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Resumo

Os conteúdos televisivos são transmitidos para vários países diferentes ao mesmo tempo. Esses
conteúdos podem ser eventos desportivos ou eventos políticos ou religiosos importantes. Na tele-
visão, é prática comum mostrar anúncios entre períodos de conteúdo programado. Quando o
mesmo conteúdo está a ser assistido em vários países, idealmente, os anúncios devem ser adap-
tados de país para país, visando produtos ou serviços locais e de acordo com características es-
pecíficas do país, incluindo o idioma. Enquanto que este objetivo pode ser alcançado quando a
transmissão consiste apenas em conteúdo pré-gravado, o seu cumprimento para eventos ao vivo
representa desafios consideráveis. Em particular, devido a restrições de tempo, em transmissões ao
vivo surge um problema específico: como detectar automática e efetivamente e substituir anúncios
específicos da região? A abordagem principal para resolver esse problema é detectar os limites
entre o conteúdo da transmissão programada e regiões que contêm publicidades. Num cenário
em tempo real, essa deteção precisa de ser realizada automaticamente, aplicando algoritmos de
software que analisem o conteúdo on-the-fly e extraiam características que possam permitir a de-
tecção automática dos limites entre o conteúdo agendado e conteúdo publicitário. Num cenário
em tempo real, que impõe restrições rigorosas de tempo para o processamento do conteúdo, uma
solução viável seria explorar o conceito de audio fingerprinting que é aplicado na área da detecção
de temas musicais. Essa solução exige que os anúncios inseridos no conteúdo da transmissão
sejam conhecidos antecipadamente.

Tomando como referência os métodos do estado de arte relativos a audio fingerprinting, o
objetivo principal desta dissertação é reformulá-los de modo a permitir a operação em tempo
real para streaming de conteúdo publicitário, que é substituir a identificação de temas musicais
por publicidades. A principal contribuição deste trabalho é a incorporação de um tipo diferente
de modelagem das features, agrupando-as em quartetos - ou quads. Isso é feito teorizando que
as impressões digitais podem ser únicas e, portanto, a procura e a identificação podem ser mais
rápidas, tornando possível o funcionamento em tempo real.

O trabalho desenvolvido nesta dissertação pode ser usado como ponto de partida para outros
sistemas de maior escala, por exemplo, um que implemente a comutação específica de conteúdo
comercial em tempo real.

Devido às diferenças que cada canal de televisão apresenta relativamente à quantidade de
publicidades presentes num determinado momento, o dataset foi feito a partir de 500 spots pub-
licitários. Antes de usar a detecção em tempo real, a base de dados deve ser criada ou atualizada,
e deve incluir todas as publicidades que possam aparecer.

A avaliação do sistema apresentado neste trabalho contempla dois objetivos. O primeiro é sim-
plesmente verificar que os quads acima mencionados são realmente únicos na base de dados, val-
idando essa suposição, e o segundo é realizar testes em cenários reais, identificando corretamente
blocos de conteúdo publicitário ou de programação sem introduzir atrasos no processamento. Os
resultados mostraram que ambos os objetivos foram cumpridos.
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Abstract

It is now commonplace for television content to be broadcast to multiple different countries at the
same time. This broadcast content could be a sports event, or some major political or religious
event. In television, it is common practice to air advertisements between periods of scheduled con-
tent. When the same content is being watched in multiple countries, ideally, the advertisements
should be adapted from country to country, targeting local products or services and according
to specific characteristics of the country, including the language. Whereas this objective may be
achieved when the broadcast consists only of pre-recorded content, its fulfillment for live events
poses considerable challenges. In particular, due to time constraints, in live broadcasts a specific
problem arises: how to automatically and effectively detect and replace region-specific advertise-
ments? The main approach to address this problem is to detect the boundaries between scheduled
broadcast content and regions containing commercials. In a real-time scenario, this needs to be
done automatically, applying software algorithms that analyse the content on-the-fly and extract
characteristics that may allow the automatic detection of the boundaries between scheduled con-
tent and commercials. In such a real-time scenario, which imposes strict time constraints for
processing the content, one feasible solution would be to borrow the concept of audio fingerprint-
ing from the music application domain. This solution requires that the advertisements which are
inserted originally in the broadcast content are known in advance.

Taking the state of the art audio fingerprinting methods as a baseline, the main goal of this
dissertation is to reformulate them in order to allow operation in real-time for streaming broadcast
advertising content, that is to replace the idea of music identification with advertisement identi-
fication. The main contribution of this work is the incorporation of a different kind of feature
modelling, by grouping the features into quartets - or quads. This is done theorizing that the fin-
gerprints can be unique and hence the search and retrieval can be faster, making it possible to work
in real-time.

The work developed in this dissertation could be used as a starting point for other larger scale
systems, for example one which implements real-time region-specific switching of commercial
content.

Due to the differences in each tv channel regarding the amount of commercials present at a
given time, the dataset was built with 500 commercials. Before using the real-time detection, the
database was assembled, and it includes all the commercials that could appear.

The evaluation of the system presented in this work addresses two objectives. The first one is
to simply verify that the above-mentioned quads are indeed unique in a database, validating that
assumption, and the second one is to perform tests in real-case scenarios, correctly identifying
blocks of commercials or programming without introducing delays in the processing. The results
showed that both objectives were accomplished.
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“All you touch and all you see is all your life will ever be.”

Pink Floyd in "Breathe"
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Chapter 1

Introduction

1.1 Context

With the advances in audio fingerprinting [3], more applications started to appear related to audio

recognition. Numerous systems that are capable of identifying songs have been developed, and

they work very well. However, such technology is not typically applied in real-time detections,

which is the case of this dissertation. Also, they address songs, and not commercials. The work

here is an attempt at using such existing technologies, but in a different setup, and seeing if a

real-time commercial detection system can be successfully deployed.

This dissertation was conducted in collaboration with an ongoing industrial research project

CloudSetup1 at INESC TEC. Together with a set of techniques related to video processing, an

offline audio-only approach has been developed which uses heuristics related to boundary silences

and local and long-term structure to identify the starting and ending points of regions of commer-

cials [5]. Taking a different perspective, the aim of this dissertation is to detect such starting and

ending points of regions of commercials, but using audio fingerprinting instead.

This dissertation is a result of the project MOG CLOUD SETUP - No17561, supported by

Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020

Partnership Agreement, through the European Regional Development Fund (ERDF).

It is also a result of the project TEC4Growth2 – Pervasive Intelligence, Enhancers and Proofs

of Concept with Industrial Impact/NORTE-01- 0145-FEDER-000020” financed by the North Por-

tugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership

Agreement, and through the European Regional Development Fund (ERDF).

1.2 Objectives

The objectives defined for this project are the following:

1www.mog-technologies.com/financed-projects/norte2020/
2foureyes.inesctec.pt/
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2 Introduction

• To compile a dataset of advertising content across a range of international television chan-

nels.

• To devise an audio fingerprinting method that generates unique fingerprints, aiming for a

faster matching process.

• To develop a real-time fingerprint detection method able to operate for streaming broadcast

content.

• To conduct a detailed evaluation which explores the trade-off between the speed and accu-

racy of advertisement detection via fingerprinting.

• To actively collaborate and integrate with the other members of the research team at INESC

TEC and to contribute results to the CloudSetup project

1.3 Motivation

On a personal level, as a musician and music producer, working with audio has always been one

of my goals. In the first semester of the present academic year, I underwent an internship on facial

recognition, where I gained experience in fingerprinting, feature extraction and image processing.

Therefore, both from the perspective of the actual programming tools to be used and research

methods, I believe this dissertation project with its strong connection to audio-visual content will

be an excellent combination of my personal interest in audio and current experience in image and

signal processing.

As for the problem itself, there is interest in its resolution. In an era where we have the technol-

ogy to automatize tasks, continuing to manually identify and replace region-specific commercials

seems like an obsolete and unneeded task. This dissertation is motivated by this, and intends

to provide a precise and effective way of identifying the boundaries between scheduled broad-

cast content and commercials. Others might use this application in order to implement the actual

commercial replacement.

1.4 Dissertation Structure

Besides the introduction, this report contains five chapters. In chapter 2, the state of the art is

described and the evolution of the work in this area is presented. In chapter 3, the approach and

problem characterization are detailed. In chapter 4, the implementation is exhibited, as well as

the system operations. In chapter 5 the data preparation is described and the system evaluation is

presented. Chapter 6 is dedicated to conclusions.



Chapter 2

Background and State of the Art

Here, the research about the audio fingerprinting state of the art is presented. It was decided to

also include computer vision techniques because it seemed like another way to look at the audio,

which could complement the fingerprinting. Firstly there is some analysis on how to convert an

audio signal to an image that can be analysed by the computer, and how to extract its features

and match them. Afterwards we go into more detail on the audio fingerprinting state of the art,

first with the established principles and components of such systems that are common to most

approaches, and then providing disclosure on each of them, referring different existing ways to

tackle the problem. Then, the state of the art commercial detection based on audio fingerprinting

is also reviewed. A brief summary is presented after, concluding this section and extracting the

main points to consider while doing the dissertation and developing the application.

2.1 Computer Vision

Contrary to modern audio and music recognition systems, Computer Vision has been a popular

research topic for a long time, beginning in the 1960s when artificial intelligence research was

just starting [6]. Even though most researchers tend to develop independently and look for new

algorithms to implement audio fingerprints, some researchers have begun using algorithms tradi-

tionally developed for image recognition in order to recognize music [7]. This is still a relatively

unexplored approach to audio recognition but one with a lot of potential, especially if there are

noticeable peaks in the spectrogram.

2.1.1 From Audio to an Image

The first problem that arises is how to convert the one dimensional audio signal into a two dimen-

sional image that can be "seen" by the computer. For this, a time-frequency representation can be

used, for example the spectrogram, when analysing the audio. A standard audio signal waveform

and its corresponding spectrogram are shown in Figure 2.1. The former only shows the amplitude

of the song, which is great for identifying the points with the highest amplitude in an audio signal,

3



4 Background and State of the Art

but it doesn’t provide as much visual information as the latter, which plots the amplitude of par-

ticular frequencies across time. The spectrogram has time on the x-axis, frequency on the y-axis,

and the amount of energy at a specific frequency as a color scale in that same point. This allows

the user to see not only the overall amplitude, but also the range of frequencies that are more

prominent. To accomplish this task, a "Short-time Fourier Transform" can be used [8] which takes

milliseconds of an audio file at a time and gets the sine wave functions with the highest amplitude

at each “window” of time, in order to find the frequencies present at that moment.

Figure 2.1: Audio signal and its corresponding spectrogram.

2.1.2 Detecting Features in Spectrograms

After obtaining the spectrogram, the next step would be to generate features that the computer

could use to perform the matching. To do this, there are various options. One uses a custom

feature detection algorithm based on Adaboost and Viola-Jones features [7]. It uses a class of

Haar wavelet-like filters introduced by Viola and Jones for face detection [9], after treating the

spectrogram as a grayscale image, as seen in Figure 2.2. From the various possible filters, M

discriminative filters and corresponding thresholds are selected to generate an M-bit vector that

represents overlapping segments of audio. This vector, called the descriptor, can be quickly com-

puted using integral images.



2.1 Computer Vision 5

Figure 2.2: How the Haar filter are applied into a picture to detect zones. Original figure taken
from [1].

Other possible methods used in general computer vision problems are SIFT [10] and SURF

[11]. Both methods are in the category of “blob detection algorithms” that use a “Laplacian of

Gaussian” measurement to find the center of blobs in images. The Laplacian is found by adding

the second derivative in the x direction to the second derivative in the y direction for each point on

a gray scale image. It has been found that the center of a “blob” in an image generally corresponds

to relative maxima in the Laplacian. This method only finds extremely specific and uniform blobs

in an original image. However, if a Gaussian blur is first applied to an image before finding the

maxima of the Laplacian, it is possible to find larger and more generic blobs. By finding the

Laplacian maxima at differing amounts of Gaussian blur, it is possible to calculate a set of key

points that represent these blobs and store them in a way that can be compared to other images.

SIFT and SURF then calculate edge strengths and orientations in a neighborhood around each key

point and store this information in a feature vector that characterizes the local image structure near

the key point.

2.1.3 Feature Matching

In [7], the signatures are hashed into a standard hash table, keyed by appropriate M-bit descriptors

which are within a Hamming distance of 2 from the given query to be near-neighbors. Once all of

the near neighbors have been found, the song that best matches the set of descriptors in the query

needs to be identified. The verification is done by employing a form of geometric verification that

is similar to that used in object recognition using local features [12]. For each candidate song, Ke

et al. [7] determine whether the matched descriptors are consistent over time. For this, RANSAC

[13] can be used to iterate through candidate time alignments and use the EM score, the likelihood

of the query signature being generated by the same original audio as the candidate signature, as

the distance metric. For the alignment models, we can assume that the query can be aligned to the

original once a single parameter (temporal offset) has been determined. In this case, the minimal

set is a single pair of matching descriptors. Once all of the retrieved candidates have been aligned,

the audio with the best EM score is chosen, assuming that it passes a minimum threshold.
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As far as comparing the vectors obtained from SIFT or SURF methods, one could use open

source libraries, for instance the ones from OpenCV, more specifically the Brute Force or FLANN

matchers, based on [14]. The former does an exhaustive search and is guaranteed to find the

best neighbour, while the latter builds an efficient data structure that will be used to search for an

approximate neighbour. The real benefit of the FLANN matcher is seen with large data sets. The

resulting matching vectors from both SIFT and SURF are seen in Figure 2.3.

Figure 2.3: Example of resulting matches in both SIFT (a) and SURF (b) methods, on a rotated
image. Original figure taken from [2].

