Joana Maria Martins Rosa Maia de Oliveira Almeida

GESTÃO DE PONTES RODOVIÁRIAS

Um modelo aplicável em Portugal
GESTÃO DE PONTES RODOVIÁRIAS
Um modelo aplicável em Portugal

Joana Maria Martins Rosa Maia de Oliveira Almeida
Licenciada em Engenharia Civil
pela Faculdade de Engenharia da Universidade do Porto

Dissertação apresentada
à Faculdade de Engenharia da Universidade do Porto
para obtenção do grau de Mestre em Estruturas de Engenharia Civil

Orientador Científico:
Raimundo Moreno Delgado
Professor Catedrático
Secção de Estruturas do Departamento de Engenharia Civil
Faculdade de Engenharia da Universidade do Porto

Porto, Dezembro de 2003
Ao Pedro

e

Aos meus Pais
RESUMO

Ao longo da vida das obras de arte, o seu comportamento deve merecer uma continuada atenção, que permita detectar atempadamente sinais de alteração dos níveis de segurança estrutural e de desempenho funcional. Nesse contexto, no presente trabalho é feita uma abordagem ao acompanhamento e à avaliação do estado das obras de arte, em geral, e das pontes rodoviárias, de uma forma particular, com o intuito de desenvolver ferramentas de assessoria à sua gestão que sejam aplicáveis à realidade portuguesa.

Após um enquadramento da problemática a nível internacional, são apresentados alguns sistemas de gestão de obras de arte implementados noutros países, fazendo referência aos principais módulos que em geral os constituem. Seguidamente é feita uma descrição de todo o processo de recolha dos dados, uma vez que na base das decisões de gestão está um grande volume de informação de natureza muito diversificada. São apresentados vários tipos de campanhas de inspecção e são indicados alguns tipos de ensaios e técnicas experimentais complementares à observação visual, que podem ser realizados sobre as estruturas a avaliar. A forma de armazenamento e interpretação desses dados é ainda referenciada e depois, para facilitar a sua leitura, é estudada uma metodologia de pré-processamento, especialmente vocacionada para pontes rodoviárias, que a partir de um determinado conjunto de parâmetros permite classificar a eficiência das obras em termos de segurança estrutural, funcionalidade e utilidade pública. Essas considerações convergem no desenvolvimento de uma ferramenta informática de inventariação e classificação de pontes – o REGpontes – que permite identificar prioridades de intervenção e auxiliar assim os gestores na programação dos trabalhos de manutenção e reabilitação a realizar num parque de pontes rodoviárias. Para além da descrição do funcionamento e das potencialidades do programa, é ainda feita a apresentação do seu processo de calibração e a discussão dos resultados obtidos na sua aplicação a um conjunto de pontes integradas na rede rodoviária do distrito de Viana do Castelo. Essas obras foram selecionadas tendo o cuidado de constituir uma amostra diversificada em termos de idade, material, funcionamento estrutural, características dimensionais e exigências de utilização.
Throughout the existence of important constructions, its behaviour must be continuously observed, so that any signs of change in its structural safety and functional performance levels may be detected. Taking into consideration what has just been stated, the present work approaches the observation and appraisal of the conditions of large constructions, in general. More specifically, highway bridges are studied, in order to try to develop tools which might help its management and which might be in accordance with the Portuguese reality.

After bibliographic search, some of the most important references of engineering management systems, made in other countries, are presented referring and introducing its main modules. Then, and considering that the bases of the management decisions include an enormous variety of information, the whole process of gathering data has been described. Several types of inspection campaigns are presented and different sorts of tests and experimental techniques - supplementary to visual information - are indicated. The way how these data are stored and analysed is also mentioned. To make it easier to understand, a pre-processing methodology has been studied, especially for the usage on highway bridges. In fact, taking into consideration a certain set of characteristics, it is possible to classify the efficiency of the construction, as far as structural safety, serviceability and essentiality for public use are concerned. These considerations merge into the development of a computational tool to bridge inventory and appraisal: REGpontes. This system allows us to identify intervention priorities and it helps the management of programs repair, strengthening and rehabilitation works on Highway Bridge. Besides the presentation of the program calibration process, the discussion of all the results obtained from the applicability to a set of bridges, part of Viana do Castelo district road map, is also shown. The bridges have been selected in order to obtain a diverse sample in terms of age, material, structural functionality, dimensions and usage demands.
KEYWORDS

Bridges
Highway bridges
Inspection
Bridge inventory and appraisal
Non-destructive tests
Load Capacity
Structural safety
Serviceability
Essentiality for public use
Bridge sufficiency rating
Maintenance
Repair, strengthening and rehabilitation
Bridge management systems

PALAVRAS CHAVE

Pontes
Pontes rodoviárias
Inspeção
Inventariação e avaliação de pontes
Ensaios não-destrutivos
Capacidade de carga
Segurança estrutural
Funcionalidade
Utilidade pública
Avaliação da eficiência de pontes
Manutenção
Reparação, reforço e reabilitação
Sistemas de gestão de pontes
AGRADECIMENTOS

Expresso aqui o meu mais sincero agradecimento a todos aqueles que foram contribuindo para a realização deste trabalho, nomeadamente:

Ao Professor Raimundo Delgado, orientador da tese, pela forma extraordinária como me tem acompanhado ao longo dos últimos anos, em vários momentos da minha vida profissional. O seu encorajamento, a sua experiência e a sua análise crítica, bem como o seu exemplo de boa disposição, foram essenciais no desenvolvimento de todo o trabalho. Devo dizer que é para mim uma grande honra ter a possibilidade de trabalhar ao lado de uma pessoa com tão grande valor humano e profissional.

Ao Instituto de Estradas de Portugal, na pessoa da Engª Cristina Elvas e do Engº Carlos Bicas, pela abertura com que aceitaram colaborar neste trabalho de investigação. Ao Engº António Cruz e ao Engº Joaquim Cruz, da delegação distrital de Viana do Castelo, pela amabilidade com que me acompanharam, disponibilizando informação essencial à aplicação prática do modelo estudado.

Ao Professor Jorge de Brito pela disponibilidade demonstrada e pela sua orientação na fase inicial de desenvolvimento deste trabalho de investigação.

Ao Professor Mota Freitas pelo seu incentivo, pelos seus valiosos ensinamentos e pelo seu importante apoio na pesquisa bibliográfica.

Ao Professor Aníbal Costa, ao Professor António Arêde e à Engª Esmeralda Paupério, pelos esclarecimentos prestados e pela discussão sobre alguns dos pontos abordados no trabalho.

Ao Professor Joaquim Figueiras e ao Professor Abel Henriques, pela disponibilidade e simpatia demonstradas.
Agradecimentos

À Newton e em especial ao Engº José Carlos Lino, pela possibilidade de frequentar o curso de mestrado.

Aos colegas de mestrado, nomeadamente à Sandra Nunes, ao Xavier Romão, à Cristina Costa, ao Pedro Costa, ao Diogo Azevedo, ao José Carlos Almeida e ao Luís Brás, pela amizade e pelas experiências trocadas.

Às funcionários da Secção de Estruturas, nomeadamente à D. Maria Vitória e à Marta, pelo simpático e eficiente apoio logístico prestado durante a elaboração da dissertação.

À Rosarinho, pela sua preciosa ajuda nos últimos dias da elaboração da dissertação.

Aos meus sogros, por todo o apoio prestado especialmente durante a finalização do trabalho e também pela disponibilização do equipamento fotográfico.

Aos meus pais, pelo seu grande apoio ao longo de toda a minha vida, pois sem eles não teria sido possível chegar até aqui.

Ao Pedro, que de uma forma muito especial esteve sempre ao meu lado e que pacientemente foi vivendo comigo as várias fases desta caminhada, tornando-as mais alegres. O seu apoio incondicional foi indispensável à concretização deste trabalho.
ÍNDICE GERAL

RESUMO ... v
ABSTRACT ... vii
PALAVRAS-CHAVE .. ix
AGRADECIMENTOS .. xi
ÍNDICE GERAL .. xiii
ÍNDICE DE FIGURAS .. xvii
ÍNDICE DE TABELAS ... xxii
SIMBOLOGIA .. xxiii

CAPÍTULO 1
INTRODUÇÃO ... 1.1
 1.1 Considerações iniciais .. 1.2
 1.2 Objectivos do trabalho .. 1.4
 1.3 Organização em capítulos .. 1.6

CAPÍTULO 2
SISTEMAS DE GESTÃO DE OBRAS DE ARTE .. 2.1
 2.1 Sistemas de Gestão de Obras de Arte ... 2.2
 2.1.1 Tipos de classificação das obras ... 2.3
 2.1.2 Tipos de actuação ... 2.4
 2.1.3 Custos e benefícios ... 2.6
 2.1.4 Previsão da deterioração ... 2.8
 2.1.5 Fiabilidade ... 2.10
 2.1.6 Metodologias de gestão ... 2.15
 2.2 Regulamentação para estruturas existentes ... 2.16

xiii
2.3 Alguns sistemas de gestão .. 2.19
 2.3.1 PONTIS .. 2.19
 2.3.2 BRIDGIT .. 2.22
 2.3.3 Visual/BMS .. 2.24
 2.3.4 BRIDGEview .. 2.24
 2.3.5 BRIDGE1 e BRIDGE2 2.25
 2.3.6 GOA - Gestão de Obras de Arte 2.27
 2.3.7 DAMBRO .. 2.28
 2.3.8 J-BMS ... 2.30
 2.3.9 MOST ... 2.31
 2.3.10 KUBA-MS .. 2.32
 2.3.11 Sistema Canadiano ... 2.34
 2.3.12 Sistema Finlandês ... 2.34
 2.3.13 Sistema Alemão ... 2.35
 2.3.14 IBMS ... 2.36
 2.3.15 Sistema Polaco ... 2.36
 2.3.16 Sistema Holandês ... 2.37
 2.3.17 SIGE ... 2.38
 2.3.18 SMIS .. 2.38
 2.3.19 Sistema Francês ... 2.39
 2.3.20 Sistema Sueco ... 2.40
2.4 Considerações finais sobre os sistemas de gestão 2.40

CAPÍTULO 3
RECOLHA E ANÁLISE DE INFORMAÇÃO 3.1
 3.1 Informação associada a cada obra de arte 3.2
 3.2 A inspecção .. 3.6
 3.3 A realização de ensaios complementares à inspecção visual .. 3.11
 3.3.1 Ensaios não-destrutivos 3.12
 3.3.2 Ensaios semi-destrutivos 3.15
 3.3.3 Outras técnicas experimentais 3.18
 3.4 Avaliação do estado da estrutura a partir da inspecção 3.19
 3.5 Considerações finais ... 3.24
CAPÍTULO 4
METODOLOGIA DE APOIO À DECISÃO ... 4.1
 4.1. Descrição geral da metodologia ... 4.2
 4.2. Cálculo do Rácio de Eficiência Global de uma ponte 4.3
 4.1.1 Rácio de Segurança Estrutural 4.5
 4.1.2 Rácio de Funcionalidade ... 4.8
 4.1.3 Rácio de Utilidade Pública .. 4.13
 4.1.4 Rácio de reduções extraordinárias 4.16
 4.1.5 Interpretação final dos resultados 4.18
 4.3. Capacidade de Carga de uma ponte existente 4.20
 4.4. Política de definição de prioridades de intervenção 4.25
 4.5. Considerações finais ... 4.27

CAPÍTULO 5
PROGRAMA DE APOIO À GESTÃO DE PONTES 5.1
 5.1 Apresentação do programa desenvolvido 5.2
 5.1.1 Módulo "Base Dados" .. 5.3
 5.1.2 Módulo "Relatório" .. 5.5
 5.1.3 Módulo "MemCalc" ... 5.7
 5.1.4 Módulo "Classif" .. 5.9
 5.1.5 Módulo "Ajuda" .. 5.9
 5.2 Calibração dos resultados .. 5.11
 5.3 Desenvolvimentos futuros do programa 5.14

CAPÍTULO 6
ESTUDO DE UM CONJUNTO DE PONTES .. 6.1
 6.1 Constituição do sistema de pontes 6.2
 6.2 Classificação do conjunto de pontes da amostra 6.6
Índice Geral

6.3 Classificação do conjunto de pontes da sub-amostra ... 6.16
 6.3.1 Análise pormenorizada de algumas das pontes da sub-amostra 6.16
 6.3.2 Análise global do conjunto de pontes da sub-amostra........................... 6.31

6.4 Considerações finais e conclusões ... 6.44

CAPÍTULO 7
CONCLUSÃO .. 7.1

7.1. Considerações e conclusões finais ... 7.2

7.2. Desenvolvimentos futuros ... 7.5

REFERÊNCIAS BIBLIOGRÁFICAS .. RB.1

ANEXO A
ITENS DA BASE DE DADOS .. A.1

ANEXO B
CÓDIGOS DE CLASSIFICAÇÃO ... B.1

ANEXO C
LISTAGENS DO CÓDIGO DO REGpontes ... C.1

ANEXO D
DADOS E RESULTADOS .. D.1
ÍNDICE DE FIGURAS

CAPÍTULO 2

Figura 2.1 - Curvas de variação do Estado do Tabuleiro, da Superestrutura e da Infraestrutura em função da idade da ponte e do seu volume de tráfego médio diário (TMD) .. 2.9

Figura 2.2 - Curva de variação do Índice de Fiabilidade em função da idade da ponte e sua variação com alguns tipos de intervenção [Das 1998] ... 2.13

Figura 2.3 - Imagem do módulo de Inventarização do PONTIS ... 2.20

Figura 2.4 - Ecrã do BRIDGEview .. 2.25

Figura 2.5 - Imagem do programa SIGE [Geocisa] ... 2.38

CAPÍTULO 4

Figura 4.1 - Indicação da importância relativa dos rácios R1, R2 e R3 no valor do REG ... 4.4

Figura 4.2 - Variação de A1 com o estado da superestrutura, da subestrutura ou da conduta 4.6

Figura 4.3 - Variação de B1 com o Índice de Capacidade de Carga ... 4.7

Figura 4.4 - Variação do parâmetro redutor J com os itens 58, 67, 68, 69, 71 e 72 4.10

Figura 4.5 - Variação do parâmetro redutor H com a largura média (de cada faixa de rodagem) e com o tráfego médio diário (por faixa de rodagem) ... 4.11

Figura 4.6 - Variação do parâmetro redutor A3 com o tráfego médio diário (#29) e com o desvio necessário em caso de fecho (#19) 4.15
Índice de Figuras

Figura 4. 7 - Variação do parâmetro redutor A4 com o desvio implicado por fecho. .. 4.17

CAPÍTULO 5

Figura 5. 1 - Módulos do programa REGpontes .. 5.3
Figura 5. 2 - Ecrã do módulo "BaseDados".. 5.4
Figura 5. 3 - Ecrã do módulo "Relatório"... 5.5
Figura 5. 4 - Exemplo de uma tabela gerada automaticamente 5.6
Figura 5. 5 - Exemplo de um gráfico gerada automaticamente 5.6
Figura 5. 6 - Quadros explicativos do cálculo automático de REG........................ 5.8
Figura 5. 7 - Memória de cálculo... 5.8
Figura 5. 8 - Imagem parcial do módulo "Classif".. 5.9
Figura 5. 9 - Instruções de utilização de cada um dos módulos do programa......... 5.10
Figura 5. 10 - Notas de interpretação de resultados.. 5.11
Figura 5. 11 - Notas gerais... 5.11
Figura 5. 12 - Caracterização do conjunto das 20 obras de arte selecionadas
da base de dados do Pontis, para calibração dos resultados da
classificação com o REGpontes, de acordo com o material
principal, o máximo vão e o comprimento total.. 5.12
Figura 5. 13 - Comparação dos resultados do cálculo do Rácio de Eficiência
Global (REG) com o PONTIS e com o REGpontes... 5.13

CAPÍTULO 6

Figura 6. 1 - Enquadramento da rede rodoviária do Distrito de Viana do
Castelo... 6.1
Figura 6. 2 - Enquadramento das pontes selecionadas para a amostra e sub-
amostra .. 6.2
Figura 6. 3 - Localização das pontes analisadas.. 6.3
Figura 6. 4 - Caracterização das pontes da amostra e da sub-amostra de acordo com o principal material estrutural de cada uma delas 6.4

Figura 6. 5 - Caracterização da amostra e da sub-amostra de acordo com o comprimento do máximo vão das pontes que as constituem 6.5

Figura 6. 6 - Caracterização da amostra e da sub-amostra de acordo com o comprimento total das pontes que as constituem 6.5

Figura 6. 7 - Valores mínimos e máximos de REG obtidos para as pontes da amostra, listados por ordem do valor médio correspondente 6.11

