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Abstract

The assessment of a propeller aircraft interior noise often occurs in the late stages of its
development cycle. This makes it difficult to intervene to improve the resulting noise
characteristics because many design parameters have been already fixed. This implies
that frequently the interior noise of an aircraft is not optimized with respect to passenger
comfort and reduction of annoyance. To improve these aspects, the design approach
should shift to a human-centered paradigm. This is addressed by conducting a jury study
to collect subjective evaluations of cabin sounds, which, combined with psychoacoustic
features, are used to train and compare different traditional and Machine Learning feature-
based prediction techniques. These models predict the subjective evaluation of a sound
sample from its corresponding several psychoacoustic metrics, thus mimicking the human
Sound Quality perception. However, the psychoacoustic feature extraction from a sound
sample is still a manually performed step, through complex psychoacoustical algorithms,
that demand the expertise of an experienced acoustic engineer. The recent breakthroughs
in the field of Deep Learning allow the use of Convolutional Neural Networks to train
a compact prediction model which is able to extract the psychoacoustic features from
a sound sample. Sequentially combining this feature extractor prediction model with
one of the feature-based models developed with the data from the jury studies enables
the development of a Virtual Passenger model, that, from a sound sample is capable
of directly predicting the subjective human response to it. Hence, the model obtained
simulates the passenger subjective response to the stimuli in the different positions of the
cabin and, combined with virtual prototyping and sound synthesis tools, paves the way for
the inclusion of the human Sound Quality perception in the early phases of the propeller
aircraft design process.

Keywords: Psychoacoustics, Sound Quality, Propeller Aircraft, Multiple Linear Regres-
sion, Machine Learning, Artificial Neural Networks, Support Vector Machines, Random
Forests, Deep Learning, Convolutional Neural Networks, Virtual Passenger
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Resumo

A avaliação do rúıdo interior de uma aeronave a hélices ocorre frequentemente nas fases
finais do seu projeto e desenvolvimento, impossibilitando uma intervenção nas caracteŕısti-
cas do ruido resultante, uma vez que, a maioria dos parâmetros de design já se encontram
fixos. Consequentemente, o rúıdo interior das aeronaves a hélices habitualmente não se
encontra otimizado no que diz respeito ao conforto acústico dos passageiros e annoyance
reduction. De forma a melhorar estes aspetos, o projeto aeronáutico deve procurar evoluir
no sentido de também contemplar a perceção humana da Qualidade do Som. A realização
de Jury Testing permite a recolha de avaliações subjetivas de sons do interior da cabina de
uma aeronave a hélices que, combinados com as respetivas features psicoacústicas, são usa-
dos para treinar e comparar tanto modelos de previsao tradicionais como também modelos
assentes em Machine Learning. Contudo, o processo de extração de features psicoacústi-
cas continua a ser um processo manual, feito com base em algoritmos acústicos complexos
e que requer o envolvimento de engenheiros acústicos experientes. Os recentes avanços
das técnicas de Deep Learning permitem o uso de Redes Neuronais Convolucionais para
treinar modelos de previsão compactos, capazes de extrair features psicoacústicas a partir
de amostras de som. O combinar sequencial deste modelo de extração de features com um
dos modelos capazes de, a partir de features, prever uma avaliação subjetiva da Qualidade
do Som, possibilita a criação de um modelo denominado por Passageiro Virtual. Este é
capaz de, a partir de uma amostra de som, modelar diretamente a perceção humana da
qualidade sonora desta, sendo que, quando combinado com ferramentas de prototipagem
virtual e de śıntese de sons, abre o caminho para a inclusão da dimensão humana da
Qualidade do Som no projeto aeronáutico.

Palavras-Chave: Psicoacústica, Qualidade do Som, Aeronave a Hélices, Regressão Linear
Múltipla, Machine Learning, Redes Neuronais, Support Vector Machines, Random Forests,
Deep Learning, Redes Neuronais Convolucionais, Passageiro Virtual
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Chapter 1

Introduction

1.1 Sound Quality and Aircraft Design

Sound is one of the main dimensions of human communication. With the advance of tech-
nology, people often take for granted the human sound quality perception, even thought
acoustic communication represents a cornerstone of modern society.

The successful design of new products mainly relies on the capability of assessing the
performance of alternative concepts already in an early stage [Oliveira et al., 2009]. In
the latest decades, due to the shortening of flight distances and simultaneous increase
of passenger flight frequency, the available virtual prototyping tool for the aeronautic
industry have seen major improvements. However, when dealing with passenger acoustic
comfort, these tools mainly focus on reducing the Sound Pressure Level (SPL) inside the
aircraft cabin and fail in understanding and quantifying the human perception of cabin
noise. Thus, there is a need for a greater emphasis on improving the passenger acoustic
comfort instead of merely suppressing cabin noise [d’Ischia et al., 2001; Duvigneau et al.,
2016].

Cabin Noise and Vibration in a Propeller Aircraft

In an aircraft, the cabin noise is mainly created by its propulsion system, and turbulent
boundary layer pressure fluctuations, which excite the fuselage, causing it to vibrate thus
creating a sound field in the interior of the cabin. In a propeller aircraft, the main source for
the inner cabin noise is the airborne noise produced by the propellers, due to their blades
in the fuselage. Therefore, periodic pressure fluctuations are produced on the external
part of the fuselage, which in turn causes vibrations in the internal cabin walls and an
excitation of the interior cabin sound field [Wilby, 2008].

The assessment of a turboprop aircraft interior noise frequently occurs late in its design
cycle. This makes difficult to intervene to improve the resulting noise characteristics since
several design parameters have already been fixed. This implies that the cabin interior
in propeller aircraft’s is not properly optimized with respect to passenger comfort and
reduction of annoyance [Janssens et al., 2008].

Traditionally, the target vibroacoustic performances are defined in terms of maximal
noise levels and design targets are propagated to maximal noise contributions from the
main noise sources. Although the design process considerably benefits from several ad-
vanced numerical, experimental and hybrid Noise, Vibration and Harshness (NVH) model-
ing tools, the sound quality aspect is still missing in the whole engineering process [Janssens
et al., 2008]. To improve these aspects, the design approach should shift to a human-
centered paradigm. By using virtual aircraft prototyping and virtual sound synthesis, it

1



1. Introduction

is possible to conduct a multi-attribute optimized design process, through which the as-
sessment of the subjective resulting from a design variant can be fed back to the virtual
prototype for further optimization.

Sound Quality Prediction

Sound Quality (SQ) refers to the subjective perception of a product based on emitted
sound in terms of the functionality (perceived build quality) or preference (annoyance or
pleasantness), being that SQ analysis consists on predicting subjective preferences based
on objective measurements [Pietila and Lim, 2012]. The sound quality of a vehicle interior
noise is influenced by three variables: sound field, auditory perception and auditory eval-
uation, which causes the evaluation of sound quality to be a multidimensional task [Otto
et al., 2001].

Even though A-weighted SPL is still a simple and popular acoustic metric, the percep-
tion of a sound is also dependent on its psychoacoustic characteristics such as loudness,
roughness, fluctuation strength and other extended metrics. This is due to the fact that,
for example, low frequency waves can be transmitted over a longer distance than high
frequency sound waves on the human hear receptors. As a result, high frequency noise
can be masked more easily by low-frequency noise, so the perceived properties of a sound
are not identical to the respective emitted sound [Otto et al., 2001]. Therefore, SQ is used
to relate human perception (psychoacoustics) with the physics of sound generation and
transmission (vibroacoustics) [Oliveira, 2009].

Currently, the most common procedure to address this issue is to use a jury study
to rank product sounds on a numerical preference scale and develop statistical models
based on MLR to compute the subjective preferences using objective measurements, hence
obtaining a SQ prediction model. However, the traditional use of a linear model has a few
shortcomings due to the fact that the relationships between the human hearing process
and acoustic performance are nonlinear [Pietila and Lim, 2012].

Alternate methods with higher computational cost such as ANNs, SVMs or RFs al-
low to replace the linear models with more adaptive models that, besides addressing the
linearity concern, can model sub-groups inside the jury testing group. Hence, conducting
jury studies allows to obtain subjective evaluation of sounds that, combined with objective
metrics, can be the output of a SQ prediction model [Pietila and Lim, 2012].

Machine Learning and Testing

Currently, the features used in SQ prediction models correspond to psychoacoustic met-
rics (such as loudness or sharpness) that are obtained using complex algorithms based on
international psychoacoustic standards. This computation is usually done using testing
software that apply these algorithms to the SPL measurements from a microphone. Hence,
the SQ prediction models predictor variables correspond to features manually extracted
from raw time signals, using commercial software. To properly extract these psychoacous-
tic features, it is often required the expertise of an experienced acoustical engineer and
commercial software with low capabilites of integration in an automatized model, which
from a raw time signal can predict the human SQ subjective evaluation.

As stated by LeCun et al. [2015], conventional Machine Learning (ML) techniques
were limited in their ability to process natural data in their raw form, requiring careful
engineering and considerable domain expertise to design a feature extractor that trans-
formed the raw data (such as the pixel values of an image or the pressure levels of a sound
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sample) into a suitable internal representation or feature vector from which the learning
subsystem, often a classifier, could detect or classify patterns in the input.

Deep Learning, a field contained in the ML domain, is making major advances in solv-
ing problems that have resisted the best attempts of the artificial intelligence community
for many years. Since the early 2000s, Convolutional Neural Networks (CNNs) have been
used with success and in 2012, due to progress derived from new techniques and the effi-
cient use of Graphics Processing Units (GPUs), they started revolutionizing the computer
vision and speech recognition industries. In opposition with the conventional Machine
Learning techniques, CNNs are able to process data that comes in the form of multiple
arrays, such as 1D arrays that correspond to sound samples or 2D arrays for images, where
the pixel intensities are in three colour channels [LeCun et al., 2015].

The possibility of using CNNs for performing feature extraction in sound samples paves
the way for entirely new approaches in predicting Sound Quality, being this still a notably
uncharted domain, waiting for innovative methods to arise.

1.2 Motivations

The assessment of a propeller aircraft interior noise occurs often in the late stages of its
development cycle. This makes it difficult to intervene to improve the resulting noise
characteristics because many design parameters have been already fixed. This implies
that very often the interior noise of an aircraft is not optimized with respect to passenger
comfort and reduction of annoyance. To improve these aspects, the design approach should
shift to a human-centered paradigm.

The development of a feature-based prediction model, a common approach in the lit-
erature, that is able to predict the human subjective assessment (output) of inner cabin
sounds based on psychoacoustic metrics (input), allows to avoid recollecting human eval-
uations, thus being possible to combine it with virtual prototyping and sound synthesis
tools. This approach enables the engineer to change a design parameter, synthesize the
new resulting cabin sounds and after extracting their psychoacoustic features, to use the
prediction model to predict subjective evaluations for the new synthesized sounds annoy-
ance.

However this process still relies on a manual features extraction from the sound sam-
ples, that are the input of the prediction model. This extraction has to be done using
commercial software that requires an experienced acoustic engineer to perform it and is
hard to automatize in the design process. To develop another prediction model, using
CNNs, that from the interior cabin sound samples compute the psychoacoustic metrics
(features) consists in a new approach in this field, being this usually done using complex
acoustic algorithms or commercial software.

To combine both the mentioned prediction models, as sequential blocks, allows to
obtain an easily usable, fast and compact prediction model, that directly from a sound
sample predicts the human subjective evaluation of a sound, thus being developed a VP
model that mimicks the human SQ perception, opening a wide range of applications in the
aircraft industry. With this in mind, some objectives were defined for this thesis which
are enumerated as follows.

1.3 Objectives

• Understand the fundamentals of psychoacoustics and their connection with vibroa-
coustics, through different metrics, contacting with the state of the art in commercial
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software.

• Conduct a campaign to collect subjective evaluations of sound samples corresponding
to different seats of a propeller aircraft.

• Review the knowledge of feature-based prediction models, that perform regression-
based predictions from features, namely MLR, ANNs, SVMs and RFs.

• Review the fundamentals for extracting features from time signals using CNNs.

• Train and compare 4 prediction models able to predict a subjective evaluation of
sound samples based on their objective metrics. These are feature-based models,
namely MLR, ANNs, SVMs and RFs. they are trained using the data obtained in
the campaign destined to collect the subjective evaluations.

• Using CNNs, train models able to extract several different psychoacoustic feature di-
rectly from sound samples, namely loudness, fluctuation strength, tonality, sharpness
and roughness.

• Assess the applicability of sequentially combining the best performing feature-based
model with the models that are able to extract features from sound samples, ob-
taining the VP model that simulates the passenger of an aircraft, being then able to
predict a subjective evaluation of a sound sample directly from a time signal.

• Study which features are more relevant to the performance of the VP model and
understand the causes for its prediction errors.

1.4 Layout

This text is structured in eight chapters. The work contained in this thesis is inserted
in an international research project and is a sequence of another dissertation, being the
second chapter destined to cover this. The third and fifth chapters clear the fundamental
theory on psychoacoustics and prediction models. On the fourth chapter the guidelines
followed for collecting subjective evaluations of sound samples are presented. Then, on
chapter six, both the results of collecting subjective sound samples evaluations and of the
feature-based models are shown. The 4 models are compared, being evidenced the methods
used for training and testing the models. On chapter seven, after presenting the results
and method for extracting features (psychoacoustic metrics) using CNNs, the VP model
performance is assessed, also including detailed information regarding the methods used.
Finally, the conclusions of this work and further possible improvements of the created
models are mentioned.
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Chapter 2

Context and Prior Work

2.1 Introduction

This thesis is inserted in the framework of an international research project. Funded by
the European Union Horizon 2020 programme, Clean Sky 2 is one of the largest European
research programmes, present in 24 countries, developing innovative, cutting edge tech-
nology aimed at reducing CO2, gas emissions and noise levels produced by aircraft. In
this programme, one of the developed projects is CAbin Systems design Toward passenger
welLbEing (CASTLE), in which the work contained in this thesis is inserted [Sky, 2018].

CASTLE is devoted to achieve an improved and optimized passenger cabin environ-
ment in both regional aircrafts and business jets, increasing passenger’s well being. This
is achieved by using engineering models and virtual reality to develop and design cabin
interiors with respect to human perception [CIRA, 2018].

This thesis, inserted in the framework of the CASTLE project, has as a goal the
improvement of acoustic passenger comfort in a propeller aircraft, more specifically, a
Dornier 228, shown in Fig. 2.1.

Figure 2.1: Dornier 228, a propeller aicraft intended for regional flights [Air, 2018].

Over the next paragraphs, it will be given a brief overview of the work of Angeloni
[2018], which was the starting point for this thesis, being that the data mentioned here
was used for the prediction models and was provided by this author.

About the aircraft it should be kept in mind that, throughout this thesis, two flying
conditions will be specified. The case when both propellers have coincident frequencies it
is denominated by synchronous and when the speed rotations are different, it corresponds
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to the asynchronous case. Also, as noted by Angeloni [2018], one should note there are
two main contributors for the cabin noise:

• The engines during their rotation generate vibration at particular frequencies de-
nominated by tones, being that each propeller generates six tonal components that
depend on the frequency rotation. In an asynchronous case, a Beating effect is
generated during a complete flight cycle.

• Around the fuselage panels, small pressure fluctuations due to the Turbulent Bound-
ary Layer, are responsible for the Broadband Noise in the interior of the aircraft.

2.1.1 Synthesis of interior noise sounds at 85 different positions

Siemens PLM Software, with the goal of developing sound synthesis tools, recorded the in-
terior noise in a propeller aircraft, during normal cruising conditions. Both for synchronous
and asynchronous conditions, the noise was recorded in 85 positions of the aircraft. The
experimental set-up in the cabin used for recording the noises can be observed on Fig. 2.2.

