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Abstract

Rolling element bearings are components widely used in industrial applications.
Their failure leads to economical and logistical losses, considering production loss or
repairing and replacement costs.

A suitable and predictive plan of maintenance would maximize times between
intervals while constinuously monitoring the equipment, looking for a fault. If one is
detected, then its evolution is monitored and replacement is incorporated in the
maintenance plan according to the estimation of the remaining life time.

Even though many other techniques are available, vibration monitoring is still
the most used technique for condition monitoring, due to its robustness and accuracy
in fault identification. The tool developed in this work applies a series of different
signal processing techniques to enhance the fault’s signature signal: Angular
resampling, Cepstral Editing Procedure, Cyclic Spectral Correlation and Envelope
analysis with filtering finishing with feature calculation, or feature extraction.

Additionally, this project paper suggests a method for semi-automatic signal
processing based in the identification of the frequency band and feature selection.

Furthermore this paper covers various papers on condition monitoring, signal
processing of vibration signals, and finally feature selection and classification.

The final goal is, along with the signal processing method, to develop a method
for class classification using Python that can classify a specific class with good
accuracy.

Finally, some results are shown where one can extrapolate some conclusions
about the efficiency of the different processes used in this method.
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Resumo

Os rolamentos, de esferas ou de rolos, sdo amplamente utilizados em maquinas
cujos componentes funcionem segundo movimentos de rotacdo. A falha de um simples
rolamento leva a perdas econdmicas, custos de reparacao e substituicao e, por vezes,
custos logisticos para a empresa, uma vez que leva & paragem do equipamento e,
consequentemente, paragem da cadeia de produgao.

Um plano de manutengao adequado, através de manutencao preditiva, maximiza
os tempos em que o equipamento estd em funcionamento, ao mesmo tempo que
monitoriza constantemente, procurando uma falha. Se tal for detectada, esta é
monitorizada e a sua substitui¢do é incluida no plano de manutengao, de acordo com a
estimativa do tempo de vida util do equipamento.

Apesar de muitas outras técnicas estarem disponiveis, o recurso & anélise por
vibragao ainda é a principal técnica para a aplicagdo de monitorizacao de condigao,
devido & sua robustez e precisao para identificacao de falhas. A ferramenta aqui
desenvolvida aplica uma série de diferentes técnicas de processamento de sinal para
que este seja melhorado: re-amostragem para o dominio angular, procedimento de
edigdo cepstral, correlagdo espectral ciclica e anéalise de envelope com filtragem,
acabando com o calculo de indicadores ou extracao de indicadores.

Para além disso, este documento sugere um método para processamento
semi-automético de sinal e extracao de recursos, envolvendo filtragem.

Adicionalmente, este documento cobre vérios artigos sobre o tema condition
monitoring (monitorizacgdo de condigao), o processamento de sinais de vibragdo e
finalmente a selecao e classificacao dos indicadores.

O objetivo final é, juntamente com o método de processamento de sinal,
desenvolver uma ferramenta para classificacao de falha através de librarias disponiveis
em Python, librarias essas que podem classificar classes com boa precisao.

Finalmente, alguns resultados sao apresentados onde se podem extrapolar
algumas conclusoes sobre a eficiéncia de cada um dos processos usados neste método.
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CHAPTER 1

Introduction

1.1 Condition Monitoring and its importance for bearing
analysis

Every mechanical equipment will develop a fault during its useful working life.
Whether it is a light fault like a component that needs reconditioning or lubricant
replacement or a more severe fault like one or more components that need replacement
altogether, faults will eventually happen. The severity of the fault will depend on a
wide range of factors. To tackle this, condition monitoring has been conducted
through every equipment even if it is on a unconscious level: whether it is through
noise analysis, lubricant check when it is being changed or other more primitive
measures, this type of maintenance strategies have been performed since the beginning
of Mechanical Engineering.

The field of Condition Monitoring (CM]) is getting more and more attention
because its methods are becoming recognised as the most efficient strategies for
carrying out maintenance [IJ.

However, before going deeper into the subject of [CM] it is important to have a
clear perception of the meaning of the term [CMl Even though each author defines it
differently in the literature, one can define [CM] as:

"Condition Monitoring is a monitoring process or a sensitive tool that
focuses on early detection of faults, failures and wear of machinery with the
intention to minimize downtimes and maintenance costs, and consequently,
mazimize production.” |2]

Additionally, according to [3], [CM] can also be defined, in a more general way, as
a process or tool that integrates technologies, specialised people, condition indicators
and quality data/measurements to estimate the health condition of a machine and to
make the best decisions about maintenance actions.

One sees an increasing trend in today’s market: the increasing competition
between industries to keep launching products that are both effective and reliable
while meeting each market’s regulations. To match this severe internal competition,
industries have no other option than to demand engineers and designers to produce
machines and processes able to withstand brutal work conditions, so that, sometimes
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machines have operating cycles of weeks, or even months only stopping for
programmed events [4].

The evolution of industry equipment requires better and better maintenance
strategies. Maintenance work should not be performed without consideration but it
should also be kept in mind that a machine or equipment cannot run without an
effective maintenance strategy.

Maintenance through can be performed through a wide range of techniques
from chemical effects analysis, wear debris analysis via oil analysis through
thermography or vibration analysis. The latter is the most commonly technique used
when it comes to applying a Condition - based Maintenance Strategy (CBMS) for its
signal processing techniques have been studied for more than thirty years. Nowadays
other techniques are being studied such as analysis using Acoustic Emission sensors,
or Microphones. However vibration analysis is still applied in conjunction to these
techniques so that the conclusions can be cross-checked and its information can be
used to help when it comes to make decisions [5].

The dynamic nature of machines requires correct maintenance for them to
perform reliably at peak performance [6].

Machines were originally operated until failure (Run-to-Break), prioritising
maximum operating times between breakdowns. However, this meant that when
failure does occur can be catastrophic and result in severe consequential damage. This
is undesirable, especially when such failure can be prevented by experienced
technicians, sometimes with decades of experience, who are able to detect the state of
a machine through sound, touch or other types of inspection. The Run-to-Break
strategy still has place in industries where the production losses are not high and the
machine is not essential for production, for example sewing machines in the textile
industry.

Before detecting the failure Maintenance After detecting the failure
Strategies
|
Design-Out Preventive Corrective
Maintenance Maintenance Maintenance
Condition-Based Maintenance Run-To-Failure
(Predictive Maintenance) (Reactive
Maintenance)
Time-Based Maintenance
(Scheduled Maintenance) e

Figure 1.1: Different maintenance strategies [7].

The following maintenance strategy is the Preventive Maintenance (PM]). This
maintenance strategy tries to take into account this experience and applies it to
routine minor checks that greatly influence machines’ behaviour. This routine minor
checks must be done at regular intervals considered shorter than the expected time
between failures. This maintenance strategy usually assures that 1-2% of machines
will experience failure during that time [I].
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The drawbacks of [PM| are that it doesn’t take into account the fact that
different components wear at different rates. As such, some components are replaced
that could have run for more time while others are replaced at a tardier stage which
can lead to failures that otherwise would have never occurred. This method is better
suited for applications where the components wear at a predictable and constant rate
that can be calculated if the operational regime is steady [I]. On the other hand,
critical components such as bearings or gears must not be maintained with a [PM]
strategy for these equipments do not wear at a constant and predictable rate.

Typically, different bearing faults develop at rates. Additionally, fault
evolvement also depends on operating conditions and the fault type itself. The time
between the development of a potential failure and a serious and catastrophic can be
long. This allows the operator responsible for maintenance to establish a maintenance
schedule that prevents catastrophic and suddenly failures.

However, these faults may go undetected at early stages [5].

According to Randall in [I], the steps for a maintenance strategy are the same
for all the other applications and can be resumed in three steps:

1. Data Collection
2. Processing and Analysis

3. Diagnosis and Prognosis
Condition - based Maintenance: Advantages and Economic Benefits

Some companies still choose to see the glass half-empty by regarding a

maintenance centre as a cost centre. However, as demonstrated by [§] there is a
considerable amount of evidence that adopting a Condition - based
Maintenance (CBM]) or results in economic advantages in most industries.
Some authors go even further by stating that a or can convert
maintenance to a profit centre 9] [10].
When it comes to wind power, its maintenance, especially when offshore, is known to
be difficult and expensive. The reasons behind this problem are related to unexpected
failures, spare part and equipment availability, and weather conditions that may lead
to long down times. As demonstrated by [I1I], using Condition Monitoring
Systems (CMS) results in not only economic benefits but also lower risks of
consequential damage at failure while providing advantages for the planning of the
maintenance. As stated in [11] using returned an economic benefit of 190 000,00
€ and reduced risk of high cost of failure.

Y. Wang studied in [12] the cost benefit of using in correct maintenance
decision making by analysing the interrelationship between effectiveness and
system downtime due to system failures. It was proven that adopting an optimal
maintenance strategy can minimize Operations and Maintenance ([O&M]) costs.

Another topic that must be taken into account is the indirect cost of a machine
that is not operating at its best performance. When an equipment is running with a
failure that just started to develop, the running conditions will be different and the
machine will not only wear other components but also use more energy than it should.
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In essence it will not be efficient. This is important because nowadays engineers
should thrive for a more sustainable world by creating machines that are reliable while
using less and less resources.

1.2 Data Pre-Processing

Amongst other ways like acoustic emission analysis or oil debris analysis,
vibration analysis has been extensively used in bearing diagnostics of rotating
machinery and extensively studied for the past 40 years as proven by the papers using
techniques found all the way back to the 1970s [13] [14].

Acquiring vibration signals involves the installation of a transducer, normally a
linear accelerometer, as close as possible to the bearing that is being monitored so
that the clearest signal can be obtained. The fault signal results from the vibration
generated when the fault - either on the inner race, outer race or on the rolling
elements - interacts with the other rolling surfaces, an aspect that will be covered
further on this document [14].