2.2 Audio Fingerprinting

An audio fingerprint is a compact content-based signature that summarizes an audio recording [3],

which has the capability to identify audio. It extracts relevant acoustic characteristics of a piece

of audio content and stores them in a database. When presented with an unidentified piece of

audio content, characteristics of that piece are calculated and matched against those stored in the

database. Using fingerprints and matching algorithms, distorted versions of a single recording can

be identified as the same music title.

2.2.1 Principles

Audio Fingerprinting has some standard principles behind its functioning, which may refer to

requirements that the fingerprint or the fingerprinting system need to follow. These may depend

on the application but are useful in order to evaluate and compare different technologies.

Requirements

The audio fingerprint application needs, in general, to follow these requirements, depending on

the application [3], [15]:

• Accuracy: The number of correct, missed and incorrect identifications .

• Reliability: The ability to avoid false positives.
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• Robustness: The ability to accurately identify an item, regardless of the level of compres-

sion, distortion, interference or other sources of degradation.

• Granularity: The ability to identify whole audio signals from short excerpts.

• Security: The vulnerability of the solution to intentional manipulations that are designed to

fool the fingerprint identification algorithm.

• Versatility: The ability to identify different audio formats, and to use the same database for

different applications.

• Scalability: The capability of performing in large databases.

• Complexity: The general computational costs of the fingerprint extraction, its size, the

complexity of the search and matching, the cost of adding new items to the database, etc.

• Fragility: The ability to detect changes in the content, which goes against the robustness

requirement but is needed for plagiarism identification.

As for the objectives of this dissertation, not all of these requirements are needed. Since the in-

put stream contains the original commercials, without any kind of degradation, content robustness

is assured. On the same train of thought, the audio is not accessible by people besides the company

using it, and there is no obvious interest from a possible third party to manipulate this application

in its favor, so the system should be secure on its own. The system will also use standard broad-

cast media formats, so this application doesn’t need to be versatile in this aspect. Regarding the

scalability requirement, it is not expected in the INESC TEC project to deal with a large database,

like a music database, as it is not plausible that a TV channel will have even a thousand different

commercials at a certain given time. However, this is not the focus of this dissertation. As men-

tioned before, the content analyzed will not have any kind of changes, so the fragility requirement

is also passable. This leaves us to focus on the accuracy, reliability and complexity requirements.

We need an accurate application that will correctly identify or dismiss any audio, in the shortest

possible time (for this we cannot have a high complexity, because this application needs to be used

in real-time).

Regarding the requirements of the fingerprint itself, it generally needs to be, as mentioned in

[3]:

• A perceptual representation of the recording. It must retain the maximum of acoustically

relevant information and should allow the discrimination over a large number of fingerprints.

This may be conflicting with other requirements, such as complexity and robustness.

• Invariant to distortions. This derives from the robustness requirement. Content-integrity

applications, however, relax this constraint for content-preserving distortions in order to

detect deliberate manipulations.

• Compact. A small-sized representation is interesting for complexity, as it can speed up the

process of comparison and retrieval. An excessively short representation, however, might

not be sufficient to discriminate among recordings, thus affecting accuracy, reliability and

robustness.
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• Easily computable. For complexity reasons, the extraction of the fingerprint should not be

excessively time-consuming.

Again, we do not have to care about the fingerprint being invariant to distortions as we do not

foresee differences between the commercials in the database and the ones present in the real time

audio stream. Also, since the database will be small, the fingerprint does not need to contain a lot

of information. Knowing this, we can strive for uniqueness of the fingerprints, which means that

the database will not have duplicates. As for compactness, the commercials to be identified will

be very or relatively small, so the resulting fingerprints can be compact. With these insights we

can conclude that we can strive for a simple and straightforward fingerprint, which will allow the

application to perform well in real-time conditions.

Application in Identification of Audio

Figure 2.4: Basic architecture of a musical audio identification system. Original Figure taken from
[3].

Even though there are different approaches to audio fingerprinting systems, they all follow the

same basic architecture [3]. As shown in Figure 2.4, there are two fundamental processes: the

fingerprint extraction and the matching algorithm.

The fingerprint extraction consists of a front-end and a fingerprint modeling block, as shown

in Figure 2.5. The front-end computes a set of measurements from the signal. The fingerprint

model block defines the representation of the final fingerprint. Given an input fingerprint, the

matching algorithm searches a database of fingerprints to find the best match. A way of comparing

fingerprints, that is a similarity measure, is therefore needed.

2.2.2 The Front-End

The front-end converts an audio signal into a sequence of relevant features to feed the fingerprint

model block. When designing the front-end, one has to take into account the requirements for
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Figure 2.5: Fingerprint extraction framework. Original picture taken from [3].

audio fingerprints and audio fingerprinting systems, previously mentioned in the Principles sub-

section.

Preprocessing

Since the audio that this will work with is already digitalized, this stage will only convert the signal

to mono by averaging the left and right channels of a stereo pair, if necessary.

Framing and Overlap

Framing means dividing the audio signal into frames of equal length by a window function (e.g.

Hann or Hamming windows). During this process, a large portion of the audio signal may be

suppressed by the window function [16]. since the values near the boundaries of the window

function drop by a significal amount. In order to make up for loss of energy, the frames overlap,

as shown in Figure 2.6.

Transformation

In this step, the set of frames is transformed into a new set of features, essentially changing its

representation. Most solutions choose standard transformation from time domain to frequency

domain, like the FFT [17]. There are also some other transformations including the Discrete
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Figure 2.6: Overlapped Hann Windows. Note that the lower values are eliminated by this tech-
nique. Original Figure taken from [4].

Cosine Transform [18], the Walsh-Hadamard Transform [19], the Modulated Complex Transform

[20], etc.

Feature Extraction

Once a time-frequency representation has been obtained additional transformations are applied in

order to generate the final acoustic vectors. After transformation, final acoustic features are ex-

tracted from the time-frequency representation. The main purpose is to reduce the dimensionality

and increase the robustness to distortions.

One of the most commonly used method in the field of audio recognition is the Mel-frequency

cepstral coefficients (MFCC) analysis [21], [22]. It is based on the auditory mechanism of the

human ear, and has relatively high recognition and robustness qualities. To get the MFCC features,

the spectrum is passed through a set of Mel filters (triangular filters spaced according to the Mel

scale), which results in a Mel spectrum. Afterward, this spectrum is subjected to a cepstral analysis

in order to obtain its coefficients, which correspond to the features of the analyzed audio frame.

Its application in music has been shown in [23].

Another proposed scheme is the Spectral Energy Peak. This method was described for music

identification systems in [24] and [25] the latter being known as the system used by Shazam appli-

cation. Here, time-frequency coordinates of the energy peaks were described as sparse landmark

points. Then, by using pairs of landmark points rather than single points, the fingerprints exploits

the spectral structure of sound sources. In [26], the method was shown to be intrinsically robust to

even high level background noise and can provide discrimination in sound mixtures.
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Figure 2.7: FFT of the audio signal in Figure 2.1

Another approach is Spectral Band Energy. This referes to the energy in each time frame and

frequency subband range. Haitsma et al. [8] proposed a famous fingerprint where these energies

were first computed in a block containing 257 time frames and 33 Bark-scale frequency subbands,

then each feature was quantized to a binary value (either 0 or 1) based on its differences compared

to neighboring points. Other fingerprinting algorithm exploiting these features were found for

instance in [27]. Variances of this subband energy difference features can be found in more recent

approaches, as for example in [28].

There is also the Spectral Flatness Measure. Also known as Wiener entropy, relates to the

tonality aspect of audio signals and it is therefore often used to distinguish different recordings. It

is computed in each time-frequency subband point. A high resulting value indicates the similarity

of signal power over all frequencies while a low one means that signal power is concentrated in a

relatively small number of frequencies over the full subband. A similar method to this one, which

is also a measure of the tonal-like or noise-like characteristic of audio signal, is Spectral Crest

Factor. It indicates how extreme the peaks are in a waveform, and can also be exploited as a fin-

gerprint. Both of these methods were found to be the most promising features for audio matching

with common distortions in [29] and were both considered in other fingerprinting algorithms [27],

[30].

Finally, another popular measure used in audio signal processing is the Spectral Centroid. It

indicates where the ”center of mass” of a subband spectrum is. The features extracted with this

method are said to be robust over equalization, compression, and noise addition. It was reported in

[31] and [30] that fingerprints based in this method offered better audio recognition than MFCC-

based fingerprints with 3 to 4 second length audio clips.
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Post-Processing

Most of the features described so far are absolute measurements. In order to better characterize

temporal variations in the signal, higher order time derivatives are added to the signal model. In

[21] and [32], the feature vector is the concatenation of MFCCs, their derivative (delta) and the

acceleration (delta-delta), as well as the delta and delta-delta of the energy. Some systems only

use the derivative of the features, not the absolute features [27], [33]. Using the derivative of

the signal measurements tends to amplify noise [34] but, at the same time, filters the distortions

produced in linear time invariant, or slowly varying channels (like an equalization). Cepstrum

Mean Normalization (CMN) is used to reduce linear slowly varying channel distortions in [32].

If Euclidean distance is used, mean subtraction and component wise variance normalization are

advisable. Some systems compact the feature vector representation using transforms (for exam-

ple by using Principal Component Analysis [21], [32]). It is quite common to apply a very low

resolution quantization to the features: ternary [35] or binary [8]. The purpose of quantization is

to gain robustness against distortions [8], normalize [35], ease hardware implementations, reduce

the memory requirements and for convenience in subsequent parts of the system. In [20] binary

sequences are required to extract error correcting words utilized, and the discretization is designed

to increase randomness in order to minimize fingerprint collision probability.

2.2.3 Fingerprinting Models and Searching Methods

Fingerprinting Models

The fingerprint modeling block computes the final fingerprint based on the sequence of feature

vectors extracted by the front-end. Every frame generates a feature vector, so the initial sequence

of feature vectors is too large to be used as fingerprint directly. Exploiting redundancies of spectral

features is useful to further reduce the fingerprint size. A great option in this case is to adapt the

feature vectors to a statistical model. Three popular models, namely Gaussian Mixture Model,

Hidden Markov Model, and Nonnegative Matrix Factorization are described in this section.

• Gaussian Mixture Model
This model investigated for audio fingerprinting in [30], where spectral feature vectors Fn are

modeled as a multidimensional K-state Gaussian mixture with probability density function

given by

p(Fn) =
K

∑
k=1

αkNc(Fn|µk,Σk)

where αk, which satisfies ∑
K
k=1 αk = 1, µk and Σk are the weight, the mean vector and the

covariance matrix of the k-th state.

The model parameters θ = αk,µk,Σkk are then estimated in the maximum likelihood sense

via the expectation-maximization (EM) algorithm, with the global log-likelihood defined as

LML =
N

∑
n=1

log p(Fn|θ)
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As a result, the parameters are iteratively updated via two EM steps. In the expectation

step, the posterior probability that feature vector Fn is generated from the k-th GMM state

is computed. Then, the parameters are updated, in the maximization step.

With this method, N-dimensional feature vectors Fn are characterized by K set of param-

eters {αk,µk,Σk}k=1,...,K where K is often very small compared to N. However, since this

method does not explicitly model the amplitude variation of sound sources, signals with

different amplitude level but similar spectral shape may result in different estimated mean

and covariance templates.

• Hidden Markov Model Similarly to the previous method, this one also uses a probability

density function, which is given by:

p(Fn) = ∑
q1,q2,...,qd

πq1bq1F(n,1)aq1q2bq2F(n,2)...aqd−1qd bqd F(n,d)

where πqi denotes the probability that qi is the initial state, aqiq j is state transition probability,

and bqi(Fn, i) is the probability density function for a given state.

Given a sequence of observations Fn,n = 1, ...,N extracted from a labeled audio signal,

the model parameters θ = {πqi ,aqiq j ,bqi}i, j are learned via EM algorithm and stored as a

fingerprint.

Cano et al. modeled MFCC feature vectors using this method in [21]. In [36], fingerprints

based in this method were shown to achieve high compaction by exploiting structural re-

dundancies on music and to be robust to distortions. Note that when applying these two

former methods for the fingerprint design, a captured signal at the user side is considered to

be matched with an original signal fingerprinted by the model parameter θ in the database

if its corresponding feature vectors F̂n are most likely generated by θ .

• Nonnegative Matrix Factorization This method was applied to the spectral subband en-

ergy matrix in [37] and to the MFCC matrix in [38]. In the context of audio fingerprinting,

a d ∗N matrix of the feature vectors V = [F1, ...,FN ] is approximated by

V =WH

where where W and H are non-negative matrices of size d ∗Q and Q ∗N, respectively,

modeling the spectral characteristics of the signal and its temporal activation, and Q is much

smaller than N. The model parameters θ = {W,H} can be estimated by minimizing the

following cost function:

C(θ) = ∑
bn

dIS([V ]b,n|[WH]b,n)

where dIS(x|y) = xy− log(xy)− 1 is Itakura-Saito divergence, and [A]b,n denotes an entry

of matrix A at b-th row and n-th column. In [39], Févotte et al. estimate the parameters by

using the following Multiplicative Update rules:
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H← H
W T ((WH).−2)

W T (WH).−1

W ←W
((WH).−2)HT

(WH).−1HT

where denotes the Hadamard entrywise product, A.p being the matrix with entries [A].pi j ,

and the division is entrywise. Fingerprints are then generated compactly from the resulting

matrix W, which has much smaller size compared to the original feature matrix V.

2.2.3.1 Searching Methods

After fingerprints are extracted and modeled, the search for similar fingerprints is performed on the

database for the matching. The similarity is essentially the measure of how alike two fingerprints

are, and is described as a distance. Small distance indicates high degree of similarity, and vice

versa.

In [3], the requirements for a good searching methods are stated:

• Fast: Sequential scanning and similarity calculation can be too slow for huge databases.

• Correct: Should return the qualifying objects, without missing any—i.e. low False Rejec-

tion Rate (FRR).

• Memory efficient: The memory overhead of the search method should be relatively small.

• Easily updateable: Insertion, deletion and updating of objects should be easy.

