Multi-Objective Tabu Search approach for
Single Customer Dial-a-Ride Problem in the
Tourism Sector

Ana Catarina Thomaz Moura Morais

Master’s Dissertation

Supervisor: Professor Maria Teresa Galvao Dias

[BPORTO

FEUP FACULDADE DE ENGENHARIA
UNIVERSIDADE DO PORTO

Integrated Master in Industrial Engineering and Management

2018-07-02

Abstract

The problem under research arises in YellowFish Transfers company. YellowFish is an airport
private transfers company in Algarve, Portugal and currently allocates its requests manually in
a daily basis. This allocation process implies, regarding the booking set for a specific day and
the available drivers, the allocation of every request to a vehicle. Although the process tries to
be efficient reducing the operational costs, with days that can rich more than 500 requests, the
efficiency and the total time of this task can be compromised once it is a completely manual
procedure.

The present work models this problem as a single customer Dial-a-Ride Problem (DARP). A
DAREP is a vehicle routing problem involving humans as the load to be transported. Several works
have been published in this area. While common models involve ride-sharing, in this one, only a
"single" customer is transported at the time. However, features as multi-depot and heterogeneous
fleet are found in the present application as in many other in literature.

Once this framework has a real application in the tourism sector and a company has always
several concerns regarding its services, the model tackles not one objective but three. Regarding
the solution approach, among the several methods in academia, a Tabu Search meta-heuristic is
applied. Besides addressing a multi-objective DARP, the present Tabu Search samples the neigh-
borhood and uses five different local search operators (not operating at the same time). Runs for
three different scenarios of the algorithm are performed. One without a maximum idle time of a
driver between requests and other two considering it. From those two scenarios, one tackles only
the minimization of the kilometers during the Tabu Search process and the other one only the min-
imization of the salaries variance between drivers. The algorithm is developed and implemented
in Python 3.6.5 language with Visual Studio Code as IDE.

After running the algorithm for 9 different days (with a small, medium and large number of
requests), with the main goal of kilometers minimizations, the model has proved to be able to find
solutions with less kilometers while keeping similar values to unoccupied seats of the vehicle with
or without waiting time constraints. As a trade off, for these scenarios, the algorithm underper-
forms when the salaries variance between drivers is taken into account. The fleet size seems also
to be directly related with salaries variance and inversely proportional to the kilometers. Due to
the Pareto front solution that is obtained from joining the non-dominated set of solutions of the
different scenarios for each instance, the company can select a compromise solution between the
number of kilometers and the others objective functions. Finally, the use of proposed methodology
increases the company competitiveness, potentially decreases the costs for the clients and reduces
the Green-House Gas emissions because the vehicles need to do less kilometers. Another potential
advantage related with the present work, is that using an integrated methodology, the company can
close the booking 24 hours before the operation day instead of 48 hours currently used.

i

Acknowledgement

I remember being a child and have those homeworks of writing a composition about "What if...".
Today, my "composition" is What if I had to do my thesis alone?

Without professor Teresa Galvao and professor Pedro Cardoso who would debug my mistakes?
Without Horténsio Fernandes who would give me the input data and a priori constraints?

Without my family who would be there to make me laugh about something stupid and com-
pletely random and make me hear strange music? Or give me the wise advices that I need even if
I do not want to say that I need them? What pet would wake me up because he wants to eat?

And what if I did not have any friends? Who would give me a ride home after a night of study?
Who would support (or mostly not) my crazy ideas? Who would be there side-by-side in good
and bad moments?... Wait, these are almost marriage vows... Or not, because as Apicella et al.
(2012) stated once, humans are unusual as a species in the extent to which they form longstanding,
non-reproductive unions with unrelated individuals — namely, we have friends. With some I have
played basketball, with others I spent my high school, with others my Erasmus, others I just
procrastinated in Gestionis Salonis and, finally, with a really annoying group of people that loves
polls, I spent my five years of university. From this last pantagruélico group of people, I must
highlight Leque that was unlucky enough to have to work with me 95% of the days in the past 5
months.

These professors, family and friends, like variables in a program, have different natures, but
without them the program would not run. Nevertheless, unlike what sometimes happens with a
computer program, I just hope to have enough memory to keep them all in my heart. Last but not
least, without a hardware it is impossible to run a software, so I must definitely thank to the coffee
machine of the second floor of the industrial engineering department.

It is clear to me at this point: if I had to do this alone, it would be impossible. I wholeheartedly
thank you all!

Ana Catarina Morais

il

v

“When life gets you down, you know what you gotta do?
Just keep swimming.”

"Dori", Finding Nemo

Vi

Contents

1 Introduction
1.1 Problem OVerview i e e e
1.2 Motivation e e e e
1.3 Structure of the Document
2 Literature Review
2.1 Vehicle Routing Problem L.
2.2 Dial-a-Ride Characteristics i i i
2.2.1 DARPFormulation
222 DARPCommonFeatures.
2.2.3 DARP Objective Function
2.3 Solution Approaches L
23.1 ExactApproaches
2.3.2 Heuristics and Meta-Heuristics Approaches
2.3.3 Hybrid Algorithms L
2.3.4 Other Approaches e
2.3.5 BenchmarkProblems
3 Single Customer Dial-a-Ride Problem with Heterogeneous Fleet and Drivers
3.1 Differences Between the Proposed Model and a Classical DARP
3.2 ASSUMPLIONS vt e e e e e e e e
3.3 Variables e e e
33.1 Sets/indexes e e
3.3.2 Requests’ Parameters L oo
3.3.3 Resource parameterso e e e e
34 Objective Function L
3.5 ConstraintS e e e e e e
4 A Tabu Search approach for the multi-objective DARP
4.1 TabuSearch e
4.1.1 Initial Solution e
4.1.2 Neighborhood Definition
4.1.3 Aspiration Criterion
4.1.4 Termination Criteria e
4.1.5 Diversification, Intensification and Tabu Tenure
4.1.6 Dealing with a Multi-Objective Function
4.2 Software Application
42.1 PythonLanguage

vii

DN = =

000 ON Lt AW W

15
15
15
16
16
17
17
18
19

viii CONTENTS

422 VisualStudioCode 29

4.2.3 Algorithm Structure in Pythono, 29

5 YellowFish Case Study 31
5.1 YellowFish data characteristics 31

5.2 Current Allocation Approach L L 31

5.3 Computational Experiments o 33
53.1 Dataset 33

5.3.2 Analysis of the Current Manual Solution 34

5.3.3 AlgorithmResults 36

6 Conclusions and Future Work 45
A Appendix 1 47
B Appendix 2 49

References 51

List of Figures

2.1
22
23

24
2.5
2.6

4.1
4.3
4.4
4.5
4.6
4.7

5.1
52
53
54
5.5
5.6
5.7

B.1

Pickup and Delivery problem and possible solution example (Wang, 2014).
Examples of a directed and indirect graph (Ruohonen, 2013)
Pareto Frontier for a minimization problem with two objectives (Caramia and
Dell’Olmo, 2008) e e e
Cluster-First Route-Second process example (Prins et al., 2014).
1-Point Crossover example for a binary coding (Umbarkar and Sheth, 2015) . . .
Simulated Annealing Behavior during the iteration process (Caparrini, 2017)

Flow chart of the Tabu Search Algorithm
Relocate Neighborhood L .
Exchange Neighborhood
Delete Neighborhood
Genetic Algorithm Type Neighborhood
Tabu Search Script

(A) Full-Timer (B) Full-Timer + Part-Timer
Current Allocation System
Graphics related with the settled objectives and vehicles used for YF allocation

Graphics related with the settled objectives for YF allocation (continuation) . . .
Pareto charts for three differentdays
Objectives Functions Results comparison
Computational Timeresults

Non-dominated set for a run of the third scenario for 22/10/17

X

10
11
11

LIST OF FIGURES

List of Tables

2.1 DARP Classification 5
4.1 Algorithm modules and scripts L oL 29
5.1 Numbers of vehicles percapacityo 31
52 RequestperYear e 33
5.3 Requests per day in the sample. All days are from 2017. 33
5.4 Objective Function Values for YellowFish allocation method 34
5.5 Average number of non-dominated solutions when optimizing fs with waiting

tiMe CONSIIaints o v vttt e e e e e e 37
5.6 07/12 (29 Requests): Best Objective Function Values for the Algorithm 38
5.7 07/11 (60 Requests): Best Objective Function Values for the Algorithm 38
5.8 29/10 (105 Requests) -Best Objective Function Values for the Algorithm 38
5.9 22/10 (212 Requests): Best Objective Function Values for the Algorithm 38
5.10 01/09 (419 Requests): Best Objective Function Values for the Algorithm 39
5.11 Computational times comparison between two laptops 44
A.1 Non-dominates set size for the three scenarios 47

X1

xii LIST OF TABLES

Abbreviations

ADT
B&C
B&P
B&P&C
CVP
DA
DARP
GA

GA Type
IDE
LNS
NP-hard
PDP
RPP

SA

TS

TSP
VSN
VRP
VSCode
VS

YF

Abstract Data Type

Branch-and-cut

Branch-and-price
Branch-and-price-and-cut

Chinese Postman Problem
Deterministic Annealing

Dial-a-Ride Problem

Genetic Algorithm

Genetic Algorithm Type local search operator
Integrated Development Environments
Large Neighborhood Search
Non-deterministic polynomial-time hard
Pickup and Delivery Problem

Rural Postman Problem

Simulated Annealing

Tabu Search

Traveling Salesman Problem

Variable Neighborhood Search
Vehicle Routing Problem

Visual Studio Code

Visual Studio

YellowFish Transfers

Xiii

Chapter 1

Introduction

The present work is performed in the context of the dissertation project of the Integrated Master

in Industrial Engineering and Management of the Faculty of Engineering of Oporto University.

1.1 Problem Overview

The problem under research arises in YellowFish Transfers company. YellowFish is an airport
private transfers company in Algarve, Portugal and currently allocates its requests manually in
a daily basis. This allocation process implies, regarding the booking set for a specific day and
the available drivers, the allocation of every request to one vehicle. Although the process tries
to be efficient reducing the operational costs, with days that can rich more than 500 requests,
the efficiency and the total time of the task can be compromised once it is a completely manual
procedure. In order to improve the current solution it is firstly needed to model the problem. In
this particular case, the problem is modeled as a single customer Dial-a-Ride Problem (DARP).
A DARP is a vehicle routing problem involving humans as the load to be transported. Once this
framework has a real application in the tourism sector and a company has always several concerns
regarding its services, the model tackles not one objective but three. Regarding the solution ap-
proach, among the several methods in academia, a Tabu Search meta-heuristic is applied. Besides
addressing a multi-objective DARP the present Tabu Search samples the neighborhood and uses
five different local search operators (not operating at the same time). The algorithm is developed
and implemented in Python 3.6.5 language with Visual Studio Code as IDE.

1.2 Motivation

Having a project that gathers a multiple objectives, seasonality (which allows the analyses of the
algorithm performance within a wide range of instances size), a Tabu search and being "single
customer"” it is a unique opportunity to create value for academia and for the real world, saving
money for the company and potentially for its clients but also saving green-house gas emissions

due to the less kilometers spent by the vehicles.

2 Introduction

Besides the decrease in the time that is spent on the allocation task, once the problem is a
multi-objective, its implementation can not only creates value in one domain but in three (opera-
tions costs in the core service, employees and customers) resulting in a three times more satisfied
company. Once it has a practical application, this project is helping to optimize a process that is
now done 100% manually, helping the company to reduce the time that spends on the allocation
task and hopefully the operation costs. This fact is also important because nowadays the com-
pany closes the booking process 48 hours before the operation day and the proposed method can

contribute to reduce this time potentially to 24 hours.

1.3 Structure of the Document

Besides the chapter that it is being read at this precise moment, there are more five chapters.
The Chapter 2, Literature Review, does a contextualization of the problem and the algorithm
in academia, showing the common features of the formulation as well as the methods used to
achieve to feasible solutions for the model and their pros and cons. One section ahead the reader,
finds Chapter 3, Single Customer Dial-a-Ride Problem with Heterogeneous Fleet and Drivers,
that mathematically formulates the problem. This chapter presents the variables, parameters, con-
straints, objective functions and the way they relate with each other. In Chapter 4, Algorithm, the
construction and features of the Tabu Search algorithm are explained, detailing all the methods
used in the present work. The Chapter 5, YellowFish Case Study, connects the theory with the real
world application. First a description of the company along with their current model of allocating
the vehicles to the requests is made. Furthermore, the results of the computational experiments
with the dataset provided by the company are shown and analyzed. Finally Chapter 6 summarizes
the work realized and highlights the most important findings and results. Some prospects and

future work are also a matter of attention in these last pages of dissertation.

Chapter 2

Literature Review

In this chapter all the background necessary to understand the following chapters is given. There-
fore, concepts related with the Vehicle Routing Problem (VRP), the Dial-a-Ride Problem (DARP),
graph theory, and solving methods for DARP (exact methods, heuristics, meta-heuristics and some

other less studied approaches) are exposed.

2.1 Vehicle Routing Problem

The Vehicle Routing Problem (VRP) was firstly discussed in 1959 when Dantzig and Ramser, with
the objective of solving the problem of distributing gasoline to service stations set the mathemat-
ical programming formulation and algorithmic approach. VRP is one classical type of a routing
problem. Besides VRP, some of the most well known problems, related with the present work,
are the Traveling Salesman Problem (TSP), the Rural Postman Problem (RPP) and the Chinese
Postman Problem (CVP) (Laporte and Osman, 1995).

The classical VRP aims to find a set of routes at a minimal cost (finding the shortest paths,
minimizing the number of vehicles, etc.), beginning and ending the route at the depot, so that the
known demand of all nodes is fulfilled. Each node is visited only once, by only one vehicle, and

each vehicle has a limited capacity (Tonci Caric, 2008).