Figura 6. 8 - Valores mínimos e máximos de R1 (Segurança Estrutural), R2 (Funcionalidade) e R3 (Utilidade Pública), obtidos para as pontes da amostra ... 6.13

Figura 6. 9 - Valores médios de REG das pontes da amostra e respectiva gama de variação entre REG mínimo e REG máximo, em comparação com o correspondente EC .. 6.14

Figura 6. 10 - Caracterização dos valores médios correspondentes aos valores de REG máximo e de REG mínimo, obtidos para o conjunto das pontes da amostra, de acordo com grupos relativos ao seu máximo vão e ao seu comprimento total ... 6.15

Figura 6. 11 - Vista Geral de Poente .. 6.17

Figura 6. 12 - Vistas de Nascente ... 6.17

Figura 6. 13 - Vista Poente .. 6.19

Figura 6. 14 - Vista Nascente .. 6.19

Figura 6. 15 - Pormenores da face inferior do tabuleiro ... 6.20

Figura 6. 16 - Vistas superiores do tabuleiro (para Sul e para Norte) .. 6.20

Figura 6. 17 - Alçado Oeste .. 6.21

Figura 6. 18 - Pormenores do encontro Sul .. 6.21

Figura 6. 19 - Vista de Sul e de Norte ... 6.22

Figura 6. 20 - Pormenores da face inferior do tabuleiro .. 6.23

Figura 6. 21 - Vistas da face superior do tabuleiro .. 6.24

Figura 6. 22 - Pormenores dos encontros (Poente e Nascente) .. 6.24
<table>
<thead>
<tr>
<th>Índice de Figuras</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figura 6. 23 - Vistas Norte ... 6.25</td>
</tr>
<tr>
<td>Figura 6. 24 - Pormenores de ligação entre pedras 6.26</td>
</tr>
<tr>
<td>Figura 6. 25 - Pormenores da parte inferior dos encontros (Nascente e Poente) 6.27</td>
</tr>
<tr>
<td>Figura 6. 26 - Vista de Nascente ... 6.28</td>
</tr>
<tr>
<td>Figura 6. 27 - Vista de Poente .. 6.28</td>
</tr>
<tr>
<td>Figura 6. 28 - Placa documentativa e pormenor de um Espaldarte 6.29</td>
</tr>
<tr>
<td>Figura 6. 29 - Pormenor dos arcos ... 6.29</td>
</tr>
<tr>
<td>Figura 6. 30 - Pormenores dos muros timpâno ... 6.30</td>
</tr>
<tr>
<td>Figura 6. 31 - Face superior do tabuleiro .. 6.30</td>
</tr>
<tr>
<td>Figura 6. 32 - Pontes 1, 2, 3, 10 e 11 da sub-amostra 6.32</td>
</tr>
<tr>
<td>Figura 6. 33 - Pontes 12, 14, 17, 19 e 20 da sub-amostra 6.33</td>
</tr>
<tr>
<td>Figura 6. 34 - Pontes 21, 22, 23, 26 e 27 da sub-amostra 6.34</td>
</tr>
<tr>
<td>Figura 6. 35 - Pontes 29, 31, 32, 33 e 38 da sub-amostra 6.35</td>
</tr>
<tr>
<td>Figura 6. 36 - Ráculos de Eficiência Global das obras de arte da sub-amostra e indicação das pontes Estruturalmente Deficientes (ESD) 6.36</td>
</tr>
<tr>
<td>Figura 6. 37 - Rácios de Segurança Estrutural, de Funcionalidade e de Utilidade Pública do sistema de pontes da sub-amostra 6.37</td>
</tr>
<tr>
<td>Figura 6. 38 - Valores médios de REG (e respectiva gama de variação) para cada ponte da amostra e valores do REG para cada ponte da sub-amostra, em comparação com EC .. 6.39</td>
</tr>
<tr>
<td>Figura 6. 39 - Valores de REG para cada ponte da sub-amostra, em comparação com a segurança estrutural, com a funcionalidade e com a utilidade pública .. 6.40</td>
</tr>
<tr>
<td>Figura 6. 40 - Resultados médios de REG obtidos para grupos formados de acordo com o principal material estrutural, o vão máximo e o comprimento total das pontes da amostra e da sub-amostra ... 6.42</td>
</tr>
<tr>
<td>Figura 6. 41 - Resultados médios de segurança estrutural, funcionalidade e utilidade pública obtidos para grupos formados de acordo com o principal material estrutural, o vão máximo e o comprimento total das pontes da amostra e da sub-amostra ... 6.43</td>
</tr>
</tbody>
</table>
ÍNDICE DE TABELAS

CAPÍTULO 2
Tabela 2. 1 - Relação entre a probabilidade de rotura e o Índice de Fiabilidade
[CEN 1994].. 2.12
Tabela 2. 2 - Principais características dos sistemas de gestão referidos.................. 2.42

CAPÍTULO 3
Tabela 3. 1 - Relação entre os estados de afectação e a classificação NBI para
o estado do tabuleiro, da superestrutura e da infraestrutura
(adaptado de [Hearn, Shum 1998])... 3.20
Tabela 3. 2 - Definição do estado de afectação e ensaios de apoio à sua
determinação, para o caso da corrosão das armaduras de betão
armado (adaptado de [Hearn, Shum 1998])... 3.21
Tabela 3. 3 - Relação entre os níveis de classificação da NBI e o tipo de
atuação recomendável [Hearn 1999].. 3.22
Tabela 3. 4 - Tipo de medidas a implementar para regredir no nível de
afectação [Hearn 1999]... 3.22

CAPÍTULO 4
Tabela 4. 1 - Tabela explicativa do cálculo de REG.. 4.5
Tabela 4. 2 - Tabela explicativa do cálculo de R1... 4.5
Tabela 4. 3 - Condições para que se anule o Rácio de Segurança Estrutural
(R1) ... 4.7
Tabela 4. 4 - Tabela explicativa do cálculo de R2... 4.9
Tabela 4. 5 - Tabela com as condições necessárias para anular o factor G+H............ 4.12
Índice de Tabelas

Tabela 4.6 - Tabela com as condições para maximizar o factor G+H .. 4.13
Tabela 4.7 - Tabela explicativa do cálculo de R3 .. 4.14
Tabela 4.8 - Algumas das condições para que se anule o Rácio de Utilidade Pública (R3) .. 4.16
Tabela 4.9 - Tabela explicativa do cálculo de R4 .. 4.16
Tabela 4.10 - Interpretação dos rácios R1, R2, R3 e R4. ... 4.20
Tabela 4.11 - Coeficientes γG e γQ em função do nível e do método de classificação [AASHTO 1994].. 4.23
Tabela 4.12 - Condições para uma ponte se poder candidatar à obtenção de fundos de financiamento da sua reabilitação ou substituição [FHWA] .. 4.25
Tabela 4.13 - Condições para uma ponte ser classificável como Estruturalmente Deficiente ou Funcionalmente Obsoleta [FHWA] ... 4.25
Tabela 4.15- Condições para uma ponte ser considerada Funcionalmente Obsoleta [FHWA] .. 4.25

CAPÍTULO 6

Tabela 6.1 - Registos de TMD (Tráfego Médio Diário) ... 6.7
Tabela 6.2 - Critérios adoptados na definição dos dados necessários à classificação das pontes de acordo com a metodologia subjacente ao REGpontes ... 6.8
Tabela 6.3 - Conversão do EC para a escala de classificação do estado da superestrutura (#58), da infraestrutura (#59), da conduta (#60) e do tabuleiro (#62) .. 6.9
SIMBOLOGIA

SIGLAS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AASHTO</td>
<td>American Association of State Highway and Transportation Officials</td>
</tr>
<tr>
<td>BRIME</td>
<td>Bridge Management in Europe</td>
</tr>
<tr>
<td>ESD</td>
<td>(Ponte) Estruturalmente Deficiente (SD – Structurally Deficient)</td>
</tr>
<tr>
<td>FC</td>
<td>Factor de Carga (LF – Load Factor)</td>
</tr>
<tr>
<td>FCR</td>
<td>Factor de Carga e Resistência (LRF – Load and Resistance Factor)</td>
</tr>
<tr>
<td>FCRP</td>
<td>Factor de Carga e Resistência de Projecto (LRFD – Load and Resistance Factor Design)</td>
</tr>
<tr>
<td>FEHRL</td>
<td>Forum of European National Highway Research Laboratories</td>
</tr>
<tr>
<td>FHWA</td>
<td>Federal Highway Administration</td>
</tr>
<tr>
<td>FOB</td>
<td>(Ponte) Funcionalmente Obsoleta (FO – Functionally Obsolete)</td>
</tr>
<tr>
<td>IEP</td>
<td>Instituto de Estradas de Portugal</td>
</tr>
<tr>
<td>NBI</td>
<td>National Bridge Inventory Database</td>
</tr>
<tr>
<td>NCHRP</td>
<td>National Cooperative Highway Research Program</td>
</tr>
<tr>
<td>PDA</td>
<td>Personal Digital Assistant</td>
</tr>
<tr>
<td>REFER</td>
<td>Rede Ferroviária Nacional</td>
</tr>
<tr>
<td>REGpontes</td>
<td>Programa de gestão de pontes apresentado no capítulo 5</td>
</tr>
<tr>
<td>SIG</td>
<td>Sistema de Informação Geográfica</td>
</tr>
<tr>
<td>TAD</td>
<td>Tensões Admissíveis (AS – Allowable Stress)</td>
</tr>
</tbody>
</table>

NOTAÇÕES GREGAS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ</td>
<td>Coeficiente de projecto</td>
</tr>
<tr>
<td>ϕ_c</td>
<td>Coeficiente de Condição</td>
</tr>
<tr>
<td>ϕ_s</td>
<td>Coeficiente do Sistema</td>
</tr>
<tr>
<td>ß</td>
<td>Índice de Fiabilidade</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>γ₀</td>
<td>Coeficiente a aplicar às cargas permanentes</td>
</tr>
<tr>
<td>γ₀</td>
<td>Coeficiente a aplicar às sobrecargas</td>
</tr>
<tr>
<td>γ_R</td>
<td>Coeficiente parcial de segurança relativo à capacidade resistente</td>
</tr>
<tr>
<td>γ₅</td>
<td>Coeficiente parcial de segurança relativo à solicitação</td>
</tr>
<tr>
<td>μ</td>
<td>Valor médio</td>
</tr>
<tr>
<td>σ</td>
<td>Desvio padrão</td>
</tr>
</tbody>
</table>

NOTAÇÕES LATINAS

<table>
<thead>
<tr>
<th>C</th>
<th>Capacidade resistente (C – Capacity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Efeito das cargas permanentes no elemento (D – Dead loads)</td>
</tr>
<tr>
<td>ICC</td>
<td>Índice de Capacidade de Carga (IR – Inventory Ratio)</td>
</tr>
<tr>
<td>ICF</td>
<td>Índice de Capacidade de Funcionamento (OR – Operating Ratio)</td>
</tr>
<tr>
<td>ID</td>
<td>Idade da obra em anos</td>
</tr>
<tr>
<td>IM</td>
<td>Factor de impacto</td>
</tr>
<tr>
<td>L</td>
<td>Vão da ponte</td>
</tr>
<tr>
<td>P</td>
<td>Probabilidade</td>
</tr>
<tr>
<td>Pᵣ</td>
<td>Probabilidade de rotura</td>
</tr>
<tr>
<td>Q</td>
<td>Efeito das sobrecargas no elemento (L – Live loads)</td>
</tr>
<tr>
<td>R</td>
<td>Capacidade resistente da estrutura</td>
</tr>
<tr>
<td>R₁</td>
<td>Rácio de Segurança Estrutural</td>
</tr>
<tr>
<td>R₂</td>
<td>Rácio de Funcionalidade</td>
</tr>
<tr>
<td>R₃</td>
<td>Rácio de Utilidade Pública</td>
</tr>
<tr>
<td>R₄</td>
<td>Reduções extraordinárias do Rácio de Eficiência Global</td>
</tr>
<tr>
<td>RC</td>
<td>Rácio de Carga</td>
</tr>
<tr>
<td>REG</td>
<td>Rácio de Eficiência Global (SR – Sufficiency Ratio)</td>
</tr>
<tr>
<td>S</td>
<td>Solicitação da estrutura</td>
</tr>
<tr>
<td>TMD</td>
<td>Tráfego Médio Diário</td>
</tr>
<tr>
<td>Z</td>
<td>Margem de segurança</td>
</tr>
</tbody>
</table>
CAPÍTULO 1

INTRODUÇÃO

O acompanhamento das pontes ao longo da sua vida útil deve ser feito de forma periódica e exaustiva para que se possa garantir, simultaneamente, a segurança da sua estrutura e um adequado desempenho funcional.

Em Portugal, o parque de obras de arte é cada vez maior e inclui algumas obras de elevada importância sócio-cultural. Esse facto, associado ao trágico colapso da ponte centenária de Entre-os-Rios, que vitimou cerca de meia centena de pessoas no Inverno de 2001, e à queda de uma passagem superior para peões sobre o IC19, em Setembro de 2003, vem justificar a urgência de implementação de mecanismos de alerta atempada para as situações de maior perigosidade. Nas pontes, as exigências socio-económicas inerentes à sua utilização e a importância da garantia da sua segurança, com os elevados custos de uma qualquer intervenção em fase de serviço, justificam um acompanhamento rigoroso das obras e uma gestão integrada ao longo das suas vidas, que permita uma optimização do investimento global e dos usufrutos a médio e longo prazo.

Essas são assim as principais motivações para o desenvolvimento deste trabalho, em que será feita uma abordagem à problemática da gestão do estado das obras de arte, com particular enfoque nas pontes rodoviárias. O estudo engloba as fases de inspecção e inventariação das obras, bem como a sua avaliação e a definição de estratégias de gestão que permitam programar os trabalhos de manutenção, reparação e reforço.
1.1 Considerações iniciais

Ao longo da sua vida as obras vão envelhecendo, ou seja, vão diminuindo as suas capacidades intrínsecas e vão sendo cada vez menos capazes de responder às exigências dos novos tempos. Por exemplo, numa ponte rodoviária, as cargas relativas ao tráfego vão em geral aumentando com os anos. Por outro lado, devido a factores como a agressividade ambiental ou uma manutenção deficiente, os seus materiais vão-se deteriorando e a obra vai sofrendo uma diminuição global da sua capacidade resistente. Esse envelhecimento pode ser mais rápido ou mais lento em função de determinadas opções iniciais de concepção, dos cuidados tidos na sua execução e depois também, em fase de exploração, das intervenções de manutenção, reforço ou reabilitação que forem sendo realizadas.

De acordo com o estipulado pelo Eurocódigo 1 [CEN 1994], o tempo de vida útil de uma ponte deve ser de 100 anos. Por essa razão, a concepção desse tipo de obras de arte deve desde logo possibilitar que a sua estrutura, durante esse período, seja capaz de responder às solicitações consideradas no projecto, sem necessitar de reparações profundas. A gestão da vida das pontes deve assim começar no projecto e na execução, fases em que um determinado incremento da durabilidade da obra pode ser conseguido a um custo bastante inferior do que em fase de exploração.

Para as estruturas já em funcionamento, as estratégias de prolongamento da sua vida podem ser muito variadas e por isso, nesses casos, devem ser equacionadas e estudadas diferentes hipóteses de intervenção, para depois selecionar a mais adequada. A preservação das obras de arte é muitas vezes feita apenas à medida das necessidades imediatas e das possibilidades técnico-financeiras dos seus responsáveis. No entanto, para optimizar os investimentos e para poder assegurar a segurança estrutural e o adequado desempenho funcional das obras, a sua gestão deve incluir estratégias de observação periódica rigorosa e análise técnico-económica a médio/longo prazo.

O colapso inesperado de uma ponte tem um preço demasiado elevado, ainda que dificilmente estimável, especialmente quando implica a perda de vidas humanas. Os acidentes dessa natureza que, num passado recente, ocorreram em Portugal vieram expor algumas fragilidades do processo de gestão das pontes em geral, despoletando um certo sentimento de desconfiança nos seus utilizadores. Por essa razão, exige-se um
maior investimento na administração do parque de pontes existentes, nomeadamente ao nível do acompanhamento das obras e da programação e implementação de acções de manutenção, reparação e reforço. Devem ser promovidas campanhas de inspecção regulares e sistemáticas, recorrendo a todos os meios de diagnóstico necessários, que permitam classificar uniformemente um conjunto de obras e detectar as situações críticas com alguma antecedência. Depois, a partir dos resultados dessa avaliação, deve ser feito o estudo do tipo de intervenção mais adequado e do momento mais oportuno para a sua realização, tendo em vista uma optimização global da razão custo/benefício.