Figure 2.2: Experimental set-up in the propeller aircraft [Janssens et al., 2008].

The recording positions are numbered and shown in Fig. 2.3. One should note that not
every position corresponds to a real seat, being that, for example, microphones were set also
in the middle of the corridor. Either way, for facilitating communication, throughout this
thesis these positions will be referred to as seats, with the numbering scheme represented
in Fig. 2.3.

Using the experimental data described in the previous paragraph, an algorithm was
developed to, from a virtual model of the aircraft with changeable parameters, synthesize
the sound sample corresponding to any position in the interior of the cabin, with the
possibility of changing several design parameters of the virtual model. Therefore, it is
possible to reproduce and study the interior noise in each typical propeller aircraft, without
having to re-record sound samples in a flight, which would be not financially possible and
extremely time consuming. Consequently all the sound samples used throughout this
thesis, were synthesized by Angeloni, L. from a virtual model of a propeller aircraft,
using the algorithm described in this paragraph. These samples were synthesized for both
synchronous and asynchronous flying conditions, in 85 positions for each case, hence a
total of 170 samples.
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Figure 2.3: Position of each recording in the aircraft [Angeloni, 2018].

2.1.2 Psychoacoustic metrics

The psychoacoustic metrics correspondent to each sound sample that were used throughout
this thesis were the ones computed in Angeloni [2018], using software provided by Siemens
PLM Software, namely LMS Test.Lab. Using a colored map representation, where from
the psychoacoustic metrics in each seat their values are interpolated for every point of
the cabin, Angeloni L. obtained the distribution of each feature in the cabin, as shown in
Fig. 2.4.

Finally, these metrics were the subject of a cluster analysis conducted in Angeloni
[2018], that allowed in a high dimensional group of data find groups (i.e. clusters) with
similar features. The information resultant from this procedure was fundamental in select-
ing the sound samples to use in the jury testing campaign, described in Ch. 4. Four clusters
of seats were obtained for each flying case, being possible to find their representation in
Fig. 2.5.

7
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Figure 2.4: Distribution os the psychoaocutic metrics in the cabin of the aircraft. The red
point corresponds to the maximum value of each metric [Angeloni, 2018].

Figure 2.5: Distribution of the clusters in the fuselage [Angeloni, 2018].
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Chapter 3

Psychoacoustics Fundamentals

3.1 Introduction

The characteristics of a sound, as it is perceived, are not exactly the same as the charac-
teristics of sound being emitted. However, the understanding of auditory comfort requires
first an understanding of sound.

An oscillatory motion or vibration of an object results in a sound. This motion is
impressed upon the surrounding medium (such as air, solid, liquid or other gas), as a
pattern of fluctuations in pressure (acoustical oscillations). It is observable that sound
consists in a mechanical disturbance of the steady pressure in an elastic medium (usually
air) which is propagated in all directions at a velocity of about 335 m/s [Quehl, 2001].

Sounds are easily described by means of the time-varying sound pressure, p(t), and
sound levels can be quantified either by their intensity (where the flow of energy is described
through a unit of area) or amplitude (pressure). The temporal variations in sound pressure
caused by sound sources, when compared with the magnitude of the atmospheric pressure,
are extremely small. In psychoacoustics, values of the sound pressure between 10−5Pa and
102Pa are relevant. Due to the wide range of sound pressures, the SPL is normally used.
Eq. (3.1) relates sound pressure and SPL:

SPL = 20log(p/p0) dB (3.1)

where the reference value of the sound pressure, p0, is standardized to p0 = 20µPa, which
is often considered as the threshold of human hearing [Fastl and Zwicker, 2007].

Additionally, other relevant physical quantities in psychoacoustics, besides sound pres-
sure and SPL, are the sound intensity, I, and sound intensity level. In plane traveling
waves, the SPL and sound intensity level are related by

SPL = 20log(p/p0)dB = 10log(I/I0) dB (3.2)

considering that the reference value, I0, is defined as 10−12W/m2. It is possible to realize
that sound intensity is proportional to the square of sound pressure [Fastl and Zwicker,
2007].

The perception of sounds by the human ear

A key factor in explaining why two sounds with an equal dB level may have a totally
different subjective quality is related to the physics of the human hearing process. The
human ear is a complex, nonlinear device, with specific frequency dependent transition
characteristics. In addition, the fact that hearing usually involves two ears (binaural) has
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3. Psychoacoustics Fundamentals

a considerable influence on sound perception. Before reaching the eardrum, an incident
acoustic signal is considerably modified by the spectral and spatial filtering characteristics
of the human body and ear. The human torso itself acts as an directional filter through
diffraction, resulting in the fact that very significant interaural differences in SPL occur
depending on the direction of the source [LMS, 2016b].

Consequently, the body, head and outer ear effects consist mainly of a spatial and
spectral filtering that are applied to the acoustic stimulus. As a result, the analysis of,
for instance, the frequency spectrum of a free positioned microphone does not necessarily
lead to a correct assessment of the human response. In other words, there is no simple
relationship between the measured physical sound pressure level and the human perception
of the sound [LMS, 2016b].

Considering the dynamic range of sound intensities as the difference between the ab-
solute threshold of hearing and the threshold of discomfort (more specifically pain), the
hearing range is immense, as can be seen in Fig. 3.1, which justifies the use of a loga-
rithmic scale for the sound pressure level and sound intensity level. In fact, this range
is a function of frequency. At about 4000 Hz, it is approximately 125 to 135 dB but at
lower and higher frequencies it is considerably less, for instance, 80 to 90 dB at 100 Hz.
After a careful analysis of Fig. 3.1, it can be said that the best sensitivity of the human
auditory system lies between 500 Hz and 5 kHz, being this area of the utmost importance
for understanding human speech. Also, the thresholds of discomfort and pain represent
estimates of the upper limit of sound level that humans can tolerate. In addition, the
threshold of discomfort is around 110 to 120 dB SPL and the threshold of pain is about
120 to 140 dB SPL. Also, both remain relatively unchanged as a function of the frequency
content of the stimulus.

Figure 3.1: The threesholds of hearing, discomfort and pain [Fastl and Zwicker, 2007].

Auditory sensations can be described in terms of the so-called psychoacoustic parame-
ters and are usually separately distinguishable. This quantities have in common an under-
lying concept of a correct representation of perceptual properties of the human auditory
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system. Therefore, psychoacoustics deal mainly with the relationships between physical
features of an acoustical stimulus and the auditory sensations evoked. The most relevant
psychoacoustical parameters are: loudness, sharpness, tonality, fluctuation strength and
roughness [Quehl, 2001].

3.2 Loudness

Loudness belongs to the category of intensity sensations, being not only a sensation value,
but belonging somewhere between a sensation and physical value. The sound pressure level
is not linearly related to the auditory impression of sound strength (or loudness). Along
with frequency dependencies, this means that the loudness sensation cannot be accurately
described by the acoustic level or its spectrum [LMS, 2016b].

The Loudness Level, LN , is expressed in Phons. 1 kHz-tones are used as the reference,
which means that for a 1 kHz tone, the Phon value corresponds to the dB sound pressure
level. The Phon is a unit which derives from equal loudness contours (isophones), repre-
sented in Fig. 3.2. In this figure are shown several curves representing levels of perceived
equal loudness (for sinusoidal tones) across a frequency range as a function of acoustic
pressure level. In an isophone, the similar loudness of a reference (a pure 1000 Hz tone
at a different sound level) will be experienced at all points (tones at different frequencies)
along each contour.

Figure 3.2: Equal-Loudness contours for pure tones in a free sound field [Fastl and Zwicker,
2007].

The Sone, S, is a linear unit derived from the logarithmic Phon values. Eq. (3.3) allows
to relate both units,

S = 2(P−40)/10. (3.3)

The use of the Sone scale helps interpreting the experience loudness, due to the fact
that it is a linear scale. A loudness level of 40 Phons corresponds to a loudness of 1 Sone.
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A tone which is twice as loud, will have double the loudness in (Sone) value, and a loudness
level which is 10 Phons higher [LMS, 2016a].

In various psychoacoustic problems, it is often useful to subdivide the frequency range
over which the human ear is able to perceive tones and noises, instead of a linear or
geometrically (logarithmically) division [Fastl and Zwicker, 2007]. Therefore, the audible
spectrum is divided in frequency ranges, defined as Critical Bands. These bands have been
directly measured in experiments on the threshold for complex sounds, on masking, on the
perception of phase, and most often on the loudness of complex sounds. The frequency
range used for this division corresponds to a Bark, being that different Barks have different
frequency ranges [Fastl and Zwicker, 2007].

This scale is based on the fact that our hearing system analyses a broad spectrum into
parts that correspond to critical bands. Adding one critical band to the next in such a
way that the upper limit of the lower critical band corresponds to the lower limit of the
next higher critical band, leads to the scale of critical-band rate. In total we have 24 bark
and each of them correspond to a different frequency range. The center frequency and
bandwidth for each critical band can be found on Tab. 3.1.

Table 3.1: Critical band rate (Bark), center frequency and bandwith for each critical
band [Fastl and Zwicker, 2007]

Bark Center Frequency (Hz) Bandwidth (Hz)

1 50 100
2 150 100
3 250 100
4 350 100
5 450 110
6 570 120
7 700 140
8 840 150
9 1000 160
10 1170 190
11 1370 210
12 1600 240
13 1850 280
14 2150 320
15 2500 380
16 2900 450
17 3400 550
18 4000 700
19 4800 900
20 5800 1100
21 7000 1300
22 8500 1800
23 10500 2500
24 13500 3500

In psychoacoustic research, there are several definitions of loudness for complex sounds,
however for this thesis framework, only Zwicker’s Loudness was considered. This type of
Loudness assessment was chosen due to its ability to deal with complex broadband noises,
such as the ones in the interior of a propeller aircraft [LMS, 2016a].
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Zwicker Loudness

As it was stated in the previous section, this method is capable of dealing with complex
broadband noises, including pure tones. It is also relevant to point out that this method
takes masking effects into account. These, are important for sounds composed of multiple
components.

In the case of two sounds close in frequency, a high level sound component may mask
another lower level sound which is too close in frequency. This effect may be found
recurrently in music, where one instrument may be masked by another if one of them
produces high levels while the other remains faint. If the loud instrument pauses, the
faint one becomes audible again [Fastl and Zwicker, 2007]. Therefore, masking may be
seen as the variation of the hearing threshold curve to a test sound in the presence of a
masker, i.e., if the test sound spectrum lies below the masked threshold it will be inaudible.
While inaudible, it would still be computed by a SPL-meter, which raises the need of a
proper way of assessing the human perception of the sound, hence the use of Zwicker’s
Loudness [Oliveira, 2009].

According to Oliveira [2009] ,the first step in the numerical process consists of filtering
the signal with critical band filters, followed by a masking check. In this stage, if the
proceeding band level falls under the masking curve of the preceding one, this value is
neglected; otherwise the value is kept.

Taking into account the method described in LMS [2016a], this masking check is
achieved through the application of a sloping edge filter. This way, dominant and hence
masking frequency bands will show their influence over a large frequency range and pre-
vent masked sounds contributing to the total level. The partial loudness contours are
computed for each defined segment (global evaluation) or frame (tracked evaluation) us-
ing a classical Zwicker loudness calculation. This is achieved by the use of excitation level
versus critical-band rate pattern as a basis from which the loudness of the complex may
be constructed, where total loudness is treated as an integral of a value that we have to
find, but which can be drawn as a function of critical-band rate [Fastl and Zwicker, 2007].

Therefore, the physical quantity of loudness over the critical band rate, which the
computation was described over the two last paragraphs, is defined as specific loudness,
N ′, and has the unit of Sone/bark. Eq. (3.4), shows the mathematical expression for the
computation of loudness.

N =

∫ 24Bark

0
N ′dz (3.4)

where, total loudness, N, is obtained through the integral of specific loudness over the
critical-band rate, thus Sone being the unit obtained [Fastl and Zwicker, 2007].

3.3 Sharpness

Another salient feature of auditory stimuli is the perceived sharpness, which allows to
classify sounds as shrill (sharp) or dull. Sounds with a great share of high frequency
components in the spectrum are perceived as sharp (for example, a piece of chalk scrapping
a blackboard). According to Fastl and Zwicker [2007] and LMS [2016a], the most important
parameters influencing sharpness are the spectral content and the centre frequency of
narrow-band sounds. It is not dependent on loudness level or the detailed spectral content
of the sound.

Roughly, it corresponds to the first spectral moment of the specific loudness, with a
pre-emphasis for higher frequencies. In order to give quantitative values, a reference point
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and a unit have to be defined. In Latin, the expression Acum is used for sharp. The
reference sound producing 1 Acum is a narrow-band noise one critical-band wide at a
centre frequency of 1 kHz having a level of 60 dB.

The dependency of sharpness on the center frequency and bandwidth of the noise is
shown in Fig. 3.3. The middle curve represents a noise of one critical bandwidth as a
function of center frequency, the upper and lower curves representing the sharpness of
noises with respect to fixed upper (10 kHz) or lower (0.2 kHz) cut-off frequency as a
function of the other cut-off value. Higher frequency noises produce higher sharpness
[Quehl, 2001].

Figure 3.3: Sharpness of critical-band wide narrow-band noise as a function of centre
frequency (solid), of band-pass noise with an upper cut-off frequency of 10 kHz as a
function of the lower cut-off frequency (broken) and of band-pass noise with a lower cut-
off frequency of 0.2 kHz as a function of the upper cut-off frequency (dotted) [Fastl and
Zwicker, 2007].

In Fastl and Zwicker [2007], it is shown that the overall spectral envelope is the main
factor influencing sharpness and that the spectral envelope is psychoacoustically repre-
sented in the excitation level versus critical-band rate pattern, or in the specific loudness
versus critical rate band pattern.

After consulting LMS [2016a], it can be seen that sharpness corresponds to the first
spectral moment of the specific loudness and according to Quehl [2001] it is dependent
mainly on the center of gravity of the spectral distribution of a sound. The higher the
frequency of its location, the sharper the sound is perceived.

Adopting an approach similar to the one used for loudness, a mathematical model
for sharpness can be defined by computing the sharpness over the critical band, i,e, the
specific sharpness, S′(z). The unit corresponding to this physical quantity is Acum/bark
and it is mathematically defined by Eq. (3.5) [LMS, 2016a].

S′(z) =
0.11N ′(z)g(z)z
24Bark∑
0Bark

N ′(z)∆z

(3.5)
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In the previous equation, N ′(z) represents the specific Zwicker Loudness and g(z) a
weighting function that pre-stresses higher frequency components [LMS, 2016a].

The total sharpness, S, expressed in Acum is obtained by integrating the specific
sharpness, as defined in Eq. (3.6) [LMS, 2016a].

S =

∫ 24Bark

0
S′dz (3.6)

3.4 Fluctuation Strength

As can be read in Quehl [2001], fluctuation strength describes the degree of perceived
fluctuation of the sound level, or irregularity versus even character of the sound that
may arise due to the frequency and amplitude modulation from 1 to 20 Hz. When the
sound functions have modulation frequencies below 20 Hz, they are perceived as changes
in the sound volume over time. Typically, fluctuation signal sounds are louder (and more
annoying) than steady state signals of the same amplitude. The unit to address the
intensity of the sensation of fluctuation is referred to as Vacil. A reference sound of
1 Vacil corresponds to a 1 KHz tone of 60 dB with a 100% amplitude modulation of 4 Hz.
Additionally, the ear is most sensitive to fluctuations at 4 Hz.

