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Urban emergency medical service: dynamic model for dynamic cities 

This paper presents a methodology to locate ambulance base stations and allocate 

ambulances using optimization and simulation models. The models allow us to 

better understand how city dynamics affect an urban emergency medical service 

response system (uEMS). 

The methodology incorporates two steps. The first step uses scenario-based 

optimization and survival function theory to locate ambulance base stations, 

whereas the second step uses agent-based simulation to allocate ambulances to 

stations. The proposed models are tested for different situations and periods in 

the city of Porto. 

The results of the sensitivity analysis of the models show the relevance of 

understanding the dynamics of cities and how they impact uEMS response 

systems. Useful insights regarding the number of stations and the average 

response time are addressed together with the minimum number of stations and 

ambulances required for different maximum response time limits and different 

survival coefficients. 

Keywords: emergency medical service; scenario optimization; simulation; 

dynamic EMS; dynamic ambulance location 

Introduction 

Motivation and contribution 

Post-crash response is pillar 5 of the WHO (2011) global plan for the decade of action 

for road safety 2011-2020. The post-crash response is divided into several activities; the 

last one, Activity 7, explicitly encourages research and development into improving 

post-crash response, pointing to the improvement of the response of emergency medical 

services. 

Some researchers have worked to create models for planning emergency 

medical services, EMS, solely to assist road crashes in a city (Kepaptsoglou, Karlaftis, 

and Mintsis 2012) or in specific road networks (Zhu, Kim, and Chang 2012). However, 

emergency medical services usually respond to all types of medical emergencies, and no 
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separate service may exist to assist just one type of medical emergence. Clearly, one can 

argue that there are moral issues regarding having emergency resources that cannot 

assist in a certain emergency because these resources are strictly allocated to other types 

of emergencies. 

In recent works, the focus has been on dynamic EMS where ambulances are 

dynamically allocated, dispatched or routed to better prepare for the upcoming hours 

(Vasić et al. 2014; Zhang 2012; Panahi and Delavar 2009), accounting for the fact that 

traffic varies. 

The aim of this work is to propose a methodology for an adequate EMS 

response plan in urban areas with the premise that land use dictates population 

dynamics, and population dynamics justify a dynamic service. More specifically, the 

present work argues that the locations of people and traffic are not static in an urban 

environment (Lam et al. 2015; Vasić et al. 2014), and these two variables are the most 

relevant ones when designing an urban EMS response plan. Whereas people in constant 

movement represent a possible dynamic demand (Krishnan, Marla, and Yue 2016; 

Wang et al. 2015), traffic represents the network load, which on one hand constrains 

how quickly an emergency vehicle can reach a medical emergency (Erkut et al. 2009; 

Kim 2016; Ingolfsson, Budge, and Erkut 2008; Budge, Ingolfsson, and Zerom 2010; 

Westgate et al. 2013) and on other hand is correlated with traffic accidents and injuries 

(Ferreira and Couto 2013). 

To assess how city dynamics interfere with EMS, we propose an EMS response 

plan that consists of a long-term ambulance base station location scheme and a mid-

term ambulance dynamic allocation plan. The response plan is contained in a time 

cycle. Within a cycle, the system must response to a dynamic city where people are in 

movement and traffic conditions vary. In sum, this framework provides an EMS 

response that is more flexible to fitting to the different changes occurring in urban areas 

enforced by the city’s specific land use. 

This work contributes to the literature in the following ways: 

 Formalizing a methodology to plan a long-term EMS response solution prepared 

for a dynamic mid-term ambulance allocation planning; 

 Objectively maximizing survival by accounting for urban dynamics, thereby 

implementing a scenario-based optimization model; 
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 Proposing a mid-term ambulance allocation dynamic planning assessment using 

simulation and dispatching heuristics; 

 Presenting a case study where the proposed methodology and models are 

implemented; 

 Assessing the impact of different EMS response and coverage parameters and 

the overall system performance. 

EMS response models 

The foundational stream of research for emergency response traces back to the year 

1955 with the fire station location planning studies of Valinsky (1955). Additionally, 

Hogg (1968) together with Savas (1969) filled the base archetypes for this theme. 

However, the two most relevant works, which actually fermented the OR community 

interest in EMR, were those of Toregas et al. (1971) and Church and Velle (1974). 

Toregas et al. (1971) present a solution to solve the location set covering problem 

(LSCP), making sure all demand is covered within a maximum time or distance radius. 

Church and Velle (1974) note a solution for a maximal coverage location problem 

(MCLP) that attempts to overcome the resource limitations of the problem of Toregas et 

al. (1971). 

The classical interpretation of the facility location problem was soon surpassed 

by uncertainty approaches, leading to double coverage, scenario approaches, stochastic 

and robust optimization problems and dynamic locations. 

Focusing on the fact that once a facility is called for service demand, points 

under its coverage are no longer covered, Daskin and Stern (1981); (1983) and Hogan 

and ReVelle (1986); (1989) account for the business probability and reliability of 

facilities. The former solves the maximum expected covering location problem 

(MEXCLP), and the latter moves forward to a maximum availability location problem 

(MALP).  

Maxwell, Henderson, and Topaloglu (2009) classified research on dynamic 

allocation problems into three categories depending on the following: the model is 

solved in real time each time a redeployment decision is to be made  (Brotcorne, 

Laporte, and Semet 2003; Kolesar and Walker 1974; Gendreau, Laporte, and Semet 

2001; Nair and Miller-Hooks 2006), solving the model involves computing optimal 
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ambulance positions for every number of available ambulances via an integer 

programming formulation in an offline preparatory phase (Ingolfsson 2006; Gendreau, 

Laporte, and Semet 2005); or if one intends to incorporate system randomness into the 

model by modelling the problem as a Markov decision process (Berman 1981a; Berman 

1981c, 1981b; Zhang, Mason, and Philpott 2008; Alanis, Ingolfsson, and Kolfal 2013; 

Berman and Odoni 1982; Jarvis 1981)  or make decisions under particular system 

configurations (Andersson and Varbrand 2006; Andersson 2005). 

In fact, when addressing dynamic location models, the bibliography tends to 

show its relation with multi-period location models, where time is discrete, which are 

much more useful than single period models, where time is continuous. This is proven by 

Miller et al. (2007) and supported by Boloori Arabani and Farahani (2012). 

The concept of scenario-based approaches is also used when uncertainty is 

present. Serra and Marianov (1998) solved the p-median problem (PMP) under 

scenario-based demand uncertainty. When the number of facilities, or ambulances, is 

uncertain, Current, Ratick, and ReVelle (1998) propose a scenario-based approach and 

solve the problem with a general-purpose mixed integer programming (MIP) solver. 

Moreover, with the advance of computer power and the availability of powerful 

personal computers, simulations have become a useful tool for researchers wanting to 

formulate more realistic and complex models, be it to assess solutions or to support 

optimization models (Restrepo, Henderson, and Topaloglu 2008; Maxwell et al. 2010; 

Yue, Marla, and Krishnan 2012; McCormack and Coates 2015; Iannoni, Morabito, and 

Saydam 2009; Su and Shih 2003). McCormack and Coates (2015) show that the 

simulation enhances the level of realism of EMS models, making it applicable to 

complex, real-life systems when proper data exist. 

