Detecção de movimento e sua aplicação à monitorização de tráfego rodoviário
Detecção de movimento e sua aplicação à monitorização de tráfego rodoviário

Luís Filipe Barbosa de Almeida Alexandre

Licenciado em Física/Matemática Aplicada pela Faculdade de Ciências da Universidade do Porto

Dissertação submetida para satisfação parcial dos requisitos do grau de mestre em Engenharia Electrotécnica e de Computadores (Área de especialização de Informática Industrial)

Dissertação realizada sob a supervisão de Professor Doutor Aurélio Campilho, do Departamento de Engenharia Electrotécnica e de Computadores da Faculdade de Engenharia da Universidade do Porto

Porto, Setembro de 1997
Resumo

Pretendia-se com esta tese de mestrado estudar a detecção de movimento 2D em sequências de imagens de vídeo, tendo em vista o desenvolvimento de um sistema de monitorização de tráfego rodoviário.

Foram estudados diversos métodos de detecção de movimento e vários sistemas de monitorização de tráfego rodoviário.

Foi desenvolvido um método (AEID - Análise Estatística de Imagens Diferença) que permite efectuar a detecção de movimento 2D, no âmbito da análise de cenas de tráfego rodoviário, usando hardware de baixo custo.

Foi desenvolvida uma aplicação em Visual C++ que implementa o método AEID. A aplicação em conjunto com um computador IBM_PC compatível, com uma câmera de vídeo e uma placa de aquisição de imagem, constitui um sistema que permite efectuar a monitorização pretendida, analisando simultaneamente informação proveniente de várias vias.

Esta monitorização consiste na obtenção de vários parâmetros nomeadamente, contagem, débito, velocidades, intervalo de tempo entre veículos e classificação dos veículos como pesados ou ligeiros. O sistema mostra estes resultados em tempo real e escreve-os num ficheiro, de forma a permitir uma análise posterior dos resultados.

Foi efectuada uma análise dos erros envolvidos na medição dos diferentes parâmetros e foram descritas situações que podem levar a falhas na detecção.

Os resultados obtidos são bons ao nível da detecção e contagem de veículos e da medição do intervalo de tempo entre veículos. Quanto à medida das velocidades instantâneas e à classificação dos veículos os resultados são fracos devido à baixa resolução temporal do sistema.

Como conclusão regista-se que o método de detecção de movimento desenvolvido apresenta resultados bastante bons (número de veículos detectado em diversas situações e sob diversas condições aproxima-se dos 100%) e que o problema da medição de velocidades pode ser ultrapassado bastando para isso a utilização de hardware mais rápido que permita uma melhor resolução temporal, visto o método usado para estimar este parâmetro ser válido.

São apresentadas várias sugestões de possíveis extensões deste trabalho.
Agradecimentos

Desejo agradecer ao Prof. Campilho a disponibilidade constante e a valiosa orientação.

Ao LAT (Laboratório de Análise de Tráfego) da FEUP a disponibilização das imagens utilizadas, nomeadamente ao Prof. Carlos Rodrigues.

Desejo agradecer ao Eng. Miguel Correia os diversos conselhos e sugestões que foi dando ao longo deste trabalho.

Ao INEB (Instituto de Engenharia Biomédica) a disponibilização do equipamento e instalações.

Ao Departamento de Matemática/Informática da UBI (Universidade da Beira Interior) agradeço a redução de serviço docente no segundo semestre do ano lectivo 1996/97.

À Eliana agradeço tudo o resto.
Summary

The subject of this thesis is real-time 2D motion detection in image sequences aiming at the development of a traffic monitoring system.

Several motion detection methods and road traffic monitoring systems were studied.

A 2D motion detection method was developed (AEID - Statistical Analysis of Difference Images) that allows motion detection in traffic scenes using low-cost hardware.

It was developed an application using Visual C++ that implements the AEID method. This application together with an IBM-PC, a video camera and a image acquisition board forms a system that allows traffic monitoring, through the simultaneous analysis of several road lanes.

The system obtains several traffic parameters such as counts, speed, time between two consecutive vehicles and vehicle classification in two categories.

The system shows these results in real-time and stores them in a file such that further analysis of the results is possible.

An error analysis concerning the different parameters was done and several situations that can lead to detection failure were described.

The detection, count and time between vehicles results obtained are good. The speed measurement and vehicle classification are not so good due to the low image acquisition rate.

The result of testing shows that the 2D motion detection method developed detects vehicles with almost 100% accuracy. The problem with the measurement of speed can be solved with the use of faster hardware that allows a better time resolution.

Several suggestions for future work on this system are presented.
Índice

Resumo .. 3
Agradecimentos .. 4
Índice ... 5

Capítulo 1 - Introdução .. 8
1.1 Enquadramento do trabalho .. 9
1.2 Objectivo ... 10
1.3 O sistema ... 10
1.4 A abordagem ... 11
1.5 Breve resumo dos restantes capítulos ... 12

Capítulo 2 - Conceitos básicos e estado da arte .. 13
2.1 Conceitos básicos .. 14
2.2 Alguns métodos de detecção de movimento .. 15
2.3 Sistemas de monitorização de tráfego rodoviário .. 16
2.3.1 CCATS .. 17
2.3.2 Autoscope ... 17
2.3.3 PVS ... 19
2.3.4 Sistema da UC Berkeley ... 19
2.4 Resumo .. 20

Capítulo 3 - Detecção do Movimento 2D ... 22
3.1 Módulo de detecção ... 23
3.1.1 Método AEI .. 24
3.1.1.1 Apresentação do método ... 24
3.1.1.2 As características ... 26
3.1.1.3 O critério de classificação ... 30
3.1.1.4 Limitações e problemas neste método ... 32
3.1.2 Método AEID ... 36
3.1.2.1 Apresentação do método .. 36
3.1.2.2 Criação e actualização das linhas de referência ... 40
3.1.3 Filtragem ... 42

3.2 Módulo de decisão ... 45

3.3 Resumo .. 46

Capítulo 4 - Parâmetros fornecidos pelo sistema .. 48

4.1 Medicações e erros .. 49

4.2 Contagem e débito .. 49

4.3 Intervalo de tempo entre veículos ... 51

4.4 Velocidade .. 52
 4.4.1 Método .. 52
 4.4.2 Análise dos erros ... 52
 4.4.3 Limitações do método ... 57

4.5 Classificação de veículos .. 57

4.6 Outros parâmetros .. 58

4.7 Resumo .. 58

Capítulo 5 - O sistema .. 59

5.1 O hardware ... 60

5.2 A linguagem .. 61

5.3 A biblioteca MIL-Lite .. 63

5.4 As classes .. 64

5.5 Visita guiada .. 65

5.6 Resumo .. 69

Capítulo 6 - O sistema em funcionamento - avaliação do desempenho 70

6.1 Introdução .. 71
 6.1.1 Colocação da câmara .. 71
 6.1.2 As sequências de teste .. 71

6.2 Avaliação das contagens ... 73

6.3 Avaliação das velocidades .. 74
Capítulo 1 - Introdução
1.1 Enquadramento do trabalho

A sociedade moderna assenta no princípio do crescimento económico. A par deste crescimento encontra-se, entre outros, o crescimento do volume de tráfego automóvel.

O aumento do volume de tráfego torna-se um problema, dado que as infraestruturas que o deviam suportar não crescem à mesma velocidade.

O problema assume proporções graves em alguns locais - algumas empresas industriais de Silicon Valley viram-se forçadas a fechar linhas de produção visto as matérias primas não chegarem a tempo às fábricas (Carlson 1997).

Se o tráfego automóvel aumenta, a quantidade e/ou capacidade das vias de comunicação rodoviárias deve acompanhar esse crescimento.

A construção de vias novas é uma solução dispendiosa que só deve ser tomada quando não restar outra alternativa.

Assim, nos países que possuem uma rede viária desenvolvida, a ênfase está a ser desviada da construção de novas vias para a utilização racional das vias existentes. Esta viragem, que implica uma gestão mais eficaz dos recursos, só pode ser feita com acesso a informação relativa ao tráfego rodoviário.

Os sistemas tradicionais de aquisição de informação rodoviária são baseados em loops. Os loops são sensores indutivos colocados sob o pavimento e que efectuam uma detecção do tipo presença/ausência de veículo. Estes sensores têm diversos inconvenientes nomeadamente a necessidade de interromper a circulação na via em que se pretende instalar o sistema e a pouca flexibilidade, visto não ser prático mudá-los de posição após a sua instalação. Os dados obtidos pelos loops não permitem efectuar de forma simples alguns tipos de análise como a detecção de filas de trânsito e o cálculo do seu comprimento. De notar ainda a necessidade de instalar um destes sensores por cada via a monitorizar para realizar um tipo simples de monitorização podendo haver a necessidade de instalar vários se se pretender conhecer informação relativa a filas de trânsito.

Uma outra forma de adquirir informação passa pela utilização de sistemas de visão por computador; colocando câmaras de vídeo nas estradas e fazendo o processamento das imagens captadas pode-se extrair a mesma informação que os loops extraem e muitos outros tipos de informação impossível de extrair com esses sistemas.

Algumas das vantagens dos sistemas baseados em visão por computador para a monitorização de tráfego rodoviário são:

- uma câmara permite a monitorização de várias vias,
• a instalação e o funcionamento do sistema não perturba o tráfego,
• extrai uma vasta gama de parâmetros dando uma caracterização do fluxo de tráfego bastante completa (dependendo obviamente do sistema em particular),
• permite a detecção de incidentes (Hoose, 1992),
• permite o estudo de conflitos em cruzamentos (Bulas-Cruz, 1995) (Houghton, 1987) (Fathy, 1997),
• permite a classificação dos veículos (por exemplo, veículos de passageiros, autocarros, camiões, etc.) (Cyphers, 1990),
• permite a detecção de filas de trânsito e monitorização de engarrafamentos (Rourke, 1991).

A partir de alguns destes parâmetros podemos tirar conclusões acerca do comprimento das filas, do ajustamento dos semáforos às condições reais de trânsito, do tipo de aproveitamento que é feito das vias disponíveis, do tipo de condução praticada pelos condutores dos diferentes tipos de veículos, etc. Algumas outras aplicações deste tipo de sistemas são a detecção de veículos mal estacionados (por exemplo, nas bermas das autoestradas) e a identificação de lugares livres em parques de estacionamento (Bulas-Cruz, 1995).

1.2 Objectivo

Este trabalho teve como objectivo o desenvolvimento de um sistema de monitorização de tráfego rodoviário baseado em visão por computador. O sistema deveria permitir a extração de um conjunto de parâmetros de tráfego a partir de imagens captadas por uma câmara de vídeo. Esses parâmetros serviriam para caracterizar a corrente de tráfego em análise.

O sistema deveria funcionar em tempo real, o que significa para este tipo de aplicação que deveria processar as 25 imagens por segundo produzidas pela câmara de vídeo, ou pelo menos metade.

Um outro requisito do sistema é a utilização de hardware de baixo custo que neste caso significa a utilização de computadores pessoais (IBM PC compatíveis), de uma câmara de vídeo normal (PAL) e uma placa de aquisição de imagem simples.

1.3 O sistema

É constituído por um computador pessoal Pentium a 133 MHz com 32 Mb de RAM e com Windows NT 4.0 Workstation como sistema operativo. A monitorização pode ser feita a partir de uma câmara de vídeo ou de um gravador vídeo. O processamento das imagens é feito considerando apenas imagens monocromáticas com 256 tons de cinzento.
É utilizada uma placa de aquisição de imagem Matrox Meteor que permite a captação de imagens vídeo em tempo real.

A aplicação foi desenvolvida no ambiente Microsoft Visual C++ 4.2 usando funções de processamento de imagem da biblioteca MIL-Lite 3.1 - Matrox Imaging Library - fornecida com a placa de aquisição de imagem.

1.4 A abordagem

Para implementar um sistema deste tipo é necessário resolver o problema da detecção de movimento visto ser necessário identificar os veículos.

Existem várias abordagens ao problema da detecção de movimento. Entre elas contam-se a utilização de características extraídas dos objectos como cantos ou bordos, que são identificados numa imagem e são seguidos ao longo da sequência de imagens de forma a retirar informação sobre o movimento. Outras abordagens baseiam-se no cálculo do fluxo óptico: analisam as variações de intensidade luminosa das imagens de forma a podermos associar a cada ponto um vector que representa a velocidade 2D. Mas existem técnicas adaptadas especificamente para o caso em que se analisam cenas usando uma câmara estacionária, que é o caso em questão. São elas:

- diferença relativa a uma imagem de "fundo",
- diferença entre imagens consecutivas.

O primeiro método mantém uma imagem de fundo que na forma mais elementar consiste numa média temporal de imagens da cena, que acaba por conter apenas os objectos estáticos: aqueles objectos que se encontram em movimento são eventualmente apagados dessa imagem pela sucessiva sobreposição dos objectos que se encontram parados. Fazendo a diferença entre uma dada imagem e a imagem de fundo desse local obtém-se os objectos que estão presentes na imagem e não estão presentes na imagem de fundo - os objectos que se encontram em movimento.

Estes métodos têm de criar e manter a imagem de fundo - tarefa que pode ser complicada. Existem diferentes abordagens a este problema (ver capítulo 2). Note-se a necessidade de impor algum tipo de critério para distinguir entre um objecto que faz parte do fundo, ou seja, que se encontra imóvel, de outro que se encontra em movimento. Um veículo parado num semáforo durante 5 segundos deve ou não ser considerado um objecto imóvel e fazer parte do fundo? Existem outros problemas ligados à variação das condições de iluminação: rápidas variações de iluminação podem invalidar a imagem de fundo. Questões como estas são delicadas.
No segundo método faz-se uma análise das mudanças entre duas imagens consecutivas. Estudam-se as zonas da imagem que se alteram entre duas imagens consecutivas duma cena e consegue-se identificar os bordos dos objectos que alteraram a sua posição de uma imagem para a outra.

O método proposto usa um pouco de ambos os métodos: usa a técnica de diferença com uma imagem de fundo (embora não a imagem de fundo “clássica”) e a validação de uma detecção só é feita após comparação com os resultados das imagens anteriores. Usa também a análise estatística de zonas da imagem por onde os veículos deverão passar. Essas zonas da imagem são definidas pelo operador do sistema antes de iniciar a monitorização e consistem em segmentos de linha de imagem dispostos perpendicularmente em relação à direcção do movimento dos veículos.

As vantagens desta abordagem são a reduzida quantidade de informação a processar por imagem e a capacidade do sistema se adaptar automaticamente às mudanças de iluminação e a diferentes locais. As imagens a processar têm um resolução de 768 x 576 pontos de imagem e são monocromáticas com 256 níveis de cinzento, o que corresponde a 8 bit de informação por ponto de imagem. Visto o objectivo ser tratar 25 imagens por segundo temos 768 x 576 x 8 x 25 = 84 Mbit de informação a processar por segundo. Deste modo, é importante a utilização de um método de detecção de movimento que só processe a informação essencial, de outro modo não seria possível usar um sistema de baixo custo.

