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Abstract

American style options are of considerable importance in the financial
markets. However, to value them requires numerical methods or approx-
imate formulae since in general no explicit formulae exist. Typically con-
vergence to the true option value is slow resulting in practice in inaccurate
prices.

In this paper we value on a lattice with novel probabilities an instru-
ment, a nominated barrier option, whose value converges to that of an
American option as the number of time steps increases. We find that the
value of the nominated barrier option on the lattice seems to converge to
the value of the underlying American option faster than existing methods,
but with greater initial bias.
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1 Introduction
American style options are an important part of the options markets. Unlike
European options, American options rarely have explicit solutions. There is
no known formula even for an American put on an asset following geometric
Brownian motion. Consequentially approximate formula or numerical methods,
such as PDE or simulation methods, need to be used.
A number of analytic approximations have been suggested in the litera-

ture. Geske and Johnson (1984) use Richardson’s extrapolation on the valua-
tion formula of a portfolio of Bermudan options with different exercise dates.
This method was later modified by Bunch and Johnson (1992), Ho, Stapleton
and Subrahmanyam (1994) and Huang, Subrahmanyam and Yu (1996) propos-
ing various methods to value Bermudan options. MacMillan (1986) used a
quadratic approximation approach to a PDE, extended by Baroni-Adesi and
Whaley (1987). Along the same lines but with increased accuracy, specially
for long term options, is the approximation by Ju and Zhong (1999). Another
approach (Fu et al. (2001)) is to approximate the value function by a piece-
wise linear interpolation, so that the continuation value can be expressed as a
summation of European call option values.
To get numerical solutions of the Black-Scholes PDE, subject to American

option boundary conditions, several methods have been used, among others:
finite difference methods (Brennan and Schwartz (1977), Courtadon (1982),
Dempster and Hutton (1997), andWu and Kwok (1997)); finite element methods
(Wilmott et al.(1993), and Zvan, Forsyth and Vetzal (2001)); the method of lines
(Meyer and van der Hoek (1997)); and the differential quadrature method (Wu
and Ding (2002)). Mallier and Alobaidi (2000) applied a Laplace transform to
obtain an integral equation that can be solved numerically.
Simulation methods include both Monte Carlo and lattice methods. There

has been significant progress in using Monte Carlo methods to value American
options, applied mainly for path-dependent payoffs. For instance, Longstaff and
Schwartz (2001) and Van Roy and Tsitsiklis (2001) use regression based models
to estimate continuation values from simulated paths. The stochastic mesh
method, originally introduced by Broadie and Glasserman (1997a) and also
used by Avramidis and Matzinger (2002), solves a randomly sampled dynamic
programming problem to approximate the price of an American option. The
main distinction between the stochastic mesh method and the random tree
method (Broadie and Glasserman (1997b)) is that in valuing the option at a
specific node the former uses values from all the nodes at the subsequent time
step whereas the latter uses only the values of the successor nodes from that
node. Haugh and Kogan (2001) and Rogers (2002) establish a dual approach in
which the American option price is represented through a minimization problem
as opposed to the most common formulation of maximization over stopping
times.
Ever since lattice methods were introduced for the valuation of American

options (Cox, Ross and Rubinstein (1979)) they have received much attention
in the literature. Generalizations of the binomial method include the multino-

2



mial methods of Boyle (1988b), and Kamrad and Ritchken (1991). Broadie
and Detemple (1996) found a modification of the binomial method that uses
the Black-Scholes value at the time step just before maturity to compensate for
convergence problems in the standard method. Figlewski and Gao (1999) obtain
considerable gains of accuracy and efficiency using an adaptive mesh method.
Alford and Webber (2001) achieved very high rates of convergence using lat-
tices with high-order branching. The convergence of lattice methods has been
established, for instance, by Amin and Khanna (1994), Broadie and Detemple
(1996), Lamberton (1993), and Schmidt (1997).
A problem with using numerical methods for valuing American options is

their slow rate of convergence. Only relatively inaccurate option values can be
found in a short time.
This paper presents a lattice method based upon valuing an instrument,

which we call a nominated barrier option, exercisable between reset dates, whose
value converges to that of an American option as the number of reset dates
increases. To value this instrument we exploit an idea of Kuan and Webber
(2002) who used a probability correction term in a lattice for barrier options.
Two alternative forms of correction are used. In the first the correction term is
based upon the distribution of the maximum of a Brownian bridge connecting
nodes in the lattice. In the second the hitting time distribution is calculated, and
branching probabilities found by matching moments to those of the associated
defective probability distribution.
Our exposition focuses on the example of the American put, but it is clear

that the method generalizes to other types of American option.
The next section discusses the nominated barrier option. Section three de-

scribes the Dirichlet lattice method and how it can be applied to valuing nom-
inated barrier options. In section four we describe a modified Dirichlet lattice
and how it may be applied. We refer to this lattice as the American Dirichlet
lattice. Section five gives numerical results and section six concludes.

2 The Nominated Barrier Option
A nominated barrier option is an option where at each reset date the option
holder nominates a barrier level to apply until the next reset date. If the value
of an underlying asset hits the barrier level the option expires but the holder
receives a payoff. If the option survives until maturity, the holder again receives
a payoff.
Suppose the option is created at time t0 = 0 and has a final maturity time

T . We suppose there are N + 1 equally spaced reset dates, tj = t0 + j∆t,
j = 0, . . . , N , where ∆t = T

N . Let the underlying asset be a stochastic process
S = (St)t≥0. At each reset date tj the holder nominates a barrier level uj. Here,
with the example of the American put in mind, we consider only down-barriers
so that we require uj ∈

£
0, Stj

¢
. Let τuj = inft≥tj {St ≤ uj} be the first hitting

time of the underlying asset to the barrier. If τuj ∈ [tj , tj + 1) the option expires
at the hitting time τuj and the option holder receives a payoff of H

¡
τuj , uj

¢
at
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time τuj . At time T , if the option is still alive, the holder receives a payoff of
G (ST ).
For given payoff functions H and G, write cN for the value of a nominated

barrier option with N + 1 reset dates. As N →∞ the option value tends to a
limit, cN → c∞. c∞ is the value of an American option with payoff G (ST ) at
time T and payoff H (t, St) if exercised early.
Specifically, we now assume that H

¡
τuj , uj

¢
= X−uj and G (ST ) = X−ST .

The function

UN : [0, T ]→ R+, (1)

UN (t) = uj , for t ∈ [tj , tj+1) , (2)

determines an exercise policy for an American put. As N → ∞ we have UN
→ Ût, the optimal exercise policy for an American put, so that c∞ is the value
of an American put with strike X.
In the numerical work below, where N is large, we shall consider a version

of the nominated barrier option in which, if the barrier uj is hit, the payoff is
deferred until time tj+1. We call this the deferred nominated barrier option.
Writing dN for its value we note that dN → c∞ as N →∞.
From now on we assume that the asset St follows a geometric Brownian

motion with constant volatility σ and constant riskless rate r. We use the
accumulator numeraire so that under the equivalent martingale measure the
asset process is

dSt = rStdt+ σStdzt. (3)

3 Nominated Barrier Options and the Dirichlet
Lattice

First we describe the Dirichlet lattice of Kuan and Webber (2002), then we show
how it may be applied to value (deferred) nominated barrier options.

