayed or missing messages.

Generate Predictable Outcomes: the data processing method should be deterministic and

thus provide a predictable outcome.

Integrate Stored and Streaming Data: a stream processing system should be able to effi-

ciently store state, so that it is possible to combine past data with real time data.

Guarantee Data Safety and Availability: the system should have high availability and be

able to ensure data integrity at all times.

Partition and Scale Applications Automatically: a real time data processing system should

be able to split its workload between multiple processors to provide scalability. In the best case

scenario, this split should occur automatically.

Process and Respond Instantaneously: the system should be able to match the speed of data

retrieval, that is, it should process the data with minimal latency.

Establishing a parallelism to other applications, receiving data from system tracing and log-

ging is akin to receiving real time sensor data, with the different of the inherent latency of the

transmission of sensor data. In Veen et al., SQL and NoSQL databases are compared in terms of

performance for high and low volume read and write operations [vdVvdWM12].

Traditional SQL databases are built using a fixed table structure and provide a query language

mechanism to select data from these tables. NoSQL databases vary much largely in implementa-

tion. Two examples of NoSQL databases can be key value databases or time series databases. SQL

databases are usually associated with more powerful query languages, while NoSQL databases are

more usually associated with high performance read and write operations [HELD11].

The paper analyzes three databases: PostgreSQL, a relational database, MongoDB, a key-

value database that stores its data in JSON-like files (BSON) and has a relatively powerful query

language, and Cassandra, also a key-value store designed to cope with large volumes of data.

After analyzing the performance of these databases for the previously mentioned scenarios,

the paper concludes that Cassandra is ideal for large scale critical sensor applications, MongoDB

is a good fit for small to medium systems that require high write performance and PostgreSQL is

the best choice when versatile query capabilities as well as reading performance are requirements

[vdVvdWM12].

2.4.2 Structure Data

Software built using object-oriented programming languages has a well defined structure inherent

to it. In a generic sense, all software artifacts created can be viewed as a vertex in a graph [DST11].

14

Literature Review

Figure 2.5: A software metamodel for object-oriented software [ML02].

Moving into source code level, one can see through the case of abstract syntax trees, the structure

of the source code of a project closely resembles that of a graph.

Figure 2.5 shows an example of an object-oriented metamodel in graph form. Mens et al. built

this metamodel and used it to produce low and high order metrics from the graph representation.

Examples of low order metrics would be node count and path length, while high order metrics can

be node count ratio and subsequent refinements [ML02].

As a result of this, many projects concerning software visualization and the software develop-

ment project look towards using graph databases as the core of their implementations.

Magnify, is an attempt at creating a visualization system for software. It only provides a view

of the source code and is limited to what it can extract from the code given to its parser. A graph

database is used to store the structural information of a software in a language independent fashion,

which is then used by a web interface to display that data. The nodes in this graph represent

basic software components such as packages, classes and methods while the edges represent their

structure and hierarchy. It uses Tinkerpop, which is provides an in-memory graph based database

[BTDS13]. Figure 2.6 shows an example result of using this tool to visualize software structure.

Another tool for software project visualization, DocTool, uses a graph database along json files

as its backbone. It splits its data collection in two: a server side and the client side. The server

side corresponds to a crawler that extracts the basic structural information from the source code,

such as methods and classes, while the client side serves the purpose of allowing the user to insert

information about other concepts: entities, attributes, actions and pages.

The tool makes use of a code crawling Eclipse plugin to extract the information from the source

code. It also provides a web interface for the user to input the client information and visualize the

graph.

Each node in the graph database represents an element in the source code, such as a class

or a method, while the edges between nodes represents relationships between these elements,

such as "class X implements method Y". The complementing json files serve as an intermediate

step between the tools. Once a change is made to the data in the web client, for example, the

15

Literature Review

Figure 2.6: An example graph visualization generated by Magnify for Spring context 3.2.2
[BTDS13].

modification is first done in the json files and only then does it propagate to the graph database

[SJ15].

Graph structures can also be stored in a relational database, albeit in a less intuitive fashion

when compared to graph based databases [Cel17]. Perhaps for this reason most of the tools de-

scribed in literature make use of graph databases.

2.5 Summary

Software visualization is a heavily explored area, especially in regards to 2D visualizations. While

3D visualizations have also been explored, it can be seen there is a lower focus on these. This

could be due to the fact that three dimensional visualizations for non spatial data, such as software

structure, is ill-advised.

An exception to this is real world metaphors, which is one of the more explored 3D visual

representations of software. This requires generating meaningful spacial dimensions for the rep-

resentation elements, making this representation adequate for three dimensions.

There is also not much literature in regards to 3D visualization of data resulting from software

dynamic analysis, which leaves a gap in research ready to be explored.

The reverse engineering field for static analysis of software has plenty of tools described in

literature, some more lightweight than others. For the context of this dissertation, the tool should

be as decoupled as possible, so as to have a separation of responsibilities between components.

The abstract syntax tree in the context of Java provides an easy way to access structure from

source code by abstracting minor syntactic details. This facilitates the retrieval of the software’s

structure.

16

Literature Review

As for dynamic analysis, the ideal approach would have a low overhead and should be as de-

coupled from the source code as possible, which should rule out source-to-source instrumentation.

Some experimentation should be done between bytecode instrumentation, VM profiling and aspect

oriented programing approaches to decide which is a better fit.

The database technology will be an impactful decision on this dissertation. Nonetheless, liter-

ature already shows us that SQL and NoSQL databases have points in favor and against.

17

Literature Review

18

Chapter 3

Proposed Solution

3.1 Contextualization . 19

3.2 Goals and Research Questions . 20

3.3 Requirements . 20

3.4 Architecture . 23

3.5 Summary . 25

In this chapter, the problem will be explored. It will start with the contextualization of the dis-

sertation on the overarching project which contains another dissertation which was developed in

parallel. The goals and research questions description follows that section, leading up to the re-

quirements where we discuss what the developed framework should accomplish and how it should

do so.

The section that follows contains the architecture of the frameworks and how its components

connect with each other, as well as discussing how this framework could be connected with a

specific external tool to create a live software visualization environment.

Finally, the case studies which will be used to help develop, test and verify the correct func-

tionality of the framework will be presented.

Further implementation details will be left for the two following chapters, chapter 4 and chap-

ter 5.

3.1 Contextualization

This project was created in the context of an investigation group on live software engineering,

started in the present school year, at Faculdade de Engenharia da Universidade do Porto.

This dissertation was realized in parallel with another one, named "Towards a Live Software

Development Environment", which aims at building a virtual reality environment for improving

19

Proposed Solution

software comprehension, through the visual representation of the software structure and runtime

behavior. In order to obtain said data from a Java project, it will use the framework described in

this work, and display it through a city metaphor by representing packages as blocks and classes

as buildings, among other representations. Despite being two separate projects, these can be used

in tandem to allow for a complete software comprehension environment, as one project should

provide an easy to access API to the obtained data analysis and the other one should be able to use

this data and display it in real-time.

Given the live context these two thesis were based upon, they share requirements regarding

the availability of data and how the system as a whole should handle live events such as runtime

information or structural updates. As the virtual reality environment is the direct interface with

the user, the data should be provided to it immediately, as a way to provide liveness.

This dissertation is responsible for the extraction, storage and distribution of information re-

garding a software project. The information should be extracted from a development environment

and affect the analyzed source code as minimally as possible. It should then be possible to access

this information and be notified of any live modifications.

3.2 Goals and Research Questions

The main goal of this dissertation is to build upon the concept of live software development and

explore the necessity of obtaining information from the software and enable the access to that

information in a simplified manner. Two research questions can be derived from this goal:

• What important information can be extracted from a software system to improve the devel-

opers’ comprehension in the context of Live Software Development?

• How can said information be stored in a way that facilitates its fast storage, retrieval and

processing?

This dissertation will explore these questions individually at first and arrive at a framework that

combines the tools which were built that achieve the goals of these questions. In this context, a

framework corresponds to a set of tools and support systems which provide extension points where

external tools can connect to access the software metadata collected by the tools framework.

3.3 Requirements

In this section, both functional and non-functional requirements of this framework will be de-

scribed.

3.3.1 Functional Requirements

Functional requirements describe what the system should be able to accomplish and what external

actors want to accomplish in the system. Defining functional requirements and use cases therefore

20

Proposed Solution

Developer

External
Tool

Modify Structure

Monitor Execution

Receive Execution
Events

Receive Structural
Change Notification

Access Structural
and Execution

Data

Figure 3.1: Use case diagram detailing the functional requirements of the framework.

implies the definition of actors. In the case of this framework, we are presented with two different

actors: the software developer and external tools. The requirements are shown in figure 3.1 and

described in further detail the following list.

1. Software developer. The software developer will want his work to be processed through

the repository.

1.1 Project Modification. The developer should be able to have the project be processed

upon modifying its source code.

1.2 Execution Analysis. The developer should be able to have the project’s execution be

monitored and logged.

2. External Tool. An external tool should be able to retrieve data from the repository.

2.1 Obtain Structure. An external tool should be able to obtain the structure of any

analyzed project.

2.2 Obtain Execution. An external tool should receive details about the execution of a

project.

2.3 Structural Change Notification. An external tool should be informed when a change

to the analyzed project’s structure occurs.

21

Proposed Solution

Non-functional requirement Description

Source Change Performance

Changes to the source code of the project should be
propagated quickly enough so the developer has a sense
of cause-effect between the modification and the information
update in the repository.

Execution Event Performance

Events generated during the execution of a project in
analysis should be propagated to the server quickly enough
to provide a sense of liveness but avoid clogging the server
with too many requests.

Structural Analyzer Performance
The analysis of the source code structure should not impact or
hinder the development process (by affecting the performance
of the IDE or in other ways).

Execution Analyzer Performance
The analysis of a project’s execution should have little to no
impact on the performance of the actual project, that is, it
should have no added latency.

Structural Consistency
The structural analyzer should provide a way to restore the
correct software structure if it ever reaches an inconsistent
state.

Space Constraints
The execution analyzer should avoid saturating the server
with execution data overtime.

Table 3.1: List of non-functional requirements along with their description

3.3.2 Non-functional Requirements

The system’s non-functional requirements describe in what way the functional requirements should

be accomplished. This project in particular has a special concern on performance requirements as

it needs to interact with both actors (developers and external tools) in the way that will induce the

perception of liveness.

The two core non-functional requirements that apply to this project have to do with time

bounds (time performance) and reliability (data consistency).

Even when considering the different types of data stored in the repository, there are different

performance requirements associated with the retrieval of each one. For instance, it is of extreme

importance to provide the external tools with the execution events in real-time while on the other

hand, structural changes may take a while to propagate to the framework and then the external

tools, as it reflects the process of modifying and saving the source code.

That being said, source code changes should still be processed in a reduced timeframe so that

the developer has the sense of liveness and cause-effect, from the changes in the project to the

update in the information on the external tool.

The non-functional requirements are therefore listed in table 3.1.

22

Proposed Solution

Development Environment

Project

Structural Analysis
Tool

Execution Analysis
Tool

Repository Server

API

Database

Figure 3.2: Diagram displaying the components of the software analysis framework: the analysis
tools and the repository.

3.4 Architecture

There are two levels of architecture that need to be described. First, it is necessary to describe the

architecture of the framework which is described in this thesis: its components and how they will

interact, what external interfaces it will provide, among other details. Finally, it is important to

understand how a live software environment should work and how it would be implemented, using

the framework described earlier.

The focus of this thesis, as mentioned earlier, will be on these two concerns: how and what

information on software projects can be extracted and how it can be stored as to enable its distri-

bution to external tools which wish to use it.

The proposed solution for these problems is twofold. First, a pair of structural and execution

analysis tools should be able to obtain information from the software project. Secondly, a reposi-

tory should be able to store said information quickly and make it easily available to any external

tool.

These two components (analysis tools and repository) will build the framework which will

allow other tools to use information on a software without concerning themselves with extracting

the information and guaranteeing the communication of that information to it in a specific format.

These components will communicate via a REST API, allowing the repository to serve as a

tool which will separate the analysis concerns from the concerns of external tools (whether visual-

ization or others). Figure 3.2 shows the interactions between the components of the framework. It

is worth mentioning that due to the server-client nature between the components, the development

environment can be on the same machine as the repository server or even on separate machines.

23

Proposed Solution

Analysis Framework

Development Environment

Project

Structural Analysis
Tool

Execution Analysis
Tool

Repository Server

API

Database

Visualization Environment

Visualization
Tool

Figure 3.3: Diagram displaying the overall architecture of a full live software development system,
complete with the analysis framework and visualization environment components.