In the proposed quantitative models for fluctuation strength, F, it is necessary to
take into account the temporal masking effects due to the sound fluctuation. Defining
modulation frequency as fmod and masking depth as ∆L, the dependency of fluctuation
strength on these two variables is expressed in Eq. (3.7) [LMS, 2016a].

F ≈ ∆L

(fmod/4Hz) + (4Hz/fmod)
(3.7)

In Fig. 3.4, the hatched part corresponds to the modulated signal in dB (level LT ).
The black curve is a sinusoid-like curve on which the masking depth and the modulation
frequency can be measured to calculate the fluctuation strength, according to Eq. (3.7)
[LMS, 2016a].

Figure 3.4: Ilustration of Fluctuation Strength [Fastl and Zwicker, 2007].

3.5 Roughness

The roughness or harshness of a sound is a consequence of the amplitude modulation of
tones. As stated in Fastl and Zwicker [2007], frequency resolution and temporal resolution
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of our hearing system are the two main factors that influence roughness, where frequency
resolution is modeled by the excitation pattern or by specific-loudness versus critical-band
rate pattern.

Low modulation frequencies (15 Hz), allow the perception of the time varying loudness
fluctuations. This corresponds to fluctuation strength and has been analyzed in section 3.4.

For high modulation frequencies (above 150-300 Hz), three separate tones can heard,
and in an intermediate frequency range (15-300 Hz), the sensation is of a stationary, but
rough tone, which renders it quite unpleasant. For example, in the case of engine noise,
this modulation effects can be caused by fractional orders [LMS, 2016a].

The increase of the degree of modulation and modulation frequency results in the
increase of the perception of roughness, being less sensitive to the base or carrier frequency.
However the dependency relationship between modulation depth and frequency is not
straightforward. As shown in [LMS, 2016a], the roughness, R, of an amplitude modulated
sound can be approximated as

R ∼= fmod∆L (3.8)

The unit used to describe roughness is the Asper, being that 1 Asper is produced by
a 100%, 70 Hz modulated 1 kHz tone of 60 dB.

The model used by LMS Test.Lab for quantifying roughness is quite complex, due to
consideration of the masking effects. The algorithm involves the calculation of partial or
specific roughness in each critical band, based on modulation and depth, including masking
effects and integrating them to obtain total roughness [LMS, 2016a].

3.6 Tonality

Tonality is a metric which quantifies the tonal prominence of a sound. Its objective is to
evaluate the presence or not of tones in the spectrum of a noisy sound, being a frequency
dependent function. In a noise spectrum, a maximum tonality impression corresponds to
a tone contribution at around 700 Hz. The smaller the bandwidth, the more tonal the
noise seems [LMS, 2016a]. Sounds with single prominent tones are usually very annoying,
even though these tonal contributes do not represent a significant contribute to the overall
loudness [Quehl, 2001].

The quantification of tonality used uses the method developed by Terhardt for pitch
extraction [LMS, 2016a].

First,the spectral lines that are at least 7 dB higher than their two lower and higher
neighbors are isolated. A new spectrum, free of tonal components, is built by removing
the detected sequences of five spectral lines, considered as pure tones. From both spectra,
the fraction of the total loudness due to tonal components is calculated. This is denoted
by Wn [LMS, 2016a].

Also, an extra weighting function, WT , is derived from the pitch weights of the tonal
components relevant to the pitch perception. At at 700 Hz the perception of tonality is
maximal, being this a frequency dependent function [LMS, 2016a].

Additionally, a constant value, C is added to scale the tonality results to standardize
the result, i.e, such that a 1 kHz sine tone at 60 dB gives a tonality of 1 T.u. (tonality unit).
Considering the combination of the three functions described in the previous paragraphs,
Eq. (3.9) is used for finally computing the tonality, K [LMS, 2016a].

K = C ·W 0.29
T ·W 0.79

N (3.9)
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Chapter 4

Subjective Evaluations of Annoyance in a Propeller Aircraft

4.1 Introduction

According to Quehl [2001], both subjective (psychological) and objective (acoustic and
psychoacoustic) factors determine the perception of sound events to cognitive and affective
processes influencing the perception, interpretation, evaluation and reaction to auditory
stimuli need to be considered in addition to acoustic and psychoacoustic parameters.

Annoyance, caused by sounds or noise, can be defined as displeasure due to sound
exposure that affects health and well-being by its physical presence. Thus, it results from
unwanting, interfering or disturbing acoustic waves and represents a subjective evaluation
of a sound [Rainer, 1997].

Annoyance can be measured by means of questionnaire items with appropriate response
scales. Generally, subjects are requested to listen to sounds or remember sounds and to
use a numeric and/or verbal frame of reference which has been tested for its numeric
properties as well as for the applicability, reliability and validity. It should be noted that
individual human subjects in psychoacoustic laboratories still have their individual history
and may use even common language in a slightly different way than the experimenters
intend. Therefore, when conducting jury testing, one should make sure that the individual
subjects share an understanding of the intended meaning [Rainer, 1997].

The activity of collecting subjects responses is designated by jury testing. The devel-
opment of the several sound quality prediction models in the following chapters requires
both the objective psychoacoustic metrics and the subjective data obtained through jury
testing. In this chapter, first are presented some guidelines followed for performing the
jury evaluations (section 4.2). Secondly, in section 4.3, it is possible to find information
regarding the jury evaluation method/interface used. Finally, Ch. 6 contains the results
of the subjective evaluations performed.

4.2 Jury Testing Guidelines

Subjective testing and analysis involves: presenting sounds to listeners, request judgment
of those sounds from the listeners and perform statistical analysis on the responses. Jury
testing is simply subjective testing done with a group of persons, rather than one person
at a time. For achieving valid results while conducting jury testing, the following details
should be taken into account, as mentioned in Otto et al. [2001]:

• Listening Environment

• Subjects
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4. Subjective Evaluations of Annoyance in a Propeller Aircraft

• Sound Samples Preparation

• Jury Evaluation Method

• Test Preparation and Delivery

The jury testing campaign was conducted at Siemens PLM Software premises in Leu-
ven, Belgium. For the campaign, a meeting room at the company building was used. The
subjects used headphones (model Sennheiser HD600, connected to an amplifier regulated
by a computer), being also necessary to take the room acoustics into account. Due to
several constraints related with materials and the available sound synthesis tools, only
monaural sounds were considered for this activity. Each jury testing session had no more
than 6 juror at a time. The outside ambient noise was kept to a minimum. Also, an effort
was made in making the space as comfortable and inviting as possible, keeping in mind
that, the more clinical the room looks, the more apprehension and anxiety the subjects
will experience. Comfortable chairs and moderate lighting were ensured in order for the
subjects to focus on the task at hand [Otto et al., 2001]. In Fig. 4.1, the adopted set-up
for the jury testing room can be observed.

Figure 4.1: Jury testing room set-up.

The subjects who took part in the evaluation of sounds, also known by jurors, were
internally selected in the company. The jurors were either foreign master students doing
research work for their thesis or research engineers, working at the company. Due to the
fact that the great majority of subjects were young, they were not subjected to audiometric
tests before participating in the evaluation of sounds. Considering that, as stated by Otto
et al. [2001], as a general rule, it is desired that the listening experience level of subjects
is appropriate to the task at hand as well as representative of the target customer, all the
subjects had already flew on a aircraft more than once. In Fig. 4.2 it is possible to find
further information on the flying frequency of the jurors.

Additionally, the number of jurors chosen is relevant to the results. This decision is
greatly influenced by whether extensive subject training is required as well as by the diffi-
culty of the task. Taking into account that the task at hand, i.e, to classify the annoyance
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of aircraft sounds, requires almost no training and also that knowing the distribution of
the subject responses a priori is, in an industrial time-constrained context, not possible,
the option taken was to follow the recomendation found in Otto et al. [2001]. Therefore,
25 to 50 was considered as an appropriate number of subjects for listening studies which
use company employees as subjects, considering also that a small percentage will be au-
tomatically removed due to poor performance. After contacting several colleagues in the
company, a total of 40 jurors were raised for the jury testing campaign.

Figure 4.2: Flying frequency of the jurors.

4.2.1 Sound Sample Selection

Due to time constraints, the use of sound samples for the 85 seats in synchronous and
asynchronous flying conditions is not possible. Therefore, a representative set of sound
samples had to be chosen for the jury testing. Considering that, according to Otto et al.
[2001], the maximum length of the test should be limited to 30-45 minutes (for avoiding
juror fatigue), 35 sound samples were selected, with lengths of about 6.5 seconds.

For selecting the time samples, three different conditions were used as criteria:

(i) Ensure maximum difference between sound samples;

(ii) Provide an efficient sampling of the features domain;

(iii) Guarantee presence of audible difference in the sound samples included;

Satisfaction of condition (i) is achieved by selecting a sound sample from each one of
the clusters, mentioned in Ch. 2. Because, there is a degree of correlation between the
psychoacoustic metrics and annoyance, as it will be shown in Ch. 6, it is reasonable to use
data clustered with the psychoacoustic metrics for obtaining annoyance.

Regarding condition (ii), by including the extreme cases for each psychoacoustic metric,
it is possible to ensure an efficient sampling of the metrics domain. This is an extremely
important condition in order to obtain a representative set of data for building the sound
quality prediction models that are described in Ch. 6. Condition (iii) is satisfied by doing
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4. Subjective Evaluations of Annoyance in a Propeller Aircraft

a careful screening of the chosen sounds, prior to the jury testing, as described in Otto
et al. [2001]. Screening is accomplished by simply auditing the sounds as they are to be
presented.

Additionally, it is important to add that, for checking the juror consistency, 5 repeated
sounds were added. After this process, a total of 35 sound samples were selected (including
the repeated ones). These are represented in Tab. 4.1.

Table 4.1: Seat numbers of the sound samples used for the jury testing; (r) indicates the
sound sample was repeated

Synchronous Case Asynchronous Case

68 37
35 20
15 48 (r)
1 22
40 6

5 (r) 64
59 50
20 59
25 71 (r)
26 73 (r)
64 82
72 30
79 1
85 5
81 -

84 (r) -

It should also be noted that all the sound samples were equalized to improve the sound
quality during the test. This was done while in time domain, dividing each sample for the
maximum value of both synchronous and asynchronous time histories. Also, fade in and
fade out effects were included, for softening the start of the sound samples [Otto et al.,
2001].

4.3 Jury Evaluation Method and Interface Design

This section is destined for defining both the presentation and the evaluation format used
in the test. The method selected for performing the jury evaluations was the so-called Se-
mantic Differential, with the use of an anchor sound. In a semantic differential test, sound
samples are presented one by one to the jurors, who have to rate them based on a pair of
two opposing adjetives or expressions. These are designated by bipolar adjectives or pairs,
being that they lie in opposite ends of a scale with different gradations. The gradations
are labeled with appropriate adverbs that allow the subject to rate the magnitude of their
impressions. As recommended by Otto et al. [2001], a seven point scaled was used. This
allows to break down the sound into impressions and feelings by the jurors.

However, a modification in the classical semantic differential test was used. Before, the
juror listens to the sound sample he is assessing, he will first hear an anchor sound, which
will be always the same sound and corresponds to the seat number 38 in synchronous
conditions. The criteria for choosing the anchor was to use a seat where the corresponding
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sound sample psychoacoustic metrics are an average of the other sounds. Also physically
this seat is a reasonable choice, keeping in mind that seat 38 is located in the middle of the
fuselage. By including the anchor sound, the juror, for each comparison, always has the
same reference sound, making it easier to be consistent throughout the test. In Fig. 4.3, a
schematic helps to better understand the use of the sound sample preceded by the anchor
sound.

Figure 4.3: Track sequence used in the jury test.

The software used to conduct the jury testing was the Jury Testing component of
LMS Test.Lab 17, which was developed specifically for this purpose. Fig. 4.4 represents
the interface that each juror used.

Figure 4.4: Interface created for the jury test.

It should also be added, that prior to the start of the jury test itself, the jurors received
an overview of the project in which this jury testing activity is inserted, in order for them
to understand the reasons that led to conduct jury testing and what can be done with the
results. This was done recurring to two posters, created specifically for this purpose. Also,
prior do the jury test itself, the jurors had the opportunity to experience a training test,
where they can hear the anchor and a sound sample and insert their response, whithout
this answer being accounted for. The goal is to acclimate subjects to both the sounds and
the evaluation task, as advised by Otto et al. [2001].
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Chapter 5

Sound Quality Prediction Models

5.1 Introduction

There has been a resurgence of interest in ML methods over the last few years, as re-
searchers from diverse backgrounds have produced a firm theoretical foundation and
demonstrated its usefulness in numerous applications. This recent renewed interest is due,
for example, in ANNs, to new training techniques for more sophisticated architectures,
also the always ongoing increase of computation power available and the new possibilities
brought by the updated approaches in parallel computing [Fausett, 1994]. This advance-
ments were a key factor to the decision of applying several different prediction techniques
in a sound quality context and studying the produced results.

As introduced in Ch. 1, the ability to predict subjective sound quality metrics from
objective ones allows the acoustic engineer to shorten the design cycle, since the need to
conduct jury testing, as described in Ch. 4, is time consuming and inhibits him to include
the human dimension in an early acoustical design intervention. As a consequence, this in-
tervention occurs late in the product development cycle, when all the relevant parameters
are already fixed, and does not properly considers the passenger comfort and reduction of
annoyance. The development of a VP Model and its posterior combination with virtual
aircraft prototyping tools, allows to, after a design or materials alteration, synthesize new
sound samples and quantify the human reaction to these, opening the path towards de-
veloping a human-inclusive multi-attribute design optimization process. Fig. 5.1 contains
a flowchart of the process described in this paragraph.

Due to the complex relationships between the human hearing process and acoustic per-
formance, an individual psychoacoustics-based sound quality metric cannot alone model
the human performance. Consequently, ML techniques are more suited to describe the rela-
tionships at hand, being developed using both the psychoacoustic objective metrics and the
subjective evaluations provided by jurors. The ML based pattern recognition techniques
can be broadly divided into classification-based learning methods and regression-based
learning methods [Huang et al., 2016]. The work developed during this thesis focused on
regression-based techniques.

The development of ML models to predict subjective sound quality metrics, from ob-
jective metrics (psychoacoustic) has already been done by some researchers. For example,
the prediction performance of subjective sound quality (as annoyance) from psychoacous-
tic metrics usually is done by comparing the performance of a MLR approach, which
represents a more traditional method, with the results of ML techniques, as Xue et al.
[2016] has done (comparing the linear-based model with ANNs and SVMs models, re-
garding SQ for vehicle HVAC). In a similar way, Liu et al. [2015] compare different ML
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prediction models for sound quality in engine-radiated noise. Therefore, section 5.2 is
destined to define the model used for predicting annoyance directly from psychoacoustic
metrics. For this, four different prediction techniques were used, with the goal of com-
paring a more current/traditional prediction method, MLR, with three machine learning
techniques, namely ANNs, SVMs and RFs. Ch. 6 contains the results obtained through
each one of these models.

