ANÁLISE DE ESTRUTURAS EXECUTADAS POR FASES TENDO EM CONTA OS EFEITOS DIFERIDOS

Graça de Fátima Moreira de Vasconcelos

Dissertação para obtenção do grau de Mestre em Estruturas de Engenharia Civil

Julho de 1999
Orientador Científico:
Doutor Rui Humberto Costa de Fernandes Póvoas

Júri das provas constituído por:

Presidente:
Doutor Joaquim Azevedo Figueiras

Vogais:
Doutor Paulo Jorge de Sousa Cruz
Doutor António Adão da Fonseca
Doutor Rui Manuel Carvalho Marques de Faria
Doutor Rui Humberto Costa de Fernandes Póvoas
Aos meus pais e irmãos
Agradecimentos

A todos os que auxiliaram e tornaram possível este trabalho, expresso aqui o meu agradecimento:

Ao Professor Rui Póvoas, orientador da tese, pela prontidão e empenho com que sempre acompanharam a realização do presente trabalho.

Ao professor Rui Faria, pela ajuda no esclarecimento de dúvidas relacionadas com o programa de cálculo que serviu de base à concretização deste trabalho.

À Universidade do Minho, nomeadamente aos professores Paulo Lourenço e Paulo Cruz, pela compreensão demonstrada e pela disponibilidade que me concederam para finalizar este trabalho.

Aos professores Adão da Fonseca e Rui Oliveira, que me facilitaram os elementos do projecto da PS15, analisada no sexto capítulo deste trabalho.

Aos meus colegas de mestrado, especialmente ao Paulo Costeira e também à Margarida Lopes, pela amizade, ajuda e apoio que me deram, especialmente, na parte final da dissertação.

Aos meus colegas Luís Neves e Abílio de Jesus, pela forma como me ajudaram na geração da malha de elementos finitos na discretização da PS15, e na finalização de alguns desenhos.

Ao meu colega Luís Brás pela ajuda que me deu na resolução de problemas no âmbito programação.

À Fundação para a Ciência e Tecnologia pelo suporte financeiro concedido sobre a forma de bolsa de mestrado.

Ao departamento de estruturas de engenharia civil, pela disponibilização de meios técnicos, indispensáveis à prossecução do trabalho. À D. Clotilde, D. Vitória e ao Manuel toda a simpatia e eficiência no tratamento dos assuntos relacionados com o mestrado.

À minha família e principalmente pais e irmã, um agradecimento especial, pela paciência, compreensão e sobretudo pela forma como sempre me apoiaram e incentivaram ao longo de todo o percurso académico.
Resumo

O presente trabalho tem como objectivo final o desenvolvimento de um modelo para a análise e dimensionamento de estruturas de pontes executadas por fases, visando contemplar a consideração da evolução da geometria da estrutura, o comportamento visco-elástico do betão e a representação das armaduras de pré-esforço.

O modelo de elementos finitos de base permite efectuar a discretização espacial da estrutura através de elementos finitos 3D, das armaduras pré-esforçadas com base em elementos finitos unidimensionais parabólicos, e das armaduras ordinárias por camadas.

O modelo desenvolvido permite a simulação da evolução física da estrutura que está associada à utilização de diferentes processos construtivos. A evolução da geometria longitudinal e transversal, das acções, das condições de ligação ao exterior, das armaduras activas e ordinárias são alguns dos aspectos contemplados neste modelo.

A modelação das armaduras de pré-esforço é efectuada a partir da introdução de elementos unidimensionais parabólicos (discretização das armaduras) com base na formulação embebida em elementos 3D, e possibilita a simulação da transferência do pré-esforço, do processo de perdas de tensão, bem como a contabilização da rigidez corespondente às armaduras. São ainda modelados os aspectos relacionados com o processo evolutivo inerente à construção de pontes, nomeadamente, a introdução de armaduras de pré-esforço em fases distintas, a utilização de cabos provisórios e a aplicação da força de pré-esforço por fases.

O comportamento diferido dos materiais é modelado com base nos fenómenos relacionados com a fluência, retração e maturação do betão e com a relaxação das armaduras de pré-esforço. A relação linear entre tensões e deformações de fluência é considerada válida e a aproximação da função de fluência por uma série de funções exponenciais reais (série de Dirichlet) evita a necessidade de memorização de toda a história de tensões.

Finalmente, o modelo desenvolvido é validado através da sua aplicação a alguns exemplos simples e a sua aplicabilidade é ilustrada com base na análise de uma estrutura real.
Abstract

The following essays objective is the development of a model for design and analysis of structures of bridges built in several phases, considering the evolution of geometry of structure, the elastic behaviour of concrete and the presentation of prestressed steel.

The basic finite elements model allows the spacial discretization of the structure through 3D finite elements, of prestressed steel based upon unidimensional parabolic finite elements and the ordinary steel in layers.

The developed model also allows the simulation of the physical evolution of the structure, which is associated to the use of different constructive processes. The development of longitudinal and transversal geometry, of the actions, the conditions of junction to the outside, of active and ordinary steel are some of the aspects contained in this essay.

The modulation of prestressed steel is made from the introduction of unidimensional parabolic elements in 3D finite elements and allows the simulation of transference of prestressed steel, of the process of tensions lost as well as the accounting of stiffness concerning the prestressed steel. Here are also described aspects concerning the evolutive process inherent to the construction of bridges, specially the introduction of prestressed steel in different phases, the use of temporary steel and the application of the forces in prestressed steel by phases.

The time dependent behaviour of the materials is prevent based upon phenomena related to creep, shrinkage and ripening of concrete, as well as with relaxation of prestressed steel. The linear relation between tensions and deformations of creep is considered effective and the creep function is approximated by series of exponential functions (Dirichlet series) and avoids the need to memorize all the history of tensions.

In conclusion, the developed model is considered effective through its applications to some simple examples and its appliance is illustrated based upon the analysis of a real structure.
ÍNDICE DE TEXTO

AGRADECIMENTOS ... I
RESUMO .. III
ABSTRACT .. V
ÍNDICE DE TEXTO .. VII
ÍNDICE DE FIGURAS ... XII
ÍNDICE DE QUADROS .. XXIII
SIMBOLOGIA .. XXV

CAPÍTULO 1 - Introdução
1.1 Considerações gerais .. 1.1
1.2 Breve perspectiva histórica ... 1.2
1.3 Objectivo e organização do presente trabalho ... 1.4

CAPÍTULO 2 – Modelo de elementos finitos
2.1 Introdução ... 2.1
2.2 Aproximação da geometria e do campo de deslocamentos 2.2
2.3 Matriz de deformação ... 2.3
2.4 Definição do campo de tensões .. 2.5
2.5 Elementos finitos isoparamétricos ... 2.6
2.6 Integração numérica ... 2.8
 2.6.1 Quadratura de Gauss ... 2.8
 2.6.2 Integração por camadas .. 2.8
 2.6.3 Matriz de rigidez ... 2.10
2.7 Vector das forças nodais equivalentes .. 2.12
Índice de texto

2.8 Modelação da temperatura ... 2.14
2.9 Representação das armaduras .. 2.15
 2.9.1 Considerações gerais .. 2.15
2.10 Definição da matriz de deformação ... 2.16
 2.10.1 Geometria ... 2.16
 2.10.2 Definição do referencial local ... 2.16
 2.10.3 Definição da matriz de deformação ... 2.18
2.11 Exemplos de validação .. 2.21
2.11 Considerações finais .. 2.23

CAPÍTULO 3 – Análise evolutiva

3.1 Introdução .. 3.1
3.2 Evolução das acções ... 3.1
3.3 Evolução do perfil longitudinal .. 3.2
3.4 Evolução da secção transversal ... 3.3
3.5 Evolução das ligações internas e externas ... 3.3
3.6 Evolução da armadura activa e passiva ... 3.4
3.7 Evolução das propriedades mecânicas dos materiais 3.5
3.8 Evolução das condições de interacção com o meio ambiente 3.5
3.9 Carrinhos de avanço ... 3.6
3.10 Exemplos de validação .. 3.6
 3.10.1 Eliminação de apoios .. 3.6
 3.10.2 Colocação de novos apoios .. 3.10
 3.10.3 Faseamento do perfil longitudinal ... 3.12
 3.10.4 Faseamento do perfil transversal ... 3.17
3.11 Considerações finais .. 3.22

CAPÍTULO 4 – Modelação do pré-esforço

4.1 Introdução .. 4.1
Índice de texto

4.2 Formulário da armadura de pré-esforço ... 4.2
 4.2.1 Geometria ... 4.2
 4.2.2 Matriz de deformação ... 4.3
 4.2.3 Matriz de rigidez ... 4.8
 4.2.4 Forças internas instaladas nas armaduras pré-esforçadas 4.9

4.3 Perdas de pré-esforço ... 4.11
 4.3.1 Identificação das perdas ... 4.11
 4.3.2 Perdas instantâneas ... 4.12
 4.3.2.1 Perdas por atrito ... 4.12
 4.3.2.2 Perdas por escorregamento na ancoragem 4.14
 4.3.2.3 Perdas por deformação imediata do betão 4.15
 4.3.3 Perdas diferidas ... 4.16

4.4 Aplicação do pré-esforço .. 4.16
 4.4.1 Armaduras pré-tensionadas ... 4.17
 4.4.2 Armaduras pós-tensionadas ... 4.17

4.5 Cálculo faseado com armaduras pré-esforçadas 4.19
 4.5.1 Aplicação faseada de armaduras de pré-esforço 4.19
 4.5.2 Armaduras pré-esforçadas provisórias 4.19
 4.5.3 Aplicação do valor do pré-esforço por fases 4.20

4.6 Exemplos de referência .. 4.20
 4.6.1 Testes numéricos ... 4.21
 4.6.2 Estudo do faseamento - exemplos ... 4.24
 4.6.2.1 Faseamento do perfil longitudinal 4.24
 4.6.2.2 Faseamento da seção transversal 4.32
 4.6.2.3 Utilização de cabos provisórios ... 4.38
 4.6.2.4 Aplicação faseada do valor do pré-esforço 4.40

4.7 Considerações finais ... 4.43

CAPÍTULO 5 – Modelação dos efeitos diferidos

5.1 Introdução .. 5.1
Índice de texto

5.2 Lei de fluência .. 5.2
5.2.1 Considerações gerais ... 5.2
5.2.2 Definição ... 5.3
5.2.3 Lei de fluência definida pelo CEB-FIP Model Code 1990 .. 5.5
5.2.4 Aproximação da lei de fluência em série de Dirichlet ... 5.7
5.2.5 Aproximação rectangular na definição da deformação incremental de fluência ... 5.9
5.3 Modelo de retracção .. 5.12
5.4 Lei de retracção do CEB-FIP Model Code 1990 .. 5.13
5.5 Modelo de maturação do betão ... 5.14
5.5.1 Consideração do efeito da maturação do betão ... 5.15
5.6 Modelo de relaxação da armadura de pré-esforço ... 5.17
5.7 Modelo de análise no domínio do tempo ... 5.18
5.8 Exemplos de aplicação ... 5.21
5.8.1 Exemplos de validação ... 5.22
5.8.1.1 Peça linear comprimida e viga simplesmente apoiada ... 5.21
5.8.1.2 Viga de Lin ... 5.28
5.8.2 Avaliação do comportamento diferido de estruturas executadas por fases 5.30
5.8.2.1 Faseamento do perfil longitudinal .. 5.30
5.8.2.2 Faseamento do perfil transversal ... 5.43
5.9 Considerações finais .. 5.51

CAPÍTULO 6 – Aplicação numérica

6.1 Introdução ... 6.1
6.2 Caracterização do problema ... 6.2
6.2.1 Geometria .. 6.2
6.2.2 Discretização da estrutura ... 6.7
6.2.3 Processo de faseamento e características dos materiais .. 6.11
6.2.4 História da carga ... 6.14

X
Índice de texto

6.3 Análise de resultados ... 6.15
 6.3.1 Considerações gerais ... 6.15
 6.3.2 Discussão de resultados .. 6.15
6.4 Verificação da segurança .. 6.29
6.5 Conclusão .. 6.31

CAPÍTULO 7 – Conclusões e Desenvolvimentos Futuros
7.1 Conclusões ... 7.1
7.2 Desenvolvimentos futuros .. 7.2

REFERÊNCIAS BIBLIOGRÁFICAS .. R.1
ÍNDICE DE FIGURAS

CAPÍTULO 2 – Modelo de elementos finitos

Fig. 2.1 – Sistema coordenado geral de eixos e referencial dos deslocamentos nodais ...2.2
Fig. 2.2 – Convenção de sinais para as tensões ..2.5
Fig. 2.3 – Elementos isoparamétricos ...2.6
Fig. 2.4 – Representação das camadas: a) direcção ζ ; b) direcção ξ ; c) direcção η ...2.10
Fig. 2.5 – Malha e número de camadas usadas na discretização da secção ...2.22
Fig. 2.6 – Discretização de elementos finitos e camadas de armaduras ...2.22

CAPÍTULO 3 – Análise evolutiva

Fig. 3.1 – Procedimento usado na eliminação de apoios ..3.4
Fig. 3.2 – Malha de elementos finitos e padrão de camadas ...3.7
Fig. 3.3 – Esquema de faseamento da eliminação do apoio central da viga ..3.8
Fig. 3.4 – Deformadas da viga correspondentes; a) 1ª fase; b) 2ª fase ...3.9
Fig. 3.5 – Esquema estrutural de faseamento na alteração do tipo de apoio ...3.10
Fig. 3.6 – Deformadas da viga – eliminação de graus de liberdade: a) 1ª fase; b) 2ª fase ...3.10
Fig. 3.7 – Esquema estrutural de faseamento – colocação do apoio central ..3.11
Fig. 3.8 – Deformadas da viga: a) antes da colocação do apoio; b) depois da colocação do apoio3.12
Fig. 3.9 – Malha de elementos finitos e padrão de camadas ...3.13
Fig. 3.10 – Esquema do faseamento longitudinal da viga ...3.14
Fig. 3.11 – Deformadas da viga – faseamento do perfil longitudinal: a) 1ª fase; b) c) 2ª fase; 3ª fase3.16
Fig. 3.12 – Valores dos deslocamentos na primeira fase ..3.16
Fig. 3.13 – Valores dos deslocamentos na segunda fase ..3.17
Fig. 3.14 – Valores dos deslocamentos na terceira fase ...3.17
Fig. 3.15 – Faseamento estrutural da peça linear ..3.18
Fig. 3.16 – Faseamento estrutural da viga simplesmente apoiada ...3.19
Fig. 3.17 – Diagrama de tensões na secção a meio vão, 1ª e 2ª fases ..3.20
Fig. 3.18 – Diagrama de deslocamentos na fibra extremo superior da viga ..3.21
Fig. 3.19 – Diagrama de deslocamentos na fibra extremo inferior da viga ...3.21
ÍNDICE DE FIGURAS

CAPÍTULO 4 – Modelação do pré-esforço

Fig. 4.1 – Elemento parabólico embebido num elemento 3D ... 4.2
Fig. 4.2 – Diagrama de tensões instaladas nas armaduras na fase de aplicação do pré-esforço .. 4.13
Fig. 4.3 – Esquema estrutural e cargas utilizadas nos testes A e B ... 4.22
Fig. 4.4 – Esquema estrutural e cargas utilizadas nos testes C e D ... 4.23
Fig. 4.5 – Diagramas de momentos hiperestáticos devidos ao pré-esforço ... 4.24
Fig. 4.6 – Malha de elementos finitos e padrão de camadas ... 4.25
Fig. 4.7 – Esquema estrutural usado no faseamento longitudinal da viga ... 4.26
Fig. 4.8 – Deslocamentos verticais ao longo da viga .. 4.27
Fig. 4.9 – Distribuição de tensões no cabo A .. 4.28
Fig. 4.10 – Distribuição de tensões no cabo B ... 4.28
Fig. 4.11 – Distribuição de tensões em altura – secção a meio vão – 1ª tramo- 1ª fase/2ª fase 4.30
Fig. 4.12 – Distribuição de tensões em altura – secção a meio vão – 1ª tramo- 2ª fase/3ª fase 4.30
Fig. 4.13 – Distribuição de tensões em altura – secção a meio vão – 2ª tramo- 2ª fase/3ª fase 4.31
Fig. 4.14 – Diagrama de momentos e reacções hiperestáticas ao longo da viga 4.32
Fig. 4.15 – Malha de elementos finitos e padrão de camadas ... 4.33
Fig. 4.16 – Esquema de faseamento do perfil transversal .. 4.34
Fig. 4.17 – Distribuição de tensões ao longo do cabo A – faseamento transversal 4.35
Fig. 4.18 – Distribuição de tensões ao longo do cabo B – faseamento transversal 4.35
Fig. 4.19 – Distribuição de tensões em altura na secção a meio vão – 1ª fase/2ª fase 4.36
Fig. 4.20 – Distribuição de tensões em altura na secção a meio vão – 2ª fase/3ª fase 4.36
Fig. 4.21 – Deslocamentos no plano médio da viga .. 4.37
Fig. 4.22 – Deslocamentos no plano superior da viga .. 4.37
Fig. 4.23 – Esquema de faseamento – eliminação de cabos A e B ... 4.39
Fig. 4.24 – Distribuição de tensões em altura na secção a meio vão – 1ª fase/2ª fase 4.40
Fig. 4.25 – Distribuição de tensões em altura na secção a meio vão – 2ª fase/3ª fase 4.40
Fig. 4.26 – Distribuição de tensões nas armaduras de pré-esforço ... 4.40
Fig. 4.27 – Deslocamentos ao longo da viga – aplicação de cabos provisórios 4.41
Fig. 4.28 – Faseamento da aplicação do valor do pré-esforço ... 4.41
Fig. 4.29 – Distribuição de tensões nos cabos A e B para as 1ª e 2ª fases .. 4.41
Fig. 4.30 – Diagramas de tensões ao longo da altura da secção a meio vão 4.41
Fig. 4.31 – Diagramas de deslocamentos ao longo da viga – faseamento do valor do pré-esforço 4.41

CAPÍTULO 5 – Modelação dos efeitos diferidos

Fig. 5.1 – Função de fluência genérica .. 5.4

XIV
Fig. 5.2 – Funções de fluência para várias idades de carga: a) escala linear; b) escala logarítmica... 5.5
Fig. 5.3 – História de tensão genérica.. 5.8
Fig. 5.4 – Aproximação em série de Dirichlet; a) curva de um termo da série; b) função de fluência . 5.10
Fig. 5.5 – Aproximação rectangular da história de tensão.. 5.10
Fig. 5.6 – Deformação por retração ... 5.14
Fig. 5.7 – Componentes do estado de deformação... 5.15
Fig. 5.8 – Ilustração da definição da variação de deformação mecânica 5.16
Fig. 5.9 – Correção da perda de tensão por relaxação .. 5.18
Fig. 5.10 – Malha de elementos finitos e características geométricas da secção 5.22
Fig. 5.11 – Esquema de cálculo fásico e história de carregamento – peça linear comprimida . 5.23
Fig. 5.12 – Comparação dos deslocamentos dados pela solução analítica e numérica 5.24
Fig. 5.13 – Deslocamentos obtidos para a peça linear reforçada....................................... 5.25
Fig. 5.14 – Distribuição de tensões nas armaduras ordinárias .. 5.25
Fig. 5.15 – Distribuição de tensões no betão .. 5.25
Fig. 5.16 – Malha de elementos finitos da viga e características da secção – caso A e caso B ... 5.27
Fig. 5.17 – Evolução do coeficiente de fluência com o tempo 5.27
Fig. 5.18 – Evolução com o tempo do deslocamento a meio vão.................................... 5.28
Fig. 5.19 – Comparação dos deslocamentos para o caso A e caso B............................. 5.28
Fig. 5.20 – Malha de elementos finitos e características geométricas da secção e do apoio ... 5.29
Fig. 5.21 – Deslocamento vertical da secção de meio vão da viga 5.31
Fig. 5.22 – Distribuição de tensões nas armaduras de pré-esforço – secção do apoio 5.31
Fig. 5.23 – Esquema estrutural do faseamento longitudinal .. 5.33
Fig. 5.24 – Deslocamentos dos nós pertencentes à fibra inferior da viga........................ 5.34
Fig. 5.25 – Distribuição de tensões no cabo A .. 5.36
Fig. 5.26 – Distribuição de tensões no cabo B ... 5.36
Fig. 5.27 – Distribuição de tensões na secção a meio vão – 1º tramo – 1ª fase 5.37
Fig. 5.28 – Distribuição de tensões na secção a meio vão – 1º tramo – 1ª fase/2ª fase 5.37
Fig. 5.29 – Distribuição de tensões na secção a meio vão – 1º tramo – 2ª fase 5.37
Fig. 5.30 – Distribuição de tensões na secção a meio vão – 1º tramo – 2ª fase/3ª fase 5.38
Fig. 5.31 – Distribuição de tensões na secção a meio vão – 1º tramo – 3ª fase 5.38
Fig. 5.32 – Distribuição de tensões na secção a meio vão – 2º tramo – 2ª fase 5.38
Fig. 5.33 – Distribuição de tensões na secção a meio vão – 2º tramo – 2ª fase/3ª fase 5.39
Fig. 5.34 – Distribuição de tensões na secção a meio vão – 2º tramo – 3ª fase 5.39
Fig. 5.35 – Valores dos momentos na secção a meio vão – 1º tramo 5.40
Fig. 5.36 – Valores dos momentos na secção a meio vão – 2º tramo 5.40
Fig. 5.37 – Reacção lateral do apoio esquerdo, R1y .. 5.41
Fig. 5.38 – Reacção vertical central, R2y .. 5.41

XV
Fig. 5.39 – Esquema de cálculo e cargas aplicadas ... 5.42
Fig. 5.40 – Variação das tensões instaladas na secção S1 .. 5.42
Fig. 5.41 – Evolução da reacção no apoio lateral esquerdo .. 5.43
Fig. 5.42 – Evolução da reacção no apoio central ... 5.43
Fig. 5.43 – Evolução dos momentos na secção a meio vão, S1 .. 5.44
Fig. 5.44 – Esquema estrutural de faseamento e história de carga – faseamento transversal 5.45
Fig. 5.45 – Distribuição de tensões em altura – secção a meio vão – 1º fase 5.47
Fig. 5.46 – Distribuição de tensões em altura – secção a meio vão – 1º fase/2º fase 5.48
Fig. 5.47 – Distribuição de tensões em altura – secção a meio vão – 2º fase 5.48
Fig. 5.48 – Distribuição de tensões em altura – secção a meio vão – 2º fase/3º fase 5.48
Fig. 5.49 – Distribuição de tensões em altura – secção a meio vão – 3º fase 5.49
Fig. 5.50 – Distribuição de tensões no cabo A .. 5.50
Fig. 5.51 – Distribuição de tensões no cabo B .. 5.51
Fig. 5.52 – Distribuição de deslocamentos ao longo do plano médio da viga 5.51
Fig. 5.53 – Distribuição de deslocamentos ao longo do plano superior da viga 5.51

CAPÍTULO 6 – Aplicação numérica

Fig. 6.1 – Planta e alçado da PS15 ... 6.3
Fig. 6.2 – Características geométricas da secção do tabuleiro .. 6.4
Fig. 6.3 – Traçado geométrico do pré-esforço em planta e alçado – cabos c, b₁ e d 6.5
Fig. 6.4 – Traçado geométrico do pré-esforço em planta e alçado – cabos a, b₂, c₁ e c₂ 6.6
Fig. 6.5 – Traçado do pré-esforço transversal .. 6.7
Fig. 6.6 – Malhas adoptadas na análise comparativa ... 6.8
Fig. 6.7 – Valores dos deslocamentos correspondentes às malhas d₁₁, d₁₂, d₁₃ e d₁₄ 6.9
Fig. 6.8 – Valores dos deslocamentos correspondentes às malhas d₁₂, d₁₃, d₁₄ e d₁₅ 6.10
Fig. 6.9 – Malha de elementos finitos e nós onde se consideram os apoios 6.11
Fig. 6.10 – Esquema do faseamento construtivo ... 6.13
Fig. 6.11 – História de carga ... 6.14
Fig. 6.12 – Deformada e deslocamentos verticais – 1ª fase – t = 10 dias 6.16
Fig. 6.13 – Deformada e deslocamentos verticais – 1ª fase – t = 45 dias 6.16
Fig. 6.14 – Deslocamentos verticais ao longo do eixo longitudinal do tabuleiro – 1ª fase 6.17
Fig. 6.15 – Deformada e deslocamentos verticais – t = 100 dias .. 6.18
Fig. 6.16 – Acréscimos de deslocamento vertical ao longo do eixo longitudinal – 2ª e 3ª fases ... 6.18
Fig. 6.17 – Evolução dos deslocamentos verticais no eixo longitudinal – 4ª e 5ª fases 6.19
Fig. 6.18 – Evolução do deslocamento vertical a meio vão do 5º tramo 6.19
Fig. 6.19 – Deslocamentos no perfil transversal da secção a meio vão do 5º tramo 6.20
Fig. 6.20 – Deslocamentos no perfil transversal da secção a meio vão do 1º tramo – 1ª e 2ª fases 6.20
Índice de Figuras

Fig. 6.21 – Deslocamentos no perfil transversal da secção a meio vão do 1º tramo – 3ª, 4ª e 5ª fases......6.20
Fig. 6.22 – Evolução com o tempo do valor da reacção vertical do apoio norte..6.21
Fig. 6.23 – Evolução com o tempo do valor da reacção vertical do apoio 1..6.21
Fig. 6.24 – Evolução com o tempo do valor da reacção vertical do apoio 2..6.21
Fig. 6.25 – Distribuição de tensões principais no plano(x,y) – t = 45 dias – camada superior; a) tensões principais de compressão, b) tensões principais de tracção..6.23
Fig. 6.26 – Distribuição de tensões principais no plano(x,y) – t = 45 dias – camada inferior; a) tensões principais de compressão, b) tensões principais de tracção..6.24
Fig. 6.27 – Distribuição de tensões principais no plano (x,y) – 5º tramo – t = 100 anos; a) camada inferior b) camada superior ...6.25
Fig. 6.28 – Distribuição de tensões principais no plano (x,y) – 4º tramo – t = 100 anos; a) camada inferior b) camada superior ...6.25
Fig. 6.29 – Distribuição de tensões principais no plano (x,y) – 3º tramo – t = 100 anos; a) camada inferior b) camada superior ...6.26
Fig. 6.30 – Distribuição de tensões principais no plano (x,y) – zona do pilar P1 – t = 100 anos; a) camada inferior b) camada superior ...6.26
Fig. 6.31 – Evolução com o tempo das tensões no cabo e...6.27
Fig. 6.32 – Evolução com o tempo das tensões no cabo d...6.27
Fig. 6.33 – Evolução com o tempo das tensões no cabo e1...6.28
Fig. 6.34 – Evolução com o tempo das tensões no cabo e2...6.28
Fig. 6.35 – Evolução com o tempo das tensões num cabo transversal sob o terceiro pilar.........................6.29
ÍNDICE DE QUADROS

CAPÍTULO 2 – Modelo de elementos finitos
Quadro 2.1 - Características mecânicas dos materiais ... 2.22
Quadro 2.2 - Comparação de resultados para diferentes números de camadas ... 2.23
Quadro 2.3 - Comparação da solução numérica e analítica para as flechas ... 2.23

CAPÍTULO 3 – Análise evolutiva
Quadro 3.1 - Características mecânicas do betão e geométricas da seção .. 3.7
Quadro 3.2 - Reacções nos apoios .. 3.8
Quadro 3.3 - Reacções nos apoios – supressão de ligações ao exterior .. 3.9
Quadro 3.4 - Reacções nos apoios nas fases 1 e 2 – colocação de novos apoios ... 3.12
Quadro 3.5 - Características mecânicas do betão e geométricas da seção ... 3.15
Quadro 3.6 - Reacções nos apoios – cálculo faseado ... 3.15
Quadro 3.7 - Reacções nos apoios – cálculo constituído por uma fase .. 3.15
Quadro 3.8 - Momentos máximos – cálculo faseado ... 3.15
Quadro 3.9 - Momentos máximos – cálculo constituído por uma fase .. 3.16
Quadro 3.10 - Características mecânicas do betão e geométricas da seção .. 3.20
Quadro 3.11 - Tensões e deformações na peça comprimida .. 3.20

CAPÍTULO 4 – Modelação de armaduras de pré-esforço
Quadro 4.1 - Características geométricas e características dos materiais da seção 4.21
Quadro 4.2 - Resultados dos testes numéricos ... 4.22
Quadro 4.3 - Características mecânicas dos materiais e cargas actuantes ... 4.25
Quadro 4.4 - Momentos flectores nas seções de meio vão dos 1º e 2º tramos 4.31
Quadro 4.5 - Reacções nos apoios – caso A ... 4.31
Quadro 4.6 - Reacções nos apoios – caso B ... 4.31
Quadro 4.7 - Reacções nos apoios – caso C ... 4.32
Quadro 4.8 - Reacções nos apoios – caso D ... 4.32
Índice de Quadros

Quadro 4.9 - Características mecânicas dos materiais e cargas actuantes ... 4.33
Quadro 4.10 - Momento flector total na secção de meio vão ao longo das três fases 4.37
Quadro 4.11 - Momentos na secção de meio vão ... 4.39

CAPÍTULO 5 – Modelação dos efeitos diferidos

Quadro 5.1 - Propriedades mecânicas dos materiais .. 5.22
Quadro 5.2 - Parâmetros que definem o comportamento diferido dos materiais ... 5.24
Quadro 5.3 - Características dos materiais .. 5.26
Quadro 5.4 - Parâmetros que definem o comportamento diferido dos materiais ... 5.26
Quadro 5.5 - Características dos materiais .. 5.29
Quadro 5.6 - Parâmetros que definem o comportamento diferido dos materiais ... 5.30
Quadro 5.7 - Parâmetros que definem o comportamento diferido dos materiais ... 5.32
Quadro 5.8 - Parâmetros que definem o comportamento diferido dos materiais ... 5.46

CAPÍTULO 6 – Aplicação Numérica

Quadro 6.1 - Valores do pré-esforço e áreas dos cabos longitudinais ... 6.2
Quadro 6.2 - Reacções no apoio esquerdo para várias discretizações ... 6.11
Quadro 6.3 - Características mecânicas dos materiais ... 6.12
Quadro 6.4 - Parâmetros que definem o comportamento diferido dos materiais ... 6.12
Quadro 6.5 - Valores das tensões principais máxima e mínima nas secções críticas 6.31
Simbologia

MATRIZES, VECTORES E ESCALARES

A – área

Ac – área da seção transversal

$B_{p,1}$ – termo da matriz de deformação das armaduras de pré-esforço que relaciona a deformação axial e_p com o deslocamento u_1

$C(t,t_0)$ – função de fluência específica do betão

$E_c(t)$ – módulo de elasticidade do betão no instante t

E_{c28} – deformação total correspondente à tensão de rotura do betão à compressão

$E_i(t_0)$ – parâmetro da função de Dirichlet dependente da idade de aplicação da carga

$J(t,t_0)$ – função de fluência

RH – humidade relativa

V – volume

dA – diferencial de área

dV – diferencial de volume

f_{ck} – tensão característica resistente do betão à compressão

f_{cm} – resistência média do betão à compressão aos 28 dias de idade

f_{pk} – tensão característica de rotura das armaduras de pré-esforço
Simbologia

$f_{py} \quad -$ tensão de cedência das armaduras de pré-esforço

$h \quad -$ espessura equivalente da secção transversal

$l_p \quad -$ comprimento das armaduras de pré-esforço

$l_s \quad -$ comprimento de influência das perdas por reentrada das cunhas

$k \quad -$ desvio angular parasita

$k \quad -$ coeficiente que depende do tipo de aço de pré-esforço

$s \quad -$ coeficiente que depende do tipo de cimento

$t_n \quad -$ valor escalar da pressão

$y'_x, y'_y, y'_z \quad -$ componentes segundo x, y, z do versor k' da direcção y'

$x'_x, x'_y, x'_z \quad -$ componentes segundo x, y, z do versor k' da direcção x'

$w_p, w_q, w_r \quad -$ pesos associados a cada ponto de Gauss para a direcção ξ, η, ou ζ

$u, v, w \quad -$ componentes do vector deslocamento num ponto genérico

$u', v', w' \quad -$ componentes do vector deslocamento num ponto genérico no referencial local (x',y', z') das armaduras de pré-esforço

$u \quad -$ perímetro de contacto com o meio ambiente

$t_s \quad -$ instante em que se considera o início da retração

$v \quad -$ grandeza do vector tangente à direcção das armaduras de pré-esforço

$z'_x, z'_y, z'_z \quad -$ componentes segundo x, y, z do versor k' da direcção z'

$x', y', z' \quad -$ eixos do referencial local das armaduras

$N \quad -$ matriz das funções de forma do elemento

$N_i \quad -$ matriz das funções de forma nodais

$B_i \quad -$ matriz de deformação correspondente às armaduras dispostas em camadas

XXII
Simbologia

Ṅ - matriz das funções de forma do elemento unidimensional parabólico
B_p - matriz de deformação do elemento unidimensional parabólico
B - matriz de deformação do elemento
C - matriz que generaliza o cálculo da deformação de fluência para o caso tridimensional
D - matriz constitutiva elástica do betão
B_i - matriz de deformação nodal
N_i - matriz de funções de forma nodais
J - matriz jacobiana
K_e - matriz de rígidez do elemento tridimensional
K_p - matriz de rígidez do elemento unidimensional parabólico
T - matriz de transformação que relaciona o sistema de eixos local das armaduras de pré-esforço e o sistema de eixos geral
b - vector das forças de massa
d - vector dos deslocamentos num ponto genérico
d_e - vector dos deslocamentos do elemento
d_i - vector dos deslocamentos nodais
f_e - vector das forças de volume do elemento
f_e - vector das forças de superfície do elemento
f_e - vector das forças do elemento associadas a uma estado de tensão inicial
f_e - vector das forças do elemento associadas a uma estado de deformação inicial

XXIII
\(f_p \) — vetor das forças internas conduzidas pelos elementos unidimensionais parabólicos

\(\mathbf{i} \) — versor da direcção \(x \)

\(\mathbf{i}' \) — versor da direcção \(x' \)

\(\mathbf{j} \) — versor da direcção \(y \)

\(\mathbf{j}' \) — versor da direcção \(y' \)

\(\mathbf{k}' \) — versor da direcção \(z' \)

\(\mathbf{k} \) — versor da direcção \(z \)

\(\mathbf{n} \) — vetor dos cosenos directores da direcção normal a uma superfície

\(\mathbf{r}(\xi, \eta, \zeta) \) — vetor de posição de um ponto genérico da armadura

\(\mathbf{t}(\tau) \) — vetor unitário tangente à direcção \(\tau \)

\(\mathbf{\nu} \) — vetor das forças de superfície

\(\mathbf{\nu}(\tau) \) — vetor tangente à direcção \(\tau \)

\(\mathbf{\nu}_1, \mathbf{\nu}_2, \mathbf{\nu}_3 \) — vectores tangentes a superfície \((\xi, \zeta), (\eta, \zeta), \text{ou}(\zeta, \xi) \)

\(\mathbf{x} \) — vetor das coordenadas no referencial geral de um ponto genérico

\(\mathbf{x}_e \) — vetor das coordenadas do elemento

\(\mathbf{x}_{p,j} \) — vetor das coordenadas, no referencial geral, dos nós do elemento unidimensional parabólico

\(\mathbf{x}_{p}(\tau) \) — vetor das coordenadas, no referencial local curvilíneo, dos nós do elemento unidimensional parabólico

\(\alpha \) — coeficiente de dilatação térmica

\(\alpha(s) \) — coeficiente que contabiliza as perdas por atrito das armaduras de pré-esforço na coordenada \(s \)

XXIV
Simbologia

\(\alpha'(s) \) - coeficiente que contabiliza as perdas por reentrada das cunhas das armaduras de pré-esforço na coordenada \(s \)

\(\alpha(\tau) \) - coeficiente que contabiliza as perdas por atrito das armaduras de pré-esforço na coordenada \(\tau \)

\(\alpha'(\tau) \) - coeficiente que contabiliza as perdas por reentrada das cunhas das armaduras de pré-esforço na coordenada \(\tau \)

\(\alpha_{ax} \) - ângulo que a direção da armadura passiva faz com a direção \(x \)

\(\alpha_{ay} \) - ângulo que a direção da armadura passiva faz com a direção \(y \)

\(\beta(s) \) - ângulo de desvio

\(\beta_c(t-t_s) \) - função que descreve o desenvolvimento da fluência com o tempo

\(\beta_c(t) \) - coeficiente que serve para definir o módulo de elasticidade no instante de tempo \(t \)

\(\beta_{RH} \) - parâmetro que permite ter em conta a humidade relativa do meio ambiente

\(\beta_{sc} \) - coeficiente que depende do tipo de cimento

\(\xi, \eta, \zeta \) - coordenadas curvilíneas do elemento 3D

\(\xi(\tau_q), \eta(\tau_q), \zeta(\tau_q) \) - coordenadas curvilíneas do elemento unidimensional parabólico avaliadas nos pontos de Gauss

\(\Delta d(t_n) \) - deslocamento incremental no instante \(t_n \)

\(\Delta e_c(t_n) \) - deformação total incremental

\(\Delta e_{cc}(t_n) \) - deformação incremental de fluência

\(\Delta e_{cs}(t_n) \) - deformação incremental de retração

\(\Delta e_p \) - variação de deformação nas armaduras de pré-esforço

XXV
Simbologia

\(\Delta \varepsilon_T \) - variação de deformação térmica

\(\Delta l_p \) - variação de comprimento das armaduras de pré-esforço

\(\Delta s \) - valor do escorregamento total nas ancoragens

\(\Delta \sigma_p \) - variação de tensão nas armaduras de pré-esforço

\(\Delta \sigma_{pl,t} \) - perda de tensão nas armaduras de pré-esforço no instante \(t \)

\(\Delta T_{gp} \) - variação de temperatura em cada ponto de Gauss

\(\varepsilon_a(t,t_0) \) - variação da componente de deformação elástica no instante \(t \)

\(\varepsilon_{ci}(t) \) - deformação mecânica no instante \(t \)

\(\varepsilon_{cs}(t,t_0) \) - deformação de retracção no instante \(t \)

\(\varepsilon_{csr} \) - deformação de retracção de referência

\(\varepsilon_c(t) \) - deformação no instante \(t \)

\(\varepsilon_{cc}(t) \) - deformação de fluência no instante \(t \)

\(\varepsilon_e(t) \) - deformação elástica no instante \(t \)

\(\varepsilon_i^*(t_n) \) - variável à qual está associada a história de tensão até ao instante \(t_n \)

\(\varepsilon_{p,m} \) - deformação média das armaduras de pré-esforço não aderentes

\(\varepsilon_{p,T} \) - deformação térmica

\(\phi(t,t_0) \) - coeficiente de fluência no instante de tempo \(t \) para uma carga aplicada no instante \(t_0 \)

\(\phi_0 \) - coeficiente nominal de fluência

\(\sigma_p(\tau) \) - tensão nas armaduras de pré-esforço na coordenada curvilínea \(\tau \)

\(\sigma_p(s) \) - tensão nas armaduras de pré-esforço na coordenada \(s \)
Simbologia

τ_i - parâmetro usado na definição da série de Dirichlet designado por tempo de retardação

μ - coeficiente de atrito

Δf_{sect}^n - vector das forças incrementais internas associadas à fluência

Δf_{ces}^n - vector das forças incrementais internas associadas à retracção

Δf_p^n - vector das forças incrementais internas associadas à relaxação

Δf_T^n - vector das forças incrementais internas associadas à variação de temperatura

ε_{sect} - vector de deformação de retracção

ε - vector de deformação

ε_0 - vector de deformação inicial

ε'_{x} - deformação axial das armaduras

σ_0 - vector de tensão inicial

σ - vector de tensão

σ_i - tensões principais

Θ - matriz de transformação das coordenadas do referencial (x',y',z') para o referencial (x,y,z)
Capítulo 1

Introdução

1.1 - Considerações gerais

A concepção de uma ponte tem subjacente a escolha de uma solução estrutural, bem como a escolha do processo construtivo associado.