A adaptação automática do sistema torna-o de fácil utilização sem necessitar de ajustes efectuados pelo utilizador.

1.5 Breve resumo dos restantes capítulos

No capítulo 2 é apresentado um resumo do estado da arte na área da monitorização de tráfego sendo referidos alguns métodos de deteção de movimento. No capítulo 3 é descrito o método proposto para efectuar a deteção de movimento e no capítulo 4 são descritos os parâmetros de tráfego obtidos pelo sistema. É feita uma análise da aplicação no capítulo 5 onde se descrevem os detalhes da implementação incluindo ainda uma “visita guiada” à aplicação. No capítulo 6 são apresentados os resultados da avaliação do desempenho do sistema e as conclusões são apresentadas no capítulo final.
Capítulo 2 - Conceitos básicos e estado da arte
Neste capítulo são apresentados conceitos básicos no âmbito desta dissertação (2.1). São também referidos alguns métodos de detecção de movimento desenvolvidos tendo em vista a monitorização de tráfego (2.2).

Em 2.3 são descritos os sistemas de monitorização de tráfico rodoviário baseados em visão por computador de que temos conhecimento, focando as suas características fundamentais.

2.1 Conceitos básicos

O sistema desenvolvido é baseado no processamento de imagens vídeo. Embora as imagens captadas pela câmera possam ser a cores, o sistema usa apenas imagens monocromáticas, ou seja, imagens em tons de cinzento. O número de tons é 256. As imagens são digitalizadas por uma placa de aquisição de imagem, sendo a digitalização o processo de conversão do formato analógico do sinal vídeo para o formato digital do computador. As imagens, após a digitalização, podem ser vistas como sendo uma matriz bidimensional de pontos que no nosso caso podem assumir valores inteiros de 0 a 255. Estes valores representam a intensidade luminosa em cada ponto. Quanto maior o valor mais próximo de branco se encontra o tom de cinzento associado ao ponto. O tom preto é associado ao valor zero e o tom branco ao valor 255.

Chama-se movimento 2D à projecção no plano de imagem do movimento real dos objectos no espaço (movimento 3D). Para a aplicação em causa, o movimento 2D pode ser considerado uma boa aproximação ao movimento 3D nomeadamente no (pequeno) percurso mais importante que é aquele efectuado entre as duas linhas de detecção (ver 3.2).

A utilização do movimento 2D pode levar a problemas na interpretação da cena nomeadamente devido ao fenómeno da oclusão: quando dois objectos se encontram parcialmente ou totalmente sobrepostos na imagem. Esta sobreposição resulta dum alinhamento dos objectos relativamente ao eixo de visão. Este problema pode ser evitado no caso da aplicação ao tráfego se a câmara for colocada de forma a que o plano de imagem se encontre paralelo à estrada, o que significa ter a câmara colocada verticalmente sobre a estrada. Este tipo de tomada de imagem é difícil por dois motivos: a câmara teria de estar colocada num local elevado para poder monitorizar várias vias e a aquisição de imagens teria de ser feita a uma taxa mais elevada pois os veículos estariam menos tempo no campo de visão da câmara do que se esta se apresentar em vez de paralela à via, obliqua.

Monitorizar significa medir no sentido de controlar: medir para poder gerir. A monitorização do tráfego rodoviário consiste na medição de parâmetros de tráfego que possibilitem a gestão da rede viária e o controlo da sua utilização.
2.2 Alguns métodos de deteção de movimento

O método proposto por Houghton(1987) para efectuar a deteção de movimento é baseado na limiarização duma imagem diferença obtida pela subtração de uma imagem de referência à imagem actual. A actualização da imagem de referência é efectuada da seguinte forma: escolhem-se aleatoriamente 64 pontos da imagem de referência (que contém 65356) que são substituídos pelos pontos correspondentes da imagem actual. De notar que estes pontos podem representar objectos estáticos ou não, visto serem escolhidos de forma aleatória. O efeito desta actualização é o aparecimento de ruído na imagem de referência. Este ruído corresponde aos pontos que provêm de objectos em movimento e é removido usando operadores locais 3x3.

Não é descrito o modo de determinação do limiar da binarização que é um parâmetro crucial neste tipo de métodos.

Maravall(1996) descreve um método de deteção de movimento usado num sistema comercial desenvolvido para efectuar a contagem de veículos em portagens. O método é baseado na diferença entre o histograma de uma janela da imagem de referência e o histograma da janela correspondente na imagem actual. Se as diferenças forem significativas conclui-se que um veículo está presente na janela.

Os passos do método são: comparação dos histogramas, aplicação de uma limiarização que visa quantificar a significância da diferença entre os histogramas e a actualização do histograma de referência. O segundo passo é fundamental: se o limiar de significância for colocado demasiado alto alguns veículos não são detectados e se for demasiado baixo serão efectuadas falsas detecções. Os autores usam como limiar o valor da diferença entre dois histogramas consecutivos da imagem de referência. A actualização do histograma de referência é feita de uma forma pragmática: se na imagem actual se concluir que não existem veículos então o histograma actual passa a ser o histograma de referência.

Os autores referem taxas de deteção próximas dos 100% para imagens diurnas. Um dos casos em que o sistema não consegue efectuar a deteção correcta surge quando dois veículos se deslocam muito próximos um do outro. O outro caso refere-se à deteção efectuada durante a noite quando os veículos se deslocam de forma a serem vistos de frente pela câmara. O sistema acusa a passagem de dois veículos correspondendo o primeiro à projecção dos faróis dianteiros e o segundo ao veículo propriamente dito.

Os autores não referem o comportamento do sistema perante tráfego congestionado ou parado.

Bulas-Cruz (1995) propõe um método de deteção de movimento baseado na análise da imagem diferença entre as imagens adquiridas e uma imagem de referência. A imagem de referência é
construída efectuando uma média temporal exponencial das imagens adquiridas. São incluídos nesta imagem de referência objectos que se imobilizem durante um intervalo de tempo pré-definido. A detecção de movimento é feita comparando as intensidades dos pontos da imagem diferença com limites de detecção previamente estabelecidos. Propõe uma variação do mesmo método, em que os limites de detecção são ajustados após a avaliação das mudanças de intensidade luminosa da cena em zonas pré-definidas, onde nenhum movimento é suposto existir.

As técnicas propostas permitiram implementar duas aplicações: detecção de veículos mal estacionados e o seguimento de veículos em cruzamentos.

Em Fathy (1995) é apresentada uma técnica de detecção de veículos usando detecção morfológica de contornos (SMED) e diferença com imagem de referência. O método usado consiste na obtenção dos contornos da imagem actual e da imagem de referência usando o operador SMED (Separable Median Filter). De seguida são subtraídos os contornos da imagem de referência dos contornos da imagem actual deixando assim apenas os contornos dos objectos em movimento.

A actualização da imagem de referência só é efectuada quando nenhum veículo foi detectado na imagem actual nem na anterior e é feita substituindo cada ponto seleccionado pela média do ponto actual e do ponto na imagem de referência. A selecção dos pontos a actualizar é feita analisando a diferença entre a intensidade dos pontos em duas imagens consecutivas. Se esta diferença não exceder um limiar os pontos são actualizados. Esse limiar é obtido avaliando a variação da luminosidade ambiente através das variações de intensidade entre duas imagens consecutivas.

Os resultados que apresentam para este método rondam os 95% de detecções correctas.

2.3 Sistemas de monitorização de tráfego rodoviário

Neste sub-capítulo são descritos sistemas de análise de tráfego baseados em visão por computador. Como o objectivo é apresentar um resumo do estado da arte serão apenas mencionados sistemas que foram desenvolvidos e/ou que sofreram alterações a partir de 1990.

Os artigos onde são descritos estes sistemas não referem claramente alguns dos pormenores da implementação (algoritmos e parâmetros), o que provavelmente se fica a dever ao facto de serem produtos comerciais (excepto o sistema referido em 2.3.4).
2.3.1 CCATS

A primeira aplicação bem sucedida foi em 1987 junto ao edifício da comissão europeia.

O sistema funciona da seguinte forma: é definida uma janela programável na imagem onde se efectua o processamento em tempo real. Existe um sistema que usa o feedback do sinal de vídeo e o cálculo dinâmico das LUTs (do inglês “look-up tables”: são tabelas usadas para efectuar operações de forma rápida) que permite obter uma imagem binária dos objectos em movimento na cena. Um outro microprocessador analisa as imagens binárias e extrai os parâmetros.

Os pormenores relativos ao método não são descritos.

Os parâmetros disponíveis são: débito por via (máximo 3 vias), taxa de ocupação, velocidade média por via (de 10 a 150 Km/h), tempo e comprimento entre veículos, comprimento médio por via, tipo de veículo (6 tipos).

O sistema já foi usado sob diversas condições atmosféricas.

Segundo dados do fabricante obtém-se os seguintes resultados: débito e taxa de ocupação média com erro inferior a 4%, tempo entre veículos, velocidade e comprimento médio com erro inferior ou igual a 8%. A velocidade e o comprimento médio atingem erros de 16% para velocidades superiores a 120 Km/h. Briquet (1990, p. 67) nota que em vias rápidas urbanas a velocidade, o tipo de veículo e o seu comprimento atingem erros de 20% (exemplo de má classificação: camião de 3 m de comprimento a circular a 150 Km/h).

O sistema parece (não é claro este facto em Cyphers(1990)) não produzir resultados se os veículos se deslocarem a velocidades inferiores a 10 Km/h.

Não nos foi possível obter informações mais recentes que as disponíveis em 1990 (Cyphers 1990, Briquet 1990).

2.3.2 Autoscope

Recentemente foi publicado um artigo semi-promocional (Carlson 1997) onde se apresentam as últimas inovações do sistema: o Autoscope é actualmente uma família de produtos pois existem
diferentes módulos (sistemas) que podem ser instalados independentemente dependendo dos objectivos pretendidos: deteção de incidentes, contagem ou gestão de cruzamentos.

Na sua forma básica este sistema permite a deteção de veículos e a extração de parâmetros de tráfego.

Opera na presença de reflexos, sombras e variações de iluminação que distingue dos veículos usando uma deteção baseada numa assinatura - esta assinatura não é definida nos artigos. Funciona com o transito congestionado ou mesmo parado.

O sistema detecta a passagem ou a presença de carros sobre linhas (detectores) que são colocadas pelo operador no monitor.

O sistema só processa algumas das imagens que recebe e mesmo essas só processa parte da imagem de cada uma. Permite assim uma redução de dados espacial e temporal.

O método de deteção usado neste sistema usa uma imagem de referência. É obtida uma assinatura desta imagem, e é feita a diferença entre a imagem actual e a de referência de onde se extraem características. Estas características são transformadas em estados lógicos usando a assinatura de forma não explicada. Finalmente o processamento de nível mais elevado usa os estados lógicos para classificar o estado actual numa de três categorias: veículo, fundo e incerto.

É de referir que os detalhes das diferentes fases deste método não são claramente explicados na bibliografia (Michalopoulos 1991).

Alguns parâmetros fornecidos pelo sistema são: a velocidade média temporal (que resulta da média das velocidades dos carros que passam num dado detector, numa dada faixa), a velocidade média espacial (velocidade média de um veículo num dado percurso), o débito, a distribuição por faixas e a contagem.

Tem algumas características interessantes, nomeadamente o facto dos detectores serem colocados iterativamente e o processamento ser feito apenas em janelas (o que reduz substancialmente a quantidade de informação a processar facilitando a sua implementação em tempo real). De notar que é uma filosofia semelhante a que usamos na nossa abordagem à detecção de movimento.

Este sistema usa hardware específico.

Num relatório do Virginia Transportation Research Council (Cotrell 1994) onde se relatam as conclusões de um estudo de vários sistemas de monitorização de tráfego são avançadas algumas informações sobre a avaliação deste sistema.

Os avaliadores consideraram negativo o facto do Autoscope não possuir um sistema de gestão de base de dados que permita gerir a informação recolhida.

Na monitorização o sistema teve um desempenho pobre. A comparação entre os valores medidos pelo Autoscope e por loops instalados nas zonas de teste revelou que o Autoscope produzia medidas do volume de tráfego substancialmente superiores às medidas pelos loops e que as medições de
velocidade e volume eram inconsistentes. As razões para este desempenho fraco foram atribuídas à colocação das câmaras nos locais de teste pois em vez de se encontrarem directamente sobre as faixas de rodagem encontravam-se na berma das mesmas.

2.3.3 PVS

O PVS é um sistema comercial usado para efectuar a detecção, contagem e seguimento de veículos (Wixson 1996).

A abordagem ao problema da detecção de movimento envolve a mudança automática de parâmetros e algoritmos dependendo de três aspectos relativos à iluminação da cena. Se a cena estiver mal iluminada são usados algoritmos que discriminam as luzes dos veículos dos seus reflexos na estrada.

Se não existir suficiente contraste o sistema informa que a detecção não é fiável e passa a funcionar num modo a que os autores chamam “failsafe”. Se os veículos estiverem a projectar sombras são usados algoritmos que evitam falsas contagens devidas a sombras.

Para efectuar a detecção de movimento o sistema usa uma imagem de referência com a qual são comparadas todas as imagens recebidas. São processadas apenas janelas colocadas ao longo das vias a estudar. São medidas diferenças ao nível dos pontos de imagem baseadas em dois parâmetros calculados sobre as linhas a que os pontos pertencem: o brilho e a energia. O brilho corresponde à soma das intensidades dos pontos de imagem na sua linha respectiva enquanto a energia é definida como a soma pesada da diferença absoluta entre cada dois pontos adjacentes em cada linha da janela.

Os pontos de imagem que apresentarem diferenças significativas são agrupados em “fragmentos” pelo algoritmo de detecção. Os fragmentos são seguidos de imagem em imagem usando um filtro preditivo.

Este sistema utiliza bastante hardware específico incluindo dois DSP (circuitos integrados de processamento de sinal) da Texas, um circuito integrado Sensar pirâmide (permite efectuar operações hierárquicas sobre as imagens), várias LUT e uma ALU (unidade lógica e aritmética: um integrado usado para efectuar operações matemáticas) desenhada especificamente para este sistema.

O funcionamento é feito a 30 Hz. Não são referidos resultados da avaliação do sistema.

2.3.4 Sistema da UC Berkeley

O Caltech financia um projecto na Universidade da Califórnia em Berkeley para investigar a aplicabilidade da visão por computador na vigilância de tráfego nas autoestradas da Califórnia (Koller 1996). O sistema deve funcionar em tempo real num futuro próximo.
Fig. 2-1 Exemplo do módulo de seguimento.

Atualmente usam um seguidor de contornos 2D com alto nível de rigor baseado em fronteiras de intensidade e de movimento.

Assume-se que o movimento do contorno dos veículos na imagem é bem descrito por um modelo afim com uma translação e uma mudança de escala.

O contorno associado a uma região em movimento é inicializado usando uma fase de segmentação de movimento baseado na diferença entre uma imagem adquirida e uma imagem de fundo que é permanentemente actualizada.