3.1 The Dirichlet Lattice

Let ct be the value at time t of an American option maturing at time T with exer-
cise price X. The value of the option at time t0 is c0 = maxω E0

£
e−rτ(ω)H (ω)

¤
where the maximum is taken over all exercise policies ω; H (ω) is the payoff
received at time τ (ω) under policy ω.
Time is discretised into N steps, 0 = t0 < . . . < tN = T , with constant

time step ∆t = tj − tj−1. We construct a d-nomial lattice for the underlying
Wiener process zt where d = 2b + 1 for an integer b ≥ 1. Nodes on the lattice
are labelled (j, i), j = 0, . . . , N , i = −bj, . . . , bj.1 Set ∆z =

√
κ∆t for some

constant κ. The value of the discretised Wiener process bzt at node (j, i) is i∆z.
1 In practical implementations the lattice is truncated at high and low levels.
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The corresponding value of the asset is

Sj,i = S0 exp

µµ
r − 1

2
σ2
¶
j∆t+ σzj,i

¶
. (4)

Branching from node (j, i) is to nodes (j + 1, i+ k), k ∈ B = {−b, . . . , b} with
corresponding probabilities pk.2 For our numerical work we specialize down to
a trinomial lattice with d = 3, so that B = {−1, 0, 1}. In this case we use the
standard values, κ = 3, p−1 = p1 =

1
6 , p0 =

2
3 so that the first five moments of

zt are matched.
Consider an option with a deterministic time varying barrier ut such that

when the asset value hits the barrier the option expires and some rebate value
is paid. We assume that S0 > u0, and the option is a down-and-out with a
rebate value H (τ, uτ ) paid when the barrier is hit at time τ = mint {St ≤ ut}.
At time T , if τ > T , the option expires with value H (T, St).
If we set H (τ, uτ ) = X − ut for some constant X, and set ut to be the

early exercise frontier of an American put then the option is equivalent to an
American put with strike X.
This option may be valued on a standard (plain) lattice by backwards induc-

tion as follows. At time tN set cN,i = H (tN , SN,i), i = −bN, . . . , bN . Suppose
that for time tj+1 the values cj+1,i have been found. We now compute the values
cj,i. Set Bj =

©
k ∈ B |Sj+1,i+k < utj+1

ª
. Then set

cj,i = e
−r∆t

⎡⎣ X
k∈B\Bj

pkbcj+1,i+k + X
k∈Bj

pkHj+1,i+k

¡
tj+1, utj+1

¢⎤⎦ (5)

The value of the option on the plain lattice is c0,0. We write pN for the option
value found on a plain lattice with N time steps.
Fast lattice solutions for knock-out options of this sort were given by Kuan

and Webber (2002). They showed3 how these options could be valued on a
Dirichlet lattice by both forwards and backwards induction. Here we are con-
cerned only with backwards induction.
Let

mi,i+k
j,j+1 = min

t∈[tj ,tj+1)
©
St | Stj = Sj,i, Stj+1 = Sj+1,i+k

ª
(6)

be the minimum of St in the range t ∈ [tj , tj+1) conditional on its end points
and let

F i,i+k
j,j+1 (u) = Pr

h
mi,i+k
j,j+1 ≤ u | Stj = Sj,i, Stj+1 = Sj+1,i+k

i
(7)

be the distribution function of mi,i+k
j,j+1.

2Optimal values for κ and for the branching probabilities pk were determined by Alford
and Webber (2001).

3Their examples are for up-and-in and up-and-out options, but their methods also apply
to down-and-in and down-and-out options.
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When St follows a geometric Brownian motion F i,i+k
j,j+1 (u) is known. For

u ≤ min {Sj,i, Sj+1,i+k} let û = ln
³

u
S0

´
and wj,i =

¡
r − 1

2σ
2
¢
j∆t + σi∆z =

ln
³
Sj,i
S0

´
. Then F i,i+k

j,j+1 is given by

F i,i+k
j,j+1 (u) = exp

µ
− 2

σ2∆t
(û− wj,i) (û− wj+1,i+k)

¶
= exp

µ
− 2

σ2∆t
ln

µ
u

Sj,i

¶
ln

µ
u

Sj+1,i+k

¶¶
, (8)

(see El Babsiri and Noel (1998)). For bu > min {wj,i, wj+1,i+k}, so that u >

min {Sj,i, Sj+1,i+k}, set F i,i+k
j,j+1 (u) = 1.

At a node (j, i) above the barrier let pOj,i,k be the probability of branching
from node (j, i) to node (j + 1, i+ k) without hitting the barrier level uj and
let pIj,i,k be the probability of of branching to node (j + 1, i+ k) and hitting the
barrier. Then for all k ∈ B we set

pOj,i,k = pk

³
1− F i,i+k

j,j+1 (uj)
´
, (9)

pIj,i,k = pkF
i,i+k
j,j+1 (uj) , (10)

where F i,i+k
j,j+1 (uj) = 1 if Sj+1,i+k ≤ uj .

For Sj,i > uj , option values bcj,i are given by backwards induction as
bcj,i = e−r∆tX

k∈B

¡
pOj,i,kbcj+1,i+k + pIj,i,kHj+1,i+k (uj)

¢
= e−r∆t

X
k∈B

pk

³³
1− F i,i+k

j,j+1 (uj)
´bcj+1,i+k + F i,i+k

j,j+1 (uj)Hj+1,i+k (uj)
´
(11)

for i ≥ mj , where Hj+1,i+k (uj) is the payoff to the option at time tj+1 if it is
knocked out between times tj and tj+1. The option value is bc0,0.
Note that in the plain lattice one is effectively setting F i,i+k

j,j+1 (uj) to be zero
if Sj+1,i+k > utj+1 and to be one if Sj+1,i+k ≤ utj+1 .

3.2 Valuing Nominated Barrier Options

We value the nominated barrier option cN on a Dirichlet lattice with N time
steps.4 At each node on the lattice we allow the option holder to nominate a
constant barrier level for the subsequent time step, so that the option is exercised
if the barrier level is hit. As ∆t→ 0 the value of this option converges to that
of an American option.
Write bcj,i for the value of this approximate American option at node (j, i) on

the lattice. Over a small time step∆t, conditional on the current state Sj,i, write

4 In fact, for simplicity, we value on the lattice the deferred nominated barrier option dN .
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buj,i for the optimal exercise level. At each time step we find an approximationeuj,i to the optimal exercise policy buj,i for the holder of the option.
From node (j, i), if the exercise policy were to exercise at a level u, the

(deferred) option would have value

bcj,i (u) = e−r∆tÃÃX
k∈B

pkF
i,i+k
j,j+1 (u)

!
H (u) +

X
k∈B

pk

³
1− F i,i+k

j,j+1 (u)
´bcj+1,i+k!