O trabalho apresentado na presente dissertação surge assim dessas necessidades e será desenvolvido com o intuito de melhorar sobretudo a fase inicial dessa gestão – a inventariação e classificação – deixando o estudo e a escolha das soluções de reparação/reforço e a análise económica para um desenvolvimento em trabalhos futuros. A principal preocupação será assim a obtenção de uma ferramenta com essas potencialidades, adaptada à realidade portuguesa e de fácil implementação.

Em Portugal, as pontes rodoviárias encontram-se na sua maioria a cargo do Instituto de Estradas de Portugal (IEP) e as pontes ferroviárias a cargo da REFER. O IEP tem cerca de 5 500 obras de arte sobre a sua jurisdição, entre pontes e viadutos, “de épocas e concepções estruturais muito diversas, uma vez que a Rede Rodoviária Nacional, pela sua evolução foi integrando património construído que remonta a vários séculos atrás” [Jorge 2003]. A REFER tem sob a sua administração cerca de 2 200 pontes ferroviárias, quase 50% com uma estrutura metálica (para além de cerca de 20 000 passagens hidráulicas), 709 das quais com uma idade superior a 100 anos [Clemente, Cruz 2002]. A título comparativo refira-se ainda o número de pontes em alguns outros países:

- A base de dados NBI dos Estados Unidos da América (National Bridge Inventory Database), inclui mais de 600 000 pontes rodoviárias [National Bridge Inventory];
- A Inglaterra tem cerca de 9 500 pontes na principal rede viária (a maioria em betão e construídas entre meados dos anos 50 e finais dos anos 80) para além de cerca de 100 000 em vias locais [Flaig, Lark 1999];
- A Dinamarca tem 35 túneis e pontes especiais e mais 1 350 pequenas pontes, a maioria delas construídas há mais de 30 anos [Bjerrum et al. 2002];
- A Alemanha tem cerca de 35 272 pontes e 157 túneis [Haardt 2002];
- A Finlândia tem cerca de 10 700 pontes e 2 700 passagens hidráulicas [Söderqvist, Veijola 1999];

- No que respeita às pontes de grande vão, em França existem cerca de 21 500, na Noruega cerca de 9 100 e na Espanha (até ao ano de 1996) cerca de 3 900 [Kaschner et al. 1999].

A propósito da principal motivação do trabalho, refira-se que também nos Estados Unidos da América, um país com muitas pontes, alguns dos estudos e publicações na área dos sistemas de gestão de obras de arte foram impulsionados com a ocorrência de alguns acidentes trágicos que chamaram a atenção para determinados problemas específicos deste tipo de obras, como por exemplo:

- O colapso da Mianaus River Bridge em 1983 [NTSB 1984], devido a uma rotação na sequência da fendilhação de elementos críticos, chamou a atenção para a importância de uma observação especial dos elementos não redundantes;

- O colapso da ponte sobre o vale Schoharie, em 1987 [NTSB 1988], devido à erosão do solo sobre os pilares, alertou para os perigos da rotação pela fundação;

- O colapso de pontes em São Francisco, na sequência do sismo de Loma Prieta, no ano de 1989, conduziu a uma maior atenção sobre a integridade das obras após solicitação por fortes acções dinâmicas.

1.2 Objectivos do trabalho

Dada a necessidade de implementar em Portugal uma estratégia de gestão de pontes que permita alertar atempadamente para as situações de maior perigosidade e que possibilite uma programação optimizada das intervenções necessárias a médio/longo prazo, a
preparação de ferramentas de assessoria a essas tarefas, de rápida implementação, constitui o principal objectivo do trabalho apresentado na presente dissertação.

Para a sua concretização, associados a diferentes fases do desenvolvimento do trabalho, estão ainda subjacentes alguns objectivos parcelares. O primeiro deles passa pela pesquisa de estratégias de gestão adoptadas por diferentes países e pela experimentação de algumas das ferramentas já usadas nesse âmbito, de forma a perceber melhor as suas principais potencialidades e limitações.

Dado o vasto e diversificado volume de informação associado a um parque de obras de arte, a sistematização da sua recolha e a gestão do seu arquivo são outro objectivo parcelar que deve ser concretizado de forma a, por um lado, permitir garantir a sua suficiência e fiabilidade e, por outro, possibilitar uma fácil consulta, comparação e actualização dos dados.

Uma vez que, na gestão de um grande conjunto de obras de arte, as decisões últimas são tomadas em gabinete exclusivamente com base na informação reunida, justifica-se ainda o estudo de metodologias que permitam trabalhar os dados de forma a auxiliar a sua análise e interpretação final, pelo que essa será outra das metas do trabalho.

Por fim, para possibilitar a implementação dessas metodologias a grandes parques de pontes portuguesas, o objectivo último é a sua integração num programa informático, pretendendo ainda, que a ferramenta final seja versátil e de rápida implementação. Para isso o programa deverá funcionar num ambiente familiar à generalidade dos potenciais utilizadores, sendo explícito na sua forma de funcionamento e facilmente moldável às especificidades de diferentes sistemas de obras de arte.

As potencialidades da ferramenta desenvolvida serão evidenciadas na sua aplicação a um conjunto de pontes do distrito de Viana do Castelo, permitindo uma classificação das pontes incluídas na amostra e a obtenção de conclusões quanto às suas características, estado e necessidade de intervenção.
1.3 Organização em capítulos

Após esta introdução à problemática da gestão de um conjunto de pontes e de outras obras de arte, no Capítulo 2 é feita uma caracterização genérica dos sistemas de gestão de obras de arte e uma apresentação dos trabalhos desenvolvidos nesse âmbito em vários países. Ainda no mesmo capítulo, é feita uma breve abordagem à regulamentação aplicável na avaliação e intervenção de estruturas existentes.

No Capítulo 3 é feita referência a alguns dos dados que devem ser tidos em consideração na gestão de pontes e à forma como eles devem ser recolhidos e classificados. Por essa razão nesse capítulo são dadas indicações sobre a realização de campanhas de inspecção, incluindo os tipos de ensaios complementares à observação visual que podem ser realizados, e a interpretação dos seus resultados.

No Capítulo 4 é descrita uma metodologia usada nos Estados Unidos da América para a gestão de pontes rodoviárias que permite, a partir da informação referida no capítulo anterior, caracterizar a Segurança Estrutural, a Funcionalidade e a Utilidade Pública de cada obra, e assim classificar a sua Eficiência Global. Ainda nesse capítulo é feita referência à determinação da capacidade de carga de pontes existentes, que para além de ser importante para a classificação das obras, pode também ser usada na tomada de eventuais medidas de restrição de utilização.

O Capítulo 5 é dedicado à apresentação do REGpontes, a ferramenta informática de inventariação e classificação de pontes rodoviárias desenvolvida com o intuito de possibilitar a aplicação dessa metodologia a pontes portuguesas. A apresentação desse programa é feita explicando o seu modo de funcionamento, indicando as suas principais potencialidades e ainda apresentando os resultados da sua calibração.

No Capítulo 6 são analisados os resultados da aplicação da metodologia de classificação apresentada, por utilização do REGpontes, na avaliação de um conjunto de pontes rodoviárias do distrito de Viana do Castelo.

No último capítulo, o sétimo, são tecidas algumas considerações gerais sobre o trabalho, são destacadas as suas principais conclusões e são também apontadas algumas linhas de orientação para desenvolvimentos futuros.
Finalmente, nos anexos, são apresentados os parâmetros de inventariação e classificação da base de dados subjacente ao programa desenvolvido, bem como o seu código de programação e os dados e resultados relativos à sua aplicação a um conjunto de pontes actualmente em funcionamento em Portugal.
CAPÍTULO 2

SISTEMAS DE GESTÃO DE OBRAS DE ARTE

A gestão das obras de arte é, de certa forma, tão antiga quanto a existência dessas próprias obras, no entanto as suas exigências de utilização, o seu valor patrimonial e o elevado capital nelas investido justificam, cada vez mais, a optimização desse processo.

Sendo o principal objectivo dessa gestão o garante de um determinado nível de segurança e funcionalidade, ao longo da vida útil de cada uma das obras, ao menor custo possível, é importante criar e implementar ferramentas que permitam organizar toda a multiplicidade de informação, facilitando o processo em geral e apoiando o gestor nas suas tomadas de decisão. Essas ferramentas são genericamente designadas por Sistemas de Gestão de Obras de Arte.

A abordagem aos Sistemas de Gestão de Obras de Arte, em geral, e de Pontes, em particular, será efectuada de forma genérica no primeiro ponto deste capítulo e depois, nos pontos seguintes, de forma mais particular, com a apresentação de alguns exemplos concretos de sistemas já implementados, ou em implementação, em várias partes do mundo. Complementarmente, é ainda feita uma referência à regulamentação relativa à avaliação e intervenção em estruturas existentes.
2.1 Sistemas de Gestão de Obras de Arte

Um Sistema de Gestão de Obras de Arte deve apoiar os técnicos e administradores das instituições que tenham sob a sua responsabilidade a exploração de obras desse tipo, facilitando a manipulação do grande e complexo volume de informação subjacente, pelo que se torna desejável que o seu processamento seja feito por meio de uma ferramenta informática. Essa informatização tem ainda a vantagem de possibilitar ao utilizador a aquisição do “know-how” subjacente a situações similares eventualmente registadas em base de dados que, sendo facilmente consultáveis, poderão servir de guia à sua actuação. Assim, um Sistema de Gestão de Obras deverá estar preparado para apoiar o utilizador em fases de:

1) Recolha da informação relativa à obra;
2) Avaliação global do estado das obras, de acordo com a ponderação de determinados factores, e definição das estratégias de actuação possíveis;
3) Aplicação de critérios de decisão para selecção das intervenções a implementar e programação das suas actividades ao longo do tempo.

A sua estrutura poderá ser constituída por módulos independentes para cada uma das três fases anteriormente referidas que permitam, respectivamente:

1) Arquivar em base de dados, para cada uma das obras, os dados fixos de caracterização geral e os dados evolutivos relativos ao estado dos seus elementos, em determinados instantes de tempo, de forma a constituir um historial do seu comportamento;
2) Calcular parâmetros de classificação das obras (a nível de segurança, de uso público e de importância histórica e cultural) e listar os tipos de actuação que possam ou devam ser implementados;
3) Elaborar relatórios com os resultados da optimização do processo, efectuada em função dos critérios de decisão adoptados, de forma a permitir seleccionar as intervenções a realizar e programar a sua calendarização.
Esta organização permite, assim, uma abordagem mais técnica nos dois primeiros módulos e depois, no terceiro módulo, uma abordagem de carácter mais administrativo. Sublinhe-se que, nos primeiros módulos, a classificação do estado da estrutura pode ser assessorada informaticamente, por exemplo com algumas indicações documentais, mas tem que ser necessariamente definida por técnicos. Na abordagem final, os resultados apresentados nos relatórios, produzidos automaticamente, deverão também ser combinados com uma análise crítica de um gestor experiente.

Os sistemas de gestão de obras de arte identificados na investigação efectuada, que se apresentam individualmente no ponto 2.3, respondem em geral a essas funções, embora de formas algo diversificadas. Assim, nos pontos 2.1.1 a 2.1.6, tendo como base as principais potencialidades identificadas nos programas analisados, são tecidas algumas considerações sobre aquelas que poderão ser as principais fases de um sistema de gestão de obras de arte.

2.1.1 Tipos de classificação das obras

O estado das obras de arte vai sendo alterado com a idade, devido a diversos factores, que vão provocando um agravamento progressivo da sua degradação, e uma consequente diminuição da resistência da estrutura, caso não sejam implementadas medidas que de alguma forma anulem ou contrariem esses efeitos. Esses factores, que propiciam o agravamento do nível de deterioração, podem ser de natureza intrínseca, como os relacionados com defeitos iniciais dos materiais, do projecto ou da concepção, ou de natureza extrínseca, como, por exemplo, a agressividade ambiental.

Por essa razão, ao longo da vida útil das obras, o seu estado deve ir sendo avaliado periodicamente, a partir de informação recolhida em campanhas de inspecção. Essa avaliação pode ser efectuada segundo níveis diferentes de pormenor e de profundidade de análise, pelo que os resultados podem depois ser expressos segundo vários tipos de classificação.

Nos sistemas de gestão analisados, a classificação do estado da obra é efectuada, em escalas mais ou menos alargadas, em função de uma ou várias das seguintes características:
- Aspecto dos danos;
- Vulnerabilidade e urgência de correção das anomalias;
- Rácio entre a capacidade de carga real e exigida, uma vez que as patologias podem ter diferentes consequências quando detectadas em diferentes partes da estrutura.

As classificações podem ser atribuídas directamente ao conjunto da obra ou a um conjunto de partes da mesma, sendo a nota global obtida, nesse caso, por ponderação em função, por exemplo, da importância estrutural da parte no todo e da sua quantidade relativa. Essa classificação parcial pode ainda ser feita com diversos graus de pormenor, ou seja considerando partes de diferentes dimensões (com uma menor dimensão a incerteza é de certa forma reduzida, uma vez que a subjectividade do inspector diminui e se considera de forma mais precisa a extensão do dano), como por exemplo:

- Principais partes da estrutura (como tabuleiro, superestrutura e infraestrutura);
- Elementos (viga, pilar, sapata, etc.);
- Componentes de cada elemento.

Para além dos tipos de classificação já referidos há ainda outros que pontuam, para além do estado da obra, outros atributos como a sua importância histórico-cultural e o seu nível de resposta face às exigências de funcionamento. Dessa forma, o próprio resultado da classificação poderá ser directamente considerado na definição das prioridades relativas de intervenção.

2.1.2 Tipos de actuação

A preservação de um parque de obras de arte pressupõe a correção das deficiências que forem surgindo e que impeçam de satisfazer os níveis de segurança e serviço pretendidos. Essa correção pode ser feita de várias formas e em diferentes períodos da sua vida útil, pelo que para escolher a melhor estratégia a adoptar é importante começar por listar os vários tipos de actuação possíveis [Lauridsen et al. 1998]:

2.4
- **Manutenção essencial** (quando a estrutura não cumpre um determinado limite mínimo aceitável) ou **preventiva** (predeterminada com uma determinada periodicidade de forma a manter a obra sempre acima desse nível mínimo);

- **Reparação superficial** (implementada com o intuito de adiar temporariamente uma reparação mais profunda) ou **profunda** (intervenção em grande extensão, com o intuito de prolongar o tempo de serviço da obra);

- **Beneficiação** (como, por exemplo, o alargamento do tabuleiro de uma ponte, quando as suas características não permitirem a resposta desejada face às exigências de circulação rodoviária);

- **Substituição parcial** (apenas dos elementos estruturais que se encontrarem obsoletos) ou **integral** (demolição da obra e construção de outra com iguais ou diferentes funções);

- **Não intervenção**.

Para cada um dos tipos de intervenção que se considerar, devem ainda ser estudadas as várias soluções técnicas exequíveis e deve equacionar-se a sua realização em diferentes instantes de tempo, ou seja, no imediato ou após um determinado adiamento, para assim equacionar as várias estratégias de actuação possíveis. Esses possíveis adiamentos podem, por exemplo, ser vantajosos nos casos em que estejam previstos futuros fundos de financiamento ou nos casos em que, devido à sazonalidade do volume de tráfego, não seja recomendável no imediato uma intervenção que implique restrições de circulação.

Uma vez que os fundos disponíveis para a conservação do patrimônio são, muitas vezes, insuficientes para manter todas as obras nas condições mais adequadas, é ainda importante distinguir as **intervenções necessárias** das **intervenções desejáveis**. As primeiras naturalmente mais ligadas a aspectos de segurança estrutural e as segundas a questões de funcionalidade. As intervenções devem ser classificadas como necessárias quando forem essenciais para que as obras, abaixo do nível crítico de desempenho, passem a cumprir as exigências consideradas mínimas. Por outro lado, devem ser classificadas como desejáveis quando economicamente justificadas, mas de natureza preventiva.
Capítulo 2

Importa ainda diferenciar as acções correctivas das acções de melhoramento, sendo as primeiras correspondentes às intervenções que periodicamente são necessárias para repor o estado inicial da obra, como por exemplo a reparação do pavimento de uma passagem superior para peões, e as segundas correspondentes às realizadas com o intuito de melhorar o seu desempenho, como por exemplo o alargamento da via de um viaduto.

2.1.3 Custos e benefícios

Depois da listagem dos tipos de actuação possíveis, deve então quantificar-se os custos e os benefícios inerentes a cada uma das hipóteses consideradas, relativamente a um determinado período de tempo (devendo os custos e os benefícios não imediatos ser afectados das devidas correções monetárias) [Pastor; Brito 1992; Lauridsen et al. 1998; Frangopol et al. 1999]. Esse intervalo de tempo pode ser mais curto ou mais alargado conforme a política de gestão adoptada, sendo o período ideal o que corresponde a todo o ciclo de vida útil de cada uma das obras (que pode ser considerado de acordo com as indicações de projecto ou como o tempo necessário até que todo o investimento seja pago ou mesmo até que a obra fique obsoleta).