O contorno do veículo é representado por uma curva spline cúbica fechada, cuja posição e movimento são estimados ao longo da sequência de imagens.

O sistema decompõe o processo de estimação em dois filtros de Kalman: o que estima os parâmetros afins de movimento e o que estima o contorno dos veículos.

A detecção de oclusão é efectuada intersectando as regiões de profundidade associadas aos objectos. Assim excluem a intersecção, da estimação do movimento e da forma.

As posições dos veículos são passadas a uma rede de inferência bayesiana para avaliação da cena. Esta inclui a detecção de veículos parados e acidentes assim como informação estatística como velocidade e utilização de faixas.

O sistema usa hardware específico, nomeadamente processadores de sinal (DSP) C-40 (Koller, 1994).

2.4 Resumo

Neste capítulo foi feito um pequeno resumo de alguns conceitos usados nesta dissertação (2.1). Foram referidos alguns métodos de detecção de movimento em 2.2, e em 2.3 foram descritos
sistemas de monitorização de tráfego. A tabela seguinte faz um resumo das características desses sistemas.

Tabela 2-1 - Comparação entre os diferentes sistemas de monitorização referidos em 2.3.

<table>
<thead>
<tr>
<th></th>
<th>CCATS</th>
<th>Autoscope</th>
<th>PVS</th>
<th>UC Berkeley</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempo real (Hz)</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim (30)</td>
<td>Não</td>
</tr>
<tr>
<td>Usa hardware específico</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
</tr>
<tr>
<td>Método de detecção</td>
<td>Dif.</td>
<td>Dif.</td>
<td>Dif.</td>
<td>Dif.</td>
</tr>
<tr>
<td></td>
<td>imagem</td>
<td>imagem</td>
<td>imagem</td>
<td>imagem</td>
</tr>
<tr>
<td></td>
<td>fundo</td>
<td>fundo</td>
<td>fundo</td>
<td>fundo</td>
</tr>
<tr>
<td>Contagem</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
</tr>
<tr>
<td>Velocidades</td>
<td>Sim</td>
<td>Sim</td>
<td>Não</td>
<td>Sim</td>
</tr>
<tr>
<td>Classificação dos veículos</td>
<td>Sim</td>
<td>Não</td>
<td>(?)</td>
<td>(?)</td>
</tr>
<tr>
<td>Seguimento</td>
<td>Não</td>
<td>Não</td>
<td>Sim</td>
<td>Sim</td>
</tr>
<tr>
<td>Inicio de desenvolvimento</td>
<td>1982</td>
<td>1984</td>
<td>(?)</td>
<td>1994(?)</td>
</tr>
</tbody>
</table>

Note-se que todos os sistemas usam hardware específico.

No anexo A são referidos outros sistemas dos quais não foi possível obter informações além das indicadas.
Capítulo 3 - Detecção do Movimento 2D
Neste capítulo é descrita a forma como é efectuada a detecção de movimento 2D. A detecção de movimento é feita através de dois módulos: o módulo de detecção e o módulo de decisão (fig. 3-1). O primeiro trabalha a um nível mais baixo lidando directamente com as imagens adquiridas. O segundo usa a informação produzida pelo primeiro para decidir se existe ou não detecção de veículo.

![Diagrama de fluxo](image)

Fig. 3-1 - Esquema dos módulos do sistema de monitorização

Os dados referidos na figura 3-1 são as imagens adquiridas pela placa de aquisição e as estatísticas são os parâmetros de tráfego que o sistema obtém após análise dos dados.

O módulo de detecção envia informação ao módulo de decisão sob a forma de classificações de vectores correspondentes a linhas de detecção. O módulo de decisão envia informação ao módulo de detecção respeitante à actualização das imagens de referência. Estes processos são explicados pormenorizadamente no resto deste capítulo.

3.1 Módulo de detecção

Este módulo tem como função classificar numa de duas populações (veículo ou fundo) a informação recolhida de cada imagem.

Foi criado um método de detecção de movimento, a que chamamos método AEI (Análise Estatística da Imagem), que se verificou sofrer de alguns problemas em determinadas situações. O método que é usado na aplicação (método AEID - Análise Estatística de Imagens Diferença) é a evolução do método AEI. Será no entanto descrito o método AEI, visto o método usado na aplicação usar algumas das ideias desenvolvidas inicialmente.
3.1.1 Método AEI

O primeiro método a ser descrito é o método AEI pois foi o primeiro desenvolvido para efectuar a detecção de movimento 2D. Como veremos tem algumas desvantagens que foram resolvidas com o método AEID (3.1.2)

3.1.1.1 Apresentação do método

A definição do instante preciso de passagem de um veículo por uma posição bem determinada é crucial para a caracterização de correntes de trâfego rodoviário (Briquet, 1990).

Na figura 3-2 observa-se uma imagem típica de um ambiente urbano. Esta imagem faz parte de uma sequência que será usada ao longo deste capítulo para ilustrar os conceitos apresentados.

O método usado analisa informação medida numa linha de imagem (Michalopoulos, 1991), a que chamaremos linha de detecção ou simplesmente linha, situada na faixa que se pretende estudar. Esta linha deve ser orientada perpendicularmente à direcção do movimento. Uma linha de detecção está representada por uma linha branca na figura 3-2, na segunda via a contar da esquerda.

Fig. 3-2 - Imagem típica de um ambiente urbano com uma linha de detecção assinalada.
As linhas de detecção são colocadas inicialmente pelo utilizador da aplicação nas vias que pretende estudar (para a descrição do funcionamento da aplicação consulte o capítulo 5).

Em cada imagem captada é lida a informação na linha de detecção sob a forma de um vector de observação \(x(t) \). Considera-se que a informação em \(x(t) \) pode estar associada ao fundo ou a um veículo. A figura 3-3 mostra o perfil de intensidades para o caso em que nenhum veículo se encontra a pisar a linha de detecção da figura 3-2. Na figura 3-4 está representado o perfil de intensidades registado quando um veículo se encontra sobre a linha de detecção.

![Perfil de intensidades para a linha representada na fig. 3-2 quando nenhum veículo está a pisar.](image)

![Perfil de intensidades para a linha representada na fig. 3-2 quando um veículo está a pisar.](image)
Assim, a cada imagem (e a cada linha de detecção) corresponde um vetor de observação $x(t)$ que pertence a uma de duas populações: quando a linha não está a ser atravessada por um veículo diremos que o vetor pertence à população 1 senão o vector pertence à população 2 (população dos veículos). Assim os estados possíveis para os vectores de observação são apenas dois, embora alguns autores optem por usar três estados representando o terceiro um estado de incerteza (Michalopoulos 1991, p.24).

Para efectuar a detecção de veículos o sistema terá de ser capaz de classificar um vector observado como pertencente a uma das duas populações referidas.

3.1.1.2 As características

A análise dos vectores de observação $x(t)$ não é efectuada directamente sobre os tons de cinzento captados pela câmara. De $x(t)$ são extraídas características que depois de analisadas permitirão efectuar a classificação. Nesta secção serão descritas as características que foram definidas para caracterizar os vectores de observação.

O vector $x(t)$ tem comprimento N (número de pontos de imagem que fazem parte da linha de detecção) e pode ser expresso por

$$x(t) = [x_1(t) \ldots x_N(t)]^T$$

(3-1)

Cada elemento de $x(t)$ assume um valor discreto compreendido entre 0 e 255 correspondendo a um dos 256 tons de cinzento das imagens monocromáticas adquiridas.

Dado que os veículos podem ter tons de cinzento bem diferentes do fundo, a média das intensidades dos pontos que constituem a linha de detecção poderia ser uma boa característica para distinguir os vectores das duas populações. A média de $x(t)$ é dada por

$$\bar{x}(t) = \frac{1}{N} \sum_{i=1}^{N} x_i(t)$$

(3-2)

Na figura 3-5 pode observar-se um gráfico da evolução de $\bar{x}(t)$ durante a sequência de imagens já referida.
Fig. 3-5 - A evolução da média das intensidades numa linha de detecção durante a sequência de imagens.

É notório que entre a imagem 16 e a imagem 33 a média apresenta variações significativas relativamente aos valores que toma fora desse intervalo. Foi precisamente nessas imagens que a linha de detecção foi atravessada por um veículo. Isto sugere a possibilidade de impor um limite à variação de $x(t)$ a partir do qual $x(t)$ seria considerado como pertencente à população 2. Se a média se mantivesse dentro desse limite, $x(t)$ seria considerado fundo (população 1).

Na prática existem problemas com esta abordagem pois o valor da média, embora varie entre a imagem 16 e a imagem 33, também pode assumir valores que são reconhecidos como fundo (aproximadamente 85 para o caso da fig. 3-5), aliás como é visível na figura. Assim sendo, pode-se concluir que a média não será uma boa característica a considerar.

Os pontos da imagem que constituem o fundo têm intensidades luminosas semelhantes. Isto significa que a variância das intensidades dos pontos que compõem uma linha de detecção é pequena quando em presença de vetores pertencentes à população 1. Se a linha for atravessada por um veículo a variância dos vetores observados será elevada.

Um estimador centrado para a variância dos vetores, $s^2(t)$, é dado por

$$s^2(t) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i(t) - \bar{x}(t))^2$$ \hspace{1cm} (3-3)

Esta estatística $s^2(t)$ será daqui para a frente referida como variância, num claro abuso de linguagem.
Na figura 3-6 observa-se o gráfico com o comportamento de $s^2(t)$ durante a sequência de imagens representada na fig.3-3.

![Variância durante a sequência.](image)

A análise da evolução desta característica parece sugerir que a variância será um bom indicador da passagem de veículos visto que entre a imagem 16 e a 33 atinge valores bastante distintos dos que tem quando fora desse intervalo.

Foi analisado o comportamento de outros momentos de ordem superior com o intuito de, com mais características, tornar mais robusta a distinção entre as duas populações.

Na figura 3-7 observa-se o comportamento do momento de ordem 3 e do momento de ordem 4 para a mesma sequência.
Fig. 3-7 - Os momentos de terceira (+) e quarta ordem (0).

Os momento centrados de ordem 3 e 4 são definidos por

$$m_k(t) = \frac{1}{N} \sum_{i=1}^{N} (x_i(t) - \bar{x}(t))^k$$ \hspace{1cm} (3-4)

fazendo k igual a 3 ou 4, respectivamente.

O momento de ordem 4 comporta-se de forma muito semelhante à variância, logo não traz vantagem adicional considerá-lo. Por outro lado, o momento de ordem 3 tem um comportamento semelhante à média, isto é, durante a passagem do veículo pode assumir valores idênticos aos que assume quando não está a passar qualquer veículo. Assim sendo, este momento não será usado como característica discriminante.

Também se observa que quando a linha de detecção está a ser atravessada por um veículo a informação espacial é menos uniforme do que quando está a detectar apenas o fundo. Esta diferença pode ser avaliada através de uma característica que revele o grau de irregularidade espacial da informação contida em x(t). Uma característica adequada é a derivada espacial sobre a linha de detecção.

Foi definida uma característica (sqd) que consiste na média da soma dos quadrados das diferenças entre elementos consecutivos de x(t). Esta característica exibe um comportamento semelhante à derivada espacial e é expressa por

$$sqd(t) = \frac{1}{N-1} \sum_{i=2}^{N} (x_i(t) - x_{i-1}(t))^2$$ \hspace{1cm} (3-5)
Na figura 3-8 observa-se um gráfico com o comportamento da $sqd(t)$ ao longo da mesma sequência de imagens.

Conforme se pode observar a $sqd(t)$ é uma característica com bom poder discriminante entre as duas populações.

Foram efectuados testes com muitas sequências de imagem diferentes e com veículos de vários tipos e as características $s^2(t)$ e $sqd(t)$ exibiram sempre um bom comportamento no que respeita à capacidade de discriminação entre as populações e foram por isso usadas no método para esse efeito.

A avaliação do comportamento que as características exibiam perante as diferentes condições foi efectuada através da análise dos diagramas de dispersão (ver próximo parágrafo), ao constatar-se que produziam agrupamentos diferentes para as diferentes populações.

3.1.1.3 O critério de classificação

Tendo duas características que permitem a distinção entre veículos e fundo é necessário desenvolver uma forma de classificação automática dos vectores $x(t)$ conforme vão sendo captados pelo sistema.

Para auxiliar a análise deste problema de classificação, recorre-se a um diagrama de dispersão bidimensional em que os eixos representam as duas características seleccionadas: $s^2(t)$ e $sqd(t)$. O gráfico de dispersão da figura 3-9, representa os vectores recolhidos durante a sequência de imagens referida.
Como se pode observar a população 1 encontra-se agrupada em torno da origem tendo nas duas direcções uma dispersão bastante pequena. Isto porque tanto $s^2(t)$ como $sqd(t)$ tomam valores baixos para os elementos desta população. Já o mesmo não acontece com os elementos da população 2. Esta população, devido ao elevado número de diferentes tipos e cores de veículos, está espalhada por grande parte do plano. Os pontos deste espaço são os vectores $y(t)$ definidos como

$$y(t) = [s^2(t) \quad sqd(t)]^T$$ \hspace{1cm} (3-6)

Em cada imagem captada pelo sistema, irá ser decidido se a linha de detecção se encontra a captar um veículo ou não a partir da classificação do vector $y(t)$ correspondente. Para este efeito, foram testados dois critérios de classificação automática dos vectores $y(t)$.

A primeira ideia que pode surgir é de efectuar uma classificação dos vectores baseada na sua distância euclidiana ao centróide de cada população. Mas após a análise dum diagrama de dispersão rapidamente se conclui que existem vectores que pertencem à população 2 e que se encontram mais próximos do centróide da população 1. Assim, devem ser utilizadas medidas de distância que levem em conta a dispersão dos vectores em torno do centróide da população a que pertencem.

O primeiro critério testado consiste no cálculo da distância de Mahalanobis do vector a classificar às duas populações - critério dM. O vector seria classificado como pertencente à população da qual estivesse mais próximo, no sentido da distância de Mahalanobis. A distância de Mahalanobis de $y(t)$ à população 1 define-se pela expressão
\[
dM(y, i) = \sqrt{(y - \mu_i)^T \Sigma_i^{-1} (y - \mu_i)}
\]
(3-7)

onde \(\mu_i \) é o centróide da população em relação à qual estamos a medir a distância e \(\Sigma_i^{-1} \) é a inversa da matriz de covariância da população \(i \) que é dada por

\[
\Sigma_i = \frac{1}{v-1} \sum_{k=1}^v (y_k - \mu_i)(y_k - \mu_i)^T
\]
(3-8)

onde \(v \) é o número de vectores (Schalkoff, 1992, p. 306) da população \(i \).

O outro critério testado foi o chamado critério da soma dos quadrados dos erros (sqq) (Schalkoff, 1992, p. 119). Este critério de classificação consiste em testar as duas hipóteses de classificação de \(y(t) \) - no primeiro caso considerar que \(y(t) \) pertence à população 1 e no segundo que pertence à população 2. Em cada caso deve ser calculada a soma das variâncias das populações (em relação aos seus centróides) dada por

\[
\sum_{i=1}^2 \sum_{j=1}^N \| y_j(t) - m_i \|^2
\]
(3-9)

onde \(N_i \) representa o total de vectores em cada população e \(m_i \) o centróide de cada população.