During the work performed for this thesis, while finalizing the models referred to in the
paragraphs above, a new approach on the prediction of sound quality, different from the
ones found in current scientific literature on the topic, was created and implemented. The
prediction process described so far relies on the use of the psychoacoustic metrics obtained
using LMS Test.Lab. However, the computation of these metrics still requires the acoustic
engineer to select some acoustic and digital signal processing parameters, which are case
dependent and vary with the type of sound sample considered. So, due to the fact that this
step still demands a human input, a deep learning model was implemented, using CNNs,
to predict the psychoacoustic metrics from the sound samples time signals. Also, this new
type of approach allows to obtain a deep learning compact model that is easily insertable,
in a posterior phase, in, for example, an active control block diagram on Simcenter Amesim
or MATLAB Simulink. Therefore, this type of models allow to exploit with a bigger ease,
for example, active sound control or multi-attribute optimization design processes.

This decision was highly motivated by the analysis of applications of deep learning
in other audio processing cases, such as voice recognition or music classification. Indeed,
according to the literature, although hand-crafted acoustic features are typically well de-
signed procedures, it is still not possible to retain all useful information due to the human
knowledge bias and the high compression rate. One way to overcome this limitation is to
feed raw time-signals into deep CNNs, which can learn spatially or temporally invariant
features from pixels or time-domain waveforms, providing a more thorough end-to-end
process by completely abandoning the feature extraction step [Aytar et al., 2016; Dai
et al., 2017; Sainath et al., 2015; Thickstun et al., 2017; Trigeorgis et al., 2016].

In recent years, CNNs have been used with great success in a wide range of contexts.
Although computer vision is perhaps the field where its application is more popular, if a
correct representation of sound is used, CNNs are also well suited for this type of tasks [Shu-
vaev et al., 2017]. Their use allows the possibility to train a prediction model using the
sound samples from all seats from the aircraft and their corresponding values for the psy-
choacoustic metrics, thus being able to predict the psychoacoustic features directly from
the sound samples (inputted as time signals). This model is defined in section 5.3.

Therefore, by combining the two models described above, it is possible to directly
predict annoyance for new sound samples. This final model, designated by VP model, has
as an input a time signal and in a first stage predicts psychoacoustic metrics, being that
it was trained using data from LMS Test.Lab. In Fig. 5.2, the data pipeline in the VP
model is shown. The sound samples are inputted as time signals in a trained CNN based
prediction model being predicted (as output) psychoacoustic features that will serve as an
input to a feature-based model (trained on the jury testing data), being the final output
an annoyance evaluation.

Throughout this chapter the data flow in the final VP prediction model will become
clearer, being that each one of both the prediction blocks will be individually analyzed
(sections 5.2 and 5.3). Finally, on section 5.4, the complete model will be further described
For all the models mentioned, their results and performances can be found on Ch. 6 and
Ch. 7.

24



5.1. Introduction

Figure 5.1: Flowchart illusttrating the role of a sound quality prediction model in the
aircraft design process.
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Figure 5.2: Data pipeline throughout the different blocks of the Virtual Passenger Model.
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Assessing the Prediction Models Performance

After developing the prediction models, i.e, training, it is necessary to validate them and
it would not be adequate to validate, i.e. test, the models with the same data that was
used for training them. As an analogy with a real life example, consider a student going
to an exam. If in this exam the professor would ask to solve exactly the same problems
the student solved during classes, he would pass the exam not because he understood the
concepts, but because he memorized the exercises. Therefore the students grade would
not reflect his ability to solve new problems, but only his ability to solve only the problems
taught during classes. In the prediction models the situation is analogous. For properly
assessing performance, the models should predict on fresh and unseen data, left out on
purpose during training [Russell et al., 2010]. Due to the time constraints associated with
the work proposed for this thesis not allowing to, for example, re-conduct jury testing
on more sound samples, it is necessary to divide the existing data into training data and
testing data.

Let x be a set of b input predictor vectors for the model. Each vector contains p obser-
vations (or samples). For the model based on the jury testing data, each one corresponds
to a objective metric (psychoacoustic) and for the CNN based model they are the time
signals of the sound samples. Also, it is necessary to define y as the response variable,
containing p observations or samples, being either the subjective metric (annoyance in the
jury testing model) or the objective psychoacoustic metrics (CNN model). Considering
training data as the data used to train the model and testing data as the data used for
assessing the models performance, after dividing the data set (originally with p samples),
two different data sets are obtained. Therefore, considering m samples for training and n
samples for testing (in a way that p = m+ n):

D = {xi, yi}pi=1 (5.1)

Dtrain = {xi, yi}mi=1 (5.2)

Dtest = {xi, yi}ni=1. (5.3)

The model, after training with the training data, Dtrain, is tested using the test-
ing data, Dtest. By feeding it the input testing values xi(i = 1, 2, .., n), the predicted
responses, ypredi(i = 1, 2, ..., n), are obtained and compared with the original response
values contained in the testing data, yi(i = 1, 2, ..., n). Keeping in mind, regression-based
techniques are being used, the performance is assessed with three different metrics. Ac-
cording to Huang et al. [2017] and Rawlings et al. [1998], the Mean Absolute Error (MAE)
and RMSE are computed with the following equations:

MAE =
1

n

n∑
i=1

|yi − ypredi | (5.4)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ypredi)2. (5.5)

The Coefficient of Determination, denoted by R2, in the context of prediction models,
indicates how well observed outcomes are replicated by the model, based on the proportion
of total variation of outcomes explained by the model. Its calculation is done using,

SSR =
SSR

SST
= 1− SSE

SST
(5.6)
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where SSE is the sum of squared error, SSR is the sum of squared regression, SST is the
sum of squared total and, as it has been explained above, n is the number of observations
in the testing data. This coefficient ranges from 0 to 1 and the closer the value is to one,
the better the fit, or relationship, between observed and predicted values, i.e, a value close
to one most likely indicates the model is able to predict more accurately [Rawlings et al.,
1998].

Regarding the data division, the diagram in Fig. 5.3 allows to gain a better comprehen-
sion on of the several steps necessary to properly train and test each one of the prediction
models previously mentioned.

Figure 5.3: Diagram with the data flow used to train and test the prediction models.

An additional metric necessary to analyze the data at hand is the Pearson correlation
coefficient. It is a measure of the linear correlation between two variables, having a value
between +1 and -1, where +1 is a total positive linear correlation, 0 means that there
is no linear correlation and -1 corresponds to a total negative linear correlation. For two
variables, A and B with N scalar observations, the Pearson correlation coefficient, ρ, is
given in terms of the covariance of A and B by:

ρ(A,B) =
cov(A,B)

σAσB
(5.7)

where σA and σB are the standard deviations of A and B [Fisher, 1925].

Data Division and Monte Carlo Simulations

Even though data division is sometimes an overlooked aspect in ML, the method used
and the amount of data used for training and testing may have a significant influence on
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the prediction models performance. The first approach used in this work was to randomly
select data for training and testing. Obviously, randomly choosing data implies that the
one used for training may not be a representative group of the overall data set. This
effect on performance was studied through Monte Carlo simulations (defined in the next
paragraph).

About the Monte Carlo simulation method, as can be read in Kwak and Ingall [2007],
it encompasses any technique of statistical sampling employed to approximate solutions
to quantitative problems. A model or a real-life system or situation is developed, and
this model contains certain variables. These variables have different possible values, rep-
resented by a probability distribution function of the values for each variable. The Monte
Carlo method simulates the full system many times (hundreds or even thousands of times),
each time randomly choosing a value for each variable from its probability distribution.
The outcome is a probability distribution of the overall value of the system calculated
through the iterations of the model.

This simulation method was applied to study several aspects of the prediction mod-
els developed for predicting annoyance from psychoacoustic metrics, where for several of
the hyperparameters of the prediction models, Monte Carlo simulations were performed
to study their influence on performance. Therefore, after dividing the data randomly
many times, it is possible, for example, to average the obtained performance metrics,
thus obtaining the overall performance through the different randomizations, for different
hyperparameters of the models, and also its standard deviation.

Bayesian Optimization

ML algorithms are rarely parameter-free: parameters controlling the rate of learning or
the capacity of the underlying models must often be specified and carefully tunned. Un-
fortunately this tunning frequently requires more experienced knowledge, rules of thumb
or even brute-force searches [Snoek et al., 2012]. A more flexible take on this issue is to
perform an automated optimization of these parameters. Bayesian optimization has been
shown by Jones [2001] to outperform other state of the art global optimization algorithms
on a number of challenging optimization benchmark functions.

Bayesian Optimization owes its name to the famous Bayes theorem, which states, in
a simplified way, that the posterior probability of a model (or theory), M , given evidence
(or observations), E, is proportional to the likelihood of E given M multiplied by the prior
probability of M [Brochu et al., 2010]. The theorem is expressed as,

P (M |E) ∝ P (E|M)P (M). (5.8)

According to Brochu et al. [2010] and Zhang et al. [2015], first xi is defined as the ith
sample and f(xi) corresponds to the observation of the objective function, f(x), at xi. As
observations are accumulated in D1:t = {x1:t, f(x1:t)}, the prior distribution is combined
with the likelihood function P (D1:t|f). Therefore, in the framework of this optimization
procedure, the objective function is assumed to be drawn from the following probabilistic
model:

P (f |D1:t) ∝ P (D1:t|f)P (f). (5.9)

Rephrasing in a simpler way, as in other kinds of optimization, Bayesian optimiza-
tion sets out to find the minimum of a function, f(x), on some bounded set χ, which
is taken as a subset of IRD. The significant difference of this method from other opti-
mization procedures is the fact that it constructs a probabilistic model for f(x) and then
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exploits this model to make decisions about where in χ to next evaluate the function,
while integrating out uncertainty. The goal is to use all of the information available from
previous evaluations of the objective function, f(x), and not simply rely on local gradient
and Hessian approximations. The resulting procedure is able to find the minimum of diffi-
cult non-complex functions with relatively few evaluations, at the cost of performing more
computation to determine the next point to try. Even though the evaluations of f(x) are
expensive to perform, the ability to make better decisions justifies the extra computation
cost [Snoek et al., 2012]. Considering the possibility of using parallel computing, this op-
timization procedure was used in some of the ML methods (SVMs and RFs) and also in
the CNNs.

5.2 Annoyance Prediction from Psychoacoustic Metrics

The annoyance prediction model based on psychoacoustic features was built using the data
obtained from the conducted jury study. After averaging the annoyance evaluations from
all jurors for each sound sample, it is possible to obtain annoyance evaluations for the 30
stimuli. Therefore, the data set available to build the prediction model consists of 30 pairs
of objective/subjective evaluated sound samples.

The main assumption involved in this approach is that there is a pattern (either linear
or non-linear) behind the human estimation process, as long the context and the borders
of the estimation set are kept well defined. Therefore, a curve-fitting approach is used.

The following subsections have as a goal to provide a theoretical overview of the predic-
tion models used. However, especially for the ML methods (or the deep learning one), the
framework of this thesis does not includes as an objective to extensively review this con-
cepts. For each procedure, a global theoretical overview is presented, indicating literature
where further details may be consulted.

5.2.1 Multiple Linear Regression

A MLR algorithm is a mean of determining relationships between two or more explanatory
variables and a response variable by fitting a linear equation to the observed data. The
multiple refers to multiple independent variables [Xue et al., 2016]. This procedure has
as advantages the fact that for using it only a small amount of data is required and it
provides reasonable outputs through simple calculations [Huang et al., 2016].

The linear model for relating a dependent variable to b independent variables is,

yi = β0 + β1xi1 + β2xi2 + . . .+ βbxib + εi (i = 1, 2, . . . ,m) (5.10)

where the subscript i denotes the observational unit from which the observations on y
and the b were taken. The second subscript designates the independent or explanatory
predictor variables, which correspond to the psychoacoustic metrics. The sample size
(number of samples selected for training) is denoted with m, i = 1, 2, . . . ,m and b denotes
the number of independent variables (i.e the number of used psychoacoustic features).
Regarding β, it is the weighting coefficient related to x and β0 is the constant term.
Finally, εi is the error term [Rawlings et al., 1998]. The matrix expression of Eq. 5.10 is,

{y} = [xtrain]{β}+ {ε} (5.11)

where {y} is the column vector of response observations, [x] is matrix where, after a column
of ones, each column represents the observations of an independent variable (psychoacous-
tic metric), {β} is a vector of coefficients and {ε} a vector of residual errors.
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As stated by Rawlings et al. [1998], the coefficients are obtained through a least squares
approximation. After this computation, usually done using statistical software, the pre-
dicted response values are calculated using the test objective metrics and the vector of
coefficients:

{ypred} = [xtest]{β}. (5.12)

The residuals are then, as expressed by Rawlings et al. [1998], the difference between
the observed test responses and the predicted (fitted) test responses,

{ε} = {ytest} − {ypred}. (5.13)

A MLR can effectively solve problems whose inner relationship are not very complex.
However, it performs poorly when addressing strongly nonlinear issues [Huang et al., 2016].

5.2.2 Artificial Neural Networks

Another approach to modeling annoyance response of engine sounds is to use ANNs. This
is an effective technique that uses a non-linear algorithm, whose methods for minimizing
error are more efficient than other non-linear technique. Inspired by biological neural
networks, ANNs are based on the present understanding of biological neural systems. The
neural network considered for this section is the feed-forward neural network, with a back
propagation algorithm [Kahn, 1998].

Firstly, before going over the neural network itself, it is necessary to understand the
characteristics of each neuron. As illustrated in Fig. 5.4, on the left side neuron, a scalar
input p is transmitted through a connection that multiplies its strength by the scalar
weight w to form the product w × p, again a scalar. Here, the weighted input is the only
argument of the transfer function, F , which produces the scalar output a. Consider now
the neuron on the right where a scalar bias b is considered. The bias is like a weight,
except it has a constant input of 1. The transfer function net input n, again a scalar, is
the sum of the weighted input w × p and the bias b. This sum is the argument of the
activation function (or transfer function) f , which will be described further in the next
paragraphs. Note the weights and bias are both adjustable parameters of the network.
The central idea of neural networks is that these parameters can be adjusted so that the
network exhibits the desired output [Kahn, 1998].

Figure 5.4: Diagram showing the characteristics of a single neuron in a back propagation
neural network. The right side neuron includes the bias and the left side does not [Kahn,
1998].
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A back propagation algorithm corresponds to a multilayer perceptron, consisting usu-
ally of at least three hierarchical layers of neurons, one input layer, one or more hidden
layers and one output layer. The network is connected in such a way that each layer is
fully connected to the next layer, i.e, every neuron in the input layer will send its output
to every neuron in the input layer. The number of neurons in the input layer is equal
to number of variables in the input data. The number of neurons in the output layer
is the same as the number of output variables. The number of neurons in the hidden
layers can be varied based on the complexity of the problem and the size of the input
information [Kahn, 1998].

Fig. 5.5 illustrates the type of network described in the previous paragraph. The inputs
are the b psychoacoustic metrics considered and the number of hidden neurons is k.

Figure 5.5: Schematic diagram of a feed-forward ANN.

The main goal of the network is to map the input, i.e, x ∈ Rb, into the output, i.e,
y ∈ R. The mapping is performed by a network composed of processing units (neurons)
and connections between them. A neuron, i, in a network accumulates input signals, xj ,
in the summing block and is activated by function f to have only one output ypredi ,

ypredi(x,w) = f(ai) = f(

b∑
j=1

wijxi + bi) (5.14)

where wij are the weights of connection and bi is the bias (threshold parameter) [Lee and
Chae, 2004].