Essa análise económica deve ser o mais abrangente possível, incluindo custos directos, a suportar pelo dono de obra, relativamente a:

- Investimento inicial (projecto, obra e ensaios, etc.);
- Administração e supervisão;
- Inspeção e manutenção (a orçamentar em função da frequência prevista);
- Projecto e execução das intervenções de reparação, reforço ou reabilitação, equacionadas a curto prazo (calculadas a partir de um esquema de projecto que permita determinar as quantidades de materiais, equipamento e mão de obra) e a longo prazo (estimadas a partir de dados estatísticos baseados no observado para um conjunto de obras idênticas em idade e estrutura), de acordo com as previsões da evolução do comportamento da obra;
- Não intervenção (custos decorrentes de um eventual colapso da obra em serviço, com consequências em termos, por exemplo, de perda de vidas humanas,

2.6
equipamento e credibilidade técnica, a calcular em função de uma determinada probabilidade de rotura da obra);

e custos indirectos, a cargo de outrem, como por exemplo:

- valor do património histórico, arquitectónico, cultural e ambiental;
- alterações de utilização, temporárias ou definitivas, por exemplo a nível de segurança viária, de fluência do tráfego e de restrições à circulação.

Os benefícios podem também ser traduzidos no valor monetário correspondente aos custos evitados com a implementação de uma determinada medida. Os benefícios podem também ser directos (por exemplo resultantes de um potencial prolongamento da vida útil da obra) ou indirectos (como, no caso de uma ponte uma maior segurança estrutural e rodoviária; uma maior fluidez no trânsito, a possibilidade de alargamento do espectro de veículos seus utilizadores - por exemplo, o alargamento a pesados - e a minimização de distâncias a percorrer entre diferentes pontos).

Listadas as estratégias possíveis e calculados os respectivos custos e benefícios, deve então escolher-se a actuação de mais baixo preço global (custos despendidos, deduzidos dos benefícios obtidos), que em princípio corresponde à intervenção cuja não realização ou adiamento teriam piores consequências económicas para a instituição que tutela a obra, em particular, e para a sociedade em geral.

Segundo Ferreira [2001], engenheiro civil do IEP, os valores investidos ao longo da vida útil da obra deverão ser inferiores aos benefícios económicos da sua exploração.

A título orientativo, refira-se que quando os custos de manutenção das pontes (a quantificar com base em análises estatísticas de dados históricos) excedem 50% do valor da sua substituição, é recomendável apenas a substituição parcial de alguns dos seus elementos, quando esses atingirem o fim da sua vida [Pastor et al.]. Para além disso, Pastor et al. referem ainda que quando os custos de reparação excedem 20% dos custos da substituição é preferível investigar outras alternativas de actuação.
2.1.4 Previsão da deterioração

Para escolher a melhor estratégia de intervenção, com vista a uma melhor resposta futura, e para estimar custos e benefícios do restante tempo de vida útil de uma obra é preciso prever a evolução do estado da estrutura em função da idade e de outros factores que afectem a deterioração, como o volume de tráfego e a agressividade ambiental.

Essa previsão pode ser efectuada com base em modelos de deterioração resultantes de estudos teórico-experimentais e de análises estatísticas de registos históricos. Esses modelos podem ser de natureza determinística, em que se considera que a obra se vai deteriorando de acordo com uma determinada função, ou de natureza probabilística, em que se admite que esse comportamento é desconhecido e se considera apenas uma probabilidade de a deterioração se vir a processar de acordo com uma determinada lei.

Para efectuar uma previsão da evolução futura do estado de uma estrutura ou de componentes da mesma, vários sistemas de gestão adoptam o método probabilístico de Markov. Esse método está vocacionado para o apoio a tomadas de decisão sequenciais, em que estejam envolvidas incertezas e objectivos múltiplos. O modelo de Markov permite captar a natureza estocástica inerente, por exemplo, a um processo de deterioração de obras como as pontes. Segundo Scherer e Glagola [1994], os principais passos desse modelo incluem, a definição de:

- Variáveis;
- Matrizes de transição (cadeias de Markov);
- Variáveis de decisão;
- Custos associados à implementação de determinadas acções em vários estados;
- Função objectivo.

Um dos problemas associados à utilização desses modelos é, por vezes, o desconhecimento dos registos históricos, impossibilitando assim a correcção das previsões efectuadas com dados relativos ao verificado no passado. Outra dificuldade de previsão do estado de uma estrutura para instantes futuros resulta do facto de os mecanismos de deterioração, associados a cada um dos inúmeros danos que podem afectar uma obra, nem sempre estarem completamente desenvolvidos. Para além disso, importa ainda referir que poderão surgir desvios entre o previsto e o verificado, devido à
consideração de algumas premissas (por exemplo, relacionadas com o tipo de solicitação da obra ou de resistência da sua estrutura) não correspondentes à situação real.

A título de exemplo refira-se um modelo de deterioração de pontes, muito simples, proposto por Busa et al. [1985] para o estado do tabuleiro, da superestrutura e da infraestrutura. Segundo os autores, o estado de cada uma dessas componentes da estrutura varia em função da idade da obra em anos (ID) e do volume de tráfego médio diário (TMD) sobre a mesma, numa escala de classificação entre 9 (Excelente) e 0 (Rotura), de acordo as seguintes leis:

\[
\text{Estado do Tabuleiro} = 9 - 0.119 \times \text{ID} - 2.158 \times 10^{-6} \times (\text{ID} \times \text{TMD})
\]

\[
\text{Estado da Superestrutura} = 9 - 0.103 \times \text{ID} - 1.982 \times 10^{-6} \times \text{TMD}
\]

\[
\text{Estado da Infraestrutura} = 9 - 0.105 \times \text{ID} - 2.051 \times 10^{-6} \times \text{TMD}
\]

Na Figura 2.1 são apresentadas as curvas correspondentes à degradação esperada, segundo essas leis, para o estado do tabuleiro, da superestrutura e da infraestrutura, ao longo da vida útil da ponte, para um TMD constante (de 10 000 veículos) e para um TMD variável (com um valor inicial de 10 000 e um aumento anual de 500 veículos).

![Diagrama de curvas de deterioração](image)

Figura 2.1— Curvas de variação do Estado do Tabuleiro, da Superestrutura e da Infraestrutura em função da idade da ponte e do seu volume de tráfego médio diário (TMD)
Uma das críticas que se pode desde logo tecer ao modelo de deterioração apresentado é que o nível de classificação das obras, aquando da entrada em serviço da obra, nem sempre é de “excelente”. No entanto, o exemplo apresentado serve para dar uma indicação genérica do grau de degradação experimentado pelas pontes ao longo da sua vida útil.

2.1.5 Fiabilidade

A informação manipulada num sistema de gestão, bem como aos modelos de previsão usados, está sempre associado um certo grau de incerteza de que importa ter consciência para tentar quantificar e minimizar.

Essa incerteza pode ser de origem cognitiva, por exemplo quando relacionada com factores humanos, como a subjectividade, e de origem não cognitiva como a associada em geral aos modelos de análise e de previsão, devido à complexidade do problema resultante da inter-relação entre as suas várias variáveis [Deshmukh, Bernhardt 2000]. Taylor e Kuyatt [1994] classificam ainda a natureza da incerteza como sistemática ou aleatória, neste último caso podendo ser estimada por aplicação de teorias de fiabilidade.

Nas pontes, as incertezas de informação estão genericamente relacionadas com a avaliação das cargas, directamente ou indirectamente, aplicadas na estrutura (a principal incerteza em fase de projecto) e com a determinação da capacidade resistente de cada uma das suas partes constituintes e da obra no geral (a principal incerteza em fase de avaliação de estruturas existentes, especialmente quando se verifica uma acentuada degradação dos mesmos). Para além dessas há ainda as incertezas associadas ao modelo de previsão, especialmente por se desconhecerem as condições futuras da envolvente, o tipo de manutenção que irá ser realizado e mesmo os custos que isso envolverá.

A incerteza dificulta a decisão e pode mesmo conduzir à tomada de medidas não apropriadas à situação real, pelo que há que tomar medidas no sentido de aumentar a fiabilidade inerente a um sistema da gestão, como por exemplo no caso das pontes rodoviárias:
- Inspeccionar periodicamente as obras, realizando ensaios complementares às inspecções visuais (ver capítulo 3);
- Considerar as secções reais dos elementos estruturais, de acordo com medições efectuadas no local da obra (pode estimar-se também a camada de recobrimento das armaduras embebidas em betão recorrendo a aparelhos electromagnéticos);
- Quantificar as sobrecargas reais resultantes do tráfego, para substituir as que, de forma generalista, são indicadas na regulamentação;
- Considerar as cargas máximas a que a estrutura já foi sujeita como um dado relativo à resistência da obra, em determinados instantes de tempo [Adey et al. 2002].

A implementação dessas medidas de diminuição da incerteza implica, por vezes, um investimento considerável, no entanto, a consequente diminuição dos custos de rotura poderá vir a compensar largamente a sua utilização.

A incerteza associada ao modelo de previsão da deterioração de uma obra de arte (por aplicação das cadeias de Markov), de origem não cognitiva e de natureza aleatória, é estudada por Deshmukh e Bernhardt [2000], para 3 pontes, com base na probabilidade de rotura do sistema (por sua vez, função da probabilidade de rotura das suas componentes). Para calcular a probabilidade de rotura de uma ponte é necessário primeiro determinar a sua solicitação e a sua capacidade de resistência e depois comparar ambas, uma vez que a rotura ocorrerá quando a solicitação for maior que a resistência. Assim, a probabilidade de rotura \(P_r \) pode então ser expressa como a probabilidade de a margem de segurança \(Z \) ser negativa, de acordo com:

\[
P_r = P(Z < 0)\]

\[
Z = R - S
\]

em que \(R \) representa a capacidade resistente da estrutura e \(S \) a sua solicitação máxima. Considerando que estas variáveis são aleatórias, independentes e com uma lei de
distribuição normal, pode calcular-se um Índice de Fiabilidade (β), através da seguinte equação:

$$\beta = \frac{\mu_z}{\sigma_z}$$

ou seja, em função dos seus valores médios (μ) e dos seus desvios padrão (σ), respectivamente calculados pelas seguintes expressões:

$$\mu_z = \mu_r - \mu_s$$

$$(\sigma_z)^2 = (\sigma_r)^2 + (\sigma_s)^2$$

Na Tabela 2.1 é apresentada a relação entre alguns valores de probabilidade de rotura (P_r) e de Índice de Fiabilidade (β).

<table>
<thead>
<tr>
<th>P_r</th>
<th>10^{-1}</th>
<th>10^{-2}</th>
<th>10^{-3}</th>
<th>10^{-4}</th>
<th>10^{-5}</th>
<th>10^{-6}</th>
<th>10^{-7}</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>1.3</td>
<td>2.3</td>
<td>3.1</td>
<td>3.7</td>
<td>4.2</td>
<td>4.7</td>
<td>5.2</td>
</tr>
</tbody>
</table>

O Índice de fiabilidade pode então ser usado para justificar a escolha do tipo de intervenção de acordo com o explicitado por Das [1998] e ilustrado na Figura 2.2. As obras na situação da Ponte 2 devem ser substituídas ou reforçadas e as obras na situação da Ponte 1, podem, de acordo com a figura:

a) ser reforçadas no imediato;

b) ser alvo de reparações superficiais periódicas no seu restante tempo de vida útil;

c) ser apenas alvo de intervenções mínimas até que atinjam o nível mínimo de segurança, altura em que devem ser substituídas.
O problema principal deste tipo de análise é, para além da quantificação do incremento de segurança inerente a uma determinada intervenção de preservação, a definição do limite mínimo aceitável para o Índice de Fiabilidade das obras em serviço. O valor de \(\beta \) para as estruturas existentes deve ser fixado tendo em conta as particularidades da obra. A fiabilidade deverá ser tanto maior quanto mais gravosas forem as consequências do colapso da obra (em termos de perda de vidas humanas, de consequências económicas, de custos sociais, etc.), quanto menor for o seu grau de hiperstaticidade, quanto menor for a sua ductilidade (uma vez que pode implicar uma rotação sem aviso prévio), quanto menores os custos de redução do risco de rotação e quanto menos frequente ou menos profunda for a inspeção efectuada. Stewart et al. [2001] indicam ainda que \(\beta \) pode variar entre 3.1, para obras em que as consequências da rotação não sejam muito significativas e em que os custos de preservação sejam muito elevados, e 4.7 para os casos em que essas consequências sejam mais gravosas e em que os custos sejam menos significativos. Cruz e Neves [2003] referem que os valores de \(\beta \) subjacentes à regulamentação de concepção de novas pontes se situam entre 4.3 e 5.2 (em função do período de referência) e que para as estruturas existentes esse valor pode ser considerado entre 2.25 e 3.75, conforme o comportamento do sistema (nível de implicação da rotação de um elemento no colapso global da obra), o comportamento do
elemento (tipo de rotura: gradual, com algum aviso prévio ou sem aviso prévio) e o nível de inspecção.

Como exemplo, refira-se o modelo de previsão da evolução do índice de fiabilidade ao longo da vida útil de pontes rodoviárias, com e sem manutenção preventiva, que combina a probabilidade de ocorrência de diferentes tipos de rotura e que utiliza as simulações do método de Monte Carlo para captar a propagação das incertezas ao longo do tempo [Frangopol et al. 2000; Kong, Frangopol 2003]. Nesse método o nível mínimo admitido pelos autores para o índice de fiabilidade é de 4.6.

A partir da probabilidade de rotura é ainda possível calcular um parâmetro de risco que, segundo Stewart [2001], corresponde ao produto entre P_r e os custos (directos e indirectos) do colapso da obra, podendo assim ajudar o gestor a estabelecer prioridades de intervenção entre um conjunto de obras com deficiências.

Quando se faz uma abordagem semi-probabilística, em vez de se considerar a rotura como a probabilidade de a resistência (R) ser inferior à solicitação (S), são adoptados coeficientes parciais de segurança, respectivamente γ_R e γ_S, definindo-se que para que ela não ocorra é necessário verificar a seguinte condição:

$$\gamma_S S \leq R / \gamma_R$$

Os coeficientes parciais de segurança considerados nas normas que regulamentam o dimensionamento de novas estruturas são aferidos para uma ampla gama de tipologias estruturais e para períodos de referência superiores aos das estruturas existentes. Assim, à imagem do que acontece com o Índice de Fiabilidade, não são em geral adaptáveis às intervenções a realizar em fase de utilização da obra, uma vez que podem exceder o que é razoável admitir para essa fase (em que as acções já podem ser conhecidas com maior rigor) e conduzir a soluções não económicas [Henriques 1998]. Assim, para minimizar os custos é também importante evitar a implementação de intervenções de reabilitação ou de substituição que sejam desnecessárias, tentando reunir todos os meios de redução de incerteza associados à globalidade do processo de gestão. Um coeficiente de segurança demasiado conservativo, aplicado a situações de serviço, implicaria custos muito mais elevados do que uma situação idêntica verificada no âmbito do projecto. Enquanto que um coeficiente de segurança demasiado elevado em fase de projecto pode implicar apenas
um ligeiro aumento das secções dos elementos estruturais, implicando apenas um aumento percentual do custo da obra muito pouco significativo, já em fase de utilização uma medida desse tipo pode até ter como consequências a limitação ou interdição da sua utilização, com implicações importantes em termos económicos e sociais.

2.1.6 Metodologias de gestão

Fixados os níveis de segurança e serviço desejáveis, é necessário estabelecer políticas de decisão (por exemplo, uma política de manutenção preventiva, que estabeleça que a reparação deve ser iniciada antes que a degradação atinja um determinado nível) e selecionar os objectivos específicos a considerar na selecção das estratégias de intervenção (minimização do nível de investimento, máximo ajuste aos orçamentos disponíveis, maximização do tempo de vida da obra, etc.).

No processo de selecção das estratégias podem ser adoptadas metodologias que consideram apenas as necessidades específicas de cada uma das obras ou metodologias que as combinem com as necessidades do sistema. Dentro destas últimas, as mais recomendáveis, podem ainda distinguir-se duas formas diferentes de abordagem - uma optimização efectuada a partir de uma optimização por aproximação do topo para a base:

1º - Definição dos objectivos principais para o conjunto das obras;
2º - Selecção das obras a intervençao;
3º - Definição das acções a executar em cada uma dessas obras;

ou uma optimização efectuada partir de uma aproximação da base para o topo:

1º - Análise do ciclo de vida útil de cada obra;
2º - Escolha do melhor tipo de actuação em cada uma das obras;
3º - Atribuição de prioridades aos projectos a realizar, de acordo com os objectivos globais do sistema.