= e−r∆t
X
k∈B

pk

³
F i,i+k
j,j+1 (u)H (u) +

³
1− F i,i+k

j,j+1 (u)
´bcj+1,i+k´ . (12)

With our assumption, the optimal exercise policy on the lattice is to exercise at
a level u that maximizes bcj,i (u); buj,i = argmaxu bcj,i (u) and bcj,i (u) = bcj,i (buj,i).
If it exists, the maximum occurs when ∂cj,i(u)

∂u = 0. The second order condi-

tion is ∂2cj,i(u)
∂u2 < 0. We then have

er∆t
∂bcj,i (u)

∂u
=
X
k∈B

pkF
i,i+k
j,j+1 (u)

∂H (u)

∂u
+
X
k∈Sj,i

pk
∂F i,i+k

j,j+1 (u)

∂u
(H (u)− bcj+1,i+k)

=
X
k∈B

pkF
i,i+k
j,j+1 (u)

Ã
∂H (u)

∂u
+

∂f i,i+kj,j+1 (u)

∂u
(H (u)− bcj+1,i+k)!

(13)

where

f i,i+kj,j+1 (u) = lnF
i,i+k
j,j+1 (u) = −

2

σ2∆t
ln

µ
u

Sj,i

¶
ln

µ
u

Sj+1,i+k

¶
(14)

and
∂f i,i+kj,j+1 (u)

∂u
= − 2

uσ2∆t
ln

µ
u2

Sj,iSj+1,i+k

¶
. (15)

To determine the optimal exercise policy the first order condition requires
that equation (13) is zero, so that

X
k∈B

pkF
i,i+k
j,j+1 (u)

∂f i,i+kj,j+1 (u)

∂u
(H (u)− bcj+1,i+k) = −∂H (u)

∂u

X
k∈B

pkF
i,i+k
j,j+1 (u)

(16)
for the optimal barrier level u. Note that for b ≥ 1 we have Sj,i > Sj+1,i−b.
Also, for N large enough so that ∆t < σ2κ, we have Sj+1,i−1 < Sj,i < Sj+1,i.
With this assumption there are three possibilities for u: that u ≥ Sj,i, that
u < Sj+1,i−b, and that there exists an index l ∈ {−1, . . .− b} such that u ∈
[Sj+1,i+l, Sj+1,i+l+1).
In each case we try to find a candidate value for u that could be the optimal

level. Having found a set of candidate values we determine which one maximizes
the value of bcj,i (u).
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3.2.1 The case u ≥ Sj,i

The first case is straightforward. If u ≥ Sj,i one exercises immediately with
value H (u). Hence the optimal value u is given by

buj,i = argmax
u

H (u) . (17)

For a vanilla American put with H (u) = X−u it is optimal to set the candidate
value to be u = min {u ≥ Sj,i} = Sj,i. When the payoff is received immediately
this is the standard exercise condition tested against the continuation value of
the option. By including two additional cases, corresponding to two additional
continuation values, we obtain a better approximation to the American option
value.

3.2.2 The case u < Sj+1,i−b

Now suppose that u < Sj+1,i−b. We cannot solve explicitly for buj,i in this case,
but we obtain an approximation as the solution to a cubic equation.
Set

Gj,i,k (u) =
pkF

i,i+k
j,j+1 (u)P

l∈B plF
i,i+l
j,j+1 (u)

=
1P

l∈B
plF

i,i+l
j,j+1(u)

pkF
i,i+k
j,j+1 (u)

(18)

and rewrite the first order condition at a maximum (16) as

X
k∈B

Gj,i,k (u)
∂f i,i+kj,j+1 (u)

∂u
(H (u)− bcj+1,i+k) = −∂H (u)

∂u
. (19)

Note that the ratio of distribution functions in Gj,i,k (u) is given by

F i,i+l
j,j+1 (u)

F i,i+k
j,j+1 (u)

= exp

µ
− 2

σ2∆t
ln

µ
u

Sj,i

¶
ln

µ
u

Sj+1,i+l

¶¶
× exp

µ
2

σ2∆t
ln

µ
u

Sj,i

¶
ln

µ
u

Sj+1,i+k

¶¶
= exp

µ
− 2

σ2∆t
ln

µ
u

Sj,i

¶
ln

µ
Sj+1,i+k
Sj+1,i+l

¶¶
= exp

µ
− 2

σ2∆t
ln

µ
u

Sj,i

¶
(k − l)σ

√
κ∆t

¶

=

µ
u

Sj,i

¶− 2(k−l)√κ
σ
√
∆t

. (20)

Since in this case u < Sj,i, we may conclude that as ∆t→ 0, keeping Sj,i fixed,

F i,i+l
j,j+1 (u)

F i,i+k
j,j+1 (u)

→
⎧⎨⎩ ∞, k > l,
1 k = l,
0 k < l.

(21)
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and hence as ∆t→ 0, the limit of Gj,i,k (u) is

Gj,i,k (u)→
½
1, k = −b,
0, otherwise.

(22)

Furthermore, Gj,i,k (u) approaches its limit at power speed. As ∆t → 0 every
term on the left hand side of equation (19) goes to zero except the −bth term,
so

−∂H (u)

∂u
=
X
k∈B

Gj,i,k (u)
∂f i,i+kj,j+1 (u)

∂u
(H (u)− bcj+1,i+k)

→ ∂f i,i−bj,j+1 (u)

∂u
(H (u)− bcj+1,i−b) . (23)

For an American put with strikeX we haveHj+1,i (u) = X−u and ∂Hj+1,i

∂u = −1.
Hence, substituting in for

∂fi,i−bj,j+1(u)

∂u and H (u), at a maximum we require, in the
limit,

1 = − 2

uσ2∆t
ln

µ
u2

Sj,iSj+1,i−b

¶
(X − u− bcj+1,i−b) (24)

This result is intuitive. As ∆t→ 0 the branch that has the dominating affect on
the value of the exercise level is the lowest branch, closest to the exercise level.
When ∆t is small the probability of hitting the exercise boundary is small

and, unless Sj+1,i−b is near u, can be ignored. When u is close to Sj+1,i−b we

make a series approximation to ln
³

u2

Sj,iSj+1,i−b

´
and truncating at first order

obtain µ
u2

Sj,iSj+1,i−b
− 1
¶
(X − u− bcj+1,i−b) = −uσ2∆t

2
. (25)

Hence to find u we solve the cubic equation

u3−u2 (X − bcj+1,i−b)−uSj,iSj+1,i−bµ1 + σ2∆t

2

¶
+Sj,iSj+1,i−b (X − bcj+1,i−b) = 0.