Dependendo do comprimento do vão a vencer, da altura, das restrições ao acesso e à ocupação do espaço sob a ponte, o processo construtivo pode ser determinante na escolha do sistema estrutural.

De um modo geral, os processos construtivos que actualmente mais se utilizam na execução de pontes, dada a sua versatilidade e economia, levam à alteração da geometria, do sistema estrutural, e consequentemente à distribuição de esforços e tensões, assim como das características dos materiais envolvidos até que a estrutura global se estabeleça definitivamente. Estes factores podem ser determinantes na distribuição final de tensões.

No método dos avanços sucessivos, (processo de construção do tabuleiro por execução faseada de troços sucessivos que se vão apoiando no tabuleiro já construído), o crescimento das consolas conduz ao aumento das tensões de compressão no banzo inferior, que se traduzem impor importantes deformações de fluência com a consequente redistribuição de tensões entre o betão e as armaduras. Por outro lado, no processo de construção pelos deslocamentos sucessivos, (construção faseada de troços que logo que ganham resistência suficiente são movimentados para fora da cofragem, que se mantém fixa, por meio de macacos hidráulicos), um mesmo troço pode experimentar diferentes tipos de esforços, em função da posição que ocupa num dado momento.

O desenvolvimento dos processos construtivos de estruturas de betão armado referidos são, em grande parte, devidos ao desenvolvimento do pré-esforço. Dada a necessidade de criar momentos positivos nas consolas construídas por avanços devido aos crescentes momentos negativos gerados, são-lhes aplicados na fase construtiva sistemas de cabos junto à face superior da secção de modo a proporcionar o funcionamento solidarizado com as consolas já construídas e uma maior resistência aos momentos. Após o
fecho da estrutura são também aplicados sistemas de pré-esforço de continuidade para fazer face ao momentos positivos que posteriormente se geram devido à aplicação das cargas de serviço e possíveis redistribuições de momentos devidos aos efeitos diferidos da fluência e retração do betão e de relaxação da armadura de pré-esforço.

Os factores anteriormente referidos demonstram o caráter evolutivo das estruturas de pontes, pelo que a sua análise sobre a geometria final ou sobre a geometria parcial relativa a cada fase pode não conduzir aos mesmos resultados. Em termos de projecto de estruturas executadas por fases, geralmente utiliza-se uma análise com base no comportamento linear e instantâneo dos materiais e modificam-se posteriormente os esforços obtidos de modo a ter em conta os efeitos diferidos com base em métodos aproximados.

1.2 - Breve perspectiva histórica

Como consequência do que atrás foi referido tem-se verificado ao longo dos últimos anos o desenvolvimento de modelos de cálculo com vista à combinação da análise evolutiva e diferida, de modo a ser possível a contabilização dos efeitos da fluência, retração e envelhecimento do betão e relaxação das armaduras de pré-esforço.

Os primeiros programas de cálculo com vista ao estudo, no domínio do tempo, de estruturas construídas evolutivamente datam da década de 70, onde predominam trabalhos realizados em Universidades Norte Americanas, nomeadamente em California (Berkeley), Illinois e Texas, dado o aumento progressivo de técnicas construtivas que combinam o uso de elementos pré-fabricados e elementos estruturais betonados in situ.

Em 1977, Europe Études desenvolveu uma técnica para a análise diferida de pontes pré-esforçadas executadas por fases com base num modelo simplificado de fluência tendo em conta o comportamento linear de estruturas. Nesta altura, também na Universidade de Illinois foram efectuados estudos analíticos e experimentais, nomeadamente por Damon e Gamble que efectuaram o estudo do comportamento diferido de pontes construídas por avanços sucessivos, ao mesmo tempo que Gamble e Mohraz projectaram e ensaiaram uma ponte construída em três fases com duas juntas, constituída por uma viga em I e uma laje betonada in situ.

Mais tarde, em 1981, Marshal e Gamble, na mesma Universidade, continuaram o estudo de pontes construídas por avanços sucessivos, tornando possível o estudo do comportamento destas após o fecho das consolas.
Ainda no ano de 1977, Kang desenvolveu um programa, PCFRAME, que permite efectuar a análise não linear (geométrica e material) e diferida de estruturas reticulares de betão armado e pré-esforçado. Este modelo foi generalizado para estruturas tridimensionais pré-esforçadas, em 1984, por Marí. Mais tarde, em 1989, o programa PCFRAME foi generalizado, pelo mesmo autor, à análise evolutiva de estruturas permitindo modelar os efeitos da fluência, retração e envelhecimento do betão e a relaxação das armaduras de pré-esforço.

Em 1986, Ketchum desenvolveu o programa SFRAME para análise de estruturas planas de betão armado e pré-esforçado construídas por fases discretizadas por elementos unidimensionais, utilizando na discretização das armaduras de pré-esforço elementos de barra rectilíneos. Este programa considera o comportamento linear dos materiais e permite a modelação da evolução das acções, das condições de apoio, a introdução e eliminação de elementos, a aplicação faseada do pré-esforço e a modelação dos carros de avanço em pontes executadas por avanços sucessivos.

Em 1991, Navrátil desenvolveu o programa, CARK, para análise do comportamento diferido de estruturas planas de betão armado e pré-esforçado, considerando o comportamento linear dos materiais, que possibilita a modelação da fluência, retração e temperatura, a evolução da história de carga, a alteração das condições de apoio, a consideração de betões com propriedades distintas e a evolução da secção transversal.

Neste mesmo ano, Abbas da Universidade de Berkeley apresentou um programa que permite a análise não linear, evolutiva e diferida de estruturas discretizadas por elementos de barra 3D. Este programa apresenta a limitação de não permitir o faseamento transversal da secção.

Em 1985, Carol da Universidade Politécnica da Catalunha apresentou um modelo ECF1 para a análise não linear e diferida de estruturas porticadas planas. O modelo permite a modelação da fluência não linear e a rotura diferida.

Em 1994, na Universidade Politécnica da Catalunha, Cruz desenvolveu um programa para a análise evolutiva de estruturas com comportamento não linear. O programa permite a análise da resposta estrutural em serviço e à rotura, a consideração de processos de carga cíclicos, a simulação de efeitos de segunda ordem, a evolução da secção transversal e a consideração de vários tipos de betão ao longo desta, a possibilidade de modificação das condições de apoio, a consideração de escoramentos e apoios elásticos, a consideração de carros de avanço em pontes construídas por avanços, a modelação das armaduras de pré-
esforço com elementos curvos, e a reprodução dos fenómenos de fluência não linear e rotura diferida.

Através desta breve referência a trabalhos efectuados no âmbito da análise diferida de estruturas construídas por fases, ressalta a importância da tradução realista do comportamento de tais estruturas. Assim, dada a complexidade de algumas estruturas de pontes relacionada com acentuadas curvaturas em planta e em perfil longitudinal, com alterações da geometria e condições de apoio, e com a existência de materiais de diferentes idades, impõe-se a necessidade de uma análise rigorosa correspondente a cada fase construtiva, em detrimento da utilização de métodos de análise aproximados e simplificados, efectuados sobre a geometria final. Neste trabalho optou-se por um modelo de análise no domínio do tempo, baseado no comportamento linear dos materiais, direccionado essencialmente para estudos de projecto de estruturas executadas por fases. Com efeito, pretende-se com presente modelo efectuar a análise em condições de serviço conduzindo, de modo simples e eficaz, à caracterização da resposta estrutural e à verificação dos estados limites de utilização. Tendo em vista a tradução realista de formas estruturais complexas, o modelo apresentado permite ainda efectuar a discretização espacial da estrutura com base em elementos finitos tridimensionais.

1.3 - Objectivo e organização do trabalho

É objectivo deste trabalho o estabelecimento de um modelo que permita efectuar a análise de estruturas para condições de serviço, tendo em conta os efeitos diferidos de fluência, retração e envelhecimento do betão e a relaxação das armaduras de pré-esforço, bem como os aspectos de carácter evolutivo associados à mutação das condições de geometria longitudinal e transversal, das cargas correspondentes a cada fase, das condições de apoio, à aplicação e retirada de cabo de pré-esforço em fases distintas e à aplicação faseada do valor do pré-esforço. Pretende-se, essencialmente, estudar os efeitos conjuntos da evolução da estrutura e do comportamento do reológico dos betões constituintes, na distribuição de tensões, quer ao nível das secções quer ao longo do perfil longitudinal.

De modo a atingir as metas enunciadas foram considerados os seguintes objectivos parcelares:

- Introdução dos desenvolvimentos necessários à representação de armaduras ordinárias nos elementos finitos 3D.
Introdução

- Simulação de aspectos de carácter evolutivo relacionados com o processo construtivo, nomeadamente, a evolução do perfil longitudinal e transversal, das condições de apoio, a consideração dos carros de avanço, a alteração das propriedades mecânicas dos betões.

- Introdução de um algoritmo apropriado à representação das armaduras de pré-esforço. Consideração da introdução de armaduras em diferentes fases da análise, de armaduras provisórias e a aplicação do valor de pré-esforço por fases.

- Introdução de um algoritmo que caracterize a resposta da estrutura no domínio do tempo, traduzindo o comportamento diferido do betão, associado à fluência e retracção, e das armaduras relacionado com a relaxação.

- Ilustrar a aplicabilidade do modelo desenvolvido a problemas de grandeza e complexidade consideráveis.

Assim, depois da introdução efectuada no presente capítulo, onde se definem os objectivos do trabalho e a organização do mesmo, segue-se o capítulo 2 onde é apresentada a formulação de base do método dos elementos finitos, relativa a elementos 3D, destinada à análise de estruturas de geometria complexa ao nível da secção e do perfil longitudinal. É descrito o processo de integração por camadas adoptado na definição da matriz de rigidez e do estado de tensão e de deformação, visando a simulação de betões de diferentes idades. É apresentada a formulação correspondente à consideração das armaduras ordinárias distribuídas. Esta formulação assume as armaduras representadas por camadas de uma espessura qualquer contemplando de forma adequada a respectiva orientação.

No capítulo 3 descrevem-se os procedimentos relacionados com a simulação do processo evolutivo inerente à execução faseada da estrutura. É abordado o modo como se estabelece a evolução das acções, da geometria longitudinal e transversal, das ligações ao exterior, da variação das propriedades mecânicas dos materiais, da consideração do faseamento das armaduras ordinárias e activas, assim como, a consideração dos carros de avanço. São apresentados, ainda, exemplos simples de validação dos procedimentos introduzidos.

No capítulo 4 é apresentada a solução desenvolvida para a modelação do pré-esforço em estruturas de betão. A formulação adoptada tem como base a discretização da armadura de pré-esforço através de elementos unidimensionais parabólicos que se
consideram embebidos nos elementos 3D, utilizados na discretização da estrutura de betão. É descrito o modo como as armaduras contribuem para o equilíbrio global da estrutura, fazendo-se a adequada distinção entre armaduras aderentes e não aderentes. É também definido o processo de modelação da acção do pré-esforço e o modo de contabilização das perdas de tensão. São referidos os aspectos relacionados com o faseamento relativo à introdução ou retirada de cabos de pré-esforço, bem como com a aplicação faseada da força de pré-esforço, associada a um dado cabo. Finalmente, apresenta-se um conjunto de exemplos com vista à validação da modelação efectuada.

O capítulo 5 refere-se à modelação do comportamento reológico do betão. É aqui descrito o modelo adoptado na definição da retracção, fluência e envelhecimento do betão, tendo como base leis de variação com o tempo estabelecidas pelo Comité-Euro International du Béton CEB, (1990), assim como, o modelo apresentado para a definição das perdas de tensão na armadura de pré-esforço devidas à relaxação. Em relação à fluência é aplicado o princípio da sobreposição dos efeitos na definição das extensões associadas a incrementos de tensão aplicados em diferentes instantes, tendo como base a relação linear entre tensões e deformações de fluência. A função de fluência, definida segundo o Comité-Euro International du Béton (CEB, 1990), é aproximada por uma série de funções exponenciais reais (Série de Dirichlet) que permite a definição da deformação incremental de fluência no instante t_n à custa do conhecimento da deformação incremental no instante t_{n-1}, sem necessidade de memorizar toda a história de tensão precedente, bem como, a realização de somatórios progressivamente crescentes. São definidas também as equações de equilíbrio incremental associadas à análise no domínio do tempo de estruturas de betão.

No capítulo 6 é apresentado um exemplo de aplicabilidade do modelo estabelecido constituído por uma ponte cuja complexidade em termos de geometria longitudinal e transversal e respectivo processo de construção justificam a adopção do presente modelo na respectiva análise.

Finalmente, no capítulo 7, são estabelecidas as principais conclusões do presente trabalho, bem como, os futuros desenvolvimentos que eventualmente se poderão vir a efectuar.
Capítulo 2

modelo de elementos finitos

2.1 - Introdução

O método dos elementos finitos constitui uma solução eficaz para a análise e dimensionamento de estruturas com elevado grau de complexidade em termos de geometria, carregamentos e tipos de materiais envolvidos.

Este método consiste, essencialmente, na discretização geométrica da estrutura, utilizando diversos tipos de elementos. Neste trabalho, dada a complexidade de certas estruturas de pontes em termos de geometria, com a existência de extensões consideráveis em curva, acompanhadas de acentuadas inclinações em termos de perfil longitudinal e transversal e associadas a formas complexas da seção do tabuleiro, o elemento de base usado na discretização é o elemento tridimensional (3D), pese embora o esforço de cálculo considerável que o mesmo implica, devido à grande dimensão da matriz de rigidez associada.

2.2 - Aproximação da geometria e do campo de deslocamentos

A ideia de base do método dos elementos finitos consiste na discretização de uma dada estrutura num conjunto de elementos. A definição do campo de deslocamentos da
estrutura é estabelecido com base no conhecimento dos deslocamentos no interior de cada elemento. Sendo a variável d o vetor de deslocamentos de um dado ponto interior do elemento, o valor das suas componentes (u,v,w) vem definido com base na interpolação dos valores dos deslocamentos nodais através de funções interpoladoras designadas, de um modo geral, por funções de forma.

![Diagrama de deslocamentos](image)

Fig. 2.1 – Sistema coordenado geral de eixos e referencial dos deslocamentos nodais.

Assim, o campo de deslocamentos é dado por:

$$d = \sum_{i=1}^{n} N_i \, d_i,$$ \hspace{1cm} (2.1)

em que n é o número de nós do elemento, N_i são as funções de forma definidas para cada ponto nodal i, e d_i são os valores das componentes de deslocamento em cada nó.

Em notação matricial, a expressão pode tomar a forma:

$$d = \begin{bmatrix} u \\ v \\ w \end{bmatrix} = N \, d_e,$$ \hspace{1cm} (2.2)

2.2
Modelo de elementos finitos

\[
N = \begin{bmatrix}
N_1 & 0 & 0 & N_2 & 0 & 0 & \ldots & N_n & 0 & 0 \\
0 & N_1 & 0 & 0 & N_2 & 0 & \ldots & 0 & N_n & 0 \\
0 & 0 & N_1 & 0 & 0 & N_2 & \ldots & 0 & 0 & N_n
\end{bmatrix}
\]

e
\[
d_s = \begin{bmatrix}
u_1 \\
v_1 \\
w_1 \\
\vdots \\
u_n \\
v_n \\
w_n
\end{bmatrix}
\] \hspace{1cm} (2.3a)

As funções de forma relativas a cada nó, obtêm-se partindo do princípio que lhes atribui valor unitário no nó em que é definida e valor nulo nos restantes.

Do mesmo modo, para a geometria tem-se:

\[
\mathbf{x} = \begin{bmatrix} u \\ v \\ w \end{bmatrix} = N \mathbf{x}_e,
\] \hspace{1cm} (2.3b)

em que \(\mathbf{x} \) é o vector das coordenadas cartesianas no referencial geral num ponto genérico, e \(\mathbf{x}_e \) é o vector das coordenadas dos nós do elemento.

2.3 - Matriz de deformação

Segundo a teoria clássica da elasticidade, para o caso tridimensional, o vector de deformação num dado ponto é constituído pelas componentes:

\[
\varepsilon = \begin{bmatrix}
\varepsilon_x, \varepsilon_y, \varepsilon_z, \gamma_{xy}, \gamma_{xz}, \gamma_{yz}
\end{bmatrix}^T,
\] \hspace{1cm} (2.4)

sendo, respectivamente:

\[
\varepsilon_x = \frac{\partial u}{\partial x}, \quad \varepsilon_y = \frac{\partial v}{\partial y}, \quad \varepsilon_z = \frac{\partial w}{\partial z},
\]

\[
\gamma_{xz} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}, \quad \gamma_{yz} = \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}, \quad \gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}
\] \hspace{1cm} (2.5)

2.3
Se se substituir a expressão 2.1 nas relações que definem as componentes de deformação, obtém-se para um elemento de “n” nós:

\[
\mathbf{e} = \sum_{i=1}^{n} \begin{bmatrix} \frac{\partial N_i}{\partial x} u_i \\
\frac{\partial N_i}{\partial y} v_i \\
\frac{\partial N_i}{\partial z} w_i \end{bmatrix} = \sum_{i=1}^{n} \mathbf{B}_i \mathbf{d}_i = \mathbf{B} \mathbf{d} ,
\]

em que \(\mathbf{B} \) é a matriz de deformação do elemento, constituída pelas submatrizes associadas aos nós do elemento, que vêm expressas por:

\[
\mathbf{B}_i = \begin{bmatrix}
\frac{\partial N_i}{\partial x} & 0 & 0 \\
0 & \frac{\partial N_i}{\partial y} & 0 \\
0 & 0 & \frac{\partial N_i}{\partial z}
\end{bmatrix}.
\]

2.4 - Definição do campo de tensões

A relação entre tensões e deformações obtém-se a partir da equação constitutiva da elasticidade. A relação matricial entre as duas grandezas é dada pela expressão:
\[\sigma = D \varepsilon, \] \hspace{1cm} (2.8)

em que \(D \) é a matriz de elasticidade associada às características dos materiais constituintes da estrutura. Substituindo-se 2.6 em 2.8 obtém-se:

\[\sigma = D B \varepsilon. \] \hspace{1cm} (2.9)

Se o elemento estiver submetido a um estado de deformação inicial \(\varepsilon_0 \), ou a um estado de tensão inicial \(\sigma_0 \), a expressão 2.9 é modificada para:

\[\sigma = D (B \varepsilon_0 - \varepsilon_0) + \sigma_0. \] \hspace{1cm} (2.10)

Na figura 2.2 é indicada a convenção de sinais para as componentes da tensão de um diferencial de volume.

![Fig. 2.2 - Convenção de sinais para as tensões.](image)

2.5 - Elementos finitos isoparamétricos

A formulação isoparamétrica permite a utilização de elementos finitos com geometria irregular, ver figura 2.3. Uma vez conhecidas as coordenadas nodais no sistema de eixos geral \((x,y,z)\), é possível definir a geometria de um qualquer ponto do elemento no sistema de eixos curvilineo \((\xi,\eta,\zeta)\), vindo estas coordenadas definidas no intervalo \([-1,1]\). Este facto permite simplificar significativamente o cálculo numérico dos integrais.
envolvidos na formulação de cada elemento finito, tendo presente que as funções de forma usadas na interpolação da geometria e do campo de deslocamentos da estrutura vêm expressas em termos das referidas coordenadas normalizadas \((\xi, \eta, \zeta)\).

![Diagrama de elementos isoparamétricos](image)

Fig. 2.3 - Elementos isoparamétricos.

A definição da geometria, na formulação isoparamétrica, vem então expressa por:

\[
\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \sum_{i=1}^{n} N_i(\xi, \eta, \zeta) \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix},
\]

(2.11)
sendo \(x_i, y_i \) e \(z_i \) as coordenadas conhecidas nos pontos nodais.

Partindo da regra de derivação em cadeia, é possível estabelecer a relação entre derivadas no sistema coordenado local normalizado e as correspondentes derivadas das funções de forma no sistema de eixos coordenado geral, a qual vem expressa por:

\[
\begin{bmatrix}
\frac{\partial N_i}{\partial \xi} \\
\frac{\partial N_i}{\partial \eta} \\
\frac{\partial N_i}{\partial \zeta}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} & \frac{\partial z}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} & \frac{\partial z}{\partial \eta} \\
\frac{\partial x}{\partial \zeta} & \frac{\partial y}{\partial \zeta} & \frac{\partial z}{\partial \zeta}
\end{bmatrix} \begin{bmatrix}
\frac{\partial N_i}{\partial x} \\
\frac{\partial N_i}{\partial y} \\
\frac{\partial N_i}{\partial z}
\end{bmatrix} = [J] \begin{bmatrix}
\frac{\partial N_i}{\partial x} \\
\frac{\partial N_i}{\partial y} \\
\frac{\partial N_i}{\partial z}
\end{bmatrix},
\tag{2.12}
\]

onde \(J \) é a matriz jacobiano, cujos termos constituem as derivadas parciais das coordenadas cartesianas, definidas em função das coordenadas locais e obtidas pela expressão 2.11.

Estabelecendo a relação inversa da definida pela expressão 2.12 tem-se:

\[
\begin{bmatrix}
\frac{\partial N_i}{\partial x} \\
\frac{\partial N_i}{\partial \eta} \\
\frac{\partial N_i}{\partial \zeta}
\end{bmatrix} = [J]^{-1} \begin{bmatrix}
\frac{\partial N_i}{\partial \xi} \\
\frac{\partial N_i}{\partial \eta} \\
\frac{\partial N_i}{\partial \zeta}
\end{bmatrix},
\tag{2.13}
\]

Em coordenadas locais \(\xi, \eta \) ou \(\zeta \), o diferencial de volume é dado por:

\[
dV = dx\, dy\, dz = |J|\, d\xi\, d\eta\, d\zeta.
\tag{2.14}
\]

2.6 - Integração numérica

A formulação isoparamétrica do elemento 3D permite o cálculo de integrais de volume e de superfície através de técnicas numéricas simples dada a possibilidade de transformar o domínio geométrico real no domínio normalizado definido pelas coordenadas \((\xi, \eta, \zeta)\) que tomam valores no intervalo \([-1, 1]\). Sendo assim, e tendo em conta a relação 2.14, o cálculo do integral volúmico de qualquer função definida nas coordenadas \((x, y, z)\) pode ser expresso pela relação:

2.7
\[\int_{v} f(x, y, z) \, dx \, dy \, dz = \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} f(\xi, \eta, \zeta) \, J \, d\xi \, d\eta \, d\zeta. \quad (2.15) \]

2.6.1 - Quadratura de Gauss

O método numérico utilizado no cálculo do segundo integral da expressão 2.15 recorre à quadratura de Gauss, Zienkiewicz (1979), Zienkiewicz e Taylor, (1991), vindo definido pela expressão:

\[\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} f(\xi, \eta, \zeta) \, J \, d\xi \, d\eta \, d\zeta = \sum_{p=1}^{n_p} \sum_{q=1}^{n_q} \sum_{r=1}^{n_r} w_p \, w_q \, w_r \, f(\xi_p, \eta_q, \zeta_r) \, J, \quad (2.16) \]

onde \(n_p, n_q \) e \(n_r \) constituem o número de pontos de Gauss onde a função a integrar é avaliada, \(w_p, w_q, \) e \(w_r \), constituem os pesos associados a cada ponto de colocação e finalmente \(\xi_p, \eta_q \) e \(\zeta_r \) representam as respectivas coordenadas.

2.6.2 - Integração por camadas

Um modo alternativo de efectuar a integração numérica do integral da expressão 2.15, consiste na identificação dos pontos de colocação numa dada direcção \(\xi, \eta \) ou \(\zeta \), ver figura 2.4, com as camadas em que o elemento é discretizado nessa mesma direcção. Cada camada é caracterizada por uma espessura, podendo esta ter valores variáveis.

Admite-se que cada camada contém um ponto de amostragem na superfície média vindo, em conseqüência, a sua posição definida pela expressão:

\[\xi_{ij} = \sum_{i=1}^{ni} \Delta \xi_j + \frac{\Delta \xi_j}{2}, \quad (2.17) \]

\[\eta_{ij} = \sum_{i=1}^{ni} \Delta \eta_j + \frac{\Delta \eta_j}{2}, \quad (2.18) \]

\[\zeta_{ij} = \sum_{i=1}^{ni} \Delta \zeta_j + \frac{\Delta \zeta_j}{2}, \quad (2.19) \]
onde $\Delta \xi_i$, $\Delta \eta_i$, $\Delta \zeta_i$, correspondem à espessura das camadas, na direção ξ, η ou ζ, que antecedem a camada j, $(j = i+1)$, e ξ_{eq}, η_{eq} e ζ_{eq} correspondem à posição dos pontos na direção em que se faz a discretização por camadas. Para estruturas tridimensionais o uso de 10 a 12 camadas conduz a resultados satisfatórios. Os pesos em cada ponto de Gauss, relativos à direção de discretização da secção, correspondem à espessura de cada uma das camadas.

Para a superfície média definida para ξ, η, ou ζ constante, a integração é realizada a partir da quadratura de Gauss. De um modo geral é utilizada a integração completa em lugar da integração reduzida para minimizar a possibilidade de ocorrência de mecanismos espúrios.

Genericamente, o integral do segundo membro da expressão 2.15, vem expresso por:

$$
\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} f(\xi, \eta, \zeta) \left| J \right| d\xi \, d\eta \, d\zeta = \sum_{p=1}^{2r} \sum_{r=1}^{2s} \sum_{q=1}^{2t} w_p w_r w_t \Delta \xi_p f(\xi_{\text{eq}}, \eta_{\text{eq}}, \zeta_{\text{eq}}) \left| J \right|, \quad (2.20)
$$

2.9
\[
\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} f(\xi, \eta, \zeta) \mid J \mid d\xi d\eta d\zeta = \sum_{q=1}^{q_{\text{c}}} \sum_{p=1}^{p_{\text{c}}} \sum_{r=1}^{r_{\text{c}}} w_r w_q w_p \Delta \eta q \Delta \xi q \Delta \zeta q \mid J \mid ,
\]
(2.21)

\[
\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} f(\xi, \eta, \zeta) \mid J \mid d\xi d\eta d\zeta = \sum_{r=1}^{r_{c}} \sum_{q=1}^{q_{c}} \sum_{p=1}^{p_{c}} w_r w_q w_p \Delta \xi q \Delta \eta q \Delta \zeta q \mid J \mid ,
\]
(2.22)

quando a direção em relação à qual se efectua a discretização por camadas é a direção \(\xi \), \(\eta \) ou \(\zeta \) respectivamente.

2.6.3 - Matriz de rigidez

Na teoria da elasticidade, a equação relativa ao princípio dos trabalhos virtuais (PTV) vem definida por:

\[
\int \int \int_V \delta \varepsilon^T \sigma \, dV = \int \int \int_V \delta \varepsilon^T b \, dV + \int \int_A \delta t^T \, dA + \sum_i \delta q_i^T \, q_i ,
\]
(2.23)

onde \(V \) e \(A \) são o volume e a superfície do elemento sobre a qual actuam as forças de massa \(b \), as forças de superfície \(t \) e as forças concentradas \(q_i \).

Substituindo a expressão 2.10 na equação do PTV, e fazendo uso das expressões 2.2 e 2.6 obtém-se a equação de equilíbrio do elemento:

\[
K_e \, q_e = f_e + q_e ,
\]
(2.24)

onde \(K_e \) é a matriz de rigidez do elemento.

A matriz de rigidez \(K_e \) é definida pela expressão:

\[
K_e = \int \int \int_{V_e} B^T DB \, dx dy dz .
\]
(2.25)

De acordo com o referido na secção 2.5, sobre a formulação isoparamétrica do elemento 3D, e na secção 2.6, sobre a integração numérica, o cálculo do integral da expressão 2.25, pode ser definido pela expressão:

\[
K_e = \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} B^T DB \mid J \mid d\xi d\eta d\zeta .
\]
(2.26)
Usando a quadratura de Gauss, a matriz de rigidez do elemento é calculada por:

\[
K_x = \sum_{r=1}^{nr} \sum_{q=1}^{nq} \sum_{p=1}^{np} B^T D B \left| J \right| \cdot W_p W_q W_r ,
\]

ou, através da integração por camadas, por exemplo segundo a direcção \(\zeta \), pela relação:

\[
K_x = \sum_{r=1}^{nr} \sum_{q=1}^{nq} \sum_{p=1}^{np} B^T D B \left| J \right| \cdot W_p W_q \Delta \zeta ,
\]

seguindo-se expressões análogas se se fizer a discretização do elemento por camadas nas outras direcções.

A discretização do elemento 3D por camadas permite associar características diferentes a cada material, podendo modelar-se, quer a existência de diferentes betões, quer a existência de armaduras distribuídas, como se poderá ver na secção 2.9. As camadas das armaduras devem ter uma espessura convenientemente adequada à quantidade de armadura existente.

2.7 - Vector das forças nodais equivalentes

O vector das forças nodais equivalentes interveniente na equação de equilíbrio 2.24, é dado pela expressão seguinte:

\[
f_x = \iiint_v N^T b \, dV + \iint_A N^T t \, dA + \iiint_v B^T D e_0 \, dV - \iiint_v B^T \sigma_0 \, dV
\]

\[
= f_{ve} + f_{se} + f_{ae} + f_{eo}
\]

(2.29)

onde, o vector \(f_{ve} \) representa o vector das forças de volume, \(f_{se} \) representa o vector das forças de superfície, \(f_{ae} \) o vector das forças devido a deformações iniciais e \(f_{eo} \) é o vector das forças devido a um estado de tensão inicial.

Todos os integrais, presentes na expressão 2.29, são calculados por técnicas numéricas à imagem do que acontece no cálculo da matriz de rigidez. Assim, para a determinação do vector das forças de volume, a expressão correspondente é, Ofate (1992):

\[
f_{ve} = \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} N^T b \left| J \right| \, d\xi \, d\eta \, d\zeta
\]

(2.30a)
\[
\begin{align*}
= \sum_{r=1}^{n_r} \sum_{q=1}^{n_q} \sum_{p=1}^{n_p} (N_r^{T} b_{j|p,q,r} W_p W_q W_r. \\
(2.30b)
\end{align*}
\]

Se a integração for realizada por camadas, e se a direção discretizada por camadas for \(\zeta \), tem-se:

\[
\int_{\Omega} \sum_{r=1}^{n_r} \sum_{q=1}^{n_q} \sum_{p=1}^{n_p} \left(N_r^{T} b_{j|p,q,r} W_p W_q W_r \Delta \zeta .
(2.31)
\]

No que se refere ao cálculo das forças de superfície, aplicadas sobre uma face do elemento, é necessário o conhecimento do diferencial de área \(dA \) e a componente do vetor das forças segundo os eixos coordenados globais.

Sendo \(n_x, n_y \) e \(n_z \) os cosenos directores da direção normal à superfície carregada vem:

\[
t = t_n n,
(2.32)
\]

onde \(t_n \) é a força aplicada na direção normal à superfície e \(n \) o vector dos cosenos directores definido por:

\[
n = [n_x, n_y, n_z]^T.
(2.33)
\]

O vector \(n \) obtém-se pelo produto vectorial de dois vectores tangentes à superfície \((\xi, \eta) \), se as forças são aplicadas segundo \(\zeta \), à superfície \((\eta, \zeta) \), se as forças são aplicadas segundo \(\xi \) ou à superfície \((\zeta, \xi) \) se as forças são aplicadas segundo \(\eta \).

Os vectores tangentes à superfície \((\xi, \eta) \), \((\eta, \zeta) \) ou \((\zeta, \xi) \) são respectivamente:

\[
y_1 = \left(\frac{\partial x}{\partial \xi} i + \frac{\partial y}{\partial \xi} j + \frac{\partial z}{\partial \xi} k \right) d\xi,
(2.34)
\]

\[
y_2 = \left(\frac{\partial x}{\partial \eta} i + \frac{\partial y}{\partial \eta} j + \frac{\partial z}{\partial \eta} k \right) d\eta,
(2.35)
\]

\[
y_3 = \left(\frac{\partial x}{\partial \zeta} i + \frac{\partial y}{\partial \zeta} j + \frac{\partial z}{\partial \zeta} k \right) d\zeta.
(2.36)
\]
Os valores das componentes dos vetores tangentes são assim obtidos tomando as linhas da matriz jacobiano, expressão 2.12.

O vector \(\mathbf{n} \) vem, então, definido pela expressão:

\[
\mathbf{n}_k = \frac{\mathbf{v}_1 \times \mathbf{v}_2}{\|\mathbf{v}_1 \times \mathbf{v}_2\|}, \quad \mathbf{n}_k = \frac{\mathbf{v}_2 \times \mathbf{v}_3}{\|\mathbf{v}_2 \times \mathbf{v}_3\|}, \quad \mathbf{n}_k = \frac{\mathbf{v}_3 \times \mathbf{v}_1}{\|\mathbf{v}_3 \times \mathbf{v}_1\|} \quad (2.37)
\]

conforme a normal à superfície é a direção \(\zeta, \xi \) ou \(\eta \).

Sendo o diferencial de área dado por:

\[
dA = \|\mathbf{v}_1 \times \mathbf{v}_2\|, \quad dA = \|\mathbf{v}_2 \times \mathbf{v}_3\| \quad \text{ou} \quad dA = \|\mathbf{v}_3 \times \mathbf{v}_1\| \quad (2.38)
\]

tem-se:

\[
\mathbf{n} = \frac{1}{dA} \begin{bmatrix} J_{12}J_{33} - J_{22}J_{33} \\ J_{21}J_{33} - J_{11}J_{33} \\ J_{11}J_{32} - J_{21}J_{32} \end{bmatrix} d\xi d\eta = \frac{1}{dA} j_e \, d\xi d\eta, \quad (2.39)
\]

\[
\mathbf{n} = \frac{1}{dA} \begin{bmatrix} J_{22}J_{33} - J_{32}J_{33} \\ J_{31}J_{33} - J_{21}J_{33} \\ J_{11}J_{32} - J_{31}J_{32} \end{bmatrix} d\xi d\eta = \frac{1}{dA} j_e \, d\xi d\eta, \quad \text{ou} \quad (2.40)
\]

\[
\mathbf{n} = \frac{1}{dA} \begin{bmatrix} J_{12}J_{33} - J_{11}J_{33} \\ J_{11}J_{32} - J_{11}J_{32} \end{bmatrix} d\zeta d\xi = \frac{1}{dA} j_e \, d\zeta d\xi, \quad (2.41)
\]

onde \(J_{ik} \) são as componentes da matriz jacobiano.

Deste modo, a expressão para o cálculo das forças de superfície é:

\[
\mathbf{f}_e = \iint_A N \, t_a \, n \, dA = \int_{-1}^{1} \int_{-1}^{1} N \, t_a \, j_e \, d\xi \, d\eta = \sum_{p=1}^{m} \sum_{q=1}^{n} (N \, t_a \, j_e)_{p,q} W_p W_q, \quad (2.42)
\]

\[
\mathbf{f}_e = \iint_A N \, t_a \, n \, dA = \int_{-1}^{1} \int_{-1}^{1} N \, t_a \, j_e \, d\eta \, d\zeta = \sum_{r=1}^{m} \sum_{q=1}^{n} (N \, t_a \, j_e)_{r,q} W_q W_r, \quad (2.43)
\]

2.13
\[f_{n} = \int_{\Omega} N_{n} n \, dA = \int_{\Omega} \int_{\Sigma} N_{n} j_{e} \, d\xi \, d\eta = \sum_{\rho=1}^{m} \sum_{\eta=1}^{n} (N_{n} j_{e})_{\rho} W_{\rho} W_{\rho}, \quad (2.44) \]

conforme as forças se aplicam perpendicularly à superfície \((\xi, \eta), (\eta, \zeta)\) ou \((\zeta, \xi)\).

