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Abstract

Rolling element bearings are components widely used in industrial applications.
Their failure leads to economical and logistical losses, considering production loss or
repairing and replacement costs.

A suitable and predictive plan of maintenance would maximize times between
intervals while constinuously monitoring the equipment, looking for a fault. If one is
detected, then its evolution is monitored and replacement is incorporated in the
maintenance plan according to the estimation of the remaining life time.

Even though many other techniques are available, vibration monitoring is still
the most used technique for condition monitoring, due to its robustness and accuracy
in fault identification. The tool developed in this work applies a series of different
signal processing techniques to enhance the fault’s signature signal: Angular
resampling, Cepstral Editing Procedure, Cyclic Spectral Correlation and Envelope
analysis with filtering finishing with feature calculation, or feature extraction.

Additionally, this project paper suggests a method for semi-automatic signal
processing based in the identification of the frequency band and feature selection.

Furthermore this paper covers various papers on condition monitoring, signal
processing of vibration signals, and finally feature selection and classification.

The final goal is, along with the signal processing method, to develop a method
for class classification using Python that can classify a specific class with good
accuracy.

Finally, some results are shown where one can extrapolate some conclusions
about the efficiency of the different processes used in this method.
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Resumo

Os rolamentos, de esferas ou de rolos, são amplamente utilizados em máquinas
cujos componentes funcionem segundo movimentos de rotação. A falha de um simples
rolamento leva a perdas económicas, custos de reparação e substituição e, por vezes,
custos logísticos para a empresa, uma vez que leva à paragem do equipamento e,
consequentemente, paragem da cadeia de produção.

Um plano de manutenção adequado, através de manutenção preditiva, maximiza
os tempos em que o equipamento está em funcionamento, ao mesmo tempo que o
monitoriza constantemente, procurando uma falha. Se tal for detectada, esta é
monitorizada e a sua substituição é incluída no plano de manutenção, de acordo com a
estimativa do tempo de vida útil do equipamento.

Apesar de muitas outras técnicas estarem disponíveis, o recurso à análise por
vibração ainda é a principal técnica para a aplicação de monitorização de condição,
devido à sua robustez e precisão para identificação de falhas. A ferramenta aqui
desenvolvida aplica uma série de diferentes técnicas de processamento de sinal para
que este seja melhorado: re-amostragem para o domínio angular, procedimento de
edição cepstral, correlação espectral cíclica e análise de envelope com filtragem,
acabando com o cálculo de indicadores ou extração de indicadores.

Para além disso, este documento sugere um método para processamento
semi-automático de sinal e extração de recursos, envolvendo filtragem.

Adicionalmente, este documento cobre vários artigos sobre o tema condition
monitoring (monitorização de condição), o processamento de sinais de vibração e
finalmente a seleção e classificação dos indicadores.

O objetivo final é, juntamente com o método de processamento de sinal,
desenvolver uma ferramenta para classificação de falha através de librarias disponíveis
em Python, librarias essas que podem classificar classes com boa precisão.

Finalmente, alguns resultados são apresentados onde se podem extrapolar
algumas conclusões sobre a eficiência de cada um dos processos usados neste método.
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CHAPTER 1

Introduction

1.1 Condition Monitoring and its importance for bearing
analysis

Every mechanical equipment will develop a fault during its useful working life.
Whether it is a light fault like a component that needs reconditioning or lubricant
replacement or a more severe fault like one or more components that need replacement
altogether, faults will eventually happen. The severity of the fault will depend on a
wide range of factors. To tackle this, condition monitoring has been conducted
through every equipment even if it is on a unconscious level: whether it is through
noise analysis, lubricant check when it is being changed or other more primitive
measures, this type of maintenance strategies have been performed since the beginning
of Mechanical Engineering.

The field of Condition Monitoring (CM) is getting more and more attention
because its methods are becoming recognised as the most efficient strategies for
carrying out maintenance [1].

However, before going deeper into the subject of CM, it is important to have a
clear perception of the meaning of the term CM. Even though each author defines it
differently in the literature, one can define CM as:

"Condition Monitoring is a monitoring process or a sensitive tool that
focuses on early detection of faults, failures and wear of machinery with the
intention to minimize downtimes and maintenance costs, and consequently,
maximize production." [2]

Additionally, according to [3], CM can also be defined, in a more general way, as
a process or tool that integrates technologies, specialised people, condition indicators
and quality data/measurements to estimate the health condition of a machine and to
make the best decisions about maintenance actions.

One sees an increasing trend in today’s market: the increasing competition
between industries to keep launching products that are both effective and reliable
while meeting each market’s regulations. To match this severe internal competition,
industries have no other option than to demand engineers and designers to produce
machines and processes able to withstand brutal work conditions, so that, sometimes

1



2 Chapter 1. Introduction

machines have operating cycles of weeks, or even months only stopping for
programmed events [4].

The evolution of industry equipment requires better and better maintenance
strategies. Maintenance work should not be performed without consideration but it
should also be kept in mind that a machine or equipment cannot run without an
effective maintenance strategy.

Maintenance through CM can be performed through a wide range of techniques
from chemical effects analysis, wear debris analysis via oil analysis through
thermography or vibration analysis. The latter is the most commonly technique used
when it comes to applying a Condition - based Maintenance Strategy (CBMS) for its
signal processing techniques have been studied for more than thirty years. Nowadays
other techniques are being studied such as analysis using Acoustic Emission sensors,
or Microphones. However vibration analysis is still applied in conjunction to these
techniques so that the conclusions can be cross-checked and its information can be
used to help when it comes to make decisions [5].

The dynamic nature of machines requires correct maintenance for them to
perform reliably at peak performance [6].

Machines were originally operated until failure (Run-to-Break), prioritising
maximum operating times between breakdowns. However, this meant that when
failure does occur can be catastrophic and result in severe consequential damage. This
is undesirable, especially when such failure can be prevented by experienced
technicians, sometimes with decades of experience, who are able to detect the state of
a machine through sound, touch or other types of inspection. The Run-to-Break
strategy still has place in industries where the production losses are not high and the
machine is not essential for production, for example sewing machines in the textile
industry.

Figure 1.1: Different maintenance strategies [7].

The following maintenance strategy is the Preventive Maintenance (PM). This
maintenance strategy tries to take into account this experience and applies it to
routine minor checks that greatly influence machines’ behaviour. This routine minor
checks must be done at regular intervals considered shorter than the expected time
between failures. This maintenance strategy usually assures that 1-2% of machines
will experience failure during that time [1].
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The drawbacks of PM are that it doesn’t take into account the fact that
different components wear at different rates. As such, some components are replaced
that could have run for more time while others are replaced at a tardier stage which
can lead to failures that otherwise would have never occurred. This method is better
suited for applications where the components wear at a predictable and constant rate
that can be calculated if the operational regime is steady [1]. On the other hand,
critical components such as bearings or gears must not be maintained with a PM
strategy for these equipments do not wear at a constant and predictable rate.

Typically, different bearing faults develop at rates. Additionally, fault
evolvement also depends on operating conditions and the fault type itself. The time
between the development of a potential failure and a serious and catastrophic can be
long. This allows the operator responsible for maintenance to establish a maintenance
schedule that prevents catastrophic and suddenly failures.

However, these faults may go undetected at early stages [5].
According to Randall in [1], the steps for a maintenance strategy are the same

for all the other applications and can be resumed in three steps:

1. Data Collection

2. Processing and Analysis

3. Diagnosis and Prognosis

Condition - based Maintenance: Advantages and Economic Benefits

Some companies still choose to see the glass half-empty by regarding a
maintenance centre as a cost centre. However, as demonstrated by [8] there is a
considerable amount of evidence that adopting a Condition - based
Maintenance (CBM) or CBMS results in economic advantages in most industries.
Some authors go even further by stating that a CBM or CBMS can convert
maintenance to a profit centre [9, 10].
When it comes to wind power, its maintenance, especially when offshore, is known to
be difficult and expensive. The reasons behind this problem are related to unexpected
failures, spare part and equipment availability, and weather conditions that may lead
to long down times. As demonstrated by [11], using Condition Monitoring
Systems (CMS) results in not only economic benefits but also lower risks of
consequential damage at failure while providing advantages for the planning of the
maintenance. As stated in [11] using CMS returned an economic benefit of 190 000,00
e and reduced risk of high cost of failure.

Y. Wang studied in [12] the cost benefit of using CMS in correct maintenance
decision making by analysing the interrelationship between CMS effectiveness and
system downtime due to system failures. It was proven that adopting an optimal
maintenance strategy can minimize Operations and Maintenance (O&M) costs.

Another topic that must be taken into account is the indirect cost of a machine
that is not operating at its best performance. When an equipment is running with a
failure that just started to develop, the running conditions will be different and the
machine will not only wear other components but also use more energy than it should.
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In essence it will not be efficient. This is important because nowadays engineers
should thrive for a more sustainable world by creating machines that are reliable while
using less and less resources.

1.2 Data Pre-Processing

Amongst other ways like acoustic emission analysis or oil debris analysis,
vibration analysis has been extensively used in bearing diagnostics of rotating
machinery and extensively studied for the past 40 years as proven by the papers using
techniques found all the way back to the 1970s [13, 14].

Acquiring vibration signals involves the installation of a transducer, normally a
linear accelerometer, as close as possible to the bearing that is being monitored so
that the clearest signal can be obtained. The fault signal results from the vibration
generated when the fault - either on the inner race, outer race or on the rolling
elements - interacts with the other rolling surfaces, an aspect that will be covered
further on this document [14].

However, when choosing methods for condition monitoring one must recognise
that using tools such as vibration analysis (or any other form of analysis for that
matter) result in data for the assessment of the bearing condition that are in raw
state. For effective diagnosis and prognosis of bearing element bearings this data must
be precisely treated in order to remove chances of the data being perturbed by
surrounding equipments or other forms of signal contamination [15]. For instance,
implementing vibration analysis for inferring the health condition of REB yields the
information, to be treated further, in the form of signals that are often perturbed by
surrounding noises - coming from other equipments - or interferences coming from
mechanisms, present in the equipment itself, like gears or shafts rotating. As stated by
Randall in [13], a major reason that explains why the relative weak bearing signals are
masked - more obvious for very low rotational speeds - is the discrete frequency noise
component coming from gears. Even in machines where gearboxes are not present, a
very strong discrete frequency will exist and will contaminate the frequency bands
where the bearing signal is usually dominant. On top of this, the signal coming from
the source, the bearing, can be masked in a way that it loses its impulsiveness. This
means that an accelerometer, or a microphone - if sound analysis is performed - is
only mounted as close as possible to the component being tested. For the case of
bearings - whether it is a faulty bearing or a healthy one - the signal is generated on
the bearing itself and has to go through the structure from where the bearing is
mounted to where the transducer is located. This is more relevant when studying the
fault signal, what happens is that the fault pulses are modified when passing through
a transmission path where the impulse response is long [13].

Another aspects to take into account are the speed fluctuations of not only the
bearing, but also of the rolling element itself. This fluctuation in rotation speed - for
the bearing - or when the ball or cylinder is slipping instead of spinning - for the REB
- results in a considerable change of character of the measured signal [13, 15, 14].

In order to overcome these obstacles, signal processing has become a very
important technique in order to obtain diagnostic information about bearings.
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Different signal processing techniques have been proposed such as angular
resampling to remove the speed fluctuations, Cyclostationary methods to determine
the resonance frequencies at which the faults occur, Cepstrum analysis to remove the
non-periodic components, [16] Hilbert transformation for demodulation of the signal,
and many others as Akhand Rai et al. studied in [15]. Envelope analysis has also
proved to be a very powerful method of analysing vibrational data since the analogue
days. Today’s capabilities of computer processing have shed new light on this already
powerful method [13, 1].

After placing the correct transducers in place and acquiring the vibration signal
of the bearing being studied, envelope analysis along with filtering is usually applied
to the signal although different authors complement envelope analysis with different
signal processing techniques [15].

1.3 Feature Extraction, Reduction and Selection

Feature Extraction

Once the stage of signal processing is performed, anomalies on REB are detected
using features, or indicators, extracted from the vibrational signal and will give an idea
of the condition of the bearing [16]. Fault Detection and Diagnosis (FDD) is easily done
through the analysis of simple statistical features that are calculated on the time domain
or on the frequency domain. Features like kurtosis or Root Mean Square (RMS) - among
others constitute the features in time domain - or the correspondent amplitude values on
the spectrum on the frequency areas of Ball Pass Frequency of Outer Race (BPFO), Ball
Pass Frequency of Inner Race (BPFI), Ball Spin Frequency (BSF), when an outer, inner
or ball fault develops, respectively - constitute the features on the frequency domain
[17, 18, 19].

These features, or commonly known as Condition Indicators [6], are calculated
after the signal is processed, which means that, if for envelope analysis the choice of the
frequency envelope window (or central frequency) and window bandwidth (or frequency
range) is important [20], it will be even more important because, as a consequence,
the features can render as inconclusive. This means that the parameters for envelope
analysis, or signal processing, must be chosen carefully in order to obtain features that
might lead to a good characterisation of the condition of the REB.

Feature Reduction and Selection

Open literature gives plenty of evidence on the effectiveness of FDD of REB.
Often, FDD of REB can be performed through one of two methods:

1. Advanced signal processing techniques: As stated above, signal processing
techniques can be used in order to obtain information regarding the condition of
a REB. Even though these tools can be used as a decision when it comes to
diagnosis assessment, they do not give automatic results on the condition of the
component, for these methods do not classify the fault nor recognise a pattern
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when present. On top of this, analysis of vibrational signals and diagnosis
decision making must be done by an expert, this means that an automatic
diagnosis method cannot be implemented [21].

2. Artificial intelligence tools and pattern recognition methods -
Machine Learning: Even though these methods are somewhat complex, they
can be used to develop automatic bearing fault diagnosis systems, without
human intervention. These methods can also be extended to be used to predict
the Remaining useful life of a REB, through pattern recognition [22].

However, when calculating features on a signal - and specially when one doesn’t
know which feature correlates to a better indication of a fault of a component - it is
good practice to calculate a high number of features, or indicators, so that the
automatic classifier has a chance of finding the REB’s condition - healthy or not.

For this purpose, various techniques have been proposed on the literature.
Techniques such as PCA, Independent Component Analysis (ICA) and Linear
Discriminant Analysis LDA are the most commonly used [22, 23, 24, 25, 21, 26], each
with their own advantages and disadvantages. Jaouher Ben Ali et al. demonstrated in
[22] that using feature reduction techniques improves the quality of the classifiers
used. However, the ability to interpret the influence of individual features/variables
decreases when feature reduction methods are applied. These techniques save feature’s
information in a set of components, and these components cannot be interpreted
directly except for the amount of information kept compared to the original data - in
case of PCA - or the information regarding the variance between the features and the
components - in case of LDA. In addition, it should be taken into account that feature
reduction comes at a cost: the loss of information compared to the original data.
Using the PCA as an example, each of the resulting components represent a certain
amount of information compared to the original situation. If, after applying PCA and
using three components, these three components only amount to represent 70% of the
original set of data, then one should think of using more components.

Another important step - parallel to feature reduction - to take into
consideration is the step of feature selection. Effective FDD of REBs is accomplished
by using the most meaningful and most responsive features to the fault presence and
severity. It can be easily understood that using improper and inaccurate features
reduces the overall accuracy and reliability of a possible health indicator method for
REBs, moreover such method might be unable to predict the actual bearing condition.
Removing irrelevant, redundant or noisy features also leads to better learning
performance - higher learning accuracy - lower computational cost and a better
interpretation of the model used [27, 28]. This step, just like the feature reduction
step, becomes more important in problems with a high number of features.

This subject has received a lot of attention during the last years since there is a
need for methods that are computationally efficient and accurate, yet sensitive to
complex patterns of association so that features that hold good information are not
mistakenly removed [29].

The supervised methods take into account the label to look for relationships
between classes and the features and selects relevant features to distinguish between
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classes. The unsupervised feature selection is considerably more complex once there is
no knowledge regarding the labels. The semi-supervised methods create a similarity
matrix and select features that best fit that matrix [28].

In addition, methods for feature selection can also be classified in terms of
search strategies: Filter, Wrapper or Embedded methods. The filter methods
distinguish the features via characterisation of data. Wrapper methods rely on
machine learning algorithms to evaluate features, while the embedded methods
construct a model of the data and select the features based on that model [28].

Figure 1.2: Feature Selection Classification [28].

1.4 Classification Methods

The final step of an automated method of FDD of REBs is the classification of
the fault that developed on the bearing and, on a later stage, the recognition of a
pattern for assessment of the fault severity and determination of the bearing’s
Remaining Useful Life (RUL).

It is already known that vibration analysis along with effective signal processing
techniques allows one to extract quantitative information of the bearing vibrational
signal characteristics. However, using this information - the features - to diagnose a
fault that has developed on the REB presents a considerable challenge, for solving this
requires the interpretation, classification and pattern recognition of the extracted
data. In order to solve this, various Machine Learning (ML) algorithms have been
successfully applied in the fields of fault classification, fault detection, condition
monitoring and prognostics [30].

Today’s processing power has enabled ML methods to be accurate and reliable
and to be used in all fields from cancer research and marketing and sales applications
to criminal justice [31, 32, 33].

Despite the existing efforts of explaining the internals and workings of ML
methods, these and sometimes their output remain esoteric to the everyday user, often
understood only by experts with years of training and development experience.

Given the fact that these methods’ popularity is growing progressively and its
use is growing considerably in the real world, understanding how these methods
perform their intelligent decision-making has become increasingly important and
critical [33, 34].

These methods are classified into three families, in accordance to the availability
of label information: Supervised, methods that use labeled data, Semi-Supervised or
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Unsupervised, where there is no need for labeled data. This is, if the classes of the
data one has acquired - in this case, faulty or not - are available then it is possible to
use between one of the three families (see figure 1.2) explained [28].

Figure 1.3: Example of a black box system [35].

On an industrial facility, this is no different. A maintenance engineer will most
certainly feel disbelief if the tool he is using tells him that a component is faulty, without
showing any evidence on why the tool classified the component as faulty. Engineers’
attitude consists of questioning everything, hence the importance of relying on methods
that are both easy to interpret and accurate.

Currently, ML methods are available through both comercial and open source
packages, both offering optimized algorithms of numerous different methods [30]. One
of the most relevant and used open source tools for ML is the scikit-learn package
available on the Python scripting language [30, 36]. As already stated, this project tried
to avoid methods that were complex to interpret. As such, a simple method of class
classification, the Decision Tree, was used and directly compared to two more complex
methods: SVM and Random Forest. Class, or fault, classification was accomplished
with considerable accuracy using the Decision Tree method, which after running allows
the user to see the model created and understand how class classification was performed.

1.5 Motivations

REBs are one of the most used components in machinery construction. Failure
of REBs cause downtimes for component replacement or refurbishment which have
consequences on the economic viability of large systems and chain operated equipments.

Component failures, however, can never be avoided, only postponed. Components
will wear out, oil will loose its lubricant capability and one can only make plans for
programmed maintenance. Here is where condition monitoring steps in, the constant
supervision of a given component and, given a threshold, the warning of a developing
failure and its consequent maintenance.Condition monitoring of REBs has been studied
for many years having a considerable body of evidence that returns economic benefits,
such study has resulted in a numerous signal processing techniques and approaches to
this issue.

However, condition monitoring through vibration analysis can be an exhausting
task performed only by an expert on vibrations, which doesn’t allow the development of
an automatic method of fault classification of malfunctioning REBs without user input.
On the other hand, such tool cannot be created and used without proper interpretation
and critic thinking. This text will present a semi-automated, fully interpretation-able,
method for condition monitoring of REB for classifying faults.
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1.6 Objectives

• Understand the fundamentals of condition monitoring, the different techniques
used, and the state of the art. Clarify the use of vibration analysis in this area
and where it fits with other techniques.

• Develop a semi-automatic method of frequency band selection for filtering for
envelope analysis.

• Study the results differences between filtered signal and non-filtered signal.

• Different faults exist at different resonance frequencies that are dependent on
speeds, as such, find a connection between frequency bands and, if possible,
develop a frequency band for filtering that works for all situations.

• Extract features from the signal on the angle domain. Find relationships between
features, study the methods available for relevant feature selection and apply the
best suiting one.

• Apply a classification method in order to successfully classify a fault that might
be present on a bearing being studied.

1.7 Structure

This document is structured into seven main chapters. The following chapter
explains the vibration concepts of REBs, the different faults that might develop and
the technologies and analysis that can be used to perform condition monitoring of said
equipment. The third chapter explains the signal processing techniques that were used
for signal enhancement and treatment. After this, the fourth chapter covers features
and their analysis: which features were used and how they where calculated followed by
an explanation of feature reduction methods and finishing on feature selection methods
for redundant and irrelevant features elimination.

The fifth chapter clarifies the theory behind the classification methods used for
fault classification. The sixth chapter shows the results obtained after applying signal
processing techniques, feature reduction, feature selection and feature classification.
The document ends with a final chapter stating the conclusions and future work on this
topic.





CHAPTER 2

Rolling Element Bearings and Technologies

2.1 Bearing Defects Fundamentals

Most of the industries rely on equipments that must go through different motion
conversions. When it comes to rotating motion, a key component is the REB whose
main function is to support the rotating element while allowing it to rotate. This
rotating element can either be a simple shaft or a shaft with a set of gears attached.

The precision rolling-element bearing of the twentieth century is a product of
exacting technology and sophisticated science. Simple in form and concept and yet
very effective in reducing friction and wear in a wide range of machinery. Normally
this is the most precise component parts and are typically fabricated with tolerances
that are around ten times more strict than the other machine components [5]. This
equipment evolved immensely since its development and nowadays the project
engineer developing a machine or component has a wide range of bearings to choose
from.

The most common and most used types of bearings are the REBs and the
journal bearings. The journal bearings work on principles that are somewhat different
from the REBs. These work on the principle of hydrodynamic lubrication. In order to
do so, a small gap - or tolerance - between the journal and the bearing is needed.
Usually the rotating element - or journal - is supported on an outer bearing, usually
made of bronze, for auto-lubricating purposes. Then, the gap between the bearing and
the journal is filled with a lubricant characterized by a certain viscosity and while
running at high speeds, a pressure is built up toward the centre of the shaft. This fluid
pressure, is responsible for supporting the load on the shaft and helps reducing the
friction, and consequently the wear. During the starting and stopping phases, usually
when the shaft rotates at slower speeds, the shaft and the bearing are subject to
metal-to-metal contact, which can lead to degradation and wear of both parts.
Normally, the bearing is either coated or manufactured in a material that is softer
than the shaft so that it degrades faster than the shaft. At a point, this element needs
replacement and a solution to this problem are the hydrostatic bearings that have an
external source of pressurised lubricant that avoids the wear between the journal and
the bearing. This last type of bearings is used when the loads are very high. Another
characteristic of journal bearings is that its damping ratio is controlled by the

11
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lubricant. Consequently if the vibration response needs to be changed than one only
needs to replace the lubricant used [5].

This text however will not cover this kind of bearings. The ones being studied
on this document are the REBs, that work thanks to the rotating motion of a
particular element between two circular races, the inner and outer. In order for this to
work frictionless, the bearing is filled with a lubricant: either oil or grease or a mix of
the two. To keep the rolling elements from hitting each other or getting out of their
place is the cage, where the rolling elements are put into. The sealing has the
objective of securing the lubricant inside and keeping external particles from getting
into the tracks - and consequently developing a serious failure on either one of the
races or on the surface of the rolling element.

These four elements are the constituents of a typical REB: the tracks or races,
the rolling elements themselves, the cage and the sealing. Although different
manufacturers have different design variations, this kind of bearing anatomy is the
most common and simple. Figure 2.1 gives an illustration to the assembly of a REB.

Figure 2.1: Anatomy of a REB. Adapted from [37].

"A chain is only as strong as its weakest link."

The proverb can, of course, also be applied to industrial machinery, for an
equipment is only as robust as its weakest component. It is easy to see why such
simple component plays a vital role inside any mechanical equipment. This item,
when faulty, causes shutdown of the entire equipment and, at times, the entire
production chain if the next equipment depends on the preceding one. This of course
results not only in maintenance costs but also in economic losses given that the
production line will be on hold until that specific component is replaced.

As already stated, the main purpose of a REB is to provide relative positioning
and rotational freedom while distributing a load between two structures: the shaft and
the housing. If there is a need of distributing loads between surfaces, such action can
be facilitated through the use of REBs between the sliding members. The friction
encountered during the rotating motion is also reduced thanks to the use of lubricated
rotating elements, even though such elements - rollers, tapered rollers or spherical
balls - are afflicted with high stresses due to effective load transmission [38].

The rolling elements can have different geometries and, as already stated, are
manufactured under very tight tolerances. However, no manufacturing process is 100%
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perfect which means that some rolling elements are not perfectly spheric or
cylindrical. Mohanty states that the best bearings available in the market are
fabricated with radial imperfection of 3 to 5µm [39]. Due to this slight variation in
geometry, when the bearing is in motion, a particular vibration signature is generated.
Moreover, thanks to the same geometric variation of the rolling element, the radial
load on the bearing is constantly changing with the shaft’s rotation, which makes the
signal amplitude modulated.

It is easy to understand that if there is a slight variation on the geometry of
either the races or the rolling element, the vibration signature of the bearing will
change. Let’s assume that because of a faulty sealing, a grain of sand managed to get
into the bearing. As the rolling element strikes this grain of sand, an impulse is
generated which excites high frequency resonances between the bearing and the
transducer, typically an accelerometer. With time, this grain of sand will start to
develop other faults, either on the outer or inner races, by eroding the races’ surface,
creating a hole, or on the rolling elements’ surface itself. This is merely an example,
other situations may occur due to metal shavings or chips, etc.