Nevertheless, in urban Emergency Medical Services (uEMS), contrary to non-

emergency facility location problems, underestimated or overestimated solutions not 

only have a monetary impact but also carry a social impact, and a bad decision can lead 

to, e.g., higher response times, which may seriously reduce the survival probability of 

the victims to be rescued. For instance, Sánchez-Mangas et al. (2010) indicate that a 

reduction of 10 minutes in the emergency response time could result in a 30% reduction 

of traffic accident fatalities. Although this number can vary depending on many factors, 

it is obvious that a quicker medical response will result in improved medical assistance 
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(Blackwell and Kaufman 2002; Pons et al. 2005). In conformity, Erkut, Ingolfsson, and 

Erdogan (2008) note that the EMS response research direction is to substitute the 

covering concept with concepts that account for survival probabilities and for the 

heterogeneity of the victims. This type of concept has already been used in recent works 

(Knight, Harper, and Smith 2012; McCormack and Coates 2015).  

McCormack and Coates (2015) prove the possibility of increasing cardiac arrest 

victims’ survival without the need of additional resources; however, the proposed model 

accounts for only two types of medical emergencies: cardiac arrests and other types. In 

contrast, Kepaptsoglou, Karlaftis, and Mintsis (2012) focused their work on a uEMS 

model for the special case of road crashes disregarding other types medical 

emergencies. Knight, Harper, and Smith (2012) address the heterogeneity of medical 

emergencies in a more direct way. They propose a Maximal Expected Survival Location 

Model for Heterogeneous Patients, where a decaying survival function is used for 

cardiac arrests and step functions for other types of medical emergencies. Further, a 

weight parcel is added to capture emergency type priority 

As a final remark, we highlight the three key techniques that were identified as 

the proper ones to be used in the pursuit of our claim. These are, first, scenario-based 

optimization to better achieve a station location plan for a dynamic environment; 

second, the use of an EMS simulation model to assess ambulance needs in a dynamic 

fashion; and third, victims’ heterogeneity and the corresponding survival functions to 

provide a more realistic and better suited response to heterogeneous medical 

emergencies. 

Content of the paper 

In this work, we address the Emergency Medical Service, EMS, with a focus on the 

Urban Service, uEMS, and investigate city dynamics and how they might influence 

uEMS planning with the objective to cover and maximize the survival probability. 

The paper is divided into an introductory chapter with the motivation, EMS 

models and this sub-chapter. Then, a methodological approach chapter follows, where 

the optimization and simulation models are presented. A real base case, the city of 

Porto, is presented afterwards in the application of the model chapter. The analysis of 
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the results is offered afterwards in the discussion of the results chapter. The conclusion 

chapter finalizes the paper with the relevant conclusions and future developments. 

 

Methodology 

The present methodology intends to provide insight for a long-term plan and a mid-term 

plan of a uEMS response network composed of ambulance base stations and 

ambulances in a dynamic environment. The methodology is structured with the 

intention of offering an assessment of the impact of city dynamics - people movements 

and traffic changes - by developing a dynamic uEMS response system. 

We view the uEMS response system as twofold: one, there is a long-term plan 

that defines a fixed number of ambulance base stations and their fixed location, and 

two, a mid-term plan defines the maximum number of ambulances required at each 

station during each period. To capture the cyclic dynamics of a city, we define a cycle 

as a time pattern that repeats over time and for which different time periods exist. The 

cycle captures the city routine in terms of population movements and traffic, whereas a 

period captures the static moment of a cycle.  

We developed a two-step methodology to achieve the previously mentioned 

objectives. The first step of the proposed methodology entails a robust ambulance base 

stations location optimization model, whereas the second step entails a simulation 

model that computes the number of required ambulances to be allocated at each 

ambulance base station. The methodology uses a scenario-based approach where in 

each period, the traffic load and people location are distinct. 

 

First step - Optimization Model 

A system optimization requires a performance measure. In a uEMS response 

network, the literature shows that some of the most common measures of performance 

are coverage and system reliability. However, different types of emergencies have 

different requirements and priorities. Thus, the concept of maximum survival, first 

presented by Erkut, Ingolfsson, and Erdogan (2008), can measure the system in a more 

accurately fashion. 
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The performance Pi of a uEMS response to an event i of type k can be defined by 

a survival function that depends on the time between the event start and the arrival of 

the assistance team, ri, as per equation (1). Therefore, a simple performance metric for 

an emergency system is the sum of all response performances. The average, minimum 

and mode could also be defined as an overall performance metric. Nevertheless, for 

simplicity and for this work, the sum of all uEMS response performances is the chosen 

metric to assess the system performance. 

 

  k

i iP f r   (1) 

We discussed that city behaves as a dynamic entity where traffic load and people 

location vary with time but repeat themselves in cycles. To meet our beliefs, a dynamic 

optimization model is essential to produce a solution that performs and adapts as best as 

possible through the system life time. As mentioned in the literature review, a possible 

way to implement such dynamic behaviour is to use a scenario-based approach. 

Scenario-based optimization is typically used to produce a robust solution that is 

prepared for different possible situations. This is usually the case where part of the 

model’s inputs is unknown; thus the system designer predicts possible scenarios where 

a positive performance of the system is mandatory. 

 For us, the goal is slightly different. We know the system input, and each of our 

scenarios is a representation of a period from a defined cycle; thus our model aims to 

provide a solution that will perform as well as possible throughout the defined cycle.  

This method allow us to create a static solution for an instant ti, input f(ti), that 

varies with a cycle, C, of length T: 

f(t0) =f(tT) ≠ f(t1) ≠ f(t2) ≠ …  ≠ f(tT-1). 

However, for short periods we assume a static behaviour. Thus, a cycle with 

length p – 0 = T has a finite number of periods (#Si = S) so that C = [S0, S1, …, Ss] is a 

cycle C with periods S0, S1, …, and Ss, where S0 is the period between 0 and n, S1 is the 

period between n and m, Ss the period between l and p with l > m, thus: 

f(t0) = f(t1) = f(t2) = … = f(tn) ≠ f(tn+1) = f(tn+2) = … = f(tm) ≠ …≠ f(tl+1) = f(tl+2) = … = 

f(tp), 

and f(tp + a) = f(t0) with a as an infinitesimal. 
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The proposed model minimizes, in a cycle, the inverse of the performance 

metric by deciding where to locate ambulance base stations, e, and allocating the 

demand clusters nodes, p, in a nodal network: 

 

  
1

, , , ,minimize k

l p s p s l p

s l p

y e f r


  
  , (2) 

 

subjected to 

  

 , , ,      in ,  in l p s l p r

l

y r M p P s S      (3) 

 , 1   in l p

l

y p P    (4) 

 ,      in ,  in l p ly x l L p P     (5) 

 l l

l

x M , (6) 

where 

S is the set of periods s{period 1, period 2, … , period s} and S = C, 

L is the set of possible ambulance base stations l{station 1, station 2, … , station l}, 

P is the set of demand cluster nodes p {node 1, node 2, … , node p}, 

es,p is the number of events in demand cluster node p for period s, 

xl = 1 if an ambulance base station is located at l and 0 otherwise,  

ylp = 1 if ambulance base station l serves events at location p and 0 otherwise, 

rslp is the response time required for an ambulance located at l to arrive at p during s, 

Mr is the maximum allowed response time, and 

Ml is the maximum number of stations. 

 

Equation (2) minimizes the sum of the inverse survival functions of each event 

occurring at each period of the defined cycle. If the survival function declines linearly 

with time, then the objective function is simply a minimization of the sum of the 

response times adorned by a constant specific for each type of medical emergency.  
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Equations (3), (4), (5) and (6) control the model properties. Equation (3) defines 

an upper bound for the response time. Decision variable ylp and equation (4) are add to 

ensure that for every node, only one station is allocated. Finally, equation (5) ensures 

that if node p is served by a station at l, then a station must be located at l. 