Live Software Visualization Environment

The live software development environment envisioned in these projects can be defined as the

conjunction of two large, decoupled components: the visualization environment and the software

analysis framework. Despite being focused specifically on the software analysis component, and

the fact that this component can work on its own to provide information to a variety of tools, it is

still relevant to describe how these two components can be combined to create an environment to

empower development and software comprehension.

Given the opportunity provided by the "Towards a Live Software Development Environment"

thesis which was developed at the same time as the present dissertation, we have an example of

how an external tool can use of the information provided by the repository described here.

An overview of the system composed of the combination between the framework described in

this thesis and the visualization environment described in "Towards a Live Software Development

Environment" can be seen in figure 3.3. As will be mentioned later, external tools will have no

direct contact with either the project or the software analysis tools, and is therefore only aware of

the repository.

This visualization tool will communicate with the repository, having no direct interaction with

the software analysis tools. The interactions with the repository will be done through a REST API

which will be specified in D. It will then use this information to build a 3D representation of the

project structure and allow the user to navigate and interact with it.

In figure 6.4 we can see the results of a project (in this case the Maze project) after going

through the full pipeline: analysis, information storage and distribution, and visualization.

This figure fails, however, to represent another channel to represent information which was

also implemented. As this visualization system was implemented using virtual reality, it was

possible to place extra information about inner class structure next to each controller. This means

24

Proposed Solution

that when a user looks at his own hand, it can read extra information which is not present in the

model representation.

3.5 Summary

In this chapter, the project was described and contextualized within the other relevant project in

the live software development group. The way these two projects should be able to interact was

also detailed to build the concept of the full live software development environment.

Both functional and non-functional requirements were discussed for the framework described.

The functional requirements were presented as use cases for the two possible actors: the soft-

ware developer and external tools. Non-functional requirements were described as particularly

focused on the performance concerns of both the analysis tools and the repository, as well as data

consistency and space constraints.

Finally, the architecture of the framework, as a combination of the analysis tools and the

repository, was discussed, more specifically the manner in which these components communicate.

A system using this framework and the visualization environment was also lightly presented as a

more concrete example of a full environment.

25

Proposed Solution

26

Chapter 4

Static and Dynamic Software Analysis

4.1 Problem . 27

4.2 Extracting Software Information . 28

4.3 Assumptions . 28

4.4 Structural Analysis . 29

4.5 Runtime Analysis . 36

4.6 Summary . 41

This chapter will describe the problem of selecting and extracting the system representative metrics

in further and the proposed solution. The resulting set of tools should be able to adapt its output

to whatever repository implementation desired.

First, a higher level overview of the tools developed for this environment will be provided,

followed by a more in-depth explanation of how they work together with the repository to provide

information about the piece of software in question to users and tools.

4.1 Problem

Source code is the most common representation of software. It is through modification of the

source code that the basic evolutionary process of software development takes place.

Creating a Live Software Development environment implies using a visualization engine for

improved software comprehension. This visualization engine, however, requires structural and

behavioral data from the software in order to create a useful representation of the system through

a viable visual metaphor.

Therefore, it is necessary to determine what is the most important information to retrieve from

the software and how it can be obtained. Structural data is required to understand what are the

27

Static and Dynamic Software Analysis

components of the system and how they depend on each other, while behavioral information is

necessary to observe when and how do the components actually interact.

4.2 Extracting Software Information

The proposed solution for this process will begin by determining which are the metrics that best

represent the structure and behavior of a Java system.

As the point of origin of this analysis is the source code, there are two main paths that can be

followed: reverse engineering and forward engineering.

4.2.1 Reverse Engineering

Through reverse engineering higher level representations of the software can be extracted. This

will be the basis of the static structural analysis.

We will make use of two representations of a Java project. First, the Java Model used by

the Eclipse IDE, which contains information about the Java elements such as compilation units,

packages, methods, among others. Secondly, the abstract syntax tree of the software, which is a

data structure used by the Java compiler and can be used to overlook minor syntactic details of

the code and arrive at an easier to understand representation of the source code structure, from

package level down to method level. The combination of these two representations will provide

the information on how the system is composed as well as empower the next process.

4.2.2 Forward Engineering

Forward engineering, as opposed to reverse engineering, leads to the lower level representations

of the system. This will be the process through which we will observe the system’s behavior.

Several possible approaches were mentioned in chapter 2. Between instrumentation, virtual

machine profiling and aspect oriented programming. After an overall analysis of how straight

forward it is to implement these approaches to the selected case studies, the best fit will be used.

The selected approach will then be used for execution tracing, through event logging, at a

granularity that will be decided further during development. One possible option would be event

logging every method call, registering the calling class, the called method and the used arguments.

Monitoring would also be a viable option for relevant behavior information. We would need

to define resource usage or function execution time thresholds so that an event is logged when one

of those thresholds is violated.

4.3 Assumptions

As software comprehension is inherently tied to the maintenance and development process, we as-

sume the tools which will request information from this framework will do so from a development

environment.

28

Static and Dynamic Software Analysis

Figure 4.1: Screenshot of the menu added by the structural analysis plugin. This tool mostly runs
on background but this button allows the reset of the project structure on the repository.

Furthermore, the focus of these tools will be software projects developed in Java. Limiting

these tools to a single language, despite reducing versatility, will enable a more detailed and fo-

cused analysis of the projects, avoiding the need for extreme abstraction of structural concepts so

that it could be adaptable to other languages.

4.4 Structural Analysis

First and foremost, a tool whose purpose is to increase software comprehension will require infor-

mation of how the software in question is composed structurally. As stated before, in the specific

case of a Java project, the abstract syntax tree can be used to abstract from syntactic details from

the language and provide a structure of the elements generated from the source code which is

considerably easier to interpret.

In order to have easier access to the abstract syntax tree as well as some other structural details

of a Java project, and given the assumption of development environment mentioned earlier, the

software structure analysis component was envisioned as an IDE plug-in, which can be seen in

figure 4.1, implemented using the Eclipse Plugin Development Environment.

Open source IDE’s such as Eclipse provide a set of libraries to develop extra components for

the development environment. More specifically, a Java oriented Eclipse IDE contains the Java

development Tools which among other things, such as access to the UI of the environment or even

the debugger, allows a plug-in developer to access to the structures Eclipse uses to represent Java

projects of all the projects in the workspace.

In order to facilitate the access to these structures, the structure analysis tool was developed as

a Eclipse plug-in.

29

Static and Dynamic Software Analysis

Java Model Interface Interface Description

IJavaModel
The Java workspace currently opened in this Eclipse instance. It is the
parent of all projects.

IJavaProject Represents a Java project.

IPackageFragment
Represents an entire Java package. It is contained in a project and
contains compilation units.

ICompilationUnit Represents a .java file.
IType A source type in a compilation unit.
IMethod A method or constructor declared inside a source type.
IField An attribute/field inside a type.

Table 4.1: Relevant classes from the Eclipse’s Java Model

4.4.1 Structure

Before deciding what the internal representation of the workspace for the plug-in will be, it is nec-

essary to understand the structures Eclipse JDT provides access to: the AST and the Java Model.

Abstract Syntax Tree

An abstract syntax tree is composed of ASTNodes, which can also be composed of other

ASTNodes. Each ASTNode represents a Java language source code construct, such as name, type,

expression, statement or declaration. Several other classes exist that extend ASTNode in order to

include attributes and methods specific to the source code construct they represent.

Given its proximity with the source code, the AST the allows fine grained information on

where some elements are located in a source file. For example, through the AST it is possible to

know what is the index of the starting character of method declaration and its length in characters.

Nevertheless, the fact that the AST is a powerful representation of a project comes with the

significant drawback. Due to its fine grained structural nature, it is considerably more complex to

navigate than the Eclipse Java Model.

Eclipse’s Java Model

The Java Model is composed of the classes which model the elements that compose a Java

program. These classes range from IJavaModel, which represents the workspace in question,

IJavaProject, which represents the project itself, to IMethod and IType, which represent methods

and classes respectively. The Java Model elements which were relevant to the structure used by

the plug-in to represent a workspace are described in table 4.1.

As the Java Model structure is considerably easier to traverse than the abstract syntax tree due

to its coarser granularity, it was used as the main source of information about the project to build

the internal model.

30

Static and Dynamic Software Analysis

Project

Package

IClass

IMethodAttribute

Argument MethodInvocation

*

1

1

*

1

*

1

*

1

*

1

*

Figure 4.2: Class diagram for Java project model in the Eclipse plug-in.

4.4.2 Plug-in Generated Project Structure

The structure generated by the plug-in is mostly based upon the structure provided by the Eclipse

Java Model classes described in table 4.1. Additionally, the structure also includes attributes

which are either not directly extracted from existing attributes in the Java model (derived from one

or more attributes in the Java model) or obtained from the AST.

To facilitate the comprehension of the elements and their attributes, a small description will

now be provided for each one. An high level view of these elements is also present in figure 4.2

• Project

Project Name: the name of a project in the workspace.

Packages: all the packages in the project, including the parent packages which do not con-

tain any classes, only subpackages.

• Package

Package Name: Name of the package. It contains the name of the parent packages in it,

separated by ’.’s .

Has subpackages: Boolean indicating whether this package contains subpackages or not.

Classes: all the classes in the package.

• Class

Class name: Simple name of the class.

Hash: a hash generated from the classes canonical name. This hash’s relevance will become

clear in the section describing the runtime analysis process.

31

Static and Dynamic Software Analysis

Lines of code: the number of lines in which the class is defined.

Qualified name: Canonical name of the class. That is, besides the class name, it also includes

the hierarchy of parent packages in it.

Attributes: All the attributes/fields defined in this class.

Methods: All the methods declared in this class.

• Attribute

Attribute name: Name of the attribute.

Type: type of the attribute.

• Method

Method name: Name of the method.

Return type: type of the returned value of the function.

Lines of code: number of lines of code this method’s declaration takes.

Start of method: index of the first character of the method declaration in the source code file

(obtained from the AST).

Length of method: length in characters of the method declaration in the source code file(obtained

from the AST).

Key: Resolved binding key of this method. The method binding needs to be generated so

this method is considered resolved. For the method to be resolved, the IMethod object for

this method has to be generated from the MethodDeclaration (a node of the AST) through

resolveBinding() and then getting the resulting binding’s associated JavaElement.

Arguments: the method’s arguments.

Method invocations: all the invocations to methods that occur inside the body of this method.

• Argument

Argument name: Name of the argument.

Type: type of the argument.

• Method Invocation

Key: Same as the Method’s key, but for the invoked method. The resolved binding key

guarantees that if the invoked method was declared in the project, the keys will match.

4.4.3 Communication

Given the context within which this plug-in is encompassed, it was implemented in a way that

allows it to communicate with a server, either hosted remotely or locally. In the case of this

framework, this server corresponds to repository.

32

Static and Dynamic Software Analysis

The plug-in provides the repository with the structural information of the workspace and all its

projects by sending a POST request in which the body contents correspond to the JSON structure

represented in excerpt 4.1.

1 {
2 " p ro jec tName " : s t r i n g ,
3 " p a c k a g e s " : [
4 {
5 " packageName " : s t r i n g ,
6 " hasSubpackages " : boo lean ,
7 " c l a s s e s " : [
8 {
9 " c lassName " : s t r i n g ,

10 " hash " : s t r i n g ,
11 " l i n e s O f C o d e " : i n t e g e r ,
12 " q u a l i f i e d N a m e " : s t r i n g ,
13 " a t t r i b u t e s " : [
14 {
15 " a t t r i b u t e N a m e " : s t r i n g ,
16 " t y p e " : s t r i n g
17 }
18] ,
19 " methods " : [
20 {
21 " methodName " : s t r i n g ,
22 " key " : s t r i n g ,
23 " s t a r t O f M e t h o d " : i n t e g e r ,
24 " leng thOfMethod " : i n t e g e r ,
25 " l i n e s O f C o d e " : i n t e g e r ,
26 " r e t u r n T y p e " : s t r i n g ,
27 " a rgumen t s " : [
28 {
29 " argumentsName " : s t r i n g ,
30 " t y p e " : s t r i n g
31 }
32] ,
33 " m e t h o d I n v o c a t i o n s " : [
34 s t r i n g
35]
36 }
37]
38 }
39]
40 }
41]
42 }

Excerpt 4.1: Template in JSON format for the body of the HTTP POST request of the static

analyzer

By sending all the information in one large HTTP request, instead of sending multiple small

requests, that is, one request per element to its corresponding endpoint in the server, the latency of

the structural information upload process is significantly reduced.