Randall explained in his book [1] that the broadband bursts excited by the
impulses are further modulated in amplitude by two factors:

• The strength of the bursts depends on the load applied to the rolling elements,
and this is usually modulated by the rate at which the fault passes by the load
zone;

• If the fault is moving - a rolling element fault, for example - the transfer function
of the transmission path changes with respect to the fixed positions of the response
transducers.

Given that the signal measured by the transducer will be modulated, it is
important to demodulate the signals and analyse them on the frequency domain in
order to perform diagnostic analysis. Figure 2.2 shows the envelope signals of the
faulty signals generated by the different localised faults in the different components.

Figure 2.2: Envelope signals generated on a faulty bearing, adapted from [27, 5].
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2.1.1 Fault Characteristic Frequencies

As already stated, for a particular bearing geometry, faults present on inner race,
outer race or rolling element generate a vibration spectra different from the bearing
without faults and with unique frequency components [30, 40, 41]. It is thanks to
these specific frequencies and their magnitudes that one is able to analyse the vibration
spectra obtained from the bearing and determine the condition of the bearing. These
frequencies are not constant however, they are directly related to the shaft speed the
bearing is attached to. In addition, Outer Race and Inner Race fault frequencies are
also dependent on the number of balls present in the bearing.

Using the geometry clarified in figure 2.3, one can write the following equations

Figure 2.3: Ball bearing geometry [39].

describing the frequencies at which the different bearing faults occur:
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Where fS is the shaft speed in rpm and N is the number of balls in the bearing.
One important aspect to be taken into account is that the BSF is the frequency with
which the ball fault strikes the race, inner or outer and accordingly there are normally
two shocks per ball rotation period. Consequently the even harmonics of BSF are
often dominant, particularly in the envelope spectra [1].

However, these kinematic frequencies are described without taking into account
the ball slip. In fact, slip must virtually occur because, given that the balls are not
perfectly spherical the angle φ changes, depending on the position of each ball in the
bearing as the ratio of local radial to axial load changes. Thus, each ball has a
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different diameter and is trying to roll at a different speed. The cage as the function of
ensuring a mean speed that is equal to all the balls, by causing a random amount of
slip, varying between 1-2% both as a deviation from the calculated value and as a
random variation around the mean frequency [1].

However small this random slip may be, it changes the character of the signal
considerably and is the reason why envelope analysis extracts diagnostic information
not available from frequency analyses of the raw signal. It also means that bearing
signals can be considered as cyclostationary, an important aspect to be studied in
chapter 3.

Additionally, the number of rolling elements and their position in the load zone
change with bearing rotation, giving rise to a periodical variation of the total stiffness
of the bearing assembly. This change in the total stiffness generates vibrations
commonly known as varying compliance vibrations. When the bearing races are
assumed as continuous systems, the changing direction of the contact forces applied by
the rolling elements may cause flexural or ring-mode vibration of the races even if they
are geometrically perfect [42].

As seen previously, it was shown that bearing defects cause a significant change
in the vibration signature of the REB. The defects present on bearings can be
categorised as distributed or local defects.

Examples of distributed defects are surface roughness, waviness, misaligned
races and off-size rolling elements which are caused by manufacturing error, improper
installation or abrasive wear [42].

Localized defects can be cracks, pits and spalls on the rolling surfaces. The most
common cause of failure of rolling element bearing is the spalling of the races or of the
rolling elements, and is caused by a fatigue crack under the surface of the metal.
Fatigue failure can be caused by overloading or shock loading of the bearing during
installation or running. In [42] other defects were found, such as electric pitting or
cracks thanks to excessive shock loading.

Whichever fault may be, one common fact among all of them is that whenever
an interaction between elements with a defect, abrupt changes in the contact stresses
occur which generates a pulse of high amplitude and very short duration. Such
impulse produces vibration and noise that are used to monitor and detect the presence
of a defect’s initial stage in the bearing [42, 5].

2.1.2 Distributed Defects

Surface Roughness

Even though engineers try to optimize manufacturing processes, there is no
process with 100% of accuracy. This is not only important in terms of dimensions but
in terms of surfaces and geometry. There are no perfectly flat surfaces or perfectly
spherical objects and no surfaces are perfectly parallel among them. Real objects will
have form errors, surface waviness and surface roughness due either to the
manufacturing processes or created by previous operation.

As one can visualize in figure 2.4, for the real contact area, there is less contact
between surfaces. Additionally, the border of the real contact area may be wider than
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Figure 2.4: Differences in contact pressure distribution between real and ideal surfaces
[43, 5].

that of the ideal surface [43]. In addition, figure 2.4 shows that the real surface
contact leads to higher pressures.

Surface roughness is one of the parameters set by project engineers on their
different projects. This information is in the technical drawing of a certain equipment
and usually there are different levels of surface roughness requirement for a certain
project. In the assembly regions, where different components are in direct contact,
there will be a higher requirement for lower surface roughness for this exact reason.

Surface roughness exists because the material will not be completely flat in its
entirety. One way of assessing the roughness of a certain surface is through the
arithmetic average Ra which is measured through the performing and arithmetic
average of a number of measurements in the direction of the normal vector of a real
surface (see equation 2.5).

Ra =
1

n

n∑
i=1

|yi| (2.5)

Film Thickness

Between other factors, surface wear will be largely influenced not only by the
lubricant used but also by how much lubricant is used. If one pictures a gap on a
rolling contact, there will most certainly be some kind of liquid inside the gap,
trapped between the surfaces. The thickness of the liquid in this gap is important.
The liquid being caught in that gap, when the surfaces are rolling or sliding, will
create a lubricant film that aims to separate the contact surfaces and reduce the
contact pressure [43].

The lubrication mechanism and its effect is chosen based on the value of λ, that
refers to the ratio between the film thickness h and the combined surface roughness in
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the contact surface Ra [43, 5].

λ =
h

RA
(2.6)

RA =
1

2
(Ra1 +Ra2) (2.7)

Based on the value of λ, the lubrication regimes can be divided into boundary
lubrication, mixed lubrication, elasto-hydrodynamic lubrication and hydrodynamic
lubrication [43, 5].

The first regime, boundary lubrication, characterized by λ < 1 , occurs when
operating conditions’ hydrodynamic action is too weak, or insufficient, for separating
the contact surfaces. One example of such situation is low-speed applications where
the surfaces in contact are merely wetted by the lubricant.

Moreover, the load is carried mainly by solid-to-solid contacts and this regime of
lubrication relies on lubricant and surface properties to generate boundary films when
running [43, 5]. As a consequence to this, some wear is expected due to tribochemical
or mechanical wear [43]. In the case of REBs this kind of lubrication can occur locally
in micro-slip zones and at the end planes of axially loaded rollers. One should note
that boundary lubricated contacts lack any damping effect, and boundary lubricated
contacts can act as a vibration sources [43, 5]. The following regime, the mixed
lubrication with 1 < λ < 3, is characterized by boundary lubricated conditions similar
to elastohydrodynamic or hydrodynamic lubrication. In this regime, lubrication
happens by either a solid-like or viscous-like boundary film [43, 5].

The last two regimes, elastohydrodynamic 3 < λ < 10, and hydrodynamic,
λ > 10, are based on Reynold’s equation for hydrodynamic oil pressure build-up and a
combination of elastic deformation at the contact surfaces of low geometric
conformity. In the elastohydrodynamic regime the film thickness is slightly higher
than the combined surface roughness, while in hydrodynamic regime the film thickness
is much higher than the referred roughness. In rolling element bearings, hydrodynamic
lubrication occurs in contacts between rolling elements and their cages and, also
between roller ends and bearing race flanges for roller bearings with axially loaded
rollers. The higher film thickness achieved in this regime provides a significant degree
of damping for dynamic loads [43].

Fatigue Wear

Fatigue wear follows the same originating principles of fatigue cracks. On an
airplane, for example, several components such as the wings, the rotor blades or even
the fuselage, are subject to fatigue which has caused plenty of headaches on aviation
engineers. The cyclical application of pressure on the metal of a given component
eventually causes it to develop a crack. A REB is no exception, fatigue cracks on
bearings can be due to a wide range of causes like, the dynamic working conditions on
the bearing, the shear stress, plastic deformations or contaminating particles present
in the lubricant, sometimes external particles that somehow managed to go over the
sealing and made their way into the REB itself. A fatigue crack begins below the
surface of the metal and propagates towards the surface until a piece of metal breaks
away to leave a small pit or spall. A fatigue failure can be expedited by overloading or
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shock loading of the bearings during running and installation [43].
According to [44] structural fatigue of machines can be categorized in three

regimes:

• Low Cycle Fatigue (LCF) refers to the fatigue regime in which the number of
cycles to failure, Nf , is less than 105 cycles, and the failure is initiated from the
surface slip bands.

• High Cycle Fatigue (HCF) corresponds to a Nf that varies from 105 to 107 cycles.
In this regime, fatigue failure can be attributed to both surface slip bands and
subsurface inclusions.

• Very High Cycle Fatigue (VHCF) corresponds to a number of cycles to failure of
107 or more. Common to high strength steels this type of fatigue failure is mostly
due to material in-homogeneities such as non-metallic inclusions.

Gabelli states in [44] that usually, rolling bearings have a very high number of
stress cycles to failure - no less than 107 and typically close to 109 - and are induced
by the over-rolling of the rolling elements on the bearing races. Most bearings usages
generate typically 2 × 109 to 3 × 109, while heavier applications require bearings able
to withstand up to 3× 1011 stress cycles.

Figure 2.5: Bearing applications and their typical ranges of service lives [44].

As one can observe from figure 2.5 bearings for gas compressors, diesel engines
superchargers for instance, involve a very larne number of stress cycles. These machines
will usually run 5 years of service life, with 24h of continuous operation at high speeds
(10 000 rpm to 30 000 rpm) which results in required stress cycles of 3, 4×1011. However,
it should be noted that small or medium size bearings are better suited to withstand
very high stress cycles [44]. There are large size bearings that go through longer service
life expectancies, in some cases more than 10 years in continuous operations. Although,
these develop lower number of stress cycles, meaning that the dynamic loads are not as
great as the small to medium size bearings are subjected to.

As an example, bearings used in large driving systems of industrial manufacturing
plants require continuous operation and can reach typically 12 years of uninterrupted
service. However they only withstand 6, 6× 109 stress cycle during this running period.
This lower number of stress cycles is explained by the relative slower speeds at which
the large size bearings operate [44].
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Typically, the service life of rolling bearings is always in the VHCF regime which
goes beyond 107 cycles and may even reach 1011 cycles in some applications. If the
over-rolling contact pressure exceeds the elastic limit of the material, decay of the steel
microstructure can develop in the VHCF regime. If the contact pressure is below the
elastic limit of the bearing, only localized fatigue damage will develop at stress risers
such as pores or inclusions.

The ISO 281:2007, on the other hand, covers the concept of a fatigue limit stress
in the assessment of the fatigue life of rolling bearings. In case of a rolling contact this
model reads [44]:

ln
1

S
= A ·N e · (τ0 − τu)c

z0h
· b · z0 · l (2.8)

A common method to specify the general rules of limit stress conditions in
rolling bearings is to set a threshold condition to the Hertzian contact pressure
resulting from the contact between the rolling elements and the races. For instance,
the static load capacity of rolling bearings is defined by the maximum stress level of
the Hertzian contact. This simple rule can then be transformed to a static load rating
of a given specific bearing geometry. In a similar way, the ISO 281:2007 fatigue limit
stress is defined in terms of the corresponding maximum Hertzian pressure (σH) of the
rolling contact. For modern bearings made of high quality bearing steels and good
manufacturing practices, the value of σH is standardized to a nominal value of
approximately 15000MPa [44].

a) b)

Figure 2.6: Outer race microstructure with a) 2, 3× 1010 stress cycles and Hertzian
pressure of 2,3 GPa and b) 2, 3× 109 stress cycles and Hertzian pressure 3,3 GPa.
Severe microstructure decay is visible indicating that the bearing on the right is

damaged [44].

Adhesive and Abrasive Wear

When the bearing’s lubrication is poor, REBs may suffer from adhesive wear
at roller ends and in micro-slip zones. In these sliding contacts, due to the lack of
lubrication strong adhesive junctions between surface asperities may be formed due to
frictional heating which can lead to adhesive wear.
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On the other hand, solid particles can cause local stress peaks and shorten the
life of the bearing. Even if these particles are smaller than the mean film thickness
they can cause abrasive wear, acting as micro-abrasive elements. Furthermore, abrasive
wear may take place when rough surfaces are in contact, for instance as micro-abrasion
between rolling elements and their cages [44].

2.1.3 Localized Defects

Cracks

Cracks may form in bearing rings for various reasons. The most common cause
is rough treatment when the bearings are being mounted or dismounted.

Hard blows, applied directly to the ring, may cause fine cracks to develop,
resulting in pieces of the ring breaking off when the bearing is put into service. Other
causes such as excessive interference, excessive load, shock load or heat generation can
also lead to development of cracks.

Smearing, phenomenon of material being transferred from one surface to the
other which occurs mainly in situations with poor lubrication, may also produce
cracks. Cracks of this type can produce fractures right across the rings [45].

Figure 2.7: Example of a fractured outer ring, on a self-aligning ball bearing [45].

False Brinelling or defects caused by vibration

When a bearing is not running, there is no lubricant film between the rolling
elements and the raceways. The absence of lubricant film results in metal to metal
contact and if vibrations are present or induced on the main equipment, produce small
relative movements of the rolling elements and rings. As a result of these movements,
small particles break away from the surfaces and this leads to the formation of
depressions in the raceways.

This damage is known as false brinelling, sometimes also referred to as
washboarding. Balls produce sphered cavities while rollers produce fluting [45].
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a) False brineling on outer raceway. b) False brineling on inner raceway.

Figure 2.8: Example of damage created by vibration, or false brineling [46].

True Brinelling

True brinelling occurs when the loads applied on the bearing exceed the elastic
limit of the ring material. Marks resulting from this defect appear as indentations in the
raceways which will increase the bearing’s vibration and noise when under operation.
A more severe brinelling fault will eventually lead to fatigue failure. This type of fault
can be caused by severe impact or static overload.

In order to minimize the chances of brinelling, bearings must be assembled and
disassembled carefully. In addition, the loads applied on the bearings should be studied
thoroughly to avoid overload. Figure 2.9 shows an example of brinelling caused by static
overload on the inner race of a rolling element bearing.

Figure 2.9: Brinelling caused by static overload [47].

Corrosion

For every component that is made of metal, water or other corrosive agent, can
prove to be a severe problem. Corrosion wear will form if water or corrosive agents
reach the inside of the bearing in such quantities that the lubricant cannot provide
protection for the steel surfaces. This process will soon lead to deep seated rust.
Another type of corrosion is fretting corrosion [45].
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a) b)

Figure 2.10: Corrosion defect on a) outer ring of cylindrical roller bearing and b) inner
ring of a ball bearing [45].

If the thin oxide film is penetrated, oxidation will proceed deeper into the material.
An example of this is the corrosion that occurs when there is relative movement between
the bearing ring and shaft, or housing, on account of the fit being too loose. This type
of damage is called fretting corrosion. The relative movement may also cause small
particles of material to become de break away from the surface. These particles oxidise
quickly when exposed to the atmosphere.

As a result of the fretting corrosion, the bearing rings may not be evenly supported
and this has a detrimental effect on the load distribution in the bearings. Rusted areas
also act as fracture notches.

Pitting & Spalling

As a first note, no common definitions have been established to distinguish
spalling from pitting in the literature. In most of the literature, spalling and pitting
have been used indiscriminately, and in some other literature, spalling and pitting
were used to designate different severities of surface contact fatigue. For instance,
Tallian defined in [48] spalling as macroscale contact fatigue caused by fatigue crack
propagation and reserved pitting as surface damage caused by sources other than
crack propagation.

The pitting phenomena is noted when deep craters appear in the surface of the
bearing components and are a result of the fatigue cracks that originated in the
subsurface. These cracks are a result of the fatigue process and propagate from the
subsurface to the surface causing material particles to break away from the surface
which will eventually be the cause of abrasive wear. Beside the fatigue process, these
cracks can also be caused by moisture in the lubricant as an example of poor
lubrication [5].

According to an informative document from the bearing manufacturer SKF [45],
spalling occurs as a result of normal fatigue, i.e. the bearing has reached the end of its
expected useful life.
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If this type of defect is discovered at an early stage, when the damage is not too
extensive, it is possible to diagnose its cause and take the requisite action to prevent a
recurrence of the issue.

However, when spalling has proceeded to a certain stage, it makes its presence
known in the form of noise and vibrations, which serve as a warning that it is time to
change the bearing.

The causes of premature spalling may be heavier external loading than
anticipated, preloading on account of incorrect fits, oval distortion caused by the shaft
or housing being misaligned or axial compression, for instance as a result of thermal
expansion.

a) b)

Figure 2.11: Defects detected on a ball bearing: a) spalling on an outer ring [45] and
b) pitting on an inner ring [46].

2.2 Sensor Technologies

Based on the idea that a significant change from a reference signal is indicative
of a developing failure, condition monitoring systems consist of a combinations of
sensors and signal processing equipment and techniques that provide continuous
indications of component condition based on analysis techniques such as vibration,
acoustics, oil, strain measurement and thermography [49].

García Márquez verified in [49] that using good data acquisition methods and
appropriate signal processing, faults can be detected while components are
operational, and appropriate actions can be planned in time to prevent damage or
severe failure of critical components. In accordance, maintenance tasks can be planned
and scheduled more efficiently, resulting in increased reliability, availability,
maintainability and safety whilst downtime, maintenance and operational costs are
reduced.

This section will be an overview of the techniques used in order to perform
condition monitoring on rolling element bearings, the most commonly used being
vibration and acoustic emission analyses [30]. Sound analysis is also a powerful
technique found on the literature, however not so much explored [50].

Regardless of the technique, the capability of a condition monitoring system
relies upon two basic elements: the number and type of sensors, and the associated
signal processing and enhancement techniques used to extract important information
from the various signals [49].

It is clear that each different condition monitoring methods has their own
advantages and disadvantages - Table 2.1 - and should be properly and carefully
chosen according to the specific application [50].
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Table 2.1: Summary table of different bearing condition monitoring methods [50].

Monitoring Schemes Major Advantages Major Disadvantages

Vibration monitoring Reliable;
Standardized (ISO 10816)

Expensive;
Intrusive;
Subject to sensor failures;

Chemical analysis Directly monitoring the
bearing and its oil

Limited to bearings with
closed-loop oil supply system;
Specialist knowledge required

Temperature
measurement

Standard available in
some industries (IEEE 841);

Embedded temperature
detector required;
Other factors may cause
temperature to rise

Acoustic
emission High signal-to-noise ratio

AE sensor required;
Specialist knowledge
required

Sound
measurement Easy to measure Background noise

must be shielded

Laser
displacement

Other way to
measure bearing vibration

Laser sensor required;
Difficult implementation

Stator current
monitoring

Inexpensive;
Non-intrusive;
Easy to implement

Sometimes low
signal-to-noise ratio;
Still in development stage

2.2.1 Vibration analysis

Vibration analysis continues to be the most popular technology employed in
condition monitoring, especially for rotating equipment. It is advised that different
sensors are used for different frequencies: position transducers are used for the
low-frequency range, velocity sensors in the middle frequency area, accelerometers in
the high frequency range and spectral emitted energy sensors for very high frequencies
[49]. According to [51] transducers for vibration condition monitoring can be classified
into two main categories:

• Accelerometers - Seismic devices that are normally mounted on the machine
structure and whose output is a measure of the absolute vibration of the
structure;

• Displacement transducers - Relative displacement transducers that measure the
vibratory displacement and the mean position between rotating and non-rotating
elements of the machine.
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The more commonly used type of transducers to measure dynamic force and
vibration are the seismic transducers, which are usually modelled as a
mass-spring-damper system, Figure 2.12. The flatness of the response frequency range
depends on the ratio between the frequency of the dynamic phenomena to measure,
and the natural frequency of the transducer [52].

Figure 2.12: A model of a seismic transducer [52].

The theory behind this type of transducers falls on the model of
mass-spring-damper system with one degree of freedom. Consequently, a vibration
transducer is composed by a mass-spring-damper system placed on a vibrating object,
Figure 2.12. The vibration is measured by the measuring the displacement of the mass
of the transducer, the seismic mass, relatively to the vibrating object where the
transducer is mounted on and whose movement the transducer is solidary with [52].

Denoting the seismic mass as m, the elastic element with a rigidity of k, and the
damping constant of the damper as c, then, if an harmonic movement is assumed, the
vibrating movement of the system y (t) can be written as [52]:

y (t) = Y sin(ωt) (2.9)

if x is defined as the movement of the seismic mass, then:

mẍ+ c (ẋ− ẏ) + k (x− y) = 0 (2.10)

The relative movement between the mass relatively to the box of the transducer
can be defined as z(t):

z (t) = x (t)− y (t) (2.11)

hence, equation 2.10 can be rewritten as:

mz̈ + cż + kz = −mÿ (2.12)

If one substitutes 2.9 into 2.12 and derives 2.12 in order of time, it can be rewritten
as:

mz̈ + cż + kz = mω2Y sin(ωt) (2.13)

The homogeneous solution to 2.12 is:

z (t) = Z (ω) sin(ωt− φ) (2.14)
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where its amplitude, Z (ω) and phase φ are given by:

Z (ω) = Y
β2√

(1− β2)2 + (2ξβ)2
φ = arctan

2ξβ

1− β2
(2.15)

A Seismic Transducer can implemented in the form of a vibrometer or an
accelerometer. The vibrometer has a low natural frequency, so that it is lower than
the frequency of the vibrating movement one wishes to measure. The accelerometer,
on the other hand, has a high natural frequency, so that it is higher than the
frequency of the vibrating movement one wishes to measure. Consequently,
vibrometers are usually denoted as low frequency transducers, whereas accelerometers
are usually known as high frequency transducers [52].

If the seismic mass transducer is implemented via an accelerometer, then, the
homogeneous solution to equation 2.12 is slightly different than the one seen in
equation 2.15. If one derives expression 2.12 in order to time one obtains the following
expression:

z (t)ω2
n =

1(
(1− β2)2 + (2ξβ)2

) 1
2

{
−ω2Y sin (ωt− φ)

}
(2.16)

If, in the above expression, the condition is valid:

1(
(1− β2)2 + (2ξβ)2

) 1
2

∼= 1 (2.17)

then equation 2.16 can be rewritten as:

− z (t)ω2
n
∼= ω2Y sin (ωt− φ) (2.18)

Comparing equation 2.18 to ÿ (t) = −ω2Y sin (ωt), one can verify that the term
−z (t)ω2

n gives the acceleration of the base, or vibrating object, ÿ subtrated by the
phase, or angular difference, φ. Thus, the instrument can record or give directly the
value of ÿ = −z (t)ω2

n as long as condition 2.17 is verified. The time delay between the
measurement itself and the acceleration is given by t′ = φ

ω . If ÿ is composed by only
one harmonic component, then the difference in phase is not important.

The value of the first member of condition 2.17 is shown in figure 2.13 as a
function of the ratio of frequencies β = ωn

ω .
Given that condition 2.17 is verifiable for low values of β, the accelerometer’s

natural frequency (or resonance frequency) has to be high when compared to the
frequency of the vibrating phenomena to measure. From the definition of resonance
frequency ωn =

√
k
m one can verify that the accelerometer must have high rigidity an

low mass, which is why the accelerometers are considered as transducers that do not
affect the acceleration to measure. Due to their reduced dimensions and mass, along
with very high sensitivity, accelerometers are the preferred transducers for measuring
vibrations in mechanical applications [52].
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Figure 2.13: Responce of an accelerometer [52].

Decision on what type of transducer to use falls on what one wants to measure,
obtain or analyze, specifically: acceleration, velocity and/or displacement. If one
chooses to use an accelerometer, its output can be processed in order to obtain any of
the referred physical quantities. If acceleration isn’t important for the work being
developed, then, a velocity transducer can be used, whose output can be integrated to
yield displacement. Finally, if one’s needs are working with displacement only, then a
non-contacting probe, whose output is directly proportional to the relative
displacement between the rotating and non-rotating elements of the machine, is
sufficient.

Additionally, each one of these type of sensors has different characteristics.
Given this, the decision on which one to use must be a balance between what is needed
and the sensors’ characteristics required for the project. Figure 2.14 shows guidelines
between the dynamic ranges of each type of transducer and the frequency [51].

Figure 2.14: Dynamic range versus frequency range of vibration transducers for
typical condition monitoring applications [51].
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Where 1, 2 and 3 stand for Piezo-electric accelerometer, Eddy-current proximity
probe and Electro-mechanical velocity transducer, respectively [51]. This text will only
cover accelerometers as a form of measuring vibration, for it was the transducer chosen
to acquire vibration signals for this project.

Other aspects, perhaps even more important, to take into consideration when
choosing an accelerometer, are its specifications and if they meet the requirements for
the analysis. These characteristics can be:

• Sensitivity - Defined as the ratio of change in the input, or acceleration, to the
change in the output signal. Sensitivity is specified at a particular supply voltage
and is typically expressed in mV/g [53];

• Frequency Range - For reliable condition monitoring, measuring equipment
shall be capable of covering a wide frequency range in order to encompass not
only shaft rotational frequencies and harmonics, but also frequencies due to other
components, such as bearings, gears, seals, blades or vanes. The linear frequency
range of the system should generally cover frequencies from 0,2 times the lowest
rotational frequency to 3,5 times the highest excitation frequency of interest, which
generally not exceed 10 kHz [51];

• Resolution - As in the smallest acceleration that can be detected by the
transducer;

• Number of axis - there are single, double and triaxial accelerometers. The
three axis accelerometer will measure acceleration in three orthogonal directions.