Regarding f , it corresponds to the activation function. Feedforward networks often
have one or more hidden layers of non-linear neurons (for example, with sigmoid activation
functions), that allow the network to learn non linear relationships between inputs and
outputs, followed by an output layer. In this output layer, which, as stated by Bishop
[2006], in the case of a classification-based models would be a non-linear function (for
example a sigmoid) and for a regression or function fitting problem corresponds to a linear
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activation function [Bishop, 2006]. A popular non linear activation function is the sigmoid
function, which is expressed as,

f(ai) =
1

1 + e−ai
. (5.15)

The use of non linear activation functions in the hidden layers of the network implies
that the neural network function is differentiable with respect to the network parameters.
This plays a key role in the network training algorithm. Defining an error function, E(w),
based on predicted and observed training data, the goal is to minimize this function
depicted in Eq. 5.16 [Bishop, 2006].

E(w) =
1

2

M∑
n=1

‖ypredi(xn, w)− yn‖2 (5.16)

As shown by [Bishop, 2006], this problem is solved by adopting a geometrical approach.
Representing the error function as a surface sitting over the weight space, illustrated in
Fig. 5.6, it is clear that the goal is to chose a weight vector, w, that minimizes the error
function, thus achieving the global minimum. Point wA is a local minimum and point wB

is a local maximum. At any point wC , the local gradient of the error surface is given by
the vector ∇E.

Figure 5.6: Geometrical view of the error function, E(w), as a surface sitting over weight
space [Bishop, 2006].

Being the error E(w) a smooth continuous function of w, its smallest value will occur
at a point in weight space such that the gradient of the error function vanishes, so that

∇E(w) = 0. (5.17)

Therefore, the network training corresponds to the iterative process of computing the
network parameters which minimize its error. There exist several training algorithms, such
as the Levenberg–Marquardt (LM) algorithm (a combination of the gradient-descent and
the Gauss-Newton method) which is often a first choice algorithm due to its robustness and
performance [Zhang et al., 2017]. Also, in order to obtain a smaller error, some techniques
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are used alongside back-propagation such as the Bayesian Regularization (BR), which is a
variation of the LM algorithm. LM and BR algorithms are often able to obtain lower mean
squared errors than any other algorithms for functioning approximation problems. LM was
especially developed for faster convergence in backpropagation algorithms. About BR, it
has an objective function that includes a residual sum of squares and the sum of squared
weights to minimize estimation errors and to achieve a good generalized mode [Kayri,
2016; MacKay, 1992]. Their formulations and complete algorithms can be found in the
references suggested in this paragraph. Both algorithms will be used and their results will
be compared in Ch. 6.

5.2.3 Support Vector Machines

SVMs were proposed by Vapnik and co-workers in 1995 [Vapnik, 1999, 2013]. This proce-
dure corresponds to a statistical learning approach based on a risk minimization principle.
Recently, it has been successfully applied to solve classification and regression problems
in numerous fields [Wu et al., 2007]. In SVMs, the input data of a low-dimensional fea-
ture space is first mapped into high-dimensional feature space using a kernel function,
and then linear regression is performed in the feature space. A separating hyperplane is
obtained to maximize the margin between the training examples and the class boundary
in high-dimensional feature space [Liu et al., 2015].

Considering the training dataset, Dtrain = {xi, yi}mi=1, with m samples for training,
according to Liu et al. [2015], it is possible to define an ε-insensitive loss function, which
gives zero error if the absolute difference between the prediction and the target is less than
ε, where ε > 0 [Bishop, 2006]. It is expressed as:

|y − f(xi)|ε =

{
0, if |y − f(xi)| ≤ ε
|y − f(xi)| − ε, if |y − f(xi)| > ε

(5.18)

In high-dimensional feature space, support vector regression is used to find the linear
relation as follows:

f(xi) = ω · φ(xi) + b (5.19)

where ω is a vector for regression coefficients, φ is a nonlinear mapping from low-dimensional
feature space to high dimensional feature space, ω · Φ represents the inner product of the
two vectors and b represents a bias [Liu et al., 2015]. They are estimated by minimizing
the regularized risk function, R(C), as:

minR(C) =
1

2
‖ ω ‖2 +C

m∑
i=1

(ξi − ξ∗i ) (5.20)

In the previous equation, 1
2 ‖ ω ‖

2 is used as a flatness measurement of function, C is
a penalty factor which determines the trade off between the training error and the model
smoothness and ξ and ξ∗i are positive slack variables. Considering the constraints for 5.20
as: {

yi − ω · φ(xi)− b ≤ ε+ ξi

−yi − ω · φ(xi) + b ≤ ε+ ξ∗i
(5.21)

The Lagrange equation is built as:
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maxω(ai, a
∗
i ) =

m∑
i=1

(ai−a∗i )yi−
m∑
i=1

(ai−a∗i )ε−
1

2

m∑
i=1

m∑
j=1

(ai−a∗i )(aj−a∗j )K(x, xi) (5.22)

where K(x, xi) = φ(x) · φ(xi) is a kernel function, ai and a∗i are Lagrange multipliers to
be solved. Only the nonzero values of Lagrange multipliers are useful in predicting the
regression line, and their corresponding samples are known as support vectors [Liu et al.,
2015]. The constraints of Eq. 5.22 are:

m∑
i=1

(ai − a∗i ) = 0 (5.23)

where ai, a
∗
i ∈ [0, C].

Therefore, as stated in Liu et al. [2015], the function regression problem on SVMs may
be reduced to a quadratic programming problem. The array ω can be written in terms of
the Lagrange multipliers and training samples as:

ω =
N∑
i=1

(ai − a∗i )φ(xi) (5.24)

The choice of different kernel functions can generate different support regression mod-
els. Common kernel functions types of SVMs can be found in Ding et al. [2008]. For
example: {

Radial Basis Kernel: K(x, xi) = exp(−γ ‖ x− xi ‖2)
Polynomial Kerne:l K(x, xi) = exp(xTxi + r)q)

(5.25)

where γ, r and d are constants.
Finally, as shown in Liu et al. [2015], the linear Eq. 5.19, has the following explicit

form:

f(xi) = ω · φ(xi) + b =

k∑
i=1

(ai − a∗i )K(x, xi) + b (5.26)

The generalization ability of support vector regression depends entirely on the penalty
constant C and on the constants used in the kernel functions. However, the SVMs tech-
nique is limited in feature subset selection and parameter optimization [Liu et al., 2015].
The Bayesian optimization procedure was used for obtaining the optimal parameter subset.

5.2.4 Random Forests

In the latest years, among the several existing ML techniques available, decision trees have
stood out as a popular procedure due to their simplicity, ease of use and interpretability.
Instead of averaging the predictions of a set of models, an alternate form of model com-
bination is to select one of the models to make the prediction, in which the choice of the
model is a function of the input variables. Thus, different models become responsible for
making predictions in different regions of the input space. In a decision tree, the process
can be described as a sequence of binary selections corresponding to the traversal of a tree
structure. In this procedure, the individual models are generally chosen to be very simple,
and the overall model flexibility arises from the input-dependent selection process [Bishop,
2006].
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As mentioned above, decision trees build a regression or classification model in the
form of a tree structure. They divide the data set into smaller and smaller subsets while
at the same time an associated decision tree is incrementally developed. The final result
is a tree with decision nodes and leaf nodes. A decision node has two or more branches,
each representing values for the attribute tested. Leaf nodes represent a decision on the
numerical target. The topmost decision node in a tree corresponds to the best predictor,
called root node. Fig. 5.7 shows an illustration of a recursive binary partitioning of the
input space, along with the corresponding tree structure [Bishop, 2006].

Figure 5.7: On the left, a representation of a two dimensional input space that has been
partioned into five regions usig axis-aligned boundaries. The right side diagram, illustrates
a binary decision tree corresponding to the input space [Bishop, 2006].

For any new input x, the region which falls into is determined by starting at the top
of the tree at the root node and following a path down to a specific leaf node according to
the decision criteria at each node. Within each region, there is a separate model to predict
the target variable. Note that these are not probabilistic graphical models [Bishop, 2006].

Considering the training data set, Dtrain = {xi, yi}mi=1, on which the model will be
built, if the input space partitioning is given, by minimizing the sum-of-squares error
function the optimal value of the predictive variable within any given region is just given
by the average of the values of ym for those data points that fall in that region [Bishop,
2006].

Regarding the determination of the structure of a tree, due to computational power
constraints, it is done generally through a greedy optimization, starting with a single root
node, corresponding to the whole input space, and then growing the tree by adding nodes
one at a time. At each step there will be some number of candidate regions in input space
that can be split, corresponding to the addition of a pair of leaf nodes to the existing tree.
For each of these, there is a choice of which of the input variables to split, as well as the
value of the threshold [Bishop, 2006].

The joint optimization of the choice of region to split, and the choice of input variable
and threshold, can be done efficiently by exhaustive search noting that, for a given choice
of split variable and threshold, the optimal choice of predictive variable is given by the
local average of the data, as noted earlier. This is repeated for all possible choices of
variable to be split, and the one that gives the smallest residual sum-of-squares error is
retained. Regarding the issue of when to stop adding nodes, it is common practice to grow
a large tree, using a stopping criterion based on the number of data points associated with
the leaf nodes, and then prune back the resulting tree [Bishop, 2006].
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However, as stated in Bishop [2006], this procedure has shortcomings. For instance, the
division of the input space is based on hard splits in which only one model is responsible
for making predictions for any given value of the input variables. This decision process
can be softened by combining models. The use of ensembles of trees (more specifically
RFs) allows to overcome this lack of robustness.

RFs are an ensemble learning methodology and like other ensemble learning techniques,
the performance of a number of weak learners (which could be a single decision tree, single
perceptron, etc) is boosted by a voting scheme, where, for each test instance, every model
makes a prediction, i.e., votes, being the final output based on the overall voting [Ahmad
et al., 2017].

A RF is an ensemble of C trees T1(X), T2(X),..., TC(X), where X = x1, x2, ..., xm is a
m-dimension vector of inputs. The resulting ensemble produces C outputs Ypred1 = T1(X),
Ypred2 = T2(X),..., YpredC = TC(X). YpredC is the prediction value by decision tree number
C. The output of all these randomly generated trees is aggregated to obtain one final
prediction Ypred, which is the averaged value of all the trees in the forest. A RF generates
a C number of decision trees from an m number of training samples [Ahmad et al., 2017].

In RF, the training algorithm applies the general technique of bootstrap aggregating,
or bagging to tree learners. Given a training set, bagging repeatedly selects a random
sample with replacement of the training set and fits trees to these samples. This decreases
the variance of the model, without increasing the bias. While the predictions of a single
tree are highly sensitive to noise, the average of many trees is not, as long as they are not
correlated. For ensuring this, the use of bootstrap sampling shows different training sets
to the trees, de-correlating them [Breiman, 2001].

Finally, RFs include another process called feature bagging, using a modified tree learn-
ing algorithm that selects, at each candidate split in the learning process, a random subset
of features. Therefore, its possible to avoid the correlation of features in a ordinary boot-
strap sample [Hastie et al., 2009].

5.3 Psychoacoustic Metrics Prediction from Time Signals

As introduced in section 5.1, throughout this thesis, a prediction model is developed, on
which the input, i.e., the predictor variables are the time signals of the sound samples,
being this the first block of the VP prediction model. On Fig. 5.8 it is possible to observe
a plot of the time signal that corresponds to the sound sample of seat number 1 of the
aircraft, in synchronous flying conditions.

The goal of this model is, by using a type of neural network that is able to receive a time
signal as an input (1D array), to train it with the psychoacoustic metrics associated with
each sound sample (computed in LMS Test.Lab), in order for being able to, for instance,
predict loudness or tonality. In the following subsection, it can be found an overview of
the functioning behind CNNs, and the typical architectures that are used with this layer
type. Due to performance assessment aspects, this model was developed using only the 140
sound samples that were not used for jury testing. Further explanations of this decision
can be found in section 5.4.
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Figure 5.8: Sound sample corresponding to seat number 1, in synchronous flying condi-
tions, as a time signal.

5.3.1 Convolutional Neural Networks

CNNs are designed to process data that comes in the form of multiple arrays, for example,
a color image composed of three 2D arrays containing pixel intensities in the three color
channels. Several data modalities are in the form of multiple arrays: 1D for signals and
sequences, including language; 2D for images or audio spectrograms; and 3D for video or
volumetric images. In CNNs, four ideas that take advantage of the properties of natural
signals play a key role in their functioning: local connections, shared weights, pooling and
the use of many layers [LeCun et al., 2015].

The architecture of a typical CNN is structured as a series of stages. The first few
stages contain two types of stages: convolutional layers and pooling layers (or sub-sampling
layers). In a convolutional layer, units are organized in feature maps, within each unit
is connected to local patches in the feature maps of the previous layer through a set of
weights called a filter bank. The result of this local weighted sum is then passed through
a non-linearity (activation function). All the units in a feature map share the same filter
bank. Different feature maps in a layer use different filter banks [LeCun et al., 2015].

Fig. 5.9 illustrates the structure of a CNN. Two motives justify the use of this structure.
First, in data arrays such as images, local groups of values are often highly correlated,
forming distinctive local motifs that are easily detected. Second, the local statistics of
images and other signals are invariant to location, i.e, if a motive can appear in one part
of an image, it could appear anywhere, hence the idea of units ate different locations
sharing the same weights and detecting the same pattern in different parts of the array.
Mathematically, the filtering operation is performed using a discrete convolution, thus the
name [LeCun et al., 2015].

As described above, the role of the convolutional layers is to detect local conjunctions
of features provenient from the previous layer. This requires the use of a pooling layer in
between the convolutionals, for merging semantically different features into one. Because
the relative positions of the features forming a motif can vary somewhat, the reliable
detection of motifs is done by fine-graining the position of each feature. The typical
pooling unit computes the maximum of a local patch of units in one feature map (or in a
few feature maps). Neighbouring pooling units take input from patches that are shifted
by more than one row or column, thereby reducing the dimension of the representation
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Figure 5.9: Diagram illustrating part of a convolutional neural network, showing a layer
convolutional units followed by a layer of sub-sampling units. Several sucessive pairs of
such layers may be used [Bishop, 2006].

and creating an invariance to small shifts and distortions. Usually, each stacked block in a
CNN contains a convolution layer, followed by the non-linearity and pooling. Depending
on the dataset, severall blocks similar to these are connected, forming stacks LeCun et al.
[2015]. The mathematical formulation of CNNs can be found in Bishop [2006].

However, regarding the use of pooling layers when processing time signals, this should
be done carefully. Due to the fact that, according to the Nyquist sampling theorem, per-
forming temporal pooling in audio processing corresponds to a downsampling operation,
thus possibly originating an aliasing effect.

Other types of layers quite popular in the architecture of CNNs are the batch nor-
malization layers, used between the convolutional layers and the nonlinearities. These
normalize each input channel, speeding up CNN training and reducing sensitivity to net-
work initialization Le Ba et al. [2016].

Finally, a relatively recent regularization technique, called dropout, is also widely used.
As LeCun et al. [2015] points out, along with the efficient use of GPUs and data augmen-
tation procedures, this is one of the techniques responsible for the successful use of CNNs
in the last decade. A dropout layer randomly drops units (along with their connections)
from the network during training. This results in a significant reduction of overfitting [Sri-
vastava et al., 2014].

5.4 Virtual Passenger Model: Predicting Annoyance from
Time Signals

Sequentially combining the prediction models described on sections 5.2 and 5.3, it is pos-
sible to, in a first stage, predict the psychoacoustic metrics with CNNs, as seen in 5.3,
and then input those feature predictions in one of the feature-based models from 5.2, thus
simulating a VP in a propeller aircraft. This procedure is represented in Fig. 5.2. In
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Fig. 5.10 the data used for training each block is specified.

Figure 5.10: Diagram showing the data used for training each block of the VP model.