(26)
Since the right-hand side of (25) is close to zero for reasonable values of N ,
the cubic has three real roots, two of which are close to ±pSj,iSj+1,i−b and the
third is close toX−bcj+1,i−b. Since bcj+1,i−b > X−Sj+1,i−b the third root is close
to but less than Sj+1,i−b. The second order condition on the maximum implies
that we require the middle of the three roots. Thus the third root becomes our
candidate value in this case.
Equation (26) can be solved explicitly by standard methods. Since the poly-

nomial discriminant is negative the acos method works well in this case.5

5The calculation of acos (x) is accurate for typical values of x encountered in our applica-
tions.
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3.2.3 The case u ∈ [Sj+1,i−b, Sj,i)
The final case is when u ∈ [Sj+1,i+l, Sj+1,i+l+1) for some l ∈ {−1, . . .− b}.6
Set Bl = {k ∈ B | k > l}. Since for k ∈ B \ Bl we have F i,i+k

j,j+1 (u) = 1 and
∂fi,i+kj,j+1 (u)

∂u = 0, the option value at node (j, i) (equation 12) is

bcj,i (u) = e−r∆tX
k∈B

pk

³
F i,i+k
j,j+1 (u)H (u) +

³
1− F i,i+k

j,j+1 (u)
´bcj+1,i+k´

= e−r∆t
X
k∈Bl

pk

³
F i,i+k
j,j+1 (u)H (u) +

³
1− F i,i+k

j,j+1 (u)
´bcj+1,i+k´

+ e−r∆tH (u)
X

k∈B\Bl
pk (27)

and the first order condition (equation (16)) becomes

X
k∈Bl

pkF
i,i+k
j,j+1 (u)

∂f i,i+kj,j+1 (u)

∂u
(H (u)− bcj+1,i+k) = −∂H (u)

∂u

⎛⎝X
k∈Bl

pkF
i,i+k
j,j+1 (u) +

X
k∈B\Bl

pk

⎞⎠ .

(28)
In the appendix we describe an optimization procedure that can be used to

solve equation (28) for u. In practice we found it computationally more efficient
to compute bcj,i (u) directly from equation (12) for a small set of regularly spaced
values of u in the interval [Sj+1,i−b, Sj,i).

3.3 The Algorithm

We restrict ourselves to trinomial branching. Iterating backwards, at each node
on the lattice at a particular time step we find three values for u, conditional
on whether u ≥ Sj,i, u < Sj+1,i−1, or u ∈ [Sj+1,i−1, Sj,i). In the last two cases
for each candidate value ũj,i we compute the option value ecj,i (ũj,i)
ecj,i (ũj,i) = e−r∆tX

k∈B
pk

³
F i,i+k
j,j+1 (ũj,i)H (ũj,i) +

³
1− F i,i+k

j,j+1 (ũj,i)
´bcj+1,i+k´ .

(29)
In the first case we set ecj,i (ũj,i) = X − Sj,i. Set the option value to be the
maximum of these values.
If at some node Sj,i the first case applies and it is optimal to exercise im-

mediately, then at all nodes (j, l) for l < i it will also be optimal to exercise
immediately. Similarly if at (j, i) the second case applies then at all nodes (j, l)
for l > i the second case will also apply. If at (j, i) the third case holds for some
index k then at node (j, i+ 1) either the second case applies or else the third
case applies for some ḱ ≤ k.
In practice it is unnecessary to compute the barrier level at every node. For

nodes away from the barrier the probability of hitting the barrier is very small.

6For l = −1 we have u ∈ [Sj+1,i−1, Sj,i).
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Kuan and Webber (2002) found it unnecessary to compute hitting probabilities
at a distance of more than ten steps away from the barrier. Here we found
it necessary only to compute case three for up to three steps away from the
exercise barrier.

4 The American Dirichlet Lattice
For a geometric Brownian motion S = (St)t≥0 its hitting distribution to a con-
stant barrier is known, as is its defective density conditional upon not hitting the
barrier. We use these to construct branching probabilities to obtain a modified
Dirichlet lattice that we refer to as the American Dirichlet lattice.
As before we construct a lattice for a Wiener process zt. Suppose we are

given a barrier level u. At a node (j, i) with zj,i > u, we compute probabilities
ph (u), the probability of hitting the barrier, and pk (u), k ∈ B, the defective
branching probabilities. We then set

cj,i (u) = e
−r∆t

"
ph (u)H (u) +

X
k∈B

pk (u)bcj+1,i+k# . (30)

The optimal barrier level is ûj = argmaxu∈[0,zj,i) cj,i (u) and the option value
is ĉj,i = cj,i (ûj).
At each node, instead of finding the u that maximizes cj,i by optimiza-

tion, we compute directly values of cj,i for a set of pre-determined values
u, selecting for u that value that gives the greatest value of cj,i. We chose
u ∈ U = {−i∆u}i=1,...,Nu

for ∆u = 1
2∆z and Nu = 8.

Branching probabilities are computed by moment matching. For a geometric
Brownian motion S = (St)t≥0 with barrier level u < St and for s ≥ t set

Ws = ln
³
Ss
St

´
so that Ws =

¡
r − 1

2σ
2
¢
(s− t) + σzs−t for a Wiener process

z. Ws is a Brownian motion with drift µ = r − 1
2σ

2 and volatility σ. Let
f (w, tj +∆t | wj,i, tj ;u) be the defective density of a Brownian motion with
drift µ, with a barrier u so that

Pr
£
WT ≤ w, τWu > u |Wt = 0

¤
=

Z w

u

f (w, tj +∆t | 0, tj ;u) dw (31)

(for zt = zj,i we have wj,i = 0). A formula for f is given in the appendix.
We have

Pr [ST ≤ S, τu > T | St] = Pr
£
WT ≤ w, τWu > û |Wt = 0

¤
(32)

where w = ln
³
S
St

´
, û = ln

³
u
St

´
and τWu is the hitting time of Ws to û. The
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first three defective moments for ztj+∆t are given by

e (u) = E
£
ztj+∆t1{τzu>tj+∆t} | zj,i

¤
= σ

Z ∞
uz

zf (σz + µ∆t, tj +∆t | wj,i, tj ;u) dz,

(33)

v (u) = E
h
z2tj+∆t1{τzu>tj+∆t} | zj,i

i
= σ

Z ∞
uz

z2f (σz + µ∆t, tj +∆t | wj,i, tj ;u) dz,

(34)

s (u) = E
h
z2tj+∆t1{τzu>tj+∆t} | zj,i

i
= σ

Z ∞
uz

z3f (σz + µ∆t, tj +∆t | wj,i, tj ;u) dz.

(35)

where uz =
u−µ∆t

σ .
e (u), v (u) and s (u) are found by numerical integration of equations (33),

(34) and (35). We found that a straightforward Simpson’s rule integration with
501 intervals over the range [u, zmax], for zmax = 8∆z, gave sufficient accuracy.
Note that e (u), v (u) and s (u) can be pre-computed. Their values depend only
on the relative position of u with respect to zj,i, so their values are the same for
every node in the lattice.
Equation (30) values a deferred nominated barrier option. In fact the value

of an option that gives a rebate at the moment the barrier is hit is known
(a formula is given in the appendix). However substituting this into equation
(30), replacing the ph (u)H (u) term, leads to an insignificant improvement in
accuracy, at the expense of a sizable increase in computation time.

