
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Agile Forward:
A simple toolkit for process

improvement

Augusto Amorim Cravo da Silva

DISSERTATION CONDUCTED IN PARTNERSHIP WITH

ZENDESK, DENMARK

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Ademar Manuel Teixeira de Aguiar

Approved on July 6, 2016

c© Augusto Amorim Cravo da Silva, 2016

Agile Forward:
A simple toolkit for process improvement

Augusto Amorim Cravo da Silva

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Doctor Nuno Honório Rodrigues Flores

External Examiner: Doctor Ana Margarida Pisco Almeida

Supervisor: Doctor Ademar Manuel Teixeira de Aguiar

Approved on July 6, 2016

Abstract

As agile methods mature and its successful adoption becomes more and more widespread in the
software industry, teams get more open and capable of responding to change. The adoption of
agile methods cannot be seen as an end by itself, it must be seen as a mindset pushing teams
to keep improving to be more predictable, to deliver faster and with more quality. To achieve
this goal, agile methods, e.g. Scrum, include practices, such as retrospectives, that continuously
challenge teams to find out how they can improve. However, many teams fail to detect important
areas where they can improve.

This work focuses on the activities of agile software process improvement, from analysis to
concrete planning and implementation phases, with the goal of understanding the overall phenom-
ena: key obstacles, common practices, and recommendations.

In concrete, we define and propose a practical toolkit to help "Process Masters", e.g. Scrum
Masters, and other important players, to detect issues, by collecting relevant data, finding concrete
solutions, putting these into practice and evaluating the results.

The work was based on a case study conducted with a team of the software company Zendesk
where different methods, tools, practices and techniques were explored and applied in order to
improve their process. An action research method was used by following an iterative improvement
methodology where the researcher and practitioners worked together to solve the problem.

A validation phase was then conducted for the proposed toolkit. In this phase, other agile
teams were interviewed to access the applicability of the toolkit. The results obtained confirm
there is an interest in simple tools and ways to conduct process improvement and that the most
adequate target for the toolkit are "Process Masters" who are an active part of the development
team and thus are not able to neither continuously focus on process improvement activities or
have an external vision of the events.

i

ii

Resumo

À medida que as metodologias ágeis amadurecem e a sua adopção bem sucedida se torna cada vez
mais presente na indústria de software, as equipas ficam mais receptivas e capazes de responder
à mudança. A adopção de metodologias ágeis não pode ser vista como um fim em si mesma,
tem que ser vista como uma mentalidade que faça as equipas continuar a melhorar de forma a
serem mais previsíveis, a produzirem mais rapidamente e com maior qualidade. Para atingir este
objectivo, as metodologias ágeis, p. ex. Scrum, incluem práticas, tais como as retrospectivas, que
continuamente desafiam as equipas a encontrar formas de melhorar. No entanto, muitas equipas
falham na detecção de áreas importantes onde podem melhorar.

Este trabalho foca nas actividades de melhoria do processo ágil de desenvolvimento de soft-
ware, da análise às fases de planeamento concreto e implementação, com o objectivo de perceber
o fenómeno geral: obstáculos chave, práticas comuns e recomendações.

Nomeadamente, define-se e propõe-se um kit de ferramentas prático para ajudar "Process Mas-
ters", p. ex. Scrum Masters, e outros participantes importantes, a detectar problemas, recolhendo
dados relevantes, encontrando soluções concretas e pondo-as em prática.

Este trabalho foi baseado num caso de estudo conduzido na empresa de software Zendesk
onde diferentes métodos, ferramentas, práticas e técnicas foram exploradas e aplicadas de forma
a melhorar o seu processo. Um método de investigação-acção foi usado seguindo uma metodolo-
gia iterativa de melhoria onde o investigador e os praticantes trabalharam juntos para resolver o
problema.

Foi depois conduzida uma fase de validação para o kit de ferramentas proposto. Nesta fase,
outras equipas ágeis foram entrevistadas para avaliar a aplicabilidade do kit. Os resultados obtidos
confirmam que há um interesse em ferramentas e formas simples de conduzir a melhoria de pro-
cesso e que o público-alvo mais adequado para este kit de ferramentas são "Process Masters" que
são uma parte activa da equipa de desenvolvimento e por isso não são capazes de se focarem con-
tinuamente em actividades de melhoria do processo or ter uma visão externa dos acontecimentos.

iii

iv

Acknowledgements

The idea of this dissertation started back in April 2015. Until February 2016, this dissertation
could have been done in three different companies. One in the UK, another in the Netherlands
and another in Denmark. Faith was that it would be done in Denmark. So, before anything else,
I would like to acknowledge Zendesk’s openness to my internship. After the internship, I can say
with confidence I did the right choice. Everyone in the company received me with open arms and
made this experience unforgettable.

Then, I would like to thank Professor Ademar for all his support during all these months. More
than supervising my work, he was always there for my try-fail cycles. I’d also like to thank Dina
Friis, for her preliminary insights of the process followed at Zendesk, Denmark.

A sincere thank you to all my team colleagues at Zendesk that collaborated in this study and
listened to my proposals: Libo, Mauro, Christian, Ilkka, Jean-François, Alicia, Cristian, Luís and
Mikkel. Also, to the other teams at Zendesk which also contributed to this work and the Scrum
Masters at Top Danmark and Farfetch.

Finally, many thanks to Mariana, my parents and sister and my friends for all their motivational
words.

Augusto

v

vi

“Progress cannot be generated
when we are satisfied with existing situations”

Taiichi Ohno

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation and Goals . 2
1.3 Methodology . 2
1.4 Expected impact . 3
1.5 Document Structure . 3

2 Agile Software Processes 5
2.1 Introduction . 5
2.2 Most popular agile methodologies . 6

2.2.1 Scrum . 7
2.2.2 Kanban . 7
2.2.3 Lean software development . 8
2.2.4 Extreme Programming . 8
2.2.5 Feature Driven Development . 9

2.3 Analysis of Extreme Programming . 9
2.3.1 The problems and variables XP targets 9
2.3.2 The fundamentals behind XP . 11
2.3.3 Primary practices . 11
2.3.4 Difficulties using XP . 13

2.4 Analysis of Scrum . 13
2.4.1 The Scrum Team . 14
2.4.2 The Scrum process . 14
2.4.3 Limitations of Scrum . 15

2.5 Scrum Patterns . 16
2.5.1 Value stream . 16
2.5.2 Process improvement . 16
2.5.3 Product organisation . 16
2.5.4 Scrum Core . 16

2.6 Summing up . 16

3 Process Improvement 17
3.1 Introduction . 17
3.2 Process evaluation . 17

3.2.1 Capability Maturity Model Integration 18
3.2.2 Agile Development Metrics . 19
3.2.3 Agile Practice Maturity . 20

3.3 Agile process improvement approaches . 21

ix

CONTENTS

3.4 Summing Up . 22

4 A simple toolkit for process improvement 23
4.1 Introduction . 23
4.2 Target audience . 23
4.3 Approach . 23
4.4 Metrics collection and evaluation . 25

4.4.1 The notebook . 26
4.4.2 Process checklist . 26
4.4.3 Performance analysis . 27
4.4.4 Collecting individual feedback . 28
4.4.5 Scrum Patterns . 28

4.5 Analysing the problems and finding solutions 28
4.6 Preparing a retrospective . 29
4.7 The retrospective . 30
4.8 Putting change into action . 30
4.9 Assessing change . 30

4.9.1 Velocity analysis . 31
4.9.2 Happiness Metric . 31

4.10 Summing up . 31

5 Case study at Zendesk 33
5.1 Goals . 33
5.2 Methodology . 33
5.3 Characterisation of the process . 34
5.4 Characterisation of the team . 34
5.5 Results . 35

5.5.1 Detecting and solving day-to-day problems 35
5.5.2 Using a checklist to detect common issues 35
5.5.3 Applying Scrum Patterns . 36
5.5.4 Maturity Assessment . 36
5.5.5 Conducting velocity analysis . 37
5.5.6 Preparing varied Retrospectives . 37
5.5.7 Introducing swarming . 38
5.5.8 Bug triage . 38
5.5.9 Analysing velocity and estimation . 39
5.5.10 Actions to team happiness . 39
5.5.11 Evaluating improvement . 40

5.6 Scrum Patterns: applied . 41
5.6.1 Team work . 41
5.6.2 Item estimation, velocity and scope . 42
5.6.3 Patterns for process improvement . 43

5.7 Summing up . 44

6 Validation 45
6.1 Methodology . 45
6.2 Questionnaire . 45
6.3 Analysis of results . 46

6.3.1 Characterisation of the interviewees . 46

x

CONTENTS

6.3.2 Overview of process improvement practices followed 46
6.3.3 Expectations for a process improvement toolkit 46
6.3.4 Value of different metrics . 46
6.3.5 Steps followed to find solutions . 47
6.3.6 Conduction of retrospectives . 48
6.3.7 Value of different methods for change evaluation 48

6.4 Summing up . 48

7 Conclusions and future work 49

References 51

A Validation interviews 55
A.1 Complete questionnaire . 55

A.1.1 Characterisation . 55
A.1.2 General questions . 55
A.1.3 Metrics collection and evaluation . 56
A.1.4 Analysing the problems and finding solutions 56
A.1.5 Preparing and conducting retrospectives 56
A.1.6 Putting change into action and assessing change 57

A.2 Answers . 57

xi

CONTENTS

xii

List of Figures

1.1 Zendesk’s logo [Zen16]. 2

2.1 Agile practices organisations are using1 [Sc15]. 6
2.2 Example of a Kanban board [Bro11]. 7
2.3 The project management triangle [Wik16]. 10
2.4 An overview of XP practices [BA04]. 13
2.5 An overview of the Scrum methodology [Coh16]. 14

3.1 Example of project effort evolution when combining CMMI and Scrum [JJ07]. . 20
3.2 The process proposed by O. Salo et al. [SA07]. 21

4.1 The steps of Agile Forward - a simple toolkit for process improvement. 24
4.2 Crisp’s scrum checklist [Cri16]. 26
4.3 Example of scope changes tracking graph. 27
4.4 The desired evolution of the team’s velocity [Scr16b]. 31
4.5 An example of a team happiness scale [DL06]. 32

5.1 The methodology to be followed during the case study. 34
5.2 Burndown chart of one of the Sprints. 37
5.3 The captain magnet being used in an item of the Scrum Board. 38
5.4 The bug triage flow created by the team. 39
5.5 Relative error between expected and real velocity of the team. 40
5.6 Example of chart to track team happiness. 41

xiii

LIST OF FIGURES

xiv

List of Tables

A.1 Answers to questionnaire . 58

xv

LIST OF TABLES

xvi

Abbreviations

TDD Test Driven Development
XP Extreme Programming
CMMI Capability Maturity Model Integration
SPICE Software Process Improvement and Capability Determination
SBI Sprint Backlog Item
PBI Product Backlog Item
QA Quality Assurance
US User Story
FDD Feature Driven Development

xvii

Chapter 1

Introduction

As agile methods mature and its successful adoption becomes more and more widespread in the

software industry, teams get more open and capable of responding to change. The adoption of

agile methods cannot be seen as an end by itself, it must be seen as a mindset pushing teams to

keep improving to be more predictable, to deliver faster and with more quality. To achieve this

goal, agile methods include practices such as retrospectives that continuously challenge teams to

find out how they can improve. However, many teams fail to detect important areas where to

improve.

The purpose of this work was to focus on the activities of agile software process improvement,

conduct a case study on this matter, and, as a result, build a simple toolkit that is able to help and

guide agile teams in process improvement activities, named Agile Forward - a simple toolkit for

process improvement.

The work focus on process improvement on a team level. It aimed to find simple but relevant

methods to improve the software development methodology of an agile team.

In the current chapter, the context, motivation and goals of this dissertation are presented,

followed by the work methodology followed, the expected impact as well as an overview of the

structure of this document.

1.1 Context

This dissertation addresses the topics of agile methodologies and process improvement. These

two fields together lead to process improvements activities in an agile development context, where

the process improvement itself must be agile, too. Previous work on these areas tend to rely on

external resources and complex methods. Thus, there is a gap in the field when it comes to simple,

internal tools, which can be worked on.

This dissertation was conducted in partnership with Zendesk, a cloud-based software company.

The practical work was conducted in the company’s offices in Copenhagen, Denmark.

1

Introduction

Figure 1.1: Zendesk’s logo [Zen16].

Zendesk is a software company focusing on customer service platforms. Its main product

is also called Zendesk. It is a cloud-based customer service platform. “It enables companies to

provide great customer support, scale with self-service options, and differentiate with proactive

engagement. The result is customer relationships that are more meaningful, personal, and produc-

tive — all at a lower cost.” [Zen16]

The author worked at this company as a Software Engineering Intern, and while conducting

dissertation related activities, he also joined a Scrum team that develops part of the Help Center

product, as a web developer.

1.2 Motivation and Goals

The motivation behind this work comes from a preliminary feedback from the company where

they came to realize that, although their Scrum teams are stable, they struggle to conduct process

improvements, even while having regular Sprint Retrospectives.

With this motivation in mind, this work focuses on the activities of agile software process

improvement, from analysis to concrete planning and implementation phase, with the goal of

understanding the overall phenomena: key obstacles, common practices, and recommendations.

In concrete, we define and propose a practical toolkit to help Scrum Masters, and other important

players, to detect issues, by collecting relevant data, finding concrete solutions and putting these

into practice.

This work includes a state of the art review on agile methodologies and process improvement,

an analysis of the process of the team targeted in the case study, the proposal, enactment and

evaluation of process improvement activities in the context of the targeted team, and, based on

these, the proposal of a simple toolkit for agile process improvement, followed by validation of

the findings.