Keeping in mind that the first block is developed with the 140 sound samples that were
not used for jury testing, the complete model performance is assessed by inputting the
VP model with the 30 sound samples used for jury testing (thus not used for training the
first block) and comparing the annoyance predictions with the original juror responses.
Even though the second block of the model was built with these sounds, the features were
predicted on the previous block without contact with this sounds, thus being reasonable to
measure performance with the original jury testing sounds. This procedure is represented
as a flow chart on Fig. 5.11.

Figure 5.11: Illustration of how to assess performance of VP model.

In opposition to what was done for the second block of the VP model, for the first
block of the prediction block the data is not split into testing and training, being the block
trained with the entire set of the 140 sound samples. The performance in predicting, for
example loudness, is assessed with the jury testing 30 sound samples, being this data yet
unseen by this trained block, hence representing a valid testing sample.
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Chapter 6

Predicting from Objective Metrics: Results

After defining how the objective psychoacoustic metrics are computed and the methods
used to collect subjective evaluations of the sound samples, the performance of the devel-
oped prediction models is analyzed throughout this chapter. The best performing model is
chosen as the second prediction block of the VP model, illustrated in Fig. 5.2. The results
of the campaign for collecting subjective evaluations of sound samples are included.

For facilitating the understanding of the here presented contents, some of the results
that were not deemed fundamental for displaying are included in Appendix A. These
have a more individual focus on each prediction model allowing to deeper analyze their
performance. All the work presented in this chapter was done using MATLAB 2018.

6.1 Subjective Evaluations of Sound Samples

As shown in Ch. 4, each juror classified a sound sample, i.e, stimulus, regarding the anchor
sound, by choosing one of the adjectives presented in the software interface. Going from a
discrete to a continuous annoyance scale, let 100 correspond to the extreme for maximum
annoyance (Much More Annoying) and 0 be the extreme for minimum annoyance (Much
Less Annoying).

Keeping in mind the scale proposed above, in Fig. 6.1 it is possible to find the complete
results obtained in the jury testing. They correspond to the 1200 subjective evaluations.
These result from 40 jurors, each one evaluating 30 sound samples.

In order to facilitate the interpretation of the results, each annoyance evaluation, xij ,
from the ith stimulus and jth juror, was standardized as,

Zij =
xij − µj
σj

(6.1)

where µj represents each juror average evaluation and σj is the standard deviation of each
juror. After this operation, each jurors evaluations has mean 0 and a standard deviation
of 1.

Also, it was computed, for each stimulus, the average evaluation of all jurors. Thus,
a vector of 30 annoyance evaluations was obtained. Finally, each stimulus evaluation, y′i,
was re-scaled as:

yi = 100× y′i −max(y)

max(y)−min(y)
(6.2)

Note that when converting from the classes to a numeric scale, the range of each class
is 17 (in a range from 0 to 100).
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Figure 6.1: Annoyance evaluations provided by each juror for all sound samples.

For the remaining sections of this chapter, Eq. 6.2 was also used to re-scale the psy-
choacoustic metrics. Therefore, each metric was re-scaled in a way that 100 corresponds
to its maximum value and 0 to its minimum value, according to the extreme values of
both synchronous and asynchronous flying conditions. These can be found on Tab. 6.1.

Table 6.1: Maximum and minimum values for each psychoacousitc metric, in both syn-
chronous and asynchronous flying conditions

- Loudness Fluc. Strength Tonality Sharpness Roughness
[Sone] [Vacil] [T.u.] [Acum] [Asper]

Maximum 124.07 1.03 6.96 1.14 0.88
Minimum 48.69 0.27 1.00 0.61 0.01

Tab. 6.2 contains the re-scaled values of the psychoacoustic metrics and corresponding
annoyance, allowing to relate each stimuli with the corresponding seat on the aircraft.

Fig. 6.2 contains the final annoyance values for each stimuli, allowing also to see where
each stimuli is located within the original (discrete) classes used in the jury testing.

Finally Fig. 6.3 corresponds to a box plot of the final results, where median values are
shown in red and mean values are the mid points of the represented boxes. The edges of
the boxes correspond to the 25th and 75th percentiles of the population, and extreme data
points (outliers) are plotted individually as red signs.
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Table 6.2: Subjetive evaluations of sound samples obtained through jury testing and their
respective psychoacoustic metrics (s indicates synchronous)

Seat Nr. Stimuli Loudness Fluc. Strength Tonality Sharpness Roughness Annoyance

1 1 97.02 34.69 77.49 93.09 1.72 97.96
5s 2 90.97 0.00 88.96 87.16 7.96 95.22
5 3 75.20 18.78 77.29 70.87 8.19 91.21

15s 4 92.04 0.06 100.00 90.15 1.93 94.99
20 5 87.01 23.96 91.97 85.86 1.93 94.03
20s 6 100.00 1.98 99.17 100.00 0.79 97.84
25s 7 99.96 6.50 99.92 99.88 0.00 97.46
30 8 64.93 24.13 63.29 63.46 2.94 81.79
1s 9 63.51 6.64 48.95 57.57 6.96 87.96
6 10 98.36 40.03 86.64 94.85 1.93 100.00

35s 11 52.85 39.47 40.12 49.98 5.47 79.12
40s 12 38.03 55.39 28.64 37.64 19.28 68.12
26s 13 17.77 66.50 3.24 17.13 100.00 54.07
37 14 34.66 33.14 29.95 32.06 9.68 71.01
50 15 24.01 84.17 9.59 33.93 62.95 63.80
71 16 24.93 100.00 2.08 37.48 48.43 59.46
22 17 60.45 72.31 54.82 58.90 6.24 92.13
48 18 7.94 82.11 6.76 13.61 34.72 22.07
59s 19 12.74 50.95 16.40 10.33 13.71 33.61
59 20 6.65 54.95 7.75 5.06 23.79 24.79
64 21 5.08 59.13 5.22 4.38 25.30 8.88
64s 22 8.93 42.41 9.39 7.26 17.05 20.24
68s 23 7.37 77.50 1.12 13.04 37.15 25.55
72s 24 11.11 79.32 2.46 14.20 33.60 21.99
73 25 3.38 57.79 1.26 3.87 37.01 6.92
79s 26 0.18 53.10 0.00 0.88 32.81 0.00
81s 27 13.92 71.95 0.00 19.69 36.87 38.87
82 28 0.00 58.44 0.00 0.00 40.70 1.33
84s 29 2.23 41.29 1.50 0.56 25.95 5.67
85s 30 12.90 68.73 0.82 17.25 31.71 42.95
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Figure 6.2: Annoyance for each stimuli, with the original classes used in the jury testing
evidenced.

Figure 6.3: Box plot of Annoyance for each stimuli.

44



6.2. Prediction Models

By observing the box plot in 6.3, it is possible to note that for low annoyance stimuli
(specially the ones ranging from 18th to 30th) there is a greater dispersion of the results.
In fact, when conducting the jury testing, most jurors mentioned difficulties particularly
in this type of sounds evaluations, i.e, in evaluating sounds with annoyance in mid-low to
low values. Before starting to develop the prediction models, it is important to study the
correlation between the psychoacoustic metrics and the annoyance obtained for each sound
sample, with jury testing. Thus, the Pearson correlation coefficient was computed for
each psychoacoustic metric and annoyance and also between the different psychoacoustic
metrics.

Table 6.3: Correlation matrix for the objective and subjective metrics used for jury testing

- Loudness Fluc. Strength Tonality Sharpness Roughness Annoyance

Loudness 1 -0.74 0.98 0.99 -0.66 0.93
Fluc. Strength - 1 -0.81 -0.68 0.70 -0.58

Tonality - - 1 0.97 -0.72 0.87
Sharpness - - - 1 -0.62 0.94
Roughness - - - - 1 -0.53

Annoyance - - - - - 1

It is possible to observe from the matrix shown in Tab. 6.3 that the objective metric
(feature) with the higher correlation with annoyance is sharpness followed by loudness
(almost with an almost equivalent correlation), then tonality, fluctuation strength and
finally roughness.

6.2 Prediction Models

As defined in section 5.2, from the data obtained in the jury testing, 4 different types of
models will be used to establish prediction models that allow to predict annoyance from
the psychoacoustic metrics of new sound samples.

Therefore, in sections 6.2.1, 6.2.2, 6.2.3, 6.2.4 some specific details regarding each model
are mentioned. For each one, in order to provide a future user with their performance,
Monte Carlo simulation has been run.

The effect of the training data percentage on prediction performance was studied with
great emphasis. For each properly tuned prediction model, the average performance (and
standard deviation) for 100 random data divisions was computed, using different percent-
ages of training data. Therefore, in section 6.2.5 these results are presented, being shown
the mean RMSE and its standard deviation for every 100 random data splits, for the 4
models. On appendix A some plots relating individually to each model are included, which
will be mentioned further in this chapter, that allow to observe the models behavior with
more detail.

A key aspect that is important to emphasize, is that in a small data set (30 pairs of
labeled data) a random data division has a great influence on performance. Therefore,
the Monte Carlo simulation method allows to draw more confident conclusions in the
hyperparameter tuning process and in comparing performances.

In section 6.2.5, all the generated models are compared. Finally, the best performing
model is selected and exploited in section 6.2.6.
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6.2.1 Multiple Linear Regression

Keeping in mind the previously presented model formulation, it has no relevant parameters
to adjust. The influence of training data on the RMSE was studied. For each different
percentage of training data, the data is randomly divided 100 times, being computed the
average RMSE and its standard deviation. Additional details from the results of this
simulation can be found in 6.4.

Figure 6.4: Study on the influence of percentage of training in a MLR model using the
Monte Carlo method. Each point represents the average RMSE of 100 random data
divisions the vertical bar corresponds to its standard deviation.

6.2.2 Artificial Neural Networks

Regarding the ANN, several options for its hyperparameters are available. After trying
several types of training algorithms, the two that stood out, due to their stability and
performance, were the LM and the BR. Also, the small size and high correlation of
the data set imply that no more than 1 hidden layer should be necessary to model the
relationship between predictor and response variable.

As previously mentioned, a neural network has a set of weights and bias. These coeffi-
cients during training are adjusted in order to find the ones that minimize the prediction
error. When creating the neural network, these are randomly selected. The initially arbi-
trarily chosen weights and bias have a (small) effect on the network performance, hence
the adopted methodology is to, for each random data division, train 20 different neural
networks and chose the one that performs better, i.e., has a smaller RMSE (computed on
the testing data).

In order to decide which training algorithm to chose and how many hidden neurons
to use on the hidden layer, the Monte Carlo simulation method was performed, where,
for two different training algorithms, the performance corresponding to different numbers
of hidden neurons was computed. For each hidden neuron number, 100 random data
divisions were performed and the mean RMSE was computed and displayed in Fig. 6.5.
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Figure 6.5: Study on the number of hidden neurons influence on performance, for two
training types. Each point represents the mean RMSE of 100 random data divisions and
the standard deviation of the RMSE in these 100 divisions.

Analyzing Fig. 6.5, it is observable that the best performance occurs for 2 hidden
neurons, using the LM training algorithm. Therefore, during the rest of this section, the
ANN is always built using 2 hidden neurons and the LM training algorithm.

Being now the ANN hyperparameters properly tuned, it is possible to conduct the same
study done for MLR. Therefore, in Fig. 6.6 the individual results of applying the Monte
Carlo simulation to study the influence of training data percentage on model performance
are shown.
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Figure 6.6: Study on the influence of percentage of training in ANN model using the Monte
Carlo method. Each point represents the average RMSE of 100 random data divisions the
vertical bar corresponds to its standard deviation.

6.2.3 Support Vector Machines

The prediction model developed with SVM also has several hyperparameters to tune.
However, due their non-linear relationships, manually tuning an SVM model is harder
than to tune ANNs. Therefore, when studying the influence of training data percentage
on performance, for each random data division, in the Monte Carlo Method, a bayesian
optimization is conducted, being chosen the hyperparameters that better fit each specific
data set. The results are displayed in Fig. 6.7.
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Figure 6.7: Study on the influence of percentage of training in SVM model using the Monte
Carlo method. Each point represents the average RMSE of 100 random data divisions the
vertical bar corresponds to its standard deviation.

6.2.4 Random Forest

Following a similar process to the one used for SVMs, the hyperparameter tunning for RF
was also done using a bayesian optimization. Therefore, for the RF, the same study is
presented in Fig. 6.8.

49



6. Predicting from Objective Metrics: Results

Figure 6.8: Study on the influence of percentage of training in RF model using the Monte
Carlo method. Each point represents the average RMSE of 100 random data divisions the
vertical bar corresponds to its standard deviation.

6.2.5 Prediction Models Comparison

Remembering that for each model, both the mean RMSE and its standard deviation over
100 random data splits were computed, the results can now be presented. Recalling the
study of the influence of training data percentage on performance conducted for each
prediction model, it is possible to compile all the obtained results in one plot. This can
be found on Fig. 6.9.

Analyzing the obtained results, it is possible to observe that the ANN, for all different
percentages of training data, has a lower RMSE, thus performing better. The second
top performer model is the RF model, followed by the SVM and then the MLR. Taking
into account the stability of each model performance, it is also possible to compare the
standard deviation of all the 100 random data divisions done for each % of training data.
This is shown in Fig. 6.10.

Considering the results from 6.10, the ANN proves to perform with more stability than
the other prediction models, having a smaller RMSE standard deviation than the other
prediction models. Regarding the other prediction models, the RF have a RMSE standard
deviation close to the ANN, while the MLR and SVM appear to have a RMSE that is
highly affected by the stochastic aspect of data divison.

Merely observing the RMSE evolution for all models it is visible that an increase of
percentage of training data leads to decrease of the RMSE, thus improving performance.
However, one should be careful when increasing this percentage. Keeping in mind that
the data-set used contains 30 pairs of labeled data, for example using 90% of the data for
training implies that merely 3 sound samples are used for testing, which doesn’t qualify
as a proper amount of data for measuring performance. Hence, the choice of the amount
of data used for training consists in a trade-off between performance and the reliability of
its assessment.
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Figure 6.9: Comparison of how the 4 prediction models perform for different percentages
of training data, using the Monte Carlo method. Each point represents the mean RMSE
of 100 random data divisions.

Figure 6.10: Comparison of the standard deviation of the RMSE in 100 random divisions,
for different percentages of training data.
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In order to continue to analyze the predictions it is necessary to chose a percentage of
training data. Based on the obtained results, 70% training data is selected since it allows
to obtain good performance and ensures a reasonable amount of stimuli (9) for testing.
Also, it is possible to observe that the RMSE standard deviation is smaller between 65%
and 75%, hence 70% being a logical choice.

Considering the 100 random data divisions that were done for 70% training data,
for each prediction model, the one with the best performance was chosen. Note that,
for example, for the MLR, the RMSE was lower at randomization number 22 while for
the ANN, the lowest RMSE occurred at randomization number 18. So, for showing the
results of the prediction models, the best performing model for each one was selected.
Their performance metrics are presented in Tab. 6.4.

For each model, three plots are presented, using as comparison the jurors original av-
eraged response. First the predictions are plotted along with the juror responses, also
including the error for each stimuli (being this the predicted minus the mean juror re-
sponse). Secondly, a correlation between predicted and mean juror response is presented.
Figs. 6.11 and 6.12 contain the results for the MLR. Figs. 6.13 and 6.14 refer to the
ANNs. Figs. 6.15 and 6.16 are related to the SVM. Figs. 6.17 and 6.18 are associated
with the RF model. Fig. 6.19 contains the four models predictions compared with the
original responses of the 40 jurors.