Furthermore, [51] states that the location and placement of the accelerometer
are of utmost importance, to accurately acquire a vibrational signal from the machine
under analysis. According to this standard, accelerometers should be attached to the
machine through stud-mounting procedure (see figure 2.15). This permits the transfer
of high frequency signals with little or no signal loss between the origin and the
transducer.

Figure 2.15: Stud-mounting procedure according to the manufacturer PCB
Piezotronics.

If such mounting procedure is not possible, adhesives, glue or magnetic



2.2. Sensor Technologies 29

couplings are used to fix the sensors. The adhesives however, should have high
stiffness characteristics when cured. The technique adopted for this thesis’
measurement campaign was to glue the accelerometer to the bearing housing.

Another technique is to use a permanent magnet, however in order to effectively
use magnets the mounting surfaces’ flatness, is also a very important aspect to
consider.

Furthermore, the addition of mass to the accelerometer - such as an adhesive or
magnetic mounting base - lowers the resonant frequency of the sensing system and
may affect the accuracy and limits of the accelerometer usable frequency range. Given
this fact, these mounting techniques should be used carefully.

Although manufacturers use different terminologies for their products, four main
techniques for sensing acceleration are piezoelectric, piezoresistive, capacitive or servo
accelerometers. These can be further split into Alternated Current (AC) or Direct
Current (DC) types. The main differences are that AC accelerometers cannot measure
static acceleration but are appropriate for dynamic tests while DC accelerometers can
detect constant acceleration such as gravity making them able to measure vibrations
of 0 Hz, theoretically [53].

The most popular AC accelerometers are equipped with piezoelectric elements
as their sensing mechanism, while the most popular DC accelerometers are capacitive
MEMS and piezoresistive sensors types [53].

Piezoelectric Accelerometers

These devices have an extended region of flat frequency response range, a large
linear amplitude range and excellent durability. These properties are due to the use of
a piezoelectric material as the sensing element for the sensor. Piezoelectric generate an
output electrical signal that is proportional to the stress applied to the material.

Figure 2.16: Construction of a piezoelectric accelerometer [54].

The piezoelectric element acts as a spring, with a natural stiffness k, and is
responsible for connecting the base of the accelerometer to the seismic masses, m.
When motion is induced to the base of the accelerometer, the piezoelectric material
forces the masses to follow this motion. This causes a slight deformation of the
piezoelectric element, translating the deformation to a strain. Consequently an electric
charge proportional to the acceleration is generated.

The response frequency of the sensor is determined by its resonant frequency,
which can be obtained by applying ω =

√
k
m . Figure 2.17 shows the typical response

frequency of piezoelectric accelerometers.
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Figure 2.17: Typical response frequency of a piezoelectric accelerometer [54].

Piezoelectric accelerometers can be broken down into two main categories:
internally amplified accelerometers, IEPE (Internal Electronics Piezoelectric), which
contain built-in microelectronics for signal conditioning, or charge mode
accelerometers that contain only the self-generating piezoelectric sensing element and
have a high impedance charge output signal [54]. Other designs can even detect
accelerations within several directions, using piezoelectric materials that can be
subjected to shear deformations, which can again be translated into an acceleration
measurement.

Piezoresistive Accelerometers

Single-crystal silicon is often used in manufacturing accelerometers. It is an
anisotropic material whose atoms are organized in a lattice having several axes of
symmetry [54].

Piezoresistive accelerometers rely on silicon both as the flexural element and as
the transduction element, since the strain gauges are diffused directly into the flexure.
The advantage of using this type of accelerometers is a high resonant frequency, that
optimizes its frequency response, due to their relative high stiffness [54].

Capacitive Accelerometers

Capacitive accelerometers are similar to piezoresistive accelerometers which
measure a change across a bridge. However, instead of measuring a change in
resistance, they measure a change in capacitance. The sensing element consists of two
parallel plate capacitors acting in a differential mode. These capacitors require built-in
electronic circuit and operate in a bridge configuration. Additionally, these sensors are
dependent on a carrier demodulator circuit or its equivalent to generate an electrical
output that is proportional to acceleration [54].
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Figure 2.18: Construction of a capacitive accelerometer [54].

The main advantage of capacitive accelerometers is to measure low level - less
than 2 g’s - and low frequency acceleration with the capability of withstanding high
shock levels, typically 5 000 g’s or greater. Some of the disadvantages of the capacitive
accelerometer are limited high frequency range, a relatively large phase shift and
higher noise floor than an equivalent piezoelectric accelerometer [54].

Table 2.2 shows typical accelerometer characteristics for each of the types of
accelerometers studied.

Table 2.2: Typical accelerometer characteristics.

Accelerometer
Type

Frequency
Range Sensitivity Measurement

Range
Dynamic
Range

Piezoelectric 0,5 Hz to
50 kHz

0,05 mV/g to
10 V/g

0,000001 g’s to
100 000 g’s ∼120 dB

Piezoresistive 0 to
10 000 Hz

0,0001 mV/g to
10 mV/g

0,001 g’s to
100 000 g’s ∼80 dB

Capacitive 0 to 1 000
Hz

10 mV/g to
1 V/g

0,00005 g’s to
1 000 g’s ∼90 dB

2.2.2 Acoustic Emission analysis

Wind turbines rotate at relatively slow speeds. This sets a limitation in early
fault diagnosis using vibration monitoring method because it proves rather difficult to
detect low frequencies of slow moving bearings. AE sensing detects the surface stress
waves generated when faulty components come into contact. This technology has been
as a suitable enhancement to the classic vibration techniques for condition monitoring
of roller-bearings, gearboxes and wind turbines, specially for early detection of faults
on these equipments [49, 55, 56].

Sources of AE in rotating machinery include impacting, cyclic fatigue, friction,
turbulence, material loss, cavitation, leakage, among others. For instance, ball
bearings rolling over a faulty outer race with a crack, or generally surface
imperfections, will generate AE waves that can be sensed through the application on
an AE sensor [55].

Tandon showed in [56] the measurement and interpretation of AE parameters for
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fault detection in radially loaded ball bearings at different speed ranges. Additionally,
Tan covered the application of AE for the detection of bearing failures in [57].

Acoustic monitoring is somewhat similar to vibration monitoring. However,
whereas vibration sensors are mounted on the component involved in order to detect
movement, acoustic sensors are attached with flexible glue, with low attenuation
properties, and can record ultrasound, up to 100 kHz, directly [49]. García Márquez
also finds that AE sensors have been used successfully not only in the monitoring of
bearings and gearboxes but also for damage detection in blades of a wind turbine [49].

AE was originally developed for non-destructive testing of static structures,
however, over the years its application has been extended to health monitoring of
rotating machines [55]. In spite of the advantages given by using AE sensors, when
compared to vibration sensors, limitations in the successful application of AE
technique for condition monitoring of rotating machinery are partly due to the
difficulty in processing, interpreting and classifying the intelligent information from
the acquired data. The main obstacle with this technique is the attenuation of the
signal, hence the need for the AE sensor to be close to its source. Another important
factor to take into consideration when choosing an AE sensor is the frequency dynamic
range. Given that there are different AE sensors with different dynamic ranges,
choosing a sensor with a frequency range compatible with the application is important.

Figure 2.19: General anatomy of an AE sensor.

2.2.3 Sound analysis

Since the early times that hearing and touching human senses have been used,
by experienced technicians, to asses if a machine is running with a faulty component.
Specialized technicians could even fine tune older equipments by applying fine
adjustments to it, hearing it work for a few seconds, and if needed proceed to apply
finer adjustments. One can have already a simple idea that some faulty components
do generate noise.

Nowadays however, this is analysed using a more scientific method.
Microphones are now used to perform sound monitoring on industrial equipment.
Using microphone analysis to this end has the main advantage of being a non-intrusive
method when comparing to vibration analysis for example.

However, in noisier environments, like factories that rely on a large number of
noisy machines, background and unwanted noise from surrounding components must
be shielded. Skipping this step will corrupt the noise coming from the component of
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interest, yielding incorrect results. Therefore, sound monitoring is not applicable for
processing facilities having many electric machines in one room without this issue
being addressed [58].

A microphone provides an analog output signal which is proportional to the
variation in acoustic pressure acting upon a flexible diaphragm. This electrical signal
is then used to transmit, record or measure the characteristics of the acoustic signal.

Measurement microphones differ from those used for audio applications since
their primary role is to electrically reproduce the sound waveform without distortion
and with a linear relationship between the voltage out and the pressure sensed by the
microphone diaphragm.

This precision must be maintained over a wide range of frequencies and
amplitudes when measuring sound waves arriving from different angles. Furthermore,
they are expected to maintain this degree of precision over a range of temperature and
barometric pressure variations.

A microphone’s sensitivity is the relationship between the output voltage and
the acoustic pressure sensed by the diaphragm and is expressed in units of mV/Pa.

The magnitude of the sensitivity is important because it is inherently related to
electrical noise of the measurement system, since one cannot properly measure a
voltage that is near the voltage noise floor of the instrument itself. Hence, for a given
microphone and measurement system, the magnitude of the sensitivity will establish
the minimum sound pressure, which can be accurately measured [54].

Any change on the sensitivity produces a distortion in the output signal
compared to the acoustic signal originally generated on the component being studied.
Thus, the following parameters are essential in a microphone measurement [54]:

• The sensitivity should be nearly constant over the range of frequencies to be
measured. Thus, a quality measurement microphone should have a "flat"
frequency response.

• The sensitivity should be nearly constant over a wide range of sound pressure
levels. This is expressed as linearity, since a constant sensitivity would produce a
straight-line graph of output voltage versus sound pressure.

• The sensitivity should be nearly constant over a wide range of temperature and
barometric pressure, so as to not be affected by changes in room temperature or
pressure.

Common Microphone Types

• Dynamic microphones - An electrical coil connected to the diaphragm is
moved through an electrical field, generating a voltage proportional to the
velocity of the moving element. Dynamic microphones have characteristics that
are good for audio applications, but have high sensitivity to vibration, limited
dynamic range and their frequency response is generally not adequate for
measurement applications.

• Piezoelectric Microphones - The effect of sound pressure acting on the
diaphragm is transmitted to a piezoelectric element which generates a charge
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proportional to the original pressure. These microphones are often used in very
high pressure situations, measuring explosive waves pressure for instance. In
addition, due to their robust design, they can be used to measure small dynamic
pressure fluctuations that precede large static pressures. In general, the noise
floor of these microphones limit their use for precision sound measurement
applications.

• Condenser (capacitive) microphones - the relative movement of the
diaphragm to a fixed backplane produces a variation in capacitance that is
proportional to the deflection of the diaphragm. A built-in electrical circuit in
the microphone preamplifier converts the capacitance fluctuation to a voltage
variation. The characteristics of condenser microphones, such as high sensitivity,
wide dynamic range, flat frequency response, low internal noise, low distortion
and high stability, make them the design of choice for measurement microphones
[54].



CHAPTER 3

Signal Processing: Pre-Processing Techniques
Applied

This section aims to clarify and give an insight into the signal processing and
enhancement techniques used on this project. At the end of this chapter the method
applied will be explained along with illustrations in order to clarify the adopted
procedure. However, before proceeding to clarify the techniques used, one
fundamental idea behind signal acquisition is the sampling frequency, which will be
further explained.

Sampling & Aliasing

The basic pre and post processing operations shall be properly executed to enable
further, often complex operations on collected measuring data, obtained from measuring
system [53]. In signal processing, sampling is the transformation of a continuous signal
to a discrete one, a technique that has been extensively used for signal reconstruction.

Whenever a signal is being measured, the number of samples taken in one second
of the signal is called sampling frequency fs, expressed in Hz. The sampling frequency
used is related to the maximum frequency measured of the signal, i.e. its frequency
bandwidth. This rate should be set in such a way to enable reconstruction of analog
signal from discrete data without losing information from the original signal [53]. An
illustration on this concept is found on Figure 3.1:

Figure 3.1: Input signal and samples taken [59].

For this conversion to be possible without losing valuable information, the
Shannon-Kotielnikov condition must be fulfilled [53]. This condition states that the

35
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sampling rate cannot be less than twice of the highest frequency - the Nyquist
frequency - of a measured signal. If this condition is not fulfilled, then the
phenomenon of aliasing occurs, see Figure 3.2.

Figure 3.2: Aliasing phenomenon. The blue curve represents the measured signal and
the red curve is the reconstructed signal [60].

It is stated in [53] that for condition monitoring, one must oversample a measured
signal, as in the minimum sampling rate being much higher than the one given from
the Shannon-Kotielnikov condition. The same source recommends that, when acquiring
stationary signals from low speed condition monitoring, the sampling rate should be 5
to 10 times higher than the Nyquist frequency.

3.1 Order Tracking - Angular Resampling

In real working conditions, bearings operate under speed fluctuations which will
result in a non-stationarity character of the bearing vibration signal and, consequently,
the usual techniques for vibration analysis that are based on the assumption of
constant rotating speed cannot be applied [61, 62].

In order to overcome this obstacle, order tracking algorithms and techniques
have been proposed to remove the effects of speed fluctuation of REBs and smearing
of the spectrum by resampling the original vibration at a constant angle increment
and converting the non-stationary signal in time domain to a stationary signal one in
angular domain [62].

Order tracking is a frequency analysis method that uses multiples of the running
speed (orders), instead of absolute frequencies (Hz), as the frequency base. Order
tracking is useful for machine condition monitoring because it can easily identify
speed-related vibrations such as shaft defects and bearing wear [61].

This technique also allows to see how the intensity of the different harmonics
changes over a big speed range [1]. Randall states in [1] that if a constant amplitude
signal, synchronous with the rotation of a shaft, for instance, is sampled at a rate per
revolution, then the digital samples are indistinguishable from the samples of a
sinusoid, resulting in a line in the spectrum. On the other hand, of normal temporal
sampling is used, the spectrum will spread over a range that corresponds to the
fluctuation in shaft speed.

To avoid this, it is necessary to generate a sampling signal from a tacho or shaft
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encoder signal that is synched to the shaft speed, as known as order analysis [1].
However, using this approach in order to apply order analysis, has the disadvantage of
having a limited time response that might not be sufficient to detect random speed
fluctuations along one cycle [1].

The best method is to use the angular resampling technique. To resample each
record digitally, based on the corresponding period of the tacho signal, so as to achieve
sampling for uniform increments in shaft rotation angle. In other words, the signal is
resampled at a constant angle, but continuously changing with time [6]. Figure 3.3
shows an example of performing angular resampling through Computer Order
Tracking (COT) and its stages: (a) determine the number of pulses over time; (b)
obtain the cumulative angle, φ(t), of the shaft over time; (c) calculate the resampling
time instants for the constant angular increments θ and (d) signal resampling by
interpolation.

Figure 3.3: Angular resampling, through Computer Order Tracking [63].

As found in [1], based on digital interpolation, there are several ways of
performing angular resampling. One way is to increase the sample rate by a large
factor, and then select the nearest sample to each theoretical interpolated position.
Increasing the sample rate by an integer factor can be achieved in two ways. In the
time domain, it can be done by inserting the appropriate number of zeros in between
each actual sample, and then applying a digital low-pass filter to limit the frequency
range to the original maximum, thus smoothing the curve.

In the frequency domain the same result can be accomplished by filling the
spectrum with zeros in the centre (i.e. around the Nyquist frequency) and then inverse
transforming the increased (two-sided) spectrum to the same increased number of time
samples.

On the other hand, more accurate interpolation, not limited to a ratio of integer
numbers, can be achieved by fitting a curve to a group of samples and then calculating
the value of the polynomial at the interpolated positions.

Another approach to angular resampling would be to use phase demodulation of
a signal synchronous to the phenomenon of interest, shaft speed for example, to obtain
a mapping of shaft rotation angle versus time.

One must take into consideration that if order tracking is being performed
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directly on an analogue signal, it must be ensured that the signal is adequately
low-pass filtered to prevent aliasing, in particular when resampling at a lower
frequency [1].

Figure 3.4: Angular Resampling according to the manufacturer of testing equipment
National Instruments.

3.2 Removal of deterministic components - Cepstral
Editing procedure analysis

Removal of deterministic signals (i.e. discrete components), which are typically
dominating components in machinery vibration signals, is an important step in the
diagnosis of rolling element bearing faults. There are numerous techniques found in
the literature that allow the removal of these components: linear prediction, adaptive
noise cancellation, self-adaptive noise cancellation, discrete/random separation, time
synchronous averaging and Cepstral Editing Procedure (CEP) [64].

The CEP has become widely used for removing these unwanted components and
has been extensively studied lately due to its easy interpretation and implementation,
as well as its relatively low computational cost yet good performance [65].

The challenge of removing the unwanted deterministic components is important
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for these contribute with high-energy dominating signals, originating from gears, screws
or shafts, and mask the wanted, non-deterministic - i.e. random - signals that bearing
faults generate. These unwanted signals appear as discrete components in the frequency
domain.

Given this, the removal of these dominant components must be applied before
further signal processing techniques [65].

Before going into detail of the specific cepstral method applied in this project, a
few basic ideas about cepstrum analysis should be looked into. The word cepstrum is
originated by reversing the first syllable of spectrum, which was justified because the
cepstrum is the spectrum of a spectrum [1].

Following this pattern of reversing the first syllable, terminology also has different
names found on table 3.1

Table 3.1: Cepstrum Terminology.

Frequency Analysis Quefrequeny Analysis

Harmonic Rahmonic
Filter Lifter

Low-pass filter Short-pass filter
High-pass filter Long-pass filter
Magnitude Gamnitude

Phase saphe

Cepstrum

The Cepstrum method was initially presented as the power spectrum of the
logarithm of the power spectrum. Later, the term power cepstrum was redefined as
the inverse Fourier Transform (FT) of the log power spectrum, partly because it is
more logical to use the inverse transform between a function of frequency and a
function of time and also because it is then reversible to the power spectrum [1]. This
redefinition however, was only possible after the publication of the paper, and
algorithm for the Fast Fourier Transform (FFT). What distinguishes the
autocorrelation function from the cepstrum, is that the cepstrum is the logarithmic
conversion of the spectrum before the second transform [1].

Different variations, or formulations, of cepstrum analysis exist. Different than
the power cepstrum, the complex cepstrum was defined as the inverse FT of the
complex algorithm of the complex spectrum [1, 16]. The real cepstrum is defined by
setting the phase of the phase of the complex cepstrum to zero [16].

Matematically, where FXX (f) is a power spectrum, the original definition of the
(power) cepstrum can be written as:

Cp (τ) = |= {log (FXX (f))}|2 (3.1)

and if one recalls the definition of the complex cepstrum, than it becomes:

Cc (τ) = =−1 {log (F (f))} = =−1 {ln (A (f)) + jφ (f)} (3.2)
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where:
F (f) = ={(f (t))} = A (f) ejφ(f) (3.3)

in terms of the spectrum’s amplitude and phase. Although complex cepstrum is
called complex, it is real because the log amplitude of the spectrum is even and the
phase of the spectrum is odd [16].

Given this, the new power cepstrum is then given by:

Cp (τ) = =−1 {log (FXX (f))} (3.4)

and for the spectrum of a single record (as in 3.5) it can be expressed as:

Cp (τ) = =−1 {2 log (A (f))} (3.5)

As it has already been said, the real complex is obtained by setting the phase of
the power cepstrum to zero in Eq. 3.7:

Cp (τ) = =−1 {ln (A (f))} (3.6)

which is just a scaled version of (3.4) [16].
An important note is that the complex cepstrum requires the phase φ (f) to be

unwrapped to a continuous function of frequency. Because of this, it cannot be used
with stationary signals, consisting of discrete frequency components. These signals’
phase is undefined at intermediate frequencies. It cannot be used also with signals with
stationary random components, whose phase is random. The complex cepstrum can
only be used with well-behaved functions such as impulse responses, where the phase is
well-defined [16].

Cepstral Editing Procedure

The distinctive property of periodic signals in the cepstrum domain is that they
appear as narrow impulses with a number of rahmonics. Based on this property
Randall proposed a method for removing these periodic signals from the cepstrum
[66, 67]. The same author also found [68] that the CEP method enhances bearing
fault-related signals more significantly when compared with the other methods for
discrete components elimination that were stated previously.

The method used, and suggested by Randall, removes the periodic components
from the cepstrum by editing - liftering - the magnitude of the real cepstrum at
quefrencies of interest. This liftering procedure is performed using information about
the shaft speed and machinery configuration [65].

According to [69] the log amplitude spectrum of stationary signals can be edited
using the real cepstrum, and then the edited spectrum amplitudes combined with the
original phase spectrum are used to return to the time domain. On a more concise
level, Randall describes this CEP method as a pre-whitening operation consisting in
setting an amplitude of zero for the real cepstrum, at determined frequencies. After
this, once the signal has been transformed back to the frequency domain, the resulting
signal is recombined with the phase of the original signal and inverse transformed to
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time domain. This is equivalent to applying series of liftering operations around the
quefrencies of the deterministic excitations. This procedure results in deleting almost
completely the effect from these deterministic components on the signal as well as
removing the resonance effects [66].

Figure 3.5: Schematic of performing cepstrum analysis [65].

At the same time, the bearing damage related components, cyclostationary of the
second order and not strictly periodic, do not present a strong peak in the absolute
value of the cepstrum and will not be affected by the liftering. Enhancing the effect
of these signals, which are the effective signals that one wants to obtain can also be
implemented simply by dividing the Fourier transformed signal by its absolute value
and transforming all of this again to the time domain, all of this while avoiding the
transformation to the cepstral domain [66]:

xcpw = IFT

{
FT (x)

|FT (x)|

}
(3.7)

3.3 Frequency Bands Identification Methods

3.3.1 Cyclic Spectral Correlation

Cyclostationarity covers a subclass of non-stationary signals which exhibit some
cyclical behaviour. Such signals are generally not periodic but random in their
waveform, yet inherently generated by some periodic mechanism. To avoid confusion,
the period of a cyclostationary signal is referred as cycle. An example of a
cyclostationary signal is a random noise that is amplitude modulated by a periodic
function [70].

Aplication of Cyclostationary analysis proves to be interesting to the diagnostics
of machine vibration signals. This is because some machine signals, even though being
almost periodic, are not exactly phase-locked to shaft speeds, and thus even after
processed in order to compensate for speed fluctuation cannot be extracted by
synchronous averaging [71]. Typical examples of cyclostationary signals are the
combustion events in IC engines, which vary from cycle to cycle, and impulsive signals
from faults in rolling element bearings, which are affected by minor but randomly
varying slip.

In such cases, the signals are not strictly periodic, but cyclostationary (of second
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order), meaning that their second-order statistics such as autocovariance function are
periodic [71].

Moreover, the assumption that a vibration signal is cyclostationary affords much
more information than the usual and simplistic assumption of stationarity, since it
provides the tools to simultaneously analyse the content of a signal, for instance its
spectral content, and the characterisation of how this content evolves periodically in
time [70]. In REBs, cyclostationarity is symptomatic to the presence of faults, proved
by the occurrence of repetitive shocks when a defect impacts a rolling surface - a series
of repetitive shocks may be seen as a signal periodically amplitude modulated in time.
The rate of repetition of these shocks (the cyclic frequency) reveals the origin of the
fault, and the cyclostationarity intensity may serve to indicate its severity [70].

A signal is cyclostationary of degree N if its Nth moment is periodic about any
period. In other words, a cyclostationary signal is described by a periodically
time-varying probability density function. Furthermore, cyclostationary analysis is
another spectrum method applied to fault detection of gears and bearings, and takes
advantage of the stochastic process nature of the vibration signal [72]. In a strict
sense, a (quasi-) cyclostationarity signal X [n] is a signal whose joint probability
density function is a (quasi-) periodic function of time.

Given that CEP method is applied in order to remove the discrete frequency
components from the signal, which correspond to first-order components, only
second-order components will be left in the signal to be analysed. This is the reason
why second-order descriptors are used to perform cyclostationary analysis of bearings.
J. Antoni shows [73] that cyclosationary analysis can either be done using time
descriptors, more precisely the instantaneous auto-correlation function or the cyclic
auto-correlation function, or through frequency descriptors, such as the spectral
correlation or the cyclic power spectrum. Randall, on the other hand, states that in
practice it is best to use the frequency domain to estimate spectral correlations [1]. In
other words, perform cyclostationary analysis (cyclostationary analysis consists in a
series of correlations). Hence the reason for the analysis performed in this project
being on frequency domain, or more precisely, angular domain. Moreover, Randall and
J. Antoni worked extensively on this topic and the descriptor J. Antony used for
bearing diagnosis assessment was the spectral correlation.

According to [1, 70], by denoting XL (f) as the Fourier transform of a
cyclostationary signal x (t) evaluated over an interval of length L, CSC can be
expressed as:

Sx (f ;α) = lim
L→∞

1

L
E
{
XL

(
f +

α

2

)
XL

(
f − α

2

)}
(3.8)

where E denotes the expected value.
The term Sx (f ;α) is coined the cyclic power spectrum (signal-units2/Hz). The

physical meaning of the frequency f is correspondent to the time-lag τ , indicating
the frequency of the carrier signal, where as frequency α is named cyclic frequency.
Intuitively, the cyclic power spectrum may be interpreted as providing the distribution
of the frequency content of signal x (t) that statistically repeats itself with rate α [70].

The approach for this technique is the direct visual inspection of the magnitude
of the cyclic power spectral density displayed as a graph over the f versus α frequency
domain.
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Figure 3.6: Example of graph analysis with CSC method.

As can be seen in Figure 3.6, this highlights with the central frequency to filter
around using envelope analysis with filtering. Given this, the most interesting
advantage of applying this procedure is that it can be used alongside envelope
analysis. Moreover, the graph 3.6 itself can be used as a visual feature for further
analysis. If the classification algorithms classify the situation as faulty, one can quickly
verify this graph and see whether or not there is a highlighted area indicating failure
or something that might indicate a potential failure.

