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Abstract

Players in retail, telecommunications and banking sectors quarrel for retention and develop-
ment of their customer base in highly competitive markets, fact that steered companies towards
targeting customer experiences. Direct marketing has been proven to increase customer’s engage-
ment and prolong their relationship with the companies, leading to higher customer equity over
mass-marketing approaches. Despite the attention given by researchers to predicting individual’s
response to direct marketing initiatives and to the optimization of campaigns’ specific goals, these
two issues have been treated as solo acts. We propose a methodology that mitigates this gap.
Firstly, state-of-the-art predictive techniques are applied and benchmarked to model customers’
response to direct solicitations. The output of this first phase is then fed to a second stage pre-
scriptive tool combining simulation and a sorting heuristic guided by the minimization of a regret
function that, given capacity limitations and other business rules, maximizes the overall campaign
response over a restricted number of solicitations. The approach takes into consideration the re-
sponse elasticity of customers to the timing of contact.

The effectiveness of this combined tool is tested on a real-life case study through an end-
to-end process on a company performing an upsell telemarketing campaign. The field experiment
conducted yielded significantly higher response and sales rates for the treated group, while limiting
the number of calls addressing the same client and keeping operator idle time at a low level.

The contribution of the present work to the state-of-the-art is twofold. At first, the bench-
mark made at various stages of the machine learning exercise has several practical implications
that go beyond this specific exercise, many of which contest previously presented research. The
results obtained, for instance, do not support the thesis of performing calibration on probabilistic
outputs to improve error metrics and they show that tree based boosting algorithms are effective
in response modeling. Then, the 27% increase in sales volume in the treated group, generated
from an initial pool of 23% less call attempts, gives a practical validation to the proposed uni-
fied prediction-optimization framework. Furthermore, it showcases the unexplored potential of
information lurking within companies’ databases that can, with minor resource allocation, provide
significant boosts to campaign profitability.
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Resumo

Empresas em setores como o retalho, telecomunicações e banca debatem-se pela retenção
e desenvolvimento da sua base de clientes em mercados altamente competitivos, facto que tem
remetido as empresas a estratégias que direcionem as experiências ao consumidor. O marketing
direto aumenta o envolvimento do consumidor com a empresa e prolonga a relação entre ambos,
superando estratégias de marketing massificado neste aspeto. Pese embora a atenção que os in-
vestigadores têm direcionado à predição do comportamento do cliente individual no que toca à
resposta a iniciativas de marketing direto e à otimização de objetivos específicos das campanhas
promocionais, estes dois problemas têm sido tratados separadamente. É proposta uma metodolo-
gia que venha mitigar este desfasamento. Em primeiro lugar, técnicas preditivas avançadas são
aplicadas na modelação da resposta dos clientes, sendo posteriormente comparadas. O resul-
tado desta primeira fase é alimentado a uma segunda camada prescritiva que combina técnicas
de simulação com uma heurística de ordenação guiada pela minimização de uma função de ar-
rependimento que, dadas restrições de capacidade e outras regras de negócio, maximiza a resposta
global à campanha promocional sobre um número limitado de tentativas. A abordagem toma em
consideração a elasticidade de resposta dos clientes ao momento de contacto.

A eficácia desta ferramenta combinada é testada num caso de estudo real numa empresa que
realiza campanhas de upsell em telemarketing. A experiência de campo realizada demonstrou que
o grupo que sofreu tratamento teve comportamentos significativamente melhores, em termos de
taxa de resposta e vendas, face ao grupo de controlo. Tudo isto foi alcançado com um menor
número de tentativas endereçadas a cada cliente e mantendo um nível baixo de ociosidade nos
operadores.

A contribuição do presente trabalho para o estado da arte versa dois pontos-chave. Em primeiro
lugar, a comparação feita ao longo dos vários estágios do exercício de machine learning tem im-
plicações práticas que extravasam esta aplicação específica, contestando em alguns casos inves-
tigação até então realizada. A título de exemplo, os resultados obtidos não suportam a tese de
que a calibração de outputs probabilísticos melhora as métricas de erro e mostram que algoritmos
de árvores de decisão sequenciais (boosting) são eficazes a modelar a resposta. Adicionalmente,
o incremento de 27% em volume de vendas registado no grupo tratado, gerado a partir de uma
base de tentativas 23% menor, dá uma validação prática à metodologia simbiótica de predição e
prescrição. Além disso, demonstra o potencial desaproveitado da informação que reside no seio
de bases de dados detidas pelas empresas e que, com uma aplicação limitada de recursos, pode
trazer incrementos consideráveis na rentabilidade das campanhas promocionais.
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Chapter 1

Introduction

1.1 Motivation

The retail, telecommunications service providers, banking and other sectors alike saw a huge

surge in competitiveness, forcing companies to upscale their promotional activity. The traditional

approach towards marketing focused on targeting the masses, conveying a general message that

often times failed to comply with the individual expectations of customers. Although this approach

is still in vogue nowadays, mostly to build brand recognition, it has been losing weight to the

alternative of tailoring the message to the recipient (Ling and Li, 1998). Direct marketing is, thus,

the alternative data-driven process focusing on customer-first experiences to build long-lasting

mutually beneficial relationships between customer and company (Miguéis et al., 2017).

In general, targeting communications to the individual customer, besides requiring a more

careful approach in designing the message, also implies a cost higher than that of traditional broad-

cast vehicles like outdoors, television commercials, radio spots and so on. Mistargeting individuals

when directly addressing them can severely degrade their loyalty (Bickert, 1997). So can a policy

of contacting too frequently with offers that fail to meet customer’s expectations. Thus, a far from

optimal direct marketing initiative may be very costly to the company deploying it.

On the other hand, when properly targeting, direct marketing initiatives can yield significant

benefits. Baesens et al. (2002), when analyzing campaign profitability, showed through a practical

experiment that a 1% increase in response rate to direct mailings can generate an additional cash

inflow of 500 000 euros. Besides, it is well established in literature that direct marketing, when

adequately deployed, can strengthen the loyalty of customers and can more easily attract prospects,

benefiting both customer retention and attraction strategies.

The investments made by companies in gathering information about their customer base allows

for a rich environment within which data mining tools can gather valuable knowledge. The premise

of the work that unfolds in this dissertation rests on developing a prescriptive system that chases

an optimal campaign design. Assisting that task will be the knowledge extracted from databases.

To build on that premise, a case study is brought along. The company at stake is a major
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2 Introduction

telecommunication service provider that has reason to believe its outbound telemarketing opera-

tions, responsible for about 35% of all sales, are running in far from optimal conditions. Current

practices disregard the individual customer’s preferences of contact, leading to attempts being

made at inopportune moments, severely harming the sales conversion rates. Being a major con-

tender in the market and having a customer base with high average length of relationship, its

databases are rich with information that can effectively feed prediction engines aimed at pre-

dicting response to telemarketing calls. Moreover, the volume of customers (in the hundreds of

thousands) that qualify at any given moment for its upsell, cross-sell and prospecting initiatives

ensures that even slight increases in the response rate can generate significant boosts in campaign

profitability.

1.2 The project

Its large volume information panel, along with management teams’ rising concern over lever-

aging analytics to improve operations, make the company at stake an ideal test bin for the prediction-

prescription combo proposed. As stated, the consulting project conducted arose not from a prob-

lem, but rather from an improvement perspective. The aim was set at improving response to the

outbound calls made, without burning though most of the customer base to do so.

Overseeing the progress of the project were two main stakeholders: the customer relationship

management (CRM) team, responsible for defining the ideal characteristics of the campaign, and

the operational team, responsible for following the guidance given by the CRM team and con-

ducting the campaign itself. CRM teams have interest in maximizing the global value that each

customer brings to the company (customer lifetime value). Operational teams placed more em-

phasis on short term objectives, like sales conversion rates. As such, a key requirement for the

success of the project rests on complying with both requisites, that is, in helping to improve sales

without degrading the future value of the customer base.

The end goal of the project is, thus, on demonstrating the effectiveness of a symbiotic view of

prediction and prescription to meet the requirements defined. The performance will be assessed

in a field experiment conducted on a large portion of customers during a one week span. Proven

successful, the methodology will witness a rollout for all telemarketing campaigns done by the

company.

As portrayed in figure 1.1, the project undergoes an initial phase of mapping the procedures

and best practices currently applied, so that the strategy defined chases a congruent goal. After-

wards, a list of improvements to both prediction and prescription models is compiled. Within a

five week window those improvements are embedded in the tools and preparations are made in

order to ensure a smooth field experiment. At a final stage, the results of the field experiment are

compiled. Ensues a discussion over those results and guidance for the rollout phase.
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Figure 1.1: Project’s timeline.

1.3 Thesis outline

The structure of the present dissertation is as follows. In chapter 2 a broad view of the research

efforts in the area of analytical direct marketing is presented. Chapter 3 ensues with a more

technical look at the multitude of concepts applied further along in this dissertation. A brief

description of the case study, brought along as trial run, is provided in chapter 4. The following

chapter is dedicated to showcasing the prediction/prescription methodology, firstly in a broader

sense, and then in its adapted format, as applied to the case study. Chapter 6 displays some

preliminary results, as well as the outcome of a pilot test ran on a real telemarketing operation.

Ultimately, in chapter 7, some conclusions of the work are presented, along with a discussion on

what that work adds to the current state-of-the-art. Some concerns over the applied methodology

are raised and some future enhancements are catalogued.
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Chapter 2

Literature review

The current chapter has the goal of presenting the research efforts made in the area of ana-

lytical direct marketing. Section 2.1 emphasizes the awareness that individual/segment targeting

has raised over mass-marketing accompanying the large growth in individual consumer informa-

tion availability, over the last decades. Then, section 2.2 brings to the discussion the areas that

analytical direct marketing addresses, presenting some problem solving strategies explored in the

literature. The chapter concludes with an allusion to the gap between the predictive and prescrip-

tive streams within response modeling, with the current research acting to bridge them closer.

2.1 Current trends in Customer Relationship Management

As per mentioned in the introductory chapter, players in sectors like grocery retail, telecom-

munications and banking quarrel for retention and development of their customer base in highly

competitive markets. Focusing on retail, Li and Feng (2017) noticed that the continuous drop in

switching costs between badges in recent years, both in monetary and psychological terms, has

shortened customer’s life-cycle and has made some companies embrace loyalty programs.

Loyalty programs, binding contracts and other information vehicles alike allow companies

to gather heaps of data about their customers, providing a view into their consumption behavior,

demographic characteristics and lifestyle habits. This exponential increase in data availability

allowed the surge of what Blattberg et al. (2008) call "database marketing" - the use of predicted

and prescriptive analytics to improve the relationships between companies and their customers.

To enhance marketing productivity, firms quickly realized they could leverage data to address

segments of customers which had similar needs. Focusing on marketing communication, rather

than broadcasting a general message, advertisement could be targeted to specific customer classes

(Bose and Chen, 2009). Dissociating themselves from mass-marketing, Blattberg and Deighton

(1991) coined the concept of "addressable customer", a notion that is tied to the inception of Direct

Marketing.
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Bult and Wansbeek (1995) made one of the primary efforts in incorporating database infor-

mation to enhance customer experience, introducing the RFM1 model for segmentation purposes.

The body of work that followed is quite extensive and using ever more sophisticated techniques:

Minghua (2008) showed promising results applying a multilayer feed forward neural network

to split retail customers on their consumption behavior; Kuo and Chen (2017) developed a cus-

tomer segmentation model using particle swarm optimization (PSO) and artificial immune net-

work; Nakano and Kondo (2018) explored a customer partition strategy according to purchase

habits and channel (online/offline) selection. Miguéis et al. (2011) leveraged customer segmenta-

tion and market basket analysis to design segment tailored promotions for an European retailing

company.

Some researchers, however, saw the increase in individual consumer panel data as an oppor-

tunity to dig even deeper. Rossi et al. (1996) started by quantifying the value that individual-level

information can have in direct marketing endeavors. The observed 250% net gain in revenue

achieved by personalizing coupons over blanket couponing2, made them argue in favor of that

specific approach. Building on this premise, Khan et al. (2009) investigated the value of one-to-

one marketing in relation to segment-level and mass-marketing. In sync with Rossi et al. (1996),

they showed that personalizing solicitations lead to a quantifiable increase in campaign profitabil-

ity over uniform promotions. Venkatesan and Farris (2012) added to this argument by stating that

customized coupons drop the perceived costs of redemption since they lower searching costs and,

hence, can lead to purchase acceleration. Those conclusions receive further support from Mahar

et al. (2017) who stated that introducing individual customer preference estimates boost campaign

profits by 8.4% - 9.1%.

Contrastingly to what these findings lead to believe, empirical validations of the impact of

direct one-to-one targeting, especially in the offline channel, stopped surfacing. Efforts have,

instead, been focused on online channels, since e-mail communications and website recommen-

dations are more readily customizable and cost-effective. The work of Wattal et al. (2012), for

instance, found that propensity to redeem coupons in the online market is related to the inclusion

of individual’s characteristics upon designing the promotions.

2.2 Quantitative challenges of direct marketing

Nash (1984) identifies four main drivers of targeted campaign’s success: i) decide the ideal

moment to present the offer (Ching et al., 2004); ii) determine the remainder optimal communica-

tion characteristics, such as channel (Freitag, 2016); iii) elect the customers to focus on (Ma et al.,

2016); iv) consider the right set of offers (Osuna et al., 2016).

1the customers’ future behavior is mapped according to the recency (R), frequency (F), and monetary value (M) of
their previous transactions

2promotional campaign not tailored for customers’ specific needs
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Most previous work developed in analytical customer relationship management (aCRM) falls

strictly into one of the previous four categories. It is very seldom that one research team trans-

versely attempts to look at more than one of these dimensions at once.

Adding to this argument, Talla Nobibon et al. (2011) structures the problem of searching for

campaign optimality within direct marketing in two major steps, whose direct influence on one

another calls upon a symbiotic view of both, which has hardly ever been explored in research.

Those two steps comprise:

1. a data mining layer, where the response models are embedded;

2. a problem formulation and solution step where some marketing objective is mapped and

optimize, restricted by a set of business rules materialized by campaign limitations.

2.2.1 Data mining applications in analytical CRM

The prediction of consumer behavior has been one of the cores of data mining applications

in practical settings. Association rule mining, clustering, classification and forecasting/regression

are the four main groups of aCRM techniques, according to Ngai et al. (2009).

Classification algorithms are very common in customer attrition prediction (Tsai and Lu, 2009;

Larivière and Van den Poel, 2005); clustering techniques are popular in segmentation exercises

(Li, 2013; Cao et al., 2009); association rule mining is the clear prevailing tool for market basket

analysis and to feed recommender systems in next-product-to-buy models (Valle et al., 2018).

Forecasting/regression models have an array of applications: Lismont et al. (2018) used them to

predict inter-purchase time in a retail environment, while Larivière and Van den Poel (2005) used

regression trees to predict a profit evolution function.