4.1 Computing probabilities: matching two moments

At each barrier level there are four probabilities to compute. For a given (rela-
tive) barrier level, every node has the same branching probabilities, which can
therefore be pre-computed.
For a given barrier level u < 0 the four probabilities are the probability of

hitting the barrier, ph (u), and the up, middle and down defective probabilities,
p1 (u), p0 (u), p−1 (u).
We immediately set

ph (u) = N

µ
u− µ∆t

σ
√
∆t

¶
+ exp

µ
2uµ

σ2

¶
N

µ
u+ µ∆t

σ
√
∆t

¶
. (36)

We find the other probabilities by moment matching. When u < −∆z we
require them to satisfy

p1 (u) + p0 (u) + p−1 (u) = 1− ph (u) ,
p1 (u)∆z + p−1 (u) (−∆z) = e (u) ,

p1 (u) (∆z)
2
+ p−1 (u) (−∆z)2 = v (u) .

(37)
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Set e0 (u) = e(u)
∆zw and v0 (u) = v(u)

(∆z)2
. Then

p1 (u) =
1

2
(v0 (u) + e0 (u)) (38)

p0 (u) = 1− v0 (u)− ph (u) (39)

p−1 (u) =
1

2
(v0 (u)− e0 (u)) (40)

When 0 > u > −∆z then set p−1 (u) = 0 and
p1 (u) + p0 (u) = 1− ph (u) ,
p1 (u)∆z = e (u) ,

(41)

so that

p1 (u) = e0 (u) , (42)

p0 (u) = 1− e0 (u)− ph (u) . (43)

4.2 Incorporating a third moment

Heston and Zhou (2000) determined that if branching probabilities on a lattice
matches the first q moments of the underlying stochastic process then the lattice
may converge at a rate up to order − q−1

2 . For our numerical work we match to
three moments where possible.
To match the third moment we require a fourth branch, from z0 to z0+2∆z.

Write p2 (u) for the probability of this branching. Then when u < −∆w we
choose p2 (u), p1 (u), p0 (u), and p−1 (u) to satisfy

p2 (u) + p1 (u) + p0 (u) + p−1 (u) = 1− ph (u) ,
p2 (u) 2∆z + p1 (u)∆z + p−1 (u) (−∆z) = e (u) ,

p2 (u) (2∆z)
2 + p1 (u) (∆z)

2 + p−1 (u) (−∆z)2 = v (u) ,

p2 (u) (2∆z)
3
+ p1 (u) (∆z)

3
+ p−1 (u) (−∆z)3 = s (u) .

(44)
Set s0 (u) = s(u)

(∆z)3
. Then we solve to find

p2 (u) =
1

6
(s0 (u)− e0 (u)) , (45)

p1 (u) =
1

2
(2e0 (u) + v0 (u)− s0 (u)) , (46)

p0 (u) = 1− ph (u)− p2 (u)− p1 (u)− p−1 (u) , (47)

p−1 (u) =
1

6
(3v0 (u)− 2e0 (u)− s0 (u)) . (48)

When 0 > u > −∆z we set p−1 (u) = 0 and solve
p2 (u) + p1 (u) + p0 (u) = 1− ph (u) ,
p2 (u) 2∆z + p1 (u)∆z = e (u) ,

p2 (u) (2∆z)
2
+ p1 (u) (∆z)

2
= v (u) ,

(49)

13



with solution

p2 (u) =
1

2
(v0 (u)− e0 (u)) , (50)

p1 (u) = 2e
0 (u)− v0 (u) , (51)

p0 (u) = 1− ph (u)− p2 (u)− p1 (u) , (52)

p−1 (u) = 0. (53)

In the second case, if it is not possible to find valid probabilities that match
two moments we instead revert to binomial branching, setting p2 (u) = 0 and
solving

p1 (u) + p0 (u) = 1− ph (u) ,
p1 (u)∆z = e (u) ,

(54)

as before.
We note that probabilities found for the American Dirichlet lattice are simi-

lar to those computed for the Dirichlet approach described in section 3.1. How-
ever the American Dirichlet probabilities exactly match the moments of the
defective distribution and hitting probabilities.

5 Numerical Results
We use the American Dirichlet lattice to vanilla American put values. We con-
sider two underlyings and two sets of options. The first underlying has high
volatility with σ = 0.4; the second underlying has medium volatility with
σ = 0.2. In both cases we set S0 = 100. The first set of options matures
in half a year with strikes of 98, 100, and 102, and we use r = 0.06; the second
set of options matures in one year with strikes of 95, 100, and 105, and we set
r = 0.05. We shall write, for instance, (o3, u2) to denote the case of the third
option valued with the the second underlying.
Benchmark values were obtained in two ways: the first using a PSOR Crank-

Nicolson finite difference routine with 500 time steps and 5, 000 space steps, with
the space boundaries set at 2 and 5, 000; the second using a heptanomial lattice
with 10, 000 time steps, truncated at 8 standard deviations from the mean.
Table 1 gives the benchmark values. The top number is the lattice value, the
bottom number the Crank-Nicolson value. These values are accurate to at most
four decimal places.7

The appendix gives tables and figures showing convergence for both the plain
and American Dirichlet lattices. The tables give option values as the number
of time steps increases from 100 to 5, 000. The figures plot ln (cN ) and ln (pN )
(the log of the plain lattice value) against ln (N). Slopes of these plots can be
interpreted as rates of convergence.

7Values found on the heptanomial lattice tend to be greater than the values found by
Crank-Nicolson, but took about one tenth the time to compute. Figures in the appendix
show the heptanomial lattice values.
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Benchmark values Underlyings
Top value: lattice
Bottom value: PDE

Underlying 1,
σ = 0.4

Underlying 2,
σ = 0.2

Option 1:
r = 0.05

T = 0.5
X = 98

9.12288
9.12275

3.75928
3.75920

Option 2:
r = 0.05

T = 0.5
X = 100

10.14141
10.14127

4.65564
4.65554

Option 3:
r = 0.05

T = 0.5
X = 102

11.21794
11.21786

5.67524
5.67520

Option 4:
r = 0.06

T = 1
X = 95

10.81207
10.81200

3.77635
3.77634

Option 5:
r = 0.06

T = 1
X = 100

13.29563
13.29564

5.79887
5.79882

Option 6:
r = 0.06

T = 1
X = 105

16.04444
16.04441

8.41660
8.41661

Table 1: Benchmark values for vanilla American options

Times are not reported. The American Dirichlet lattice runs more slowly
than the plain lattice, but not significantly so. This is firstly because branching
probabilities on the American Dirichlet lattice can be pre-computed and so do
not contribute to individual run times, and secondly because Dirichlet branching
need only be used close to the exercise boundary. Away from the boundary the
option is either surely exercised (with uj set to Sj,i) or never exercised (with uj
set to 0). We found that, for reasonable values of N , Dirichlet branching had
a significant influence only within three space steps of the exercise boundary (a
not unexpected result).8

For both the plain and American Dirichlet lattices option values converge
non-uniformly toward the benchmark values, sometimes with rapid oscillations
((o1, u2), (o4, u2)) and sometimes with slow ((o1, u1), (o3, u2)).
In cases where oscillation is slow, and convergence is initially uniform for

small values of N , one may investigate rates of convergence for the methods. If
cN is converging uniformly towards c∞ at a rate M then cN − c∞ is O