There are many possibilities for the distance chosen. Two of them are especially straight-

forward and easy to compute. The first and most popular one is the Euclidean distance [22],

which is basically the straight-line distance between the points. In [40], the Manhattan distance is

considered instead. It assumes that the points are layered on a grid and defines the distance as the

sum of the horizontal and vertical components instead of the direct diagonal path. Both of them

can be seen in Figure 2.8.

Figure 2.8: Euclidean distance depicted as a regular line, whereas Manhattan distance is shown as
the dashed line.

Regarding the search itself, it might not be fast and efficient if the database is big. However, the

application devised in this dissertation is not aimed at a database of millions of audio references,
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as Shazam is for example. In this case each television channel will have a relatively small number

of references in the database. In any case, the retrieval has to be as fast as possible, so comparing

the fingerprints one by one might still not be the fastest option, as we want a real-time retrieval.

A good general strategy to speed up the process is to design an index data structure in order to

decrease the number of distance calculations.

To further accelerate the searching procedure, some searching algorithms adopt multi-step

searching strategy. In [40], Haitsma et al. design a two-phase search algorithm. Full fingerprint

comparisons are only performed when they have been selected by a sub-fingerprint search. Lin

et al. [41] propose a matching system consisting of three parts: “atomic” subsequence matching,

long subsequence matching and sequence matching.

2.2.3.2 Hypothesis Testing

The final step is to decide whether there is a matching item in the database. If the similarity

between the query fingerprint and other reference fingerprints in the database is above a predeter-

mined threshold, the reference item will be returned as the matching result, otherwise the system

will think that there is no matching item in the database. Based on the matching results, the per-

formance of an audio fingerprinting system is measured as a fraction of the number of correct

match out of all the queries that are used to test. Most systems report this recognition rate as their

evaluation results [25], [42], [43], [44].

2.3 Commercial Detection

In March of 2017, after the start of the "Cloud-Setup" project, Facebook was granted a patent for a

Commercial Detection based on Audio Fingerprinting [45]. The system they came up with shares

the objectives of this dissertation, but using program guide information for a better performance. It

also verifies the commercial detection across multiple media streams on different broadcast chan-

nels. It can determine whether the same match is observed across multiple broadcast programs

and/or multiple broadcast channels over a specific period of time and, based on a predetermined

threshold, determine that the media stream contains commercial content. It claims it extracts mul-

tiple acoustic features in a frequency domain and a time domain from the audio signal associated

with the media stream. These encompass spectral features computed on the magnitude spectrum

of the audio signal, Mel-frequency cepstral coefficients of the audio signal, a spectral bandwidth

and spectral flatness measure of the audio signal, a spectral fluctuation, extreme value frequencies,

and silent frequencies of the audio signal. It then applies a trained feature analysis model to the

extracted features, which can be trained using one or more machine learning algorithms to analyze

them. Afterwards, a confidence score is assigned by the system to indicate the likelihood that the

media stream contains commercial content. Although the specifications are not detailed in the

document, they do specify that the window frames are 25ms, 50ms, 100ms, 200ms, (...) and the

transform used is the DCT (discrete cosine transform). From their description, it seem that they
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base their application in the state of the art audio fingerprinting that has been mentioned in this

report, confirming that it should be a promising path to follow.

2.4 Summary

As can be seen in this chapter, there are many successful approaches to audio fingerprinting. Apart

from the Computer Vision way, they all follow basically the same system structure, each using its

own combination of settings and specifications relative to each system block. One can work with

many different options for windowing, transforming, extracting and modeling features, and for pre

and post-processing. Each combination will output different results and will be better or worse,

according to the end application’s needs and goals. The existing approaches have been applied

in the context of music identification, to be used as a means to counter plagiarism, copyright

infringement, or even just for a regular user to identify a song that the user likes but doesn’t know.

Since the goal of this dissertation is to perform in real-time, the state of the art material will have

to undergo some changes in order to work. In any case, there is already a lot of information to

pursue the goal of detecting commercial in real-time.



Chapter 3

Approach

In this chapter the definition of the problem to solve is presented, as well as the approach used

for the development of the system’s components. This device’s framework is based on the typical

audio recognition system showed in [3], with some other blocks related to the real-time perfor-

mance. The focus of the approach was creating a model capable of accurately and promptly detect

blocks of commercials from a stream.

3.1 Problem Characterization

The problem consists on the creation of an application that detects advertisement blocks in stream-

ing broadcast content based on audio fingerprinting. This application should receive the audio of

a streaming broadcast and output whether it detects an advertisement block or not, calculating the

detection offset as well as the starting and ending times of that same block. The system should be

as fast as possible, while maintaining a good performance.

The applications mentioned in the previous chapter have been shown to be efficient for music

detection, but they deal with slightly different conditions. For instance, even though they focus on

speed, this speed is relative to the huge databases (millions of songs) that comprise the training

data. In this real-time detection, the database is not foreseen to be big, so the search has to detect

the advertisement much faster, which also directly impacts the performance. A good way to tackle

this problem is to be able to obtain unique fingerprints, which could be done grouping the features.

A possible number of features for a group could be four, as explored by Sonnleitner and Widmer

[46]. This generates a quartet, or a quad, which is much more specific than a single feature.

By conceptualizing this problem, one can see that detecting and matching advertisements is

practically the same as matching songs. The main difference is the requirement to work in a real-

time scenario. The problem then becomes applying the audio fingerprinting state of the art in

practice for this specific application.

The hypothesized basic architecture for this system can be seen in Figure 3.1
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Figure 3.1: Basic architecture for the developed system

3.2 Preprocessing

The audio is converted to mono. Different approaches can be done, for example only analyzing

one channel of the audio, but the detection would be compromised if channels suddenly switched.

Since the audio format and characteristics are previously stipulated and are expected to be always

the same, no further preprocessing is needed.

For this project, a sample rate of 48000Hz was used, which is the one that the data set com-

mercials have, as well as being the one specified in the CloudSetup project.

3.3 Framing, Overlap and Transform

The Fast Fourier Transform was used as the transforming algorithm that will sample the audio

signal and divides it into its frequency components. The FFT window was set at 2048 samples

and a Hann Window of 50% was applied. Since the Sample Rate is 48000Hz, we then have a time

frame, in seconds, of:

w =
2048

48000
= 0.04266(6) s. (3.1)

If we would get the spectrogram just by calculating the FFT of the audio each time frame,

some information would be lost at the limit between each time frame. In order to avoid this and

have more analysis points, resulting in smoother results across time, the spectrogram is calculated

every half of the time frame, resulting in a hop size, also in seconds, of:

hop =
0.04266(6)

2
= 0.02133(3) s. (3.2)

This results in a matrix, which contains the values of energy of each frequency bin at a given

time. Figure 3.2 illustrates how the spectrogram is obtained through the junction of each FFT step.
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Figure 3.2: How the spectrogram is obtained

3.4 Feature Extraction

The spectrogram obtained previously contains a great number of candidates for the features. So

far, all the points are valid, and it is important for the perfomance of the system that we select

those which best describe the audio. In order to do this, we search for the local maxima, which are

the peaks with the highest energy in a predefined neighbourhood. These peaks are the ones that

are the most specific to the audio and the most resistant to distortions or noises.

From this, the result is another matrix which has the same size as the spectrogram. The differ-

ence is that the points that were not considered local maxima will not have a value associated. This

way we filter out the worst candidates out of the spectrogram. The remaining points, the features,

will be used to form quads.

Figure 3.3 illustrates a spectrogram, where the black dots represent its local maxima.
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Figure 3.3: Local maxima (represented by black dots) of a spectrogram. The x-axis represents
time and the y-axis represents frequency.

3.5 Feature Modeling

The same features might appear in different signals. A good way to avoid this and be able to create

fingerprints as unique as possible, would be to group the features. A group of features is much

more specific than a feature alone, and instead of searching the database for many consecutive

matches, we can just look it up for this specific group. Inspired by the work done in [46], the

approach used is grouping the features in quartets (quads). While previously working with pairs

of features, as used in [25], this proved to still show redundant results in a real-time scenario, thus

needing many consequent landmark matches in order to ensure an accurate result, which would

compromise the real-time performance. A quad is a much stronger fingerprint because it is made

by four points instead of two, and this greatly minimizes the probability of redundant fingerprints

in the database. This way we will need fewer consequent matches to be accurate.

The approach used to assemble the quads is as follows: first, we go through the feature matrix

obtained in the previous step. If we find a point in the matrix which isn’t a 0, this means that it

is a peak. Then we try to find an opposite corner of the quad, which will be located at a limited

temporal and frequency distance into the future from this point. This distance was set to between 3

to 8 time and frequency bins from the first candidate. The minimum distance of 3 ensures that the

remaining two points can be found, since no two points of a quad should share the same time or

frequency bins. This will greatly improve the probability of all the quads being unique. The upper

limit of 8 bins in the time and frequency distances is just a ceiling to prevent the system to spend

too much time looking for candidates, as 8 bins is enough to form the quads. The actual maximum

possible euclidean distance between any two points (A and B) is d =
√

82 +82 = 8
√

2≈ 11 bins.

After having the points A and B, we try to find a third point inside this area which is not zero,

and then a fourth point inside the area formed by the first three. When all four points are found,

we obtain the quad. Figure 3.4 demonstrates this process, while Figure 3.5 illustrates an example
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of an extracted quad.
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A:
A(t,f ) ≠ 0 

B:
At + 3 ≤ Bt ≤ Af + 8
Af + 3 ≤ Bf ≤ Af + 8 
B(t,f ) ≠ 0

C:
At < Ct < Bt
Af < Cf < Bf
C(t,f) ≠ 0 

D:
Ct < Dt < Bt
Af < Df < Cf
D(t,f) ≠ 0 

Figure 3.4: Quad look-up process. At represents the time component of A, and Af represents its
frequency component.

Figure 3.5: Example of an extracted quad, having found point A.

3.6 Database

The Database should be simple to use and fast to access, in order to minimize the time needed.

For the database fingerprinting, it must store the quads or some representation of them and their

corresponding commercials into a table. For the real time detection, it should be able to search a

given hash and return the result, or an error in case it does not exist or a malfunction occurs.



22 Approach

3.7 Decider

The main goal of the system is to be able to determine if the broadcast is airing a commercial or

a programming block. This is where the final part of the system takes part. It decides the current

block based on the match results it gets from the quad and search blocks.

The program can be in any of the following three states:

• 0: The initial state, where we don’t know yet if we are in the presence of a programming or

commercial block

• 1: The state that represents the presence of a programming block

• 2: The state that represents the presence of a commercial block

The decisions should be made based on the detection or not of commercials in the stream.
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Implementation

This system was implemented as a C++ program, elaborated in Microsoft Visual Studio 2013.

For this, some external libraries where used, as they are very well designed and can improve the

performance of this real-time system. The ones used are the BASS1 audio library, developed by

Un4Seen Developments, the SHA-12 implementation in C++, originally made by Steve Reid, and

OpenCV 3.3.13.

4.1 Preprocessing

The audio library is capable of converting the audio into mono, with the following command:

1 HSTREAM s t r e a m = BASS_St reamCrea teF i l e (FALSE , pa th , 0 , 0 , BASS_SAMPLE_MONO |
BASS_STREAM_DECODE) ;

This creates a stream from an audio file, which is specified in the path variable, and converts

it into mono.

4.2 Framing, Overlap and Transform

The audio library is also capable of performing these steps with great performance, which is

desired for this project. First, we get the length in bytes of the stream formed in the previous

step. Then a cycle is started, which will continue to perform until the end of the audio is reached.

During this cycle, the audio library does the FFT for each position in the audio and then the

resulting vector is put into a matrix, rendering the desired spectrogram. These steps are illustrated

in Figure 4.1. The increment in position corresponds to the hop size mentioned in Section 3.3.

1http://www.un4seen.com/
2github.com/vog/sha1
3opencv.org/

23
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Figure 4.1: Implementation of the Spectrogram Block.

4.3 Feature Extraction

In order to select the best candidates for the features, the matrix containing the spectrogram is

converted into an OpenCV Mat image. This means that the program uses computer vision for

this step, borrowed from Yan Ke et al. in [7]. The idea is to dilate all the points with a mask of

a certain shape and size. The dilations that prevail correspond to the maxima peaks, and share

the same values as them. After the dilate operation, both original and dilated Mat images are

compared. The result is a Mat that contains a 1 in the points of the original Mat that share the

same value and region with the dilated Mat. This means that each dilated region will not have

more than a local maximum, excluding the original pixel.

The resulting local maxima are illustrated in 4.2.

The result is a matrix which only contains the best candidates to form quads.
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Figure 4.2: The resulting local maxima

4.4 Feature Modeling

In this step, the previously extracted features will be grouped into quads. There are differences in

this process if it is done during the database creation or the real-time detection. In the first case,

it can generate all quads and then save them in the database, in second one it needs to search the

database each time it finds a quad.

4.4.1 Database Creation

For this operation, the feature modeling block will generate all possible quads, saving them into a

vector as they are generated. The diagram that describes the quad making process can be seen in

Figure 4.3

The value that represents a quad and will be used to generate a hash is a concatenation of four

values. These four values are:

• the distance in time bins from point A to point C

• the distance in frequency bins from point A to point C

• the distance in time bins from point D to point B

• the distance in frequency bins from point D to point B

The resulting input for the hash function will have this format:

(Ct-At)||(Cf-Af)||(Bt-Dt)||(Bf-Df)

This value is then passed to a Hash function. The one used in this project is the one in [47].

Its implementation is simple and it works well. The SHA-1 algorithm [48] takes an input and

produces a 160-bit hash value output. This means that there can be a total of around 1.46x1048

possible hashes, a number which is more than enough for this project.