1.3 Methodology

The research was conducted using Action Research. “Action research is an iterative process in-

volving researchers and practitioners acting together on a particular cycle of activities, including

problem diagnosis, action intervention, and reflective learning.” [ALMN99] Using this research

method, we were able to try improvement ideas with practitioners in real situations, draw con-

clusions from it and modify those ideas accordingly. Using action research means that in each

iteration we will improve the theory we want to test.

2

Introduction

1.4 Expected impact

The lack of software development process improvement may prevent the team to keep delivering

faster and with more quality. This not only affects the end product but also the motivation of

the team. New ideas can help the team build upon the current spirit and establish better working

methods.

The differentiation of this research is centred in the fact that many teams lack resources to

bring the change from inside, e.g. depend on external actors like Agile Coaches to conduct process

improvement activities.

1.5 Document Structure

Besides this introduction, this dissertation includes six chapters:

• In chapters 2 and 3, the state of the art of related topics is described,

• In chapter 4, we propose a toolkit for agile process improvement,

• In chapter 5, we describe the case study activities that contributed to the toolkit presented,

with a focus on Scrum Patterns,

• In chapter 6, the results of the validation of the toolkit with other teams are presented, and,

• In chapter 7, we draw conclusions from the work conducted and suggest points of future

work.

3

Introduction

4

Chapter 2

Agile Software Processes

In this chapter we describe the state of the art on agile processes and techniques, going more in

depth in two of the most popular: Scrum and Extreme Programming.

2.1 Introduction

The Guide to the Software Engineering Body of Knowledge [Soc14] describes software processes

as the following:

“A set of interrelated activities and tasks that transform input work products into out-

put work products.”

This knowledge area includes software processes definition, software life cycles, software

processes assessment and improvement, software measurement, and software engineering process

tools. In this chapter we focus on a particular family of software processes: agile software pro-

cesses.

Agile Software Development was formalised in 2001 when sixteen experts gathered to write

the Agile Manifesto [BBvB+01]. It aimed to provide a large umbrella to the new vision that had

started to rise among the software community. This vision is based on four values backed by

corresponding principles [BBvB+01].

Individuals and interactions over processes and tools. Agile considers that the software in-

dustry is, above all, a people’s industry. By this reason, building a good team will be of greater

value than to have many processes that guide them through development. Communication should

be done face-to-face as much as possible.

5

Agile Software Processes

Figure 2.1: Agile practices organisations are using1 [Sc15].

Working software over comprehensive documentation. Working software is the primary mea-

sure of progress and the main goal of a project should be the continuous delivery of valuable soft-

ware. However, Agile does not consider documentation irrelevant. “It is always a good idea for

the team to write and maintain a short rationale and structure document. But that document needs

to be short and salient.” [MM06] This means that the team should not focus too much on writing

documentation but instead on writing quality code.

Customer collaboration over contract negotiation. Customer feedback is considered impor-

tant since the customer will be the one evaluating the product at the end. Actually, the customer

should work daily with the development team. Above all, the product should fit the needs of the

customer.

Responding to change over following a plan. This is the value that gives this family of method-

ologies its name, i.e., agile software development must be agile. Because customer’s needs change,

requirements change, therefore developers need to be able to handle it properly. Delivering incre-

ments frequently will allow the customer to validate the path that is being followed. In fact, the

ability to change will increase the product’s competitive advantage.

2.2 Most popular agile methodologies

There are several agile methodologies currently available. The usage of the most popular practices

can be seen in figure 2.1. In this section we do an overview of the five most popular ones.

1According to a Scrum Alliance study [Sc15]. Multiple answers were allowed.

6

Agile Software Processes

Figure 2.2: Example of a Kanban board [Bro11].

2.2.1 Scrum

Scrum is an iterative methodology that allows teams to adapt in order to deliver the highest possible

value. Scrum consists of Scrum Teams and their associated roles, events, artefacts, and rules

[SS13]. It does not enforce specific development practices. It focus on fixed time iterations called

Sprints where the team plans, builds, delivers and analyses the work done. It aims to provide

transparency, inspection and adaptation. Scrum is described in more detail in section 2.4.

2.2.2 Kanban

“Lean and Kanban approaches were introduced in the Japanese manufacturing industry in the

1950s. Kanban is a Japanese word meaning a signboard, and it is used in manufacturing as a

scheduling system. It is a flow control mechanism for pull-driven Just-In-Time production, in

which the upstream processing activities are triggered by the downstream process demand sig-

nals.” [AMO13]

The Kanban board - an example is shown in figure 2.2 - provides visibility as it shows assigned

work, communicates priorities and highlights bottlenecks. The main goal is to reduce Work in

Progress, by limiting the number of items the team can be working on at the same time. “This

produces constant flow of released work items to the customers, as the developers focus only on

those few items at given time.” [AMO13]

Kanban principles are the following:

• Visualise the workflow;

• Limit Work In Progress;

• Measure and manage flow;

• Make process policies explicit;

• Improve collaboratively.

7

Agile Software Processes

2.2.3 Lean software development

Lean software development is the application of the principles used in the Toyota Production

System and other manufacturing companies to software development. Lean Development was

first used with the intent of keeping market and customer needs as the primary decision driver.

The result of that is the production of vehicles - in the Toyota case, on a very short period of time

and always on time. [PC12]

Lean Software Development takes into consideration seven principles:

1. Eliminate waste. In development environment this means that there is no point in building

features that do not add value to the product. The most important thing is to deliver what

the customer wants and when the customer wants.

2. Amplify learning. Development is seen as an iterative process that can only evolve if there

is space for learning.

3. Decide as late as possible. Requirements change frequently so it is important to keep being

flexible for as long as possible. “Delaying decisions is valuable because better decisions can

be made when they are based on fact, not speculation.” [PP03]

4. Deliver as fast as possible. In order to have feedback from the work done, it is important to

not delay deliveries. This way, the cycle design, implement, feedback, improve will occur

more often. “Compressing the value stream as much as possible is a fundamental lean

strategy for eliminating waste” [PP03].

5. Empower the team. The development team is the one doing the work so they are the ones

taking the technical decisions, these are not coming from above in the hierarchy.

6. Build integrity in. The system built should be coherent, have great usability, and be main-

tainable, adaptable, extensible. Only this way it is able to evolve in a way the customer

needs are met.

7. See the whole. The team should see their contribution to greater picture, and strive for the

performance of the overall system and organisation, in contrast to only caring about their

specific work.

2.2.4 Extreme Programming

“XP is a style of software development focusing on excellent application of programming tech-

niques, clear communication, and teamwork which allows us to accomplish things we previously

could not even imagine.” [BA04]

Specifically, Extreme Programming is an iterative methodology that provides a set of well

defined practices with the goal of delivering the right product, in time and with quality. It is

further presented in section 2.3.

8

Agile Software Processes

2.2.5 Feature Driven Development

Feature-Driven Development combines the key advantages of agile methodologies with model-

driven techniques that scale to the large projects. As the name hints, the processes focus on the

features to be delivered. It is an iterative methodology with the following activities [DL16]:

1. Develop an Overall Model

2. Build a Features List

3. Plan By Feature

4. Design By Feature

5. Build By Feature

Each of these activities include a list of tasks that need to be completed to move to the next

step. These tasks include many software development best practices such as domain modelling,

sequence diagrams, code inspection and unit tests.

In the following two sections we will focus on two of the most popular agile practices: Extreme

Programming and Scrum. We opted to do a more in-depth analysis of these two since Scrum

is by far the most used one and Extreme Programming offers very practical methods that can

complement other methodologies.

2.3 Analysis of Extreme Programming

Extreme Programming (XP) was one of the first agile methodologies to be widely popular. It dates

back to 1996, the year the first project using XP was started [Wel13], which is long before the Ag-

ile Manifesto was written (2001) [MM06]. It derives from Kent Beck’s experience on software

development and aims to put together the best practices. In fact, Beck says: “To some folks, XP

seems like just good common sense. So why the extreme in the name? XP takes common sense

principles and practices to extreme levels.” [BA04]. The belief is that, while these practices can

have problems when standing alone, when together they will support each other.

2.3.1 The problems and variables XP targets

The development of software, like other creation activities, have economic risks that need to be

reduced. Those include:

Schedule. There is a risk that the time that it takes to develop software is longer than expected.

Purpose. It may happen that the intended purpose for the software is no longer valid and the

project needs to be canceled or completely redefined. As the project evolves the cost of change

tends to be higher.

9

Agile Software Processes

Figure 2.3: The project management triangle [Wik16].

Maintainability. As the software gets more and more features it can become harder to keep it in

a organised way, eventually becoming a big ball of mud [Mar09].

High defect rate. Without a clear focus on testing, software will become full of bugs and any

change in legacy code will be reduced to a maximum, because it will possibly break the whole

system.

These risks translate in four variables2 we want to control and predict. These variables are

usually considered in project management and represented in a triangle like figure 2.3 shows.

Cost. The amount of investment needed. When starting a project, one should not have all the

money available. The project should grow gradually.

Time. There can be constraints like a predefined release date. More time means there can be

more quality and a larger scope.

Quality. The standard the customer is expecting. It is possible to reduce quality for some time,

while maintaining the system working, but this will become unbearable.

Scope. What the customer wants to include in the software. Less scope means the product is

delivered faster and is less expensive, while maintaining the same quality. Scope should be the

focus of stakeholders: when a project starts it is difficult to say what is really expected it to become.

When either cost and/or time are limited we must be aware that quality or scope will be af-

fected.

XP, as presented in the following subsections, proposes practices that mitigate these risks to a

minimum by identifying problems shortly after they arise or by avoiding them completely.

2Presented in the first edition of [BA04]

10

Agile Software Processes

2.3.2 The fundamentals behind XP

XP embraces five values to guide development: communication, simplicity, feedback, courage,

and respect. From this more abstract values, XP has some fundamental principles that support all

its practices. Those are:

Humanity & Diversity & Mutual Benefit & Accepted Responsibility. XP aims at developers,

who are above all humans and need a balance between personal and professional lives. Teams

are expected to have all kinds of knowledge needed inside of it, through diversity of workers. In

XP, people work towards a common goal. “The computer business is really a people business and

maintaining working relationships is important” [BA04]. Each team member should say which

tasks he wants to do, thus accepting his responsibility in the project.

Failure & Reflection & Opportunity & Improvement & Baby Steps. Failed approaches to a

problem are a good thing. With failure, developers will learn how to do it correctly. Teams should

think about what they do in order to improve. Each problem should be used as an opportunity to

improve. XP aims for continuous improvement, and with its methods tries to find areas where the

team can do better. Baby Steps are therefore a metaphor for these practices that take place over

the course of time.

Flow & Self-Similarity & Redundancy & Quality. There should be a continuous flow of ac-

tivities in contrast with large blocks of different activities, e.g. the team should do continuous

integration. Moreover, patterns should be valued since these help keeping an organised structure

and comprehensive code. Redundancy helps to keep the defect rate very low, e.g. by the use

of pair programming. All to achieve quality. Developers should be aware that lowering quality

standards often results in later, less predictable delivery.

Economics. In the long run, XP will benefit the company economically by providing better

software.

2.3.3 Primary practices

As mentioned above, XP is a set of good practices that gain a new meaning when applied together.

To effectively put XP into practice a team should implement all of these (as showed in figure 2.4):

1. Sit Together. The best way for a team to work, is to be in the same space. This shared space

will allow the team members to clarify any doubt they have with any other team member.

This will fasten their work;

2. Whole Team. Teams should be cross-functional and all team members should focus on only

one project at a time;

11

Agile Software Processes

3. Informative Workspace. The workspace should remind the team what they are there to do.

The use of a planing board with user stories is one important artefact to have there;

4. Energised Work. This practice used to be named 40-hour week. It translated in having

balanced work days. Although over-hours can be done once in a while, there should not be

a “Today we will have to stay later again” discourse.

5. Pair Programming. Pair programming consists in having two individuals sitting side-by-

side with only one computer where they code. One individual is the driver, he writes the

code. The other is watching and helping the driver. Together they design a complete system.

Pairs should not be fixed. A developer should pair, at least, with two other developers per

day, allowing the team to interact as a whole;

6. Stories. User Stories should have a title and a brief description. They should be estimated

early in the development cycle. This way the customer will be more informed when making

decisions;

7. Weekly Cycle. The start of each week should include: a review of the progress to date,

having the customers pick US for that week and having the developers breaking these into

tasks, estimating them and taking responsibility over them. After this, acceptance tests

should be defined. The purpose of having a one-week cycle is because everyone is focused

on Friday.

8. Quarterly Cycle. Every three months, a team should stop to review their work and focus

on the big picture. Like weeks, seasons can be a natural starting point for each cycle;

9. Slack. Every once in a while, there should be time for other activities, usually 20% of the

time (e.g. weeks). This will give the project a margin to get back on track if needed, too;

10. Ten-Minute Build. Builds should be optimised so they take ten minutes maximum. Long

builds mean that programmers will not conduct testing as often as they should;

11. Continuous Integration. The code developed by a pair should be integrated every two

hours. This will allow problems to arise sooner. It can be done in a synchronised or unsyn-

chronised way. K. Beck recommends to keep it synchronised in order to not lose focus if it

fails;

12. Incremental Design. Requirements change. Although doing the whole design upfront

allows the creation of structured software, the cost of putting it together is high, considering

it can change anytime. XP says that teams should design with Baby Steps., i.e., adding new

layers as they are needed without loosing sight of the big picture. As mentioned above,

because the code is fully tested, coders can efficiently refactor their design without fearing

that they will be breaking other part of the system;

12

Agile Software Processes

Figure 2.4: An overview of XP practices [BA04].