Uma aproximação do topo para a base é mais rápida do que uma aproximação da base para o topo, pelo facto de os projectos de cada uma das intervenções individuais a realizar só serem definidos para as obras previamente escolhidas. No entanto, numa aproximação do topo para a base não são analisadas em pormenor as intervenções a
Capítulo 2

realizar na generalidade das obras, já que a atenção é centrada exclusivamente nas que forem selecionadas, pelo que pode, por exemplo, relegar-se para segundas intervenções algumas correções simples, de baixo custo e de elevada rapidez de execução, que permitiriam com um baixo investimento aumentar a performance global. Assim sendo, para sistemas com um pequeno número de obras de arte a aproximação da base para o topo é a mais apropriada, mas para os grandes sistemas, em que uma optimização desse tipo seria morosa e muito pesada, é preferível adoptar uma aproximação do topo para a base.

Após definição da estratégia de gestão, estão então reunidas as condições para, tendo em conta o tipo de classificação e os modelos de análise e previsão selecionados, estabelecer as medidas a implementar. Uma vez que na gestão de um parque de obras existentes, a procura da solução óptima envolve vários tipos de parâmetros, muitas restrições e problemas de optimização representados por funções complexas, é usual recorrer-se a software específico, por exemplo aplicando algoritmos genéticos (Genetic Algorithms) [Malioka, Onoufriou 2002].

Face aos resultados de aplicação da metodologia de decisão adoptada, o gestor deverá sempre, como aliás ao longo de todo o processo, fazer uma análise crítica que permita ajustar o output do sistema de gestão adoptado, corrigindo eventuais erros e complementando a estratégia com dados não considerados inicialmente (como condicionantes relativas à coordenação com outros trabalhos).

2.2 Regulamentação para estruturas existentes

No âmbito da gestão de um parque de obras de arte as principais vertentes técnicas estão relacionadas com a avaliação das estruturas existentes, numa primeira fase, e com a implementação de intervenções de preservação, numa segunda fase, em função dos resultados obtidos na primeira.

Em geral, por falta de regulamentação específica relativamente à fase de serviço das estruturas existentes, os técnicos adoptam nessa fase as mesmas especificações indicadas nos códigos de dimensionamento estrutural, embora, por vezes com ligeiros
ajustes, em função da sua própria experiência. Ora, conforme já foi referido no âmbito da fiabilidade (ponto 2.1.5), as normas de projecto, geralmente definidas para um conjunto abrangente de estruturas e pretendendo simplificar os métodos de análise, são para determinadas situações particulares demasiado conservativas e podem, numa fase em que a obra já se encontra em serviço, implicar custos muito elevados não justificáveis. Assim, para a análise de estruturas existentes devem ser escolhidos os métodos avançados, em detrimento de métodos simplificados mais conservativos, e deve determinar-se com um maior realismo tanto as solicitações como as resistências.

Pelos razões expostas, é importante a elaboração e implementação de normativas, paralelas ou complementares às de projecto, que sistematizem e englobem a análise e a avaliação das estruturas existentes, bem como as acções a realizar sobre as mesmas (reparação, reforço ou reabilitação). Nesse âmbito há já alguns países que desenvolveram algumas directivas regulamentares, como os Estados Unidos da América, o Canadá e o Reino Unido. Segundo Kaschner et al. [1999], na Europa há ainda outros países que estão a dar alguns passos nesse sentido, como a Eslovénia que desenvolveu uma técnica de avaliação da segurança de pontes existentes (ainda sem carácter obrigatório), a Noruega que criou um manual de classificação das pontes e a Alemanha que, após a reunificação, fez um esforço para uniformizar as cargas de projecto entre a parte oriental e ocidental, desenvolvendo um guia para a avaliação da capacidade de carga das pontes já existentes.

Nos Estados Unidos da América foi criado, em 1968 (após o trágico colapso de uma ponte sobre o Rio Ohio – a Silver Bridge), um Programa Nacional de Inspeções de Pontes, com indicações específicas para a sua realização (guias para catalogação do estado da obra, indicação da periodicidade das inspecções, etc.), com uma recolha centralizada da informação numa base de dados designada por NBI (National Bridge Inventory) e com a sua análise pela FHWA (Federal Highway Administration) [Czepiel 1995]. Ao longo do presente trabalho serão feitas várias referências a alguns dos documentos normativos Americanos, relativos à inspecção [FHWA 1994], à classificação [FHWA 1995], à avaliação da eficiência [AASHTO 1994] e mesmo à reabilitação de pontes existentes [DeIDOT 2002]. O Departamento dos Transportes dos Estado Unidos da América exigiu mesmo a utilização de Sistemas de Gestão de Pontes (Bridge Management System) para a candidatura aos Fundos de Financiamento Federais para acções de manutenção preventiva, reabilitação e substituição de pontes. Esse facto, é exemplo do
reconhecimento da necessidade e da importância da sistematização da problemática de avaliação e da preservação das pontes existentes.

No que respeita à avaliação da segurança de pontes existentes, Cruz e Neves [2003] referem que a legislação mais completa será a norma canadiana para o projecto de pontes designada por CAN/CSA-S6-88.

Em Inglaterra foram também já publicadas várias normas e recomendações para inspecção, manutenção, reparação e avaliação de estruturas rodoviárias [Highway Agency]. Algumas delas estabelecem princípios gerais, como a BA16/97 [Highway Agency 2001a] e a BD21/01 [Highway Agency 2001b], cuja primeira versão datava de 1984. Outras normas são específicas para determinados tipos de estruturas, como por exemplo a BD 56/96 [Highway Agency 1996] que é dedicada a pontes metálicas. A regulamentação inglesa contempla já os 3 seguintes níveis de análise da segurança das estruturas existentes (a implementar sequencialmente, sempre que nos primeiros níveis não seja verificada a segurança) [Fialg e Lark 1999]:

1º - Análise determinística com métodos simplificados;

2º - Análise determinística com métodos refinados (exemplo: elementos finitos);

3º - Análise igualmente com recurso a métodos refinados, mas considerando valores de cargas e resistências mais ajustados à realidade específica da obra;

e deverá vir também, em breve, a contemplar recomendações relativas aos seguintes níveis:

4º - Análise considerando coeficientes de segurança modificados em função das particularidades da obra;

5º - Análise de fiabilidade (modelação da incerteza por métodos probabilísticos, em alternativa à consideração de coeficientes de segurança).
Na Alemanha, nos anos de 1998 e 1999, foram publicadas umas instruções para a organização da base de dados de estradas (ASB - Anweisung StraßeninformationsBank), uma norma DIN 1076 para regulamentar as técnicas de observação e a inspecção das estruturas rodoviárias, bem como as técnicas para testar a sua estabilidade e segurança de utilização, e também um manual para dar indicações sobre a forma de registo, processamento e análise de resultados de inspecções: RI-EBW-PRÜF [Haardt 2002].

2.3 Alguns sistemas de gestão

Nas duas últimas décadas, em paralelo com o avanço das tecnologias informáticas, têm vindo a ser desenvolvidos e implementados vários sistemas, ou sub-sistemas, de gestão de estruturas e obras de arte, em vários países do mundo. Essas ferramentas, embora contemplando algumas filosofias comuns, apresentam variados formatos e graus de desenvolvimento. Algumas delas estão ainda em fase de concepção/experimentação e outras já se encontram implementadas há algum tempo em várias empresas/instituições.

Neste ponto será feita uma breve resenha de alguns dos sistemas de gestão de obras de arte, em geral, e de pontes, em particular, elaborada com base na consulta de bibliografia publicada e numa pesquisa de mercado, bem como, em alguns casos, na experimentação de versões completas ou limitadas de programas comercializados.

2.3.1 PONTIS

O PONTIS foi desenvolvido nos Estados Unidos da América, nas décadas de 80 e 90, com o acompanhamento do Departamento de Transportes do Governo, na sequência de um contrato entre a Federal Highway Administration (FHWA) e uma Joint-venture de consultoria entre a Optima, Inc e a Cambridge Systematics, tendo sido depois, no ano de 1994, incorporado na AASHTOWAREprogram, da American Association of State Highway and Transportation Officials (AASHTO).

A abordagem a este software foi feita a partir da experimentação de uma licença gratuita de três meses, da sua versão 4.1, disponibilizada pela Cambridge Systematics.
Capítulo 2

O PONTIS foi concebido como uma ferramenta de apoio à gestão de um conjunto de pontes e mesmo de outro tipo de obras especiais como por exemplo túneis e condutas, estando estruturado nos seguintes sete módulos [AASHTO, Cambridge Systematics 2001]:

Inventarização (ilustrado na Figura 2.3)

- Introdução de dados gerais de cada obra;
- Introdução de dados relativos às diversas inspecções, como a percentagem de cada um dos elementos tipo mais usados em pontes, designados por CoRe (Commonly Recognized) [Thompson, Shepard 2000], em cada um dos níveis de afectação (em escala de 1 a 5);
- Geração de ficheiros de dados de acordo com a NBI;
- Conversão automática da classificação atribuída aos elementos para a classificação (em escala de 0 a 9) do estado do tabuleiro, da superestrutura, da subestrutura e da conduta (itens NBI);
- Cálculo do SR (Sufficiency Ratio) [FHWA 1995] de cada obra, em escala de 0 a 100%;
- Cálculo do Índice de Sanidade (Health Index) [Thompson, Shepard 2000] de cada obra, em escala de 0 a 100%, de acordo com a percentagem de dano de cada elemento, ponderada com o seu peso relativo na estrutura.

![Figura 2.3 - Imagem do módulo de Inventarização do PONTIS](image-url)

2.20
Planeamento dos projectos
- Visualização das necessidades de cada estrutura e atribuição de prioridades relativas entre os vários projectos de cada obra;
- Definição de diversos programas de financiamento, indicação dos respectivos orçamentos e atribuição de prioridades a cada um deles;
- Associação das pontes ou dos trabalhos a realizar nas mesmas a esses programas de financiamento.

Programação
Análise dos cenários correspondentes a diferentes níveis de restrição orçamental e escolha da melhor política de actuação.

Preservação futura
- Previsão das consequências da deterioração no caso de não-intervenção;
- Determinação do impacto de intervenções efectuadas (a cada um dos estados de afectação estão associadas acções correctivas apropriadas que, quando implementadas, significam uma determinada melhoria do nível de qualificação) nas reparações e nos melhoramentos previstos para o futuro;
- Análise de várias estratégias de preservação do património a gerir e selecção do mais baixo rácio custo/benefício.

Resultados
Geração automática de diversos tipos de relatórios, com dados introduzidos e/ou calculados (a partir de algoritmos programados ou a partir de fórmulas indicadas pelo utilizador), acompanhados de vários gráficos para mais fácil interpretação dos mesmos.

Ligaçãocom o exterior
Importação e exportação de dados com outros programas.

Configuração
Configuração do programa de acordo com as necessidades específicas de cada utilizador.
O PONTIS permite que o utilizador inclua regras específicas da política da sua instituição, com diferentes níveis de prioridade. Essas regras poderão ser do tipo: "se for feita a reabilitação do tabuleiro então também deve ser feita a reparação das juntas"; "se o rácio de avaliação de uma obra for inferior a um determinado valor, então é necessária a sua substituição" e "se a ponte foi pintada à menos de 5 anos então as juntas não serão pintadas".

A optimização é feita utilizando uma aproximação do topo para a base e a previsão da evolução da deterioração é feita aplicando o modelo de Markov, com actualização automática dos rácios de deterioração a partir dos registos históricos das inspecções. As matrizes de Markov são construídas considerando as probabilidades de transição entre os vários estados de afectação, de cada elemento, em cada ano, para um determinado período de tempo.

A análise económica efectuada inclui os custos directos e mesmo os indirectos, como os associados a acidentes, à própria utilização, aos desvios necessários e aos tempos de viagem e, sempre que pretendido, faz a sua actualização automática em função das estimativas da inflação. A quantificação dos custos de rotura é feita, para cada elemento, em função das respectivas probabilidades de rotura.

O impacto resultante da variação de certos parâmetros, como por exemplo o orçamento geral ou o atraso/adiamento em certas tarefas, pode ser analisado pelo utilizador que assim poderá determinar as consequências de diferentes níveis de investimento na performance de um sistema de pontes.

2.3.2 BRIDGIT

O BRIDGIT foi desenvolvido nos Estados Unidos da América, nas décadas de 80 e 90, pela Delcan, Inc e com a colaboração da National Engineering Technology Corporation, no âmbito do NCHRP (National Cooperative Highway Research Program). O programa está de acordo com as exigências da FHWA para um sistema de gestão de pontes e permite detectar na NBI (National Bridge Inventory database) os registos similares [Hawk 1999].
Em termos de modelação e potencialidades, é um programa bastante parecido com o PONTIS. A grande diferença entre os dois programas reside no facto do BRIDGIT fazer uma aproximação da base para o topo permitindo por isso analisar cada ponte individualmente, independentemente do seu nível de importância, o que pode ser vantajoso, especialmente para as empresas ou organismos responsáveis por um número restrito de obras. Uma outra diferença é que este programa possibilita a subdivisão das pontes em qualquer número de segmentos, permitindo até considerar separadamente os elementos estruturais e os seus sistemas de protecção - por exemplo no caso de uma guarda metálica pintada, a pintura pode ser analisada independentemente do elemento metálico e depois pode ser considerada a influência do nível de conservação da pintura (protectora) na degradação do metal. Para cada elemento (protegido ou não protegido) e para cada sistema de protecção, é então efectuada uma previsão da deterioração com base no modelo de Markov, que pode ser actualizada com base nos registos que forem sendo realizados ao longo do tempo. Assim, este programa pode também ser usado como complemento a uma análise com o PONTIS, por exemplo para um número restrito de obras em condições estruturais mais deficientes.

Os principais módulos do BRIDGIT são:

Elementos e Sistemas de protecção

- Listagem dos elementos e dos respectivos sistemas de protecção;
- Indicação do tipo de intervenção necessária em cada caso;
- Indicações relativas aos modelos de deterioração.

Tabelas de funcionalidade (para consulta ou alteração do nível de funcionalidade)

Tabelas de custos

Tabelas de conversão (por exemplo para conversão da classificação do programa para a NBI)

A escolha das intervenções a realizar pode ser efectuada tendo em conta regras do tipo "se → então" e efectuando uma optimização de custos e benefícios, com base anual, que permita considerar o atraso em algumas das tarefas. Inicialmente são estimados os custos, directos e indirectos, presentes e futuros, de vários tipos de intervenção. Depois são atribuídas prioridades relativas a cada um deles e finalmente são selecionadas as
Capítulo 2

soluções que possam ser enquadradas no orçamento disponível, para períodos diferentes de tempo. Por fim, é indicado o nível de investimento necessário para superar as deficiências das obras.

2.3.3 Visual/BMS

O Visual/BMS é um sistema de gestão de pontes, conforme indica a sigla BMS (Bridge Management System) da sua designação, desenvolvido nos Estados Unidos da América [Texas Research & Development Inc.], para apoio aos decisores responsáveis pela gestão de um conjunto de pontes integradas numa determinada rede rodoviária.

O programa é capaz de armazenar o grande conjunto de dados associados a uma determinada rede viária, como os respeitantes à sua construção, à sua envolvente, ao tráfego, às inspeções efectuadas e às operações de manutenção ou melhoramento. O processamento dos dados introduzidos no programa é efectuado segundo uma metodologia semelhante à do PONTIS, por aplicação do modelo de Markov, e permite distribuir o orçamento disponível de forma a assegurar os níveis de serviço desejados. A análise pode ser efectuada de acordo com diferentes estratégias de intervenção, por atribuição de prioridades anuais ou por optimização global a longo prazo, e possibilita a indicação dos tipos de actuação mais recomendáveis e do período mais favorável para a sua realização.

2.3.4 BRIDGEview

O BRIDGEview foi criado nos Estados Unidos da América, pela CartéGraph Systems, Inc, com a colaboração das seguintes entidades: Iowa Department of Transportation; West Virginia Department of Highways; Arkansas Department of Transportation; Calhoun-Burns & Associates, Des Moines, IA; Cedar County, IA; US Forest Service, WA e IIW Engineers, Dubuque, IA..

O programa, ilustrado na Figura 2.4, foi desenvolvido com o intuito de apoiar a gestão de pontes e conduitas, de acordo com as directivas da FHWA (Federal Highway Administration) e da NBI (National Bridge Inventory), mas pode também ser usados para outros tipos de estruturas como túneis e edifícios.