26 Implementation

Local maxima matrix

Find a candidate for
point A:
A ≠ 0 

Find candidate for
point B:
B ≠ 0

At + 3 ≤ Bt ≤ 8
Af + 3 ≤ Bf ≤ 8

Find candidate for
point C:
C ≠ 0

At ≤ Ct ≤ Bt
Af ≤ Cf ≤ Bf

quad
(Ct-At)||(Cf-Af)||(Bt-Dt)||(Bf-Df)

Find candidate for
point D:
D ≠ 0

Ct ≤ Dt ≤ Bt
Af ≤ Df ≤ Bf

no

yes

reach end of  
local maxima matrix

...

Save quad into a
vector

Figure 4.3: The quad generation for the Database Creation operation

4.4.2 Real-time Detection

When performing the real-time detection, the modeling block needs to perform differently than

the one described in Section 4.4.1. Each time a quad is generated, it is searched in the database.

If at any time on the buffer we get n-occurences of the same result, then the quad generation stops

and sends a 1 to the decider block. This n value corresponds to the needed amount of similar

occurrences in order to validate the match for the buffer with 100% certainty. For such cases, a

flag is also sent to the Decider block, indicating a certain match. In case n is not reached, and the

match is not certain, then it means that the local maxima matrix has reached its end. When this

happens, this block should also calculate the percentage of a match. If it equals or exceeds 33% of

n, then it sends a 1 to the decider block, otherwise it sends a 0 which corresponds to a Non-Match.

Figure 4.4 illustrates this block.

4.5 Database

The database was implemented by using the SQLite [49]. This database has no intermediary server

process, and is comprised by a single file saved into the computer’s disk.
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Figure 4.4: The quad generation for the Real-time Detection operation

4.5.1 Creating the Database

The table that will constitute the database is comprised of three columns:

• id PRIMARY KEY, only used as the order in which the hashes are stored, having no impact

on the system

• hash STRING, which will keep the hash value associated with its entry (id PRIMARY KEY)

• comName STRING, which contains the name of the commercial to which the hash STRING

belongs
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4.5.2 Inserting into the Database

When fingerprinting a commercial, the last step is inserting its corresponding hashes into the

database. This is done with a single SQLite query, however there was an important improvement

made that greatly influenced the performance of this block. The SQLite, as it is, will always wrap

and commit each single query, which means that for each hash generated, it would wrap it in a

query, insert it, and then commit the changes in the database. This was greatly slowing down the

system. A good way around this was the SQLite concept of a "transaction". This allows multiple

insertions to be done, without immediately committing each one of them. It waits for the code

inside the TRANSACTION to process, and then commits any changes to the database at once, as

seen in the following code snippet.

1 s q l i t e 3 _ e x e c ( db , "BEGIN TRANSACTION; " , NULL, NULL, NULL) ;
2 . . .
3 ( i n s e r t a l l t h e h a s h e s )
4 . . .
5 s q l i t e 3 _ e x e c ( db , "END TRANSACTION; " , NULL, NULL, NULL) ;

4.5.3 Searching the database

When performing the real-time commercial detection, each quad must be searched in the database.

This is done with SQLite commands, which retrieve a table with the commercial names associated

with the hash searched. Since the quad-based approach makes it possible that all quads are unique,

each search will only retrieve one result, as shown in Section 4.7.2. The function devised would

have to take a hash and the database as inputs, and must output the resulting commercial associ-

ated with the hash or an error, in case there are executing errors or the hash doesn’t exist in the

database. Figure 4.5 shows the implementation of the search function, where we have two SQLite

commands. The first one selects all the commercial names which have the searched hash associ-

ated, which in this implementation is only returning one result. The second command creates a

table with the results obtained in the previous command. After this, if there is no result, then the

hash doesn’t exist in the database and this function will return "err". If the search is successful,

then the resulting commercial name will be returned.

4.5.4 Displaying the database

Although not necessary for the program’s operation, having a function that could show the contents

of the database is useful. This way we can visually see what it contains. Since one of the main

advantages about this program’s implementation is the fact that the generated quads are unique,

this function also provides the number of entries and the amount of repetition that exist in it.

Ideally, there would be none. Figure 4.6 illustrates this implementation.
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Figure 4.5: Searching the database

4.6 Decider

The Decider block is responsible for changing the current state of the program. It decides if we

are in presence of a commercial or programming block, based on the last match results.

The three possible states are:

• 0: The initial state, where it is unknown if we are in the presence of a programming or

commercial block

• 1: The state of a programming block

• 2: The state of a commercial block

When the program starts, it doesn’t have enough information to decide if there is a commercial

or programming block happening. The minimum size of the decision buffer, or occured matches, is

5. So, from state 0, if a certain match (100%) is found, this means that the stream has commercials,

and the Decider block changes the state to 2. If, in case the percentage is lower than 30%, then the

stream contains non-commercial material and the state becomes 1. Then, since the program is in a

state of programming or commercial, it can only change between those two. The initial state only

serves at the beginning, in order to chose one of the two possible states. From state 1, it changes

to state 2 if a certain match is found. From state 2, it changes back to state 1 if the percentage

of positive matches is lower than 30%. This implementation is meant to take advantage of the

uniqueness of the quads generated, and provide a faster decision, with less latency.

Figure 4.7 depicts the state diagram and the how the states change between each other, whereas

Figure 4.8 describes the corresponding flow chart.
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Figure 4.7: Decider Block state diagram.
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Figure 4.8: Flowchart of the Decider Block implementation. The exit is the end of file.

4.7 Program Operation

In this section, the two major operations that the system should be capable of performing are

detailed. First, the database creation and fingerprinting is described, and then the functioning of

the real-time commercial detection is explained. These operations relate to the code developed,

provided in A.

4.7.1 Database Creation

The first system operation is the creation of the database, the fingerprinting, of all the commercials

that can be present in the given streams. For this, one must first have a folder containing all the
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commercials that will be fingerprinted. The program then pre-loads all the file paths into a vector

and fingerprints one file at a time. To fingerprint a commercial, the program first loads it as a

stream, and performs a spectrogram by using the method described in Section 4.2. The result-

ing spectrogram matrix will then have its features extracted by using the local maxima method

described in Secgtion 4.3, which will then output a matrix with the local maxima, the extracted

features. The quad generation process mentioned in Section 4.4.1 will then group these feature

into quartets, or quads, creating unique ways of representing the audio associated with the com-

mercial. These quads are saved into a vector, which will be taken as input for the database insertion

block detailed in Section 4.5.2. When finished, the program will start fingerprinting the next file,

and this will occur until the program reaches the end of the folder. Figure 4.9 shows the flow of

these operation.

Pre-load  
file paths

Load next
commercial

Spetrogram
Block

Feature
Extraction block

Feature
Modeling block

Database
Insertion block

no

yes

last commercial?

Start

End

Figure 4.9: Database Creating diagram



4.7 Program Operation 33

4.7.2 Real-time Detection

The second operation is the actual real-time detection of commercials, which will try to identify

stream audio by comparing it to the database. It works in a similar way as the Database Creation,

but it has few changes. The input is the stream, and the system then buffers 640ms milliseconds

of the audio. After this, it performs the spectrogram of these 640ms, as seen in 4.2. The features

are then extracted the same way they were in the Database Creation, by the method described in

Section 4.3. The next step is different, and it uses the approach detailed in Section 4.4.2, where

each generated quad will be instantly searched in the database, resulting in sending a "program-

ming" (0) or "commercial" (1) to the Decider block, described in Section 4.6. This block will then

decide if the stream contains a commercial or a programming block at the current time. A diagram

illustrating these steps can be seen in Figure 4.10.
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of the stream
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(Real-time Detection)
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Figure 4.10: Real-time Detection diagram
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Chapter 5

Evaluation

In this chapter, the methods used to test and evaluate the developed system. First, the method used

to gather the dataset, then the system testing: the Database Creation operation and the Real-Time

Detection.

5.1 Data Preparation

In order to collect a dataset, it was needed to gather a great number of commercials from different

sources. Since access to channels that are not Portuguese was difficult, it was decided to include

some international channels which air international content and channel-specific commercials.

The contemplated channels from which the commercials where gathered are:

• RTP1 - Public general interest channel

• RTP2 - Public general interest channel with no commercials, but has non-programming

content

• RTP MS - Special and temporary broadcast of RTP1

• SIC - Private general interest channel

• TVI - Private general interest channel

• CMTV - Private tabloid channel

• Eurosport 1 - Private sports channel, that airs international content and has channel-specific

commercials

• NBA TV - Private sports channel, whose content is the same as the country it comes from,

including commercials

With 8 TV channels to work with, 2 of them airing international content and commercials, it is

possible to test this project in different scenarios. The amount of commercials and their duration

can be seen in Table 5.1.

With 500 commercials comprising more than 3 hours of audio, there is plenty of depth to test

this project.

At first, the goal was to annotate the whole dataset from streams provided by INESC TEC

colleagues that are working with the CloudSetup project. After some work done, it was realized

35



36 Evaluation

Table 5.1: Selected commercials for the dataset

Number of commercials Total duration
RTP1 46 25”56
RTP2 50 19”53
RTP MS 19 9”27
SIC 13 2”30
TVI 323 2’03”24
CMTV 14 5”58
Eurosport 1 12 7”30
NBA TV 23 11”27
Total 500 3’26”09

that, in order to build such a big dataset out of many hours of streaming, it would take too much

time of exclusive dedication to this component. So, in order to facilitate the creation of the dataset,

cut commercials from the "Cloud-Setup" project were used. In total, 13 commercials from SIC

and 14 from TVI were annotated and cut without using the CloudSetup project dataset, and the

other 473 were taken from it.

However, these provided commercials came in the mxf file format, which is a video format,

and this project is working with wav files, that are audio.

The conversion was done with FFmpeg [50], a multimedia framework that is able to decode,

encode, transcode, mux, demux, stream, filter and play any multimedia content. A batch file was

created with the following command line:

1 FOR / F " t o k e n s =∗ " %%G IN ( ’ d i r / b ∗ . mxf ’ ) DO ffmpeg − i "%%G" −ac 2
"K : \ \ ad \\%%~nG . wav "

This converts all the mxf files in the current folder and extracts the audio, saving it as wav files

in the folder specified at the end of the command line.section

One of the goals of this system was to generate unique hashes, theorizing that the matching

would be faster. This allow for a smaller real-time buffer which would mean a faster decision.

After generating the hashes for the 500 commercial collected, the following results were obtained:

• Number of hashes: 1765100 hashes

• Time elapsed: 20′′52

• Space in Disk: 203 megabytes

• Hash uniqueness: true, as seen in Figure 5.1

Figure 5.1: Hash uniqueness test results the database.
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This reveals that the quad-based approach proved to be effective in creating unique quads,

hence generating unique hashes. This was possible despite having such a large number of hashes.

Another thing to have in consideration is the time it takes to access and search the database

each time a hash is generated. Having to perform so many searches in very small time windows,

the performance is expected to drop significantly with the increase of the database size. This is

because with a bigger database, more entries need to be read, which takes computational resources.

In order to solve this, the main and only table of the database, which contains the hashes and their

associated commercials, was indexed. This means that all rows were aligned in ascending order

of hash values. This way, whenever a hash is searched, the table points to the place in the database

where the hashes have the same beginning. The indexing was done with the software DB Browser

for SQLite [51]. After indexing, the database file increased in size from 203 to 286 megabytes.

5.2 Real-time Detection

The main objective of this system is to effectively detect commercials with the least latency pos-

sible, while assuring accuracy. Because of the complications of doing multiple tests on a large

stream, which would take a long time of waiting, two smaller broadcast test audios were cut from

larger streams.

The first test query is 8 minutes long and was taken from SIC channel. It tests the stream

starting as a programming block, then changing to a commercial block, then changing back to

programming block. It has the following format:

• 0”0.000: Programming block

• 3”16.396: Commercial block, composed by 13 commercials

• 5”52.396: Programming block

• 8”0.000: end

The second test query is 16′′24.725 long and was taken from TVI channel. This query tests

the opposite, starting with a commercial block, then a programming block and changing back to a

commercial block until it ends. Its format is as follows:

• 0”0.000: Commercial block, composed by 8 commercials

• 1”19.030: Programming block

• 14”52.882: Commercial block, composed by 6 commercials

• 16”24.725: end

In order to ensure the real-time performance, timers were placed in the Feature Modeling

block. If at any point the operation time exceeds 600 milliseconds, the search for quads would end

and the match would be calculated with the current information. Using a buffer of 640 millisec-

onds, a 40 millisecond interval was estimated to suffice for the remaining steps, based on multiple

experiments. In any case, having the program force the system to work in real-time could still



38 Evaluation

hypothetically produce delays. This was meant to secure the real-time functioning but, as it will

be demonstrated, the system works without any delays or forced early decisions.

The tables which contain the results will be presented with the following columns:

• #SMR Amount of similar search results needed in order to guarantee a 100% match: a

higher value should give a greater guarantee but, since the non-100% matches are given

based on the fraction

similar search results obtained
similar search results needed f or 100% match

requiring more similar results can mean that good matches are lost because they are below

the threshold percentage, or that a possibly certain match is not considered as certain because

the required amount of similar search results was not achieved

• #FP False Positives: The amount of positive matches that were found in blocks of program-

ming

• #FN False Negatives: The amount of negative matches found in blocks of commercials.

This, together with the False Positives, are part of a low-level, frame based decision. They

relate to the output of a single buffer, or time window

• #BD The amount of bad decisions made by the Decider block, for example changing the

state into programming when commercials are still being aired. Different than the False

Positives and False Negatives, this has to do with a high-level decision model, which is

maintained by the Decider block shown in Section 4.6

• Tp1 Time of the detected first Program block in the first test

• Tc Time of the detected Commercial block in the first test

• Tp2 Time of the detected second Program block in the first test

• Tc1 Time of the detected first Commercial block in the second test

• Tp Time of the detected Program block in the second test

• Tc2 Time of the detected second Commercial block in the second test

• #D Amount of delays: Even with the program forcing the real-time operation, the search

can surpass the limit, as there is no way to control the search itself.