It is important to comment that the observable performance variation with the differ-
ent randomizations is partially due to the particular set of testing data chosen. Indeed,
analyzing the results it is noticeable that some stimuli are more easy to predict than oth-
ers. For example, if the data used for training contains only low annoyance sounds, for
the model to predict on additional low annoyance sounds can be considered as easy, but
it will be hard to predict on high annoyance sounds. Therefore, the randomization with
superior performance is possibly the one that uses the easier stimuli as testing data (or
also the one that uses the most representative set of stimuli for training).

Re-using a previously used analogy, two scenarios may explain this situation: consid-
ering a student taking an exam with, for example 9, questions and having studied through
21 solved exercises. His good performance is due to either having studied (i.e. trained)
on a representative set of 21 exercises or the exam only evaluating his answers on easy
questions. Therefore, to evaluate the average performance of the student over 100 dif-
ferent exams (i.e. the prediction model) allows to draw more exact conclusions on his
performance, being the Monte Carlo simulation results the ones that should be taken into
account when assessing the models performance.

Table 6.4: Performance in 100 random data divisions (70% data for training)

(a) Averaged performance

- R2 MAE RMSE

MLR 0.862 12.145 15.323
ANN 0.98185 3.851 5.018
SVM 0.92733 7.086 8.637
RF 0.972 4.783 6.216

(b) Performance with the best RMSE

- R2 MAE RMSE

MLR 0.9695 5.966 7.263
ANN 0.9964 1.657 2.103
SVM 0.9946 3.761 4.084
RF 0.9973 2.010 2.264
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Figure 6.11: Predictions of the best performing MLR throught 100 random data divisions,
with 70% data for training.

Figure 6.12: Correlation analysis of the best performing MLR throught 100 random data
divisions, with 70% data for training.
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Figure 6.13: Predictions of the best performing ANN throught 100 random data divisions,
with 70% data for training.

Figure 6.14: Correlation analysis of the best performing ANN throught 100 random data
divisions, with 70% data for training.
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Figure 6.15: Predictions of the best performing SVM throught 100 random data divisions,
with 70% data for training.

Figure 6.16: Correlation analysis of the best performing SVM throught 100 random data
divisions, with 70% data for training.
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Figure 6.17: Predictions of the best performing RF throught 100 random data divisions,
with 70% data for training.

Figure 6.18: Correlation analysis of the best performing RF throught 100 random data
divisions, with 70% data for training.
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Figure 6.19: Comparison of the models predictions with the original juror responses.
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Study of the Models Response

Having already the trained prediction models, it is possible to study their response to
a manual alteration of the objective metrics. This study was done as an experimental
approach, with the mere goal of trying to check if by just manually changing one of the
metrics, the models respond in a physically logical way (according to the psychoacoustics
principles). For example, a big increment in loudness should result in an increase of
annoyance. Obviously, this is a very simplistic approach and is performed in the context
of a what if? reasoning. It should be noted that to change only one metric is not a
physically realistic situation for the models, therefore one should be careful in drawing
conclusions from this. One of the motivations for performing this analysis is to observe
how the different models respond to the same variations in the inputs.

Considering the seat with annoyance closer to the middle of the range (so stimulus 13
with an annoyance of 54.07), each one of its metrics is sequentially altered from 0 to 150,
and the prediction model response is registered. The results, for each objective metric are
presented in Figs. A.1, A.2, A.3, A.4 and A.5.

Recalling the correlation matrix, presented in Tab. 6.3, it would be expected that
the relationships between each one of the metrics and annoyance are correspondent with
the models response. For example, it is expected that for objective metrics with high
positive correlation with annoyance, an increase on the objective metrics would result in
an annoyance increase. Also, intuitively an extremely loud sound should be more annoyant.

Observing Figs. A.1 and 3.3, related with loudness and sharpness, the ANN is the
model that appears to model more logically their relationship with annoyance. Effectively,
both these metrics have a very high correlation with annoyance, and from a psychoacoustic
point of view, it is reasonable that both very loud and sharp sounds are highly annoyant,
as the ANN models it (where a positive increment in annoyance is leading to a continuous
loudness and sharpness increase). For example, according to the SVM model, for the top
range of loudness or sharpness, annoyance decreases, which is not what would be expected.
About the other objective metrics, due to their complexity in a psychoacoustic point of
view, it is quite hard to draw any valid conclusions from the results. As expected, due to
the nature of these models, the MLR is limited to a linear response and the RFs respond
in steps of annoyance for the input variations.

Considering the entire analysis conducted throughout this section and all the results
obtained, the prediction model selected for including in one of the blocks of the complete
prediction model (7.2) is the Artificial Neural Network, with the already specified
hyperparameters. This decision was based fundamentally on its superior performance and
better stability for different random data divisions and percentages of training data.

6.2.6 Annoyance Spatial Distribution in the Propeller Aircraft

Being the ANN chosen in the previous section, with 2 neurons on the first hidden layer
and trained with the LM algorithm (using 70% data for training), it is possible to exploit
it, predicting annoyance for the remaining seats of the aircraft in both asynchronous
and synchronous flying conditions. Hence, the annoyance can be spatially mapped in the
aircraft using the ANN, being that from the annoyance values in each seats, the annoyance
for each point of the fuselage is interpolated. This is shown in Fig. 6.20, as color maps,
for both flying conditions, where the bottom of the image corresponds to the front of the
aircraft.
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Figure 6.20: Annoyance prediction for all the seats of the aircraft, using the trained ANN.

Analyzing Fig. 6.20, it can be seen that annoyance, in the interior of the aircraft
cabin, has a great degree of variation in this space and this variations occurs in specific
zones, being possible to establish a correspondence between the physical components of
the aircraft and the predicted annoyance. Both in the synchronous and asynchronous the
higher annoyance occurs in the bottom part of the color maps near the lateral borders.
This zones correspond to the seats closer to the engines of the aircraft and as expected,
seats near the engines are more acoustically uncomfortable.

As stated by Wilby [2008], the blades passing on the fuselage result in airborne noise.
Hence, periodic pressure fluctuations are produced on the external part of the fuselage
causing vibration in the interior part of the cabin and an excitation of the interior sound
field. This phenomena has a greater intensity near the engines, thus it is physically ex-
pectable that this excitation of the interior cabin sound field leads to higher annoyance
values. Thus, it is then possible to state that the obtained annoyance spatial mapping is
coherent with the the aircraft physics, being this an argument in favor for validating the
obtained predictions.

However, it should also be held into account that the obtained spatial mapping is quite
similar to the one obtained for loudness and sharpness, shown in Ch. 5. Remembering
that both these metrics have the highest correlation with annoyance, it is natural that the
annoyance spatial mapping resembles the mapping obtained for loudness and sharpness,
which also is coherent with the propeller aircraft physics.

As a final comment, regarding the annoyance distribution in the synchronous case, it is
observable that in the cabin area near the right engine there is an increase of annoyance,
and the opposite happens for the left engine. A possible explanation for this is that,
due to the fact that, even though the rotation frequency of both propellers is coincident,
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they are rotating in opposite directions. Hence, due to the opposite relative speeds of the
propellers, the creation of a lateral air flow may result in the pressurization of the fuselage
area that shows the annoyance increase. This has as a result the formation of a turbulent
boundary layer and the appearing of vortexes, which may be exciting a cavity mode thus
resulting in the asymmetry on the annoyance distribution for the synchronous case.
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Chapter 7

Predicting from Sound Samples: Results

This chapter is devoted to presenting and analyzing the results of the VP model, that from
a sound sample (inputted as a time signal) outputs a subjective evaluation (annoyance).

Recalling Ch. 5, this model is composed of two blocks: a first one that receives time
signals as an input and outputs features and a second one, which is a feature-based block,
that from the first block features (objective psychoacoustic metrics) outputs annoyance
and whose results have already been analyzed in Ch. 6. After analyzing 4 alternatives for
the second block, an ANN was chosen due to its best performance, being used throughout
this chapter for the complete VP model, as decided in the previous chapter.

Regarding the first block, it is necessary to develop 5 CNN based prediction model
(one model for each one of the 5 features), whose results and respective analysis can be
found on the following section.

All the work presented in this chapter was done using MATLAB 2018.

7.1 Predicting Objective Metrics from Sound Samples

As detailed on section 5.3, CNNs are used for predicting features from time signals in
the first block of the VP model. So, in this section, 5 CNNs are trained for predicting,
from raw time signals the 5 psychoacoustic metrics previously used as inputs. The sounds
samples used in this section were the ones that were not used for the jury testing. From
the global set of 170 sound samples (85 for synchronous and 85 for synchronous), 30 were
used for jury testing, hence having 140 stimuli for training this 5 CNNs.

Remembering that the metrics considered are loudness, fluctuation strength, tonality,
sharpness and roughness, the models performance after training was assessed inputting it
with the sound samples used on jury testing, thus the targets for performance being the
objective metrics on Tab. 6.2. One should note that these stimulus used for jury testing
were selected based on a cluster analysis on the psychoacoustic metrics, thus being this a
comprehensive and representative testing set for all the psychoacoustic metrics.

In order to decrease the computing time necessary for training the models, the time
signals were downsampled using the Signal Processing Toolbox from MATLAB. Thus,
they were resampled from a sampling frequency of 44100 Hz to 8820 Hz.

Due to the fact that 5 CNNs have to be trained, each one with a different data set,
different architectures and hyperparameters have to be selected in order to have a good
performance. However, unlike the ANNs used on the previous section, training CNNs on
raw time signals has a higher computational cost, so the process used on the previous
section, using the Monte Carlo method is not viable due to time constraints. However,
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considering the 30 testing stimuli are a representative sample of the whole set of 5 psy-
choacoustic features, a proper assessment of performance is still ensured.

The tuning of the hyperparameters was done using bayesian optimization. Two archi-
tecture options were manually chosen, iterating between different layers until finding the
stack that provides the best performance on the jury testing stimuli. The option more
adequate for each metric was chosen using a bayesian optimization process. The selected
architecture for each feature and the tuned hyperparameters can be found on Tabs. 7.1
and 7.2 respectively.

On Tab. 7.3 the obtained performance for each CNN based model is presented, scaled
from 0 to 100 and also reconverted in each psychoacoustic metric original scale.

Observing the analyzed results, the prediction model with the superior performance is
the one that predicts tonality, followed by loudness, sharpness, roughness and fluctuation
strength. It is possible to state that for loudness, sharpness and roughness the performance
is evidently superior than for fluctuation strength and roughness.

Similarly to what was done on Ch. 6, first the predictions are plotted along with the
LMS Test.Lab results, also including the error for each stimulus (being this the predicted
minus the software computed metric). Secondly, a correlation between predicted and the
LMS Test.Lab results, for each feature, is presented. Hence, Figs. 7.1 and 7.2 contain the
results for loudness, 7.3 and 7.4 correspond to fluctuation strength, 7.5 and 7.6 are related
with tonality, 7.7 and 7.8 are associated with sharpness and finally 7.9 and 7.10 illustrate
the prediction results for roughness. Note that it was decided to, in these figures, use the
features scaled from 0 to 100, for allowing a better comparison between the prediction
performance of the different metrics. Remember that with this type of scaling 0 and
100 correspond to the minimum and maximum value of the metrics in synchronous and
asynchronous flying conditions, respectively.

Table 7.1: Architectures used for predicting psychacoustic metrics from time signals

(a) Fluctuation Strength and Sharpness

Image Input Layer
Convolutional Layer

Batch Normalization Layer
ReLU Layer

Average Pooling Layer
Convolutional Layer

Batch Normalization Layer
ReLU Layer

Convolutional Layer
Batch Normalization Layer

ReLU Layer
Dropout Layer

Fully Connected Layer
Regression Layer

(b) Loudness, Tonality and Roughness

Image Input Layer
Convolutional Layer

Batch Normalization Layer
ReLU Layer

Average Pooling Layer
Convolutional Layer

Batch Normalization Layer
ReLU Layer

Dropout Layer
Fully Connected Layer

Regression Layer
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Table 7.2: Optmized hyperparameters for each prediction model

- Initial Learning Rate Gradient Decay Factor L2Regularization

Loudness 0.00040170 0.87164 9.5025× 10−07

Fluctuation Strength 0.00042896 0.86859 2.9361× 10−07

Tonality 0.00067127 0.88906 3.2236× 10−07

Sharpness 0.00062097 0.91398 1.5002× 10−07

Roughness 0.00040087 0.86568 1.0705× 10−07

Table 7.3: Performance when predicting psychoacoustic metrics

- R2 MAE [0-100] MAE RMSE [0-100] RMSE

Loudness 0.9094 8.1632 6.1531 Sone 10.9950 8.2879 Sone
Fluctuation Strength 0.6906 12.7650 0.0971 Vacil 15.2750 0.1162 Vacil

Tonality 0.9407 7.4027 0.4410 T.u. 10.2450 0.6102 T.u
Sharpness 0.8863 9.3928 0.0496 Acum 11.9310 0.0630 Acum
Roughness 0.6345 8.5497 0.0741 Asper 13.8610 0.1201 Asper

Figure 7.1: Loudness prediction results.
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Figure 7.2: Loudness correlation analysis.

Figure 7.3: Fluctation Strength prediction results.
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Figure 7.4: Fluctation Strength correlation analysis.

Figure 7.5: Tonality prediction results.
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Figure 7.6: Tonality correlation analysis.

Figure 7.7: Sharpness prediction results.
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Figure 7.8: Sharpness correlation analysis.

Figure 7.9: Roughness prediction results.
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Figure 7.10: Roughness correlation analysis.
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7.2 Virtual Passenger Model: Predicting Subjective Met-
rics from Sound Samples

Having now developed both blocks of the complete prediction model, it is possible to
combine them having ready the VP model, where a sound sample can be inputted as
a time signal, being the output the subjective sound evaluation (annoyance). However,
as it was seen in the previous section, the 5 CNN based prediction models that predict
the intermediate features (psychoacoustic metrics) from the time signals have different
performances. Therefore, by doing feature selection it is possible to obtain a better overall
performance of the Virtual Passenger model, i.e., it is possible to build the VP model
without having to use the 5 intermediate features, being selected the combinations that
allows to obtain a better performance.

7.2.1 Feature Selection

Designating Loudness by L, Fluctuation Strength by F , Tonality by T , Sharpness by S
and Roughness by R, the effect of using different combinations of this features on the
Virtual Passenger model performance was studied. For example, in section 6.2 the feature
combination used was LFTSR.

In order to perform feature selection, the second block of the VP model has to be
re-trained for each feature combination. Hence, it is first necessary to train ANN models
very similarly to the one from 6.2 (same hyperparameters and 70% of data for training),
for the different feature combinations. The procedure adopted was quite similar to the
previously used, being that for each feature combination 100 random data divisions are
done, being the performance averaged and, of the 100 created models, the best performing
is chosen for including in the VP model.

Regarding the feature combinations used, these were selected based on the correlation
between the features and annoyance, already computed and shown on Tab. 6.3. Therefore,
starting with all the features (LFTSR), these are sequentially removed one-by-one, until
obtaining the combination LS. Also, considering tonality was the feature predicted with
greater performance and that loudness represents a highly relevant acoustic dimension,
also the combination LT , was included in the feature selection study.

For the second block of the VP model (feature-based), randomly dividing the data into
training and testing data 100 times, the average and best performances for the different
ANNs are presented on Tab. 7.4, being noticeable that the use of different feature com-
binations does not cause a relevant effect on the performance of the second block of the
prediction model, which predicts subjective from objective metrics.