However, when choosing methods for condition monitoring one must recognise
that using tools such as vibration analysis (or any other form of analysis for that
matter) result in data for the assessment of the bearing condition that are in raw
state. For effective diagnosis and prognosis of bearing element bearings this data must
be precisely treated in order to remove chances of the data being perturbed by
surrounding equipments or other forms of signal contamination [I5]. For instance,
implementing vibration analysis for inferring the health condition of yields the
information, to be treated further, in the form of signals that are often perturbed by
surrounding noises - coming from other equipments - or interferences coming from
mechanisms, present in the equipment itself, like gears or shafts rotating. As stated by
Randall in [13], a major reason that explains why the relative weak bearing signals are
masked - more obvious for very low rotational speeds - is the discrete frequency noise
component coming from gears. Even in machines where gearboxes are not present, a
very strong discrete frequency will exist and will contaminate the frequency bands
where the bearing signal is usually dominant. On top of this, the signal coming from
the source, the bearing, can be masked in a way that it loses its impulsiveness. This
means that an accelerometer, or a microphone - if sound analysis is performed - is
only mounted as close as possible to the component being tested. For the case of
bearings - whether it is a faulty bearing or a healthy one - the signal is generated on
the bearing itself and has to go through the structure from where the bearing is
mounted to where the transducer is located. This is more relevant when studying the
fault signal, what happens is that the fault pulses are modified when passing through
a transmission path where the impulse response is long [13].

Another aspects to take into account are the speed fluctuations of not only the
bearing, but also of the rolling element itself. This fluctuation in rotation speed - for
the bearing - or when the ball or cylinder is slipping instead of spinning - for the [REDI
- results in a considerable change of character of the measured signal [13, [15] [14].

In order to overcome these obstacles, signal processing has become a very
important technique in order to obtain diagnostic information about bearings.
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Different signal processing techniques have been proposed such as angular
resampling to remove the speed fluctuations, Cyclostationary methods to determine
the resonance frequencies at which the faults occur, Cepstrum analysis to remove the
non-periodic components, [16] Hilbert transformation for demodulation of the signal,
and many others as Akhand Rai et al. studied in [I5]. Envelope analysis has also
proved to be a very powerful method of analysing vibrational data since the analogue
days. Today’s capabilities of computer processing have shed new light on this already
powerful method 13| [I].

After placing the correct transducers in place and acquiring the vibration signal
of the bearing being studied, envelope analysis along with filtering is usually applied
to the signal although different authors complement envelope analysis with different
signal processing techniques [15].

1.3 Feature Extraction, Reduction and Selection

Feature Extraction

Once the stage of signal processing is performed, anomalies on are detected
using features, or indicators, extracted from the vibrational signal and will give an idea
of the condition of the bearing [16]. Fault Detection and Diagnosis (FDD)) is easily done
through the analysis of simple statistical features that are calculated on the time domain
or on the frequency domain. Features like kurtosis or Root Mean Square (RMS) - among
others constitute the features in time domain - or the correspondent amplitude values on
the spectrum on the frequency areas of Ball Pass Frequency of Outer Race (BPEQ)), Ball
Pass Frequency of Inner Race (BPFI), Ball Spin Frequency (BSE), when an outer, inner
or ball fault develops, respectively - constitute the features on the frequency domain
[17, 18] [19].

These features, or commonly known as Condition Indicators [6], are calculated
after the signal is processed, which means that, if for envelope analysis the choice of the
frequency envelope window (or central frequency) and window bandwidth (or frequency
range) is important [20], it will be even more important because, as a consequence,
the features can render as inconclusive. This means that the parameters for envelope
analysis, or signal processing, must be chosen carefully in order to obtain features that
might lead to a good characterisation of the condition of the [REBL

Feature Reduction and Selection

Open literature gives plenty of evidence on the effectiveness of of REBI
Often, [FDDI of [REBI can be performed through one of two methods:

1. Advanced signal processing techniques: As stated above, signal processing
techniques can be used in order to obtain information regarding the condition of
a REBl Even though these tools can be used as a decision when it comes to
diagnosis assessment, they do not give automatic results on the condition of the
component, for these methods do not classify the fault nor recognise a pattern
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when present. On top of this, analysis of vibrational signals and diagnosis
decision making must be done by an expert, this means that an automatic
diagnosis method cannot be implemented [21].

2. Artificial intelligence tools and pattern recognition methods -
Machine Learning: Even though these methods are somewhat complex, they
can be used to develop automatic bearing fault diagnosis systems, without
human intervention. These methods can also be extended to be used to predict
the Remaining useful life of a[REB| through pattern recognition [22].

However, when calculating features on a signal - and specially when one doesn’t
know which feature correlates to a better indication of a fault of a component - it is
good practice to calculate a high number of features, or indicators, so that the
automatic classifier has a chance of finding the [REDIs condition - healthy or not.

For this purpose, various techniques have been proposed on the literature.
Techniques such as [PCAl Independent Component Analysis ([CAl) and Linear
Discriminant Analysis are the most commonly used [22] 23] 24, 25| 211, 26], each
with their own advantages and disadvantages. Jaouher Ben Ali et al. demonstrated in
[22] that using feature reduction techniques improves the quality of the classifiers
used. However, the ability to interpret the influence of individual features/variables
decreases when feature reduction methods are applied. These techniques save feature’s
information in a set of components, and these components cannot be interpreted
directly except for the amount of information kept compared to the original data - in
case of [PCAl - or the information regarding the variance between the features and the
components - in case of [LDAl In addition, it should be taken into account that feature
reduction comes at a cost: the loss of information compared to the original data.
Using the [PCAl as an example, each of the resulting components represent a certain
amount of information compared to the original situation. If, after applying [PCA] and
using three components, these three components only amount to represent 70% of the
original set of data, then one should think of using more components.

Another important step - parallel to feature reduction - to take into
consideration is the step of feature selection. Effective of REBs is accomplished
by using the most meaningful and most responsive features to the fault presence and
severity. It can be easily understood that using improper and inaccurate features
reduces the overall accuracy and reliability of a possible health indicator method for
[REBE, moreover such method might be unable to predict the actual bearing condition.
Removing irrelevant, redundant or noisy features also leads to better learning
performance - higher learning accuracy - lower computational cost and a better
interpretation of the model used [27, 28]. This step, just like the feature reduction
step, becomes more important in problems with a high number of features.

This subject has received a lot of attention during the last years since there is a
need for methods that are computationally efficient and accurate, yet sensitive to
complex patterns of association so that features that hold good information are not
mistakenly removed [29].

The supervised methods take into account the label to look for relationships
between classes and the features and selects relevant features to distinguish between
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classes. The unsupervised feature selection is considerably more complex once there is
no knowledge regarding the labels. The semi-supervised methods create a similarity
matrix and select features that best fit that matrix [2§].

In addition, methods for feature selection can also be classified in terms of
search strategies: Filter, Wrapper or Embedded methods. The filter methods
distinguish the features via characterisation of data. Wrapper methods rely on
machine learning algorithms to evaluate features, while the embedded methods
construct a model of the data and select the features based on that model [28].

Feature
Selection

Label Search
Information Strategy

. i

Semi- ‘ Embedded ‘
supervised

Supervised Unsupervised

‘ Wrapper ’ Filter |

Figure 1.2: Feature Selection Classification [28].

1.4 Classification Methods

The final step of an automated method of of REBE is the classification of
the fault that developed on the bearing and, on a later stage, the recognition of a
pattern for assessment of the fault severity and determination of the bearing’s
Remaining Useful Life (RUTL).

It is already known that vibration analysis along with effective signal processing
techniques allows one to extract quantitative information of the bearing vibrational
signal characteristics. However, using this information - the features - to diagnose a
fault that has developed on the presents a considerable challenge, for solving this
requires the interpretation, classification and pattern recognition of the extracted
data. In order to solve this, various Machine Learning (ML) algorithms have been
successfully applied in the fields of fault classification, fault detection, condition
monitoring and prognostics [30].

Today’s processing power has enabled [MI] methods to be accurate and reliable
and to be used in all fields from cancer research and marketing and sales applications
to criminal justice [31], 32 [33].

Despite the existing efforts of explaining the internals and workings of ML
methods, these and sometimes their output remain esoteric to the everyday user, often
understood only by experts with years of training and development experience.

Given the fact that these methods’ popularity is growing progressively and its
use is growing considerably in the real world, understanding how these methods
perform their intelligent decision-making has become increasingly important and
critical [33, [34].

These methods are classified into three families, in accordance to the availability
of label information: Supervised, methods that use labeled data, Semi-Supervised or
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Unsupervised, where there is no need for labeled data. This is, if the classes of the
data one has acquired - in this case, faulty or not - are available then it is possible to
use between one of the three families (see figure explained [28].

Input — [N Q1)@ — Output

Figure 1.3: Example of a black box system [35].

On an industrial facility, this is no different. A maintenance engineer will most
certainly feel disbelief if the tool he is using tells him that a component is faulty, without
showing any evidence on why the tool classified the component as faulty. Engineers’
attitude consists of questioning everything, hence the importance of relying on methods
that are both easy to interpret and accurate.

Currently, [ML] methods are available through both comercial and open source
packages, both offering optimized algorithms of numerous different methods [30]. One
of the most relevant and used open source tools for [MI] is the scikit-learn package
available on the Python scripting language [30, 36]. As already stated, this project tried
to avoid methods that were complex to interpret. As such, a simple method of class
classification, the Decision Tree, was used and directly compared to two more complex
methods: and Random Forest. Class, or fault, classification was accomplished
with considerable accuracy using the Decision Tree method, which after running allows
the user to see the model created and understand how class classification was performed.

1.5 Motivations

[REBE are one of the most used components in machinery construction. Failure
of REBb cause downtimes for component replacement or refurbishment which have
consequences on the economic viability of large systems and chain operated equipments.

Component failures, however, can never be avoided, only postponed. Components
will wear out, oil will loose its lubricant capability and one can only make plans for
programmed maintenance. Here is where condition monitoring steps in, the constant
supervision of a given component and, given a threshold, the warning of a developing
failure and its consequent maintenance.Condition monitoring of [REBk has been studied
for many years having a considerable body of evidence that returns economic benefits,
such study has resulted in a numerous signal processing techniques and approaches to
this issue.

However, condition monitoring through vibration analysis can be an exhausting
task performed only by an expert on vibrations, which doesn’t allow the development of
an automatic method of fault classification of malfunctioning [REBk without user input.
On the other hand, such tool cannot be created and used without proper interpretation
and critic thinking. This text will present a semi-automated, fully interpretation-able,
method for condition monitoring of for classifying faults.
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1.6 Objectives

e Understand the fundamentals of condition monitoring, the different techniques
used, and the state of the art. Clarify the use of vibration analysis in this area
and where it fits with other techniques.

e Develop a semi-automatic method of frequency band selection for filtering for
envelope analysis.

e Study the results differences between filtered signal and non-filtered signal.

e Different faults exist at different resonance frequencies that are dependent on
speeds, as such, find a connection between frequency bands and, if possible,
develop a frequency band for filtering that works for all situations.

e Extract features from the signal on the angle domain. Find relationships between
features, study the methods available for relevant feature selection and apply the
best suiting one.

e Apply a classification method in order to successfully classify a fault that might
be present on a bearing being studied.