13. Test-First Programming. Also known as TDD, it is considered one of the most important

XP practices [Mar09]. Before implementing a task, all tests for it should be written. This

will force developers to think before coding and consider different designs that could work.

More than that, it will provide a guarantee that tests are not written to fit the implementation.

Having a 100% coverage means that one can safely change code being sure it will not break

another feature [Mar09].

These practices are complemented with some more advanced ones, called Corollaries, that

can also be seen in figure 2.4.

2.3.4 Difficulties using XP

The main problem using XP comes from the difficulty to have all practices in place, since it

requires an extra effort from developers. Without all the practices in place, XP will not be complete

and will not deliver what it promises to. Another difficulty is to provide the customer a real

estimate of the cost of the project since the requirements are allowed to change over time. There

is also a concern regarding the fact that no documentation is written, because well-written code is

considered to be enough. [RS03]

2.4 Analysis of Scrum

Scrum is an agile methodology to manage software projects that was first publicly presented by

Ken Schwaber and Jeff Sutherland in 1995 [SS13]. In contrast with other methodologies, Scrum

does not cover specific working practices, but rather the way planning is done. It presents a

13

Agile Software Processes

Figure 2.5: An overview of the Scrum methodology [Coh16].

way to manage a software project in an iterative and simplified way. It aims to give teams more

productivity while improving Transparency between the software team and the client, allowing

Inspection of the current state of the project and facilitating Adaptation if the project goals change.

Scrum has made its way to the majority of the software companies worldwide, as showed in

figure 2.1.

2.4.1 The Scrum Team

The major players in a Scrum team are [SS13]:

Product Owner. He is the one responsible for ensuring the value to the business and taking

business decisions. He manages the features to be included in the product;

Scrum Master. He helps the Development Team and the Product Owner to understand Scrum

and improve the way it is implemented. This includes helping the Product Owner to manage

the product features and the development team by coaching its members in self-organisation and

cross-functionality;

Development Team. As said above, it is a self-organised and cross-functional team. All mem-

bers are considered to be developers and nothing else.

2.4.2 The Scrum process

Scrum defines a process, as shown in figure 2.5, which starts with the creation of the Product

Backlog, followed by a Sprint Backlog, leading to a time framed coding activity - a Sprint. Sprint

related activities are repeated until there are no more items in the Product Backlog. In the following

sections each of the activities included in the process are presented.

14

Agile Software Processes

Building the Product Backlog. The Product Backlog is where requirements live. These are

translated to a collection of items that are ordered considering their priority to the business. Next,

these are estimated in relative size to other items, using points. As the product changes, the Product

Backlog is updated with new requirements, features, fixes, etc. Highly ranked items have more

complete descriptions than lower ranked ones.

Sprint Planning. Before the beginning of each sprint, the Product Owner discusses the Sprint

Goal. Then, the team selects the higher ranked items from the Product Backlog they expect to

mark Done by the end of the sprint, and thus will be in the next product increment. These go into

the Sprint Backlog. The items should be decomposed into working items, which can be marked

Done in one day or less.

Daily Scrum. Everyday the team meets for 15 minutes. At this meeting, each team member

shares what he did yesterday and what he plans to do today. The team also discusses if there are

any major problems that will block the next tasks.

Sprint Review and Retrospective. Although both Sprint Review and Retrospective are held

at the end of the Sprint, they serve different purposes. The Sprint Review focus on the work

produced during the sprint. It includes presentation of the items marked as Done, discussion of

problems during development and analysis of the current backlog and what to do next. It should be

conducted in an informal environment, which elicits feedback and fosters collaboration. A Sprint

Retrospective, on the other hand, focus on finding ways to improve the development environment

of the team including relationships, processes and tools. It is here that teams should discuss the

quality of the work and plan ways to improve it.

Releases. By the end of each Sprint, there should be a Product Increment that can be released.

The decision to release this new version of the product to the market belongs to Product Owner.

The Scrum methodology does not define how many times the product should be released to the

market.

2.4.3 Limitations of Scrum

Scrum, introduced as a light weight methodology, can, not only be applied to software projects,

but also to other areas of expertise. Compared to XP, it does not set programming practices. This

broadness may, sometimes, raise some questions on the right thing to do when a problem arises.

Moreover, from a process improvement point of view, there is a moment, the Sprint Retrospective,

for the team to think about how it can do better, but no concrete techniques are proposed. In the

next section, we review Scrum Patterns, which collect and organize best practices of Scrum.

15

Agile Software Processes

2.5 Scrum Patterns

Following the success of Scrum, it became relevant to identify commonly occurring problems and

solutions in the context of Scrum activities, most of them not part of the fundamentals of Scrum

mentioned in section 2.4. This approach was first introduced by Beedle et al. in 1998 [BDS98].

Currently, there’s a working group on this matter, the Scrum Pattern Community [Scr16b, HR14].

The patterns are organised into some main categories: Value Stream, Process Improvement, Prod-

uct Organisation and Scrum Core.

2.5.1 Value stream

The intent of these patterns is to describe recurrent problems and proven solutions related to activi-

ties which lead to product increments. One of its focus is the backlogs including how the predicted

velocity affects the team, the visibility of these artefacts and how tasks should be assigned (for ex-

ample, in order to reduce items dependency). Another focus is the pace the team moves and how

it can smooth the flow.

2.5.2 Process improvement

The authors also introduce some process improvement patterns with the purpose of reaching

"Hyper-Productivity, more than a 400% increase in velocity over a team’s initial velocity" [HR14].

One of these is Scrumming the Scrum, a pattern that recommends the use of Scrum itself to im-

prove the team’s process by, among others, adding solutions to recognised impediments as backlog

items of the sprint following the recognition of these impediments.

2.5.3 Product organisation

Product Organisation patterns cover the roles in Scrum - Product Owner, Scrum Master and De-

velopment Team - and how these people can effectively contribute to the success of the product.

The proposed solutions aim at improving the communication between the Product Owner and the

Development Team and the empowerment of this team with the support of the Scrum Master.

2.5.4 Scrum Core

The Scrum concepts introduced in section 2.4 are also covered as patterns following the common

problem-solution perspective.

2.6 Summing up

In this chapter, we started by looking at the main concerns of agile methodologies and then dived

into XP and Scrum. We value XP techniques and believe they have the potential to improve a

team’s process. Scrum is the most used methodology and the one that will be used in the case

study. Scrum Patterns refine Scrum and give hints on problem solving.

16

Chapter 3

Process Improvement

In this chapter, we review relevant software processes assessment and improvement techniques.

3.1 Introduction

Software process improvement activities aim to change organisational activities and culture in

order to waste less resources and be more predictable.

“Improvement activities include identifying and prioritising desired improvements (planning);

introducing an improvement, including change management and training (doing); evaluating the

improvement compared to previous or exemplary process results and costs (checking); and making

further modifications (acting)” [Soc14].

In order to improve the process, teams must first assess their current software process. This can

be done with capability evaluations - evaluations performed by an external agent - or performance

appraisals conducted within an organisation to identify areas of improvement [Soc14].

“A typical method of software process assessment includes planning, fact finding (by collect-

ing evidence through questionnaires, interviews, and observation of work practices), collection

and validation of process data, and analysis and reporting” [Soc14].

In section 3.2.1 we explore Capability Maturity Model (CMMI), a broadly used model in the

industry. Then, in section 3.2.2, we look into measuring agile teams performance and then how

maturity can be assessed based on this (section 3.2.3).

Process improvement should be part of the processes of the organisation. We already re-

viewed how Scrum introduces this topic with Scrum Retrospectives. CMMI also focus on process

improvement. In this chapter we will also analyse two approaches to agile process improvement

(section 3.3).

3.2 Process evaluation

As mentioned above, a fundamental part of process improvement is the evaluation of the current

status of the process. In this section, we review some approaches to this activity.

17

Process Improvement

3.2.1 Capability Maturity Model Integration

“Capability Maturity Model Integration models are collections of best practices that help organi-

sations to improve their processes. These models are developed by product teams with members

from industry, government, and the Software Engineering Institute.” [CKS11] CMMI has two

types of levels: capability levels and maturity levels. Capability is associated with a continuous

representation and it shows the achievements in individual process areas. Maturity is associated

with a staged representation across all areas. For a maturity level to be awarded, the organisation

needs to achieve a minimum set of goals in every and all process areas.

3.2.1.1 Capability levels

Capability in a certain area can be (definitions from CMMI-DEV guide [CKS11]):

Incomplete. An incomplete process is a process that either is not performed or is partially per-

formed.

Performed. A performed process is a process that accomplishes the needed work to produce

work products; the specific goals of the process area are satisfied.

Managed. A managed process is a performed process that is planned and executed in accor-

dance with policy; employs skilled people having adequate resources to produce controlled out-

puts; involves relevant stakeholders; is monitored, controlled, and reviewed; and is evaluated for

adherence to its process description.

Defined. A defined process is a managed process that is tailored from the organisation’s set of

standard processes according to the organisation’s tailoring guidelines; has a maintained process

description; and contributes process related experiences to the organisational process assets.

3.2.1.2 Maturity levels

Maturity of the whole process includes five stages (definitions from CMMI-DEV

guide [CKS11]).

Initial. At maturity level 1, processes are usually ad hoc and chaotic. The organisation usually

does not provide a stable environment to support processes. Success in these organisations depends

on the competence and heroics of the people in the organisation and not on the use of proven

processes. In spite of this chaos, maturity level 1 organisations often produce products and services

that work, but they frequently exceed the budget and schedule documented in their plans.

18

Process Improvement

Managed. At maturity level 2, the projects have ensured that processes are planned and executed

in accordance with policy; the projects employ skilled people who have adequate resources to pro-

duce controlled outputs; involve relevant stakeholders; are monitored, controlled, and reviewed;

and are evaluated for adherence to their process descriptions. The process discipline reflected by

maturity level 2 helps to ensure that existing practices are retained during times of stress. When

these practices are in place, projects are performed and managed according to their documented

plans.

Defined. At maturity level 3, processes are well characterised and understood, and are described

in standards, procedures, tools, and methods. The organisation’s set of standard processes, which

is the basis for maturity level 3, is established and improved over time. These standard processes

are used to establish consistency across the organisation. Projects establish their defined processes

by tailoring the organisation’s set of standard processes according to tailoring guidelines.

Quantitatively Managed. At maturity level 4, the organisation and projects establish quantita-

tive objectives for quality and process performance and use them as criteria in managing projects.

Quantitative objectives are based on the needs of the customer, end users, organisation, and process

implementers. Quality and process performance is understood in statistical terms and is managed

throughout the life of projects.

Optimizing. At maturity level 5, an organisation continually improves its processes based on

a quantitative understanding of its business objectives and performance needs. The organisation

uses a quantitative approach to understand the variation inherent in the process and the causes of

process outcomes.

3.2.1.3 SPICE

The Software Process Improvement and Capability Determination (SPICE) was introduced by the

International Organisation for Standardisation and is based on CMMI. The work of this workgroup

aims to be the reference model for the maturity models [ISO13].

3.2.2 Agile Development Metrics

As part of our focus on agile methodologies, we looked at different ways to measure process im-

provement in agile teams. In order to evaluate how a team is performing while practicing XP,

Scrum, or other agile methodology, there is a need to define metrics. These metrics will also allow

to measure process improvement. According to Hartmann and Dymond [HD06], there should be

first a distinguish between the organizational key metric and other supporting metrics, which the

authors call diagnostics. While the first translates the business value of the agile development pro-

cess, the others help the team improve the processes. To them, a good agile metric should: affirm

and reinforce Lean and Agile principles; measure outcome, not output; follow trends, not numbers;

19

Process Improvement

Figure 3.1: Example of project effort evolution when combining CMMI and Scrum [JJ07].

answer a particular question for a real person; belong to a small set of metrics and diagnostics; be

easy to collect; reveal, rather than conceal, its context and significant variables; provide fuel for

meaningful conversation; provide feedback on a frequent and regular basis; measure value (prod-

uct) or process; encourage “good-enough” quality. The authors also provide a relevant evaluation

checklist to analyze how useful a metric can be for the team.

3.2.3 Agile Practice Maturity

One diagnostic measurement Hartmann and Dymond [HD06] suggest is the Agile practice matu-

rity. The maturity of Agile processes can be accessed in different ways from simple checklists

and assessment forms, e.g. the ones from Scrum.org [Scr16a], to models that adapt the Capability

Maturity Model (CMMI) evaluation to Agile.

One example is the Scrum Maturity Model [YdLFdS11, Yin11] that establishes five levels of

maturity to Scrum practices, from an unmanaged to an optimised process, introducing concrete

evaluation measurements with checklists to correctly place a team in one of the five levels. A

similar, more broad work is Agile Maturity Model (AMM) [CM09] which also incorporates five

maturity levels with specific goals for each of these.

Other authors, like Jeff Sutherland et al. [JJ07, Jak09], explored the combination of CMMI and

Scrum in order to balance agility with discipline. The authors analysed the combination of CMMI

and Scrum and found out that “Scrum and CMMI together bring a more powerful combination of

adaptability and predictability to the marketplace than either one alone.” These findings can be

seen in figure 3.1, where the project effort has clearly been reduced. This balance between Agility

and Discipline was first introduced by Boehm and Turner [BT04] “with a risk-based method for

developing balanced strategies that take advantage of the strengths and mitigate the weaknesses of

both agile and plan-driven approaches” [BT04].

20

Process Improvement

Figure 3.2: The process proposed by O. Salo et al. [SA07].

3.3 Agile process improvement approaches

There are different ways to approach and conduct process improvement. In this section we analyse

two different proposals.

