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Thymic epithelial cells (TECs) provide key instructive signals for T-cell differentiation. 

Thymic cortical (cTECs) and medullary (mTECs) epithelial cells constitute two functionally 

distinct microenvironments for T-cell development, which derive from a common bipotent 

TEC progenitor. While seminal studies have partially elucidated events downstream of 

bipotent TECs in relation to the emergence of mTECs and their progenitors, the control and 

timing of the emergence of the cTEC lineage, particularly in relation to that of mTEC 

progenitors, has remained elusive. In this review, we describe distinct models that explain 

cTEC/mTEC lineage divergence from common bipotent progenitors. In particular, we 

summarize recent studies in mice providing evidence that mTECs, including the auto-

immune regulator(+) subset, derive from progenitors initially endowed with phenotypic 

properties typically associated with the cTEC lineage. These observations support a novel 

"serial progression" model of TEC development, in which progenitors serially acquire cTEC 

lineage markers, prior to their commitment to the mTEC differentiation pathway. Gaining a 

better understanding of the phenotypic properties of early stages in TEC progenitor 

development should help in determining the mechanisms regulating cTEC/mTEC lineage 

development, and in strategies aimed at thymus reconstitution involving TEC therapy. 

 

INTRODUCTION 

The thymus is dedicated to the generation of functional self-tolerant T lymphocytes, a chief effector 

arm of immune responses. Within thymic niches, hematopoietic progenitors, arriving from the fetal 
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liver and bone marrow, differentiate primarily into T cells with diverse αβTCR specificities that are 

restricted to self-MHCs and tolerant to self-antigens (reviewed in 1,2). 

The development of T cells is guided by thymic stromal cells, of which thymic epithelial cells (TECs) 

comprise a chief component. TECs constitute specialized structural and functional 

microenvironments that support critical steps of T-cell differentiation, by providing multiple 

cytokines, chemokines, lineage inductive ligands, and selective self-antigens that control T-cell 

commitment, migration, survival, proliferation, and selection (reviewed in 2,3). 

 

Cortical and medullary thymic epithelial niches define distinct functional 

microenvironments 

The thymic epithelium is broadly organized into two main areas, the central medulla area in which 

thymic medullary epithelial cells (mTECs) reside, and the peripheral cortex area in which thymic 

cortical epithelial cells (cTECs) reside. These areas and the cells therein also define functionally 

distinct niches. cTECs have an important role during the early stages of T-cell development, driving 

the commitment and expansion of early T-cell progenitors via the expression of Notch ligand DLL4 

4 and IL-7 5. Subsequently, cTECs mediate the selection of DP thymocytes, by expressing an array 

of selective self-peptides presented by MHC class I and II molecules. To accomplish this chief 

function as antigen-presenting cells, cTECs express a unique set of proteolytic enzymes, including 

a cTEC-specific proteosomal subunit β5t, a serine protease TSSP, and a lysosomal protease 

cathepsin L 6–8. On the other side of the “thymic yard,” mTECs play decisive roles in later stages of 

T-cell development, notably acting in concert with DCs to mediate the negative selection of 

autoreactive T cells and the generation of regulatory T cells 1–3. Crucial to the key role of mTECs 

in the screening of developing T cells with autoreactive TCRs is their capacity to express a myriad 

of tissue-restricted antigens, such as insulin 2, salivary protein 1, thyroglobulin 9. The nuclear 

factor auto-immune regulator (Aire) has emerged as a chief effector in tolerance induction by 

regulating the expression of a large array of peripheral tissue antigens (e.g. insulin 2) in a 

specialized subset of mTECs (reviewed in 10. Worth noting, there are other antigens associated 

with peripheral tissues (e.g. thyroglobulin) that are ectopically expressed in mTECs independently 

of Aire 11, implicating other factor(s) in the establishment of central tolerance. In addition to its 

key role in peripheral tissue antigen expression, Aire has recently been shown to control 

chemokine gene expression within the mTEC compartment 12,13. 