1.7 Structure

This document is structured into seven main chapters. The following chapter
explains the vibration concepts of [REBE, the different faults that might develop and
the technologies and analysis that can be used to perform condition monitoring of said
equipment. The third chapter explains the signal processing techniques that were used
for signal enhancement and treatment. After this, the fourth chapter covers features
and their analysis: which features were used and how they where calculated followed by
an explanation of feature reduction methods and finishing on feature selection methods
for redundant and #rrelevant features elimination.

The fifth chapter clarifies the theory behind the classification methods used for
fault classification. The sixth chapter shows the results obtained after applying signal
processing techniques, feature reduction, feature selection and feature classification.
The document ends with a final chapter stating the conclusions and future work on this
topic.






CHAPTER 2

Rolling Element Bearings and Technologies

2.1 Bearing Defects Fundamentals

Most of the industries rely on equipments that must go through different motion
conversions. When it comes to rotating motion, a key component is the whose
main function is to support the rotating element while allowing it to rotate. This
rotating element can either be a simple shaft or a shaft with a set of gears attached.

The precision rolling-element bearing of the twentieth century is a product of
exacting technology and sophisticated science. Simple in form and concept and yet
very effective in reducing friction and wear in a wide range of machinery. Normally
this is the most precise component parts and are typically fabricated with tolerances
that are around ten times more strict than the other machine components [5]. This
equipment evolved immensely since its development and nowadays the project
engineer developing a machine or component has a wide range of bearings to choose
from.

The most common and most used types of bearings are the [REBk and the
journal bearings. The journal bearings work on principles that are somewhat different
from the [REBk. These work on the principle of hydrodynamic lubrication. In order to
do so, a small gap - or tolerance - between the journal and the bearing is needed.
Usually the rotating element - or journal - is supported on an outer bearing, usually
made of bronze, for auto-lubricating purposes. Then, the gap between the bearing and
the journal is filled with a lubricant characterized by a certain viscosity and while
running at high speeds, a pressure is built up toward the centre of the shaft. This fluid
pressure, is responsible for supporting the load on the shaft and helps reducing the
friction, and consequently the wear. During the starting and stopping phases, usually
when the shaft rotates at slower speeds, the shaft and the bearing are subject to
metal-to-metal contact, which can lead to degradation and wear of both parts.
Normally, the bearing is either coated or manufactured in a material that is softer
than the shaft so that it degrades faster than the shaft. At a point, this element needs
replacement and a solution to this problem are the hydrostatic bearings that have an
external source of pressurised lubricant that avoids the wear between the journal and
the bearing. This last type of bearings is used when the loads are very high. Another
characteristic of journal bearings is that its damping ratio is controlled by the

11
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lubricant. Consequently if the vibration response needs to be changed than one only
needs to replace the lubricant used [5].

This text however will not cover this kind of bearings. The ones being studied
on this document are the [REBb, that work thanks to the rotating motion of a
particular element between two circular races, the inner and outer. In order for this to
work frictionless, the bearing is filled with a lubricant: either oil or grease or a mix of
the two. To keep the rolling elements from hitting each other or getting out of their
place is the cage, where the rolling elements are put into. The sealing has the
objective of securing the lubricant inside and keeping external particles from getting
into the tracks - and consequently developing a serious failure on either one of the
races or on the surface of the rolling element.

These four elements are the constituents of a typical the tracks or races,
the rolling elements themselves, the cage and the sealing.  Although different
manufacturers have different design variations, this kind of bearing anatomy is the
most common and simple. Figure [2.]] gives an illustration to the assembly of a [REBl

Outer Race Sealing Ralling Cage Inner Race
Elements

Figure 2.1: Anatomy of a REBl Adapted from [37].

"A chain is only as strong as its weakest link."

The proverb can, of course, also be applied to industrial machinery, for an
equipment is only as robust as its weakest component. It is easy to see why such
simple component plays a vital role inside any mechanical equipment. This item,
when faulty, causes shutdown of the entire equipment and, at times, the entire
production chain if the next equipment depends on the preceding one. This of course
results not only in maintenance costs but also in economic losses given that the
production line will be on hold until that specific component is replaced.

As already stated, the main purpose of a is to provide relative positioning
and rotational freedom while distributing a load between two structures: the shaft and
the housing. If there is a need of distributing loads between surfaces, such action can
be facilitated through the use of between the sliding members. The friction
encountered during the rotating motion is also reduced thanks to the use of lubricated
rotating elements, even though such elements - rollers, tapered rollers or spherical
balls - are afflicted with high stresses due to effective load transmission [38].

The rolling elements can have different geometries and, as already stated, are
manufactured under very tight tolerances. However, no manufacturing process is 100%



2.1. Bearing Defects Fundamentals 13

perfect which means that some rolling elements are not perfectly spheric or
cylindrical. Mohanty states that the best bearings available in the market are
fabricated with radial imperfection of 3 to 5um [39]. Due to this slight variation in
geometry, when the bearing is in motion, a particular vibration signature is generated.
Moreover, thanks to the same geometric variation of the rolling element, the radial
load on the bearing is constantly changing with the shaft’s rotation, which makes the
signal amplitude modulated.

It is easy to understand that if there is a slight variation on the geometry of
either the races or the rolling element, the vibration signature of the bearing will
change. Let’s assume that because of a faulty sealing, a grain of sand managed to get
into the bearing. As the rolling element strikes this grain of sand, an impulse is
generated which excites high frequency resonances between the bearing and the
transducer, typically an accelerometer. With time, this grain of sand will start to
develop other faults, either on the outer or inner races, by eroding the races’ surface,
creating a hole, or on the rolling elements’ surface itself. This is merely an example,
other situations may occur due to metal shavings or chips, etc.

Randall explained in his book [I] that the broadband bursts excited by the
impulses are further modulated in amplitude by two factors:

e The strength of the bursts depends on the load applied to the rolling elements,
and this is usually modulated by the rate at which the fault passes by the load
zone;

o [f the fault is moving - a rolling element fault, for example - the transfer function
of the transmission path changes with respect to the fixed positions of the response
transducers.

Given that the signal measured by the transducer will be modulated, it is
important to demodulate the signals and analyse them on the frequency domain in
order to perform diagnostic analysis. Figure [2.2] shows the envelope signals of the
faulty signals generated by the different localised faults in the different components.

Rolling Element Fault

Outer Ring Fault Inner Ring Fault

Figure 2.2: Envelope signals generated on a faulty bearing, adapted from [27, [5].
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2.1.1 Fault Characteristic Frequencies

As already stated, for a particular bearing geometry, faults present on inner race,
outer race or rolling element generate a vibration spectra different from the bearing
without faults and with unique frequency components [30, 40, [4I]. It is thanks to
these specific frequencies and their magnitudes that one is able to analyse the vibration
spectra obtained from the bearing and determine the condition of the bearing. These
frequencies are not constant however, they are directly related to the shaft speed the
bearing is attached to. In addition, Outer Race and Inner Race fault frequencies are
also dependent on the number of balls present in the bearing.

Using the geometry clarified in figure [2-3] one can write the following equations

Figure 2.3: Ball bearing geometry [39].

describing the frequencies at which the different bearing faults occur:

BPFO = f52~N <1 - dcgs¢> (2.1)
BPFI = f52~N <1 n dcg”) (2.2)
BSF = fSQ'dD [1 - (dcgw)Z] (2.3)
FTF = % (1 - dcgs¢> (2.4)

Where fg is the shaft speed in rpm and N is the number of balls in the bearing.
One important aspect to be taken into account is that the is the frequency with
which the ball fault strikes the race, inner or outer and accordingly there are normally
two shocks per ball rotation period. Consequently the even harmonics of are
often dominant, particularly in the envelope spectra [1].

However, these kinematic frequencies are described without taking into account
the ball slip. In fact, slip must virtually occur because, given that the balls are not
perfectly spherical the angle ¢ changes, depending on the position of each ball in the
bearing as the ratio of local radial to axial load changes. Thus, each ball has a
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different diameter and is trying to roll at a different speed. The cage as the function of
ensuring a mean speed that is equal to all the balls, by causing a random amount of
slip, varying between 1-2% both as a deviation from the calculated value and as a
random variation around the mean frequency [IJ.

However small this random slip may be, it changes the character of the signal
considerably and is the reason why envelope analysis extracts diagnostic information
not available from frequency analyses of the raw signal. It also means that bearing
signals can be considered as cyclostationary, an important aspect to be studied in
chapter

Additionally, the number of rolling elements and their position in the load zone
change with bearing rotation, giving rise to a periodical variation of the total stiffness
of the bearing assembly. This change in the total stiffness generates vibrations
commonly known as varying compliance vibrations. When the bearing races are
assumed as continuous systems, the changing direction of the contact forces applied by
the rolling elements may cause flexural or ring-mode vibration of the races even if they
are geometrically perfect [42].

As seen previously, it was shown that bearing defects cause a significant change
in the vibration signature of the The defects present on bearings can be
categorised as distributed or local defects.

Examples of distributed defects are surface roughness, waviness, misaligned
races and off-size rolling elements which are caused by manufacturing error, improper
installation or abrasive wear [42].

Localized defects can be cracks, pits and spalls on the rolling surfaces. The most
common cause of failure of rolling element bearing is the spalling of the races or of the
rolling elements, and is caused by a fatigue crack under the surface of the metal.
Fatigue failure can be caused by overloading or shock loading of the bearing during
installation or running. In [42] other defects were found, such as electric pitting or
cracks thanks to excessive shock loading.

Whichever fault may be, one common fact among all of them is that whenever
an interaction between elements with a defect, abrupt changes in the contact stresses
occur which generates a pulse of high amplitude and very short duration. Such
impulse produces vibration and noise that are used to monitor and detect the presence
of a defect’s initial stage in the bearing [42, [5].

2.1.2 Distributed Defects

Surface Roughness

Even though engineers try to optimize manufacturing processes, there is no
process with 100% of accuracy. This is not only important in terms of dimensions but
in terms of surfaces and geometry. There are no perfectly flat surfaces or perfectly
spherical objects and no surfaces are perfectly parallel among them. Real objects will
have form errors, surface waviness and surface roughness due either to the
manufacturing processes or created by previous operation.

As one can visualize in figure for the real contact area, there is less contact
between surfaces. Additionally, the border of the real contact area may be wider than
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Pressure

Figure 2.4: Differences in contact pressure distribution between real and ideal surfaces
[43] 5].

that of the ideal surface [43]. In addition, figure shows that the real surface
contact leads to higher pressures.