The Pickup and Delivery Problem (PDP), see Figure 2.1, is an extension of the VRP, which
considers the transportation of goods or persons between pickup and delivery locations without
transshipment at intermediate location (Wang, 2014). As shown in the Figure 2.1 part (A), a PDP
is characterized by at least one depot (place from where all the vehicles star and end a route) and
several requests with a pick-up (+) and drop off (-) locations. A solution for a PDP is a set routes
in order to satisfies all the request. Note that the pickup and drop-off of a specific request has to
be in the same route (Figure 2.1 part (b)). Nevertheless, it is important to keep in mind that for
a same problem different goals can imply completely different sets of routes as a solution. In the
case where the load are people, the problem is nominated as Dial-a-Ride Problem (DARP), and

instead of load, terms as customers or clients are commonly used (Savelsbergh and Sol, 1995).

4 Literature Review

1te.. 5 ™2
1
o
3! 2
2 v
o4
o | i
.l
) .f a7t
J LY 6
i .- -
Kt h
m Depot m Depot
o Pickup (+) and delivery {-) locations e Pickup (+) and delivery (-} locations
(a) Requests (b) A solution

Figure 2.1: Pickup and Delivery problem and possible solution example (Wang, 2014).

According to Laporte and Osman (1995), "Vehicle routing is truly one of the great success
stories of operations research", being the Dial-a-Ride an extension of a VRP it can be also included
in the statement. In fact, since its first relevant publications in the 80’s, focusing on the single
vehicle problem (Chassaing et al., 2016), research into the DARP has been growing steadily (Ho
etal., 2018).

2.2 Dial-a-Ride Characteristics

According to Colorni and Righini (2001), the name ‘dial-a-ride’ comes from the phone call by
which a customer is supposed to ask for service. A DARP as well as the others problems referred
in the previous section (PDP, VRP, TSP, RPP, CVP) is a NP-hard problem (non-deterministic
polynomial-time hard) meaning that the number of configurations increases exponentially to the
problem size (Urban, 2006). Therefore, exact solving methods are only suitable for small sized
situations. The most common application of DARP arises in door-to-door transportation services
for elderly or disabled people (Cordeau and Laporte, 2007) as well as other health care areas.
Works like the ones presented by Desrosiers et al. (1991), Toth and Vigo (1997), Colorni and
Righini (2001), Cordeau and Laporte (2003), Diana and Dessouky (2004), Melachrinoudis et al.
(2007) and Paquette et al. (2013) are examples of those kind of application. Nevertheless, in the
past few years, applications in public transportation (Markovic et al. (2015), Parragh et al. (2015))
and in airport transportation (Reinhardt et al. (2013)) areas are also being studied and applied.
Besides the different applications, this type of combinatorial problem can be classified accord-

ing with two different aspects:
e Timing of the system decisions;

e Certainty of the request information.

2.2 Dial-a-Ride Characteristics 5

Regarding the first aspect, it is possible to have static or dynamic systems. In a static problem,
all the information is known and all the decisions are settled before the start of the operations. On
the other hand, in a dynamic system, modifications and new information can appear after the

beginning of the operations. In (Ho et al., 2018) three common triggers of change are outlined:
e Appearance of new users;
e Updated information about the existing users;
e Unexpected disturbances (delays, vehicle breakdowns, etc.).

Despite of some early studies about dynamic DARP (Wilson et al. (1976), Psaraftis (1988)),
according to Parragh et al. (2012), Ho et al. (2018), Berbeglia et al. (2012) and Cordeau and
Laporte (2003) the majority of the work is concentrated in the static version of the problem.

As for the certainty of the request information (second aspect of classification), a DARP can
be considered as deterministic or stochastic. When the information used to the decision process is
certain, the DARP is considered deterministic. For problems where decisions are made upon im-
perfect information (based on forecasts with the associated uncertainties) the problem is classified

as stochastic. A summary of the DARP classification is presented in Table 5.2

Table 2.1: DARP Classification

Certain Informations7
: No | Yes
Changes after the beginning of No Static and stochastic Static and deterministic
the cperations? Yes Dvnamic and stochastic | Dvnamic and deterministic

2.2.1 DARP Formulation

There are two main reference DARP formulations among literature. One is based in three-index
decision variables (Cordeau, 2006) and other is based in two-index decision variables (Ropke et al.,
2007). For that reason, they are known as three-index or two index formulations. Regardless the
formulation type they are based in graph theory, more precisely in direct graphs. As it is possible
to see in the Figure 2.2a graph is a pair of sets (V,E), where V is the set of vertices and E is
the set of edges, formed by pairs of vertices. E is a multiset or, in other words, its elements can
appear more than once so that every element has a multiplicity (Ruohonen, 2013). The graph is
nominated as direct in the case that the elements of E are ordered pairs (Figure 2.2b), directions
are relevant (the arc from a vertex u to vertex v is written as (u,v) and the other pair (v,u) is the

opposite direction arc (Ruohonen, 2013)).

2.2.2 DARP Common Features

Due to the application oriented character of dial-a-ride problems, a large variety of objective func-

tions and constraints may be observed in the literature (Braekers et al., 2014). One of the simplest

6 Literature Review

vy oV, vy o

(a) Graph (b) Direct Graph

Figure 2.2: Examples of a directed and indirect graph (Ruohonen, 2013)

cases of the DARP is when all users are served by a single vehicle (Cordeau and Laporte, 2007).

To this simple model several features can be added and/or modified such as:

e Rejection: To reject a client request may be or not allowed. While in the majority of the
cases, probably because they are applied to health care services, rejections are not allowed,
there are opposite examples like the one presented by Parragh et al. (2015). In this case,
Parragh et al. (2015) try to maximize the total profit of a demand-responsive transportation
company operating during the nights in Oporto, leading to the necessity of evaluating the

profitability of a request and allowing its rejection when not profitable.

e Time Window: In some problems, users specify the earliest/latest times that they can be

picked-up/dropped-off (e.g., Chassaing et al. (2016));

e Depot: A DARP can be single (e.g., Berbeglia et al. (2012)) or multi-depot(e.g., Melachri-
noudis and Min (2011)).A DARP is single depot if all the vehicles/routes start and end at
the same place, and is multi-depot if there is more than one location for a vehicle to start

and end its route;

e Vehicle Capacity: A fleet is homogeneous if all the vehicles have the same capacity (e.g.,
Rahmani et al. (2016)) . On the other hand, when a fleet has vehicles with different capacities
is named heterogeneous fleet (e.g., Aldaihani and Dessouky (2003)).

2.2.3 DARP Objective Function

As refereed in the previous sub-section, another crucial and wide aspect of these kind of problems
is the objective function. Depending on the objective function the solution for a problem can be
completely different. In academia, trying to minimize operations costs or customer satisfaction are
frequent tackled as objectives. Functions expressing fleet dimensioning, total traveled distance,
drivers working time or total transportation time are frequent objectives for papers addressing
operation costs. On the other hand, for client satisfaction assessment, frequent goals pass through
minimizing the total riding time, waiting time or time windows deviations. Garaix et al. (2011),
Parragh et al. (2015) and Lim et al. (2017) propose some less studied goals such clients occupancy

rate, company profit and staff workload.

2.2 Dial-a-Ride Characteristics 7

Furthermore, some works, instead of addressing one single goal try to find a solution that
is a good compromise between several goals. Problems with such characteristics are known as
multi-objective. To solve them, usually methodologies involve either a posteriori information
(after modeling and optimizing the problem a decision maker defines preferences based on opti-
mization), a priori information (preferences are settled before optimization) or both. In Caramia
and Dell’Olmo (2008) the reader can find several methodologies for addressing multi-objective
problems. Nevertheless, Ho et al. (2018) outline three ways of dealing with the multi-objective

problems among DARP literature.

1. Weighted sum of the goals. Articles such as the ones presented by Sexton and Bodin (1985),
Diana and Dessouky (2004), Jorgensen et al. (2007) and Melachrinoudis et al. (2007) are
examples of such approach. For problems where the relative importance of each objective
is unknown or unquantifiable (Ho et al., 2018), the application of this approach can be com-

promised once the results are highly dependent on the weights values (a priori decision);

2. Order the objectives depending on its importance. One objective is clearly dominant to the
others being the one to be optimized. An example of this application is presented by Schilde
etal. (2011);

3. Find the Pareto frontier of the problem. A Pareto Frontier is a set of non-dominated so-
lutions. A non-dominated solution is a solution where there is no way of improving any
objective without degrading at least one other objective (Figure 2.3) (Deb et al., 2002). In
this case, goals are often conflicting against each other meaning that it is not feasible to
satisfy all the goals at a time. Once the output is a set of solutions, in the end of the process
it requires a human decision about the solution to be implemented (a posteriori decision).
In papers such as Paquette et al. (2013), Jaeggi et al. (2008) the reader can find this kind of
approach to Multi-Objective DARPs.

8 Literature Review

Si(x)

GYG)

Pareto curve

(£, ®).£X)

fo(x)

Figure 2.3: Pareto Frontier for a minimization problem with two objectives (Caramia and
Dell’Olmo, 2008)

2.3 Solution Approaches

As well as the many variations in DARP formulation, there are also a wide range of methods used
to find a solution. It is possible to divide the solutions approaches in two major categories: the

exact methods, and the heuristics and meta-heuristics.

2.3.1 Exact Approaches

The majority of the papers that can be found in the exact approach category are based on branch-
and-bound (B&B) concepts and have a relatively small size. An instance size of 96 requests in a
day in Braekers et al. (2014) and Ropke et al. (2007) is the maximum size found for this kind of

applications. The threee main methods in the exact approach category are:

e Branch-and-cut (B&C): Branch-and-cut algorithms combine a branch-and-bound search
procedure with the concept of cutting planes Braekers et al. (2014). To do this, the prob-
lem has to suffer a LP-Relaxation (Linear Programming Relaxation) first. Articles such as
Braekers et al. (2014) and Cordeau (2006) apply B&C too. Among all the exact methods
B&C is the one with more works published (Ho et al., 2018);

e Branch-and-Price (B&P): In Parragh et al. (2015) and Garaix et al. (2011) a B&P a algorithm
is applied to solve a DARP problem . Authors such as Molenbruch et al. (2017) refer this
type of approach as Column Generation once there is a focus on column generation rather
than generating cuts for LP relaxations in a B&B procedure. B&P algorithms require the
reformulation of the problem into a restricted master problem and a pricing subproblem (Ho
et al., 2018).

2.3 Solution Approaches 9

e Branch-and-Price-and-Cut (B&P&C): As the name suggests this a approach merge con-
cepts of the last two. In such cases column generation is integrated into a branch-and-
cut algorithm, based on the observation that most variables in the solution are nonbasic
(variables = 0) (Molenbruch et al., 2017). More information and results of this application
can be found in works such as Qu and Bard (2015) and Gschwind and Irnich (2014).

2.3.2 Heuristics and Meta-Heuristics Approaches

Once a DARP is a NP-hard problem, for large instances, optimal solutions are not expected to
be found in polynomial time Molenbruch et al. (2017). For this reason, approximation meth-
ods/heuristics are recommended for large instances. Although the application of heuristics does
not the ensure that the optimal solution is found, the heuristic algorithms obtain very good re-
sults compared with the hand-made schedules, both in terms of service quality (all the service
requirements are met) and overall cost (Toth and Vigo, 1997). Heuristics are problem-dependent
meaning that they can be quite specific. Some classical heuristics for DARP, as referred by Molen-
bruch et al. (2017), have the inability to escape from local optima (which has lead to a declination
of the numbers of works published during the past decade). Therefore, in order to prevent lo-
cal optima, improvement procedures are normally embedded in a heuristic such as Tabu Search,
Simulated Annealing, or Genetic Algorithm (Melachrinoudis et al., 2007). These algorithms, Tabu
Search, Simulated Annealing and Genetic Algorithms, referred by Melachrinoudis et al. (2007)
are meta-heuristics. The meta-heuristic concept was introduced for the first time by Glover when,
in 1986, the first academic work about a Tabu Search algorithm was published. At that time he
stated "Tabu search may be viewed as a meta-heuristic superimposed on another heuristic". Meta-
heuristic optimization techniques are problem-indepent and have proved effective in solving com-
plex, real-world optimization problems with many local minima, problems to which traditional,

gradient-based methods are ill suited (Jaeggi et al., 2008).

2.3.2.1 Classical Heuristics

Within the classical heuristics there are construction insertion heuristics and cluster-first route-
second heuristic. Although meta-heuristics are more effective then construction insertion heuris-
tics, typically they get within roughly 10-15% of optimal in relatively little time (Johnson and
McGeoch, 1997), meaning that they can be useful when there is a need of quickly finding feasible
solutions (Ho et al., 2018). Because of the last characteristic, there are some applications such
as the ones proposed by Braekers et al. (2014) and Aldaihani and Dessouky (2003) which use a
constructive heuristic as an initial solution for a meta-heuristic. These heuristics are constructive
because the solution is built step-by-step using a set of defined rules. The first example like the one
described before was the greedy insertion heuristic, proposed by Jaw et al. (1986) which sorts re-
quests according the pickup time. In each iteration, in the first route for which a feasible insertion
is found, the first-sorted user is inserted at the best feasible position. It is also relevant to high-
light the work proposed by Diana and Dessouky (2004) which has proposed a parallel insertion

10 Literature Review

heuristic. They have reported results on instances of sizes 500 and 1000 (Cordeau and Laporte,
2007) which is, in the largest instances, more then 10 times bigger then the maximum instances
registered for an exact method approach. More applications of parallel insertion heuristics can be
found in the works of Toth and Vigo (1997) (they were actually the first ones to use it), Luo and
Schonfeld (2007) and Calvo and Colorni (2007).

Cluster-first route-second heuristic was proposed by Ioachim et al. (1995) and, as the name
implies, solves the problem in two separate phases. The first phase divides the requests in clusters
and then for each cluster composes routes (see Figure 2.4). Works such as Jorgensen et al. (2007)
join the concept of cluster-first route-second concept with the Genetic Algorithm concept. As it is

going to be seen in section 2.3.3., works where heuristics are mixed seem to be increasing.

O o~
a {-3:)
|:| g
| L
~ O
e © i
{ D T 4 o/
., D :.:D /-
~.._ U ‘) 2
Cluster-first Route-second

Figure 2.4: Cluster-First Route-Second process example (Prins et al., 2014).