Despite being fundamentally different in their anatomical location and functions, cTECs and mTECs 

share some phenotypic markers; for example, both are routinely defined by the expression of 

epithelial cell adhesion molecule 1/CD326 and MHC class II (MHCII) within the nonhematopoietic 

(CD45−) thymus fraction 14. However, as different analytical tools are frequently employed across 

studies (flow cytometry and immunohistochemical analyses), some variation exists in how 

researchers discriminate TEC subsets. Whereas cTECs are commonly defined by the expression of 

cytokeratin-8/18, CDR1, Ly51 (CD249), and ER-TR4, mTECs are distinguished by the expression of 

cytokeratin-5/14, MTS10, ER-TR5, and reactivity with the lectin Ulex europaeus agglutinin 1 14,15. 

The phenotypic discrimination of these cell types has considerably improved with the development 

of novel antibodies and the advent of newly generated reporter mice, which have allowed 

surveying the expression of molecules associated with cTEC- and mTEC-specific functions. 

Currently, cTECs are additionally identified on the basis of the expression of CD205 16, Ccrl1 17, 

β5t 18, and high levels of IL-7 19 and DLL4 20 expression. mTECs are usually further discriminated 

on the basis of the combined levels of expression of MHC class II, CD40, CD80, Aire, and most 

recently CCL21 16,21–24. Still, the relevance of cTEC/mTEC heterogeneity with respect to 

developmentally distinct stages within TEC lineages remains elusive. 
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In this review, we summarize recent studies in mice that have analyzed the lineage relationship 

between cTECs and mTECs, and we discuss possible models to explain the establishment of these 

two key thymic epithelial microenvironments. 

cTECs and mTECs: Same origin, but unrelated divergent lineages? 

The cells in the cortical and medullary thymic epithelial compartments differentiate from bipotent 

thymic epithelial progenitors (TEPs) present within the embryonic 25–28 and postnatal thymus 

29. The identification of TEPs, which lie at the base of the cTEC/mTEC branching point, has 

provided the cellular basis for a common origin of cTECs and mTECs. Despite this, the phenotypic 

properties and developmental requirements of bipotent TEPs are poorly understood. In mice, TEC 

ontogeny is initiated during early embryogenesis with the out-budding of the endoderm in the third 

pharyngeal pouch between day 9 and 10 of embryonic gestation (E9-E10) (reviewed in 30)31. At 

these early stages, the initiation of expression of the forkhead transcription factor Foxn1 

represents a hallmark toward TEC specification 32,33. Although bipotent TEPs are maintained in 

Foxn1-deficient mice 29, Foxn1 is required for the initiation of a transcriptional program that 

engages the early differentiation of TEPs, and for the progression of cTECs and mTECs throughout 

distinct stages of differentiation 29,34. Recently, one study using mice with a reversible Foxn1 

hypomorphic allele provided experimental evidence revealing differential requirements for Foxn1 

levels in regulating these two events 34. In line with an earlier study 35, low levels of Foxn1 were 

shown to be sufficient to initiate the TEC differentiation program, while higher Foxn1 expression 

levels are needed both to achieve fully functional mature TECs and to maintain TEC lineage identity 

postnatally 34,35. Presently, there is no experimental evidence demonstrating that the level of 

Foxn1 expression modulates the determination of TEPs into the cTEC or mTEC lineages. 

The discrimination between cTECs and mTECs, although particularly evident in the postnatal adult 

thymus, is less conspicuous at early stages of thymic organogenesis. This perhaps results from their 

common ancestry and the dynamic nature of TEC patterning, which is initiated during fetal 

development and continues throughout postnatal life 30. Yet, the precise developmental window 

at which cTECs and mTECs diverge, as well as the lineage relationship between TEPs and the 

emerging cortical and medullary progenies, remain poorly understood. 