Surface roughness is one of the parameters set by project engineers on their
different projects. This information is in the technical drawing of a certain equipment
and usually there are different levels of surface roughness requirement for a certain
project. In the assembly regions, where different components are in direct contact,
there will be a higher requirement for lower surface roughness for this exact reason.

Surface roughness exists because the material will not be completely flat in its
entirety. One way of assessing the roughness of a certain surface is through the
arithmetic average R, which is measured through the performing and arithmetic
average of a number of measurements in the direction of the normal vector of a real

surface (see equation [2.5)).

1
R, = ; Z |yz| (25>
i=1

Film Thickness

Between other factors, surface wear will be largely influenced not only by the
lubricant used but also by how much lubricant is used. If one pictures a gap on a
rolling contact, there will most certainly be some kind of liquid inside the gap,
trapped between the surfaces. The thickness of the liquid in this gap is important.
The liquid being caught in that gap, when the surfaces are rolling or sliding, will
create a lubricant film that aims to separate the contact surfaces and reduce the
contact pressure [43].

The lubrication mechanism and its effect is chosen based on the value of A, that
refers to the ratio between the film thickness h and the combined surface roughness in
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the contact surface R, [43, [5].

h
= — 2.
A= (2.6)
1
R =5 (Ruy + Ray) (2.7)

Based on the value of A, the lubrication regimes can be divided into boundary
lubrication, mixed lubrication, elasto-hydrodynamic lubrication and hydrodynamic
lubrication [43], 5].

The first regime, boundary lubrication, characterized by A < 1 , occurs when
operating conditions’ hydrodynamic action is too weak, or insufficient, for separating
the contact surfaces. One example of such situation is low-speed applications where
the surfaces in contact are merely wetted by the lubricant.

Moreover, the load is carried mainly by solid-to-solid contacts and this regime of
lubrication relies on lubricant and surface properties to generate boundary films when
running [43, 5]. As a consequence to this, some wear is expected due to tribochemical
or mechanical wear [43]. In the case of REBE this kind of lubrication can occur locally
in micro-slip zones and at the end planes of axially loaded rollers. One should note
that boundary lubricated contacts lack any damping effect, and boundary lubricated
contacts can act as a vibration sources [43, 5]. The following regime, the mixed
lubrication with 1 < A < 3, is characterized by boundary lubricated conditions similar
to elastohydrodynamic or hydrodynamic lubrication. In this regime, lubrication
happens by either a solid-like or viscous-like boundary film [43], [5].

The last two regimes, elastohydrodynamic 3 < A < 10, and hydrodynamic,
A > 10, are based on Reynold’s equation for hydrodynamic oil pressure build-up and a
combination of elastic deformation at the contact surfaces of low geometric
conformity. In the elastohydrodynamic regime the film thickness is slightly higher
than the combined surface roughness, while in hydrodynamic regime the film thickness
is much higher than the referred roughness. In rolling element bearings, hydrodynamic
lubrication occurs in contacts between rolling elements and their cages and, also
between roller ends and bearing race flanges for roller bearings with axially loaded
rollers. The higher film thickness achieved in this regime provides a significant degree
of damping for dynamic loads [43].

Fatigue Wear

Fatigue wear follows the same originating principles of fatigue cracks. On an
airplane, for example, several components such as the wings, the rotor blades or even
the fuselage, are subject to fatigue which has caused plenty of headaches on aviation
engineers. The cyclical application of pressure on the metal of a given component
eventually causes it to develop a crack. A is no exception, fatigue cracks on
bearings can be due to a wide range of causes like, the dynamic working conditions on
the bearing, the shear stress, plastic deformations or contaminating particles present
in the lubricant, sometimes external particles that somehow managed to go over the
sealing and made their way into the itself. A fatigue crack begins below the
surface of the metal and propagates towards the surface until a piece of metal breaks
away to leave a small pit or spall. A fatigue failure can be expedited by overloading or
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shock loading of the bearings during running and installation [43].
According to [44] structural fatigue of machines can be categorized in three
regimes:

e Low Cycle Fatigue (LCE)) refers to the fatigue regime in which the number of
cycles to failure, Ny, is less than 10° cycles, and the failure is initiated from the
surface slip bands.

e High Cycle Fatigue ([HCE) corresponds to a Ny that varies from 10° to 107 cycles.
In this regime, fatigue failure can be attributed to both surface slip bands and
subsurface inclusions.

e Very High Cycle Fatigue (VHCE) corresponds to a number of cycles to failure of
107 or more. Common to high strength steels this type of fatigue failure is mostly
due to material in-homogeneities such as non-metallic inclusions.

Gabelli states in [44] that usually, rolling bearings have a very high number of
stress cycles to failure - no less than 107 and typically close to 10° - and are induced
by the over-rolling of the rolling elements on the bearing races. Most bearings usages
generate typically 2 x 10° to 3 x 10°, while heavier applications require bearings able
to withstand up to 3 x 10! stress cycles.
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Figure 2.5: Bearing applications and their typical ranges of service lives [44].

As one can observe from figure [2.5] bearings for gas compressors, diesel engines
superchargers for instance, involve a very larne number of stress cycles. These machines
will usually run 5 years of service life, with 24h of continuous operation at high speeds
(10 000 rpm to 30 000 rpm) which results in required stress cycles of 3,4 x 10'*. However,
it should be noted that small or medium size bearings are better suited to withstand
very high stress cycles [44]. There are large size bearings that go through longer service
life expectancies, in some cases more than 10 years in continuous operations. Although,
these develop lower number of stress cycles, meaning that the dynamic loads are not as
great as the small to medium size bearings are subjected to.

As an example, bearings used in large driving systems of industrial manufacturing
plants require continuous operation and can reach typically 12 years of uninterrupted
service. However they only withstand 6,6 x 107 stress cycle during this running period.
This lower number of stress cycles is explained by the relative slower speeds at which
the large size bearings operate [44].
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Typically, the service life of rolling bearings is always in the VHCF regime which
goes beyond 107 cycles and may even reach 10'! cycles in some applications. If the
over-rolling contact pressure exceeds the elastic limit of the material, decay of the steel
microstructure can develop in the VHCE] regime. If the contact pressure is below the
elastic limit of the bearing, only localized fatigue damage will develop at stress risers
such as pores or inclusions.

The ISO 281:2007, on the other hand, covers the concept of a fatigue limit stress
in the assessment of the fatigue life of rolling bearings. In case of a rolling contact this
model reads [44]:

(&

ln%:A-Ne-%-b-zo-l (2.8)
A common method to specify the general rules of limit stress conditions in
rolling bearings is to set a threshold condition to the Hertzian contact pressure
resulting from the contact between the rolling elements and the races. For instance,
the static load capacity of rolling bearings is defined by the maximum stress level of
the Hertzian contact. This simple rule can then be transformed to a static load rating
of a given specific bearing geometry. In a similar way, the ISO 281:2007 fatigue limit
stress is defined in terms of the corresponding maximum Hertzian pressure (o) of the
rolling contact. For modern bearings made of high quality bearing steels and good
manufacturing practices, the value of opf is standardized to a nominal value of

approximately 150000 Pa [44].

a) b)

Figure 2.6: Outer race microstructure with a) 2,3 x 10 stress cycles and Hertzian
pressure of 2,3 GPa and b) 2,3 x 10? stress cycles and Hertzian pressure 3,3 GPa.
Severe microstructure decay is visible indicating that the bearing on the right is

damaged [44].

Adhesive and Abrasive Wear

When the bearing’s lubrication is poor, may suffer from adhesive wear
at roller ends and in micro-slip zones. In these sliding contacts, due to the lack of
lubrication strong adhesive junctions between surface asperities may be formed due to
frictional heating which can lead to adhesive wear.
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On the other hand, solid particles can cause local stress peaks and shorten the
life of the bearing. Even if these particles are smaller than the mean film thickness
they can cause abrasive wear, acting as micro-abrasive elements. Furthermore, abrasive
wear may take place when rough surfaces are in contact, for instance as micro-abrasion
between rolling elements and their cages [44].

2.1.3 Localized Defects

Cracks

Cracks may form in bearing rings for various reasons. The most common cause
is rough treatment when the bearings are being mounted or dismounted.

Hard blows, applied directly to the ring, may cause fine cracks to develop,
resulting in pieces of the ring breaking off when the bearing is put into service. Other
causes such as excessive interference, excessive load, shock load or heat generation can
also lead to development of cracks.

Smearing, phenomenon of material being transferred from one surface to the
other which occurs mainly in situations with poor lubrication, may also produce
cracks. Cracks of this type can produce fractures right across the rings [45].

Figure 2.7: Example of a fractured outer ring, on a self-aligning ball bearing [45].

False Brinelling or defects caused by vibration

When a bearing is not running, there is no lubricant film between the rolling
elements and the raceways. The absence of lubricant film results in metal to metal
contact and if vibrations are present or induced on the main equipment, produce small
relative movements of the rolling elements and rings. As a result of these movements,
small particles break away from the surfaces and this leads to the formation of
depressions in the raceways.

This damage is known as false brinelling, sometimes also referred to as
washboarding. Balls produce sphered cavities while rollers produce fluting [45].
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a) False brineling on outer raceway. b) False brineling on inner raceway.

Figure 2.8: Example of damage created by vibration, or false brineling [46].

True Brinelling

True brinelling occurs when the loads applied on the bearing exceed the elastic
limit of the ring material. Marks resulting from this defect appear as indentations in the
raceways which will increase the bearing’s vibration and noise when under operation.
A more severe brinelling fault will eventually lead to fatigue failure. This type of fault
can be caused by severe impact or static overload.

In order to minimize the chances of brinelling, bearings must be assembled and
disassembled carefully. In addition, the loads applied on the bearings should be studied
thoroughly to avoid overload. Figure[2.9/shows an example of brinelling caused by static
overload on the inner race of a rolling element bearing.

Figure 2.9: Brinelling caused by static overload [47].

Corrosion

For every component that is made of metal, water or other corrosive agent, can
prove to be a severe problem. Corrosion wear will form if water or corrosive agents
reach the inside of the bearing in such quantities that the lubricant cannot provide
protection for the steel surfaces. This process will soon lead to deep seated rust.
Another type of corrosion is fretting corrosion [45].



22 Chapter 2. Rolling Element Bearings and Technologies

a) b)

Figure 2.10: Corrosion defect on a) outer ring of cylindrical roller bearing and b) inner
ring of a ball bearing [45].