2.24
Figura 2.4 – Ecrã do BRIDGEview

Da utilização experimental (por um período gratuito de um mês) da versão 4 do BRIDGEview, verificou-se que a ferramenta permite inventariar um conjunto de obras de arte, calcular o valor do SR (Sufficiency Ratio) de cada uma delas e organizar os dados introduzidos e/ou calculados em relatórios com o formato especificado pelo utilizador. Os seus dados podem ser trocados (importados e exportados) com o do programa PONTIS, anteriormente referido.

2.3.5 BRIDGE1 e BRIDGE2

O BRIDGE1 e o BRIDGE 2 são dois programas desenvolvidos na Europa que, em conjunto, constituem um sistema de gestão de pontes. O BRIDGE1 permite apoiar a fase de inspeção no local da obra e o BRIDGE2 permite efectuar uma avaliação posterior da situação e ajudar o utilizador a escolher a estratégia de intervenção mais adaptada à situação encontrada.

No BRIDGE1 é possível introduzir/rever a informação relativa à obra a inspecionar (como por exemplo secções transversais) e consultar informações técnicas de apoio à identificação e localização das anomalias. Este módulo dispõe de listagens de elementos,
de materiais, de danos e de listas de defeitos associados a cada um deles. O BRIDGE1 dispõe ainda de correlações com as suas possíveis causas, com os métodos de diagnóstico apropriados e com as técnicas de reparação aplicáveis. Essas correlações são expressas por meio de matrizes em que cada linha representa um defeito e cada coluna representa uma possível causa, um método de diagnóstico, ou uma técnica de reparação. Nessas matrizes os valores indicados classificam os respectivos níveis de interdependência em “alto” (2), “baixo” (1) e “inexistente” (0) [Brito et al. 1997].

O BRIDGE2 inclui a base de dados e o sistema de decisão. Na base de dados podem ser criados novos registos e editados os existentes, enquanto que no sistema de decisão se podem analisar os resultados das inspecções, estimar índices de fiabilidade, agendar as próximas inspecções, planear trabalhos e estimar os respectivos custos [Thoft-Cristensen 1999]. O BRIDGE2 é constituído pelos três seguintes sub-módulos, respectivamente de apoio à definição de estratégias de:

Inspeção – BRIDGE2(I)
Em função dos danos verificados, é efectuada a determinação da probabilidade de rotura, com base em métodos estocásticos, e caso ela seja superior a um determinado valor pré-definido é automaticamente indicado que a inspecção deve ser realizada no imediato. Para os restantes casos a inspecção deverá ser realizada de acordo com a periodicidade adoptada. Neste módulo é ainda possível consultar a informação genérica sobre as pontes arquivadas em base de dados, como por exemplo as suas secções.

Manutenção e Pequenas Reparações – BRIDGE2(M)
A classificação do dado é efectuada neste módulo em função da urgência de reparação, da importância da estrutura e do volume de tráfego afectado pela mesma, de forma a proceder à sua listagem por ordem de prioridades. Neste módulo são ainda dadas informações sobre técnicas de reparação possíveis e, a partir da introdução prévia de custos unitários, é possível estimar o investimento necessário para a realização das mesmas.

Reparação e Reabilitação – BRIDGE2(R)
Para apoiar o utilizador nos casos em que são necessários trabalhos de reparação estrutural, são suscitadas algumas perguntas com vista a melhor caracterizar o
cenário em questão e a partir daí apresentar recomendações quanto a técnicas de reparação/reabilitação, dar indicações relativamente ao instante de tempo mais apropriado para as realizar e estimar o número de reparações que serão necessárias no restante tempo de vida útil da ponte. A seleção entre as várias técnicas de intervenção possíveis pode ser feita tentando maximizar a razão custo/benefício e tentando minimizar o número de reparações necessárias no restante tempo de vida útil. De referir ainda que em 1997 [Brito 1997], este submódulo só permitia uma análise obra a obra embora fosse intenção futura o seu desenvolvimento de forma a permitir efectuar uma optimização global de um sistema de obras.

2.3.6 GOA – Gestão de Obras de Arte

O GOA tem uma estrutura modular que permite, respectivamente para cada um dos seus módulos, o seguinte [Mendonça 2002]:

- fazer o inventário dos dados gerais de um ou mais parques de obras de arte;
- registar informação relativa às inspecções principais, como o estado de conservação e o estado de manutenção de 15 componentes da estrutura (de acordo com o indicado pelo IEP [ICERR 2001]), a extensão dos danos, a data ideal para efectuar algumas reparações necessárias, a estimativa de custos desses trabalhos (sendo apenas necessária a introdução das quantidades, uma vez que o programa dispõe de uma base de dados com tipos de reparações e respectivos custos unitários), a data da inspeção seguinte, as necessidades de realização de inspeções especiais ou de determinados ensaios de diagnóstico, bem como as eventuais necessidades de reabilitação (permitindo anexar aos registos efectuados fotografias, desenhos e outros documentos em formato digital);
- listar as obras de acordo com o seu estado de conservação;
- estimar os custos de manutenção e reparação do sistema de obras, para um horizonte correspondente ao intervalo de tempo entre inspecções principais;

- efectuar um ajuste orçamental de forma a restringir a verba ao orçamento disponível pelo dono de obra, deixando os trabalhos que não forem enquadráveis (a selecionar por critérios como o tipo de obra, a zona ou as vias), por exemplo, para fundos de financiamento do ano seguinte;

- uma interligação com um SIG (Sistema de Informação Geográfica), com vantagens por exemplo na localização das obras, na caracterização geográfica da sua envolvente e na definição de corredores de emergência;

- verificar a viabilidade de circulação de veículos com determinadas características especiais (grande largura ou altura, carga elevada, etc.) por determinados itinerários;

- registar todas as alterações efectuadas na base de dados do programa e efectuar consultas, a partir de determinados critérios de procura;

- ajustar os investimentos (transferindo trabalhos de um ano para outro) e planejar as intervenções a realizar num determinado intervalo de anos.

Mendonça [2002] refere ainda que um dos desenvolvimentos futuros do GOA passará pela inclusão de um módulo de gestão de garantias de componentes das obras.

2.3.7 DAMBRO

O DAMBRO é um sistema de gestão desenvolvido na Dinamarca pela RAMBOLL. O programa está especialmente vocacionado para pontes e túneis, mas pode também ser aplicado a outro tipo de obras, como por exemplo edifícios, estradas, condutas e instalações eléctricas ou mecânicas. O programa está a ser usado nesse país desde 1985 e os direitos para a sua utilização na gestão de pontes na Dinamarca foram já adquiridos pela Direcção de Estradas Dinamarquenas. É de referir que pelo facto de o programa ter sido desenvolvido com o nome de trabalho "RAMBRO", algumas referências bibliográficas são feitas com essa designação.

Atualmente existe também o DAMBROweb, que é assim designado por ter um funcionamento completo na World Wide Web. A base de dados e o programa do
DAMBROweb estão num servidor da RAMBOLL, na Dinamarca, e podem ser acedidos em qualquer parte do mundo através de um login e de uma password de entrada atribuída pelo administrador do sistema (com diferentes níveis de permissão de acesso e modificação, de acordo com a função do utilizador). O programa permite arquivar informação muito diversa, em diferentes formatos electrónicos, como documentos de texto em Word, folhas de cálculo em Excel, desenhos em Autocad e fotografias ou documentos digitalizados. Destas características, resultam importantes vantagens como [Lassen 2000]:

- facilidade de consulta da informação e acesso em diversos pontos do mundo;
- possibilidade de atribuição de diferentes níveis de permissão de utilização;
- divulgação imediata das actualizações da bases de dados, efectuadas por qualquer um dos utilizadores;
- compatibilidade com diversos sistemas operativos (Unix, Windows, Mac, etc.), uma vez que não implica a instalação de um programa;
- actualização automática da versão do software, sempre que for desenvolvido um upgrade;

mas também alguns inconvenientes devidos a:

- acesso e velocidade de utilização dependentes do servidor central e das condições de ligação à internet;
- lentidão de utilização devido ao elevado volume de informação;
- agravada lentidão de utilização devido aos sistemas de protecção incorporados para conferir alguma segurança da informação;
- risco de existência de incorreções ou inverdades na informação das bases de dados, devido à possibilidade de ela ser introduzida por várias pessoas;
- riscos de perda de dados e de quebra de sigilo da informação arquivada.

Os seus principais módulos são três e reportam às actividades de inventariação, inspecção e gestão. Na inventariação é efectuado o arquivo dos dados técnicos e administrativos de cada obra e são discriminadas as várias componentes da estrutura. Depois, em cada inspecção realizada, são introduzidas no programa as classificações atribuídas a cada uma das obras ou das suas componentes, numa escala de 0 (não danificado) a 5 (rotura), bem como breves descrições dos danos verificados e fotografias.
que os iludem. Ainda na sequência das inspeções, podem ser arquivadas no programa as listas dos trabalhos a realizar em cada uma das estruturas (que caso o administrador o entenda, podem ser divulgadas aos construtores) e do respectivo estado de implementação (em concurso, adjudicado, em execução ou executado).

Uma vez que só uma pequena percentagem dos administradores de sistemas de obras de arte usam elaborados modelos de previsão da deterioração e complexos algoritmos de optimização, no DANDROweb foi adoptada uma abordagem simplificada de gestão, apenas com atribuição de prioridades relativas entre os trabalhos a executar [Lassen 2003]. A decisão fica assim a cargo do gestor a quem o programa dá indicações sobre a lista de trabalhos a realizar, o montante gasto nos trabalhos realizados, o montante previsto para os trabalhos já adjudicados ou em execução e ainda a listagem das intervenções que podem ainda ser realizadas com a restante verba do orçamento.

2.3.8 J-BMS

O J-BMS, com uma designação correspondente à abreviatura de *Japanese Bridge Management System*, é um sistema de gestão de pontes especialmente vocacionado para estruturas em betão, que foi desenvolvido no Japão.

Segundo Miyamoto et al. [2001], o J-BMS permite avaliar a performance de pontes existentes, prever o processo de deterioração de cada um dos seus elementos e a partir daí sugerir estratégias de reparação ou reforço que se enquadrem nos orçamentos disponíveis.

O programa é constituído por dois módulos principais [Pastor]. No primeiro desses módulos é feita a determinação do estado das pontes a partir do estado das suas principais componentes, utilizando o BREX (*Bridge Rating Expert System*), resultando desse módulo uma classificação (em escala de 0 a 100) que tem em conta a influência de diversos factores no nível de resposta da obra sob variados pontos de vista (estético, ambiental, funcional, etc.). Em seguida, caso o valor estimado para o tempo restante de vida útil da obra (calculado de acordo com um determinado modelo de deterioração) seja inferior ao esperado, é estudado um plano de manutenção, a partir das listas de reparações necessárias, das respectivas urgências relativas, das tabelas de custos unitários e das indicações sobre as disponibilidades financeiras. Após estimar os efeitos.

2.30
resultantes de cada tipo de reparação ou reforço, são usados algoritmos genéticos
(genetic algorithms), aplicando técnicas estocásticas de procura, para encontrar a solução
óptima, com base numa minimização de custos e maximização de qualidade. Para melhor
evidenciar as diferenças entre medidas de reparação e de reforço e para traduzir as suas
necessidades, são considerados, respectivamente, índices calculados em função da
capacidade de carga da obra e da sua durabilidade.

2.3.9 MOST

O MOST é um sistema de gestão de pontes, e estruturas afins (como túneis, passagens
de peões, etc.), desenvolvido para a cidade de Moscovo pela empresa russa Promos, Ltd.
e pela empresa norte americana AGA, Engineering & Trading, Inc., com a colaboração da
Cambridge Systematics e da Ove Arup Partners, Ltd. [Kuznetsov et al. 2003]. O seu
desenvolvimento e a fase experimental de utilização decorreram nos anos de 2001 e
2002.

O MOST permite, em linhas gerais, efectuar a recolha de informação de uma forma
uniformizada, prever alterações do estado das estruturas ao longo do tempo; estabelecer
prioridades entre as actividades de manutenção, reparação e reabilitação; estimar os
custos necessários para as acções de manutenção futuras (tendo em conta as limitações
orgamentais) e calcular a capacidade de carga das estruturas (tendo em conta os seus
defeitos).

Este programa dispõe de um catálogo de elementos estruturais e da indicação da sua
correspondência com:

- Modelos de deterioração;
- Uma escala de cinco níveis de classificação do estado de afectação;
- Listas de procedimentos de reparação e respectivos preços unitários.

A partir dos desenhos da obra o programa está apto a estabelecer, automaticamente,
correspondências bidireccionais entre os desenhos da obra e os elementos estruturais
catalogados.
Kuznetsov et al. [2003] fazem ainda referência a várias outras ferramentas do programa, por exemplo, para acompanhamento da introdução de informação e detecção automática de erros; procura de registos de acordo com variados critérios; aquisição em contínuo dos dados de um sistema de monitorização; arquivo de fotografias; interligação com o AutoCad; navegação em elementos cartográficos; modelação numérica das estruturas (com o módulo STRAP de cálculo com elementos finitos), tendo em conta os danos verificados, e ainda geração automática de relatórios.

O MOST permite calcular o Índice de Sanidade (Health Index), fazer um prognóstico técnico do estado das estruturas e estimar e optimizar as necessidades orçamentais (com indicadores económicos calculados com base em preços correntes, mas que também podem ter em conta uma determinada inflação). O planeamento pode ser elaborado a curto ou a longo prazo, para todas as obras, ou só para algumas delas, ou mesmo só para alguns elementos. O processamento dos dados é feito de forma interactiva, ou seja, permitindo que o utilizador altere alguns dos coeficientes e critérios considerados.

2.3.10 KUBA-MS

O KUBA-MS é um sistema de gestão de estruturas rodoviárias (pontes, condutas, muros de suporte, etc.) em desenvolvimento na Suiça desde 1992. O seu nome tem origem na designação em alemão de estruturas rodoviárias (KunstBAuten) e de sistema de gestão (ManagementSystem), surgindo na sequência de um anterior programa desenvolvido no início de 1987, designado por KUBA-DB, que permitia apenas a sua inventariação em base de dados (que em alemão se designa por DatenBank) [Pastor; Ludescher, Hajdin 1999; Hajdin 2002].

Este programa foi desenvolvido tendo como ideia de base o PONTIS, pelo que há bastantes similaridades entre ambos. As principais fases e potencialidades do KUBA-MS são:

- Arquivar dados relativos a:
 - estrutura (localização, propriedades geométricas, etc.);
 - elementos (tipo de elemento, tipo de construção, material, etc.);
- segmentos de elementos (função estrutural, localização, tamanho, exposição ambiental, classificação do estado de afectação, em escala de 1 a 5, e do tipo, da severidade e da extensão dos danos, etc.);
- tráfego associado a(s) rodovia(s) associada(s) a cada obra;
 - Prognóstico do estado das estruturas e comparação das intervenções necessárias de manutenção, reparação ou reabilitação, em função da sua eficácia e dos respectivos custos (o software dispõe de uma lista de procedimentos, com indicação dos respectivos custos e graus de eficiência);
 - Identificar as acções de melhoramento (acções desejáveis) que possam ser implementadas nas obras que não cumpram as exigências funcionais e quantificar os respectivos benefícios;
 - Atribuir prioridades a cada uma das intervenções listadas, abordando de forma diferenciada as intervenções necessárias e as intervenções desejáveis, em função de variáveis económicas (que permitem incluir os custos indirectos);
 - Determinar os efeitos de eventuais desvios da estratégia considerada ideal (devidos a restrições orçamentais ou de outro tipo), em termos económicos ou de segurança estrutural;
 - Estimar as necessidades financeiras a curto e a médio prazo, a partir das previsões da evolução do estado das estruturas e do resultado de optimização das acções a realizar em cada uma delas.

A previsão da evolução do estado da estrutura é feita probabilisticamente através do modelo de Markov, associando os processos de deterioração aos materiais, e não aos elementos, de forma a simplificar a análise. As matrizes de Markov vão sendo actualizadas em função da análise estatística das condições que vão sendo verificadas nas inspecções, como que por “auto-aprendizagem”, e podem ser ainda ajustadas pelo utilizador de forma a considerar diferentes graus de vulnerabilidade dos vários segmentos. Esse ajuste pode ser efectuado por associação, a cada segmento, de um indicador de influência correspondente a uma deterioração rápida, moderada ou lenta (conforme os defeitos particulares desses segmentos e a sua exposição aos agentes agressores), formando assim uma matriz que será adicionada à de Markov [Ludescher, Hajdin 1999].
2.3.11 Sistema Canadiano

No Canadá, seis municípios da zona oeste do país (Calgary, Edmonton, Lethbridge, Regina, Saskatoon, Winnipeg), desenvolveram um sistema de gestão de pontes e condutas hidráulicas, especialmente vocacionado para parques de obras de pequena ou média dimensão [Kriviak 1999].