2.3.2.2 Genetic Algorithm

Genetic algorithms (GA) are part of a broader class, the evolutionary algorithms. The term is
inspired by Darwin’s evolution theory. Unlike other meta-heuristics, that are local search based,
GA are population based. From a population (set of solutions) parents are chosen (as it happens
in nature "stronger"/fittest individuals have a higher probability of being chosen). Offsprings (new
individuals) are created by applying crossover and mutation operators on the parents. Then, some
of the existing individuals may be replaced by the new offsprings (Ho et al., 2018). Among the
literature there several crossover types (see Umbarkar and Sheth (2015) for more information).
Figure 2.5 shows the simplest crossover type, the 1-point crossover. According with Jorgensen
et al. (2007), GAs have shown good performance on a number of related routing problem. Never-
theless, the same author states that, regarding the chromosome representation, the extension to the
DAREP is problematic being the main obstacles the precedence constraints. Note that in the chro-
mosome representation, both the allocation of customers to vehicles and the order of the customers
on the routes are encoded (Jorgensen et al., 2007). In fact, among literature, different authors use

different coding schemes.

2.3 Solution Approaches 11

Parent 1: 1010/10010
Parent 2: 1011/10110
Offspring 1: 1010[10110
Offspring2: 1011[10010

Figure 2.5: 1-Point Crossover example for a binary coding (Umbarkar and Sheth, 2015)

2.3.2.3 Simulated Annealing

Simulated Annealing (SA) is a stochastic local search meta-heuristic inspired by the physical an-
nealing process. "Annealing is referred to as tempering certain alloys of metal, glass, or crystal
by heating above its melting point, holding its temperature, and then cooling it very slowly until it
solidifies into a perfect crystalline structure" (Du and Swamy, 2016). According with Molenbruch
et al. (2017) SA algorithms are usually combined with characteristics from other meta-heuristic
frameworks. In terms of application, a SA is a descent algorithm modified by random/stochastic
ascent moves in order to escape local minima which are not global minima (Du and Swamy, 2016)
, meaning that it is possible to accept a worsening solution in a certain iteration. A descent algo-
rithm involves using a feasible solution and making small changes to the solution. The solutions
originated from that move will create a neighborhood. Only solutions that improve the objective

function are accepted in a descent algorithm.

A

VAN Y
~

X0 X* i

Figure 2.6: Simulated Annealing Behavior during the iteration process (Caparrini, 2017)

In 2014, Braekers et al. suggested a variation of SA known as deterministic annealing (DA).
Ho et al. (2018) considers this variation as "highly effective and efficient". In fact, for common
benchmark instances (with a single-depot and a multi-depot) the framework achieved the best
known results. In this variation, besides more complex local search operators, this framework
accepts deteriorations which are smaller than a gradually lowered threshold (Molenbruch et al.,
2017).

2.3.2.4 Variable Neighborhood Search

Variable Neighborhood Search (VNS) is a meta-heuristic proposed by (Mladenovic and Hansen,
1997). VNS exploits the insight that neighborhoods are defined with respect to a particular oper-

ator Molenbruch et al. (2017), meaning that the neighborhood operators change on a systematic

12 Literature Review

basis allowing to escape from local optima solution. This framework had it first application in
DARP in Parragh et al. (2009) and since then authors such as Molenbruch et al. (2017), Muelas
et al. (2015) and Schilde et al. (2014) have also applied this framework. Nevertheless, as well
as different objective functions also different operators were used, for example in Muelas et al.
(2013). Other cases such Schilde et al. (2011) and Schilde et al. (2014) applies the framework

combined with a simulation method.

2.3.2.5 Large Neighborhood Search

Large Neighborhood Search (LNS) method destroys part of the current solution at each itera-
tion. This destruction is achieved by removing a certain percentage of requests from the solu-
tion. After, those removed requests are re-inserted in a better position. By doing this, this type
of approach implies larger changes than those by the typical neighborhood operators employed
in other meta-heuristics Ho et al. (2018). The removal and the insertion are made by one of
the removal/insertion heuristics. Molenbruch et al. (2017) highlights random removal, worst re-
moval, sequential removal, route removal and related removal as common "destroy" operators and
random insertion, greedy insertion, k-regret insertion, most-constrained-first insertion and space-
time-related insertion as common "repair” operators. Ropke and Pisinger (2006), Masmoudi et al.
(2016) and Gschwind et al. (2016) apply LNS approach in different domains.

2.3.2.6 Tabu Search Algorithm

Since it was proposed by Glover in 1986, Tabu Search (TS) has been applied multiple times in
routing and Dial-a-Ride problems (Ho et al., 2018). One of the reasons may be related with the
statement of Cordeau and Laporte (2007) saying that a tabu search "can easily accommodate a
large variety of constraints and objectives, even if these are nonlinear".

TS explores the solution space by moving at each iteration from the current solution to the
best solution in a subset of its neighborhood (Melachrinoudis et al., 2007). As it happens in
SA, the new solution may deteriorate from one iteration to the next. Due to declaring as tabu
(forbidden) some attributes of recently explored solutions, local optimal and cycling are avoided.
The number of iterations that a certain move is forbidden is an attribute called tabu tenure. The
tabu status can be overridden when a tabu solution is better than the current best solution found
so far (Melachrinoudis et al., 2007), among the literature this is called aspiration criterion. One
of the first works applying a TS to DARP system was Cordeau and Laporte (2003) which was
used as a main reference for many further more complex DARP systems as the ones proposed by
Paquette et al. (2013), Attanasio et al. (2004), Melachrinoudis et al. (2007), Melachrinoudis and
Min (2011), Kirchler and Wolfler Calvo (2013), Escobar et al. (2014) and Jaeggi et al. (2008).
In Cordeau and Laporte (2003) a relaxation mechanism is applied allowing infeasible solutions.
According to Cordeau and Laporte "the complex modification of a feasible solution into another
feasible solution can then be achieved by a series of simpler modification through intermediate

infeasible solutions". Besides the relaxation method, diversification and intensification methods

2.3 Solution Approaches 13

are applied. A diversification method intends to drive the search towards less explored regions
of the solution space whenever a local optimum is reached Cordeau and Laporte (2003). On
the other hand, an intensification method intends to explore more thoroughly the portions of the
search space that seem promising (Gendreau and Potvin, 2010). In Gendreau et al. (2015) is
also highlighted that not always such intensification is needed because the search in the "normal"
running is thorough enough.

Kirchler and Wolfler Calvo (2013) and Escobar et al. (2014) presented a granular Tabu Search
which is a Tabu Search with a particular focus on the local search phase. It uses a reduced neigh-
borhood (granular neighborhood) which ideally should not include moves which are unlikely to
belong to good solutions Kirchler and Wolfler Calvo (2013). To regulates the size of the neighbor-
hood (Kirchler and Wolfler Calvo, 2013) uses a threshold. This pretends to address the time that is
consumed in the evaluation of the neighborhood, which according with Ho et al. (2018) is one of
the most time-consuming tasks in a Tabu Search. An alternative to solve the mentioned problem
is using a random sampling like Detti et al. (2017) does.

In works like the ones from Glover (1990), Glover (1986), and Du and Pardalos (2013) the
reader can find more about TS and get some application tips in Gendreau and Potvin (2010). In

Chapter 4, the TS algorithm features are more explored.

2.3.3 Hybrid Algorithms

This kind of approach seems to be a growing trend in the last years. According to Ho et al. (2018)
in the last ten years, 17 works were published using an hybrid method. Hybrid methods involve
the application of more than one approach, could the method be a meta-heuristic, a mathematical
programming or a constraint programming approaches. When there is a combination between
two meta-heuristics usually either each meta-heuristic is executed sequentially or one is executed
within another (Ho et al., 2018). It is common to find solution that combine a population based
meta-heuristic, mostly GA, with a single-solution based solution like local search, TS, VNS and
SA. This happens due to the population-based meta-heuristic’s ability for exploration and the
single-solution based meta-heuristic’s ability for exploitation (Ho et al., 2018). Chassaing et al.
(2016), Molenbruch et al. (2017), Khelifi et al. (2013) presented works where this kind of approach
can be found.

Concerning hybrid methods involving mathematical programming approaches, a popular way
to combine a meta-heuristic with a mathematical based approach is to embed a meta-heuristic
into a mathematical method or vice versa (Ho et al., 2018). Therefore, these kind of approaches
can be also named as mathheuristics. While Parragh et al. (2012) and Parragh et al. (2015) use
a two hybrid collumn-generation method, works such as Ritzinger et al. (2016) and Gschwind
et al. (2016) combine meta-heuristics with Dynamic Programing (DP). Used for the first time in
a DARP by Psaraftis (1980), DP is a well known exact method that solves complex problems by
decomposing the problem into smaller subproblems (Ritzinger et al., 2016).

Finally, Berbeglia et al. (2012) presented a framework involving constraint programming and

a TS heuristic. According to Berbeglia et al. (2012) constraint programming is a programming

14 Literature Review

paradigm based on reasoning and search techniques. To more information about this technique
check Van Hentenryck (1989).

2.3.4 Other Approaches

It is possible to use some other approaches, less studied in literature, as for example, simulation
methods and approximation methods.

Simulation methods can be quite helpful to the understanding of DARP systems. They mostly
analyze the impact of parameter changes concerning the system’s design and the way of operation
(Molenbruch et al., 2017). Therefore, many of its application involve stochastic systems as it
happens in Deflorio et al. (2002) or dynamic systems as it happens in Gomes et al. (2014).

Some works like Maalouf et al. (2014) apply an approximation methods on a dynamic DARP
while Gupta et al. (2010) uses a ¢¢-approximation algorithm to a k-forest problem to solve a static
DARP.

2.3.5 Benchmark Problems

Many DARP systems among the literature have real-life application. Nevertheless, with the goal
of compare the efficiency of the different algorithms that can be found in literature, two sets of
artificial benchmark data have been proposed to perform computational tests (Molenbruch et al.,
2017). Both sets are divided in a instances (small vehicle capacities) and b instances (large vehicle

capacities).

e The first set was introduced by Cordeau (2006) and had a later extension made by Ropke
et al. (2007) and consists of 42 instances, including 16-96 requests (Molenbruch et al.,
2017).

e The second set was present by Cordeau and Laporte (2003) containing between 24 and 144
requests (Molenbruch et al., 2017).

In both cases authors have extended the sets to richer problem variants. Authors such as Berbeglia
et al. (2012) and Braekers et al. (2014) apply variations for the first benchmark set while works
such as Li et al. (2016) apply them on the second one.

See Ho et al. (2018) for a further analysis about papers released between 2007 and 2018 and
Cordeau and Laporte (2007) for informations about papers realized until 2007. Also in Molen-
bruch et al. (2017) it is possible to have an overview about the most relevant papers since 1980 till
2017.

Chapter 3

Single Customer Dial-a-Ride Problem
with Heterogeneous Fleet and Drivers

This chapter formulates the mathematical problem of a static and deterministic single customer
dial-a-ride problem with pickup and drop-off times, heterogeneous fleet, multiple drivers and mul-

tiple depots.

3.1 Differences Between the Proposed Model and a Classical DARP

Despite of having similarities with previous models in literature (multi-depot, heterogeneous fleet),
the current problem presents singularities worth of studying. This model does not allow sharing
rides in opposition to the classical DARP model, being therefore stated as "single customer".
This may lead the reader to think that it works like a taxi, but this problem also differs from a
classical taxi situation in the following aspects. All the requests are known in advance and require
a previous reservation. A request includes several aspects as known pickup and drop-off places,
number of passengers and time of pickup and drop-off. These aspects are crucial for the following
formulation. Also there is a set of predefined locations, so the costumer is picked-up or dropped

in a particular location within the available set.

3.2 Assumptions

In real transportation networks, riding time can vary from day to day (for instance between work-
ing days and weekends) and also during the same day (for instance, travel times are higher in rush
hours than at night or in the central hours of the day or different drivers drive through different
paths and at different velocities) (Colorni and Righini, 2001). Nevertheless, once there is not data
allowing the prediction of such uncertain factors the present formulation assumes a fixed traveling
time, meaning that both distance and traveling speed are constants. Other assumption is that the
unloading/loading time at each vertex is considered negligible. Finally customer cancellations and

delays are not considered in the current formulation. Similarly, operating problem (e.g. vehicle

15

16 Single Customer Dial-a-Ride Problem with Heterogeneous Fleet and Drivers

breaks, a driver illness) are not contemplated in the formulation. All these assumptions make this
problem a deterministic one. To compensate the fact of considering deterministic although it is
not in its real application a slack time in the traveling time is added. In addiction, once all the
requests are known a priori, not being possible new entries or cancellations after the beginning of

the operations, this is a static dial-a-ride problem.

3.3 Variables

In this section sets, parameters, auxiliary and decision variables are defined in order to be possible

to formulate the problem regarding the features observed.