O. Salo and P. Abrahamsson propose “An Iterative Improvement Process for Agile Software

Development” [SA07], which focus on post-iteration workshops as a way to conduct process im-

provements. Their approach includes five steps for this workshop:

1. Preparation, where, among other steps, the tools to be used during the workshop are se-

lected;

2. Follow-Up and Validation, where the team discusses what was achieved based on the last

workshop;

3. Experience collection, where during the workshop the participants share their negative and

positive experiences;

4. Planing of Improvement Actions, “e.g. what the problem is exactly, what the concrete

actions are that need to be taken to improve the situation, who is responsible for carrying

out the improvement actions and when.” [SA07];

5. Storing, where the team registers what it decided on.

An overview of this process can be seen in figure 3.2. This work originated from a case study

that was conducted with five Extreme Programming teams.

Abdel-Hamid and Abdel-Kader introduce a different approach named “Process Increments”

[AHAK11]. This approach conducts process improvement by applying an agile methodology

usually used to manage projects to manage the improvement. The Scrum Pattern Scrumming the

Scrum follows along the same lines [Scr16b]. The authors recommend using user stories with

the following points: summary title, verification points (i.e. conditions of satisfaction), size esti-

mate, process area (management, product development or environment & infrastructure). Then,

21

Process Improvement

iteratively work on them and validate if they met the conditions of satisfaction. In this approach,

process improvement is managed by an external group who puts this process in place.

3.4 Summing Up

In this chapter, we reviewed different techniques to evaluate status, and thus progress, and to put

process improvement activities in place. We analysed both traditional approaches and agile related

ones.

The traditional approaches reviewed demand many metrics to be monitored and, for instance,

CMMI places organisations on levels with inflexible criteria. Although, we saw an example of

combination of CMMI and Scrum, in a more broad view, these practices many not be compatible

with environments that foster agility and, more than that, move in a very fast pace with innovation

as a constant.

On the other hand, the agile techniques studied for process improvement focus mostly on

retrospectives. As studied in chapter 2, this is indeed an important practice in agile environments.

However, agile teams may fail to detect their own problems by not being able to see the bigger

picture. Thus, introducing objective metrics, in a manageable amount, can reveal, rather than

conceal, less obvious problems.

Considering all this, by this review, we can conclude there is an opportunity to identify an

unified and simple approach for agile software improvement than can be conducted by an agile

team and that applies different known techniques, which together can deliver better results than

when in isolation.

22

Chapter 4

A simple toolkit for process
improvement

During the research conducted, which includes a case study described in chapter 5, we were able

to recognise important ways and tools that lead teams to a better development process. In this

chapter, we present a proposal of an agile toolkit for process improvement.

4.1 Introduction

We define an agile toolkit for process improvements as a set of procedures and tools that help

teams become better in the way they develop new software. It includes diagnostic tools, problem

solving techniques and change inducting methods.

In this toolkit, we use the term Process Master as a reference to the person that is responsible

for ensuring the process is understood and enacted. Specifically, this person is the one responsible

for promoting process improvement techniques. In lack of more general names, some Scrum terms

referring to concepts also present in other methodologies will be used sporadically.

4.2 Target audience

The main target of this toolkit are agile teams and respective Process Masters that are concerned

with process improvement and are looking for a simple, straightforward approach to these con-

cerns. The target team is not closely supported by an Agile Coach and thus is in charge of detecting

and solving process problems. The team’s Process Master may also be part of the development

team while only focusing part of his/her time in this role.

4.3 Approach

Process improvement should follow a process itself. For this toolkit, we define the following steps

which we will go into more details in the next sections. Figure 4.1 shows the steps proposed.

23

A simple toolkit for process improvement

Figure 4.1: The steps of Agile Forward - a simple toolkit for process improvement.

24

A simple toolkit for process improvement

Metrics collection and evaluation. As a Process Master, one must collect relevant metrics dur-

ing the iterations. These can be of various forms, from concrete numbers to notes of relevant

episodes that affected the process.

Analysing the problems and finding solutions. A development team will usually run into sim-

ilar issues others have had in the past. So, it is useful to match the issues the Process Master was

able to identify, to known problems and their solutions.

Preparing a retrospective. Although all problems must be discussed with the team, some may

be done during daily meetings while others require a specific moment: retrospectives. Based on

the data collected during the iteration, the Process Master needs to select which issues should

be discussed during the retrospective, taking into consideration input from the team, too. This

step includes setting a strategy on how to introduce each one of the topics in a way that the team

recognises the opportunities for improvement.

The retrospective. During the retrospective, the team will reflect on the issues presented by

the Process Master as well as the solution he/she may introduce for some of the problems. It is

important that the team commits to the solutions they agree on.

Putting change into action. The team may struggle to put into practice the actions they commit

to. It belongs to the Process Master the responsibility to make these commitments see the light of

the day.

Assessing change. It may seem easy to see if the change introduced is allowing the team to work

better, but one may miss out some important issues. In order to better understand the effects, we

recommend also conducting measurements.

In the following sections, we further explain each of these steps and introduce the tools and

methods to achieve them.

4.4 Metrics collection and evaluation

One of the roles of a Process Master is to, while working with the team, see above the team in

order to understand how it can improve [Scr16b, Pattern: Scrum Master]. This implies collecting

diverse metrics that he/she can later analyse and introduce during retrospectives. On the other

hand, metrics and evaluation will also allow to measure improvement over time, thus having both

a diagnostic and a tracking purpose. These tools should always be viewed as internal to the team

and not as reports to the organisation.

We recommend the metrics presented in the following subsections.

25

A simple toolkit for process improvement

Figure 4.2: Crisp’s scrum checklist [Cri16].

4.4.1 The notebook

The first step into collecting relevant metrics is to understand the team and its daily dynamics.

During the iteration, the Process Master will usually detect small issues that together contribute

to a better understanding of the improvements that are needed. This can happen during planned

meetings or during development work. In order to later remember these, we recommend carrying

a notebook around to take notes. Organising it by the different kind of problems, will allow a

better overview of recurring issues. This technique may seem basic but will reveal very useful

when used with other metrics that take into consideration what happens during an iteration.

4.4.2 Process checklist

To understand to what extent the team is putting the methodology into practice, the easiest way

is to go through a list where items can be marked as done. This can be done alone or with the

team, during a retrospective, for example. One of the most recognised checklists for Scrum is

from the consulting firm CRISP [Cri16]. This checklist is presented in figure 4.2. This checklist is

important to both identify practices the team has not yet implemented and practices the team has

abandoned. In the latter case, the next step is to understand what lead to the abandonment.

26

A simple toolkit for process improvement

Figure 4.3: Example of scope changes tracking graph.

4.4.3 Performance analysis

Velocity and estimation issues can be identified by analysing the team’s commitment versus what

it achieves. Moreover, it is also important to analyse how the results are distributed in time. To

this end, we recommend the analysis of three important charts.

Iteration burndown. This well-known chart allows Process Masters to diagnose problems that

occur during the iteration. As noted in the Scrum Pattern Track Done [Scr16b], the burndown

chart should only be updated when the item is marked as done, thus preventing false hopes. When

analysing it after the end of the iteration, one should see how much work is only concluded in the

days preceding the end of the iteration. If this is higher than the rest, it is an indicator that the team

has found impediments along the way and has pushed the delivery of the items which can have

negative effects in quality. See figure 5.2 for an example of a problematic burndown chart.

Changes in iteration scope. This chart should show the variation of the sum of points of the

items in the iteration, along the iteration. An example is shown in figure 4.3. Here, it is key to

understand what caused the variation. There are often three main causes: a Product Owner with

emergent requirements; too little work for the team to complete; the work is already expected

to be done by a specific member. In the first case, there might be a lack of commitment from

the Product Owner to thoughtfully order the items in the Product Backlog. The Product Owner

should be invited to the next retrospective to find a solution to this problem. In the second case,

we identified a planning problem. The team should consider increasing its velocity if this reveals a

recurrent issue (it is recommended to consider three iterations [Scr16b, Updated Velocity]). In the

third case, there is an overspecialisation problem. The issue should be brought to a retrospective.

One possible solution is to conduct Swarming [Scr16b], i.e. focus the effort on one item of the

iteration backlog until it is done. This will also help team members become more broad skilled.

Items not completed. Another performance problem teams may face is not being able to finish

all items before the end of the iteration. This should be tracked by analysing how many times

27

A simple toolkit for process improvement

it happened during the past iterations. Figure 5.5 shows an example of an Expected vs. real

velocity chart that allows to track how much a team has overcommitted (or undercommited). For

each iteration the team should discuss why specific items were not completed and if there were

impediments that may have prevented it.

4.4.4 Collecting individual feedback

People are the key for process improvement. Thus, understanding their problems is a simple but

effective step towards better performance. By scheduling regular meetings with team members,

the Process Master will better grasp the concerns of his/her peers. However, this should be used

as a tool to identify the problems. The Process Master role is to encourage the team member to

discuss these issues with the team by taking them to the next retrospective. After agreeing on this,

during the retrospective the Process Master may introduce the topic and ask the team member to

express his/her concerns.

4.4.5 Scrum Patterns

As presented in section 2.5, the Scrum Patterns are a collection of recurrent problems teams face

and proven solutions. This way, Scrum Patterns offer an easy way to identify problems a team may

be facing. Since the patterns have a clear stated problem, going through them is a task the Process

Master can do frequently to surface problems of the team. After identifying potential applicable

patterns, the Process Master can go into more detail by reading the first part of the pattern and

see if its scope is appropriate. In the website of the project is possible to find a list of the current

available patterns and its problem statement.

4.5 Analysing the problems and finding solutions

After identifying the issues the team is facing, the Process Master needs to analyse each of them in

order to better understand if it is suitable for discussion in a retrospective or if it should be escalated

to management instead, in the case the team’s process is restricted by upper level decisions.

The Process Master should also try to understand the impact the problem has in the team’s

process. In order to identify solutions, the main method we recommend is to look into the Scrum

Patterns, specially when the problem was detected with one.

In any case, it is very important to find a well based justification for introducing a change.

The team will want to know why they have to change. It can be data-based, e.g. the amount of

bugs reported or the iteration burndown chart, or based on an explanation of why doing things

differently will improve the process.

We also recommend checking with other teams having similar same background (for example,

teams that work on the same office, the same product, etc.) to understand if they faced that problem

before and which solution they implemented.

28

A simple toolkit for process improvement

While the Process Master needs to prepare beforehand on all of this, the decision needs to be

taken collectively during the retrospective, guided by the Process Master.

4.6 Preparing a retrospective

The first step to prepare a retrospective is to define a purpose for it [Ker13]. The Process Master

should go through the identified problems - the ones detected using metrics as the exposed in

section 4.4 - and pick the one that seems the most relevant, the one that is blocking the team’s

performance the most.

According to N. Kerth [Ker13], it is important to sell the retrospective and how it brings

value to the teams’s work. This can be done during a daily team meeting some days before the

retrospective. The Process Master will remind the team of the retrospective and suggest a topic.

Upon agreement from the team, the Process Master asks the team to take a moment prior to the

retrospective to think about the subject.

The Process Master needs to structure the retrospective and time-box each part of it. The

Scrum guide [SS13] recommends a “three-hour time-boxed meeting for one-month Sprints”, pro-

portionally adapted to the iteration duration.

Three main moments of a retrospective should be considered when preparing it: Introduction,

Analysis and Future 1. There are many activities possible for each of these moments. For this

toolkit we present one example for each:

Introduction. The introduction moment should include the welcoming of the participants and a

review of the goal and agenda. A possible exercise is to ask one brief question to be answered by

each team member. Considering that the team knows the purpose of the retrospective beforehand

the question can be “In a word or two, what are your hopes for the retrospective?”.

Analysis. The main portion of the retrospective, where the Process Master will introduce data

that reveals the process problem to be addressed and give a brief explanation on why it represents

a problem to the team. This is followed by a discussion. One possible activity is to split in pairs

and brainstorm on ideas to solve the problem. Each pair can be given sticky notes where they write

their ideas. After this moment, each pair presents their findings to the team.

Future. In the last part of the retrospective, the team must decide what to do, followed by a

moment to close the retrospective. One way to choose the actions is by asking the team to vote on

the value of each proposal using Planing Poker [Mou] points. This exercise is then followed by

writing a concrete Definition of Done for the action and adding it to the next iteration’s backlog 2.

1N. Kerth [Ker13] names the steps “Readying, Past and Future” while E. Derby and D. Larsen [DL06] mention five
different kinds of activities that can be grouped in the three mentioned parts: “Activities to set the stage”, “Activities
to gather data” and “Activities to generate insights”, “Activities to decide what to do” and “Activities to close the
retrospective”.

2This proposal is inspired by the pattern Scrumming the Scrum [Scr16b].

29

A simple toolkit for process improvement

To end the retrospective, the Process Master can ask the team to quickly evaluate the retrospective

by pointing out what they liked in the retrospective and what should be improved 3.

4.7 The retrospective

During the iteration’s retrospective, the Process Master will guide the team using the resources

he/she prepared while staying outside of the discussion. The Process Master must be a facilitator

and not an influencer. However, it must break the happy bubble [Scr16b] when necessary, i.e.

let the team know the current status and bring attention to the underlaying problems. While fa-

cilitating the retrospective, the Process Master must monitor the time to keep the meeting on the

predefined time-box and keep the meeting in scope by directing the team to the important issues

when they diverge.

The Process Master should document the retrospective for future analysis. The actions the

team decided to take are an important part of this document. In the next iteration’s retrospective

the team must analyse if it was able to accomplish its goals. The team may also set a more

distant date to evaluate the improvements if the changes are only expected to be visible in a longer

timeframe.