¡
N−M

¢
,

so that d ln(cN−c∞)
d ln(N) ∼ −M . This corresponds to the slope of the ln− ln plots

given in the figures. We see from the figures, for instance for cases (o2, u1), (o3,
u2) and (o4, u1), that the American Dirichlet lattice is converging faster than
the plain lattice, although usually with greater error.
The American Dirichlet value is always greater than the plain value. In cases

where the plain value is biased low, tending to converge upwards towards the
benchmark value, the advantage of the American Dirichlet lattice is clear ((o5,
u2), (o6, u2)). In other cases both methods appear to have similar convergence
properties, with the American Dirichlet value biased upwards by as much as the

8Generally, with N taking sizes reported in the tables, the plain and American Dirichlet
lattices exercised at the same levels in the lattice.
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Error analysis Underlyings
Top value: ADL
Bottom value: plain

Underlying 1:
σ = 0.4

Underlying 2:
σ = 0.2

Option 1:
r = 0.05

T = 0.5
X = 98

0.0141
0.0053

0.0037
0.0035

Option 2:
r = 0.05

T = 0.5
X = 100

0.0087
0.0104

0.0040
0.0040

Option 3:
r = 0.05

T = 0.5
X = 102

0.0099
0.0076

0.0029
0.0027

Option 4:
r = 0.06

T = 1
X = 95

0.0095
0.0093

0.0041
0.0033

Option 5:
r = 0.06

T = 1
X = 100

0.0097
0.0159

0.0039
0.0065

Option 6:
r = 0.06

T = 1
X = 105

0.0088
0.0103

0.0034
0.0109

Table 2: Error analysis. Bold indicates a significant difference.

plain values are biased downwards ((o2, u2), (o4, u1)). In other cases the plain
lattice is converging faster ((o1, u1), (o4, u2)).
We make this more formal. Table 2 displays some error analysis results.

It computes the summed absolute error for time steps N = 1, 000 to N =
5, 000, for values given in the tables; error =

PN=5000
N=1000 |cN − b|, where cN is the

tabulated value and b is the benchmark value. In the table, numbers in bold
are significantly smaller than their paired counterparts.
In five cases ((o2, u1), (o5, u1), (o6, u1), (o5, u2), (o6, u2)) the American

Dirichlet lattice has significantly smaller error that the plain lattice. In four
cases the there is little to distinguish the two methods. In three cases ((o1, u1),
(o3, u1), (o4, u2)) the plain method seems to be converging with less error. In
three-quarters of the cases the American Dirichlet lattice is doing no worse than
the plain lattice.
Although by no means conclusive, this analysis indicates that the American

Dirichlet lattice may have better convergence properties than the plain lattice.

6 Conclusions
We have presented a new lattice method to value American options, the Ameri-
can Dirichlet lattice. It is based on the valuation of a nominated barrier option.
The method is slightly slower than a plain lattice, but not significantly so. It
has greater initial bias than the plain lattice, but may have superior convergence
properties once the number of time steps is sufficient for the bias to have been
removed.
We applied the American Dirichlet lattice to value vanilla American puts,

but it is more generally applicable. In other cases its convergence advantage
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over the plain lattice method may be more clear cut.
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7 Appendix: Tables and Figures

Underlying 1, Option 1 Underlying 2, Option 1.
N_steps Dirichlet Plain Dirichlet Plain

100 9.11452 9.10846 3.76533 3.76094
200 9.12033 9.11796 3.75709 3.75373
300 9.12224 9.12069 3.76151 3.76002
400 9.12309 9.12186 3.75952 3.75790
500 9.12352 9.12245 3.75945 3.75866
600 9.12375 9.12280 3.76044 3.75967
700 9.12387 9.12301 3.75977 3.75891
800 9.12394 9.12313 3.75886 3.75815
900 9.12397 9.12322 3.75973 3.75928

1000 9.12398 9.12327 3.75999 3.75952
1100 9.12398 9.12330 3.75969 3.75916
1200 9.12396 9.12331 3.75900 3.75840
1300 9.12395 9.12332 3.75929 3.75899
1400 9.12392 9.12332 3.75969 3.75939
1500 9.12390 9.12332 3.75976 3.75944
1600 9.12388 9.12331 3.75960 3.75924
1700 9.12385 9.12330 3.75924 3.75884
1800 9.12382 9.12329 3.75915 3.75889
1900 9.12379 9.12327 3.75945 3.75924
2000 9.12377 9.12326 3.75962 3.75940
2500 9.12364 9.12318 3.75931 3.75916
3000 9.12352 9.12311 3.75935 3.75913
3500 9.12342 9.12304 3.75951 3.75937
4000 9.12333 9.12297 3.75924 3.75912
4500 9.12325 9.12291 3.75946 3.75934
5000 9.12318 9.12286 3.75930 3.75922

Table 3: Dirichlet and plain values for option 1

21



Underlying 1, Option 1.
ln(N) versus ln(D) and ln(P).
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Figure 1: Option 1, underlying 1: log-log convergence

Underlying 2, Option 1.
ln(N) versus ln(D) and ln(P).
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Figure 2: Option 1, underlying 2: log-log convergence
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Underlying 1, Option 2 Underlying 2, Option 2.
N_steps Dirichlet Plain Dirichlet Plain

100 10.15371 10.14521 4.662402 4.656831
200 10.14877 10.14531 4.656263 4.652746
300 10.14608 10.14403 4.654377 4.652236
400 10.14436 10.14288 4.655918 4.654811
500 10.14311 10.14194 4.656674 4.655754
600 10.14215 10.14117 4.656786 4.655952
700 10.14138 10.14053 4.656602 4.65583
800 10.14078 10.13999 4.65629 4.655535
900 10.14056 10.13953 4.655902 4.655162

1000 10.14046 10.13915 4.655488 4.654758
1100 10.14059 10.13922 4.655287 4.654643
1200 10.14111 10.13988 4.655456 4.655083
1300 10.14148 10.14039 4.655722 4.655393
1400 10.14176 10.14077 4.655911 4.655594
1500 10.14196 10.14105 4.65602 4.655714
1600 10.1421 10.14127 4.656069 4.65577
1700 10.14219 10.14143 4.656074 4.655779
1800 10.14225 10.14155 4.656045 4.655749
1900 10.14229 10.14163 4.655992 4.655692
2000 10.14229 10.14169 4.655917 4.655612
2500 10.14216 10.14171 4.655536 4.655293
3000 10.14187 10.14151 4.655841 4.65569
3500 10.14154 10.14123 4.655865 4.655709
4000 10.14132 10.14094 4.655701 4.655529
4500 10.1414 10.14098 4.65562 4.655517
5000 10.14161 10.14126 4.655768 4.655679

Table 4: Dirichlet and plain values for option 2
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Underlying 1, Option 2.
ln(N) versus ln(D) and ln(P).
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Figure 3: Option 2, underlying 1: log-log convergence

Underlying 2, Option 2.
ln(N) versus ln(D) and ln(P).
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Figure 4: Option 2, underlying 2: log-log convergence
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Underlying 1, Option 3 Underlying 2, Option 3
N_steps Dirichlet Plain Dirichlet Plain