A stream of data mining applications attracting growing attention within aCRM is tied to

response modeling - accurately predicting the outcome (be it participation, revenue generated, ...)

of a campaign targeted at a specific customer (Haughton and Oulabi, 1997). Classical approaches,

like the one presented by Asllani and Halstead (2015), make use of Markov chain models (MCMs)

with states defined by RFM segmentation to predict customer response upon a solicitation. RFM

response modeling, however, has received some criticism from Rhee and McIntyre (2009) and

Blattberg et al. (2009) who argue it may not accurately depict consumer behavior.

More recent studies leverage the analytical power of machine learning algorithms to overcome

the limitations mentioned above. Sacrificing some interpretability over discriminatory power (Ol-

son and Chae, 2012), we find a plethora of work documenting successful applications of ma-

chine learning to response modeling, providing a rationale for its use (Moro et al., 2014; Javaheri

et al., 2013; Miguéis et al., 2017). Illustrating this perspective, Li et al. (2016) applied an en-

semble model using several well-known level-one learners like support vector machines (SVM),

chi-squared automatic regression (CHAID), neural networks and logistic regression to predict cus-

tomer response to telemarketing and emails. The achieved 74% to 132% lift that the treatment of-

fered over the control group illustrates the predictive power of such approach. Furthermore, some
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work goes as far as benchmarking different algorithms for the same application (Asare-Frempong

and Jayabalan, 2017).

Notwithstanding, the problem space for predicting consumer behavior upon a direct marketing

solicitation is so vast, that research has only scratched the surface. For instance: forecasting mod-

els to predict promotional effects on sales of a product/category seem to receive far more attention

in literature than the impact they generate on the customer lifetime value3 (CLTV); response mod-

els to telemarketing initiatives are circumscribed to the financial sector, providing little proof that

those approaches hold in other service sectors.

2.2.2 Seaching for optimality within response modeling

Talla Nobibon et al. (2011), having formally described the optimization problem into two main

streams (section 2.2), proceed to focus their efforts on the latter point, applying linear program-

ming as well as heuristics to determine the set of clients to be contemplated with promotional

offers. Keenly, they point out that heuristics should be favored whenever dealing with large in-

stances and bounded by time constraints.

The quest for optimality is again versed by Asllani and Halstead (2015). Customer’s past

purchase data is used to create a RFM segmentation. This RFM state coding is then worked on

through a goal-programming approach, ultimately deciding on which customer segments to target

to maximize campaign profitability. The multi-objective oriented solution is an evolution from

their original work with linear programming (Asllani and Halstead, 2011).

Freitag (2016) looks at a slightly different problem. His concern is to devise a decision sup-

port system that, in a omni-channel environment, advises marketeers that have to decide which

customer segments to assign to which communication channel, taking into account the business

process and channel capacity. Again, mathematical linear programming was used to determine the

solution.

In short, two points shine bright when assessing the content of the work available in academia:

a wide variety of problems is tackled, albeit centered around segments of customers. At the indi-

vidual client granularity level, there are very few widespread approaches outside next-product-to-

buy recommender systems.

2.3 Contribution to the state-of-the-art

The previous sections make one thing clear: analytical marketeers are leveraging both pre-

dictive techniques and optimization engines to make direct marketing content into a vehicle to

increase companies’ customer equity 4. Strikingly, research on these topics has been polarized, in

the sense that there are very few documented approaches where a predictive model is embedded

within an optimization platform.

3sum of the predicted net future cash flows between the customer and the company
4sum of the predicted net future cash flows between a company and its customer base. Equals the sum across the

customer base of the individual’s lifetime values.
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One of those sporadic attempts to bridge the gap between prediction and prescription is pro-

vided by Ma et al. (2016). Their efforts were aimed at improving mailing decisions to optimize

total accrued benefits (a proxy to customer lifetime value). The first step was devoted to fore-

casting response through a hidden Markov model (HMM), which then fed a second stage partial

observable Markov decision process (POMDP) to derive optimal mailing decisions. Additionally,

they support the view that traditional response forecasting models (logistic regression, decision

trees, support vector machines, and so on), although great for pattern recognition, suffer from

practical inadequacy as they focus on one selection period at the time, neglecting the multi-period

response dynamics.

Reutterer et al. (2017) devised a stepwise approach with two main stages: a data mining layer,

where they made use of clustering techniques and association rule mining to uncover frequent

itemsets bought by different customer segments; and an optimization layer to filter those item-

sets and select product categories to promote to specific segments to maximize spillover effects

over non-promoted items. Their contribution goes beyond the boosts between 15% and 128% in

campaign profitability, it stands out as lone effort to encompass this symbiotic view of prediction

and optimization. I maintain, however, that the lack of available evidence supporting this hybrid

approach is mostly due to corporate confidentiality, rather than overall system under-performance.

Considering the literature on direct marketing response, the contribution of the research un-

covered in the next chapters to the state-of-the-art is threefold:

• First and foremost, this research aims at measuring the effectiveness of a unified predictive-

optimization framework and its ability to perform adequately on a scalable business model;

• It expands the available body of knowledge on the application of machine learning algo-

rithms to model response of direct marketing endeavors;

• The methodology is applied in a end-to-end process to a real-world problem, with a pilot

being conducted on actual users to ensure that the theorized benefits are achievable in a

practical setting.
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Chapter 3

Theoretical background

The aim of the unfolding chapter is to acquaint the reader with some techniques and jargon

used in machine learning (sections 3.1 through 3.5) and optimization exercises (section 3.6) with

the sole purpose of improving the reading experience over the following chapters, where there is

the assumption that that knowledge has, to some degree, been absorbed. The first section (3.1)

is devoted to enumerating classification problems (many of which are transverse to all machine

learning exercises) and the strategies to tackle them. Then, in section 3.2, different algorithmic

choices are presented. Some further machine learning concepts are introduced from sections 3.3

through 3.5. Finally, a brief overview of optimization in general, and multi-objective optimization

in particular, along with a hint of Decision Theory and simulation ensues in section 3.6.

3.1 Classification issues

A widespread problem faced within classification emerges from imbalanced proportions of

observations in each class. In binary classification, it is common for the balance to tilt in favor of

the negative class. The implications of training/testing a model over imbalanced datasets have been

thoroughly identified in literature. Cieslak and Chawla (2008) point out that traditional learning

algorithms may perform poorly when addressing such sources of data, as they tend to favor the

larger, but less important classes. Subtle and rare observations become much harder to identify.

Although this issue has been pinpointed, the approach to tackle it is still up for debate. Lin et al.

(2017) purpose four main directions to follow: i) induce some form of algorithmic-level adaptation

to handle rare events; ii) perform random over and/or undersampling before the training stage;

iii) apply cost sensitive methods that more fiercely penalize misclassification on the rarest class;

iv) make use of an ensemble of classifiers (see section 3.2).

Chawla (2009a) provides a complete overview of data mining over imbalanced datasets and

makes a clear point – although there is a lot to be gained by tweaking the framework, there is no

one-size-fits-all solution. Furthermore, Chawla (2009b) introduces the idea of pursuing alternative

performance goals when training the model. Percentage of Correctly Classified (PCC, equation

A.1), and other metrics alike, overrule the importance of rare cases. The evaluation criteria guides

11
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the learning process and must not ignore the importance of the minority class. The precision and

recall measures (equation A.2) attend to the importance of the positive class, allowing for rules

that chase rare events to be formulated. The F-measure (weighted harmonic mean of precision and

recall- equation A.3) enables the fine tuning of the importance given to the false positive (FP) and

false negative (FN) recognition rates. However, Powers (2011) reiterates that information retrieval

metrics that ignore the performance on the more frequent class are inherently biased and do not

take into account the chance level performance. Cohen’s Kappa (equation A.4) addresses the latter

point, but still fails on the former.

Notwithstanding, when the desired output is not to classify instances into black and white

collections, but rather the probability forecast made of the binary event, an adequate metric for

assessing the results is the Brier score (Brier, 1950). The mathematical formulation of the Brier

score (equation 3.1) measures the effectiveness of the model by comparing the forecasted probabil-

ity fi with the true posterior probability oi and it is by all means similar to the mean squared error

metric used in regression exercises, but with the estimates and true values within [0,1]. Precedent

for measuring performance of classifiers through the Brier score can be found in Providencia et al.

(2018) and Jolliffe (2017).

BrierScore =
1
n
·

n

∑
i=1

( fi−oi)
2 (3.1)

Whenever there are capacity limitations to perform the direct marketing contact, practitioners

might be interested in evaluating the performance of their models for a strict portion of the obser-

vations. The lift of the nth percentile is calculated as the recall achieved on the top nth percent

observations, regardless of how the model behaves (erratically or accurately) on the remaining

cases. If, however, the ranking capacity of the model over the whole dataset is a measure of inter-

est, then Li et al. (2016) explored a plausible solution. Their approach was to perform a weighed

sum of the recall rate at each decile (lift index, equation A.6). This metric was proven to converge

towards to the value of the area under the cumulative lift curve (ALIFT). The same researchers

allude to the resemblance between ALIFT and the Area Under the Curve (AUC, equation A.8)

of the Receiving Operating Characteristic (ROC), which displays the discriminatory power of a

classifier in terms of false positive (FP) and true positive (TP) recognition rates over the whole

spectrum of possible thresholds for class assignment. This threshold independence nature makes

AUC desirable for performance assessment.

3.1.1 Over and underfitting
In machine learning the ultimate goal is to accurately map the input space into the output one

through a mathematical formulation. The left-most portion of figure 3.1 illustrates the notion of

underfitting. When underfitting, the mathematical formulation achieved by the model is extremely

general and fails to capture intricacies that the algorithm is expected to pursue. At this stage, the

model is agnostic to fluctuations in the training data and, thus, the prediction error on both the

training and the test datasets is high.

In contrast, overfitting is the jargon used for the phenomenon of over training a model past the

point when all significant and generalizable information is depleted. Under such conditions the
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model becomes highly volatile to changes in the input, even if those changes are mainly due to

noise. The outcome is that, although the training error is minimal, the underlying truth has failed

to be captured, causing the test metrics to have unsatisfactory results (right portion of figure 3.1).

The correct fit is somewhere in between the two extreme cases, where there is a fine equilib-

rium between the general perception and the capture of details, leading the prediction error on the

test set to fall into a global minimum (Michailidis, 2018).

Figure 3.1: Finding the correct fit and avoiding under and overfitting (source Michailidis (2018))

The notions presented above explain why measuring the performance of the model on the

training dataset can result in the ill-founded perception that, upon deployment, the model will

have a far greater predictive power than what it is actual capable of. Thus, there is the need to

split the available observations into training and test sets. The holdout method, using random or

stratified sampling, rests on the assumption that both samples accurately depict the population’s

behavior. That assumption, however, seldom holds, especially for small subsets. The test partition

drawn might be abnormally well suited for the model (lucky sampling), or the opposite might

occur.

It it consensual in the current state-of-the-art that cross-fold validation provides an accurate

picture of the model’s performance upon deployment (Kohavi, 1995). The main caveat of k-fold

validation is to partition the original data into k bins and iteratively, over k iterations, train the

model on k− 1 of those bins and calculate the performance/error measures on the holdout set.

The overall result is achieved through averaging the scores of the k iterations. Besides providing

a far more realist picture of the model’s behaviour upon deployment than the holdout method, it

might also boost overall performance as none of the available information is set aside to perform

the test. The setback comes from requiring heavier computational loads. The path is, then, one of

decreasing gains: as the available dataset increases in size, the simple holdout method yields less

biased samples and the computational demand of cross-fold validation increases exponentially.

3.1.2 Feature selection
The under versus overfitting equilibrium does not rest solely on algorithmic choices made

during the training phase. There is a certain ceiling to the model’s performance once the features

have been selected. Once again, failing to identify key predictors will cripple the robustness of



14 Theoretical background

the model. However, introducing several non-generizable variables that only pick up random

deviations in the data (noise) might be equally harmful. Gauging relevance in advance might

be impossible. Traditional approaches to feature selection include correlation analysis and chi-

squared tests.

Nevertheless, some of these techniques are based on statistical hypothesis testing which tends

to always reject the null hypothesis as the sample size (N) becomes larger. Furthermore, they often

have severe scaling problems and focus mainly on eliminating redundancy rather than irrelevance

from the dataset. In light of these shortcomings, several alternatives arose, like the Maximum

Relevance Minimum Redundancy principle (Kamandar and Ghassemian, 2010), and the Boruta

algorithm introduced by Kursa and Rudnicki (2010). In short, the Boruta Algorithm (BA) rests

on random forest classifiers (see section 3.2.2). In its vanilla form, current RF algorithms provide

variable importance estimates using the permutation accuracy importance principle, that is, by

comparing variable importance before and after a permutation destined at removing the correla-

tion between the predictor and the response variable (Strobl et al., 2007). To decide on the truly

significant attributes, it is critical to ensure that the importance score is higher than that expected

from random fluctuations. Hence, in a step-wise manner, the BA iteratively tries to discard vari-

ables that are statistically proven not to provide more insight than random attributes introduced

artificially (shadow features), while confirming the relevance of those who do. Besides solving the

all relevant problem, BA was shown to have robust scalability. Refer to appendix B for a complete

overview of BA’s pseudo-code.

3.1.3 Concept drift

Models can, to some extent, effectively approximate the true phenomenon that guides the

behavior of the dependent variable as a function of the predictors. The issue arises whenever that

same phenomenon is non-stationary in time, that is, whenever the approximated mathematical

formulation uncovered by the model correctly identifies the underlying truth for some period of

time and behaves erratically outside of it.

In direct marketing, this change can be induced by altering one of the pillars of campaign

success: frequency, timing and other contact characteristics (channel); changing the value proposal

or targeting different subsets of customers. Changes in customers’ response dynamics may also

be outside corporate control. Those are materialized in seasonality fluctuations and customers’

preference adjustments.

Žliobaitė (2010) proposes some measures that, when taken during the training phase, might

help mitigate such issues. To begin with, the practitioner is asked to make some assumptions on

how the underlying truth might change over time and how that change can be correctly mapped in

the inputs given to the model. Seasonality indexes are a great example of how one can anticipate

future data drift. Furthermore, he adds some advice on other training procedures: retraining the

model ever so often with recent data to allow adaptation to current conditions and applying a

rolling window for training by either erasing old data or assigning heavier weights to fresher

information.
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3.2 Classification techniques

Still on the subject of finding the most accurate mathematical formulation, there are several

algorithmic options that chase it. Typically, algorithms are classified into two major groups: single

models and ensembles. Single models are a self-explanatory term illustrative of a unique instance

of an algorithm that is trained to generate predictions. When the contribution of several single

models is combined into a more powerful unique prediction engine, we enter the domain of en-

sembles. Generally speaking, ensembles are grouped into two main categories: homogeneous

ensembles, whose single contributors are all identical, in the sense that they derive from the same

algorithm; and heterogeneous ensembles, whose single contributors come from a diverse set of

algorithms (as is the case of stacking). Within homogeneous ensembles, a further subdivision is

found between parallel ensembles (like bagging) and sequential ones (such as boosting). The use

of ensembles intends to improve predictions and decrease the variance and bias of single models.