Note-se que a aplicação das forças pode ser efectuada segundo as três direcções referidas uma vez que é possível a integração por camadas segundo direções \(\xi, \eta, \text{ou} \zeta\), ver secção 2.6.2.

2.8 - Modelação da temperatura

O presente modelo permite a aplicação, a uma dada estrutura, de um acréscimo uniforme ou diferencial de temperatura.

No caso de distribuição uniforme de temperatura, os valores nodais da temperatura são constantes e iguais aos valores da temperatura associados a cada elemento.

No caso em que se impõe à estrutura uma distribuição qualquer de temperatura, considera-se que esta é definida nas faces perpendiculares à direcção em que se faz a discretização por camadas. A obtenção dos valores das temperaturas nodais é efectuado por um processo aproximado. Assim, a temperatura nos nós do elemento que pertencem a faces cujos valores são conhecidos obtém-se pela média dos valores da temperatura nas mesmas. Nos nós que não pertencem a nenhuma das faces mas que pertencem a mais do que um elemento, calcula-se a média dos valores médios obtidos com base nos valores das temperaturas nas faces dos respectivos elementos. Posteriormente, os valores das temperaturas nos pontos de Gauss, \(\Delta T_{\rho}\), calculam-se a partir do conhecimento dos valores nodais da temperatura \(\Delta T_{i}\) através da utilização das funções de forma \(N_{i}(\xi, \eta, \zeta)\), pela expressão:

\[\Delta T_{\rho} = \sum_{i=1}^{\text{mode}} N_{i}(\xi, \eta, \zeta) \, \Delta T_{i}. \quad (2.45) \]

A variação de deformação térmica em cada ponto de Gauss, associada à variação térmica definida na expressão anterior, é dada pela relação:

\[\Delta e_{t} = \alpha \, \Delta T_{\rho}, \quad (2.46) \]
onde α é o coeficiente de dilatação térmica.

2.9 - Representação das armaduras

2.9.1 - Considerações gerais

O presente modelo de cálculo de estruturas tridimensionais pelo método dos elementos finitos permite a modelação, quer de armaduras isoladas quer de armaduras distribuídas.

A consideração de armaduras isoladas é efectuada com base na formulação discreta relativa a armaduras pré-esforçadas, modeladas através de elementos unidimensionais parabólicos que se consideram embebidos nos elementos 3D por eles atravessados.

Na modelação de armaduras distribuídas, de que são exemplo as armaduras dispostas em malha e armaduras de estribos, é adoptada a formulação distribuída, análoga à descrita em Póvoas (1991) para armaduras embebidas no elemento de casca, em que algumas das camadas em que se discretiza o elemento 3D são identificadas com camadas de aço de espessura t_s, consideradas perfeitamente aderentes com o material de betão envolvente. Nas secções seguintes é descrita de forma mais pormenorizada a modelação deste tipo de armaduras.

2.10 - Definição da matriz de deformação

2.10.1 - Geometria

Na modelação do elemento 3D é possível efectuar a integração numérica por camadas que podem estar dispostas segundo um qualquer plano definido pelas direcções (ξ, η), (ξ, ζ), ou (η, ζ), tal como é indicado na figura 2.4 da secção 2.6.2. O vector de posição relativo a um dado ponto pertencente ao plano da armadura é definido pela expressão:

$$ r(\xi, \eta, \zeta) = \sum_{i=1}^{\text{node}} N_i(\xi, \eta, \zeta) \times \mathbf{x}_i. $$

(2.45)
2.10.2 - Definição do referencial local

O referencial local que é estabelecido, está associado a cada ponto de Gauss pertencente à camada de armadura. Deste modo, para cada ponto de Gauss, o eixo z' do referencial local é considerado perpendicular à superfície da camada, sendo obtido pelo produto vectorial dos vectores tangentes correspondentes, de acordo com a expressão:

$$
\hat{z}' = \begin{pmatrix}
\frac{\partial x}{\partial \xi} \\
\frac{\partial y}{\partial \xi} \\
\frac{\partial z}{\partial \xi}
\end{pmatrix} \times \begin{pmatrix}
\frac{\partial x}{\partial \eta} \\
\frac{\partial y}{\partial \eta} \\
\frac{\partial z}{\partial \eta}
\end{pmatrix},
$$

(2.46)

no caso da camada estar disposta no plano (ξ, η), sendo definida de modo análogo para os casos em que a armadura se situe nos planos (ξ, ζ) ou (η, ζ).

O eixo x' do referencial local é orientado segundo a direcção da armadura, em relação à qual se definem os ângulos α_{xy} e β_{yx}, que traduzem a orientação da armadura relativamente aos eixos x e y do referencial geral, e perpendicular à direcção definida pelo eixo z'.

Os versores k' e i' das direcções z' e x' respectivamente, são expressos pela relação:

$$
k' = \frac{\hat{z}'}{||\hat{z}'||} = z'_x i + z'_y j + z'_z k,
$$

(2.47)

$$
i' = \frac{x'}{||x'||} = x'_x i + x'_y j + x'_z k,
$$

(2.48)

sendo i, j, k os versores das direcções do referencial global x, y, e z, e x'_x, x'_y, e x'_z dados pelas expressões:

$$
x'_x = i'.i = \cos \alpha_{xy}
$$

$$
x'_y = i'.j = \cos \beta_{yx}
$$

$$
x'_z = i'.k \rightarrow x'_z = \frac{x'_x k'_x + x'_y k'_y}{k'_z}
$$

(2.48 a-c)

2.16
Uma vez que o referencial local constitui um sistema coordenado directo, o versor da direcção \(y' \) é dado pelo produto vectorial dos versores \(i' \) e \(k' \) definido por:

\[
\hat{j}' = \frac{k' \times i'}{\left\| k' \times i' \right\|}.
\]

(2.49)

2.10.3 - Definição da matriz de deformação

Dado o comportamento uniaxial das armaduras, a única componente que interessa considerar para a definição da deformação associada é \(\varepsilon_x' \), que constitui a primeira componente da matriz das derivadas dos deslocamentos do elemento 3D em ordem às coordenadas do sistema local de eixos.

A matriz de transformação \(\Theta \) que permite a obtenção das derivadas dos deslocamentos do elemento 3D no referencial local é dada por:

\[
\Theta = \begin{bmatrix}
 x'_x & y'_x & z'_x \\
 x'_y & y'_y & z'_y \\
 x'_z & y'_z & z'_z
\end{bmatrix}.
\]

(2.50)

A matriz das derivadas dos deslocamentos do elemento 3D em ordem às coordenadas do referencial local, \((x',y',z') \), é obtida a partir da matriz das derivadas dos deslocamentos, no referencial geral, em ordem às coordenadas do referencial geral, aplicando-lhe a matriz de transformação de coordenadas \(\Theta \) correspondente:

\[
\begin{bmatrix}
 \frac{\partial x'}{\partial x} & \frac{\partial x'}{\partial y} & \frac{\partial x'}{\partial z} \\
 \frac{\partial y'}{\partial x} & \frac{\partial y'}{\partial y} & \frac{\partial y'}{\partial z} \\
 \frac{\partial z'}{\partial x} & \frac{\partial z'}{\partial y} & \frac{\partial z'}{\partial z}
\end{bmatrix} = \begin{bmatrix}
 x'_x & y'_y & z'_x \\
 x'_y & y'_y & z'_y \\
 x'_z & y'_z & z'_z
\end{bmatrix}^T \begin{bmatrix}
 \frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} & \frac{\partial w}{\partial x} \\
 \frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} & \frac{\partial w}{\partial y} \\
 \frac{\partial u}{\partial z} & \frac{\partial v}{\partial z} & \frac{\partial w}{\partial z}
\end{bmatrix}.
\]

(2.51)

A deformação associada às armaduras da camada consiste na deformação axial \(\frac{\partial u'}{\partial x} \), uma vez que estas estão orientadas segundo a direcção \(x' \), que é definida pela expressão:
\[\varepsilon_x = \frac{\partial u'}{\partial x'} = a^2 \frac{\partial u}{\partial x} + ab \frac{\partial v}{\partial x} + ac \frac{\partial w}{\partial x} + \]
\[ab \frac{\partial u}{\partial y} + b^2 \frac{\partial v}{\partial y} + bc \frac{\partial w}{\partial y} + \]
\[ac \frac{\partial u}{\partial z} + bc \frac{\partial v}{\partial z} + c^2 \frac{\partial w}{\partial z} \] \hspace{1cm} (2.52)

Tendo como base a relação que define as derivadas dos deslocamentos do elemento 3D, indicam-se a seguir as derivadas da componente do deslocamento \(u \), obtendo-se as derivadas das outras componentes do mesmo modo:

\[\frac{\partial u}{\partial x} = \frac{\partial}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial}{\partial \eta} \frac{\partial \eta}{\partial x} + \frac{\partial}{\partial \zeta} \frac{\partial \zeta}{\partial x} \] \hspace{1cm} (2.53a)

\[\frac{\partial u}{\partial y} = \frac{\partial}{\partial \xi} \frac{\partial \xi}{\partial y} + \frac{\partial}{\partial \eta} \frac{\partial \eta}{\partial y} + \frac{\partial}{\partial \zeta} \frac{\partial \zeta}{\partial y} \] \hspace{1cm} (2.53b)

\[\frac{\partial u}{\partial z} = \frac{\partial}{\partial \xi} \frac{\partial \xi}{\partial z} + \frac{\partial}{\partial \eta} \frac{\partial \eta}{\partial z} + \frac{\partial}{\partial \zeta} \frac{\partial \zeta}{\partial z} \] \hspace{1cm} (2.53c)

bem como a relação que estabelece a aproximação dos deslocamentos do elemento 3D:

\[u(\xi, \eta, \zeta) = \sum_{i=1}^{\text{mode}} N_i(\xi, \eta, \zeta) u_i \] \hspace{1cm} (2.54)

com a qual de obtêm as derivadas dos deslocamentos em ordem às coordenadas isoparamétricas \(\xi, \eta \) e \(\zeta \), expressas pelas relações:

\[\frac{\partial u}{\partial \xi} = \sum_{i=1}^{\text{mode}} \frac{\partial N_i}{\partial \xi} u_i, \] \hspace{1cm} (2.55a)

\[\frac{\partial u}{\partial \eta} = \sum_{i=1}^{\text{mode}} \frac{\partial N_i}{\partial \eta} u_i, \] \hspace{1cm} (2.55b)

\[\frac{\partial u}{\partial \zeta} = \sum_{i=1}^{\text{mode}} \frac{\partial N_i}{\partial \zeta} u_i, \] \hspace{1cm} (2.55c)
e substituindo-as na relação 2.52, obtêm-se as componentes da matriz de deformação \(B_i \), correspondente às armaduras dispostas em camadas, \(B_{1i} \), \(B_{2i} \) e \(B_{3i} \), expressas pelas relações:

\[
B_{1i} = (a^2 \frac{\partial \xi}{\partial x} + ab \frac{\partial \xi}{\partial y} + ac \frac{\partial \xi}{\partial z}) \frac{\partial N_i}{\partial \zeta} + \\
(a^2 \frac{\partial \eta}{\partial x} + ab \frac{\partial \eta}{\partial y} + ac \frac{\partial \eta}{\partial z}) \frac{\partial N_i}{\partial \eta} + \\
(a^2 \frac{\partial \zeta}{\partial x} + ab \frac{\partial \zeta}{\partial y} + ac \frac{\partial \zeta}{\partial z}) \frac{\partial N_i}{\partial \zeta}
\] \hspace{1cm} (2.56a)

\[
B_{2i} = (ab \frac{\partial \xi}{\partial x} + b^2 \frac{\partial \xi}{\partial y} + bc \frac{\partial \xi}{\partial z}) \frac{\partial N_i}{\partial \zeta} + \\
(ab \frac{\partial \eta}{\partial x} + b^2 \frac{\partial \eta}{\partial y} + bc \frac{\partial \eta}{\partial z}) \frac{\partial N_i}{\partial \eta} + \\
(ab \frac{\partial \zeta}{\partial x} + b^2 \frac{\partial \zeta}{\partial y} + bc \frac{\partial \zeta}{\partial z}) \frac{\partial N_i}{\partial \zeta}
\] \hspace{1cm} (2.56b)

\[
B_{3i} = (ac \frac{\partial \xi}{\partial x} + bc \frac{\partial \xi}{\partial y} + c^2 \frac{\partial \xi}{\partial z}) \frac{\partial N_i}{\partial \zeta} + \\
(ac \frac{\partial \eta}{\partial x} + bc \frac{\partial \eta}{\partial y} + c^2 \frac{\partial \eta}{\partial z}) \frac{\partial N_i}{\partial \eta} + \\
(ac \frac{\partial \zeta}{\partial x} + bc \frac{\partial \zeta}{\partial y} + c^2 \frac{\partial \zeta}{\partial z}) \frac{\partial N_i}{\partial \zeta}
\] \hspace{1cm} (2.56c)

A deformação axial das armaduras, \(\varepsilon_x \), obtém-se então pela multiplicação das componentes referidas anteriormente pelas dos deslocamentos nodais correspondentes, \(u_i \), \(v_i \) e \(w_i \), ver expressão 2.57.

\[
\varepsilon_x = \begin{bmatrix}
... & ...
\end{bmatrix}
\begin{bmatrix}
\begin{array}{c}
B_{1i}, B_{2i}, B_{3i}, ..., B_{1n}, B_{2n}, B_{3n}
\end{array}
\end{bmatrix}
\begin{bmatrix}
\begin{array}{c}
u_i \\
v_i \\
w_i \\
u_i \\
v_i \\
w_i
\end{array}
\end{bmatrix}
\] \hspace{1cm} (2.57)
Uma vez determinada a matriz de deformação, a definição da rigidez associada a cada camada vem definida pela expressão 2.28 onde a matriz B é substituída pela matriz Bs e a matriz D é substituída pelo módulo de elasticidade longitudinal do aço Es.

2.11 - Exemplos de validação

Com o objectivo de validar a formulação relativa à integração por camadas e à introdução de armaduras ordinárias distribuídas dispostas em camadas, apresenta-se um estudo de uma viga simplesmente apoiada sujeita a um carregamento simétrico. No primeiro estudo comparam-se os valores dos deslocamentos e reacções para diferentes discretizações da secção transversal em camadas de igual espessura e no segundo exemplo pretende-se ilustrar o comportamento da viga armada com armaduras ordinárias superiores e inferiores.

A viga tem comprimento de 12 m e a secção transversal é definida pelas dimensões 0.3x1.0 m² sendo solicitada por duas forças iguais de 100 kN localizadas aos terços dos vãos. No primeiro exemplo a viga é calculada sem armaduras ordinárias e no segundo são introduzidas armaduras ordinárias. Por condições de simetria estuda-se apenas metade da viga. A discretização desta, em elementos 3D é apresentada na figura 2.5.

Relativamente ao primeiro exemplo, há a considerar o caso de discretização da secção em 5 camadas (exemplo A), em 10 camadas (exemplo B) e em 15 camadas (exemplo C) como se ilustra na figura 2.5. O cálculo da viga é ainda efectuado utilizando integração completa de Gauss, constituindo esta análise, um exemplo de referência no que respeita à comparação de deslocamentos e reacções.

No segundo exemplo utilizam-se duas camadas de armaduras de espessura equivalente à área da armadura inferior constituída por 4 varões δ25 (19.64 cm²) e da armadura superior constituída por 2 varões δ20 (6.28 cm²), ver figura 2.6. No quadro 2.1, indicam-se as propriedades mecânicas dos materiais.

Quadro 2.1 – Características mecânicas dos materiais.

<table>
<thead>
<tr>
<th>Caract. Mec.</th>
<th>Betão</th>
<th>Armaduras</th>
</tr>
</thead>
<tbody>
<tr>
<td>Módulo de elast.</td>
<td>29 GPa</td>
<td>200 GPa</td>
</tr>
</tbody>
</table>

2.20
Fig. 2.5 – Malha e padrão de camadas usada no 1º exemplo.

Para a discretização das armaduras considera-se uma camada superior com 0.21cm de espessura e uma camada inferior com 0.65cm de espessura.

Fig. 2.6 - Discretização de elementos finitos e camadas de armaduras.

No quadro 2.2 são indicados os valores da flecha a meio vão para as diferentes situações. Como se pode verificar pela análise deste quadro, os valores dos deslocamentos correspondentes à discretização da secção num número diferente de camadas permite verificar que o maior nível de discretização conduz a melhores resultados. A solução correspondente ao caso B, divisão da secção em 10 camadas, é todavia praticamente igual ao que resulta do cálculo da viga com a secção discretizada em 15 camadas. O erro associado ao cálculo da viga com a secção discretizada com 5 camadas conduz a soluções mais flexíveis, com erro da ordem dos 5%.
Quadro 2.2 - Comparação dos resultados para diferentes números de camadas.

<table>
<thead>
<tr>
<th>Exemplos</th>
<th>Flecha δ_m (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exemplo A</td>
<td>0.008923</td>
</tr>
<tr>
<td>Exemplo B</td>
<td>0.008656</td>
</tr>
<tr>
<td>Exemplo C</td>
<td>0.008608</td>
</tr>
<tr>
<td>Solução analítica</td>
<td>0.008460</td>
</tr>
</tbody>
</table>

No que se refere ao exemplo de cálculo da viga com armaduras ordinárias de reforço, ver quadro 2.3, onde se apresentam os valores dos deslocamentos da viga sob a carga, δ_c, e a meio vão, δ_m, constata-se a boa aproximação à solução analítica, sendo o erro da ordem dos 5%. Verifica-se que estes deslocamentos são menores dos que resultam do cálculo da viga sem armaduras, dada a sua maior rigidez.

Quadro 2.3 - Comparação da solução numérica e analítica para os deslocamentos.

<table>
<thead>
<tr>
<th>Exemplo D</th>
<th>δ_m (m)</th>
<th>δ_c (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presente formulação</td>
<td>0.0077589</td>
<td>0.0067699</td>
</tr>
<tr>
<td>Solução analítica</td>
<td>0.007361</td>
<td>0.006401</td>
</tr>
</tbody>
</table>

2.12 - Considerações finais

No presente capítulo é feita a abordagem à formulação do elemento 3D utilizado na discretização de estruturas.

Para além dos aspectos comuns tratados, destaca-se a possibilidade de integração por camadas que permite a introdução na mesma secção de betões com propriedades mecânicas distintas, assim como a modelação de armaduras ordinárias.

Os exemplos efectuados permitem validar a discretização por camadas e a formulação relativa à consideração de armaduras ordinárias. Os resultados obtidos nestes exemplos permitem concluir que a integração por camadas conduz a bons resultados.
Capítulo 3

Análise evolutiva

3.1 - Introdução

A tomada de decisão relativa à adoção de um dado processo construtivo de uma ponte está essencialmente condicionada pelas características topográficas do local de implantação, pelas condições de acesso e rapidez de execução, ponderados os aspectos económicos que cada processo encerra. De entre os processos de construção, os que mais se destacam pela sua frequência de utilização, são os processos de construção vão a vão, os processos por avanços sucessivos e os processos por deslocamentos sucessivos.

A todos estes processos estão associadas alterações na geometria, variações de esquemas estáticos, das acções e das propriedades dos materiais, que conduzem à necessidade de efectuar uma análise evolutiva, dada a diferente solução que, eventualmente, se poderá obter quando comparada com a decorrente de uma análise efectuada sobre a geometria final da estrutura.

É objectivo deste capítulo a descrição do modelo subjacente à consideração do cálculo evolutivo de pontes, que encerra a reprodução de aspectos evolutivos tais como: a variação das acções, da geometria longitudinal e transversal, das ligações externas e das propriedades dos materiais, bem como a consideração dos carrinhos de avanço.

3.2 - Evolução das acções

Dado o carácter evolutivo da análise estrutural induzido pelo processo construtivo, as acções são introduzidas no modelo de forma contínua e progressiva, acompanhando de forma natural a evolução física da estrutura.
Como a análise estrutural é efectuada no domínio do tempo, a variável tempo é dividida em intervalos, aos quais se pode associar a introdução, retirada, ou a alteração das acções já introduzidas. A modelação da aplicação faseada de cargas é importante, dada a possibilidade de redistribuição de deformações e de tensões, quer ao nível do perfil longitudinal da estrutura, quer ao nível da secção transversal.

3.3 - Evolução do perfil longitudinal

No modelo estabelecido, a evolução da geometria da estrutura traduz-se pela possibilidade de introdução de qualquer elemento da estrutura em qualquer fase de execução da mesma, Cruz (1994), não se prevendo no entanto a eliminação de elementos.

A introdução de um elemento é definida de forma automática sendo-lhe associando um código que permite identificar se está activo numa dada fase. Quando um elemento está activo, a sua contribuição é de imediato considerada através do cálculo da matriz de rigidez e das forças nodais equivalentes às cargas exteriores que são incluídas, respectivamente, na matriz de rigidez global e no vector das forças nodais exteriores. As forças internas conduzidas pelo elemento, definidas a partir do respectivo estado de tensão são do mesmo modo tidas em consideração no estabelecimento do equilíbrio da estrutura.

A resolução do sistema de equações associado ao cálculo estrutural, é sempre efectuada com a dimensão máxima da matriz de rigidez e do vector das forças exteriores, havendo necessidade de ter em conta o facto das linhas e colunas correspondentes aos graus de liberdade de elementos ainda não activos não contribuírem para a formação da matriz de rigidez da estrutura. Este procedimento implica a adopção de um valor unitário para o pivots correspondentes aos graus de liberdade que numa dada fase ainda não são activos, de modo a evitar problemas numéricos.

É de referir que o estado de deformação e de tensão associado aos elementos activos, numa dada fase, são obtidos com base no campo de deslocamentos incremental, calculado para essa fase e para cada incremento considerado na análise.

Note-se que o modelo não prevê a possibilidade de actualização da geometria, dado o carácter elástico do comportamento das estruturas adoptado.
3.4 - Evolução da secção transversal

O fazeamento de uma dada secção é efectuada de modo análogo ao fazeamento longitudinal. Uma vez que a secção transversal pode ser discretizada através de vários elementos 3D em altura, a estes está associado um código que os identifica como activos ou inactivos, contribuindo, ou não, para a formação da matriz de rigidez e para a definição das equações de equilíbrio incremental. Nestes termos, é de referir que o fazeamento da secção transversal não implica directamente o fazeamento do perfil longitudinal.

O estado de tensão e de deformação relativo aos elementos que compõem a secção é o resultado da consideração do campo de deslocamentos incremental. Dado que a secção pode ser constituída por vários tipos de materiais, com propriedades mecânicas distintas, a análise no tempo conduz, como se verá no capítulo 5, a uma redistribuição no valor das tensões ao nível da secção.

3.5 - Evolução das ligações internas e externas

A possibilidade de considerar a introdução de restrições aos deslocamentos, num dado instante, permite a modelação das várias fases da estrutura evolutiva associadas ao processo construtivo.

O estabelecimento de novas condições de ligação interna e externa é realizado de modo automático. Tal como foi referido para o fazeamento dos elementos, é associado um código a cada nó, que permite definir as suas condições de ligação ao exterior. O presente modelo prevê a introdução de novos apoios, a alteração das características de apoios já existentes, assim como, a sua eliminação integral.

A fixação dos graus de liberdade de um dado nó tem como consequência directa o alargamento do vector das reacções aos graus de liberdade que são fixados. A libertação dos graus de liberdade dos apoios já existentes conduz, por seu lado, ao desaparecimento das reacções correspondentes. Estas forças são transferidas com sinal contrário para o vector das forças exteriores aplicadas à estrutura, pelo que são distribuídas pelos apoios que permanecem activos. É indicado na figura 3.1 o procedimento adoptado no caso de eliminação de um apoio.
3.6 - Evolução da armadura activa e passiva

Dado que a formulação das armaduras ordinárias está intimamente ligada à formulação do elemento 3D, uma vez que se consideram as armaduras uma parte integrante do mesmo, a introdução de novos elementos 3D implica de forma automática a consideração das respectivas armaduras, reproduzindo de forma eficaz a própria construção.

A modelação das armaduras de pré-esforço, ver capítulo 4, permite efectuar a análise evolutiva da estrutura, uma vez que a introdução de novos cabos pode ser efectuada em qualquer fase, possibilitando a contabilização automática das perdas de tensão instantâneas nos cabos já tensionados, resultantes da deformação do betão originada pelo estado de tensão imposto à estrutura pela consideração de novos cabos.

Com o modelo estabelecido é ainda possível a consideração de armaduras provisórias. A eliminação das armaduras numa dada fase traduz-se pela anulação da
rigidez que lhe está associada, sendo as forças conduzidas por estas recebidas pela restante estrutura.

A aplicação faseada do valor do pré-esforço é efectuada a partir da consideração do vector das forças nodais equivalentes ao valor da força de esticamento das armaduras, que se obtém através da introdução de uma deformação inicial na armadura.

3.7 - Evolução das propriedades mecânicas dos materiais

Durante o processo construtivo de estruturas, há lugar à introdução de materiais com idades diferentes, quer na direcção longitudinal, quer na direcção transversal.

Note-se que o elemento 3D utilizado no presente modelo permite a consideração de diferentes materiais num dado elemento, desde que se considere uma discretização por camadas.

A simulação da evolução das propriedades elásticas correspondentes a cada material constituinte é efectuada com base nas relações propostas no código-modelo do Comité Euro-Internacional du Béton, ver capítulo 5.

3.8 - Evolução das condições de interacção com o meio ambiente

Na análise de estruturas evolutivas pode ser necessária a simulação da evolução das condições ambientais associadas às variações da temperatura e do grau de humidade exteriores, bem como da variação das condições envolventes do betão, importantes, por exemplo, no cálculo da espessura equivalente associada à definição das leis de fluência e retração do betão. Nos casos em que esta evolução é importante, o modelo de análise diferida para o betão deve ter em conta as correções a introduzir nas funções de fluência e retração nos instantes em que ocorrem as alterações nas condições envolventes ou ambientais.

3.9 - Carrinhos de avanço

Ainda que os carros de avanço em alguns processos construtivos tenham um efeito considerável na deformação da estrutura, optou-se neste trabalho por se fazer a sua modelação através de forças aplicadas directamente sobre a estrutura que os suporta, Moaz (1994).
O facto de suportarem elementos da estrutura de betão em construção em relação aos quais não é possível atribuir capacidade resistente, implica a necessidade de se definir as cargas que transmitem à estrutura já construída.

Por simplificação, o peso do carro, bem como o da estrutura de betão ainda não resistente, podem ser representados por cargas verticais aplicadas na extremidade da consola associadas a um momento fletor que traduz o efeito da excentricidade do carro em relação à extremidade da consola.

3.10 - Exemplos de validação

Com vista à validação do modelo evolutivo desenvolvido, são apresentados nesta secção uma série de resultados de exemplos numéricos realizados.

Os testes numéricos efectuados permitem verificar a validade do modelo desenvolvido em relação à evolução das ligações internas e externas, evolução das cargas e evolução da geometria longitudinal e transversal.

Os primeiros três exemplos referem-se, respectivamente, à introdução de novos apoios, eliminação de apoios e libertação de um grau de liberdade anteriormente fixo. No quarto exemplo estuda-se o faseamento longitudinal e no quinto e sexto exemplos, o faseamento da secção transversal.

3.10.1 - Eliminação de apoios

Relativamente ao faseamento das ligações externas, dois dos três exemplos apresentados estão relacionados com a eliminação de apoios ou com a alteração do tipo de apoios.

No primeiro exemplo estuda-se a eliminação do apoio central de uma viga hiperestática simétrica de dois tramos com 3.5m de vão. As características mecânicas do betão são expostas no quadro 3.1.

O cálculo é composto por duas fases. Na primeira fase calcula-se a viga hiperestática submetida ao peso próprio e na segunda considera-se a estrutura isostática que resulta da anterior por eliminação do apoio central. A malha de elementos finitos e o padrão de camadas são apresentados na figura 3.2 e o esquema de faseamento é indicado na figura 3.3.
Quadro 3.1 – Características mecânicas do betão e geométricas da secção.

<table>
<thead>
<tr>
<th>Betão</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Módulo de elasticidade</td>
<td>32.0 GPa</td>
</tr>
<tr>
<td>Coef. de Poisson</td>
<td>0.0</td>
</tr>
<tr>
<td>Área</td>
<td>0.18 m²</td>
</tr>
</tbody>
</table>

Fig. 3.2 – Malha de elementos finitos e padrão de camadas.

Fig. 3.3 – Esquema de faseamento da eliminação do apoio central.
A análise de resultados é efectuada com base nos valores das reacções nos apoios e nas deformadas apresentadas pela viga nas duas fases. As reacções nos apoios estão apresentadas no quadro 3.2, enquanto que as deformadas se podem ver na figura 3.4.

<table>
<thead>
<tr>
<th>Reacções R (kN)</th>
<th>1ª fase</th>
<th>2ª fase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apoio lateral direito</td>
<td>11.88</td>
<td>31.5</td>
</tr>
<tr>
<td>Apoio central</td>
<td>39.24</td>
<td>-</td>
</tr>
<tr>
<td>Apoio lateral esquerdo</td>
<td>11.88</td>
<td>31.5</td>
</tr>
</tbody>
</table>

Pela análise das reacções constata-se que a eliminação do apoio central conduz a uma redistribuição da força anteriormente suportada por este apoio, pelos apoios laterais. Note-se que de acordo com a figura 3.1, na segunda fase é aplicado à viga o valor da reacção com o sinal contrário.

A figura 3.4, onde estão indicadas as deformadas da viga correspondentes a cada uma das fases, demonstra que através da eliminação do apoio central a viga recupera a forma correspondente a uma viga simplesmente apoiada.

Fig. 3.4 – Deformadas da viga correspondentes às duas fases;
 a) 1ª fase;
 b) 2ª fase.

O segundo exemplo refere-se à alteração das condições de apoio por eliminação de alguns graus de fixação. Para proceder ao estudo utiliza-se a viga do exemplo anterior, com a mesma geometria e com o mesmo betão, mas com as condições de apoio que se indicam
na figura 3.5. O cálculo é efectuado em duas fases. Na primeira fase estuda-se a viga hiperestática, sujeita a uma carga \(g_s \) de 9.0 kN/m, enquanto que na segunda fase o cálculo é efectuado sobre a viga simplesmente apoiada que resulta da anterior pela adição de graus de liberdade que anteriormente estavam fixos.

<table>
<thead>
<tr>
<th>Reacções R (kN)</th>
<th>1ª fase</th>
<th>2ª fase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apoio lateral direito</td>
<td>39.4</td>
<td>31.5</td>
</tr>
<tr>
<td>Apoio lateral esquerdo</td>
<td>23.6</td>
<td>31.5</td>
</tr>
</tbody>
</table>

Quadro 3.3 – Reacções nos apoios – supressão de ligações ao exterior.

![Diagrama da viga para a 1ª e 2ª fase](image)

Fig. 3.5 – Esquema estrutural de faseamento na alteração do tipo de apoio.

Na figura 3.6 apresenta-se a evolução da configuração das deformadas da 1ª para a 2ª fase da análise. Regista-se que a deformada associada à viga encastrada, na 1ª fase, evolui para a deformada característica de uma viga simplesmente apoiada, na segunda fase.
3.10.2 - Colocação de novos apoios

Com o exemplo apresentado nesta secção pretende-se avaliar o comportamento da viga do exemplo anterior quando lhe é introduzido o apoio central depois desta ter sido calculada numa primeira fase como uma viga simplesmente apoiada.

O processo de faseamento é assim constituído por duas fases, sendo na primeira fase a viga simplesmente apoiada sujeita ao peso próprio e a uma carga distribuída de 4.5kN/m, enquanto que na segunda, o cálculo é efectuado sob a viga hiperestática simétrica sob a acção de duas forças simétricas de 200kN aplicadas a meio de cada vão. O processo de faseamento utilizado encontra-se esquematizado na figura 3.7. As características geométricas da secção da viga e dos materiais mantêm-se inalteradas relativamente ao exemplo anterior.

Os valores das reacções nos apoios relativos a cada fase encontram-se indicadas no quadro 3.4.

<table>
<thead>
<tr>
<th>Reacções R (kN)</th>
<th>1ª fase</th>
<th>2ª fase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apoio lateral direito</td>
<td>31.5</td>
<td>94.7</td>
</tr>
<tr>
<td>Apoio central</td>
<td>-</td>
<td>274</td>
</tr>
<tr>
<td>Apoio lateral esquerdo</td>
<td>31.5</td>
<td>94.7</td>
</tr>
</tbody>
</table>

Pela análise dos referidos valores, verifica-se que na primeira fase os valores das reacções nos apoios, como era de esperar, coincidem com os valores das reacções na
segunda fase no exemplo anterior. Na segunda fase são somados aos anteriores os acréscimos de força relativos ao cálculo da segunda fase, sobre a estrutura final, e para o carregamento indicado.

![Fig. 3.7 – Esquema estrutural de faseamento – colocação do apoio central.](image)

Pela observação da figura 3.8, onde se apresentam as deformadas da viga para as duas fases de cálculo, constata-se que o apoio central é introduzido na estrutura deformada, deformando-se esta, na segunda fase, a partir das novas condições de apoio.

![Fig. 3.8 – Deformadas da viga;](image)

a) antes da colocação do apoio;
b) depois da colocação do apoio.
3.10.3 - Faseamento do perfil longitudinal

Nesta secção faz-se o estudo do faseamento do perfil longitudinal de uma viga constituída por três vãos com 7.0m cada um.

A malha de elementos finitos usada no cálculo, assim como o padrão de camadas utilizado na discretização da secção transversal são indicadas na figura 3.9. As características mecânicas do betão apresentam-se no quadro 3.5.

<table>
<thead>
<tr>
<th>Betão</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Módulo de elasticidade</td>
<td>32.0 GPa</td>
</tr>
<tr>
<td>Coef. Poisson</td>
<td>0.0</td>
</tr>
<tr>
<td>Área</td>
<td>0.18 m²</td>
</tr>
</tbody>
</table>

Quadro 3.5 – Características mecânicas do betão e geométricas da secção.

Fig. 3.9 – Malha de elementos finitos e padrão de camadas.

O processo de faseamento engloba três fases. A estrutura calculada na primeira fase é constituída por uma viga simplesmente apoiada sujeita a uma carga permanentemente constituída pelo peso próprio e por uma carga distribuída de 10kN/m. A segunda fase consiste na consideração do segundo tramo activo incluindo as cargas permanentes correspondentes e de valor igual às da primeira fase. Finalmente, na terceira fase, a análise é efectuada sobre
a estrutura total e para as cargas permanentes aplicadas neste tramo. A evolução do esquema estrutural e do carregamento é indicada na figura 3.10.

A análise de resultados é realizada em termos de reacções nos apoios, momentos correspondentes e deformadas. É efectuada também a comparação destes valores com os que se obtêm no cálculo efectuado sobre a estrutura total e sem faseamento de cargas.
Através da análise dos valores das reacções correspondentes ao cálculo faseado e ao cálculo constituído apenas por uma fase sobre a estrutura total, que são apresentados nos quadros 3.6 e 3.7 respectivamente, constata-se que a estrutura em relação à qual se efectua um cálculo faseado deixa de ter simetria nos valores das reacções e ressalta que os valores finais das reacções laterais são maiores que os valores obtidos na estrutura de 1 só vez.

<table>
<thead>
<tr>
<th>Reacções R (kN)</th>
<th>1ª fase</th>
<th>2ª fase</th>
<th>3ª fase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apoio lateral esquerdo</td>
<td>56.8</td>
<td>49.7</td>
<td>51.6</td>
</tr>
<tr>
<td>Apoio central 1</td>
<td>56.8</td>
<td>127.7</td>
<td>116.5</td>
</tr>
<tr>
<td>Apoio central 2</td>
<td>-</td>
<td>49.7</td>
<td>123.4</td>
</tr>
<tr>
<td>Apoio lateral direito</td>
<td>-</td>
<td>-</td>
<td>49.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reacções R (kN)</th>
<th>1ª fase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apoio lateral direito</td>
<td>45.4</td>
</tr>
<tr>
<td>Apoio central 1</td>
<td>124.9</td>
</tr>
<tr>
<td>Apoio central 2</td>
<td>124.9</td>
</tr>
<tr>
<td>Apoio lateral esquerdo</td>
<td>45.4</td>
</tr>
</tbody>
</table>

Este facto tem como consequência directa que, em termos de dimensionamento, é necessário ter em conta os valores dos momentos mais desfavoráveis em cada uma das secções, que podem variar de fase para fase, dada a alteração do esquema estrutural de cálculo, ver quadros 3.8 e 3.9.

<table>
<thead>
<tr>
<th>Momentos M (kN.m)</th>
<th>1ª fase</th>
<th>2ª fase</th>
<th>3ª fase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secção S₁</td>
<td>99.4</td>
<td>76.1</td>
<td>82.1</td>
</tr>
<tr>
<td>Secção S₃</td>
<td>0.0</td>
<td>-49.6</td>
<td>-36.3</td>
</tr>
<tr>
<td>Secção S₃</td>
<td>-</td>
<td>76.1</td>
<td>19.9</td>
</tr>
<tr>
<td>Secção S₄</td>
<td>-</td>
<td>-</td>
<td>-52.4</td>
</tr>
<tr>
<td>Secção S₅</td>
<td>-</td>
<td>-</td>
<td>74.9</td>
</tr>
</tbody>
</table>
Quadro 3.9 – Momentos máximos – cálculo constituído por uma fase.

<table>
<thead>
<tr>
<th>Secção</th>
<th>1ª fase</th>
</tr>
</thead>
<tbody>
<tr>
<td>S₁</td>
<td>63.5</td>
</tr>
<tr>
<td>S₂</td>
<td>-79.7</td>
</tr>
<tr>
<td>S₃</td>
<td>19.5</td>
</tr>
<tr>
<td>S₄</td>
<td>-79.7</td>
</tr>
<tr>
<td>S₅</td>
<td>63.5</td>
</tr>
</tbody>
</table>

Na figura 3.11 encontram-se ilustradas as deformações que a estrutura apresenta em cada uma das fases da análise.