Building epithelial microenvironments through lineage-committed progenitors 

Several studies in mice have examined the development of distinct lineages downstream of 

bipotent TEPs. While Rodewald et al. 36 initially provided functional evidence for the existence of 

mTEC progenitors, advances in understanding the identity of this cell-type and stages of mTEC 

development have been considerably extended in the past decade. For example, successive stages 

of mTEC maturation have been shown to exist in mice, defined as immature MHCIIloCD80loAire− 

(mTEClo), mature MHCIIhiCD80hiAirehi (mTEChi), and recently identified terminally 

differentiated MHCIIloCD80loAireloInvolucrin+ (also residing within the originally defined 

mTEClo) 22,37,38. Importantly, the cooperative contribution of members of the TNFR superfamily, 

including receptor activator of NF-κB (RANK), lymphotoxin β receptor by mTECs, is critical to the 

complete maturation of the Aire+ mTEC subset (reviewed in detail in 2,3,39). These findings led to 

the idea that mTECs undergo a linear differentiation process, from mTEC progenitors down to 

terminally differentiated mTECs, recently defined by a final post-Aire stage of maturation that is 

controlled by expression of Aire itself 37,40. Interestingly, studies have shown a role for 

lymphotoxin β receptor signaling during late stages of mTEC development, which acts to control 

CCL21 within the mTEClo compartment 23,41. Thus, as well as containing progenitors for mTEChi 

cells 21,22, mTEClo cells express molecules of known functional importance for αβ T-cell 

development. In addition, the expression of the tight junction proteins claudin-3 (Cld3) and Cld4 

has been shown to mark a minor subset of TECs at E13 in mice, representing an mTEC progenitor 

subset at this developmental stage that is able to generate Aire-expressing mTECs 42. Recently, it 
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was reported that TECs expressing high levels of Cld4 are also detected within the Foxn1-deficient 

E13.5 thymic primordium 34. Worth noting, while Cld3/4-expressing “mTEC progenitor-like” cells 

were also previously detected at E10.5 42, it remains unclear how the Cld4hi cells of the nude 

mouse relate to functionally identified mTEC progenitors 42. In addition, a subset of CD205− TECs 

expressing high levels of CD40 and a panel of mTEC-associated genes has been reported to arise at 

E14.5 16. Together, these studies provide evidence for the existence of a transitional mTEC 

progenitor and for direct precursor-product relationships within the mTEC lineage. However, it 

remains unclear whether the transitional mTEC progenitors exist immediately downstream of 

common bipotent TEPs, or whether such mTEC progenitors share a more intricate relationship 

with the nascent cTEC lineage. 

In contrast to an emerging picture of discrete stages in the mTEC lineage, events occurring in the 

cTEC developmental pathway are less clear. However, recent studies in mice suggested the 

existence of cTEC-specific progenitors identified by the expression of CD205 and β5t, both 

hallmarks of the cTEC lineage, which appear as early as E12.5 and are absent in nude mouse 

embryos 16,18. While such cells were initially considered to mark a developmental stage that lies 

in between bipotent TEPs and mature cTECs 16, there is currently no functional evidence regarding 

the phenotypic identity of cTEC progenitors. 

Based on current findings, a simple model of TEC lineage development from bipotent TEPs can be 

proposed (Fig.(Fig.1A),1A), in which phenotypically and developmentally distinct cTEC 

progenitors and mTEC progenitors emerge in a synchronous and nonoverlapping fashion, that 

results in the generation of functionally distinct cTEC and mTEC compartments to control T-cell 

development and selection. While such a model fits well with several studies reporting the 

identification of lineage-restricted mTEC progenitors 16,21,42 initially identified at the clonal level 

36, definitive support for this model is hampered by the lack of understanding of how and when 

the cTEC lineage emerges in relation to the mTEC population. 

mTECs derive from progenitors expressing cTEC markers 

The identification of bipotent TEPs and evidence for the existence of compartment-restricted 

progenitors has cemented the concept that cTECs and mTECs follow independent differentiation 

pathways. Interestingly, despite several studies demonstrating the presence of mTEC progenitors 