If the thin oxide film is penetrated, oxidation will proceed deeper into the material.
An example of this is the corrosion that occurs when there is relative movement between
the bearing ring and shaft, or housing, on account of the fit being too loose. This type
of damage is called fretting corrosion. The relative movement may also cause small
particles of material to become de break away from the surface. These particles oxidise
quickly when exposed to the atmosphere.

As aresult of the fretting corrosion, the bearing rings may not be evenly supported
and this has a detrimental effect on the load distribution in the bearings. Rusted areas
also act as fracture notches.

Pitting & Spalling

As a first note, no common definitions have been established to distinguish
spalling from pitting in the literature. In most of the literature, spalling and pitting
have been used indiscriminately, and in some other literature, spalling and pitting
were used to designate different severities of surface contact fatigue. For instance,
Tallian defined in [48] spalling as macroscale contact fatigue caused by fatigue crack
propagation and reserved pitting as surface damage caused by sources other than
crack propagation.

The pitting phenomena is noted when deep craters appear in the surface of the
bearing components and are a result of the fatigue cracks that originated in the
subsurface. These cracks are a result of the fatigue process and propagate from the
subsurface to the surface causing material particles to break away from the surface
which will eventually be the cause of abrasive wear. Beside the fatigue process, these
cracks can also be caused by moisture in the lubricant as an example of poor
lubrication [5].

According to an informative document from the bearing manufacturer SKF [45],
spalling occurs as a result of normal fatigue, i.e. the bearing has reached the end of its
expected useful life.
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If this type of defect is discovered at an early stage, when the damage is not too
extensive, it is possible to diagnose its cause and take the requisite action to prevent a
recurrence of the issue.

However, when spalling has proceeded to a certain stage, it makes its presence
known in the form of noise and vibrations, which serve as a warning that it is time to
change the bearing.

The causes of premature spalling may be heavier external loading than
anticipated, preloading on account of incorrect fits, oval distortion caused by the shaft
or housing being misaligned or axial compression, for instance as a result of thermal
expansion.

a) b)

Figure 2.11: Defects detected on a ball bearing: a) spalling on an outer ring [45] and
b) pitting on an inner ring [46].

2.2 Sensor Technologies

Based on the idea that a significant change from a reference signal is indicative
of a developing failure, condition monitoring systems consist of a combinations of
sensors and signal processing equipment and techniques that provide continuous
indications of component condition based on analysis techniques such as vibration,
acoustics, oil, strain measurement and thermography [49].

Garcia Marquez verified in [49] that using good data acquisition methods and
appropriate signal processing, faults can be detected while components are
operational, and appropriate actions can be planned in time to prevent damage or
severe failure of critical components. In accordance, maintenance tasks can be planned
and scheduled more efficiently, resulting in increased reliability, availability,
maintainability and safety whilst downtime, maintenance and operational costs are
reduced.

This section will be an overview of the techniques used in order to perform
condition monitoring on rolling element bearings, the most commonly used being
vibration and acoustic emission analyses [30]. Sound analysis is also a powerful
technique found on the literature, however not so much explored [50].

Regardless of the technique, the capability of a condition monitoring system
relies upon two basic elements: the number and type of sensors, and the associated
signal processing and enhancement techniques used to extract important information
from the various signals [49].

It is clear that each different condition monitoring methods has their own
advantages and disadvantages - Table - and should be properly and carefully
chosen according to the specific application [50].
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Table 2.1: Summary table of different bearing condition monitoring methods [50].

Monitoring Schemes

Major Advantages

Major Disadvantages

Vibration monitoring

Chemical analysis

Temperature
measurement

Acoustic
emission

Sound

measurement

Laser
displacement

Stator current
monitoring

Reliable;
Standardized (ISO 10816)

Directly monitoring the
bearing and its oil

Standard available in
some industries (IEEE 841);

High signal-to-noise ratio

Easy to measure

Other way to
measure bearing vibration

Inexpensive;
Non-intrusive;
Easy to implement

Expensive;
Intrusive;
Subject to sensor failures;

Limited to bearings with
closed-loop oil supply system;
Specialist knowledge required

Embedded temperature
detector required;

Other factors may cause
temperature to rise

AE sensor required;
Specialist knowledge
required

Background noise
must be shielded

Laser sensor required;
Difficult implementation

Sometimes low
signal-to-noise ratio;
Still in development stage

2.2.1 Vibration analysis

Vibration analysis continues to be the most popular technology employed in
condition monitoring, especially for rotating equipment. It is advised that different
sensors are used for different frequencies: position transducers are used for the
low-frequency range, velocity sensors in the middle frequency area, accelerometers in
the high frequency range and spectral emitted energy sensors for very high frequencies
[49]. According to [51] transducers for vibration condition monitoring can be classified
into two main categories:

e Accelerometers - Seismic devices that are normally mounted on the machine
structure and whose output is a measure of the absolute vibration of the
structure;

e Displacement transducers - Relative displacement transducers that measure the
vibratory displacement and the mean position between rotating and non-rotating
elements of the machine.
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The more commonly used type of transducers to measure dynamic force and
vibration are the seismic transducers, which are wusually modelled as a
mass-spring-damper system, Figure The flatness of the response frequency range
depends on the ratio between the frequency of the dynamic phenomena to measure,
and the natural frequency of the transducer [52].
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Figure 2.12: A model of a seismic transducer [52].

The theory behind this type of transducers falls on the model of
mass-spring-damper system with one degree of freedom. Consequently, a vibration
transducer is composed by a mass-spring-damper system placed on a vibrating object,
Figure The vibration is measured by the measuring the displacement of the mass
of the transducer, the seismic mass, relatively to the vibrating object where the
transducer is mounted on and whose movement the transducer is solidary with [52].

Denoting the seismic mass as m, the elastic element with a rigidity of k, and the
damping constant of the damper as ¢, then, if an harmonic movement is assumed, the
vibrating movement of the system y (¢) can be written as [52]:

y (t) =Y sin(wt) (2.9)
if z is defined as the movement of the seismic mass, then:
mi+c(@—y) +k(x—y)=0 (2.10)

The relative movement between the mass relatively to the box of the transducer
can be defined as z(t):
z(t) =z (t) —y(t) (2.11)
hence, equation can be rewritten as:
mzZ+cz+ kz = —mj (2.12)

If one substitutes|2.9|into and derives[2.12]in order of time, it can be rewritten
as:
mi + ¢ + kz = mw?Y sin(wt) (2.13)

The homogeneous solution to [2.12] is:

z(t) = Z (w) sin(wt — @) (2.14)
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where its amplitude, Z (w) and phase ¢ are given by:

i ¢ = arctan 265
B 1-p2
V- 82 1 (268

Z(W) =Y (2.15)

A Seismic Transducer can implemented in the form of a vibrometer or an
accelerometer. The vibrometer has a low natural frequency, so that it is lower than
the frequency of the vibrating movement one wishes to measure. The accelerometer,
on the other hand, has a high natural frequency, so that it is higher than the
frequency of the vibrating movement one wishes to measure. Consequently,
vibrometers are usually denoted as low frequency transducers, whereas accelerometers
are usually known as high frequency transducers [52].

If the seismic mass transducer is implemented via an accelerometer, then, the
homogeneous solution to equation is slightly different than the one seen in
equation If one derives expression [2.12]in order to time one obtains the following
expression:

(B w? = ! [0V sin (wt — §)) (2.16)

(-8 + (2687

VI

If, in the above expression, the condition is valid:

1
1 (2.17)
(=822 + 2¢8)°
then equation [2.16] can be rewritten as:
— 2 (t)w? = WY sin (wt — ¢) (2.18)

Comparing equation to §j (t) = —w?Y sin (wt), one can verify that the term
—z(t)w? gives the acceleration of the base, or vibrating object, jj subtrated by the
phase, or angular difference, ¢. Thus, the instrument can record or give directly the
value of §j = —z (t) w? as long as condition is verified. The time delay between the
measurement itself and the acceleration is given by ' = % If §j is composed by only
one harmonic component, then the difference in phase is not important.

The value of the first member of condition [2.17] is shown in figure [2.13] as a
function of the ratio of frequencies g = 2.

Given that condition [2.17] is verifiable for low values of 3, the accelerometer’s
natural frequency (or resonance frequency) has to be high when compared to the
frequency of the vibrating phenomena to measure. From the definition of resonance
%
low mass, which is why the accelerometers are considered as transducers that do not
affect the acceleration to measure. Due to their reduced dimensions and mass, along
with very high sensitivity, accelerometers are the preferred transducers for measuring
vibrations in mechanical applications [52].

frequency wy, = one can verify that the accelerometer must have high rigidity an
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Figure 2.13: Responce of an accelerometer [52].

Decision on what type of transducer to use falls on what one wants to measure,
obtain or analyze, specifically: acceleration, velocity and/or displacement. If one
chooses to use an accelerometer, its output can be processed in order to obtain any of
the referred physical quantities. If acceleration isn’t important for the work being
developed, then, a velocity transducer can be used, whose output can be integrated to
yield displacement. Finally, if one’s needs are working with displacement only, then a
non-contacting probe, whose output is directly proportional to the relative
displacement between the rotating and non-rotating elements of the machine, is
sufficient.

Additionally, each one of these type of sensors has different characteristics.
Given this, the decision on which one to use must be a balance between what is needed
and the sensors’ characteristics required for the project. Figure shows guidelines
between the dynamic ranges of each type of transducer and the frequency [51].
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Figure 2.14: Dynamic range versus frequency range of vibration transducers for
typical condition monitoring applications [51].
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Where 1, 2 and 3 stand for Piezo-electric accelerometer, Eddy-current proximity
probe and Electro-mechanical velocity transducer, respectively [51]. This text will only
cover accelerometers as a form of measuring vibration, for it was the transducer chosen
to acquire vibration signals for this project.

Other aspects, perhaps even more important, to take into consideration when
choosing an accelerometer, are its specifications and if they meet the requirements for
the analysis. These characteristics can be:

e Sensitivity - Defined as the ratio of change in the input, or acceleration, to the
change in the output signal. Sensitivity is specified at a particular supply voltage
and is typically expressed in mV /g [53];

e Frequency Range - For reliable condition monitoring, measuring equipment
shall be capable of covering a wide frequency range in order to encompass not
only shaft rotational frequencies and harmonics, but also frequencies due to other
components, such as bearings, gears, seals, blades or vanes. The linear frequency
range of the system should generally cover frequencies from 0,2 times the lowest
rotational frequency to 3,5 times the highest excitation frequency of interest, which
generally not exceed 10 kHz [51];

e Resolution - As in the smallest acceleration that can be detected by the
transducer;

e Number of axis - there are single, double and triaxial accelerometers. The
three axis accelerometer will measure acceleration in three orthogonal directions.