3.3.2 Wavelet Analysis

In cases of very low speeds, as for cranes or wind turbines, the energy levels
generated by the impacts (because of the faults) are low. Hence, applying CSC to
these cases becomes a matter of getting the settings right to each case, which can be
time demanding and is the opposite of an automated tool. An alternative can be the
wavelet analysis. Furthermore, CSC has the disadvantage of being inefficient in terms
of computer resources.

The wavelet analysis is yet another interpretation of time-frequency analysis as
this technique decomposes the signal in terms of a family of wavelets that have a fixed
shape, but can be shifted an dilated in time [1].

Mathematically, the complex continuous wavelet transform can be expressed as
[1]:

W (a; b) =
1√
a

∫ ∞
−∞

x (t)ψ∗
(
t− b
a

)
(3.9)

where ψ is the mother wavelet, translated, as in displacement, by b and dilated,
as in expansion, by a. ψ∗ is the complex function. In simpler terms, a, the scaling
parameter measures the degree of compression while b determines the time location of
the wavelet [74].

The dilation factor is known as scale and If |a| < 1, the wavelet W is a
compressed version of the mother ψ wavelet and corresponds mainly to higher
frequencies. In contrast, if |a| > 1 the wavelet W has a larger time width than the
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mother wavelet ψ and corresponds to lower frequencies as illustrated in Figure 3.7.
Accordingly, one can state that wavelets have time widths adapted to their
frequencies. However, one may also observe that the resolution of wavelets at different
values of the scaling parameter varies both in time and frequency domain, according
to the Heisenberg uncertainty principle [74].

Given that equation 3.9 is a convolution, wavelets can be considered as a set of

Figure 3.7: Effect of a and b. (a) Typicall mother wavelet. (b) Compressed and shifted
wavelet: |a| < 1 and b > 0. (c) Magnified and shifted wavelet: |a| > 1 and b > 0 [74].

impulse responses of filters, which because of the dilation factor keep the bandwidth
properties. Wavelets present the advantage of giving a better time localization at high
frequencies, which can be useful for detecting local events in a signal. This means that
this technique is mostly used to detect local faults in bearings and gears [1].

Wavelets can be divided into four main groups: orthogonal, non-orthogonal,
continuous or discrete, and currently there are numerous families of wavelets available:
Haar, Daubechies, Meyer, Gaussian, Mexican hat, Morlet, Shannon, Fejer-Korovkin,
among others. The Daubechies dilation wavelets are compact and have irregular
shapes in time domain, but are infinite in frequency domain. The complex wavelets,
on the other hand, are compact in frequency domain, but infinite in time domain.
These have the appearance of harmonic functions and are typically of one-octave
bandwidth, even though at times they are narrower. The biggest advantage of
complex wavelets is that the imaginary part of the wavelet is orthogonal to the real
part, consequently, the overall result is not sensitive to the phasing of the event.
Furthermore, the local sum of squares of the real and imaginary parts result in a
smooth function [1].

On a more general form, orthogonal wavelets are the most efficient to use when
analysis, or synthesis, has to be performed, or when the significant features of the
signal have to be represented with a minimum number of parameters. For analytical
purposes, non-orthogonal wavelets, Morlet wavelets for instance, are more convenient,
and it is often generally preferable to use redundant ’lapped’ transforms prioritizing
visual interpretation.

The main applications of this technique in machine diagnostics is in denoising
signals in both time and frequency domains simultaneously. There are two forms of
thresholding to remove noise, by removing any components with less amplitude than a
certain threshold value. One technique is Hard thresholding where the retained
components (components not considered noise) are left unchanged. Oppositely, the
technique soft thresholding estimates the noise using the threshold set, and these
values are subtracted from the retained components [1].
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The choice between families of wavelet to use must be done according to the
similarities between the wavelets and the features in the signal that are to be
extracted [1]. For bearing faults, which generate impulsive signals, using the impulse
wavelet may return better results. However, it is common to choose the wavelet family
by trial and error or even based on the knowledge of the analyst.

Morlet Wavelets

Morlet wavelets are non-orthogonal, Gaussian windowed sinusoids but suitable for
analysing many machine signals because of their similarity in appearance to narrowband
impulse responses, they can be tuned in order to correspond to different damping. The
complex Morlet wavelet is defined in the time domain as a complex exponential wave
multiplied by a Gaussian function and has the shape of a Gaussian window in the
frequency domain. Originally, real Morlet wavelets were windowed cosines, but it is
convenient to use the complex version, with a one-sided spectrum, so that the imaginary
part is the Hilbert transform of the real part. Consequently, the complex morlet wavelet
can be described as:

Ψ(f) = Ψ∗(f) = exp

[
−
(
π2

σ2

)
(f − f0)

]
(3.10)

ψ(t) =
σ√
π

exp(−σ2t2) exp(j2πf0t) (3.11)

where f0 is the window’s central frequency and σ its width and ∗ denotes the
complex conjugate of Ψ(f) that is the FT of ψ(t), and because Ψ(f) is real, its
conjugate is equal to itself.

The advantage of complex Morlet wavelets, as opposed to the real version with
windowed cosines, is that the imaginary parts have their maxima when the cosines hit
values of zero, so that the squared amplitude of the wavelet coefficients is not sensitive
to the phasing of local features in time signals [1].

3.4 Demodulation: Hilbert Transform

Contrary to other integral transforms, where there can be a change domains,
such as the Fourier or Laplace transformations, the Hilbert Transform (HT) processes
a function g into another one while maintaining the original domain. This operation,
assigns a complementary imaginary part to a given real part or vice versa, by shifting
each component of the signal by a quarter of a period [5]. To put in simpler terms, one
can say that HT is the relationship between the real and imaginary parts of the FT of
a one-sided function [1].

The Hilbert transform H[g(t)] of a signal g(t) follows the eq. 3.12 [75]:

H[g(t)] =
1

π

∫ ∞
−∞

g(t− τ)

τ
dτ (3.12)
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The HT of g(t) is the convolution of g(t) with the signal 1
πt . This is the response

to g(t) of a linear time-invariant filter called Hilbert transformer, with impulse response
of 1

πt [5].
However, the integral translated in eq. 3.12 is improper: the integrand has a

singularity and the limits of integration are infinite. In fact, the Hilbert transform is
properly defined as the Cauchy principal value of the integral in 3.12, whenever this
value exists. The Cauchy principal value is defined, for 3.12, as:

H[g(t)] =
1

π
lim
ε→0+

(∫ t−ε

t−1/ε

g(τ)

t− τ
dτ +

∫ t+1/ε

t+ε

g(τ)

t− τ
dτ

)
(3.13)

One can see that the Cauchy principal value is obtained by considering a finite
range of integration that is symmetric about the point of singularity, but which excludes
a symmetric subinterval, taking the limit of the integral as the length of the interval
approaches∞ while, simultaneously, the length of the excluded interval approaches zero
[75].

Some properties of the Hilbert transform are listed below [75].

1. Linearity
H[a1g1(t) + a2g2(t)] = a1H[g1(t)] + a2H[g2(t)] (3.14)

2. Constant Signal - For any constant c the transformation is 0.

g(t) = c H[g(t)] = H[c] = 0 (3.15)

From the linearity property enumerated before it came that

H[g(t) + c] = H[g(t)] +H[c] = H[g(t)] (3.16)

3. Time Shifting If g(t) has Hilbert transform H[g(t)] then the transformation of
g(t− t0) is given as follows

H[g(t− t0)] (3.17)

4. Convolution

H[g1(t)× g2(t)] = H[g1(t)]× g2(t) = g1(t)×H[g2(t)] (3.18)

On the other hand, Randall [1] suggests that the Hilbert transform can be simply
the transformation of the signal into the frequency domain, shifting the phase of positive
frequency components by −π/2 and of the negative frequency components by +π/2 and
returning to time domain after the shifting.

An advantage of the HT is that the function g(x) = f(x) + jH[u(x)] is always
representative of an analytic function, also known as regular function in the superior
half of the complex domain. This means that the function is infinitely differentiable.
Despite other useful applications, nowadays the biggest advantage of the HT is the
ability to obtain the envelope by demodulation of a signal [1].
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3.5 Fourier Transform and Power Spectral Density

Detecting waves, i.e. oscillatory behaviour, in the vibration signal provides useful
information about the presence of faults. To perform this examination, time-frequency
transformations are used. Time-frequency transformations are important mathematical
signal processing techniques that process data to find the contribution made by each
frequency during each point in time of the original signal.

One of the simplest transforms is the Fourier transform, an algorithm that works
by decomposing the original signal into a linear sum of sinusoidal waves of different
frequencies. The larger the amplitude of a given frequency, the more important that
frequency is to the original signal. The output of the transform is this mapping of
frequency to amplitude [1, 76, 10].

Discrete Fourier Transform (DFT)

Sampled time signals are in principle of infinite length, but when the record length
is finite, this leads to the same situation as with the Fourier series in that the spectrum
is discrete and the time record implicitly periodic. This leads to the time record and
frequency spectrum being discretely sampled and periodic. The continuous infinite
integrals of the Fourier transform become finite sums, usually expressed as the equation
3.19.

G(kf) =
1

N

N−1∑
n=0

g(n)e
−j2πkfn

N (3.19)

Where the angular frequency ωn in rad/s has been replaced by the continuous
frequency f expressed in Hz, k is an index and N is the length of the record. Dividing
by this parameter, the Fourier series components are correctly scaled [1]. The forward
DFT operation can be understood as the matrix multiplication shown in equation 3.20
[1]:

Gkf =
1

N
Wkfngn (3.20)

Where Gkf represent the vector of N frequency components, gn represents the N
time samples x(n). Wkfn represents a square matrix of unit vector exp(−j2πkfn/N)
with angular orientation, depending the rows on the frequency index k and the columns
on the time sample index n. As shown in equation 3.21 [1]:

X0

X1

X2

X3

X4

X5

X6

X7


=

1

8



↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
↑ ↗ → ↘ ↓ ↙ ← ↖
↑ → ↓ ← ↑ → ↓ ←
↑ ↘ ← ↗ ↓ ↖ → ↙
↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓
↑ ↙ → ↖ ↓ ↗ ← ↘
↑ ← ↓ → ↑ ← ↓ →
↑ ↖ ← ↙ ↓ ↘ → ↗





x0
x1
x2
x3
x4
x5
x6
x7


(3.21)

For k = 0 the zero frequency value G(0) is simply the mean value of the time
samples x(n). For k = 1 the unit vector rotate −1/N -th of revolution for each time
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sample increment, which translates in a complete clockwise revolution after N samples.
For higher values of k the rotation speed is proportionally higher. For k = N/2, also
known as Nyquist frequency, or half the sampling frequency, the vector turns −π for
each time sample, however, it is not possible to assess in which direction it is turning.
For k > N/2, the vector turns more than π in the negative direction, although it is easier
to interpret this as turned in the opposite direction, which means a value less than π
and that will transform the second half of Gkf in the negative frequency components
ranging from minus 0,5 the Nyquist frequency to slight below zero. In order for this to
be true, the time signal has to be low-pass filtered at half the sampling frequency.

Fast Fourier Transform (FFT)

The FFT is a simple and very efficient algorithm for calculating the DFT
equations, requiring much less operations than the DFT. The only requirement for
this new approach was that the number of points N , should be a power of 2, such as
128, 256, 512, etc..

Starting with the equation (3.20) in its simplest version, also known as radix 2
algorithm, because the FFT is based on N being a power of 2, it factorizes a modified
version of the matrix Wkfn into log2N matrices. Accordingly, the number of
mathematical operations is reduced, by a factor of more than 100 for a typical case
where N = 1024 [1].

A modified version of the matrix Wkfn will be designated as matrix B, and to
simplify the nomenclature, the original will be denoted matrix A. Matrix B has the
rows arranged in bit-reversed order as shown in the equation (3.22), meaning that the
most significant bit is indexed, rather than the least significant one, consequently
incrementing the phase.

RowB

0 0 0 (0)
0 0 1 (1)
0 1 0 (2)
0 1 1 (3)
1 0 0 (4)
1 0 1 (5)
1 1 0 (6)
1 1 1 (7)



↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓
↑ → ↓ ← ↑ → ↓ ←
↑ ← ↓ → ↑ ← ↓ →
↑ ↗ → ↘ ↓ ↙ ← ↖
↑ ↙ → ↖ ↓ ↖ ← ↘
↑ ↘ ← ↗ ↓ ↖ → ↙
↑ ↖ ← ↙ ↓ ↘ → ↗



RowA

0 0 0 (0)
1 0 0 (4)
0 1 0 (2)
1 1 0 (6)
0 0 1 (1)
1 0 1 (5)
0 1 1 (3)
1 1 1 (7)

(3.22)

The multiplication by B means that the results are also in bit-reversed order,
but reorganize them to the correct place is a simple operation that can be done
simultaneously. This operation also performs faster than the multiplications saved
with this method. Equation (3.24) shows an example for a matrix B, with N = 8,
factorized into three matrices X,Y and Z. For each one of those matrices there are
only two non-zero elements for each row, the other one corresponds to 1 [1].[

I I
I −I

]
(3.23)

The factor matrices contain progressively finer rotations and the top left sub-
matrix is always of the form given by equation (3.23). Factorization in powers different
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than 2 is also possible, given that the properties of the FFT are the same as the DFT.



X

↑ ↑ 0 0 0 0 0 0
↑ ↓ 0 0 0 0 0 0
0 0 ↑ → 0 0 0 0
0 0 ↑ ← 0 0 0 0
0 0 0 0 ↑ ↗ 0 0
0 0 0 0 ↑ ↙ 0 0
0 0 0 0 0 0 ↑ ↘
0 0 0 0 0 0 ↑ ↖





Y

↑ 0 ↑ 0 0 0 0 0
0 ↑ 0 ↑ 0 0 0 0
↑ 0 ↓ 0 0 0 0 0
0 ↑ 0 ↓ 0 0 0 0
0 0 0 0 ↑ 0 → 0
0 0 0 0 0 ↑ 0 →
0 0 0 0 ↑ 0 ← 0
0 0 0 0 0 ↑ 0 ←





Z

↑ 0 0 0 ↑ 0 0 0
0 ↑ 0 0 0 ↑ 0 0
0 0 ↑ 0 0 0 ↑ 0
0 0 0 ↑ 0 0 0 ↑
↑ 0 0 0 ↓ 0 0 0
0 ↑ 0 0 0 ↓ 0 0
0 0 ↑ 0 0 0 ↓ 0
0 0 0 ↑ 0 0 0 ↓



=



B

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓
↑ → ↓ ← ↑ → ↓ ←
↑ ← ↓ → ↑ ← ↓ →
↑ ↗ → ↘ ↓ ↙ ← ↖
↑ ↙ → ↖ ↓ ↖ ← ↘
↑ ↘ ← ↗ ↓ ↖ → ↙
↑ ↖ ← ↙ ↓ ↘ → ↗


(3.24)

Power Spectrum Density Estimation: Welch Method

Power Spectrum estimation (PSE) is one of the most important areas of
research and applications in Digital Signal Processing (DSP). The autocorrelation
function of a random signal is the appropriate statistical average that will use for the
characterizing random signals in the time domain, and the power density spectral is
the Fourier transform of the autocorrelation function, provides the transformation
from the time domain to the frequency domain. A power spectrum describes the
energy distribution of a time series in the frequency domain. Energy is a real-valued
quantity, so the power spectrum does not contain phase information. Because a time
series may contain non-periodic or asynchronously-sampled periodic signal
components, the power spectrum of a time series typically is considered to be a
continuous function of frequency.

There are two main types of PSE methods: Parametric and nonparametric.
Parametric, or non-classical methods, find the parameters for a mathematical model
describing a signal. Non-parametric, or classical methods, do not take any assumption
on the data generating process [77].

In this project, the method used for PSE was the welch method, a
non-parametrical method that consists in dividing the time series data into
overlapping segments, computing a modified periodogram of each segment, and then
averaging the Power Spectrum Density (PSD) estimates. Even though, overlapping
segments might tend to introduce redundant information, this effect is diminished by
the use of a non-rectangular window, which reduces the importance given to the end
samples of segments, the overlapping samples.

Mathematically, the Welch method follows simple expressions. The periodogram
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Pk(υ) follows eq. 3.25

Ψ(f) = Ψ∗(f) = exp

[
−
(
π2

σ2

)
(f − f0)

]
(3.25)

where W , using the window function w[m], is:

W =
M∑
m=0

w2[m] (3.26)

the welch estimate of the PSD can obtained:

Sx(υ) =
1

K

K∑
k=1

Pk(υ) (3.27)

where K are the number of segments or batches.

3.6 Envelope Analysis: Window Selection & Filtering

Envelope analysis has become one of the prominent vibration signal processing
techniques for detection and diagnosis of rolling element bearing incipient failure.
Developed during the early 1970’s, this technique has had many designations with the
term Envelope Analysis being the most popular. The basis for this analysis is the
already refered concept of impulse generation whenever a fault develops and the REB
is running [78]. The impacts generated by gearbox and rolling element faults
superimpose upon the random and noise components of the signal, resulting in
amplitude modulation as shown in Figure 3.8, consequently causing sidebands in the
spectrum around the frequency bins associated with the vibration signal. The
sidebands then mix with the frequency components of the vibration signal so that it is
hard to distinguish them in the spectrum.

Figure 3.8: Vibration and fault frequencies caused by amplitude modulation.
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Impacts in time domain generate many harmonics extending to very high
frequency in frequency domain. Very often, some of these harmonics excite resonances
in the structure. Exact location of the resonances is usually not known and cannot be
determine easily. However, the resonance amplifies the modulating and carrier signals.

As was already stated, the spectrum of the pure signal, as in the immediate
signal obtained from the transducer, contains poor information to assess the diagnosis
of a bearing. Consequently, envelope analysis provides a mechanism for extracting out
the periodic excitation or amplitude modulation of the resonance [78]. Such method
consists of bandpass filtering the signal in a high frequency band where the fault
impulses are amplified by structural resonances. The signal is then demodulated in
amplitude resulting in the envelope signal, whose spectrum contains the desired
diagnostic information in terms of both repetition frequency as well as modulation by
the appropriate frequency at which the fault is passing through the load zone [13].

Figure 3.9: Envelope analysis applied to a signal. (a) Corresponds to the raw
vibration signal, outer fault is present. (b) Carrier frequency and its sidebands. (c)

Envelope frequency shows the BPFO.
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However, one of the main setback of this analysis is how to determine the best
frequency band, or window, around the theoretical fault frequency. Fixing a frequency
band can be ineffective as fixed frequency bands may or may not encompass structural
resonances, which are excited by the bearing damage. In this text, the cyclic spectral
correlation was used to determine the central frequency to analyse and a procedure
named power spectrum estimation to determine the band, further explained. The
filtering of the signal is assured by the Butterworth bandpass filter of the 4th order.

According to Randall [1] it is preferable to analyse the squared envelope signal
rather than the envelope, due to the fact that mathematically, the envelope of a signal
is the square root of the squared envelope and therefore a rectified signal is the square
root of the squared signal. The square root operation introduces external components
that were not in the original squared signal and that will cause masking of the desired
information.

3.7 Proposed Semi-Automated Method

The aim of this project was to develop a semi-automated method for fault
classification in rolling element bearings. Given that the classification methods run
automatically, the only point that requires human input is for signal processing, more
precisely, for the filtering operation.

In terms of signal processing techniques applied they are clarified in Figure 3.10.

Figure 3.10: Proposed method for signal processing of vibration data.

The last process of this method is feature calculation.
Given that different frequency bands for filtering will result in different envelope
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signals, the features calculated will be highly dependent on the envelope filtered signal
and, consequently, of the filtering used. Further analysis on signals will focus on
envelope filtered signal, from now on called Filtered Signal, and the Hilbert
Demodulated signal without filtering, from now on called Non-Filtered Signal.

Because the filtering process is the most sensitive part of this process and the
only one that needs human input, the method proposed tried to maintain the user
input to a minimum, using methods and techniques proposed in the literature. The
method proposed in this text is shown in Figure 3.11.

Figure 3.11: Proposed method for envelope analysis of vibration data.

As one can see from Figure 3.11 the CSC and PSD are calculated for the
reference case, advised by SpectraQuest, of 1 260 rpm. After the CSC and PSD are
calculated, these are plotted, along with a healthy versus faulty graph showing the
spectrum of each raw vibrational signal. Using this information, the user can decide
on an optimal frequency band, around the central frequency, to be used for filtering.

A new window will pop-up, showing the results of the filtered signal and if the
user considers the results to be acceptable, the script will calculate amplitude ratios,
on the PSD calculated curve of the reference case, and search these amplitude ratios
on the PSD curves of all the other cases to be analysed.

The data used in this project was acquired using the SpectraQuest test-rig.
Measured speeds ranged from 300 rpm to 2 700 rpm with an increment of 120 rpm.
An example will be presented in chapter 6 (Figure 6.3).
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Feature Analysis

After the signal has been processed and enhanced, applying techniques that
allows for diagnosis information to be extracted from it, it is then possible to develop
an automated method for diagnosis of bearings. Rapid and reliable diagnosis is done
through the analysis of indicators, or features, calculated on the signals resulting from
the signal processing stage. Moreover, ultimate goal of pattern detection, important fo
calculation of RUL, and its success will depend on the calculation of these features,
whether they are indicative of a present fault or not. Furthermore, due to the large
variations, direct comparison of vibration signatures is difficult, and thus statistical
features provide an easier and automated form for application of pattern recognition
and tracking technique. In theory, these features are more reliable, for this application
than the analysis of the vibration signals themselves.

Moreover, the literature advises the calculation of several features such as the
Kurtosis, Standard deviation, Crest factor and among others. However, no connection
has been established on which features are best indicative of failure of a bearing. This
text tries to do that, in a way, using feature selection methods that will be explained
further in this section.

One finds different techniques for calculation of time-domain statistics. One of
them calculates the features for the entire frequency range of the signal, while the
other approach divides the signal into several frequency segments and performs feature
calculation in each segment, resulting in various calculations for one single measured
signal. This was the approach used for this project, where the vibrational signal was
measured during 30 seconds. The length of the signal is then split into a total of 10
samples and the features are calculated on each of these samples. This procedure was
repeated for all speeds (from 300 rpm to 2 700 rpm with increments of 120 rpm)

One can use the probability density function in order to calculate the statistical
features of a signal. Each statistical feature will correspond to a moment order, which
correspond to mechanical moments about the centroid of a plane [4]. Davies states in
[4] that the odd moments are related to the position of the peak density, similar to the
median value, while the even moments are informative of the spread in the
distribution. One technique that is widely used is to normalize the moments higher
than the second order, removing the mean and dividing by the standard deviation
raised to the order of the moment. The same author, Davies in [4] adds that higher
moments are sensitive to impulsiveness in the signal which make moments such as the

55
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Skewness and Kurtosis, respectively third and fourth moments, relevant to the
diagnosis analysis.
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4.1 Feature Extraction

This subsection will be an overview of the statistical features calculated on each
of the samples of the total signal. Every feature described will be explained relatively
to the probability density function p(x) and the overview will follow the character of
increasing moment order.

4.1.1 Mean Value

The mean value, a moment of first order of the probability function, is defined
as, for a symmetrical function as the line of symmetry of such function. Also known as
the expected value of a random variable that follows the probability function, the mean
translates as the arithmetic average value of the same random variable. The mean,
follows the equation 4.1.

µ =

∫ ∞
−∞

x · p(x) dx (4.1)

4.1.2 Variance

The second-order moment of the probability density function is the variance. The
strict definition is "The average of the squared differences from the mean", in other
words, the variance translates as the variability, or spread, of the data being studied.
A value of 0 means that there is no spread on the data. Mathematically, following the
strict the definition, this feature is expressed by equation 4.2.

σ2 =

∫ ∞
−∞

[x− µ]2 p(x)dx (4.2)

4.1.3 Skewness

The following feature, third-order, is the skewness. As its name states, it
translated into how skewed or asymmetry the statistical distribution is relatively to
the mean value. skewness can be quantified to define the extent to which a
distribution differs from a normal distribution. In a normal distribution, the graph
appears as a classical, symmetrical "bell-shaped curve." The mean, or average, and
the mode, or maximum point on the curve, are equal. For this distribution the
skewness returns a value of zero.

When a distribution is skewed to the left, the tail on the curve’s left-hand side is
longer than the tail on the right-hand side, and the mean is less than the mode. This
situation is also called negative skewness. Oppositely, when a distribution is skewed to
the right, the tail on the curve’s right-hand side is longer than the tail on the left-hand
side, and the mean is greater than the mode. This situation is also called positive
skewness. This can be seen of figure 4.1.
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Figure 4.1: Types of Skewness [79]

According to [53], when related to vibrations, the higher asymmetry means higher
irregularities in the signal and, consequently the presence of defects in the machine.
Because it is a quantity of third-order moment of the probability density function, this
power of three enhances the high values and suppresses the low values in the signal.
Given this, this parameter is more useful for low-speed machinery. Skewness is expressed
mathematically by the equation 4.3.

S =

∫∞
−∞[x− µ]3 p(x)dx

σ3
(4.3)

4.1.4 Kurtosis

The kurtosis is a fourth moment of the probability distribution function, used to
measure the impulsiveness of a signal. Similarly to the skewness, this parameter is a
descriptor of the shape of a probability distribution function. Its value is very high for
impulsive signals because the power of four in the equation gives more importance to
local spikes, eq. 4.4.

K =

∫∞
−∞[x− µ]4 p(x)dx

σ4
(4.4)

Depending on its value, the distribution can be defined as (figure 4.2):

• Mesokurtic: K = 3,

• Leptokurtic: K > 3,

• Platykurtic: K < 3
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Figure 4.2: Types of distribution, according to values of kurtosis [80].