3.3.1 Sets/indexes

A Dial-a-Ride problem can be defined as a graph G(V, E), where:

e R={1,2,...,n} is the set of requests;

e PT={1,2,...,n} is the set of pick-up points;

e P~ ={n+1,...,2n} is the set of drop-off points;
e D={2n+1,...,2n+m} is the set of depot points;

e V =PV (P D is the set of all nodes of the graph; A request i is a pair of a pick-up (i)
and a drop-off (n+ i) points, so if the physical drop-off or pickup locations of two requests

are the same they will count has separate nodes in the network;
e E is the set of arcs of the graph;
e K={1,2,...,k} is the set of vehicles;

e J is the set of customer types. Customers can be divided regarding their age (babies, children
and adults). A customer is considered a baby when the age < 3, a children when his age
is between 3 and 13 and an adult when its age > 13. This division is relevant in terms of

logistical needs since babies and children need safety seats.
e M ={1,2,....m} is the set of drivers;

e L is the set of drivers’ categories. A driver may work as a full-timer or as a part-timer.
This will have impact not only on the amount of work hours but also on the driver’s salary.
Drivers of same category should have similar salaries which means that the difference of

salaries within a category salaries be minimized;

e Ay is the list of requests scheduled for vehicle k, with k € K

3.3 Variables 17

3.3.2

Requests’ Parameters

Given arequest i € R, let:

3.3.3

T; is the type of request;
T — 0, if i is a pickup
"1 1,ifiis adrop-off

Similarly to other formulations, it is possible to divide customers according to their speci-
fications. Jorgensen et al. (2007) divided them as inbound and outbound. For the inbound
requests (7; = 1) the relevant issue is to arrive on time at the drop-off location, for an out-

bound costumer (7; = 0) the pick-up time is specified.

gi,j is the load (number of passengers) of the request i by category j, with j € J;
p;i": is the pick-up point, with p;” € PT;

p; : is the drop-off point, with p;” € P~;

e; is the pick-up time;

d; is the drop-off time; A customer either settles a pick-up or a drop-off time, being the other

one defined according to a distance/time matrix.

rev; is the driver’s revenue on a request i;

Resource parameters
to. is the traveling time between g and /, with g,h € V and 7, , € R™;
0. is the distance between g and h, with g,h € V and §; j € R™;
dif is the start point of vehicle k, with k € K and d," € D;
d, is the end point of vehicle k, with k € K and d,” € D;
C} is the capacity of the vehicle k € K, with Cj, € INy;
Max,, is the maximum workload for the driver m, with m € M and Max,, € R™;

[stm,edy] is the time window of availability of driver m € M, with st,, < ed,andety,,ed,, €
IR+

@y, ; is defined by

o — 1 if vehicle k is allocated to the driver m, with k € Kand m € M
ke 0, otherwise

Sm is the average salary of drivers in the same category of driver m, with m € M, 5,, € R™;

18 Single Customer Dial-a-Ride Problem with Heterogeneous Fleet and Drivers

Auxiliary variables:
e s, is the cumulative salary of the driver m, with m € M and s,, € R™;

° Aé‘ is the number of seats unused of vehicle k while serving the request i, withi € R,k € K
and Ai-‘ € INp. In the point of view of fuel consumption and also customer satisfaction these

values should be as small as possible;

Decision variables:
. vg is the time that vehicle k starts serving the vertex g , withge V, k€ K and v; € IR;

k . .
® x,, is given by

. 1, if vehicle k makes the arc between the nodes g and &
&h = 0, otherwise

. Z](;J’l is given by
t 1, if vehicle k makes the arc between the nodes g and & without customers
Zoh = .
& 0, otherwise

ey, is given by

yl-‘ L 1, if request i immediately precedes request j for vehicle k
" 0, otherwise

3.4 Objective Function

The problem is formulated as a multi-objective being identified 3 objectives: the minimization of
total distance made by the vehicles (f1), the equality between the wages of the drivers (f>) and the
minimization of the empty seats in a car allocated to a request (f3). The approach for addressing

the multi-objective nature of the problem is found in Chapter 4.

min fi=Y Y Y 8}, (3.1
keK geV heV
min fo =Y (sm—5n)° (3.2)
meM
min f3=Y Y Af (3.3)
i€ERkeK

It is relevant to outline that f; is the sum of the total kilometers made, with or without cus-

tomers. Only kilometers made without clients are possible to be minimized, meaning that in terms

3.5 Constraints 19

of goals, f can also be expressed as f; where:

min fy=3% Y Y& ’hZI{;h 3.4

keK g€V heV

3.5 Constraints

The main constraints of the problem are related with requests satisfaction (in terms of time, ca-
pacity and precedence), as well as drivers’ wages. Constraints (3.5), (3.6) and (3.7) ensure that all
requests are satisfied by one vehicle and that the vehicle that picks-up the costumer is the same
that drops him. Equations (3.8) and (3.9) ensure that a vehicle starts and ends its daily service
at a depot. Regarding the vehicles capacity constraints, those are verified through the constraint
(3.10).

Y <, =1 VieR, plePt p eP (3.5)
kek '
pf,p}r :yicl aVk € K7 lv.] ER (36)
k k __ .k .
Y &, =1 \Vkek (3.8)
+
heP+t
k _
Y Xy =1 VkeK (3.9)
geP™
xll‘)?’p; ZqiﬁAﬁF:ckx';l_ﬂp; VkeK,i€R (3.10)
JjeJ
yﬁ.jj(vz’jl_+ e pr e pt) < vg VkeK,i,jeER (3.11)

Another important group of constraints in a DARP problem concerns the time specifications.
Equation (3.11) ensures that none of the requests of a car overlap in time. Equations (3.12) and
(3.13) address the costumer impositions. More precisely, a customer either define at what time
wants to be picked-up from a place or dropped-off and the trip time is calculated. Therefore,

(3.12) satisfy the requirements of the first type and (3.13) those of the second.

v[’j++zp+7pf <d;xT, NkeK,icR (3.12)
v;f_+26,-*(1—7}) VkeK,ieR (3.13)

a),mk(vj; — v’;;) < Max,, ,NmeM keckK (3.14)

20 Single Customer Dial-a-Ride Problem with Heterogeneous Fleet and Drivers

The last group of constraints covers drivers’ issues. Namely, equations (3.14), (3.15) and

(3.16) ensure that a driver only works within a previously defined time window.

Opmin(vy) > st VkeK,geV.meM (3.15)

a)m’krnax(vg) <ed, NkecK,geVimeM (3.16)

Equation (3.17) is related to the salaries of the drivers.

Op e X Sy = Zrevi NkeKmeM 3.17)
€A

Chapter 4

A Tabu Search approach for the
multi-objective DARP

Typically, an airport private transfer company solves the allocation problem of Chapter 3 manually,
in a daily basis. In order to find a faster and more efficient solution for the model, a Tabu Search
meta-heuristic is proposed. In this chapter, the construction and the computational structure of the

proposed algorithm are explained.

4.1 Tabu Search

The present TS framework is applied to a multi-objective DARP, indeed among the literature
there are not so many works doing that. According to Jaeggi et al. (2008), that applies a TS to a
dynamic multi-objective DARP, the majority of the works with a multi-objective function uses GA
frameworks, followed by SA approaches and only then TS frameworks. In order to apply Tabu
Search meta-heuristic several features have to be settled. As seen in Chapter 2, the main common

features are:
e Initial Solution;
e Local Search operators;
e Aspiration Criterion;
e Tabu Tenure;
e Termination Criterion;
e Diversification Method,;
e Intensification Method;

e Relaxation Method.

21

22 A Tabu Search approach for the multi-objective DARP

Unlike other models in literature (e.g Cordeau and Laporte (2003)), the proposed one does not
have any relaxation method allowing to accept unfeasible solutions. Due to the exclusivity con-
straint referred in Chapter 3 there are less combinatorial options, not justifying the application of
such methods. The flow chart present in Figures 4.1 gives a global overview of the heuristic. Note
that, once the total kilometers are the sum of the kilometers made with and without customers,
in order to save computational time the algorithm use an extra function (f; which only count the

kilometers made without clients).

Initial Solution

!fﬂ;;;\‘\‘_
numltrji/'/

L k. h b

Del=te
Vehicle

w Mt of Solutians

o

Relocate Exchange Distribute GA Type

Evaluzte
Solutions [*)

Choose the best
Salution

¥

¥

Updzate the best
values list [**)

Update Tabu List

Terminastian
Criteria?

Final Best
Solution List

Figure 4.1: Flow chart of the Tabu Search Algorithm

Figures 4.2a and 4.2b explain in a more precise way what happens to update de best solutions

list and the evaluation of the candidates process.

4.1 Tabu Search 23

[*] Evaluation System +

’—0 Sampling
N

Calculate the
Objective Function
¥

Best Solution in the
Sample

(a) Evaluation System

(**) Updating the best list

Remove dominated and Add the solution to
add the new solution the best list

(b) Updating the best solution list system

4.1.1 Initial Solution

According to Sousa et al. (2016), incorporating good strategies in the initial solutions is important
in local-based metaheuristics, meaning that the quality of the initial solution has a direct impact on
the quality of the solutions found by the heuristic as well as on the number of iterations necessary
to achieve those results. Therefore, similarly to authors as (Braekers et al., 2014) and Masmoudi
etal. (2016), in the present work, a construction insertion heuristic is used to find an initial solution
(see Chapter 2 for more information about these kind of heuristic). First, a list with the daily
requests is ordered by the booking time, then, for each request, the heuristic check the vehicles
that may bare it regarding time and capacity constraints. The obtained set is then sorted by the
minor distance and maximum number of requests. The distances are the kilometers from the last
vertex visited by a vehicle until the pickup point of the request being analyzed. This last vertex is
either the location of the last drop-off made by the vehicle or the drivers’ home if the request that
is being evaluated is the first request. The vehicle that is allocated is the closest one meaning that
the analyzed request is going to be inserted in that vehicle. In a tie scenario, the chosen vehicle
is the one with the biggest number of requests already allocated in order to try to compact the

requests in the shortest number of vehicles.

4.1.2 Neighborhood Definition

The search of new feasible solutions is the most expensive computational stage in a TS and in
heuristics in general (Gendreau and Potvin, 2010). Similarly to what happens in others TS frame-
works (e.g Detti et al. (2017)), only a sample of neighborhood is used. Besides reducing the

24 A Tabu Search approach for the multi-objective DARP

computational burden the added randomness can act as an anti-cycling mechanism (Gendreau and
Potvin, 2010). This algorithm uses five different operators to calculate the neighborhood. This
means that, for the current feasible solution, there are five different ways (relocate, distribute,
delete, genetic algorithm type and exchange) to create new feasible solutions (neighbors). The
neighborhood operators are inspired in the three inter-route operators, namely, relocate, exchange
and 2-opt* (an exchange heuristic proposed by Potvin and Rousseau (1995)) and the elimination
route operator used by Braekers et al. (2014). Due to the exclusivity constraint, and once the trips
are sorted by time, there is not any application of intra-route operators. Once again using all the
local search operators at each iteration could result in inefficiency in computational time. There-
fore, similarly to what happens in VNS and LNS approaches, operators change at each iteration.
This have further implications regarding diversification and intensification processes which are

explained a following section.

4.1.2.1 Relocate

The Relocate operator randomly picks a vehicle (A) with trips from the current solution and tries to
relocate, one by one, all the trips in other vehicles. For example, for each trip of A it checks other
vehicles that may bare that trip regarding time and capacity constraints (Figure 4.3). Then, from
the resulting set, a sample of possible vehicles is taken. For each reallocation move is verified if it
is tabu (checks if it is a forbidden move or not). In the affirmative case, if the aspiration criterion
(this criterion is explained in section 4.1.3) is not met that move is not done. This procedure is

repeated for each trip in the vehicle A.

» poaEn | SRCTT TN
vomma

Figure 4.3: Relocate Neighborhood

4.1.2.2 Exchange

This local search operator can be separated in two stages. The first stage is the relocate operator.
The second stage consist in a reverse relocate. Like it happen in the 4.4, for a vehicle (B) in the
sample the operator checks a request that can be swapped with a request of the vehicle (A). From
all the possibilities the operator chooses the best swap. Aspiration and feasibility of the move are
also checked. Similar operators can be found in Cordeau and Laporte (2003) and Braekers et al.
(2014). Nevertheless, in Braekers et al. (2014), there are two swapping operators while here only

one is applied.

4.1 Tabu Search 25

~ EEEDHE |
[EEEEE |

BETET T
BEEEEER

Figure 4.4: Exchange Neighborhood

4.1.2.3 Distribute

Similarly to the previous operators, a random vehicle (A) that has requests is picked from the
current solution. A partition point is chosen randomly splitting the requests of (A) in two sub-
routes (one with the trips from the first trip until the partition point and other from that point to the
last request). If one sub-route is empty (there are not any trips before or after the partition time for
the vehicle), the other sub-route is automatically chosen. In the case that both have requests one of
them is randomly chosen. For each trip of the selected arc, the operator checks other vehicles that
may bare that trip regarding time and capacity constraints. Then, from the resulting set it picks
randomly a vehicle. If a vehicle (B) from the available set implies a tabu move another vehicle (C)

from the set is picked. This procedure is repeated for each trip in the selected sub-route.

4.1.2.4 Delete

The Delete operator starts by the selecting a vehicle (A). For each request of the selected vehicle,
it verifies other cars that may bare that request regarding time and capacity constraints once again.
Then, from the resulting set it picks randomly one vehicle (B). If moving the request to vehicle
B is tabu and the aspiration criterion is not met another vehicle is picked. This procedure is
repeated until the vehicle A is empty (Figure 4.5). In the case that is not possible to empty A this
neighborhood operator will not produce any results for that iteration. According with Braekers
et al. (2014) an incomplete solution results in an increase of the computational time while hardly

improves solutions quality.

A HER A*

s [IHE s+ HEE

c m (S| 2

D EEE * NN E

Figure 4.5: Delete Neighborhood

4.1.2.5 Genetic Algorithm Type

The Genetic Algorithm Type operator starts by the selecting a vehicle (A). A partition point is
defined through an uniform distribution and the trips of the vehicle (A) are split in two sub-routes.

Then regarding the problem constraints (time and capacity), a set of possible “partners” for the

26 A Tabu Search approach for the multi-objective DARP

vehicle (A) is obtained. Then, from the set of possible "partners” a sample is picked. For each
"partner” (B) in the sample, is analyzed if the crossover between the two "partners” is tabu or not
and if not in similarity with what happen in a genetic algorithm (section 2.3.2.2) the routes are

crossed as it is represented in Figure 4.6.

Figure 4.6: Genetic Algorithm Type Neighborhood

4.1.3 Aspiration Criterion

An aspiration criterion measures the benefit of allowing a move that is actually forbidden (tabu). In
this case, the method calculates the kilometers made without customers (fs). If the move implies
a smaller number of kilometers without customers then at least one of the solutions in the list of
non-dominated solutions for an iteration, the move that would be initially tabu is actually accepted
as a feasible neighbor for that iteration. Without the application of this criterion, good solutions

could be lost or require more iterations to be found.
4.1.4 Termination Criteria
According to Gendreau and Potvin (2010) the most common termination criteria are:

e After a certain a priori number of iterations is reached;

e After a predefined number of iterations without an improvement in the objective function
value. The same authors, Gendreau and Potvin (2010), highlights this criterion has one of

the most used;
o After the objective function reaches a threshold value. This value is also defined a priori;

In this application both first and second criteria are used. A maximum of 250 iteration is
settled, nevertheless if no improvement is observed for 40 iterations the algorithm stops before the

maximum value of iterations is reached.