Fig. 3.11 – Deformações da viga – faseamento do perfil longitudinal;
 a) 1ª fase;
 b) 2ª fase;
 c) 3ª fase.

Os valores dos deslocamentos que estão associados à primeira, segunda e terceira fases são indicados nas figuras 3.12, 3.13 e 3.14 respectivamente. Pela análise destas figuras, constata-se a evolução dos deslocamentos resultante da sucessão dos esquemas estáticos associados a cada uma das fases, sendo notório o facto relacionado com a sobreposição dos efeitos correspondentes a cada uma.

Fig. 3.12 – Valores dos deslocamentos na primeira fase.
3.10.4 - Faseamento do perfil transversal

Com o objectivo de ilustrar o faseamento da secção transversal, efectua-se o estudo de duas estruturas muito simples de modo a demonstrar claramente o seu funcionamento nesta situação.

Para o efeito, analisa-se uma peça comprimida e uma viga simplesmente apoiada sujeita à flexão. Ambas as estruturas têm um comprimento de 5.0m e uma secção de 0.3x0.6m². As características mecânicas do betão constituinte são apresentadas no quadro 3.10.

A análise da peça linear comprimida é realizada em duas fases. Na primeira fase a estrutura é constituída apenas por metade da secção transversal e está solicitada por uma carga axial de 1500kN, enquanto que na segunda fase se considera a secção transversal total sujeita a uma carga axial adicional de 1500kN.
Quadro 3.10 – Características mecânicas do betão e geométricas da secção.

<table>
<thead>
<tr>
<th></th>
<th>Peça comprimida</th>
<th>Viga</th>
</tr>
</thead>
<tbody>
<tr>
<td>Módulo de elasticidade</td>
<td>32.0 GPa</td>
<td>32.0 GPa</td>
</tr>
<tr>
<td>Coef. Poisson</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Área</td>
<td>0.18 m²</td>
<td>0.18 m²</td>
</tr>
</tbody>
</table>

De igual modo, a viga simplesmente apoiada é calculada numa primeira fase com a secção reduzida a metade sujeita ao peso próprio correspondente, e na segunda fase o cálculo é realizado sobre a estrutura total e para uma carga constituída pelo peso próprio da parte superior da viga e uma carga permanente g_k de 10kN/m.

A evolução da estrutura e do carregamento da peça comprimida bem como da viga simplesmente apoiada ilustram-se nas figuras 3.15 e 3.16, respectivamente.

A análise de resultados da peça comprimida é efectuada em termos de tensões e extensões relativas a cada fase. No quadro 3.11 apresenta-se, resumidamente, o estado de deformação e de tensão da referida peça.
A análise de resultados permite verificar que, na primeira fase, apenas a metade da secção inferior está activa. Na segunda fase o acréscimo de deformação correspondente à aplicação da força axial N_2 é o mesmo em toda a secção, pelo que as deformações e tensões finais associadas a cada parte da secção resultam da soma dos estados de deformação e tensão relativos a cada fase. Fica assim demonstrado que a secção a partir da segunda fase funciona conjuntamente.

A análise de resultados da viga simplesmente apoiada faz-se em termos de distribuição de tensões através da altura da secção a meio vão da viga, e com base nos deslocamentos dos nós pertencentes às fibras extremas inferior e superior da viga.

<table>
<thead>
<tr>
<th>Análise de tensões e deformações</th>
<th>1ª Fase</th>
<th>2ª Fase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ε (%)</td>
<td>σ (MPa)</td>
</tr>
<tr>
<td>Secção S₁</td>
<td>0.528</td>
<td>16.7</td>
</tr>
<tr>
<td>Secção S₂</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Na figura 3.17 é indicada a distribuição de tensões ao longo da altura na secção de meio vão para as duas fases de cálculo.
Análise evolutiva

![Diagrama de tensões ao longo da altura da viga, 1ª e 2ª fases](image)

Fig. 3.17 - Diagrama de tensões ao longo da altura da viga, 1ª e 2ª fases.

À semelhança do que acontece na peça linear comprimida, também na viga se verifica que o acréscimo de tensão registado na secção da viga em análise corresponde ao cálculo desta com secção transversal completa sob a acção do peso próprio da parte superior da viga e das restantes cargas permanentes aplicadas nesta fase. Com efeito, constata-se que se instala, ao longo da altura, um diagrama de tensões simétrico traduzindo deste modo o comportamento solidário da secção, sendo a diferença entre a tensão do ponto B e a tensão do ponto B’ igual à tensão do ponto A, ver gráfico 3.17.

Este comportamento é mais uma vez comprovado através dos valores dos deslocamentos apresentados pela viga relativamente às duas fases, figuras 3.18 e 3.19.

![Diagrama de deslocamentos na fibra extrema superior da viga](image)

Fig. 3.18 – Diagrama de deslocamentos na fibra extrema superior da viga.

3.19
Assim, o diagrama final de deslocamentos verticais nos nós da fibra extrema inferior da viga corresponde à soma dos deslocamentos da primeira fase com o acréscimo de deslocamentos obtidos na segunda fase considerando toda a secção activa. Note-se que o diagrama final da figura 3.19 é exactamente a soma do diagrama resultante da primeira fase com o diagrama correspondente aos deslocamentos da fibra extrema superior da viga indicados na figura 3.18.

3.11 - Considerações finais

No presente capítulo clarificou-se a modelação do processo construtivo através da consideração de várias fases no cálculo da estrutura.

O presente modelo permite efectuar o faceamento de cargas, do perfil longitudinal da estrutura e o faceamento da secção transversal. Recorrendo à possibilidade de discretização da secção transversal em camadas podem-se considerar materiais de características mecânicas e idades distintas às quais podem estar associado um comportamento reológico distinto. Os carrinhos de avanço podem também ser modelados simplificadamente através de forças que simulem o seu peso.

Para validar o modelo de faceamento foram efectuados um conjunto de exemplos simples, dos quais se podem tirar algumas conclusões importantes, nomeadamente a redistribuição nos valores das reacções quando as condições de ligação ao exterior são alteradas.
É fundamental referir que, dado o comportamento linear dos materiais adoptado, o cálculo da estrutura construída por fases corresponde à sobreposição de várias estruturas parcelares, isto é, as reacções e consequentemente os esforços obtêm-se pela soma dos valores correspondentes a cada fase. Uma estrutura calculada em várias fases apresenta reacções e esforços diferentes daqueles que se obtériam no cálculo sobre a estrutura global para as mesmas cargas.

De notar ainda que o faseamento da secção transversal conduz ao estabelecimento de uma diagrama de tensões e deformações descontínuo ao longo da altura da secção. Do exemplo associado à modelação do faseamento da secção transversal, ressalta o comportamento solidário da secção a partir da fase em que novos elementos da secção são considerados activos.
Capítulo 4

Modelação do pré-esforço

4.1 - Introdução

As pontes são exemplos clássicos de estruturas pré-esforçadas. Dadas as condições topográficas existentes no local de implantação, a concepção da estrutura conduz, habitualmente, à adopção de grandes vãos que, em geral associados a cargas elevadas, conduzem ao aparecimento de esforços elevados, incomportáveis com soluções de betão armado e que implicam, portanto, a adopção de soluções pré-esforçadas.

É objectivo deste capítulo a descrição de um modelo que simule a presença de armaduras de pré-esforço em estruturas tridimensionais calculadas pelo método dos elementos finitos. O referido modelo consiste numa generalização do modelo desenvolvido por Póvoas (1991) para estruturas laminares de betão, a estruturas tridimensionais discretizadas em elementos 3D.

O procedimento adoptado para integração das armaduras de pré-esforço no modelo de elementos finitos consiste na modelação destas armaduras por elementos unidimensionais parabólicos, Hinton e Owen (1977). Assim, apresenta-se neste capítulo a formulação para os elementos unidimensionais embebidos em elementos 3D, com a descrição da matriz de deformação e da matriz de rigidez respectivas. É descrito o modo como as armaduras de pré-esforço contribuem para a formação do vector das forças nodais resistentes, fazendo-se a distinção necessária entre armaduras aderentes e não aderentes. São apresentadas de forma sucinta as perdas de pré-esforço, quer para as armaduras pré-tensionadas quer para as armaduras pós-tensionadas, que ocorrem durante a fase de aplicação da força de pré-esforço, perdas instantâneas, e durante o tempo posterior à aplicação, perdas diferidas. Neste capítulo, faz-se ainda referência aos passos associados ao procedimento subjacente à modelação da aplicação das forças de esticamento nas armaduras.

Dado que, o modelo de elementos finitos de base contempla a possibilidade de faseamento da execução da estrutura, são referidos aspectos relacionados com a aplicação
de armaduras de pré-esforço em fases distintas da construção da estrutura, contemplando, nomeadamente, a introdução de armaduras pré-esforçadas em diversas fases, a consideração de cabos provisórios, bem como o faseamento do valor do pré-esforço aplicado.

Posteriormente, são apresentados alguns exemplos de aplicação, essencialmente relacionados com aspectos associados à modelação do faseamento das armaduras, com o objectivo de validar os desenvolvimentos efectuados.

4.2 - Formulatio da armadura de pré-esforço

4.2.1 - Geometria

A definição da geometria dos elementos unidimensionais parabólicos, que modelam as armaduras de pré-esforço, no referencial local curvilíneo (τ) correspondente, implica, numa primeira fase, o conhecimento do respectivo traçado, o qual é geralmente definido por um conjunto de troços parabólicos em relação aos quais se estabelecem condições de compatibilidade das primeiras derivadas de modo a assegurar a sua continuidade, ver figura 4.1.

A determinação das coordenadas locais curvilineas (ξ, η, ζ) dos pontos nodais do elemento unidimensional parabólico usado na modelação das armaduras é efectuado com
base no procedimento automático adoptado por Póvoas e Figueiras (1992), que consiste na resolução do sistema de equações não lineares:

\[x(\xi, \eta, \zeta) = x_d(s), \] (4.1)

onde \(x(\xi, \eta, \zeta) \), representa o vector que define a geometria do elemento 3D e \(x_d(s) \) o vector que define o traçado das armaduras pré-esforçadas.

Se se considerar que a coordenada do ponto médio dos elementos unidimensionais embebidos nos elementos 3D, é dada pela expressão:

\[s_2 = \frac{(s_1 + s_3)}{2}, \] (4.2)

os valores das coordenadas curvilíneas \((\xi, \eta, \zeta)_{p,j}\) dos pontos nodais médios dos respectivos elementos obtém-se através da resolução do sistema de equações:

\[x(\xi, \eta, \zeta) = x_d(s_2). \] (4.3)

Uma vez conhecidas as coordenadas curvilíneas \((\xi, \eta, \zeta)_{p,j}\) dos pontos nodais dos elementos unidimensionais, obtém-se as respectivas coordenadas no referencial geral \((x,y,z)_{p,j}\), usando as funções de forma que definem a geometria dos elementos 3D, apresentadas no capítulo 2. Posteriormente, define-se a geometria dos elementos unidimensionais parabólicos no referencial local curvilíneo \(\tau\), intrínseco à formulação deste elemento, ver figura 4.1, utilizando as funções de forma \(N'_j(\tau)\), Hinton e Owen (1977), através da expressão:

\[x_d(\tau) = \sum_{j=1}^{3} N'_j(\tau)x _{p,j}. \] (4.4)

4.2.2 - Matriz de deformação

O conhecimento da matriz de deformação relativa à formulação embebida dos elementos unidimensionais, permite definir o estado de deformação das armaduras a partir do campo de deslocamentos dos elementos 3D nos quais estão embebidos ou, mais precisamente, conhecidos os deslocamentos nodais do elemento 3D é possível através da matriz de deformação \(B_p\) definir a deformação axial associada às armaduras de pré-esforço.
Para o efeito, é estabelecido um referencial local associado aos elementos unidimensionais \((x', y', z')_p\), fazendo-se coincidir o eixo \(x'\), do referencial local, com a direção tangente aos elementos unidimensionais num dado ponto, uma vez que apenas interessa considerar a deformação axial das armaduras pré-esforçadas. O vetor unitário segundo \(x'\) tem, portanto, a mesma direção do vetor unitário tangente \(t(\tau)\), que é definido pela expressão:

\[t(\tau) = \frac{v(\tau)}{\| v(\tau) \|}, \quad (4.5) \]

em que \(v(\tau)\) é dado por:

\[v(\tau) = \frac{dx}{d\tau} \mathbf{i} + \frac{dy}{d\tau} \mathbf{j} + \frac{dz}{d\tau} \mathbf{k}, \quad (4.6) \]

sendo \(\mathbf{i}, \mathbf{j}, \mathbf{k}\), os versores referentes ao referencial geral.

A grandeza do vetor tangente é dada por:

\[v = \| v(\tau) \| = \left[\left(\frac{dx}{d\tau} \right)^2 + \left(\frac{dy}{d\tau} \right)^2 + \left(\frac{dz}{d\tau} \right)^2 \right]^{1/2}, \quad (4.7) \]

Deste modo é possível definir as componentes do versor \(i'\), do eixo \(x'\), no referencial geral, através da relação seguinte:

\[i' = t(\tau) = a \mathbf{i} + b \mathbf{j} + c \mathbf{k}, \quad (4.8) \]

com

\[a = \frac{1}{v} \frac{dx}{d\tau}, \quad (4.9) \]

\[b = \frac{1}{v} \frac{dy}{d\tau} e \quad (4.10) \]

\[c = \frac{1}{v} \frac{dz}{d\tau}. \quad (4.11) \]
Tendo presente que o eixo y' é perpendicular ao eixo x', as componentes do versor j' são definidas pela relação:

\[j' = \frac{1}{\sqrt{a^2 + b^2}} (-b \mathbf{i} + a \mathbf{j}). \]

(4.12)

O versor de z' vem definido com base no produto vectorial dos versores das direcções perpendiculares i' e j',

\[k = \frac{i' \times j'}{||i' \times j'||}. \]

(4.13)

A matriz de transformação que relaciona os sistemas de eixos local e geral é deste modo definida por:

\[
[T] = \begin{bmatrix}
i'
\mathbf{j}'
k'
\end{bmatrix} = \begin{bmatrix}
\mathbf{a} & \mathbf{d} & \mathbf{f}
\mathbf{b} & \mathbf{e} & \mathbf{g}
\mathbf{c} & 0 & \mathbf{h}
\end{bmatrix}
\]

(4.14)

com a, b, c, definidos pelas expressões 4.9, 4.10, e 4.11 respectivamente, d e e definidos pela expressão 4.12.

A matriz T permite a definição das derivadas parciais das componentes dos deslocamentos no referencial local, partindo das derivadas correspondentes no referencial geral, através da seguinte transformação:

\[
\begin{bmatrix}
\frac{\partial \mathbf{u}'}{\partial x'} & \frac{\partial \mathbf{v}'}{\partial x'} & \frac{\partial \mathbf{w}'}{\partial x'}
\frac{\partial \mathbf{u}'}{\partial y'} & \frac{\partial \mathbf{v}'}{\partial y'} & \frac{\partial \mathbf{w}'}{\partial y'}
\frac{\partial \mathbf{u}'}{\partial z'} & \frac{\partial \mathbf{v}'}{\partial z'} & \frac{\partial \mathbf{w}'}{\partial z'}
\end{bmatrix} = [T]^T \begin{bmatrix}
\frac{\partial \mathbf{u}}{\partial x} & \frac{\partial \mathbf{v}}{\partial x} & \frac{\partial \mathbf{w}}{\partial x}
\frac{\partial \mathbf{u}}{\partial y} & \frac{\partial \mathbf{v}}{\partial y} & \frac{\partial \mathbf{w}}{\partial y}
\frac{\partial \mathbf{u}}{\partial z} & \frac{\partial \mathbf{v}}{\partial z} & \frac{\partial \mathbf{w}}{\partial z}
\end{bmatrix} [T].
\]

(4.15)

Como apenas interessa considerar a componente de deformação axial da armadura pré-esforçada, \(\varepsilon_x\), basta então definir a componente \(\frac{\partial \mathbf{u}'}{\partial x'}\), definida por:

4.5
\[
\varepsilon_{\kappa} = \frac{\partial u'}{\partial x'} = \begin{bmatrix} a & b & c \\ \frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} & \frac{\partial w}{\partial x} \\ \frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} & \frac{\partial w}{\partial y} \\ \frac{\partial u}{\partial z} & \frac{\partial v}{\partial z} & \frac{\partial w}{\partial z} \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix}.
\]

(4.16)

Efectuando o produto indicado, é-se conduzido à expressão:

\[
\varepsilon_{\kappa} = a^2 \frac{\partial u}{\partial x} + ab \frac{\partial v}{\partial x} + ac \frac{\partial w}{\partial x} + ab \frac{\partial u}{\partial y} + b^2 \frac{\partial v}{\partial y} + bc \frac{\partial w}{\partial y} + ac \frac{\partial u}{\partial z} + bc \frac{\partial v}{\partial z} + b^2 \frac{\partial w}{\partial z}.
\]

(4.17)

As derivadas parciais dos deslocamentos relativos ao elemento 3D, podem ser obtidas em função dos deslocamentos nodais do elemento, utilizando, para o efeito, as expressões correspondentes à aproximação do campo de deslocamentos, ou seja:

\[
\frac{\partial u}{\partial x} = \sum_{i=1}^{n} \frac{\partial N_i}{\partial x} u_i \quad (4.18)
\]

\[
= \sum_{i=1}^{n} \left(\frac{\partial N_i}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial N_i}{\partial \eta} \frac{\partial \eta}{\partial x} + \frac{\partial N_i}{\partial \zeta} \frac{\partial \zeta}{\partial x} \right) u_i, \quad (4.18a)
\]

\[
\frac{\partial u}{\partial y} = \sum_{i=1}^{n} \frac{\partial N_i}{\partial y} u_i, \quad (4.19)
\]

\[
= \sum_{i=1}^{n} \left(\frac{\partial N_i}{\partial \xi} \frac{\partial \xi}{\partial y} + \frac{\partial N_i}{\partial \eta} \frac{\partial \eta}{\partial y} + \frac{\partial N_i}{\partial \zeta} \frac{\partial \zeta}{\partial y} \right) u_i, \quad (4.19a)
\]

\[
\frac{\partial u}{\partial z} = \sum_{i=1}^{n} \frac{\partial N_i}{\partial z} u_i, \quad (4.20)
\]

\[
= \sum_{i=1}^{n} \left(\frac{\partial N_i}{\partial \xi} \frac{\partial \xi}{\partial z} + \frac{\partial N_i}{\partial \eta} \frac{\partial \eta}{\partial z} + \frac{\partial N_i}{\partial \zeta} \frac{\partial \zeta}{\partial z} \right) u_i, \quad (4.20a)
\]
onde i representa o nó genérico do elemento e n representa o número de nós do elemento 3D.

As derivadas dos deslocamentos em ordem às restantes coordenadas x e z obtém-se do mesmo modo.

Substituindo as expressões 4.18a, 4.19a e 4.20a na relação 4.17, obtém-se as componentes da matriz de deformação \(B_p \), definidas por:

\[
B_{1i} = \left(\begin{array}{c}
\left(a^2 \frac{\partial \xi}{\partial x} + ab \frac{\partial \xi}{\partial y} + ac \frac{\partial \xi}{\partial z} \right) \frac{\partial N_i}{\partial \xi} \\
\left(a^2 \frac{\partial \eta}{\partial x} + ab \frac{\partial \eta}{\partial y} + ac \frac{\partial \eta}{\partial z} \right) \frac{\partial N_i}{\partial \eta} \\
\left(a^2 \frac{\partial \zeta}{\partial x} + ab \frac{\partial \zeta}{\partial y} + ac \frac{\partial \zeta}{\partial z} \right) \frac{\partial N_i}{\partial \zeta}
\end{array} \right)
\]

\[
B_{2i} = \left(\begin{array}{c}
ab \frac{\partial \xi}{\partial x} + b^2 \frac{\partial \xi}{\partial y} + bc \frac{\partial \xi}{\partial z} \frac{\partial N_i}{\partial \xi} \\
\left(ab \frac{\partial \eta}{\partial x} + b^2 \frac{\partial \eta}{\partial y} + bc \frac{\partial \eta}{\partial z} \frac{\partial N_i}{\partial \eta} \\
\left(ab \frac{\partial \zeta}{\partial x} + b^2 \frac{\partial \zeta}{\partial y} + bc \frac{\partial \zeta}{\partial z} \frac{\partial N_i}{\partial \zeta}
\end{array} \right)
\]

\[
B_{3i} = \left(\begin{array}{c}
ac \frac{\partial \xi}{\partial x} + bc \frac{\partial \xi}{\partial y} + c^2 \frac{\partial \xi}{\partial z} \frac{\partial N_i}{\partial \xi} \\
\left(ac \frac{\partial \eta}{\partial x} + bc \frac{\partial \eta}{\partial y} + c^2 \frac{\partial \eta}{\partial z} \frac{\partial N_i}{\partial \eta} \\
\left(ac \frac{\partial \zeta}{\partial x} + bc \frac{\partial \zeta}{\partial y} + c^2 \frac{\partial \zeta}{\partial z} \frac{\partial N_i}{\partial \zeta}
\end{array} \right)
\]

A definição do estado de deformação da armadura de pré-esforço estabelece-se através do produto das componentes da matriz \(B_p \) pelas componentes dos deslocamentos nodais do elemento 3D. Assim, a deformação axial da armadura é dada pela expressão:
\[\varepsilon_x' = \begin{bmatrix} B_{11}, B_{21}, B_{31}, \ldots, B_{1n}, B_{2n}, B_{3n} \end{bmatrix} \]

(4.22)

4.2.3 - Matriz de rigidez

A obtenção da matriz de rigidez, associada a cada elemento unidimensional parabólico, decorre do conhecimento da matriz de deformação correspondente, através da resolução do integral:

\[K_p = \int_0^1 B_p^T \varepsilon_p B_p A_p dL, \]

(4.23)

sendo respectivamente, \(\varepsilon_p, A_p, \) e \(I_p \) o módulo de elasticidade longitudinal, a área da armadura de pré-esforço e o comprimento do elemento unidimensional.

Considerando a formulação isoparamétrica do elemento unidimensional parabólico, o integral anterior pode ser expresso em termos de coordenada curvilínea \(\tau \), vindo:

\[K_p = \int_0^1 B_p^T \varepsilon_p B_p \nu A_p d\tau, \]

(4.24)

que pode ser calculado numericamente por:

\[K_{ij} = \sum_{q=1}^{n_{gauss}} \left(B(\xi, \eta, \zeta)^T \varepsilon_p B(\xi, \eta, \zeta) \right) q A_p \nu(\tau_q) w_q, \]

(4.25)

4.8
em que \(B(\xi, \eta, \zeta) \) é a matriz de deformação no nó \(i \) e \(\xi, \eta \) e \(\zeta \) correspondem às coordenadas curvilíneas do elemento 3D, avaliadas nos pontos de Gauss dos elementos unidimensionais:

\[
\begin{align*}
\xi(i) &= \sum_{i=1}^{3} N_i(i) \xi_{p,i}, \quad (4.26a) \\
\eta(i) &= \sum_{i=1}^{3} N_i(i) \eta_{p,i}, \quad (4.26b) \\
\zeta(i) &= \sum_{i=1}^{3} N_i(i) \zeta_{p,i}. \quad (4.26c)
\end{align*}
\]

4.2.4 - Forças internas instaladas nas armaduras pré-esforçadas

A definição das forças internas resistentes, equivalentes ao estado de tensão da armadura pré-esforçada, implica o conhecimento do estado de deformação instalado nos elementos unidimensionais que depende directamente do campo de deslocamentos correspondente aos elementos 3D, nos quais se consideram embebidos.

Uma vez calculados os valores dos deslocamentos é possível obter a deformação axial das armaduras bem como as tensões associadas.

As forças internas, relativas a cada elemento representativo de um troço de armadura, são dadas pelo integral:

\[
f_p = \int_{p} B_p \sigma_p A_p \, dl. \quad (4.27)
\]

Recorrendo uma vez mais à formulação isoparamétrica do elemento unidimensional, o integral anterior pode ser resolvido por integração numérica a partir da expressão:

\[
f_{pi} = \sum_{q=1}^{nates} B(\tau_q)^T \sigma(\tau_q) A_p v(\tau_q) w_q, \quad (4.28)
\]

onde \(f_{pi} \) representa o vector das forças nodais associadas a cada grau de liberdade \(i \) do elemento unidimensional, sendo adicionado ao vector homólogo resultante do estado de tensão instalado no betão, de modo a ser possível a verificação das equações de equilíbrio.
Para as armaduras que se consideram aderentes, o estado de tensão instalado em cada ponto de Gauss é definido simplesmente por:

$$\sigma_p = E_p \varepsilon_p \; ,$$

sendo ε_p a deformação que é definida para cada ponto de amostragem através da expressão:

$$\varepsilon_p = B_p \frac{d}{l_p} \; .$$

Para as armaduras não aderentes, e sendo desprezável o atrito entre o betão e as armaduras, considera-se que a deformação tem um valor médio constante em toda a armadura expresso pela relação:

$$\varepsilon_{p,m} = \frac{\Delta l_p}{l_p} \; ,$$

em que Δl_p representa a variação de comprimento da armadura e l_p o respectivo comprimento. Estas grandezas são definidas com base nas expressões que a seguir se indicam:

$$\Delta l_p = \sum_{i=1}^{n} \Delta l_{pi} \; ,$$

$$l_p = \sum_{i=1}^{n} l_{pi} \; ,$$

onde n representa o número de elementos unidimensionais que constituem a armadura de pré-esforço.

Os valores do comprimento e da variação de comprimento relativos a cada elemento unidimensional usado na modelação da armadura, são dados pelas expressões:

$$\Delta l_{pi} = \int_{l_{pi}} \Delta \varepsilon_{pi} dl = \int_{l_{pi}}^{l_p} B_p \Delta d \nu(\tau) d\tau \; ,$$

$$l_{pi} = \int\limits_{l_{pi}} dl = \int_{l_{pi}}^{l_p} \nu(\tau) d\tau \; .$$

4.10
4.3 - Perdas de pré-esforço

4.3.1 - Identificação das perdas

De um modo genérico, as perdas de pré-esforço traduzem a diminuição ocorrida no valor da tensão de pré-esforço instalada quando da aplicação da força de esticamento nas armaduras, devido a um conjunto diversificado de fenômenos. Estes fenômenos podem ser de curta duração, atrito e reentrada das cunhas que determinam perdas instantâneas, ou de longa duração conduzindo a perdas de pré-esforço ao longo do tempo.

O agrupamento das perdas que ocorrem é efectuado de acordo com o tipo de armadura pré-esforçadas, fazendo-se a distinção entre as armaduras pré-tensionadas e póst-tensionadas.

Assim, tem-se:

1- Armaduras pré-tensionadas

Perdas que ocorrem antes da transferência do pré-esforço

- associadas ao dispositivo de ancoragem nas mesas de pré-esforço;
- por atrito em eventuais pontos de inflexão;
- por retracção do betão;
- por relaxação do aço de pré-esforço durante o período que decorre entre o tensionamento da armadura e a transferência do pré-esforço para o betão;

Perdas instantâneas (coincidentes com a transferência do pré-esforço)

- por deformação do betão, como resultado da sua reacção quando os cabos são soltos das ancoragens e a força de pré-esforço é aplicada ao betão;
- por escorregamento das armaduras na zona de amarração;

Perdas diferidas

- por retracção e fluência do betão;
- por relaxação da armadura de pré-esforço;

2 - Armaduras pós-tensionadas

Perdas instantâneas

- por atrito entre as armaduras e as bainhas;
- por penetração das cunhas e deformação nas ancoragens;
- por deformação no betão como resultado da ordem pela qual os cabos são pré-esforçados;

Perdas diferidas
- por fluência e retração do betão;
- por relaxação da armadura de pré-esforço.

4.3.2 - Perdas instantâneas

São referidas nesta secção as perdas instantâneas mais importantes e que são consideradas no modelo utilizado para as armaduras pré-esforçadas, nomeadamente as perdas por atrito ao longo das armaduras, as perdas nos dispositivos de amarração e as perdas relativas à deformação do betão.

4.3.2.1 - Perdas por atrito

As perdas de tensão por atrito estão associadas às forças que se geram ao longo do traçado das armaduras pré-forçadas, após o tensionamento, devido ao deslocamento relativo entre estas e as baínhas.

A contabilização destas perdas é efectuada pela expressão, PCI (1975):

$$\sigma_p(s) = \alpha(s) \sigma_{po},$$

sendo o coeficiente $\alpha(s)$ dado por:

$$\alpha(s) = e^{-\mu(\beta(s) + k_s),}$$

em que μ designa o coeficiente de atrito entre as armaduras e a baính, $\beta(s)$ é a variação do ângulo da armadura de pré-esforço na secção s em relação à secção de aplicação do pré-esforço e obtém-se pela soma de todas as variações do ângulo de ponto de inflexão a ponto de inflexão e k representa o desvio angular parasita por unidade de comprimento.

Na figura 4.2 o diagrama de tensões determinado com base no produto do coeficiente α pela tensão de pré-esforço inicial σ_{po}, corresponde ao diagrama de tensões na armadura de pré-esforço após a dedução das perdas por atrito, no caso da armadura ser tensionada nas duas ancoragens.
A função da expressão 4.37, para valores do expoente inferiores a 0.2, pode ser aproximada por uma recta através da relação:

\[\sigma_p(s) = \sigma_{po} (1 - \mu (\beta(s) + ks)) \] \hspace{1cm} (4.38a)

\[= \sigma_{po} (1 + ms), \] \hspace{1cm} (4.38b)

em que \(m \sigma_{po} \) representa a inclinação da recta sendo \(m \) definido pela expressão:

\[m = -\mu \gamma k, \] \hspace{1cm} (4.39a)

com

\[\gamma = \frac{\beta(s)}{s}. \] \hspace{1cm} (4.39b)

A modelação destas perdas é efectuada, no caso das armaduras pós-tensionadas, através da definição dos coeficientes \(\alpha_i \) em todos os pontos nodais dos elementos unidimensionais, sendo calculados nos pontos de Gauss através das funções de forma \(N_i \), relativas à formulação do elemento unidimensional, ver secção 4.2.1. No caso das armaduras pré-tensionadas, as perdas por atrito que ocorrem nos pontos de inflexão apresentam valores baixos, quando comparados com os apresentados pelas armaduras pós-tensionadas, pelo que a sua modelação é efectuada pela dedução do valor médio das perdas por atrito, verificadas ao longo da armadura, à força de esticamento.

4.13
4.3.2.2 - Perdas por escorregamento na ancoragem

Estas perdas são devidas ao escorregamento das armaduras nas cunhas e das cunhas nas placas de ancoragem, quando a força de esticamento é transmitida para o órgão de ancoragem.

O movimento de reentradura da ancoragem que se repercute até à distância l_s é realizado em sentido contrário àquele que gera tracção no cabo, pelo que provoca uma força de sinal contrário à força de atrito. A figura 4.2 evidencia o troço de inclinação oposta ao que define a tensão na armadura com o atrito no comprimento l_s.

O comprimento l_s é determinado a partir da resolução do integral:

$$
\Delta l_c = \int_0^{l_s} \Delta \varepsilon_p \, ds,
$$

onde Δl_c corresponde ao escorregamento total na ancoragem e $\Delta \varepsilon_p$ é a variação da deformação axial experimentada pelo cabo quando submetido à variação de tensão $\Delta \sigma_p$. Tirando partido das expressões 4.38a e 4.38b e considerando que a distribuição de tensões, após o cálculo das perdas de tensão por atrito, é bem aproximada por uma recta, tem-se:

$$
\Delta \sigma_p = -2m\sigma_{po} s,
$$

e tendo em atenção que:

$$
\Delta \varepsilon_p = \frac{\Delta \sigma_p}{E_p},
$$

obtém-se a expressão que define l_s:

$$
\Delta s = \frac{\Delta \sigma_p}{m\sigma_{po},}
$$

O valor da tensão em qualquer ponto de abcissa pertencente ao troço definido por l_s é dado por, ver figura 4.2:

$$
\sigma_p(s) = \alpha'(s) \sigma_{po},
$$

com,
\[\alpha'(s) = 1 + m(2l - s). \] (4.45)

Deste modo, o valor da tensão na fase de aplicação de pré-esforço é determinado a partir do conhecimento dos valores de \(\alpha(\tau) \) e \(\alpha'(\tau) \), que são obtidos por interpolação dos valores nodais \(\alpha_i \) e \(\alpha'_i \), com base nas funções de forma \(N_i \) e de acordo com as relações usuais:

\[\alpha(\tau) = \sum_{i=1}^{3} N_i \alpha_i, \] (4.46)

\[\alpha'(\tau) = \sum_{i=1}^{3} N_i \alpha'_i. \] (4.47)

Na figura 4.2 apresenta-se o caso de um cabo esticado em duas extremidades, havendo, por isso, necessidade de calcular perdas por reentrada das cunhas em ambas as ancoragens, sendo o diagrama final de tensões instaladas nas armaduras de pré-esforço, representado pela linha contínua.

4.3.2.3 - Perdas por deformação imediata do betão

As perdas devidas à deformação imediata do betão são contabilizadas directamente, quer no caso de armaduras pré-tensionadas, por deformação instantânea do betão, dado que estas armaduras se consideram aderentes, quer no caso de armaduras pós-tensionadas, através do acréscimo de força considerado na fase de aplicação do pré-esforço, ver secção 4.4.2.

No caso das armaduras pós-tensionadas, pode-se ainda ter em conta as perdas por deformação sob cabos já tensionados estabelecendo a aplicação faseada das armaduras, ver secção 4.5.1.

4.3.3 - Perdas diferidas

As perdas de tensão nas armaduras pré-esforçadas a longo prazo, são o resultado do desenvolvimento, com o tempo, dos fenómenos de fluência e retracção do betão e relaxação das armaduras de pré-esforço.
Quer a relaxação do aço de pré-esforço, quer a fluência e a retração associadas ao betão são fenômenos diferidos, aos quais se associam leis de evolução no tempo, pelo que são devidamente considerados na análise no domínio do tempo numa fase posterior.

4.4 - Aplicação do pré-esforço

A modelação da fase de aplicação do pré-esforço implica a contabilização das perdas instantâneas de pré-esforço, nas armaduras, bem como a distinção entre armaduras pré-tensionadas e pós-tensionadas, dado o comportamento substancialmente diferente que estas evidenciam. Enquanto que as armaduras pré-tensionadas se consideram aderentes, definindo-se o valor do pré-esforço inicial a partir da dedução das perdas instantâneas associadas à relaxação de curta duração das armaduras, e à retração do betão, as armaduras pós-tensionadas são consideradas não aderentes, definindo-se as perdas por atrito e penetração das cunhas através da consideração dos coeficientes α e α', obtidos pelas expressões 4.47 e 4.55. As perdas devidas à deformação do betão são consideradas directamente pelo cálculo da deformação mecânica das armaduras, correspondente ao campo de deslocamentos definido pela acção do pré-esforço e restantes cargas.

4.4.1 - Armaduras pré-tensionadas

A acção do pré-esforço é modelada impondo à estrutura uma deformação inicial, a partir da qual se define o estado de tensão instalado e o correspondente vector das forças nodais equivalentes. Este vector é definido de acordo com a expressão 4.27, e introduz na estrutura o campo de deslocamentos desejado. Estas forças são somadas às forças resultantes de cargas aplicadas directamente sobre a estrutura.

A deformação inicial é dada pela relação:

$$\varepsilon_p = -\frac{P_o}{E_p A_p}.$$ \hspace{1cm} (4.48)

O estado de tensão instalado nas armaduras obtém-se pela relação:

$$\sigma_p(\tau) = E_p (\varepsilon_p(\tau) \cdot \varepsilon_{po}),$$ \hspace{1cm} (4.49)

em que $\varepsilon_p(\tau)$ é a deformação mecânica calculada pela expressão 4.30.
4.4.2 - Armaduras pós-tensionadas

Do mesmo modo que para as armaduras pré-tensionadas, a acção do pré-esforço nas armaduras pós-tensionadas é modelada pela consideração de uma deformação inicial, sendo as perdas devidas à deformação do betão contabilizadas directamente no cálculo da deformação mecânica da armadura. As perdas resultantes do atrito, bem como as devidas à penetração das cunhas, são tidas em conta pela consideração dos coeficientes \(\alpha(\tau) \) e \(\alpha'(\tau) \).

Uma vez que durante o processo de aplicação do pré-esforço são deduzidas as perdas, o valor inicialmente estabelecido para a força de esticamento não corresponde ao valor desejado, pelo que é necessário o estabelecimento de um processo iterativo que corrija o valor de \(P_o \). O procedimento adoptado no presente trabalho é análogo ao que foi utilizado por Póvoas (1991).

O processo iterativo introduzido resume-se nos seguintes passos:

- Modelação do pré-esforço pela introdução de uma deformação inicial permitindo o cálculo do vector de cargas nodais equivalentes à acção do pré-esforço;

- definição do campo de deslocamentos que permite o cálculo da variação de comprimento associada às armaduras e a correspondente variação da deformação axial média;

- a determinação do estado de tensão tendo em consideração as perdas por atrito através da expressão:

\[
\sigma_p(\tau) = \alpha(\tau) \left(\varepsilon_{p,m,\varepsilon} - \varepsilon_{p0} \right),
\]

em que \(\varepsilon_{p,m} \) é a deformação axial média da armadura e \(\varepsilon_{p0} \) a deformação inicial imposta. Os valores de \(\alpha(\tau) \) são obtidos de acordo com a expressão 4.46;

- a força de esticamento, que se considera aplicada no primeiro nó do primeiro elemento representativo da armadura, correspondente à tensão instalada na armadura é obtida pelo integral:

\[
P'_o = \int_{\varepsilon_{p,m}} B'_{p,\tau} \sigma_p(\tau)A_p dl,
\]
onde $B_{p,1}$ representa o termo da matriz de deformação que relaciona a deformação axial ε_p com o deslocamento tangencial do primeiro nó do elemento, u_1;

- é efectuada a comparação dos valores de P_o e P'_o através do factor γ dado pela relação:

$$\gamma = \frac{P_o - P'_o}{P_o}.$$ \hspace{1cm} (4.52)

Não sendo verificada a identidade entre as forças P_o e P'_o, a deformação inicial é incrementada e o processo anterior é repetido até que γ assuma um valor inferior à tolerância admitida.