Furthermore, there is the problem in deciding how many stations should be 

deployed. This can be addressed if one can assess how much a new station is worth in 

terms of the gain in performance. Because this relation is not yet defined, equation (6) 

limits the number of stations, allowing the model to be run for different upper bounds. 

To reduce the model size, there is a preparation step that merges sets L and P 

into an availability tuple a = {pair l
s
 p

s 
| if l can assist p s in S} from set A = [a1, a2,… 

,aw]. This transforms equations (3) and (4), respectively, into equations (7) and (8): 

 

 , , ,      in l p s l p r

s l

y r M a A     (7) 

 
, 1   in l p

l

y p A 
.

  (8) 

The preview modification implies a reduction in the number of decision 

variables as well as the number of constraints and sum parts of the objective function. 

A limitation of this model can be identified. For different periods, each station is 

forced to serve the same nodes. To make the model more flexible and allow different 

stations to serve different nodes at different periods, decision variable yl,p should be 

transformed into ys,l,p, which takes a value of 1 if during period s node p is served by a 

station located at l. Thus, the final model is represented by equation (9): 

  
1

, , , , ,minimize t

s l p s p s l p

s l p

y e f r


    (9) 

subjected to 

 , , , ,       in ,   in s l p s l p r

l

y r M p A s A      (10) 

 , , 1    in ,   in s l p

l

y p A s A     (11) 

 , ,       in ,   in ,   in s l p ly x p A s A l L      (12) 
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 l l

l

x M
.

  (13) 

 

Although this increases the number of variables, it makes the model more 

flexible, leading to an increase in the performance of the final solution. 

 

Second step – Simulation Model 

Dynamic environments are in constant change; in cities, this translates into land 

demographic occupation changes, such as daily periods when people cluster in business 

and industrial areas, and night periods when people cluster in residential and nightlife 

areas. Moreover, when residential areas exist and cluster far from the business and 

industrial areas, traffic flow differs during commuting times; in the morning towards the 

city business, industrial and commercial areas and in the evening towards the residential 

areas.  

With this principle, we propose a dynamic allocation of emergency medical 

vehicles, ambulances, in the network. The literature reviews several presented 

optimization models to allocate ambulances to base stations. Another option and 

straight forward solution is the use of simulation. 

When studying ambulance allocation and dispatching, the assisting time is 

usually unknown. To cope with variables where their distribution is unknown or that 

vary in a random way, simulation allows us to introduce randomness in our model. 

The main idea behind the proposed simulation model is to feed a simulated 

environment where a uEMS system exists with an infinite number of possible vehicles 

to be allocated to each station. Then, a record will keep track of how many vehicles are 

being used at each instant so that in the end, a statistic analysis can determine several 

ambulance indices detailed by station and period. 

To simulate the system, an agent-based model is used, where an authority agent, 

the city agent, controls lower level agents: the event agent, road network agent, 

ambulance agent, and node agent. These agents coexist in an environment that 

simulates a spatial area defined by nodes, key locations, and a set of arcs connecting 

those nodes (Algorithm 1). 
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Algorithm 1 General simulation algorithm 

Definitions: 

T = simulation period 

t = timestamp 

j = step 

j = 60 s 

t = 0 

 

While t < T 

1. Update city 

 Sets the environment conditions, s, from possible status S = {s1, s2, …, sn}, where s = 

f(time) 

 Move events from events waiting list E
w
 = {e1, e2, …, em} to events active list E

a
 if the 

timestamp of event em(t) < time, and generate assisting time required, en
atime

 

2. For all ambulances in the network: 

 Ambulance time to destination, ad
t
, is updated → ad

t
 = ad

t
 - j 

 If ad
t
 = 0 → transfer ambulance to destination 

3. For all active events en
a
 ∈ E

a
: 

 if no ambulance is allocated → run Ambulance dispatching algorithm, Algorithm 2 

 If ambulance is at the occurrence location → Update assisting timer, en
atime

 = en
atime

 - j 

 If en
atime

 ≤ 0, assisting time ended → run Ambulance to hospital routing algorithm, 

Algorithm 3 

4. Update nodes of type Hospital 

 If ambulance arrived → Transfer event to hospital 

 Ask network to return ambulance to its station → set new ad
t
 

5. Update results dictionary, R{i}{j}, with i = t and j = a
g
 

 For all ambulances in the network → if not in original station, a
g
, R{i}{j} = R{i}{j} + 1, with 

i = t and j = a
g
 

6. If t < T go back to 1. 

 

 

 

 

 

Algorithm 2 Ambulance dispatching algorithm 

Definitions: 

Station sp ∈ S = {s1, s2, …, sp} 

Sp
a
 = { sp

1
, sp

2
, …, sp

a
} is a list of ambulances parked at sp 

C = {tv, tv+j, …, tb} is a set of timestamps t 

em
max

 is the maximum allowed response time for em 

Time(sp, em)c is the minimum time travel between station sp and em at scenario c ∈ C = {c1, c2, 

…, cm} 
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1. For all c in C: if t in c → q = c  

2. For all sp in S: order S by Time(sp, em)q in ascending order 

3. For all sp in S: if Sp
a
 ≠ {∅} and Time(sp, em)q ≤ em

max
 → a = sp

1
, proceed to 5  

4. Select s1 → create s1
1
, a = s1

1
 

5. Allocate a to em and return to Algorithm 1 

 

 

Algorithm 3 Ambulance to hospital routing algorithm 

Definitions: 

Node of type Hospital hr ∈ H = {h1, h2, …, sr} 

C = {tv, tv+j, …, tb} is a set of timestamps t 

Time(em , hr)c is the minimum time travel between em and hr at scenario c from list C = {c1, c2, 

…, cm} 

a is the ambulance allocated to em, and a
d
 is the destination of ambulance a 

   

1. For all c in C: if t in c → q = c  

2. For all hr in H: order H by Time(em , hr)q in ascending order 

3. Select h1 → a
d
 = h 

4. Return to Algorithm 1 

 

 

The city agent is responsible for generating and dispatching ambulances when 

required and activating the events at the right time. The city is also accountable for 

storing all other agents and gives update orders to them. 

The event agent is responsible for feeding the city agent with events and 

informing the city agent of its current state, asking for an ambulance agent to be 

allocated when it is activated (Algorithm 2). When being assisted, the event agent is 

responsible for generating a random assisting time and when this time terminates it will 

request the network agent to be transported to the closest node agent of type hospital 

(Algorithm 3). 

Algorithm 2 step 3 goes through a list of ordered stations and chooses the one 

with an inactive ambulance if the time between this station and the event is lower than 

the maximum time allowed to assist the event. When there is no available ambulance, 

step 4 creates a new ambulance at the station that requires the least amount of time to 

arrive at the event. 

Algorithm 3 simply chooses the closest hospital (in terms of trip time) by 

ordering a vector of available hospitals, step 2, and then selecting the first member of 

the ordered vector, step 3. 
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The network agent is responsible for routing all ambulance agents and choosing 

the closest hospital when an ambulance agent is transporting an event agent. It is also 

responsible for computing the fastest real time OD route. 

The ambulance agent keeps track of its position in the network agent and 

informs the network when it arrives at any destination. It travels to the node where the 

event occurs, assists the event, brings the event to the closest hospital and returns to its 

base. It is completely dependent on orders given by other agents. 