4.8 Putting change into action

While many teams are capable of recognising problems in their process, many fail to continuously

improve. In order to promote change, the teams needs to be reminded of its importance and what

change actions they decided on. As presented in section 4.6, the team can add the actions to the

iteration’s backlog, estimate them and thus put it into practice by following the normal iterative

process. Another way to give value to the change is to introduce an element that reminds the team

of it, e.g. a visual item in the iteration board. As put by L. Rising et al. [RM04]:

“Keep the new idea visible by placing reminders throughout your organisation. Unless

people are reminded, they may forget about the new idea. Post information about the

new idea around your organisation – wherever people are likely to see it and discuss

it.”

4.9 Assessing change

In order to understand the impact of the change introduced, the Process Master must monitor the

metrics and see how they evolve. By introducing on change at a time, it will be clear how that

change affected the development process. We propose two main methods to assess the success of

an introduced improvement:

3Activity inspired by the book “Agile Retrospectives” [DL06].

30

A simple toolkit for process improvement

Figure 4.4: The desired evolution of the team’s velocity [Scr16b].

4.9.1 Velocity analysis

To monitor the improvement of the team’s performance, velocity is a common metric used across

agile teams. By registering the amount of work completed in the end of each iteration, the Process

Master will be able to tell if the team is succeeding and doing more work in the same time.

It is important to monitor changes for some time in order to make sure the improvements are

not forgotten. Scum Patterns [Scr16b] refer to this as a Kaizen Pulse. An illustration of the desired

velocity is shown in figure 4.4.

4.9.2 Happiness Metric

Change usually brings discomfort, and so it is important to monitor the status of the team. One way

is to apply the pattern Happiness Metric [Scr16b] to evaluate if the changes reduced the happiness

of the team. The Process Master asks each team member, at the beginning of each retrospective,

or via a simple form, to evaluate their happiness with their role and with the company - only two

questions. An example of a scale that can be used is shown in figure 4.5.

If the team is able to keep or increase their happiness level, the change positive effects are

larger than the discomfort caused by it. An example of an happiness control graph can be seen in

figure 5.6.

4.10 Summing up

In this chapter, we introduced a toolkit for the improvement of the agile process for software

development. This toolkit focus on simple but effective activities that allow agile teams to deliver

faster and better. It acknowledges and fulfils the need for straightforward methods that do not

depend on external identities, e.g. external consulting professionals or Agile Coaches, by driving

the change from inside the team.

31

A simple toolkit for process improvement

Figure 4.5: An example of a team happiness scale [DL06].

32

Chapter 5

Case study at Zendesk

As part of the research problem (see chapter 1), a case study was conducted in the software com-

pany Zendesk, in the Copenhagen’s office. The case study focused on the work of a Scrum team.

In this chapter, we will describe how it was conducted and which results were obtained.

5.1 Goals

The primary goal of the case study was to iteratively evaluate the success of different process

improvement techniques and build a body of knowledge that resulted in the toolkit presented. The

main activities of this case study were the analysis of the process of an agile team followed by

discovery of process improvement opportunities and its implementation. By the end of it, we were

able to recognise which methods were more valuable to conduct process improvement activities.

5.2 Methodology

For this case study we followed an iterative methodology. This included two key Scrum events:

Sprint Retrospective and Sprint Planning.

During Sprint Retrospective the team was invited to find out how it could improve the devel-

opment process based on the data collected. If the changes would cause an extra effort during

the Sprint, the suggestion was that, at Sprint Planning, the team would add the most valuable

improvement to the Sprint Backlog and agree on the effort it represented.

During the Sprint we analysed if the team was actually putting into practice what it committed

to and then drew appropriate conclusions. This cycle is shown in figure 5.1.

As exposed in chapter 1, the case study followed an Action Research methodology, as the

researcher worked with the team as a team member. The first Sprint was used to get to know the

team and the environment. This Sprint was followed by six Sprints where process improvement

activities were conducted.

33

Case study at Zendesk

Figure 5.1: The methodology to be followed during the case study.

5.3 Characterisation of the process

Development teams at Zendesk’s office in Copenhagen, Denmark follow an agile software process.

Teams are free to adapt their process to meet their needs. The team with whom the case study was

conducted follows the Scrum methodology putting into practice its roles, cycles and artefacts. The

Sprints are of two weeks duration, starting on a Monday and ending on a Friday.

5.4 Characterisation of the team

The Scrum team that participated in the case study is one of three main teams developing a Web

App product. The team consists of:

• six developers that, although capable of multi-tasking, focus on one of the areas of web

development: front-end or back-end;

• a QA engineer that works mostly remotely;

• a team manager that plays the role of Scrum Master and also does some development work;

• an in-house Product Owner that manages the product of two teams.

The work environment is relaxed, flexible and with balanced work days. The team showed

passion and commitment to their work. One day every Sprint is used to explore new technologies

and findings (called the “lab day”).

The team showed many positive quality indicators from the beginning:

• Code reviews using pull requests;

• Automated tests - both unitary and functional;

• More than 90% code coverage;

• Continuous integration and automated production deploys;

34

Case study at Zendesk

• Code is refactored whenever needed, i.e. they follow incremental design;

• Pairing sessions occur frequently (however, these are not enforced).

5.5 Results

During the case study we were able to identify different problems by using different techniques. In

the following sections we present the different ways we identified problems, the actions the team

took to solve them, and how they performed.

5.5.1 Detecting and solving day-to-day problems

Some problems are easily detected by watching the day-to-day routine of a team. One of the first

identified problems was related to the usage of the process tools provided by the company. The

company enforced a backlog management tool but this tool did not allow to have a visible status of

the progress, so the team was using a Scrum Board, too, using sticky notes. The usage of a Scrum

Board is considered an advantage, since it keeps a visible status of the team progress. [Scr16b,

Pattern: Visible Status]. In order to satisfy both requirements and eliminate the time wasted

copying the items from the software to the board, the team now uses a printer to transfer the issues

to the board - a one-click process.

The team presented another problem related to the backlog. There were some items coming

from a secondary backlog, due to a secondary project they had to support. This revealed a problem

related to the team’s goals we will present in further sections. By following the same automation

process to bring the items to the Scrum Board, we were able to give the team a sense of unification.

We identified one more day-to-day problem the team was facing: a reduced presence of the

in-house Product Owner. This is due to the fact that the Product Owner is responsible for the

backlog of two teams. This problem was discussed during Retrospectives and the Product Owner

started participating in all the team meetings. The company is also actively looking for a dedicated

Product Owner.

5.5.2 Using a checklist to detect common issues

During the first Sprints of the case study, we focused on detecting common issues. For that, we

used a scrum checklist [Cri16] each Sprint to detect missing Scrum practices. We found out the

following issues:

• The lack of a burndown chart. As a consequence, the team was not able to visualise how

the work done compared to the expectations. We introduced this graph so that the team had

a visual indicator of progress.

• The lack of Sprint Review meetings. Although the team had a in-house Product Owner, there

was no explicit moment where each team member presented their work. By introducing this

meeting, it also gave the team the bigger picture of their work.

35

Case study at Zendesk

• The team size. The recommended size for a team is five, and the team presented a head

count of eight. The size of the team exposed another issue, the lack of one well-defined

Sprint goal.

• The lack of velocity analysis for release planning. The checklist allowed to detect that the

Product Owner does not use the team’s velocity for release planning. This prevents the

Product Owner of providing a release range based on the available data to the stakeholders.

As presented in further sections, this issue was also conditioned by the variability of the

team’s velocity and other estimation problems.

• The lack of concrete improvement proposals by the end of Sprint Retrospectives. Although

the team was conducting regular Retrospectives, most debated issues did not result in tasks

for being implemented next Sprints. In section 5.5.6 and following, we present some actions

the team was able to introduce during the case study.

• The lack of estimation for all items. The checklist allowed to detect that the team did not

split PBIs into SBIs (following an hybrid approach of splitting PBIs when they were too

large), some items did not have an estimate when brought into the Sprint, and the SBI

estimates were not updated daily. These points were introduced in one Retrospective for

team discussion.

5.5.3 Applying Scrum Patterns

Scrum Patterns [Scr16b] were an important tool for process improvement by allowing us to go

through a list of common problems accompanied with recognised solutions. Due to its relevance

and to easily present sequences of patterns applied, we present these in section 5.6.

5.5.4 Maturity Assessment

Considering the state of art research presented in section 3.2.3, we set out to apply one of the

models to the case study: Scrum Maturity Model [YdLFdS11]. While we were able to evaluate if

the scrum practices were being accomplished or not, the number of metrics required was extensive.

Thus, we found that the use of these models are very time-consuming and highlight the need for

simple metrics that still reveal process improvement opportunities. Moreover, these models set

specific goals per level which may not be fully compatible with the flexibility of agile.

The first maturity assessment conducted with this model - only by briefly verifying if the

practices where followed - resulted in level 2, because the team was still failing to accomplish

some objectives of level 3.

Considering that this specific model does not enforce the collection of all the metrics (one

of level 4 practices says: “All metrics from level 2 to level 4 are monitored and managed for all

projects. This is suggested but optional.” [YdLFdS11]), after the case study we were able to place

the team in level 4, considering that they follow all the relevant Scrum practices and monitor their

status. They are near level 5 as they conduct regular improvement activities. However, the team

36

Case study at Zendesk

Figure 5.2: Burndown chart of one of the Sprints.

still needs to be able to keep a committed improvement cycle after the case study. It is important

to recognise that this model is designed to be applied to an entire organisation, and this case study

focus only in one team. Moreover, these must not be confused with CMMI levels.

5.5.5 Conducting velocity analysis

During the case study, we conducted velocity analysis to understand how the team was performing:

distribution of items done in a Sprint and velocity across Sprints. Figure 5.2 shows the burndown

chart for one of the Sprints. This chart shows that only in the second week of the Sprint, items

were marked as done. By revisiting what happened in that Sprint to look for causes, we noticed

two issues that were potentially related: the team was interrupted by company activities and the

size of the SBIs were large. This lead to bottlenecks in quality assurance and a rush to deploy

changes in the last days. While the company activities were decided by management - one could

still advice management to consider the influence of the events in the team’s rhythm - the size

of the items was something that could be easily addressed by the team. In the following Sprint

Planning meetings the team was asked to split large items into smaller ones.

Retrospectives play a very important role in agile process improvement and, as a consequence,

in our case study, as presented in figure 5.1. In the following sections we describe the most

important Retrospectives the team had during the case study and to which actions they led.

5.5.6 Preparing varied Retrospectives

One of the first points the team made in the beginning of the case study was that their Retrospec-

tives where mostly based on the activity Start, Continue, Stop doing - an activity where each team

member writes in sticky notes a proposal for each of these topics - and they would prefer different

37

Case study at Zendesk

Figure 5.3: The captain magnet being used in an item of the Scrum Board.

dynamics for the Retrospectives. Using resources like the books “Agile Retrospectives” [DL06]

and “Project Retrospectives” [Ker13], we were able to provide different experiences. The Ret-

rospectives activities included: analysis of the team’s Sprint burndown chart; free discussions of

one topic selected based on the issues detected during the Sprint; sharing of moments they valued

during the Sprint; moments for introspection followed by opinion sharing and discussion; etc.

5.5.7 Introducing swarming

To introduce the concept of Swarming [Scr16b, Pattern: Swarming: One-Piece Continuous Flow],

a small presentation on the topic was done followed by a discussion. Being a large team, the team

considered that it would be valuable for some of its members to swarm on items that needed help

to be completed. With swarming we introduced the concept of Captain, the one that would take

the important item and whom the others should assist. To remind the team to consider swarming

and who was the Captain, a new magnet was added to the Scrum Board with a captain hat (see

figure 5.3).

5.5.8 Bug triage

Being a customer service software maker, Zendesk uses its system to assist customers and escalate

problems to developers. Since the target team is the core team for the product they help develop,

it was getting many problem tickets. The existing flow was that the problems were addressed

immediately or sometimes kept in the ticket queue without updates. However, this was causing too

many interruptions to the team’s work since many reports were not critical and some could even be

seen as feature requests. During a Retrospective, this topic was introduced and the team discussed

a way to do bug triage. They came up with a flow that allowed them to still address important

issues right away while postponing other matters. The latter were directed to the Product Owner

for prioritisation. The team now assigns a person to be responsible for bug triage each week. The

flow created by the team is illustrated in figure 5.4.

38

Case study at Zendesk

Figure 5.4: The bug triage flow created by the team.

5.5.9 Analysing velocity and estimation

During Retrospectives, the team was invited to analyse graphs like the one in figure 5.2, in order

for them to understand how they were performing and how they could improve. These discussions

led to decisions on what to do to remove impediments and how to handle items that where not

completed by the end of the Sprint.

Along the way, some team members raised questions about the usefulness of estimating. The

reason was that for many months they were able to deliver without caring much about estimations.

The members then realised that the team has changed since then, because they had acquired new

members, thus creating new team dynamics and challenges. Estimation was recognised as an

important method to foster team performance.

5.5.10 Actions to team happiness

In one of the Retrospectives, following advise from the Scrum Pattern Happiness Metric [Scr16b],

the team was presented with two questions they had to answer individually and them discuss with

the group. The questions were “Based on your past experience, do you feel the team is working

well? Why, why not? Point out biggest issues. Think about development process, communication,

human resources, amount of work completed, product proudness, product quality, etc.” and “What

would increase your happiness with your work and role the most? What about with the company?”.

For the second question, the team was then asked to give points - using the same cards as

in poker planing - to rank the value of each proposal 1. These allowed everyone in the team,

including the team manager, to understand what was the most important concern to be addressed.

In the specific case, the action was to escalate the issue to management.

1This is an exercise proposed by Jeff Sutherland et al [Sut14].