Assim obtém-se uma ideia do grau de perturbação que consiste a introdução de \(y(t) \) em cada uma das populações. O critério para classificar o vector \(y(t) \) consiste em colocá-lo na população que perturbe menos a soma das variâncias.

Teste efectuados levaram-nos a optar pela utilização do critério da soma dos quadrados dos erros visto apresentar resultados de classificações correctas superiores 5% em média, aos obtidos com a distância de Mahalanobis. Os pormenores podem ser consultados em Alexandre (1997).

3.1.1.4 Limitações e problemas neste método

Uma limitação que o método proposto apresenta refere-se ao local da colocação das linhas de detecção. Esse local deve ser o mais uniforme possível relativamente à intensidade dos pontos da linha de detecção e essas intensidades devem ser o mais próximas possível de zero. Isto para que a população 1 esteja o mais próxima da origem de forma a ser facilmente distinguída da população 2.

Esta limitação reduziria bastante a utilidade do sistema se este fosse implementado usando este método de detecção. Isto porque não poderiam ser colocadas linhas de detecção se estas se
sobrepusessem parcialmente aos traços brancos da estrada ou em locais onde em vez de asfalto o chão fosse coberto por paralelos ou tivesse manchas ou variações de brilho produzidas por qualquer outro artefacto.

Um outro problema mais grave surge na medição de velocidades. Para se extraírem velocidades é necessário conhecer a distância entre duas linhas de detecção e o tempo que os veículos levam a percorrer o espaço que as separa.

Deste modo, para obter as velocidades dos veículos é necessário usar pelo menos duas linhas de detecção numa imagem.

O que verificamos foi que o sistema tinha dificuldades na classificação de vectores quando colocávamos mais de uma linha de detecção na imagem.

Analisando um gráfico com os vectores adquiridos durante uma sequência de imagem em que tinham sido colocadas duas linhas de detecção na imagem podemos observar que os vectores de fundo captados por uma das linhas podem diferir significativamente dos vectores de fundo captados pela outra linha. Observam-se nas figuras 3-10 e 3-11 dois exemplos do referido comportamento.
Fig. 3-10 (a) Diagrama de dispersão para uma sequência de imagens com duas linhas de detecção (b)

Pormenor de (a) onde são visíveis os dois agrupamentos bem separados correspondendo às duas linhas de detecção
Fig. 3-11 (a) Diagrama de dispersão para uma sequência de imagens com duas linhas de detecção (b)

Pormenor de (a) onde são visíveis os dois agrupamentos bem separados correspondendo às duas linhas de detecção

No caso da figura 3-10 o referido comportamento ficou a dever-se ao facto de uma das linhas de detecção estar colocada num local onde durante a sequência de imagens incidiu a sombra de uma árvore, embora o asfalto em si fosse idêntico nos locais onde foram colocadas linhas. Pode-se observar um efeito de migração dos vectores ao formarem um agrupamento alongado que representa o efeito da variação das condições (de iluminação) sobre a linha de detecção. No caso da figura 3-11 o asfalto era manchado no local duma das linhas e no outro não.

O sistema que se pretende desenvolver terá de permitir a monitorização de várias vias de rodagem. Deste modo em vez de existirem dois grupos de vectores a corresponderem ao fundo poderiam existir vários o que torna a tarefa de distinguir um fundo dum veículo pelo método proposto praticamente impossível.

Apesar das desvantagens, este método permitia a detecção sem ser necessário a utilização de uma imagem de referência. Em contrapartida era necessário que existissem vectores de ambas as populações de forma que o sistema pudesse comparar os vectores que captava com outros já existentes.

A adaptação deste método às diferentes condições de iluminação fazia-se através do mecanismo exemplificado na figura 3-10 - os vectores migravam no espaço de características. Conforme os
vectors iam sendo classificados substituíam o vector mais antigo da população a que pertenciam, mantendo-se assim as populações com um número fixo de vectores.

Um outro problema era a determinação do número de vectores que deviam constituir as populações. Quanto maior fosse esse número, melhor seriam as classificações para uma iluminação constante, mas também seria mais difícil de fazer a renovação desses vectores. Quanto mais vectores existissem nas populações maior inércia o sistema apresentava, de forma que se tornava difícil a sua adaptação a diferentes condições de iluminação.

3.1.2 Método AEID

Para ultrapassar os problemas surgidos com o método AEI (3.1.1.4) foi desenvolvido este outro método de detecção de movimento que resolve as deficiências apresentadas pelo método anterior.

3.1.2.1 Apresentação do método

Esta nova abordagem é baseada no método AEI. Usa as linhas linha de detecção mas em vez de classificar directamente os vectores adquiridos, classifica o vector diferença entre o vector adquirido e um vector de fundo que é mantido para cada linha de detecção.

Verifica-se que após uma filtragem usada para eliminar algum ruído presente nas imagens (ver 3.1.3) os vectores correspondentes ao fundo de diferentes locais ficam sempre confinados a uma zona bastante restrita do espaço das características o que permite simplificar o processo de classificação.

A necessidade de evitar variações dos níveis de classificação de acordo com o local onde se colocam as linhas de detecção levou-nos a optar pela utilização de uma imagem de referência. Esta imagem de referência não tem as dimensões da imagem captada pelo sistema. Visto o processamento só ser feito sobre as linhas de detecção, a imagem de referência apenas guarda informação relativa a essas linhas. Passaremos a chama-las linhas de referência.

Ao optar por usar as linhas de referência surge a questão de como as criar e como as manter actualizadas. Estas questões são tratadas em 3.2.

Após a aquisição de cada imagem obtém-se um vector \(x(t) \) para cada linha de detecção, de forma análoga ao que se passava no método AEI. Esse vector é filtrado usando um filtro de média de forma a remover algum ruído inerente à captação (3.1.3). É obtido um novo vector a que chamamos vector diferença \(\text{vdif}(t) \) determinando o valor absoluto da diferença entre a imagem actual e a imagem de referência:
\[\text{vdiff}(t) = | \text{filtro}(x(t)) - \text{vref}(t) | \]

(3-10)

A decisão sobre se se encontra um veículo a passar sobre a linha de detecção é agora tomada através da análise do vector vdiff(t). São calculadas a variância e a soma do quadrados das diferenças deste vector formando um vector y(t), de forma análoga ao método AEI. Nas figuras 3-12 e 3-13 pode observar-se o comportamento destas característica na mesma sequência de imagens. Constata-se que o veículo passa entre as imagens 16 e 33.

Fig. 3-12 - O comportamento da variância do vector diferença na sequência de imagens.

Fig. 3-13 - O comportamento da sqd do vector diferença na sequência de imagens.
O gráfico de dispersão com os vectores \(y(t) \) para a mesma sequência da secção 3.1 mas agora obtidos através deste novo método, encontra-se na figura 3-14.

![Gráfico de dispersão](image)

(a)

![Gráfico de dispersão](image)

(b)

Fig. 3-14 (a) Gráfico de dispersão com os vectores \(y(t) \), (b) Pormenor de (a) - note-se como estão bem distintas as duas populações

Observa-se que os vectores correspondentes ao fundo se encontram agrupados de novo junto da origem enquanto que os correspondentes ao veículo estão dispersos pelo plano. Esta sequência não
evidencia as vantagens do novo método. Para tal a figura 3-15 mostra de novo um diagrama de dispersão mas para uma sequência em que foram colocadas quatro linhas de detecção. Neste caso o método AEI teria sérios problemas em efectuar a classificação pois os vectores correspondentes ao fundo para as diferentes linhas poderiam formar quatro agrupamentos diferentes. No caso do novo método vê-se que os vectores correspondentes ao fundo formam um único agrupamento.

Fig. 3-15 (a) Gráfico de dispersão com os vectores y(t) para uma sequência em que foram usadas quatro linhas de detecção (b) Pormenor de (a).
3.1.2.2 Criação e actualização das linhas de referência

Um dos passos iniciais na utilização do sistema é a definição das zonas da imagem a que correspondem as linhas de detecção (ver 5.5). Para o utilizador poder colocar as linhas nas vias que pretende monitorizar, é adquirida uma imagem. Uma das restrições (5.5) impostas ao utilizador na altura da colocação das linhas de detecção é que estas não podem ser colocadas sobre veículos. Esta restrição é imposta para que seja possível usar as linhas de detecção desta imagem inicial como linhas de referência. Deste modo as linhas de referência iniciais são criadas automaticamente pelo sistema.

A actualização duma linha de referência é feita juntando à linha de referência existente a linha actual:

\[
\text{linha}_\text{ref}(t+1) = \text{linha}_\text{ref}(t) \times 0.7 + \text{linha}(t) \times 0.3
\]

(3-11)

Os pesos usados foram obtidos através de experimentação pois não existe forma de os determinar a priori. Se o peso da imagem actual for superior o sistema começa a ser muito sensível a rápidas variações e pode produzir erros. Se o peso for inferior o sistema começa a não se actualizar com suficiente rapidez e não se adapta as variações rápidas de iluminação. Obviamente que se o peso escolhido fosse ligeiramente superior ou ligeiramente inferior os resultados não iriam ser muito diferentes, mas chegamos a este valor após termos testado vários e concluído que este apresentava um bom comportamento.

Note-se que esta actualização só é efectuada quando o módulo de decisão tiver concluído que não se encontram veículos sobre a linha no instante da actualização (t) nem no instante anterior (t-1). Esta restrição é usada para impedir a actualização das linhas de referência com informação não proveniente do fundo.

É interessante analisar o significado desta expressão em termos do peso da imagem actual na imagem de referência e comparar com a solução clássica (também chamada técnica de actualização exponencial (Fathy, 1995a, p.1323)) que é a utilização duma expressão do tipo

\[
\text{linha}_\text{ref}(t+1) = k \times \text{linha}_\text{ref}(t) + (1-k) \times \text{linha}(t)
\]

(3-12)

onde \(k=n/(n+1)\) e \(n\) indica o número da imagem (contadas sequencialmente desde o início da actualização).

Na fig. 3-16 pode observar-se o peso duma imagem na imagem de referência no caso clássico. Quanto mais tempo decorrer desde o início da actualização da imagem de referência menos
influência tem a imagem a incluir no total da imagem de referência. O peso decresce exponencialmente, dai o nome da técnica.

Fig. 3-16 - Peso duma imagem na imagem de referência no caso (3-12)

No nosso entender o peso da imagem actual não pode ser tão pouco valorizado pois não permite uma rápida adaptação da imagem de referência às mudanças de iluminação. Passamos a explicar.

Em alguns casos (por exemplo, dias nublados) existem rápidas transições claro/escuro que podem tornar uma imagem de referência inválida se esta não se conseguir ajustar. Na abordagem clássica é dificultado este tipo de ajuste rápido pois é suposto obter a imagem de referência fazendo uma média temporal de todas as imagens captadas durante o período de monitorização. É claro que algumas dessas imagens contêm objectos em movimento que não devem fazer parte da imagem de referência.

Assim não é possível atribuir um peso elevado a qualquer das imagens (apenas as primeiras têm um peso elevado) pois poderia estar a ser valorizada uma imagem que não corresponda ao fundo. Desta forma tenta-se evitar o problema que surge ao utilizar médias temporais de imagens como imagens de referência – as “manchas” na imagem devidas aos objectos transitórios.

Resumindo, o nosso método é uma variação do método clássico em que é atribuído um peso constante às imagens que se usam nas actualizações da imagem de referência. A actualização é feita desta forma pois só são efectuadas actualizações com imagens sem veículos o que permite uma rápida adaptação às mudanças de iluminação.
3.1.3 Filtragem

As imagens captadas contêm algum ruído que se revela através duma pequena variação aleatória nas intensidades dos pontos da imagem. Esse ruído influencia aleatoriamente as estatísticas extraiadas do vector \(\text{vdif}(t) \). Seria desejável que as estatísticas representassem a verdadeira natureza da cena, para que a detecção de movimento seja o mais robusta possível. Deste modo, para eliminar ruído é usado um filtro gaussiano.

Um filtro processa cada ponto substituindo o valor da sua intensidade por outro calculado a partir da sua intensidade e das intensidades dos pontos vizinhos. Estes valores são multiplicados por diferentes coeficientes e são somados para produzirem o novo valor da intensidade.

Os filtros gaussianos são caracterizados por possuirem coeficientes que lhes permitem fazer uma suavização da imagem: na prática calculam para cada ponto a intensidade média dos pontos da sua vizinhança. Estes tipo de filtros permite efectuar a eliminação das componentes de alta frequência espacial da imagem, comportando-se como filtros passa-baixo.

O filtro utilizado tem dimensão \((1 \times \text{Int})\) onde \(\text{Int} \) representa a intensidade da filtragem. É um filtro unidimensional pois é aplicado a um vector. \(\text{Int} \) deve ser um número inteiro ímpar para que exista um número idêntico de pontos de cada lado do ponto a actualizar.

Esta filtragem consiste em substituir a intensidade em cada ponto \(k \) de \(\text{vdif}(t,k) \) pela intensidade média dos \(\text{Int} \) pontos mais próximos (incluindo o próprio \(k \)):

\[
\text{vdif}(t,k) = \frac{1}{\sum_i p_i \sum_{i=k-m}^{k+m} \text{vdif}(t,i)p_i}
\]

onde \(p_i \) representa o peso de cada ponto e \(m = (\text{Int}-1)/2 \). Os pesos são dados por

\[
p_i = \begin{cases}
2^{i-k+m}, & i \leq k \\
p_{2k-i}, & i > k
\end{cases}
\]

Note-se que os \(m \) pontos de cada extremo da linha são actualizados com o valor do ponto mais próximo que tenha sido actualizado usando a expressão 3-13. Na prática estes pontos perdem o interesse do ponto de vista da discriminação entre as duas populações.

Quanto maior for \(\text{Int} \), maior é o número de pontos usados para efectuar a média pesada que substitui o valor de intensidade de cada ponto de \(\text{vdif}(t) \).

A escolha de \(\text{Int} \) foi feita comparando os efeitos dos filtros em diferentes casos. Foram testados vectores captados quando veículos escuros estavam sobre a linha de detecção, veículos claros e
quando nenhum veículo se encontrava sobre a linha. Foi estudado o efeito da aplicação de filtros de intensidades 3, 5 e 7 sobre as estatísticas obtidas nos diferentes casos. Os resultados são apresentados nas tabelas 3-1 e 3-2. As figuras 3-17 e 3-18 representam os valores dessas tabelas.