4.1.5 Root Mean Square

Strictly speaking, the RMS is the square root of the arithmetic mean of the
squares of the values, or the square of the function that defines the continuous function.
In other words, the RMS is a measure of the magnitude of a distribution, representing
the overall magnitude. For a vector x with N elements, its value is given by equation
(4.5).

RMS =

√√√√ 1

N

N∑
n=1

xn2 (4.5)

Stamboliska recommends that isolated diagnosis based solely on the value of the
RMS should not be performed, mainly because there is not a specific connection
between deviations in the RMS value and the presence, or not, of a fault in a machine.

4.1.6 Peak-to-Peak

Peak-to-Peak (P2P) is the difference between the maximum positive and the
maximum negative amplitudes of a waveform, or signal. Given that vibration signals
are symmetric by nature, a higher value of P2P indicate higher values of amplitude in
vibration signals, consequently meaning an increase in the impulsive level of the fault.
This indicator follows a simple equation 4.6.

P2P = xmax − xmin (4.6)

4.1.7 75% Percentile

A percentile specifies the amount of dispersion in a specific interval, P75 and P25

refers to the number of points above 75% and bellow 25% of the mean, correspondingly.

P75 = p (x < x0,75) (4.7)
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4.1.8 Crest Factor

Crest Factor (CF) a measure of a waveform, showing the ratio of peak values to
the average value [53], eq. 4.8. In other words, CF indicates how extreme the peaks
are in a waveform. It is a quick and useful calculation that gives an idea of how much
impact is occurring in a time wave.

CF =
|Peak|
RMS

(4.8)

The CF is an useful information that is lost if one is only viewing a spectrum, this
because the FFT cannot differentiate between impacting and random noise. Impacting
in a time waveform may indicate rolling element bearing wear, gear tooth wear, or
cavitation. As for other machinery, also for low-speed machinery, the crest factor should
be trended over time in order to see if the amount of impacting is increasing or not,
just that the absolute values will be again of lesser amount comparing to higher speed
machines [53].

4.1.9 Entropy and Wavelet Entropy

The entropy, eq. 4.9 is a quantitative measure of a system’s randomness, or
disorder. It is expected the value of the entropy to increase with the increase with the
increase of the random character of a signal. The parameters used for calculation of
entropy in this project were the Logarithmic Entropy (WentLog), eq. 4.11 and the
Shannon Entropy (WentSha), 4.10.

Entropy = −
N∑
n=1

p(xn) · log2 p(xn) (4.9)

WentSha = −
N∑
n=1

p(xn)2 · log p(xn)2 (4.10)

WentLog = −
N∑
n=1

log p(xn)2 (4.11)

4.1.10 Impulse, Margin and Shape Factors

According to [5] Chun Qing Li developed a new approach using other
non-dimensional parameters. The parameters studied were the Impulse Factor (IF),
Margin Factor (MF) or clearance factor and another one called the Shape Factor (SF).
These three parameters were found to be useful under simulation conditions using a
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Gaussian probability density function as a model of fatigue spalling on bearings.

IF =
xMax

1
N

∑N
n=1 |x(n)|

(4.12)

MF =
xMax

1
N

(∑N
n=1

√
|x(n)|

)2 (4.13)

SF =
RMS

1
N

∑N
n=1 |x(n)|

(4.14)

According to the same author, the margin factor is seen as the most sensitive and
robust between the three to detection of incipient spalling.

4.1.11 Fourth Order Figure of Merit

Fourth Order Figure of Merit (FM4) was developed to detect changes in the
vibration pattern resulting from damage from gears, for example on a limited number
of gear teeth. [6] FM4 is calculated by applying the fourth normalized statistical moment
to the difference signal, eq. 4.15.

FM4 =
N
∑N

i=1(di − d̄)4

(
∑N

i=1(di − d̄)2)2
(4.15)

4.1.12 M6A and M8A

These two indicators were developed to detect surface damage on machinery
components, they are the 6th and 8th statistical moments of the signal, as opposed to
the 4th statistical moment, as the Kurtosis or FM4. Given the higher order it is
expected to be more sensitive to peaks.

M6A =
N2
∑N

i=1(xi − x̄)6

(
∑N

i=1(xi − x̄)2)3

M8A =
N3
∑N

i=1(xi − x̄)8

(
∑N

i=1(xi − x̄)2)4

(4.16)

4.1.13 Harmonics

On frequency domain, the amplitudes of the first three harmonics of each fault
were studied. Using the theoretical frequencies shown in chapter 2 and a searching
threshold, the amplitude values were searched around the characteristic frequencies,
within the threshold. The need for the threshold value is because the harmonics may
shift from the theoretical values due to the variations in speed.
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4.2 Feature Reduction: PCA and LDA

At this point, one important note has to be made. For this project, there were
two stages, so to say. The first one regarded signal pre-processing and handling of data,
which was performed in Matlab. The second stage, of feature selection and classification,
was performed with the scripting language Python. The reason for this change was that
the tools available for machine learning and feature selection are readily, and natively,
available when downloading the tools needed for using Python.

4.2.1 Principal Component Analysis

To classify all the classes, or faults, and to obtain more definitive conclusions
towards developing a diagnostic tool, it is important to present through specific plots,
some form of distinction between the data-points belonging to each class.
PCA is a form of identifying patterns in data, and expressing the data in a way that
highlights their similarities and their differences. Since patterns in data can be hard to
find in high-dimensional data, where the luxury of graphical representation is not
available, PCA is a powerful tool for analysing data.

The other main advantage of PCA is that once these patterns in the data are
found, the data is compressed, by reducing the number of dimensions, while trying to
minimize the loss of information.

In other words, PCA is a mathematical procedure that transforms a number of
(possibly) correlated variables into a (smaller) number of uncorrelated variables called
PC. The first principal component accounts for as much of the variability in the data
as possible, and each succeeding component accounts for as much of the remaining
uncorrelated data as possible. PCA is similar to another multivariate procedure called
Factor Analysis.

PCA is a projection statistical method used for dimensionality reduction. This
analysis produces a lower-dimensional representation that preserves the correlation
structure between the variables [81]. Assuming a set of n observations or samples and
m variables, stacked into a matrix X, whose variance-covariance matrix has
eigenvalues λ and eigenvectors p verify condition (4.17)

(λ1, p1), (λ2, p2), · · · , (λm, pm) λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λm ≥ 0 (4.17)

Then the principal decomposition component of X can be expressed as:

X = TP T + E =

l∑
i=1

tip
T
i + E (4.18)

Where T = [t1, t2, · · · , tl] is the matrix of principal component scores,
P = [p1, p2, · · · , pl] is the matrix of principal component loadings and E is the residual
matrix in the sense of the minimum Euclidean norm and l is the index of the PC [82].
The identification of the PCA model consists in estimating its parameter by an
eigenvalue-eigenvector decomposition and determining the number of components l to
retain. In order to keep enough information about the data, an approach to select the
number of components to retain is the experimental method, which judges the
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cumulative sum contribution of the anterior l component is higher than 0,85 as stated
by equation (4.19) [82].

100 ·
∑l

i=1 λi∑m
i=1 λi

> 85% (4.19)

However, it must be noted that performing data normalization before applying
PCA is important. Since PCA is a variance maximizing exercise that projects the
original data onto directions that maximize the variance. Given that this project uses
variables whose numbers are not in the same scale, then bigger numbers will
correspond to bigger variances. Hence, normalizing the dataset, as in restructuring the
dataset so that all variables vary between the same extreme values, is of utmost
performance so that no features have more importance than others and PCA runs
correctly.

4.2.2 Linear Discriminant Analysis

Suppose we are given a learning set L of multivariate observations (i.e., input
values in Rr), and suppose each observation is known to have come from one of K
predefined classes having similar characteristics. These classes may be identified, for
example, as species of plants, different types of tumours, or condition of a given
machine component. To distinguish the known classes from each other, we associate a
unique class label (or output value) with each class; the observations are then
described as labeled observations [83]. In the case of this project, classes were Outer,
Inner, Ball, Healthy as in faulty (Outer race fault, Inner race fault, ball fault) or the
healthy case. Izenman defines [83] discrimination analysis as "the use of information
in a learning set of labeled observations to construct a classifier, or classification rule,
that will separate the predefined classes as much as possible".

Initially proposed by R. Fisher for discriminating between different types of
flowers, hence the designation Fisher linear discriminant , LDA has aim of determining
a subspace of lower dimension, compared to the original data sample dimension, in
which the data points of the original problem are separable [84].

According to [85] LDA uses the within-class scatter matrix Sw, to evaluate the
compactness within each class and the between-class scatter matrix, i.e, Sb, to evaluate
the separability of different classes [85]. Let X = x1, x2, · · · , xl ∈ RD×l be the training
set, where each xi belongs to a class ci = {1, 2, · · · , c}. li is the number of data points
in the ith class and l corresponds to the number of data points in all classes.

Then, the between-class scatter matrix, i.e., Sb, the within-class scatter matrix,
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i.e., Sw, and the total-class scatter matrix, i.e., St, are defined as

Sb =

c∑
i=1

li (µi − µ) (µi − µ)T (4.20)

Sw =

c∑
i=1

∑
xi∈ci

(xi − µi) (xi − µi)T (4.21)

St =
l∑

i=1

(xi − µ) (xi − µ)T (4.22)

(4.23)

where µi = 1/li
∑

xi∈ci xi is the mean of the data points in the ith class, and
µ = 1/l

∑l
i=1 xi is the mean of the data points in all classes.

One can easily see that this method performs this linear decomposition using
labeled information, making it a supervised method, whereas PCA is an un-supervised
method since it doesn’t require labeled data. Figure 4.3 shows the difference between
PCA and LDA.

Figure 4.3: Difference between PCA and LDA [86].

4.3 Feature Selection

As already stated in chapter 1, feature selection can help in increasing the
classifier’s performance and eliminate redundant features. Isabelle states in [87] that
feature selection can have other motivations, such as:

• General data reduction, to limit storage requirements and increase algorithm
speed;

• Feature set reduction, to save resources in the next round of data collection or
during utilization;

• Performance improvement, to gain in predictive accuracy;

• Data understanding, to gain knowledge about the process that generated the data
or simply visualize the data.

Moreover, Amarnath proved in his analysis [88] that using all of the features
considered in his study, may not be significant for the classification purpose. Using more
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irrelevant features actually may reduce the performance of the classification algorithm
and increase the computational resources required [88].

Given that the literature advises to perform feature selection methods prior to
classification, two feature methods are proposed and clarified in the following chapter.

4.3.1 mRMR: minimum-Redundancy Maximum-Relevance

Feature selection is an important problem for pattern classification systems.
However, in feature selection, it has been recognized that the combinations of
individually good features do not necessarily lead to good classification performance.
In other words, "the m best features are not the best m features" [89].

In many pattern recognition applications, identifying the most characterizing
features of the observed data, i.e., feature selection, is critical to minimize the
classification error [89]. The optimal characterization condition often means the
minimal classification error. In an unsupervised situation where the classifiers are not
specified, minimal error usually requires the maximal statistical dependency of the
target class c on the data distribution in the subspace Rm, and vice versa. This
scheme is nominated maximal dependency (Max-Dependency).

One of the most popular approaches to realize Max-Dependency is maximal
relevance (Max-Relevance) feature selection: selecting the features with the highest
relevance to the target class c. Relevance is usually characterized in terms of
correlation or mutual information, of which the latter is one of the widely used
measures to define dependency of variables [88].

An important concept, that serves as a basis to this concept is the mutual
information concept. Assuming two random variables x and y, their mutual
information is defined in terms of their probabilistic density functions p(x), p(y) and
p(x, y). The mutual information between these two variables follows the expression
4.24:

I(x; y) =

∫ ∫
p(x, y)log

p (x, y)

p(x)p(y)
dxdy (4.24)

Max-Dependency constraint

In terms of mutual information, the purpose of feature selection according to this
criteria, is to find a feature set S with m features xi, which jointly have the largest
dependency on the target class c. This scheme, called Max-Dependency, follows the
following expression:

maxD(S, c), D = I(xi, i = 1, · · · ,m; c) (4.25)

Obviously, when m = 1, the solution is the feature that maximizes I(xj ; c)(1 6
j 6M). When m > 1, a simple incremental search scheme is to add one feature at one
time. However, in spite of its theoretical value, Max-Dependency is often hard to get
an accurate estimation for multivariate density, due to two main difficulties:

1. the number of samples is often insufficient;
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2. the multivariate density estimation often involves computing the inverse of the
high-dimensional covariance matrix.

Consequently, even though Max-Dependency feature selection might be useful to
select a very small number of features when the number of samples is high, it is not
appropriate for applications where the aim is to achieve high classification accuracy
with a reasonably compact set of features [88].
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Max-Relevance and Min-Redundancy

As seen previously, the Max-Dependecy criteria is hard to implement. An
alternative is to apply the criteria of Max-Relevance, where feature are selected based
on maximum relevance. This criteria searches features that satisfy 4.26 which
aproximates D(S; c) in 4.25 with the mean value of all mutual information values
between individual feature xi and class c. One can rewrite 4.25 as 4.26:

maxD(S, c), D =
1

|S|
∑
xi∈S

I(xi; c) (4.26)

It is likely that features selected according to 4.26 might be highly dependant
between each other. When two features highly depend on each other, the respective
class-discriminative power would not change much if one of them were removed.
Therefore, the following minimal redundancy (Min-Redundancy) condition can be
added to select mutually exclusive features [88]:

minR(S), R =
1

|S|2
∑

xi,xj∈S
I(xi, xj) (4.27)

The criterion that combines both 4.27 and 4.26 is called "minimal-redundancy
maximal-relevance" (mRMR) [88]. The operator Φ(D;R) combines D and R and the
method follows the eq. 4.28

max Φ(D;R), Φ = D −R (4.28)

However, the most important part of this method is how it calculates the mutual
information between the variables:

I(Sm; c) = H(c) + H(Sm−1, xm) −H(Sm−1, xm, c) (4.29)

where H(·) is the entropy (see Information Gain Criteria in section 4.3.2) of the
respective multivariate variables, Sm−1 is the set of m − 1 features, xm is the mth
feature being evaluated and c is the class.

Data Binning

Further in the analysis performed, it was noted that data discretisation was
necessary given that the method was not working because the entropy function
implemented within the method wasn’t working well with the continuous values
available in our data. Accordingly, the technique for data discretisation adopted was
the binning technique.

Generally, the distribution of the observations changes with time. Binning the
data, i.e., grouping observations into time intervals, leads to an approximation of this
distribution by a piecewise-constant distribution, constant in each time interval.

The choice of the set of bins is crucial, as binning will always lead to a certain
distortion between the true and estimated distributions. A binning strategy should be
"good", in the following senses:



68 Chapter 4. Feature Analysis

• For a given number of bins, the locations of the bin edges must be chosen so as
to minimize heterogeneity of the data in each bin.

• The number of bins must be carefully chosen, i.e., require sa good tradeoff between
a large number of bins and a large number of observations in each bin. The true
distribution can be accurately approximated by a piecewise-constant distribution
with a large number of bins, while a large number of observations in each bin is
required to accurately estimate this true distribution.

There are various ways to implement binning. The two simplest are:

• Equal-width binning: K bins of length (tmax− tmin)/K.

• Equal-size binning: K bins, each with n/K data points. If n is not a multiple of
K, we can correct so that each bin has either [n/K] or [n/K] + 1 data points.

4.3.2 Decision Tree

Generally, the DT is a classification method. A standard tree consists of a
number of branches, one root, a number of nodes and a number of leaves However,
given that it is possible to export the DT and visually interpret the model, one can
use the classification method as a feature selection method.
Because of the easy interpretability of this method, some authors have used this
classifier as a feature selection method using the results as input for other classifiers
such as SVM, Proximal Support Vector Machines (PSVM), Artificial Neural
Networks (ANN) and others [90, 91].

The use of the DT as a feature selection method is due to the fact that this
classification method has a feature selection algorithm built-in. As such, using this
classification method, one can train the model without performing feature selection
before-hand, because the method will perform feature selection for itself. However, one
must consider that using classification methods such as SVM, PSVM or ANN one is
using black-box models that cannot be interpreted afterwards.

This section will only describe how feature selection is performed within the
Decision Tree itself. The classification method will be clarified in chapter 5.
Using the tools available within the scripting language Python, DT uses two criterias
for spliting the data, or choosing features: The Gini index, or the entropy information
gain.

The Gini index (Gini)

Gini impurity is a measure of misclassification, which applies in a multiclass
classifier context. Developed by Breiman et al. in 1984, the Gini function measures
the impurity of an attribute with respect to the classes [92].

i(t) = 1−
k∑
i=1

(p(ci|t))2 (4.30)

In a node t, an impurity function based on the Gini Index criterion assigns a
training example to a class ci with the probability p(ci|t). The estimated probability
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that the item is actually in class j is p(cj |t). Therefore, the estimated probability of
misclassification under this rule is 4.31

i(t) = 1−
k∑
j=1

(p(cj |t))2 (4.31)

The Gini Index criterion selects a test that maximizes the function 4.32:

gini(T ) = 1−
k∑
i=1

(p(ci))
2 −

n∑
i=1

p(ti)
k∑
j=1

(p(cj |ti)(1− p(cj |ti)) (4.32)

A Gini score gives an idea of how good a split is by how mixed the classes are in
the two groups created by the split. A perfect separation results in a Gini score of 0,
whereas the worst case split that results in 50/50 classes in each group result in a Gini
score of 0,5 (for a 2 class problem).

Information Gain Criteria

The Information Gain function has its origin in information theory. It is based on
the notion of entropy, which characterizes the impurity of an arbitrary set of examples
[92]. If one emits a message stating that an example was chosen from a set, belonging
to the class ci, then the probability of this message is equal to p(ci) and the amount of
information it conveys is log2(p(ci)). The expected information provided by a message
with respect to the class membership can be expressed as:

info(L) = −
k∑
i=1

p(ci)log2(p(ci)) (4.33)

where the quantity info(L) measures the average amount of information needed
to identify the class of an example in L. This quantity is also kown as the entropy of
the set L relative to the k-wise classification. The reason for the logarithm in base 2
is because the entropy is a measure of the expected encoding length measured in bits.
Within a test T , the expected information requirement is the weighted sum over the
subsets:

infoT (L) = −
k∑
i=1

p(ti)info(Ti) (4.34)

The information gained by partitioning L in accordance to the test T is measured
by the quantity 4.35

gain(t) = info(L)− infoT (L) (4.35)

The information Gain criterion selects a test that maximizes the Information Gain
function, or eq. 4.35.

Figure 4.4 compares compares the values of the impurity measures for binary
classification problems. On this image, p refers to the fraction of records that belong
to one of the two classes. One can see that all three measures attain their maximum
value when the class distribution is uniform (i.e., when p = 0, 5). The minimum values
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for the measures are attained when all the records belong to the same class (i.e., when
p equals 0 or 1).

Figure 4.4: Comparison of impurity measures for binary classification problems [93].



CHAPTER 5

Classification Methods

In machine learning and statistics, classification is the problem of assigning a set
of categories to a certain class of observation, on the basis of a training set of data
containing observations whose category membership is known. An example would be
assigning a given email into "spam" or "non-spam" classes or assessing the condition
of a bearing based on labeled data (faulty or healthy). Classification is an example of
pattern recognition.

Before going further into the classification methods used, common concepts must
be clarified:

• Classification: The task of learning a target function f that maps each attribute
set x to one of the predefined class labels y. The target function is also informally
denoted as a classification model.

• Descriptive Modelling: A classification model can serve as an explanatory tool
to distinguish between objects of different classes.

• Predictive Modelling: A classification model can also be used to predict the
class label of unknown records

A key characteristic that distinguishes classification from regression is the class
label. If a class label y is a continuous attribute then the problem is concerned about
regression, on the other hand if y is discrete then the learning problem is a classification
one [93].

The general approach to a classification problem is to use a classifier to build
classification models from an input data set. These classifiers can be DT, rule-based,
Neural Networks, Support Vector Machines or Naïve Bayes classifiers, among others.
Each technique employs a learning algorithm to identify a model that best fits the
relationship between the attribute set and class label of the input data. The model
generated by a learning algorithm should both fit the input data well and correctly
predict the class labels of records it has never seen before. Therefore, a key objective of
the learning algorithm is to build models with good generalization capability: models
that accurately predict the class labels of previously unknown records [93].

The errors committed by a classification model are generally divided into two
types: training errors and generalization errors. Training error, also known as re-
substitution error or apparent error, is the number of misclassification errors committed
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on training records, whereas generalization error is the expected error of the model on
previously unseen records. As already stated, a good classification model must not only
fit the training data well, it must also accurately classify records it has never seen before.
In other words, a good model must have low training error as well as low generalization
error. This is important because a model that fits the training data too well can have a
poorer generalization error than a model with a higher training error. Such a situation
is known as model overfitting and should be avoided otherwise it can render the results
as not reliable [93].

5.1 Decision Tree Analysis

A DT, a tree-based knowledge representation methodology, is used to represent
classification rules. A standard tree usually consists of a number of branches, one root,
a number of nodes and a number of leaves. One branch is a chain of nodes from root
to a leaf; and each node involves one attribute [93]. The occurrence of an attribute in
a tree provides the information about the importance of the associated attribute. In
other words, one can say that a Decision Tree has three types of nodes:

• A root node, the beginning of the Decision Tree itself or its root. A root node
has no incoming ramifications or edges.

• Internal nodes, each of which has exactly one incoming edge and two or more
outgoing edges.

• Leaf or terminal nodes, each of which has exactly one incoming edge and no
outgoing edges.

In a DT, each leaf node corresponds to a class label. The non-terminal nodes,
which include the root and other internal nodes, contain attribute test conditions to
separate records that have different characteristics. An illustration of this concept is
shown in Figure 5.1

Figure 5.1: A DT modelling the concept of mammal classification [93].

Classifying a specific sample is simple once a Decision Tree has been constructed.
Starting from the root node, we apply the test condition to the record and follow the
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appropriate branch based on the outcome of the test. This will lead either to another
internal node, for which a new test condition is applied, or to a leaf node. The class
label associated with the leaf node is then assigned to the sample, classifying the sample
in question.

Different algorithms exist to construct decision trees: CART, C4.5, C5.0 or ID3.
According to the documentation available online1 of the DT function available on the
scikit-learn library for machine learning in Python, there are differences between the
algorithms.

ID3, or Iterative Dichotomiser 3, was developed in 1986 by Ross Quinlan. The
algorithm creates a multiway tree, finding for each node, through a greedy manner, the
categorical feature that will yield the largest information gain for categorical targets.
Trees are grown to their maximum size and then pruned2 to improve the ability of the
tree to generalise to unseen data.

C4.5 is the successor to ID3 and removed the restriction that features must be
categorical by dynamically defining a discrete attribute, based on numerical variables,
that partitions the continuous attribute value into a discrete set of intervals. C4.5
converts the trained trees, i.e. the output of the ID3 algorithm, into sets of if-then
rules. The accuracy of each rule is then evaluated to determine the order in which they
should be applied. Pruning is done by removing a rule’s precondition if the accuracy of
the rule improves without it.

C5.0 is Ross Quinlan’s latest version released under a proprietary license. It uses
less memory and builds smaller rulesets than C4.5 while being more accurate.

CART (Classification and Regression Trees) is very similar to C4.5, but it differs
in that it supports numerical target variables (regression) and does not compute rule
sets. CART constructs binary trees using the feature and threshold that yield the largest
information gain at each node. The algorithm used in scikit-learn is an optimised version
of the CART algorithm.

According to the same source, DTs have advantages and disadvantages. The main
advantages are the following:

• Simple to understand and to interpret, as trees can be visualised. Making it a
white box model (contrary to a black-box model).

• Requires little data preparation. Other techniques often require data
normalisation, dummy variables need to be created and blank values to be
removed.

• The cost of using the tree, i.e., predicting data, is logarithmic in the number of
data points used to train the tree.

• Able to handle both numerical and categorical data.

• Able to handle multi-output problems.

• Possible to validate a model using statistical tests. That makes it possible to
account for the reliability of the model.

1http://scikit-learn.org/stable/modules/tree.html
2pruning is to trim a tree, shrub, or bush by cutting away dead or overgrown branches or stems,

especially to encourage growth. In a DT, this term has the meaning of trimming the tree in order to
avoid overfitting
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• Performs well even if its assumptions are somewhat violated by the true model
from which the data were generated.

However, it also presents the following disadvantages:

• Decision-tree learners can create over-complex trees that do not generalise the
data well (recall overfitting concept). Mechanisms such as pruning, setting the
minimum number of samples required at a leaf node or setting the maximum
depth of the tree are necessary to avoid this.

• Decision trees can be unstable because small variations in the data might result
in a completely different tree being generated. This problem is mitigated by using
a group of decision trees (also known as Random Forest method, to be explained
later).

• The problem of learning an optimal Decision Tree is known to be NP-complete
under several aspects of optimality and even for simple concepts. Consequently,
practical decision-tree learning algorithms are based on heuristic algorithms such
as the greedy algorithm where locally optimal decisions are made at each node.
Such algorithms cannot guarantee to return the globally optimal Decision Tree.
This can be mitigated by training multiple trees in an ensemble learner, where
the features and samples are randomly sampled with replacement.

• Decision tree learners create biased trees if some classes dominate. It is therefore
recommended to balance the dataset prior to fitting with the Decision Tree. Also
known as normalizing the data.

• Decision Trees can only do linear splits on the data, while other methods allow
non linear splits.

Given that the Decision Tree classifier is prone to overfitting, pruning was
performed on the model created for each signal. This step consists of dividing the
total data into two sets: one for learning and creating the model and verify with which
tree depth the classification was best, and another for effective test and validation.