- Após a convergência do processo de aplicação do pré-esforço, as perdas relativas ao escorregamento na ancoragem são tidas em conta, vindo a tensão definida por:

$$\sigma_p(\tau) = \alpha'(\tau) E_p(\varepsilon_{p,m} - \varepsilon_{pc}),$$ \hspace{1cm} (4.53)

onde $\alpha'(\tau)$ vem expresso pela relação 4.47.

4.5 - Cálculo faseado com armaduras pré-esforçadas

Tendo em vista que o modelo de elementos finitos desenvolvido se destina a modelar a construção de estruturas por fases, permitindo a obtenção do estado de deformação e de tensão relativo a um dado nível de evolução da estrutura, é tendo presente que a aplicação das armaduras de pré-esforço acompanha a construção da estrutura de betão, torna-se necessário que o modelo descrito, relativo às armaduras pré-esforçadas, se adapte às condições do cálculo faseado.

São definidas nesta secção três situações distintas que se referem, designadamente, à introdução de armaduras de pré-esforço em diferentes fases de evolução da estrutura de betão, à retirada de armaduras com vista à modelação de cabos provisórios e, finalmente, à aplicação faseada do pré-esforço relativo a uma dada armadura.
4.5.1 - Aplicação faseada de armaduras de pré-esforço

O modelo desenvolvido permite a introdução de armaduras pré-esforçadas em qualquer fase de construção, através da atribuição de um código indicador, que estabelece se os elementos unidimensionais utilizados na modelação das armaduras estão ou não activos.

A partir da fase em que as armaduras são activas é iniciado o processo de aplicação do valor do pré-esforço definido previamente, ver secção 4.4. A partir desta altura, as armaduras, se forem aderentes, passam a ser parte integrante da estrutura sendo contabilizada a sua contribuição para a rigidez global da estrutura, bem como para a formação do vector das forças internas que permitem a verificação das condições de equilíbrio.

4.5.2 - Armaduras pré-esforçadas provisórias

A modelação de cabos provisórios traduz-se na retirada dos cabos numa dada fase, quando a sua contribuição foi contabilizada em fases anteriores.

É atribuído um código aos elementos unidimensionais representativos das armaduras de modo que deixe de ser efectuada, quer a contabilização da contribuição para a rigidez global, quer a contribuição para o vector das forças internas.

Imediatamente após a retirada das armaduras, as forças que lhes estavam associadas passam a ser conduzidas pela restante estrutura. Assim, é aplicado à estrutura, com sinal contrário, o vector das forças internas que numa fase anterior estava identificado com as armaduras pré-esforçadas. O equilíbrio global da estrutura é proporcionado por uma transferência de tensões das armaduras provisórias para os restantes materiais estruturais.

4.5.3 - Aplicação do valor do pré-esforço por fases

O modelo desenvolvido permite a simulação da aplicação do valor da força de esticamento nas armaduras pré-esforçadas durante fases distintas, associadas ao cálculo da estrutura. O valor total da força de esticamento P_e é assim dividido em frações, que vão sendo consideradas a actuar na estrutura de acordo com a aplicação das cargas externas ou com o processo de faseamento construtivo.
Como foi referido na secção 4.4, durante a fase de aplicação do pré-esforço as armaduras são consideradas não aderentes, pelo que numa situação de aplicação faseada do valor da força de esticamento, as armaduras aderentes têm de ter associado um código que as identifique como não aderentes até que o pré-esforço esteja totalmente aplicado. Note-se que se as armaduras são aderentes, após esta fase inicial, são consideradas perfeitamente solidarizadas com o material envolvente, sendo o estado de tensão e de deformação dados pelas expressões 4.29 e 4.30, respectivamente.

Dado que a aplicação do pré-esforço consiste num processo incremental, e o comportamento dos materiais é elástico e linear, o estado de deformação e de tensão na fase final, quer no betão, quer nas armaduras, corresponde à soma dos estados de tensão e de deformação associados a cada fase, resultantes da acção do pré-esforço e da aplicação das cargas exteriores.

4.6 - Exemplos de referência

Nesta secção pretende-se efectuar a validação da formulação embebida, utilizada na modelação de armaduras pré-esforçadas, em elementos 3D. Para tal apresentam-se dois conjuntos de exemplos. O primeiro conjunto é constituído por 4 testes numéricos já ensaiados por Abel Henriques (1994). Os testes A, B e C aos quais correspondem diferentes traçados de armadura pré-esforço são efectuados sobre uma viga isostática, e o teste D é efectuado sobre uma viga pré-esforçada hiperestática a partir do qual se pretende mostrar como são avaliados os efeitos hiperestáticos introduzidos pelas armaduras pré-esforçadas. Na segunda parte apresenta-se um conjunto de exemplos que visa avaliar o comportamento de estruturas pré-esforçadas executadas por fases, em perfil longitudinal e em perfil transversal, assim como validar os procedimentos associados à consideração de cabos provisórios e à aplicação faseada do valor do pré-esforço.

4.6.1 - Testes numéricos

Para cada um dos testes são efectuadas duas análises distintas. A primeira análise refere-se à modelação das armaduras de pré-esforço através de elementos unidimensionais parabólicos e a segunda, à modelação destas mesmas armaduras com base na aplicação à estrutura de forças exteriores equivalentes (método das cargas equivalentes).

Os três primeiros testes têm como base uma viga simplesmente apoiada com um vão de 20 m e o último teste é efectuado sobre uma viga hiperestática de dois tramos de igual
vão. No teste A, a armadura pré-esforçada tem uma traçado rectilíneo com uma excentricidade constante e para além da força de pré-esforço constante ao longo do cabo de 1200kN, considera-se a actuar ao longo de toda a viga um momento constante de 1200kN.m. No teste B, o traçado das armaduras é constituído por dois troços rectilíneos simétricos com excentricidade nula nos apoios e excentricidade máxima a meio vão, na qual se considera aplicada uma força de 239.7kN. Para o teste C, a geometria do cabo é parabólica, com excentricidade nula nos apoios e máxima a meio vão e a acção exterior é constituída por uma carga uniformemente distribuída de 24kN/m. Finalmente, no teste D, o traçado das armaduras de pré-esforço é rectilíneo e excentrico, e as cargas exteriores actuantes são idênticas às consideradas no teste A.

Nas figuras 4.3 e 4.4 indicam-se os esquemas de cálculo correspondentes a cada um dos testes numéricos e no quadro 4.1 apresentam-se as características consideradas para os materiais.

Fig. 4.3 – Esquema estrutural e cargas utilizadas nos testes A e B.
armaduras de pré-esforço	método das cargas equivalentes
P_p = 1200 kN | N_p = P_p \cos \alpha_i
\alpha_i = 5.711^\circ | N_\alpha = P_p \cos \alpha_i
\alpha_j = 0^\circ | V_p = P_p \sen \alpha_i = 119.4 kN
p = 24 kN/m | M_p = \frac{N_{\alpha\beta} e}{i} = 600 kN.m

Teste C

armaduras de pré-esforço	método das cargas equivalentes
P_p = 1200 kN | N_p = P_p = 1200 kN
M_{j,H} = \frac{3}{2} P_o e = 900 kN.m | M_p = P_p e = 600 kN.m
M_{i,H} = \frac{V_{j,H}}{2} = \frac{M_{j,H}}{l} = 90 kN.m
M_{j,p} = M_{j,H} - M_p = 300 kN.m
M = 1200 kN.m

Teste D

Fig. 4.4 – Esquema estrutural utilizado nos testes C e D.

Quadro 4.1 – Características geométricas da secção e características menânicas dos materiais.

<table>
<thead>
<tr>
<th>Betão</th>
<th>Armadura de pré-esforço</th>
</tr>
</thead>
<tbody>
<tr>
<td>Módulo de elasticidade</td>
<td>29 GPa</td>
</tr>
<tr>
<td>Coeficiente de Poisson</td>
<td>0.0</td>
</tr>
<tr>
<td>Secção transversal</td>
<td>0.3x1.2 m²</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Os valores dos deslocamentos a meio vão da viga bem como as reacções nos apoios, obtidos em cada um dos testes e para cada uma das análises efectuadas, ilustram-se no quadro 4.2.
Quadro 4.2 – Resultados dos testes numéricos.

<table>
<thead>
<tr>
<th>Teste</th>
<th>Acção</th>
<th>Deslocamentos δ (m)</th>
<th>Reacções (kN, kN.m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>P₀</td>
<td>0.01810</td>
<td>0.01819</td>
</tr>
<tr>
<td></td>
<td>M + P₀</td>
<td>-0.01818</td>
<td>-0.01828</td>
</tr>
<tr>
<td>B</td>
<td>P₀</td>
<td>0.01211</td>
<td>0.01212</td>
</tr>
<tr>
<td></td>
<td>F + P₀</td>
<td>-0.01195</td>
<td>-0.01223</td>
</tr>
<tr>
<td>C</td>
<td>P₀</td>
<td>0.01516</td>
<td>0.01513</td>
</tr>
<tr>
<td></td>
<td>q + P₀</td>
<td>-0.01515</td>
<td>-0.01516</td>
</tr>
<tr>
<td>D</td>
<td>P₀</td>
<td>0.001139</td>
<td>0.001166</td>
</tr>
<tr>
<td></td>
<td>M + P₀</td>
<td>-0.001165</td>
<td>-0.001137</td>
</tr>
</tbody>
</table>

Pela análise dos resultados, verifica-se que os valores dos deslocamentos a meio vão da viga em estudo são praticamente coincidentes nas duas análises efectuadas, pelo que, a formulação embebida da armadura de pré-esforço nos elementos tridimensionais se pode considerar adequada. Recorrendo aos valores das reacções indicadas no quadro 4.2 relativas ao teste D, às expressões indicadas na figura 4.4 e aos diagramas da figura 4.5, verifica-se que o cálculo da viga pré-esforçada com base na formulação apresentada conduz à identificação directa das reacções hiperestáticas, referidas com índice H, associadas ao efeito do pré-esforço.

![Diagrama](image)

Fig. 4.5 – Diagramas de momentos e reacções hiperestáticas devidos ao pré-esforço.

4.6.2 - Estudo do Faseamento - exemplos

Pretende-se nesta secção exemplificar de modo mais ou menos exaustivo os procedimentos introduzidos relativos ao faseamento das armaduras de pré-esforço,
resultante do faseamento do perfil longitudinal da própria estrutura ou do faseamento da secção transversal. É estudado também o caso em que se consideram cabos provisórios e a aplicação faseada do valor da força de pré-esforço inicial.

As duas primeiras análises dizem respeito à modelação do faseamento da aplicação dos cabos em diferentes fases da estrutura. No primeiro exemplo estuda-se o faseamento do perfil longitudinal de uma viga hiperestática com dois tramos e o segundo exemplo refere-se ao faseamento da secção transversal efectuado numa viga pré-esforçada simplesmente apoiada. Com estes exemplos pretende-se avaliar o comportamento das estruturas executadas por fases face ao comportamento evidenciado pelas mesmas, quando consideradas executadas de uma só vez. No terceiro exemplo é estudada uma viga pré-esforçada simplesmente apoiada com dois cabos, os quais são posteriormente retirados. Finalmente, no quarto exemplo analisa-se a aplicação do pré-esforço por fases sob os cabos da viga anteriormente referida.

4.6.2.1 - Faseamento do perfil longitudinal

A estrutura que serve de base ao exemplo A é constituída por uma viga hiperestática de dois tramos de igual vão de 15 m e na qual são aplicados dois cabos de pré-esforço aderentes com traçado geométrico simétrico e forças de esticamento iguais (cabo A no 1º tramo e cabo B no 2º tramo). O traçado dos cabos é constituído por 3 parábolas, ver figura 4.6, e o valor do pré-esforço inicial P₀ foi definido com base na verificação dos estados limites de descompressão para combinações quase permanentes, tendo-se obtido para P₀ o valor de 2000kN. Cada cabo é constituído por 10 cordões de 6'' a que corresponde uma área de 15.0cm². Os restantes dados, necessários a uma completa definição do problema, são indicados no quadro 4.3. A malha de elementos finitos e o padrão de camadas indicam-se na figura 4.6.

<table>
<thead>
<tr>
<th>Quadro 4.3 – Características mecânicas dos materiais e cargas actuanentes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betão</td>
</tr>
<tr>
<td>Mod. Elast.</td>
</tr>
<tr>
<td>Coef. de poisson</td>
</tr>
<tr>
<td>Área</td>
</tr>
<tr>
<td>e_k</td>
</tr>
<tr>
<td>q_k</td>
</tr>
<tr>
<td>q_f</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

4.24
Os valores das perdas instantâneas de pré-esforço, que determinam a distribuição inicial de tensões nas armaduras, correspondentes ao atrito e à reentrada das cunhas nas ancoragens foram calculadas com base nas expressões 4.50 e 4.53.

![Fig. 4.6 – Malha de elementos finitos e padrão de camadas.](image)

Na presente análise, o processo de faseamento engloba 3 fases que se podem ver em esquema na figura 4.7.

Na primeira fase, o cálculo é efetuado sobre uma estrutura isostática constituída pelo primeiro tramo e pelo cabo de pré-esforço A e considera-se aplicada uma carga permanente g_{k1} de 30kN/m e o pré-esforço inicial P_0 de 2000kN. Na segunda fase, a estrutura passa a ser hiperestática, constituída pelos dois tramos e os cabos A e B, sendo-lhe aplicada, para além do pré-esforço associado ao cabo B, uma carga permanente g_{k2} de 30kN/m. Finalmente, a terceira fase corresponde à aplicação da sobrecarga com o seu valor quase permanente. O cabo A é esticado na extremidade esquerda e o cabo B é esticado a partir da extremidade direita. Cada um dos cabos tem uma ancoragem passiva no apoio central.

A análise de resultados foi efectuada em termos de deslocamentos ao longo do plano médio da viga, de tensões instaladas no betão e armaduras de pré-esforço, de momentos flexores nas secções de meio vão de cada um dos tramos e de reacções nos apoios.

Na figura 4.8 são apresentados os deslocamentos ao longo da viga para as três fases em análise. Pela análise desta figura, verifica-se que os deslocamentos correspondentes ao primeiro tramo sofrem uma diminuição significativa durante a segunda fase, como consequência do cálculo elástico efectuado sobre a estrutura total, submetida às cargas permanentes aplicadas no segundo tramo e para o pré-esforço aplicado no caso B. Note-se
que neste estudo considera-se que os tramos apresentam igual rigidez, sendo, contudo, uma situação não realista dado que não se tiveram em conta os fenômenos diferidos, que serão tratados posteriormente.

Fig. 4.7 – Esquema estrutural usado no faseamento longitudinal da viga.
Na terceira fase o acréscimo de deslocamentos, correspondentes à aplicação da sobrecarga, é igual para os dois tramos, uma vez que betão constituinte da viga apresenta a mesma rigidez.

Em termos de tensões instaladas nas armaduras de pré-esforço, figuras 4.9 e 4.10, verifica-se que na primeira fase aquecida da instalação do pré-esforço do cabo A, a distribuição de tensões ao longo da viga é determinada pelos coeficientes inicialmente calculados de modo a contabilizar as perdas instantâneas devidas ao atrito e reentrada das cunhas nas ancoragens. Na segunda fase, as perdas por deformação elástica do betão são evidentes até aos 10 metros, registando-se um aumento de tensão na zona do apoio, devido ao aparecimento de momentos negativos de continuidade, resultantes da alteração do esquema estático.
Dada a aderência dos cabos de pré-esforço, a aplicação da sobrecarga evidencia o efeito anteriormente referido, quer na zona de momentos negativos, quer na zona de momentos positivos, onde se registra uma recuperação de tensões. Na zona de momentos muito pequenos ou nulos o valor das tensões no cabo mantém-se praticamente inalterado. O comportamento do cabo B é análogo ao descrito para o cabo A na fase correspondente à aplicação da força de pré-esforço no cabo B sendo as tensões instaladas neste igual às tensões instaladas na 1ª fase no cabo A, uma vez que o traçado de pré-esforço do cabo B é simétrico ao do cabo A e a força de esticamento é igual. No final da análise apresenta valores ligeiramente inferiores nos apoios uma vez que, na segunda fase, o cabo A experimenta uma recuperação de tensões nesta zona.

Nas figuras 4.11 a 4.13 é ilustrada a distribuição de tensões normais ao longo da altura das secções S₁, localizada a meio vão do primeiro tramo, e S₂, situada a meio vão do segundo tramo, associadas a cada fase. No quadro 4.4 apresenta-se a evolução dos valores dos momentos totais correspondentes às secções S₁ e S₂, resultantes da integração do diagrama de tensões.

Pela análise das referidas figuras constata-se que toda a secção de betão está comprimida por acção do pré-esforço. A entrada em funcionamento do 2º tramo conduz à rotação do diagrama de tensões instalado na 1ª fase, na secção S₁, que traduz uma diminuição do momento positivo anteriormente instalado. Note-se que associado à diminuição dos deslocamentos verificados na 2ª fase, figura 4.8, está o aparecimento de um momento negativo que vai ser somado ao momento previamente instalado. A aplicação da sobrecarga conduz ao estabelecimento de um diagrama de tensões simétrico em relação ao eixo neutro, que ao nível da secção, equivale à aplicação de um momento positivo.
Fig. 4.11 – Distribuição de tensões em altura – secção a meio vão – 1º tramo – 1ª fase / 2ª fase

Fig. 4.12 – Distribuição de tensões em altura – secção a meio vão – 1º tramo – 2ª fase / 3ª fase.

Fig. 4.13 – Distribuição de tensões em altura – secção a meio vão – 2º tramo – 3ª fase

4.29
Quadro 4.4 – Momentos flexores na secções de meio vão dos 1º e 2º tramos.

<table>
<thead>
<tr>
<th>Momentos M (kN.m)</th>
<th>1ª fase</th>
<th>2ª fase</th>
<th>3ª fase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secção S₁</td>
<td>206.2</td>
<td>64.8</td>
<td>184.5</td>
</tr>
<tr>
<td>Secção S₂</td>
<td>-</td>
<td>60.3</td>
<td>180.0</td>
</tr>
</tbody>
</table>

No quadro 4.5, apresentam-se os valores das reacções nos apoios resultantes da presente análise, caso A, e comparam-se com os valores das reacções do quadro 4.6, que resultam de uma análise sobre a mesma estrutura, com o mesmo esquema de faseamento, mas sem pré-esforço, caso B. Nos quadros 4.7 e 4.8 apresentam-se as reacções nos apoios correspondentes ao cálculo da mesma estrutura com e sem pré-esforço e sem consideração do faseamento da estrutura e de cargas, casos C e D, respectivamente.

Quadro 4.5 – Reacções nos apoios – caso A.

<table>
<thead>
<tr>
<th>Reacções R (kN)</th>
<th>1ª fase</th>
<th>2ª fase</th>
<th>3ª fase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apoio lateral direito</td>
<td>225.0</td>
<td>202.5</td>
<td>247.6</td>
</tr>
<tr>
<td>Apoio central</td>
<td>225.0</td>
<td>494.9</td>
<td>644.8</td>
</tr>
<tr>
<td>Apoio lateral esquerdo</td>
<td>-</td>
<td>202.5</td>
<td>247.6</td>
</tr>
</tbody>
</table>

Quadro 4.6 – Reacções nos apoios – caso B.

<table>
<thead>
<tr>
<th>Reacções R (kN)</th>
<th>1ª fase</th>
<th>2ª fase</th>
<th>3ª fase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apoio lateral direito</td>
<td>225.0</td>
<td>196.9</td>
<td>242.0</td>
</tr>
<tr>
<td>Apoio central</td>
<td>225.0</td>
<td>506.1</td>
<td>656.1</td>
</tr>
<tr>
<td>Apoio lateral esquerdo</td>
<td>-</td>
<td>196.9</td>
<td>242.0</td>
</tr>
</tbody>
</table>

Quadro 4.7 – Reacções nos apoios – caso C.

<table>
<thead>
<tr>
<th>Reacções R (kN)</th>
<th>Uma fase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apoio lateral direito</td>
<td>225.5</td>
</tr>
<tr>
<td>Apoio central</td>
<td>689.1</td>
</tr>
<tr>
<td>Apoio lateral esquerdo</td>
<td>225.5</td>
</tr>
</tbody>
</table>

4.30
Quadro 4.8 – Reações nos apoios – caso D.

<table>
<thead>
<tr>
<th>Reacções R (kN)</th>
<th>Uma fase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apoio lateral direito</td>
<td>213.9</td>
</tr>
<tr>
<td>Apoio central</td>
<td>712.2</td>
</tr>
<tr>
<td>Apoio lateral esquerdo</td>
<td>213.9</td>
</tr>
</tbody>
</table>

No caso C, as cargas aplicadas são constituídas pelo pré-esforço correspondente a cada cabo e pelas cargas permanentes, e no caso D aplicam-se à estrutura apenas as cargas permanentes. Da análise dos valores dos referidos quadros ressalta que os valores das reacções no caso A, durante a primeira fase, coincidem com os valores da primeira fase no caso B, uma vez que a estrutura é isostática. Nas restantes fases, os valores das reacções vêm afectados pelo efeito hiperestático associado ao pré-esforço, sendo a diferença entre os valores das reacções equivalente às reacções hiperestáticas. Através da comparação dos valores das reacções no caso A e no caso C, conclui-se que efeito hiperestático no caso em que há faseamento é menor. Refira-se que no caso A, durante a primeira fase, não se registam efeitos hiperestáticos. Note-se que, à semelhança do que se verificou no capítulo anterior, o cálculo faseado com estruturas pré-esforçadas revela um agravamento das reacções laterais, e consequentemente dos momentos positivos ao mesmo tempo que se verifica um alívio nos momentos negativos, relativamente ao que foi obtido no cálculo sobre a estrutura global apenas em uma fase.

O diagrama de momentos hiperestáticos pode ser calculado directamente através do conhecimento das reacções hiperestáticas em cada apoio. Na figura 4.14 indicam-se os diagramas de momentos hiperestáticos correspondentes ao caso A e ao caso C.

Fig. 4.14 – Diagramas de momentos hiperestáticos ao longo da viga.
Caso A – cálculo faseado.
Caso B – cálculo efectuado numa fase.
4.6.2.2 - Faseamento da secção transversal

O estudo do faseamento da secção, em simultâneo com o faseamento da aplicação do pré-esforço, é efectuado sobre uma viga simplesmente apoiada com um vão de 10 m e secção 0.3x1.0m². Os cabos de pré-esforço A e B, aderentes, têm um traçado parabólico, uma área de 4.5cm² e o valor da força inicial de esticamento em cada cabo é de 533.3kN. As armaduras ordinárias são constituídas por 4 varões de φ20. As características dos materiais envolvidos encontram-se indicadas no quadro 4.9. A malha de elementos finitos e o padrão de camadas apresentam-se na figura 4.15. Na secção, a camada equivalente às armaduras ordinárias indica-se a tracejado.

Fig. 4.15 – Malha de elementos finitos e padrão de camadas.

Na primeira fase é aplicado o pré-esforço no cabo A e calcula-se a viga com a secção reduzida a metade e submetida, para além da acção do pré-esforço do cabo A com uma excentricidade nos apoios de 16.5cm, ao peso próprio. Na segunda fase, a secção tem já 1.0m de altura, e as cargas para as quais se efectua o cálculo são constituídas pelo pré-esforço no cabo B, com uma excentricidade nos apoios de 8.5cm, o peso próprio dos elementos que são betonados na segunda fase e uma carga uniformemente distribuída de 17.5kN/m. Na terceira fase é aplicado na viga o valor quase permanente da sobrecarga. O esquema de cálculo seguido na análise é ilustrado na figura 4.16.

A análise de resultados é efectuada com base nas tensões instaladas nas armaduras de pré-esforço, nas tensões instaladas no betão, ao longo da altura da secção de meio vão, e nos deslocamentos dos nós dos planos horizontais médio e superior da viga.
Quadro 4.9 – Características mecânicas dos materiais e cargas actuantes.

<table>
<thead>
<tr>
<th></th>
<th>Betão</th>
<th>Aço de pré-esforço</th>
<th>Armaduras passivas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mód. Elast</td>
<td>32.0 GPa</td>
<td>Mód. Elast 200.0 GPa</td>
<td>Mód. Elast 200.0 GPa</td>
</tr>
<tr>
<td>Área</td>
<td>0.30 m²</td>
<td>Área 4.0 cm²/cabo</td>
<td>Área 12.6 cm²</td>
</tr>
<tr>
<td>Coef. Poisson</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ε_1</td>
<td>17.5 kN/m</td>
<td>μ 0.25</td>
<td></td>
</tr>
<tr>
<td>q_k</td>
<td>20 kN/m</td>
<td>Δl_c 5.0 mm</td>
<td></td>
</tr>
<tr>
<td>φ_2</td>
<td>0.4</td>
<td>P_o 533.3 kN/m</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4.16 – Esquema de foseamento do perfil transversal.
Em termos de tensões instaladas nas armaduras de pré-esforço pode-se constatar, através das figuras 4.17 e 4.18, que na fase inicial de aplicação do pré-esforço, os valores das tensões em cada ponto de Gauss correspondem ao valor inicial de pré-esforço após a dedução das perdas instantâneas ao longo da viga. Na segunda fase registam-se perdas de tensão no cabo A, praticamente ao longo de todo o comprimento da viga, resultantes da deformação elástica do betão devida à aplicação do pré-esforço no cabo B. A fase correspondente à aplicação da sobrecarga implica, quer no cabo A, quer no cabo B, um aumento das tensões, essencialmente na zona a meio vão, como consequência do acréscimo de deformação associada aos momentos positivos introduzidos.

Fig. 4.17 – Distribuição de tensões ao longo do cabo A - faseamento transversal.

Fig. 4.18 – Distribuição de tensões ao longo do cabo B - faseamento transversal.
No quadro 4.10 indica-se a evolução dos momentos na secção a meio vão ao longo do processo construtivo. A distribuição de tensões ao logo da altura da secção a meio vão encontra-se ilustrada nas figuras 4.19 e 4.20, para cada uma das fases.

A análise destas figuras permite validar o comportamento associado ao faseamento da secção transversal. Com efeito, dado o comportamento linear da secção, o acréscimo verificado nas tensões de compressão, durante a segunda fase, na parte inferior da viga, é linear e está em correspondência com o diagrama de tensões instalado na parte superior da viga, resultante da aplicação do pré-esforço no cabo B e das cargas permanentes referidas anteriormente. Na terceira fase, devido à aplicação da sobrecarga, instala-se na altura da viga um diagrama de tensões simétrico ao qual corresponde um momento positivo, traduzindo-se num aumento das tensões de compressão na parte superior da viga e numa diminuição na parte inferior, havendo em consequência uma inversão no sentido do momento total nesta secção. Verifica-se deste modo que, após a betonagem da parte superior da viga, a secção funciona solidarizada.

Quadro 4.10 – Momento fletor total na secção de meio vão ao longo das três fases.

<table>
<thead>
<tr>
<th>Momento M (kN.m)</th>
<th>1ª fase</th>
<th>2ª fase</th>
<th>3ª fase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secção a meio vão</td>
<td>-263.6</td>
<td>-219.0</td>
<td>39.0</td>
</tr>
</tbody>
</table>

Fig. 4.19 – Distribuição de tensões em altura na secção a meio vão – 1ª fase / 2ª fase.
Os deslocamentos verificados na viga, em cada fase, nos planos horizontais médio e superior, são representados nas figuras 4.21 e 4.22, respectivamente.

Na primeira fase, a parte inferior da viga apresenta uma deformada inicial com concavidade voltada para baixo, devido ao efeito ascendente do pré-esforço, apresentando dois pontos de inflexão associados à excentricidade do cabo A nos apoios. A aplicação do pré-esforço no cabo B, associada à mobilização das cargas permanentes, conduz à redução dos deslocamentos positivos resultantes da soma do diagrama 1m, da figura 4.21, com o diagrama 2s, da figura 4.22.
Finalmente, na terceira fase, os deslocamentos dos planos médio e superior da viga sofrem um incremento de igual amplitude correspondente à consideração da sobrecarga. Refira-se que a distância entre os pontos B e B' (0.493 mm), dos diagramas 1m e 2m da figura 4.21, coincide com a ordenada do ponto A do diagrama 2s da figura 4.22. Por outro lado, a distância entre os pontos B e B", (1.127 mm) corresponde à distância entre os pontos A e A'.

![Diagrama de deslocamentos do plano superior da viga.](image)

Fig. 4.22 – Deslocamentos do plano superior da viga.

4.6.2.3 - Utilização de cabos provisórios

Nesta secção pretende-se estudar o comportamento de uma estrutura sujeita à acção de cabos provisórios. Para tal, é efectuada a análise da viga do exemplo anterior. O cálculo da viga é realizado em 3 fases. Considera-se que a viga está sujeita à acção das cargas permanentes, da sobrecarga e dos cabos de pré-esforço na primeira fase, sendo-lhe retirado o cabo A na segunda fase e o cabo B na terceira fase. O esquema de faseamento seguido no cálculo é indicado na figura 4.23.

A análise é efectuada com base nos valores das tensões obtidos ao longo da altura da secção a meio vão da viga, das tensões nas armaduras de pré-esforço e dos deslocamentos e deformadas.

Os diagramas de tensões ao longo da altura da secção a meio vão indicam-se nas figuras 4.24 e 4.25. Verifica-se que na primeira fase a secção está totalmente comprimida por acção do pré-esforço aplicado na viga. A retirada do cabo A traduz-se, em termos de tensões instaladas na secção a meio vão, por uma rotação do diagrama, ver figura 4.24, resultante do aumento das tensões de tracção nas fibras inferiores e a um aumento das
compressões nas fibras superiores, de que resulta um acréscimo do momento positivo. Note-se que quando se elimina o cabo A, as forças que este transmitia são aplicadas à estrutura com o sinal contrário. O correspondente diagrama resulta, deste modo, da soma de um diagrama de tensões devido à flexão associada às forças de desvio descendentes com um diagrama de tensões devido à força de tracção. A eliminação do cabo B conduz, naturalmente, ao estabelecimento de um diagrama de tensões característico de flexão simples. É de referir que os diagramas obtidos são apenas exemplificativos e baseados no comportamento elástico dos materiais.

![Diagrama de tensões](image)

Fig. 4.23 – Esquema de faseamento – eliminação de cabos A e B.

Da figura 4.26, onde se apresenta a distribuição de tensões nas armaduras de pré-esforço, pode-se concluir que na fase inicial os cabos A e B apresentam a mesma distribuição de tensões, uma vez que lhes estão associadas iguais perdas instantâneas. Na
Modelação das armaduras de pré-esforço

segunda fase regista-se um acréscimo de tensões no cabo B devido ao aumento dos momentos positivos verificados ao longo da viga, com valor máximo a meio vão.

Quadro 4.11 – Momentos na secção de meio vão.

<table>
<thead>
<tr>
<th>Momentos M (kN.m)</th>
<th>1ª fase</th>
<th>2ª fase</th>
<th>3ª fase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secção de meio vão</td>
<td>80.2</td>
<td>263.4</td>
<td>404.3</td>
</tr>
</tbody>
</table>

Fig. 4.24 – Distribuição de tensões em altura na secção a meio vão – 1ª fase / 2ª fase.

Fig. 4.25 – Distribuição de tensões em altura na secção a meio vão – 2ª fase / 3ª fase.

4.39
Fig. 4.26 – Distribuição de tensões nas armaduras de pré-esforço.

Relativamente aos deslocamentos que se apresentam na figura 4.27, constata-se a evolução crescente dos deslocamentos e coincidem no final da análise com os deslocamentos resultantes do cálculo da viga sem cabos de pré-esforço.

Fig. 4.27 – Deslocamentos ao longo da viga – aplicação de cabos provisórios.

4.6.2.4 - Aplicação faseada do valor do pré-esforço

A aplicação do pré-esforço por fases é um procedimento comum e necessário em casos em que o valor do pré-esforço na fase inicial é elevado, quando comparado com a percentagem de cargas mobilizadas como consequência, por exemplo, de se estar em presença de sistemas estruturais intermédios.
A validação do procedimento relativo à aplicação faseada do pré-esforço é efectuada sobre a viga simplesmente aloiada pré-esforçada da secção anterior e engloba duas fases de cálculo. Na primeira fase é aplicado nos cabos A e B metade do valor do pré-esforço preestabelecido e considera-se mobilizado o peso próprio da viga. Na segunda fase aplica-se a restante força de pré-esforço em ambos os cabos, bem como uma carga distribuída de 25.5kN/m, resultante da soma do valor quase-permanente da sobrecarga de 8.0kN/m e de uma carga permanente de 17.5kN/m. O esquema de faseamento e a história de carga ilustram-se na figura 4.28.

Na figura 4.29 indicam-se os diagramas relativos à distribuição das tensões nos cabos de pré-esforço A e B. Dos diagramas ressalta que as tensões instaladas na segunda fase experimentam um acréscimo, passando aproximadamente para o dobro das iniciais, como consequência do valor do acréscimo de pré-esforço aplicado nesta fase ser exactamente o dobro do inicial.

![Diagrama de tensões nos cabos A e B](image)

\[
\begin{align*}
P_A &= 266.667 \text{ kN} \\
P_B &= 266.667 \text{ kN} \\
\sigma_{41} &= \text{PP}
\end{align*}
\]

\[
\begin{align*}
\Delta P_A &= 266.667 \text{ kN} \\
\Delta P_B &= 266.667 \text{ kN} \\
\sigma_{44} &= 17.5 \text{kN/m} + 8.0 \text{kN/m}
\end{align*}
\]

Fig. 4.28 – Faseamento da aplicação do valor do pré-esforço.

Note-se ainda que, os diagramas de tensões são praticamente coincidentes uma vez que, quer na primeira fase, quer na segunda fase, resultam da introdução das perdas instantâneas do pré-esforço.
Fig. 4.29 – Distribuição de tensões nos cabos A e B para a 1ª e 2ª fases.

Na figura 4.30 apresentam-se os diagramas de tensões ao longo da altura da secção de meio vão correspondentes a cada uma das fases de cálculo.

Fig. 4.30 – Diagramas de tensões ao longo da altura da secção a meio vão.

Durante a primeira fase da análise verifica-se que o diagrama de tensões instalado é equivalente a um momento negativo devido ao efeito ascendente do pré-esforço, permanecendo toda a secção em compressão. Na segunda fase registra-se um aumento notável das tensões de compressão nas fibras superiores, por um lado, devido à força de compressão associada ao pré-esforço e, por outro, devido à aplicação das cargas exteriores, passando o momento instalado na secção a ser positivo.
Relativamente aos deslocamentos, ver figura 4.31, registam-se valores positivos na primeira fase associados à acção do pré-esforço. Na segunda fase a viga toma a forma da deformada associada às cargas exteriores devido ao seu valor relativamente elevado.

Fig. 4.31 – Diagramas de deslocamentos ao longo da viga – faseamento do valor do pré-esforço.

Refira-se que o diagrama final coincide praticamente com o diagrama apresentado na figura 4.27 relativo à primeira fase, uma vez que as cargas exteriores e o valor do pré-esforço são idênticos.

4.7 - Considerações finais

Neste capítulo apresentou-se a formulação embebida adoptada na representação de armaduras de pré-esforço em elementos 3D, com referência à matriz de deformação associada às armaduras, à formação da matriz de rigidez e ao processo de aplicação das forças de pré-esforço, onde já se consideram as perdas instantâneas devidas ao atrito e reentrada das cunhas nas ancoragens, obtendo-se directamente as perdas por deformação do betão. Foram ainda efectuadas considerações sobre o procedimento a adoptar no caso de aplicação faseada das armaduras ou utilização de cabos provisórios.

A realização de testes numéricos permitiram aferir a validade do modelo através de comparação de reacções e deslocamentos obtidos pela presente formulação e pelo método das cargas equivalentes.

Os exemplos relativos ao faseamento de pré-esforço, em simultâneo com o faseamento longitudinal e transversal da geometria permitem concluir que, à semelhança
do que acontece em estruturas sem pré-esforço e executadas por fases, as reacções laterais são superiores às que se obtêm numa análise global, aumentando consequentemente os momentos positivos nos vãos extremos. O efeito hiperestático é menor em estruturas executadas por fases no caso de inicialmente a estrutura analisada ser isostática uma vez nesta fase este efeito não é contabilizado. Na presente formulação, as reacções hiperestáticas obtém-se directamente do cálculo bem como os esforços totais de dimensionamento aos estados limites últimos. Destes exemplos, conclui-se ainda que os procedimentos relativos à consideração de cabos provisórios e ao faseamento do valor do pré-esforço são adequados.

No que se refere ao faseamento da secção transversal e da aplicação do pré-esforço na secção é possível afirmar que a presente formulação traduz bem a evolução de tensões, e consequentemente de deformações, registada ao longo do processo de faseamento.

É de salientar ainda que a alteração do esquema estático ao longo da análise reflecte-se na distribuição de tensões nas armaduras de pré-esforço devido ao aparecimento de momentos de continuidade.
Capítulo 5

Modelação dos efeitos diferidos

5.1 - Introdução

De um modo geral a evolução da resposta de estruturas de betão no tempo é afectada pelo comportamento reológico deste material. A definição da resposta diferida das estruturas é tanto mais difícil quanto mais complexa é a história de betonagem e de carga, como acontece com as estruturas executadas por fases. A introdução de armaduras de pré-esforço, por seu lado, conduz à necessidade de se proceder à consideração do fenómeno de relaxação, devido às elevadas tensões iniciais a que as armaduras estão submetidas, para além de promover o aparecimento de elevadas tensões de compressão no betão em condições de serviço, tornando assim mais significativa a influência do fenómeno de fluência no comportamento deste material.