Furthermore, [51] states that the location and placement of the accelerometer
are of utmost importance, to accurately acquire a vibrational signal from the machine
under analysis. According to this standard, accelerometers should be attached to the
machine through stud-mounting procedure (see figure . This permits the transfer
of high frequency signals with little or no signal loss between the origin and the
transducer.

Figure 2.15: Stud-mounting procedure according to the manufacturer PCB
Piezotronics.

If such mounting procedure is not possible, adhesives, glue or magnetic
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couplings are used to fix the sensors. The adhesives however, should have high
stiffness characteristics when cured. The technique adopted for this thesis’
measurement campaign was to glue the accelerometer to the bearing housing.

Another technique is to use a permanent magnet, however in order to effectively
use magnets the mounting surfaces’ flatness, is also a very important aspect to
consider.

Furthermore, the addition of mass to the accelerometer - such as an adhesive or
magnetic mounting base - lowers the resonant frequency of the sensing system and
may affect the accuracy and limits of the accelerometer usable frequency range. Given
this fact, these mounting techniques should be used carefully.

Although manufacturers use different terminologies for their products, four main
techniques for sensing acceleration are piezoelectric, piezoresistive, capacitive or servo
accelerometers. These can be further split into Alternated Current (AC) or Direct
Current (DC) types. The main differences are that [AC] accelerometers cannot measure
static acceleration but are appropriate for dynamic tests while accelerometers can
detect constant acceleration such as gravity making them able to measure vibrations
of 0 Hz, theoretically [53].

The most popular AC accelerometers are equipped with piezoelectric elements
as their sensing mechanism, while the most popular DC accelerometers are capacitive
MEMS and piezoresistive sensors types [53].

Piezoelectric Accelerometers

These devices have an extended region of flat frequency response range, a large
linear amplitude range and excellent durability. These properties are due to the use of
a piezoelectric material as the sensing element for the sensor. Piezoelectric generate an
output electrical signal that is proportional to the stress applied to the material.

Piezoelectric Elemant

Preload Ring "

Seismic Mass .! !

Acceleromeler Base

Figure 2.16: Construction of a piezoelectric accelerometer [54].

The piezoelectric element acts as a spring, with a natural stiffness k, and is
responsible for connecting the base of the accelerometer to the seismic masses, m.
When motion is induced to the base of the accelerometer, the piezoelectric material
forces the masses to follow this motion. This causes a slight deformation of the
piezoelectric element, translating the deformation to a strain. Consequently an electric
charge proportional to the acceleration is generated.

The response frequency of the sensor is determined by its resonant frequency,

which can be obtained by applying w = ,/%. Figure [2.17| shows the typical response

frequency of piezoelectric accelerometers.
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Figure 2.17: Typical response frequency of a piezoelectric accelerometer [54].

Piezoelectric accelerometers can be broken down into two main categories:
internally amplified accelerometers, IEPE (Internal Electronics Piezoelectric), which
contain built-in  microelectronics for signal conditioning, or charge mode
accelerometers that contain only the self-generating piezoelectric sensing element and
have a high impedance charge output signal [54]. Other designs can even detect
accelerations within several directions, using piezoelectric materials that can be
subjected to shear deformations, which can again be translated into an acceleration
measurement.

Piezoresistive Accelerometers

Single-crystal silicon is often used in manufacturing accelerometers. It is an
anisotropic material whose atoms are organized in a lattice having several axes of
symmetry [54].

Piezoresistive accelerometers rely on silicon both as the flexural element and as
the transduction element, since the strain gauges are diffused directly into the flexure.
The advantage of using this type of accelerometers is a high resonant frequency, that
optimizes its frequency response, due to their relative high stiffness [54].

Capacitive Accelerometers

Capacitive accelerometers are similar to piezoresistive accelerometers which
measure a change across a bridge. However, instead of measuring a change in
resistance, they measure a change in capacitance. The sensing element consists of two
parallel plate capacitors acting in a differential mode. These capacitors require built-in
electronic circuit and operate in a bridge configuration. Additionally, these sensors are
dependent on a carrier demodulator circuit or its equivalent to generate an electrical
output that is proportional to acceleration [54].
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Figure 2.18: Construction of a capacitive accelerometer [54].

The main advantage of capacitive accelerometers is to measure low level - less
than 2 g’s - and low frequency acceleration with the capability of withstanding high
shock levels, typically 5 000 g’s or greater. Some of the disadvantages of the capacitive
accelerometer are limited high frequency range, a relatively large phase shift and
higher noise floor than an equivalent piezoelectric accelerometer [54].

Table shows typical accelerometer characteristics for each of the types of
accelerometers studied.

Table 2.2: Typical accelerometer characteristics.

Accelerometer Frequency Sensitivit Measurement  Dynamic
Type Range v Range Range
. . 0,5Hzto 0,00 mV/gto 0,000001 g’s to
Piezoelectric 50 kHz 10 V/g 100 000 g’s 120 dB
. . 0 to 0,0001 mV/g to 0,001 g’s to
Plezoresistive 100 1y 10 mV/g 100 000 g’s 80 dB
Capacitive 0 to 1 000 10 mV/g to 0,00005 g’s to 290 dB

Hz 1V/g 1000 g’s

2.2.2 Acoustic Emission analysis

Wind turbines rotate at relatively slow speeds. This sets a limitation in early
fault diagnosis using vibration monitoring method because it proves rather difficult to
detect low frequencies of slow moving bearings. [AE] sensing detects the surface stress
waves generated when faulty components come into contact. This technology has been
as a suitable enhancement to the classic vibration techniques for condition monitoring
of roller-bearings, gearboxes and wind turbines, specially for early detection of faults
on these equipments [49] 55 [56].

Sources of [AE] in rotating machinery include impacting, cyclic fatigue, friction,
turbulence, material loss, cavitation, leakage, among others. For instance, ball
bearings rolling over a faulty outer race with a crack, or generally surface
imperfections, will generate [AE] waves that can be sensed through the application on
an [AE] sensor [55].

Tandon showed in [56] the measurement and interpretation of AE parameters for
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fault detection in radially loaded ball bearings at different speed ranges. Additionally,
Tan covered the application of AE for the detection of bearing failures in [57].
Acoustic monitoring is somewhat similar to vibration monitoring. However,
whereas vibration sensors are mounted on the component involved in order to detect
movement, acoustic sensors are attached with flexible glue, with low attenuation
properties, and can record ultrasound, up to 100 kHz, directly [49]. Garcia Marquez
also finds that AE sensors have been used successfully not only in the monitoring of
bearings and gearboxes but also for damage detection in blades of a wind turbine [49].
[AE]l was originally developed for non-destructive testing of static structures,
however, over the years its application has been extended to health monitoring of
rotating machines [55]. In spite of the advantages given by using [AF] sensors, when
compared to vibration sensors, limitations in the successful application of AE
technique for condition monitoring of rotating machinery are partly due to the
difficulty in processing, interpreting and classifying the intelligent information from
the acquired data. The main obstacle with this technique is the attenuation of the
signal, hence the need for the [AE] sensor to be close to its source. Another important
factor to take into consideration when choosing an [AFE] sensor is the frequency dynamic
range. Given that there are different [AF] sensors with different dynamic ranges,
choosing a sensor with a frequency range compatible with the application is important.

Case
"--.‘_‘_““‘

Damping

aterial

Electrode

Piezoelectric
Element

Couplant

Wear
Plata

Sample

Figure 2.19: General anatomy of an [AF] sensor.

2.2.3 Sound analysis

Since the early times that hearing and touching human senses have been used,
by experienced technicians, to asses if a machine is running with a faulty component.
Specialized technicians could even fine tune older equipments by applying fine
adjustments to it, hearing it work for a few seconds, and if needed proceed to apply
finer adjustments. One can have already a simple idea that some faulty components
do generate noise.

Nowadays however, this is analysed using a more scientific method.
Microphones are now used to perform sound monitoring on industrial equipment.
Using microphone analysis to this end has the main advantage of being a non-intrusive
method when comparing to vibration analysis for example.

However, in noisier environments, like factories that rely on a large number of
noisy machines, background and unwanted noise from surrounding components must
be shielded. Skipping this step will corrupt the noise coming from the component of
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interest, yielding incorrect results. Therefore, sound monitoring is not applicable for
processing facilities having many electric machines in one room without this issue
being addressed [58].

A microphone provides an analog output signal which is proportional to the
variation in acoustic pressure acting upon a flexible diaphragm. This electrical signal
is then used to transmit, record or measure the characteristics of the acoustic signal.

Measurement microphones differ from those used for audio applications since
their primary role is to electrically reproduce the sound waveform without distortion
and with a linear relationship between the voltage out and the pressure sensed by the
microphone diaphragm.

This precision must be maintained over a wide range of frequencies and
amplitudes when measuring sound waves arriving from different angles. Furthermore,
they are expected to maintain this degree of precision over a range of temperature and
barometric pressure variations.

A microphone’s sensitivity is the relationship between the output voltage and
the acoustic pressure sensed by the diaphragm and is expressed in units of mV /Pa.

The magnitude of the sensitivity is important because it is inherently related to
electrical noise of the measurement system, since one cannot properly measure a
voltage that is near the voltage noise floor of the instrument itself. Hence, for a given
microphone and measurement system, the magnitude of the sensitivity will establish
the minimum sound pressure, which can be accurately measured [54].

Any change on the sensitivity produces a distortion in the output signal
compared to the acoustic signal originally generated on the component being studied.
Thus, the following parameters are essential in a microphone measurement [54]:

e The sensitivity should be nearly constant over the range of frequencies to be
measured. Thus, a quality measurement microphone should have a "flat"
frequency response.

e The sensitivity should be nearly constant over a wide range of sound pressure
levels. This is expressed as linearity, since a constant sensitivity would produce a
straight-line graph of output voltage versus sound pressure.

e The sensitivity should be nearly constant over a wide range of temperature and
barometric pressure, so as to not be affected by changes in room temperature or
pressure.

Common Microphone Types

e Dynamic microphones - An electrical coil connected to the diaphragm is
moved through an electrical field, generating a voltage proportional to the
velocity of the moving element. Dynamic microphones have characteristics that
are good for audio applications, but have high sensitivity to vibration, limited
dynamic range and their frequency response is generally not adequate for
measurement applications.

e Piezoelectric Microphones - The effect of sound pressure acting on the
diaphragm is transmitted to a piezoelectric element which generates a charge
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proportional to the original pressure. These microphones are often used in very
high pressure situations, measuring explosive waves pressure for instance. In
addition, due to their robust design, they can be used to measure small dynamic
pressure fluctuations that precede large static pressures. In general, the noise
floor of these microphones limit their use for precision sound measurement
applications.