3.2.1 Single classifiers

Decision trees (DT)
Systematize by Breiman et al. (1984), the classification and regression tree (CART) algorithm

is a tree shaped set of exhaustive and mutually exclusive rules that can tackle both classification

and regression problems. Given that soon thereafter other tree based learning algorithms emerged,

like the C4.5 proposed by Quinlan (1986), with a very similar learning procedure, we will, from

now on, address this family of learners as Decision trees. Decision trees’ guiding heuristic aims at

recursively partitioning the dataset (branching) trying to improve some cost function (impurity or

entropy measure). In doing so, it follows a greedy approach, always selecting the best feature and

splitting point for that effect (recursive binary splitting). The predictions assigned on each end of

the tree ramifications (leafs) will be the average or the most frequent value of the response variable

within the observations that fall into that partition.

Without a stopping criteria, decision trees are encouraged to grow until all observations within

each node are perfectly homogeneous. That overfitting behavior is undesirable since the ability

to generalize beyond the training instances is limited. Controlling the growth of the tree, there

are some stopping criteria like the minimum count of training instances falling in each leaf, the

maximum length between root and leaf, among others. To these pre-pruning strategies, one can

add post-pruning heuristics aimed at trimming the nodes that are increasing the generalization

error.

Feedforward Artificial Neural Networks (ANN)
ANNs mimic the nature of human though processing by connecting several nodes (neurons)

each one processing the information received from several precedent nodes, applying a mathe-

matical formula and sending the output to all the subsequent nodes. In its purest form, an ANN

has two layers of neurons: an input layer with the same number of nodes as the dimensionality

of the feature space; and an output layer with as many nodes as the dimensionality of the predic-

tive space. This schema only allows for the capture of linear relationships between the dependent
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and independent variables. To induce non-linearity, a common practice is to introduce additional

(hidden) layers of nodes between the two previously mentioned.

At a very high level, ANN work by learning out to tweak the weights assigned to the con-

nections between nodes in different layers, so that the activations of neurons in the input layer

translate to an activation of the neurons in the output layer that maps a response that is the closest

to the instance being observed (Nielsen, 2017). This is done through calculating the gradient of a

cost function for misclassifying training examples, expressed in terms of weights and activations,

and incrementally taking steps in the direction where the gradient function becomes more negative

(gradient descent).

Each layer’s output (a(i)) is expressed as the weighted sum all the activations of the previous

layer (a(i−1)) and the bias1(b) to which is then applied an activation function (typically sigmoid -

σ(x)). In matricial form:

a(i) = σ(Wa(i−1)+b) (3.2)

3.2.2 Ensemble classifiers

Bagging
Breiman (1996) layed the foundations for bootstrap aggregating (bagging), an ensemble learn-

ing principle that induces diversity in the base learners by training them on a randomly (with

replacement) drawn portion of observations from the original population. Bagging exploits the

independence quality of the algorithms, given that they are trained in parallel, to reach estimates

with lower variance.

The bagging principle’s most notorious application is the Random Forests (RF) algorithm,

introduced by Breiman (1996) himself, in an attempt to overcome the overfitting limitations that

conventional CART displays whenever careful pruning is not applied. When an unseen observa-

tion is fed to the forest of DTs, the final score attributed comes from majority or weighted voting

of the predictions of each level-one learner.

Additionally, it has been empirical proven that inducing algorithmic randomness on the indi-

vidual decision trees contributes to reducing the variance and bias of the bagging algorithm. At

each tree node, selecting the best attribute over which to split the observations from a random sub-

set of the available predictors, although detracting from the performance of the individual model,

has been shown to significantly boost the predictive power of the ensemble (Breiman, 2001). This

perception led to some unconventional and rather extreme trials of inducing randomness into deci-

sion trees, with moderate success: Geurts et al. (2006) went one step further and besides choosing

the attribute for splitting from a random subset, also selected the splitting point in a purely arbitrary

fashion.

Boosting
Boosting algorithms used in current machine learning applications are some iteration of the

original Probably Approximately Correct (PAC) learning framework showcased by Schapire (1990).

1the bias can be seen as some indication that the specific neuron tends to be active or inactive
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The guiding heuristics used is to train a series of base learners over the complete training dataset

in a step-wise manner, intensifying the costs of misclassifying an observation over each iteration,

while decreasing the weights of correctly classified ones. Each learner is then given a voting right

proportional to the accuracy achieved over the validation set. The score of a newly appointed

observation is, thus, given by the weighted average votes of the level-one models.

Gradient Boosting Machines (GBMs) are tree based ensembles just like RFs, but rather than

growing the trees in parallel, they are grown sequentially with each tree narrowing down and

improving on mistakes made by the preceding ones.

Stacking - the Super Learner
In the realm of ensemble methods, traditional approaches (bagging and boosting) use several

similar (often times weak) learners whose averaged contributions allow for the assembly of a far

better performing model. In recent times, the preference has shifted towards performing stacking

- the notion of starting of from a diverse set of strong single learners whose cross-folded predicted

results feed a metalearning algorithm that optimally combines them to produce a more accurate

output. The Super Learner, a creation of Laan et al. (2007), was proven to, under most situations

and for the metric being optimized, perform at least as well as the strongest single model that

fed it. Hence, it has been "theoretically proven to represent an asymptotically optimal system for

learning" (LeDell, 2015).

3.3 Hyperparameter tuning

In their vanilla form, machine learning algorithms have a core configuration that allows for

several problems to be addressed. It’s easy to conceive that such configurations can have sub-

optimal conditions to handle diverse sets of specific problems. For this reason, most algorithms

allow for the learning process to be tweaked by actuating a set of levers - the hyperparameters.

Common approaches to define the set of hyperparameters that optimizes the learning behavior

include an exhaustive (cartesian) search, where all combinations of factor levels being considered

are trained, with the best set being chosen. The combinatory nature of this approach can easily

drive the problem into computationally inconceivable sizes. A more suitable method comprises

training a restricted number of models, selecting the levels of the hyperparameters through random

sampling with replacement - random grid search (Bergstra and Bengio, 2012). While the former

method guarantees that the optimal set of hyperparameters (within the search space) is found,

the latter only assures a good step in that direction. The benefit comes from significantly lower

computational times.

To ensure that the model tuning is done in ways that favor the improved generalization capacity

of the model, rather than its ability to exploit statistical peculiarities of datasets, the performance

assessment should be done over statistically pure (unseen) observations. As such, there is a need

to introduce an additional step of validation upon deciding the ideal set of hyperparameters. The

test metrics are then computed over a separate dataset, disjoint of the training and validation ones

(Cawley and Talbot, 2010).
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3.4 Extracting probabilities from supervised learning

Although AUC and lift-based metrics provide good insight into the discriminatory capacity of

a classifier, they shed a dim light into how the output probabilities match the true posterior prob-

abilities, since they focus mainly on ranking observations. Niculescu-Mizil and Caruana (2005)

conjecture that, by their algorithmic limitations, Naives Bayes tend to over-push probabilities to-

wards 0 and 1, while tree based boosting algorithms tend to do the opposite, applying a sigmoid

distortion. Several alternatives extend the output of SVM and ANN (which is typically a score)

into a probabilistic estimate (Bravo et al., 2010). Niculescu-Mizil and Caruana (2005) showed

that, when applied, those alternatives output calibrated probabilities.

As a corrective measure to improve performance under these conditions, Platt (1999) proposes

a transformation of the output - the Platt’s scalling - that involves fitting a logistic regression to

the output, effectively rescalling the probabilities without altering their rank. This ensures that

rank-dependent metrics do not suffer modification, while the Brier score is, generally, improved.

Niculescu-Mizil and Caruana (2005) showed empirically that for boosting trees the benefits of

using Platt’s scaling can be substantial. However, there is conflicting evidence on the success of

such approach (Nee, 2014).

3.5 Uncovering the mysteries of black-box models

An increasing concern of practitioners dealing with ever more complex models is validating

that the decisions made by the algorithm have rational backup. Realizing that a stacked ensemble

has exceptional performance due to data leakage2 might be a arduous task, especially considering

that the tracking of how the prediction came to be is extremely complex and hidden from sight.

The same holds true when an identification field is wrongly passed to the training dataset.

Fortunately, some tools that allow for trust to be built on the models created have been devel-

oped. Outputs such as variable importance and sensitivity analysis of the impact of major predic-

tors help achieve this goal. It was with this ambition that Ribeiro et al. (2016) engineered the Local

Interpretable Model-Agnostic Explanations (LIME) framework. It builds on the premise that any

explainer should: provide at the very least local fidelity3 in order to ensure global fidelity; be

model-agnostic, that is, it should not rest on assumptions that hold true only for a selective group

of classifiers; and yield an intelligible (interpretable) connection between the input variables and

the output generated.

Let’s assume a black-box model has found a complex and highly intricate(non-linear) function

f : IRn → {0,1} (unknown to LIME) that maps the input variables into predictions. Assuming

there is interest in understanding the prediction y ∈ {0,1} made on observation X ∈ IRn, LIME

starts by sampling the neighborhood of X and mapping those observations into the output space

through f . It then weights each output of the sampled neighbours according to the proximity to

2allowing information known only a posteriori to be fed into the training observations
3ability to provide accurate explanations within a neighbourhood of an observation
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X , ultimately fitting a linear model. That linear model is locally faithful, but not globally so, and

is easily explainable. A visual explanation of this principle can be found in figure 3.2. The main

premise behind LIME is that by explaining a set of individual representative instances, one can

expect to globally understand the model.

Figure 3.2: Graphical illustration of the LIME principle (Source: Ribeiro et al. (2016)). The background
represents the function f as mapped by the black-box model; the dashed line showcases the local faith-
ful approximation that LIME performs; the bold cross illustrates the observation X being explained; the
dots and crosses represent instances of positive and negative classes with the respective size mapping the
proximity to the observation being studied.

3.6 Prescriptive tools

3.6.1 Optimization: a high-level look

Optimization is concerned with finding the values to be taken by decision variables to best

meet a certain objective, without violating the defined constrains (find the best feasible solution).

When complexity of the problem being dealt with escalates quickly with the size (such as

nondeterministic polynomial time (NP) problems4), heuristic algorithms search for good (not nec-

essarily optimal solutions) within a conceivable time frame. Greedy heuristics, for instance, al-

ways choose, at every step, the move that grants the largest improvement to the objective function,

disregarding the consequences that act might generate later on (Maringer, 2005). The easiness of

implementation is paid for by a greater risk of being stuck in local (not-global) optima.

Multi-objective problems
Realistic problem formulations, however, require several objective functions to be considered

simultaneously, often times with conflicting goals. Under such conditions, directing the optimiza-

tion at fulfilling one objective can lead to unacceptable solutions in regards to the others (Konak

et al., 2006).

General approaches to tackle multi-objective problems comprise the combination of individual

objectives into a single composite function by computing an utily function or performing the

weighted sum method. These pondering objective methods generate a single objective function,

to which are then applied common optimization strategies. An alternative is the application goal

4problems for which there is no known deterministic algorithm that extracts the optimal solution in polynomial time
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programming. In goal programming, the decision taker sets out a prioritized list of goals he/she

is set on achieving (Lee, 1972). The best solution is the one to minimize the deviance between

the objectives established and their fulfillment, weighted by the priorities given. More intricate

alternatives (Konak et al., 2006) comprise calculating the set of solutions that are non-dominated5

with respect to each other (Pareto optimal set). The Pareto front translates the cost of edging

one objective as a function of the prices paid in terms of the remaining objectives. The trade-off

capability is generally preferred by practitioners given that it resembles more closely the reality

of decision making. However, computational requirements escalate and the interpretability of the

Pareto front becomes fuzzy as the number of objectives increases.

Savage’s regret criterion
The aforementioned optimization techniques assume that consequences of alternative deci-

sions are known within a reasonable degree of certainty. When taking decisions over uncertain

outcomes, one enters the domain of Decision Theory (Hillier et al., 2004). An important notion

within Decision Theory is the state of nature: a stochastic occurrence that will determine the state

found once the decision is taken.

Savage’s rationale to tackle decisions under uncertainty proposes not to take the route that

leads to the best outcome regardless of the risk, but rather chose the path that leads to the minimal

opportunity loss. This entails the need for computing a regret matrix, where the maximum oppor-

tunity costs associated with each alternative decision path are mapped, calculated relative to each

state of nature observed. The decision is then taken in the direction of minimizing the maximum

opportunity cost (Minimax). In academia, this approach is classified as moderately pessimistic,

since the decision taker assumes that the best outcome from the action will not occur (Ballestero,

2002).

3.6.2 Monte Carlo simulation

Deterministic mathematical models might have some degree of fidelity when representing

reality. Nevertheless, they rest on the assumption that there is no variability affecting the inputs in

previously not-accounted-for ways. Inputs of realistic models, however, are impacted by external

factors that introduced variability in the outcomes. Highly unpredictable environments might,

thus, require simulation exercises.

Monte Carlo simulation (Raychaudhuri, 2008) tries to account for stochastic events through

repeated random sampling of each of the inputs following statistical distributions. These sources

of variability are propagated to the outcomes. To create robustness, several runs are sequentially

performed and then the outcomes are scrutinized.

5a feasible solution is non-dominated when the are no another feasible solutions that are better than the current one
in some objective function without worsening other objectives



Chapter 4

Problem description

To enrich the thesis that there is value in taking an holistic view of prediction and prescription,

a case study in a telecommunications company performing upsell telemarketing campaigns was

devised. The goal of the ongoing chapter is to first characterize the current operating conditions of

the outbound telemarketing (section 4.1), initially at a high-level and with general considerations,

and drilling down afterwards into the specific details of the operation run by the aforementioned

company (section 4.2). Then, this chapter evolves into explaining the objectives that the man-

agement team desires to pursue, from which the as-is methodology is out-of-sync (subsections

4.2.1 and 4.2.2). Afterwards, the challenging nature of the problem is examined (section 4.3) and

improvement opportunities are catalogued (section 4.4).

4.1 Current state of outbound operations

Traditionally, improvements to the telemarketing outbound operations have been focused on

the predictive properties of an automatic dialing machine (named the dialer from now on) to keep

workers as busy as possible, while complying with a set of business rules and legal restrictions. In

these exercises, queueing theory and simulation are combined with the objective of anticipating

new call answers and schedule them just after an operator becomes available (Samuelson, 1999).

The business rules referenced can be seen as a set of best practices - often called hygienic rules

- defined by the CRM teams with the hope of not degrading CLTV due to the intrusive nature of

the outbound contacts. Under this light, Grig (2005) alludes to the shrinkage of public’s tolerance

towards telemarketing due to years of irresponsible contact policies. Typically, the restrictions

mentioned act on the customer account level, but they can dig deeper, reaching the individual

customer contact information. Furthermore, they generally act by imposing a limit on the number

of attempts made and that limit is a function of the outcome of the call: rejected calls have a ceiling

lower than that of machine answered ones. Table 4.1 compiles the common restrictions found.