The node agent has three types: node, hospital and station. This agent assists the 

network and city agents by storing ambulances and events. 

Model application 

The proposed methodology was tested with real data from Porto during the period 

between May 2012 and May 2013. The daily uEMS response network operation was 

divided into three periods of equal length: The morning period (6:00 am to 2:00 pm), 

the afternoon period (2:00 pm to 10:00 pm), and the night period (10:00 pm to 6:00 

am). These periods are eight hours long, which is the usual daily working time across 

many countries. The network operation also differentiates weekdays (Monday through 

Friday) from weekend days (Saturday and Sunday). Accordingly, a total of 5 periods are 

formed: Period 1 Weekday 6 am to 2 pm, Period 2 Weekday 2 pm to 10 pm, Period 3 

Weekday 10 pm to 6 am, Period 4 Weekend 6 am to 10 pm and Period 5 Weekend 10 

pm to 6 am. The weekend morning and afternoon periods were joined together due to 

their similarities in terms of traffic conditions.  

For the maximum response time, it is known, within reasonable simplifications, 

that without any sort of intervention, the survival rate of a cardiac arrest victim drops, 

linearly, to zero after 10 minutes (Eisenberg et al. 1990). Moreover, Valenzuela et al. 

(1997) indicate that the time interval needed for EMTs or paramedics to attach a 

defibrillator and clear the patient for defibrillation once CPR is in progress is estimated 

to be 2 minutes past EMT arrival or 1 minute past the time of initiation of CPR by 

EMTs. This leads to a threshold of 8 minutes for the medical team to arrive at the event 

scene. Cardiac arrests are assumed to be the most demanding type of medical 

emergency; thus, the maximum allowed response time for each node is assumed to be 8 

minutes. 
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Whereas the influence of the response time to cardiac arrests is very well 

defined in the literature, other types of medical emergencies do not have such survival 

functions. To simplify, we assumed that every type of emergency survival function 

follows a linear law represented by a survival coefficient (α
t
)
-1

 with inverse α
t
. This 

transforms equation (9) into equation (14): 

 

 
, , , ,minimize k

l p s p s l p

s l p

y e r     (14) 

where K is the set of type of events k {cardiac arrest, car crash, others} 

 

The types of events chosen are justified by two assumptions. The first is that 

cardiac arrests have the quickest response time requirement. The second is that car 

crashes have a direct impact in the network traffic. This has straightforward 

implications in the time travel to other events occurring in the meantime. Thus, there is 

an indirect effect of the rescue time of car crash victims and the survival rate of other 

types of emergencies. All the other types of emergencies are considered to cluster in 

groups of similar behaviour. 

The events occurred in Porto were collected from the INEM (National Institute 

of Medical Emergency of Portugal) database containing information on the type of 

emergency, timestamp and address of the crash spot. There are a total of 33 736 events 

in a one-year period. The addresses were converted into coordinates using a python 

script that connects with the Google Maps API for geocoding. The care-assisting time 

on the crash scene of each event is unknown, so a uniform distribution between 1 and 

30 minutes was assumed and picked at random for each event. 

For the optimization model, the city network was converted into a nodal network 

where each node is the centroid of the city census sub zones, for a total of 87 nodes. 

Using a radial-distanced based cluster algorithm, each event was allocated to the 

corresponding node. 

The ambulance base stations were assumed to be possibly located in any of the 

87 nodes. Afterward, a python script was created to use the Google Directions API and 

calculate the OD matrix of time travels for the different periods. This script asks Google 

Directions API for the fastest travel time, by car, between two coordinates for the 

morning peak hour (8 am), the afternoon peak hour (6 pm), the weekend peak hour (3 
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pm), and the free flow speed travel time. The free flow speed times were allocated to 

the night periods. 

All the data were processed and stored in an SQL Database using Python, 

SQLite3 and DB Browser for SQL. Later, the data were prepared to be used by the 

optimization and the simulation models. To reduce the number of calls to the SQL 

database, the time travel matrix and the availability set were compiled into python raw 

files, which reduce the data processing time when running the models. The two models 

were also programmed in Python. For the optimization model, the Gurobi Optimizer 

python library, a state-of-the-art math programming solver, was used. 

The optimization model was run for this study case, followed by the simulation 

model. Sensitivity analysis was processed by changing the relevant parameters to 

understand their implications on the methodology formulation. 

Results and discussion 

Computing resources 

To support our claims, we propose a through sensitive analysis regarding the spatial and 

temporal dynamics that may influence how the EMS system is planned. 

With the optimization model, we tested the impacts of the maximum number of 

stations, Ml, the maximum response time, Mr, and the inverse survival coefficients per 

type of emergency, α
k
. With the simulation model, we tested the impacts of different 

uEMS network configurations from the optimization model.  

Each models’ runs were computed on a machine with an intel quad core 

processor at 1.73GHz and 8GB of memory ram in a WIN10 64bits operative system. 

Python v.2.7.8 and Gurobi v.6.5.2 were used, both in 64 bits. The computing time for 

each model run was under 1 minute. 

Stations location 

In the first analysis, we test different values of Ml and Mr and from the produced results, 

we assess the impact of the number of stations on the average response time and the 

station network requirements for different thresholds of the maximum response time. 

Furthermore, we propose a base case that will serve as an overall solution for the 
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presented optimization problem. We also assess the singular solutions for each proposed 

period and compare them with the overall solution, indicating the impact of dynamic 

cities on a uEMS response system. Finally, we assess the spatial dynamics of the 

emergency type and test the sensibility of the inverse survival coefficients per type of 

emergency, α
k
, justifying the importance of considering the heterogeneity of medical 

emergencies. 

Average response time 

The optimization model was run for different threshold of ambulance base stations, Ml, 

with equals α
t
. 

The minimum number of stations for a feasible solution is 8. Figure 1 show 

these results, where the objective function result was converted into the average travel 

time.  

 

Figure 1. Average time travel for different number of implemented stations 

 

As the number of stations increases, the average response time quickly drops in 

the first few additional stations and then slows down as the number of stations approach 

the number of nodes. It is important to remember that events were clustered into nodes; 

thus a station implemented in a certain node will respond to the events of that node 

instantly. It is also important to understand that the response time is only the driving 

time; it does not account for the time the emergency call is being processed and the time 

for the paramedic team to prepare the victim for any necessary intervention. 
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Moreover, Figure 1 shows an apparent correlation between the average response 

time and the number of stations implanted. To the naked eye, there seems to be a 

hyperbolic or exponential relationship between both variables. Nevertheless, it is 

important to note that as the number of station increases, theoretically, the average 

response time will never reach zero. In addition, when the average time grows, towards 

infinite, the number of stations required will be lower and lower but will never be null. 

In a further analysis, we tested several types of fitting curves and several 

variable transformations to assess a possible law between the number of stations and the 

average travel time. Figure 2 groups the best-found relations. 

The analysis assessment leads to the identification of two different correlations. 

One occurs in the first 7 observations, sample 1, and the other occurs in the remaining 

observations, sample 2. Undoubtedly, a power law explains the sample 1 correlation, 

whereas the sample 2 correlation is better described by an exponential law, or, if we 

transform x → 1/(x + 10) by a linear law. 