5.2 Random Forest

As seen in the previous section, DTs have their disabilities and setbacks.
Breiman, in [94], came up with the idea of using a large group of DTs as a method in
order to overcome the disadvantages of single DTs. The technique called Bootstrap
Aggregating, or bagging, which is a common machine learning ensemble
meta-algorithm designed to improve the stability and accuracy of machine learning
algorithms used in statistical classification and regression. It also reduces variance and
helps to avoid overfitting. Hence, using a large group of DTs is essentially the same as
DT bagging.The technique is named as Random Forest and consists, basically, as using
DTs as a group.

This method’s algorithm creates multiple CART-like trees each trained on a
bootstrapped sample of the original training data, and searches only across a
randomly selected subset of the input variables to determine a split, for each node.
For classification, each tree in the Random Forest casts a unit vote for the most
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popular class at input x. The output of the classifier is determined by a majority vote
of the trees. Additionally, the trees in Random Forests are not pruned, further
reducing the computational load

As a result, the Random Forest algorithm can handle high dimensional data and
use a large number of trees in the ensemble. This combined with the fact that the
random selection of variables for a split seeks to minimize the correlation between the
trees in the ensemble, results in error rates that have been compared to much more
complex methods, SVM for instance, while being computationally much lighter. As
each tree is only using a portion of the input variables in a Random Forest, the
algorithm is considerably lighter than conventional bagging with a comparable
tree-type classifier [95]. This method presents multiple advantages:

• Can be used when there are many more variables than observations.

• Can be used both for two-class and multi-class problems of more than two classes.

• Has good predictive performance even when most predictive variables are noise,
and therefore it does not require a pre-selection of features

• Does not overfit.

• Can handle a mixture of categorical and continuous predictors.

• Incorporates interactions among predictor variables.

• The output is invariant to monotone transformations of the predictors.

• There is little need to fine-tune parameters to achieve excellent performance.

However, relatively to our project, as stated by [94, 95], the number of trees
generated in the group can be quite large as the authors refer that no less than 100
trees are used, rendering this method to be similar to a black-box method. For bearing
classification, and for sakes of critical thinking, one expects to see a map that leads
to why such classification was performed, or in other words, such decision was made
(faulty versus non-faulty). Hence, analysing a wide range of maps can render the tool
as not indicative, or interpretable, as to why such bearing has been classified as faulty
or as healthy.

In spite of this, it is expected that this method outperforms the conventional DT
[94] and it was still used in this project allowing further conclusions. This method was
also available in the scikit-learn library of Python scripting language, allowing the use
of Python for applying this method.

5.3 Support Vector Machines

An extensive explanation and mathematical formulation can be found in data
science literature or in speciality books on SVM [96]. However, a concise and brief
explanation on SVM will be given through this section. A first look on a Web Page is
recommended 3 in order to have a first idea on how SVM work.

SVM is an excellent algorithm used for classification and regression. This

3Link to Reddit: https://goo.gl/MckZDC

https://goo.gl/MckZDC
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computational learning method is based on the statistical learning theory developed
by Vapnik. SVMs are supervised learning models with associated learning algorithms
that analyze data used for classification and regression analysis. Originally a binary
classification method, where given a set of training examples, each marked as
belonging to class a or b, a SVM training algorithm builds a model that assigns new
examples to one class or the other, making it a non-probabilistic binary linear
classifier.

SVM’s formulation embodies the Structural Risk Minimisation (SRM) principle,
which has been shown to be superior to traditional principle, that are used on
conventional neural networks (ANN and CNN) [97]. SRM minimises an upper bound
on the expected risk, as opposed to Empirical Risk Minimisation (ERM) that
minimises the error on the training data. This difference gives SVM with a greater
ability to generalise, which is the goal in statistical learning. Today, SVM is a very
popular technique for classification problems.

Figure 5.2: An example of linear classifiers [97].

The best way of explaining SVM is to consider a two-class problem. This
problem concerns the separation of two classes using a line, also known as classifier.
The goal is to produce a classifier that will work well on unseen examples, i.e. it
generalises well. With the help of Figure 5.2 one can see that there are many possible
linear classifiers, that can separate the data, but there is only one that maximises the
margin (maximises the distance between it and the nearest data point of each class).
This linear classifier is termed the optimal separating hyperplane [97].

This optimal linear classifier is obtained by maximizing the vectors (hence the
name of support vector), normal to the classifier, between the closest datapoint and
said line.

However the separation is not always possible using a linear classifier and
sometimes it is needed a non-linear classifier, however non-linear classifiers are very
sensible to parameter tuning. Figure 5.3 illustrates this concept clearly.
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Figure 5.3: (a) non linear classifier and (b) linear classifier [98].

However, linear or non-linear classifiers may not be possible or reasonably easy to
compute. A solution to this is to project the data to a n-dimensional hyperplane, try to
compute a classifier that correctly separates the classes, Figure 5.4, and then transform
said classifier back afterwards. This hyperplane is called the kernel and this projection
technique is the idea behind the "kernel-trick" in SVM.

Figure 5.4: The "Kernel-trick" in SVM [99].

SVM have severall advantages according to the scikit-learn library web page:

• Effective in high dimensional spaces.

• Still effective in cases where number of dimensions is greater than the number of
samples.

• Uses a subset of training points in the decision function (called support vectors),
so it is also memory efficient.

• Versatile: different Kernel functions can be specified for the decision function.
Common kernels are provided, but it is also possible to specify custom kernels.

However, the disadvantages of support vector machines include:
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• If the number of features is much greater than the number of samples, avoid
over-fitting in choosing Kernel functions and regularization term is crucial.

• SVMs do not directly provide probability estimates, these are calculated using an
expensive five-fold cross-validation.

5.3.1 Kernels available

In Python the kernel functions available are the following:

• linear: 〈x, x′〉.

• polynomial: (γ〈x, x′〉+ r)d.

• rbf : exp(−γ‖x− x′‖2).

A comparison between the kernels can be seen in Figure 5.5

Figure 5.5: Comparison of the kernels available [100].

The kernel used for this project was the one called ’rbf’.

5.3.2 Python Implementations

There are several implementations and algorithms for applying SVM. Given
that the scikit-learn library was being used, the possible implementations for SVM
were the SVM.SVC, SVM.NuSVC and the SVM.LinearSVC which are capable
of performing multi-class classification on a given dataset.

SVC and NuSVC, implement the one-against-one approach for multi-class
classification, but accept slightly different sets of parameters and have different
mathematical formulations. On the other hand, LinearSVC, a method that uses the
one-vs-the-rest approach for multi-class classification, is another implementation of
Support Vector Classification for the case of a linear kernel, this implementation does
not accept the parameter kernel because it is, by nature, a linear classifier. This is
shown in Figure 5.6.

According to the same source, one-vs-rest classification is usually preferred,
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since the results are mostly similar, but the runtime is significantly less.

Figure 5.6: Comparison of the different SVM implementations, according to
scikit-learn sourcefourge webpage.

5.4 Convolutional Neural Networks

Deep learning is a branch of machine learning based on algorithms that attempt
to model high level abstractions of data. Convolutional Neural Networks (CNN) is a
deep learning algorithm with hierarchical neural networks whose convolutional layers
alternate with sub-sampling layers, followed with a full connection layer. A CNN
primarily mimics the human visual system, which can efficiently recognize the
parterns and structures in a visual scenery [101].

As a result, nowadays CNNs are successfully applied in many areas relating to
image processing such as face recognition, object recognition, hand written
recognition, video analysis, among other problems.

As propposed by [101] CNN can be applied to bearing fault classification
through the analysis of a 2D gray level image generated by time-domain vibration
signals. Given this, it is possible to use CNN for bearing analysis.

Typical CNN consists of four types of layers: convolution layer, sub-sampling
layer, full connection layer and output layer. The network layers are arranged in a
feed-forward structure: each convolution layer is followed by a sub-sampling layer.
The last subsampling layer is followed by a full connection layer, which finally followed
by the output layer. At convolutional layer, the previous layer feature maps are
convolved with learnable kernels and put through the activation function to form the
output feature map. Each kernel is used at every position of the input. CNN exploit
sparse connectivity by making the kernel smaller than the input and enforcing a local
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connectivity pattern among neurons of adjacent layers. Each output map may
combine convolution with multiple inputs maps. However, for each output map, the
input maps are convolved with distinct kernels. Each kernel is used at every position
of the input. The parameter sharing used by the convolution operation means that
rather than learning a separate set of parameters for every location, we learn only one
set.

Each convolution layer is followed by a sub-sampling layer. A sub-sampling layer
produces down-sampled versions of the input maps, progressively reduces the spatial
size of the representation. That helps to decrease the number of parameters and
computation in the network. Moreover, sub-sampling layer makes the representation
become invariant with a small translation of the input. If there are N input maps,
there will be exactly N output maps, although the output maps will be smaller.

The full connection layer is a traditional feed-forward neural network, neurons in
this layer have full connections to all activations in the previous layer. The purpose of
the full connection layer is to use the features from previous layer for classifying the
input image into various classes. The final layer in a CNN is output layer, using the
softmax as the activate function.

With three architectural ideals: local receptive fields, weight sharing and
subsampling, CNN has many strengths: First, feature extraction and classification are
integrated into one structure and fully adaptive. Second, the network extracts 2-D
image features at increasing dyadic scales. Third, it is relatively invariant to
geometric, local distortions in the image.

Even though this method is briefly explained in this section, it was not directly
used for this project. OMNEO, a subsidiary company of Siemens PLM Software,
applied this deep learning method to the same data used in this thesis. Consequently,
the results obtained will be used as a comparison.

However, one must bear in mind that this method is a much more complex
method than the ones mentioned before. Additionally it is even stated at the deep
learning web page that, in order to run their implementation of the method, a
computer must meet a certain number of requirements rendering this as a very
powerful, though very complex and computer-dedicated, method for classification
problems.

The Neural Networks techniques are part of Deep Learning (DL), a broader
family of techniques and algorithms of machine learning. Even though Deep Learning
is receiving more attention lately, it has a few disadvantages:

• Training a DL requires more data than other methods.

• DL and Neural Networks (NN) models are not very interpretable.

• Even though it works very well in some cases, it doesn’t replace other methods.

The results obtained by OMNEO will be presented in chapter 6 both as a
reference, validating or not the method developed in this text, and as an alternative
approach.
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5.5 Cross-Validation

An important concept that must be made clear is how cross-validation was
performed across the Decision Tree, Support Vector Machines and Random Forest
methods.

A well designed model should avoid learning the parameters of a prediction
function and testing it on the same data. This is a mistake since a model that would
just repeats the labels of the samples that it has just seen would have a perfect score
but would fail to predict anything useful on yet-unseen data. This situation is called
overfitting.

In order to avoid this, it is common practice when performing a (supervised)
machine learning experiment to divide the data into two sets: one for training and
another for effective validation.

Cross validation was performed using the function StratifiedKFold which, as one
can see from image 5.7, randomly splits the data into a set of rounds (10 rounds were
used for this project) and, randomly selects one dataset as validation data and the rest
as training data. This is important since validation must be performed on sets of data
that the model has never seen before.

Figure 5.7: Illustration of cross-validation through the StratifiedKFold function [102].





CHAPTER 6

Results

6.1 Test-rig Description and Sensors

In order to simulate running conditions a machine fault simulator was used. The
machine in question, from SQ is one shown in Figure 6.1. Using this equipment one is
able to mount two bearings on a shaft. The shaft is powered by an electric motor which
is controlled by a simple variable frequency drive.

Table 6.1: SQ operating conditions.

SQ operating conditions [5]

Cases Healthy, Inner and Outer

Loads LM

Speeds 300:120:2700

The engine was a tree-phased electric motor with a power rating of 0,5 HP,
nominal speed of 3 450 rpm and rated frequency of 60 Hz. As clarified in Table 6.1 the
range of speeds measured was from 300 up to 2 700 rpm with increments of 120 rpm,
resulting in a total of 21 cases. In addition, a static load of 5 kg was added to the
center of the shaft, denoted as Load Middle (LM) in order to increase the amplitude of
the faults in the bearings. The cases studied in these tests were the Healthy, Inner race
fault, Outer race fault and Ball fault. The bearings were placed in the right housing
while the left housing kept a healthy bearing for all the measurements. The bearings
used were ER-16K whose geometric properties are detailed in the table 6.2. For the
SQ machine, the sensors used were 2 triaxial accelerometer, 2 acoustic emission
sensors and 2 microphones placed in the healthy, to record the validation results, and
in the faulty side. For this test bench, the sensors which returned the best results was
the one located close to the housing where was located the defected bearing.
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Table 6.2: Tested bearing geometric properties [5].

ER-16K

Ball Diameter 7,94 mm
Pitch Diameter 39,32 mm
Number of Balls 9
Contact Angle 0◦

Figure 6.1: Fault machine simulator from SpectraQuest [5].

Figure 6.2: SQ Envelope - Axis definition [5].
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6.2 Pre-processing results and automated processing
results

Given that the aim of this project was to develop a semi-automatic tool, the
first result is the input window where the user chooses the frequency band to filter the
signal, Figure 6.3, corresponding to the reference case, and consequently, generate
amplitude ratios to find the frequency bands to filter the signals that belong to other
speeds (remember Figure 3.11 showing how the frequency band for filtering was
chosen).

Figure 6.3: Input Window. User can enter an interval of frequencies for filtering
around the FC.

Comment 1. Figure 6.3 shows, at the top, the Cyclic Spectral Correlation calculated
for the Healthy signal and for the Faulty signal. One can see that, for the faulty signal,
a point is isolated in the middle of the image, a situation very different to the healthy
case. In addition the colormap scales are completely different. If one needs to analyse
these images on a real-world situation, this would automatically lead to the decision
of a faulty bearing. Below this is a comparison of the spectrum of healthy and faulty
signals, showing a clear peak around the FC highlighted on the CSC map. As a guide
for the user, the spectral density of the faulty vibration signal is displayed on the last
plot providing the user the idea of where the highest density is, hence which area to
chose for filtering.

Next are presented the filtering results for two speeds: 1 260 rpm (Figures 6.4
and 6.5) and 1 500 rpm (Figures 6.6 and 6.7).
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Non-filtered signal. Filtered Signal.

Figure 6.4: Spectrum comparison for 1 260 rpm.

Figure 6.5: PSD curve for 1 260 rpm showing FC and the frequency window chosen.

Non-filtered signal. Filtered Signal.

Figure 6.6: Spectrum comparison for 1 500 rpm.
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Figure 6.7: PSD curve for 1 500 rpm showing FC and the frequency window chosen.

Comment 2. Using the filtering bands set on Figures 6.5 and 6.7 one arrived at the
results shown in Figures 6.4 and 6.6. One can clearly see an increase in character in
the first and second harmonics for the case of 1 260 rpm, whereas in the case of 1 500
rpm a clear increase in character for the first harmonic is seen. This proves the
efficacy of the filtering process.

The method proposed, filters the faulty data while simultaneously filtering the
healthy data as well. At the end, trying to assemble results from each class (outer,
inner and ball fault and each correspondent healthy data) rendered as an incorrect
analysis given that it was not possible to define a refference case that was common to
all classes.

At the same time, analysing the Figures 6.8, 6.9, 6.10 and 6.11 one can conclude
that it is not possible to define a common area for filtering, because the frequencies
excited vary by speed regime and sensor and are not consistent to a common place.

Figure 6.8: Frequencies excited by each fault measured by the Mic sensor.
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Figure 6.9: Frequencies excited by each fault measured by the BRx sensor.

Figure 6.10: Frequencies excited by each fault measured by the BRy sensor.
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Figure 6.11: Frequencies excited by each fault measured by the BRz sensor.

Given this, the method applied was to use the information calculated from each
fault and speed (central frequencies and filtering bands) and perform a cross-filtering
process while simultaneously filtering the healthy case. For instance, the signal
corresponding to the outer fault was filtered with the information calculated to the
inner and ball fault. After this, the features calculated for each filtering band were
assembled on a single matrix and this data was used for the preceding analyses. A
nomenclature was added to differentiate with which band the feature was calculated:
IB for Inner Band, OB for Inner Band and BB for Ball Band.
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6.3 Feature Reduction

This section will present the results for feature reduction for each sensor. First
for PCA and then for LDA analysis. Following the explanation given in section 4,
PCA performs an orthogonal transformation to convert a dataset of possibly correlated
values into one composed of linearly uncorrelated variables called PC, each component
holding a given percentage of data compared to the original, all of this without taking
into account the class labels. On the other hand, LDA finds a linear combination of
features that characterizes or separates two or more classes of objects or events, using
the information given by the class labels, hence a supervised method.

6.3.1 PCA Results

Figure 6.12 shows different perspectives around the 3d scatter plot resulted from
applying PCA to this sensor’s signal.This signal had the signal processing techniques
embedded into its hardware, thus, the signal obtained was not treated with the tool
developed in section 3.

AE sensor

Figure 6.12: Diferent perspectives of PCA plot for AE sensor.

Comment 1. Regarding PCA analysis of the AE signal, one can only state, from
analysing figure 6.12, that class separation is particularly difficult for this sensor.
Furthermore, using the first three components amounts to a representation of 91,09%
of the total data. Moreover, the features with more importance for this sensor are the
Speed, P2P, P2R, 75% and the entropy.
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Mic sensor

Oppositely to the AE signal, the subsequent sensors’ signals where treated and
enhanced using the tool developed. Figures 6.13 and 6.14 show the plots for PCA
analysis applied on non-filtered signal and filtered Signal, respectively.

Figure 6.13: Non-filtered Signal. Figure 6.14: Filtered Signal.

Comment 2. Regarding PCA analysis of the Mic signal, and comparing the
non-filtered and filtered signals, it can be stated that filtering benefited class
separation once some clustering can be seen on the PCA plots of the filtered signal.
Furthermore, for the non-filtered signal, using the first three PC a representation of
75,87% of the total data is accomplished. Oppositely, for the filtered signal and using
the same number of components, the value drops down to 52,98%. The drop in
representation percentage between signals and improvement in class separation is due
to the fact that the enhancement techniques removed most of the noise that was
refraining PCA from achieving better separation on the non-filtering signal.

For this analysis, only three PC were used for visualisation purposes (if more
than three were used, one could not see such representation on a 3D plot). For further
analysis however, for both cases, the number of components to use should be sufficient
to represent a considerable percentage of the total data, for example 90% or more. For
this sensor, the most relevant features were the speed, the Entropy, Went_Sha,
Went_Log , 75%, P2R, RMS, Mean, Imp and Mar factors.
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BRy sensor

Regarding the accelerometers, only the results from the BRy sensor will be
presented because this was the direction (vertical direction) that best captured the
fault signature. One can observe on Figures 6.15 and 6.16 PCA analysis applied on
non-filtered signal and filtered Signal, for the BRy sensor. The results from other
directions can be found in Appendix A.1.

Figure 6.15: Non-filtered Signal. Figure 6.16: Filtered Signal.

Comment 3. The BRy sensor was the one that best benefited from the filtering
tool developed. Class separation on this sensor using PCA analysis outperforms PCA
analysis applied to other sensors. Furthermore, for this sensor, and using the first three
PC, one can obtain 73,17% and 59,31% representation of the total data, respectively
for the non-filtered signal and filtered signal. Again, here one concludes that the signal
enhancing (signal processing) techniques developed in this thesis helped to increase the
fault’s character which consequently improves class separation, even though the amount
of information kept by the first three components is lower for the filtered signal.

Further analysis using PC should use a number of said components that represents
a considerable percentage of the total data, for instance 90% or more.
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6.3.2 LDA Results

Following the same pattern, the following figures show different perspectives
around the scatter plot resulting from applying LDA to different sensor’s data.

AE sensor

Figure 6.17: Diferent perspectives of LDA plots for AE sensor.

Comment 1. Because LDA is a labeled method, it can separate the classes in a
considerable manner. For the AE sensor, and using this method, class separation is
acceptable taking into consideration that this sensor’s signal was not treated with the
method developed in this thesis. Furthermore, this sensor had applied some processing
at hardware level, the signal was demodulated and filtered at approximately 100 kHz.

Mic sensor

Figure 6.18: Non-filtered signal. Figure 6.19: Filtered signal.

Comment 2. For the Mic sensor, one can conclude that class separation is better
after applying the signal processing method developed in this project.
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BRy sensor

Figure 6.20: Non-filtered signal. Figure 6.21: Filtered signal.

Comment 3. Comparing Figures 6.20 and 3 one can say that, the classes have come
closer for the filtered signal than for the non-filtered signal. However, class separation
is still possible and acceptable. Additionally, one can conclude that for the non-filtered
signal (Figure 6.20), an intersection area between the ball and inner faults is seen. For
the filtered signal (Figure ), this intersection is no longer seen.

In a general manner, the filtering process shows benefits for the BRy and Mic
sensors and shows that class separation is possible. For the AE signal, because it was
processed at hardware level, one can conclude that there is good separation. After
applying LDA one sees that for all sensors class separation does not get worse after
filtering. Furthermore, PCA is an unsupervised whereas LDA is a supervised method,
which explains the differences in separating the classes. Additionally, it was found
that using less features for LDA, the classes come closer together, which is expected
because it reduces the dimensional space where the transformations occur (as can be
seen in Figures 6.22 and 6.23 below).

Figure 6.22: LDA using 43 manually
selected features, BRy sensor.

Figure 6.23: LDA with a total of 82
features (the entire set of features), BRy

sensor.



6.4. Feature Selection and Classification 95

6.4 Feature Selection and Classification

It is generally accepted that the best sensor to detect REB failures is the one
placed in the vertical direction. Hence, the results hereon will only concern thy BRy

sensor and the AE and Mic sensors due to the advantages in using their technology for
fault detection.

6.4.1 No Feature Selection

Without selecting individual features, two tests were performed to assess feature
classification. The first one consisted in using the PC from PCA and directly try to
classify classes with the PC as input. The second test concerned in running the feature
classification methods immediately after the step of feature extraction.

Using PC after PCA

For each of the sensors studied, the number of PC used corresponded to the
maximum available for each sensor. Table 6.3 shows the results obtained.

Table 6.3: Best accuracy scores /% for non-filtered and filtered signal using PC.

Non-Filtered Filtered

Sensors PC PC % DT RF SVM PC PC % DT RF SVM
AE - - - - - 3 91,09 70,11 75,83 65,30
Mic 10 95,70 74,28 84,58 81,67 20 94,58 81,55 90,36 83,39
BRy 10 96,70 91,43 94,94 94,83 20 95,62 84,54 94,10 92,56

After studying Table 6.3 one can see that for the different sensors, the accuracies
depend on the classification method used. Another important thing to note is that, for
the filtering signal, because of what was explained previously regarding the bands, a
total of 82 features were used against a total of 28 features for the non-filtered signal. It
is also possible to conclude that, for the Mic sensor, filtering benefitted the accuracies
for all the methods.

Immediately after feature extraction

The disadvantage of using classification with PC is that the meaning of the
features is lost. Using the features directly to the Decision Tree method will result in a
classification based on the features selected by the method itself, which can be
interpreted by analysing the image created by the method. This topic will be explored
in the next section. For now, the accuracies obtained without using the PC as input
to the classification methods nor feature selection, will be shown.

As an example, table 6.4 shows a confusion matrix of the classification
performed, no feature selection and filtered signal.
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Table 6.4: Confusion Matrix for DT, BRy, no feature selection (Filtered Signal)/%.

Outer Inner Ball Healthy

Outer 93,27 1,42 4,74 0,48
Inner 1,44 94,31 3,79 0,48
Ball 0,96 2,84 94,79 1,43

Healthy 1,92 0,00 1,42 96,67

Comment 1. Using a confusion matrix like on Table 6.4, one can match the method
and signal processing technique to the client. For example, for the ball defect case,
1,43% of the faults were identified as healthy and will go unnoticed. This parameter
depends on the type of machine and the client’s request. For instance, if this tool is
applied to important machinery, the customer may not be able to afford to miss those
1,43% of unidentified ball faults.

Table 6.5 shows the cross-validation accuracy scores, obtained using the pruned
Decision Tree without feature selection.

Table 6.5: Classification scores with Decision Tree for BRy and no feature selection.

Accuracy Scores /% for BRy sensor in rounds R1...10

98,84 96,43 94,05 95,24 97,62 92,86 96,43 95,24 85,54 95,18

Table 6.6 shows the best accuracies obtained for each method without feature
selection.

Table 6.6: Best accuracy scores /% for each method. Non-filtered vs. filtered without
feature selection.

Non-Filtered Filtered

Sensors DT RF SVM DT RF SVM
AE - - - 93,33 97,26 81,61
Mic 87,02 91,96 81,43 90,83 98,51 93,81
BRy 93,44 97,44 93,21 96,90 98,87 96,67

Comment 2. Comparing Tables 6.6 and 6.3 one can see that using the PC for
classification leads to accuracies slightly lower. In addition, one can see that for table 6.6
the filtering tool developed on this project leads to higher accuracies across the sensors
BRy and Mic. It can also be observed that, independently of the classification algorithm
applied, the filtering tool developed showed an increase of the global accuracies.
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6.4.2 Manual Method

The first method performed for selecting features was to analyse the correlation
between the several features. In order to do this, a diagonal matrix showing the
correlation between the several features was studied for the BRy, AE and Mic
sensors. This correlation matrix was calculated using a function available within the
pandas library, a library for data analysis. The argument used in this function was the
pearson argument, a standard correlation coefficient.

BRy and Mic Sensors

Figures 6.24 and 6.25 show the correlations between features before and after
feature elimination, respectively.

Figure 6.24: Correlation matrix of BRy and Mic Sensors, before.

Figure 6.25: Correlation matrix of BRy and Mic Sensors, after.

Comment 1. The process for eliminating features through this method was to analyse
the most correlated features and remove one between two. For example, one can see in
Figure 6.24 that the feature Skew_OB is highly correlated with the feature FM4_OB.



98 Chapter 6. Results

In Figure 6.25 it can be seen that only the FM_4 feature was removed. These features
were common to the BRy and Mic sensors given that the correlation matrices were
very similar.