39

Case study at Zendesk

Figure 5.5: Relative error between expected and real velocity of the team.

This method revealed to be effective, easily time-boxed, and with concrete results. It triggered

important discussions, in contrast with other methods, which leave the team in the more superficial

issues.

5.5.11 Evaluating improvement

In order to evaluate the successfulness of the process improvement activities, we conducted differ-

ent analysis. In this section, we present the most relevant ones.

Overheads reduced. One of the results we obtained was the reduction of the overheads in some

of the tasks, for example, with a better usage of planning tools as detailed in section 5.5.1, and with

a bug triage process that keeps one person in charge (presented in section 5.5.8). The reduction of

these overheads and interruptions, lead to more time of focused work.

A more stable velocity. As presented in this chapter, one of the main challenges the team faced

was related to estimates. In order to track the evolution of the team on the predictably of their

work, we monitored, among other metrics, the expected velocity in comparison to the points of

the items marked as done by the end of the Sprint. Figure 5.5 shows the relative error between

these two measurements. As shown, the team was able to reduce it from 25% to less that 5%. As

the team is now more predictable, it is now capable of improving its velocity. “Not until the system

has normative behaviour does history predict the future” [Scr16b, Pattern: “Updated Velocity”].

Happiness Metric. In order to assure that the level of happiness of the team members was not

affected by the process improvement activities, each Sprint the team was asked if they were happy

with the company and with their role. Figure 5.6 shows the results obtained. We were able to keep

a stable happiness metric while introducing changes that naturally cause discomfort.

40

Case study at Zendesk

Figure 5.6: Example of chart to track team happiness.

5.6 Scrum Patterns: applied

One of the most effective and complete ways to identify advanced process problems was by

analysing the Scrum Patterns. Reading the summary problem of each pattern helped to identify

the relevant ones and by reading it we were able to evaluate the severity of the problems.

In this section we present which patterns were applied to each specific most relevant problem

that the team had in an effort to show their applicability and importance.

5.6.1 Team work

As the team of the case study was a well established team, with Scrum in place, one would assume

that patterns associated with new teams would not apply. That was not what we found out.

For example, the pattern Small Teams [Scr16b] says:

“ If you have a lot of work ahead of you there is a temptation to throw the world at it.

But work that requires a high degree of shared knowledge and coordination, such as

product design and development, defies such approaches.

Therefore: Use small teams of people working on serialised work rather the striving

for false parallelism. ”

This was a problem that appeared in the team along time. In the beginning, the team was

small and there was a very well defined Circle of Trust [Scr16b], but as the company grew, new

41

Case study at Zendesk

members were integrated. Right now, the team has eight elements. Coordination issues are often

frequent, even with daily scrum meetings. Although there is a clear solution - split the team in

two, that requires approval from the company and a commitment of the team members to their new

roles. It also requires more effort from the Product Owner since he would need to be managing

two backlogs and attend related meetings.

This solution would also allow the team to solve another problem they have, related to the

Vision pattern [Scr16b],

“ How can we create an environment where everyone on the team is heading in the

same direction without locking in our final result?

The Product Owner creates and articulates a vision for the product, which will be

elaborated into a Product Backlog. The vision is a description of the desired future

state the Scrum Team will create. ”

In the specific case, the problem with the Vision is that the team is currently working on two

distinct sub-products thus lacking a vision of what the team builds.

During a Retrospective (as detailed in section 5.5.10), each team member was asked what

would increase their happiness the most and then all team members gave value points to each

proposal. The one with more points was “All the team works on the same goal”, with everyone

giving it the highest score. Splitting the team in a way that each new team would work on one of

the two sub-products, would greatly contribute to its performance.

The size of the team, complemented by the specialisation of its members, introduced another

issue: every Sprint the team needs to bring in stories to keep all occupied, thus having to negotiate

the backlog ordering with the Product Owner.

Nevertheless, in order to reduce the amount of items in progress and to make the team work

together when needed, the pattern Swarming: One-Piece Continuous Flow [Scr16b] was valuable:

“ Working on too many things at once leads to radical reduction in the effectiveness

of an individual, in the velocity of a team, or a company. It can cut velocity by 50%

and sometimes reduce it to zero.

Therefore: Focus maximum team effort on one item in the Sprint Backlog and get it

done as soon as possible. Whoever takes this item is Captain of the team. Everyone

must help the Captain if they can and no one can interrupt the Captain. As soon as

the Captain is Done, whoever takes responsibility for the next priority backlog item

is Captain. ”

In section 5.5.7, we detailed how this pattern was implemented.

5.6.2 Item estimation, velocity and scope

As the team got more mature, it started not feeling the need to estimate. But, with the introduction

of new members, there was more unpredictability of how much they could deliver. Yesterday’s

weather pattern says [Scr16b]:

42

Case study at Zendesk

“ It’s human nature that individuals and teams with self-esteem set increasingly higher

goals for themselves. (...) It is more common that these higher levels are unsustainable

in the long term.

Therefore: In most cases, the number of Estimation Points completed in the last Sprint

is the most reliable predictor of how many Estimation Points will be completed in the

next Sprint. ”

So the team restarted estimating all items and not bringing to the Sprint more than they did the

previous Sprint. Because Teams that finish early accelerate faster [Scr16b]:

“ Teams often take too much work into a Sprint and cannot finish it. Failure prevents

the team from improving.

Therefore: Take less work into a Sprint. ”

As the team continued, velocity was updated according to the pattern Updated Velocity [Scr16b].

The team also improved their commitment accuracy by directing more attention to Definition

of Ready [Scr16b]:

“ If work items are not precisely understood, development effort (and time) tend to

balloon, which in turn cause the Sprint to fail.

Therefore: Each item must meet at least the following criteria before it can go into

Sprint Planning as candidates to be put in the Sprint Backlog:

- The work to be done has value

- It has been estimated

- It is testable, and the tests for it have been defined

- The pieces are sized appropriately ”

In the effort of trying to reduce interruptions, the team introduced a new bug triage process

as described in section 5.5.8. According to this new process, the Product Owner is able to ask

for new issues to be taken to the Sprint. This, however will add more work to a full Sprint. The

solution for this problem was found using the pattern Change for free [Scr16b] which states that

the Product Owner is allowed to exchange items as long as the effort to materialize the new one is

not superior than the current one.

5.6.3 Patterns for process improvement

During the case study, patterns that advise on process improvement techniques were also applied.

In order to foster discussion on underlaying problems, it was necessary to apply Beyond the Happy

Bubble [Scr16b]:

“ Teams can get to a state where they are happy and things are going well. However,

this allows dysfunctions to persist. Whether or not they recognise it, the team is in

43

Case study at Zendesk

a rut, problems are not fixed, and performance begins to decline. It is like they are

surrounded by a bubble that insulates them from unpleasant but true information.

Therefore: Jolt the team into awareness of their situation (pop the happy bubble):

force the team to confront their happy-bubble-ness by showing them important defi-

ciencies. Then together with the team, make actions to improve. Create a culture in

the team of relentless, continuous self-examination and improvement. ”

Then, following a Kaizen Pulse [Scr16b] (see example in figure 4.4):

“ Because it takes time to establish a statistically sound baseline, it’s difficult to show

improvement from minute to minute, hour to hour, or even from Sprint to Sprint.

Therefore: Alternate periods of controlled velocity with spikes of process improve-

ment. ”

During Sprint Retrospectives, there were many ideas for improvement. In order to be able

to pick one to be implemented, the pattern Happiness Metric was applied: “Find out what one

improvement will increase the happiness of the team the most, and implement that improvement

in the next Sprint” [Scr16b].

This pattern is then followed by Scrumming the Scrum: “Identify the single most important

impediment at the Sprint Retrospective and remove it before the end of the next Sprint” [Scr16b]

by adding it as an item to the Sprint Backlog with a Definition of Done, thus also applying Testable

Improvements [Scr16b] by defining concrete actions, to make sure that their goals where accom-

plished. The team has yet to achieve a Scrumming the Scrum status for all the issues they found.

5.7 Summing up

During the case study, the team conducted different process improvement activities that lead to

a better workflow and more capacity. From a research point of view, we were able to identify

different techniques that can help teams improve their process without depending on an external

person - in the case study the researcher was part of the team. This research contributed to the

toolkit presented in chapter 4. We also conducted one of the first trials of the project “Scrum

Patterns”, reporting a good fit of the patterns to the scenario we were presented with during the

case study.

44

Chapter 6

Validation

In this chapter, we present the validation actions conducted to understand the applicability of the

toolkit presented in chapter 4.

6.1 Methodology

In order to evaluate the usefulness and appropriateness of the toolkit presented in this dissertation,

we formulated a questionnaire to be used in interviews with Process Masters (e.g. Scrum Masters),

then conducted these interviews and analysed the results.

We conducted eight interviews with an approximate duration of thirty minutes each. The

interviewees where given freedom to answer beyond the specific questions, thus not being limit to

the points addressed in the questions.

Due to the openness of the questions, in the analysis of the results, we group the answers as

possible based on their contents.

6.2 Questionnaire

The questionnaire included six main sections:

1. Questions for characterisation of the interviewee, supported teams and methodology used;

2. General questions to understand how the interviewee views process improvement and how

useful a toolkit for process improvement would be for the interviewee;

3. Questions on the metrics used by the team and which ones the Process Master values;

4. Questions on ways to identify and solve problems;

5. Questions to understand how the Process Master usually conducts retrospectives and what

he/she values in it;

45

Validation

6. Questions on assessment of change following the introduction of improvements.

The complete questionnaire can be found in appendix A.

6.3 Analysis of results

In this section, we analyse the results and take appropriate conclusions to the toolkit. The collected

answers can be found in appendix A.

6.3.1 Characterisation of the interviewees

The interviews where conducted in three different companies, with different approaches when it

comes to the process they follow. In the first company (interviews from A to C), the interviewees

also have other responsibilities, so their focus in the methodology is more reduced. By contrast,

in the two other companies, the interviewed Process Masters focus only on this role and support

more than one team (they could also be seen as agile coaches of teams that do not have a Process

Master). Except from team B, all the teams follow Scrum. The iterations range from one week to

three. All teams have in-house Product Owners.

6.3.2 Overview of process improvement practices followed

All participants said they were concerned in process improvement and took the time to think about

ways to improve the way their team works. Thus, all participants are interested in conducting
process improvements. However, only one of the three people who also work as developers

revealed a high concern with these.

When asked how they could evaluate improvements, most affirmed they would gather feedback

from the team. Therefore, highlighting the importance of the satisfaction of the team as a

positive indicator of the change.

6.3.3 Expectations for a process improvement toolkit

The majority of the respondents (6 in 8) would potentially use a small toolkit for process im-
provement. Many said that they would like to analyse its contents to better understand if it would

be useful or not. When asked what the guide should contain, most expect it to contain differ-
ent approaches or possibilities to conduct process improvement. Many implicitly assumed the

toolkit would be focusing on retrospectives.

6.3.4 Value of different metrics

In order to evaluate the value the interviewees give to different metrics proposed in the toolkit, we

indirectly asked about them. Converting back to the metrics presented, the results were as follows.

46

Validation

The notebook. When asked if it would be useful to note down issues to discuss with the team

later, 5 in 8 consider it relevant while the others said the issues should be handled immediately. We

now understand that this technique can potentially be scoped down to be a notebook of interesting

behaviours in the team that do not require an immediate action, but do indeed need improvement.

Process checklist. A process checklist was considered relevant by 4 out of the 8 respondents.

There is an important relation between the appraised usefulness of a checklist and the years
of experience of the Process Master. More mature Process Masters say that this is something

they have in their mind. When asked if they would consider using the checklist in a retrospective,

among other similar opinions, interviewee F said “I don’t think they would pay any attention to

it”. Overall, this tool still seems useful for Process Masters that do not completely dominate the

methodology - a possible target of the toolkit presented.

Performance analysis. When asked about the usefulness of tracking velocity, the opinions di-

verged: 5 in 8 said it was important. The ones who considered this metric important, correlate

to the more experienced Process Masters. Thus, revealing the importance of this metric in the
toolkit as a way to foster its use among the less experienced ones. All people interviewed re-

vealed to be concerned when the team fails to be delivering regularly. One of the interviewees said,

however, that the evolution of a story burndown chart can be a flat line in the beginning without

that representing a problem, since the team works with large stories and small tasks. Interestingly,

4 in 8 showed no concern with iterations where the team is not able to deliver what it should. This

can be, once again, correlated to less experienced Process Masters and more relaxed environments.

Collecting individual feedback. All participants in this study said they did or wanted to collect

individual feedback from team members. Some did it formally while others more informally. The

majority added this is a very useful way to understand personal problems that may affect the team.

Scrum Patterns. Most respondents (7 in 8) said they would possibly use a list with problems
teams usually face to look there for recommended solutions. One Process Master showed con-

cerns that it could be too general while another said there should be practical evidence of the

usefulness of the solutions.

6.3.5 Steps followed to find solutions

Before introducing, in the conversation, the possibility to use a list of recurrent problems with

associated solutions (Scrum Patterns), we asked what they would do if they were looking for

solutions. All respondents mentioned that one of the main possibilities would be to discuss the
problem with their peers. This is a point that is mentioned in the toolkit.

47

Validation

6.3.6 Conduction of retrospectives

The questions on retrospectives aimed to understand how the interviewees conducted retrospec-

tives. The answers where very coherent among respondents. All said it was very important to set
actions by the end of the retrospective. When asked about the activities conducted, most men-

tioned activities were varied and that they took time to prepare them beforehand. Thus, showing

the importance of good retrospectives.

6.3.7 Value of different methods for change evaluation

All the participants said that it was relevant to verify if the changes lead to an improvement.