16,36,42 at early stages of embryonic thymus development, the TEC compartment at these stages 

has also been reported to express markers typically associated with the cTEC lineage, including 

CD205, β5t, and high levels of IL-7 and DLL4 16,18–20,43. Importantly, the relationship between 

these “cTEC marker-expressing” TECs and the mTEC lineage itself has not been directly 

investigated. Recently, our laboratories independently generated experimental evidence in 

relation to our understanding of the timing and relationship between the establishment of the 

cortical and medullary microenvironments, particularly with respect to the emergence of mTEC 

progenitors relative to the cTEC lineage 44–46. 

Using a cellular approach that combines reaggregate organ cultures and ectopic thymic 

transplantation of phenotypically defined embryonic putative TEC progenitor populations, Baik et 

al. demonstrated that purified CD205+CD40− TECs, displaying molecular traits associated with 

cTECs 16, comprise a source of progenitors in mice that generate both β5t/CD205-expressing 

cortical, and Aire-expressing medullary epithelial microenvironments in vivo 44. Ontogenetic 

analysis showed that, at E12.5 of gestation, functional responsiveness to the mTEC regulator RANK 

is evident within both CD205+ and CD205− compartments, demonstrating that mTEC progenitors 

exist within the TEC subset defined by expression of the cTEC marker CD205 44. Importantly, it 

remains unclear whether the RANK-responsive TECs contained within the CD205− subset are 

derived from initial CD205+ progeny, or whether additional RANK+CD205− cells at early 

embryonic stages represent a separate stream of mTEC progenitors that do not pass through a 
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CD205+ stage. Whatever the case, such observations demonstrate a “blurring” of cTEC/mTEC 

properties at initial stages of development in TEC populations of the embryonic thymus, and argue 

against the synchronous emergence of cTEC progenitors and mTEC progenitors from a common 

TEP pool. 

In a complementary study, Ribeiro et al. 46, exploring an IL-7 reporter mouse in which YFP marks 

a previously identified TEC subset expressing high levels of IL-7 (Il7YFP+) 5,19, demonstrated that 

Il7YFP+ TECs represent a particular subset of CD205+Ly51+ cTECs throughout fetal development 

and perinatal life. Of note, IL-7 expression is also detected in mTECs, albeit at significantly lower 

levels compared to Il7YFP+ TECs 5. Il7YFP+ TECs emerge as early as E12.5 19 and comprise the 

majority of TECs around E13–14 of gestation 46. Employing reaggregate organ cultures (RTOCs), 

the authors show that E14.5 Il7YFP+ TECs can give rise to both Ly51+CD205+ cTECs and CD80+ 

mTECs 46. Thus, Il7YFP+ cells give rise to mTECs in a stepwise differentiation process via an 

intermediate CD80lo immature mTEC stage. Still, Il7YFP+ cells do not exclusively form the entire 

TEC compartment at E13–14, and a smaller fraction of YFP− cells is detected at this period, which 

steadily accumulates medullary traits as TEC maturation proceeds, including responsiveness to 

RANK stimulation. Similarly to the E13 CD205− progenitors detected by Baik et al. 44, it remains 

to be determined whether YFP− TECs found within the E13 thymus have a direct lineage 

relationship with Il7YFP+ cells or represent an alternative pathway of mTEC development. 

Although both studies indicate that embryonic TEC progenitors with cTEC features have the 

potential to generate mTECs, these studies do not determine to what degree such progenitors 

contribute to thymus medulla formation within the embryonic and adult thymus. 