• #O Amount of times the program had to enforce the real-time operation.

The tests ere done for different values of #SMR, hoping to find its optimal value for the devel-

oped system by minimizing #BD.

First test

The results for 9 different #SMR values under the first test can be seen in Table 5.2.

As we can see, there are no delays or forced decisions, which means that the system is indeed

running in real-time. Another conclusion is that with #SMR≥ 10 there are no bad decisions. Also,

with #SMR ≥ 12 the decision comes later, especially when the Commercial block starts. This is

explained by the Decider block: it only changes the state into Commercial block if it encounters
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Table 5.2: Results of first test

#SMR #FP #FN #BD Tp1 Tc Tp2 #D #O
6 197 69 5 18.538 3”17.738 6”12.458 0 0
8 83 83 1 3.178 3”17.738 5”57.738 0 0
9 83 83 1 3.178 3”17.738 5”57.738 0 0
10 33 75 0 3.178 3”17.738 5”57.738 0 0
11 33 92 0 3.178 3”17.738 5”57.738 0 0
12 37 90 0 3.178 3”21.578 5”57.738 0 0
15 18 98 0 3.178 3”21.578 5”57.738 0 0
18 8 100 0 3.178 3”21.578 5”57.98 0 0
21 4 102 0 3.178 3”21.578 5”57.98 0 0

a 100% match and, if we increase the needed #SMR, then the probability of the system not being

able to find that amount increases, thus not considering a certain match where it should be. The

best performance comes with 11≥ #SMR≥ 10, with the time differences shown in Table 5.3 and

a visual representation of the time delays in Figure 5.2.

Table 5.3: Best time differences in the first test

Original time (Ot) Detected time (Dt) Time difference (T d = Dt−Ot)
0”0.000 3.178 3.178
3”16.396 3”17.738 1.342
5”52.396 5”57.738 5.342

3.178 1.342 5.342

Commercial

Initial

Programming

Original

Detected

Figure 5.2: Time delays in the first test

The results show an asymmetry problem, since the system seems to be fast at recognizing the

Commercial block, but it takes more time to detect a Programming block. This happens because

the commercials are in the database, ready to be matched, but the programming content is not.

According to the Decider block, a Commercial block will be detected when a certain match (100%)

is found. Since none of these happen during programming, it’s a fast, simple and efficient method.

There are some False Positives showing up, but they are not certain matches so the system doesn’t

consider them. They are, however, considered for the Decision buffer, but this buffer will only be

used for detecting a Programming block. As mentioned in Section 4.6, a commercial percentage

lower than 30% in the buffer will trigger the Decider block into changing states from Commercial
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to Programming. However, since many False Negatives are present, this percentage couldn’t be

too big, otherwise we would encounter more Bad Decisions.

Second test

The results for 9 different #SMR values regarding the second test can be seen in Table 5.4.

Table 5.4: Results of second test

#SMR #FP #FN #BD Tc1 Tp Tc2 #D #O
6 517 307 13 0.618 2”11.178 14”57.258 0 0
8 243 104 3 0.618 1”25.98 14”57.258 0 0
9 245 88 1 0.618 1”25.98 14”57.258 0 0
10 82 90 0 0.618 1”24.458 14”57.258 0 0
11 82 90 0 0.618 1”24.458 14”57.258 0 0
12 82 90 0 0.618 1”24.458 14”57.258 0 0
15 32 102 0 0.618 1”24.458 14”57.258 0 0
18 17 105 0 0.618 1”24.458 14”57.258 0 0
21 12 110 0 0.618 1”24.458 14”57.258 0 0

As in the previous test, there are no delays or forced early decisions. Likewise, there are no

bad decisions with #SMR ≥ 10. Here, it is interesting to note the increase in False Negatives

for #SMR > 9. This is due to the fact that, with increased #SMR, more non certain matches

get discarded by the minimum match threshold (33% of #SMR), resulting in False Negatives. The

differences between original and detected times are shown in Table 5.5, and a visual representation

of the time delays can be seen in Figure 5.3

Table 5.5: Best time differences in the second test

Original time (Ot) Detected time (Dt) Time difference (T d = Dt−Ot)
0”0.000 0.618 0.618
1”19.030 1”24.458 5.028
14”55.882 14”57.258 1.624

0.618 5.028 1.624

Initial

Programming

Commercial

Original

Detected

Figure 5.3: Time delays in the second test

Again, the asymmetry problem is present. The Commercial blocks are rapidly detected as it

happened with the previous test. Again, the problem is the change into Programming state.
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The following graphs show the comparison between the results of both tests. Figure 5.4 depicts

the False Positives, whereas Figure 5.5 shows the False Negatives. Lastly, Figure 5.6 portrays the

Bad Decisions.
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Figure 5.4: False positives comparison

The conclusion is that, for this developed system, having #SMR = 10 seems to maximize

efficiency and performance.

5.3 Summary

The goal to achieve uniqueness for the dataset was obtained. However, some false positives ap-

peared, which meant that some quads of the programming blocks existed in the database. The

objective of the #SMR value is to assure that a false positive will not be considered as a certain

match. What this value is is the required similar search results needed during a buffer so that the

match can be cartain. With increased value of #SMR, less false positives appear, however, a value

which is too high can compromise the system, as good matches become false negatives.
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Chapter 6

Conclusion

6.1 Summary

In this dissertation, a new system for real-time commercial detection in TV broadcast was pre-

sented. This system allows for the automatic detection of commercials on a frame-based, lower

level decision, and ultimately concludes if the current audio corresponds to a commercial or a

programming blocks. The state of the art systems are only aimed at song identification, and do

not focus on the necessity for real-time performance. Even if these perform quite accurately and

fast most of the time, there is always the chance of those systems to take a long time to retrieve

the results. With this in mind, a new way of modeling the features was presented, by grouping

the features in quads, which meant that we could work with unique representations of the audio.

Since these representations are specific, the matching process can obtain a certain identification,

or match, with fewer iteration through the query’s time windows, or buffers. This system is im-

plemented as a C++ application for efficiency

The evaluation of this system was done by running tests on a dataset that was partly annotated,

part taken from INESC TEC colleagues working with the CloudSetup project. The evaluation

of the performance was done by verifying the presence of bad decisions by the decider block,

and then by comparing the detection times with the original times in which the commercial and

programming blocks appeared on the stream. Since there are no other known systems doing this

currently, the results seem to be rather satisfactory and this work can be further use for developing

other kinds of applications: for example one that can implement region-specific switching of

commercial content, or even allowing the television channel company to know which commercials

are seen the most, for example by allowing the consumer to change between commercials during

a commercial block.

6.2 Future work

Despite the good results of the system, there are some features that can be added to this system

in order to improve its usability and performance. Due to time restrictions and the amount of

43



44 Conclusion

work some of these features need, they were not yet implemented. These improvements are the

following:

• Increase the overlap in the spectrogram formation: With a considerable amount of False

Negatives still showing up, it means that parts of the query are not being identified. This

could probably be minimized by increasing the overlap from 50% to a higher value.

• Change the decision logic when looking for a Programming block: Related to the previous

point, since there are False Negatives showing up the buffer needs to be quite big, having a

size of 10. Even though the system works in real-time, the results show that the detection of

a Programming block comes a few seconds delayed. By changing the buffer, or by adding

another one with the IDs of the previous retrievals, we could know if a Commercial block

is being aired (similar consecutive retrieved IDs) or not (different consecutive retrievals).

This way, the focus would not be not only in consecutive non-matches, but also on what

kind of matches are showing up. Two similar IDs can be retrieved with some non-matches

being shown in the middle, which makes it difficult for the current system to perform a

faster decision. Another way around this problem could be to save in the database the time

at which a quad was generated when forming the database. This could allow the system to

know how much time was left until the current commercial ends.

• More features extracted: Since the quad uniqueness was successful for a dataset of 500

commercials, one could try to increase the density of obtained local maxima, which would

generate a bigger amount of quads, possibly minimizing the amount of False Negatives.

• Possibility to update the database: As of now, the database needs to be built from scratch

each time there are changes in it. The insertion process works, because it doesn’t overwrite,

but removing entries needs to be done manually in the code. It would be useful to add such

function that would ask which commercial to remove, and then do it.

• Further testing: More testing should be done, with different sampling rates, FFT windows,

hop sizes, local maxima masks, limit look-up distances for quad generation, real-time de-

tection buffers. Also, it would be interesting to test this system with streams that have lower

quality, introduced noise or other obstacles to the performance of the system.

6.3 Perspectives on the Project

To tackle a problem which hasn’t been directly studied was a rewarding experience, albeit diffi-

cult at times. This project provided me with greater knowledge about C++ programming, audio

fingerprinting and audio processing.



Appendix A

System C++ code

This appendix contains the C++ code of the developed system.
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A.1 C++ Code

1 # i n c l u d e < i o s t r e a m >
2 # i n c l u d e " sha1 . hpp "
3 # i n c l u d e <cmath >
4 # i n c l u d e <math . h>
5 # i n c l u d e <ct ime >
6 # i n c l u d e " b a s s . h "
7 # i n c l u d e <numeric >
8 # i n c l u d e < v e c t o r >
9 # i n c l u d e < d i r e n t . h>

10 # i n c l u d e < s t r i n g >
11 # i n c l u d e < a l g o r i t h m > / / s t d : : s o r t e f i n d
12 # i n c l u d e < s q l i t e 3 . h>
13 # i n c l u d e <opencv2 \ opencv . hpp > / / f o r t h e mat t o f i n d l o c a l maxima
14 # i n c l u d e <opencv2 \ h i g h g u i \ h i g h g u i . hpp > / / f o r t h e mat t o f i n d l o c a l maxima
15 # i n c l u d e <chrono >
16

17 u s i n g namespace s t d : : ch rono ;
18 u s i n g namespace s t d ;
19

20 vo id in i tDB ( ) {
21 i n t r c ;
22 c h a r ∗ e r r o r ;
23 s q l i t e 3 ∗db ;
24 r c = s q l i t e 3 _ o p e n ( "MyDb . db " , &db ) ;
25 i f ( r c )
26 {
27 c e r r << " E r r o r open ing SQLite3 d a t a b a s e : " << s q l i t e 3 _ e r r m s g ( db ) << e n d l

<< e n d l ;
28 s q l i t e 3 _ c l o s e ( db ) ;
29 / / r e t u r n 1 ;
30 }
31 s t d : : c o u t << " C r e a t i n g MyTable . . . " << e n d l ;
32 c o n s t c h a r ∗ s q l C r e a t e T a b l e = "CREATE TABLE MyTable ( i d INTEGER PRIMARY KEY,

hash STRING , songName STRING ) ; " ;
33 r c = s q l i t e 3 _ e x e c ( db , s q l C r e a t e T a b l e , NULL, NULL, &e r r o r ) ;
34 i f ( r c )
35 {
36 c e r r << " E r r o r e x e c u t i n g SQLite3 s t a t e m e n t : " << s q l i t e 3 _ e r r m s g ( db ) <<

e n d l << e n d l ;
37 s q l i t e 3 _ f r e e ( e r r o r ) ;
38 }
39 e l s e
40 {
41 s t d : : c o u t << " Done c r e a t i n g MyTable . " << e n d l << e n d l ;
42 }
43 / / C lose D a t a b a s e
44 s q l i t e 3 _ c l o s e ( db ) ;
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45 }
46

47 vo id disp layDB ( ) {
48 i n t r c ;
49 i n t i = 0 ;
50 c h a r ∗ e r r o r ;
51 s q l i t e 3 ∗db ;
52 v e c t o r < s t r i n g > u n i q T e s t ;
53 r c = s q l i t e 3 _ o p e n ( "MyDb . db " , &db ) ;
54 i f ( r c )
55 {
56 c e r r << " E r r o r open ing SQLite3 d a t a b a s e : " << s q l i t e 3 _ e r r m s g ( db ) << e n d l

<< e n d l ;
57 s q l i t e 3 _ c l o s e ( db ) ;
58 }
59 s t d : : c o u t << " R e t r i e v i n g v a l u e s i n MyTable . . . " << e n d l ;
60 c o n s t c h a r ∗ s q l S e l e c t = "SELECT ∗ FROM MyTable ; " ;
61 c h a r ∗∗ r e s u l t s = NULL;
62 i n t rows , columns ;
63 s q l i t e 3 _ g e t _ t a b l e ( db , s q l S e l e c t , &r e s u l t s , &rows , &columns , &e r r o r ) ;
64 i f ( r c )
65 {
66 c e r r << " E r r o r e x e c u t i n g SQLite3 que ry : " << s q l i t e 3 _ e r r m s g ( db ) << e n d l <<

e n d l ;
67 s q l i t e 3 _ f r e e ( e r r o r ) ;
68 }
69 e l s e
70 {
71 / / D i s p l a y Tab le
72 f o r ( i n t rowCtr = 0 ; rowCtr <= rows ; ++ rowCtr )
73 {
74 f o r ( i n t c o l C t r = 0 ; c o l C t r < columns ; ++ c o l C t r )
75 {
76 / / De te rmine C e l l P o s i t i o n
77 i n t c e l l P o s i t i o n = ( rowCtr ∗ columns ) + c o l C t r ;
78

79 / / D i s p l a y C e l l Value
80 s t d : : c o u t . w id th ( 1 2 ) ;
81 s t d : : c o u t . s e t f ( i o s : : l e f t ) ;
82 / / s t d : : c o u t << r e s u l t s [ c e l l P o s i t i o n ] << " " ;
83 i f ( c e l l P o s i t i o n % 3 == 0) {
84 u n i q T e s t . push_back ( r e s u l t s [ c e l l P o s i t i o n ] ) ;
85 }
86 }
87 / / End Line
88 / / s t d : : c o u t << e n d l ;
89