100 11.22368 11.21868 5.678409 5.671596
200 11.21141 11.20495 5.677809 5.674559
300 11.22064 11.2174 5.677256 5.675237
400 11.22164 11.21974 5.676857 5.675444
500 11.22055 11.21924 5.676582 5.675464
600 11.21882 11.21781 5.676355 5.675458
700 11.21702 11.21611 5.676169 5.675429
800 11.21664 11.21481 5.67602 5.675384
900 11.21824 11.21679 5.675892 5.675335

1000 11.21907 11.21789 5.675781 5.675287
1100 11.21939 11.21843 5.675684 5.675241
1200 11.2194 11.21859 5.675597 5.675197
1300 11.2192 11.2185 5.67552 5.675155
1400 11.21886 11.21823 5.67545 5.675115
1500 11.21843 11.21786 5.675387 5.675077
1600 11.21793 11.2174 5.675329 5.675042
1700 11.21762 11.2169 5.675277 5.675009
1800 11.21755 11.2166 5.675231 5.674978
1900 11.21805 11.21721 5.675188 5.674947
2000 11.2184 11.21765 5.675149 5.674919
2500 11.21871 11.21825 5.675106 5.674803
3000 11.21789 11.2175 5.675238 5.674989
3500 11.21832 11.21784 5.675337 5.675139
4000 11.2185 11.21815 5.675388 5.675226
4500 11.21818 11.21791 5.675409 5.675274
5000 11.21791 11.2175 5.675412 5.675298

Table 5: Dirichlet and plain values for option 3
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Underlying 1, Option 3.
ln(N) versus ln(D) and ln(P).
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Figure 5: Option 3, underlying 1: log-log convergence

Underlying 2, Option 3.
ln(N) versus ln(D) and ln(P).
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Figure 6: Option 3, underlying 2: log-log convergence
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Underlying 1, Option 4 Underlying 2, Option 4.
N_steps Dirichlet Plain Dirichlet Plain

100 10.82497 10.81776 3.782549 3.776322
200 10.81887 10.81415 3.778882 3.775091
300 10.8141 10.81025 3.778531 3.776551
400 10.81065 10.80726 3.776829 3.775443
500 10.80846 10.80549 3.776364 3.77449
600 10.80993 10.80871 3.777378 3.776414
700 10.81142 10.81062 3.775819 3.774425
800 10.81247 10.81172 3.777159 3.776347
900 10.81303 10.81231 3.776295 3.775352

1000 10.81327 10.81258 3.776784 3.776215
1100 10.81332 10.81264 3.77682 3.776143
1200 10.81324 10.81256 3.776146 3.775663
1300 10.81307 10.81238 3.776907 3.776416
1400 10.81285 10.81215 3.776472 3.775885
1500 10.81259 10.81187 3.776407 3.776031
1600 10.8123 10.81156 3.776824 3.77642
1700 10.81198 10.81124 3.776452 3.775959
1800 10.81166 10.81091 3.776363 3.776027
1900 10.81133 10.81057 3.776753 3.776399
2000 10.81121 10.81051 3.776584 3.776181
2500 10.81215 10.81192 3.776373 3.776144
3000 10.81251 10.81227 3.776614 3.776399
3500 10.81241 10.81213 3.776604 3.776403
4000 10.81205 10.81174 3.776564 3.776379
4500 10.81171 10.81142 3.776544 3.776382
5000 10.81199 10.81189 3.776543 3.776399

Table 6: Dirichlet and plain values for option 4
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Underlying 1, Option 4.
ln(N) versus ln(D) and ln(P).
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Figure 7: Option 4, underlying 1: log-log convergence

Underlying 2, Option 4.
ln(N) versus ln(D) and ln(P).
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Figure 8: Option 4, underlying 2: log-log convergence
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Underlying 1, Option 5 Underlying 2, Option 5.
N_steps Dirichlet Plain Dirichlet Plain

100 13.30621 13.29486 5.795916 5.785021
200 13.30254 13.298 5.801767 5.797432
300 13.30013 13.29748 5.796924 5.792434
400 13.29847 13.29667 5.799426 5.797947
500 13.29724 13.29591 5.800164 5.798351
600 13.29627 13.29523 5.799251 5.797335
700 13.29549 13.29465 5.798181 5.796636
800 13.29487 13.29415 5.799098 5.798049
900 13.29437 13.2937 5.799576 5.798578

1000 13.29422 13.29333 5.799516 5.798515
1100 13.29414 13.29301 5.79907 5.798118
1200 13.29405 13.29277 5.79837 5.797513
1300 13.29463 13.29351 5.798732 5.798218
1400 13.29507 13.29408 5.799144 5.798587
1500 13.29541 13.29453 5.799327 5.798734
1600 13.29566 13.29488 5.799283 5.798789
1700 13.29586 13.29515 5.799131 5.798598
1800 13.296 13.29537 5.798866 5.798249
1900 13.29611 13.29554 5.798625 5.798111
2000 13.29618 13.29566 5.798816 5.798448
2500 13.29625 13.29593 5.799055 5.798675
3000 13.29609 13.29586 5.799045 5.798774
3500 13.29583 13.29566 5.798968 5.798695
4000 13.29554 13.29541 5.798998 5.798818
4500 13.29537 13.29514 5.799018 5.798808
5000 13.29545 13.29516 5.798892 5.798741

Table 7: Dirichlet and plain values for option 5

29



Underlying 1, Option 5.
ln(N) versus ln(D) and ln(P).
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Figure 9: Option 5, underlying 1: log-log convergence

Underlying 2, Option 5.
ln(N) versus ln(D) and ln(P).
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Figure 10: Option 5, underlying 2: log-log convergence
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Underlying 1, Option 6 Underlying 2, Option 6
N_steps Dirichlet Plain Dirichlet Plain

100 16.02369 16.00772 8.418093 8.412704
200 16.05057 16.0459 8.418529 8.414394
300 16.04469 16.04257 8.417839 8.415852
400 16.03931 16.03557 8.417698 8.415519
500 16.04518 16.04285 8.41736 8.415717
600 16.04644 16.04505 8.417016 8.415992
700 16.04551 16.04454 8.416885 8.41595
800 16.04355 16.04283 8.41674 8.415582
900 16.04225 16.04065 8.416697 8.415342

1000 16.04409 16.04281 8.416411 8.415786
1100 16.04518 16.04425 8.416359 8.415574
1200 16.04545 16.04476 8.416333 8.415393
1300 16.04519 16.04466 8.416249 8.415643
1400 16.04458 16.04415 8.416315 8.415343
1500 16.04373 16.04336 8.416208 8.415576
1600 16.04326 16.04242 8.416319 8.415473
1700 16.04395 16.04316 8.416382 8.415805
1800 16.04462 16.04398 8.416515 8.415802
1900 16.04496 16.04445 8.41655 8.416054
2000 16.04506 16.04465 8.416654 8.416012
2500 16.04371 16.04321 8.416791 8.416396
3000 16.04486 16.04459 8.416826 8.416517
3500 16.04408 16.04392 8.416815 8.416525
4000 16.04465 16.04439 8.416777 8.41652
4500 16.0446 16.04446 8.41671 8.416541
5000 16.04411 16.04382 8.416665 8.416462