The predictive behavior of the dialer entails that some calls will be fired prior to the capacity

to take them is freed. Thus, there is a chance a customer will answer a telemarketing call only

to be met by a silent interlocutor. Silent calls are taken very harshly by respondents, reason why

21
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contemporary regulations enforce a maximum of 3% silent calls and no more than one per phone

number targeted, per day (Ofcom, 2008).

Table 4.1: Hygienic Rules (not-exhaustive)

Restriction Action level Restricted on
Maximum attempts to a customer account CA Attempts
Maximum silent calls to a specific phone number CN Attempts
Maximum rejected calls to a specific phone number CN Attempts
Minimum time period between two consecutive attempts CA Time-slot
... ... ...

where CA is the customer account, and CN is a specific number within a customer account

Current procedures do not go much further than exploring the predictive behavior of the di-

aling software to keep the operators on low idle time. A customer-centric view is completely

disregarded, as customers are treated like an homogeneous pool of individuals for whom the so-

licitation features (timing and contact chosen) are irrelevant. Kolar (2006) concluded that taking

a systems’ view and handling outbound call centers like production grounds, where throughput is

all that matters, is large part of the reason why consumer’s express distrust on telemarketing.

4.2 The specific operation at hand

The company subject of the case study is a major European telecommunications service provider,

with millions of revenue generating units, a considerable portion of which are enrolled in loyalty

contracts. The outbound channel represents about 35% of all sales generated and a large potion

of those relate to upsell campaigns. Having described generally the governing thought behind the

use of predictive dialers, it now calls upon a more in-depth look at the specific operation at hand.

A starting pre-defined set of customers to address (a batch) is fed to the dialer in the form

of a randomly ordered list. The allocation of a customer to a campaign is the responsibility of

CRM teams and it is outside the scope of the current project. Complying with the hygienic rules,

the customer list is followed sequentially, with calls being fired whenever the automatic machine

finds suitable. From the set of calls attempted, only a small portion (around one fifth) converts into

answered calls. The remaining either end up in answering machines, are rejected or try to reach

a discontinued number. From the answered calls pool, a good portion is assigned to an available

operator while the reminiscent constitutes silent calls.

Narrowing on the calls transferred to operators, only a selective subset of respondents (about

40%) shows itself available to hear the sale pitch. The other portion was either called at an in-

opportune moment and asks for a reschedule, flat out denies any attempt of telemarketing or has

been mistargeted by campaign managers and fails to meet the criteria of that specific campaign.

In short, less then a tenth of all calls performed reach a point where the message has been suc-

cessfully conveyed to the customer and he/she is asked to accept or deny the offer. That state of

meaningful conversation is referred to as a useful contact. The outcome of a useful contact is
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threefold: acceptance is granted and the sale is closed (sale); the offer is denied, but the customer

shows openness to other products or services and he is, thus, transferred to agents waiting in a

second line1 (transfer); the sale is denied and the customer refuses to be transferred to the second

line (refusal). A visual aid of the narrowing effect from attempted call to sale is provide in figure

4.1.

Figure 4.1: Narrowing effect acting on the call chain (not at scale)

The hygienic rules further refrain the dialer from unceasingly firing calls to the same account

by applying a quarantine rule: if a previous call was made, but did not convert in a useful contact,

then the account enters a quarantine mode, within which no solicitations are allowed. Figure 4.2

shows a condensed view of the the intricate flow of the dialing operation, described above.

Figure 4.2: Flow of outbound operations

1the second line is dedicated to selling products/services with low value added and it is outside the current scope of
the project
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4.2.1 Customers: a scarce resource

When dealing with cross or upsell campaigns the pool of available customers that qualify for

a given offer is limited. Hence, the focus is on converting as much clientele as possible from

the available set. Having a contact policy that generates sales quickly, but burns through a heavy

portion of the batch to do so, is unsustainable in the long run. For that reason, current best practices

in the outbound operation imply that small batches are created and introduced periodically. Within

each batch, customers are assigned a state: open - customers for whom no offer was formally

made and have yet to break any of the customer account level restrictions - and closed - if any of

the former conditions is true. Customers from previous batches (legacy batches) that are still in

an open state when a new batch is launched, remain visible to the predictive dialer, fighting for

position in the randomly sorted lists. As an enforcement, reschedules always have priority over

regular contacts, since their sale conversion rate is much higher than that of regular calls.

4.2.2 The shortcomings of the as-is situation

The far-from-optimal operating conditions of the current methodology for assigning calls are

a concern within the organization. The high levels of rescheduling requests2 raised a red flag in

the eyes of the management teams. There is a general worry that contacting a customer at an

inopportune moment might harm the conversion chance of not only that call, but all subsequent

calls to the same individual - effect known as response decay. This line of thought implies that,

at an aggregate level, the degree of exploitation of the batch, that is, the total number of clients

reached usefully over the total batch size, becomes far from ideal.

Within each customer account, the effect of missing the timing is exacerbated by failing to

identify the ideal contact to ring. This compounded mistargeting effect is believed to erode cus-

tomer loyalty, which materializes in a loss in CLTV and a greater share of customers who subdue

to prospecting initiatives from competitors.

4.3 Additional challenges

In addition to all the operationally intricacies and to the specificity of the objective being

chased, there is the difficulty adjacent to the fact that the company runs the outbound calls through

several service providers, each with their own particularities in operating and reporting results.

Thus, the solution chased must allow for some level of customization, all the while providing a

general framework that can be applied to all campaigns and service providers.

The premise presented in section 2.3, that building an optimization heuristic on top of pre-

dicted outcomes is seldom applied, helps back the claim that no off-the-shelf solutions are avail-

able. Moreover, the challenging nature of the problem is uplifted by previously failed pilot runs of

projects chasing the same purpose on the same company.

2historically, around 10% of all respondents request a reschedule
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4.4 Improvement opportunities

Despite having heaps of data about their customers, ranging from the complete history of

outbound/inbound calls, to measures taken directly from interactions with equipments stored in

households, the company subjected to the case study does not leverage this information towards

personalizing communications. A purely arbitrary way of conducting campaigns, like the one in

place, does not suffice in today’s competitive direct marketing environment.

The predictive capacity of machine learning algorithms fed with such rich data is expected to

yield a significant lift in the answered calls rate. Additionally, there is a sound belief that contacting

clients at an opportune moment and to the phone number more prone to answer is somewhat

correlated with a higher availability to hear and evaluate the offer. In short, by improving the

answered calls rate, one expects a positive spillover to the useful contact rate. In absolute terms,

that indicates that, even if the sales conversion rate is kept, or slightly decreases, the sheer volume

of useful contacts generated will ensure a boost in sales.

The methodology that unfolds in the subsequent chapter has the answered call as the modelling

object. By pursuing willingness to answer, all the subsequent states - useful contact and sale

agreement - are expected to follow the same direction.

Switching the focus to the operation itself, if the positive spillover between willingness to

answer and willingness to listen and assess the offer is verified, then the average call duration will

increase. Having a higher number of respondents that stay on the line, on average, for longer will

put mounting pressure on the operators, further reducing their idle-time.

Moreover, there is one unexplored axle of improvement, hinted by the previously failed projects.

One of the failure reasons concerned the methodology of contacting, for each time slot, the cus-

tomers more prone to answer. This greedy approach meant that the same group of customers - that

were more willing to answer in general - were hammered by requests, many of them at times that

did not match their personal preference. In addition, individuals that had poorer response rates

were all grouped together and contacted at a later point of the batch life, which meant that the

answer rates dropped significantly with time.

In short, the methodology proposed in the following chapter exploits the two main axis of im-

provement pinpointed so far. An initial stage is devoted to incorporating the richness of customer

information available in the company’s database into a solid predictive model for assessing the

right timing for contact. A second stage, of a more prescriptive nature, builds on top of those pre-

dictions to decide, in a not-so-greedy approach, which customers to contact within each time-slot.
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Chapter 5

Solution approach

5.1 Methodology overview

The premise of the thesis builds on the idea that prediction and prescription should be thought

of together, in a holistic view. Good prediction engines sometimes fail to impact business decisions

given that they lack a prescriptive nature. Prescribing tools are often built on top of flawed input,

ultimately giving poor advice on what the next move should be.

Figure 5.1 illustrates, at a very high level, the methodology advocated to fight those two ana-

lytical shortcomings. At first, the business goal is identified and the key inputs for a prescription

engine are mapped. Those key inputs are then chased through some knowledge extraction frame-

work, like the Knowledge Discovery in Databases (KDD) overviewed in Fayyad et al. (1996).

After reaching quality predictions, with the aid of state-of-the-art machine learning algorithms,

the prescription tools come into play. Those take the shape of simulation engines, heuristics or

exact algorithms, and they supply the advisory nature that predictions alone lack.

Figure 5.1: High-level blueprint of the methodology

The approach to the case study at hand can be seen as a practical application of this high-level

framework. As stated in section 4.4, the solution proposed sits on two cornerstones: the first re-

gards the inclusion of the available data about the individual consumer to develop response models

that accurately predict the best time to contact; the second concerns an heuristic that can arrange

these probabilistic outputs of prediction models into a ranked list, aiming at maximizing the cu-

mulative response probability, over a limited number of attempts, while ensuring that the capacity

27



28 Solution approach

of the call center is fully exploited. Sections 5.2 and 5.3 describe in-depth both cornerstones and

how the first link intertwines with the second.

5.2 Prediction

The prediction endeavor followed the Knowledge Discovery in Databases (KDD) framework.

With it, several sequential strides of an ever growing complexity are taken towards achieving the

goal of extracting valuable information from stored data.

Data selection and consolidation
The first step to take in the direction of accurately inferring the willingness to answer a contact

is in identifying the drivers of the answering behavior. That behavior will, undoubtedly, be af-

fected by the characteristics of the customer addressed. Under this umbrella, one finds the length

of relationship, general demographic features, the competitive profile and the proximity to con-

tract expiration date as possible explanatory variables. Besides, past interactions with outbound

calls might provide a window for predicting the future behavior. Stating, for instance, that a cus-

tomer that never had successful interactions before will, most likely, decline the next attempt is a

compelling assumption. Moreover, the propensity to answer might be explained by the degree of

activity demonstrated by the customer in his/hers interactions with all equipments related to his

account. The belief, in this case, is that if a customer usually zapps through his/hers cable TV

subscription at a particular time of day, then he/she is likely to be available to hear a sale pitch or

he/she will be more tempted to answer the land phone rather than the mobile number, at that time.

The first step of variable identification led to a subsequent move of data gathering, coming

from the three main sources identified: dialer logs, customer profile and interaction "metadata"

records. The lengthy list of all predictors considered is provided in appendix C. Albeit available,

the information was dispersed through several sources and spanned multiple database systems.

Data gathering and consolidation was, thus, a first and tumultuous step to ensure quality pre-

dictions. The effort, however, proved fruitful, as the consolidated data was dense and ended up

requiring only minor data cleaning efforts.

Feature engineering and pre-processing
The density and quality of the consolidated information, however, did not exempt some data

transformation efforts, mainly in constructing new features based on the available information.

The step taken was with the aim of better capturing the intricacies of human response towards the

unsolicited contacts. The feature engineering phase was paramount in building the set of variables

that mapped the complete customer response history. Taking inspiration in the RFM analysis (see

Birant (2011), for further details on this model), these variables included time elapsed since the

last contacts and past outcomes1, the frequency of contacts made, the relative frequency of each

1outcomes include: silent call, machine answered, invalid number, handled call, among others



5.2 Prediction 29

outcome, the average call duration, just to name a few (consult table C.2 in appendix C for a more

extensive overview).

In a preventive effort to mitigate the effects of concept drift, the features were calculated using

a rolling window approach. In general, two time windows were used to capture the behavior:

within 30 days or within one year of the record date (figure 5.2). The latter intended to capture

the general conduct of the customer, while the former seized recent behavioral changes. When

determining, for example, the number of telemarketing attempts historically done to one phone

number, the records gathered from the dialer logs did not date back more than one year. The

rolling window, however, raised some sporadic null values within the dataset. Thus, most data

cleaning efforts were focused on performing minor imputations.

Figure 5.2: Rolling window applied to feature computation

Feature selection
The assumption that all the predictors considered (appendix C) were, firstly, relevant and,

secondly, non-redundant had to be determined with certainty. The Boruta Algorithm (subsection

3.1.2) was the selected tool to assist this determination.

The iterative nature of the BA makes it computationally demanding. Thus, a dimensionality

reduction is required to ensure results are obtained within a reasonable time frame. The importance

of predictors is tested against the shadow feature introduced, through a two-sided test of equality.

Given that a stopping criteria on the maximum number of iterations is considered, it is likely that

a statistical decision might not be reached for all predictors. As such, their inclusion will rely

on a second criteria: those variables that show a median z-score importance, over all iterations,

higher than that of the most important shadow feature will be deemed important, with the rest

being dismissed.

Training
As mentioned before, the modeling object was the answered call, mapped in the dataset

through a binary variable. Although the target was identified, the granularity of the prediction

had to be determined. Since within each customer account there are several affiliated phone num-

bers, often with very diverse response performances, the decision was settled on predicting the

response behavior of a specific phone number of a given account, at a particular hour of the day.

Furthermore, the problem was handled as a binary classification one, rather than multinomial. A

multinomial formulation, where one would predict the hour of the day a specific contact is be
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more willing to respond, would yield predictions of how likely is that specific time frame to be

the best for that particular number. That differs from the desired output, which is to predict, as

assertively as possible, the probability that a fired call will be answered. The latter option allows

for a meaningful comparison between multiples records’ probabilities, the former does not.

A third decision to be made, prior to the full machine learning implementation begins, con-

cerns the spectrum of predictions the model will be asked to forecast. To clarify, there were several

starting options:

• Train a single model that would forecast the dependent variable across every hour of the

day;

• Train 12b models, each predicting the dependent variable for an hour of the day, with visi-

bility limited to training observations of that particular hour;

• Train 12 models, relaxing the visibility constraint, but evaluating the performance only over

the predictions of a certain hour of the day.

Since training 12 models instead of one is more computationally demanding, that route would

only be taken if a significant boost in performance would be observed. To determine the best path,

a preliminary assessment was constructed by training gradient boosting machines (GBMs) over

data within the same time-window and with the specifications aforementioned.

Algorithmic selection
Upon beginning the data mining quest, there is no suitable approach for all circumstances. The

algorithm selection is no exception to this rule. Although there are a few guidelines governing

what is to be expected from the training exercises, there is no certainty that given algorithm will

outperform another, as that is case dependent. Once again, there’s the need for an empirical

benchmark of all the algorithms considered.

To ensure variety in the mix, four algorithms were equated: two of which were single models

(logistic regression and artificial neural network), one bagging ensemble (random forest) and one

boosting ensemble (gradient boosting machines). Besides, an AUC maximizing stacked learner,

with contributions of all four, was trained. The benchmark was made over a sample of the data

(300K observations), using a 5 fold cross validation. All algorithms were implemented through

the R interface of H2O’s machine learning platform written in Java (H2O, 2018) and they were al-

lowed to perform a hyperparameter optimization through random grid search over 16 possibilities.