4.4.4 Generating the Representation

The actual process of extracting the structure of the projects in the workspace is based on a pro-

gressive descent through the Java Model. Before the Java Model can be analyzed, it has to be gen-

erated from the IWorkspace class, which represents the workspace in a language agnostic manner.

This is done by invoking JavaCore’s create method with the current IWorkwspace as an argument.

33

Static and Dynamic Software Analysis

Once the Java Model is obtained, we analyze each Java project in the workspace. The analysis

of an element of a certain level in the Java Model implies the analysis of all their child elements.

For example, analyzing a projects implies analyzing that project’s package fragments, which fur-

ther implies analyzing each package fragment’s compilation units, and so on.

Although this process may seem trivial, there are some points worth noting in regards to the

extraction of the lower level elements in the model. There are cases in which obtaining the child

elements of a specific parent element is not as linear as calling a getChildElements method which

returns an array of said child elements. This is the case when obtaining both the classes’ methods

and the method invocations within them.

The complexity in obtaining these two types of structural elements arises due to the fact that, in

both cases, it is necessary to obtain information about them from the AST to be used in conjunction

with the information from the Java Model. The process through which this is accomplished will

now be described in further detail.

• Converting compilation unit from Java Model to ASTNode

The first step consists in converting the compilation unit, in form of a ICompilationUnit

object from the Java Model, to its corresponding node in the AST. In order to achieve this,

a parse function was created, which uses an ASTParser to generate an abstract syntax tree

from the compilation unit and returns this newly created CompilationUnit instance.

• Visitor overview

For AST’s compilation units, the way to process its descendant nodes is through imple-

mentations of ASTVisitor. By creating a class which extends ASTVisitor and overriding the

method visit, this method will be called once for each node of the type chosen as argument

of the method which descends from the compilation unit. For our case, we implemented

two ASTVisitors: one for MethodDeclaration’s and one for MethodInvocation’s.

These visitors will be instantiated and afterwards the compilation unit in question will accept

these visitors so they can analyze it. While a visitor is analyzing a compilation unit it will

store the ASTNodes it finds which are relevant for said visitor.

• Resolving bindings

This step is crucial for both the MethodDeclaration and the MethodInvocation visitors. One

of the most important attributes in the plug-in’s model is the key, as it allows the cross

reference of invoked methods and methods declared in the project. Although this key is

provided by the Java model, it is only guaranteed to uniquely represent a method if the Java

model element is resolved, that is, its binding has to be resolved.

In order to resolve the method’s binding, we have to call the method resolveBinding of the

relevant AST node, and from the resulting IMethodBinding object we obtain the resolved

IMethod object, which we store. From this IMethod element we can now get the binding

key to identify the method in future invocations.

34

Static and Dynamic Software Analysis

• MethodDeclaration visitor

Method declarations in a compilation unit could be simply obtained from the Java model.

However, gathering them this way would not resolve the method bindings. As such, an

ASTVisitor is required to obtain all the method declarations of a compilation unit.

The method declaration AST nodes are stored and their corresponding Java model element

is generated and stored as well. From these two arrays of elements we can obtain most of

the method information described in the previous section, including the method arguments’

information. The visitor class allows access to the resulting element arrays, so they can be

analyzed.

It is not possible, however, to obtain the method invocations from the method’s body using

these elements, which is why we need a MethodInvocation visitor.

• MethodInvocation visitor

This visitor is slightly more complex than the previous one. As it acts on the compilation

unit and not on each method from the compilation unit separately, we need to find a way to

determine which method body contains which method invocations.

Upon visiting a method invocation, we crawl up its AST until its parent method declaration

is found (note: as a simplification, we do not consider invocations from outside method bod-

ies). Once the parent method declaration is found, both bindings are resolved (the method

declaration and the method invocation. Finally, the original method invocation node is

stored and so are the two resolved Java model methods (invoked method and containing

declaration).

The visitor implements a getInvocationsFrom method, which receives an IMethod object

and returns an array of the binding keys corresponding to methods which were invoked

from the given method. This array is then added to the resulting information of the method

being analyzed.

Packages also rely on an extra processing step. In Java, packages are conventionally named

hierarchically, which implies that the packages of a project compose a tree structure. In order

to facilitate the understanding of the concept of packages and subpackages, the list of packages

obtained through the Java model is complemented by generated "parent" packages.

This is implemented by checking each package’s name: if it contains a dot somewhere in its

name, it means there is a higher level package. This higher level package’s name is the child

package’s name without the substring after the last dot. The packages generated in this manner

are then appended to the list of packages in the project.

4.4.5 Live changes

One of the crucial features of the plug-in developed for the statical analysis is the ability to detect

changes to the source code in real time and reanalyzing the changed elements.

35

Static and Dynamic Software Analysis

The Eclipse JDT provides the mechanism to implement an element change listener, which

calls a predefined function once there is a change to a Java element inside the Eclipse IDE. The

callback function will receive as an argument the ElementChangedEvent, from which we can

obtain the IJavaElementDelta which contains information about which element was changed.

As IJavaElementDelta informs us of which element was changed, the representation of the

project in the plug-in does not have to be rebuilt from the start. Processing time is thus saved by

only analyzing the affected elements, from the Project level to the Compilation Unit level.

Despite the fact that it would be interesting to allow modifications to the Method level, Eclipse

JDT does not provide a notification of change in an IMethod element when the method body is

changed, only a ICompilationUnit level notification. The lowest change listener implemented was

therefore at the Compilation Unit level.

When communicating the result of this partial analysis to the repository, the JSON data sent is

the part of the aforementioned JSON structure relevant to the element level analyzed. The request

is then sent to the endpoint corresponding to said element: "/projects", "/packages" or "/i-classes".

Another important factor to guarantee consistency is the analysis of the workspace when the

IDE is launched. This compensates for any changes that may have been done to the source code

from an external tool, as well as establishing a mechanism to restore the projects’ representations

to a safe state if any inconsistency issues occur during the detection of live changes.

It is also important to note that if there is any issues with the analysis as a result of incorrect

source code (invoking inexistent functions), the model will not be generated and the changes will

not be propagated.

4.5 Runtime Analysis

Alongside structural analysis, the analysis of the software’s behavior upon execution is extremely

important for one to know how a piece of software functions. However, analyzing runtime behav-

ior elicits a myriad of problems.

Depending on the amount of data the analyzing tool extracts from the software at runtime, the

data throughput can be massive. Some measures have to be taken in order to mitigate this issue.

Another concern for a runtime analyzer is that it should be minimally invasive, that is, the

logging concerns should be as decoupled from the software to be analyzed as possible. For the

runtime analysis we built an AspectJ project which would weave the generated logging code into

the target project with minimal impact to it.

The main focus of this analyzer is method invocations. However, it could easily be extended

to monitor other events such as constructor calls, exception handling, among others.

4.5.1 AspectJ

As mentioned earlier, one of the requirements for this analyzer is the separations of concerns in

the source code, that is, the source code of the original software should not have to be modified in

36

Static and Dynamic Software Analysis

order for it to be analyzed. This excludes the case of simply implementing a logger as a class in

the project and then calling a log method whenever it is relevant, adapting it to whichever context

it is called from.

Luckily, AspectJ provides a way to achieve this, by weaving advices into the original code.

For the analyzer code to be weaved into the project in question, we need to choose the relevant join

points, define the pointcuts and the advices. These steps will now be explained in further detail:

• Join points

The first concern is to choose the relevant joint points. These are the points in a Java

project in which AspectJ allows us to introduce advices. Examples of join points are method

calls, method executions, constructor calls, field reference, field set and exception handlers,

among others.

For our analyzer, however, we chose to only focus on method calls.

• Pointcuts

Secondly, it is necessary to define exactly what instances of the joint points will be weaved

with the advice. As the goal is to build a generic method call logger, the conjunction of

pointcuts will have to include calls for any method except for calls which occur in the source

code of the analyzer project.

The pointcuts used by the analyzer are the call pointcut, which gathers all method calls, and

the within pointcut, to select all method calls from within the classes of the runtime analyzer

and avoid analyzing them.

Given the fact that the analyzer is provided as an AspectJ project, the user can add pointcuts

to the existing advice. One possible application for this would be to select method calls

originating from a specific class or package by using the within pointcut. Besides allowing

for a more targeted analysis, it would help the communication process run more smoothly,

since the amount of information being sent would be reduced.

• Advice

Finally, we need to define the aspect advice. The advice specifies the code that will be

weaved into the original source code on compilation, at each pointcut.

An advice can be set to run before, after or between the joint point. As we want to have a

notion of the order of method calls, the advice will be weaved before the method calls.

For the analysis of a method call, AspectJ provides a multitude of variables. In the specific

case of the runtime analyzer we use two of these variables: thisJoinPoint and thisEnclos-

ingJoinPointStaticPart. Most of the data will be extracted from the thisJoinPoint variable,

while the thisEnclosingJoinPointStaticPart will only provide the name of the class where

the method call occurs. The data obtained for each method call will be described in a more

detailed manner in section 4.5.2.

37

Static and Dynamic Software Analysis

Figure 4.3: Screenshot of a code segment of the aspect which monitors the execution.

Two hashes are also generated, one from the name of the class where which the method

call (the origin class) and the other from the name of the class where the called method is

declared (the destination class). These hashes are generated in the same way as the class

hash generated by the static analyzer.

Figure 4.3 shows the partial definition of the aspect used to monitor method calls (missing

the rest of the advice). The join point corresponds to call, while the rest of the pointcut

specifies that the advice should not be weaved into method calls of the execution analyzer.

Finally, the advice recovers information from the method call and hands it over to the com-

munication interface to send the method call to the repository.

Though an interface was not built for this, as the analysis tool is implemented as an AspectJ

project, a developer could modify the aspect where the comment "insert other calls here" is

done in figure 4.3, and add within pointcuts to specifically identify the classes or packages

where he wants the method calls to be obtained. This reduce the toll on the repository and

allow the developer to focus specifically on the method calls in a small set of classes.

After defining the aspect, upon compiling the project, AspectJ instruments the resulting code

by inserting the code defined in the advice in the points specified by the advice.

4.5.2 Extracted data

The explanation of the data extracted from each method call is done in table 4.2. The main goal

of this process is to extract the most valuable information without compromising the dimension

of each event, considering how there is a massive amount of method calls in a normal piece of

software and that these events will have to be handled by the repository.

Besides the data present in table 4.2, the analyzer also obtains an array of the arguments used

in the method call and for each one stores its type in a field called type and a whether it is null or

not in a field called value.

38

Static and Dynamic Software Analysis

Event Field Field Description

this
"instance" if there is an executing object or "static" if the method call
occurs from a static method.

target
"exists" if there is a target object or "null" if the method call does not
have a target.

kind
Indicates the kind of jointpoint found (in the current implementation it
only appears with the value "method-call").

signature the called method’s signature.

class
name of the executing object’s class or "null" if there is no executing
object (static method).

sourceLocation a string in the format "ClassFileName.java:<line_of_call>".

originClass
name of the class where the method was called. As opposed to the
class field, this is never null. Generated from thisEnclosingJoinPointStaticPart

destinationClass name of the class which declares the called method.
originHash hash created from the value of the field originClass
destinationHash hash created from the value of the field destinationHash

Table 4.2: Data extracted from each method call by the runtime analyzer.

The first implementation stored the string representation of the argument in the value field.

However, it quickly became apparent that this was not a good idea, as there were cases of long and

cumbersome string representations that increased the amount of data which needed to be sent to

the repository significantly.

4.5.3 Communication

The communication component of this analyzer is of utter importance given the large amount of

data it will transmit. The mechanisms used to avoid slowing down the execution of the software

in analysis will be discussed in this subsection, as well as the sequence of communications with

the repository and the structure of the messages.

4.5.3.1 Buffering and asynchronous requests

In order to reduce the impact of the analysis and the latency with which events arrive at the repos-

itory, two approaches are adopted: asynchronous requests and buffering.

Asynchronous requests are the most simple improvement that can be implemented. Espe-

cially taking into account that we do not have to process any sort of returning information from

the repository, since we favor reduced latency over the guarantee that all events are received, asyn-

chronous requests avoid stopping the execution of the original software to send a request and await

the server’s response. This reduces the performance impact of the analyzer to the original software

significantly.

The second mechanism is buffering events, that is, storing events in an array and sending a

request with all the stored events, clearing the array afterwards, and repeating this process at a

fixed time interval. The reasoning behind using buffering is to minimize the impact of the inherent

39

Static and Dynamic Software Analysis

Runtime
Analyzer Repository

Get Project id with Project name

<Project_ID>

Clear events table

Sent events array

loop

Figure 4.4: Sequence diagram describing the communication between the runtime analyzer and
the repository during the former’s lifetime.

latency of communicating with the server. Similarly to the reasoning behind sending the whole

project structure in a single request, it is better to send one large request and allow the server to

process it than to send a large batch of smaller requests.