 

Figure 2. Correlation analysis between average time and number of stations 

 

Clearly, there is a disruption at the 7
th

 observation, corresponding to 7 stations 

implanted in the network. When adhering to the x transformation, the samples behave 

differently. The sample 1 average time drops more than 30% faster than sample 2 when 

1/(n+10) decreases (number of stations increase), pointing to differences in the network 

behaviour at the macro scale (few stations try to support the whole network) and micro 
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scale (many stations in the network, allowing each of them to focus in specific city 

areas) due to possible dynamic effects. 

Maximum response time 

The maximum response time is one of the key parameters in an EMS optimization 

system. The response time defines the quality of an EMS system; nevertheless, a shorter 

response time require more stations. 

Figure 3 shows the decrease in required stations when the maximum response 

time is increased. For 5 minutes of the maximum response time, 24 stations are 

required, but as soon as this limit is extended by a half minute, the requirements drop to 

18 stations. When increasing the time by one-third (from 5 minutes to approximately 8 

minutes), the required stations drop to one-third (from 24 to approximately 8). After the 

8
th

 minute, the number of required stations drops in a less significant way. With an 

increase of 5 minutes (total of 13 minutes), the number of required stations drops from 8 

to 3 stations. The critical maximum times are 6.5 minutes and 9 minutes. These seem to 

be the boundaries of a quick but costly response system (<6.5 minutes response time 

and >13 stations required), a standard response system (between 6.5 minutes and 9 

minutes, and between 13 stations and 6 stations), and a slow but cheap response system 

(>9 minutes response time and <6 stations required). 

 

Figure 3. Number of minimum stations required for different maximum response times 
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These results show that a maximum response time of approximately 7 to 8 

minutes can better equilibrate both the number of stations (10 to 8 stations) and the 

quality of the uEMS service. In fact, from 10 to 11 minutes, the number of required 

stations is the same as when the limit is set to 9.5 minutes 

Nevertheless, this value is tightly connected with the road network configuration 

and land use. 

Base case 

We define the base case as the solution where the maximum number of stations is 10, 

the alphas are 1 for cardiac arrests and road accidents and null for the other cases, and 

the maximum response is 8 minutes for cardiac arrests and 12 minutes for any other 

medical emergency. The base case solutions, plus the solution for each isolated period, 

are represented in Figure 4. 

 

 

Figure 4. Stations locations for the different periods and final solution. 

 

During the afternoon of the weekdays, the middle stations concentrate in the city 

centre, whereas during the night time the two west stations shift towards the map centre. 

During the weekend, the west area is occupied by 1 additional station; this might be due 

to the recreational areas, such as shopping malls, the seaside and the city park, present 
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there. During the night period, there is an apparent placement of the stations closer to 

the nightlife spots during the weekend and to the residential areas during the weekday. 

Overall, the final solution (all periods are accounted) disperses the stations in a more 

even fashion, supporting the fact that although all emergencies calls are clustered 

together in a unique solution, having no special weights for any specific period might 

lead into a good final solution. 

There are clear differences of needs during the system cycle (in this case an 

average week), which indicate that dynamic solutions have a role to play in emergency 

systems. Further support and reasons are stressed in the next analyses. 

Alpha sensitivity test for cardiac and road crash events 

To analyse the influence of the parameter alpha, α
k
, for cardiac arrests and road crashes, 

a batch of test cases were computed varying each alpha by 2
n
 with n = {0, 1, 2, 3, 4, 5, 

6}. The idea underneath is to understand how the solutions behaves in terms of spatial 

occupation. For each test case, a centroid is calculated by averaging the position of the 

stations’ optimal location. In Figure 5, the centroids for each tested case are presented.  

 

Figure 5. Percentage towards the city limit of displacement of each solution centroid, 

for different combinations of alpha, with respect to the centroid where the solution 

represents the optimal location when road accidents and cardiac arrest alphas are equal. 
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The coordinate (0, 0) shows the centroid when alpha is equal for both types. 

When the parameter alpha for cardiac arrests grows, compared to the road crash alpha, 

the solution centroid moves towards the city centre, from northwest to southeast. In the 

opposite situation, the road crash alpha grows relatively to the cardiac arrest alpha, and 

the solution centroid moves in the opposite direction, from southeast to northwest, and 

towards the outerbound of the city. This indicates that both road crashes and cardiac 

arrests are correlated with space and depend on the city land use. This supports our 

assumption that cities are dynamic and different types of events occur in different places 

of the city (Figure 5) and at different times (Figure 4). 

Number of active ambulances 

The simulation model was run for one year using the base case optimization solution 

(Figure 4). Using the results agent, we kept track of the minimum, maximum and 

average number of ambulances in use at each instant (hour steps). Within the 

simulation, we allow a maximum of 12 minutes for an ambulance to respond to any 

event but a cardiac arrest. For the latter, the maximum response time was 8 minutes. 

Several station configurations were tested to assess the uEMS sensitivity in 

terms of the number of ambulances and their location. These configurations were 

computed using the optimization model and by varying the number of stations, the 

periods and the alpha parameters. 

To compare the simulation results of the final solution with the different period 

solutions, we propose a comparative graph. This graph shows the additional number of 

ambulances required by a certain individual solution in comparison with the final 

solution for different percentiles of served hours. 

It is important to highlight that individual solutions only respect the maximum 

response times during the period they were computed for. This means that when an 

individual solution is implemented to be used during the overall cycle not all 

emergencies will be answered within the proposed limits. 

 

Base case 

One of the most important questions in an EMS response system is the number and 

location of ambulance stations. Nevertheless, defining the station capacity is also a 
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crucial design task. 

The number of ambulances required in an EMS system is an important planning 

decision; thus understanding the system needs is fundamental. 

We run the simulation model for the base case and assess the ambulance needs 

for one year (in 1 hour steps on a total of 8760 steps). We use different station 

configurations (Figure 4) corresponding to the different analysed periods in the station 

location analysis. 

The results from the simulation model, Figure 6, show that in a period of one 

year, there is a maximum of 19 ambulances simultaneously being used. However, when 

we consider the percentile 99.98% (exclude the most loaded period), this number drops 

to 17 ambulances. At 95%, the number of ambulances reduces drastically to 7. The next 

reduction, 6 ambulances, occurs for 90%. This would mean that with 6 ambulances, 

90% of the time, every request would be fulfilled within the maximum response times 

defined. 

It is evident that there are few hours in the year where the system has outlier 

behaviour. Further investigations show that the most loaded hours correspond to the 

period between 1 am and 4 am on day of São João. On this city day, a festival is thrown 

at the city centre and most of the EMS calls in this period are because of intoxication 

and trauma. A clear overflow of calls is identified originating from a specific event. In 

these cases, a specific day plan is advised rather than overestimating the EMS system 

with ambulances that would be used only once per year. 
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Figure 6. Number of active ambulances by percentile for one year in the all scenario 

facility solution, and comparison with the individual scenario solution. 

 

Moreover, we compared the final solution requirements with the 5-single period 

solution. This will help us to determinate if our station location model is a good fit for a 

dynamic ambulance allocation. 

Overall, the final solution has a clear fit to the dynamic allocation of 

ambulances. However, in a few occasions for the higher percentiles, this solution 

underperforms by requiring 1 more ambulance than the periods that account for the 

peak hours. Moreover, when compared with period 2 (afternoon peak hour), the solution 

is confirmed to be less robust, requiring one more ambulance in some occasions. 
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Nevertheless the final solution is the only that assures all emergencies are answered 

within the maximum response times proposed. 

Although there is no clear evidence of a better fit than the static station location 

model, the scenario-based optimization model seems to have a good response towards 

dynamic systems. It is important to notice that this is a macro analysis that accounts for 

all emergency calls, without stressing the advantages of properly responding to cardiac 

arrests and road accidents. 