Manual selection based on the correlation matrix results in the following features
table 6.7:

Table 6.7: Manual feature selection: BRy and Mic.

BR_Y and BR_Mic Sensors

Speed Skew_OB Kurt_OB
RMS_OB 75%_OB Went Log_OB
Entr_OB Peak_BPFO_1_OB Peak_BPFI_1_OB

Peak_BSF_1_OB Skew_IB Kurt_IB
RMS_IB 75%_IB Went Log_IB
Entr_IB Peak_BPFO_1_IB Peak_BPFI_1_IB

Peak_BSF_1_IB Skew_BB Kurt_BB
RMS_BB 75%_BB WentLog_BB
Entr_BB Peak_BPFO_1_BB Peak_BPFI_1_BB

Peak_BSF_1_BB
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AE Sensor

The same manual process for eliminating features that was applied for the BRy

and Mic sensors was applied for the AE sensor.

Figure 6.26: Correlation matrix of AE Sensor, before.

Figure 6.27: Correlation matrix of AE Sensor, after.

Comment 2. As one can see the number of red dots on the correlation matrix
dropped considerably. The correlation levels on the negative side were not removed
because, as can be seen from the scales, the biggest correlation between features is
located on the positive side of the scale. Additionally, the negative side of the scale
was not explored due to time constraints and because manual feature selection tends
to be a subjective method. Two users might choose different features to remove and
keep.
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Based on the correlation matrix plotted in Figures 6.26 and 6.27, the features
selected are shown on table 6.8:

Table 6.8: Manual feature selection: AE sensor.

AE Sensor

Speed
Var
Skew
P2R
75%

Went_Log
Mean

Peak_BPFO_1
Peak_BPFI_1
Peak_BSF_1

Using the manual feature selection method, the values shown in Tables 6.9 and
6.10 were obtained. Table 6.9 shows the confusion matrix obtained for the BRy sensor
and Table 6.10 shows the best accuracies obtained for each method, comparing non-
filtered and filtered signals.

For further details, Figures 6.24, 6.25, 6.26 and 6.27 are presented in Appendix
B on a larger scale.

Table 6.9: Confusion Matrix for DT, BRy, manual feature selection (Filtered Signal)
/%.

Outer Inner Ball Healthy

Outer 95,65 0,96 3,41 0,00
Inner 3,38 93,78 2,44 0,46
Ball 0,97 1,44 97,07 0,46

Healthy 0,00 0,00 0,00 100,00

Table 6.10: Best accuracy scores /% for each method. Non-filtered vs. filtered without
feature selection.

Non-Filtered Filtered

Sensors DT RF SVM DT RF SVM
AE - - - 94,15 97,80 77,38
Mic 87,61 93,45 73,33 91,68 97,92 88,27
BRy 95,36 97,5 93,63 96,67 98,57 93,33

Comment 3. Analysing Tables 6.10 and 6.9 one can see that the accuracies
obtained after performing manual feature selection are close to the ones obtained
without performing any form of feature selection. Due to the similarities in accuracies
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and because this method tends to be subjective (depends on the operator) this method
for feature selection is not recommended, or if used, should be used with caution.
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6.4.3 mRMR method

The second approach to feature selection was done using the mRMR method.
As explained in chapter 4 this method selects features according to the minimum-
Redundancy Maximum-Relevance criteria, were the features are analysed, essentially,
by their entropy level. It’s natural form of selecting features is by selecting all features
with entropy > 0, however, if one wishes to select a specific number of features, the
method uses the specified number and selects that specific number of features.

In terms of comparing the features selected by the mRMR method, the features
selected by the Decision Tree algorithm, without pre-selecting features are shown in
Tables 6.11, 6.12 and 6.13 for the filtered signal for each sensor. These features are
obtained by analysing the decision tree images that created by the function in Python,
Appendix C shows several decision trees created for this classification problem.

Table 6.11: Feature
Selection with DT for

BRy sensor.

BR_Y Sensor

Went Log_OB
Went Log_IB

Peak_BPFO_1_IB
Peak_BPFO_1_BB
Peak_BPFI_1_OB
Peak_BPFI_1_IB

75%_BB
Peak_BPFI_1_BB

Skew_IB
Skew_BB

Table 6.12: DT Feature
Selection with DT for Mic

sensor.

BR_Mic Sensor

Var_IB
Went Log_OB

75%_BB
Peak_BPFO_1_OB

Skew_IB
Peak_BSF_1_OB
Peak_BPFO_3_BB

Went Sha_BB
Went Log_BB
RMS_OB

Mar Factor_IB
75%_IB

Peak_BPFI_2_OB
Peak_BPFI_2_IB
Peak_BPFO_3_OB
Peak_BSF_2_IB
Peak_BPFO_2_IB

Mean_IB
Peak_BPFI_1_OB

Var_BB
Peak_BPFO_1_BB
Peak_BSF_1_BB

Median_OB
Peak_BSF_3_IB

Table 6.13: Feature
Selection with DT for AE

sensor.

BR_AE Sensor

RMS
Var

Mar Factor
Peak_BPFO_3

Median
Skew

Peak_BPFI_1
Went Log

Peak_BPFO_2
Fm 6

Peak_BPFI_2
Fm 8
75%
CF



6.4. Feature Selection and Classification 103

Comment 1. Looking at the previous tables, and without specifying any criteria to
the Decision Tree algorithm, one can see that the features from the frequency domain
(the harmonics’ amplitude) are presented as relevant features. Additionally, the features
that are selected depend on the sensor being studied.

The first approach to using this method for a pre-selection of features was through
its native form of selecting features. According to the explanation given in section 4
this method makes use of the entropy quantity to calculate the information gain given
by each feature. Thus, the features selected for the BRy, AE and Mic sensors, using
the filtered signals, are presented in Tables 6.14, 6.15 and 6.16.

Table 6.14: Feature
Selection with mRMR for

BRy Sensor.

BR_Y Sensor

Went Log_OB
Went Log_IB

Peak_BPFO_1_IB
Peak_BPFO_1_BB
Peak_BPFO_1_OB
Peak_BPFI_1_IB

75%_BB
Entr_OB

Peak_BPFI_1_OB
Skew_IB
Skew_BB

Peak_BPFO_2_OB
Fm 8_BB

Table 6.15: Feature
Selection with mRMR for

Mic Sensor.

BR_Mic Sensor

Entr_BB
Fm_8_IB

Table 6.16: Feature
Selection with mRMR for

AE Sensor.

BR_AE Sensor

RMS
P2P

Peak_BPFO_2
75%

Using the features shown in Tables 6.14, 6.15 and 6.16, class identification was
performed and the results are shown in tables 6.17 and 6.18.

Table 6.17: Confusion Matrix for DT, BRy, mRMR feature selection (Filtered Signal)
/%.

Outer Inner Ball Healthy

Outer 96,62 0,00 3,41 0,00
Inner 1,45 95,22 2,93 0,46
Ball 0,48 0,00 99,02 0,46

Healthy 0,00 0,48 0,49 99,09
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Table 6.18: Best accuracy scores /% for each method. Non-filtered vs. filtered with
mRMR feature selection.

Non-Filtered Filtered

Sensors DT RF SVM DT RF SVM
AE - - - 88,92 91,13 74,35
Mic 74,96 73,04 62,56 59,04 59,23 38,45
BRy 89,83 93,16 85,77 97,50 98,33 90,83

Comment 2. Observing Tables 6.17 and 6.18 one can see that the accuracies for
the Mic signal are lower than in table 6.6. This is due to the fact that as seen in table
6.15 the method selected only four features for the Mic sensor. Furthermore, for the
values in table 6.18, when considering the non-filtered signal, the method selected seven
features for the BRy sensor and only two features for the Mic sensor.

Since the mRMR method, natively, selected only two features for the Mic sensor
and four features for the AE sensor, a new criteria was used. The new criteria consisted
in selecting a specific number of features, in this case ten, features per sensor, resulting
in the features shown in tables 6.19, 6.20 and 6.21.

Table 6.19: New Features
with mRMR for BRy

Sensor.

BR_Y Sensor

Went Log_OB
Went Log_IB

Peak_BPFO_1_IB
Peak_BPFO_1_BB
Peak_BPFO_1_OB
Peak_BPFI_1_IB

75%_BB
Peak_BPFI_1_OB

Skew_IB
Skew_BB

Table 6.20: New Features
with mRMR for Mic

Sensor.

BR_Mic Sensor

Entr_BB
Fm 8_IB

Peak_BPFO_1_OB
Went Log_BB

Entr_IB
Went Sha_OB

Var_IB
Skew_IB

Peak_BPFO_1_BB
Fm 8_OB

Table 6.21: New Features
with mRMR for AE

Sensor.

BR_AE Sensor

RMS
P2P

Peak_BPFO_2
75% Var

Median_BR_AE
Peak_BPFI_1 Peak_BPFO_3

Skew
Fm 8

Table 6.22: Confusion Matrix for DT, BRy, mRMR feature selection (10 features and
Filtered Signal) /%.

Outer Inner Ball Healthy

Outer 96,14 1,91 1,95 0,00
Inner 1,45 93,78 4,39 0,46
Ball 1,45 5,74 92,20 0,46

Healthy 0,00 0,00 0,00 100,00
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Table 6.23: Best accuracy scores /% for each method. Non-filtered vs. filtered,
mRMR feature selection (10 features and Filtered Signal).

Non-Filtered Filtered

Sensors DT RF SVM DT RF SVM
AE - - - 93,44 96,25 77,44
Mic 89,03 90,77 71,79 92,27 97,14 76,85
BRy 94,16 95,95 88,04 95,59 97,92 86,91

Comment 3. Comparing tables 6.22 and 6.23 with 6.17 and 6.18 one can say that the
overall best accuracies decreased for the Mic and BRy sensors, by setting the number of
features selected to ten. However, using these new features, the Decision Tree method
was able to identify the healthy case without miss-identifications with other cases.

Furthermore, the features selected by the mRMR (Tables 6.14 and 6.15, 6.16,
6.19, 6.20 and 6.21) and the Decision Tree methods (Tables 6.11, 6.12 and 6.13) are
very similar, both selecting features in common and presenting features from frequency
domain as relevant. Additionally, the Decision Tree method selected for the BRy

sensor, a considerable amount of features as relevant (Table 6.11). In general, both
methods selected features in common, specially after the criteria used on the mRMR
method was changed.

However, it must be noted that the optimal number of features to use is, by itself,
object of study which was not performed in this thesis due to time constraints.

6.5 Feature Classification: Combination of Sensors

As stated previously, OMNEO a subsidiary company from Siemens PLM
Software, used convolutional neural networks in order to classify the classes using the
same dataset used in this thesis. Convolutional Neural Networks are a much more
dedicated and complex method for feature classification. In this thesis the same
groups of sensors were used and the results were directly compared with the results
obtained by OMNEO. Table 6.24 shows which sensors are in each group and the best
accuracy obtained for each classification method. This table was obtained using the
filtered signal and the mRMR feature selection, selecting ten features per sensor.
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Table 6.24: Comparison between classification methods for each sensor group /%.

Classes Speeds Sensors OMNEO DT RF SVM

all all 1: all 99,20 98,33 99,88 99,17
all all 2: AE 70,96 92,37 96,49 77,74
all all 3: Mic 99,29 92,27 97,14 78,33
all all 4: BRx 97,64 91,90 94,52 81,37
all all 5: BRy 99,32 95,59 97,92 86,91
all all 6: BRz 99,57 89,41 94,46 85,42
all all 7: AE+Mic 99,11 95,11 98,93 93,75
all all 8: AE+BRy 99,14 96,31 98,93 92,86
all all 9: AE+Mic+BRy 99,53 97,03 99,46 98,04
all all 10: Mic+BRy 99,78 96,90 99,29 95,56

Table 6.25 compares the best accuracies obtained for each sensor and groups of
sensors with and without signal processing techniques. For this, mRMR feature
selection was used, selecting ten features per sensor.

Table 6.25: Comparison between groups, before and after signal processing /%.

Classes Speeds Sensors DT RF SVM DT RF SVM
Non-filtered Signal Filtered Signal

all all 1: all 96,54 99,70 98,45 98,33 99,88 99,17
all all 2: AE - - - 92,37 96,49 77,74
all all 3: Mic 89,03 90,77 71,79 92,27 97,14 78,33
all all 4: BRx 90,58 94,94 82,68 91,90 94,52 81,37
all all 5: BRy 94,16 95,95 88,04 95,59 97,92 86,91
all all 6: BRz 89,53 95,06 89,05 89,41 94,46 85,42
all all 7: AE+Mic 96,55 99,05 84,05 95,11 98,93 93,75
all all 8: AE+BRy 97,98 98,93 94,35 96,31 98,93 92,86
all all 9: AE+Mic+BRy 97,26 99,46 96,91 97,03 99,46 98,04
all all 10: Mic+BRy 94,51 97,26 94,17 96,90 99,29 95,60

Comment 1. Comparing tables 6.24 and 6.25 one concludes that using the methods
displayed on this project one can obtain accuracy values close to the ones obtained
using CNN, a method that requires more data and is not interpretable.

Furthermore, the signal processing method developed in this thesis benefited
feature classification for the Mic and BRy sensors in overall. The group of sensors
that obtained the best classification was the group with all sensors, whose accuracies
were superior for all three classification methods used, however, using group 9
(AE+Mic+BRy) one obtains accuracies similar to the ones obtained using all sensors.
Individually, BRy the sensor that resulted in the best accuracies using the methods
developed in this thesis.

At the end one must think about the ratio of accuracy vs. price, since using a
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lot of sensors becomes expensive, especially if the increase in accuracy does not
improve considerably to justify the investment.





CHAPTER 7

Conclusion and Future Work

7.1 Conclusions

After literature study, programming and data testing, it was possible to form
some conclusions.

According to various papers, condition monitoring through vibration analysis is
still the most reliable and used method for condition monitoring. Additionally, a wide
range of signal processing techniques that can be applied to the vibration signal are
available to use and, basically, which is best to use depends on the author, since
various techniques are suggested and advised. However one common technique is to
apply envelope analysis with filtering. Furthermore, deterministic component removal
is successfully applied using the CEP.

A common difficulty to applying envelope analysis is how to set the window to
envelope. This project developed a semi-automated method that performs this
filtering requiring one input from the user. This method also performs successfully as
is proven by PCA and LDA results showing improved class separability after filtering,
for some sensors. Additionally, classification accuracies benefited as well from the
envelope filtering step, proving this step as successful.

The feature selection tool selects features both on time domain and frequency
domain for the data from the BRy sensor, using the native parameter of choosing
features while entropy > 0. However, for other sensors the parameter to select the
optimal number of features needs to be further investigated. The results obtained by
the mRmR algorithm showed that the features selected are comparable with the first
layers of the ones selected by the decision tree. Thus, the decision tree method should
be explored as a feature selection method as well, and the results used as input for the
other feature classification algorithms. Due to time limitation, this technique was not
further implemented.

Using the PC after applying PCA, as suggested by the literature, leads similar
classification accuracies. Here is important to understand how many PCs should be
taken into account. In this thesis this selection was not optimal. Additionally, the
meaning of the features and their interpretability is lost, because the features are
translated into PC.

Classification results are similar to the ones that OMNEO obtained where a
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much more dedicated and complex method was used . This proves that the classifiers
used on this thesis were valid, even though the SVM implementations could benefit
from parameter optimization. SVM Functions are highly affected from the parameters
given, hence, for better results, these parameters must be optimized.

Additionally, one can see that the Decision Tree, a fully interpretable and
white-box method, returns acceptable results, no less than 92% of accuracy (looking
at the BRy, Mic and AE sensors individually) and no less than 97% using groups of
sensors. The Random Forest method outperformed the Decision Tree method across
all groups of sensors and sensors individually, however, as already stated, is similar to
a black-box method. The SVM method, through the implementations possible returns
the worst results, proving that this method is very sensible to parameter optimization.

With this, one can establish a guideline:

• If the goal is to acquire classification with great accuracy, without caring for model
interpretability, then one should use the Random Forest method or the SVM
methods, for example, as shown in this document. An alternative, more complex
and resource-greedy, is to use Neural Networks, here through the Convolutional
Neural Networks method.

• if the goal is to use a white-box, easy to interpret model, then the Decision Tree
method gives useful and meaningful insights.

Analyzing the groups of sensors and their accuracies (tables 6.24 and 6.25) one
can conclude that using the Decision Tree method, the group of sensors that
performed best was group number 1, using all sensors. However, similar accuracy is
also obtained using either the BRy sensor or group of sensors number 9. Sensors
analyzed during the last chapter (BRy and Mic) pretty much all benefited from signal
processing, the Mic sensor proving this with a clear difference between the results.

The method developed here also presents the importance of applying the step of
feature selection, for the results if not better, did not get worse. In on-line situations
of permanent monitoring, where space availability can be a problem, the best strategy
is to acquire useful information immediately from the measurement, instead of using
the entire dataset, even redundant information, using valuable cloud or disk space
unnecessarily. Although some characteristics of this step need to be studied, so it
should be used carefully.

The last point, the perspective of an individual with strong background in
mechanical engineering is important, given that interpreting sensor and signals
information, relating the features extracted to how and why they where used to
characterise the fault and how they relate to the presence of a fault in the bearing
cannot be performed by someone without such knowledge.
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7.2 Future Work

Dispite the conclusions and techniques available, there is still room for
improvement in this subject.

Further work should be performed in order to apply techniques for pattern
recognition so that RUL calculation can be performed. Furthermore, and according to
[88] the optimal number of features to use is, in itself, object of further studies. Using
fewer features can lead to misrepresentation of the dataset, resulting in bad
classification accuracies. However, selecting more features, might end up as using a
bigger number of more redundant features, resulting in low accuracies. Hence, the
optimal number of features to use, for each method, is a topic for future development.
Additionally, the decision tree algorithm should be explored as a feature selection
algorithm in addition to studying another method for feature selection.

Frequency domain features can also be studied slightly further. This project
used individually the harmonics’ amplitude and another way of using these features
would be to sum the first three harmonics’ amplitude for each fault and assess
whether or not it would constitute a good feature.

On the other hand, this data was acquired from a test-rig. Due to
time-constraints it was not possible to acquire data that belonged to a real-world
situation. Hence, applying this method to such a system would be useful: a crane or a
wind turbine for instance.

Additionally, it is found in the literature, [24, 25], that PCA was used as a tool
for feature dimension reduction and its results, the PC, are used as input for
classification methods. Moreover, the optimal number of PC to use (% of information
retained) should also be studied.

Furthermore, at the end, a problem of optimisation is proposed. Using a wide
range of sensors can be an expensive measure without classification accuracy increase
to prove the investment. Given this, the ratio between sensors’ cost and classification
accuracy should be optimised in order to obtain the best ratio.

However, this method is promising, being a step-further to RUL estimation,
and, consequently, a better maintenance plan can be designed for rotating machines
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APPENDIX A

Feature Reduction

A.1 PCA

BRx sensor

Again, Figures A.1 and A.2 show PCA analysis applied on non-filtered signal and
Filtered Signal, respectively, for this sensor.

Figure A.1: Non-filtered Signal.

Figure A.2: Filtered Signal.

Comment 1. Regarding PCA analysis of the BRx signal, it can be concluded that
this sensor did not benefit from filtering, given that class separation did not improve.
Additionally, using the first three principal components amounts to a representation of
the total data of 65,92% and 55,02%, respectively for non-filtered signal and for filtered
signal.
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BRz sensor

Figures A.3 and A.4 show PCA analysis applied on non-filtered signal and filtered
Signal, respectively.

Figure A.3: Non-filtered Signal.
Figure A.4: Filtered Signal.

Comment 2. Filtering on BRz sensor did not benefit class separation as well.
Additionally, for this sensor it was found that using the first three principal
components amounts to 74,74% and 51,27% of the total data, respectively for the
non-filtered signal and filtered signal. Again, analyses using the principal components
for this sensor should use more than the first four principal components.



A.2. LDA 123

A.2 LDA

BRx sensor

Figure A.5: Non-filtered signal. Figure A.6: Filtered signal.

Comment 1. For the BRx sensor, comparing both signals, one can say that class
separation after filtering remains acceptable.

BRz sensor

Figure A.7: Non-filtered signal.
Figure A.8: Filtered signal.
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Comment 2. For the BRz signal, the groups are closer together on the filtered
signal than on the non-filtered signal. However, class separation is still possible.
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Decision Trees modelling the Classification
problem
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APPENDIX D

Classification Results: No Feature Selection

This part of the document will list all results obtained, with and without feature
selection and comparing Non-filtered and filtered signals. This analysis however will
only cover the sensor that best benefited from filtering (shown by PCA analysis), BRy

sensor, along with the Mic and AE sensors for their instrumentalization benefits.

D.1 Non-filtered Signal

Table D.1: Accuracy scores for Decision Tree: Non-filtered Signal and No Feature
Selection.

Accuracy Scores /% in rounds R1...10

BRY 93,02 93,02 94,11 91,76 95,18 93,97 92,77 95,18 92,77 92,77
BRAE 94,18 98,83 91,76 85,88 93,97 95,18 85,54 91,56 96,39 90,36
BRMic 87,20 86,04 89,41 90,58 91,56 77,10 83,13 81,92 86,74 83,13

Table D.2: Accuracy scores for Random Forest: Non-filtered Signal and No Feature
Selection.

Accuracy Scores /% in rounds R1...10

BRY 97,02 97,02 98,21 95,83 98,81 95,23 97,61 97,02 96,42 95,83
BRAE 98,21 98,21 99,40 98,21 98,81 98,21 97,61 98,21 96,42 97,02
BRMic 90,47 94,04 92,26 89,28 96,42 91,66 93,45 93,45 91,66 91,66
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Table D.3: Accuracy scores for SVM.SVC: Non-filtered Signal and No Feature
Selection.

Accuracy Scores /% in rounds R1...10

BRY 88,69 88,09 89,28 86,31 94,04 88,09 94,64 89,28 85,71 88,09
BRAE 53,57 54,76 60,71 62,5 58,33 57,14 55,35 54,76 53,57 57,14
BRMic 70,23 75,00 70,83 72,02 73,81 75,00 75,00 69,64 68,45 69,04

Table D.4: Accuracy scores for SVM.LinearSVC: Non-filtered Signal and No Feature
Selection.

Accuracy Scores /% in rounds R1...10

BRY 91,66 89,88 94,04 94,05 95,24 92,86 96,43 93,45 89,88 94,05
BRAE 79,16 79,76 85,11 81,55 85,12 83,93 79,17 79,76 81,55 83,33
BRMic 79,76 79,16 77,38 81,55 86,31 81,55 80,36 80,95 76,79 76,79

Table D.5: Accuracy scores for SVM.NuSVC: Non-filtered Signal and No Feature
Selection.

Accuracy Scores /% in rounds R1...10

BRY 89,88 89,88 92,26 86,31 95,83 89,88 95,23 88,69 89,28 89,28
BRAE 73,21 75,59 82,14 79,16 80,35 82,14 75,59 74,40 79,16 79,76
BRMic 78,57 83,33 84,52 79,76 86,31 80,35 83,33 79,16 77,38 78,57

Table D.6: Confusion Matrix /% for
Decision Tree and No Feature Selection:

BRy - Non-filtered Signal.

Outer Inner Ball Healthy

Outer 96,04 0,89 1,96 0,95
Inner 1,49 91,96 7,35 0,00
Ball 1,49 6,70 89,71 1,43

Healthy 0,99 0,00 2,94 96,19

Table D.7: Confusion Matrix /% for
Random Forest and No Feature Selection:

BRy - Non-filtered Signal.

Outer Inner Ball Healthy

Outer 98,81 0,00 0,48 0,71
Inner 4,76 97,14 2,86 0,00
Ball 1,67 4,76 92,86 0,71

Healthy 0,95 0,00 0,24 98,81
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Table D.8: Confusion Matrix /% for
SVM.SVC and No Feature Selection:

BRy - Non-filtered Signal.

Outer Inner Ball Healthy

Outer 88,57 5,95 0,48 5,00
Inner 0,00 87,62 12,38 0,00
Ball 0,00 11,19 87,62 1,19

Healthy 0,95 5,95 0,00 93,10

Table D.9: Confusion Matrix /% for
SVM.LinearSVC and No Feature

Selection: BRy - Non-filtered Signal.

Outer Inner Ball Healthy

Outer 96,19 1,67 0,00 2,14
Inner 1,43 85,48 13,1 0,00
Ball 0,71 4,29 94,52 0,48

Healthy 0,95 2,62 0,00 96,43

Table D.10: Confusion Matrix /% for SVM.NuSVC and No Feature Selection: BRy -
Non-filtered Signal.

Outer Inner Ball Healthy

Outer 84,76 10,48 0,00 4,76
Inner 0,00 96,43 3,57 0,00
Ball 0,00 11,19 88,33 0,48

Healthy 0,48 6,43 0,00 93,10

Table D.11: Confusion Matrix /% for
Decision Tree and No Feature Selection:

AE - Non-filtered Signal.

Outer Inner Ball Healthy

Outer 98,02 0,45 0,98 0,48
Inner 0,50 92,41 3,92 3,81
Ball 0,00 4,46 91,18 3,81

Healthy 0,00 6,7 4,9 88,10

Table D.12: Confusion Matrix /% for
Random Forest and No Feature Selection:

AE - Non-filtered Signal.

Outer Inner Ball Healthy

Outer 99,52 0,00 0,24 0,24
Inner 0,48 99,05 0,24 0,24
Ball 0,24 1,43 96,9 1,43

Healthy 0,00 2,86 0,48 96,67

Table D.13: Confusion Matrix /% for
SVM.SVC and No Feature Selection: AE

- Non-filtered Signal.