Table 5.1 summarizes all the hyperparameters reasoned and appendix D expands that information

to contemplate the alternatives considered, along with a short explanation of each hyperparame-

ter’s purpose.

Evaluation and tuning
A careful evaluation procedure is critical when there’s the need to perform the comparisons

and selections between models and when assessing what is to be expected once the predictive

bthe outbound operation ran for 12 hours daily
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Table 5.1: Hyperparameters considered for search

Model Familiy Parameters tuned
RF number of trees, number of bins, max depth, column sample rate
GBM number of trees, learn rate, max depth, sample rate, column sample rate
Logistic Regression alpha and lambda
ANN activation function, hidden layers’ configuration, epochs, l1, l2

engine is applied in a practical setting. To that end, the sequence of training and evaluation must

reproduce, as closely as possible, the reality found once a model goes live. To meet this goal,

several measures were taken:

• A train/test time-window approach was used. With data available since the January 2017, the

training/validation partition was made for observations between January 2018 and March

2018 (inclusive). Records from the month of April 2018 were used as a test set. This

partition is illustrated in figure 5.3;

• The computation of the different variables disregarded observations less than one day old,

since it is unrealistic to conceive that the model would have a streaming3 behavior. A daily

refresh rate is the best that can be expected;

• Following remarks made by Schuller (2018) on how to properly engineer cross validation,

observations of the same batch4 were forced to be grouped together in the same validation

fold (figure 5.4). This consideration avoids having two observations of the same customer,

on the same day, in the training and validation sets simultaneously and provides a more

realistic estimate of the model performance when forecasting for a new batch.

Figure 5.3: Training, validation and testing time windows

An additional concern, advocated by Chawla (2009b) and referenced in section 3.1, is that

the performance metric needs to be aligned with the model’s purpose. Since the desired output is

probabilistic, the Brier score guided the hyperparameter optimization. For selecting the best per-

forming algorithm, although the Brier score had prevalence, other metrics like AUC, F2 measure,

3streaming relates to receiving and processing data in real-time
4recall that a batch comprises the set of customer accounts assigned simultaneously for an outbound campaign
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Figure 5.4: Illustrative example of fold allocation. Observations belonging to the same batch are always
assigned to the same fold. Each fold is composed of several batches.

bias and lift index were looked at to validate the decision made.

Notwithstanding, at every decision point, the combination picked is the best performing one.

The end result is that the cross validated performance estimates become biased towards an opti-

mistic view of the model’s real performance. To correct for this effect, the final evaluation was

made over the test set for each of the 12 picked models.

Scaling predictions and interpreting the output

A critique often raised against tree-based boosting methods is that they apply a sigmoid distor-

tion to probabilistic outputs. Thus, the methodology accounted for the correction of such behavior

through Platt scalling (section 3.4). A calibration set, distinct of the training and test sets, would

be used to scale the outcomes of the models, improving the look of the reliability plot5, while,

hopefully, generating better Brier score results. If that was not the case, that option would be

shelved.

Besides, machine learning models’ output, specially that generated from ensembles like GBM’s,

have a low grade of interpretability. Operational teams, particularly those without a strong quan-

titative vein, raise concerns when they are called to act over predictions that lack an intelligible

backing. As such, to raise credibility in the models’ output, a sensitivity analysis was conducted

over the most important predictors and the LIME framework was used to provide explanations

over a selective set of observations (section 3.5).

5.3 Prescription

Up until this point, we have been looking on how to generate reliable predictions. The prob-

abilistic output, however, is in itself deprived of an advisory nature. For that, there’s the need to

include it as the input to a prescription engine. The section that unfolds is devoted to describing

the methodology conceived to address the objectives that the studied company desires to pursue.

Prior to presenting the solution approach, it might be helpful to introduce the problem through a

mathematical formulation.

5obtained by firstly binning the probabilistic outputs and then plotting the predicted probabilities within each bucket
against the average real response rate. A calibrated output should follow the diagonal as closely as possible
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5.3.1 Formulation

Let C bet the set of customer accounts (CAs) available at any given time for telemarketing

attempts and Ji the set of distinct individual phone numbers affiliated with each account (from

now referenced as customer numbers, CNs). Besides, let L be the set of possible time-slots for

contacting, typically the different hours of the day. Let’s further define: Yi jk as the binary decision

of firing a call to CN j of CA i during time-slot k; pi jk as the probability of having a response

to the call; di jk as the duration of said call and Xm
i jk as the flag that indicates whether outcome

m ∈M ∪N occurred for that call. Treating the useful contact as a special type of outcome,

let’s define Ui jk as the flag that maps it. Moreover, some outcomes have imposed maximums.

Since those imposed maximums can be indexed to the CA or to the CN, let’s define M as the

set of outcomes subject to customer account restrictions and N as the set of outcomes subject to

individual contact restrictions. Although M and N have many intersecting elements, they do not

match precisely. A rejected call is an outcome subject to CN-level restrictions (and, thus, belongs

to N ), but has no global customer account limit (and, thus, is not included in M ).

Sets :

C the set of customer accounts

Ji the set of contacts within each customer account i

L the set of possible time-slots for contacting

M the set of outcomes subject to CA restrictions

N the set of outcomes subject to CN restrictions

Parameters :

am number of maximum requests allowed, at the CA level, with outcome m ∈M

bn number of maximum requests allowed, at the CN, with outcome n ∈N

q quarantine span

s+ silent call factor allowed per time slot

Ck the capacity available during time slot k

Xm
i jk =

1 if the call made to customer i, contact j, on time slot k had outcome m,

0 otherwise.

Ui jk =

1 if the call made to customer i, contact j, on time slot k was useful,

0 otherwise.

di jk the duration of said call

Variables :

Yi jk =

1 if customer i was called through contact j on time slot k,

0 otherwise.
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From an optimization perspective the problem emerges as multi-objective (equation 5.1). For

once, there’s the desired to maximize the cumulative response probabilities for all the calls made

(equation 5.1b), in an attempt to extract as much value from the batch as possible. Then, there is

interest in maintaining operators busy, ensuring that the positive difference, in time units, between

capacity on demand and the duration of made calls, over the same time slots, is minimized (equa-

tion 5.1a). The latter objective is, by company policy, mandatory and should, thus, be given higher

priority.

Minimize ∑
k∈L

g(k) (5.1a)

Maximize ∑
i∈C

∑
j∈Ji

∑
k∈L

pi jk ·Yi jk (5.1b)

where g(k) =

Ck−∑i ∑ j(di jk ·Yi jk) if Ck−∑i ∑ j(di jk ·Yi jk)≥ 0,

0 otherwise.
,∀k ∈L

The set of restrictions follows company’s best practices: each outcome m ∈M , subject to

account level restrictions, must not take place more than am times for each customer account

(equation 5.2) and each phone number of the account cannot be exploited more bn times with

the same outcome n (equation 5.3). Both am and bn are parameters applied indistinctly for all

customers. Besides, if a call is made (Yi jk = 1), indifferently of the outcome, the account enters a

quarantine mode within which no solicitations are allowed and that spans between ]k,k+q[, with k

being the timing of the failed attempt and q the length of the quarantine (equation 5.4). Restriction

5.5 does not allow for the duration of all calls made during time-slot k to overshoot the capacity

available by more than the allowed silent-call factor (s+). Finally, condition 5.6 indicates that a

useful contact requires, firstly, a made call, while restriction 5.7 ensures that an account evolves to

the closed state once a useful contact is established.

∑
j∈Ji

∑
k∈L

(Yi jk ·Xm
i jk)≤ am ,∀i ∈ C ,m ∈M (5.2)

∑
k∈L

(Yi jk ·Xn
i jk)≤ bn ,∀i ∈ C , j ∈Ji,n ∈N (5.3)

∑
j∈Ji

∑
k∈L

(Yi jk +Yi jk+1 + ...+Yi jk+q)≤ 1 ,∀i ∈ C (5.4)

∑
i∈C

∑
j∈Ji

(di jk ·Yi jk)−Ck ≤ s+ ,∀k ∈L (5.5)

Ui jk ≤ Yi jk ,∀i ∈ C , j ∈Ji,k ∈L (5.6)

Yi jk ≤ 1− ∑
j∈Ji

∑
t≤k∈L

Ui jt ,∀i ∈ C , j ∈Ji,k ∈L (5.7)

Yi jk,Ui jk,Xm
i jk ∈ {0,1}
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5.3.2 The heuristic

The problem at hand cannot be approximated successfully in a deterministic way. Firstly, the

nature of several variables is stochastic: the probability to answer, the outcome and the duration of

the call are inputs whose real values are not known a priori. Besides, the evolution of the system is

highly dependent on past outcomes. For instance, a call, within a time-window, will only be fired

if the duration of all previously listed calls over the same time frame does not surpass the capacity

available and if the account is not in quarantine mode, due to previously failed attempts.

To meet the mandatory objective of guaranteeing an operator idle-time as low as possible (eq.

5.1a), the dialing system must have visibility across all CAs available for contact and, if need be,

fire calls to all of them within the same time-window. As such, a sorting heuristic is required and

its governing logic must be thoughtful, so that response can be maximized (eq. 5.1b).

In section 4.4, an overly-greedy sorting approach was identified as a root cause that spelled

failure for the previous pilot experiments. That knowledge steered the solution towards a rationale

of minimizing some materialization of an opportunity cost: a regret.

Taking inspiration in the Savage’s formulation of the Minimax criterion, the regret associated

with firing a call (Ri jk) was modelled as the response probability loss between the hour equated to

make the contact (pi jk) and the best call that could be made with that attempt slot (maxh,t(piht)),

for that day. This view maps the regret as the daily maximum opportunity cost. Objective 5.1b

is, thus, translated into the objective function 5.9. Neglecting the capacity limitations and the

minimal idle-time objective, the minimization of the regret (eq. 5.9) ensures that all attempt slots

are used only for the preferred hours of each customer and, thus, an optimal allocation is reached.

Ri jk = max
h∈Ji,t∈L

(piht)− pi jk , ∀i ∈ C , j ∈Ji,k ∈L (5.8)

Minimize ∑
i∈C

∑
j∈Ji

∑
k∈L

Yi jk ·Ri jk (5.9)

The issue with this approach arises whenever there are conflicting needs during a time slot,

and the necessity to select customers arises. In some cases, the predictive model is incapable of

discerning a different response behavior across the different hours of the day. The implication is

that some CAs, which we will classify as flat customers, will have a stable response rate, trans-

lated into an opportunity cost close or equal to zero at all times. Resting solely on the opportunity

cost to perform an hourly ranking of CAs to address would push flat customers towards the list top

across several hours. Besides, the best slot for inelastic6 CAs would be treated the same way as

for elastic ones. With this construction, the sorting heuristic would be biased towards contacting

inelastic CAs. Figure 5.5 presents an extreme case of this bias: customer A is clearly elastic, while

customer B is flat. For both the maximum opportunity cost is minimal during hour 13. However,

the realities of the two are very different: if the opportunity of calling A during hour 13 is missed,

the subsequent better options imply taking a big hit to the response rate. For B, those options are

nearly as good as the best. Therefore, the two must not be handled equally.

6CAs for which changes in the timing of contact have relatively small effect on the propensity to answer
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Figure 5.5: The issues of response elasticity in prioritization.

To overcome the elasticity limitation, a conjunction of two principles was used: the previously

explained regret would have prevalence, but the descending response probability would be used as

a tie breaker. Furthermore, the relative weight given to each criteria would be tweaked by adjusting

the number of decimal places that the regret would be rounded to.

5.3.3 Simulation

Despite having a qualitative support, the heuristic lacked quantitative backing. Given the

stochastic nature of several inputs, that quantitative analysis required simulation.

The simulation engine constructed was based on the Monte Carlo principle and rested on

several assumptions:

• The predicted response probabilities were considered as true probabilities;

• It was assumed that no correlation existed between willingness to answer and willingness to

listen, implying that the answered call duration would follow the distribution of call duration

found in the dialer’s history;

• Operators would be on no idle time, since an unanswered call was modelled as having a null

duration;

• The useful contact conversion was presumed to be constant and, thus, independent of the

response probability;

• The available capacity of the outbound call center would remain constant throughout the

day.

The simple assumptions listed might deviate from reality. Nevertheless, the tool build allowed

for a relative comparison of the performance of different sorting principles when subject to the

same conditions. Besides the benchmarking capabilities, the simulation provided a way to align

expectations about the gains that could be observed once the methodology went live and a way to

realize which were the drivers of said gains. The prescriptive role of the simulation was, then, on

determining the ideal combination of sorting principles to use.

The following chapter will look in detail into the outcomes of the prediction and simulation,

as well as provide an in-depth look at how a field experiment, aimed at assessing the combined

performance of the prediction-prescription ensemble, was design and the results it led to.



Chapter 6

Results

The current chapter compiles the results achieved through the application of the methodology

described in chapter 5. The first section is dedicated to exhibiting preliminary results from the

machine learning and simulation exercises. Section 6.2 discusses the details of the field experi-

ment designed to assess the performance of the prediction-prescription ensemble and section 6.3

elaborates on the results it led to.

6.1 Preliminary results

6.1.1 Prediction

The prediction exercise was comprised of several sequential steps, within which several op-

tions are faced against each other. The current subsection is dedicated to showcasing the results

that supported the decisions made throughout the knowledge discovery process.

Feature Selection

The application the Boruta Algorithm for feature selection in the configuration referenced in

section 5.2, with one tenth of all training observations as the input and a limit of 30 iterations,

lead to nearly 90% of the proposed variables being deemed statistically important or unimportant,

through a two-sided test of equality, when compared with the shadow features introduced (please

refer to figure 6.1). A statistical decision could not be reached for the remaining 10% of predictors.

The second criteria of applying a threshold based on the median z-score importance helped achieve

a decision over the predictors still in the undecided condition. Ultimately, five variables were

excluded (grey patch of figure 6.1), either by being irrelevant or redundant. This move slightly

decreased the dimensionality of the problem while also improving the error metrics. The brier-

score, for instance, suffered a 3% decrease, hinting that the variables eliminated picked up on

mostly noise signals. Again, appendix C extends the information already provided.

37
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Figure 6.1: Boruta algorithm’s output

Algorithmic choice and parameter tuning

In chapter 5, a mention was made over the necessity to perform an algorithmic benchmark,

in a similar fashion to the one employed by Niculescu-Mizil and Caruana (2005). Figure 6.2

condenses, in a radar chart, the comparison over six different dimensions of all five algorithms

tested. Uncalibrated GBMs (red color coded) yielded a better performance over three of the six

metrics evaluated. The ordering metrics (AUC and lift index) indicate that GBMs are exceptional

at ranking the cases, independently on where those cases lay1. The benefits are also achieved over

the predominant metric - the Brier score - which aims at interpreting the quality of the posterior

probabilities. The only threshold-dependent metric, the max F2, also reveals a better performance.