Though buffering may affect the notion of liveness, it prevents unordered events and avoids, or

at least reduces the likelihood of overwhelming the communication channel with massive amounts

of small requests.

4.5.3.2 Analyzer communication sequence

From the startup of the analyzer to when it is actually analyzing the software, the communications

with the server are described in figure 4.4.

The first step of the startup process is to preemptively obtain the project’s id in the repository.

This prevents the need for the repository to constantly query what project has the given name. It

does this by obtaining the project’s name and using it to query the repository for that project’s id.

Secondly, it requests the repository to clear all the information originated from runtime anal-

ysis. Given the possibly massive amount of data a runtime analysis can generate, the repository

assumes only one project is being analyzed at a time.

Finally, at a fixed interval of time, the analyzer sends the buffered array of events to the repos-

itory for storage and distribution.

4.5.3.3 Request structure

Although the data extracted by the analyzer has already been described, it is still relevant to de-

scribe how it should be sent to the repository. Excerpt 4.2 provides a template of the JSON struc-

ture of the data to be sent in the body of a HTTP POST request to the "/events" endpoint of the

40

Static and Dynamic Software Analysis

repository.

1 {

2 events: [

3 {

4 "this": string,

5 "target": string,

6 "kind": string,

7 "signature": string,

8 "class": string,

9 "sourceLocation": string,

10 "originClass": string,

11 "destinationClass": string,

12 "originHash": string,

13 "destinationHash": string,

14 "projectName": string,

15 "projectId": integer,

16 "arguments": [

17 {

18 "value": string,

19 "type": string

20 }

21]

22 "timestamp": string (in timestamp format)

23 }

24]

25 }

Excerpt 4.2: Template in JSON format for the body of the HTTP POST request of the runtime

analyzer

4.6 Summary

In this chapter, the concern of software analysis, both static and dynamic, was discussed. First, the

problem of how software analysis is a requirement for live software development was described.

A discussion on how software information could be extracted, either through forward or re-

verse engineering, each method with its separate possibilities. Some assumptions were then de-

tailed in order to describe the scene for the implementation of the analysis tools: the fact that they

would be used in a developed environment and how the tools would focus on the Java language to

allow for more specificity.

The topic of static analysis was then approach through the description of the implementation

of a structural analyzer. This analyzer will use both the AST and the Eclipse JDT’s Java model.

The plugin’s internal representation of a workspace was then described, along with the attributes

associated with each type of element, which transitioned to the description of the communication

41

Static and Dynamic Software Analysis

component of the plugin. Finally, details of how the representation of the workspace is generated

were discussed, as well as how the plugin was prepared to detect and propagate changes to a single

element, as long as it was whether a project, package or class.

The final topic was the dynamic analysis, where an execution analyzer was described. The

choice of AspectJ as the core technology for this analyzer was explained and basic information was

provided about how aspect oriented programming with AspectJ is performed. The data extracted

from each method call was described, followed by how that information was sent to the server.

42

Chapter 5

Repository for Software Metadata

5.1 Model Structure . 44

5.2 Websockets . 44

5.3 Repository API . 46

5.4 Implementation details . 47

5.5 Summary . 48

This chapter will be dedicated to the implementation of the repository which will be responsible for

containing and distributing the information resulting from the analysis discussed in the previous

chapter.

The data obtained from the previously described tools will have to be combined in the repos-

itory in spite of their differing nature: while the structural information is in a tree format, the

runtime information is received in the form of a simple array of events.

Given the type of data the repository will have to handle, the database technology selected as

the basis of the repository was PostgreSQL. This way we can build a structure to represent the

software which is very similar to the structure of the output of the static analyzer, and associate

the events generated by the dynamic analyzer to the corresponding elements of the software struc-

ture, without having to handle different database technologies simultaneously just to have a more

specific fit to the data.

Another advantage of using a SQL database is the ability to have an key-value table to link

structural elements to another type of analysis and the value associated with it. That is, with

the structural information as the most crucial data in the repository, it would be possible to offer

plug-and-play capabilities to other analysis plug-ins, such as profilers.

To facilitate the development of an API for the plug-ins and the tools which will use the data

in the repository, Ruby on Rails was used to build the server. Using this technology also provides

some other facilities which are important to the performance of the repository, namely websockets.

43

Repository for Software Metadata

Execute project

Change source

Software
Project

Send structural changeStructural
Analysis

Send event batch
Execution
Analysis

Notify structural change

Send live event

Repository Request structural information External
Tool

Request event data

Send structural information

Send event information

websocket

API

Figure 5.1: Interaction diagram between the software analysis tools and the repository, as well as
the developers and external tools.

The overview of the interaction between the software analysis tools and the repository, as well

as the developer and external visualization tools, can be seen in figure 5.1.

5.1 Model Structure

Firstly, it is important to define the structure of the model the repository will store. This structure

has to contain the information from the static and dynamic analyzers and combine it. The structure

is described in the diagram 5.2.

The fields of each table correspond to what was described as the fields in the output of each

one of the tools, in chapter 4.

Rails eases development by generating the database tables related with each model in this

structure, as well as providing a simple way to create a controller for each model which will

handle requests received through the API.

The repository database is built so that multiple projects can be stored at once. However, due

to the large amount of events the runtime analysis can generate, we assume the repository only

contains events one execution of a single project at one point in time.

5.2 Websockets

Storing information in the database has an associated delay, especially when it is necessary to per-

form constraint checks, such as foreign keys. One of the requirements of this repository, however,

is to have a reduced latency so that external tools can receive the static and runtime information in

real-time.

By using Rails’ implementation of websockets (Action cable), the repository allows external

tools to connect to a websocket and receive two different types of information from it, which will

now be described in further detail.

Websockets allow the implementation of a publish-subscribe patterns for the prioritized in-

formation that needs to be sent in real time, such as notification of structural changes and new

execution events.

44

Repository for Software Metadata

*

1

1 *Project

1

*

Package

1

*

1

*

IClass

1

*

1

*

IMethodAttribute

Argument MethodInvocation

1

*

Event

EventArgument

Figure 5.2: Database structure diagram containing the projects’ structure and runtime data.

Rails provides three different subscription adapters for websockets: async, which is only rec-

ommended for development and testing environments, PostgreSQL and Redis. The subscription

adapters were configured for PostgreSQL due to the advantage of not having to setup Redis and

requiring barely any configuration.

A channel was build to transmit said time sensitive information, called ControlChannel. In

order to subscribe to that channel, a client application has to open a websocket client and send

the message described in excerpt 5.1 to the /event_stream endpoint. It is then able to receive the

stream of messages.

1 { "command": "subscribe", "identifier": "{\"channel\": \"ControlChannel\"}" }

Excerpt 5.1: Subscription message to be sent through the websocket client to the /event_stream

endpoint

5.2.1 Event information

Upon receiving an array of events, the repository sends these events to the websocket, so that any

external tool listening to it can receive this information in real time.

Considering the previously mentioned requirement, there is the assumption that for the sake

of liveness it is not crucial to guarantee consistency with the project’s structural information at

real-time. Therefore, the events are sent through the websocket before being inserted into the

45

Repository for Software Metadata

database, which allows external tools to both receive the events in real time as well as consulting

the database for the events which occurred inside a specified time interval.

The structure of the event data sent through the websocket matches the structure of the event

data obtained through the REST API.

5.2.2 Structural changes

The other type of message that is sent through the websockets is a control message warning any

listening external tool that a project’s structural information has been updated. This message has

a specific structure that allows tools to discern the type of element which was changed (project,

package or class), if the element was changed or deleted, and the id’s in the database of the parent

elements so that the tool can easily have access to the updated information.

The structure of the message is described in the excerpt 5.2.

It is the external tool’s responsibility to decide whether it will fetch the entire structure of the

project again or only the modified element and apply the changes to the local model itself.

1 {

2 "fetch_structure": string,

3 "operation": string,

4 "project_id": integer,

5 "package_id": integer,

6 "class_id": integer

7 }

Excerpt 5.2: Template in JSON format for the structure update message sent through the

websocket

It is important to point out some particularities in these messages. First off, the fetch_structure

field can have as value "class", "package" or "project". Secondly, the operation field can have the

value "change" or "delete".

Lastly, the fields project_id, package_id and class_id only exist from the higher level element

to the element which was modified. For example, if a package was modified, the class_id field

would not make sense, but both package_id and project_id would.

5.3 Repository API

The repository was build on the notion that external tools, whether analysis, visualization or with

another purpose, should be able to interact with it. To achieve this, the repository provides an API

which gives CRUD (create, read, update and delete) access to the data model.

Given the extensive nature of the API documentation, it will be described in a document which

will be present in appendix D. However, a couple of specific cases will be specified here.

46

Repository for Software Metadata

5.3.1 Storing projects

As mentioned earlier, the API provides CRUD access to every level of the structural model. How-

ever, as was discussed in the previous chapter, it is important to provide a way for the project

information to be sent to the repository in a single request.

For this purpose, the /projects endpoint will check for the existence of the packages field in

the request before inserting the information in the database. If this field is not present, it means

that the request should only affect the projects table in the database.

However, if this field is present, it implies the whole project information is present in this

request and it is therefore necessary to insert the nested elements of the project (packages, classes,

methods, etc.).

5.3.2 Reading projects

In similar fashion to inserting information in the repository, it is important to provide the user with

the distinction between simply reading the top level information related to a project and reading

all the nested information in that project, all the way down to the method invocations.

In order to provide this control, the /projects endpoint will look for a specific URL encoded

variable. If the variable deep exists and is set as true, the GET request will return all the nested

information of the given project.

5.4 Implementation details

A few other implementation details are worth pointing out, as they have impact in the operations of

the repository. As basic as these details may seem, their impact makes their discussion worthwhile.

These details will now be listed out and lightly discussed.

• Silencing the ActiveRecord logger

When inserting small batches of data, this does not appear to have any performance impact.

However, there is always an added delay with each extra task the server has to do. The

amount of logging output that is generated when inserting a project of the scale of JUnit,

for instance, into the database, results in added processing time, which can be avoided by

silencing the logger.

• Filtering large POST request fields

Similarly to what happens with the ActiveRecord logger, the rails server may attempt to out-

put large amounts of information to the console. In this case, it happens on every request to

the API. If the contents of the request are large enough, the console output may cause some

performance issues. By filtering out these fields (mainly nested fields, such as "packages"

in a /projects POST request) we force the rails server to not print this data.

• Using activerecords-import

47

Repository for Software Metadata

This useful ruby gem provides a way to reduce the number of inserts to the database. Ac-

tiveRecord provides a wrapper to the database, and as is the case with HTTP requests, there

is a inherent delay to each request. Therefore, minimizing the number of inserts will have a

positive impact on performance.

The activerecords-import gem aggregates every element that is to be inserted into a given

table in an array and inserts them using a single query instead of one query per element.

5.5 Summary

In this chapter, the software metadata repository was described in detail. First, the inner model

structure was detailed. It was built in such a way that the data originating from the analysis

tools easily fit the model. The choice of PostgreSQL as the database technology was justified by

the adaptability of this technology to a variety of possible data structures, as well as the easier

integration with the Rails server, which acts as the core of the repository.

Secondly, the main mechanism to provide the liveness characteristic to the repository was de-

scribed. ActionCable’s websockets were used for this purpose, implementing a publish-subscribe

component to the repository. It was explained what kind of information would be sent through

this websocket: meta information about structural changes and execution events generated by the

execution analyzer. The protocol for clients to connect to this channel was also described.

The repository’s API was not described in detail as that is the responsibility of the API docu-

mentation present in D. Nonetheless, some particularities, such as the URL encoded argument for

retrieving the nested elements of a project or how a project is inserted in the database in a single

POST request were discussed.

Finally, some implementation details that affect the performance of the repository were exam-

ined: silencing the ActiveRecord logger, which had a slight impact in performance, similarly to

filtering API request fields, and the use of activerecords-import, a much more significant addition

which reduces considerably the number of queries to the database when inserting data.

48

Chapter 6

Experiments & Results

6.1 Case Studies . 49

6.2 Functional Requirements . 50

6.3 Performance Evaluation . 50

6.4 Visualization Engine Validation . 58

6.5 Summary . 58

In this chapter the framework described in the previous chapters will be verified. Firstly, the case

studies which were used to help develop, test and verify the correct functionality of the framework

will be presented. There will be a section focusing on how the tool achieves the described func-

tional and non-functional requirements. Afterwards, a section will be dedicated to the validation

work done by the parallel thesis "Towards a Live Software Development Environment" and how

it helps indirectly validating this framework.