A inventariação é feita em dois módulos diferentes: o módulo estático e o módulo dinâmico. No primeiro são arquivados os dados que em princípio não sofrerão alterações e no segundo é feita, a partir da informação recolhida nas inspecções, a classificação de cada uma das componentes, numa escala de 1 (muito boas condições) a 9 (em rotura). Essa classificação pode ser feita por indicação da percentagem associada a cada um dos estados ou por indicação do estádio médio e do estádio mais desfavorável.

Caso sejam introduzidos todos os dados necessários ao cálculo dos parâmetros de classificação [FHWA 1995], eles são automaticamente calculados, caso contrário, podem ser introduzidos directamente pelo utilizador.

Em função do estado dos elementos da estrutura o programa indica o tipo de acção a implementar (manutenção, reparação superficial ou profunda, etc.) e, após introdução de modelos bilineares de degradação e dos valores correspondentes aos custos unitários de várias tarefas, o programa faz uma optimização do plano de preservação tendo em vista a minimização dos custos de preservação (apenas os custos directos) a longo prazo. O resultado final pode ainda ser ajustado pelo utilizador a partir de regras do tipo "se → então".

2.3.12 Sistema Finlandês

O sistema de gestão de pontes finlandês tem vindo a ser desenvolvido desde 1986 [Söderqvist, Veijola 1999]. O sistema arquiva toda a informação relativa à obra em geral (dados administrativos, estruturais e funcionais) e ao estado da estrutura (danos verificados e correspondentes localização, extensão, consequências na capacidade de carga, urgência de reparação e respectivos custos) em cada uma das inspecções efectuadas. A partir desses dados é então efectuada uma previsão do estado da obra
para instantes futuros, usando o modelo de Markov, ao nível do sistema de obras, e uma abordagem determinística, ao nível de cada projecto.

Após cada inspecção, é possível calcular para cada ponte um índice de reparação e um índice de reabilitação e reconstrução. O primeiro fornece indicações sobre a urgência e as necessidades de reparação e o segundo sobre as deficiências funcionais.

Por forma a estimar as necessidades de preservação futuras de cada uma das obras, o sistema considera modelos de deterioração para cada parte estrutural, desenvolvidos a partir dos resultados de um estudo pormenorizado (incluindo ensaios in situ e laboratoriais) do comportamento de um conjunto de 120 pontes finlandesas, de diferentes características (tipo, materiais, idade e condições), ao longo do tempo [Pastor].

Segundo referido por Söderqvist e Veijola [1999], é também intenção adaptar o índice de reparação com índices de importância de cada elemento estrutural, de forma a considerar a gravidade de um dano específico em comparação com outros danos de outros elementos da mesma obra.

2.3.13 Sistema Alemão

O sistema de gestão alemão está ainda em fase de desenvolvimento e Haardt [2002] prevê a sua conclusão para o ano de 2005. Os seus objectivos são a possibilidade de visualização do estado corrente das estruturas de um determinado parque de obras de arte, de previsão das suas necessidades orçamentais e de uma optimização da estratégia de intervenção a longo prazo.

A partir da informação das inspecções, é definida, para cada obra, a altura ideal para realização das intervenções necessárias, tendo em conta um modelo de previsão determinístico aplicado a cada elemento da estrutura. O sistema inclui catálogos com os tipos de medidas que podem ser tomadas (de acordo com a regulamentação alemã) e respectivas consequências em termos de melhoria da condição da estrutura, para além de listagens de custos, de forma a permitir fazer, depois de uma análise individual de cada obra, a optimização do planeamento das acções a realizar. Essa optimização deverá ser efectuada tendo em conta as restrições orçamentais e minimizando o rácio custo/benefício do conjunto de obras.
Capítulo 2

2.3.14 IBMS

Na Índia, há mais de uma década, tem vindo a ser desenvolvido um sistema de gestão designado por IBMS, cujos principais objectivos são permitir organizar e analisar informação relacionada com a manutenção e beneficiação de pontes rodoviárias [Sinha et al. 1999].

A partir de uma extensa base de dados, com informação das estruturas e das vias rodoviárias que as integram, o programa faz recomendações sobre várias alternativas de intervenção, avalia os seus custos e optimiza a sua distribuições pelos vários fundos disponíveis.

A selecção dos projectos [Woods 1994] pode ser efectuada a partir de um dos seguintes quatro módulos:

Árvore de decisão
A escolha do tipo de actuação é efectuada a partir de dados relativos ao estado da estrutura e ao tipo de utilização da mesma. A previsão da evolução do estado das obras, caso não sejam implementadas medidas de beneficiação estrutural ou funcional, é efectuada a partir do modelo de Markov, em que a actualização das probabilidades de transição do estado de cada um dos elementos é efectuada de forma Baysiana.

Custos indirectos

Definição de prioridades
Atribuição de prioridades relativas em função da segurança da obra, da sua importância social, do seu estado actual e dos custos de preservação.

Optimização
Programação das actividades tendo em conta restrições políticas e orçamentais.

2.3.15 Sistema Polaco

A Polónia tem desde 1989 um sistema de gestão de pontes [Pastor]. Segundo Hutnik et al. [1994], essa gestão é feita a três níveis (país, regiões e unidades de manutenção de estradas), com um sistema modular.
O primeiro e principal módulo sistema de gestão de pontes polaco (que nessa língua se designa por System Gospodarki Mostowej), é a base de dados, cuja organização é discutida por Cichon [1994]. O segundo módulo do sistema inclui um catálogo de trabalhos e um catálogo de preços unitários. De acordo com os danos detectados na inspeção, no terceiro módulo é feita a classificação de cada um dos elementos, em escala de 0 a 5, e é estabelecida uma associação entre eles e os trabalhos e os preços do segundo módulo. Em função desses valores é depois calculado um rácio de classificação da obra e são atribuídas prioridades relativas a cada um dos trabalhos para planear as intervenções tendo em conta a urgência e os custos das várias acções. No quarto módulo é feita a distribuição dos trabalhos a efectuar pelos fundos de financiamento, tendo em conta diversos factores técnicos e económicos (custos directos e indirectos, durabilidade das obras, influência do tráfego, restrições particulares, etc.), em dois sub-módulos: um relativo às acções de manutenção e outro relativo às acções de reparação. O quinto módulo está preparado para organizar o processo de concurso dos trabalhos a realizar e, por último, o sexto módulo, permite analisar a capacidade da obra suportar veículos com cargas especiais.

2.3.16 Sistema Holandês

Na Holanda foi implementado um sistema de gestão que permite optimizar o nível de investimento anual em actividades de manutenção da rede rodoviária, de forma a evitar que a despesa seja excessiva (conduzindo à realização de intervenções dispensáveis, para gastar a verba enquanto disponível) ou insuficiente (implicando uma diminuição do nível de segurança e funcionalidade) [Bakker et al. 2002].

Para isso, é feita uma primeira estimativa, a longo prazo, das necessidades e dos custos de manutenção, com base em listas de preços unitários e em indicações regulamentares sobre a periodicidade desses trabalhos. Depois, 3 a 5 anos antes da data planeada para cada intervenção, a sua realização tem que ser confirmada e justificada pelos técnicos, com base em inspeções a realizar de uma forma padronizada (para garantir alguma homogeneidade da informação) e, caso a estimativa orçamental seja insuficiente, têm que ser atribuídas prioridades relativas de cada tipo de actuação. Finalmente, cerca de 2 anos antes da realização da obra de manutenção, é feita a sua orçamentação e em função disso é decidida a sua implementação ou não.
2.3.17 SIGE

O SIGE (Sistema de Gestion de Estructuras), ilustrado na Figura 2. 5, é um programa espanhol que foi criado pela empresa Geocisa para facilitar as tarefas de gestão de estruturas como pontes, monumentos e mesmo edifício [Geocisa].

![Figura 2. 5 – Imagem do programa SIGE [Geocisa]](image)

O programa faz o arquivo dos dados gerais das obras e dos dados recolhidos nas inspecções, para, a partir deles, fazer uma avaliação do seu estado, identificar e escolher (segundo critérios técnicos e económicos) as acções a implementar e estabelecer prioridades relativas para cada uma delas. Depois, estabelecidos os prazos máximos para a realização das intervenções seleccionadas, a actuação é programada de forma a assegurar um determinado nível de serviço.

2.3.18 SMIS

O SMIS (Structures Management Information System) é um sistema de gestão de estruturas rodoviárias, como pontes, túneis, condutas e muros de suporte, implementado em Inglaterra desde 1999 [Hardy 2002]. O programa funciona via Internet e possibilita diferentes níveis de acesso conforme a função desempenhada pelo utilizador.
O SMIS organiza a informação relativa a cada uma das obras (informação geral e informação recolhida em inspecções) de forma a facilitar ao técnico a sua análise e apoiar assim o processo de decisão.

As acções de preservação são listadas por ordem das prioridades que lhes são atribuídas de acordo com:

- A probabilidade de uma determinado cenário vir a ocorrer, caso um determinado problema não seja resolvido, conjuntamente com as consequências que lhe estão associadas;
- Os respectivos níveis de segurança, funcionalidade, sustentabilidade e impacto ambiental.

Depois essas acções são combinadas em projectos relativos a uma ou mais obras e é feita a comparação dos custos directos e indirectos de cada estratégia de actuação possível.

O programa dispõe de mecanismos de auto-verificação dos dados que permitem, por exemplo, assegurar que a um determinado gasto corresponde uma melhoria do estado das obras.

2.3.19 Sistema Francês

Em França, a concessionária SFTRF gere as obras de arte da sua rede rodoviária, com base nas inspecções, a partir de uma ferramenta informática descrita por Wit et al. [2003].

A base de dados do programa permite arquivar informação de vários tipos em formato electrónico (desenhos, documentos digitalizados, fotografias, etc.) e está preparada para apoiar o utilizador a preparar as inspecções, arquivar os dados nelas recolhidos, preparar os seus relatórios, analisar a informação e programar/orçamentar as acções de preservação. Para isso, o software dispõe de várias check-lists para cada elemento estrutural, listas com critérios de classificação, ferramentas de apoio ao diagnóstico, catálogos com soluções tipo e correspondentes custos e tempos de realização.
Wit et al. [2003] referem ainda a possibilidade de realização de inspecções com base em fotografias digitais de grande qualidade. A partir de fotografias, com as devidas correções, podem ser feitas medições de geometria e podem ser analisados alguns danos. Essa técnica é sobretudo de grande interesse para as obras de difícil acessibilidade.

2.3.20 Sistema Sueco

No sistema de gestão adoptado pelos suecos há um primeiro módulo independente para as acções de manutenções consideradas de rotina (manutenção preventiva e pequenas correções) e um segundo para as acções de intervenção mais profunda, designado por SAFE BRO [Pastor]. O sistema inclui bases de dados com soluções tipo e dispositivos de controlo da informação arquivada. A gestão é efectuada com base numa interdisciplinaridade entre o planeamento e o controlo da implementação das intervenções.

2.4 Considerações finais sobre os sistemas de gestão

A importância do património existente e os elevados custos necessários à sua preservação justificam a implementação de um sistema de gestão que permita aos administradores de um parque de obras de arte assegurar a segurança e funcionalidade das obras, optimizando os recursos económicos e humanos disponíveis. O planeamento das intervenções que devem ser realizadas ao longo da vida útil de um conjunto de obras de arte exige a tomada de decisões que envolvem a análise de um grande volume de informação, de natureza diversificada, pelo que é importante que esses sistemas trabalhem esses dados, tendo em conta as restrições existentes, de forma a tornar mais clara a percepção das importâncias relativas de cada um dos trabalhos a executar.

Na maioria dos países e das instituições, as decisões sobre os trabalhos de manutenção ou reparação, a realizar nas estruturas existentes, são ainda muitas vezes tomadas tendo como base apenas as considerações dos técnicos e dos administradores envolvidos, sem apoio de qualquer programa ou metodologia que sistematize e optimize essa gestão. No entanto, as claras vantagens de implementação de um sistema específico de apoio à
gestão de obras de arte, nomeadamente de pontes, têm vindo a ser cada vez mais reconhecidas e têm vindo a aparecer cada vez mais ferramentas informatizadas com essa função.

Algumas dessas ferramentas encontram-se já bastante desenvolvidas e as suas potencialidades abrangem várias vertentes dessa gestão, por vezes incluindo modelos avançados que permitem fazer uma optimização bastante apurada da programação das actividades a longo prazo, como é o caso de alguns dos programas anteriormente referidos, como por exemplo o PONTIS e o BRIDGIT. Por outro lado, e dada a necessidade de esses sistemas de gestão serem adaptados às particularidades de cada parque de obras a gerir, que vão sendo diferentes de entidade para entidade e ainda mais de país para país, são vários os programas utilizados em vários pontos do mundo, tendo mesmo diferentes tipos de abordagem da problemática e estando em variadas fases de desenvolvimento e implementação.

Uma das características verificadas na generalidade dos sistemas referidos é a sua estrutura modular. A sua adopção tem a vantagem de permitir um tratamento mais independente de cada uma das fases da abrangente tarefa de gestão de obras de arte, possibilitando mesmo uma utilização parcial da ferramenta em função das necessidades do utilizador.

Na Tabela 2. 2 é apresentado um resumo esquemático com as principais potencialidades dos programas referidos anteriormente, no que respeita a alguns dos principais módulos comuns à generalidade dessas ferramentas.

Apenas se encontram assinaladas na tabela as características a que a informação recolhida sobre os programas faz explicitamente referência ou aquelas que foram verificadas na sua utilização (com um “✓” as incluídas e com um “-“ as não incluídas). Assim, as quadrículas em branco significam que não foi encontrada informação esclarecedora sobre a sua existência no programa.
Tabela 2.2 – Principais características dos sistemas de gestão referidos

<table>
<thead>
<tr>
<th></th>
<th>PONITS</th>
<th>DIOBIT</th>
<th>BGIT (USA)</th>
<th>VisualBMS</th>
<th>BRIDGEview (USA)</th>
<th>BRIDGE2 (Europe)</th>
<th>GOA</th>
<th>GOVII</th>
<th>DIOBIT (Heinrich)</th>
<th>JBMS</th>
<th>MOST</th>
<th>MIGS</th>
<th>MIBS</th>
<th>Finland</th>
<th>(Finland)</th>
<th>(Austria)</th>
<th>(Poland)</th>
<th>(Italy)</th>
<th>(Spain)</th>
<th>(Switzerland)</th>
<th>(France)</th>
<th>(Saudia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventarização</td>
<td></td>
</tr>
<tr>
<td>Itens segundo NBI</td>
<td>√</td>
<td>√</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Classificação dom (escala)</td>
<td></td>
</tr>
<tr>
<td>Aparência dos dados</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Vulnerabilidade/urgência correcção</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Estado de afeção</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Menor elemento classificado</td>
<td></td>
</tr>
<tr>
<td>Obra</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Principais partes da estrutura</td>
<td>√</td>
<td>√</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Elementos</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Componentes de elementos</td>
<td>-</td>
<td>√</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Outras classificações</td>
<td></td>
</tr>
<tr>
<td>Importância histórico-cultural</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Importância de utilização</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Parâmetros calculados</td>
<td></td>
</tr>
<tr>
<td>REG – Rácio Eficiência Global</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>IS – Índice de Sanidade</td>
<td>√</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Tipo de actuação planeada</td>
<td></td>
</tr>
<tr>
<td>Manutenção</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Reparação/Reforço/Reabilitação</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Custos/ Benefícios</td>
<td></td>
</tr>
<tr>
<td>Directos</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Indiretos</td>
<td>√</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Previsão da deterioração</td>
<td></td>
</tr>
<tr>
<td>Modelo determinístico</td>
<td>√</td>
<td>-</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Modelo probabilístico</td>
<td>√</td>
<td>-</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Metodologias de gestão</td>
<td></td>
</tr>
<tr>
<td>Do topo para a base</td>
<td>√</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Da base para o topo</td>
<td>-</td>
<td>√</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Optimização</td>
<td></td>
</tr>
<tr>
<td>Custos</td>
<td>√</td>
<td>√</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Rácio custo/benefício</td>
<td>√</td>
<td>√</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Índice de Fiabilidade</td>
<td>√</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Restante tempo de vida útil</td>
<td>√</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Ajuste orçamental</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
</tbody>
</table>

2.42
Como se pode verificar pela análise da Tabela 2.2, as principais diferenças entre os programas referidos verificam-se essencialmente aos seguintes níveis:

- **Classificação das obras**

 Relativamente ao estado da sua estrutura, as classificações são efectuadas com base em diferentes critérios e em variadas escalas. Para além disso, as obras nem sempre são classificadas de acordo com a sua importância histórico-cultural ou com a sua importância social.