Condenser (capacitive) microphones - the relative movement of the
diaphragm to a fixed backplane produces a variation in capacitance that is
proportional to the deflection of the diaphragm. A built-in electrical circuit in
the microphone preamplifier converts the capacitance fluctuation to a voltage
variation. The characteristics of condenser microphones, such as high sensitivity,
wide dynamic range, flat frequency response, low internal noise, low distortion
and high stability, make them the design of choice for measurement microphones
[54].



CHAPTER 3

Signal Processing: Pre-Processing Techniques

Applied

This section aims to clarify and give an insight into the signal processing and
enhancement techniques used on this project. At the end of this chapter the method
applied will be explained along with illustrations in order to clarify the adopted
procedure. However, before proceeding to clarify the techniques used, one

fundamental idea behind signal acquisition is the sampling frequency, which will be
further explained.

Sampling & Aliasing

The basic pre and post processing operations shall be properly executed to enable
further, often complex operations on collected measuring data, obtained from measuring
system [53]. In signal processing, sampling is the transformation of a continuous signal
to a discrete one, a technique that has been extensively used for signal reconstruction.

Whenever a signal is being measured, the number of samples taken in one second
of the signal is called sampling frequency f, expressed in Hz. The sampling frequency
used is related to the maximum frequency measured of the signal, i.e. its frequency
bandwidth. This rate should be set in such a way to enable reconstruction of analog

signal from discrete data without losing information from the original signal [53]. An
illustration on this concept is found on Figure [3.1
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Figure 3.1: Input signal and samples taken [59].

For this conversion to be possible without losing valuable information, the
Shannon-Kotielnikov condition must be fulfilled [53]. This condition states that the

35
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sampling rate cannot be less than twice of the highest frequency - the Nyquist
frequency - of a measured signal. If this condition is not fulfilled, then the
phenomenon of aliasing occurs, see Figure [3.2]

amplitude

—e

time

Figure 3.2: Aliasing phenomenon. The blue curve represents the measured signal and
the red curve is the reconstructed signal [60].

It is stated in [53] that for condition monitoring, one must oversample a measured
signal, as in the minimum sampling rate being much higher than the one given from
the Shannon-Kotielnikov condition. The same source recommends that, when acquiring
stationary signals from low speed condition monitoring, the sampling rate should be 5
to 10 times higher than the Nyquist frequency.

3.1 Order Tracking - Angular Resampling

In real working conditions, bearings operate under speed fluctuations which will
result in a non-stationarity character of the bearing vibration signal and, consequently,
the usual techniques for vibration analysis that are based on the assumption of
constant rotating speed cannot be applied [61] [62].

In order to overcome this obstacle, order tracking algorithms and techniques
have been proposed to remove the effects of speed fluctuation of [REBk and smearing
of the spectrum by resampling the original vibration at a constant angle increment
and converting the non-stationary signal in time domain to a stationary signal one in
angular domain [62].

Order tracking is a frequency analysis method that uses multiples of the running
speed (orders), instead of absolute frequencies (Hz), as the frequency base. Order
tracking is useful for machine condition monitoring because it can easily identify
speed-related vibrations such as shaft defects and bearing wear [6I].

This technique also allows to see how the intensity of the different harmonics
changes over a big speed range [I]. Randall states in [I] that if a constant amplitude
signal, synchronous with the rotation of a shaft, for instance, is sampled at a rate per
revolution, then the digital samples are indistinguishable from the samples of a
sinusoid, resulting in a line in the spectrum. On the other hand, of normal temporal
sampling is used, the spectrum will spread over a range that corresponds to the
fluctuation in shaft speed.

To avoid this, it is necessary to generate a sampling signal from a tacho or shaft
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encoder signal that is synched to the shaft speed, as known as order analysis [I].
However, using this approach in order to apply order analysis, has the disadvantage of
having a limited time response that might not be sufficient to detect random speed
fluctuations along one cycle [1].

The best method is to use the angular resampling technique. To resample each
record digitally, based on the corresponding period of the tacho signal, so as to achieve
sampling for uniform increments in shaft rotation angle. In other words, the signal is
resampled at a constant angle, but continuously changing with time [6]. Figure
shows an example of performing angular resampling through Computer Order
Tracking (COTJ) and its stages: (a) determine the number of pulses over time; (b)
obtain the cumulative angle, ¢(¢), of the shaft over time; (c) calculate the resampling
time instants for the constant angular increments 6 and (d) signal resampling by
interpolation.
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Figure 3.3: Angular resampling, through Computer Order Tracking [63].

As found in [I], based on digital interpolation, there are several ways of
performing angular resampling. One way is to increase the sample rate by a large
factor, and then select the nearest sample to each theoretical interpolated position.
Increasing the sample rate by an integer factor can be achieved in two ways. In the
time domain, it can be done by inserting the appropriate number of zeros in between
each actual sample, and then applying a digital low-pass filter to limit the frequency
range to the original maximum, thus smoothing the curve.

In the frequency domain the same result can be accomplished by filling the
spectrum with zeros in the centre (i.e. around the Nyquist frequency) and then inverse
transforming the increased (two-sided) spectrum to the same increased number of time
samples.

On the other hand, more accurate interpolation, not limited to a ratio of integer
numbers, can be achieved by fitting a curve to a group of samples and then calculating
the value of the polynomial at the interpolated positions.

Another approach to angular resampling would be to use phase demodulation of
a signal synchronous to the phenomenon of interest, shaft speed for example, to obtain
a mapping of shaft rotation angle versus time.

One must take into consideration that if order tracking is being performed
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directly on an analogue signal, it must be ensured that the signal is adequately
low-pass filtered to prevent aliasing, in particular when resampling at a lower

frequency [1].
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Figure 3.4: Angular Resampling according to the manufacturer of testing equipment
National Instruments.

3.2 Removal of deterministic components - Cepstral
Editing procedure analysis

Removal of deterministic signals (i.e. discrete components), which are typically
dominating components in machinery vibration signals, is an important step in the
diagnosis of rolling element bearing faults. There are numerous techniques found in
the literature that allow the removal of these components: linear prediction, adaptive
noise cancellation, self-adaptive noise cancellation, discrete/random separation, time
synchronous averaging and Cepstral Editing Procedure (CED) [64].

The has become widely used for removing these unwanted components and
has been extensively studied lately due to its easy interpretation and implementation,
as well as its relatively low computational cost yet good performance [65].

The challenge of removing the unwanted deterministic components is important
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for these contribute with high-energy dominating signals, originating from gears, screws
or shafts, and mask the wanted, non-deterministic - i.e. random - signals that bearing
faults generate. These unwanted signals appear as discrete components in the frequency
domain.

Given this, the removal of these dominant components must be applied before
further signal processing techniques [65].

Before going into detail of the specific cepstral method applied in this project, a
few basic ideas about cepstrum analysis should be looked into. The word cepstrum is
originated by reversing the first syllable of spectrum, which was justified because the
cepstrum is the spectrum of a spectrum [IJ.

Following this pattern of reversing the first syllable, terminology also has different
names found on table [3.1]

Table 3.1: Cepstrum Terminology.

Frequency Analysis Quefrequeny Analysis

Harmonic Rahmonic
Filter Lifter
Low-pass filter Short-pass filter
High-pass filter Long-pass filter
Magnitude Gamnitude
Phase saphe

Cepstrum

The Cepstrum method was initially presented as the power spectrum of the
logarithm of the power spectrum. Later, the term power cepstrum was redefined as
the inverse Fourier Transform (ET)) of the log power spectrum, partly because it is
more logical to use the inverse transform between a function of frequency and a
function of time and also because it is then reversible to the power spectrum [I]. This
redefinition however, was only possible after the publication of the paper, and
algorithm for the Fast Fourier Transform (EET]). What distinguishes the
autocorrelation function from the cepstrum, is that the cepstrum is the logarithmic
conversion of the spectrum before the second transform [IJ.

Different variations, or formulations, of cepstrum analysis exist. Different than
the power cepstrum, the complex cepstrum was defined as the inverse [FT] of the
complex algorithm of the complex spectrum [I, [I6]. The real cepstrum is defined by
setting the phase of the phase of the complex cepstrum to zero [10].

Matematically, where Fxx (f) is a power spectrum, the original definition of the
(power) cepstrum can be written as:

Cyp (1) = | {log (Fxx ()} (3.1)

and if one recalls the definition of the complex cepstrum, than it becomes:

Ce (1) = 37 Hlog (F (f))} = S™H{In (A (f)) +jo ()} (3.2)
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where:

F(f)=S{(f@)}=A(f) eV (3.3)

in terms of the spectrum’s amplitude and phase. Although complex cepstrum is
called complex, it is real because the log amplitude of the spectrum is even and the
phase of the spectrum is odd [16].

Given this, the new power cepstrum is then given by:

Cp (m) = 37" {log (Fxx ()} (3-4)

and for the spectrum of a single record (as in it can be expressed as:

Cp (1) =37 {2log (A (f))} (3.5)

As it has already been said, the real complex is obtained by setting the phase of
the power cepstrum to zero in Eq. 3.7}

Cp (1) =37 {In (A(f))} (3.6)

which is just a scaled version of [16].

An important note is that the complex cepstrum requires the phase ¢ (f) to be
unwrapped to a continuous function of frequency. Because of this, it cannot be used
with stationary signals, consisting of discrete frequency components. These signals’
phase is undefined at intermediate frequencies. It cannot be used also with signals with
stationary random components, whose phase is random. The complex cepstrum can
only be used with well-behaved functions such as impulse responses, where the phase is

well-defined [16].
Cepstral Editing Procedure

The distinctive property of periodic signals in the cepstrum domain is that they
appear as narrow impulses with a number of rahmonics. Based on this property
Randall proposed a method for removing these periodic signals from the cepstrum
[66, [67]. The same author also found [68] that the method enhances bearing
fault-related signals more significantly when compared with the other methods for
discrete components elimination that were stated previously.

The method used, and suggested by Randall, removes the periodic components
from the cepstrum by editing - liftering - the magnitude of the real cepstrum at
quefrencies of interest. This liftering procedure is performed using information about
the shaft speed and machinery configuration [65].