6.1 Case Studies

In order to test and validate that the framework developed is working as originally intended, two

Java projects were used. These projects are both developed in Java and were chosen as they

provide a different set off differing characteristics, namely the structural complexity.

6.1.1 Maze

The Maze project was the first project developed in the context of the Object-Oriented Programing

Laboratory course of the Integrated Masters on Informatics Engineering and Computing degree.

It is a project developed in Java which was developed with a focus on the projects architecture and

correct separation of concerns in packages and classes.

49

Experiments & Results

This project was developed in 2014, over the course of half of a semester, by groups of 2

elements. The projects.

The reason for choosing this project was threefold. Firstly, as this project was developed

partially by the author, there’s an inherent familiarity with the project, its structure and inner

workings. Secondly, its a small project which allows easier verification of whether the analysis

and data storage is being done correctly or not. Lastly, despite its small size, it still has some

degree of architectural complexity, that is, it contains a reasonable number of each one of the

structural elements (packages, classes, etc.).

6.1.2 JUnit4

JUnit is a unit testing framework widely used in Java projects. This software is commonly used

in literature as a case study.

It was selected to be one of the case studies as there was a necessity to validate the functioning

of the framework on a larger scale project. This larger scale should push the capabilities of the

structural analysis tools to build the representation quickly, as well as the repository’s capability

to receive and distribute this volume of information in a timely manner.

6.2 Functional Requirements

During the development process of the software analysis tools and the repository, there was a con-

sistent confirmation that the functional requirements were met. The functionality if obviously a

core part of the framework and the development process would only be finished once the function-

alities earlier proposed were met.

From the developer point of view, as expected, upon modifying source code of a project in

analysis, the structural changes are reflected in the repository. In similar fashion, once the project

in analysis is executed, a feed of execution events starts being sent to the repository.

From the external tool point of view, that is, from the reading endpoints of the API and the

server’s live feed websocket, it is possible to obtain the structural information of every analyzed

project (API), the events generated be a project’s execution (API and websocket) and be notified

of any structural changes in a project, including what specific element was changed (websocket).

6.3 Performance Evaluation

As for non-functional requirements, the methodology used for verifying the correct functioning of

the framework and validating that it actually conforms to the requirements defined was through

experimental runs using the selected case studies.

The steps taken towards validating the framework can be separated into two main segments:

the experimentation associated with the structural analysis and the experimentation related to the

execution analysis. Despite the division being made along the two software analysis tools, the

validation experiments for both also concern the repository.

50

Experiments & Results

Also worth noting is that these experiments will only involve the framework, not including

any external tool that may eventually use the framework for the information it provides.

6.3.1 Structural Analysis

The focus of these experiments was to study the performance of the framework when analyzing

the structural components of a software project. Though it is not as time sensitive as the execution

analysis, it is nonetheless important for the framework to reflect changes to a software in a timely

manner, as was mentioned in the non-functional requirements in chapter 3.

In order to do so, we obtained metrics which provide information of the time it took to process

the structure change, segmenting this timeframe into smaller relevant segments. This was done

by obtaining time stamps at specific points along the path responsible for handling the structural

information.

6.3.1.1 Experimental Scenarios

The experimental scenarios were composed of the structural analysis tool and the repository. The

execution analyzer was not included as it will be the focus of other experiments.

The structural analysis plugin was installed in an instance of the Eclipse IDE. On the other

hand, the repository was deployed in an external machine present in the same local area network

as the development machine. This was to provide a "worst case scenario" given the presence of

network latency, which will be noticeable on the results.

Time monitoring points were set up both in the analysis tool and the repository to monitor

the time each step of the data retrieval took. The points in which a time monitor was placed are

described in table 6.1. A unique identifier was associated to each one to facilitate the mention of

the relevant monitors in each experiment.

These timestamps extracted from the execution can be combined to create performance met-

rics, which are described in table 6.2. Two additional metrics could be created that relate to the

impact of the data transmission through the network, namely Project Transmission Time and Class

Transmission Time. As these metrics are very dependent on the network topology, they do not re-

ally provide much information on the performance of the tools in separate or in conjunction, and

so they will be ignored. Nevertheless, as the network topology used in the experiments represents

a very likely development environment for this framework, the impact of the data transmission on

the Full Project Analysis Time and Full Class Analysis Time metrics will not be removed.

The goals of these experiments were to verify the performance of three core functionalities

related to both the repository and the structural analysis, which are the following:

• Experiment 1 - Project insertion into the database: the first scenario tested was inserting

a project into the database for the first time. This was done with both case study projects:

Maze and JUnit. Relevant metrics for this experiment are the Full Project Analysis Time,

Tool Project Analysis Time and Project Creation Time.

51

Experiments & Results

Time Monitoring Location Description

Structural
Analysis

Tool

The start of the analysis of a given project in the
workspace.
The conclusion of the analysis of a given project in the
workspace.
Sending the request to the repository API with the project
information.
Receiving response from the server to the project creation
request.
The start of the analysis of a given class in a project.
The conclusion of the analysis of a given class in a project.
Sending request to the repository API with the class
information.
Receiving response from the server to the class creation
request.

Repository

Receiving the project creation request sent by the
analyzing tool.
After inserting the project’s structure in the database.
Receiving the class creation request from the analyzing
tool.
Responding to the class creation request from the
analyzing tool.

Table 6.1: Time monitoring points in the both the structural analysis tool and the repository, as
well as their location in the structural analysis process.

Metric Name
Time for project analysis and creation in database. Full Project Analysis Time
Time for tool to analyze project. Tool Project Analysis Time
Time for server to insert project data into the database. Project Creation Time
Time for server to update existing project data in the database. Project Update Time
Time for class analysis and modification in the database. Full Class Analysis Time
Time for tool to analyze modified class. Tool Class Analysis Time
Time for server to insert/modify class into the database. Class Creation/Update Time

Table 6.2: Performance metrics related to the structural analysis.

52

Experiments & Results

Metrics
Full Project Analysis Time Tool Project Analysis Time Project Creation Time

Maze 1642ms 340ms 1054ms
JUnit 5737ms 1854ms 3146ms

Table 6.3: Table displaying the results of the first structural analysis experiment.

• Experiment 2 - Project information update: the second scenario was inserting a project

which was already present in the database. As with the previous experiment, both Maze

and JUnit were used for this experiment. Given that Tool Project Analysis Time was already

taken into account in the previous experiment for the same projects, this experiment will be

evaluated through the Full Project Analysis Time and the Project Update Time.

• Experiment 3 - Class creation/update: the final scenario for structural analysis was alter-

ing a class file and observing the propagation of the modifications. This experiment only

involves the JUnit project, as the dimension of the project itself no longer is a concern. The

metrics resulting from this experiment are the Full Class Analysis Time, Tool Class Analysis

Time and Class Creation/Update Time.

6.3.1.2 Results and Discussion

The results of experiment 1 are shown in table 6.3. The first thing to notice is how the dimension

of the piece of software actually impacts both the analysis and the storage performance. This was

already expected, as a larger structure has to be analyzed and then converted into the repository’s

representation of a project (more elements have to be created). Another interesting conclusion is

the fact that the bottleneck when inserting entire projects into the database is on the repository

itself.

Table 6.4 shows the results of experiment 2. The Tool Project Analysis times are very similar

to the experiment one, which can be explained by the fact that, when updating the whole project,

it is fully analyzed as if it were the first time. However, as the database has to clear its records of

the projects to be updated, the insertion in the database takes considerably longer, roughly twice

as long as simply inserting the project in the database for the first time.

Finally, the results of structural analysis experiment number 3 are represented in table 6.5.

The dimension of the project does not have an impact on this experiment, as only a class will be

updated. The class file modified in this case contains 171 lines of code, which is a reasonable

Metrics
Tool Project Analysis Time Project Update Time

Maze 353ms 2310ms
JUnit 1839ms 6640ms

Table 6.4: Table displaying the results of the second structural analysis experiment.

53

Experiments & Results

Metrics
Full Class Analysis Time Tool Class Analysis Time Class Creation Time

JUnit 40ms 22ms 7ms
Table 6.5: Table showing the results of the third structural analysis experiment.

size for a class. The whole process of analyzing a class takes a very small amount of time when

comparing to the full project analysis.

Through these experiments we can draw several conclusions. The first one would be that the

repository consumes a larger amount of the total analysis time. This was already expected given

the fact that the repository has to build the projects representation in its internal model and then

store it in the database. These results could be worse, however, had activerecords-import not been

used to reduce the amount of queries needed to insert the project in the database.

Despite this clear drawback at first glance, the repository provides a unique capability that out-

putting to a file would not offer, which is writing a partial analysis. This is a great advantage when

one compares the results of experiments 2 and 3. If modifying a project source file required ana-

lyzing and inserting the entirety of the project once again in the repository, the repository would

quickly become impracticable. However, by reducing its analysis to the scope of the modified file

and inserting it alone into the database reduces the processing time required to analyze a modifi-

cation by two orders of magnitude in the specific case of classes, which are the most commonly

modified structures.

6.3.2 Execution Analysis

Complementing the previous section, the focus of this set of experiments was to verify the per-

formance of the framework when analyzing the runtime behavior of a software project, more

specifically detecting method calls. Timeliness is a crucial aspect of the runtime analysis, as the

framework has to make this information available in real time to enable the concept of liveness, as

was mentioned in the non-functional requirements in chapter 3.

In similar fashion to the previous set of experiments, we obtained metrics which informed

of the time it took to events representing method calls, allowing the segmentation of this large

timeframe into different pieces. This was done by obtaining time stamps at specific points along

the execution analyzer and the repository’s events controller.

6.3.2.1 Experimental Scenarios

The goal of the experimental scenarios described in this section is to analyze the performance of

the execution analyzer in conjunction with the software repository.

In this set of experiments, only the Maze project was used. The amount of data generated no

longer depends solely on structural complexity, but on the processing capabilities of the machine

the program is running on.

54

Experiments & Results

Time Monitoring Location Description
Execution

Analysis Tool
Event buffer is sent to the repository.
Specific event was generated and sent to the buffer.

Repository

Event set was received by the repository.
Event set started being imported into the database.
Event set finished being imported into the database.
Specific event was received by the repository.
Model for the specific event has been built.
Specific Event was sent through the websocket.
Specific event was imported into the database.

Table 6.6: Table containing the location and description of each of the checkpoints for the perfor-
mance analysis of the combined use of the runtime analyzer and repository.

Similarly to the environment of the past experiments, the repository was deployed in an ex-

ternal machine present in the same local area network. The runtime analyzer was imported into

the workspace and linked to the Maze project. No specific classes or methods were selected to be

monitored, so that the analyzer would be able to collect every method call and generate an event

from it.

The time monitoring points defined for this set of experiments is described in the table 6.6 and

the metrics derived from it are detailed in table 6.7.

The experiments performed can be described as follows:

• Experiment 1 - Generating and storing a set of events: this scenario consists of running

the Maze project with the execution analyzer linked to it, producing several sets of events,

sequentially sent to the repository, at a fixed timed interval. The generated metrics associated

with each of the event set transmitted are the Full Event Set Time, Event Set Size, Repository

Event Set Time, Event set Modeling Time and Event Set Import Time.

• Experiment 2- Following the lifetime of an event: the concept behind this experiment is

following a specific event from its creation to the final moment when it is imported into the

database. The generated metrics associated with this experiment are the Specific Event Life

Time and theSpecific Event WebSocket Time.

6.3.2.2 Results and Discussion

The timeline shown in figure 6.1 describes the timestamps and time intervals relevant for the first

experiment.

Event Set Sent From
Analysis Tool

Received at Repository
Started Building Model

Finished Building Model
Started Importing Finished Importing

t1 t2 t3

Figure 6.1: Timeline for the event set lifetime.

55

Experiments & Results

Metric Name
Time taken to fully process a set of events Full Event Set Time
Size of the set of events processed Event Set Size
Time the set of events takes to arrive at the repository Event Set Transmission Time
Time taken to convert the event set to the
repository’s inner model

Event Set Modeling Time

Time taken fore the event set to be
imported to the database

Event Set Import Time

Time taken for a specific event to be imported
to the database since it was generated

Specific Event Life Time

Time for a specific event to be sent
through the websocket

Specific Event WebSocket Time

Table 6.7: Table containing the metrics generated from the checkpoint data regarding runtime
analysis.