Nevertheless, boosting trees present some shortcomings. The higher predictive capacity is paid

by in two fronts: the first regarding a high computational time (on average 36 times higher than

training logistic regression); the second is related to the sequential nature of boosting that, by iter-

atively intensifying costs of misclassified observations, appears to introduce a significant positive

bias in the predictions. Out of the five algorithms tested, GBM was the only to overestimated the

answered call rate, all the others had a negative bias. In short, GBMs are not only more capable

to provide quality predictions in their uncalibrated format, but they complement this ability with

a higher capacity to rank observations. Thus, the decision was settled on applying GBMs as the

algorithm to generate predictions.

It should be mentioned that all algorithms were deployed with the third configuration conjec-

tured in section 5.2, that is, from each algorithm 12 models were equated, one for each hour of the

day, all with visibility over the entire dataset, but evaluated only on observations belonging to the

hour at stake. The decision was reached after a preliminary run, where that option revealed the

be the most adequate. That was to be expected since, with all training observations, it enabled a

better grasp of each customer’s behavior, while allowing for some specific tuning to capture the

1those metrics make no distinction if predictions fall just within ]0.1;0.2[, or if they cover a much wider range of
]0.01;0.99[
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nuances of each hour.

Figure 6.2: Algorithmic benchmark: average of each algorithm’s performance over the 12 hour period
(cross-fold validated). Each metric suffers a min-max normalization. Outermost points demonstrate desir-
able qualities of the metric: for the Brier score that is a minimal value, for the AUC that is the maximum.

Another conclusion to be drawn from the benchmark conducted is that good performance on

threshold or ordering metrics provides no absolute assurance that the probabilistic metrics will

follow the same trend. ANNs have a better score in lift index and AUC when compared to RFs

and have very similar behavior over the max F2. Yet, this reality is mirrored when looking at the

Brier score. The same happens to the stacked ensemble. Since the governing heuristic behind its

training was AUC-maximizing, unsurprisingly, the stacked ensemble was the top performer for

AUC. Still, it showed mediocre results for the brier score.

Regarding the hyperparametrization, since the test conducted yield a total of 16 · 12 = 192

trials per algorithm considered, and in order to keep the body of this thesis within a reasonable

length, the cross validated results are only displayed for four distinct hours of the day (out of the

12 computed) and are compiled in appendix E.

Concerning the calibration exercise, the Platt scalling failed to push the reliability diagram

towards the diagonal, as hypothesized in Niculescu-Mizil and Caruana (2005). As figure 6.3 il-

lustrates, the scaling introduced additional errors within probability bins where most observations

laid. Hence, the calibrated probabilistic output was more inaccurate, overall, than the uncalibrated

predictions. Since the calibration introduced an additional level of complexity, doing so with-

out improving the probabilistic metrics, a decision of not pursuing it became trivial. The results

push a conclusion in the opposite direction as the argument raised by Caruana and Niculescu-

Mizil (2006), who defend that scaling significantly boost probabilistic measures, particularly for

tree-based boosting algorithms. The dipping of both curves beneath the desirable diagonal are

indicative of the aforementioned positive bias.
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Figure 6.3: Predictive reliability plot (scaled vs non-scaled predictions). The values of both curves are read
in the left vertical axis and it is desirable that they follow the diagonal as closely as possible. The histogram
shown displays the absolute frequency of observations falling within each of the buckets and should be read
on the right vertical axis. Buckets of observations that go beyond the ones presented were excluded since
the amount of observations that fell on them was so residual that the evolution of the curves became erratic
and noisy.

The evaluation procedure concluded with an assessment of performance metrics over the test

set. The cross validated error predictions, conjectured to provide an optimistic view of model per-

formance, demonstrated to converge towards the values extracted from the test evaluation. Table

6.1 encapsulates that comparison.

Table 6.1: Test results.

Estimates Brier score AUC Lift Index Max F2 Bias

Cross-validated 0.0869 0.7946 0.6111 0.5342 0.0380
Test set 0.0858 0.7778 0.6317 0.5297 0.0371

Trusting the model

As mentioned, calling for action over predictions made by black-box models can easily lead

to apathy in the operational teams since they do not trust the information that they are given. As

such, interpretability is certainly a big driver of machine learning applications’ success. To build

trust in the models developed, three different exercises were undergone. The first, and certainly

more traditional, regarded analyzing the variable importance (figure 6.4). Then, a simple sensi-

tivity analysis of the impact of the most important variables was done through a top 10% versus

bottom 20% comparison (figure 6.5). Both analysis showed that predictors indexed to the individ-

ual contact had far more impact on the outcomes than the ones related to the timing of the contact.
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The frequency of answer of a customer number (freq_CN2) was far more determinant than the fre-

quency of answer of a particular hour (freq_hour2), for instance. The predictive engine was firstly

addressing the general behavior of each customer number before narrowing down on intricacies

of specific contact timings, which constituted a reasonable and expected behavior.

Figure 6.4: Variable importance outcome for the predictors with a percentage importance greater than 2%.

Figure 6.5: Sensitivity analysis (bottom - mean - top) of three top predictors.

Finally, the LIME framework was applied. The premise of LIME is that validating the ex-

planations for predictions within a diverse subset of observations, even if those explanations are

merely local, provides a window to the global behavior of the model. Several explanations were

scrutinized, but the focus will be on two of them: one with a relatively high3 response probability

(30%), and another whose expected response rate is just 2%. LIME’s output on figure 6.6 should

be read as follows: the magnitude of the bars indicates the weight that the specific variable has

on the prediction made, the color is indicative on whether, globally speaking, the value observed

for that feature is supportive of assigning that observation to the positive class, or if it contradicts

it. Finally, the explanation fit provides a quantitative evaluation of the explanation achieved by

LIME.

For the case presented in 6.6(a), four out of the five most explanatory variables, around the

neighborhood of the observation, are rooting against assigning that observation to the positive

class. The low average time spent on calls received during that hour (sum_airtime_in), along with

a residual interaction with the tv box (nr_restarts_tvbox ≤ 1) and the low historical frequency

of answer of outbound calls for that particular phone number contribute to the almost certain

decision of assigning it to the no-answer class. On the other hand, for observation 6.6(b), the

higher interaction with the tv box and higher mobile phone activity, for that hour of the day,

contribute to the higher predicted probability of response. According to the explanation, the fact

2recall that appendix C provides a description of all predictors used
3note that a response probability of 30% falls within the 15th highest percentile
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(a) Low probability of response (b) High probability of response2

Figure 6.6: LIME’s output for two very distinct observations (features’ description in appendix C).

that less than five days passed since the last attempt to that contact is preventing the probability

from being even higher.

LIME’s output proves that the model has a sensible behavior when reaching predictions: it

benefits observations of customers that interact more with the devices of their account and have

a more active historical outbound behavior. The explanations matched, for the most part, the

intuition that operational teams had, helping to generate consensus over the predictive capacity of

the model.

6.1.2 Simulation outcomes

A second dimension to control for resides in the expected benefits of the sorting heuristic,

built on top of predicted outcomes. The simulation proved that having hygienic rules is critical in

ensuring that the sorting heuristic outperforms the random allocation. If no boundary is set, then

the sorting applied as little to no effect on the batch’s degree of exploitation. This is noticeable in

the plateau formed in figure 6.7 and on the convergence of the curves, as the number of attempts

allowed per customer rises.

The prescriptive role of the simulation was on determining the ideal combination of sorting

principles to use. Taking only the minimum regret would not be ideal due to the flat behavior of

some customers. Going for descending response probability alone, as aforementioned, was too

greedy. A combination of ascending maximum regret with the descending response probability

as a tie breaker proved to be the option that maximized the response. The simulation chased the

right balance of the two, ultimately steering the decision towards using the regret rounded at two

decimal places.

Using the last configuration, the benefits of the sorting heuristic to the response were expected

to fall between 8 and 22 percentual points on top of the current assignment rules. The lower bound

is found assuming that the random allocation always contacts the phone number, within the CA,

more prone to answer at that time. The upper bound relaxes that condition. The true behavior of

the dialer falls between those two bounds: its nature isn’t purely arbitrary, given that it assigns

priority to the preferred contact within each CA, but it is hardly ever right. Aligned with the

conclusions of the variable sensitivity exercise of the previous section, the gap between the lower
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and upper bounds is indicative that most of the benefit lays in identifying the right contact to ring

within each customer account, rather than in recognizing the ideal hour to call.

Figure 6.7: Simulation’s output: average batch cumulative response, over 20 runs, by sorting heuristic
applied, where N is the current number of attempts allowed per customer.

6.2 Experimental design

The machine learning model’s performance upon deployment is known through measures

taken over the test set. The sorting heuristic benefits over the random allocation were approximated

through the simulations performed. Yet, the combined performance of the prediction-prescription

ensemble was never assessed. To that end, an experiment was designed.

Experiments can be extremely powerful in diagnosing the impact that factors have on the be-

havior of certain populations. Nevertheless, the assessment made is only as good as the care taken

in designing the experiment. As seen, several factors influence the outbound operations’ suc-

cess. However, the study wants to measure the benefit that the prediction coupled with the sorting

heuristic have on the response. Therefore, that effect must be isolated from the all remaining

controllable inputs.

To that extent, a pilot test was designed. A batch of 7750 customers (the population) was

divided equally into two groups: one destined for control, while the other received treatment4.

Given that the starting population is large, by performing a randomized sampling, the two groups

ended up with extremely similar behavioral measures across the board (in appendix F, backing for

this claim is presented). This procedure ensures that customer-related factors become irrelevant to

the analysis.

Moreover, the company object of the case study showed availability to assign operators with

similar contact history performance to handle calls for each of the groups, eliminating yet another

source of noise. Besides, all addressed individuals were already customers of the company to

4treated observations were the ones subject to the methodology proposed
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whom the same upsell offer would be presented. Since both groups would be tested simultane-

ously, any time dependent sources of noise would be cancelled.

In compliance with all these requirements, there was enough confidence that the methodol-

ogy proposed in this thesis was the only assignable cause affecting the response behavior of the

samples. Therefore, the stage was set for the six day5 pilot test to begin.

The operation to handle the CAs in the control group remained unaltered. The treated group,

however, was exposed to the methodology described in chapter 5. After the splitting, predictions

for all combinations of customer account (CA), phone number and hour were generated through

GBM models, without scaling. Those predictions were fed to the simulator to infer the magnitude

of the sorting criteria to apply. With that information, 12 prioritized lists (one for each hour of

the day) were fed daily into the dialing system. The dialer logs, collected daily after the operation

closed, enriched the available dataset and affected, with one of delay, the predictions generated.

Since no significant concept drift was expected to occur over such a short span of time, the models

weren’t retrained during the pilot’s lifetime.

6.3 Experiment results

The logs collected daily fed a dashboard (appendix G) that showcased several KPIs, meaning-

ful for management, and established comparisons between the progress of the treated group and

the control group. Each of the stages of the funnel presented in figure 4.1 were analyzed. Measures

were grouped into hourly, daily and weekly granularities. Besides, the evolution of the duration of

answered calls, useful contacts and sales contacts was tracked.

Given the concern already mentioned over the progress of the batch consumption, aggregate

results were also computed. These included the fraction of CAs with at least one answered call,

percentage of customers contacted usefully, total sales achieved in the batch and number of total

accounts pushed into the closed state.

Recalling the funnel previously presented, but this time introducing a comparison between the

treated and control groups, it becomes evident that, applying the methodology proposed, a larger

number of answered calls were generated from 23% less attempts. The useful contact conversion

rate was slightly higher for the treated group, edging it ahead of the control by 5% when we

compare the volume of useful contacts generated. Furthermore, from the customers who got to

the decision point of having to accept or decline the offer, a significantly higher portion of them

agreed with the sale. Combining all those effects, the amount of sales generated was 27% higher

in the treated group from an initial 23% less attempts. As table 6.2 verifies, all three conversion

metrics displayed a behavior statistically better when the methodology was deployed.

Although the focus was on the answered call, which did indeed rise significantly, there was

the belief that the willingness to answer would be matched by a willingness to listen. That will-

ingness to listen was conjectured to be materialized in a higher useful contact conversion rate and

higher sales hit ratio. That suspicion was proven to be truthful in this analysis. The explanation

5from monday 2 p.m to saturday 2 p.m
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Figure 6.8: Pilot’s results: The blocks "Call Attempts", "Answered Calls", "Useful contacts" and "Sales"
are all in absolute values, thus the comparison is made in percentage gains. The remaining blocks represent
rates of transformation in percentage and their comparison is made in percentual points.

for a higher sales hit ratio is found in the higher duration of answered calls and useful contacts

(figure 6.9). On average, a call answered when the methodology was applied was 17% longer

than without it (figure 6.9(a)). That effect was even more noticeable in the useful contact domain,

where the increase was 23% (figure 6.9(b)). Customers spent more time on the phone, providing

the operators with a larger window for pitching the sale.

(a) Answered Calls (b) Useful contacts (c) Sales

Figure 6.9: Call duration

The contact effectiveness of the prediction/prescription engine is further demonstrated by the

drop of 1.1 percentual points in rescheduling outcomes. Additionally, silent calls raised dramat-

ically, from 0.80 % in the control to 1.26% in the treated group. That is indicative that the dial-

ing software was underestimating the response arrival rate and the call duration that were being

achieved with the framework in play.

Table 6.2: Hypothesis test results of proportion comparison (Z-test, Type I error: 5%)

Metric Confidence Proportion Z_observed Z_critical p-valueinterval Difference

Answered Call Rate ]0,0357 ; 0,0493[ 0,042 12,301 1,960 < 0,0001
Useful Contact rate ]0,0093 ; 0,0507[ 0,030 2,849 1,960 0,004

Sales Hit Ratio ]0,0056 ; 0,0506[ 0,028 2,035 1,960 0,014
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(a) Closed accounts evolution (b) Attempts made to open accounts

Figure 6.10: Batch state at the end of the experiment

Still, there is one unexplored dimension. Recall the mention in section 4.4 about the concerns

raised over accelerated batch consumption to generate sales. In fact, basing the sorting heuristic

on the minimization of an opportunity cost led to a balanced contacting behavior. The harassment

that characterized the outbound operation was replaced by a more refrained and data-backed way

of contacting. With less attempts made, there were fewer accounts closed due to hygienic rules’

violation. At the end of the week, there were 9% less CAs closed in the treated group (figure

6.10(a)). The CAs that remained active in the treated group were further away from the threshold

of maximum attempts allowed (figure 6.10(b)).
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Discussion and conclusions

7.1 Practical implications

We will begin by addressing the contribute of the research conducted in this dissertation to

the knowledge discovery process in general, and to machine learning exercises in particular. At

each stage of the KDD, there were several conjectured options that could be taken. Whenever

appropriate, some options were benchmarked.

The algorithmic benchmark performed, albeit biased to the dataset used, steers towards the

conclusion that ensemble methods have a higher capacity to capture the underlying truth of the

signal than single models. From those, gradient boosting machines stand out as particularly well-

suited to handle the unbalanced dataset presented. GBMs were prominent in adequately ranking

the observations, while also providing probabilistic outputs that matched closely the real posterior

probabilities.