In this respect, using a knock-in mouse strategy and lineage tracing experiments, Ohigashi et al. 45 

established a direct link between β5t-expressing TECs and mTECs. By crossing knock-in mice that 

express the recombinase Cre under the control of the endogenous β5t-encoding sequences with 

loxP-dependent EGFP or ZsGreen reporter mice, the authors showed that the reporter activity is 

not only detected in cTECs, but also in almost all mTECs, including the Aire+ subset, throughout 

ontogeny 45. β5t-Cre-mediated reporter expression was detectable even in the majority of fetal 

mTECs and their progenitors visualized by the high expression of K5 45 and Cld3/4 (Ohigashi and 

Takahama, unpublished data), indicating that all mTEC stages transverse through an early stage 

defined by β5t expression. As the expression of β5t is not detectable in the E11.5 thymus 

primordium 18,45, one can consider that β5t expression is initiated at a differentiation stage 

downstream of common TEPs, but prior to the branching of mTEC progenitors. The analysis of β5t 

fate-reporter mice corroborate that fetal and adult mTECs are almost all derived from progenitors 

expressing bona-fide cTEC traits under normal physiological circumstances. 

Collectively, these observations demonstrate that the medullary lineage is derived from 

progenitors defined by a cTEC “footprint,” thereby arguing against a model of TEC development 

involving the synchronous emergence of distinct pools of cTEC progenitors and mTEC progenitors 

from bipotent TEPs. Based on these findings, we propose an alternative model of TEC development, 

referred to here as the “serial progression” model (Fig.(Fig.1B),1B), to explain these findings in 

relation to the establishment of cortical and medullary microenvironments. This model points to 

the existence of a novel transitional progenitor stage in the TEC differentiation pathway currently 

defined by the expression of a set of cTEC-associated genes, including β5t, CD205, and high levels 

of IL-7. As the development of Aire-expressing mTECs is not affected in β5t- 6,47, CD205- 48, or IL-

7-deficient mice (Rodrigues and Alves, unpublished data), these findings suggest that the 

expression of these cTEC traits solely identifies transitional TEC developmental stages, rather than 

being directly implicated in the divergence of the mTEC lineage. While such cortical attributes may 

be transiently transcribed at an early phase of both cTEC and mTEC lineages, and then either 

enhanced during the default cTEC development or progressively lost during differentiation into 

mature mTECs, this model supports a process in which cTEC and mTEC lineages follow 
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asymmetrical differentiation pathways from bipotent TEPs. In this differentiation route, 

transitional and cortical TEC progenitors are more closely related at phenotypic, molecular, and 

functional levels (Fig.(Fig.1B).1B). However, one cannot exclude that TEPs progress through the 

transitional TEP state prior to the commitment into the cTEC and mTEC lineages. In this variant 

“symmetric serial progression” model (Fig.(Fig.1B),1B), one considers that transitional TEPs may 

begin coexpressing cTEC- in addition to, yet unresolved mTEC-associated genes. Once the lineage 

fate is programmed into cTEPs or mTEPs, the expression of lineage-specific molecules is permitted 

and the expression of molecules specific for another lineage is terminated. Further studies on the 

molecular mechanisms regulating the dynamics of the serial progression of the cTEC and mTEC 

lineages are warranted. 

CONCLUSIONS 

The recent developments discussed in this review provide an important change in the 

understanding of TEC lineage specification. The identification of transitional progenitors with 

cortical traits indicates that cTECs and mTECs might share a more intricate lineage relationship 

downstream of bipotent TEPs than previously recognized. This raises more general questions of 

how TEC differentiation is balanced to create functionally diverse epithelial microenvironments. 

Given the considerable plasticity in the lineage potential of transitional TEPs, it will be important 

to determine whether these cells exist in the adult thymus. Additionally, we still lack evidence on 

how transcriptional and epigenetic changes contribute to the specification of TEC lineages. 