Sensitivity test of the number of stations on the number of active ambulances 

In the optimization model, we defined the number of stations as the minimum required 

to fulfil the coverage requirements. Nevertheless, this does not assure us the optimal 

solution in terms of ambulances required. To assess this, we computed the optimization 

model for different limits of stations, ran the simulation model and compared it with the 

base case (Figure 7). 

 

Figure 7. Number of additional active ambulances for different number of stations 

compared to the base case solution. 

 

When using a solution with only 5 stations the system performs poorly, 

requiring additional ambulances in certain periods, even for the lowest percentiles. 

When using 8 stations, for the minimum required to fulfil the entire network within the 

maximum response time, the system behaves in a similar fashion but in fewer periods 

and never requiring more than 1 ambulance. The situation clearly inverts only when the 

number of stations jumps to as high as 24. 14 stations present a clear advantage for high 

percentiles (>90%). The reason the solution with 10 stations performs better than the 
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solution with 14 stations for percentiles < 90% might be that additional stations tend to 

improve out of ordinary days, concentrating in areas where peaks of uEMS calls 

occasionally occur. 

Alpha sensitivity test on the number of active ambulances 

As per the optimization model, we also test how the alpha parameter influences the 

number of ambulances by influencing the stations location and compare this with the 

base case (equal alpha for cardiac and road accident calls and zero for other types) 

(Figure 8). 

 

Figure 8. Number of additional active ambulances for different number of stations 

compared to the base case solution. 

 

When the focus of the stations location is road accidents, the system responds 

faster to road accidents but becomes slower to other type of requests. This leads to a 

requirement of one additional ambulance in several periods. A similar situation occurs 

when the focus turns to the cardiac arrest. However, there are some periods where the 

system requires one fewer ambulance, which coincides with the percentile where the 

system would need one more ambulance if the focus were on road accidents. This is 

evidence of the fact that road accidents and cardiac arrests are distinct in time and 

space, at least during some periods at certain levels, providing clear proof that dynamic 

systems can make a difference. 

Nevertheless, we also compared the base case with the solution where no focus 

is given to cardiac or road accidents. This incorporates most of the uEMS calls; thus the 

stations network are better positioned to respond to most of the cases leading to a 
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requirement of fewer ambulances in several cases when the percentile is > 25%. For the 

future, effort should be made to score the survival gain rather than simply comparing 

the number of required ambulances. 

Ambulances per station requirement for the base scenario and worst case for 

each hour 

Finally, to obtain a clear understanding of the city dynamics and how a dynamic EMS 

system is justified over a static one, we assess the ambulance requirements per station 

for 24 h with the most loaded occurrence for each of the day hour (Figure 9). 

 

Figure 9. Maximum number of required ambulances per hour at each station for the 

base case. 
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As mentioned before, the most loaded hours corresponded to a specific event 

and occurred between 1 am and 4 am. Clearly, these occurrences occur in a specific area 

of the city, as only one station seems to be overloaded. Nevertheless, when looking for 

the total number of stations, the morning and afternoon periods seem to stabilize around 

12 and 10 active ambulances. In a first view, this would indicate that a dynamic 

management of the fleet is not required. In a closer view, when focusing on the three 

most loaded stations, we recognize load changes between stations 86, 48 and 24, from 

the outskirts of the city, where business and industry focus, to the city centre, where 

commerce and old residential areas coexist. It is important to add that the area that 

station 86 covers is characterized by heavy traffic periods and fast roads. 

In the less loaded stations (between 0 and 2 active ambulances), there is an 

evident interchange in the stations with active stations. For instance, there is a clear 

equilibrium between station 108 and stations 10 and 27, i.e., when the former is more 

loaded the latter are free and vice versa. 

This analysis gives clear evidence of the advantages of the dynamic allocation of 

ambulances and how it can reduce the total number of required ambulances by 

dynamically reallocating them to a proper station, reducing the service time and 

consequently reducing the busy time of each ambulance. 

Conclusions 

This work opens doors to the study of city dynamics and its influences in the 

management of a uEMS response system 

We defined a performance metric for the EMS response by summing the 

survival score of each rescued victim. Afterwards, we proposed a scenario-based 

optimization model where the scenarios are exchanged by static day periods to capture 

city dynamics. 

An agent-based model simulation is offered to assess uEMS needs in terms of 

ambulances and stress the importance of a dynamic system. 

 The models were validated and, after minor simplifications, performed quickly, 

allowing for several cases to be tested within a reasonable time. The validation and 

sensitive tests were performed in a real case city, Porto, with data from one year with a 

total of 33 736 events from 10 May 2012 to 9 May 2013. 
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The presented models allow decision maker to better rationalize the number of 

stations and the average response time of the system. Nevertheless, the number of 

stations shows low variance in relation to the total number of active ambulances as 

shown by the simulation model. 

The cycle division in periods is a simple and efficient way to deal with city 

dynamics and is proven to be relevant in the positioning of the stations. The city has its 

own dynamics concentrating people and traffic in different parts of its network 

throughout the day as proven by the individual period optimization analysis. Moreover, 

road accidents and cardiac arrests were proven to have different time and space 

behaviours, once more supporting our assumptions. 

In terms of ambulances, it was shown that there are a few occasions when the 

system requires almost double the amount of ambulances compared to what would be 

required 95% of the time. Evidently, a supporting plan should be designed for these 

specific periods, such as large city events, thereby releasing the main uEMS system 

from this burden. 

Although the number of active ambulances during the day is reasonably even, as 

per the analysed situation, there is evidence of the existence of a main station supported 

by a couple of other stations from where most of the calls are responded to. The 

remaining ones serve as area-specific stations that are requested at certain periods of 

time. 

Overall the scenario-based optimization model was proved to be fit for a 

following dynamic allocation of ambulances.  

It was revealed that the location of stations is impacted by the city dynamics and 

the survival functions, stressing further developments in the study of these functions for 

road accidents and other types of meaningful (survival or system related) emergency 

events. In addition, the use of realistic survival functions would allow a better 

assessment of the sensitive analyses provided here and possibly achieve clearer and 

more eloquent proofs. 

Different period sizes should be tested, and the simulation model should be 

relaxed to allow ambulances to be reallocated to different stations. The simulation 

model should also allow ambulances returning from a hospital to be allocated to an 

active event without the need to return to their base. 
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Additionally, we propose a study of the impact of road crashes in the uEMS 

response time for other occurrences so that, first, a better performance function can be 

added to the optimization model, and, second, the simulation model is improved 

accordingly. Adding double coverage to the optimization is also worth investigating. 

 

We acknowledge the support of FCT (Portuguese national funding agency for science, research 

and technology) under the grant PD/BD/52355/2013 during the development of this work. We 

also express gratitude to INEM (Portuguese Institute of Medical Emergency) for the 

information and data that they provided us. 

References 

Alanis, Ramon, Armann Ingolfsson, and Bora Kolfal. 2013. "A Markov Chain Model 

for an EMS System with Repositioning."  Production and Operations 

Management 22 (1):216-31. doi: 10.1111/j.1937-5956.2012.01362.x. 

Andersson, T., and P. Varbrand. 2006. "Decision support tools for ambulance dispatch 

and relocation."  J Oper Res Soc 58 (2):195-201. 

Andersson, Tobias. 2005. "Decision support tools for dynamic fleet management."  

Doktorsavhandling, Linköpings Universitet, Sverige. 