90 / / D i s p l a y S e p a r a t o r For Header
91 i f (0 == rowCtr )
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92 {
93 f o r ( i n t c o l C t r = 0 ; c o l C t r < columns ; ++ c o l C t r )
94 {
95 s t d : : c o u t . w id th ( 1 2 ) ;
96 s t d : : c o u t . s e t f ( i o s : : l e f t ) ;
97 / / s t d : : c o u t << "~~~~~~~~~~~~ " ;
98 }
99 / / s t d : : c o u t << e n d l ;

100 }
101 }
102 / / t e s t f o r hash u n i q u e n e s s
103 c o u t << " T e s t i n g f o r hash u n i q u e n e s s i n d a t a b a s e . . . " << e n d l ;
104 s t d : : s o r t ( u n i q T e s t . b e g i n ( ) , u n i q T e s t . end ( ) ) ;
105 i n t un iqueCoun t = s t d : : un i qu e ( u n i q T e s t . b e g i n ( ) , u n i q T e s t . end ( ) ) −

u n i q T e s t . b e g i n ( ) ;
106 c o u t << " There a r e " << un iqueCoun t << " un iq ue h a s h e s o u t o f " <<

u n i q T e s t . s i z e ( ) << " t o t a l ones . " << e n d l ;
107 / / f r e e t a b l e and c l o s e DB
108 s q l i t e 3 _ f r e e _ t a b l e ( r e s u l t s ) ;
109 s t d : : c o u t << " C l o s i n g MyDb . db . . . " << e n d l ;
110 s q l i t e 3 _ c l o s e ( db ) ;
111 s t d : : c o u t << " Closed MyDb . db " << e n d l << e n d l ;
112 }
113 }
114

115 s t r i n g searchDB ( s t r i n g hash , s q l i t e 3 ∗db ) {
116 s t r i n g r e s ; / / s t r i n g t h a t w i l l be r e t u r n e d
117 i n t r c ;
118 c h a r ∗ e r r o r ;
119 s t r i n g temp = "SELECT songName FROM MyTable WHERE hash = ’ " + hash + " ’ ; " ;

/ / s e a r c h t h e t a b l e f o r t h e hash
120 c o n s t c h a r ∗ s q l S e a r c h T a b l e = temp . c _ s t r ( ) ;
121 r c = s q l i t e 3 _ e x e c ( db , s q l S e a r c h T a b l e , NULL, NULL, &e r r o r ) ;
122 i f ( r c )
123 {
124 c e r r << " E r r o r e x e c u t i n g SQLite3 s t a t e m e n t : " << s q l i t e 3 _ e r r m s g ( db ) <<

e n d l << e n d l ;
125 s q l i t e 3 _ f r e e ( e r r o r ) ;
126 r e s = " e r r " ;
127 r e t u r n r e s ;
128 }
129 c h a r ∗∗ r e s u l t s = NULL;
130 i n t rows , columns ;
131 s q l i t e 3 _ g e t _ t a b l e ( db , s q l S e a r c h T a b l e , &r e s u l t s , &rows , &columns , &e r r o r ) ;

/ / g e t s t h e t a b l e wi th t h e r e s u l t s
132 i f ( r c )
133 {
134 c e r r << " E r r o r e x e c u t i n g SQLite3 que ry : " << s q l i t e 3 _ e r r m s g ( db ) << e n d l <<

e n d l ;
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135 s q l i t e 3 _ f r e e ( e r r o r ) ;
136 r e t u r n " e r r " ;
137 }
138 e l s e
139 {
140 i f ( rows == 0 | | columns == 0) {
141 s q l i t e 3 _ f r e e _ t a b l e ( r e s u l t s ) ;
142 r e t u r n " e r r " ;
143 }
144 e l s e {
145 r e s = r e s u l t s [ 1 ] ;
146 s q l i t e 3 _ f r e e _ t a b l e ( r e s u l t s ) ;
147 r e t u r n r e s ;
148 }
149 }
150 }
151

152 i n t f i n g e r P r i n t ( vo id ∗ pa th , s t r i n g songName , i n t &numEr ) {
153 s t d : : c o u t << " F i n g e r p r i n t i n g : " << songName << e n d l ;
154 v e c t o r < v e c t o r < double >> m; / / m a t r i x t h a t c o n t a i n s de FFT v e c t o r s
155 v e c t o r < v e c t o r < i n t >> p ; / / m a t r i x t h a t c o n t a i n s de quads
156 i n t c o n t a = 0 ;
157 i f ( ! BASS_Ini t (−1 , 48000 , 0 , NULL, NULL) ) / / i n i t i a l i z e s a Bass c o n t a i n e r a t

48000Hz
158 {
159 s t d : : c o u t << " Can ’ t i n i t i a l i z e d e v i c e " ;
160 r e t u r n −1;
161 }
162

163 HSTREAM s t r e a m = BASS_St reamCrea teF i l e (FALSE , pa th , 0 , 0 , BASS_SAMPLE_MONO |
BASS_STREAM_DECODE) ; / / c r e a t e d e c o d i n g c h a n n e l

164

165 i f ( s t r e a m != 0)
166 {
167 l ong s t r e a m L e n g t h = BASS_ChannelGetLength ( s t r eam , 0 ) ; / / g e t s s t r e a m

l e n g h t i n b y t e s
168 i n t s t reamTime = ( i n t ) BASS_ChannelBytes2Seconds ( s t ream , s t r e a m L e n g t h ) ;

/ / c o n v e r t s s t r e a m l e n g h t t o t ime
169 i n t s t reamTimeMins = ( i n t ) f l o o r ( s t reamTime / 6 0 . 0 ) ;
170 i n t s t r eamTimeSecs = ( i n t ) s t reamTime % 6 0 ;
171 do ub l e pos_now_sec = 0 , p o s _ o l d _ s e c = 0 ;
172 l ong s t r e a m P o s i t i o n = 0 ;
173

174 w h i l e ( s t r e a m P o s i t i o n < s t r e a m L e n g t h )
175 {
176 s t r e a m P o s i t i o n = BASS_Channe lGetPos i t ion ( s t r eam , BASS_POS_BYTE) ; / / g e t s

c u r r e n t p o s i t i o n i n t h e s t r e a m
177 pos_now_sec = BASS_ChannelBytes2Seconds ( s t r eam , s t r e a m P o s i t i o n ) ;

/ / c o n v e r t s p o s i t i o n t o t ime
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178

179 f l o a t d [ 1 0 2 4 ] = { 0 } ; / / c u r r e n t FFT v e c t o r
180 BASS_ChannelGetData ( s t ream , d , BASS_DATA_FFT2048 ) ; / / g e t s FFT
181 / / f o r c h e c k i n g u p d a t e d p o s i t i o n s i n s t ream , bo th i n b y t e s and t ime :
182 /∗ i n t ms = s t a t i c _ c a s t < i n t >( f l o o r ( fmod ( ( pos_now_sec ∗ 1 0 0 0 . 0 ) , 1 0 0 0 . 0 ) ) ) ;
183 i n t s e c = s t a t i c _ c a s t < i n t >( pos_now_sec ) % 6 0 ;
184 i n t m i n u t e s = s t a t i c _ c a s t < i n t >( s t d : : f l o o r ( pos_now_sec / 60) ) ;
185 c o u t << " Byte Pos : {" << s t r e a m P o s i t i o n << " / " << s t r e a m L e n g t h << " } ;

Time Pos : {" <<
186 m i n u t e s << " : " << s e c << " . " << ms << "} o u t o f : {" << streamTimeMins <<

" : " << s t reamTimeSecs << " } " << e n d l ; ∗ /
187 s t r e a m P o s i t i o n += 4096 ; / / p o s i t i o n i n b y t e s t o advance . f o r a hop s i z e

o f h a l f t h e window , t h i s v a l u e s h o u l d be 2∗FFT
188 BASS_Channe lSe tPos i t i on ( s t r eam , s t r e a m P o s i t i o n , BASS_POS_BYTE) ;

/ / a d v a n c e s on t h e s t r e a m
189 v e c t o r < double > v ( b e g i n ( d ) , end ( d ) ) ; / / c o n v e r t f f t a r r a y i n t o v e c t o r
190 m. push_back ( v ) ;
191 }
192 }
193 e l s e
194 {
195 / / e r r o r c r e a t i n g t h e s t r e a m
196 s t d : : c o u t << " St ream e r r o r : {0} " , BASS_ErrorGetCode ( ) ;
197 r e t u r n −1;
198 }
199

200 BASS_StreamFree ( s t r e a m ) ; / / f r e e s t r e a m
201 BASS_Free ( ) ; / / f r e e BASS
202

203 / / Get l o c a l maxima
204 cv : : Mat mat In (m. s i z e ( ) , m. a t ( 0 ) . s i z e ( ) , CV_64FC1 ) ;
205 f o r ( i n t i = 0 ; i < mat In . rows ; ++ i ) {
206 f o r ( i n t j = 0 ; j < mat In . c o l s ; ++ j ) {
207 matIn . a t < double >( i , j ) = m[ i ] [ j ] ;
208 }
209 }
210 cv : : Mat b i n S t r u c t = cv : : g e t S t r u c t u r i n g E l e m e n t ( cv : : MORPH_ELLIPSE ,

cv : : S i z e ( 3 0 , 30) ) ; / / o r i g i n a l s i z e 41
211 / / cv : : imshow ( "MASK" , b i n S t r u c t ) ;
212 / / cv : : wai tKey ( 0 ) ;
213 cv : : Mat d i l a t e d M a t , l oca lMaxs ;
214 cv : : d i l a t e ( matIn , d i l a t e d M a t , b i n S t r u c t ) ;
215 / / cv : : imshow ( " DILATED" , d i l a t e d M a t ) ;
216 / / cv : : wai tKey ( 0 ) ;
217 cv : : compare ( matIn , d i l a t e d M a t , loca lMaxs , cv : : CMP_EQ) ;
218 / / cv : : imshow ( "MAXIMA" , loca lMaxs ) ;
219 / / cv : : wai tKey ( 0 ) ;
220 i f ( l oca lMaxs . empty ( ) ) c o u t << " LocalMax v a z i o " << e n d l ;
221



A.1 C++ Code 51

222 f o r ( i n t i = 0 ; i < loca lMaxs . rows ; ++ i ) {
223 f o r ( i n t j = 0 ; j < loca lMaxs . c o l s ; ++ j ) {
224 m[ i ] [ j ] = loca lMaxs . a t < uchar >( i , j ) ;
225 }
226 }
227

228 / / Get quads
229 v e c t o r < i n t > f i ;
230 boo l f l a g = 0 ;
231 f o r ( s t d : : v e c t o r < s t d : : v e c t o r < i n t > > : : s i z e _ t y p e i = 0 ; i < m. s i z e ( ) −8; i ++)
232 {
233 f o r ( s t d : : v e c t o r < i n t > : : s i z e _ t y p e j = 0 ; j < m[ i ] . s i z e ( ) ; j ++)
234 {
235 i f (m[ i ] [ j ] != 0 ) {
236 f o r ( i n t a = 3 ; a <= 8 ; a ++)
237 {
238 f o r ( i n t b = 3 ; b < m[ i ] . s i z e ( )− j ; b ++)
239 {
240 i f (m[ i + a ] [ j + b ] != 0) {
241 f o r ( i n t c = 1 ; c < a ; c ++)
242 {
243 f o r ( i n t l = 2 ; l < b ; l ++)
244 {
245 i f (m[ i + c ] [ j + l ] != 0 ) {
246 f o r ( i n t w = c + 1 ; w < a ; w++)
247 {
248 f o r ( i n t h = 1 ; h < l ; h ++)
249 {
250 i f (m[ i + w] [ j + h ] != 0) {
251 f i . push_back ( c ) ;
252 f i . push_back ( l ) ;
253 f i . push_back ( a−w) ;
254 f i . push_back ( b−h ) ;
255 i f ( s t d : : f i n d ( p . b e g i n ( ) , p . end ( ) , f i ) != p . end ( ) ) {
256 / / c o u t << "REPEAT" << e n d l ; / / done t o p r e v e n t quad

d u p l i c a t e s i n t h e same commerc ia l . Was n o t needed
257 }
258 e l s e {
259 p . push_back ( f i ) ;
260 c o n t a ++;
261 }
262 i f ( p . s i z e ( ) > 30000) {
263 c o u t << "FLAG! "<< e n d l ;
264 numEr ++;
265 f l a g = 1 ;
266 b r e a k ;
267 }
268 f i . c l e a r ( ) ;
269
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270 }
271 i f ( f l a g == 1) b r e a k ;
272 }
273 i f ( f l a g == 1) b r e a k ;
274 }
275 i f ( f l a g == 1) b r e a k ;
276 }
277 i f ( f l a g == 1) b r e a k ;
278 }
279 i f ( f l a g == 1) b r e a k ;
280 }
281 i f ( f l a g == 1) b r e a k ;
282 }
283 i f ( f l a g == 1) b r e a k ;
284 }
285 i f ( f l a g == 1) b r e a k ;
286 }
287 i f ( f l a g == 1) b r e a k ;
288 }
289 i f ( f l a g == 1) b r e a k ;
290 }
291 i f ( f l a g == 1) b r e a k ;
292 }
293

294 s t d : : c o u t << "A t o t a l o f " << c o n t a << " quads f o r " << songName << " was
found . " << e n d l ;

295

296 / / Open D a t a b a s e
297 i n t r c ;
298 c h a r ∗ e r r o r ;
299 s q l i t e 3 ∗db ;
300 r c = s q l i t e 3 _ o p e n ( "MyDb . db " , &db ) ;
301 i f ( r c )
302 {
303 c e r r << " E r r o r open ing SQLite3 d a t a b a s e : " << s q l i t e 3 _ e r r m s g ( db ) << e n d l