In this first experiment, the buffer timer length does not affect the values as the start of the

timeline in figure 6.1 is the moment the event set is transmitted.

We gathered information about four buffer transmissions. Given the largest size out of these

buffers (5690) and the smallest (1420), the event sets will be grouped into intervals three: [0-2000[,

[2000-4000[, [4000-6000[. For each of these intervals, we will aggregate the grouped event sets

by the average value of each time performance metric.

Figure 6.2 show the scatter plot and linear regressions associated with these time values and

event set sizes.

The second experiment involved the lifetime of a event, from the moment this event is sent to

the buffer to the moment it enters the database. Figure 6.3 describes the timeline of this series of

events.

As opposed to the previous experiment, this one is affected by buffer timers. We experimented

with the buffer timer at five and two seconds. Table 6.8 shows the values associated with the time

intervals in 6.3.

From the analysis of a singular event, one can see that it will arrive more quickly at the web-

socket and the database. This is most likely due to the combination of the longer average waiting

time in the buffer, the transmission of a larger event set to the repository and the larger number

of elements to be converted into the repository’s inner model before it can be imported to the

database.

t1 t2 t3 t4

Buffer Timer 5 seconds 3700ms 1ms 0ms 3694ms
2 seconds 1402ms 1ms 0ms 2193ms

Table 6.8: Time intervals related to the lifetime of a single event from the moment it was inserted
in the buffer until it is inserted in the database.

56

Experiments & Results

Figure 6.2: Scatterplot and linear regression of the time values (transmission, model building and
importing) in relation to the event set size.

Event Received
In Server Sent To Buffer Event Model Built Event Sent

Through Websocket
Event Stored in the

Database

t1 t2 t3 t4

Figure 6.3: Timeline of the lifetime of an event, from being sent to the buffer to being sent throught
the websocket and into the database.

57

Experiments & Results

We can conclude that a two second buffer timer allows for smaller event set requests, more

frequently without saturating the server, providing a good sense of liveness.

6.4 Visualization Engine Validation

"Towards a Live Software Development Environment", as mentioned in chapter 3, is a dissertation

pursued in parallel with this dissertation. This project resulted in a visualization environment

which uses data gathered and made available by this framework.

The proper functioning of this framework was paramount to the correct functioning of the vi-

sualization environment and as such, this visualization environment’s validation can be correlated

with this frameworks validation.

In order to validate the effectiveness of a live visualization environment, a survey took place

where users were tasked with exploring the Maze case study in the virtual reality visualization en-

vironment. The surveyees were then asked to identify two possible issues (not necessarily errors)

injected into the software, which do not appear as issues in a regular IDE: an infinite loop and an

invocation with a number of null arguments greater than zero.

The experiment with the visualization environment was performed by 25 different surveyees,

having received overall positive results towards the usage of the virtual reality visualization engine.

This in turn helps validate the usefulness data this framework extracts from the static repre-

sentation of software, as well as from its runtime behavior, and the manner in which the repository

makes this data available to external tools, such as this visualization environment.

Figure 6.4 shows the resulting visualization from the virtual reality environment built in this

dissertation. In figure (a) we can see the structural representation of the JUnit4 project while in

figure (b) we can see the Maze project running.

6.5 Summary

In this chapter we described the Maze and JUnit projects and why they were chosen to be the

case studies. The different structural complexities between the two, the fact that JUnit is a recur-

ring project in literature when Java project analysis is required and the familiarity with the Maze

project.

It was discussed how the constant development and testing process with the case studies project

allowed the verification of wether the framework being developed matched the functional require-

ments.

We also described the experiments we delineated to provide a performance evaluation and test

if the framework conformed to the non-functional performance requirements. The description of

each experiment was followed by the discussion of the results obtained, where we concluded that

the framework is in fact, in line with the performance and liveness requirements, and ready to be

used with an external tool.

58

Experiments & Results

(a) Top view of the visual representation of the
JUnit project’s structure.

(b) View of the visual representation of some
Maze project’s execution events.

Figure 6.4: Two figures from the visual representation generated from the analysis of the JUnit
and the Maze projects respectively. Figure (a) shows a good perspective of the structure of JUnit
while figure (b) shows some events between structural elements of Maze.

Finally, the validation process of the dissertation "Towards a Live Software Development En-

vironment" was lightly discussed, as well as how the good results in this process served as a

validation for this framework, since it’s correct functioning was required for the environment de-

veloped in that dissertation to work properly.

59

Experiments & Results

60

Chapter 7

Conclusions

7.1 Main Contributions . 62

7.2 Future Work . 62

Through the literature review process, the technologies and approaches to use in the project were

identified and molded the development process.

In the problem overview, this problem was put in context with the live software develop-

ment concept and two research questions were built from the problem. Both functional and non-

functional requirements were described for a framework that conformed to these research ques-

tions. Furthermore, the architecture of this framework was described, and it was put into context

within a possible full live software development environment with an external visualization tool.

Finally, the case studies used in testing and validating this framework were documented.

In chapter 4, the static and dynamic software analysis tools were described in depth, explaining

how these tools allow for the analysis of the structure and execution of a Java project. From a high

level overview of what each of these tools should do, to low-level details of how these tools were

implemented, the components which interact directly with the software in this framework were

discussed.

Chapter 5 provided the high level and implementation details of the repository which stores

and provides the information recovered by the analyzers. The usage of a REST API for the CRUD

access to the model as well as the websocket made available to receive real-time notifications and

events was discussed in detail.

Finally, chapter 6 focused on how we tested the performance of the framework and how it

conformed with the predefined functional and non-functional requirements.

61

Conclusions

7.1 Main Contributions

The field of software analysis is a rich one in regards to literature. There was however a large

focus on full analysis, with tools which fully self contained from the analysis to the displaying of

information. The main contributions of this thesis are therefore listed as follows:

• A structural analysis tool for Java projects which can be included into any JDT enabled

Eclipse IDE as a plug-in, capable of recognizing changes to several levels of the Java Model

tree.

• An execution analysis tool for Java projects which can be included in the relevant workspace

and added to a project with minimal modifications to the concerning project required.

• A software repository ready to receive information from the previously mentioned analysis

tools, and provide it in real-time to any external tools through an API.

To complement the contributions mentioned, the API is detailed in appendix D, and the in-

structions to install and use the repository server, structural analysis tool and execution analysis

tool are in A appendixes B and C respectively.

7.2 Future Work

Unfortunately the time allowed for the development of this project is limited and as a result several

other features which would be interesting to have in this framework could not be implemented.

This section will serve the purpose of describing ideas for what could be advancements and im-

provements in this toolset.

• Complement model with missing types of Java elements and relationships between
them: this is the case for abstract classes, interfaces, inheritance, among others. This was

not possible to implement in the current state of the framework due to time constraints, but

would make for a good addition, as it would make the data model used more complete.

• Introduction of other levels of structural abstraction: it would also be interesting to

provide more levels of abstraction in the structural representation of the software. This

could be the case for obtaining design patterns and architectural patterns from the software.

• Plug additional runtime analysis tools to the repository: there are plenty of other tools

which can provide useful information about how a piece of software executes, for instance,

profilers. Additional analysis tools could be adapted to output these metrics to the repository

so that external tools could access that information in conjunction with the data already

provided by the current state of the framework.

• Build an improved interface for the execution analysis: One of the advantages of the

runtime analyzer described here is the ability to specify which classes we wish to log, instead

62

Conclusions

of logging all the classes in a project. This, however, has to be done through changes in the

aspect file itself. A more user-friendly solution could involve building a GUI to allow the

user to introduce the classes he wishes to analyze and then inject that specification into the

aspect template file already produced for the analyzer in this dissertation.

• Database optimizations: The database is one of the core elements in this framework. It

would be extremely useful to improve the performance of this database. Aside from Post-

greSQL performance optimizations, it would also be interesting to experiment with other

database technologies, for example graph based databases and time series databases, and

understand which setup is the most adequate for this framework.

As one can see, there is still a large margin for further improvement of this framework. Nev-

ertheless, the work accomplished in this dissertation sets a foundation upon which to develop this

advances.

63

Conclusions

64

Appendix A

Appendix A

A.1 tese-repository

Repository for Java projects’ structural and execution data.

A.1.1 Description

This is one of the three components necessary for the correct functioning of the framework devel-

oped in “A Software Repository for Live Software Development”. This component is responsible

for aggregating and distributing the information recovered by the two other analysis tools. It is

composed of a Rails server, along with a PostgreSQL database and nginx.

The two other analysis tools are the structural analyzer and the execution analyzer.

A.1.2 Write Access

Write access is provided for every component of the structure and execution data. Writing struc-

tural data to the repository assumes the existence of the nested attributes. For example, when

inserting a new i_class, it expects the class’ attributes and methods.

A.1.3 Read Access

A.1.3.1 Database

The repository provides read access to every element (structural or execution) in the database, as

well as the possibility of listing all the elements of that type. In the specific case of project, there

are two possibilities: either retreiving the shallow project metadata or, using the deep=true GET

field, retreiving the full information of the project, with all nested attributes included.

For the events, there is a from and a to field that can be set as two timestamps to retreive all

execution logs between those two points in time.

65

https://github.com/dominguesgm/tese-static
https://github.com/dominguesgm/tese-runtime

Appendix A

A.1.3.2 WebSocket

The repository provides access to live data through a websocket. In order to connect to it, the

interface has to create a websocket and send the following subscrtiption message:

{ "command": "subscribe", "identifier": "{\"channel\": \"ControlChannel\"}"

}

If the structural and execution analyzers are correctly configured and installed, you should be

able to receive two types of messages through the websocket.

1. Events

{

"this": string,

"target": string,

"kind": string,

"signature": string,

"class": string,

"source_location": string,

"origin_class": string,

"destination_class": string,

"origin_hash": string,

"destination_hash": string,

"project_name": string,

"project_id": integer,

"event_arguments": [

{

"argument_value": string,

"argument_type": string

}

]

"timestamp": string (in timestamp format)

}

2. Structural change

{

"fetch_structure": string,

"operation": string,

"project_id": integer,

"package_id": integer,

"class_id": integer

}

66

Appendix A

Field Value

fetch_structure project/package/class

operation delete/change

project_id Always present

package_id Present when change is on package or class

class_id Present when change is on class

A.1.4 Installation

The following steps will setup the repository.

1. Clone the repository to the intended server machine.

2. cd tese-repository

3. Run the following sequence of commands.

docker-compose build

docker-compose run app rails db:create RAILS_ENV=production

docker-compose run app rails db:migrate RAILS_ENV=production

docker-compose up -d

67

Appendix A

68

Appendix B

Appendix B

B.1 tese-static

Repository for the java static analyzer used in the dissertation “A Software Repository for Live

Software Development”

B.1.1 Description

This is one of the three components necessary for the correct functioning of the framework devel-

oped in “A Software Repository for Live Software Development”. This component is responsible

for the extraction of a structural representation of the Java projects in the workspace. It was de-

veloped as a Eclipse Plugin and be installed in any Eclipse IDE with the Java Development Tools

(JDT) installed.

This component is intended for communication with the repository in Repository and its in-

formation complemented by the tool in Execution Analyzer.

B.1.2 Installation

These are the steps to run/install this tool correctly.

1. Install the repository as instructed in Repository.

2. Set a system environment variable for LIVESD_SERVER with the server url. This is done

by modifying the /etc/environment file, adding a line like the following:

LIVESD_SERVER="http://0.0.0.0/"

3. Copy the .jar file in exports/plugin to the dropins folder in your eclipse root folder.

B.1.3 Usage

The plugin builds the projects’ representations when the Eclipse IDE starts, and detects changes

in the workspace automatically, sending them to the repository as they occur. That being said, if

69

https://github.com/dominguesgm/tese-repository
https://github.com/dominguesgm/tese-runtime
https://github.com/dominguesgm/tese-repository

Appendix B

there are any issues with the representation of the projects in the repository noticed by the user,

use the button Sample Menu→ Process Source to flush the structure of the whole project into the

repository.

70

Appendix C

Appendix C

C.1 tese-runtime

Runtime metadata extractor for java projects

C.1.1 Description

This is one of the three components necessary for the correct functioning of the framework devel-

oped in “A Software Repository for Live Software Development”. This component is responsible

for the extraction of the execution logs of a Java project. It was developed as an AspectJ project to

be linked to any project to analyze.

This component is intended for communication with the repository in Repository and its in-

formation complemented by the tool in Structural Analyzer.

C.1.2 Installation

These are the steps to run/install this tool correctly.