Tabela 3-1 – Efeito da filtragem sobre as variâncias em diferentes situações

<table>
<thead>
<tr>
<th>Situação</th>
<th>Valor original</th>
<th>Filtro 1 x 3</th>
<th>Filtro 1 x 5</th>
<th>Filtro 1 x 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- carro escuro</td>
<td>234.88</td>
<td>214.24</td>
<td>205.67</td>
<td>191.24</td>
</tr>
<tr>
<td>2- carro escuro</td>
<td>711.10</td>
<td>676.85</td>
<td>658.90</td>
<td>636.33</td>
</tr>
<tr>
<td>3- carro escuro</td>
<td>479.98</td>
<td>400.61</td>
<td>363.71</td>
<td>319.68</td>
</tr>
<tr>
<td>4- carro escuro</td>
<td>720.37</td>
<td>696.80</td>
<td>682.55</td>
<td>661.04</td>
</tr>
<tr>
<td>5- carro escuro</td>
<td>61.16</td>
<td>61.22</td>
<td>60.85</td>
<td>60.32</td>
</tr>
<tr>
<td>6- carro escuro</td>
<td>809.69</td>
<td>784.19</td>
<td>763.44</td>
<td>738.50</td>
</tr>
<tr>
<td>7- carro claro</td>
<td>1067.89</td>
<td>977.52</td>
<td>934.45</td>
<td>885.18</td>
</tr>
<tr>
<td>8- carro claro</td>
<td>203.34</td>
<td>182.38</td>
<td>169.94</td>
<td>156.48</td>
</tr>
<tr>
<td>9- fundo</td>
<td>4.96</td>
<td>3.64</td>
<td>2.93</td>
<td>2.79</td>
</tr>
<tr>
<td>10- fundo</td>
<td>39.45</td>
<td>34.29</td>
<td>33.20</td>
<td>32.07</td>
</tr>
<tr>
<td>11- fundo</td>
<td>31.62</td>
<td>31.13</td>
<td>30.72</td>
<td>30.30</td>
</tr>
<tr>
<td>12- fundo</td>
<td>5.56</td>
<td>6.02</td>
<td>5.24</td>
<td>4.79</td>
</tr>
<tr>
<td>13- fundo</td>
<td>9.77</td>
<td>10.40</td>
<td>10.43</td>
<td>10.04</td>
</tr>
</tbody>
</table>

Fig. 3-17 - Figura correspondente à tabela 3-1
Verifica-se que a filtragem tem pouca influência na variância. O efeito na sqd é considerável podendo nalguns casos reduzir o seu valor para metade. Relativamente ao efeito produzido pela variação da intensidade do filtro pode-se concluir que em ambos os casos (var e sqd) não existe diferença apreciável entre a utilização de um filtro de Int=3 e outro de Int=7. Assim na implementação do sistema foi usado um filtro com Int=3.

<table>
<thead>
<tr>
<th>Situação</th>
<th>Valor original</th>
<th>Filtro 1 x 3</th>
<th>Filtro 1 x 5</th>
<th>Filtro 1 x 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- carro escuro</td>
<td>46.37</td>
<td>12.76</td>
<td>9.17</td>
<td>7.73</td>
</tr>
<tr>
<td>2- carro escuro</td>
<td>65.47</td>
<td>39.32</td>
<td>33.62</td>
<td>28.17</td>
</tr>
<tr>
<td>3- carro escuro</td>
<td>159.90</td>
<td>68.24</td>
<td>52.69</td>
<td>42.86</td>
</tr>
<tr>
<td>4- carro escuro</td>
<td>36.79</td>
<td>31.04</td>
<td>27.85</td>
<td>24.42</td>
</tr>
<tr>
<td>5- carro escuro</td>
<td>1.15</td>
<td>0.96</td>
<td>0.82</td>
<td>0.81</td>
</tr>
<tr>
<td>6- carro escuro</td>
<td>47.31</td>
<td>35.22</td>
<td>29.63</td>
<td>25.08</td>
</tr>
<tr>
<td>7- carro claro</td>
<td>163.91</td>
<td>89.22</td>
<td>74.51</td>
<td>64.44</td>
</tr>
<tr>
<td>8- carro claro</td>
<td>33.60</td>
<td>23.63</td>
<td>18.95</td>
<td>15.25</td>
</tr>
<tr>
<td>9- fundo</td>
<td>4.32</td>
<td>0.75</td>
<td>0.47</td>
<td>0.30</td>
</tr>
<tr>
<td>10- fundo</td>
<td>9.53</td>
<td>3.33</td>
<td>2.51</td>
<td>1.86</td>
</tr>
<tr>
<td>11- fundo</td>
<td>0.79</td>
<td>0.66</td>
<td>0.61</td>
<td>0.54</td>
</tr>
<tr>
<td>12- fundo</td>
<td>0.78</td>
<td>0.49</td>
<td>0.44</td>
<td>0.32</td>
</tr>
<tr>
<td>13- fundo</td>
<td>0.76</td>
<td>0.46</td>
<td>0.39</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Fig. 3-18 - Figura correspondente à tabela 3-2
A utilização de filtros com Int superior a 7 não foi testada visto que levam a um desaproveitamento de mais de 8 pontos da linha de detecção (4 de cada lado para o filtro Int = 9). Estes 8 pontos já representam 8/40 = 20% da linha de detecção, para uma linha com 40 pontos (tamanho comum). Também se conclui da análise feita aos filtros com Int = 3, 5 e 7 que filtros de intensidade superior não alteram de forma significativa os resultados e levam a um acréscimo, sempre indesejado, do peso computacional.

3.2 Módulo de decisão

Este módulo usa os resultados do módulo de detecção para decidir se está ou não a ser detectado um veículo.

A descrição feita em 3.1 foi centrada no problema da classificação de um vector de observação (correspondente a uma linha de detecção) como pertencente à população de veículos ou de fundo. O objectivo de um sistema de monitorização é a extracção de vários parâmetros de tráfego. Um dos parâmetros fundamentais é a velocidade instantânea dos veículos (ver capítulo 4). Para efectuar o cálculo da velocidade é medido o tempo que um veículo demora a percorrer o espaço entre duas linhas de detecção. Assim, um conjunto de duas linhas acaba por ser uma unidade básica de um sistema destes, pois só com as duas linhas se podem extrair todos os parâmetros fundamentais. A este conjunto de duas linhas passamos a chamar um sensor.

![Fig. 3-19 - Esquema que representa a colocação de um sensor.](image)

As linhas do sensor são distinguidas chamando linha 1 à primeira linha que os veículos encontram no movimento normal e linha 2 à outra linha. Esta nomenclatura está indicada na figura 3-19.
De notar que esta ordem é importante pois só são detectados veículos que actuem primeiro na linha 1 e depois na linha 2. Se um veículo, ao circular no sentido oposto ao da via onde se colocou o sensor, pisar o sensor numa ultrapassagem, não será considerado pois a ordem pela qual cruzou as linhas não foi a correcta.

O módulo de decisão só acusa a passagem de um veículo no instante t se o módulo de detecção tiver produzido os seguintes resultados:

<table>
<thead>
<tr>
<th>Instante</th>
<th>Linha 1</th>
<th>Linha 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-1</td>
<td>Veículo</td>
<td>Fundo</td>
</tr>
<tr>
<td>t</td>
<td>Veículo</td>
<td>Veículo</td>
</tr>
<tr>
<td>t+1</td>
<td>Qualquer</td>
<td>Veículo</td>
</tr>
</tbody>
</table>

A exigência de estar a ser detectado o veículo em ambas as linhas num dado instante de tempo implica que as linhas não podem estar mais afastadas que o comprimento do menor dos veículos. Isto implica um afastamento máximo da ordem dos 4 metros.

Esta exigência resulta de vários factores: se o afastamento fosse muito superior a velocidade medida deixava de ser uma boa estimativa para a velocidade instantânea (ver capítulo 4). Além disso, não era possível garantir que o veículo que pisasse a linha 1 fosse o mesmo que pisasse a linha 2: podia ter ocorrido uma mudança de via ou uma ultrapassagem.

A exigência de no instante t-1 a linha 2 não estar a ser pisada e no instante t já estar serve para detectar o instante em que o veículo toca na linha 2 pela primeira vez.

A exigência de no instante t-1 a linha 1 estar a ser pisada pelo veículo surge se exigirmos que a distância entre as linhas seja menor que o comprimento do veículo.

A exigência de no instante t-1 estar a ser detectado o veículo na linha 2 serve para evitar que um vector mal classificado pelo módulo de detecção dispere o módulo de decisão. A probabilidade de surgirem dois vectores mal classificados é inferior o que torna a detecção mais robusta.

Note-se que esta estratégia de decisão usa informação passada e futura relativamente ao instante t, para decidir sobre a detecção nesse instante.

3.3 Resumo

Neste capítulo foram descritos os módulos de detecção e de decisão usados pelo sistema para efectuar a análise da informação recolhida. Relativamente ao módulo de detecção, foram referidos os problemas que surgiram no método originalmente desenvolvido (AEI) e a forma como foram resolvidos usando o método AEID. Foi descrita a abordagem ao problema da criação e manutenção
das imagens de referência no método AEID. Foi feita uma análise do comportamento das características extraídas da imagens relativamente à aplicação de filtros gaussianos.

No que respeita ao módulo de decisão foi descrito a estratégia que permite, através da análise de classificações de vectores em imagens captadas nos instantes t-1 e t+1, decidir se foi ou não detectado um veículo no instante t.
Capítulo 4 - Parâmetros fornecidos pelo sistema
Neste capítulo são descritos os parâmetros de tráfego que o sistema extrai das imagens captadas. São referidos os métodos usados para os calcular e as limitações desses métodos. São apresentadas estimativas para os erros cometidos pelo sistema ao determinar os parâmetros.

4.1 Medições e erros

Ao calcularmos os parâmetros de tráfego estamos a efectuar medições. As medições vêm afectadas de um erro.

A incerteza na medição de uma grandeza corresponde a metade da menor divisão do aparelho usado na medição. No caso da medição de tempo a “menor divisão” corresponde ao intervalo de tempo entre duas imagens consecutivas, a que chamaremos T. Logo incerteza na medição dos tempos é T/2.

No caso “ideal” das 25 imagens por segundo, T corresponde a 0,04 s. Assim, poderíamos afirmar que medimos o tempo com uma incerteza de 0,02s. Por exemplo, se um veículo é detectado às 13h17m21.42s podemos afirmar que foi detectado entre as 13h17m21.40s e as 13h17m21.44s o que é o mesmo que afirmar que o veículo foi detectado às 13h17m21.42s ± 0,02s.

Chamamos erro absoluto ou simplesmente erro à diferença entre a estimativa de uma grandeza (x*) e o seu valor real (x) e representamos por Δx. O erro relativo é dado pela razão entre o erro absoluto e o valor real da grandeza. Como muitas vezes este é desconhecido o erro relativo é aproximado fazendo a razão entre uma estimativa do erro absoluto e x*.

4.2 Contagem e débito

A contagem é o parâmetro mais simples de extrair após os resultados do módulo de decisão.

É contado um veículo no instante t sempre que um sensor apresente a seguinte tabela de classificações dos vectores (ver 3.2):

<table>
<thead>
<tr>
<th>Instante</th>
<th>Linha 1</th>
<th>Linha 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-1</td>
<td>Veículo</td>
<td>Fundo</td>
</tr>
<tr>
<td>t</td>
<td>Veículo</td>
<td>Veículo</td>
</tr>
<tr>
<td>t+1</td>
<td>Qualquer</td>
<td>Veículo</td>
</tr>
</tbody>
</table>

O débito (D) obtém-se pela divisão do número de veículos captados (N) pelo número de horas de captação (H) fornecendo um número de veículos por hora para um dado sensor. Como o número de horas de monitorização é obtido através da diferença entre a hora inicial de detecção e a hora em que se está a produzir a estimativa do débito, o erro associado é dado pela soma dos erros em cada um
dos tempos. Assim, para um sistema que demore T segundos entre a captação de duas imagens consecutivas, o valor do erro é igual a \(T/2 + T/2 = T \). No caso dum sistema a 25 imagens por segundo obtemos \(\Delta H = 0,04s \).

Para se obter um majorante do erro numa função \(f \) de \(n \) variáveis \((a_i, i = 1,...,n) \) devido aos erros em cada uma dessas variáveis \((\Delta a_i) \) é usada a expressão

\[
\Delta f(a_i) = \sum_{i=1}^{n} \left| \frac{\partial f}{\partial a_i} \right| \Delta a_i
\]

(4-1)

Esta expressão é válida apenas quando os erros \((\Delta a_i) \) são pequenos. Isto porque a expressão provém da expansão de Taylor desprezando termos de ordem superior a 2. Estes termos só podem ser desprezados se os erros forem pequenos.

O débito é dado por \(D = N / H \). Usando 4-1 pode-se concluir que

\[
\Delta D = \left| \frac{\partial D}{\partial N} \right| \Delta N + \left| \frac{\partial D}{\partial H} \right| \Delta H
\]

(4-2)

Considerando que \(\Delta N = 0 \), o que equivale a dizer que a contagem de veículos não apresenta erro, vem

\[
\Delta D = \frac{N}{H^2} \Delta H
\]

(4-3)

Na figura 4-1 podemos ver a evolução do erro relativo no débito, em percentagem, usando \(\Delta H = 0,04s \) (sistema a 25 Hz). Embora na primeira hora o débito apresente um erro de 4%, ao fim de 10 horas esse erro diminuiu 10 vezes. O erro relativo é inversamente proporcional ao tempo de monitorização. Quanto mais tempo o sistema estiver em funcionamento melhores são as estimativas para o débito.
A justificação para o facto de termos feito $\Delta N = 0$ resulta dos resultados obtidos na contagens (ver 6.2). Esses resultados permitem-nos concluir que esta é uma aproximação válida à realidade.

4.3 Intervalo de tempo entre veículos

Ao ser efectuada a detecção de um veículo é registada o instante da detecção. Assim é de uma forma simples que se obtém este parâmetro: efectua-se a diferença entre o instante de passagem do veículo que está a ser detectado e o instante de detecção do veículo que foi detectado imediatamente antes.

Assim $tev = instante2 - instante$ onde tev é o tempo entre veículos, $instante2$ é a instante de detecção do veículo actual e $instante1$ é o instante de detecção do veículo anterior.

Como foi referido em 4.1 as medições de tempo têm a precisão $T/2$. O parâmetro tev é obtido através da diferença de dois instantes de tempo o que leva a que o erro associado seja dado pela soma dos erros em cada um dos instantes. Assim, para um sistema a 25 imagens por segundo obtemos uma incerteza de 0,04s nas medições deste parâmetro.
4.4 Velocidade

A estimativa da velocidade dos veículos é o segundo parâmetro mais importante a seguir à contagem. É fácil compreender que é um parâmetro essencial na caracterização duma corrente de tráfego, até porque muitas das outras estatísticas são função da velocidade dos veículos.

4.4.1 Método

A velocidade vai ser estimada através do tempo que um veículo demora a percorrer a distância entre as duas linhas de um sensor. Chamamos sensor (ver 3.2) a um conjunto de duas linhas de detecção colocadas paralelamente uma à outra, na mesma via e com distância entre elas igual ou inferior a 4 metros.