According to [69] the log amplitude spectrum of stationary signals can be edited
using the real cepstrum, and then the edited spectrum amplitudes combined with the
original phase spectrum are used to return to the time domain. On a more concise
level, Randall describes this method as a pre-whitening operation consisting in
setting an amplitude of zero for the real cepstrum, at determined frequencies. After
this, once the signal has been transformed back to the frequency domain, the resulting
signal is recombined with the phase of the original signal and inverse transformed to



3.3. Frequency Bands Identification Methods 41

time domain. This is equivalent to applying series of liftering operations around the
quefrencies of the deterministic excitations. This procedure results in deleting almost
completely the effect from these deterministic components on the signal as well as
removing the resonance effects [66].

Compl trum H Lifter |_.l T I_,_ Reconstructed
Omplex Ceps 1rerng nverse cepstrum fime signal

Original time
%sllgnal _—| FFT Amplitude cepstrum H Liftering |—-—| Liftered cepstrum |
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Figure 3.5: Schematic of performing cepstrum analysis [65].

At the same time, the bearing damage related components, cyclostationary of the
second order and not strictly periodic, do not present a strong peak in the absolute
value of the cepstrum and will not be affected by the liftering. Enhancing the effect
of these signals, which are the effective signals that one wants to obtain can also be
implemented simply by dividing the Fourier transformed signal by its absolute value
and transforming all of this again to the time domain, all of this while avoiding the
transformation to the cepstral domain [66]:

FT (z)

Tep = IFT {\FT(@I} (3.7)

3.3 Frequency Bands Identification Methods

3.3.1 Cyeclic Spectral Correlation

Cyclostationarity covers a subclass of non-stationary signals which exhibit some
cyclical behaviour. Such signals are generally not periodic but random in their
waveform, yet inherently generated by some periodic mechanism. To avoid confusion,
the period of a cyclostationary signal is referred as cycle. An example of a
cyclostationary signal is a random noise that is amplitude modulated by a periodic
function [70].

Aplication of Cyclostationary analysis proves to be interesting to the diagnostics
of machine vibration signals. This is because some machine signals, even though being
almost periodic, are not exactly phase-locked to shaft speeds, and thus even after
processed in order to compensate for speed fluctuation cannot be extracted by
synchronous averaging [71]. Typical examples of cyclostationary signals are the
combustion events in IC engines, which vary from cycle to cycle, and impulsive signals
from faults in rolling element bearings, which are affected by minor but randomly
varying slip.

In such cases, the signals are not strictly periodic, but cyclostationary (of second
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order), meaning that their second-order statistics such as autocovariance function are
periodic [71].

Moreover, the assumption that a vibration signal is cyclostationary affords much
more information than the usual and simplistic assumption of stationarity, since it
provides the tools to simultaneously analyse the content of a signal, for instance its
spectral content, and the characterisation of how this content evolves periodically in
time [70]. In REBE, cyclostationarity is symptomatic to the presence of faults, proved
by the occurrence of repetitive shocks when a defect impacts a rolling surface - a series
of repetitive shocks may be seen as a signal periodically amplitude modulated in time.
The rate of repetition of these shocks (the cyclic frequency) reveals the origin of the
fault, and the cyclostationarity intensity may serve to indicate its severity [70].

A signal is cyclostationary of degree N if its Nth moment is periodic about any
period. In other words, a cyclostationary signal is described by a periodically
time-varying probability density function. Furthermore, cyclostationary analysis is
another spectrum method applied to fault detection of gears and bearings, and takes
advantage of the stochastic process nature of the vibration signal [72]. In a strict
sense, a (quasi-) cyclostationarity signal X [n] is a signal whose joint probability
density function is a (quasi-) periodic function of time.

Given that method is applied in order to remove the discrete frequency
components from the signal, which correspond to first-order components, only
second-order components will be left in the signal to be analysed. This is the reason
why second-order descriptors are used to perform cyclostationary analysis of bearings.
J. Antoni shows [73] that cyclosationary analysis can either be done using time
descriptors, more precisely the instantaneous auto-correlation function or the cyclic
auto-correlation function, or through frequency descriptors, such as the spectral
correlation or the cyclic power spectrum. Randall, on the other hand, states that in
practice it is best to use the frequency domain to estimate spectral correlations [I]. In
other words, perform cyclostationary analysis (cyclostationary analysis consists in a
series of correlations). Hence the reason for the analysis performed in this project
being on frequency domain, or more precisely, angular domain. Moreover, Randall and
J. Antoni worked extensively on this topic and the descriptor J. Antony used for
bearing diagnosis assessment was the spectral correlation.

According to [1, [70], by denoting X (f) as the Fourier transform of a
cyclostationary signal xz (t) evaluated over an interval of length L, can be
expressed as:

o= bl (e ) x (-2} s

where E denotes the expected value.

The term S, (f;a) is coined the cyclic power spectrum (signal-units?/Hz). The
physical meaning of the frequency f is correspondent to the time-lag 7, indicating
the frequency of the carrier signal, where as frequency « is named cyclic frequency.
Intuitively, the cyclic power spectrum may be interpreted as providing the distribution
of the frequency content of signal x (¢) that statistically repeats itself with rate « [70].

The approach for this technique is the direct visual inspection of the magnitude
of the cyclic power spectral density displayed as a graph over the f versus « frequency
domain.
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Figure 3.6: Example of graph analysis with [CSC] method.

As can be seen in Figure this highlights with the central frequency to filter
around using envelope analysis with filtering. Given this, the most interesting
advantage of applying this procedure is that it can be used alongside envelope
analysis. Moreover, the graph itself can be used as a visual feature for further
analysis. If the classification algorithms classify the situation as faulty, one can quickly
verify this graph and see whether or not there is a highlighted area indicating failure
or something that might indicate a potential failure.

3.3.2 Wavelet Analysis

In cases of very low speeds, as for cranes or wind turbines, the energy levels
generated by the impacts (because of the faults) are low. Hence, applying to
these cases becomes a matter of getting the settings right to each case, which can be
time demanding and is the opposite of an automated tool. An alternative can be the
wavelet analysis. Furthermore, has the disadvantage of being inefficient in terms
of computer resources.

The wavelet analysis is yet another interpretation of time-frequency analysis as
this technique decomposes the signal in terms of a family of wavelets that have a fixed
shape, but can be shifted an dilated in time [IJ.

Mathematically, the complex continuous wavelet transform can be expressed as

wan =z [ e (20) (39)

where v is the mother wavelet, translated, as in displacement, by b and dilated,
as in expansion, by a. ®¥* is the complex function. In simpler terms, a, the scaling
parameter measures the degree of compression while b determines the time location of
the wavelet [74].

The dilation factor is known as scale and If |a| < 1, the wavelet W is a
compressed version of the mother ¢ wavelet and corresponds mainly to higher
frequencies. In contrast, if |a| > 1 the wavelet W has a larger time width than the

-




44 Chapter 3. Signal Processing: Pre-Processing Techniques Applied

mother wavelet 1) and corresponds to lower frequencies as illustrated in Figure
Accordingly, one can state that wavelets have time widths adapted to their
frequencies. However, one may also observe that the resolution of wavelets at different
values of the scaling parameter varies both in time and frequency domain, according
to the Heisenberg uncertainty principle [74].

Given that equation [3.9is a convolution, wavelets can be considered as a set of

a w8 b 4wt C 4 V.s(t)

Vs

L
o

~ v N

Figure 3.7: Effect of a and b. (a) Typicall mother wavelet. (b) Compressed and shifted
wavelet: |a| <1 and b > 0. (c¢) Magnified and shifted wavelet: |a| > 1 and b > 0 |74].

impulse responses of filters, which because of the dilation factor keep the bandwidth
properties. Wavelets present the advantage of giving a better time localization at high
frequencies, which can be useful for detecting local events in a signal. This means that
this technique is mostly used to detect local faults in bearings and gears [I].

Wayvelets can be divided into four main groups: orthogonal, non-orthogonal,
continuous or discrete, and currently there are numerous families of wavelets available:
Haar, Daubechies, Meyer, Gaussian, Mexican hat, Morlet, Shannon, Fejer-Korovkin,
among others. The Daubechies dilation wavelets are compact and have irregular
shapes in time domain, but are infinite in frequency domain. The complex wavelets,
on the other hand, are compact in frequency domain, but infinite in time domain.
These have the appearance of harmonic functions and are typically of one-octave
bandwidth, even though at times they are narrower. The biggest advantage of
complex wavelets is that the imaginary part of the wavelet is orthogonal to the real
part, consequently, the overall result is not sensitive to the phasing of the event.
Furthermore, the local sum of squares of the real and imaginary parts result in a
smooth function [I].

On a more general form, orthogonal wavelets are the most efficient to use when
analysis, or synthesis, has to be performed, or when the significant features of the
signal have to be represented with a minimum number of parameters. For analytical
purposes, non-orthogonal wavelets, Morlet wavelets for instance, are more convenient,
and it is often generally preferable to use redundant ’lapped’ transforms prioritizing
visual interpretation.

The main applications of this technique in machine diagnostics is in denoising
signals in both time and frequency domains simultaneously. There are two forms of
thresholding to remove noise, by removing any components with less amplitude than a
certain threshold value. One technique is Hard thresholding where the retained
components (components not considered noise) are left unchanged. Oppositely, the
technique soft thresholding estimates the noise using the threshold set, and these
values are subtracted from the retained components [I].
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The choice between families of wavelet to use must be done according to the
similarities between the wavelets and the features in the signal that are to be
extracted [I]. For bearing faults, which generate impulsive signals, using the impulse
wavelet may return better results. However, it is common to choose the wavelet family
by trial and error or even based on the knowledge of the analyst.

Morlet Wavelets

Morlet wavelets are non-orthogonal, Gaussian windowed sinusoids but suitable for
analysing many machine signals because of their similarity in appearance to narrowband
impulse responses, they can be tuned in order to correspond to different damping. The
complex Morlet wavelet is defined in the time domain as a complex exponential wave
multiplied by a Gaussian function and has the shape of a Gaussian window in the
frequency domain. Originally, real Morlet wavelets were windowed cosines, but it is
convenient to use the complex version, with a one-sided spectrum, so that the imaginary
part is the Hilbert transform of the real part. Consequently, the complex morlet wavelet
can be described as:

w(5) = v (5 = |- (5) (- o) (310

() = = exp(—0t2) exp(j2n fot) (3.11)

N3

where fo is the window’s central frequency and o its width and * denotes the
complex conjugate of W(f) that is the [ET] of v(t), and because U(f) is real, its
conjugate is equal to itself.

The advantage of complex Morlet wavelets, as opposed to the real version with
windowed cosines, is that the imaginary parts have their maxima when the cosines hit
values of zero, so that the squared amplitude of the wavelet coefficients is not sensitive
to the phasing of local features in time signals [1].

3.4 Demodulation: Hilbert Transform

Contrary to other in