Berman, O. 1981a. "Repositioning of Two Distinguishable Service Vehicles on 

Networks."  Systems, Man and Cybernetics, IEEE Transactions on 11 (3):187-

93. doi: 10.1109/TSMC.1981.4308651. 

Berman, Oded. 1981b. "Dynamic Repositioning of Indistinguishable Service Units on 

Transportation Networks."  Transportation Science 15 (2):115-36. doi: 

10.1287/trsc.15.2.115. 

Berman, Oded. 1981c. "Repositioning of distinguishable urban service units on 

networks."  Computers & Operations Research 8 (2):105-18. doi: 

http://dx.doi.org/10.1016/0305-0548(81)90038-1. 

Berman, Oded, and Amedeo R. Odoni. 1982. "Locating mobile servers on a network 

with markovian properties."  Networks 12 (1):73-86. doi: 

10.1002/net.3230120106. 

Blackwell, Thomas H., and Jay S. Kaufman. 2002. "Response Time 

Effectiveness:Comparison of Response Time and Survival in an Urban 

Emergency Medical Services System."  Academic Emergency Medicine 9 

(4):288-95. doi: 10.1197/aemj.9.4.288. 

Boloori Arabani, Alireza, and Reza Zanjirani Farahani. 2012. "Facility location 

dynamics: An overview of classifications and applications."  Computers & 

Industrial Engineering 62 (1):408-20. doi: 

http://dx.doi.org/10.1016/j.cie.2011.09.018. 

Brotcorne, Luce, Gilbert Laporte, and Frédéric Semet. 2003. "Ambulance location and 

relocation models."  European Journal of Operational Research 147 (3):451-63. 

doi: http://dx.doi.org/10.1016/S0377-2217(02)00364-8. 

Budge, Susan, Armann Ingolfsson, and Dawit Zerom. 2010. "Empirical analysis of 

ambulance travel times: the case of Calgary emergency medical services."  

Management Science 56 (4):716-23. 

http://dx.doi.org/10.1016/0305-0548(81)90038-1
http://dx.doi.org/10.1016/j.cie.2011.09.018
http://dx.doi.org/10.1016/S0377-2217(02)00364-8


Amorim, Ferreira, Couto                                                                                                  Beta working paper 

 

Church, Richard, and Charles R. Velle. 1974. "THE MAXIMAL COVERING 

LOCATION PROBLEM."  Papers in Regional Science 32 (1):101-18. doi: 

10.1111/j.1435-5597.1974.tb00902.x. 

Current, John, Samuel Ratick, and Charles ReVelle. 1998. "Dynamic facility location 

when the total number of facilities is uncertain: A decision analysis approach."  

European Journal of Operational Research 110 (3):597-609. doi: 

http://dx.doi.org/10.1016/S0377-2217(97)00303-2. 

Daskin, Mark S. 1983. "A Maximum Expected Covering Location Model: Formulation, 

Properties and Heuristic Solution."  Transportation Science 17 (1):48-70. doi: 

doi:10.1287/trsc.17.1.48. 

Daskin, Mark S., and Edmund H. Stern. 1981. "A Hierarchical Objective Set Covering 

Model for Emergency Medical Service Vehicle Deployment."  Transportation 

Science 15 (2):137-52. doi: doi:10.1287/trsc.15.2.137. 

Eisenberg, Mickey S., Bruce T. Horwood, Richard O. Cummins, Robin Reynolds-

Haertle, and Thomas R. Hearne. 1990. "Cardiac arrest and resuscitation: A tale 

of 29 cities."  Annals of Emergency Medicine 19 (2):179-86. doi: 

http://dx.doi.org/10.1016/S0196-0644(05)81805-0. 

Erkut, E., A. Ingolfsson, and G. Erdogan. 2008. "Ambulance location for maximum 

survival."  Naval Research Logistics 55 (1):42-58. doi: 10.1002/nav.20267. 

Erkut, Erhan, Armann Ingolfsson, Thaddeus Sim, and Güneş Erdoğan. 2009. 

"Computational Comparison of Five Maximal Covering Models for Locating 

Ambulances."  Geographical Analysis 41 (1):43-65. doi: 10.1111/j.1538-

4632.2009.00747.x. 

Ferreira, Sara, and António Couto. 2013. "Hot-Spot Identification: A Categorical Binary 

Model Approach."  Transportation Research Record: Journal of the 

Transportation Research Board 2386 (-1):1-6. doi: 10.3141/2386-01. 

Gendreau, M., G. Laporte, and F. Semet. 2005. "The maximal expected coverage 

relocation problem for emergency vehicles."  J Oper Res Soc 57 (1):22-8. 

Gendreau, Michel, Gilbert Laporte, and Frédéric Semet. 2001. "A dynamic model and 

parallel tabu search heuristic for real-time ambulance relocation."  Parallel 

Computing 27 (12):1641-53. doi: http://dx.doi.org/10.1016/S0167-

8191(01)00103-X. 

Hogan, Kathleen, and Charles ReVelle. 1986. "Concepts and Applications of Backup 

Coverage."  Management Science 32 (11):1434-44. doi: 

doi:10.1287/mnsc.32.11.1434. 

Hogg, Jane M. 1968. "The Siting of Fire Stations."  J Oper Res Soc 19 (3):275-87. 

Iannoni, Ana Paula, Reinaldo Morabito, and Cem Saydam. 2009. "An optimization 

approach for ambulance location and the districting of the response segments on 

highways."  European Journal of Operational Research 195 (2):528-42. doi: 

http://dx.doi.org/10.1016/j.ejor.2008.02.003. 

Ingolfsson, A. 2006. The impact of ambulance system status management. Paper 

presented at the Presentation at 2006 INFORMS Conference. 

Ingolfsson, Armann, Susan Budge, and Erhan Erkut. 2008. "Optimal ambulance 

location with random delays and travel times."  Health Care Management 

Science 11 (3):262-74. doi: 10.1007/s10729-007-9048-1. 

Jarvis, James P. 1981. "Optimal assignments in a markovian queueing system."  

Computers & Operations Research 8 (1):17-23. doi: 

http://dx.doi.org/10.1016/0305-0548(81)90028-9. 

http://dx.doi.org/10.1016/S0377-2217(97)00303-2
http://dx.doi.org/10.1016/S0196-0644(05)81805-0
http://dx.doi.org/10.1016/S0167-8191(01)00103-X
http://dx.doi.org/10.1016/S0167-8191(01)00103-X
http://dx.doi.org/10.1016/j.ejor.2008.02.003
http://dx.doi.org/10.1016/0305-0548(81)90028-9


Amorim, Ferreira, Couto                                                                                                  Beta working paper 

 

Kepaptsoglou, Konstantinos, Matthew Karlaftis, and George Mintsis. 2012. "Model for 

Planning Emergency Response Services in Road Safety."  Journal of Urban 

Planning and Development ASCE 138 (1):18-25. 

Kim, Byeongsun. 2016. "Exploring emergency areas for medical service using 

microscopic traffic simulation model."  Spatial Information Research 24 (2):75-

84. doi: 10.1007/s41324-016-0008-z. 

Knight, V. A., P. R. Harper, and L. Smith. 2012. "Ambulance allocation for maximal 

survival with heterogeneous outcome measures."  Omega 40 (6):918-26. doi: 

http://dx.doi.org/10.1016/j.omega.2012.02.003. 

Kolesar, Peter, and Warren E. Walker. 1974. "An Algorithm for the Dynamic 

Relocation of Fire Companies."  Operations Research 22 (2):249-74. doi: 

10.1287/opre.22.2.249. 