Sendo obtida desta forma, a velocidade estimada é uma velocidade média - a velocidade média do veículo entre as linhas do sensor. Mas visto as linhas do sensor estarem relativamente próximas pode-se tomar esta velocidade média como uma boa estimativa para a velocidade instantânea. Note-se que a velocidade instantânea é a velocidade média dum percurso infinitesimal, de forma que seria aparentemente vantajoso colocar as duas linhas de detecção o mais próximo possível uma da outra. Na realidade, como veremos de seguida, quanto menor a distância entre as linhas maior será o erro cometido na estimativa da velocidade.

4.4.2 Análise dos erros

Sendo a velocidade função da distância (L) entre as linhas do sensor e do tempo (t) que o veículo leva a percorrer essa distância, pode-se escrever

\[v(L,t) = \frac{L}{t} \] (4-4)

Aplicando 4.1 ao caso da velocidade, o erro em \(v \) (\(\Delta v \)) devido aos erros em \(t \) (\(\Delta t \)) e em \(L \) (\(\Delta L \)) é dado por

\[\Delta v = \frac{\partial v}{\partial L} \Delta L + \frac{\partial v}{\partial t} \Delta t \] (4-5)

ou seja
\[
\Delta v = \frac{1}{t} \Delta L + \frac{L}{t^2} \Delta t
\]
(4-6)

Reescrevendo esta expressão em função da velocidade usando 4-4

\[
\Delta v = \frac{V}{L} (\Delta L + v \Delta t)
\]
(4-7)

Esta última expressão permite efectuar o cálculo do erro cometido na determinação da velocidade devido ao erro na estimativa da distância entre as linhas do sensor \(\Delta L \) e à incerteza na medida dos instantes de tempo \(\Delta t \).

O valor de \(\Delta t \) resulta da diferença de dois instantes de tempo, logo à semelhança do intervalo de tempo entre veículos (4.3), e para o caso de 25 imagens por segundo, vem \(\Delta t = 0.04 \text{s} \).

A estimativa do valor de \(\Delta L \) é complicada para o caso geral pois depende da cena que estiver a ser estudada. Dependendo da distância da câmara ao local onde está colocado o sensor, da resolução da câmara, além de depender da precisão do aparelho de medida usado por quem assinalou as linhas de detecção no asfalto (ver 6.1.2). Ainda assim é possível efectuar uma estimativa do valor deste erro para o caso geral.

No caso da via a estudar se encontrar no alinhamento da câmara, as linhas de detecção serão horizontais, ou seja, irão corresponder a segmentos de linhas de imagem. O erro na colocação das linhas dum sensor sobre as marcas feitas na cena neste caso, será dado por metade do espaço representado por uma linha de imagem. Isto porque neste caso a linha de imagem é a “menor divisão” do nosso “aparelho de medir distâncias”.

Através da análise de algumas cenas típicas concluímos que uma linha de imagem pode representar entre 4.4 cm e 20 cm de espaço real. Nas figuras 4-2 e 4-3 pode observar-se dois casos extremos: um em que os veículos e a cena se encontram bastante próximos da câmara (fig. 4-2) e o outro em que a cena e o veículo estão muito distantes.
Fig. 4-2 - Cena em que o veículo se encontra próximo da câmara, sendo \(\Delta L \) aproximadamente 4.4 cm.

Fig. 4-3 - Cena em que o veículo se encontra distante da câmara, sendo \(\Delta L \) aproximadamente 20 cm.
Se o erro na medição das distâncias é dado por \(X \), como a distância entre linhas resulta duma diferença de duas posições (temos erro a colocar cada uma das linhas) \(\Delta L = 2\times X \). No caso mais favorável temos \(X = 4.4/2 \text{ cm} = 2.2 \text{ cm} \) então \(\Delta L = 4.4 \text{ cm} \).

Usando os valores que podem ser considerados o caso mais favorável, ou seja, um sistema a trabalhar a 25 Hz, que significa \(\Delta t = 0.04 \text{ s} \), com distância entre linhas de detecção igual a 4 metros e \(\Delta L = 4.4 \text{ cm} \) são obtidos os valores de velocidade e respectivo erro que se encontram na tabela 4-1. Note-se que \(\text{Nº} \) de Imagens (1ª coluna) representa o número de imagens que são captadas desde que o veículo pisa a primeira linha do sensor até pisar a segunda.

Aparentemente deveria ter sido analisado o pior caso para se poder determinar um majorante para o erro, mas neste contexto, o pior caso pode ser qualquer. Basta aumentar o tempo entre imagens e o erro nas medições das distâncias. Assim, esta análise ilustra os melhores resultados que podem ser obtidos com este sistema nestas condições.

Tabela 4-1 – Estimativas para os erros no calculo da velocidade, com \(\Delta t = 0.04 \text{ s} \), \(\Delta L = 4.4 \text{ cm} \).

<table>
<thead>
<tr>
<th>Nº Imagens</th>
<th>Tempo[s]</th>
<th>(v)[Km/h]</th>
<th>Erro[Km/h]</th>
<th>Erro relativo [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.04</td>
<td>360</td>
<td>364.0</td>
<td>101.1</td>
</tr>
<tr>
<td>2</td>
<td>0.08</td>
<td>180</td>
<td>92.0</td>
<td>51.1</td>
</tr>
<tr>
<td>3</td>
<td>0.12</td>
<td>120</td>
<td>41.3</td>
<td>34.4</td>
</tr>
<tr>
<td>4</td>
<td>0.16</td>
<td>90</td>
<td>23.5</td>
<td>26.1</td>
</tr>
<tr>
<td>5</td>
<td>0.2</td>
<td>72</td>
<td>15.2</td>
<td>21.1</td>
</tr>
<tr>
<td>6</td>
<td>0.24</td>
<td>60</td>
<td>10.7</td>
<td>17.8</td>
</tr>
<tr>
<td>7</td>
<td>0.28</td>
<td>51</td>
<td>7.9</td>
<td>15.4</td>
</tr>
<tr>
<td>8</td>
<td>0.32</td>
<td>45</td>
<td>6.1</td>
<td>13.6</td>
</tr>
<tr>
<td>9</td>
<td>0.36</td>
<td>40</td>
<td>4.9</td>
<td>12.2</td>
</tr>
<tr>
<td>10</td>
<td>0.4</td>
<td>36</td>
<td>4.0</td>
<td>11.1</td>
</tr>
<tr>
<td>11</td>
<td>0.44</td>
<td>33</td>
<td>3.3</td>
<td>10.2</td>
</tr>
<tr>
<td>12</td>
<td>0.48</td>
<td>30</td>
<td>2.8</td>
<td>9.4</td>
</tr>
<tr>
<td>13</td>
<td>0.52</td>
<td>28</td>
<td>2.4</td>
<td>8.8</td>
</tr>
<tr>
<td>14</td>
<td>0.56</td>
<td>26</td>
<td>2.1</td>
<td>8.2</td>
</tr>
<tr>
<td>15</td>
<td>0.6</td>
<td>24</td>
<td>1.9</td>
<td>7.8</td>
</tr>
<tr>
<td>16</td>
<td>0.64</td>
<td>23</td>
<td>1.7</td>
<td>7.4</td>
</tr>
<tr>
<td>17</td>
<td>0.68</td>
<td>21</td>
<td>1.5</td>
<td>7.0</td>
</tr>
<tr>
<td>18</td>
<td>0.72</td>
<td>20</td>
<td>1.3</td>
<td>6.7</td>
</tr>
<tr>
<td>19</td>
<td>0.76</td>
<td>19</td>
<td>1.2</td>
<td>6.4</td>
</tr>
<tr>
<td>20</td>
<td>0.8</td>
<td>18</td>
<td>1.1</td>
<td>6.1</td>
</tr>
<tr>
<td>21</td>
<td>0.84</td>
<td>17</td>
<td>1.0</td>
<td>5.9</td>
</tr>
<tr>
<td>22</td>
<td>0.88</td>
<td>16</td>
<td>0.9</td>
<td>5.6</td>
</tr>
</tbody>
</table>
Analisando a tabela 4-1 conclui-se que o sistema nesta condições apenas permite medições de velocidade até 30 Km/h com erro relativo inferior a 10%. Note-se o carácter descontínuo dos valores possíveis para a velocidade.

![Graph](image)

Fig.4-3 - Erro relativo na velocidade em função da velocidade para o caso em que $\Delta t = 0,04$ s, $\Delta L = 4,4$ cm.

Para facilitar a análise da tabela 4-1, a figura 4-3 representa o erro relativo na velocidade, em função da velocidade a que o veículo se desloca. Como facilmente se conclui quanto mais rápido for o veículo pior é a estimativa da sua velocidade.
4.4.3 Limitações do método

Tendo em conta os valores da tabela 4-1 as velocidades estimadas pelo sistema são pouco fiáveis a partir dos 60 Km/h pois apresentam erros superiores a 20%.

Assim se se pretender melhorar as estimativas da velocidade pode-se agir em duas direcções (de acordo com a equação (4.7)): diminuir ΔL ou diminuir Δt. Note-se que a hipótese de aumentar L está fora de questão pois a distância entre as linhas tem de ser inferior ao comprimento dos veículos (L é no máximo 4 metros). A diminuição de ΔL produz pouco efeito em Δv. Basta ver que a importância de ΔL cresce com v enquanto que a importância de Δt cresce com v^2.

O cerne da questão reside na redução de Δt – para se obterem melhores resultados com métodos semelhantes a este é necessário uma maior resolução temporal.

Note-se que apenas alterando a frequência de aquisição para 200 Hz o sistema consegue medir velocidades até 220 Km/h com erro máximo de 10% (compare-se com o erro máximo de 10% até 30 Km/h que se obtém com o sistema a 25 Hz...).

4.5 Classificação de veículos

Foi implementado um método de classificação de veículos simples: distingue apenas um veículo ligeiro de um veículo pesado. A distinção é feita com base no comprimento do veículo. Se o veículo tiver um comprimento superior a 7 metros é considerado um pesado, senão é considerado um ligeiro.

Note-se que esta classificação é altamente dependente da estimativa da velocidade do veículo. Isto porque o comprimento do veículo é calculado da seguinte forma: é medido o tempo que o veículo demora a passar sobre uma das linhas do sensor. Sabendo a velocidade do veículo resta-nos apenas fazer a multiplicação desta velocidade pelo tempo que demorou a passar completamente pela linha.

Resumindo:

\[C = v \, t \] (4-8)

sendo C o comprimento do veículo, v a sua velocidade e t o tempo que demorou passar completamente sobre uma das linhas de detecção.

Podemos fazer uma análise do erro esperado semelhante à que foi feita para as velocidades em 4.4.

O erro no comprimento do veículo é dado por

\[\Delta C = \frac{\partial C}{\partial v} \Delta v + \frac{\partial C}{\partial t} \Delta t \] (4-9)
ou seja

$$\Delta C = t\Delta v + v\Delta t$$ (4-10)

Conclui-se da análise de (4-10) que mais uma vez a velocidade contribui para aumentar o erro dum parâmetro, tanto directamente no termo Δt, como indirectamente no termo $t\Delta v$, pois como se sabe (4-7) Δv é proporcional ao quadrado de v. Quanto maior for a velocidade do veículo maior será o erro na estimativa do seu comprimento.

4.6 Outros parâmetros

Questões do tipo “qual o período de 15 minutos com mais trânsito nesta via?” podem ser respondidas usando os dados recolhidos pelo sistema mas não podem ser respondidas directamente pelo sistema, actualmente. A resposta a este tipo de pergunta poderia ser dada no futuro se o sistema passasse a ter incorporado um SGBD. Mas dadas as actuais dificuldades em termos de capacidade de processamento (ver capítulo 6) efectuar uma actualização deste tipo para funcionar na mesma máquina em tempo real não é viável.

Existem outros parâmetros de interesse que podem ser obtidos a partir dos definidos nos parágrafos anteriores (Briquet, 1990, p.11-12). Os que estão actualmente implementados são os mais relevantes.

4.7 Resumo

Neste capítulo foram descritos os diversos parâmetros que o sistema extrai de uma corrente de tráfego. Foi efectuada a análise dos erros que afectam esses parâmetros.

Esta análise é importante dado que uma medição deve ser sempre acompanhada duma estimativa da precisão com que foi efectuada.

Quando se afirma que um dado veículo se desloca a 40 Km/h é importante saber se isso significa que ele se desloca com uma velocidade entre 38 Km/h e 42 Km/h ou se significa que se pode estar a deslocar com uma velocidade entre 25 Km/h e 55 Km/h.

Julgamos que as velocidades com as limitações actuais devem ser vistas como indicadores que dão uma aproximação razoável quando os veículos se deslocam a velocidades baixas. Para velocidades acima dos 60 Km/h (erros superiores a 20%) a medição efectuada pelo sistema perde o interesse quantitativo. Este problema só poderá ser ultrapassado usando uma melhor resolução temporal (ver capítulo 7).
Capítulo 5 - O sistema
Neste capítulo são descritos pormenores relativos ao sistema desenvolvido. Em 5.1 são referidas as características do hardware, em 5.2 são expostos os motivos que levaram à utilização do Visual C++ para o desenvolvimento da aplicação. Em 5.3 são descritas as funções da biblioteca MIL-Lite utilizadas. São referidas as classes usadas em 5.4, e é efectuada uma visita guiada à aplicação em 5.5.

A aplicação foi desenvolvida usando o ambiente de desenvolvimento Microsoft Visual C++ versão 4.2. Foi também usada a biblioteca de funções de processamento de imagem fornecida com a placa de aquisição de imagem, a biblioteca MIL - Matrox Imaging Library, versão Lite 3.1.

Os parâmetros medidos são mostrados no ecrã e são gravados em ficheiro de forma a permitir uma posterior análise.

5.1 O hardware

A figura 5-1 mostra a constituição do sistema em termos de hardware.

![Diagrama de sistema de monitorização de tráfego](image)

Fig. 5-1 - O componentes do sistema de monitorização de tráfego.

O sistema é constituído por um computador IBM-PC compatível equipado com um processador Intel Pentium a funcionar a 133 MHz. Dispõe de 32 Mb de memória RAM.

A placa de aquisição de imagem é a Matrox Meteor. Esta placa, segundo o fabricante, deveria permitir a captação de imagens à taxa de 25, mas só se fosse usada em conjunto com uma placa de vídeo (VGA) que fosse reconhecida pela Meteor como capaz de suportar “acessos lineares à memória ,directos e rápidos” (Matrox, 1996, p.352). A placa VGA utilizada não é reconhecida pela
Meteor como sendo capaz de suportar este tipo de acessos, impondo à partida restrições à resolução temporal do sistema.

O sistema operativo usado foi o Microsoft Windows NT Workstation 4.0. Durante a captação de imagens, o tempo entre a captação de duas imagens consecutivas apresentava variações periódicas que julgamos se possam dever ao sistema operativo. Um comando da MIL que devia permitir alterar as prioridades do thread associado à captação de imagens não funciona como se encontra descrito. De facto constatámos que o parâmetro a passar a esta função para permitir uma taxa mais elevada de aquisição de imagens era 21 ao contrário do referido no manual (31). Ainda assim a aquisição passa de 12 para 14 imagens por segundo (sem qualquer processamento). Ao efectuar o processamento estas taxas baixam para 8 a 10 imagens por segundo. Isto se só forem usados dois sensores.