Table 8: Dirichlet and plain values for option 6
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Underlying 1, Option 6.
ln(N) versus ln(D) and ln(P).
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Figure 11: Option 6, underlying 1: log-log convergence

Underlying 2, Option 6.
ln(N) versus ln(D) and ln(P).
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Figure 12: Option 6, underlying 2: log-log convergence
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8 Appendix: An optimization procedure for u

To proceed set u = Sj+1,i+l exp
³
σε
√
κ∆t

´
for some 0 ≤ ε < 1. Then for k ∈ Bl

the distribution function of the conditional minimum can be rewritten as

F i,i+k
j,j+1 (u) = exp

µ
− 2

σ2∆t
ln

µ
u

Sj,i

¶
ln

µ
u

Sj+1,i+k

¶¶
=

µ
u

Sj,i

¶− 2κ
σ
√
κ∆t

(l−k+ε)
(55)

and the ratio of distribution functions in equation (20) as

F i,i+q
j,j+1 (u)

F i,i+k
j,j+1 (u)

=

µ
u

Sj,i

¶− 2κ
σ
√
κ∆t

(k−q)
(56)

Set υ =
³

u
Sj,i

´− 2κ
σ
√
κ∆t then F i,i+k

j,j+1 (u) = υl−k+ε and
F i,i+q
j,j+1(u)

F i,i+k
j,j+1 (u)

= υk−q.

Also

∂f i,i+kj,j+1 (u)

∂u
= − 2

uσ2∆t

µµ
r − 1

2
σ2
¶
∆t+ σ (2l − k + 2ε)

√
κ∆t

¶
=

A

u
+

B

u
(k − 2ε) (57)

where

A = − 2

σ2∆t

µµ
r − 1

2
σ2
¶
∆t+ 2σl

√
κ∆t

¶
(58)

B =
2

σ∆t

√
κ∆t. (59)

Restricting ourselves to trinomial branching, so l = −1, κ = 3 and k = 0, 1,
and given ∂H(u)

∂u = −1 equation (28) becomes

p1F
i,i+1
j,j+1 (u)

∂f i,i+1j,j+1 (u)

∂u
(H (u)− bcj+1,i+1)

+ p0F
i,i+0
j,j+1 (u)

∂f i,i+0j,j+1 (u)

∂u
(H (u)− bcj+1,i+0)

= p1F
i,i+1
j,j+1 (u) + p0F

i,i+0
j,j+1 (u) + p−1. (60)

Hence, substituting in for υ, F i,i+k
j,j+1 (u),

F i,i+q
j,j+1(u)

F i,i+k
j,j+1 (u)

, and
∂fi,i+kj,j+1(u)

∂u we get

u =
(A+B (1− 2ε)) (H (u)− bcj+1,i+1)

1 + p0
p1
υ + p−1

p1
υ2−ε

+
(A− 2Bε) (H (u)− bcj+1,i+0)

p1
p0
υ−1 + 1 + p−1

p0
υ1−ε

(61)

But p1 = p−1, u = Sj,iυ
−λ where λ = σ

√
κ∆t
2κ and H (u) = X − u (note that

λ = 1/B) so
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Sj,iυ
−λ
µ
1 +

p0
p1
υ + υ2−ε

¶
= (A+B (1− 2ε)) ¡X − Sj,iυ

−λ − bcj+1,i+1¢
+

p0
p1
υ (A− 2Bε) ¡X − Sj,iυ

−λ − bcj+1,i+0¢ (62)

Moreover

ε =
1

σ
√
κ∆t

ln

µ
Sj,i

Sj+1,i+l

¶
− 1

2κ
ln υ

= C − 1

2κ
lnυ

where C = 1
σ
√
κ∆t

ln
³

Sj,i
Sj+1,i+l

´
. Putting this result into equation (62) we get a

nonlinear equation in υ =
³

u
Sj,i

´− 2κ
σ
√
κ∆t that can be solved, for instance, using

Newton’s method. This obtains possible values for u that satisfy the first order
condition. To be an optimal exercise policy u must also satisfy the second order
condition and be within the range of allowed values of u. Any such u becomes
a candidate for the optimal exercise level.
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9 Appendix: Hitting times and defective densi-
ties

The distribution of hitting times of a geometric Brownian motion
Given its value St at time t, the probability of the process hitting a barrier at
level u < St before time T is

Pr [τu ≤ T ] = N
¡−h´2¢+µ u

St

¶ 2
σ2
(r− 1

2σ
2)
N (h2) (63)

where

h´2 =
1

σ
√
T − t

ln

µ
St

ue−r(T−t)

¶
− 1
2
σ
√
T − t, (64)

h2 =
1

σ
√
T − t

ln

µ
u

Ste−r(T−t)

¶
− 1
2
σ
√
T − t. (65)

Hence the value R (u) at time t of a payoff of (X − u)+ received at time T if
the barrier is hit is

R (u) = e−r(T−t) (X − u)+

Ã
N
¡−h´2¢+µ u

St

¶ 2
σ2
(r− 1

2σ
2)
N (h2)

!
. (66)

We use this formula to compute payoffs for the deferred nominated barrier
option. For the nominated barrier option, not deferred, there is also an exact
formula. The value R̂ (u) at time t of a payoff of (X − u)+ received at the time
the barrier is hit is (Suo and Wang, p20)

R̂ (u) = (X − u)+

Z T

t

e−rsdPr [Ts ≤ T ] (67)

= (X − u)+

"µ
u

St

¶µ+ν

σ2

N
¡
e´2
¢
+

µ
u

St

¶µ−ν
σ2

N (e2)

#
(68)

where N is the standard normal distribution function and

e2 =
1

σ
√
T − t

ln

µ
u

St

¶
+

ν

σ

√
T − t (69)

e´2 = e2 − 2ν
σ

√
T − t (70)

with µ = r − 1
2σ

2 and ν =

q¡
r − 1

2σ
2
¢2
+ 2rσ.

The defective density of a geometric Brownian motion Pr [ST ≤ S, τu > T | St]
is the defective density at time T > t for a geometric Brownian motion S =
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(St)t≥0 and barrier level u < St. For s ≥ t set Ws = ln
³
Ss
St

´
so that Ws =¡

r − 1
2σ

2
¢
s+ σzs for a Wiener process zs. We have

Pr [ST ≤ S, τu > T | St] = Pr
£
WT ≤ w, τWu > û |Wt

¤
(71)

where w = ln
³
S
St

´
, û = ln

³
u
St

´
and τWu is the hitting of Ws to û. The

defective density f (w, T | wt, t; û) of a Brownian motion with drift is known.
Set µ = r − 1

2σ
2. Then

f (w,T | wt, t; û) = dPr
£
WT ≤ w, τWu > û |Wt

¤
(72)

=
1

σ
√
T − t

½
n (e1)− exp

µ
−2 (wt − û)µ

σ2

¶
n (e2)

¾
(73)

where n is the standard normal density function and

e1 =
w − wt − µ (T − t)

σ
√
T − t

, (74)

e2 =
w + wt − 2û− µ (T − t)

σ
√
T − t

. (75)
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