At critical decision points, the research conducted seems to stride away from previous stud-

ies (Niculescu-Mizil and Caruana, 2005). Firstly, there is a general conception that tree-based

boosting algorithms introduce sigmoid distortions to probabilistic outputs, with linear models and

ANNs outshining them in that regard. Yet, the results obtained indicate otherwise. Moreover, an

argument can be raised that the use of Platt scaling to improve model performance when chas-

ing probabilistic metrics should be treated as case dependent, and never as a global truth. In the

practical test conducted, it unsettled predictions even further than the uncalibrated algorithm.

The philosophy of stacking strong learners into an ensemble capable of superlative perfor-

mance (Super Learner) complied with what it proposed on paper, but only just. The stacked

ensemble, trained to be AUC maximizing, surpassed all other algorithms for that metric. Yet

it provided mediocre results for the Brier score, validating the notion that optimizing for some

performance metric does not ensure that all others follow. Having failed to come across a super

learner aimed at optimizing probabilistic measures, we raise that concern into future work.

Additionally, there is lack of consensus in academia on how to perform the evaluation proce-

dure when testing several algorithms and allowing for hyperparameterization. The route taken in

this dissertation has some reasonable backing. Still, it can and should be contested. Furthermore,

47
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the hyperparametrization grid search conducted may be skewing the results of the benchmark, as

it is restricted to searching within the boundaries defined initially. Alternatives like the adaptive

range random grid search optimization strategy, introduced by Schuller (2018), should be consid-

ered in future implementations.

On a good note, the Boruta algorithm emerged as an adequate tool, adapted to the current de-

mands of knowledge discovery over massive datasets, for selecting the relevant and non-redundant

set of features that explains the response variable. Nevertheless, a comparison between this and

other feature selection algorithms like mrMR is still absent and should be pursued.

Moreover, the effort undergone to give a view into the inner workings of the model constitutes

a module than can be reproduced in any machine learning exercise. Besides comforting the non-

expert with the predictions generated, it helps the model designer validate the decisions made by

the algorithm, understanding if the behavior of the model is reasonable even when it misclassifies

instances. For this particular application, this stage was key in uniting the interest of all parties

involved, fact that later proved critical to the experiment’s success.

The prediction-optimization combo

Glancing at the results showcased in the previous chapter, it becomes evident that the targets

defined in the introductory motivation were met. Sales increased by 27%, doing so with a reduc-

tion on the number of attempts made. As such, both operational teams (guided by sales metrics)

and CRM teams (guided by customer satisfaction) rallied around the proposed methodology, ea-

ger to perform rollouts for all telemarketing campaigns the company operates. Sustaining the 27%

increase in sales would constitute a transformational leap forward for the company. Notwithstand-

ing, the greater benefit arguably spawns from the increased customer satisfaction due to a more

thoughtful targeting policy. To capture these mid-to-long term effects, however, a longer pilot run

is required.

Regarding the optimization module, given the particularities of the case study, a simple sorting

heuristic sufficed to generate significant performance increases. Nevertheless, other applications

may be suitable for linear optimization, or require more sophisticated heuristics like evolutionary

or insertion heuristics. Still on the case study at hand, other improvement opportunities, congruent

with the described system, were identified. Current practices dictate that the capacity of the call

center is maintained throughout the day. As seen, capacity constraints play a critical role in the

solution found. Thus, a workforce planning exercise, to fine tune the available capacity at different

moments throughout the day would be beneficial.

7.2 Closing statement

The work developed should not be seen as a tailor made solution applied to the intricacies of a

case study. Alternatively, it should be considered as a proposal of a unified prediction-optimization

framework that was validated on a practical setting. This approach, as mentioned in chapter 2, is

unlike most academic exercises since it bridges the gap between prediction and prescription, rather
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than focusing on just one of them. Moreover, the exercise condensed in this dissertation show-

cases the potential benefits lurking within the myriad of information spread through companies’

databases that can, with moderate resource allocation, provide significant boosts to campaign prof-

itability.

Nevertheless, direct marketing is not solely comprised of telemarketing. As such, future steps

should be taken in the direction of endorsing the prediction-prescription ensemble with other prac-

tical case studies. Direct mailing of individually tailored promotions issued by a retail chain or

advisory systems that present the next best offer to convey to a customer once he steps though a

retail store, just to name a few, constitute ideal proving grounds to put this framework to the test.
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Žliobaitė, I. (2010). Learning under concept drift: an overview. arXiv preprint arXiv:1010.4784.



Appendix A

Performance metrics

PCC =
T P+T N

T P+FP+T N +FN
(A.1)

Precision =
T P

T P+FP
and Recall =

T P
T P+FN

(A.2)

Fβ = (1+β )2 · Precision ·Recall
(β 2 ·Precision)+Recall

=
(1+β )2 ·T P

(1+β )2 ·T P+β 2 ·FN +T P
(A.3)

kappa =
PCCactual−PCCexpected

1−PCCexpected
(A.4)

BrierScore =
1
n
·

n

∑
i=1

( fi−oi)
2 (A.5)

Li f tindex =
∑

10
j=1(w j ·T Pj)

T P+FN
(A.6)

Bias =
1
n
·

n

∑
i=1

( fi−oi) (A.7)

AUC =
∫ 1

0
ROC(u) du (A.8)

Where :

β constant (typically = 2) to adjust the importance given to FP and FN

PCCexpected PCC of a random guesser

fi,oi forecasted and true probabilities of observation i

w j,T Pj weigth and recall of decile j

ROC(u) receiver operating characteristic for threshold u ∈ [0,1]
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Appendix B

Boruta algorithm - pseudocode

Input: input dataset, A
list of candidate variables, G
stopping criteria limiting the number of iterations, nruns

Output: list of variables shown to be explicative of the dependent variable, L
1 Undecided← G
2 while i ≤ nruns & Undecided 6= /0 do
3 B← A
4 Shuffle B row-wise to remove correlations with the response variable
5 C← A ∪ B
6 Train a random forest classifier on the extended dataset C
7 ZS← variable importance Z scores
8 ZSA← Z-score of shadow attributes
9 MZSA←maxi (ZSAi)

10 foreach variable ∈ G do
11 if ZS[variable] > MZSA then
12 variable[hits]← variable[hits]+1
13 end
14 if variable ∈ Undecided then
15 testeResult← result of two-sided test of equality between ZS[variable] and

MZSA
16 if MZSA > ZS[variable] & testResult[p_value]< 0.025 then
17 variable[importance] = "Unimportant"
18 remove variable from Undecided
19 else if ZS[variable]> MZSA & testResult[p_value]< 0.025 then
20 variable[importance] = "Important"
21 remove variable from Undecided
22 include variable in L

23 end
24 end
25 i← i+1
26 end

Algorithm 1: Boruta Algorithm (source: Kursa and Rudnicki (2010))
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Appendix C

Variables included in the model

Table C.1: Predictors of response (excluding dialer’s history)

Source Variable name Description Imp1

Customer

antig_account number of months since account opening Yes
antig_net number of months since internet subscription Yes
antig_voice number of month since mobile phone subscription Yes
conc_profile concorrential profile2 Yes
conc_segmentation concorrential segmentation2 Yes
end_pf_day_n days until contract expiratition date Yes
flg_4g binary variable indicating 4g service subscription Yes
geo_district geographical distribution Yes
buying_profile customer’s buying profile3 Yes
premium number of premium TV channels subscribed Yes
base_revenue subscription’s fee before campaign Yes
tecn_profile_subs technical profile of subscription (cable, sattelite, . . . ) Yes

campaign type of campaign (prospecting, upselling, . . . ) Yes
Contact hour timing of contact Yes
Specific mobile_land_flag flag indicative of mobile or land phone Yes

week_day day of week when the contact is made Yes

nr_epg_requests number of a specific TV box request, last month during hour k4 No
Interaction nr_interactions_tvbox number of interactions with the TV box, last month during hour k4 Yes
"metadata" nr_npvr_pvr number of recording TV box requests, last month during hour k4 No

records nr_restarts_tvbox number of restarts of TV box, last month during hour k4 Yes
nr_videoondemand number of video-on-demand requests, last month during hour k4 Yes
sum_airtime_in monthly average of minutes on calls received during hour k4 Yes

1variable importance confirmed through the Boruta algorithm
2segmentation made in regards to propensity to subdue to competitors’ prospecting initiatives
3profiling available in the company’s database
4hour k is the timing of contact
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Table C.2: Predictors of response from dialer’s history

Variable Description1 Window2 CN3 Hour4 Imp5

num_answ

number of answered calls

ALL No No Yes
num_answ_30d 30d No No Yes
num_answ_30d_hour 30d No Yes Yes
num_answ_30d_hour_near 30d No Nearby Yes
num_answ_30d_CN 30d Yes No Yes
num_answ_30d_CN_hour_near 30d Yes Nearby Yes
num_answ_hour ALL No Yes Yes
num_answ_hour_near ALL No Nearby Yes
num_answ_CN ALL Yes No Yes
num_answ_CN_hour_near ALL Yes Nearby Yes

num_att

number of attempted calls

ALL No No Yes
num_att_30d 30d No No Yes
num_att_30d_hora 30d No Yes No
num_att_30d_hora_near 30d No Nearby Yes
num_att_30d_CN 30d Yes No Yes
num_att_30d_CN_hora_near 30d Yes Nearby Yes
num_att_hora ALL No Yes Yes
num_att_hora_near ALL No Nearby No
num_att_CN ALL Yes No Yes
num_att_CN_hora_near ALL Yes Nearby Yes

num_usef

number of useful contacts

ALL No No Yes
num_usef_30d 30d No No Yes
num_usef_30d_hour 30d No Yes Yes
num_usef_30d_hour_near 30d No Nearby Yes
num_usef_30d_CN 30d Yes No Yes
num_usef_30d_CN_hour_near 30d Yes Nearby Yes
num_usef_hour ALL No Yes Yes
num_usef_hour_near ALL No Nearby Yes
num_usef_CN ALL Yes No Yes
num_usef_CN_hour_near ALL Yes Nearby No

freq

frequency of answered calls

ALL No No Yes
freq_30d 30d No No Yes
freq_30d_hour 30d No Yes Yes
freq_30d_hour_near 30d No Nearby Yes
freq_30d_CN 30d Yes No Yes
freq_30d_CN_hour_near 30d Yes Nearby Yes
freq_hour ALL No Yes Yes
freq_hour_near ALL No Nearby Yes
freq_CN ALL Yes No Yes
freq_CN_hour_near ALL Yes Nearby Yes

1general description of the variable
2window with respect to which the variable is calculated (previous 30 days or the whole dialer’s history)
3flag indicative of the fact that the variable acts on the specific customer number
4describes if variables are specific to hour k, act between hour k-1 and k+1 or all hours
5variable importance confirmed through the Boruta algorithm
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Table C.3: Predictors of response from dialer’s history (continued)

Variable Description1 Window2 CN3 Hour4 Imp5

freq_usef

frequency of useful contacts

ALL No No Yes
freq_usef_30d 30d No No Yes
freq_usef_30d_hour 30d No Yes Yes
freq_usef_30d_hour_near 30d No Nearby Yes
freq_usef_30d_CN 30d Yes No Yes
freq_usef_30d_CN_hour_near 30d Yes Nearby Yes
freq_usef_hour ALL No Yes Yes
freq_usef_hour_near ALL No Nearby Yes
freq_usef_CN ALL Yes No Yes
freq_usef_CN_hour_near ALL Yes Nearby Yes

hour_weight percentage of all answered calls ALL No Yes Yes
hour_near_weight that happened during that timing ALL No Nearby Yes

recency_answ

days since last answer

ALL No No Yes
recency_answ_hour ALL No Yes Yes
recency_answ_hour_CN ALL Yes Yes Yes
recency_answ_CN ALL Yes No Yes

recency_att

days since last attempt

ALL No No Yes
recency_att_hour ALL No Yes Yes
recency_att_hour_CN ALL Yes Yes Yes
recency_att_CN ALL Yes No Yes

recency_usef

days since last useful contact

ALL No No Yes
recency_usef_hour ALL No Yes Yes
recency_usef_hour_CN ALL Yes Yes Yes
recency_usef_CN ALL Yes No Yes

outcome_last_att

outcome of last attempt

ALL No No Yes
outcome_last_att_hour ALL No Yes Yes
outcome_last_att_hour_CN ALL Yes Yes Yes
outcome_last_att_CN ALL Yes No Yes

duration_last_att_CN duration of last attempt to CN ALL Yes No Yes

duration_last_att_ok duration of last answer to CN ALL Yes No Yes

duration_last_att_usef duration of last useful contact to CN ALL Yes No Yes

1general description of the variable
2window with respect to which the variable is calculated (previous 30 days or the whole dialer’s history)
3flag indicative of the fact that the variable acts on the specific customer number
4describes if variables are specific to hour k, act between hour k-1 and k+1 or all hours
5variable importance confirmed through the Boruta algorithm
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Hyperparameter search
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Appendix E

Hyperparameter search results

Table E.1: ANN hyperparameter search

Model # Hour Activation Brier Score Hidden Layer Epochs l1 l2

1 10 Rectifier 0,0806 25 25 41 1E-03 0E+00
2 10 Rectifier 0,0808 30 30 30 38 1E-04 1E-03
3 10 Rectifier 0,0808 10 10 57 1E-04 1E-03
4 10 Maxout 0,0812 25 25 11 0E+00 0E+00
5 10 Maxout 0,0812 10 10 48 1E-03 1E-04
6 10 Rectifier 0,0814 10 10 43 1E-03 1E-04
7 10 Maxout 0,0817 10 10 35 1E-04 0E+00
8 10 Maxout 0,0820 25 25 18 1E-04 1E-03
9 10 Maxout 0,0820 25 25 16 0E+00 1E-04

10 10 Maxout 0,0820 25 25 10 0E+00 1E-04
11 10 Maxout 0,0821 30 30 30 16 0E+00 1E-03
12 10 Maxout 0,0825 12 12 12 34 1E-04 1E-04
13 10 Rectifier 0,0831 30 30 30 50 1E-04 1E-03
14 10 Rectifier 0,0840 10 10 96 1E-03 1E-04
15 10 Rectifier 0,0840 12 12 12 89 0E+00 1E-03
16 10 Maxout 0,0860 12 12 12 15 1E-04 1E-04

1 15 Maxout 0,0885 25 25 15 1E-04 0E+00
2 15 Rectifier 0,0887 10 10 49 0E+00 1E-03
3 15 Maxout 0,0887 10 10 23 0E+00 1E-04
4 15 Maxout 0,0890 25 25 12 0E+00 1E-03
5 15 Rectifier 0,0891 25 25 43 1E-03 1E-03
6 15 Rectifier 0,0897 12 12 12 50 1E-03 1E-03
7 15 Rectifier 0,0898 30 30 30 49 0E+00 1E-04
8 15 Rectifier 0,0902 10 10 86 0E+00 1E-04
9 15 Rectifier 0,0902 10 10 50 0E+00 1E-04