Outer Inner Ball Healthy

Outer 82,14 0,48 0,00 17,38
Inner 26,67 2,86 0,00 70,48
Ball 6,67 0,00 49,29 44,05

Healthy 3,81 0,00 0,95 92,86

Table D.14: Confusion Matrix /% for
SVM.LinearSVC and No Feature

Selection: AE - Non-filtered Signal.

Outer Inner Ball Healthy

Outer 98,81 1,19 0,00 0,00
Inner 1,43 88,1 0,24 10,24
Ball 5,00 0,95 55,71 38,33

Healthy 2,86 10,95 1,43 84,76
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Table D.15: Confusion Matrix /% for SVM.NuSVC and No Feature Selection: AE -
Non-filtered Signal.

Outer Inner Ball Healthy

Outer 96,90 2,62 0,24 0,24
Inner 2,86 76,43 0,00 20,71
Ball 5,48 1,19 50,24 43,10

Healthy 3,81 6,90 0,24 89,05

Table D.16: Confusion Matrix /% for
Decision Tree and No Feature Selection:

Mic - Non-filtered Signal.

Outer Inner Ball Healthy

Outer 81,68 13,84 1,47 1,43
Inner 8,42 87,95 4,90 0,00
Ball 3,96 6,70 83,33 5,24

Healthy 2,97 0,00 7,84 89,52

Table D.17: Confusion Matrix /% for
Random Forest and No Feature Selection:

Mic - Non-filtered Signal.

Outer Inner Ball Healthy

Outer 93,33 4,76 0,71 1,19
Inner 6,19 90,24 3,57 0,00
Ball 1,67 4,52 91,67 2,14

Healthy 2,14 0,24 3,10 94,52

Table D.18: Confusion Matrix /% for
SVM.SVC and No Feature Selection: Mic

- Non-filtered Signal.

Outer Inner Ball Healthy

Outer 68,81 26,90 2,38 1,9
Inner 15,48 75,48 9,05 0,00
Ball 3,57 12,38 48,10 35,95

Healthy 3,81 0,00 0,95 95,24

Table D.19: Confusion Matrix /% for
SVM.LinearSVC and No Feature

Selection: Mic - Non-filtered Signal.

Outer Inner Ball Healthy

Outer 72,14 19,76 3,81 4,29
Inner 15,71 75,71 8,57 0,00
Ball 4,52 7,38 76,43 11,67

Healthy 2,62 0,48 0,95 95,95

Table D.20: Confusion Matrix /% for SVM.NuSVC and No Feature Selection: Mic -
Non-filtered Signal.

Outer Inner Ball Healthy

Outer 82,86 10,95 4,29 1,90
Inner 6,19 83,10 10,71 0,00
Ball 1,43 9,76 63,57 25,24

Healthy 3,81 0,00 1,19 95,00
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D.2 Filtered Signal

Table D.21: Accuracy scores for Decision Tree: Filtered Signal and No Feature
Selection.

Accuracy Scores /% in rounds R1...10

BRY 97,66 96,47 96,47 96,47 96,47 97,62 96,43 96,49 96,39 97,53
BRAE 95,29 96,47 95,29 90,59 90,59 92,86 89,29 87,95 91,57 92,59
BRMic 87,06 92,94 90,59 90,59 95,29 92,86 95,24 92,77 87,95 100,00

Table D.22: Accuracy scores for Random Forest: Filtered Signal and No Feature
Selection.

Accuracy Scores /% in rounds R1...10

BRY 98,81 100,00 98,21 98,21 99,41 98,21 99,41 98,81 98,81 98,81
BRAE 97,62 97,62 98,21 98,81 97,62 97,62 98,21 95,83 98,21 93,45
BRMic 98,81 98,21 98,81 98,21 97,02 98,81 97,02 98,21 98,81 98,21

Table D.23: Accuracy scores for SVM.SVC: Filtered Signal and No Feature Selection.

Accuracy Scores /% in rounds R1...10

BRY 95,83 97,02 95,83 95,24 95,24 94,64 95,83 96,43 95,83 92,86
BRAE 80,95 74,41 81,55 79,76 74,41 81,55 76,79 73,81 70,83 79,85
BRMic 95,24 96,43 93,45 90,48 94,05 94,64 94,05 92,26 89,89 93,45

Table D.24: Accuracy scores for SVM.LinearSVC: Filtered Signal and No Feature
Selection.

Accuracy Scores /% in rounds R1...10

BRY 96,43 97,02 96,43 95,24 95,83 97,02 95,24 96,43 94,05 95,24
BRAE 82,74 80,36 85,12 83,33 85,12 80,36 82,14 84,52 76,79 75,60
BRMic 94,05 94,05 91,07 91,67 94,05 91,67 92,26 92,86 89,29 89,88

Table D.25: Accuracy scores for SVM.NuSVC: Filtered Signal and No Feature
Selection.

Accuracy Scores /% in rounds R1...10

BRY 90,48 91,07 91,67 89,29 92,86 86,31 91,07 89,29 86,91 86,91
BRAE 83,33 74,41 82,14 77,38 79,76 73,81 81,55 76,19 74,41 70,83
BRMic 90,48 86,31 88,09 85,12 90,48 86,91 89,29 86,91 80,36 88,09
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Table D.26: Confusion Matrix /% for
Decision Tree: Filtered Signal and No

Feature Selection, BRy.

Outer Inner Ball Healthy

Outer 96,14 0,96 2,93 0,00
Inner 1,93 95,69 1,95 0,46
Ball 2,42 0,96 95,61 0,91

Healthy 0,00 0,00 0,49 99,54

Table D.27: Confusion Matrix /& for
Random Forest: Filtered Signal and No

Feature Selection, BRy.

Outer Inner Ball Healthy

Outer 98,81 0,48 0,48 0,24
Inner 0,24 99,52 0,24 0,00
Ball 0,95 0,95 97,62 0,48

Healthy 0,24 0,24 0,00 99,52

Table D.28: Confusion Matrix /% for
Random Forest: Filtered Signal and No

Feature Selection, BRy.

Outer Inner Ball Healthy

Outer 99,29 0,48 0,24 0,00
Inner 0,95 95,0 4,05 0,00
Ball 0,24 6,67 91,19 1,90

Healthy 0,48 0,95 2,14 96,43

Table D.29: Confusion Matrix /% for
SVM.LinearSVC: Filtered Signal and No

Feature Selection, BRy.

Outer Inner Ball Healthy

Outer 99,29 0,71 0,00 0,00
Inner 0,95 95,71 2,86 0,48
Ball 0,24 5,24 91,67 2,86

Healthy 0,71 1,19 1,19 96,90

Table D.30: Confusion Matrix /% for SVM.NuSVC: Filtered Signal and No Feature
Selection, BRy.

Outer Inner Ball Healthy

Outer 86,19 9,76 0,71 3,33
Inner 0,00 87,38 11,67 0,95
Ball 0,00 8,33 88,33 3,33

Healthy 0,00 3,57 0,00 96,43

Table D.31: Confusion Matrix /% for
Decision Tree: Filtered Signal and No

Feature Selection, AE.

Outer Inner Ball Healthy

Outer 98,07 0,00 0,98 0,91
Inner 0,48 88,52 3,41 7,31
Ball 0,00 2,39 92,20 5,02

Healthy 0,00 7,18 2,93 90,41

Table D.32: Confusion Matrix /% for
Random Forest: Filtered Signal and No

Feature Selection, AE.

Outer Inner Ball Healthy

Outer 100,00 0,00 0,00 0,00
Inner 0,24 97,38 0,71 1,67
Ball 0,24 1,90 94,76 3,10

Healthy 0,00 1,90 0,95 97,14
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Table D.33: Confusion Matrix /% for
SVM.SVC: Filtered Signal and No

Feature Selection, AE.

Outer Inner Ball Healthy

Outer 96,90 2,62 0,48 0,00
Inner 1,90 81,19 0,00 16,90
Ball 5,24 2,86 50,00 41,90

Healthy 3,57 13,57 0,71 82,14

Table D.34: Confusion Matrix /% for
SVM.LinearSVC: Filtered Signal and No

Feature Selection, AE.

Outer Inner Ball Healthy

Outer 98,81 1,19 0,00 0,00
Inner 1,43 88,57 0,24 9,76
Ball 5,00 0,71 55,48 38,81

Healthy 3,33 11,67 1,43 83,57

Table D.35: Confusion Matrix /% for SVM.NuSVC: Filtered Signal and No Feature
Selection,
acAE.

Outer Inner Ball Healthy

Outer 97,14 2,38 0,48 0,00
Inner 3,57 77,62 0,00 18,81
Ball 5,48 1,43 50,00 43,10

Healthy 1,19 4,29 9,76 84,76

Table D.36: Confusion Matrix /% for
Decision Tree: Filtered Signal and No

Feature Selection, Mic.

Outer Inner Ball Healthy

Outer 91,79 5,74 0,98 1,37
Inner 2,90 93,78 3,41 0,00
Ball 2,42 3,83 89,27 4,11

Healthy 1,93 0,48 2,93 94,98

Table D.37: Confusion Matrix /%for
Random Forest: Filtered Signal and No

Feature Selection, Mic.

Outer Inner Ball Healthy

Outer 97,62 2,14 0,00 0,24
Inner 0,95 98,57 0,48 0,00
Ball 0,00 0,95 98,57 0,48

Healthy 0,95 0,00 0,95 98,10

Table D.38: Confusion Matrix /% for
SVM.SVC: Filtered Signal and No

Feature Selection, Mic.

Outer Inner Ball Healthy

Outer 94,76 3,10 1,43 0,71
Inner 3,57 94,29 2,14 0,00
Ball 1,90 11,90 86,19 0,00

Healthy 1,67 0,00 0,00 98,33

Table D.39: Confusion Matrix /% for
SVM.LinearSVC: Filtered Signal and No

Feature Selection, Mic.

Outer Inner Ball Healthy

Outer 93,33 3,57 1,90 1,19
Inner 3,81 93,33 2,86 0,00
Ball 3,33 11,90 83,33 1,43

Healthy 1,19 0,00 0,48 98,33
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Table D.40: Confusion Matrix /% for SVM.NuSVC: Filtered Signal and No Feature
Selection, Mic.

Outer Inner Ball Healthy

Outer 76,90 7,38 3,57 12,14
Inner 2,86 94,76 2,14 0,24
Ball 2,62 11,19 77,14 9,05

Healthy 0,00 0,00 0,00 100,00



APPENDIX E

Classification Results: Automatic Feature
Selection (mRMR)

E.1 Non-filtered Signal

Table E.1: Accuracy scores for Decision Tree: Non-filtered Signal and mRMR Feature
Selection.

Accuracy Scores /% in rounds R1...10

BRY 95,35 94,19 95,29 92,94 92,77 93,98 93,98 97,59 92,77 92,77
BRAE 95,35 98,84 94,12 91,76 95,18 93,98 89,16 91,57 93,98 90,36
BRMic 87,21 90,70 97,65 88,240 87,95 83,13 91,57 89,16 84,34 90,36

Table E.2: Accuracy scores for Random Forest: Non-filtered Signal and mRMR
Feature Selection.

Accuracy Scores /% in rounds R1...10

BRY 94,64 95,83 96,43 95,83 97,62 96,43 95,24 95,83 94,64 97,02
BRAE 97,02 95,83 98,21 95,83 96,43 95,24 96,43 94,64 95,83 96,43
BRMic 83,93 95,83 91,07 89,29 94,05 89,29 91,07 91,67 91,07 90,48

Table E.3: Accuracy scores for SVM.SVC: Non-filtered Signal and mRMR Feature
Selection.

Accuracy Scores /% in rounds R1...10

BRY 84,52 79,76 85,71 80,95 92,26 83,93 92,86 86,31 80,95 88,09
BRAE 64,29 64,29 71,43 67,86 64,88 67,26 64,29 63,09 60,71 69,05
BRMic 67,26 67,86 64,88 68,45 65,48 67,26 69,64 60,12 64,29 65,48
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Table E.4: Accuracy scores for SVM.LinearSVC: Non-filtered Signal and mRMR
Feature Selection.

Accuracy Scores /% in rounds R1...10

BRY 86,91 82,14 88,09 85,71 92,86 85,12 92,26 92,86 83,33 91,07
BRAE 72,02 73,81 78,57 74,41 79,17 77,98 77,38 72,02 75,00 76,19
BRMic 67,86 67,86 65,48 70,83 70,83 68,45 72,02 66,67 63,09 66,07

Table E.5: Accuracy scores for SVM.NuSVC: Non-filtered Signal and mRMR Feature
Selection.

Accuracy Scores /% in rounds R1...10

BRY 85,12 81,55 85,12 79,17 89,29 82,74 91,07 88,09 81,55 87,5
BRAE 72,02 76,19 81,55 77,98 77,38 79,17 78,57 75,59 77,98 79,17
BRMic 66,67 76,79 73,21 73,81 73,21 76,79 72,62 66,07 67,86 70,83

Table E.6: Confusion Matrix /% for
Decision Tree and mRMR Feature

Selection: BRy - Non-filtered Signal.

Outer Inner Ball Healthy

Outer 96,53 1,34 1,47 0,48
Inner 1,49 90,18 9,31 0,00
Ball 1,98 5,36 91,67 0,48

Healthy 0,50 0,00 0,98 98,57

Table E.7: Confusion Matrix /% for
Random Forest and mRMR Feature
Selection: BRy - Non-filtered Signal.

Outer Inner Ball Healthy

Outer 97,38 1,19 1,19 0,24
Inner 0,71 95,71 3,33 0,24
Ball 1,19 4,76 93,57 0,48

Healthy 1,67 0,48 0,71 97,14

Table E.8: Confusion Matrix /% for
SVM.SVC and mRMR Feature Selection:

BRy - Non-filtered Signal.

Outer Inner Ball Healthy

Outer 88,10 6,43 5,48 0,00
Inner 0,00 78,10 21,9 0,00
Ball 0,00 10,48 89,52 0,00

Healthy 0,48 5,71 7,38 86,43

Table E.9: Confusion Matrix /% for
SVM.LinearSVC and mRMR Feature
Selection: BRy - Non-filtered Signal.

Outer Inner Ball Healthy

Outer 95,95 2,62 1,19 0,24
Inner 1,67 77,38 17,62 3,33
Ball 0,95 9,29 89,76 0,00

Healthy 2,14 4,29 4,52 89,05
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Table E.10: Confusion Matrix /% for SVM.NuSVC and mRMR Feature Selection:
BRy - Non-filtered Signal.

Outer Inner Ball Healthy

Outer 83,10 12,86 4,05 0,00
Inner 0,00 81,19 18,81 0,00
Ball 0,24 9,52 90,24 0,00

Healthy 0,48 7,38 6,19 85,95

Table E.11: Confusion Matrix /% for
Decision Tree and mRMR Feature
Selection: AE - Non-filtered Signal.

Outer Inner Ball Healthy

Outer 97,52 0,45 0,98 0,95
Inner 0,99 92,86 1,96 4,76
Ball 0,50 3,12 92,16 3,81

Healthy 0,0 4,91 3,43 91,43

Table E.12: Confusion Matrix /% for
Random Forest and mRMR Feature
Selection: AE - Non-filtered Signal.

Outer Inner Ball Healthy

Outer 99,76 0,00 0,24 0,00
Inner 0,24 97,62 0,71 1,43
Ball 0,24 2,86 93,57 3,33

Healthy 0,24 4,76 1,19 93,81

Table E.13: Confusion Matrix /% for
SVM.SVC and mRMR Feature Selection:

AE - Non-filtered Signal.

Outer Inner Ball Healthy

Outer 89,05 10,95 0,00 0,00
Inner 11,43 35,24 0,00 53,33
Ball 5,95 1,19 49,29 43,57

Healthy 4,52 6,19 0,00 89,29

Table E.14: Confusion Matrix /% for
SVM.LinearSVC and mRMR Feature
Selection: AE - Non-filtered Signal.

Outer Inner Ball Healthy

Outer 93,33 3,57 3,10 0,00
Inner 6,19 75,95 0,71 17,14
Ball 5,24 3,33 49,29 42,14

Healthy 1,90 14,05 0,00 84,05

Table E.15: Confusion Matrix /% for SVM.NuSVC and mRMR Feature Selection: AE
- Non-filtered Signal.

Outer Inner Ball Healthy

Outer 98,10 1,67 0,24 0,00
Inner 4,52 87,38 1,19 6,90
Ball 5,24 7,86 49,29 37,62

Healthy 3,33 19,29 1,90 75,48
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Table E.16: Confusion Matrix /% for
Decision Tree and mRMR Feature
Selection: Mic - Non-filtered Signal.

Outer Inner Ball Healthy

Outer 90,59 7,59 0,00 0,95
Inner 8,91 86,16 6,37 0,00
Ball 1,98 5,80 88,24 3,33

Healthy 3,47 0,00 5,39 91,43

Table E.17: Confusion Matrix /% for
Random Forest and mRMR Feature
Selection: Mic - Non-filtered Signal.

Outer Inner Ball Healthy

Outer 92,38 5,48 0,95 1,19
Inner 7,14 87,86 5,00 0,00
Ball 1,67 6,67 89,52 2,14

Healthy 2,62 0,24 3,81 93,33

Table E.18: Confusion Matrix /% for
SVM.SVC and mRMR Feature Selection:

Mic - Non-filtered Signal.

Outer Inner Ball Healthy

Outer 71,67 26,19 2,14 0,00
Inner 25,24 70,95 3,81 0,00
Ball 0,95 21,90 36,43 40,71

Healthy 7,86 5,00 1,9 85,24

Table E.19: Confusion Matrix /% for
SVM.LinearSVC and mRMR Feature
Selection: Mic - Non-filtered Signal.

Outer Inner Ball Healthy

Outer 68,81 26,43 4,05 0,71
Inner 25,95 60,71 13,33 0,00
Ball 2,38 7,86 55,24 34,52

Healthy 3,57 4,52 5,00 86,9

Table E.20: Confusion Matrix /% for SVM.NuSVC and mRMR Feature Selection:
Mic - Non-filtered Signal.

Outer Inner Ball Healthy

Outer 77,62 18,81 3,57 0,00
Inner 11,43 79,52 9,05 0,00
Ball 0,24 16,9 46,67 36,19

Healthy 8,33 4,29 4,05 83,33

E.2 Filtered Signal

Table E.21: Accuracy scores for Decision Tree: Filtered Signal and mRMR Feature
Selection.

Accuracy Scores /% in rounds R1...10

BRY 92,94 97,65 96,47 95,29 92,94 97,62 96,43 95,18 97,59 93,83
BRAE 96,47 94,11 92,94 90,59 92,94 92,86 88,09 90,36 92,77 92,59
BRMic 89,41 94,12 90,59 94,12 91,76 91,67 94,05 95,18 87,95 93,83
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Table E.22: Accuracy scores for Random Forest: Filtered Signal and mRMR Feature
Selection.

Accuracy Scores /% in rounds R1...10

BRY 97,62 99,41 98,21 98,21 97,62 98,81 98,81 97,02 95,83 97,62
BRAE 97,62 97,02 97,02 98,21 96,43 96,43 94,64 97,02 97,62 92,86
BRMic 97,62 97,62 98,21 94,64 96,43 99,41 95,24 98,24 97,62 96,43

Table E.23: Accuracy scores for SVM.SVC: Filtered Signal and mRMR Feature
Selection.

Accuracy Scores /% in rounds R1...10

BRY 88,62 91,071 81,55 89,29 85,71 85,71 86,91 85,71 85,71 88,69
BRAE 79,76 75,00 82,14 82,74 77,98 76,19 78,57 77,38 73,21 74,41
BRMic 77,98 75,00 76,79 73,81 83,33 76,79 80,36 75,00 72,02 77,38

Table E.24: Accuracy scores for SVM.LinearSVC: Filtered Signal and mRMR Feature
Selection.

Accuracy Scores /% in rounds R1...10

BRY 90,48 92,26 80,95 88,09 84,52 82,74 86,91 85,71 86,31 86,91
BRAE 75,60 73,21 79,76 77,98 77,38 72,02 77,98 77,38 72,62 70,24
BRMic 80,95 77,98 75,60 71,43 81,55 79,76 82,74 79,76 76,79 76,79

Table E.25: Accuracy scores for SVM.NuSVC: Filtered Signal and mRMR Feature
Selection.

Accuracy Scores /% in rounds R1...10

BRY 87,5 86,91 79,16 86,91 83,93 81,55 84,52 82,74 83,33 87,5
BRAE 79,17 75,00 79,76 80,36 79,17 72,02 74,41 75,59 71,43 72,02
BRMic 79,17 77,38 74,41 75,60 81,55 77,98 83,33 76,79 77,98 79,17

Table E.26: Confusion Matrix /% for
Decision Tree: Filtered Signal and mRMR

Feature Selection, BRy.

Outer Inner Ball Healthy

Outer 96,14 1,91 1,95 0,00
Inner 1,45 93,78 4,39 0,46
Ball 1,45 5,74 92,20 0,46

Healthy 0,00 0,00 0,00 100,00

Table E.27: Confusion Matrix /% for
Random Forest: Filtered Signal and
mRMR Feature Selection, BRy.

Outer Inner Ball Healthy

Outer 98,81 0,71 0,48 0,00
Inner 0,48 98,81 1,19 0,24
Ball 0,24 2,62 96,67 0,48

Healthy 0,48 0,71 0,71 98,10
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Table E.28: Confusion Matrix /% for
SVM.SVC: Filtered Signal and mRMR

Feature Selection, BRy.

Outer Inner Ball Healthy

Outer 98,33 0,48 1,19 0,00
Inner 0,95 83,10 15,48 0,48
Ball 0,48 5,95 89,08 4,52

Healthy 1,43 10,24 11,19 77,14

Table E.29: Confusion Matrix /% for
SVM.LinearSVC: Filtered Signal and
mRMR Feature Selection, BRy.

Outer Inner Ball Healthy

Outer 97,38 1,43 1,19 0,00
Inner 1,43 80,24 14,76 3,57
Ball 0,24 10,24 85,00 4,52

Healthy 1,19 8,57 6,90 83,33

Table E.30: Confusion Matrix /% for SVM.NuSVC: Filtered Signal and mRMR
Feature Selection, BRy.

Outer Inner Ball Healthy

Outer 91,67 1,43 6,90 0,00
Inner 0,00 82,14 17,38 0,48
Ball 0,24 6,19 89,05 4,52

Healthy 0,24 10,95 14,05 74,74

Table E.31: Confusion Matrix /% for
Decision Tree: Filtered Signal and mRMR

Feature Selection, AE.

Outer Inner Ball Healthy

Outer 97,58 0,00 0,98 1,37
Inner 0,97 90,91 1,95 5,94
Ball 0,97 1,91 92,20 4,57

Healthy 1,45 5,74 4,39 89,04

Table E.32: Confusion Matrix /% for
Random Forest: Filtered Signal and

mRMR Feature Selection, AE.

Outer Inner Ball Healthy

Outer 99,76 0,00 0,24 0,00
Inner 0,48 97,38 0,71 1,43
Ball 0,48 1,67 94,05 3,81

Healthy 0,24 3,57 1,43 94,76

Table E.33: Confusion Matrix /% for
SVM.SVC: Filtered Signal and mRMR

Feature Selection, AE.

Outer Inner Ball Healthy

Outer 97,86 2,14 0,00 0,00
Inner 5,00 89,05 0,00 5,95
Ball 5,24 9,05 49,29 36,43

Healthy 3,81 21,43 0,00 74,76

Table E.34: Confusion Matrix /% for
SVM.LinearSVC: Filtered Signal and

mRMR Feature Selection, AE.

Outer Inner Ball Healthy

Outer 93,33 3,57 3,10 0,00
Inner 6,43 75,0 0,71 17,86
Ball 5,24 3,10 49,53 42,14

Healthy 1,67 14,52 0,00 83,81
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Table E.35: Confusion Matrix /% for SVM.NuSVC: Filtered Signal and mRMR
Feature Selection, AE.

Outer Inner Ball Healthy

Outer 92,86 1,67 5,48 0,00
Inner 4,52 87,14 1,43 6,90
Ball 5,71 8,33 48,33 37,62

Healthy 3,33 19,29 2,14 75,24

Table E.36: Confusion Matrix /% for
Decision Tree: Filtered Signal and mRMR

Feature Selection, Mic.

Outer Inner Ball Healthy

Outer 87,44 10,05 0,49 1,83
Inner 3,38 91,87 4,88 0,00
Ball 1,93 4,31 92,20 1,37

Healthy 0,48 0,48 1,95 97,26

Table E.37: Confusion Matrix /% for
Random Forest: Filtered Signal and

mRMR Feature Selection, Mic.

Outer Inner Ball Healthy

Outer 96,19 3,10 0,48 0,24
Inner 2,62 96,9 0,24 0,24
Ball 0,48 1,43 97,86 0,24

Healthy 1,43 0,00 0,95 97,62

Table E.38: Confusion Matrix /% for
SVM.SVC: Filtered Signal and mRMR

Feature Selection, Mic.

Outer Inner Ball Healthy

Outer 68,57 14,52 9,52 7,38
Inner 4,76 70,95 24,29 0,00
Ball 4,76 22,38 70,00 2,86

Healthy 2,14 0,00 0,00 97,86

Table E.39: Confusion Matrix /% for
SVM.LinearSVC: Filtered Signal and

mRMR Feature Selection, Mic.

Outer Inner Ball Healthy

Outer 74,05 10,71 7,38 7,86
Inner 7,62 72,14 20,24 0,00
Ball 5,48 21,19 70,00 3,33

Healthy 2,86 0,00 0,00 97,14

Table E.40: Confusion Matrix /% for SVM.NuSVC: Filtered Signal and mRMR
Feature Selection, Mic.

Outer Inner Ball Healthy

Outer 63,81 15,48 8,10 12,62
Inner 4,76 85,00 9,76 0,48
Ball 3,57 24,76 65,00 6,67

Healthy 0,24 0,00 0,24 99,52
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