Deste modo, o estudo dos efeitos diferidos no comportamento das estruturas de betão pré-esforçado tem maior importância em condições de serviço, devendo ser considerados na verificação da segurança em relação aos estados limites de utilização (deformação e fendilhamento). É nesta análise que se consideram as perdas diferidas do pré-esforço devido à relaxação e, também devido à fluência e retracção do betão. A redistribuição de tensões nas secções e ao longo de estruturas executadas por fases, às quais estão associadas betões de idades diferentes, a transferência de tensões entre o betão e as armaduras, constituem, do mesmo modo, objecto de estudo do presente trabalho.

O presente capítulo tem como objectivo a análise da resposta estrutural, abrangendo estruturas executadas por fases, devido aos efeitos diferidos associados à fluência, retracção e maturação do betão, que se caracterizam respectivamente: pelo aumento da deformação sob tensão constante, pela contracção do betão devido à variação de humidade e pela variação das propriedades mecânicas do betão com a idade, assim como à relaxação das armaduras de pré-esforço associada à perda de tensão sob um estado de deformação aproximadamente constante. É considerada válida a relação linear entre as tensões instaladas no betão e as deformações de fluência, aplicando-se o princípio da aditividade de deformações de fluência para cargas aplicadas em instantes distintos, particularmente
útil no caso de estruturas executadas por fases, uma vez que se consideram várias fases no cálculo às quais correspondem esquemas estruturais distintos e por conseguinte materiais com características mecânicas e leis de fluência diferentes bem como histórias de carregamento complexas. A deformação total que a estrutura apresenta é a soma da deformação elástica instantânea resultante da aplicação das cargas exteriores com as deformações correspondentes a cada fenómeno diferido. Os procedimentos numéricos introduzidos, que visam tal análise em estruturas discretizadas por elementos 3D e com possibilidade de fasamento, têm por base o modelo desenvolvido por Póvoas (1991) para o estudo dos efeitos diferidos em estruturas tipo casca com comportamento não linear material e geométrico.

5.2 - Lei de fluência

5.2.1 - Considerações gerais

O fenómeno diferido tratado nesta secção refere-se à fluência do betão. Este fenómeno consiste basicamente num acréscimo relativo da deformação instantânea, imposta por uma dada história de carregamento inicial, devido essencialmente à alteração das características da estrutura interna do betão associada a processos físico-químicos dependentes das características de temperatura e humidade do ambiente.

De acordo com Bazant (1975) e Neville et al. (1983), o desenvolvimento da fluência depende dos valores do módulo de elasticidade do betão, da resistência do betão à compressão, da idade do carregamento, diminuindo para valores crescentes destes, bem como das dimensões do elemento estrutural e da humidade, cujo valor crescente contribui de igual modo para a redução do valor das deformações de fluência, enquanto que para valores de temperatura crescentes os valores desta aumentam. Para níveis de tensão suficientemente baixos, da ordem de 40% da resistência do betão à compressão, considera-se que o princípio da sobreposição dos efeitos é válido na consideração da aditividade das deformações de fluência correspondentes a cargas aplicadas na estrutura em diferentes idades do betão.

5.2.2 - Definição

Tendo como referência o caso unidimensional, a deformação total uniaxial num dado instante \(t \), \(\varepsilon(t) \), associada à tensão constante aplicada no instante de tempo \(t_0 \), \(\sigma(t_0) \) é dada pela expressão:
\[\varepsilon_e(t) = \sigma(t_0) J(t, t_0), \]

sendo \(J(t, t_0) \) a função de fluência que representa a deformação instalada no betão de idade \(t \), devida a uma tensão unitária aplicada à idade \(t_0 \), ver figuras 5.1 e 5.2.

![Fig. 5.1 – Função de fluência genérica.](image)

![Fig. 5.2 – Funções de fluência para várias idades de carga: a) escala linear; b) escala logarítmica.](image)

Se se efectuar a divisão da deformação total nas componentes elástica \(\varepsilon_e(t) \) e de fluência \(\varepsilon_{ef}(t) \), a expressão 5.1 pode tomar a seguinte forma:

\[\varepsilon_e(t) = \varepsilon_e(t) + \varepsilon_{ef}(t) = \sigma(t_0) \left[\frac{1}{E_e(t_0)} + C(t, t_0) \right], \]

5.3
onde a primeira parcela \(\frac{\sigma(t_0)}{E_c(t_0)} \) consiste na deformação instantânea devido à tensão aplicada na idade \(t_0 \) e a segunda corresponde à deformação por fluência, sendo \(C(t,t_0) \) a função de fluência específica do material. Partindo das expressões 5.1 e 5.2, a deformação de fluência pode ser obtida pela relação:

\[
\varepsilon_{ef}(t) = \sigma(t_0) C(t, t_0) = \sigma(t_0) \left[J(t, t_0) - \frac{1}{E_c(t_0)} \right],
\]

(5.3)

que pode ser ainda definida por,

\[
\varepsilon_{ef}(t) = \sigma(t_0) \frac{\phi(t, t_0)}{E_c(t, t_0)},
\]

(5.4)

onde \(\phi(t, t_0) \) é designado por coeficiente de fluência.

A generalização das expressões precedentes para o caso tridimensional, tendo como base o comportamento linear do betão, é efetuada através das expressões seguintes:

\[
\varepsilon_c(t) = \left[\frac{1}{E_c(t_0)} + C(t, t_0) \right] C \sigma(t_0),
\]

(5.5)

\[
\varepsilon_{ef}(t_0) = C(t, t_0) C \sigma(t_0),
\]

(5.6)

sendo os vectores de deformação e tensão definidos do modo indicado no capítulo 2, secções 2.3 e 2.4, e a matriz \(C \) definida por:

\[
C = E_c \left(D \right)^{-1} = \begin{bmatrix}
1 & -v & 0 & 0 & 0 \\
1 & -v & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
2(1+v) & 0 & 0 & 0 & 0 \\
\frac{2}{2(1+v)} & 0 & 0 & 0 & 0
\end{bmatrix}
\]

(5.7)

em que \(D \) é a matriz constitutiva elástica do betão.
5.2.3 - Lei de fluência definida pelo CEB-FIP Model Code 1990

A lei que é utilizada para a estimativa da deformação de fluência permite a introdução de factores externos que afectam o desenvolvimento do fenómeno da fluência, tais como as características geométricas da secção e a humidade relativa do ambiente.

Assim, o coeficiente de fluência $\phi(t, t_0)$ da expressão 5.4 pode vir definido por:

$$\phi(t, t_0) = \phi_0 \beta_c(t - t_0).$$

(5.8)

A função $\beta_c(t - t_0)$ define o desenvolvimento da fluência com o tempo para a carga aplicada no instante t_0, e obtém-se através da expressão:

$$\beta_c(t - t_0) = \left(\frac{(t - t_0)/t_i}{\beta_{Ht} (t - t_0)/t_i} \right)^{0,3},$$

(5.9)

vindo o parâmetro β_{Ht} definido por:

$$\beta_{Ht} = 150 \left(1 + \left(1.2 + \frac{RH}{RH_0} \right)^{18} \right) \frac{h}{h_0} + 250 \leq 1500,$$

(5.10a)

sendo RH a humidade relativa do meio ambiente em % e h a espessura equivalente da secção que é definida pela relação:

$$h = \frac{2A_c}{u},$$

(5.10b)

fazendo intervir deste modo as características geométricas da secção transversal, designadamente, a área da secção transversal A_c e o perímetro em contacto com o meio ambiente u. Os parâmetros t_i, RH_0 e h_0 tomam os seguintes valores:

$$t_i = 1 \text{ dia}$$

$$RH_0 = 100\%$$

$$h_0 = 100 \text{ mm}.$$

(5.10c)

O coeficiente nominal de fluência ϕ_0 é definido pela expressão:
\[\phi_0 = \phi_{RH} \beta(f_{cm}) \beta(t_0) , \]

(5.11)

com,

\[\phi_{RH} = 1 + \frac{1 - \frac{RH}{RH_o}}{0.46 \left(\frac{h}{h_o} \right)^{1/3}} , \]

(5.12a)

\[\beta(f_{cm}) = \frac{5.3}{3 + \left(\frac{f_{cm}}{f_{cmo}} \right)^{1/2}} , \]

(5.12b)

\[\beta(t_0) = \frac{1}{0.1 + \left(\frac{t_0}{t_1} \right)^{0.2}} , \]

(5.12c)

onde,

- \(f_{cm} \) é a resistência média do betão à compressão aos 28 dias de idade (N/mm²).
- \(f_{cmo} = 10 \text{ MPa} \).

5.2.4 - Aproximação da lei de fluência em série de Dirichlet

No caso em que a história de carregamento é constituída por um conjunto de acréscimos de força aplicados em dados instantes \(t_i \), ver figura 5.3, impondo deste modo à estrutura um estado de tensão incremental e dada a relação linear entre a deformação de fluência e a tensão que lhe dá origem, sendo por isso válido o princípio da sobreposição dos efeitos, a deformação total correspondente à referida história de tensão pode ser obtida pela soma das deformações associadas a cada um dos incrementos de tensão \(\sigma(t_i) \) calculadas com base na expressão 5.1, ou seja, o cálculo da deformação total pode ser efectuado pela resolução do integral:

\[\varepsilon_c(t) = \int_{t_0}^{t} d\varepsilon_c(t) = \int_{t_0}^{t} J(t, t') \, d\sigma(t') , \]

(5.13)

relação que identifica o betão como um material visco-elástico.
A resolução deste integral pode ser substituído pelo cálculo de um somatório se se considerar que em cada intervalo de tempo em que se divide o período de tempo de análise, o valor do acréscimo de tensão é constante. Como se verá numa secção à frente, o presente trabalho contempla uma aproximação rectangular de uma história de tensão genérica. Assim, o integral da expressão 5.13 é substituído pelo somatório:

$$\varepsilon_{c}(t_n) = \sum_{i=1}^{n} J(t_{i-1}, t_i) \Delta \sigma(t_i). \tag{5.14}$$

Fig. 5.3 – História de tensão genérica.

Dado que o cálculo da deformação através da expressão anterior implica o armazenamento da história de tensão desde a idade de aplicação da carga até à idade t_0, conduzindo à necessidade de resolução de somatórios sucessivamente crescentes, é adoptado neste trabalho o procedimento utilizado por Póvoas (1991), que consiste na aproximação da função de fluência teórica definida na secção 5.2.3, pela série de Dirichlet que é constituída por um conjunto de funções exponenciais reais e que fisicamente pode ser interpretada como uma associação em série de modelos de Kelvin. Assim, a função de fluência pode vir expressa, Bazant e Wu (1973), Bazant (1988), por:

$$J(t, t_0) = \frac{1}{\overline{E}(t_0)} + \sum_{i=1}^{N} \frac{1}{\overline{E}(t_0)} (1 - e^{-\alpha(t_0)^n}), \tag{5.15}$$

em que os coeficientes $\overline{E}(t_0)$ dependem da idade de aplicação da carga e τ_i são constantes designadas por tempos de retardação. O significado de cada um destes parâmetros encontra-se ilustrado na figura 5.4.
Tendo presente a relação 5.3, a deformação de fluência pode ser definida pela expressão:

\[
\varepsilon_{\text{ef}}(t) = C(t, t_0) \sigma(t, t_0) = \sum_{i=1}^{N} \frac{1}{E(t_0)} (1 - e^{-\frac{(t-t_0)}{n}}) \sigma(t, t_0),
\]

(5.16)

cujos parâmetros devem tomar valores tais que permitam a aproximação da função de fluência referida na secção 5.2.3. A definição destes parâmetros envolve um procedimento análogo ao efectuado por Póvoas (1991) de acordo com o estabelecido por Bazant (1988).

Assim, é necessário definir o número de intervalos de tempo a considerar, \(n\), desde o instante de aplicação das cargas, \(t_0\), até ao instante final da análise, \(t_f\). A determinação das idades de carga correspondentes aos incrementos de tempo considerado, \(t'_j\) (\(j = 1, n\)), obtém-se pelas relações:
Modelação dos efeitos diferidos

\[
t'_1 = t_0 \\
t'_j = t_0 + 10^{(a(j-1))}, \text{ para } 1 < j < n \\
\text{com, } \quad \alpha = \frac{\log_{10} (t_r - t_0)}{n - 1} \\
t'_n = t_r.
\]

(5.17a-d)

Os tempos de retardo, \(\tau_i\), obtêm-se pelas expressões:

\[
\tau_1 \leq \begin{cases}
0.1 t_0 \\
3 \Delta t'_{j,\text{min}}
\end{cases},
\]

\[
\tau_i = 10^{(i-1) \tau_1}, \text{ para } i = 2, N \\
\tau_n \geq \frac{\Delta t'_{j,\text{max}}}{2},
\]

(5.18a-c)

onde \(N\) representa o número de cadeias de Kelvin consideradas na aproximação.

Para cada idade de carga \(t'_j\) calculam-se os coeficientes \(\frac{1}{E(t'_j)}\), estabelecendo-se a condição:

\[
\sum_{i=1}^{N} \frac{1}{E(t'_j)} (1 - e^{-\alpha (t'_j - t))}) = C(t_k, t'_j),
\]

(5.19)

que conduz à definição de um sistema de equações cuja resolução permite obter os coeficientes procurados, em função do valor da função de fluência teórica no instante \(t_k\). O procedimento descrito na obtenção da lei de fluência aproximada de um material é particularmente útil no estudo de estruturas executadas por fases, uma vez que lhe estão associadas várias fases de betonagem, havendo por isso necessidade de considerar materiais com características mecânicas e reológicas distintas. A história de tensão para cada um dos materiais decorre, do mesmo modo, da sequência do faseamento. Impõe-se assim, a necessidade de considerar leis de fluência correspondentes a cada material devendo cada uma ter em conta a história de tensão correspondente.

5.2.5 - Aproximação rectangular na definição da deformação incremental de fluência.

Com base na história de tensão estabelecida na figura 5.3, e de acordo com as expressões 5.3 e 5.13, a deformação de fluência no instante de tempo \(t_n\), vem definida pelo integral:

5.9
\[\varepsilon_{cc}(t_n) = \int_{t_b}^{t_n} C(t, t') \, d\sigma(t'). \] (5.20)

Adoptando a aproximação rectangular para a história de tensão genérica ilustrada na figura 5.5, a deformação de fluência pode ser obtida pelo cálculo do somatório definido através da seguinte expressão:

\[\varepsilon_{cc}(t_n) = \sum_{i=1}^{n} C(t_i, t_{i-1}) \Delta \sigma(t_i). \] (5.21)

A aproximação efectuada tem como base as seguintes hipóteses:

- As propriedades dos materiais mantêm-se constantes durante cada intervalo de tempo, admitindo-se a sua variação de intervalo para intervalo.
- Admite-se constante o nível de tensão em cada intervalo de tempo.

\[\sigma(t) \]

![Fig. 5.5 – Aproximação rectangular da história de tensão.](image)

Se se desenvolver o somatório da expressão 5.21, as deformações de fluência para os instantes de tempo \(t_n \) e \(t_{n-1} \) vêm dadas por:

\[\varepsilon_{cc}(t_n) = C(t_n, t_{i-1}) \Delta \sigma(t_i) + C(t_n, t_2) \Delta \sigma(t_2) + \ldots + C(t_n, t_{n-1}) \Delta \sigma(t_{n-1}) \] (5.22)

\[\varepsilon_{cc}(t_{n-1}) = C(t_{n-1}, t_{i-1}) \Delta \sigma(t_i) + \ldots + C(t_{n-1}, t_{n-2}) \Delta \sigma(t_{n-2}) \] (5.22a)

A deformação incremental de fluência obtém-se pela diferença das duas expressões:
\[
\Delta \varepsilon_{cc}(t_n) = \left[C(t_n, t_i) - C(t_n - 1, t_i) \right] \Delta \sigma(t_i) + \left[C(t_n, t_2) - C(t_n - 1, t_2) \right] \Delta \sigma(t_2) + \ldots + \frac{\Delta \sigma(t_1)}{C(t_n, t_{n - 1})}.
\]

Substituindo a função específica de fluência pela aproximação em série de Dirichlet, e depois de algumas operações matemáticas obtém-se, Póvoas (1991):

\[
\Delta \varepsilon_{cc}(t_n) = \Delta \sigma(t_i) \sum_{i=1}^{N} \frac{1}{E(t_i)} e^{-(t_n - t_i)\nu} \left(1 - e^{-\Delta \sigma(t_i)} \right) + \Delta \sigma(t_n - 2) \sum_{i=1}^{N} \frac{1}{E(t_i)} e^{-(t_n - 1 - t_n - 2)\nu} \left(1 - e^{-\Delta \sigma(t_i)} \right) + \Delta \sigma(t_n - 1) \sum_{i=1}^{N} \frac{1}{E(t_i)} \left(1 - e^{-\Delta \sigma(t_i)} \right),
\]

podendo ainda escrever-se da seguinte forma:

\[
\Delta \varepsilon_{cc}(t_n) = \sum_{i=1}^{N} \varepsilon_i^\ast(t_n - i) \left(1 - e^{-\Delta \sigma(t_i)} \right),
\]

em que,

\[
\varepsilon_i^\ast(t_n - i) = \varepsilon_i^\ast(t_n - 2) e^{-\Delta \sigma(t_1)} + \frac{\Delta \sigma(t_n - i)}{E(t_n - i)},
\]

com

\[
\varepsilon_i^\ast(t_i) = \frac{\Delta \sigma(t_i)}{E(t_i)}.
\]

À variável \(\varepsilon_i^\ast \) está associada toda a história de tensão que antecede o incremento de tempo corrente, pelo que, a sua actualização em cada instante de tempo onde se pretende o cálculo da deformação incremental de fluência é suficiente para evitar o armazenamento de da história de tensão até ao referido instante. Este factor é particularmente relevante quando se estabelece a análise de estruturas de grandes dimensões devido à grande capacidade de memória que, de outro modo, seria exigida.

De acordo com a expressão 5.24c, no caso de estruturas com faseamento de geometria às quais estão associadas materiais com parâmetros de fluência distintos, os
termos da aproximação numérica em série de Dirichlet, bem como o estado de tensão correspondente a instantes anteriores à sua entrada em funcionamento são considerados nulos.

5.3 - Modelo de retração

A retração consiste num fenômeno diferido associado ao betão cujo efeito se traduz na sua contração com o tempo, à qual corresponde uma extensão ε_{re} que é determinada de acordo com a lei de retração estabelecida pelo Comité Euro Internacional du Béton, CEB (1990). O desenvolvimento da extensão de retração é ilustrado na figura 5.6.

![Fig. 5.6 – Deformação por retração.](image)

Dado que a análise de uma estrutura é efectuada no domínio do tempo, torna-se necessário calcular a deformação incremental de retração relativa ao intervalo de tempo Δt_n através da expressão:

$$
\Delta \varepsilon_{re}(t_n) = \varepsilon_{re}(t_n) - \varepsilon_{re}(t_{n-1})
$$

sendo cada parcela definida a partir da lei de retração referida acima.

Como o presente modelo de cálculo é tridimensional, é necessário considerar as três componentes volumétricas de deformação por retração nas direcções x, y e z, vindo o vector de deformação devido à retração definido por:

$$
\varepsilon_{cs} = (\varepsilon_{cs}, \varepsilon_{cs}, \varepsilon_{cs}, 0, 0, 0)
$$
5.4 - Lei de retracção do CEB-FIP Model Code 1990

De um modo geral a extensão de retracção é definida pela expressão:

\[\varepsilon_{cr}(t, t_s) = \varepsilon_{cr} \beta_s(t - t_s), \]
(5.27)

em que \(\varepsilon_{cr}(t, t_s) \) designa a deformação de retracção na idade \(t \) que ocorre desde a idade \(t_s \) correspondente ao início da retracção, \(\varepsilon_{cr} \) é o designado coeficiente de retracção e representa a deformação de retracção de referência e \(\beta_s(t - t_s) \) é a função que descreve o desenvolvimento da retracção com o tempo.

A extensão de retracção de referência vem definida pela expressão:

\[\varepsilon_{cr} = \varepsilon_0(f_{cm}) \beta_{RH}, \]
(5.28)

com

\[\varepsilon_0(f_{cm}) = \left(160 + 10\beta_{sc} \left(9 - \frac{f_{cm}}{f_{com}} \right) \right)^{10^b}, \]
(5.29a)

sendo \(\beta_{sc} \) o coeficiente que depende do tipo de cimento e que, em função da sua classe, pode ser considerado com os seguintes valores:

\[\beta_{sc} = \begin{cases}
3; \text{ cimento normal e com endurecimento lento} \\
5; \text{ cimento com endurecimento rápido} \\
9; \text{ cimento de alta resistência e com endurecimento rápido.}
\end{cases} \]
(5.29b)

O parâmetro \(\beta_{RH} \) que permite ter em conta a influência da humidade relativa é expresso pela relação:

\[\beta_{RH} = \begin{cases}
-1.55 \left[1 - \left(\frac{RH}{RH_o} \right) \right]^3, & 40\% \leq RH < 99\% \\
0.25, & RH \geq 99\%.
\end{cases} \]
(5.30)
A função $\beta_s(t - t_s)$ define a evolução da retracção com o tempo sendo calculada pela expressão:

$$
\beta_s(t - t_{so}) = \left(\frac{(t - t_s) t_i}{350 (h/h_0)^2 + (t - t_{so}) t_i} \right)^{1/2},
$$

(5.31)

em que o parâmetro h é dado pela expressão 5.10b e os parâmetros t_i e h_0 tornam os valores definidos em 5.10c.

Relativamente à consideração do faseamento da geometria na análise diferida de estruturas, no que se refere à retracção, apenas se considera o cálculo da extensão de retracção correspondente aos elementos ativos. Deste modo, para os elementos que entram em funcionamento em fases distintas é necessário definir o instante de tempo em que se dá o início da retracção, que por sua vez terá que ser compatibilizado com o instante de tempo actual da análise.

5.5 - Modelo de maturação do betão

O fenómeno da maturação do betão traduz-se pela variação, no tempo, das propriedades mecânicas do betão, módulo de elasticidade $E_c(t)$, resistência do betão à compressão e tracção, $f'_{c}(t)$ e $f_{ct}(t)$, respectivamente, e é definido com base nas relações propostas pelo Comité Euro-International du Béton, CEB (1990).

Como a presente análise assenta na hipótese de comportamento elástico e linear dos materiais, apenas interessa considerar a evolução do valor do módulo de elasticidade do betão que no instante t é definido pela expressão:

$$
E_c(t) = \beta_{c}(t)^{1/2} E_c
$$

(5.32a)

$$
\beta_{c}(t) = e^{4 (t - \sqrt{8t})}
$$

(5.32b)

sendo E_c o módulo de elasticidade aos 28 dias de idade. O coeficiente s depende do tipo de cimento, tomando os seguintes valores:

$$
s = \begin{cases}
0.20 & \text{para cimento de alta resistência com endurecimento rápido} \\
0.25 & \text{para cimento com endurecimento rápido} \\
0.38 & \text{para cimento normal ou com endurecimento lento.}
\end{cases}
$$

(5.32c)
5.5.1 - Consideração do efeito da maturação do betão

A maturação do betão conduz à diminuição da componente elástica da deformação de origem mecânica, acompanhando o aumento do módulo de elasticidade longitudinal. A evolução das componentes diferida e mecânica da deformação é ilustrada na figura 5.7.

A modelação do envelhecimento do betão é efectuada de acordo com o estabelecido por Póvoas (1991) e tem por base o procedimento referido a seguir.

Recorrendo às expressões 5.1 e 5.3, e com base no gráfico da figura 5.7, obtém-se a variação da componente de deformação elástica, \(\varepsilon_a(t, t_o) \), no instante de tempo \(t \), pela expressão:

\[
\varepsilon_a(t, t_o) = \frac{\sigma(t_o)}{E(t_o)} - \frac{\sigma(t_o)}{E(t)} = \frac{E(t) - E(t_o)}{E(t) E(t_o)} \sigma(t_o),
\]

\((5.33) \)

vindo a deformação elástica no instante \(t \) definida a partir da deformação inicial através da expressão:

\[
\varepsilon_a(t) = \varepsilon_a(t_o) - \varepsilon_a(t, t_o).
\]

\((5.34) \)

Fazendo a generalização da expressão 5.33 para os instantes de tempo correspondentes aos extremos do intervalo de tempo \(\Delta t_{n-1} \), \(t_{n-1} \) e \(t_n \), define-se a variação de deformação elástica correspondente ao intervalo de tempo \(\Delta t_n \), através da relação, ver figura 5.8:

\[
\varepsilon_a(t_n, t_{n-1}) = \frac{E_a(t_n) - E_a(t_{n-1})}{E(t_n) E_a(t_{n-1})} \sigma(t_{n-1}),
\]

\((5.35) \)
com,

\[
\sigma(t_n - 1) = \sum_{i=1}^{n-1} \Delta \sigma(t_i).
\]
(5.36)

Fig. 5.8 – Ilustração da definição da variação de deformação mecânica.

Para o caso tridimensional faz-se uso da matriz \(C \), definida pela expressão 5.7, tomando a expressão 5.35 a seguinte forma:

\[
\varepsilon(t_n, t_{n-1}) = \frac{E_c(t_n) - E_c(t_{n-1})}{E_c(t_n) E_c(t_{n-1})} \ C \sigma(t_{n-1}).
\]
(5.37)

5.6 - Modelo de relaxação da armadura de pré-esforço

A relaxação do aço de pré-esforço traduz-se pela perda de tensão inicialmente instalada nas armaduras, considerando que estas estão sujeitas a um campo de deformação
Modelação dos efeitos diferidos

aproximadamente constante. A variação de tensão depende do tipo de aço, do nível de tensão inicial e da temperatura.

A variação de tensão nas armaduras de pré-esforço é dada pela expressão, Magura et al (1964):

$$
\Delta \sigma_{p,t} = - \frac{\sigma_{po}}{k} \log_{10} \left(\frac{\sigma_{po}}{f_{py}} - 0.55 \right) \quad \text{com} \quad \frac{\sigma_{po}}{f_{py}} > 0.60,
$$

(5.38)

onde $\Delta \sigma_{p,t}$ é a diminuição de tensão para o instante t associada à tensão inicial σ_{po}. A variável k é definida em função do tipo de aço, tomando os seguintes valores:

$$
\begin{align*}
&k = 10 \quad \text{e} \quad f_{py} = 0.85f_{pk}, \quad \text{aços de relaxação normal} \\
&k = 45 \quad \text{e} \quad f_{py} = 0.90f_{pk}, \quad \text{aços de baixa relaxação},
\end{align*}
$$

(5.38a)

sendo f_{pk} a tensão característica de rotura à tracção e f_{py} a tensão de cedência do aço de pré-esforço.

A fluência e retração do betão, bem como a história de carga, determinam uma variação da tensão instalada nas armaduras pré-esforçadas, que deve ser tomada em consideração no cálculo da relaxação associada a um determinado intervalo de tempo Δt_n.

Assim, e de acordo com o procedimento ilustrado na figura 5.9, torna-se necessário definir uma tensão inicial fictícia $\sigma_{po,n-1}$ a partir da tensão instalada no instante t_{n-1}, usando a expressão 5.38, com base na qual a variação de tensão por relaxação associada ao intervalo de tempo corrente é calculada.

![Fig. 5.9 - Correção da perda de tensão por relaxação.](image_url)

5.17
A tensão final relativa às armaduras pré-esforçadas obtém-se adicionando à tensão calculada com base na deformação mecânica, a variação de tensão por relaxação:

\[
\Delta \sigma_n, pr = \Delta \sigma_{pen, r} - \Delta \sigma_{pen - 1, r}
\]

(5.39a)

\[
\sigma_{pn} = E_p \varepsilon_n, n + \Delta \sigma_{p, n + 1, r}
\]

(5.39b)

5.7 - Modelo de análise no domínio do tempo

Para além do estudo do faseamento da geometria longitudinal e transversal de estruturas, fazendo intervir as diferentes características mecânicas dos materiais envolvidos, o presente modelo de análise no domínio do tempo permite definir leis de fluência, retração e relaxação associados a materiais com idades distintas. Assim, a cada fase está associado um dado intervalo de tempo que, por sua vez, é dividido em subintervalos de tempo de modo a permitir a solução do problema através da utilização de um algoritmo passo a passo na integração da história de tensão.

É de referir que a aplicação de forças exteriores em cada fase implica a adopção de um subintervalo de tempo nulo.

O procedimento geral utilizado na análise incremental diferida de uma estrutura, a qual está associado um processo de faseamento e consequentemente uma dada história de tensão, considera a aplicação das forças exteriores no primeiro incremento de cada fase e efectua a análise diferida nos subintervalos subsequentes.

A análise no domínio do tempo para o estudo dos fenómenos diferidos impõe a necessidade de estabelecer uma relação entre tensões e deformações com o objectivo de definir, para além da deformação mecânica, as deformações correspondentes a cada um dos fenómenos referidos anteriormente. O método utilizado para definir as deformações de origem não mecânica devidas à retração, fluência e relaxação é análogo ao que é descrito por Póvoas (1991). O método consiste, essencialmente, na consideração de forças fictícias correspondentes às deformações não mecânicas que impõem à estrutura um campo de deslocamentos a partir do qual é calculado o estado de deformação real da estrutura, sendo o estado de tensão definido com base apenas na relação constitutiva elástica entre tensões e deformações de origem mecânica.

Assim, partindo da validade do princípio da sobreposição dos efeitos, a deformação total num dado instante de tempo t é dada pela relação:
onde \(\varepsilon_{ci}(t) \) corresponde à deformação mecânica instantânea, \(\varepsilon_{cc}(t) \) é a componente de deformação de fluência e \(\varepsilon_{re}(t) \) designa a componente de deformação de retração.

A componente da deformação mecânica correspondente às acções exteriores aplicadas, vem definida pela relação:

\[
\varepsilon_{c0}(t) = \varepsilon_{c}(t) - \varepsilon_{cc}(t) - \varepsilon_{re}(t),
\]

ou na forma incremental, para um dado intervalo de tempo \(t_n \), por:

\[
\Delta \varepsilon_{c0}(t_n) = \Delta \varepsilon_{c}(t_n) - \Delta \varepsilon_{cc}(t_n) - \Delta \varepsilon_{re}(t_n),
\]

em que a componente \(\Delta \varepsilon_{c0}(t_n) \) se obtém com base no conhecimento do deslocamento incremental \(\Delta d(t_n) \), \(\Delta \varepsilon_{cc}(t_n) \) é definida do modo indicado na secção 5.2.5, e \(\Delta \varepsilon_{re}(t_n) \) é a deformação incremental de retração definida na secção 5.3.

Partindo da relação constitutiva entre tensões e deformações e considerando a matriz constitutiva elástica \(D^n \) definida com base no valor do módulo de elasticidade referente ao incremento de tempo corrente tem-se:

\[
\Delta \sigma_{ci}^n = D^n \left(\Delta \varepsilon_{c}^n - \Delta \varepsilon_{cc}^n - \Delta \varepsilon_{re}^n \right).
\]

O cálculo das forças internas correspondentes ao estado de tensão definido pela relação anterior é definido pelo integral:

\[
\int_\nu B^\top \Delta \sigma^n dV = \int_\nu B^\top D^n (\Delta \varepsilon_{c}^n - \Delta \varepsilon_{cc}^n - \Delta \varepsilon_{re}^n) dV.
\]

Os integrais:

\[
\int_\nu B^\top D^n C \sum_{i=1}^{N} \varepsilon_i^{(n-1)} (1 - e^{\Delta t/\nu}) dV = \Delta \varepsilon_{cc}^n,
\]

\[
\int_\nu B^\top D^n \Delta \varepsilon_{re}^n dV = \Delta \varepsilon_{re}^n.
\]
definem os incrementos de força fictícia, correspondentes à fluência e retração, que impõem à estrutura o campo de deslocamentos correcto. A estes, há ainda que acrescentar as forças fictícias relativas à variação de tensão associada à relaxação das armaduras de pré-esforço, sendo dadas pela expressão:

$$ \Delta f_p^n = - \int_{\partial v} B_p^T \Delta \sigma_{in, r}^n \, dl $$ \hspace{1cm} (5.45c)

No que se refere às forças resultantes de um estado de deformação correspondente à aplicação de uma dada variação de temperatura ΔT^n no intervalo Δt^n, a sua contabilização é efectuada do seguinte modo:

$$ \Delta f_I^n = \int_{\Sigma} B_v^T \Delta \sigma_{in, r}^n \, dV $$ \hspace{1cm} (5.45d)

Para esta força fictícia contribuem todos os materiais envolvidos, betão, armaduras ordinárias e armaduras de pré-esforço.

A deformação de origem térmica para o betão e armaduras ordinárias é calculada de acordo com o estabelecido no capítulo 2, secção 2.8, expressão 2.46. Para as armaduras pré-esforçadas, os valores da deformação térmica em cada um dos pontos de Gauss são calculados com base no conhecimento dos valores nodais da deformação de cada elemento parabólico, utilizando as funções de forma isoparamétricas correspondentes a este elemento. Os valores da temperatura nos nós do elemento parabólico são calculados partindo do conhecimento dos valores nodais do elemento em que se consideram embrevidos através da aplicação directa da expressão 2.46 utilizada na secção 2.8 do capítulo 2. Note-se que as coordenadas locais dos nós do elemento parabólico são conhecidas.

Finalmente, a equação de equilíbrio incremental é dada pela expressão:

$$ K \Delta d^n = \Delta f_I^n + \Delta f_p^n + \Delta f_{oc}^n + \Delta f_{es}^n $$ \hspace{1cm} (5.46)

5.8 - Exemplos de aplicação

Nesta secção pretende-se validar o modelo de fluência e retração do betão e relaxação das armaduras pré-esforçadas em estruturas discretizadas por elementos tridimensionais e construídas por fases.
No primeiro grupo de exemplos inclui-se a análise diferida de uma barra de betão armado sujeita à compressão e comparam-se os resultados numéricos dos deslocamentos axiais com os obtidos analiticamente, através do cálculo das deformações de fluência com base na lei de fluência do código modelo do CEB-FIP. Analisa-se também o comportamento de uma viga simplesmente apoiada de betão simples, no caso A, e armada e pré-esforçada no caso B, relativamente ao desenvolvimento da fluência do betão. Compara-se ainda o deslocamento máximo a meio vão da viga obtido considerando a viga armada e pré-esforçada com o deslocamento obtido para a viga sem armaduras. É efectuado o estudo, neste grupo de exemplos, de uma viga pré-esforçada, Lin (1955), no período de tempo que decorre entre a aplicação do pré-esforço e a realização do ensaio, comparando-se a solução obtida com os resultados disponíveis do ensaio.

O estudo do faseamento do perfil longitudinal da estrutura e dos cabos de pré-esforço é concretizado através da análise da viga pré-esforçada hiperestática já apresentada na secção 4.6.2.1 do capítulo 4, em relação à qual se pretende clarificar a influência dos efeitos diferidos no respectivo comportamento. O estudo destes efeitos no faseamento da secção transversal é efectuado sobre a viga pré-esforçada simplesmente apoiada cuja secção transversal é executada em duas fases, já estudada na secção 4.6.2.2 do capítulo 4.

5.8.1 Exemplos de validação

5.8.1.1 Peça linear comprimida e viga simplesmente apoiada

Com o objectivo de validar o modelo de fluência adoptado na definição da resposta diferida de uma estrutura, é apresentado o estudo de uma peça linear sujeita à compressão simples. Na primeira análise a barra é constituída apenas por betão e na segunda considera-se a barra reforçada com armaduras ordinárias.

Relativamente à peça de betão simples pretende-se efectuar a comparação dos deslocamentos obtidos numericamente com os que se obtêm através do cálculo analítico com base no código modelo 1990 do CEB-FIP. O estudo da barra de betão armado tem como objectivo avaliar a interacção betão-armaduras tendo em conta a fluência do betão.

A peça linear tem um comprimento de 5.0m e uma secção de $0.3 \times 0.3\,\text{m}^2$ e as armaduras ordinárias são constituídas por 6 varões de $\phi 25$ ($A_s = 29.56\text{cm}^2$). Para as armaduras optou-se por uma discretização discreta, ver figura 5.10.
As características mecânicas dos materiais envolvidos na análise indicam-se no quadro 5.1.

![Fig. 5.10 - Malha de elementos finitos e características geométricas da seção.](image)

<table>
<thead>
<tr>
<th>Quadro 5.1 - Propriedades mecânicas dos materiais.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betão</td>
</tr>
<tr>
<td>Mód.de elasticidade</td>
</tr>
<tr>
<td>Área</td>
</tr>
</tbody>
</table>

Em cada um dos casos referidos anteriormente, o cálculo é efectuado em duas fases. Na primeira fase considera-se a aplicação de uma força axial de 1000kN aos 28 dias de idade do betão e analisa-se o comportamento da estrutura até aos 200 dias estabelecendo-se, para o efeito, três subintervalos de tempo, $\Delta t_1=5.56$ dias, $\Delta t_2=25.37$ dias e $\Delta t_3=141.07$ dias. Na segunda fase aplica-se uma força axial de 1000kN, agora para uma idade do betão de 200 dias, e estuda-se a resposta da estrutura até aos 372 dias, dividindo-se também o tempo de análise em três subintervalos de amplitude igual à da primeira fase.

O esquema de cálculo, a história de carga e os parâmetros que servem de base à definição da lei de fluência apresentam-se respectivamente nas figuras 5.11 e no quadro 5.2.