As imagens podem ser adquiridas de uma fonte de sinal de vídeo. Pode ser usada uma câmara de vídeo ou um gravador vídeo.

Para controlar alguns aspectos da monitorização foi também usado um monitor de vídeo auxiliar ligado ao gravador vídeo em paralelo com a ligação à placa de aquisição de imagem.

Após a análise dos erros efectuada no capítulo 4 e a avaliação efectuada no capítulo 6 compreendemos o motivo que leva a que os sistemas referidos no capítulo 2 usem hardware específico: o hardware genérico usado neste sistema fica aquém das necessidades em termos de capacidade computacional e taxas de aquisição de imagem.

5.2 A linguagem

Como foi referido antes, a linguagem usada para implementar este sistema foi o Microsoft Visual C++. A opção por esta linguagem foi feita por vários motivos:

- a biblioteca MIL-Lite, que contém as rotinas de interface da placa de aquisição de imagem (escritas em C), está preparada para ser usada pelo Microsoft Visual C++ ou pelo Watcom C++
- a utilização de C++ permite tirar partido das vantagens da programação orientada a objectos,
- é uma linguagem que permite uma execução rápida como seria desejável para a aplicação em vista
- permite o desenvolvimento de um interface com o utilizador amigável e familiar, pois funciona num ambiente de janelas típico das aplicações Windows

Algumas vantagens da programação orientada a objectos são:

- reutilização do código facilitada,
- utilização de um conceito familiar, o de objecto,
- encapsulamento e abstracção que levam a um fraco acoplamento entre diferentes partes do código,
- um desenvolvimento mais rápido das aplicações,
- uma manutenção do código mais simples,
- uma maior facilidade em efectuar alterações à aplicação.

Estas vantagens são apontadas relativamente às linguagens procedimentais comuns e resultam das características duma programação orientada a objectos. Essas características serão resumidamente descritas de seguida para o paradigma “clássico” em que existem apenas classes e objectos, no qual se enquadra o C++ (para outros paradigmas, ver, por exemplo, Hathaway III, 1996).

Um dos conceitos fundamentais é o de objecto. Existem várias definições, por exemplo, (Booch 1991, p. 77): “Um objecto tem um estado, um comportamento e uma identidade; a estrutura e o comportamento de objectos semelhantes é definida na sua classe comum; os termos instância e objecto são sinónimos”.

Um outro conceito fundamental é o de classe. De novo existem várias definições, sendo uma a de Hathaway III (1996): “uma classe é a especificação da estrutura (instâncias das variáveis), comportamentos (métodos), e herança (pais, ou estrutura recursiva e comportamento) para objectos”.

Um objecto é uma instância duma classe. A comunicação entre objectos é feita através de mensagens.

Uma das características fundamentais duma linguagem orientada a objectos é o encapsulamento. O encapsulamento é obtido em C++ através da utilização de classes: numa classe estão definidas as estruturas de dados e os procedimentos (métodos) que agem sobre estas. Parte dos métodos pode ser acedida externamente de forma que constitui o interface do mundo para com os objectos instâncias da classe. Ficam desta forma protegidos ou encapsulados os dados e os métodos numa mesma entidade. Esta característica facilita posteriores alterações a uma aplicação e aumenta a modularidade do código permitindo um mais fácil desenvolvimento de grandes aplicações, onde cada programador/grupo só necessita de conhecer o interface das classes desenvolvidas por outros, sem se preocupar com a forma como estão implementadas.

Outra das características importantes é a herança que permite que uma classe herde métodos ou estruturas de dados de outra classe, levando a um melhor aproveitamento do código. A herança é obtida através da derivação de classes umas das outras.

Uma terceira característica fundamental é o polimorfismo. Uma definição básica será a que refere que o polimorfismo permite que diferentes métodos possam ter o mesmo identificador podendo agir sobre objectos diferentes. A decisão sobre qual o método a usar numa dada situação fica a cargo do
compilador ou poderá até se feita em “run-time”. Esta característica permite simplificar a tarefa ao programador visto não ter de usar identificadores ligeiramente diferentes para métodos semelhantes só por estes agirem sobre diferentes objectos ou usarem parâmetros diferentes.

5.3 A biblioteca MIL-Lite

No desenvolvimento deste trabalho foram usadas rotinas da biblioteca de processamento de imagem da Matrox: a MIL-Lite. A MIL-Lite é uma versão da biblioteca MIL que contém apenas um subconjunto das funções da MIL, nomeadamente as funções de aquisição e manipulação de dados, de controlo de “display” e as funções gráficas. É necessário utilizar rotinas desta biblioteca para efectuar o interface das aplicações com os dados obtidos através da placa.

De seguida são descritas resumidamente as rotinas da MIL-Lite que foram usadas no desenvolvimento deste sistema. Para uma explicação detalhada, nomeadamente incluindo parâmetros e tipo de resultado, consultar o manual da MIL-Lite [Matrox, 1996].

As rotinas de aquisição de imagem são as rotinas fundamentais que permitem à aplicação ler os dados digitalizados pela placa. Esses dados são colocados em “buffers”. O conteúdo dos buffers pode ser exibido no ecrã, pode ser alvo de processamento, pode ser copiado para outras variáveis ou para ficheiros. É ainda possível, através da utilização das rotinas gráficas, efectuar desenhos nos buffers.

Foram utilizadas algumas rotinas que permitem desenhar nos buffers MIL.

Estas rotinas foram usadas nomeadamente para sobrepôr às imagens captadas os sensores.

Além das rotinas atrás referidas foram usadas as seguintes nomeadamente para lidar com os buffers, aplicações e sistemas da MIL.

A tabela 5-1 apresenta o conjunto das rotinas usadas incluindo uma breve descrição.

<table>
<thead>
<tr>
<th>Nome da rotina</th>
<th>Descrição da rotina</th>
</tr>
</thead>
<tbody>
<tr>
<td>MdigGrab</td>
<td>Faz a aquisição de dados de um digitalizador para um buffer. Utilizada para fazer a captação de imagens a partir da câmara ou de gravador vídeo.</td>
</tr>
<tr>
<td>MgraDot</td>
<td>Permite desenhar um ponto. Usado no desenho dos sensores.</td>
</tr>
<tr>
<td>MgraLine</td>
<td>Permite desenhar uma linha. Usado no desenho dos sensores.</td>
</tr>
</tbody>
</table>
MappAllocDefault
MbufAlloc2d
MappFreeDefault
MbufChild2d
MbufFree
MvgaDispDeselectClientArea
MvgaDispSelectClientArea
MdigControl

5.4 As classes

O objecto principal é a aplicação, que corresponde é uma instanciação da classe CMtApp. A aplicação foi desenvolvida em torno duma caixa de diálogo que constitui a janela principal (ver figura 5-2). Este objecto é uma instanciação da classe CMtDlg. Dessa janela acede-se, através do botão de colocação de sensores, à janela de diálogo onde é perguntado o número de sensores a usar na monitorização. Esta janela corresponde à classe CNumSen. Os objectos sensores são implementados através da classe CSensor e os objectos seus constituintes, as linhas de detecção são obtidas da classe CLinha. A distância entre as linhas de um sensor é introduzida na janela correspondente à classe CDist_linhas.

Existem ainda duas janelas de diálogo que correspondem às classes CAboutDlg e CAjuda. A primeira fornece informação sobre a aplicação e a segunda fornece informação sobre a forma de colocar as linhas de detecção na cena a monitorizar.

As classes criadas para implementar os objectos da aplicação estão descritas na tabela 5-2.

<table>
<thead>
<tr>
<th>Classe</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaboutDlg</td>
<td>Usada para criar a caixa de diálogo com informação acerca da aplicação</td>
</tr>
<tr>
<td>CAjuda</td>
<td>Usada para criar a janela de diálogo onde é fornecida ajuda para a colocação do</td>
</tr>
</tbody>
</table>
sensores.

csensor

Usada para implementar os objectos sensores, constituídos por duas linhas

Cdist_linhas

Implementa a caixa de diálogo que permite que o utilizador introduza informação relativa à calibração do sistema

Clinha

As unidades constituintes dum sensor

CMtApp

Classe a que corresponde a aplicação

CMtDlg

Implementa o diálogo principal da aplicação

CnumSen

Usada para implementar a caixa de diálogo onde são introduzidos o número de sensores a usar na monitorização

5.5 Visita guiada

De seguida é efectuada uma visita guiada à aplicação onde são mostrados os passos dum sessão típica de utilização do sistema.

A janela que surge quando é executada a aplicação encontra-se na figura 5-2.
Nesta janela o utilizador pode optar por efectuar a captação de câmara ou de gravador de vídeo. Pode escolher a monitorização "completa" ou não. A monitorização completa escreve as estatísticas que vão sendo calculadas para os locais adequados no fundo desta janela e para um ficheiro. Quando não se opta por essa monitorização as estatísticas são apenas escritas para o ficheiro. O objectivo deste modo de funcionamento é a execução mais rápida, evitando algum gasto de tempo em escrever para o ecrã.

A primeira acção a tomar será a colocação dos sensores na imagem. Se o utilizador tiver dúvidas pode consultar uma janela de ajuda premindo o botão respectivo. A janela que surge está representada na figura 5-3.

![Ayuda](image)

Fig. 5-3 - Janela de ajuda que contém indicações para a colocação dos sensores

Ao premir o botão de colocação de detectores é captada uma imagem do local e é perguntado ao utilizador qual é o número de sensores que pretende colocar (figura 5-4). O número que surge por defeito é um, sendo o número máximo igual a dois - ver o motivo em 6.3.
Fig. 5-4 - Janela onde o utilizador indica o número de sensores a colocar.

Após a escolha de quantos sensores deseja, o utilizador deve desenhar-los usando o rato. Por cada sensor colocado o utilizador deve indicar qual a distância entre as linhas de detecção que constituem o sensor. Esse valor deve ser dado em metros e é introduzido na caixa de diálogo representada na figura 5-5.

Fig. 5-5 Caixa de diálogo onde é introduzido o valor da distância entre as linhas de um sensor

A partir do momento em que os sensores estão colocados nos locais pretendidos basta premir o botão de monitorização para que o sistema entre em funcionamento.
A figura 5-6 mostra o sistema em funcionamento no local C (ver 6.1.2).
Se se pretender interromper a monitorização deve ser premido o botão 'Parar' e quando se desejar concluir a sessão de monitorização premisse o botão de 'Terminar'.

Existe ainda uma janela informativa sobre a aplicação que pode ser consultada no menu da aplicação e que se encontra representada na fig. 5-7.
5.6 Resumo

Neste capítulo, em 5.1, foi descrito o sistema do ponto de vista do hardware utilizado. Foram referidos algumas limitações decorrentes da utilização de hardware não específico. Em 5.2 foi feita uma breve introdução a alguns dos conceitos da linguagem usada, o Visual C++, e em 5.3 foram descritas as rotinas da biblioteca MIL-Lite utilizadas. Em 5.4 foi feita referência às classes definidas para implementar a aplicação. Em 5.5 foi feita uma visita guiada que “percorreu”, de forma gráfica, a aplicação, acompanhando os passos dum sessão de monitorização.
Capítulo 6 - O sistema em funcionamento - avaliação do desempenho
Neste capítulo são referidos os detalhes relativos à utilização e avaliação do sistema. Em 6.1 é feita uma introdução onde se referem os problemas associados à posição da câmara relativamente à cena e à calibração do sistema. São também descritas as sequências usadas para efectuar a avaliação do sistema. Em 6.2 é avaliado o desempenho do sistema relativamente à detecção de veículos, em 6.3 é feito o mesmo mas desta vez relativamente às velocidades. Em 6.4 são descritos os casos em que o sistema falha e em 6.5 é feito o resumo do capítulo.

6.1 Introdução

6.1.1 Colocação da câmara

Como já foi referido no capítulo 2, na avaliação do movimento um dos problemas que pode surgir é a oclusão. Uma das hipóteses para evitar esse tipo de situações é uma correcta colocação da câmara. Assim, o tipo de colocação que a câmara deve ter para o correcto funcionamento deste sistema deve obedecer a alguns critérios. A câmara deve estar colocada de forma a que os veículos sejam vistos quase de cima e que o eixo de imagem esteja alinhado com o eixo das vias. Desta forma, procura-se evitar a oclusão que leva a contagens de veículos inferiores aos valores reais e pode levar a classificações de veículos erradas (pois o tamanho de dois ou mais veículos pode ser interpretado como o tamanho de um só veículo). A distância da câmara à cena deve ser tal que permita o correcto visionamento das vias a monitorizar, logo deve estar algo distante, mas simultaneamente não deve estar demasiado afastada sob o risco de se perder resolução espacial nas imagens levando a maiores erros nas medições.

6.1.2 As sequências de teste

Para testar o comportamento do sistema quanto às medições de velocidade foram captadas imagens num local a que chamaremos local A, onde foram medidas velocidades de veículos usando a pistola radar. A calibração do sistema foi feita através da pintura de linhas no asfalto e da medição da distância entre elas. Esse valor foi introduzido no sistema na fase de colocação de sensores, mais concretamente quando é perguntada a distância entre as linhas de detecção (ver fig. 5-4).

A detecção e contagem de veículos foi testada em três locais: A, B e C. No local A os veículos são vistos a dirigirem-se para a câmara, cuja colocação e orientação é bastante boa. No local B os veículos são vistos a afastarem-se da câmara e existem sombras e variações de iluminação provocadas por nuvens. No local C a câmara está colocada numa posição não recomendada e foi incluída para verificar o comportamento do sistema nesta situação extrema.
Nas figuras 6-1, 6-2 e 6-3 são apresentadas imagens desses locais.

Fig. 6-1 - Local A. De notar o facto de um dos sensores se encontrar parcialmente exposto ao sol.

Fig. 6-2 - Local B. Variações de iluminação devidas a nuvens.
6.2 Avaliação das contagens

Foram efectuadas contagens de veículos em ambas as vias do local A. Os resultados obtidos encontram-se na tabela 6-1. De notar a alta percentagem de veículos detectados pelo sistema.

<table>
<thead>
<tr>
<th>Tabela 6-1 - Detecções efectuadas no local A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistema</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Via 1 (esquerda)</td>
</tr>
<tr>
<td>Via 2 (direita)</td>
</tr>
</tbody>
</table>

Neste local as medições efectuadas pelo sistema pecam por defeito. Existem veículos contados pelo operador que o sistema não detectou. Isso pode ficar-se a dever ao facto de alguns dos veículos terem passado com uma roda em cada via, na zona dos detectores. Desta forma, a sua deteção pode ser dificultada, embora possa acontecer o veículo ser detectado em ambas as vias simultaneamente.

A tabela 6-2 apresenta os resultados de detecção no local B.
Tabela 6-2 - Detecções efectuadas no local B.