Krishnan, K., L. Marla, and Y. Yue. 2016. Robust ambulance allocation using risk-

based metrics. Paper presented at the 2016 8th International Conference on 

Communication Systems and Networks (COMSNETS), 5-10 Jan. 2016. 

Lam, Sean Shao Wei, Ji Zhang, Zhong Cheng Zhang, Hong Choon Oh, Jerry Overton, 

Yih Yng Ng, and Marcus Eng Hock Ong. 2015. "Dynamic ambulance 

reallocation for the reduction of ambulance response times using system status 

management."  The American Journal of Emergency Medicine 33 (2):159-66. 

doi: http://dx.doi.org/10.1016/j.ajem.2014.10.044. 

Maxwell, Matthew S, Mateo Restrepo, Shane G Henderson, and Huseyin Topaloglu. 

2010. "Approximate dynamic programming for ambulance redeployment."  

INFORMS Journal on Computing 22 (2):266-81. 

Maxwell, Matthew S., Shane G. Henderson, and Huseyin Topaloglu. 2009. "Ambulance 

redeployment: an approximate dynamic programming approach." In Winter 

Simulation Conference, 1850-60. Austin, Texas: Winter Simulation Conference. 

McCormack, Richard, and Graham Coates. 2015. "A simulation model to enable the 

optimization of ambulance fleet allocation and base station location for 

increased patient survival."  European Journal of Operational Research 247 

(1):294-309. doi: http://dx.doi.org/10.1016/j.ejor.2015.05.040. 

Miller, TanC, TerryL Friesz, RogerL Tobin, and Changhyun Kwon. 2007. "Reaction 

Function Based Dynamic Location Modeling in Stackelberg–Nash–Cournot 

Competition."  Networks and Spatial Economics 7 (1):77-97. doi: 

10.1007/s11067-006-9013-4. 

Nair, R, and E Miller-Hooks. 2006. A case study of ambulance location and relocation. 

Paper presented at the Presentation at 2006 INFORMS Conference. 

Panahi, S, and MR Delavar. 2009. "Dynamic Shortest Path in Ambulance Routing 

Based on GIS."  International journal of Geoinformatics 5 (1). 

Pons, Peter T., Jason S. Haukoos, Whitney Bludworth, Thomas Cribley, Kathryn A. 

Pons, and Vincent J. Markovchick. 2005. "Paramedic Response Time: Does It 

Affect Patient Survival?"  Academic Emergency Medicine 12 (7):594-600. doi: 

10.1197/j.aem.2005.02.013. 

Restrepo, Mateo, Shane G. Henderson, and Huseyin Topaloglu. 2008. "Erlang loss 

models for the static deployment of ambulances."  Health Care Management 

Science 12 (1):67-79. doi: 10.1007/s10729-008-9077-4. 

ReVelle, Charles, and Kathleen Hogan. 1989. "The Maximum Availability Location 

Problem."  Transportation Science 23 (3):192-200. doi: 

doi:10.1287/trsc.23.3.192. 

Sánchez-Mangas, Rocío, Antonio García-Ferrrer, Aranzazu de Juan, and Antonio 

Martín Arroyo. 2010. "The probability of death in road traffic accidents. How 

http://dx.doi.org/10.1016/j.omega.2012.02.003
http://dx.doi.org/10.1016/j.ajem.2014.10.044
http://dx.doi.org/10.1016/j.ejor.2015.05.040


Amorim, Ferreira, Couto                                                                                                  Beta working paper 

 

important is a quick medical response?"  Accident Analysis & Prevention 42 

(4):1048-56. doi: http://dx.doi.org/10.1016/j.aap.2009.12.012. 

Savas, E. S. 1969. "Simulation and Cost-Effectiveness Analysis of New York's 

Emergency Ambulance Service."  Management Science 15 (12):B-608-B-27. 

doi: doi:10.1287/mnsc.15.12.B608. 

Serra, Daniel, and Vladimir Marianov. 1998. "The p-median problem in a changing 

network: the case of Barcelona."  Location Science 6 (1–4):383-94. doi: 

http://dx.doi.org/10.1016/S0966-8349(98)00049-7. 

Su, Syi, and Chung-Liang Shih. 2003. "Modeling an emergency medical services 

system using computer simulation."  International Journal of Medical 

Informatics 72 (1–3):57-72. doi: 

http://dx.doi.org/10.1016/j.ijmedinf.2003.08.003. 

Toregas, Constantine, Ralph Swain, Charles ReVelle, and Lawrence Bergman. 1971. 

"THE LOCATION OF EMERGENCY SERVICE FACILITIES."  Operations 

Research 19 (6):1363-73. 

Valenzuela, Terence D, Denise J Roe, Shan Cretin, Daniel W Spaite, and Mary P 

Larsen. 1997. "Estimating effectiveness of cardiac arrest interventions a logistic 

regression survival model."  Circulation 96 (10):3308-13. 

Valinsky, David. 1955. "Symposium on Applications of Operations Research to Urban 

Services—A Determination of the Optimum Location of Fire-Fighting Units in 

New York City."  Journal of the Operations Research Society of America 3 

(4):494-512. doi: doi:10.1287/opre.3.4.494. 

Vasić, Čedomir, Bratislav Predić, Dejan Rančić, Petar Spalević, and Dženan Avdić. 

2014. "Dynamic Relocation of Emergency Ambulance Vehicles Using the AVL 

Component of the GPS/GPRS Tracking System."  Acta Polytechnica Hungarica 

11 (9). 

Wang, Tianbing, Fei Wang, Xiaofeng Yin, Na Han, Peixun Zhang, Yuhui Kou, and 

Baoguo Jiang. 2015. "Changes and trends of pre-hospital emergency disease 

spectrum in Beijing in the past decade (from 2003 to 2012)."  Journal of Local 

and Global Health Science 2015 (2):34. doi: 10.5339/jlghs.2015.itma.34. 

Westgate, Bradford S., Dawn B. Woodard, David S. Matteson, and Shane G. 

Henderson. 2013. "Travel time estimation for ambulances using Bayesian data 

augmentation."1139-61. doi: 10.1214/13-AOAS626. 

WHO. 2011. "Global Plan for the Decade of Action for Road Safety 2011-2020."  

World Health Organization. 

Yue, Yisong, Lavanya Marla, and Ramayya Krishnan. 2012. An Efficient Simulation-

Based Approach to Ambulance Fleet Allocation and Dynamic Redeployment. 

Paper presented at the AAAI. 

Zhang, Lei. 2012. "Simulation optimisation and Markov models for dynamic ambulance 

redeployment." ResearchSpace@ Auckland. 

Zhang, O, AJ Mason, and AB Philpott. 2008. Simulation and optimisation for 

ambulance logistics and relocation. Paper presented at the Presentation at the 

INFORMS 2008 Conference. 

Zhu, Shanjiang, Woon Kim, and Gang-Len Chang. 2012. "Design and benefit-cost 

analysis of deploying freeway incident response units: case study for Capital 

Beltway in Maryland."  Transportation Research Record: Journal of the 

Transportation Research Board (2278):104-14. 

 

http://dx.doi.org/10.1016/j.aap.2009.12.012
http://dx.doi.org/10.1016/S0966-8349(98)00049-7
http://dx.doi.org/10.1016/j.ijmedinf.2003.08.003


Amorim, Ferreira, Couto                                                                                                  Beta working paper 

 

 