4.1.5 Diversification, Intensification and Tabu Tenure

Among literature, there are many ways of implement diversification and intensification process.
In DARP a famous way to diversify is the one proposed by Cordeau and Laporte (2003) where

a penalty factor is added to the objective function regarding the number of times an attribute has

4.1 Tabu Search 27

been added to the solution during the search and the total number of attributes. The more attributes
there are, the higher a frequently added attribute should be penalized (Cordeau and Laporte, 2003).
Another simple way of doing it is with the tabu tenure. For that reasons in some works the tenure
size changes along the process. Longer tenures help in the diversification process while shorter
ones contribute for the intensification process. For example, Melachrinoudis et al. (2007) uses a
long tabu tenure during the first search process of the algorithm. Then, in a second stage were
they intensify the search in a selected region from a set of regions where good quality solutions
were found at the past iterations, they reduce the size of the tenure once it enables to better explore
those regions (Melachrinoudis and Min, 2011). The tabu tenure settles the number of iterations in
which a move is forbidden in other to prevent cycling situations. As referred before, once there is
as sampling process in the neighborhood evaluation, which helps in the anti-cycling process, it is
possible to apply a shorter tabu tenure to this framework. In the present algorithm the tabu tenure
is 4.

In addiction to the tabu list size the type of operators can have impact in the diversification
and intensification process. Therefore, in the current framework, during the first 12 iterations,
from the 85" till 100" iteration and from 150" till 170" , neighborhood operators which imply
bigger changes (Delete and Genetic Algorithm type and Distribute) are applied in order to help the
diversification process. Furthermore, neighborhood operators involving smaller changes (Relocate

and Exchange) are used with the goal of intensify the search.

4.1.6 Dealing with a Multi-Objective Function

Although in the formulation three objectives are presented, for the algorithm, only two are critical
(total kilometers without customers/total kilometers done and salaries variance between drivers),
while the other (total empty seats) behave as control value. According to the information in Chap-
ter 2, dealing with a multi-objective function can involve a priori information and/or a posteriori
information. Once the preferences are not exactly quantifiable (as it should be to use a weight sum
approach) two different scenarios regarding the local search process are done. One considering
f> as the objective to be minimized at each iteration and the opposite version (transforming it in
a weighted sum function the weights would be the following: weighty, r, = (1,0),(0,1)). It is
important to keep in mind that although the preferences are not quantifiable, there is a company
preference for minimizing fs. Therefore, for the situations where the f; is the object to be mini-
mized, the framework adapts the idea behind the €-constraints method (proposed by Chankong and
Haimes in 1983), where the decision maker chooses one objective out of » to be minimized and
the remaining objectives are constrained to be less than or equal to given target values (Caramia
and Dell’Olmo, 2008). In the present case a limit of how much the "secondary" objective can
deteriorate in favor of the others is set. More precisely the "secondary” objective (total kilome-
ters done) can not get worse then 10% of the initial solution while f, is being minimized. Only
solutions that meet this requirement can enter in the list with the non-dominated solutions that is

updated at each iteration.

28 A Tabu Search approach for the multi-objective DARP

4.2 Software Application

The algorithm is developed in Python language with the use of Visual Studio Code (VSCode)
software as IDE (Integrated Development Environment).

4.2.1 Python Language

Among several programming languages, the one used for the development of the TS algorithm is
Python version 3.6.5. Python has a lower performance when compared with C++ and Java (com-
mon languages to develop this type of algorithm). A Python code can be 3-5 times slower than
the equivalent code in Java and 5-10 times when compared with the equivalent in C++ (Rossum,
2018). Nevertheless, anecdotal evidence suggests that Python requires a reduced learning time
and is ease of reading (Mueller, 2018).

In agreement with (Rossum, 2018), Python shines as a glue language and can also be used to
prototype components until their design can be "hardened" in languages such as Java or C++. To
run the model the following packages (directories of python modules) and modules (single files of

code that are imported in the main script) are used:

e Pandas: is a data related package, allowing the use of easy-to-use data structures and data

analysis tools as data-frames (Developers, 2018c);

e SciPy: The present package provides many user-friendly and efficient numerical routines

such as routines for numerical integration and optimization (Developers, 2018d);

e NumPy: It is a fundamental package for scientific computing. Besides other features, in-
cludes a powerful N-dimensional array object, random number capabilities as well as useful

linear algebra (Developers, 2018b),

e Geopy: This package allows programmers to locate the coordinates of addresses, cities,
countries, and landmarks across the globe using third-party geocoders and other data sources
(Developers, 2018a). The package has different ways of calculating distances available. For
this particular case the geodesic distance (the default one) is used. The geodesic distance
assumes an ellipsoidal model of the earth and similarly to what happens in a Euclidean dis-
tance, gives the shortest distance between two vertexes on the surface. The default geocod-

ing algorithm uses the method proposed by Karney (2013).

e copy: Itis a module related with the copy of information from a variable to another variable;

datetime, calendar and time: Those are time related modules. They allow calculations with

dates as well as, for example, calculate running times;

random: Is a module that allows the use of sampling and randomize functions;

csv: Allow the extraction of data from csv files.

4.2 Software Application 29

4.2.2 Visual Studio Code

The idea behind an IDE is to facilitate the writing, testing and debugging of code. Based on (vas-
concellos, 2017) among the most used IDEs are Notepad++-, Visual Studio (VS), Vim, Sublime
Test, Elipse, Xcode and Visual Studio Code. Although VS and VSCode have similar names they
have some differences (e.g VS only works on Windows while VSCode is cross platform) . To have
a close look in them visit Dotnet (2015).

4.2.3 Algorithm Structure in Python

The code of the algorithm is constituted by two main script and three specific modules for this

application (Table 4.1).

Table 4.1: Algorithm modules and scripts

Title Tasks
main_current main script for the calculation of the present allocation method
main_allocation main script for the algorithm allocation method applying TS framework
Getdata module that opens and saves data from a csv files for this particular application
ObjectiveFunction calculates objective functions and decision variables
Tabu module concerning all the steps of the TS algorithm

As it possible to see in Figure 4.7 the tabu steps are divided in functions that are called from

the main structure of the framework.

TabuSearch (travel time,initial solution, fleet, tabu_s: ,car_avl,n v,driver_avl,drivers, iterations,way,vehicle driver,locations,distance, no_iter):
iterations=1
d.DataFrame()

est_iteration=[@,8]
est list=[initial]
tial, initial]
rations:
(it>85 it<=92):
ood_GAtype(pair_sol,fleet,n,way,travel_time,tabu_list,vehicle driver,drivers,car_avl,locations,distance,n_v,driver_avl,best_list)
delete=Neighborhood delete()
neighbor=[]
for i range(len(delete)):
neighbor.append(delete[i])
range(len(gatype)):

exchange=Neighborhood_exchal
relocate-Neighborhood_relocate()
neighbor=[]
i in range(len(relocate)):
range(L
evl=Evaluation(no_improve,iterations,it_best, neighbor,best list,pair sol,n,car avl,locations,distance,n_v,driver avl,drivers,tabu size,tabu_list)
-best_list

ation=evl.best iteration
-tabu

Figure 4.7: Tabu Search Script

30

A Tabu Search approach for the multi-objective DARP

Chapter 5

YellowFish Case Study

In this chapter the results obtained from the application of the algorithm presented in Chapter 4
and its scenarios to a set of real data are presented. Therefore, before presenting the results and

analysis, there will be a contextualization of the company that has provided the data.

5.1 YellowFish data characteristics

The data used in the project is provided by YellowFish Travel, Ltd. With its headquarters located in
Albufeira, Algarve, the company began its activity in January of 2010 as a travel agency. Yellowish
Travel provides private chauffeured transfers in Algarve, Lisbon, Alentejo and Southern Spain. As
most of its clients are tourist, regularly, Faro Airport is either the pickup or drop-off point. The
company has a heterogeneous fleet due to the variability of the number of clients per request.
Therefore, Table 5.1 separates the current fleet, of a hundred and fourteen vehicles, concerning

their capacity.

Table 5.1: Numbers of vehicles per capacity

Capacity 21314]15]6]| 8
Number of Vehicles | 1 | 16 | 56 | 1 |1 |38 |1

5.2 Current Allocation Approach

Nowadays, the company closes the reservations for a specific day with 48 hours in advance because
all the allocation process is done manually. This allocation process implies, regarding a booking
set for a day and the available drivers (who have a vehicle allocated to them), the allocation of each
request to one vehicle/driver. On a weekly basis, each driver has to give their work availability
and thereafter they are allocated to a specific vehicle for that week. Although a driver can only
be allocated to one vehicle, a vehicle can have a maximum of two drivers allocated to it. This
happens because there are two different types of drivers. Despite of the method of allocating a

driver to a vehicle being out of the scope of this project (being used as a known input value), it

31

32 YellowFish Case Study

is actually relevant to know the characteristics of these types of drivers. There are two different
types of drivers: full-timers and part-timers. Full-timers are expected to have full availability for a
week, while part-timers usually have another job and only work in specific days/times slots. Once
the full-timers may have days off it is possible to find situations where a vehicle is allocated to
a full-timer and a part-timer (Figure 5.1). So, although the full-time driver is not working in a
particular day, the vehicle can still be profitable. Despite of the number of drivers allocated to a
vehicle, it has always to start and end the day at the full-time driver’s house that is allocated to that

vehicle.

Figure 5.1: (A) Full-Timer (B) Full-Timer + Part-Timer

An employee of the company is responsible to perform the daily assignment of drivers to the
services requested for that day with the use of an application similar to an excel file as the one
in the Figure 5.2. The columns are the time slots and rows are the available vehicles for that
particular day. Green cells represent arrivals while red ones represent departures. For these two
colors a light ton means requests until four passengers and dark are services with more than four
clients. Dark blue are services that do not involve the airport and Light blue represent schedules
maintenance of a vehicle. In terms of the assignment process, the maintenance is treated as if it

was a request.

| T T R (e (I -
& C [@ secure | httpsy/wwwyellowfishtransfers.com/en/backoffice/ealtime Q%0 # © A
i Apps W A*searchalgorii W Dijkstra'salgori’ < Dijkstra'salgori: @ Algorithmusvor € jsprit/jsprit- Git: & Routyn -Vehicle 4 Java Tutorial Il Vi [joinf < il Onli & jquery-AJAXRe » | Other bookmarks

T ") T

Figure 5.2: Current Allocation System

5.3 Computational Experiments 33

5.3 Computational Experiments

5.3.1 Dataset

YellowFish has provided datasets about requests registration (and the allocation done by the com-
pany) and non-confidential information about their drivers, vehicles and the commission payment
associated with each trip locations. These informations are used to run the algorithm and compare
the obtained results.

The dataset provided by YellowFish concerning the requests information has 206249 entrances
between the 1 of January of 2015 and the 31* of December of 2017. It is important to emphasize
that the number of entrances per year is not homogeneous. In fact, as it is possible to verify in

Table 5.2 it seems to exists an increasing trend in the number of requests.

Table 5.2: Request per Year

Year | Number of Requests
2015 54816
2016 69356
2017 82077

Besides the inequality between the request registered per year, the same happens between
days. Due to the seasonality inherent to the tourism sector, there is an huge difference in the
number of requests registered in summer days when compared with winter days. Therefore, a
sample of 9 days is taken. The size of the 9 instances of the sample vary between 29 and 419
requests as it is possible to see in table 5.3. Once the picked values have such an wide range in

allows to check the performance of the algorithm in different situations.

Table 5.3: Requests per day in the sample. All days are from 2017.

Day 07/12 | 07/11 | 29/10 | 18/10 | 22/10 | 13/10 | 14/10 | 25/09 01/09‘
Requests | 29 60 105 192 212 262 320 359 419 ‘

5.3.1.1 Data Preparation

In to order to be possible to run the algorithm, some data preparation is needed. The main changes

regarding the original datasets are:

e Depots are considered the drivers’ home and there are some missing values regarding this

information. In such cases, the value used as reference is the Faro airport location;

e Some trip commissions (the value that a driver gets if he performs a trip from location x to
location y) were not defined, being used 7.0 euros (the requests’ commission mode value)

in such situations;

e The objective function f;, involves drivers’ cumulative salaries and the cumulative average

salary per type of worker (full-time and part-time). For a certain day of the month, the

34 YellowFish Case Study

cumulative average salary is given by the total amount of money awarded until that day in
the company divided per the average of drivers available on that month. When the month
changes this value is reseted to zero again. Moreover, the drivers’ cumulative salaries for
a day are simulated values. They are simulated through a uniform distribution using as
boundary values of the cumulative average salary for that day less 20% and plus 20%. A
normal distribution is not used because, in some of the months analyzed, it is not possible
to ensure the central limit theorem. Therefore it is assumed that the probabilities within the
chosen range are the same. The range is wide in order to test the algorithm in a worst case

scenario of a big salary inequality.

5.3.2 Analysis of the Current Manual Solution

The YellowFish’s manual solutions work as reference values for the algorithm results. Therefore a
brief analysis on the values is presented in the current subsection. Table 5.4 summarizes the values
for the objective functions as well as the ratio between the empty kilometers and the total kilome-
ters, the number of vehicles and the average trips per vehicle for an instance in the YellowFish’s

manual allocation solution.

Table 5.4: Objective Function Values for YellowFish allocation method

Size | Day | Total | Empty | Unused | Salaries Km | Vehicles | Average
Km Km Seats | Deviation | Ratio Used Trips
29 | 07/12 | 1673 594 71 6250 38% 10 2.29
60 | 07/11 | 2984 | 1263 157 9483 42% 15 4.00
105 | 29/10 | 5789 | 2612 271 47753 45% 29 3.62
192 | 18/10 | 10066 | 3658 480 379428 | 36% 45 4.27
212 | 22/10 | 11062 | 4540 438 547753 | 41% 46 4.61
262 | 13/10 | 13291 | 4945 630 202973 | 37% 52 5.04
320 | 14/10 | 19723 | 7440 614 112555 | 38% 54 5.83
359 | 25/09 | 17918 | 6550 896 2329383 | 37% 63 5.70
419 | 01/09 | 22976 | 8239 1246 12246 36% 68 6.16

With the exception of the kilometers ratio and two values of the average trips, all the values
increase with the increase of the instances size. As far as the kilometers are concerned, it is
possible to see in Figure 5.3a that both total kilometers done and kilometers done without clients
have a positive linear trend. Nevertheless, because the increasing rate is not the same, being the
empty kilometers smother, there is a decrease in the ratio between the total kilometers without
clients and the total kilometers with the increase of the requests’ number (Figure 5.3b). A possible
factor to justify it is the fact that once there are more clients it is actually easier to make bigger
routes with requests that are close to each other.