Most say they do this by discussing with the team in the retrospective that follows the change

implementation. We concluded that, although this way of assessing change is subjective, it can

be a good first indicator. Thus, a possible addition to the toolkit. In what velocity analysis is

concerned, only 3 in 8 valued it. Some pointed out that is it difficult to link velocity variation
to changes in the process. One of the participants mentioned the difficulty of using it when the

velocity is unstable. This is a point covered in the toolkit.

While all the respondents affirmed the extreme importance of making sure the team is
happy, only 3 in 8 captured this information in a more objective manner.

6.4 Summing up

All-in-all, after conduction the validation phase we were able to better understand both the expec-

tations of Process Masters and the relevance of the points covered in the toolkit.

From the analysis we did in section 6.3, we can confirm the most adequate target group of

the toolkit presented are Process Masters that are an active part of the team and thus are not able

to neither continuously focus on process improvement activities or have an external vision of the

events. Interviewing “multi-team”, “more advanced” Process Masters showed how some of the

practices the toolkit puts forward, by not being so elementary, can foster the evolution of the

Process Master as one. On the other hand, practices considered not so useful by more experienced

ones, were said to be useful by the remaining Process Masters, thus also pointing out their value.

While analysing the results in section 6.3, we identified very specific areas were the toolkit

could be improved. In a more broad approach, we believe that to better meet the expectations of

Process Masters the toolkit could increase the number of examples and give some more focus to

retrospectives.

48

Chapter 7

Conclusions and future work

Agile methodologies introduced a new level of freedom and adaptability. However, this cannot be

seen as an excuse for a processless environment. Thus, it is of the most importance that teams are

able to improve their process.

In this work we reviewed agile methodologies and process improvement techniques, we con-

ducted a case study where we tried different improvement methods and contributed to a raise in

the team’s performance, and proposed a simple but effective way to conduct agile process im-

provement activities. Agile Forward, the toolkit introduced, focus on the different steps needed

for process improvement: Metrics collection and evaluation; Analysing the problems and find-

ing solutions; Preparing a retrospective; The retrospective; Putting change into action; Assessing

change.

In the validation phase we learned that there is a clear interest from the target audience in

improving their process. The different items of the toolkit described in this dissertation appear to

match the needs of the interviewees and encapsulate ways to detect and solve problems in areas

they value.

We set out with the goal of understanding the overall phenomena of process improvement,

from analysis to concrete planning and implementation phase. We believe we accomplished this

goal by identifying key obstacles, common practices, and recommendations.

Considering not only the input from the validation phase but also our perception of the work

done, we believe future work could focus on the following aspects:

1. Based on the feedback received, test new ways of process improvement to be potentially

included in the toolkit;

2. Based on the feedback received, a next version of the toolkit could include more exam-

ples on each item so that the users of the toolkit could better understand the purpose and

applicability of each item;

49

Conclusions and future work

3. Conduct more validation interviews to collect feedback from even more different environ-

ments thus increasing the possibility of generalisation of the toolkit;

4. Focus more on other agile methodologies to increase the applicability of the toolkit;

5. Carry out other case studies with the current version of the toolkit to evaluate its applicability

in practice;

6. Follow-up for a longer period with the team targeted in the case study to see if they were

able to keep improving.

To end with, this dissertation, as a learning experience, made the author realise the importance

and complexity of process improvement. A complexity that is subjective and ranges from phycol-

ogy to core engineering, and must meet in a balanced point where a Software Engineer is able to

make improvements happen. Software engineering is still a new industry and a different one: one

that depends on each single person that help build a product. If we are able to empower them to

their best, the end-product will be by far superior.

50

References

[Sc15] Scrum Alliance. State of Scrum Report - 2015 [online]. July 2015. URL: https:
//www.scrumalliance.org/why-scrum/state-of-scrum-report/
2015-state-of-scrum.

[AHAK11] Amr Noaman Abdel-Hamid and Mohamed Amr Abdel-Kader. Process Increments:
An Agile Approach to Software Process Improvement. In 2011 AGILE Conference,
pages 195–200. IEEE, July 2011.

[ALMN99] David E Avison, Francis Lau, Michael D Myers, and Peter Axel Nielsen. Action
research. Communications of the ACM, 42(1):94–97, January 1999.

[AMO13] Muhammad Ovais Ahmad, Jouni Markkula, and Markku Oivo. Kanban in software
development: A systematic literature review. 39th EUROMICRO Conference on
Software Engineering and Advanced Applications, pages 9–16, 2013.

[BA04] Kent Beck and Cynthia Andres. Extreme Programming Explained. Embrace
Change. Addison-Wesley Professional, November 2004.

[BBvB+01] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunning-
ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
Jon Kern, Brian Marick, Robert C Martin, Steve Mellor, and Ken Schwaber. Man-
ifesto for Agile Software Development [online]. 2001. URL: http://www.
agilemanifesto.org.

[BDS98] Mike Beedle, Martine Devos, and Ken Schwaber. SCRUM: An extension pattern
language for hyperproductive software development. December 1998.

[Bro11] Pawel Brodzinski. Kanban: Mapping Process to Kanban Board [on-
line]. August 2011. URL: http://brodzinski.com/2011/08/
map-process-to-kanban-board.html.

[BT04] Barry W Boehm and Richard Turner. Balancing Agility and Discipline: Evaluating
and Integrating Agile and Plan-Driven Methods. ICSE, pages 718–719, 2004.

[CKS11] Mary Beth Chrissis, Mike Konrad, and Sandra Shrum. CMMI for Development.
Guidelines for Process Integration and Product Improvement. Pearson Education,
March 2011.

[CM09] Patel Chetankumar and Ramachandran Muthu. Agile Maturity Model (AMM): A
Software Process Improvement framework for Agile Software Development Prac-
tices. 2(1), January 2009.

51

https://www.scrumalliance.org/why-scrum/state-of-scrum-report/2015-state-of-scrum
https://www.scrumalliance.org/why-scrum/state-of-scrum-report/2015-state-of-scrum
https://www.scrumalliance.org/why-scrum/state-of-scrum-report/2015-state-of-scrum
http://www.agilemanifesto.org
http://www.agilemanifesto.org
http://brodzinski.com/2011/08/map-process-to-kanban-board.html
http://brodzinski.com/2011/08/map-process-to-kanban-board.html

REFERENCES

[Coh16] Mike Cohn. Scrum Methodology and Project Management [online]. 2016. URL:
https://www.mountaingoatsoftware.com/agile/scrum.

[Cri16] Crisp. Scrum Checklist [online]. 2016. URL: https://www.crisp.se/
gratis-material-och-guider/scrum-checklist.

[DL06] Esther Derby and Diana Larsen. Agile Retrospectives. Making Good Teams Great.
2006.

[DL16] Jeff De Luca. The Latest FDD Processes [online]. 2016. URL: http://www.
nebulon.com/articles/fdd/latestfdd.html.

[HD06] Deborah Hartmann and Robin Dymond. Appropriate agile measurement: using
metrics and diagnostics to deliver business value. In AGILE 2006, pages 6 pp.–134.
IEEE, 2006.

[HR14] Neil Harrison and Joel Riddle. Teams That Finish Early Accelerate Faster: A Pattern
Language for High Performing Scrum Teams. HICSS, pages 4722–4728, 2014.

[ISO13] ISO. ISO/IEC 15504-6:2013 , 2013.

[Jak09] Carsten Ruseng Jakobsen. Scrum and CMMI Going from Good to Great. In 2009
Agile Conference (AGILE), pages 333–337. IEEE, 2009.

[JJ07] Carsten Ruseng Jakobsen and Kent Johnson. Scrum and CMMI Level 5: The Magic
Potion for Code Warriors. In AGILE 2007, pages 272–278. IEEE, 2007.

[Ker13] Norman Kerth. Project Retrospectives. A Handbook for Team Reviews. Addison-
Wesley, July 2013.

[Mar09] Robert C Martin. Clean Code - a Handbook of Agile Software Craftsmanship. Pren-
tice Hall 2009, 2009.

[MM06] Micah Martin and Robert C Martin. Agile Principles, Patterns, and Practices in C#.
Pearson Education, July 2006.

[Mou] Mountain Goat Software. Planning Poker: An Agile Estimating and Planning Tech-
nique.

[PC12] Mary Poppendieck and Michael A Cusumano. Lean Software Development: A
Tutorial. Software, IEEE, 29(5):26–32, 2012.

[PP03] Mary Poppendieck and Tom Poppendieck. Lean Software Development. An Agile
Toolkit. Addison-Wesley, May 2003.

[RM04] Linda Rising and Mary Lynn Manns. Fearless Change. Patterns for Introducing
New Ideas. Pearson Education, October 2004.

[RS03] Doug Rosenberg and Matt Stephens. Extreme Programming Refactored. The Case
Against XP. Apress, August 2003.

[SA07] Outi Salo and Pekka Abrahamsson. An Iterative Improvement Process for Agile
Software Development. Software Process Improvement and Practice, 12(1):81–100,
2007.

52

https://www.mountaingoatsoftware.com/agile/scrum
https://www.crisp.se/gratis-material-och-guider/scrum-checklist
https://www.crisp.se/gratis-material-och-guider/scrum-checklist
http://www.nebulon.com/articles/fdd/latestfdd.html
http://www.nebulon.com/articles/fdd/latestfdd.html

REFERENCES

[Scr16a] Scrum.org. Open Assessments [online]. 2016. URL: https://www.scrum.
org/Assessments/Open-Assessments.

[Scr16b] ScrumPLoP. Scrum Patterns [online]. 2016. URL: https://sites.google.
com/a/scrumplop.org/published-patterns/home.

[Soc14] Ieee Computer Society. Swebok. Guide to the Software Engineering Body of Knowl-
edge. IEEE Computer Society Press, January 2014.

[SS13] Ken Schwaber and Jeff Sutherland. The Scrum Guide [online]. July 2013. URL:
http://www.scrumguides.org/.

[Sut14] J J Sutherland. Scrum. The Art of Doing Twice the Work in Half the Time. Crown
Business, September 2014.

[Wel13] Don Wells. Extreme Programming: A gentle introduction [online]. 2013. URL:
http://www.extremeprogramming.org.

[Wik16] Wikipedia. Project management triangle - Wikipedia, the free encyclopedia [online].
2016. URL: https://en.wikipedia.org/wiki/Project_management_
triangle.

[YdLFdS11] Alexandre Yin, Soraia de Lemos Figueiredo, and Miguel Mira da Silva. Scrum
Maturity Model. January 2011.

[Yin11] Alexandre Yin. Scrum Maturity Model. Master’s thesis, Instituto Superior Técnico,
Lisboa, September 2011.

[Zen16] Zendesk. Press Releases & Announcements | Zendesk [online]. 2016. URL:
https://www.zendesk.com/company/press/.

53

https://www.scrum.org/Assessments/Open-Assessments
https://www.scrum.org/Assessments/Open-Assessments
https://sites.google.com/a/scrumplop.org/published-patterns/home
https://sites.google.com/a/scrumplop.org/published-patterns/home
http://www.scrumguides.org/
http://www.extremeprogramming.org
https://en.wikipedia.org/wiki/Project_management_triangle
https://en.wikipedia.org/wiki/Project_management_triangle
https://www.zendesk.com/company/press/

REFERENCES

54

Appendix A

Validation interviews

In this appendix, it is possible to find the complete questionnaire used in the validation phase

presented in chapter 6 as well as the individual answers to it.

A.1 Complete questionnaire

A.1.1 Characterisation

1. Years of experience in agile

2. Current team details:

(a) Size

(b) Methodology

(c) Iteration duration

(d) End product

3. Process Master is also team manager?

4. Is current team supported by a coach?

5. Does the team have an in-house PO, how many teams does the PO support?

A.1.2 General questions

1. Openness to conduct process improvement: Do you usually think of different ways you

could improve the way the team works?

2. Verification of improvement: If so, how do you know if the change had a positive effect?

3. Availability to learn: Do you try to bring new ideas to the team you read somewhere else?

55

Validation interviews

4. Availability to conduct process improvement: Do you dedicate time to think about process

improvement activities?

5. Availability to use the toolkit: If you were given a mini-guide to help with process improve-

ment, what would be the chances of using it?

6. Expectations for the toolkit: What do you think this guide should contain?

A.1.3 Metrics collection and evaluation

1. Would it be useful to note down issues you see to discuss them with the team later?

2. If you add a checklist of practices you should be doing in methodology would you use it?

Alone or with the team?

3. Do you think it is useful to track the velocity of the team?

4. Would you be worried if the team seems to not perform as it should during an iteration, and

only in the last days everything is completed?

5. Would you care if your team didn’t finish what it commits to in the beginning of the itera-

tion?

6. Do you have private meetings with other team members regularly? Do you discuss problems

with the team members, trying to collect feedback on the process or is it more personal?

A.1.4 Analysing the problems and finding solutions

1. If you found a problem and were wondering of a solution for it, what would you do?

2. If there was a list with problems teams usually face and corresponding recommended solu-

tions, would you look there for solutions?

A.1.5 Preparing and conducting retrospectives

1. Duration, frequency and participants of the retrospective.

2. Do you take time to prepare the retrospective beforehand?

3. Do you vary the activities?

4. How important it is to set concrete actions by the end of the retrospective? If you set actions

in the previous retrospectives, did you personally made sure they happened, i.e. remind the

team?

5. During a retrospective do you try to lead it, or do you let the discussion go?

56

Validation interviews

A.1.6 Putting change into action and assessing change

1. Imagine you put an improvement in place, is it important to see if there were actual im-

provements?

2. How do you know if what you decided to change, actually improved the process?

3. Would it be important to see if the velocity changed?

4. Is it important to make sure the team is not unhappy due to a change in the way they work?

A.2 Answers

The anonymised answers to the questionnaire are presented in table A.1.