<< e n d l ;
304 s q l i t e 3 _ c l o s e ( db ) ;
305 r e t u r n −1;
306 }
307 / / CREATE HASHES
308 SHA1 checksum ;
309 i n t k i j ;
310 s t r i n g r ;
311 s t r i n g xx ;
312 s q l i t e 3 _ e x e c ( db , "BEGIN TRANSACTION; " , NULL, NULL, NULL) ;
313 f o r ( s t d : : v e c t o r < s t d : : v e c t o r < i n t > > : : s i z e _ t y p e i = 0 ; i < p . s i z e ( ) ; i ++)
314 {
315 f o r ( s t d : : v e c t o r < i n t > : : s i z e _ t y p e j = 0 ; j < p [ i ] . s i z e ( ) ; j ++)
316 {
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317 k i j = p [ i ] [ j ] ;
318 r = t o _ s t r i n g ( k i j ) ;
319 xx = xx + r ;
320 }
321 checksum . u p d a t e ( xx ) ;
322 c o n s t s t r i n g hash = checksum . f i n a l ( ) ;
323 xx . c l e a r ( ) ;
324

325 / / Execu te SQL
326 / / c o u t << " I n s e r t i n g a v a l u e i n t o MyTable . . . " << e n d l ;
327 s t r i n g aha = "INSERT INTO MyTable VALUES(NULL, ’ " + hash + " ’ , ’ " +

songName + " ’ ) ; " ;
328 c o n s t c h a r ∗ s q l I n s e r t = aha . c _ s t r ( ) ;
329 r c = s q l i t e 3 _ e x e c ( db , s q l I n s e r t , NULL, NULL, &e r r o r ) ;
330 i f ( r c )
331 {
332 c e r r << " E r r o r e x e c u t i n g SQLite3 s t a t e m e n t : " << s q l i t e 3 _ e r r m s g ( db ) <<

e n d l << e n d l ;
333 s q l i t e 3 _ f r e e ( e r r o r ) ;
334 r e t u r n −1;
335 }
336 }
337

338 s q l i t e 3 _ e x e c ( db , "END TRANSACTION; " , NULL, NULL, NULL) ;
339

340 s t d : : c o u t << " Done wi th : " << songName << e n d l << e n d l ;
341 s q l i t e 3 _ c l o s e ( db ) ;
342 r e t u r n 1 ;
343 }
344

345 vo id r t M a t c h ( vo id ∗ p a t h ) {
346 / / Open D a t a b a s e
347 i n t s t a t e = 0 ;
348 i n t c o n t a r = 0 ;
349 i n t r c ;
350 s q l i t e 3 ∗db ;
351 r c = s q l i t e 3 _ o p e n ( "MyDb . db " , &db ) ;
352 i f ( r c )
353 {
354 c e r r << " E r r o r open ing SQLite3 d a t a b a s e : " << s q l i t e 3 _ e r r m s g ( db ) << e n d l

<< e n d l ;
355 s q l i t e 3 _ c l o s e ( db ) ;
356 / / r e t u r n 1 ;
357 }
358 v e c t o r < i n t > d e c i ;
359 v e c t o r < i n t > tempos ;
360 i n t n u m a t r a s o s = 0 ;
361 i n t b u f f = 0 , k o i = 0 , f a l s e _ p o s = 0 , f a l s e _ n e g = 0 , ove r = 0 ;
362 i n t mycount ;
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363 s t d : : c o u t << " Matching t h e s t r e a m : " << e n d l ;
364 v e c t o r < v e c t o r < double >> m; / / m a t r i x t h a t c o n t a i n s de FFT v e c t o r s
365 v e c t o r < v e c t o r < i n t >> p ; / / m a t r i x t h a t c o n t a i n s de quads
366 i n t c o n t a ;
367 i f ( ! BASS_Ini t (−1 , 48000 , 0 , NULL, NULL) ) / / i n i t i a l i z e s a Bass c o n t a i n e r a t

48000Hz
368 {
369 s t d : : c o u t << " Can ’ t i n i t i a l i z e d e v i c e " ;
370 / / r e t u r n −1;
371 }
372

373 HSTREAM s t r e a m = BASS_St reamCrea teF i l e (FALSE , pa th , 0 , 0 , BASS_SAMPLE_MONO |
BASS_STREAM_DECODE) ; / / c r e a t e d e c o d i n g c h a n n e l

374

375 i f ( s t r e a m != 0)
376 {
377 l ong s t r e a m L e n g t h = BASS_ChannelGetLength ( s t r eam , 0 ) ; / / g e t s s t r e a m

l e n g h t i n b y t e s
378 i n t s t reamTime = ( i n t ) BASS_ChannelBytes2Seconds ( s t ream , s t r e a m L e n g t h ) ;

/ / c o n v e r t s s t r e a m l e n g h t t o t ime
379 i n t s t reamTimeMins = ( i n t ) f l o o r ( s t reamTime / 6 0 . 0 ) ;
380 i n t s t r eamTimeSecs = ( i n t ) s t reamTime % 6 0 ;
381 do ub l e pos_now_sec = 0 , p o s _ o l d _ s e c = 0 ;
382 l ong s t r e a m P o s i t i o n = 0 ;
383 i n t ms2 = 0 , sec2 = 0 , m i n u t e s 2 = 0 ;
384

385 w h i l e ( s t r e a m P o s i t i o n < s t r e a m L e n g t h )
386 {
387 s t r e a m P o s i t i o n = BASS_Channe lGetPos i t ion ( s t r eam , BASS_POS_BYTE) ; / / g e t s

c u r r e n t p o s i t i o n i n t h e s t r e a m
388 pos_now_sec = BASS_ChannelBytes2Seconds ( s t ream , s t r e a m P o s i t i o n ) ;

/ / c o n v e r t s p o s i t i o n t o t ime
389 f l o a t d [ 1 0 2 4 ] = { 0 } ; / / c u r r e n t FFT v e c t o r
390 BASS_ChannelGetData ( s t ream , d , BASS_DATA_FFT2048 ) ; / / g e t s FFT
391 / / f o r c h e c k i n g u p d a t e d p o s i t i o n s i n s t ream , bo th i n b y t e s and t ime :
392 i n t ms = s t a t i c _ c a s t < i n t >( f l o o r ( fmod ( ( pos_now_sec ∗ 1 0 0 0 . 0 ) , 1 0 0 0 . 0 ) ) ) ;
393 i n t s e c = s t a t i c _ c a s t < i n t >( pos_now_sec ) % 6 0 ;
394 i n t m i n u t e s = s t a t i c _ c a s t < i n t >( s t d : : f l o o r ( pos_now_sec / 60) ) ;
395 i n t msAnt = ms2 ;
396 i n t secAnt = sec2 ;
397 i n t minu te sAnt = m i n u t e s 2 ;
398 / / c o u t << " Byte Pos : {" << s t r e a m P o s i t i o n << " / " << s t r e a m L e n g t h << " } ;

Time Pos : {" <<
399 / / m i n u t e s << " : " << s e c << " . " << ms << "} o u t o f : {" << streamTimeMins

<< " : " << s t r eamTimeSecs << " } " << e n d l ;
400 s t r e a m P o s i t i o n += 4096 ; / / p o s i t i o n i n b y t e s t o advance . f o r a hop s i z e

o f h a l f t h e window , t h i s v a l u e s h o u l d be 2∗FFT
401 b u f f += 4096 ;
402 k o i += 4096 ;
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403 BASS_Channe lSe tPos i t i on ( s t r eam , s t r e a m P o s i t i o n , BASS_POS_BYTE) ;
/ / a d v a n c e s on t h e s t r e a m

404 v e c t o r < double > v ( b e g i n ( d ) , end ( d ) ) ; / / c o n v e r t f f t a r r a y i n t o v e c t o r
405 m. push_back ( v ) ;
406 / / f a z o match
407 i f ( k o i >= 703 ∗ 4096) {
408 c o u t << " C u r r e n t t ime : " << m i n u t e s << " : " << s e c << " . " << ms << " ,

w i th d e l a y s : " << n u m a t r a s o s << e n d l ;
409 k o i = 0 ;
410 }
411 i f ( b u f f >= 30 ∗ 4096) {
412 ms2 = ms ;
413 s ec2 = s e c ;
414 m i n u te s 2 = m i n u t e s ;
415 a u t o com = h i g h _ r e s o l u t i o n _ c l o c k : : now ( ) ;
416 b u f f = 0 ;
417 / / Get l o c a l maxima
418 cv : : Mat mat In (m. s i z e ( ) , m. a t ( 0 ) . s i z e ( ) , CV_64FC1 ) ;
419 f o r ( i n t z = 0 ; z < matIn . rows ; ++z ) {
420 f o r ( i n t y = 0 ; y < matIn . c o l s ; ++y ) {
421 matIn . a t < double >( z , y ) = m[ z ] [ y ] ;
422 }
423 }
424 cv : : Mat b i n S t r u c t = cv : : g e t S t r u c t u r i n g E l e m e n t ( cv : : MORPH_ELLIPSE ,

cv : : S i z e ( 3 0 , 30) ) ;
425 cv : : Mat d i l a t e d M a t , l oca lMaxs ;
426 cv : : d i l a t e ( matIn , d i l a t e d M a t , b i n S t r u c t ) ;
427 cv : : compare ( matIn , d i l a t e d M a t , loca lMaxs , cv : : CMP_EQ) ;
428 f o r ( i n t z = 0 ; z < loca lMaxs . rows ; ++z ) {
429 f o r ( i n t y = 0 ; y < loca lMaxs . c o l s ; ++y ) {
430 m[ z ] [ y ] = loca lMaxs . a t < uchar >( z , y ) ;
431 }
432 }
433

434 / / QUADS and match
435 v e c t o r < i n t > q u a n t ;
436 v e c t o r < s t r i n g > r e s u ;
437 v e c t o r < s t r i n g > : : i t e r a t o r i t e r ;
438 v e c t o r < i n t > : : i t e r a t o r i t e ;
439 i n t i n d e x = 0 ;
440 boo l f l a g = 0 ;
441 boo l f l a g 2 = 0 ;
442 SHA1 checksum ;
443 s t r i n g r ;
444 s t r i n g xx ;
445

446 f o r ( i n t i = 0 ; i <= m. s i z e ( ) − 9 ; i ++)
447 {
448 f o r ( i n t j = 0 ; j < m[ i ] . s i z e ( ) ; j ++)
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449 {
450 i f (m[ i ] [ j ] != 0 ) {
451 f o r ( i n t a = 3 ; a <= 8 ; a ++)
452 {
453 f o r ( i n t b = 3 ; b < m[ i ] . s i z e ( ) − j ; b ++)
454 {
455 i f (m[ i + a ] [ j + b ] != 0 ) {
456 f o r ( i n t c = 1 ; c < a ; c ++)
457 {
458 f o r ( i n t l = 2 ; l < b ; l ++)
459 {
460 i f (m[ i + c ] [ j + l ] != 0 ) {
461 f o r ( i n t w = c + 1 ; w < a ; w++)
462 {
463 f o r ( i n t h = 1 ; h < l ; h ++)
464 {
465 i f (m[ i + w] [ j + h ] != 0) {
466 i n t l o = a − w;
467 i n t ko = b − h ;
468 xx = t o _ s t r i n g ( c ) + t o _ s t r i n g ( l ) +

t o _ s t r i n g ( l o ) + t o _ s t r i n g ( ko ) ;
469 checksum . u p d a t e ( xx ) ;
470 c o n s t s t r i n g hash = checksum . f i n a l ( ) ;
471 xx . c l e a r ( ) ;
472 s t r i n g temp = searchDB ( hash , db ) ;
473 i f ( temp != " e r r " ) {
474 i t e r = f i n d ( r e s u . b e g i n ( ) , r e s u . end ( ) , temp ) ;
475 i f ( i t e r != r e s u . end ( ) )
476 {
477 i n d e x = d i s t a n c e ( r e s u . b e g i n ( ) , i t e r ) ;
478 q u a n t [ i n d e x ] + + ;
479 i f ( q u a n t [ i n d e x ] == 10) { / / i f i t g e t s t e n

i n s t a n c e s o f t h e same r e s u l t , t h e r e i s a 100% match
480 c o u t << " Match : " << searchDB ( hash , db )

<< " wi th 100% chance " << e n d l ;
481 d e c i . push_back ( 1 ) ;
482 f l a g = 1 ;
483 f o r ( i n t k = 0 ; k < d e c i . s i z e ( ) ; k ++)

d e c i [ k ] = 1 ;
484 }
485 }
486 e l s e {
487 r e s u . push_back ( temp ) ;
488 q u a n t . push_back ( 1 ) ;
489 }
490 }
491

492 }
493 i f ( f l a g == 1 | | f l a g 2 == 1) b r e a k ;



A.1 C++ Code 57

494 a u t o c o i s = h i g h _ r e s o l u t i o n _ c l o c k : : now ( ) ;
495 a u t o dur = d u r a t i o n _ c a s t < m i l l i s e c o n d s >( c o i s −

com ) ;
496 i f ( dur . c o u n t ( ) >= 600) f l a g 2 = 1 ;
497 i f ( f l a g == 1 | | f l a g 2 == 1) b r e a k ;
498 }
499 i f ( f l a g == 1 | | f l a g 2 == 1) b r e a k ;
500 a u t o c o i s = h i g h _ r e s o l u t i o n _ c l o c k : : now ( ) ;
501 a u t o dur = d u r a t i o n _ c a s t < m i l l i s e c o n d s >( c o i s − com ) ;
502 i f ( dur . c o u n t ( ) >= 600) f l a g 2 = 1 ;
503 i f ( f l a g == 1 | | f l a g 2 == 1) b r e a k ;
504 }
505 }
506 i f ( f l a g == 1 | | f l a g 2 == 1) b r e a k ;
507 a u t o c o i s = h i g h _ r e s o l u t i o n _ c l o c k : : now ( ) ;
508 a u t o dur = d u r a t i o n _ c a s t < m i l l i s e c o n d s >( c o i s − com ) ;
509 i f ( dur . c o u n t ( ) >= 600) f l a g 2 = 1 ;
510 i f ( f l a g == 1 | | f l a g 2 == 1) b r e a k ;
511 }
512 i f ( f l a g == 1 | | f l a g 2 == 1) b r e a k ;
513 a u t o c o i s = h i g h _ r e s o l u t i o n _ c l o c k : : now ( ) ;
514 a u t o dur = d u r a t i o n _ c a s t < m i l l i s e c o n d s >( c o i s − com ) ;
515 i f ( dur . c o u n t ( ) >= 600) f l a g 2 = 1 ;
516 i f ( f l a g == 1 | | f l a g 2 == 1) b r e a k ;
517 }
518 }
519 i f ( f l a g == 1 | | f l a g 2 == 1) b r e a k ;
520 a u t o c o i s = h i g h _ r e s o l u t i o n _ c l o c k : : now ( ) ;
521 a u t o dur = d u r a t i o n _ c a s t < m i l l i s e c o n d s >( c o i s − com ) ;
522 i f ( dur . c o u n t ( ) >= 600) f l a g 2 = 1 ;
523 i f ( f l a g == 1 | | f l a g 2 == 1) b r e a k ;
524