Moreover, regarding the results of a hypothesis test (with & = 5%), there is statistical evidence
allowing to approximate the relation between the number of request/number of seats used (Figure
5.4a), the number of requests/number of vehicles (Figure 5.3¢c) and the number of request/average

number of trips in a vehicle to a linear distribution (even if it is possible to make this approximation

5.3 Computational Experiments 35

Km done per number of resquest in an instance

g 150w
E]
5 u Total km
= 10000
mEmpty Km
- L L
29 60 105 102 212 262 320 350 419

Number of requests

(a) Total Kilometers in blue and in orange the kilometers made without customers in
the vehicles
Ratio between the km done without customers and
the total km in an instance

Fercentage
]
#

0%
0%
10%
[1; p— — — — L - ———— - — — — —
m B0 105 192 212 262 2o 359 €13

Number of reguests

(b) Ratio between total and empty kilometers
Number of Vechiles Used per number of requests in

an instance

BD

To
3
5 60
3
=
2 a0
s
-] 30
Ea
=

io

‘m M

20 0 105 192 212 262 320 359 419
MNumber of requests

(c) Vehicles used in an instance

Figure 5.3: Graphics related with the settled objectives and vehicles used for YF allocation

36 YellowFish Case Study

only entire values can be used). This approximation, as it is evident in the Figure 5.4b, cannot be

done regarding the salaries variance between drivers.

Total of unused seats per number of requests in an
instance
1400
1100

100D

=00
[l
400
inlu] l I
L om
= B0 5 197 z0 ELk]

Unsed Seats

212 262 415
Number of reguasts
(a) Total number of unused seats
Salaries variance between used drivers per number of
requests in an instance
EiEDﬂJﬂG
=
5
=
i 1000000
=
=
g
g BODOOO
A
E 600000
3
=
£
@ #0000
&
&
200000 l
) 5 N L
29 60 i0s 192 212 262 320 358 413

Mumber of requests
(b) Drivers’ salaries variance

Figure 5.4: Graphics related with the settled objectives for YF allocation (continuation)

As explained before, the function works with cumulative values meaning that in the first days
of a month and the last ones the order of the values can be quiet different. For example between
22/10/17 (212) and 13/10/17 (262) even if they have a similar number of requests the value of the
variation in quite different, this because the 13" its an earlier day.

5.3.3 Algorithm Results

The following subsection exposes the algorithm results for the 9 instances sample under three
different scenarios. Two runs for each combination day/scenario were performed. All of them
with a maximum of 250 iterations and a second stopping criterion of 40 consecutive iterations

without improvement (check Chapter 4 for more information about Tabu Search criteria used in

5.3 Computational Experiments 37

the present framework). In the first scenario, the waiting time of a driver between two requests is
assumed not having a limit and the total kilometers done is the objective to be optimized. In the
second scenario, the assignment process will try to reduce the idle time of the vehicles (imposing
a maximum waiting time between trips of 4 hours) while optimizing the number of kilometers.
The third scenario is equal to the second one regarding the waiting time constraints. However, this
time, is the salaries variance between the drivers the goal to be minimized. Besides, the results
obtained for the smallest instance (07/12/17) in runs that only use some of the local operators
(ways in which the algorithm find the neighborhood of a solution) are presented in the present
section too. To run the algorithm a 2.60 GHz Intel Core laptop with 8 GB RAM is used. Some
runs were also performed in a Intel Core 2.40 GHz laptop with 12 GB RAM in order see the
impact that this can have on the computational time of the algorithm. Therefore, to be able to
evaluate the performance, computational times regarding the calculation of the initial solution, the
tabu procedure (excluding the initial solution) and the local search computational time for each
iteration are taken.

For runs with a constant number of iterations (250 iterations) the number of non-dominated
solutions varies regarding the day (Table A.1). Until the medium sized instances, in all scenarios,
the size of the set of non-dominated solutions in the majority of the runs seems to increase with
the number of requests in a day. When comparing the scenarios that have the minimization of
the kilometers has a goal, the one which does not have constraints regarding the waiting time
have a bigger number of solutions in the set. As it is a less restricted problem, these can lead to
more possible combinations and thereafter to more non-dominated solutions. Solutions set sizes
for the algorithm with waiting time constraints are around 21% smaller that the set without them
(Appendix A). When the homogeneity of salaries is the goal during the local search process, if the
constraint about deterioration of f; (settled in Chapter 4) is not taken in account the set would be
bigger then a set with no waiting time constraints. Nevertheless, when f; deterioration is taken in
account, the sets become actually really small as shown in the appendix B. For 22/10/17, that in
one of the runs, of this scenario, had 85 non-dominated solutions, only 15 are bellow the maximum
deterioration value for f; (for this day is 4978). For this reason, using this constraint may be not

fruitful to have a general view on the behavior of the algorithm.

Table 5.5: Average number of non-dominated solutions when optimizing f4 with waiting time
constraints

Day 07/12 | 07/11 | 29/10 | 18/10 | 22/10 | 13/10 | 14/10 | 25/09 | 01/09
Set Size | 25 25 39 45 55 30 14 25 12

5.3.3.1 Non-Dominated Solution Values

Tables 5.6 to 5.9 show the values for the best solution for each objective (that is the bold value
of the row) and the number of vehicles used, for 5 of the analyzed days. The values concern the

waiting time constraint scenario with the objective of minimizing of the total number of kilometers

38 YellowFish Case Study

done during the local search process. We can observe that, for each objective function considered
alone, we obtain a diversified set of solutions, with very different values for the other, non consid-
ered, objectives. For most of the days, the solution with the minor salary variance is also one of the
solutions with less vehicles used. Once the salaries variance is calculated for the drivers used and
not for all the drivers available, the use of less drivers involves a smaller variance and a situation
where it is easier to homogenize the salaries among the used set. Naturally, the minimization of f,
will lead to a smaller set of driver/vehicles. Regarding the number of vehicles, the evidences show,
for example in 22/10/2017, that there are more than one solution with that value. Even between

the same fleet size, a significant difference between kilometers done and salaries can exist.

Table 5.6: 07/12 (29 Requests): Best Objective Function Values for the Algorithm

Jf1 (Total | f4 (Empty | f3 (Unused | f> (Salaries | Vehicles | Average Trips
Km) Km) Seats) Variance) Used Trips
1503 423 90 10404 21 1.90
1708 628 94 6357 11 2.64
1541 461 74 7347 18 2.27

Table 5.7: 07/11 (60 Requests): Best Objective Function Values for the Algorithm

f1 (Total | fa2 (Empty | f3 (Unused | f, (Salaries | Vehicles | Average Trips
Km) Km) Seats) Variance) Used Trips
2692 971 186 26360 26 2.36
3075 1354 182 21787 25 2.38
2719 998 194 25827 22 2.37
2815 1094 191 24753 26 2.39

Table 5.8: 29/10 (105 Requests) -Best Objective Function Values for the Algorithm

f1 (Total | fa (Empty | f3 (Unused | f, (Salaries | Vehicles | Average Trips
Km) Km) Seats) Variance) Used Trips
4927 1750 267 744319 38 3.05
5325 2148 225 583771 22 4.77
5224 2047 225 595560 22 4.77

Table 5.9: 22/10 (212 Requests): Best Objective Function Values for the Algorithm

f1 (Total | f4 (Empty | f3 (Unused | f> (Salaries | Vehicles | Average Trips
Km) Km) Seats) Variance) Used Trips
10123 3601 490 902052 47 5.35
11529 5007 548 656188 32 6.46
11184 4662 529 686051 32 6.4
10191 3669 484 900869 47 5.32

While it is obvious by the values exposed that shortening the kilometers lead to an opposite

effect in the salaries variance the same does not happen with relation between the kilometers and

5.3 Computational Experiments 39

Table 5.10: 01/09 (419 Requests): Best Objective Function Values for the Algorithm

Jf1 (Total | f4 (Empty | f3 (Unused | f> (Salaries | Vehicles | Average Trips
Km) Km) Seats) Variance) Used Trips
Km Km Seats Deviation Used Trips

24480 8305 1105 85078 68 6.24
25618 9443 1068 81435 64 6.55

the unused seats. Also an increase in the numbers of vehicles used in a day seems to result in a
reduction in the kilometers made. Nevertheless, this might not be completely truth. For example,
in the table 5.7, the difference between the solution with the minimum number of kilometers and
the solution with second minimum number is only 27 km and uses 4 vehicles less, meaning that
increasing one of the values does not necessarily imply worse results in the other. With the increase
of the used fleet naturally the average number of trips per vehicle in a day decreases.

The Pareto fronts (Figure 5.5a, Figure 5.5b and Figure 5.5¢) join values obtained in two dif-
ferent scenarios (the f4 minimization run and the f; minimization run, both with time constraints).
The blue points are the values from the f; minimization as main goal of the local search process
scenario and orange points the on relative to f, scenario. The grey point is the YF solution. It is
possible to see that the behavior of the algorithm changes regarding the instance size. The blue,
grey and orange points for a small instance are close to each other drawing almost a continue line
(being close to what is a pareto frontier, check Chapter 2). However, with the increase of the
instance size there is a bigger dispersion of the values of the algorithm for both scenarios. Further-
more, when comparing the algorithm non-dominated set with YF solution, for small and medium
instances the grey point seems to be (even if is not close to any of the solution clusters in a medium
instance) on the frontier line, while the same does not happen for a large instance. From the initial
solution until the end of the iteration process, the algorithm, once is minimizing objectives, tend
to get closer from the axis. For the largest instance while YF solution is closer to the axis then
the ones found by the algorithm. This combined with information of the following section may
prove that for large instances it would necessary more iterations in order to converge to better solu-
tions. Therefore, instead of a fixed termination criterion of 250 iterations, the termination criterion

should change regarding the size of the instance.

5.3.3.2 Global Analysis

The Figures 5.6a, 5.6b, 5.6¢, 5.6d are based on the solution with the less kilometers done in each
solution set for the scenarios considering f1 as the main objective to be minimized during the
Tabu Search (orange bars are the values of the algorithm with the time constraint and grey bars
are the values of the algorithm without time constraints). Moreover, the solution with the minor
salaries variance between drivers, for the scenario where f; is the main objective of minimization
during the iteration procedure appears in the figures as yellow bars. The values of the YellowFish
solution correspond to the blue bars. Although, for each figure, the different scenarios behave in a

similar way (the distributions have a similar shape), with the increase of the number of requests per

40 YellowFish Case Study

Pareto Frontier 07/12/17

o 14000
=
=T
2 12000 *
" 5
2 10000 - < a4 min
; 2000 .‘. @f2 min,
- .
.dc':' s000 e e T T YE
e . ® L] Solution
[=
5 4000
®
o oo
L)
5 o
& 0 00 400 &00 200 1000
Km done without customers
(a) Pareto Frontier for 12/07/17
Pareto Frontier 22/10/17
E 1000000
5 900000
© 800000 \fg
= afdmin
5 oo a.
§ 00000 e
= » af2min
£ 00000
E“,' 400000 o¥F
& 300000 & Solution
B 200000 =,
9 100000
] 0
& 1000 2000 3000 4000 5000 6000 7000 BOOO

Km done without customers

(b) Pareto Frontier for 22/10/17
Pareto Frontier 01/09/17

S0000

20000 “

70000 A
ef4dmin

o W ™

SOH000 a2 min

40000 ¥E

30000 Solution

20000

10000

& between used drivers

000 2000 9000 10000 11000 1000
Km done without customers

Salaries varia

(c) Pareto Frontier for 01/09/17

Figure 5.5: Pareto charts for three different days

instance, the actual values change. Both orange and grey bars have a smother trend concerning the
number of kilometers done when compared with the YF solution. On the other hand, the yellow
bars have the contrary behavior.

Continuing on the kilometers analysis, the difference between the YF solutions and the ones
found by the algorithm (orange and grey bars) gets bigger with the increase of the instance size
until the medium sized instances. After that the solutions get closer or in some cases (for the
scenario with time constraints), even bigger than the YF solution. Within an instance, all the bars

regarding the unused seats are quite close to each other. As expected, once their conflictive goals,

5.3 Computational Experiments

Km done without clients per number of requests in an instance

12000
U0 mYF Solution
8000
E w4 min.
g 6000 witme
k-] const.
= y_— 4 min.
2000 mf2 min.
o
29 &0 105 192 212 262 320 3539 419
Mumber of requests
(a) Total kilometers in a day
Number of vehicles used per number of requests in an
instance
80
70
v = YF Solution
2
g A B min.
5 a wijtime
E const.
E o 4 min.
Ex
10 =2 min.
o
9 60 105 182 212 262 320 359 419
Number of requests
(b) Number of vehicles used
Salaries variance between used drivers per number of
requests in an instance
n 1200000
% m¥F Solution
[=]
§ 200000 B4 min,
600000 wftine
m® const
w m it min.
E 400000
£ 200000 =2 min.
3
T o
i 29 &0 105 192 12 262 320 359 419
MNumber of requests
(c) Drivers’ salaries variance
Ratio between the km done without customers and the total km
in an instance
100%
20%
=%
TO%
&
£
o
g
&

5 L] 1.1 182 1z 62 20 EEL)
Humber of requeits

(d) Kilometers ratio

Figure 5.6: Objectives Functions Results comparison

419

41

42 YellowFish Case Study

the scenario where f, is minimized through the Tabu Search process (yellow bars) underperformed
in the minimization of the kilometers done, being by far, higher than the YF solution.