1. Install the repository as instructed in Repository.

2. Set a system environment variable for LIVESD_SERVER with the server url. This is done

by modifying the /etc/environment file, adding a line like the following:

LIVESD_SERVER="http://0.0.0.0/"

3. Install AspectJ into your Eclipse IDE.

4. Import this project to the workspace.

C.1.3 Usage

In order to use this to analyze a given project, follow these steps.

1 Add AspectJ capabilities to the project to analyze (Right click in project to be analyzed in

Project Explorer→ Configure→ Convert to AspectJ Project).

71

https://github.com/dominguesgm/tese-repository
https://github.com/dominguesgm/tese-static
https://github.com/dominguesgm/tese-repository

Appendix C

2. Include analyzer project in the other project’s aspect path (Right click in project to be ana-

lyzed in Project Explorer→ Properties→ AspectJ Build→ Aspect Path tab→ Add Project

and select analyzer).

3. Run project to analyze.

It is also possible for a user to specify which classes/packages he wants to analyze. For this,

the user should modify the MethodInvocation.aj file and insert the following snippet to the end of

the pointcut:

&& (<INSERT_WITHINS>)

With <INSERT_WITHINS> being within(<PACKAGE>.<CLASS>) pointcuts, separated by

|| operators.

Example of possible added pointcuts:

1 \\ (within(maze.cli.CLInterface) || within(maze.logic))

72

Appendix D

Appendix D

D.1 Projects

D.1.1 GET

D.1.1.1 /projects/

1 [

2 {

3 "id": integer,

4 "project_name": string,

5 "num_packages": integer,

6 "created_at": string,

7 "updated_at": string

8 },

9 ...

10]

D.1.1.2 /projects/:id

With URL parameter deep=false or not set,

1 {

2 "id": integer,

3 "project_name": string,

4 "num_packages": integer,

5 "created_at": string,

6 "updated_at": string

7 }

With URL parameter deep=true

73

Appendix D

1 {

2 "allProjectData": [

3 {

4 "id": integer,

5 "project_name": string,

6 "num_packages": integer,

7 "packages": [

8 {

9 "id": integer,

10 "package_name": string,

11 "class_count": integer,

12 "has_subpackages": boolean,

13 "package_path": string,

14 "i_classes": [

15 {

16 "id": integer,

17 "class_name": string,

18 "qualified_name": string,

19 "method_count": integer,

20 "attribute_count": integer,

21 "lines_of_code": integer,

22 "class_hash": string,

23 "class_attributes": [

24 {

25 "id": integer,

26 "attribute_name": string,

27 "attribute_type": integer

28 },...

29],

30 "i_methods": [

31 {

32 "id": integer,

33 "method_name": string,

34 "start_of_method": integer,

35 "length_of_method": integer,

36 "lines_of_code": integer,

37 "return_type": string,

38 "argument_count": integer,

39 "key": string,

40 "arguments": [

41 {

42 "id": integer,

43 "argument_name": string,

44 "argument_type": string

45 },...

46],

47 "method_invocations": [

48 {

49 "id": integer,

74

Appendix D

50 "invocation": string

51 },...

52]

53 },...

54]

55 },...

56]

57 },...

58]

59 }

60]

61 }

D.1.2 POST

D.1.2.1 Request Body

1 {

2 "projectName": string,

3 "packages": [

4 {

5 "packageName": string,

6 "hasSubpackages": boolean,

7 "classes": [

8 {

9 "className": string,

10 "hash": string,

11 "linesOfCode": integer,

12 "qualifiedName": string,

13 "attributes": [

14 {

15 "name": string,

16 "type": string

17 }

18],

19 "methods": [

20 {

21 "methodName": string,

22 "key": string,

23 "startOfMethod": integer,

24 "lengthOfMethod": integer,

25 "linesOfCode": integer,

26 "returnType": string,

27 "arguments": [

28 {

29 "name": string,

30 "type": string

75

Appendix D

31 }

32],

33 "methodInvocations": [

34 string

35]

36 }

37]

38 }

39]

40 }

41]

42 }

D.1.3 DELETE

D.1.3.1 /projects/:id

HTTP code 204

D.2 Packages

D.2.1 GET

D.2.1.1 /packages/:id

1 {

2 "id": integer,

3 "package_name": string,

4 "class_count": integer,

5 "has_subpackages": boolean,

6 "package_path": string,

7 "i_classes": [

8 {

9 "id": integer,

10 "class_name": string,

11 "qualified_name": string,

12 "method_count": integer,

13 "attribute_count": integer,

14 "lines_of_code": integer,

15 "class_hash": string,

16 "class_attributes": [

17 {

18 "id": integer,

19 "attribute_name": string,

20 "attribute_type": integer

21 },...

76

Appendix D

22],

23 "i_methods": [

24 {

25 "id": integer,

26 "method_name": string,

27 "start_of_method": integer,

28 "length_of_method": integer,

29 "lines_of_code": integer,

30 "return_type": string,

31 "argument_count": integer,

32 "key": string,

33 "arguments": [

34 {

35 "id": integer,

36 "argument_name": string,

37 "argument_type": string

38 },...

39],

40 "method_invocations": [

41 {

42 "id": integer,

43 "invocation": string

44 },...

45]

46 },...

47]

48 },...

49]

50 }

D.2.2 POST

D.2.2.1 /packages

1 {

2 "packageName": string,

3 "hasSubpackages": boolean,

4 "projectName": string,

5 "classes": [

6 {

7 "className": string,

8 "hash": string,

9 "linesOfCode": integer,

10 "qualifiedName": string,

11 "attributes": [

12 {

13 "name": string,

77

Appendix D

14 "type": string

15 }

16],

17 "methods": [

18 {

19 "methodName": string,

20 "key": string,

21 "startOfMethod": integer,

22 "lengthOfMethod": integer,

23 "linesOfCode": integer,

24 "returnType": string,

25 "arguments": [

26 {

27 "name": string,

28 "type": string

29 }

30],

31 "methodInvocations": [

32 string

33]

34 }

35]

36 }

37]

38 }

D.2.3 DELETE

D.2.3.1 /packages/:id

HTTP response code 204

D.3 Classes

D.3.1 GET

D.3.1.1 /i_classes/:id

1 {

2 "id": integer,

3 "class_name": string,

4 "qualified_name": string,

5 "method_count": integer,

6 "attribute_count": integer,

7 "lines_of_code": integer,

8 "class_hash": string,

78

Appendix D

9 "class_attributes": [

10 {

11 "id": integer,

12 "attribute_name": string,

13 "attribute_type": integer

14 },...

15],

16 "i_methods": [

17 {

18 "id": integer,

19 "method_name": string,

20 "start_of_method": integer,

21 "length_of_method": integer,

22 "lines_of_code": integer,

23 "return_type": string,

24 "argument_count": integer,

25 "key": string,

26 "arguments": [

27 {

28 "id": integer,

29 "argument_name": string,

30 "argument_type": string

31 },...

32],

33 "method_invocations": [

34 {

35 "id": integer,

36 "invocation": string

37 },...

38]

39 },...

40]

41 }

D.3.2 POST

D.3.2.1 /i_classes

1 {

2 "className": string,

3 "hash": string,

4 "linesOfCode": integer,

5 "qualifiedName": string,

6 "projectName": string,

7 "packageName": string,

8 "attributes": [

9 {

79

Appendix D

10 "name": string,

11 "type": string

12 }

13],

14 "methods": [

15 {

16 "methodName": string,

17 "key": string,

18 "startOfMethod": integer,

19 "lengthOfMethod": integer,

20 "linesOfCode": integer,

21 "returnType": string,

22 "arguments": [

23 {

24 "name": string,

25 "type": string

26 }

27],

28 "methodInvocations": [

29 string

30]

31 }

32]

33 }

D.3.3 DELETE

D.3.3.1 /i_classes/:id

HTTP response code 204

D.4 Events

D.4.1 GET

D.4.1.1 /events

URL parameter from and to can be used to an interval using timestamps

1 [

2 {

3 "this": string,

4 "target": string,

5 "kind": string,

6 "signature": string,

7 "class": string,

8 "source_location": string,

80

Appendix D

9 "origin_class": string,

10 "destination_class": string,

11 "origin_hash": string,

12 "destination_hash": string,

13 "project_name": string,

14 "project_id": integer,

15 "event_arguments": [

16 {

17 "argument_value": string,

18 "argument_type": string

19 }

20]

21 "timestamp": string (in timestamp format)

22 }

23]

D.4.2 POST

1 {

2 "events": [

3 {

4 "this": string,

5 "target": string,

6 "kind": string,

7 "signature": string,

8 "class": string,

9 "sourceLocation": string,

10 "originClass": string,

11 "destinationClass": string,

12 "originHash": string,

13 "destinationHash": string,

14 "projectName": string,

15 "projectId": integer,

16 "arguments": [

17 {

18 "value": string,

19 "type": string

20 }

21]

22 "timestamp": string (in timestamp format)

23 }

24]

25 }

81

Appendix D

D.4.3 DELETE

D.4.3.1 /events

HTTP Response code 204

D.5 WebSocket

Subscribe by sending

{ "command": "subscribe", "identifier": "{\"channel\": \"ControlChannel\"}"

}

to /event_stream.

D.5.1 Events

1 {

2 "this": string,

3 "target": string,

4 "kind": string,

5 "signature": string,

6 "class": string,

7 "source_location": string,

8 "origin_class": string,

9 "destination_class": string,

10 "origin_hash": string,

11 "destination_hash": string,

12 "project_name": string,

13 "project_id": integer,

14 "event_arguments": [

15 {

16 "argument_value": string,

17 "argument_type": string

18 }

19]

20 "timestamp": string (in timestamp format)

21 }

D.5.2 Structural Change Notification

1 {

2 "fetch_structure": string,

3 "operation": string,

4 "project_id": integer,

82

Appendix D

5 "package_id": integer,

6 "class_id": integer

7 }

83

Appendix D

84

References

[AFC98] G. Antoniol, R. Fiutem, and L. Cristoforetti. Design pattern recovery in object-
oriented software. In Program Comprehension, 1998. IWPC ’98. Proceedings.,
6th International Workshop on, pages 153–160, Jun 1998.

[BK] Sarita Bassil and Rudolf K. Keller. Software visualization tools: Survey and
analysis. In Proceedings of the 9th International Workshop on Program Compre-
hension.

[BPM04] Ira D. Baxter, Christopher Pidgeon, and Michael Mehlich. Dms R©: Program
transformations for practical scalable software evolution. In Proceedings of the
26th International Conference on Software Engineering, ICSE ’04, pages 625–
634, Washington, DC, USA, 2004. IEEE Computer Society.

[BTDS13] C. Bartoszuk, G. Timoszuk, R. Dąbrowski, and K. Stencel. Magnify - a new tool
for software visualization. In 2013 Federated Conference on Computer Science
and Information Systems, pages 1485–1488, Sept 2013.

[BYM+98] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection
using abstract syntax trees. In Proceedings. International Conference on Software
Maintenance (Cat. No. 98CB36272), pages 368–377, Nov 1998.

[CC90] E. J. Chikofsky and J. H. Cross. Reverse engineering and design recovery: a
taxonomy. IEEE Software, 7(1):13–17, Jan 1990.

[Cel17] Joe Celko. Handling graphs in sql. https://www.red-gate.com/
simple-talk/sql/t-sql-programming/handling-graphs-sql/,
Feb 2017.

[Chi00] Shigeru Chiba. Load-time structural reflection in java. In Elisa Bertino, editor,
ECOOP 2000 — Object-Oriented Programming, pages 313–336, Berlin, Heidel-
berg, 2000. Springer Berlin Heidelberg.

[DPJM+02] Wim De Pauw, Erik Jensen, Nick Mitchell, Gary Sevitsky, John Vlissides, and
Jeaha Yang. Visualizing the execution of java programs. In Stephan Diehl, editor,
Software Visualization, pages 151–162, Berlin, Heidelberg, 2002. Springer Berlin
Heidelberg.

[DST11] Robert Dąbrowski, Krzysztof Stencel, and Grzegorz Timoszuk. Software is a
directed multigraph. In Proceedings of the 5th European Conference on Soft-
ware Architecture, ECSA’11, pages 360–369, Berlin, Heidelberg, 2011. Springer-
Verlag.

85

https://www.red-gate.com/simple-talk/sql/t-sql-programming/handling-graphs-sql/
https://www.red-gate.com/simple-talk/sql/t-sql-programming/handling-graphs-sql/

REFERENCES

[FCX13] J. Feng, B. Cui, and K. Xia. A code comparison algorithm based on ast for plagia-
rism detection. In 2013 Fourth International Conference on Emerging Intelligent
Data and Web Technologies, pages 393–397, Sept 2013.