10 15 Maxout 0,0903 12 12 12 31 1E-03 1E-04
11 15 Maxout 0,0904 10 10 25 0E+00 1E-04
12 15 Maxout 0,0905 10 10 39 1E-03 1E-03
13 15 Maxout 0,0911 25 25 13 1E-03 0E+00
14 15 Maxout 0,0912 30 30 30 11 1E-03 0E+00
15 15 Rectifier 0,0917 10 10 58 1E-03 1E-03
16 15 Maxout 0,0922 12 12 12 40 1E-04 1E-03

1 18 Rectifier 0,0964 12 12 12 49 1E-03 1E-03
2 18 Rectifier 0,0968 25 25 32 0E+00 0E+00
3 18 Rectifier 0,0969 25 25 38 1E-03 1E-04
4 18 Rectifier 0,0973 10 10 47 1E-03 0E+00
5 18 Maxout 0,0974 25 25 20 1E-04 0E+00
6 18 Maxout 0,0979 25 25 15 0E+00 1E-03
7 18 Maxout 0,0983 10 10 20 1E-03 1E-03
8 18 Maxout 0,0984 10 10 21 1E-04 1E-03
9 18 Maxout 0,0985 10 10 21 1E-04 1E-03

10 18 Maxout 0,0988 10 10 27 0E+00 1E-03
11 18 Rectifier 0,0991 30 30 30 27 1E-04 1E-04
12 18 Rectifier 0,0992 12 12 12 79 1E-03 1E-03
13 18 Maxout 0,0995 10 10 40 1E-04 1E-04
14 18 Rectifier 0,1000 25 25 80 0E+00 0E+00
15 18 Rectifier 0,1018 10 10 88 1E-03 1E-03
16 18 Rectifier 0,1022 10 10 64 1E-03 1E-04

1 20 Maxout 0,0890 10 10 23 1E-04 1E-03
2 20 Maxout 0,0894 25 25 24 0E+00 1E-03
3 20 Rectifier 0,0895 12 12 12 112 1E-03 1E-03
4 20 Rectifier 0,0896 12 12 12 55 1E-03 1E-04
5 20 Maxout 0,0896 25 25 14 1E-04 1E-03
6 20 Rectifier 0,0896 30 30 30 54 0E+00 0E+00
7 20 Maxout 0,0896 10 10 47 1E-04 1E-03
8 20 Maxout 0,0897 12 12 12 29 1E-04 1E-03
9 20 Rectifier 0,0898 10 10 42 1E-03 0E+00

10 20 Maxout 0,0899 25 25 20 1E-03 1E-03
11 20 Rectifier 0,0899 12 12 12 35 1E-04 1E-03
12 20 Maxout 0,0900 25 25 29 1E-03 0E+00
13 20 Rectifier 0,0902 10 10 92 1E-03 1E-03
14 20 Rectifier 0,0902 30 30 30 28 1E-04 1E-04
15 20 Rectifier 0,0903 10 10 48 1E-04 1E-03
16 20 Rectifier 0,0906 10 10 50 1E-04 1E-03
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Table E.2: Logistic Regression hyperparameter search

Model # Hour Brier Score Lambda Alpha
1 10 0,08138 0E+00 0,75
2 10 0,08138 1E-05 0,75
3 10 0,08140 1E-04 0
4 10 0,08142 1E-04 0,25
5 10 0,08146 1E-04 1
6 10 0,08151 1E-03 0,25
7 10 0,08160 1E-03 0,75
8 10 0,08254 1E-02 1
9 10 0,08526 1E+00 0

10 10 0,08555 1E-01 0,25
11 10 0,09067 1E+00 0,5
12 10 0,09067 1E-01 1
13 10 0,09067 1E+00 1
14 10 0,09067 1E-01 0,75
15 10 0,09067 1E+00 0,75
16 10 0,09067 1E+00 0,25

1 15 0,08931 1E-04 0
2 15 0,08932 1E-05 0,75
3 15 0,08932 1E-05 0,5
4 15 0,08932 1E-05 0,25
5 15 0,08933 0E+00 0,25
6 15 0,08943 1E-03 0,75
7 15 0,08948 1E-03 1
8 15 0,08950 1E-02 0
9 15 0,09042 1E-02 0,75

10 15 0,09447 1E-01 0,25
11 15 0,09758 1E-01 0,5
12 15 0,10030 1E+00 0,5
13 15 0,10030 1E-01 1
14 15 0,10030 5E-01 0,75
15 15 0,10030 1E+00 0,75
16 15 0,10030 1E+00 1

1 18 0,09729 0E+00 0,5
2 18 0,09729 0E+00 1
3 18 0,09729 1E-05 1
4 18 0,09729 1E-04 0
5 18 0,09736 1E-04 1
6 18 0,09737 1E-03 0
7 18 0,09765 1E-03 0,75
8 18 0,09858 1E-02 0,5
9 18 0,09901 1E-02 0,75

10 18 0,10430 1E-01 0,25
11 18 0,10849 1E-01 0,5
12 18 0,11200 1E+00 0,5
13 18 0,11200 1E-01 0,75
14 18 0,11200 5E-01 0,25
15 18 0,11200 5E-01 0,5
16 18 0,11200 5E-01 1

1 20 0,08928 1E-02 0,25
2 20 0,08929 1E-03 1
3 20 0,08934 1E-03 0,25
4 20 0,08943 1E-03 0
5 20 0,08945 0E+00 0
6 20 0,08945 0E+00 0,5
7 20 0,08945 0E+00 1
8 20 0,08945 1E-05 1
9 20 0,08965 1E-02 0,75

10 20 0,08969 1E-01 0
11 20 0,09207 1E+00 0
12 20 0,09453 1E-01 0,5
13 20 0,09650 1E-01 1
14 20 0,09650 1E+00 0,75
15 20 0,09650 5E-01 0,75
16 20 0,09650 1E+00 0,5
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Table E.3: GBM hyperparameter search

Model # Hour Brier Score Ntrees Learn rate Max depth Sample rate Col sample rate
1 10 0,0796 200 0,05 7 0,8 0,8
2 10 0,0799 150 0,05 9 0,7 0,6
3 10 0,0801 100 0,10 8 0,6 0,5
4 10 0,0803 200 0,03 9 0,7 0,9
5 10 0,0805 100 0,08 10 0,5 0,7
6 10 0,0805 50 0,10 10 0,6 1,0
7 10 0,0804 200 0,02 12 0,9 0,4
8 10 0,0817 138 0,07 14 0,5 0,5
9 10 0,0815 50 0,10 13 0,6 0,4

10 10 0,0815 100 0,07 15 0,6 0,4
11 10 0,0820 150 0,02 12 0,6 0,7
12 10 0,0815 110 0,09 11 0,5 0,6
13 10 0,0827 100 0,09 15 0,8 0,8
14 10 0,0822 50 0,02 13 0,6 0,9
15 10 0,0827 200 0,01 7 0,5 1,0
16 10 0,0840 108 0,09 13 0,6 0,5

1 15 0,0880 200 0,03 11 0,6 0,6
2 15 0,0881 100 0,04 11 0,9 0,4
3 15 0,0883 196 0,04 11 0,8 0,6
4 15 0,0883 100 0,03 11 0,5 0,9
5 15 0,0886 50 0,05 5 0,8 0,7
6 15 0,0891 138 0,09 11 0,8 0,5
7 15 0,0899 50 0,10 13 0,9 0,4
8 15 0,0900 50 0,03 6 0,7 0,8
9 15 0,0905 134 0,08 13 0,8 1,0

10 15 0,0916 50 0,05 14 0,9 0,6
11 15 0,0916 146 0,02 14 0,7 0,7
12 15 0,0917 200 0,01 5 0,8 0,6
13 15 0,0919 100 0,04 14 0,7 0,9
14 15 0,0919 108 0,09 13 0,5 0,5
15 15 0,0949 50 0,10 15 1 1,0
16 15 0,0952 50 0,01 13 1 0,4

1 18 0,0951 100 0,08 7 1 0,4
2 18 0,0954 200 0,08 5 0,5 0,7
3 18 0,0958 100 0,06 10 0,9 0,8
4 18 0,0961 100 0,07 9 0,7 0,9
5 18 0,0967 50 0,08 12 1 0,4
6 18 0,0967 150 0,05 13 0,5 0,4
7 18 0,0967 100 0,03 15 0,8 0,4
8 18 0,0975 126 0,10 11 0,6 0,6
9 18 0,0977 50 0,03 6 0,8 0,7

10 18 0,0978 134 0,07 13 0,9 1,0
11 18 0,0988 50 0,09 12 0,9 0,6
12 18 0,0990 100 0,02 8 1 0,6
13 18 0,0992 50 0,02 7 0,5 1,0
14 18 0,1011 128 0,03 15 0,6 0,6
15 18 0,1026 150 0,01 12 0,8 1,0
16 18 0,1056 50 0,01 10 1 0,5

1 20 0,0884 144 0,10 7 0,5 0,9
2 20 0,0884 200 0,03 7 1 0,7
3 20 0,0884 200 0,08 5 0,9 0,9
4 20 0,0888 100 0,09 8 0,9 1,0
5 20 0,0889 150 0,09 6 0,5 1,0
6 20 0,0892 132 0,08 9 1 0,5
7 20 0,0894 50 0,10 9 0,8 0,5
8 20 0,0894 100 0,03 12 1 1,0
9 20 0,0894 100 0,05 12 0,7 0,4

10 20 0,0898 50 0,08 10 0,5 0,8
11 20 0,0908 50 0,10 12 0,6 0,6
12 20 0,0910 100 0,01 7 0,7 1,0
13 20 0,0914 50 0,07 12 0,9 0,7
14 20 0,0919 100 0,04 13 0,7 0,8
15 20 0,0924 122 0,09 14 0,5 0,5
16 20 0,0925 150 0,02 15 0,7 1,0
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Table E.4: RF hyperparameter search

Model # Hour Brier score Ntrees Nbins Max depth Col sample rate
1 10 0,0804 150 64 15 0,6
2 10 0,0806 150 32 11 0,9
3 10 0,0806 50 64 13 0,5
4 10 0,0806 100 32 12 0,5
5 10 0,0807 100 8 16 0,6
6 10 0,0807 150 8 12 0,7
7 10 0,0809 50 16 16 0,6
8 10 0,0809 50 8 10 0,8
9 10 0,0810 50 8 9 0,9

10 10 0,0810 50 32 8 0,8
11 10 0,0811 150 8 10 0,9
12 10 0,0813 144 16 7 0,6
13 10 0,0813 150 32 13 0,6
14 10 0,0813 100 8 12 0,8
15 10 0,0816 150 8 13 0,8
16 10 0,0836 150 8 17 0,8

1 15 0,0888 50 16 15 1,0
2 15 0,0888 100 16 10 0,7
3 15 0,0889 150 64 8 0,6
4 15 0,0889 50 32 9 0,7
5 15 0,0890 144 16 9 0,6
6 15 0,0890 50 16 17 0,8
7 15 0,0891 50 8 8 0,5
8 15 0,0893 50 32 6 0,6
9 15 0,0897 50 16 5 0,7

10 15 0,0897 100 32 5 0,6
11 15 0,0898 150 64 14 0,7
12 15 0,0902 50 8 15 0,5
13 15 0,0908 150 32 3 0,9
14 15 0,0908 50 16 3 0,8
15 15 0,0910 150 16 3 0,8
16 15 0,0920 100 64 17 1,0

1 18 0,0962 100 32 17 0,8
2 18 0,0962 150 16 16 1,0
3 18 0,0963 50 32 14 1,0
4 18 0,0965 100 16 17 0,9
5 18 0,0965 100 16 10 0,8
6 18 0,0967 50 16 10 0,5
7 18 0,0968 138 8 9 0,8
8 18 0,0971 50 8 10 0,5
9 18 0,0973 50 32 11 1,0

10 18 0,0975 146 64 12 0,6
11 18 0,0977 50 16 12 0,7
12 18 0,0977 50 64 6 0,6
13 18 0,0981 100 16 13 1,0
14 18 0,0996 150 64 3 0,5
15 18 0,0996 100 8 16 0,5
16 18 0,1026 100 64 18 1,0

1 20 0,0885 50 64 8 0,6
2 20 0,0886 150 32 8 0,7
3 20 0,0886 50 32 9 0,6
4 20 0,0886 100 32 8 0,7
5 20 0,0887 100 32 14 0,6
6 20 0,0888 150 32 6 0,8
7 20 0,0888 142 32 6 1,0
8 20 0,0888 100 16 6 0,7
9 20 0,0890 50 64 12 0,6

10 20 0,0890 150 8 17 0,7
11 20 0,0892 150 32 4 0,5
12 20 0,0892 50 64 15 0,8
13 20 0,0893 50 16 17 1,0
14 20 0,0896 150 8 3 1,0
15 20 0,0899 50 32 17 0,9
16 20 0,0902 100 8 14 0,8



Appendix F

Control and treatment samples
comparison

To add to the argument that a randomized sampling procedure ensured that the customer ac-
counts sent to the control and treatment groups were similar, the profiles of three variables are
examined. In figure F.1, the geographical distribution of customers is studied. Figure F.2 analyzes
the distribution of the base fee of subscription per customer accounts at the moment they were as-
signed to the campaign. At last, the technical profile of the subscription (cable, satellite or other)
is looked at in figure F.3.

Although, to serve as an illustration, only three variables are showcased in the present docu-
ment, the study conducted was far more thorough. The conclusion drawn from the analysis is that
the samples have a very similar behavior across the board.

Figure F.1: Geographical distribution of customer accounts assigned to each sample
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Figure F.2: Subscription fee’s distribution before the campaign started

Figure F.3: Comparison of subscription’s technical profiles



Appendix G

Dashboard

As mentioned in the body of this thesis, a dashboard was crafted to accompany the progress
of the pilot test. Said tool allowed for a comparison of an array of indicators between the control
and treated groups at different granularities.

The main panel (figure G.1) greeted the users (mostly operational teams) with the indicators
more meaningful to them, that is, sales evolution profiles and aggregate results. Occasionally,
some values are not disclosed (ND) due to corporate confidentiality.

Figure G.1: Greeting panel

A section dedicated to an aggregate benchmark of all conversion rates (answering rate, useful
contact rate and sales hit ratio) followed (figure G.2).

Figure G.2: Conversion rates’ panel
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Moreover, in order to provide a deeper understanding into each conversion rate’s profile, the
panel that followed tracked its hourly and daily evolutions (figure G.3).

Figure G.3: Hourly and daily evolution of the answering rate

Besides, an overview of call duration for answered calls, useful contacts and sales was also
included (figure G.4).

Figure G.4: Average daily call duration for answered calls, useful contacts and sales

Finally, to provide a global overview of the batch’s behavior, several cumulative profiles were
showcased. Those included the total number of attempted calls (presented as an example in figure
G.5), the total number of useful contacts generated, the cumulative sales profile and the number of
closed customer accounts.

Figure G.5: Example of a cumulative evolution profile (cumulative calls attempted)
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