Para a aproximação da lei de fluência consideram-se cinco termos da série de Dirichlet, com tempos de retardoção $\tau_1=0.1$, $\tau_2=1.0$, $\tau_3=10.0$, $\tau_4=100.0$ e $\tau_5=1000.0$.
Fig. 5.11 – Esquema de cálculo faseado e história de carregamento – peça linear comprimida.

Quadro 5.2 – Parâmetros que definem o comportamento diferido dos materiais.

<table>
<thead>
<tr>
<th>Betão</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Espessura equivalente (h_o)</td>
<td>150.0 mm</td>
</tr>
<tr>
<td>Humidade relativa (RH)</td>
<td>60%</td>
</tr>
<tr>
<td>Tensão média do betão à compressão (f_{cm})</td>
<td>28.0 MPa</td>
</tr>
<tr>
<td>Idade do betão na aplicação do pré-esforço, (t_e)</td>
<td>28 dias</td>
</tr>
</tbody>
</table>

Parâmetros de fluência

\(\phi_{RH} \)	1.941
\(\beta_{e} \)	2.629
\(\beta_{H} \)	475.719

5.23
Na figura 5.12 compararam-se os deslocamentos obtidos na análise numérica e os que resultam do cálculo analítico. Como se pode verificar através da análise das referidas figuras, a solução numérica é praticamente coincidente com a solução analítica, demonstrando-se assim a validade da presente formulação.

Relativamente à segunda análise, pela observação do gráfico da figura 5.13 onde se pode ver a evolução do deslocamento axial, com o tempo, da barra reforçada com armaduras ordinárias e fazendo a comparação com os valores obtidos no gráfico da figura 5.12 conclui-se que aqueles, como era de esperar, são significativamente menores dado o acréscimo de rigidez da barra conferido pelas armaduras.

![Fig. 5.12 - Comparação dos deslocamentos dados pela solução analítica e numérica.](image1)

![Fig. 5.13 - Deslocamentos obtidos para a peça linear reforçada.](image2)
O efeito das armaduras ordinárias na peça, traduz-se pela transferência de tensões entre o betão e as armaduras, verificando-se mais precisamente que, o aumento registado no valor das tensões nas armaduras tem correspondência directa com a diminuição das tensões no betão, como se pode constatar através das figuras 5.14 e 5.15.

![Fig. 5.14 – Distribuição de tensões nas armaduras ordinárias.](image)

![Fig. 5.15 – Distribuição de tensões no betão.](image)

Na análise da viga simplesmente apoiada consideram-se dois casos. No caso A, a viga é constituída apenas por betão e no caso B a viga é armada e pré-esforçada. A viga tem um comprimento de 8.0m e uma secção de 0.35x0.40m². A armadura de pré-esforço tem um traçado rectilíneo com uma excentricidade constante de 12cm, sendo a força de pré-esforço aplicada de 1000kN. As armaduras ordinárias são constituídas por 4Φ16
(8.64cm²) localizadas na parte inferior da viga e por 3ϕ12 (3.36cm²) situadas na parte superior.

A malha de elementos finitos e as características da secção indicam-se na figura 5.16. As características dos materiais e os parâmetros que caracterizam a sua resposta diferida encontram-se resumidos nos quadros 5.3 e 5.4, respectivamente.

Fig. 5.16 – Malha de elementos finitos da viga e características da secção - caso A e caso B.

Quadro 5.3 – Propriedades mecânicas dos materiais.

<table>
<thead>
<tr>
<th></th>
<th>Betão</th>
<th>Armaduras ordinárias</th>
<th>Armaduras de pré-esforço</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mód.de elasticidade</td>
<td>33.5 GPa</td>
<td>Mód.de elasticidade</td>
<td>200 GPa</td>
</tr>
<tr>
<td>Área</td>
<td>0.35x0.40 m²</td>
<td>Área</td>
<td>12.0 cm²</td>
</tr>
<tr>
<td>Área</td>
<td></td>
<td></td>
<td>7.45 cm²</td>
</tr>
</tbody>
</table>

No caso A, a viga é calculada para o peso próprio e no caso B para o peso próprio e para uma força de pré-esforço P₀ de 1000kN. A evolução do coeficiente de fluência φ(t,t₀) com o tempo ilustra-se na figura 5.17.

O deslocamento máximo, com inversão de sinal, a meio vão da viga resultante do cálculo no caso A indica-se na figura 5.18.
Quadro 5.4 – Parâmetros que definem o comportamento diferido dos materiais.

<table>
<thead>
<tr>
<th>Betão</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Espessura equivalente h_o</td>
<td>186.67 mm</td>
</tr>
<tr>
<td>Humidade relativa RH</td>
<td>70%</td>
</tr>
<tr>
<td>Tensão média do betão à compressão f_{cm}</td>
<td>43.0 MPa</td>
</tr>
<tr>
<td>Idade do betão na aplicação do pré-esforço, t_e</td>
<td>14 dias</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parâmetros de fluência</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_{RH}</td>
<td>1.656</td>
</tr>
<tr>
<td>β_{bc}</td>
<td>2.281</td>
</tr>
<tr>
<td>β_{H}</td>
<td>544.348</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aço de pré-esforço</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>t_e</td>
<td>14 dias</td>
</tr>
<tr>
<td>k</td>
<td>10</td>
</tr>
</tbody>
</table>

Pela análise das figuras 5.17 e 5.18, constata-se que a evolução, no tempo, do valor do deslocamento verificado a meio vão da viga reproduz a evolução do coeficiente de fluência.

Na figura 5.19 compararam-se os deslocamentos obtidos no caso A e no caso B. É de referir que os deslocamentos são menores no caso B, traduzindo por um lado a acção do pré-esforço, e por outro, o aumento de rigidez associado à introdução de armaduras.

Fig. 5.17 – Evolução do coeficiente de fluência com o tempo.

5.27
Fig. 5.18 – Evolução com o tempo do deslocamento a meio vão.

Fig. 5.19 – Comparação dos deslocamentos para o caso A e caso B.

5.8.1.2 - Viga de Lin

Nesta secção é analisado o comportamento diferido da viga de Lin. Trata-se de uma viga pré-esforçada de dois tramos de igual vão com 7.5m. A malha de elementos finitos usada na análise, o padrão de camadas, bem como as características geométricas da secção e o traçado do cabo são indicados na figura 5.20.

O cabo de pré-esforço é constituído por 32 fios de 5mm perfazendo no total uma área de 6.21cm² e a força de pré-esforço inicial, P₀, é igual ao valor da força utilizada no ensaio, 644.35kN. Esta viga é ainda reforçada com armaduras ordinárias constituídas por dois varões de 14mm, (As=3.07cm²). O intervalo de análise corresponde ao tempo que decorre entre a aplicação do pré-esforço aos 14 dias e a realização do ensaio aos 28 dias, sendo
dividido em três subintervalos, \(\Delta t_1 = 2.52 \) dias, \(\Delta t_2 = 3.83 \) dias e \(\Delta t_3 = 9.65 \) dias. A lei de fluência é aproximada por uma série de Dirichlet com três termos, considerando-se para tempos de retardo \(\tau_1 = 0.1 \), \(\tau_2 = 1.0 \) e \(\tau_3 = 10.0 \).

![Diagram](image)

Fig. 5.20 – Malha de elementos finitos e características geométricas da secção e do cabo.

Nos quadros 5.5 e 5.6 encontram-se resumidas as características mecânicas dos materiais bem como os parâmetros que servem de base à definição do seu comportamento diferido.

Quadro 5.5 – Características dos materiais.

<table>
<thead>
<tr>
<th></th>
<th>Betão</th>
<th>Armaduras pré-esforçadas</th>
<th>Armaduras ordinárias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mód. de elast.</td>
<td>37.9 GPa</td>
<td>Mód. de elast. 195.8 GPa</td>
<td>Mód. de elast. 199.8 GPa</td>
</tr>
</tbody>
</table>

Os resultados relativos aos deslocamentos verificados a meio vão e às tensões instaladas nas armaduras de pré-esforço encontram-se ilustrados nas figuras 5.21 e 5.22, respectivamente. Através da figura 5.21 efectua-se ainda a comparação entre os deslocamentos obtidos por Póvoas (1991) e os obtidos na presente análise.

Verifica-se que o deslocamento a meio vão experimenta um incremento significativo nos primeiros dias, devido ao efeito da relaxação das armaduras em conjunto com a fluência e retração do betão, tomando o valor de 23.9cm, que comparado com o valor de experimental (28cm), traduz uma subavaliação da fluência nestas idades. A comparação entre os valores dos deslocamentos obtidos na presente análise e os que foram obtidos por Póvoas (1991), permite registar uma boa concordância entre os valores constatando-se, contudo, que o presente modelo conduz a uma solução ligeiramente mais flexível.
Quadro 5.6 – Parâmetros que definem o comportamento diferido dos materiais.

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espessura equivalente (h_0)</td>
<td>135.3 mm</td>
</tr>
<tr>
<td>Humidade relativa (RH)</td>
<td>60%</td>
</tr>
<tr>
<td>Tensão média do betão à compressão (f_{cm})</td>
<td>41.3 MPa</td>
</tr>
<tr>
<td>Idade do betão à aplicação do pré-esforço (t_e)</td>
<td>14 dias</td>
</tr>
</tbody>
</table>

Parâmetros de fluência

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi_{RH})</td>
<td>1.974</td>
</tr>
<tr>
<td>(\beta_{k})</td>
<td>2.313</td>
</tr>
<tr>
<td>(\beta_{H})</td>
<td>453.6</td>
</tr>
</tbody>
</table>

Lei de retracção

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idade do betão em que se dá o início da retracção (t_e)</td>
<td>3 dias</td>
</tr>
<tr>
<td>Coef. dependente do tipo de betão (\beta_{k})</td>
<td>3.0</td>
</tr>
<tr>
<td>Coeficiente de retracção (\varepsilon_{cm})</td>
<td>0.000351</td>
</tr>
</tbody>
</table>

Armaduras pré-esforçadas

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idade de aplicação do pré-esforço (t_e)</td>
<td>14 dias</td>
</tr>
<tr>
<td>Aço de baixa relaxação (k)</td>
<td>10</td>
</tr>
</tbody>
</table>

Pela análise da figura 5.22, observa-se que a tensão instalada na armadura de pré-esforço junto da secção de encastramento sofre uma acentuada diminuição nos intervalos imediatamente posteriores ao início da análise sendo, no entanto, ainda superiores aos que se verificam no ensaio devido ao facto de as perdas devidas à fluência não corresponderem às do ensaio, pela razão apontada anteriormente.

![Graph](image)

Fig. 5.21 – Deslocamento vertical da secção a meio vão da viga.
5.8.2 - Avaliação do comportamento diferido de estruturas executadas por fases

5.8.2.1 - Faseamento do perfil longitudinal

Nesta secção pretende-se avaliar o comportamento de uma viga pré-esforçada simétrica com dois tramos, já apresentada na secção 4.6.2.1 do capítulo 4, para um período de 10 anos. Posteriormente, é efectuada também uma análise diferida sobre a estrutura global sem consideração do faseamento, cujo objectivo assenta na caracterização e comparação da resposta em cada um dos casos.

As características geométricas da secção da viga, o traçado das armaduras de pré-esforço e as características mecânicas dos materiais mantêm-se inalterados. Nesta análise, ainda que se considere o faseamento da geometria, os parâmetros que servem de base à definição das leis de fluência e retracção do betão B₁, do primeiro tramo, e do betão B₂, do segundo tramo, são iguais uma vez que, quer a aplicação do pré-esforço nos cabos A e B, quer o início da retracção, se estabelecem após decorridos 10 dias da betonagem de cada tramo. A indicação dos valores destes parâmetros é dada no quadro 5.7.

A análise é dividida em três fases. A primeira fase decorre entre a aplicação do pré-esforço no primeiro tramo, aos 10 dias de idade do betão, e os 45 dias. Na segunda fase a análise é efectuada após a aplicação do pré-esforço no segundo tramo, aos 45 dias, até aos 75 dias, e finalmente, a terceira fase tem início aquando da aplicação do valor quase permanente da sobrecarga, aos 75 dias, e termina aos 10 anos de vida da estrutura. O esquema de faseamento seguido na análise é indicado na figura 5.23.
Quadro 5.7 – Parâmetros que definem o comportamento diferido dos materiais.

<table>
<thead>
<tr>
<th>Betão</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espessura equivalente (h_o)</td>
</tr>
<tr>
<td>Humidade relativa RH</td>
</tr>
<tr>
<td>Tensão média do betão à compressão (f_{cm})</td>
</tr>
<tr>
<td>Idade do betão à aplicação do pré-esforço (t_o)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parâmetros de fluência</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi_{RH})</td>
</tr>
<tr>
<td>(\beta_\sigma)</td>
</tr>
<tr>
<td>(\beta_H)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lei de retracção - Betão 1 e Betão 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betão 1 e Betão 2</td>
</tr>
<tr>
<td>(t_o)</td>
</tr>
<tr>
<td>(\beta_{ret})</td>
</tr>
<tr>
<td>(\varepsilon_{es7})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Armaduras pré-esforçadas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabo A e Cabo B</td>
</tr>
<tr>
<td>(t_o)</td>
</tr>
<tr>
<td>Aço de baixa relaxação k</td>
</tr>
</tbody>
</table>

A aproximação numérica da lei de fluência é realizada através da adopção de uma série de Dirichlet com cinco termos e tempos de retardação \(\tau_1=0.3 \), \(\tau_2=3.0 \), \(\tau_3=30.0 \), \(\tau_4=300.0 \) e \(\tau_5=3000.0 \).

Na figura 5.24 encontram-se ilustrados os deslocamentos dos nós do plano médio vertical na fibra extrema inferior da secção da viga. Verifica-se um aumento significativo dos deslocamentos no primeiro tramo devido ao efeito combinado da fluência e retração do betão e relaxação das armaduras de pré-esforço que ocorre até aos 45 dias.

A entrada em funcionamento do segundo tramo conduz à alteração da deformada relativa ao primeiro tramo, traduzindo-se numa diminuição dos deslocamentos, já que nesta fase a acção para a qual a estrutura total é calculada, é constituída pelo peso próprio do segundo tramo e o pré-esforço do cabo B. A diminuição não é tão significativa como a verificada na secção 4.6.2.1, uma vez que as deformadas de fluência não são elásticas.
Modelação dos efeitos diferidos

estabelecendo-se pela alteração as características intrínsecas do betão e influenciadas pelo estado de tensão instalado.

<table>
<thead>
<tr>
<th>1ª fase</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_0 = 10$ dias</td>
<td>$\Delta t_1 = 35$ dias</td>
</tr>
<tr>
<td>$PP_{F1} + P_{01}$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2ª fase</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_1 = 45$ dias</td>
<td>$\Delta t_2 = 30$ dias</td>
</tr>
<tr>
<td>$PP_{F2} + P_{02}$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3ª fase</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_2 = 75$ dias</td>
<td>$\Delta t_3 = 3575$ dias</td>
</tr>
<tr>
<td>φ_{eq}</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5.23 – Esquema estrutural do faseamento longitudinal.

O desenvolvimento da fluência com o tempo demonstra que os acréscimos de deslocamentos no 2º tramo são mais significativos, dada a menor idade do betão deste.
Capítulo 5

tramo, conduzindo a uma aproximação dos diagramas de deslocamentos apresentados pelos dois tramos, já que a progressão dos deslocamentos no primeiro tramo tem sentido inverso. A aplicação da sobrecarga conduz naturalmente ao aumento, instantâneo e proporcional à rigidez, dos deslocamentos nos dois tramos e origina, nos incrementos posteriores da análise até $t=3650$ dias, um aumento dos deslocamentos por fluência que são mais significativos no 2º tramo, pela razão apontada anteriormente.

Fig. 5. 24 – Deslocamentos dos nós pertencentes à fibra inferior da viga.

Nas figuras 5.25 e 5.26 pode-se ver a distribuição de tensões nos pontos de Gauss dos cabos A e B, para cada fase e para os instantes de tempo considerados significativos. Da sua análise registra-se que, quer o cabo A quer o cabo B experimentam significativas perdas de tensão em idades jovens do betão devido ao desenvolvimento da fluência e da retracção bem como à relaxação. É de referir que na passagem da primeira para a segunda fase, altura em que a viga se torna hiperestática, o aparecimento de momentos negativos no apoio conduz a uma recuperação no valor das tensões nos cabos nesta zona. A aplicação da sobrecarga tem um efeito semelhante, ainda que menos evidente. No final da análise ($t=10$ anos), as tensões no cabo continuam a diminuir, embora a um ritmo menos acelerado. Note-se que a presente análise é efectuada para combinações quase-permanentes estando, consequentemente, a secção de betão totalmente comprimida.

Relativamente às tensões instaladas no betão, são analisadas as secções de meio vão pertencentes aos dois tramos. A distribuição de tensões ao longo da altura das secções S_1 e S_2, situadas respectivamente a meio vão do primeiro e do segundo tramos, para cada intervalo de tempo, indica-se da figura 5.27 à 5.34. A análise das figuras permite avaliar que, na primeira fase, devido ao desenvolvimento dos efeitos diferidos no betão e nos
cabos de pré-esforço, em ambas as secções se verifica uma rotação do diagrama de tensões, resultando da sua integração um momento positivo superior ao estabelecido inicialmente, ver figura 5.27. Através das figuras 5.28 e 5.30, que ilustram a aplicação do pré-esforço no cabo B, na 2ª fase, e da sobrecarga (3ª fase), mostra-se que é introduzido ao nível da secção S₁ um diagrama de tensões simétrico, sendo no primeiro caso equivalente a um momento negativo, devido à deformada elástica induzida pela entrada em funcionamento do 2º tramo, e no segundo caso a um momento positivo. Na secção S₂, ver figura 5.33, o efeito da aplicação da sobrecarga é semelhante. Com o decorrer do tempo é de referir que, nas secções em estudo, o diagrama de tensões experimenta uma rotação que traduz uma variação negativa do momento, conduzindo, consequentemente, a uma diminuição do momento total instalado.

Fig. 5.25 – Distribuição de tensões no cabo A.

Fig. 5.26 – Distribuição de tensões no cabo B.

5.35
Fig. 5.27 – Distribuição de tensões na secção a meio vão – 1º tramo – 1ª fase.

Fig. 5.28 – Distribuição de tensões na secção a meio vão – 1º tramo – 1ª fase / 2ª fase.

Fig. 5.29 – Distribuição de tensões na secção a meio vão – 1º tramo – 2ª fase.
Fig 5.30 – Distribuição de tensões na secção a meio vão – 1º tramo – 2ª fase / 3ª fase.

Fig 5.31 – Distribuição de tensões na secção a meio vão – 1º tramo – 3ª fase.

Fig. 5.32 – Distribuição de tensões na secção a meio vão – 2º tramo – 2ª fase.
Fig. 5.33 – Distribuição de tensões na secção a meio vão – 2º tramo – 2ª fase/3ª fase.

Fig. 5.34 – Distribuição de tensões na secção a meio vão – 2º tramo – 3ª fase.

A evolução, com o tempo, dos momentos flectores totais, obtidos por integração do diagrama de tensões, nas secções S₁ e S₂ encontram-se ilustrados respectivamente nos gráficos das figuras 5.35 e 5.36. Nas figuras 5.37 e 5.38 apresenta-se a evolução das reacções no apoio lateral esquerdo e no apoio central.

Na primeira fase correspondente à aplicação do pré-esforço no cabo A e análise diferida até aos 45 dias de idade do betão, constata-se o aumento dos valores dos momentos na secção S₁. O comportamento é análogo na secção S₂ durante a segunda fase quando se dá a aplicação de pré-esforço no cabo B. O aumento dos valores dos momentos totais nestas secções deve-se, essencialmente, às perdas de tensão nas armaduras de pré-esforço devido à relaxação destas e fluência e retração do betão, que traduzem uma diminuição significativa dos momentos isostáticos associados ao pré-esforço, em idades jovens do betão. Na terceira fase, apesar de se continuar a registar perdas de tensão nas
armaduras de pré-esforço, ainda que com valores inferiores, e por conseguinte com a diminuição do efeito isostático do pré-esforço, constata-se a diminuição progressiva dos momentos que reflecte o decréscimo nos valores das reacções laterais e aumento da reacção central, ver figuras 5.35 a 5.38. A evolução dos valores das reacções nos apoios e dos momentos totais nas secções evidencia a redistribuição de esforços que decorre do desenvolvimento dos fenómenos diferidos no domínio do tempo. Refira-se que as descontinuidades dos diagramas correspondem à aplicação instantânea da sobrecarga, na 3ª fase, e aplicação de pré-esforço no cabo B, durante a 2ª fase.

Fig. 5.35 – Valores dos momentos na secção a meio vão – 1º tramo.

Fig. 5.36 – Valores dos momentos na secção a meio vão – 2º tramo.
Em paralelo com a análise anterior é efectuado um estudo no domínio do tempo sobre a mesma viga e para o mesmo intervalo de tempo, mas sem faseamento da geometria da estrutura. A aplicação do pré-esforço nos cabos A e B, a mobilização das cargas permanentes e a aplicação da sobrecarga é realizada numa só fase. O número de intervalos adoptado neste cálculo corresponde à soma dos intervalos considerados no cálculo faseado.

Os parâmetros que servem de base à definição das leis de fluência e retração para o betão e da lei de relaxação para as armaduras de pré-esforço são os mesmos que os considerados no estudo da viga faseada, já que estes apenas dependem das características da secção e das propriedades mecânicas dos materiais. O esquema de cálculo utilizado é indicado na figura 5.39.
Na aproximação numérica da lei de fluência é usada uma série de Dirichlet com cinco termos e tempos de retardação $\tau_1=0.3$, $\tau_2=3.0$, $\tau_3=30.0$, $\tau_4=300.0$ e $\tau_5=3000.0$.

![Diagrama](image)

Fig. 5.39 – Esquema de cálculo e cargas aplicadas.

Nas figuras que se seguem indica-se a evolução das tensões na secção, figura 5.40, das reacções nos apoios, figuras 5.41 e 5.42, e da evolução dos momentos na secção S_1, figura 5.43. Por simetria da estrutura e do carregamento, na secção S_2 a evolução dos momentos é análoga.

![Gráfico](image)

Fig. 5.40 – Variação das tensões instaladas na secção S_1.

A análise da figura 5.40 permite constatar a significativa diminuição de tensões de compressão nas fibras inferiores da secção, equivalente ao aumento dos momentos flectores positivos. O aumento dos momentos na secção S_1, ver figura 5.43, que resulta da
diminuição do momento isostático devido às perdas diferidas no pré-esforço, é mais significativo na fase incial, altura em que a fluência tem maior importância devido à idade jovem do betão.

As reacções nos apoios laterais têm uma variação pouco significativa de 225kN para 223kN, durante o intervalo de análise, que se deve essencialmente à variação da força de pré-esforço, ver figuras 5.41 e 5.42. Refira-se ainda que o valor final dos momentos totais na secção de meio vão é inferior ao apresentado na mesma secção quando se efectua o cálculo faseado da viga. Note-se que neste cálculo, os valores dos momentos nas secções S₁ e S₂ tendem para o valor do momento do diagrama da figura 5.43, registado no instante t=10 anos, na secção de meio vão, ainda que por valores superiores.

Fig. 5.41 – Evolução da reacção no apoio lateral esquerdo.

Fig. 5.42 – Evolução da reacção no apoio central.
5.8.2.2 - Faseamento do perfil transversal

Nesta secção tem-se como objectivo avaliar o efeito da fluência e da retração do betão e da relaxação das armaduras de pré-esforço em estruturas com faseamento da secção transversal.

Para o efeito utilizou-se a estrutura constituída pela viga pré-esforçada simplesmente apoiada, apresentada na secção 4.6.2.2 do capítulo 4. As características geométricas da secção e dos cabos de pré-esforço, assim como as características mecânicas dos materiais mantêm-se inalteradas, havendo necessidade, no entanto, de se ter em conta a evolução dos módulos de elasticidade de cada um dos betões que compõem a estrutura de modo a ser possível a modelação do seu envelhecimento.

O cálculo da viga é efectuado em três fases, para um período de tempo de 1000 dias. Para a primeira fase considera-se um intervalo de 26 dias, desde a aplicação do pré-esforço no cabo A, aos 14 dias, até aos 40 dias. Na segunda fase o intervalo de tempo é de 30 dias, desde a aplicação do pré-esforço no cabo B até aos 70 dias, altura em que se dá início à terceira fase com a aplicação do valor quase permanente da sobrecarga e se estuda o comportamento diferido da viga até aos 1000 dias. O número de incrementos total utilizado no cálculo foi de 12, adoptando-se na primeira fase 4 incrementos, 3 incrementos na segunda e 5 incrementos na terceira fase.

O esquema do faseamento adoptado e a história de carga correspondentemente encontram-se ilustrados na figura 5.44.
Os parâmetros associados ao comportamento reológico dos materiais e que está na base da definição das leis de fluência e de retração do betão de acordo com o estabelecido no código modelo 1990, e da relaxação para as armaduras de pré-esforço estão resumidos no quadro 5.8.

Para a aproximação numérica da lei de fluência consideraram-se 5 termos da série de Dirichlet aos quais estão associados os tempos de retardação $\tau_1=0.1$, $\tau_2=1.0$, $\tau_3=10.0$, $\tau_4=100.0$ e $\tau_5=1000.0$.

A análise de resultados é efectuada com base nos valores das tensões instaladas no betão, nas tensões instaladas nas armaduras de pré-esforço e nos deslocamentos exibidos pela estrutura ao longo do período de tempo adoptado.
Quadro 5.8 – Parâmetros que definem o comportamento diferido dos materiais.

<table>
<thead>
<tr>
<th>Betão</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Espessura equivalente h_o</td>
<td>230.8 mm</td>
</tr>
<tr>
<td>Humidade relativa RH</td>
<td>70%</td>
</tr>
<tr>
<td>Tensão média do betão à compressão f_{cm}</td>
<td>43.0 MPa</td>
</tr>
<tr>
<td>Idade do betão à aplicação do pré-esforço t_e</td>
<td>14 dias</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parâmetros de fluência</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betão 1 e Betão 2</td>
</tr>
<tr>
<td>ϕ_{RH}</td>
</tr>
<tr>
<td>β_{b}</td>
</tr>
<tr>
<td>β_{H}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lei de retracção</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betão 1 e Betão 2</td>
</tr>
<tr>
<td>t_e</td>
</tr>
<tr>
<td>β_{re}</td>
</tr>
<tr>
<td>ϵ_{cis}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Armaduras pré-esforçadas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabo A e Cabo B</td>
</tr>
<tr>
<td>t_e</td>
</tr>
<tr>
<td>k</td>
</tr>
</tbody>
</table>

Na figura 5.45 apresenta-se a distribuição de tensões para o primeiro e quarto incrementos da primeira fase, aos quais correspondem os tempos de análise $t=17$ dias e $t=40$ dias, respectivamente. Na primeira fase, quando apenas metade da secção está activa, o desenvolvimento dos efeitos diferidos traduz-se numa variação de momentos positivos devido às perdas de tensão do cabo A, diminuindo deste modo as tensões de compressão nas fibras inferiores da secção de betão ao mesmo tempo que aumentam as tensões de compressão nas armaduras ordinárias, tornando-se evidente a transferência de tensões entre o betão e as armaduras. A entrada em funcionamento da parte superior da viga, ao mesmo tempo que se dá a aplicação do pré-esforço no cabo B, ver figura 5.46, revela-se pelo estabelecimento de um diagrama de tensões de compressão ao longo de toda a altura da secção que somado às tensões instaladas previamente na mesma, conduz ao aumento das tensões de compressão previamente instaladas. Note-se que, no plano médio da viga, na zona de descontinuidade do diagrama de tensões, o acréscimo de tensão relativo ao betão B_2 é menor que o acréscimo de tensão verificado no betão B_1 devido à maior rigidez deste.
O efeito dos fenómenos diferidos, em termos de tensões instaladas no betão e armaduras, durante a segunda fase, é ilustrado na figura 5.47.

Pela análise da figura, constata-se que a descontinuidade do diagrama de tensões correspondente à parte superior e inferior da viga sofre um agravamento que se deve ao facto da fluência na parte superior se desenvolver com maior intensidade, dada a idade mais jovem do betão. O impedimento ao desenvolvimento livre da fluência e retração da parte superior, pela parte inferior constituída pelo betão B₁, mais rígido, é equivalente ao decréscimo das tensões de compressão no betão B₂ e aumento destas no betão B₁, na zona de descontinuidade do diagrama. Pela observação da figura 5.48, correspondente à aplicação do valor quase permanente da sobrecarga, demonstra-se o funcionamento sólido da secção. Dado que o diagrama de tensões imposto pela aplicação da sobrecarga é simétrico, o acréscimo de tensões de compressão nas fibras superiores corresponde à diminuição do valor das tensões de compressão verificada nas inferiores.

Finalmente, através da figura 5.49 pode-se avaliar o comportamento diferido da secção até aos 1000 dias. Regista-se uma diminuição nos valores das tensões de compressão no diagrama inferior e um aumento das tensões de compressão das fibras superiores, facto que traduz uma redistribuição de tensões ao longo da secção que é acompanhada pela transferência de tensões na parte inferior da viga entre o betão e as armaduras. Note-se que com o tempo há uma tendência para a aproximação dos valores das tensões na zona de descontinuidade do diagrama.
Fig. 5.46 – Distribuição de tensões em altura – secção a meio vão – 1ª fase/ 2ª fase.

Fig. 5.47 – Distribuição de tensões em altura – secção a meio vão – 2ª fase.

Fig. 5.48 – Distribuição de tensões em altura – secção a meio vão – 2ª fase/ 3ª fase.
Como conclusão pode-se referir que o predimensionamento do valor do pré-esforço foi correctamente efectuado, a avaliar pela obtenção de um diagrama de compressões na secção de meio vão da viga, sendo a mais desfavorável, ainda que a análise diferida fosse apenas efectuada para os 1000 dias.

Fig. 5.49 – Distribuição de tensões em altura – secção a meio vão – 3ª fase.

A observação das figuras 5.50 e 5.51, onde aparece representada a distribuição de tensões instaladas nas armaduras de pré-esforço, permite referir que, quer o cabo A quer o cabo B apresentam perdas de tensão com o tempo, devido, essencialmente, ao desenvolvimento da relaxação e da fluência que se verificá em idades jovens do betão.

Constata-se que a aplicação da sobrecarga tem um efeito semelhante ao referido na secção anterior, no que se refere ao aumento de tensões, particularmente na zona de meio vão da viga. Este facto relaciona-se directamente com a diminuição das tensões de compressão do betão nas fibras inferiores da viga, como resultado da variação de momentos, ΔM_o, com valor positivo. Refira-se que as armaduras de pré-esforço se consideram aderentes.

Os deslocamentos experimentados pela estrutura são apresentados nas figuras 5.52 e 5.53. Na figura 5.52 indicam-se os deslocamentos dos nós do plano médio horizontal da viga, enquanto que na figura 5.53 se encontram ilustrados os deslocamentos pertencentes ao plano horizontal superior da mesma.

Relativamente aos deslocamentos verificados nos nós do plano médio da viga, na primeira fase, pode-se constatar que a aplicação do pré-esforço conduz a uma deformada
ascendente com dois pontos de inflexão na proximidade dos apoios resultantes da excentricidade do cabo A que é aplicado nesta fase. A análise diferida até aos 40 dias de idade do betão demonstra que os deslocamentos sofrem uma inversão de sentido. Com efeito, devido às perdas de tensão do pré-esforço referidas anteriormente, o efeito descendente associado ao peso próprio da estrutura começa a prevalecer. Após a aplicação do pré-esforço no cabo B, na segunda fase, o incremento nos deslocamentos, quer para os nós do plano médio, quer para os nós do plano superior são da mesma ordem de grandeza, uma vez que a viga funciona solidarizada. Por exemplo, no ponto de abcissa 5.33m o acréscimo de deslocamento vertical é de 0.536mm, quer no plano médio, quer no plano superior da viga.

Durante a segunda fase, os deslocamentos dos planos médio e superior da viga apresentam um acréscimo como resultado do desenvolvimento dos fenômenos diferidos, verificando-se que o aumento é mais significativo na parte superior da viga dado que é constituída por um betão mais jovem.

Finalmente, na terceira fase verifica-se inicialmente o aumento instântaneo dos deslocamentos devido à aplicação da sobrecarga, que à semelhança do que acontece aquando da aplicação do pré-esforço no cabo B tem o mesmo valor no planos médio e superior da viga, registando-se um aumento destes com o tempo, sendo também nesta fase superior o acréscimo de deslocamentos no plano superior, pela razão anteriormente apontada.

![Fig. 5.50 - Distribuição de tensões no cabo A.](image-url)
Fig. 5.51 – Distribuição de tensões no cabo B.

Fig. 5.52 – Distribuição de deslocamentos ao longo do plano médio da viga.

Fig. 5.53 – Distribuição de deslocamentos ao longo do plano superior da viga.
5.9 - Considerações finais

No presente capítulo, foi apresentada a descrição do modelo que permite estudar o comportamento reológico do betão e o comportamento diferido das armaduras de pré-esforço. Foram apresentadas as leis que permitem o cálculo das deformações de retração e fluência, indicando-se, também no caso desta, a aproximação numérica em série de Dirichlet de modo a facilitar o cálculo da respectiva deformação sem recorrer ao armazenamento da história de tensão, particularmente útil no caso de histórias de carregamento complexas ou em casos de modelação do faseamento na execução da estrutura.

A realização de um conjunto de exemplos permitiram avaliar a eficácia do modelo descrito. No que respeita aos exemplos de validação verificou-se que a aproximação numérica se adequa de modo conveniente às soluções analíticas e experimentais.

Relativamente aos exemplos relativos ao faseamento cujo objectivo era avaliar o comportamento de estruturas executadas por fases ao longo do tempo, é de referir que o modelo descreve adequadamente a resposta diferida de tais estruturas quer em termos de deformações, quer em termos de tensões instaladas no betão. Destes exemplos ressalta a variação progressiva, no tempo, do diagrama de tensões à qual está associado uma variação de momentos positiva em correspondência com a diminuição do valor do momento isostático devido às perdas diferidas de pré-esforço.

A análise diferida sobre a estrutura global identifica a boa correspondência entre a forma do diagrama que descreve a evolução dos momentos totais com o desenvolvimento da fluência.

O cálculo faseado de estruturas no domínio do tempo conduz a uma redistribuição de esforços ao longo da estrutura de que resulta uma aproximação dos valores dos momentos aos valores obtidos para o cálculo diferido sobre a estrutura global, ainda que por valores superiores. Note-se que os valores dos momentos obtidos para uma análise sem consideração do faseamento são superiores.

A análise diferida do faseamento transversal da secção conduz ao estabelecimento de uma diagrama de tensões que reflecte por um lado as perdas diferidas de pré-esforço, e por outro a existência de materiais com leis de fluência e envelhecimento distintos, constatando-se a redistribuição de tensões na secção com diferentes características de rigidez.
Capítulo 6

Aplicação numérica

6.1 - Introdução

No presente capítulo tem-se como objectivo a aplicação do modelo de análise no domínio do tempo ao estudo de estruturas executadas por fases e discretizadas por elementos 3D. Para o efeito, analisa-se uma passagem superior na auto-estrada Porto-Amarante. A complexidade da geometria da estrutura, quer em perfil longitudinal, quer em altura, permite realçar a aplicabilidade do modelo ao estudo de estruturas com qualquer geometria.

A análise engloba a modelação das fases associadas ao processo construtivo, a modelação das armaduras de pré-esforço e a caracterização do comportamento reológico dos materiais, nomeadamente do envelhecimento, da retracção e da fluência do betão e da relaxação das armaduras de pré-esforço. Para além da caracterização da resposta diferida da estrutura é efectuada a verificação da segurança da mesma em relação aos estados limites de utilização de acordo com o estabelecido no Eurocódigo 2.

Devido à elevada capacidade de memória exigida pelo cálculo desta estrutura, a sua discretização por elementos 3D é estabelecida após um estudo comparativo do desempenho de várias malhas de modo a possibilitar a utilização do menor número de elementos que conduza a resultados satisfatórios.

O cálculo global da estrutura é efectuado considerando, para além do peso próprio e da acção resultante da aplicação do pré-esforço, a acção da sobrecarga regulamentar constituída por uma carga uniformemente distribuída e uma carga transversal linear constante, uma vez que no projecto se demonstrou ser esta combinação a mais desfavorável.
6.2 - Caracterização do problema

6.2.1 - Geometria

A passagem superior em estudo localiza-se na auto-estrada Porto-Amarante e denomina-se por PS15. A superestrutura é constituída por 5 vãos, com comprimento total de 139.6m, ver figura 6.1. O quinto tramo, sobre a auto-estrada, apresenta um comprimento de 37.0m e um raio de curvatura de 49.1m e os vãos seguintes têm 27.0m de comprimento, desenvolvendo-se o primeiro deles totalmente em curva de 49.1m de raio, o segundo parcialmente em curva e em clotóide e o terceiro parcialmente em recta e em clotóide. Finalmente, o último vão tem 21.6m de comprimento e desenvolve-se totalmente em recta. A superestrutura é constituída por um tabuleiro de laje nervurada de betão armado pré-esforçado com aligeraimentos circulares, que se considera simplesmente apoiado nas vigas estribo dos encontros, enquanto que os pilares estão ligados monoliticamente ao tabuleiro. As características geométricas da secção transversal são ilustradas na figura 6.2.

É aplicado na estrutura um conjunto de cabos longitudinais de pré-esforço aderentes cujo traçado em planta é paralelo ao eixo do tabuleiro e em corte é constituído por uma sucessão de parábolas, como se pode ver nas figuras 6.3 e 6.4. Os cabos c e b1 são esticados nas duas extremidades tendo os restantes uma ancoragem passiva e outra activa. Sobre os pilares é aplicado, na direcção transversal, um conjunto de cabos de traçado parabólico que se distribuem numa largura de 2.0m, sendo esticados alternadamente na parte esquerda e direita do tabuleiro. Na figura 6.5 pode-se ver o traçado geométrico destes cabos, assim como os valores do pré-esforço obtidos em projecto. Os valores do pré-esforço inicial relativos a cada cabo longitudinal resultante, o número de cabos que o constitui e a área correspondente encontram-se resumidos no quadro 6.1.