The opposite scenario happens in the analysis of the salaries variance between drivers used in
an instance. While orange and grey bars clearly underperformed in this objective, the yellow bars
minimize the goal. With the exception of the instance of size 359, the difference between the blue
bars and the yellow bar decreases or it is even positive with the increasing of the instance size.
Once, a similar phenomenon happened for the orange and grey scenarios regarding the number
of kilometers and for the number of vehicles, it allows to assume that the number of maximum
iterations should increase in order to find better solutions for large instances.Although, the salaries
variance seems to have big gaps between the solutions in an instance, it is relevant to remind that
this functions are working with variances (squared values).

The number of unused seats is similar for all the cases (algorithm scenarios and YellowFish
solution). Note that, for the scenarios of the algorithm ran, the size of the fleet was not an objective

to be minimized.

5.3.3.3 Algorithm Performance

Most of the final non-dominated solution sets contain values that were found in the final iterations
proving that the algorithm converges for a local optimal solution. Nevertheless, from a total of 60
runs (from different sizes and scenarios) 10% of them has stopped before the maximum number
of iterations (this happens when there are 40 consecutive runnings without any improvement,
more information available in Chapter 4). All this cases were referent to scenarios with f; as
minimization goal during the iteration process and none of this cases happened in large instances.
For those cases, although the number of kilometers done were higher when compared with runs
with 250 iterations, the values were already lower then the manual solution of YF.

Figures 5.7a, 5.7b and 5.7¢ show different aspects of the algorithm performance for the average
values of four instances under the three different scenarios. Not the entire sample was used,
because, as referred in the beginning of the section, it was used two different laptops to run the
tests. The figures show the values of the algorithm performance in the 2.60 GHz Intel Core laptop
with 8 GB RAM. As expected, the time spent calculating the initial solution as well the time spent
during the Tabu Search procedure increases with instances size (for all scenarios). The increasing
trend seems to be exponential for the initial solution computing time. Also a exponential trend
seems to be verified for Tabu Search process and for the average local search computational time,
it is smother than the previous one. However, because it is a small sample a second analysis with
a bigger sample would be fruitful to better understand the behavior of the algorithm performance
with the increase of the instances sizes.

All of the bars have quite similar values in each one of the figures. This is specially present on
figure 5.7a because the procedure of calculating the initial solution it is basically the same for all
the scenarios.

As far as the total computational time for the Tabu Search procedure and and the average for

the local search stage are concerned, the grey bars (the main objective to be minimized in the

5.3 Computational Experiments

00:12:58

00:11:31 |
00:10:05 |
00:08:38 |
00:07:12 |

Hours

00:02:53 |
00:01:26 |

00:00:00

01:26:24

01:12:00 |

00:57:36 |

00:00:22

00:00:17 |

00:00:13 |

Hours

00:00:09 |

00:00:04 |

00:00:00

00:05:46 |
00:04:19 |

| const.
m 4 min.
. o

9 50 105 212

Initial solution computational time

u# min.
w/ftime
const

=4 min,

u 2 min.

29 &0 105 12

Mumber of requests

(a) Initial running time

Tabu search procedure computational time

B2 min.
wtime

MNumber of requests

(b) Tabu running time

Average local search process per iteration

mf4min.
witime
const
4 min.
I m 2 min.
n 60 105 212

MNumber of requests

(c) Average operator running time

Figure 5.7: Computational Time results

43

iteration process is f>) are the most expensive, followed from the orange bars (the main objective

to be minimized in the iteration process is f4 without considering waiting time constraints) and

finally the blues bars (the main goal is to minimize f4 in the iteration process considering waiting

time constraints).

Regarding the operators, GA type operator, Delete Type operator and textitDistribute Type

operator are computationally more expensive than Relocate and Exchange operators once they

involve more movements. For 07/12/17 (the smallest instance) there was a difference of 2 seconds

on the average computational time of the local search stage, between a run using only GA type,

44

YellowFish Case Study

delete type (with an average value of 5 seconds) and distribute type operator and another using only

relocate type and exchange type operators (with an average value of 3 seconds). Considering the

algorithm behavior, this difference will probably tend to increase in the instance size, but further

studies should be performed.

Table 5.11: Computational times comparison between two laptops

Laptop Instance Size | Tabu Seach Proces | Initial Solution | Local Seach Stage Average
8 GB RAM 212 01:16:57 00:10:59 00:00:18
12 GB RAM 262 01:16:15 00:12:19 00:00:18

The values in the Table 5.11 show that despite of having more 50 requests in an instance,

a computer with better processor and had similar computational times to the smaller day in the

weaker computer.

Chapter 6

Conclusions and Future Work

By modeling as a Dial-a-Ride problem the allocation process of YellowFish Transfers, this project
it is included in one of the most studied areas of operational research. Nevertheless, the present
project has shown to be relevant both for literature and to real world due to the uniqueness of
the problem characteristics and for its real application. Once it uses data from a real company
(YellowFish) in order to solve a real problem, during the development process of the algorithm,
several changes were made to better fit the company needs. During the first stages of the project,
adapting the drivers constraints, the remuneration system and the exclusivity of the customers in a
ride to a mathematical formulation was proven to be quite challenging. At the end, a three index
formulation, with a multi-objective function, was the adopted formulation. The next stage of the
project would pass thought choosing a solution approach and the programming language. A Tabu
Search was the solution approach used once it has proven to be effective in this kind of problems
over the years but it does not have many applications regarding multi-objective works. Using this
framework would conciliated the possibility of achieving interesting results for the company as

well as academic relevance. Python 3.6.5 was the programming language adopted.

Given the results exposed in the Chapter 5, the algorithm has proved to be able to decrease
the number of kilometers while keeping similar values to unoccupied seats of the vehicle with or
without waiting time constraints when compared with YF solutions. As a trade off, for these sce-
narios the algorithm underperforms when the salaries variance between drivers is taken in account.
When this last referred goal is the subject of the iterative process the rolls switch. Nevertheless, in
this situation, as the number of requests increases the difference between the YF solution and the
one achieved by the algorithm seems to decrease. The used fleet seems also to be directly related
with salaries variance and inversely proportional to the kilometers.

The objective function that intends to minimize the number of kilometers has a more straight
convergence when compared with the salaries variance between the workers. Therefore, while
operators like GA type, delete type and distribute type seem to slow down the process for the kilo-
meters, they can be helpful regarding salaries once they help in diversification process. Relocate
type and exchange type operators seem to provide a straightforward convergence and are useful

regarding the intensification process. Explore more combinations on the ways the operators are

45

46 Conclusions and Future Work

used may also have impact on the algorithm result. The same applies to initial solution, which ac-
cording to literature, has a high impact in the iteration process. Therefore, taking a initial solution
that tries to improve one of the objectives while the Tabu Search will try to optimize the others
could lead to some interesting results.

Having less vehicles being used in the company would help the company to reduce its costs.
Once the algorithm is able to find solutions involving less kilometers (when compared with the
manual solution) and with close or even inferior fleet sizes, adding additional constraints to the
problem regarding the explicit minimization of number of vehicles used in a day could be fruitful
for the company.

The scenario of the algorithm with waiting time restrictions did find, in the majority of times,
worse solutions for kilometers than the scenario without that additional constraint. However, as
it is a small difference and it leads to a more homogeneous timetable for drivers, this scenario
is considered worth to explore by the company and to be used in further extensions of the work.
Some other extensions should be taken in account in a close future. Utmost, in one run, tackle more
than one objective. Either by transforming the multiple objectives in a weighted function (which
indeed already happened but always only with one weight different of zero) or by changing the
objective to be minimized after a certain numbers of iterations. As the project it is in an early stage
the trials performed only tackled one at the time to have a better understanding of the algorithm
behavior. Following this idea, before making further adaptations, the results for more days should
be tested.

Instead of assuming the deterministic mode, it could be transformed in a stochastic one and
some analysis could be made about the impact of this transformation using, for example, as others
authors have previously done, a simulation software. An useful tool to deal with the uncertainty
associated with these changes would pass through the integrations with machine learning and data
mining techniques.

The algorithm was implemented in Python which, as expected, does not have a very good
computational performance. Therefore, as well as creating an user interface the algorithm should
be converted to a programing language with a higher performance.

In order to be possible a performance comparison with others methods in literature, one pos-
sibility passes through adapt the algorithm to run in benchmark data (presented in Chapter 2).

Moreover, the model can be improved in order to become more robust. For example, the model
could be adapted to some specific cases that happen in the YellowFish allocation system. More
precisely, the time limitations for part-time drivers, the swap procedure between a part-time driver
and a full-time one and the need of using outsourced fleet to satisfy all the requests. About the last
issue, it was not necessary in the days analyzed, indeed, it is verified that the fleet was not totally
is used in the analyzed days.

In conclusion, although the model has a lot of improvement opportunities, the main objectives
of the present dissertation were met. The algorithm is able find better/competitive solutions in less

time than the current allocation method.

Appendix A

Appendix 1

Table A.1: Non-dominates set size for the three scenarios

Day | Scenario 1 | Scenario 2 | Scenario 3
07/12 25 40 40
07/11 25 45 54
29/10 39 53 70
18/10 46 39 64
22/10 55 77 85
13/10 35 61 51
14/10 14 18 40
25/09 25 20 51
01/09 12 18 40

47

48

Appendix 1

Appendix B

Appendix 2

s177 506 1747 a 612

SE748L 17 11956 a 615

szral a5 L1086 a4 &17

s s 2151 % 13

fn 2) f1 iteration averagetnps | vehides Used s - e # :22
525 sE7m3 50z 17 a saz = e o = i rr
575 =7Em1 s01 1188 2 633 £ s == T ‘o 627
625 75682 01 L1M7 a 636 B T) 105 E 629
a815 79160 S0L 187 a 638 E-S 26132 12 10 62
884 5108 508 11186 s as n a7] e 1% 632
4778 25383 s05 11300 o 633 £ solass L 2 ME £as
amas a2Bas3 527 11270] 6E5 '] EE ;" ﬁ ﬁ g 3‘
asan 82900 505 1132 10 666 E i - i et e
1857 17z 505 11379 1 -] E = - o = o3
LER ST e HEs = L a2 286831 a2 1314 15 633
4857 61584 506 113m3 B EE8 e 455 a2 1530 154 639
3067 S5EES 185 11589 55 661 E-S omm 2 1882 154 641
64 60790 290 11386 36 656 S a71Es 268 s 15 643
5043 SE0346 518 11571 57 652 k- TG a8 sz 62 6434
5004 564880 az0 1125 57 84z ESS Lr 2] - asD A 647
5184 553181 518 L1685 58 645 = :ﬁ ; E ﬁﬂ . :_‘3
£l St 518, SLHL 3 Lo S asma 612 12666 167 657
077 sss107 518 1139 51 sa1 = Py = o S 661
mE1 soma 514 11283 52 638 = aamm =2 1ag 1 a6s
mg9 SBESAR 514 1121 & 637 = 2msa a1 1786 % 668
2573 w0u3 514 JRE 13 5 635 ESS %53 sa 1386 1w 671
5005 sz 510 e & saz w7 s 7L 541 1231 1 &7
ESES 1m0 s1a 11585 &7 a3 = st . . 20 675
085 10818 514 La7 &5 628 » fwm:: g m iﬁ ::g
087 a12303 514 11589 £ 635 ES e o oy ok o
030 a8 514 11552 72 635 ES . e . T o
a5 1881 282 11470 75 621 ES e o0 o = &7
5104 aeann 123 1188 77 [>-] ES sima a6 13087 1 676
085 ety 153 La7 78 621 ES samm 216 1205 m 676
075 1585 280 118 79 513 =® 26606 an 13082 m 676
5053 29664 asn 11581 81 816 = S e) 236 675
5104 3187 280 Les £ 614 = L 1 o Eul =L 675
06779 a8 1388 m 75

5154 sEzas3 510 L1676 57 &13 » e prs Py o :?;
S £ L 2160 ot &2 £ 05190 219 nm b 675
sas2 s49e34 517 11881 =2 &13 = i & i 3G 676
w2154 az 13183 7 575

a0 a 1034 11 675

613) 26 1% F 675

614 sans a0 1326 =0 &74

Figure B.1: Non-dominated set for a run of the third scenario for 22/10/17

Red cells are solutions in which the number of kilometers done is inferior to the maximum

deteriorating value.

49

LR A - NI REAER A R R 1R R R R RS- R)

50

Appendix 2

References

Aldaihani, M. and M. M. Dessouky (2003). Hybrid scheduling methods for paratransit operations.
Computers & Industrial Engineering 45(1), 75-96.

Apicella, C. L., F. W. Marlowe, J. H. Fowler, and N. A. Christakis (2012). Social networks and
cooperation in hunter-gatherers. Nature 481(7382), 497.

Attanasio, A., J.-F. Cordeau, G. Ghiani, and G. Laporte (2004). Parallel tabu search heuristics for
the dynamic multi-vehicle dial-a-ride problem. Parallel Computing 30(3), 377-387.

Berbeglia, G., J.-F. Cordeau, and G. Laporte (2012). A hybrid tabu search and constraint program-
ming algorithm for the dynamic dial-a-ride problem. INFORMS Journal on Computing 24(3),
343-355.

Braekers, K., A. Caris, and G. K. Janssens (2014). Exact and meta-heuristic approach for a gen-
eral heterogeneous dial-a-ride problem with multiple depots. Transportation Research Part B:
Methodological 67, 166—186.

Calvo, R. W. and A. Colorni (2007). An effective and fast heuristic for the dial-a-ride problem.
40R 5, 61-73.

Caparrini, F. S. (2017). Local Search Algorithms in NetLogo. http://www.cs.us.es/
~fsancho/?e=132, Last accessed on 2018-06-20.

Caramia, M. and P. Dell’Olmo (2008). Multi-objective management in freight logistics: Increasing
capacity, service level and safety with optimization algorithms. Springer Science & Business
Media.

Chankong, V. and Y. Y. Haimes (1983). Multiobjective decision making: theory and methodology.
In North Holland series in system science and engineering, Number 8. North-Holland.

Chassaing, M., G. Fleury, C. Duhamel, and P. Lacomme (2016). Determination of robust solutions
for the darp with variations in transportation time. IFAC-PapersOnLine 49(12), 943-948.

Colorni, A. and G. Righini (2001). Modeling and optimizing dynamic diral-a-ride problems.
International Transactions in Operational Research 8, 155-166.