525 }
526 i f ( f l a g == 1 | | f l a g 2 == 1) b r e a k ;
527 a u t o c o i s = h i g h _ r e s o l u t i o n _ c l o c k : : now ( ) ;
528 a u t o dur = d u r a t i o n _ c a s t < m i l l i s e c o n d s >( c o i s − com ) ;
529 i f ( dur . c o u n t ( ) >= 600) f l a g 2 = 1 ;
530 i f ( f l a g == 1 | | f l a g 2 == 1) b r e a k ;
531 }
532 }
533 i f ( f l a g == 1 | | f l a g 2 == 1) b r e a k ;
534 }
535

536 i f ( f l a g == 1) {
537 b r e a k ;
538 }
539 e l s e i f ( ( f l a g == 0) && ( i == m. s i z e ( ) − 9) && ( ! q u a n t . empty ( ) ) ) {
540 i n t max = ∗max_element ( q u a n t . b e g i n ( ) , q u a n t . end ( ) ) ;
541 i f ( max < 4) {
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542 c o u t << "NON−MATCH / / b u t found few quads " << e n d l ;
543 d e c i . push_back ( 0 ) ;
544 i f ( s t a t e == 2) f a l s e _ n e g ++;
545 }
546 e l s e {
547 i t e = max_element ( q u a n t . b e g i n ( ) , q u a n t . end ( ) ) ;
548 i n d e x = d i s t a n c e ( q u a n t . b e g i n ( ) , i t e ) ;
549 c o u t << " Match : " << r e s u [ i n d e x ] << " wi th "<<

( ( d ou b l e ) q u a n t [ i n d e x ] / ( do ub l e ) 10) ∗ 100 << "% chance " << e n d l ;
550 d e c i . push_back ( 1 ) ;
551 i f ( s t a t e == 1) f a l s e _ p o s ++;
552 }
553 }
554 e l s e i f ( ( f l a g == 0) && ( i == m. s i z e ( ) − 9) && ( q u a n t . empty ( ) ) ) {
555 c o u t << "NON−MATCH" << e n d l ;
556 d e c i . push_back ( 0 ) ;
557 i f ( s t a t e == 2) f a l s e _ n e g ++;
558 }
559 e l s e i f ( f l a g 2 == 1 && ! q u a n t . empty ( ) ) {
560 i n t max2 = ∗max_element ( q u a n t . b e g i n ( ) , q u a n t . end ( ) ) ;
561 i f ( max2 < 4) {
562 c o u t << "NON−MATCH b u t found few quads ~TIMEOUT" << e n d l ;
563 d e c i . push_back ( 0 ) ;
564 ove r ++;
565 i f ( s t a t e == 2) f a l s e _ n e g ++;
566 }
567 e l s e {
568 i t e = max_element ( q u a n t . b e g i n ( ) , q u a n t . end ( ) ) ;
569 i n d e x = d i s t a n c e ( q u a n t . b e g i n ( ) , i t e ) ;
570 c o u t << " Match : " << r e s u [ i n d e x ] << " wi th " <<

( ( d ou b l e ) q u a n t [ i n d e x ] / ( do ub l e ) 10) ∗ 100 << "% chance ~TIMEOUT" << e n d l ;
571 d e c i . push_back ( 1 ) ;
572 ove r ++;
573 i f ( s t a t e == 1) f a l s e _ p o s ++;
574 }
575 b r e a k ;
576 }
577 e l s e i f ( f l a g 2 == 1 && q u a n t . empty ( ) ) {
578 c o u t << "NON−MATCH ~TIMEOUT" << e n d l ;
579 d e c i . push_back ( 0 ) ;
580 ove r ++;
581 i f ( s t a t e == 2) f a l s e _ n e g ++;
582 f l a g = 0 ;
583 b r e a k ;
584 }
585 }
586 / / End of QUADMATCHING
587

588 r e s u . c l e a r ( ) ;
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589 q u a n t . c l e a r ( ) ;
590 p . c l e a r ( ) ;
591 m. c l e a r ( ) ;
592

593 i f ( d e c i . s i z e ( ) > 10) { / / i f d e l e t e s f i r s t e l e m e n t o f b u f f e r i f i t
e x c e e e d e s c a p a c i t y

594 d e c i . e r a s e ( d e c i . b e g i n ( ) ) ;
595 }
596 / / / / Gives chance o f ha v i ng a b l o c k of commerc ia l o r programming
597

598 mycount = c o u n t ( d e c i . b e g i n ( ) , d e c i . end ( ) , 1 ) ;
599 i f ( s t a t e == 0 && ( f l a g == 1) /∗ ( ( d e c i . s i z e ( ) > 4 && ( ( dou b l e ) mycount /

( do ub l e ) d e c i . s i z e ( ) ) >= 0 . 4 ) | | ( f l a g == 1) ) ∗ / ) {
600 s t a t e = 2 ;
601 c o u t << e n d l << "A BLOCK OF COMMERCIAL STARTED a t : " << m i n u t e s <<

" ’ " << s e c << " . " << ms << e n d l ;
602 }
603 e l s e i f ( s t a t e == 0 && d e c i . s i z e ( ) > 4 && ( ( do ub l e ) mycount /

( do ub l e ) d e c i . s i z e ( ) ) < 0 . 3 ) {
604 s t a t e = 1 ;
605 c o u t << e n d l << "A BLOCK OF PROGRAMMING STARTED a t : " << m i n u t e s <<

" ’ " << s e c << " . " << ms << e n d l << e n d l ;
606 }
607 e l s e i f ( ( s t a t e == 1 && ( f l a g == 1) /∗ ( ( ( ( do ub l e ) mycount /

( do ub l e ) d e c i . s i z e ( ) ) >= 0 . 4 ) | | ( f l a g == 1) ) ∗ / ) ) {
608 s t a t e = 2 ;
609 f o r ( i n t i = 0 ; i < d e c i . s i z e ( ) ; i ++) d e c i [ i ] = 1 ;
610 c o u t << e n d l << "A BLOCK OF COMMERCIAL STARTED a t : " << m i n u t e s <<

" ’ " << s e c << " . " << ms << e n d l ;
611 f o r ( i n t k = 0 ; k < d e c i . s i z e ( ) ; k ++) d e c i [ k ] = 1 ;
612 / / c o u t << "ORIGINAL TIME OF START : " << minu te sAn t << " ’ "

<< secAnt << " . " << msAnt << e n d l << e n d l ;
613 }
614 e l s e i f ( s t a t e == 2 && ( ( dou b l e ) mycount / ( do ub l e ) d e c i . s i z e ( ) ) < 0 . 3 ) {
615 s t a t e = 1 ;
616 c o u t << e n d l << "A BLOCK OF PROGRAMMING STARTED a t : " << m i n u t e s <<

" ’ " << s e c << " . " << ms << e n d l << e n d l ;
617 }
618 a u t o te rm = h i g h _ r e s o l u t i o n _ c l o c k : : now ( ) ;
619 a u t o d u r a t i o n = d u r a t i o n _ c a s t < m i l l i s e c o n d s >( te rm − com ) ;
620 i f ( d u r a t i o n . c o u n t ( ) >= 640) {
621 n u m a t r a s o s ++;
622 }
623 tempos . push_back ( d u r a t i o n . c o u n t ( ) ) ;
624 }
625

626 }
627 }
628 e l s e
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629 {
630 / / e r r o r c r e a t i n g t h e s t r e a m
631 s t d : : c o u t << " St ream e r r o r : {0} " , BASS_ErrorGetCode ( ) ;
632 }
633

634 c o u t << e n d l << e n d l << " H i g h e s t Time e l a p s e d i n a match : " <<
∗max_element ( tempos . b e g i n ( ) , tempos . end ( ) ) << e n d l ;

635 c o u t << " Lowest Time e l a p s e d i n a match : " << ∗min_e lement ( tempos . b e g i n ( ) ,
tempos . end ( ) ) << e n d l ;

636 c o u t << " Average t ime e l a p s e d i n a match : " << ( a c c u m u l a t e ( tempos . b e g i n ( ) ,
tempos . end ( ) , 0 ) ) / ( tempos . s i z e ( ) ) << e n d l ;

637 c o u t << " Number o f d e l a y e d d e c i s i o n s ( l o n g e r t h a n b u f f e r window ) : " <<
n u m a t r a s o s << e n d l ;

638 BASS_StreamFree ( s t r e a m ) ; / / f r e e s t r e a m
639 BASS_Free ( ) ; / / f r e e BASS
640

641 / / c l e a r m
642 m. c l e a r ( ) ;
643 c o u t << " FP : " << f a l s e _ p o s << " FN : " << f a l s e _ n e g << " OVER: " << ove r <<

e n d l ;
644 / / C lose D a t a b a s e
645 s q l i t e 3 _ c l o s e ( db ) ;
646 }
647

648 vo id crea teDB ( c o n s t c h a r ∗ p a t h ) {
649 / / Loads and f i n g e r p r i n t s a f o l d e r i n t o t h e d a t a b a s e
650 v e c t o r < s t r i n g > p a t h s ;
651 s t r i n g temp ;
652 DIR ∗ d i r ;
653 s t r u c t d i r e n t ∗ e n t ;
654 i n t numErr = 0 ;
655 i f ( ( d i r = o p e n d i r ( p a t h ) ) != NULL) {
656 / / g e t s a l l t h e f i l e s and d i r e c t o r i e s w i t h i n d i r e c t o r y / /
657 w h i l e ( ( e n t = r e a d d i r ( d i r ) ) != NULL) {
658 i f ( s t r c mp ( en t−>d_name , " . " ) != 0 && s t r cmp ( en t−>d_name , " . . " ) != 0 ) {
659 temp = ent−>d_name ;
660 temp = p a t h + temp ;
661 p a t h s . push_back ( temp ) ;
662 }
663 }
664 c l o s e d i r ( d i r ) ;
665 }
666 e l s e {
667 / / c o u l d n o t open d i r e c t o r y / /
668 p e r r o r ( " " ) ;
669 }
670 / / f i n g e r p r i n t s each f i l e a c c o r d i n g t o i t s p a t h
671 i n t fp ;
672 f o r ( i n t i = 0 ; i < p a t h s . s i z e ( ) ; i ++)
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673 {
674 c h a r ∗ p a t h = new c h a r [ p a t h s [ i ] . s i z e ( ) + 1 ] ;
675 s t d : : copy ( p a t h s [ i ] . b e g i n ( ) , p a t h s [ i ] . end ( ) , p a t h ) ;
676 p a t h [ p a t h s [ i ] . s i z e ( ) ] = ’ \ 0 ’ ;
677 vo id ∗pathQu = p a t h ;
678 fp = f i n g e r P r i n t ( pathQu , p a t h s [ i ] , numErr ) ;
679 memset ( pa th , 0 , s i z e o f ( p a t h ) ) ;
680 }
681 c o u t << e n d l << e n d l << numErr << e n d l ;
682 }
683

684 i n t main ( i n t a rgc , c o n s t c h a r ∗∗ a rgv ) {
685

686 i n i tDB ( ) ;
687

688 a u t o s t a r t = h i g h _ r e s o l u t i o n _ c l o c k : : now ( ) ;
689

690 / / / / / / / / / / / / FINGERPRINT FOLDER OF COMMERCIALS / / / / / / / / /
691 / / c rea teDB ( "C : \ \ Use r s \ \ ADMIN \ \ Desktop \ \ d a t a s e t \ \ db \ \ " ) ;
692

693 / / D i s p l a y whole db t a b l e + check f o r hash u n i q u e n e s s / / / / / /
694 / / d i sp layDB ( ) ;
695

696 / / / / / / / / / / / DO REAL TIME MATCHING OF AN AUDIO FILE / / / / / / / / / / / /
697

/ / r t M a t c h ( "C : \ \ Use r s \ \ ADMIN \ \ Desktop \ \ d a t a s e t \ \ n o v o s _ c o r t e s _ t u d o \ \ t e s t 1 . wav " ) ;
698

/ / r t M a t c h ( "C : \ \ Use r s \ \ ADMIN \ \ Desktop \ \ d a t a s e t \ \ n o v o s _ c o r t e s _ t u d o \ \ t e s t 2 . wav " ) ;
699

700 a u t o s t o p = h i g h _ r e s o l u t i o n _ c l o c k : : now ( ) ;
701 a u t o d u r a t i o n = d u r a t i o n _ c a s t < seconds >( s t o p − s t a r t ) ;
702 c o u t << e n d l << " Ended ! ! " << e n d l << " O p e r a t i o n took " << d u r a t i o n . c o u n t ( )

<< " s e c o n d s t o pe r fo rm " << e n d l ;
703 g e t c h a r ( ) ;
704 r e t u r n 0 ;
705 }

main.cpp
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