[FHS16] E. Fauzi, B. Hendradjaya, and W. D. Sunindyo. Reverse engineering of source
code to sequence diagram using abstract syntax tree. In 2016 International Con-
ference on Data and Software Engineering (ICoDSE), pages 1–6, Oct 2016.

[FKO98] L. Feijs, R. Krikhaar, and R. Van Ommering. A relational approach to support
software architecture analysis. Software: Practice and Experience, 28(4):371–
400, 1998.

[Flo06] Nuno Flores. Engenheria reversa de padrões em arquiteturas reutilizáveis. Mas-
ter’s thesis, MEI, FEUP, Porto, January 2006.

[FSWH16] M. D. Feist, E. A. Santos, I. Watts, and A. Hindle. Visualizing project evolu-
tion through abstract syntax tree analysis. In 2016 IEEE Working Conference on
Software Visualization (VISSOFT), pages 11–20, Oct 2016.

[FWG07] B. Fluri, M. Wursch, and H. C. Gall. Do code and comments co-evolve? on the
relation between source code and comment changes. In 14th Working Conference
on Reverse Engineering (WCRE 2007), pages 70–79, Oct 2007.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-oriented Software. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1995.

[GLW06] Orla Greevy, Michele Lanza, and Christoph Wysseier. Visualizing live software
systems in 3d. In Proceedings of the 2006 ACM Symposium on Software Visual-
ization, SoftVis ’06, pages 47–56, New York, NY, USA, 2006. ACM.

[GO03] T. Gschwind and J. Oberleitner. Improving dynamic data analysis with aspect-
oriented programming. In Seventh European Conference onSoftware Mainte-
nance and Reengineering, 2003. Proceedings., pages 259–268, March 2003.

[GS15] Anjana Gosain and Ganga Sharma. A survey of dynamic program analysis tech-
niques and tools. In Suresh Chandra Satapathy, Bhabendra Narayan Biswal,
Siba K. Udgata, and J.K. Mandal, editors, Proceedings of the 3rd International
Conference on Frontiers of Intelligent Computing: Theory and Applications
(FICTA) 2014, pages 113–122, Cham, 2015. Springer International Publishing.

[Gué04] Yann-Gaël Guéhéneuc. A reverse engineering tool for precise class diagrams.
In Proceedings of the 2004 Conference of the Centre for Advanced Studies on
Collaborative Research, CASCON ’04, pages 28–41. IBM Press, 2004.

[HELD11] Jing Han, Haihong E, Guan Le, and Jian Du. Survey on nosql database. In 2011
6th International Conference on Pervasive Computing and Applications, pages
363–366, Oct 2011.

[HH04] Erik Hilsdale and Jim Hugunin. Advice weaving in aspectj. In Proceedings of the
3rd International Conference on Aspect-oriented Software Development, AOSD
’04, pages 26–35, New York, NY, USA, 2004. ACM.

86

REFERENCES

[HNM+97] J. K. Hollingsworth, O. Niam, B. P. Miller, Zhichen Xu, M. J. R. Goncalves, and
Ling Zheng. Mdl: a language and compiler for dynamic program instrumen-
tation. In Proceedings 1997 International Conference on Parallel Architectures
and Compilation Techniques, pages 201–212, Nov 1997.

[Jon03] Joel Jones. Abstract syntax tree implementation idioms. In Proceedings of the
10th Conference on Pattern Languages of Programs (PLoP2003), 2003.

[jvm] JavaTM virtual machine tool interface (jvm ti).

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of aspectj. In Proceedings of the 15th Eu-
ropean Conference on Object-Oriented Programming, ECOOP ’01, pages 327–
353, London, UK, UK, 2001. Springer-Verlag.

[KM10] Holger M. Kienle and Hausi A. Müller. Rigi—an environment for software re-
verse engineering, exploration, visualization, and redocumentation. Science of
Computer Programming, 75(4):247 – 263, 2010. Experimental Software and
Toolkits (EST 3): A special issue of the Workshop on Academic Software Devel-
opment Tools and Techniques (WASDeTT 2008).

[Kos03] Rainer Koschke. Software visualization in software maintenance, reverse engi-
neering, and re-engineering: a research survey. Journal of Software Maintenance
and Evolution: Research and Practice, 15(2):87–109, 2003.

[LB14] F. M. Lazar and O. Banias. Clone detection algorithm based on the abstract syn-
tax tree approach. In 2014 IEEE 9th IEEE International Symposium on Applied
Computational Intelligence and Informatics (SACI), pages 73–78, May 2014.

[LD03] Michele Lanza and Stéphane Ducasse. Polymetric views-a lightweight visual ap-
proach to reverse engineering. IEEE Trans. Softw. Eng., 29(9):782–795, Septem-
ber 2003.

[LDGP05] Michele Lanza, Stéphane Ducasse, Harald Gall, and Martin Pinzger. Code-
crawler: An information visualization tool for program comprehension. In Pro-
ceedings of the 27th International Conference on Software Engineering, ICSE
’05, pages 672–673, New York, NY, USA, 2005. ACM.

[LS95] James R. Larus and Eric Schnarr. Eel: Machine-independent executable editing.
SIGPLAN Not., 30(6):291–300, June 1995.

[LZ97] Han Bok Lee and Benjamin G. Zorn. Bit: A tool for instrumenting java byte-
codes. In Proceedings of the USENIX Symposium on Internet Technologies
and Systems on USENIX Symposium on Internet Technologies and Systems,
USITS’97, pages 7–7, Berkeley, CA, USA, 1997. USENIX Association.

[ML02] Tom Mens and Michele Lanza. A graph-based metamodel for object-oriented
software metrics. In Electronic Notes on Theoretical Computer Science, vol-
ume 72, 202.

[NS14] K. Nakayama and E. Sakai. Source code pattern as anchored abstract syntax tree.
In 2014 IEEE 5th International Conference on Software Engineering and Service
Science, pages 170–173, June 2014.

87

REFERENCES

[OJH03] Alessandro Orso, James Jones, and Mary Jean Harrold. Visualization of program-
execution data for deployed software. In Proceedings of the 2003 ACM Sympo-
sium on Software Visualization, SoftVis ’03, pages 67–ff, New York, NY, USA,
2003. ACM.

[OST04] T. Okamura, B. Shizuki, and J. Tanaka. Execution visualization and debugging
in three-dimensional visual programming. In Proceedings. Eighth International
Conference on Information Visualisation, 2004. IV 2004., pages 167–172, July
2004.

[RG03] Mark Richters and Martin Gogolla. Aspect-oriented monitoring of uml and ocl
constraints. In In AOSD Modeling With UML Workshop, 6th International Con-
ference on the Unified Modeling Language (UML, 2003.

[RJB04] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Language
Reference Manual, The (2Nd Edition). Pearson Higher Education, 2004.

[ScZ05] Michael Stonebraker, Uǧur Çetintemel, and Stan Zdonik. The 8 requirements of
real-time stream processing. SIGMOD Rec., 34(4):42–47, December 2005.

[SJ15] A. Sadar and Vinitha Panicker J. Doctool - a tool for visualizing software projects
using graph database. In 2015 Eighth International Conference on Contemporary
Computing (IC3), pages 439–442, Aug 2015.

[SO06] Nija Shi and Ronald A. Olsson. Reverse engineering of design patterns from java
source code. In Proceedings of the 21st IEEE/ACM International Conference
on Automated Software Engineering, ASE ’06, pages 123–134, Washington, DC,
USA, 2006. IEEE Computer Society.

[STA09] STAN. Stan: Structure analysis for java, 2009.

[Tan13] Steven L. Tanimoto. A perspective on the evolution of live programming. In
Proceedings of the 1st International Workshop on Live Programming, LIVE ’13,
pages 31–34, Piscataway, NJ, USA, 2013. IEEE Press.

[TC09] A. R. Teyseyre and M. R. Campo. An overview of 3d software visualization.
IEEE Transactions on Visualization and Computer Graphics, 15(1):87–105, Jan
2009.

[TCSH06] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T. Halkidis. Design
pattern detection using similarity scoring. IEEE Transactions on Software Engi-
neering, 32(11):896–909, Nov 2006.

[TGHB13] G. Tao, D. Guowei, Q. Hu, and C. Baojiang. Improved plagiarism detection
algorithm based on abstract syntax tree. In 2013 Fourth International Conference
on Emerging Intelligent Data and Web Technologies, pages 714–719, Sept 2013.

[vdVvdWM12] J. S. van der Veen, B. van der Waaij, and R. J. Meijer. Sensor data storage per-
formance: Sql or nosql, physical or virtual. In 2012 IEEE Fifth International
Conference on Cloud Computing, pages 431–438, June 2012.

[WLR11] Richard Wettel, Michele Lanza, and Romain Robbes. Software systems as cities:
A controlled experiment. In Proceedings of the 33rd International Conference

88

REFERENCES

on Software Engineering, ICSE ’11, pages 551–560, New York, NY, USA, 2011.
ACM.

[WY05] Daniel G. Waddington and Bin Yao. High-fidelity c/c++ code transformation.
Electronic Notes in Theoretical Computer Science, 141(4):35 – 56, 2005. Pro-
ceedings of the Fifth Workshop on Language Descriptions, Tools, and Applica-
tions (LDTA 2005).

[YPZ12] D. Yuan, S. Park, and Y. Zhou. Characterizing logging practices in open-
source software. In 2012 34th International Conference on Software Engineering
(ICSE), pages 102–112, June 2012.

89

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation and Goals
	1.3 Project
	1.4 Dissertation Structure

	2 Literature Review
	2.1 Software Visualization
	2.1.1 Static Visualization
	2.1.2 Dynamic Visualization
	2.1.3 3D Visualization

	2.2 Software Structure
	2.2.1 Reverse Engineering
	2.2.2 Abstract Syntax Trees
	2.2.3 Design Patterns
	2.2.4 Tools

	2.3 Dynamic Analysis
	2.3.1 Instrumentation
	2.3.2 Virtual Machine Profiler
	2.3.3 Aspect Oriented Programming

	2.4 Database Technologies
	2.4.1 Real Time Data
	2.4.2 Structure Data

	2.5 Summary

	3 Proposed Solution
	3.1 Contextualization
	3.2 Goals and Research Questions
	3.3 Requirements
	3.3.1 Functional Requirements
	3.3.2 Non-functional Requirements

	3.4 Architecture
	3.5 Summary

	4 Static and Dynamic Software Analysis
	4.1 Problem
	4.2 Extracting Software Information
	4.2.1 Reverse Engineering
	4.2.2 Forward Engineering

	4.3 Assumptions
	4.4 Structural Analysis
	4.4.1 Structure
	4.4.2 Plug-in Generated Project Structure
	4.4.3 Communication
	4.4.4 Generating the Representation
	4.4.5 Live changes

	4.5 Runtime Analysis
	4.5.1 AspectJ
	4.5.2 Extracted data
	4.5.3 Communication

	4.6 Summary

	5 Repository for Software Metadata
	5.1 Model Structure
	5.2 Websockets
	5.2.1 Event information
	5.2.2 Structural changes

	5.3 Repository API
	5.3.1 Storing projects
	5.3.2 Reading projects

	5.4 Implementation details
	5.5 Summary

	6 Experiments & Results
	6.1 Case Studies
	6.1.1 Maze
	6.1.2 JUnit4

	6.2 Functional Requirements
	6.3 Performance Evaluation
	6.3.1 Structural Analysis
	6.3.2 Execution Analysis

	6.4 Visualization Engine Validation
	6.5 Summary

	7 Conclusions
	7.1 Main Contributions
	7.2 Future Work

	A Appendix A
	A.1 tese-repository
	A.1.1 Description
	A.1.2 Write Access
	A.1.3 Read Access
	A.1.4 Installation

	B Appendix B
	B.1 tese-static
	B.1.1 Description
	B.1.2 Installation
	B.1.3 Usage

	C Appendix C
	C.1 tese-runtime
	C.1.1 Description
	C.1.2 Installation
	C.1.3 Usage

	D Appendix D
	D.1 Projects
	D.1.1 GET
	D.1.2 POST
	D.1.3 DELETE

	D.2 Packages
	D.2.1 GET
	D.2.2 POST
	D.2.3 DELETE

	D.3 Classes
	D.3.1 GET
	D.3.2 POST
	D.3.3 DELETE

	D.4 Events
	D.4.1 GET
	D.4.2 POST
	D.4.3 DELETE

	D.5 WebSocket
	D.5.1 Events
	D.5.2 Structural Change Notification

	References