<table>
<thead>
<tr>
<th>Cabos</th>
<th>(P_0) (kN)</th>
<th>nº de cabos</th>
<th>Área (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabo a</td>
<td>15250.8</td>
<td>4</td>
<td>114.0</td>
</tr>
<tr>
<td>Cabo b1</td>
<td>11261.1</td>
<td>3</td>
<td>85.5</td>
</tr>
<tr>
<td>Cabo b2</td>
<td>11172.9</td>
<td>3</td>
<td>85.5</td>
</tr>
<tr>
<td>Cabo c</td>
<td>11287.2</td>
<td>3</td>
<td>85.5</td>
</tr>
<tr>
<td>Cabo d</td>
<td>6538.2</td>
<td>3</td>
<td>63.0</td>
</tr>
<tr>
<td>Cabo e₁</td>
<td>36034.9</td>
<td>10</td>
<td>285.0</td>
</tr>
<tr>
<td>Cabo e₂</td>
<td>18091.8</td>
<td>6</td>
<td>144.0</td>
</tr>
</tbody>
</table>
Fig. 6.2 – Características geométricas da secção do tabuleiro.
Fig. 6.3 - Traçado geométrico do pré-ensaio em planta - cabos c, b1, b2, d.
Fig. 6.4 – Traçado geométrico do pré-esforço em planta e alçado - cabos d, e1 e e2.
6.2.2 - Discretização da estrutura

A grande dimensão da estrutura conjugada com o tipo de elementos utilizados na discretização da mesma, elementos 3D com 20 nós, condiciona naturalmente a capacidade de memória exigida no cálculo global.

Com o objectivo de utilizar uma malha com o menor número de elementos que, por um lado, conduza a uma dimensão razoável do problema e, por outro, proporcione a obtenção de resultados satisfatórios, foi realizado um estudo prévio do nível de discretização mais adequado para a estrutura em análise. Para este estudo foi selecionado o quinto tramo, que se desenvolve totalmente em curva e para o qual se adoptaram diferentes níveis de discretização. As acções são constituídas apenas pelo peso próprio.

De modo a simular a existência dos aligeiramentos circulares na laje do tabuleiro, adoptou-se a discretização dos elementos em camadas ao longo da altura do tabuleiro, às quais correspondem materiais com características de rigidez distintas. O número de camadas considerado foi de dez.

Na figura 6.6, apresentam-se as malhas d_{11}, d_{12}, d_{13}, d_{14} com diferente número de elementos em planta e apenas um elemento em altura. As malhas d_{22}, d_{23}, d_{22}, d_{33} têm um número de elementos em planta, análogo ao das malhas d_{12} e d_{13}, diferindo destas pelo número de elementos utilizados em altura, 2 e 3 respectivamente. Note-se que em todas as malhas as vigas nervura (maciças) que separam os aligeiramentos estão já consideradas.
Capítulo 6

A decisão pelo nível de discretização mais adequado foi tomada com base na comparação dos resultados em termos de deslocamentos e reacções correspondentes a cada análise.

![Diagrama de deslocamentos](image)

Fig. 6.6 – Malhas adoptadas na análise comparativa.

A representação do campo de deslocamentos verticais correspondentes às malhas com um elemento em altura é indicado na figura 6.7.
Esta figura permite concluir que a malha d_{14} apresenta valores dos deslocamentos verticais e das reacções, ver quadro 6.2, muito próximos dos valores associados à malha d_{13}. Os resultados da malha d_{12}, apesar de serem mais distantes, apresentam erros muito baixos relativamente aos anteriormente referidos, pelo que se passa a comparar os resultados das malhas d_{12} e d_{13}, com os resultados das malhas d_{22}, d_{23} e d_{32}, d_{33}.

Pela análise dos valores dos deslocamentos da figura 6.8 e das reacções do quadro 6.2, constata-se que apesar das soluções das malhas d_{22}, d_{23}, d_{32} e d_{33} serem melhores em termos de reacções, os erros apresentados pelas malhas com um elemento em altura não são significativos. Assim sendo, na definição da malha de elementos finitos do tabuleiro da PS15 adopta-se a discretização tipo d_{12}.

![Diagrama de deslocamentos](image)

Escala: metros

Fig. 6.7 – Valores dos deslocamentos correspondentes às malhas d_{11}, d_{12}, d_{13}, d_{14}.
No presente estudo, o cálculo da estrutura englobou apenas o tabuleiro, uma vez que a rigidez deste é significativamente superior à dos pilares. Como se consideram os pilares ligados monoliticamente ao tabuleiro, a sua modelação foi efectuada através de um conjunto de apoios simples colocados no alinhamento dos pilares. Deste conjunto, todos os nós têm a direcção z fixada à excepção do nó central que é fixado também na direcção y. Nos encontros consideraram-se apoios simples nos quais apenas se fixa o grau de liberdade correspondente à direcção z, sendo o encontro norte fixado numa fase posterior à betonagem do tabuleiro.

Fig. 6.8 – Valores dos deslocamentos correspondentes às malhas d_{22}, d_{23}, d_{32}, d_{33}.

A malha de elementos finitos considerada no cálculo do tabuleiro e os apoios considerados na representação dos pilares e dos encontros apresentam-se na figura 6.9. É de referir que a malha final resulta da adopção da discretização tipo d_{12} e de imposições.
geométricas relativas à localização dos pilares, das ancoragens activas e passivas, e das mudanças da inclinação transversal do tabuleiro.

Quadro 6.2 – Reacções no apoio esquerdo para várias discretizações.

<table>
<thead>
<tr>
<th>Discretização</th>
<th>Reacção Rx (kN)</th>
<th>Reacção Ry (kN)</th>
<th>Reacção Rz (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo d11</td>
<td>3614.9</td>
<td>5026.2</td>
<td>5742.4</td>
</tr>
<tr>
<td>Tipo d12</td>
<td>3646.5</td>
<td>5058.6</td>
<td>5746.2</td>
</tr>
<tr>
<td>Tipo d13</td>
<td>3655.5</td>
<td>5077.3</td>
<td>5748.5</td>
</tr>
<tr>
<td>Tipo d14</td>
<td>3665.2</td>
<td>5089.0</td>
<td>5749.9</td>
</tr>
<tr>
<td>Tipo d12</td>
<td>3653.3</td>
<td>5073.4</td>
<td>5747.3</td>
</tr>
<tr>
<td>Tipo d13</td>
<td>3664.4</td>
<td>5089.2</td>
<td>5749.0</td>
</tr>
<tr>
<td>Tipo d12</td>
<td>3664.7</td>
<td>5088.7</td>
<td>5750.0</td>
</tr>
<tr>
<td>Tipo d13</td>
<td>3665.5</td>
<td>5090.8</td>
<td>5749.1</td>
</tr>
</tbody>
</table>

Fig. 6.9 – Malha de elementos finitos e nós onde se consideram os apoios.

6.2.3 - Processo de faseamento e características dos materiais.

Na análise da passagem superior foram consideradas 4, 5 ou 6 fases, de acordo com a combinação de acções considerada no cálculo, de modo a simular o processo construtivo e faseamento das cargas aplicadas.

A primeira fase corresponde à construção dos primeiros três tramos considerando-se que a aplicação do pré-esforço e a mobilização do peso próprio da estrutura é efectuada aos
10 dias. Na segunda fase os dois últimos tramos são betonados aos 35 dias e o pré-esforço é igualmente aplicado aos 10 dias de idade deste betão. A terceira fase corresponde à aplicação das restantes cargas permanentes e à fixação do tabuleiro ao encontro norte, o que na modelação corresponde à alteração das características do apoio através do impedimento dos deslocamentos deste na direcção x e direcção y. As restantes fases dizem respeito ao faseamento da aplicação das sobrecargas de utilização de acordo com a combinação de acções utilizada no cálculo. O esquema de faseamento é indicado na figura 6.10. As características mecânicas dos materiais, betão B40 – betão C35/45 e aço de pré-esforço Ap1760, utilizados na execução do tabuleiro são indicadas no quadro 6.3. Os parâmetros que definem o comportamento reológico dos materiais encontram-se sintetizados no quadro 6.4.

Quadro 6.3 – Características mecânicas dos materiais.

<table>
<thead>
<tr>
<th>Betão C35/45</th>
<th>Aço de pré-esforço</th>
</tr>
</thead>
<tbody>
<tr>
<td>Módulo de elasticidade</td>
<td>33.5 GPa</td>
</tr>
<tr>
<td>f_{ck}</td>
<td>35 MPa</td>
</tr>
<tr>
<td>$f_{p0.1k}$</td>
<td></td>
</tr>
</tbody>
</table>

Quadro 6.4 – Parâmetros que definem o comportamento diferido dos materiais.

<table>
<thead>
<tr>
<th>Betão</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espessura equivalente h_0</td>
</tr>
<tr>
<td>Humidade relativa RH</td>
</tr>
<tr>
<td>Tensão média do betão à compressão f_{cm}</td>
</tr>
<tr>
<td>Idade do betão à aplicação do pré-esforço t_o</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parâmetros de fluência</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_{RH}</td>
</tr>
<tr>
<td>β_{fc}</td>
</tr>
<tr>
<td>β_{H}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lei de retração</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_o</td>
</tr>
<tr>
<td>β_{sc}</td>
</tr>
<tr>
<td>ε_{car}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Armaduras pré-esforçadas</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_o</td>
</tr>
<tr>
<td>k</td>
</tr>
</tbody>
</table>
Fig. 6.10 – Esquema do faseamento construtivo.
Na aproximação da função de fluência adoptou-se uma série de Dirichlet com cinco termos, aos quais correspondem os tempos de retardo $\tau_1=0.5$, $\tau_2=5.0$, $\tau_3=50.0$, $\tau_4=500.0$ e $\tau_5=5000.0$.

6.2.4 - História de carga

Como se referiu anteriormente, o cálculo da estrutura é realizado para combinações de acções associadas à verificação dos estados limites de utilização.

Para além do peso próprio e da acção do pré-esforço, há a considerar as cargas permanentes relativas ao betuminoso de 1.0kN/m2, ao guarda-corpos e vigas de bordadura de 6.5kN/m e ao peso dos passeios e do lancil de 6.5kN/m. Considera-se que a sobrecarga é constituída por uma carga uniformemente distribuída de 4.0kN/m2 e uma carga linear constante transversal de 50kN/m, (RSA), uma vez que, de acordo com o estabelecido em projecto é aquela que conduz a resultados mais desfavoráveis.

Na figura 6.11 encontra-se esquematizado o faseamento de cargas.

![Fig. 6.11 - História de carga.](image)

O processo de faseamento da aplicaçãodas cargas segue o seguinte plano:

Fase 1 - aplicação do pré-esforço nos cabos b_1, c e d e mobilização da totalidade das cargas permanentes dos três primeiros tramos, $t=10$ dias.

Fase 2 - aplicação do pré-esforço nos cabos a, b_2, e_1 e e_2 e mobilização da totalidade das cargas permanentes dos últimos dois tramos, $t=45$ dias.
Fase 3 - aplicação das cargas permanentes resultantes da aplicação do betuminoso, passeios, vigas de bordadura e guardas, \(t=65 \) dias.

Fase 4 - aplicação do valor quase permanente da sobrecarga, \(\varphi_2 q_k \) - combinações quase-permanentes, \(t=90 \) dias.

Fase 5 - incrementação do valor quase permanente de \((\varphi_1 - \varphi_2)q_k\) - combinações frequentes, \(t=120 \) dias.

Fase 6 - incrementação do valor quase permanente de \((1.0 - \varphi_1)q_k\) - combinações raras, \(t=180 \) dias.

6.3 - Análise de resultados

6.3.1 - Considerações gerais

A análise de resultados é efectuada em termos de deformadas apresentadas pela estrutura, quer na primeira fase, quando a estrutura é constituída pelos primeiros três tramos e se encontra submetida ao peso próprio e à acção do pré-esforço, quer para a estrutura global a tempo infinito. Sobre as deformadas indica-se o campo de deslocamentos verticais. Posteriormente, são apresentados os diagramas de deslocamentos verticais ao longo do perfil longitudinal da estrutura (eixo longitudinal) e dos perfis transversais, correspondentes à secção a meio vão do 5º tramo e à secção a meio vão do 1º tramo.

É ilustrada a distribuição de tensões principais, nos planos \((x,y)\), correspondentes às camadas extremas da secção para algumas das secções consideradas críticas.

A distribuição de tensões para alguns cabos de pré-esforço e para vários instantes de tempo é também contemplada.

6.3.2 - Discussão dos resultados

Nas figuras 6.12 e 6.13 são indicadas as deformadas da PS15 correspondentes à primeira fase para \(t=10 \) dias e para \(t=45 \) dias de idade do betão. É de referir que os dois primeiros tramos apresentam deformadas com concavidade descendente devida à acção do pré-esforço, enquanto que, o terceiro tramo apresenta já valores negativos dos deslocamentos que aumentam na parte exterior do tabuleiro. Note-se que este trampo se desenvolve quase na sua totalidade em curva, pelo que a assimetria na distribuição do peso próprio é já significativa. Verifica-se que estes deslocamentos experimentam um acréscimo
devido ao efeito da fluência e retração do betão e das perdas de tensão nas armaduras de pré-esforço. Como se pode ver através do gráfico da figura 6.14, onde se indicam os deslocamentos verticais ao longo do eixo da estrutura, o aumento dos deslocamentos no segundo tramo é notoriamente menos importante do que o que ocorre no terceiro tramo, devido, essencialmente, às perdas de pré-esforço verificados nos cabos tensionados nesta fase.

Fig. 6.12 – Deformada e deslocamentos verticais – 1ª fase – t = 10 dias.

Fig. 6.13 – Deformada e deslocamentos verticais – 1ª fase – t = 45 dias.
A deformada da estrutura global correspondente ao final da análise, t=100 anos, obtida para combinações frequentes de acções com a sobrecarga distribuída aplicada nos tramos ímpares e carga distribuída transversal colocada a meio vão do 5º tramo, é indicada na figura 6.15. Importa reter desta figura que os deslocamentos nos tramos pares são positivos enquanto que nos tramos ímpares são naturalmente negativos. De um modo geral nos 1º, 2º, 3º e 4º tramos os deslocamentos apresentam valores moderados, registando-se um acréscimo importante no 5º tramo, principalmente na parte exterior do tabuleiro, pela razão anteriormente referida.

Fig. 6.14 – Deslocamentos verticais ao longo do eixo longitudinal do tabuleiro – 1ª fase.

Nas figuras 6.16 e 6.17 apresentam-se os diagramas dos acréscimos dos deslocamentos medidos a partir da primeira fase. Com estes diagramas pretende-se caracterizar a resposta da estrutura após a entrada em funcionamento dos dois últimos tramos. Verifica-se que os deslocamentos introduzidos na estrutura pela aplicação do pré-esforço nos cabos a, b2, e1 e e2 e a mobilização do peso próprio do 4º e 5º tramos são reduzidos. Estes são praticamente nulos nos 1º e 2º tramos, apresentando no 5º tramo valores positivos devidos à aplicação do pré-esforço. De um modo geral verifica-se que, nos tramos que apresentam deslocamentos positivos, estes decrescem com o tempo dado que o efeito isostático associado ao pré-esforço diminui. A aplicação das restantes cargas permanentes, na 3ª fase, conduz a acréscimos instantâneos dos deslocamentos em toda a estrutura, que aumentam devido ao desenvolvimento dos efeitos diferidos. A figura 6.17 ilustra a evolução dos deslocamentos para as restantes fases da análise. Também nestas fases os deslocamentos experimentam um acréscimo como resultado da aplicação dos valores quase-permanente e frequente da sobrecarga aumentando progressivamente devido ao desenvolvimento dos efeitos da fluência, retração e relaxação das armaduras de pré-
esforço. Esta tendência é evidenciada através do gráfico da figura 6.18, onde se apresenta a evolução do deslocamento vertical do nó central da secção a meio vão do 5º tramo.

![Gráfico 6.15 - Deformada e deslocamentos verticais – $\tau = 100$ anos.](image)

![Gráfico 6.16 - Acréscimos de deslocamento vertical ao longo do eixo longitudinal - 2ª e 3ª fases.](image)

Nas figuras 6.19, 6.20 e 6.21 estabelece-se a evolução dos deslocamentos verticais nos perfis transversais da secção a meio vão do 5º tramo e da secção a meio vão do 1º tramo, respectivamente.
Fig. 6.17 – Evolução dos deslocamentos verticais no eixo longitudinal – 4ª e 5ª fase.

Fig. 6.18 – Evolução do deslocamento vertical a meio vão do 5º tramo.

Nestas figuras salienta-se o comportamento distinto das duas secções em análise, como já atrás se constatou, através das figuras que ilustram as deformadas da estrutura. Na secção que se desenvolve em curva é bem evidente o efeito de torção através do desnível entre a consola lateral esquerda e a consola lateral direita. Este desnível é ainda agravado com o tempo por acção dos efeitos diferidos. Em relação à secção do 1º tramo, que se desenvolve em recta, os deslocamentos apresentam praticamente valores iguais em relação ao eixo da estrutura, havendo um pequeno desnível devido, essencialmente, à ligeira assimetria do valor do pré-esforço aplicado.
Fig. 6.19 – Deslocamentos no perfil transversal da secção a meio vão do 5º tramo.

Fig. 6.20 - Deslocamentos no perfil transversal a meio vão do 1º tramo – duas primeiras fases.

Fig. 6.21 – Deslocamentos no perfil transversal da secção a meio vão do 1º tramo – 3ª, 4ª e 5ª fases.
A variação do valor das reacções verticais, no domínio do tempo, registada no apoio do encontro norte, apoio1 e apoio2 indica-se nas figuras 6.22, 6.23 e 6.24, respectivamente.

Fig. 6.22 – Evolução com o tempo do valor da reacção vertical no apoio norte.

Fig. 6.23 – Evolução com o tempo do valor da reacção vertical no apoio 1.

Fig. 6.24 – Evolução com o tempo do valor da reacção vertical no apoio 2.
As descontinuidades registadas nos valores das reacções estão associadas à história de aplicação das cargas. Nos intervalos de tempo entre a aplicação das cargas, a variação dos valores das reacções deve-se ao desenvolvimento dos efeitos diferidos sob a estrutura. Como exemplo refira-se que, a tempo infinito, a reacção do apoio norte aumenta desde um valor de 8464.5kN até 8522.3kN. A reacção correspondente ao apoio2 varia de 9046.0kN a 9201.5kN e a reacção do apoio 2 tem um decréscimo, situando-se entre 15190.7kN após a aplicação do valor frequente da sobrecarga e 15076.6kN para t=100 anos. Esta variação exemplifica, de modo simplificado, a ocorrência de uma redistribuição nos valores dos momentos ao longo da estrutura.

Nas figuras 6.25 e 6.26 ilustra-se a distribuição de tensões principais σ_1 e σ_2, que resultam do tensor $[\sigma_x, \sigma_y, \tau_{xy}]$, nas camadas superior e inferior da secção do tabuleiro correspondente à 2ª fase, aquando da aplicação do pré-esforço nos cabos a, b2, e1 e e2.

Através das figuras constata-se que, quer na camada inferior, quer na camada superior predominam as compressões na direcção longitudinal. Aparecem, contudo, tensões de tracção transversal na camada superior, praticamente em todo o tabuleiro, com excepção da zona dos apoios onde é aplicado um conjunto de cabos de pré-esforço transversal. Na camada inferior há ainda a registar tensões de tracção transversal na ligação da consola ao tabuleiro, na zona dos pilares, devido ao pré-esforço transversal aplicado, assim como na zona das ancoragens activas ou passivas dos cabos longitudinais.

Na figura 6.27 indica-se a distribuição de tensões principais nas camadas extremas da secção a meio vão do 5º tramo. Estas tensões resultam do cálculo da estrutura para combinações quase-permanentes e para $t=100$ anos, com a colocação da sobrecarga nos tramos ímpares. Na camada inferior predominam as compressões, cuja trajectória é praticamente paralela ao eixo da estrutura, surgindo a meio vão tracções longitudinais de valor reduzido. Na camada superior, ainda que do mesmo modo predominem as compressões, constata-se o aparecimento de tracções transversais com algum significado, principalmente na transição das consolas para o restante tabuleiro, que resultam, por um lado, da flexão do tabuleiro na direcção transversal e, por outro lado da torção que se desenvolve como resultado da curvatura em perfil longitudinal e transversal.
Fig. 6.25 – Distribuição de tensões principais no plano (x,y) – t = 45 dias – camada superior:
 a) tensões principais de compressão;
 b) tensões principais de tração.
Fig. 6.26 – Distribuição de tensões principais no plano (x,y) – t = 45 dias – camada inferior:
 a) tensões principais de compressão;
 b) tensões principais de tração.
Fig. 6.27 – Distribuição tensões principais no plano (x,y) – 5º tramo – t = 100 anos;
a) camada inferior;
b) camada superior.

Comportamento idêntico pode-se constatar nos 3º e 4º tramos, ver figuras 6.28 e 6.29, onde também se registra o aparecimento de tensões de tracção longitudinal, de valor reduzido, na secção a meio vão de cada um dos tramos. Na figura 6.30 indica-se a distribuição de tensões principais no plano (x,y), na zona do pilar P₁, que apresenta, para além das já referidas tensões de tracção transversais na camada superior, tracções longitudinais com algum significado, na parte mais exterior do tabuleiro.
Nestas figuras são ainda evidentes as zonas das ancoragens, activas ou passivas, dada a concentração das tensões de compressão e das tensões transversais de tracção, como é o caso da zona do encontro Norte.

Fig. 6.29 — Distribuição tensões principais no plano (x,y) — 3º tramo — t = 100 anos;
 a) camada inferior;
 b) camada superior.

Fig. 6.30 — Distribuição tensões principais no plano (x,y) — zona do pilar P1 — t = 100 anos;
 a) camada inferior;
 b) camada superior.
Da figura 6.31 até a figura 6.35, indicam-se os diagramas com a distribuição de tensões em alguns cabos de pré-esforço, para combinações quase-permanentes.

A evolução das tensões, com o tempo, no cabo c, tensionado na 1ª fase nas duas extremidades, indica-se na figura 6.31.

![Fig. 6.31 – Evolução com o tempo das tensões no cabo c.](image)

A distribuição de tensões para \(t = 10 \) dias corresponde à fase de aplicação do pré-esforço, quando as tensões, em cada secção, são o resultado da contabilização das perdas instantâneas devidas ao atrito e ao escorregamento dos dispositivos nas ancoragens. Verifica-se a mudança de inclinação por três vezes devido à presença dos pilares onde o traçado do pré-esforço apresenta menor raio de curvatura. As tensões experimentam uma redução significativa associada à sua relaxação e à fluência e retracção do betão.

![Fig. 6.32 – Evolução com o tempo das tensões no cabo d.](image)
Também nos cabos d, e1 e e2, a distribuição inicial de tensões denuncia a presença dos pilares devido à maior inclinação do diagrama de tensões.

Nos restantes instantes de tempo verifica-se a ocorrência das perdas diferidas, com maior ênfase para a zona onde as tensões apresentam maiores valores iniciais, o que traduz a maior importância das perdas por relaxação. As perdas de pré-esforço no cabo d situam-se entre 9 e 17% na zona onde a tensão inicial é mais elevada.

![Fig. 6.33 – Evolução com o tempo das tensões no cabo e1.](image)

Nos cabos e1 e e2 as perdas situam-se ente 10% na zona do pilar e 19% na zona onde o pré-esforço é aplicado. Note-se que no projecto de pré-esforço as perdas máximas que ocorrem nos referidos cabos são da ordem dos 15%.

![Fig. 6.34 – Evolução com o tempo das tensões no cabo e2.](image)
Finalmente, na figura 6.35 ilustra-se a distribuição de tensões no cabo transversal aplicado na zona do pilar P3 e que é tensionado na parte interna do tabuleiro. Verifica-se que as perdas por reentrada dos dispositivos nas ancoragens se fazem sentir ao longo de todo o comprimento do cabo. Posteriormente, identificam-se perdas ao longo do tempo, entre 10 e 13% da tensão inicial instalada, sendo da mesma ordem de grandeza das que se calculam em projecto.

![Figura 6.35 - Evolução com o tempo das tensões num cabo transversal sob o terceiro pilar.](image)

Em relação aos cabos anteriores, a tensão inicial instalada é mais baixa sendo, por isso, mais baixas as perdas por relaxação. Como conclusão, é de referir que o cálculo das perdas de tensão nos cabos de pré-esforço através da fórmula de Magura et al (1965), conduz a valores mais elevados das perdas de tensão relativamente às que se calculam com base no REBAP.

6.4 - Verificação da segurança

Nesta seção pretende-se efectuar a verificação da segurança em relação aos estados limites de utilização de acordo com o estipulado no EC2.

Assim, para as condições de serviço há a verificar, o estado limite de fendilhação e o estado limite de deformação. O estado limite de fendilhação engloba a verificação do estado limite de descompressão, para combinações quase-permanentes de acções, com a limitação das tensões de compressão a 0.45f_{ck}, e a verificação do estado limite de largura de fendas para combinações frequentes, podendo considerar-se, no entanto, o critério simplificado de formação de fendas que corresponde à limitação das tensões de tracção no
betão ao valor da resistência média à tração f_{ctm}. Nos casos em que este valor é ultrapassado, é necessário efectuar o cálculo da largura de fendas w_k cujo valor é limitado, considerando ambiente moderadamente agressivo, a 0.1mm.

Complementarmente, é necessário verificar a tensão máxima de compressão para combinações raras, $\sigma_c \leq 0.60f_{pk}$, calculada com base no comportamento elástico dos materiais, havendo necessidade de efectuar o cálculo em fase fendilhada, no caso das tracções ultrapassarem f_{ctm}.

De acordo com o EC2, as tensões nas armaduras de pré-esforço não devem ultrapassar $0.65f_{pk}$, para combinações quase-permanentes, e $0.75f_{pk}$, para combinações raras, após a dedução das perdas diferidas.

A verificação do estado limite de deformação considera-se satisfeita se o valor do deslocamento máximo, obtido para combinações quase-permanentes, for inferior ao valor calculado através da expressão:

$$\delta_{\text{max}} = \frac{1}{300}$$

Como já se referiu na secção anterior, no comentário às figuras 6.27, 6.28, 6.29 e 6.30, onde se apresentou a distribuição das tensões principais, verifica-se que para combinações quase-permanentes o estado limite de descompressão não é integralmente verificado na secção do apoio 1, na parte exterior do tabuleiro, onde a tensão máxima de tração é de 2.8MPa tratando-se, contudo, de um valor de caráter muito localizado, tendo as restantes tracções valores muito mais moderados. Este comportamento generaliza-se nos restantes pilares, ainda que com menor significado, particularly no apoio 4 correspondente ao pilar P₄ localizado no fim do tramo recto. Nas secções a meio dos vãos as tensões apresentam valores muito mais moderados, sendo inferiores a 1.0MPa. Estes valores não têm correspondência com o projecto que refere a total descompressão para esta combinação de acções. Refira-se que, para além dos modelos de cálculo utilizados na análise da estrutura serem distintos, (o modelo de cálculo utilizado em projecto foi um modelo de pórtico 3D, tendo-se efectuado o cálculo dos esforços de combinação com base em métodos simplificados, para ter em conta os efeitos diferidos no processo de faseamento da construção), a modelação das condições de ligação, na presente análise, do tabuleiro aos pilares através da consideração dos apoios rígidos, que não acompanham a inclinação transversal e longitudinal do tabuleiro, não reproduz de forma completamente realista o comportamento dos pilares. Outro factor poderá residir no valor das perdas de pré-esforço, que em alguns dos cabos são superiores às consideradas no projecto. Este
factor não afecta, no entanto, a zona dos pilares, uma vez que aqui as perdas apresentam valores baixos.

No quadro 6.5 indicam-se os valores das tensões principais máxima \(\sigma_1 \) e mínima \(\sigma_3 \). A análise destes valores evidencia o facto, anteriormente referenciado, associado à verificação do estado limite de descompressão. Importa ressaltar que as tensões de compressão para esta combinação de acções são inferiores a 0.45 \(f_{ck} \), sendo também inferiores a 0.75 \(f_{pk} \) as tensões nas armaduras de pré-esforço para combinações raras e a 0.65 \(f_{pk} \) para combinações quase permanentes, como se pode verificar através da análise das figuras anteriormente apresentadas.

<table>
<thead>
<tr>
<th>Secção de meio vão ou apoio</th>
<th>Combinações quase-permanentes</th>
<th>Combinações frequentes</th>
<th>Combinações raras</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\sigma_1 (\text{MPa}))</td>
<td>(\sigma_3 (\text{MPa}))</td>
<td>(\sigma_1 (\text{MPa}))</td>
</tr>
<tr>
<td>V5</td>
<td>0.3</td>
<td>-8.8</td>
<td>2.4</td>
</tr>
<tr>
<td>V4</td>
<td>0.8</td>
<td>-3.8</td>
<td>2.6</td>
</tr>
<tr>
<td>V3</td>
<td>0.9</td>
<td>-4.2</td>
<td>2.6</td>
</tr>
<tr>
<td>V2</td>
<td>0.5</td>
<td>-3.8</td>
<td>2.1</td>
</tr>
<tr>
<td>V1</td>
<td>-0.2</td>
<td>-2.9</td>
<td>0.8</td>
</tr>
<tr>
<td>P1</td>
<td>2.8</td>
<td>-12.5</td>
<td>4.1</td>
</tr>
<tr>
<td>P2</td>
<td>1.7</td>
<td>-6.7</td>
<td>2.9</td>
</tr>
<tr>
<td>P3</td>
<td>2.3</td>
<td>-7.2</td>
<td>3.4</td>
</tr>
<tr>
<td>P4</td>
<td>1.1</td>
<td>-5.9</td>
<td>2.0</td>
</tr>
</tbody>
</table>

O estado limite de largura de fendas é verificado, simplificadamente, em todas as secções à exceção da secção dos apoios correspondentes aos pilares P1 e P3, sendo necessário efectuar o cálculo da largura de fendas em secção fendilhada.

Dado que, para a combinação rara de acções a secção se apresenta fendilhada, o cálculo da tensão de compressão máxima deveria ser realizado em secção fendilhada.

Este cálculo não é aqui estabelecido dada a ausência dos valores das tensões instaladas nas armaduras passivas, uma vez que estas não foram modeladas.
Considera-se que o estado limite de deformação é verificado, uma vez que para o deslocamento máximo vertical, para combinações quase-permanentes, se obtém o valor

$$\delta_{v_{\text{máx}}} = 9.6 \text{ cm} \leq \frac{1}{300} = \frac{37.0}{300} = 0.123 \text{ cm}.$$

6.5 - Conclusão

Do estudo efectuado no domínio do tempo para a passagem superior PS15, conclui-se, a partir dos resultados globais, que o presente modelo de cálculo se adequa de modo satisfatório ao cálculo de estruturas, cujo processo construtivo implica a modelação das fases correspondentes à betonagem do tabuleiro desfazida no tempo, tornando-se importante a contabilização dos efeitos diferidos que se desenvolvem nos intervalos da betonagem e a tempo infinito.

Refira-se ainda a importância do presente modelo na verificação dos estados limites de utilização, pelo que poderá servir como uma ferramenta útil na aferição do valor do pré-esforço a aplicar em estruturas com características geométricas complexas.
Conclusões finais e futuros desenvolvimentos

7.1 - Conclusões finais

No presente trabalho foi desenvolvido um conjunto de procedimentos com vista à análise elástica e transitória de estruturas tridimensionais de betão armado e pré-esforçado construídas por fases.

Os resultados obtidos em diversos exemplos numéricos apresentados ao longo dos capítulos precedentes demonstram a validade da formulação apresentada no que respeita à caracterização da resposta instantânea de estruturas executadas por fases e à sua caracterização no domínio do tempo tendo em conta os efeitos diferidos de fluência, retração e relaxação das armaduras de pré-esforço.

A possibilidade de utilização de elementos tridimensionais na discretização de estruturas com geometria complexa, a simulação de histórias de carga diversa, a introdução de armaduras pré-esforçadas e a consideração da evolução da geometria em perfil longitudinal e transversal permite efectuar várias aplicações do modelo, entre as quais se destacam:

- simulação de processos construtivos e possibilidade de estudar a influência destes no comportamento a curto e a longo prazo;

- Análise e verificação de estruturas pré-esforçadas em relação aos estados limites de utilização;

- Análise do comportamento diferido de estruturas pré-esforçadas construídas por fases e avaliação das possíveis redistribuições de esforços, quer a nível do perfil longitudinal da estrutura, quer a nível das tensões internas ao longo de uma dada secção.
Ainda que ao longo dos capítulos anteriores já se tenham avançado com algumas conclusões, são apresentadas a seguir de modo discriminado por assuntos tratados as mais relevantes.

Modelos de discretização na idealização das estruturas

- A discretização espacial de estruturas por elementos 3D aos quais pode estar associada a integração numérica de Gauss, ou a integração por camadas, mostrou-se adequada na representação de estruturas complexas, na modelação de seções construídas por fases, na representação de materiais com distintas idades e características mecânicas distintas, na representação distribuída de armaduras dispostas em malha e também na modelação de aberturas.

- A formulação embbedida de elementos unidimensionais parabólicos em elementos 3D, mostrou-se bastante eficaz na representação de armaduras de pré-esforço, sendo possível a contabilização da sua rigidez para a rigidez global da estrutura e para o vector das forças nodais equivalentes. A comparação desta formulação com o método das cargas equivalentes revela a validade da presente formulação.

Análise evolutiva

- Neste trabalho foram efectuados desenvolvimentos no que respeita à possibilidade de simulação do faseamento na execução de estruturas, quer ao nível do perfil longitudinal, quer ao nível do perfil transversal, com a inclusão de novos elementos e a utilização de materiais com características mecânicas e idades diferentes correspondentes a cada fase construtiva. Foi possível concluir que a distribuição de esforços é diferente daquela que se obteria não considerando faseamento, podendo em muitos casos ser qualquer uma das fases construtivas intermédias a condicionante no dimensionamento do pré-esforço e na verificação dos estados limites de utilização.

- Foram previstas modificações nas condições de ligação ao exterior com a possibilidade de introdução de novos apoios, eliminação de apoios já existentes e alteração do tipo de apoios.

7.2
- Foi prevista a possibilidade de faseamento da aplicação faseada de pré-esforço em perfil longitudinal e transversal bem como a possibilidade de eliminação de cabos provisórios.

Análise diferida

- Os resultados dos testes numéricos efectuados revelam que a modelação dos efeitos diferidos da fluência, retracção e envelhecimento do betão e a relaxação das armaduras é adequada.

- A aplicação do modelo de análise diferida a estruturas executadas por fases mostrou-se eficaz na avaliação do respectivo comportamento no que se refere à redistribuição de esforços ao longo do perfil longitudinal da estrutura, e de tensões numa dada secção constituída por materiais de idades diferentes. Foi possível constatar a aproximação, a tempo infinito, dos valores dos momentos em secções críticas obtidos da análise evolutiva e diferida aos valores dos momentos que se obtém pela análise sobre a estrutura global.

- A tradução dos fenómenos diferidos nas perdas de tensão das armaduras de pré-esforço é bem conseguida, correspondendo a valores dentro de uma gama satisfatória.

- Pode-se constatar também a redistribuição de tensões que ocorre entre as armaduras ordinárias e o betão resultantes da acção dos fenómenos de fluência e retracção.

- A aplicação do modelo de análise no domínio do tempo à passagem superior PS15, uma estrutura pré-esforçada que apresenta alguma complexidade em termos de geometria longitudinal e transversal, construída por fases, à qual estão associados betões de idades diferentes e a aplicação faseada de cabos e de cargas, demonstrou que este modelo poderá ser útil na análise de estruturas com comportamento elástico em condições de serviço no que se refere à aferição de valores pré-esforço de projecto. Neste âmbito, refira-se que é necessário dotar o modelo com capacidade de reproduzir quaisquer tipos de ligações ao exterior.
7.2 - Futuros desenvolvimentos

A concluir, apresentam-se algumas sugestões para futuros desenvolvimentos no domínio da investigação associada ao presente trabalho.

- Introdução da possibilidade de calcular a distribuição dos esforços instalados na estrutura e com eles proceder à verificação dos estados limite últimos de resistência, contemplando o dimensionamento das respectivas armaduras passivas.

- Melhoramentos relativos a aspectos associados com a análise evolutiva, nomeadamente a consideração de elementos para a modelação de escoramentos e carros de avanço.

- Introdução de um referencial local nos apoios de modo a possibilitar o cálculo mais preciso de estruturas com inclinação longitudinal e transversal.
Referências Bibliográficas

ABBAS, S. e SCORDELIS, A.C. (1993), Nonlinear geometric, material and time analysis of segmentally rected three-dimensional cable stayed bridges, Report UCB/SEMM-93/09, Univ. of California, Berleley.

CAROL, I. (1985), Modelos de análisis no lineal en el tiempo de estructuras reticulares de hormigón. Revision integrada y propuesta de un nuevo modelo global para material y estructura, Tesis Doctoral, ETSECCPB – Univ. Pólitècnica de Cataluña, Barcelona.

CEB – Comité Euro-International du Béton (1984), Structural effects of time dependent behavior of concrete, Bulletin d’Information No. 142/142 Bis.

CRUZ, P.J.S. (1994), Un modelo para el análisis no lineal y diferido de estructuras de hormigón y acero construidas evolutivamente, Tesis doctoral, Universitat Politècnica de Catalunya, Barcelona.

MARÍ, A.R. (1984), Nonlinear geometric, material and time analysis of three dimensional reinforced and prestressed concrete frames, Report UCB/SESM – 84/12, University of California.