57

V
alidation

interview
s

Table A.1: Answers to questionnaire

Characterization of the process and background information

ID Market Years working with
Agile Team(s) size Methodology Iteration duration End product Scrum master and

developer?
Is current team

supported by a coach?

A Customer Service
Software 6 1 team - 3 elements Scrum 2 weeks Web App Yes No

B Customer Service
Software 10 1 team - 8 elements Kanban - not completely 1 week Web App Yes No

C
Customer Service

Software 3 1 team - 7 elements Scrum 2 weeks Web App Yes No

D Insurance 1 2 teams - 3 and 7 elements Scrum 2 and 3 weeks mainframe 100% SM N/A

E Insurance 5 2 teams - 9 and 4 elements Scrum 2 and 3 weeks mainframe 100% SM N/A

F Insurance 8 3 teams - 4, 5 and 5
elements Scrum 2 and 3 weeks frontend and mainframe 100% SM N/A

G E-commerce 4 4 teams - around 7 each Scrum 2 weeks mobile 100% SM N/A

H E-commerce 4 4 teams - around 5 each Scrum 2 weeks financial applications 100% SM N/A

ID

58

V
alidation

interview
s

Characterization … General questions General questions Metrics & …

Does the team have an
in-house PO, how many

teams does the PO
support?

Do you usually think of
different ways you could

improve the way the
team works?

If so, how do you know
if the change had a

positive effect?

 Do you try to bring new
ideas to the team you
read somewhere else?

Do you dedicate time to
think about process

improvement activities?

If you were given a mini-
guide to help with

process improvement,
what would be the
chances of using it?

 What do you think this
guide should contain?

Would it be useful to
note down issues you see
to discuss them with the

team later?

In-house: 2 teams more or less asks the team in the next
retrospective no yes very probable

recipe on how to do things
or a guide to help reflect
on the current process,

suggestions how to
engage the team

Yes

In-house: 2 teams yes sets a date to evaluate,
changes 1 thing at a time

yes, and sends articles to
team, inspire

yes - spends 5 to 6 hours a
week reading about ways
to improve the process

very probable

techniques for process
improvement but with

explanations why it works
/ reasons behind

yes, the team keeps a
shared board for this

porpose

In-house: 2 teams
more or less, takes time
every week to team for

team managing/SM tasks
feeling yes yes more or less, all the teams

are different ideas to try yes

In-house: 2 teams yes by creating a culture of
feedback yes N/A (full-time) very probable practical examples

more or less, many issues
need to be discussed the

moment they happen

In-house: 2 teams yes from feedback from the
team yes N/A (full-time) believes there is more

value in team dynamics

purpose of each proposal,
what the outcome should

be, expected reactions
from the team

yes, if it is not handled in
small discussions during

the sprint

In-house: 2 teams yes feeling yes N/A (full-time) maybe. Would take a
freely approach

exercises, tips and actions
on different areas

usually will not wait, will
talk individually to team

members. Sometimes puts
it on the Scrum Board to
be discussed the next day.

In-house: 1 team yes
the team decides in the

next retrospective if it was
beneficial

yes N/A (full-time)
no, because the Agile
values are enough to

know how to improve
N/A Does not wait

In-house: 1 or 2 teams yes
based on the feedback

provided by the team in a
retrospective

yes N/A (full-time)

maybe, after analysing its
contents and discussing
the possible usage with

the team

First, it shouldn't be a
recipe. Help to indentify
areas for improvement

and then which
possibilities to solve a

problem. It should mostly
try to place people in a
process improvement

mindset.

yes, if it was difficult to
deal with and needed to
be further discussed or
was of low priority and
could be introduced in a

retrospective

A

B

C

D

E

F

G

H

ID

59

V
alidation

interview
s

Metrics & detection of problems Retrospectives

If you add a checklist of
practises you should be
doing in methodology

would you use it? Alone
or with the team?

Do you think it is useful
to track the velocity of

the team?

Would you be worried if
the team seems to not
perform as it should

during an iteration, and
only in the last days

everything is completed?

Would you care if your
team didn’t finish what

it commits to in the
beginning of the

iteration?

Do you have private
meetings with other

team members
regularly? Do you

discuss problems with
the team members,

trying to collect
feedback on the process
or is it more personal?

If you found a problem
and were wondering of a

solution for it, what
would you do?

If there was a list with
problems teams usually
face and corresponding
recommended solutions,
would you look there for

solutions?

Duration, frequency and
participants of the

retrospective.

Yes, but not trying to
implement all. Alone and

with the team.
yes, for big teams yes No Yes, but don't discuss

process
The SM will usually ask

peers and the team. Yes 1 hour once a month with
team and PO

just a quick look, will not
follow. N/A

yes, may suggest that the
team is using the tool as
reporting, stories are not

gradual enough, very
risky.

N/A

Yes, process discussions
are not regular. The SM

tries to ask people to bring
the issues to the
retrospective but

sometimes people are shy.

Will search on-line, ask
peers in the office,

describe the problem to
the team and ask if they
also feel it is an issue.

Yes
Retrospectives each week
with a duration of half-an-

hour with team and PO

yes, but skeptic, first
alone.

the team does not estimate
items

yes, not ideal. If
systematic, the stories
should be splited. Can
also be impacted by
external factors like

company events.

The team usually takes
less than what they can
do. Otherwise, wouldn't

care much.

Yes, not usually about
process; Will bring the

issue to retrospectives if it
makes sense.

The SM will talk with the
manager and with other

team leads.

Yes, if there are practical
examples

Once a month, 1 hour
with team and PO

yes, alone. no yes, that is a current
problem.

Depends on why the team
doesn't finish.

No, but would like to do
it. Seems that in

retrospectives there is no
sincere feedback.

The SM will ask other
SMs in the company and

his leader.
Yes

Between 1 hour and 1h30
per sprint with team and

PO

not for SM, but maybe for
the team to have a look. yes

yes, suggests a problem
with the break down of

stories to tasks.
Yes. Not formally, casual

discussions.

First, search in the web
and then discuss with

colleagues.

Reduced chance, believes
it depends very much on

the team

1 hour each sprint with
team and PO

no yes
yes. The SM will ask the

team for reasons behind it
if she sees it happening.

Yes.

No, has some reservations
because it may look like
she is the leader of the

team.

The SM will discuss it
with colleagues and

leader.
Yes, would like to try it

Between 1 hour and 2
hours per sprint with team

and product owner

no, knows what matters. yes, very important
yes, but that is something
the team discusses every

day.

Yes, the team has a carry
over chart. The SM tries
to understand why it is
happening during the

sprint.

Very informally during
breaks.

Will discuss it with some
members of the team,
manager and peers.

Yes, SM is familiar with
Scrum Patterns. Believes

it is very relevant.

1 hour per sprint with
team and PO

Sometimes to be
reminded of each point,

and understand why they
are not doing some.

Would analyse alone and
then bring the most

important point to the
team.

yes, to know how much
they can deliver

no, if doing a story
burndown chart, it is

normal to take some time
to finish the first ones

since stories are large and
then splitted into tasks.

yes, considers it a
problem and tries to make

sure the teams do not
carry over stories from

sprint to sprint

Informally but mostly
about personal problems.
Prefers to discuss isues

with the all team.

Would ask his peers about
their opinion and also for

some articles he could
read on the issue

yes, definitely 1 hour per sprint with
team and PO

A

B

C

D

E

F

G

H

ID

60

V
alidation

interview
s

Retrospectives Measuring Improvements

Do you take time to
prepare the

retrospective
beforehand?

Do you vary the
activities?

How important it is to
set concrete actions by

the end of the
retrospective? If you set
actions in the previous
retrospectives, did you
personally made sure

they happened, i.e.
remind the team?

During a retrospective
do you try to lead it, or
do you let the discussion

go?

Imagine you put an
improvement in place, is

it important to see if
there were actual
improvements?

How do you know if
what you decided to

change, actually
improved the process?

Would it be important to
see if the velocity

changed?

Is it important to make
sure the team is not
unhappy due to a

change in the way they
work?

No No Very Important Leads the discussion Yes

The team usually revisits
the actions from last
retrospective, tries to

understand how the teams
feels about it

Does not believe there is a
correlation between those Yes, but not objectively.

Yes Yes, some different
activities and some offsite

Very important, usually
needs to remind the team

on the actions

In the beginning uses 5
minutes to tell his opnion,

leading seat is rotating
Yes, based on hapiness

Doesn't measure it
objectively. Tries to

perceive if the ROV is
improved.

NA Yes.

No No, but would like to do
that

Important, usually actions
are assigned to team

members

Tries not to lead, hopes
someone else takes that

responsibility
Yes Usually checks in the next

retrospective. NA Yes, very important.

Yes Yes
Very important, it is

necessary to remind the
team

Lets the discussion flow Yes Asks individually. Does not value it Yes, important.

Yes Yes

Important but the
discussion is also very
important, needed to

remind the team.

Both Yes Asks the team in the next
retrospective.

Yes, but currently the
teams have problems
keeping the velocity

stable

Yes, it is the most
imporant indicator. The

SM says she doesn't do it
objectivily

Yes Yes

Very important to have at
least 1 action point. An
element of the team is

assigned to it.

Mostly leads it Yes Sets a date with the team
to evaluate change. Yes

Yes, the most important.
Usually asks to how

happy each team element
is from 1 to 5 in
retrospectives.

Yes Yes, is building a
Retrospectives Toolkit

Essential, actions are
added to the Scrum Board

and treated and other
regular items.

Depending on the
retrospective, both are

possible
Yes Subjective analysis in the

next retrospective. Yes

Very important. Prepares
activities in retrospectives

to track the level of
hapiness.

Yes
Usually uses one of three
activities he considers to

be the best

Very important in most
cases. In some cases, it is

acceptable to use the
retrospective as a deep

sharing moment. Most of
the times tries to assume
the responsability of the

change, otherwise remind
the team.

Makes sure the time-
boxes are respected but
lets the discussion flow

Yes

Usually an improvement
comes from a team

member feedback. If that
feedback changes, the

action worked.

No, it is very difficult to
mach actions to velocity

changes.

One of the most important
points. Once a quarter,

measures it with 3
hapiness levels.

A

B

C

D

E

F

G

H

ID

61

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation and Goals
	1.3 Methodology
	1.4 Expected impact
	1.5 Document Structure

	2 Agile Software Processes
	2.1 Introduction
	2.2 Most popular agile methodologies
	2.2.1 Scrum
	2.2.2 Kanban
	2.2.3 Lean software development
	2.2.4 Extreme Programming
	2.2.5 Feature Driven Development

	2.3 Analysis of Extreme Programming
	2.3.1 The problems and variables XP targets
	2.3.2 The fundamentals behind XP
	2.3.3 Primary practices
	2.3.4 Difficulties using XP

	2.4 Analysis of Scrum
	2.4.1 The Scrum Team
	2.4.2 The Scrum process
	2.4.3 Limitations of Scrum

	2.5 Scrum Patterns
	2.5.1 Value stream
	2.5.2 Process improvement
	2.5.3 Product organisation
	2.5.4 Scrum Core

	2.6 Summing up

	3 Process Improvement
	3.1 Introduction
	3.2 Process evaluation
	3.2.1 Capability Maturity Model Integration
	3.2.2 Agile Development Metrics
	3.2.3 Agile Practice Maturity

	3.3 Agile process improvement approaches
	3.4 Summing Up

	4 A simple toolkit for process improvement
	4.1 Introduction
	4.2 Target audience
	4.3 Approach
	4.4 Metrics collection and evaluation
	4.4.1 The notebook
	4.4.2 Process checklist
	4.4.3 Performance analysis
	4.4.4 Collecting individual feedback
	4.4.5 Scrum Patterns

	4.5 Analysing the problems and finding solutions
	4.6 Preparing a retrospective
	4.7 The retrospective
	4.8 Putting change into action
	4.9 Assessing change
	4.9.1 Velocity analysis
	4.9.2 Happiness Metric

	4.10 Summing up

	5 Case study at Zendesk
	5.1 Goals
	5.2 Methodology
	5.3 Characterisation of the process
	5.4 Characterisation of the team
	5.5 Results
	5.5.1 Detecting and solving day-to-day problems
	5.5.2 Using a checklist to detect common issues
	5.5.3 Applying Scrum Patterns
	5.5.4 Maturity Assessment
	5.5.5 Conducting velocity analysis
	5.5.6 Preparing varied Retrospectives
	5.5.7 Introducing swarming
	5.5.8 Bug triage
	5.5.9 Analysing velocity and estimation
	5.5.10 Actions to team happiness
	5.5.11 Evaluating improvement

	5.6 Scrum Patterns: applied
	5.6.1 Team work
	5.6.2 Item estimation, velocity and scope
	5.6.3 Patterns for process improvement

	5.7 Summing up

	6 Validation
	6.1 Methodology
	6.2 Questionnaire
	6.3 Analysis of results
	6.3.1 Characterisation of the interviewees
	6.3.2 Overview of process improvement practices followed
	6.3.3 Expectations for a process improvement toolkit
	6.3.4 Value of different metrics
	6.3.5 Steps followed to find solutions
	6.3.6 Conduction of retrospectives
	6.3.7 Value of different methods for change evaluation

	6.4 Summing up

	7 Conclusions and future work
	References
	A Validation interviews
	A.1 Complete questionnaire
	A.1.1 Characterisation
	A.1.2 General questions
	A.1.3 Metrics collection and evaluation
	A.1.4 Analysing the problems and finding solutions
	A.1.5 Preparing and conducting retrospectives
	A.1.6 Putting change into action and assessing change

	A.2 Answers