Table 7.4: Feature-based ANN model performance in 100 random data divisions (70%
data for training)

(a) Averaged performance

- R2 MAE RMSE

LFTSR 0.9814 3.9574 5.0933
LFTS 0.9817 3.8713 5.1302
LTS 0.9792 3.8447 5.0426
LS 0.9806 3.8112 4.9149
LT 0.9843 3.6194 4.7294

(b) Performance with the best RMSE

- R2 MAE RMSE

LFTSR 0.9976 1.7220 2.1001
LFTS 0.9987 1.7942 2.2318
LTS 0.9970 1.9082 2.3293
LS 0.9988 1.2341 1.5362
LT 0.99741 1.6656 2.0227
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Having both blocks of the VP model trained, it is now possible to combine them
and assess its performance. The 30 sound samples used for jury testing are utilized for
assessing performance, being inputted in the VP model and the annoyance prediction
for each stimuli compared with the respective mean juror annoyance. However one should
keep in mind that, the second block of the VP model was built using only 70% for training,
thus having 9 sound samples that are entirely new to the VP model. Hence, when, in this
section, the expression testing data is used, it means that the sound samples are entirely
new to the VP model. However, about the remaining 21 sound samples, the second block
of the model was trained using their LMS Test.Lab computed psychoacoustic metrics, but
here they are inputted with metrics predicted with the first block, therefore being also
interesting to analyze the prediction performance the overall set of 30 sound samples.

In order to be able to perform a fair comparison between the different feature com-
binations, the Monte Carlo Method is used one last time. First the 30 sound samples
are inputted in the model, being obtained 30 feature predictions. Then, for each feature
combination, the predicted features are introduced into 100 trained feature-based blocks
(the same ones used for Tab. 7.4). Then the 100 annoyance predictions are compared with
the original mean juror annoyances, being the performances averaged, both for the entire
30 jury testing stimuli and for the 9 unseen stimuli. The results are shown on Tab. 7.5.
Also, Tab. 7.6 contains the best performance obtained for each feature combination, based
on the RMSE.

Analyzing the results on Fig. 7.5, both for the 30 whole sound samples and for the 9
unseen samples, the feature combination that only includes loudness and sharpness (LS)
is the one with the best performance. Comparing the performance between the entire 30
stimuli and that ones that are unseen to the model, for the feature combination LS the
performance is slightly worse for the unseen data, however, the same does not occur for
some of the other feature combinations. This may mean that, due to the fact that the
stimuli that were familiar to the second block of the VP model were used with predicted
features, it is reasonable to assess performance on the entire set of 30 stimuli.

The feature combination LS is thus the one chosen for the VP model, due to its
superior performance. In Figs. 7.11 and 7.12, for this feature combination, the predictions
of the best performing VP model are presented, with an error and correlation analysis,
respectively.

Table 7.5: Virtual Passenger average performances over 100 random data divisions for
the second block, for each feature combination and considering both the jury testing 30
samples and the 9 used for evaluating the performance of the feature-based models

(a) 30 sound samples used for jury testing

- R2 MAE RMSE

LFTSR 0.8489 11.035 14.592
LFTS 0.83519 10.969 14.881
LTS 0.86077 9.9895 13.758
LS 0.87609 9.6746 13.164
LT 0.85931 9.8297 13.752

(b) 9 unseen sound samples

- R2 MAE RMSE

LFTSR 0.86007 10.652 13.795
LFTS 0.84325 11.014 14.424
LTS 0.85547 10.236 13.601
LS 0.88877 10.023 12.829
LT 0.87196 10.059 13.483
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Table 7.6: Virtual Passenger model best performance for each feature set, based on the
best RMSE over 100 random data divisons on the model second block

- R2 MAE RMSE

LFTSR 0.887 9.016 11.896
LFTS 0.881 9.089 12.405
LTS 0.899 8.755 11.308
LS 0.906 8.610 11.372
LT 0.901 8.267 11.020

As a final note, it should be kept in mind that, as it has been seen, even though it is
possible to improve performance by discarding features, each one of the metrics represents
a psychoacoustic dimension, that allows the model to be more robust and complete when
predicting on new sound samples. Hence, in case one wished to use the VP model on new
sound samples, the feature selection step should be done taking into account the a priori
known characteristics of the sound on which the model will predict on. For example,
it would be unwise to discard fluctuation strength in a model for predicting on highly
modulated sounds.

Figure 7.11: Virtual Passenger prediction error as a function of annoyance.
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Figure 7.12: Correlation between Virtual Passenger annoyance predictions and mean juror
evaluations.

7.2.2 Virtual Passenger Model Prediction Results Analysis

As mentioned on the previous section, the feature combination that provides superior
performance is LS, being the one in analysis in this section. Reconsidering the categories
initially used for jury testing (shown in Fig. 6.2), it is possible to verify if the predictions
are within the range of a category. In Fig. 7.13, the annoyance prediction error for each
stimulus is shown along the mean juror annoyance range, for LS. A line corresponding to
the width of a jury testing class (17/100) is drawn. Defining accuracy as the number of
times the VP model correctly predicts with an error below the range of a category (i.e.,
the difference between an annoyance prediction and mean juror response is smaller than
17/100) over the total number of predictions, the VP model, for LS, is 80% (only six
stimuli have an error superior than 17/100), as it can be seen on Fig. 7.13.

Also, still from Fig. 7.13, it is notable that the prediction error is greater on certain
annoyance ranges, namely stimulus with mean juror annoyance inferior than 30/100 and
between 80/100 and 90/100, being that this second interval contains the stimuli with the
higher annoyance prediction error. Both this cases will be analyzed.

Regarding the low mean juror annoyance stimuli, it is notable that these represent the
greater error component in the overall predictions. It is notable that the dispersion of the
results when collecting the jury testing evaluations may play a role on this specific type of
error. In Fig. 7.14, the standard deviation for each stimuli is included, allowing to relate
the error between the VP prediction and the jurors with the results dispersion.

Analyzing 7.14, it is possible to observe a greater standard deviation for the stimuli
with mean juror annoyance below 30/1000, i.e., in these stimuli the juror had a bigger
dispersion when evaluating the sound samples. In fact, for the 10 stimuli with lower
annoyance, the mean standard deviation is 20% greater than the mean standard deviation
for all the stimuli. So, the bigger prediction error in these noisier range of stimuli shows
that to predict on more dispersed results can lead to worst performance.

72



7.2. Virtual Passenger Model: Predicting Subjective Metrics from Sound Samples

Figure 7.13: VP model predictions compared with the original mean juror annoyance.

About the prediction error in the range between 80/100 and just above 90/100, its
possible to observe a connection between these results and the error in the intermediate
feature prediction. Remembering that the intermediate features are loudness and sharp-
ness, it is important to analyze the influence of the error in the CNN models on the
complete VP model.

Secondly, when analyzing the loudness and sharpness prediction error, it is possible to
observe that this error is bigger for intermediate ranges of this metrics, as was previously
observed in section 7.1. Starting with loudness, analyzing Fig. 7.15, it is possible to observe
two loudness ranges with high annoyance prediction error. The first corresponds to low
loudness sounds (below 60 Sone), which are the low annoyance stimuli already analyzed
in the previous paragraphs, that have a low loudness prediction error and high juror
variablity. The other range is the one with loudness between 80 and 100 Sone, where both
the annoyance and loudness prediction error are above average. Note that in this specific
loudness range the mean absolute loudness prediction error is more than the double of the
mean absolute error for all stimuli.

Regarding sharpness, the situation is quite similar. For sharpness values below 0.7
Acum, there is a high annoyance prediction error and a low sharpness prediction error,
being this the high variability stimuli already covered. The interesting range is the one that
contains the stimuli with sharpness between 0.9 and 1 Acum. Here, both the annoyance
prediction error and the sharpness prediction error are both high. This is represented in
Fig. 7.16.
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Figure 7.14: VP model predictions compared with the original mean juror annoyance,
including the standard deviation of all jurors for each stimuli.

Figure 7.15: Loudness prediction error as a function of stimuli loudness in Sone.
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Figure 7.16: Sharpness prediction error as a function of stimuli loudness in Acum.

Therefore, it is important to retain that for stimuli with loudness contained in between
80 and 100 Sone and sharpness ranging from 0.9 to 1 Acum, there a notable increase in
both the annoyance and the feature prediction error. Observing Fig. 7.17 it is observable
that both this feature ranges correspond to stimuli with mean juror annoyance contained
between 80/100 and 90/100. Remembering that on Fig. 7.13 this range was identified as
more prone to prediction error (containing even the stimuli with the higher annoyance
prediction error), its then possible to relate it with the poor performance in predicting
intermediate features.

Taking the last paragraphs into account, when analyzing the VP results for a feature
combination of loudness and sharpness (LS), it was possible to link the annoyance predic-
tion error to high juror variability (annoyance values below 30/100) and error in predicting
the intermediate features, for stimuli with loudness between 80 and 100 Sone and sharp-
ness superior to 0.9 and inferior to 1 Acum (corresponding to stimuli with annoyance
ranged between 90/100 and 100/100).

75



7. Predicting from Sound Samples: Results

Figure 7.17: Correspondence between stimuli loudness (left) and sharpness (right) with
the mean juror annoyance.
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Chapter 8

Conclusion and Future Work

8.1 Conclusions

After all the research and work performed throughout this thesis, several conclusions were
formed.

When designing new products, it is still required to use jury studies to quantify the
human SQ perception, as a subjective metric. Several authors propose the use of feature-
based linear (MLR) or non-linear prediction models (e.g. ANNs, SVMs, RFs) in order
to, from psychoacoustic features, predict the subjective evaluation of a sound sample, as
annoyance. According to the existing literature on the field, the use of ANNs, with a low
number of hidden layers is the most widely used approach, allowing to mimic the human
perception of sounds and being trained with data collected in jury studies.

From the conducted campaign to collect subjective evaluations of sound samples, it
was possible to develop 4 feature-based models (MLR, ANNs, SVMs and RFs). As ex-
pected, the performance for the nonlinear models was superior than for the linear one,
being verified that the human perception of sounds can be mimicked with the use of non-
linear feature-based models. The ANNs stood out among the non-linear models, both for
their performance and stability, having been studied the performance using Monte Carlo
simulations and taking into account the effects of data division. The training and testing
of prediction models should be done with care, always keeping in mind that the data di-
vision process has a great influence on the obtained performance. By exploiting the ANN
trained prediction model, a spatial distribution of the subjective SQ perception was done,
showing that, although it is a subjective metric, annoyance has a strong correlation with
physic and psychoacoustic phenomena.

Due to both the advancements in ML techniques and available computing power in the
last decade, CNNs are referred to in the literature as a powerful feature extractor, however
the extraction of psychoacoustic metrics using CNNs is not a common approach. It was
shown that it is possible to train CNN models that, from a time signal are able to predict
psychoacoustic metrics, namely: loudness, fluctuation strength, tonality, sharpness and
roughness. The prediction performance, was superior for loudness, tonality and sharpness
than for fluctuation strength and roughness.

The sequential combination of a psychoacoustic feature extracting model with the
feature-based ANN model allowed to develop a VP model, that from a sound sample,
inputted as a time signal directly predicts its subjective metric (annoyance). A feature
selection study was done, being seen loudness and sharpness are the feature combination
that allows to obtain the superior performance for the VP model. The complete model,
for many sound samples, is able to predict with an error inferior to the initial discrete
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ranges used when conducting the jury testing campaign. The developed full model was
also validated on unseen sound samples, showing that using CNNs as a feature extrac-
tor, although the prediction error increases, allows to obtain a much more compact and
exportable model than with the traditional approaches.

The higher prediction errors were analyzed over the annoyance range, being identified
two different cases where most of them are located: low annoyance stimuli and medium-
high annoyance stimuli. For the first case, the high prediction error arises from an increase
in juror response variability. For the second, medium-high annoyance stimuli are associated
with certain ranges of loudness and sharpness. In the second case, high prediction error
in certain ranges of loudness and sharpness was identified in the CNN feature extraction
block, which is responsible for the high annoyance prediction error in the full model, in
the range of medium-high annoyance.

8.2 Future Work

Considering the models developed so far, and also the results and their sub-consequent
analysis, several developments and studies can be made to improve their performance and
to better test their applicability to other real cases.

First, for both the Virtual Passenger model and the four feature-based prediction
models trained (MLR, ANN, SVM and RF), it should be noted they were trained using
data from a specific model of a propeller aircraft. It would be of interest to assess their
performance when predicting on data from other models of propeller aircrafts or even a jet
aircraft. This would allow to test how far can these models be generalized in an aircraft
design context.

Still for both types of models, it is now possible to implement them in a design cycle.
Thus, the possiblity of including them in a multi-attribute design optimization process
would allow to include the human SQ perception factor in the aircraft design.

Focusing on the Virtual Passenger model and taking into account that, in opposition
to feature-based models, this consisted in a new approach in predicting SQ with numerous
possible ways to improve its performance. As a starting point for this process, three
solutions to decrease the prediction error are suggested:

• On the psychoacoustic feature extraction block, the architecture choice and also the
hyperparameter tuning are complex processes, often iterative and time consuming.
Further improvements can still be done exploring diffferent architectures and hyper-
parameter sets, using also bayesian optimization as a tool.

• A common approach in the literature about speech recognition and audio processing
consists into turning a machine hearing problem into a machine vision one, i.e.,
by transforming the time signals correspondent to sound samples into spectrograms,
which are inputted into the CNNs as if they were images. Hence, for the spectrogram
correspondent to each sound sample, the psychoacoustic metrics would be predicted.

• Recalling that the VP model had a significant prediction error associated with stimuli
with low annoyance, due to the high variability in the juror evaluation of this type
of stimuli, to re-conduct jury testing on a new set of sound samples similar to these
would be a possible way to augment the available data. If the results in this new jury
study were to have low variability, one should expect an increase in performance.

• Another important error component of the VP model is associated with the predic-
tion error in its first block, that predicts psychoacoustic features from time signals.
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8.2. Future Work

For loudness and sharpness, specific ranges of this metrics were identified as prone
to higher prediction error and leading to also high error in the VP model when pre-
dicting on medium-high annoyance stimuli. Hence, to synthesize additional stimuli
with loudness and sharpness contained in the referred ranges would consist in a data
augmentation technique, that should contribute to an improvement of the prediction
performance.

It should be noted only monaural sounds were used, being possible that this may play
a role in the jury testing results. For a future jury study, in order to obtain more accurate
experimental results and for the jurors to have a more realistic experience, the sound
samples should be re-recorded and re-synthesized with binaural properties.

It was shown that the annoyance distribution in the interior of the cabin of a propeller
aircraft is not homogeneous, existing, for example, areas with higher annoyance near in
the engines. When contemplating active sound control solutions, to apply them equally
over the cabin, even though suppressing noise, does not assure an increase in passenger
comfort. Hence, considering it was developed a compact easily deployable SQ prediction
model, a final application of the VP model could be to to include it in a localized active
sound control solution, where each seat would be equipped with an active sound control
application and where the developed Virtual Passenger model would be able to predict
the human reaction to a sound on which the sound control would act.
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Appendix A

Additional Results for the Feature-based models

In order to facilitate the reading of Ch. 6, some figures that contain results of the study
on the feature-based prediction models response, were included in this appendix.

Figure A.1: Influence of a manual loudness variation on annoyance, for stimulus 13.
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Figure A.2: Influence of a manual fluctuation strenght variation on annoyance, for stimulus
13.

Figure A.3: Influence of a manual tonality variation on annoyance, for stimulus 13.
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Figure A.4: Influence of a manual sharpness variation on annoyance, for stimulus 13.

Figure A.5: Influence of a manual roughness variation on annoyance, for stimulus 13.
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