<table>
<thead>
<tr>
<th>Sistema</th>
<th>Operador</th>
<th>Concordância (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Via 1 (esquerda)</td>
<td>79</td>
<td>75</td>
</tr>
<tr>
<td>Via 2 (direita)</td>
<td>87</td>
<td>80</td>
</tr>
</tbody>
</table>

Neste local, devido ao facto de não existir traço contínuo entre as vias e aos veículos muitas vezes mudarem de via antes de chegarem ao semáforo, foram vários os veículos que pisaram simultaneamente os dois detectores, tornando assim a contagem mais elevada que a efectuada pelo operador.

A tabela 6-3 apresenta os resultados de detecção no local C.

Tabela 6-3 - Detecções efectuadas no local C.

<table>
<thead>
<tr>
<th>Sistema</th>
<th>Operador</th>
<th>Concordância (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Via única</td>
<td>74</td>
<td>75</td>
</tr>
</tbody>
</table>

Este local tem a câmara colocada numa posição pouco aconselhável, embora os custos desta colocação se reflitam mais nas medições de velocidade (não efectuadas) que nas contagens. De notar o intenso brilho do asfalto neste local.

Fathy (1995a, p.1329) refere que a percentagem de mais detecções causada pelo facto de os veículos não se deslocarem centrados numa das vias pode chegar aos 5%.

Calculando a média pesada das concordâncias obtidas, usando para peso a contagem do operador em cada medição, obtemos para o total de 1497 veículos uma percentagem de detecção de 96.5%.

6.3 Avaliação das velocidades

A medição das velocidades encontra-se limitada à partida pelos problemas referidos em 4.4. Verificou-se na prática que o sistema (PC + placa de aquisição + aplicação) não permite taxas de aquisição superiores a 15 imagens por segundo. Alguns dos factores que certamente contribuem para esta limitação são descritos de seguida.

Segundo a Matrox (1996, p.352) a placa de aquisição de imagem só funciona a 100% em conjunto com uma placa de vídeo (VGA) que permita “acessos lineares à memória, directos e rápidos” e que seja reconhecida pela MIL. Este não é o caso da placa de vídeo instalada no sistema.

Outro factor é a capacidade de processamento do computador usado (Pentium a 133 MHz). Ao serem colocados vários sensores o número de imagens captadas por segundo vai baixando (em média
perde 2 imagens por cada sensor), o que significa que o peso computacional derivado da colocação de mais sensores é um factor redutor da resolução temporal do sistema. É devido a este facto que, para o sistema actual, o número de sensores está limitado a dois (ver fig. 5-4).

De referir ainda que o tempo entre imagens não é constante durante a aquisição. Existem ligeiras variações, normalmente de 80 ms para 90 ms entre imagens. Desconhecemos o motivo desta variação mas é provável que esteja relacionado com o sistema operativo.

As medições de velocidade foram efectuadas a uma taxa de 12 imagens por segundo aproximadamente (tempo entre imagens de 80 ms, ou seja, 12,5 Hz). Para esta frequência de funcionamento, o sistema apresenta um reduzido número de hipóteses para a classificação das velocidades. As velocidades medidas pela pistola radar, para o local em causa, variam entre os 30 e os 60 Km/h. Observa-se na tabela 6-4 que o sistema apenas dispõe de quatro hipóteses dentro desta gama de velocidades.

Tabela 6-4 - Valores possíveis de velocidades para o funcionamento a 12,5 Hz

<table>
<thead>
<tr>
<th>Nº Imagens</th>
<th>Tempo[s]</th>
<th>v[Km/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.08</td>
<td>180</td>
</tr>
<tr>
<td>2</td>
<td>0.16</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>0.24</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>0.32</td>
<td>45</td>
</tr>
<tr>
<td>5</td>
<td>0.4</td>
<td>36</td>
</tr>
<tr>
<td>6</td>
<td>0.48</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>0.56</td>
<td>26</td>
</tr>
</tbody>
</table>

De notar que a falha de uma imagem na detecção de um veículo pode levar a uma variação da velocidade de 90 para 180 Km/h! Este caso não se verificou na sequência de imagens analisada porque, como já foi referido, os veículos atingiam velocidades máximas de 60 ou 70 Km/h. Mas é provável que tenham existido casos em que um erro na detecção, por uma imagem, tenha levado a variações na velocidade de 60 para 90 Km/h, até porque algumas das velocidades medidas eram exatamente 90 Km/h.

Outro motivo que pode influenciar negativamente a medição das velocidades é o facto de as imagens terem sido captadas com a regulação automática da abertura do diafragma. Este facto leva a que existam na gravação mudanças súbitas de intensidade luminosa, por exemplo, quando passa um veículo grande muito claro ou muito escuro, que altere o nível de brilho da imagem. A abertura do diafragma é mudada repentinamente levando a uma alteração profunda na luminosidade de toda a imagem. Estas rápidas alterações acabam por ser um teste à capacidade de adaptação do sistema. De
forma geral os veículos são correctamente detectados (veja-se as percentagens de detecções) mas é possível que estas variações influenciem as medições de velocidade.

Um último factor a ter em conta é a qualidade das medições efectuadas com a pistola radar. Não sabemos quão exactas são as medições efectuadas com este aparelho, mas podemos afirmar que algumas das medidas efectuadas estão claramente erradas. Isto constata-se a partir de casos em que vários veículos circulam na mesma via mantendo entre si uma distância constante, e as velocidades medidas pela pistola radar dão resultados diferentes para cada veículo.

Tendo em conta estes factores, será de seguida descrita a avaliação das medições de velocidade efectuadas pelo sistema.

Foram medidas usando pistola radar as velocidades de 102 veículos em ambas as vias do local A (fig. 6-1).

A figura seguinte mostra os resultados obtidos em termos de erros relativos nas medições efectuadas pelo sistema, considerando correctas as medições obtidas com a pistola radar.

As velocidades medidas em 30% dos casos apresentam erro relativo inferior a 10%. Da figura 6-4 podemos concluir que 45% das medições apresentam erros relativos inferiores a 20% e 68% das medições foram efectuadas com erro relativo inferior a 30%.

É preocupante o facto de 5% das medições apresentarem erro superior a 90%. A explicação encontrada para este facto está ligada com possíveis más detecções. Por algum dos motivos já
referidos pode acontecer que um veículo seja detectado na primeira linha de detecção quando já se encontra próximo da segunda linha. Desta forma, a velocidade medida pode ser bastante afectada conduzindo a valores muito elevados.

De referir que 28% das velocidades foram medidas por defeito.

Uma outra apresentação para os resultados é a que se encontra na figura 6-5.

![Diagrama de dispersão das velocidades](image)

Fig 6-5 - Diagrama de dispersão das velocidades medidas no local A.

No diagrama da figura 6-5 estão representadas as velocidades medidas pelo sistema e as correspondentes velocidades reais (as medidas pela pistola radar). É interessante reparar que está patente o que foi referido no seguimento da apresentação da tabela 6-4: as velocidades medidas assumem um número reduzido de valores diferentes. Isto conclui-se das linhas horizontais em que estão agrupados os pontos da figura. O número de valores diferentes não é quatro como previsto na tabela 6-4 porque, como já foi referido, o intervalo de tempo entre duas imagens consecutivas não é constante, fazendo surgir outros valores possíveis para as velocidades.

6.4 Casos em que a deteção falha

Na tabela seguinte são referidas algumas das situações em que a deteção de veículos falha.
Tabela 6-5 - Situações em que a detecção de veículos pode falhar.

<table>
<thead>
<tr>
<th>Imagem</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O veículo tem caixa de carga que oculta o veículo que segue imediatamente atrás</td>
</tr>
<tr>
<td></td>
<td>Neste caso as linhas do sensor têm uma distância entre superior ao comprimento do veículo o que faz com que este nunca actue nas duas linhas simultaneamente não sendo por isso detectado.</td>
</tr>
<tr>
<td></td>
<td>Neste caso o veículo não passa centrado na via onde está o sensor. A detecção nestes casos varia bastante – depende do veículo, da sua velocidade e da percentagem das linhas pisadas.</td>
</tr>
<tr>
<td></td>
<td>Neste caso a mota e o automóvel serão contados apenas como um só.</td>
</tr>
<tr>
<td></td>
<td>Neste caso o veículo que segue atrás vai muito próximo do outro e é alto, impedindo que se consiga ver a estrada entre os dois. Podem ser classificados como um veículo pesado.</td>
</tr>
</tbody>
</table>
6.5 Resumo

Neste capítulo foram focados os aspectos relacionados com o funcionamento do sistema. Foram descritas as orientações gerais na colocação da câmara e as cenas de teste, em 6.1. Em 6.2 foram avaliadas as detecções e em 6.3 foi feita a análise dos resultados obtidos na medição de velocidades. De referir que não foram avaliadas as classificações dos veículos como ligeiros ou pesados visto esta classificação ser altamente dependente dos resultados das medições de velocidade. Como estes resultados são fracos, pelos motivos expostos em 6.3, a avaliação da classificação não foi efectuada. A avaliação do desempenho do sistema em relação aos restantes parâmetros não foi efectuada visto esses parâmetros serem obtidos directamente dos instantes de detecção, das contagens e das velocidades.

Em 6.4 foram descritas algumas das situações que podem levar a detecções erradas ou à não detecção de veículos.
Capítulo 7 - Conclusão
7.1 Resumo

Nesta dissertação foi efectuado um estudo da deteção de movimento 2D em sequências de imagens de vídeo que conduziu ao desenvolvimento de um sistema de monitorização de tráfego rodoviário. Este sistema funciona em tempo-real (aproximadamente 10 Hz) utilizando hardware de baixo custo. No decurso deste trabalho foram estudados diversos métodos de deteção de movimento e vários sistemas de monitorização de tráfego rodoviário.

Na sequência das pesquisas efectuadas foi desenvolvido um método de deteção de movimento rápido e fiável, que permite uma implementação usando hardware de baixo custo.

O sistema de monitorização é constituído por um computador pessoal, uma placa de aquisição de imagem e uma aplicação, que implementa o método de deteção de movimento desenvolvido. Este sistema pode analisar informação fornecida por uma câmara de vídeo ou por um gravador de vídeo.

O sistema obtém, a partir das imagens vídeo, várias estatísticas que permitem caracterizar a corrente de tráfego em análise.

Da análise do desempenho do sistema constatou-se que existem limitações impostas pelo hardware utilizado que impedem a obtenção de boas estimativas para a velocidade dos veículos. Os resultados da contagem dos veículos são bastante bons, sendo detectados aproximadamente 97% dos veículos.

O sistema desenvolvido representa um passo em frente relativamente a análises semi-automáticas existentes. Apresenta resultados comparáveis (por enquanto apenas ao nível das contagens e parâmetros directamente deriváveis, como o débito) aos de sistemas desenvolvidos com acesso a grandes meios durante mais de uma década (caso do CCATS e do Autoscope).

7.2 Perspectivas futuras

Existem várias possibilidades de prosseguir investigação na sequência do trabalho efectuado. É necessário efectuar mais testes ao sistema, sob condições atmosféricas variadas de forma a permitir uma possível utilização contínua (24 horas por dia) em vez de utilizações pontuais como as que foram efectuadas até aqui.

Para resolver o problema da medição de velocidades está actualmente a ser investigada a hipótese de utilização de material que permite a aquisição de imagens à frequência de 200 Hz. Uma resolução temporal a este nível permitirá obter bons resultados para toda a gama de velocidades atingida pelos veículos.

Para facilitar a interpretação dos dados obtidos pelo sistema poderia ser desenvolvido um módulo de gestão de base de dados. Esse módulo deveria permitir responder a perguntas mais complexas que as que se podem responder com a análise directa dos parâmetros extraídos.
Outra possibilidade seria a extensão do sistema de forma a permitir a monitorização de várias câmaras de vídeo. Desta forma seria possível usando um sistema, controlar o tráfego em várias ruas simultaneamente, o que permitiria uma visão mais abrangente do comportamento dos fluxos de tráfego.

Uma outra possibilidade seria a utilização de imagens a cores. A vantagem desta abordagem resulta do facto de as imagens a cores conterem mais informação que as imagens monocromáticas sobre as quais foi desenvolvido este sistema. Desta forma, seria possível uma maior robustez do sistema tornando mais fiáveis as medições efectuadas sob condições atmosférica adversas (de noite, com tempo nublado ou a chover), embora uma aproximação deste tipo implique um acréscimo do peso computacional.
Lista de Referências

Carlson, B., 1997, Clearing the congestion: vision makes traffic control intelligent, Advanced Imaging, Feb., p. 54-57.

Gordon, A.D., 1993, Classification, Chapman & Hall.

Anexos
Anexo A - Outros sistemas de monitorização de tráfego

Neste anexo vamos indicar os sistemas dos quais tomámos conhecimento mas não foi possível obter suficiente informação para serem inseridos no texto principal.
A maioria destas referências foram obtidas através de pesquisas na Internet. Os artigos onde os sistemas são descritos são na maioria dos casos conhecidos mas não nos foi possível obtê-los.

Detecting vehicle traffic conditions using real time vision
I. Horiba, Reports of the Faculty of Science and Tecnology, Meijo University, No36, 1996
Descreve várias técnicas para detectar condições de tráfego e técnicas de hardware para executar processamento de imagens a alta velocidade. As técnicas usam um algoritmo de reconhecimento de padrões em movimento a partir de imagens obtidas com uma câmara de televisão. Estas técnicas permitem a detecção on-line e em tempo real de lugares para estacionar, condições de tráfego e fluxo de tráfego.

General plan of Shanghai Chengdu Rd. elevated road traffic control device
Descreve um dispositivo de controlo de tráfego e foca três aspectos:
1. Princípios gerais e estratégia de controlo
2. Desenho do sistema de monitorização e controlo de tráfego
3. Desenho dos sinais de tráfego e das marcações rodoviárias a usar.

Video based freeway monitoring system using recursive vehicle tracking
B. Gloyer, Image and video processing III, Univ. California, Irvine, 1995
Descreve um sistema que funciona em duas fases. A primeira é a fase de modelização da estrada na qual é gerado um modelo tridimensional do fundo a partir de algumas imagens iniciais. A segunda fase é a do seguimento na qual cada veículo é isolado e seguido durante várias imagens enquanto é feito um mapeamento das suas coordenadas no modelo 3D da estrada e é produzida uma estimativa para a sua velocidade na estrada.

EVA, camera-based vehicle detection and tracking
Descreve EVA que é um sensor de tráfego avançado cuja operação é baseada na análise de imagens provenientes de câmaras de vídeo e em algoritmos de visão por computador. Este sistema detecta e segue veículos em tempo real, extrai parâmetros de tráfego e fornece imagens digitalizadas da estrada.

Development of a new multipurpose image processing vehicle detector and its implementation in the Tokyo Metropolitan Traffic Control System

Este artigo descreve um detector de incidentes e de veículos mal estacionados que mede o fluxo de tráfego e efectua o seguimento de veículos. O sistema foi desenhado para ser usado no Tokyo Metropolitan Traffic Control System.

São descritos os resultados da avaliação do sistema assim como detalhes do método de processamento e do hardware utilizado.