Cordeau, J.-F. (2006). A branch-and-cut algorithm for the dial-a-ride problem. Operations Re-
search 54, 573-586.

Cordeau, J.-F. and G. Laporte (2003). A tabu search heuristic for the static multi-vehicle dial-a-ride
problem. Transportation Research Part B: Methodological 37(6), 579-594.

Cordeau, J.-F. and G. Laporte (2007). The dial-a-ride problem: models and algorithms. Annals of
Operations Research 153(1), 29-46.

51

52 REFERENCES

Dantzig, G. B. and J. H. Ramser (1959). The truck dispatching problem. Management science 6(1),
80-91.

Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan (2002). A fast and elitist multiobjective genetic
algorithm: Nsga-ii. IEEE transactions on evolutionary computation 6(2), 182—197.

Deflorio, F. P., B. Dalla Chiara, A. Murro, and M. A. SpA (2002). Simulation and performance
of drts in a realistic environment. In Proceedings of the 13th mini-Euro conference handling
uncertainty in the analysis of traffic and transportation systems and the 9th meeting of the Euro

working group on transportation intermodality, sustainability and intelligent transport systems,
pp. 622-628.

Desrosiers, J., Y. Dumas, F. Soumis, S. Taillefer, and D. Villeneuve (1991). An algorithm for
mini-clustering in handicapped transport. Les cahiers du GERAD.

Detti, P, F. Papalini, and G. Z. M. de Lara (2017). A multi-depot dial-a-ride problem with hetero-
geneous vehicles and compatibility constraints in healthcare. Omega 70, 1-14.

Developers, G. (2018a). Welcome to GeoPy’s documentation. http://geopy.readthedocs.
io/en/stable/, Last accessed on 2018-06-16.

Developers, N. (2018b). NumPy. http://www.numpy.org/, Last accessed on 2018-06-14.

Developers, P. (2018c). Python Data Analysis Library. https://pandas.pydata.org/, Last
accessed on 2018-06-15.

Developers, S. (2018d). SciPy Library. https://www.scipy.org/scipylib/index.
html, Last accessed on 2018-06-14.

Diana, M. and M. M. Dessouky (2004). A new regret insertion heuristic for solving large-
scale dial-a-ride problems with time windows. Transportation Research Part B: Methodologi-
cal 38(6), 539-557.

Dotnet, T. (2015). What is Visual Studio Code and is it differ-
ent from Visual studio 2015? http://www.talkingdotnet.com/

what-is-visual-studio-code-and-difference-between-visual-studio-2015/,
Last accessed on 2018-06-13.

Du, D.-Z. and P. M. Pardalos (2013). Handbook of combinatorial optimization: supplement,
Volume 1. Springer Science & Business Media.

Du, K.-L. and M. N. S. Swamy (2016). Search and Optimization by Metaheuristics: Techniques
and Algorithms Inspired by Nature (1st ed.). Birkhäuser Basel.

Escobar, J. W., R. Linfati, P. Toth, and M. G. Baldoquin (2014). A hybrid granular tabu search
algorithm for the multi-depot vehicle routing problem. Journal of Heuristics 20(5), 483-509.

Garaix, T., C. Artigues, D. Feillet, and D. Josselin (2011). Optimization of occupancy rate in
dial-a-ride problems via linear fractional column generation. Computers & OR 38, 1435-1442.

Gendreau, M., J. Nossack, and E. Pesch (2015). Mathematical formulations for a 1-full-truckload
pickup-and-delivery problem. European Journal of Operational Research 242(3), 1008-1016.

Gendreau, M. and J.-Y. Potvin (2010). Handbook of metaheuristics, Volume 2. Springer.

REFERENCES 53

Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Com-
puters & operations research 13(5), 533-549.

Glover, F. (1990). Tabu search: A tutorial. Interfaces 20(4), 74-94.

Gomes, R., J. P. de Sousa, and T. G. Dias (2014). A grasp-based approach for demand responsive
transportation. International Journal of Transportation 2(1), 21-32.

Gschwind, T., M. Drexl, et al. (2016). Adaptive large neighborhood search with a constant-time
feasibility test for the dial-a-ride problem. Technical report.

Gschwind, T. and S. Irnich (2014). Effective handling of dynamic time windows and its application
to solving the dial-a-ride problem. Transportation Science 49(2), 335-354.

Gupta, A., M. Hajiaghayi, V. Nagarajan, and R. Ravi (2010). Dial a ride from k-forest. ACM
Transactions on Algorithms (TALG) 6(2), 41.

Ho, S. C., W. Y. Szeto, Y.-H. Kuo, J. M. Y. Leung, M. Petering, and T. W. H. Tou (2018). A survey
of dial-a-ride problems: Literature review and recent developments. Transportation Research
Part B: Methodological.

Toachim, 1., J. Desrosiers, Y. Dumas, M. M. Solomon, and D. Villeneuve (1995). A request
clustering algorithm for door-to-door handicapped transportation. Transportation Science 29(1),
63-78.

Jaeggi, D. M., G. T. Parks, T. Kipouros, and P. J. Clarkson (2008). The development of a multi-
objective tabu search algorithm for continuous optimisation problems. European Journal of
Operational Research 185(3), 1192-1212.

Jaw, J.-J., A. R. Odoni, H. N. Psaraftis, and N. H. Wilson (1986). A heuristic algorithm for the
multi-vehicle advance request dial-a-ride problem with time windows. Transportation Research
Part B: Methodological 20(3), 243-257.

Johnson, D. S. and L. A. McGeoch (1997). The traveling salesman problem: A case study in local
optimization. Local search in combinatorial optimization 1,215-310.

Jorgensen, R. M., J. Larsen, and K. B. Bergvinsdottir (2007). Solving the dial-a-ride problem
using genetic algorithms. Journal of the Operational Research Society 58(10), 1321-1331.

Karney, C. F. (2013). Algorithms for geodesics. Journal of Geodesy 87(1), 43-55.

Khelifi, L., I. Zidi, K. Zidi, and K. Ghedira (2013). A hybrid approach based on multi-objective
simulated annealing and tabu search to solve the dynamic dial a ride problem. /EE.

Kirchler, D. and R. Wolfler Calvo (2013). A granular tabu search algorithm for the dial-a-ride
problem. Transportation Research Part B: Methodological 56, 120—135.

Laporte, G. and I. H. Osman (1995). Routin problems: A bibliograogy. Annals of Operations
Research 61,227-262.

Li, H.,, T. Lv, and Y. Lu (2016). The combination truck routing problem: A survey. Procedia
Engineering 137, 639-648.

Lim, A., Z. Zhang, and H. Qin (2017). Pickup and delivery service with manpower planning in
hong kong public hospitals. Transportation Science 51, 688-705.

54 REFERENCES

Luo, Y. and P. Schonfeld (2007). A rejected-reinsertion heuristic for the static dial-a-ride problem.
Transportation Research Part B: Methodological 41(7), 736-755.

Maalouf, M., C. A. MacKenzie, S. Radakrishnan, et al. (2014). A new fuzzy logic approach to
capacitated dynamic dial-a-ride problem. Fuzzy Sets and Systems 255, 30—40.

Markovié, N., R. Nair, P. Schonfeld, E. Miller-Hooks, and M. Mohebbi (2015). Optimizing dial-
a-ride services in maryland: Benefits of computerized routing and scheduling. Transportation
Research Part C: Emerging Technologies 55, 156-165.

Masmoudi, M. A., M. Hosny, K. Braekers, and A. Dammak (2016). Three effective metaheuristics
to solve the multi-depot multi-trip heterogeneous dial-a-ride problem. Transportation Research
Part E: Logistics and Transportation Review 96, 60-80.

Melachrinoudis, E., A. B. Ilhan, and H. Min (2007). A dial-a-ride problem for client transportation
in a health-care organization. Computers & Operations Research 34(3), 742-759.

Melachrinoudis, E. and H. Min (2011). A tabu search heuristic for solving the multi-depot, multi-
vehicle, double request dial-a-ride problem faced by a healthcare organisation. International
Journal of Operational Research 10(2), 214.

Mladenovic, N. and P. Hansen (1997). Variable neighborhood search. European Journal of Oper-
ational Research 191, 593-595.

Molenbruch, Y., K. Braekers, and A. Caris (2017). Typology and literature review for dial-a-ride
problems. Annals of Operations Research 259(1-2), 295-325.

Molenbruch, Y., K. Braekers, A. Caris, and G. Vanden Berghe (2017). Multi-directional local
search for a bi-objective dial-a-ride problem in patient transportation. Computers & Operations
Research 77, 58-71.

Muelas, S., A. LaTorre, and J.-M. Pena (2015). A distributed vns algorithm for optimizing dial-
a-ride problems in large-scale scenarios. Transportation Research Part C: Emerging Technolo-
gies 54, 110-130.

Muelas, S., A. LaTorre, and J. M. P. Sdnchez (2013). A variable neighborhood search algorithm
for the optimization of a dial-a-ride problem in a large city. Expert Syst. Appl. 40, 5516-5531.

Mueller, J. P. (2018). Beginning programming with Python for dummies. John Wiley & Sons.

Paquette, J., J.-F. Cordeau, G. Laporte, and M. M. B. Pascoal (2013). Combining multicriteria
analysis and tabu search for dial-a-ride problems. Transportation Research Part B: Method-
ological 52, 1-16.

Parragh, S. N., J.-F. Cordeau, K. Doerner, and R. F. Hartl (2012). Models and algorithms for the
heterogeneous dial-a-ride problem with driver related constrains. CIRRELT .

Parragh, S. N., K. F. Doerner, R. F. Hartl, and X. Gandibleux (2009). A heuristic two-phase
solution approach for the multi-objective dial-a-ride problem. Networks 54, 227-242.

Parragh, S. N., J. Pinho de Sousa, and B. Almada-Lobo (2015). The dial-a-ride problem with split
requests and profits. Transportation Science 49(2), 311-334.

Potvin, J.-Y. and J.-M. Rousseau (1995). An exchange heuristic for routeing problems with time
windows. Journal of the Operational Research Society 46(12), 1433-1446.

REFERENCES 55

Prins, C., P. Lacomme, and C. Prodhon (2014). Order-first split-second methods for vehicle rout-
ing problems: A review. Transportation Research Part C: Emerging Technologies 40, 179-200.

Psaraftis, H. (1980). A dynamic programming solution to the single vehicle many-to-many imme-
diate request dial-a-ride problem. Transportation Science 14(2), 130—154.

Psaraftis, H. (1988). Dynamic vehicle routing problems. bl golden, aa assad, eds. Vehicle Routing:
Methods and Studies 16, 223-248.

Qu, Y. and J. F. Bard (2015). A branch-and-price-and-cut algorithm for heterogeneous pickup and
delivery problems with configurable vehicle capacity. Transportation Science 49, 254-270.

Rahmani, N., B. Detienne, R. Sadykov, and F. Vanderbeck (2016). A column generation based
heuristic for the dial-a-ride problem. In International Conference on Information Systems, Lo-
gistics and Supply Chain (ILS).

Reinhardt, L. B., T. Clausen, and D. Pisinger (2013). Synchronized dial-a-ride transportation of
disabled passengers at airports. European Journal of Operational Research 225, 106-117.

Ritzinger, U., J. Puchinger, and R. F. Hartl (2016). Dynamic programming based metaheuristics
for the dial-a-ride problem. Annals of Operations Research 236(2), 341-358.

Ropke, S., J.-F. Cordeau, and G. Laporte (2007). Models and branch-and-cut algorithms for pickup
and delivery problems with time windows. Networks 49(4), 258-272.

Ropke, S. and D. Pisinger (2006). An adaptive large neighborhood search heuristic for the pickup
and delivery problem with time windows. Transportation Science 40, 455—472.

Rossum, G. V. (2018). Comparing Python to Other Languages. https://www.python.org/
doc/essays/comparisons/, Last accessed on 2018-06-18.

Ruohonen, K. (2013). Graph theory. tampereen teknillinen yliopisto. originally titled graafiteoria,
lecture notes translated by tamminen, j., lee, k. C. and Piché, R.

Savelsbergh, M. W. P. and M. Sol (1995). The general pickup and delivery problem. Transporta-
tion Science 29(1), 17-29.

Schilde, M., K. F. Doerner, and R. F. Hartl (2011). Metaheuristics for the dynamic stochastic
dial-a-ride problem with expected return transports. In Computers & OR.

Schilde, M., K. F. Doerner, and R. F. Hartl (2014). Integrating stochastic time-dependent travel
speed in solution methods for the dynamic dial-a-ride problem. In European Journal of Opera-
tional Research.

Sexton, T. and L. Bodin (1985). Optimizing single vehicle many-to-many operations with desired
delivery times: I. scheduling. Transportation Science 19(4), 411-435.

Sousa, T., H. Morais, R. Castro, and Z. Vale (2016). Evaluation of different initial solution algo-
rithms to be used in the heuristics optimization to solve the energy resource scheduling in smart
grids. Applied Soft Computing 48, 491-506.

Tonci Caric, H. G. (2008). Vehicle Routing Problem. IntechOpen.

Toth, P. and D. Vigo (1997). Heuristic algorithms for the handicapped persons transportation
problem. Transportation Science 31(1), 60-71.

56 REFERENCES

Umbarkar, A. and P. Sheth (2015). Crossover operators in genetic algorithms: A review. ICTACT
Jjournal on soft computing 6(1).

Urban, K.-P. (2006). A guided simulated annealing search for solving the pick-up and delivery
problem with time windows and capacity constraints. International Journal of Logistics Re-
search and Applications 9(4), 369-381.

Van Hentenryck, P. (1989). Constraint satisfaction in logic programming.

vasconcellos, P. H. (2017). Top 5 Python IDEs For Data Science. https://www.datacamp.
com/community/tutorials/data-science—python-ide, Last accessed on 2018-06-
15.

Wang, X. (2014). Operational Transportation Planning of Modern Freight Forwarding Compa-
nies: Vehicle Routing Under Consideration of Subcontracting and Request Exchange. Springer.

Wilson, N. H., R. W. Weissberg, and J. Hauser (1976). Advanced dial-a-ride algorithms research
project. Technical report.