The “asymmetrical serial progression” model implies that the specification into the cortical lineage 

is the default pathway downstream of the TEC bipotent progenitors. From an evolutionary point of 

view, one can envisage that TECs from ancient vertebrates initially evolved with the functional 

capacity to commit thymic seeding precursors into the T-cell lineage and to restrict the immense 

diversity of generated TCR specificities to self-MHC molecules. In this scenario, the emergence of 

the mTEC lineage is a sophisticated event that evolved later to guarantee self-tolerance, either 

through the purging of autoreactive T cells or the generation of T regulatory cells 49. It is 

interesting to note that distinct lymphopoietic microenvironments are also detected in the recently 

identified thymoids of jawless vertebrates 50. Further studies on the TEC compartment of primitive 

vertebrates should elucidate whether these niches represent functional equivalents to the cortical 

and medullary lineages found in the thymus of jawed vertebrates. Knowledge in this area will 

enable us to gain a more complete appreciation of the fundamental rules that govern the complex 

diversification of TECs in mammals. 

Interestingly, the concept presented here seems to extend to other cell types and tissues, in which 

the indistinctness between progenitors and lineage-specific phenotypes is observed. For example, 

during the development of the central nervous system, both glial and neuronal cell lineages emerge 

from a common progenitor that expresses proteolipid protein, a predominant myelin neuronal-

restricted component 51. 

Taken together, the recent studies discussed here provide a clearer definition of TEC progenitors 

capable of giving rise to both cTECs and mTECs. This could have important implications in relation 

to cellular immunotherapy approaches involving thymus regeneration/replacement 52, in which 

functional and self-tolerant T-cell production depends upon the presence of both thymic 

compartments. 

 

Conflict of interest: The authors declare no financial or commercial conflict of interest 

ACKNOWLEDGMENTS 

N. L. A. is supported by program Ciência2008 from the Foundation for Science and Technology 

(FCT, Portugal). N. L. A. is supported by grants from FCT, funds from the European Regional 



 

Version: Postprint (identical content as published paper) This is a self-archived document from i3S – Instituto de 
Investigação e Inovação em Saúde in the University of Porto Open Repository For Open Access to more of our 
publications, please visit http://repositorio-aberto.up.pt/  
 

A
0

1
/0

0
 

Development Fund (FEDER) through the Operational Competitiveness Program (COMPETE), by 

National Funds through the Foundation for Science and Technology (FCT, Portugal) under Project 

FCOMP-01–0124-FEDER-015803 (PTDC/SAU-IMU/110116/2009). A. R. R. is supported by Ph.D. 

fellowships from FCT (SFRH/BD/78380/2011). Y. T. is supported by Grants-in-Aid for Scientific 

Research from MEXT and JSPS (23249025 and 24111004), Japan. G. A. and Y. T. are supported by 

An International Exchange Scheme from The Royal Society, UK. S. B. is supported by a PhD 

studentship from the European Union ITN “NINA.” G. A. is supported by a Medical Research Council 

Programme Grant, W. E. J. is supported by a New Investigator Award from the Medical Research 

Council, UK (G1001055). 

We thank members of our laboratories for their contribution to the manuscripts reviewed here. 

We apologize for not referring to all primary literature owing to space limitations. 

GLOSSARY 

Aire auto-immune regulator 

Cld claudin 

cTEC cortical TEC 

mTEC medullary TEC 

RANK receptor activator of NF-κB 

TEC thymic epithelial cell 

TEP thymic epithelial progenitor 
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Figure 1 - Models of thymic epithelial cell development. (A) In the “synchronous” model, uncommitted bipotent 

TEC progenitors (TEPs) diverge simultaneously to lineage-restricted cortical (cTEPs) and medullary (mTEPs) 

progenitors, which then progress into mature cTECs and mTECs. (B) In the “serial progression” model, TEPs 

transverse through a “transitional TEC progenitor” stage (tTEP) that expresses phenotypic and molecular traits 

associated with cTECs prior to the commitment into a cTEC or mTEC fate. In the asymmetric scenario (top), 

tTEPs are more closely linked, at the phenotypic and molecular levels, with cTEPs and have the potential to 

generate both mTEC progenitors and mature cTECs, with the cortical lineage being the “default” pathway. In the 

symmetric scenario (bottom), tTEPs express both cTEC and as-yet-unidentified mTEC traits prior to lineage 

specification. 

 