- **Previsão da evolução do estado das estruturas para instantes de tempo futuros**

 Os modelos de previsão da evolução do estado das estruturas são desenvolvidos com diversas bases teóricas e vão sendo aplicados a variadas componentes da estrutura, numa abordagem determinística ou probabilística, considerando ou não uma actualização em função dos resultados históricos.

- **Análise económica**

 A contabilização dos custos e benefícios de cada tipo de intervenção nem sempre tem em conta as parcelas relativas às consequências económicas das alterações de funcionamento.

Em conclusão refira-se que assim como é verdade que os sistemas de gestão de obras de arte devem estar adaptados às especificidades do parque a gerir, também é importante que se convirjam esforços no sentido de utilizar pelo menos os mesmos modelos base. Dessa forma será mais fácil efectuar comparações. Para além disso, será possível concentrar os esforços na melhoria das ferramentas existentes e evitar que se dispersem no desenvolvimento de diversas ferramentas informáticas. Exemplo disso é o projecto de trabalho BRIME, implementado pelo FEHRL (Forum of European National Highway Research Laboratories) nos anos de 1998 e 1999, que integra seis países da Europa: Reino Unido, Espanha, Alemanha, França, Noruega e Eslovénia. O intuito do projecto é estudar o "estado da arte" da gestão de pontes e esquematizar uma ferramenta a desenvolver para toda a rede rodoviária europeia. No âmbito desse projecto foram desenvolvidas várias publicações de grande importância nesse sentido [BRIME - Bridge Management in Europe].

2.43
Paralelamente, será ainda importante que se desenvolva, também de forma global, regulamentação que normalize a própria inspecção das obras, a sua forma de avaliação e também os vários tipos de intervenções que possam ser realizadas nas estruturas existentes.

Finalmente, importa destacar que o que está menos desenvolvido nos sistemas de gestão de obras de arte são os modelos de previsão da deterioração das estruturas ao longo do tempo, pelo facto de serem escassos os registos históricos homogeneizados do estado de uma mesma estrutura em diferentes inspecções. Assim, agora que se começam a implementar sistemas de registo mais sistematizados, importa desenvolver trabalhos de investigação que ajudem a conhecer melhor a degradação dos materiais e a forma de prever com menos incertezas o comportamento das pontes ao longo das suas vidas.
CAPÍTULO 3

RECOLHA E ANÁLISE DE INFORMAÇÃO

A gestão de um sistema de obras de arte, conforme referido no capítulo anterior, passa primeiramente pela recolha e análise de um vasto volume de informação, pelo que este capítulo será especialmente dedicado a esse assunto.

Essa informação deve incluir dados de natureza técnica e administrativa, relativos a cada uma das obras, em particular, e ao conjunto, em geral, para que a partir deles seja possível avaliar o estado dessas estruturas e decidir sobre as intervenções a efectuar ao longo das suas vidas úteis.

Esses dados são assim a principal premissa da situação a optimizar, devendo ser suficientes para constituir as variáveis e as restrições do problema de maximização do tempo de vida útil da obra e do rácio custo/benefício de todas as intervenções. Por essa razão, o sucesso de todo o processo de gestão é dependente, em primeiro lugar, da informação reunida.

No primeiro ponto deste capítulo será feita referência aos principais dados necessários à gestão de pontes rodoviárias e depois serão abordadas técnicas para a sua recolha. Por último, serão tecidas algumas considerações sobre a avaliação do estado das estruturas.
3.1 Informação associada a cada obra de arte

Para se avaliar o estado e as necessidades de uma obra de arte, ao longo do tempo, é importante manter organizado um processo onde constem todos os dados necessários à sua identificação e caracterização, tais como:

- Documentos contratuais e projecto inicial (elementos escritos e desenhados);
- Data da construção e, se possível, descrição dos processos construtivos utilizados;
- Localização e caracterização da envolvente;
- Descrição pormenorizada da estrutura (de preferência, incluindo fotografias, esquemas elucidativos e medições efectuadas no local), com referência ao tipo de funcionamento e ao tipo de materiais de cada um dos elementos que a constituem.

Para além desses dados, devem também ser recolhidos e mantidos actualizados vários outros relativos à fase de serviço, de forma a constituir um historial da obra. Essa informação deve fazer referência a aspectos como:

- Datas e projectos de qualquer tipo de intervenção posterior à construção (seja de manutenção, reparação ou reforço);
- Tipo de utilização à data e, quando prevista, também futura (com identificação das solicitações a que a estrutura possa estar sujeita);
- Registos de todas as inspecções, com identificação, caracterização e quantificação das patologias detectadas, bem como a referência às condições de realização da mesma (condicionantes de acesso, condições atmosféricas, etc.);
- Lista de intervenções necessárias (manutenção, reparação, reforço ou reabilitação) e respectivas exigências em termos de:
 - necessidades de mão de obra, equipamento e materiais,
 - condicionantes à sua execução,
 - consequências e custos da sua realização e da sua não realização;
- Estimativa de parâmetros indicativos dos níveis de:
 - segurança estrutural (probabilidade de rotura),
 - importância histórica e socio-política.
A organização desta informação deve ser iniciada, sempre que possível, desde as fases de projecto e execução da obra e ser depois continuada, em fase de exploração, pelas entidades ou instituições encarregues da gestão da obra. A este propósito, Ferreira [2001] destaca a importância da preparação de documentos, desde a concepção e realização da obra, para apoio à fase de exploração. Esses documentos deverão reunir toda a informação específica que possa vir a ser necessária a uma intervenção, como por exemplo a caracterização técnica dos materiais; os desenhos finais em concordância com o executado em obra; a indicação das secções mais esforçadas; um plano de observação, monitorização e manutenção ajustado às particularidades da estrutura; as especificações técnicas de montagem de elementos especiais e os protocolos de controlo de qualidade.

Nos Estados Unidos da América, um dos países com maior número de pontes, para sistematizar a informação a arquivar para o grande conjunto de obras, que constituem a base de dados designada por NBI (National Bridge Inventory), foram criados diversos itens de inventariação [FHWA 1995; Texas Department of Transportation 2002]. Para além da proposta dos itens, são ainda apresentados para alguns deles códigos a atribuir de acordo com os respectivos níveis de classificação, de forma a simplificar o arquivo e possibilitar uma análise comparativa entre diferentes registos. São também apresentadas tabelas de definição dos itens, em função de um determinado conjunto de outros parâmetros, com o objectivo de diminuir o grau de subjectividade da classificação.

Com um propósito semelhante e com vista à elaboração de uma ferramenta informática, este trabalho contemplou também a preparação de uma base de dados. Essa base de dados permite organizar e arquivar o volume de informação associado a um qualquer sistema de pontes em Portugal, facilitando a sua consulta (a partir de qualquer um dos itens arquivados) e manipulação (gerando a partir dos itens introduzidos, outros parâmetros de apoio à gestão). Para o efeito, para cada registo, são reservados mais de uma centena de itens fixos (listados e comentados no Anexo A) e ainda mais 50 itens que podem ser definidos livremente de acordo com as necessidades específicas de cada utilizador. De entre o conjunto de itens adoptados, e de acordo com a filosofia dos itens da NBI, uns servem para catalogar a obra e outros para classificar o seu estado estrutural e funcional (em cada uma das inspecções efectuadas), sendo a sua apresentação efectuada segundo os seguintes temas:

- Identificação (dados gerais de localização);

- Estrutura e materiais (caracterização da estrutura e dos materiais estruturais);
- Idade e utilização (idade e dados relativos ao tráfego e à circulação rodoviária);
- Dados de geometria (principais dimensões);
- Classificação (enquadramento da estrutura);
- Navegação (navegabilidade em cursos de água sobre as pontes);
- Avaliação (avaliação do estado da obra);
- Capacidade de Carga;
- Adequação (resposta a exigências funcionais);
- Inspecção (datas e periodicidades);
- Trabalhos (obras a realizar e quantificação das respectivas quantidades e custos);
- Classificação do IEP [ICERR 2001];
- Entidades (designação do dono de obra, projectista, construtor e fiscalização);
- Itens extraordinários (a definir pelo utilizador, de acordo com as sua eventuais necessidades específicas);
- Resultados (classificação da segurança estrutural, da funcionalidade e da utilidade pública da obra, automaticamente atribuída em função dos restantes dados, por aplicação da metodologia que se descreve no próximo capítulo).

Os códigos de designação e de classificação atribuídos a cada um desses itens (ver Anexos A e B) são iguais aos dos seus correspondentes na NBI, de forma a permitir uma maior uniformidade internacional e a promover comparações entre registos nacionais e estrangeiros. Para os itens de classificação, a catalogar de acordo com as tabelas apresentadas no Anexo B, a avaliação pode ser efectuada de forma global ou a partir de classificações parciais, para cada vão ou para cada sub-elemento. No caso das classificações parciais, deverão depois ser feitas ponderações, de acordo com a respectiva extensão e importância estrutural, para obtenção da nota global. As classificações parciais têm a dupla vantagem de contribuir para a diminuição do grau de subjectividade da classificação e de permitir um registo mais detalhado do estado da obra.

Tendo toda a informação memorizada de forma sistemática, em base de dados, é então possível:
- Avaliar o estado das estruturas e, se possível, efectuar previsões da sua evolução;
- Destacar eventuais riscos existentes;
- Determinar as necessidades em termos de manutenção e reparação;
- Classificar a importância relativa, em termos históricos e socio-políticos, de cada uma das obras.

A partir da análise dessa informação, poderão então ser definidas prioridades relativas de intervenção em cada uma das obras. Essa atribuição de prioridades será depois de grande utilidade para a calendarização das acções de reparação e reforço necessárias, em função das condicionantes existentes e dos níveis de resposta desejados. A forma de processamento e análise dos dados, com vista a servir de apoio a tarefas de decisão no âmbito da gestão de um sistema de pontes, será descrita nos próximos capítulos.

Relativamente à informação inerente a um sistema de gestão de obras de arte importa ainda referir que a ela poderão estar associadas várias incertezas e erros que importa, ao longo de todo o processo, tentar minimizar a partir de inspecções periódicas e de verificações complementares. Conforme referido por Thoft-Cristensen e Nowak [2001], esses erros e incertezas podem ter diversificadas origens como:

- Erros humanos, associados à inexperiência, a falhas de conhecimento ou a deficientes condições fisiológicas dos técnicos, com consequências directas (a nível de projecto ou de execução) ou indirectas (por exemplo explosões de gás nas imediações) no comportamento da obra;
- Variações das cargas (peso de pessoas, acessórios e tráfego) e das características dos materiais (dimensões, resistências, módulos de elasticidade, etc.);
- Fenómenos da natureza como sismos, ventos, elevadas variações diferenciais de temperatura, neve e acumulação de gelo.

Um outro problema associado à obtenção dos dados inerentes a este tipo de gestão é a falta de optimização do próprio processo de recolha, arquivo e consulta da informação. Segundo Sanford et al. [1999], há dados que são recolhidos mas não arquivados,
informação que é recolhida em duplicado, *inputs* e *outputs* de diferentes módulos informáticos que não se encontram automaticamente ligados e que por isso tem que ser várias vezes reintroduzidos, entre outras lacunas. Esses problemas podem implicar gastos adicionais de tempo, espaço de arquivo e recursos humanos, aumentando o custo de todo o processo e diminuindo a fiabilidade de todo o sistema.

Para optimização do arquivo dos dados, pode mesmo ser adoptada uma gestão de toda a informação associada a um sistema de pontes em formato electrónico, digitalizando a imagem dos documentos existentes noutros suportes [Schroff, Nathwani 1991; Leung et al. 1997]. Dessa forma será feita uma optimização do espaço de arquivo, será mais cómoda consulta dos dados e será mais fácil a transmissão dos dados via rede informática.

Em seguida, nos pontos 3.2 a 3.4, será feita uma abordagem sobre a inspecção das obras de arte e a forma de, a partir daí, sistematizar a recolha da informação anteriormente referida e classificar os itens relativos ao estado da estrutura.

3.2 A inspecção

As estruturas devem ser regularmente acompanhadas, ao longo da sua vida útil, por técnicos capazes de identificar sinais de manifestação de alguma patologia ou qualquer outro tipo de alteração, da envelhecida ou da própria obra, que possa de alguma forma vir a afectar o seu desempenho. Esses técnicos devem visitar o local e observar meticulosamente a obra, primeiro visualmente e depois, caso se verifique necessário, com recurso a outros meios de apoio que permitam fazer um correcto diagnóstico do estado da estrutura.

As inspecções devem ser convenientemente preparadas antes da ida para o campo, com base nos elementos do projecto e nos dados das inspecções anteriores. *In loco*, a inspecção deve processar-se de uma forma sistematizada, contemplando toda a estrutura e dando particular enfoque aos elementos críticos e às zonas já anteriormente danificadas.
Ao longo da vida útil de uma obra de arte podem ser realizados diferentes tipos de inspeções, que se podem designar por [Ralls 2002]:

- **Inspeção inicial**: deve ser efectuada por um engenheiro civil, de preferência no início da vida útil da obra, e é a partir dela que é efectuado o primeiro registo da obra, ou seja que é feita a abertura do processo de arquivo (caso as características geométricas da obra sejam desconhecidas, deve fazer-se a sua caracterização);

- **Inspeções de rotina**: a realizar por pessoal qualificado (capaz de caracterizar o estado da estrutura, mas não necessariamente capaz de o interpretar) com base quase exclusivamente na observação visual dos elementos mais acessíveis, de forma a permitir acompanhar a evolução do estado da obra e a melhor preparar as inspeções principais;

- **Inspeções principais**: mais pormenorizadas que as inspeções de rotina e realizadas por um engenheiro civil, eventualmente com recurso a meios especiais de acesso e a ensaios não destrutivos complementares à observação visual;

- **Inspeções especiais**: a realizar na sequência de outras inspeções, sempre que se considerem necessárias, com o intuito de melhor identificar alguma deficiência encontrada, podendo ser por exemplo:
 - inspeções subaquáticas (implicam o recurso a técnicas de sondagem subaquática ou a pessoal especializado em mergulho);
 - inspeções a zonas críticas da estrutura, cuja rotura possa implicar o colapso de toda a obra;

- **Inspeções extraordinárias**: sempre que se verifiquem necessárias, por exemplo:
 - para acompanhamento de algum fenómeno, verificado em elementos considerados críticos, que possa vir a originar um colapso parcial ou global;
 - após algum incidente que possa afectar a obra, como sismos, colisões acidentais, fogos, cheias, derrocadas e eventuais alterações da envolvente.
Relativamente à periodicidade, verifica-se que há um razoável consenso de que as inspecções de rotina devem ser realizadas com intervalos de 1 a 2 anos e as principais com uma periodicidade próxima dos 5 anos. A título de exemplo, refira-se que:

- Um técnico do IEP [Jorge 2003], indica uma periodicidade anual para as inspecções de rotina e de 3 a 5 anos para as inspecções principais;

- Ralls [2002] aponta um intervalo de 2 anos entre inspecções de rotina e refere um período de 5 anos entre inspecções principais;

- Brito [2001] indica um intervalo de 15 meses para as inspecções de rotina, com a vantagem de permitir detectar quaisquer fenómenos afectados pelas estações do ano, e de 5 anos para as inspecções principais, significando que entre cada uma destas são realizadas 3 de rotina;

- A National Bridge Inspection Standards [FHWA 1994]ixa um intervalo máximo entre inspecções de rotina de 2 anos, extensível até 4 quando o tipo de estrutura, as inspecções anteriores e uma análise experiente o justifiquem, e refere ainda que quando alguma parte da obra se encontrar permanentemente submersa é necessário realizar inspecções subaquáticas com intervalos máximos de 5 anos.

- Cope [1987] indica intervalos entre inspecções ligeiramente mais alargados, de 1 a 2 anos para as de rotina e de 6 a 10 para as principais.

Estas referências podem servir de orientação na definição da frequência das inspecções. No entanto, o intervalo de tempo deve ser sempre ajustado pela equipa técnica que as realiza, em função do cenário específico das obras.

Sendo a análise visual da obra a base de todas as inspecções, o inspector deve munir-se, aquando da sua deslocação ao local, de alguns equipamentos portáteis de apoio a essa tarefa. Alguns exemplos desse tipo de equipamentos são: binóculos, foco, espelho, ferramentas que permitam efectuar uma limpeza superficial dos materiais, termômetro, fita métrica, equipamentos laser de medição de distâncias e escala para medição de fissuras. Para além desses pequenos equipamentos, na inspeção de obras de arte como as pontes, projectadas para vencer barreiras naturais ou construídas, é também muitas vezes necessária a utilização de dispositivos de especiais de acesso a determinadas zonas da obra como barcos e plataformas elevatórias [Palmelão 1989; Brinckerhoft 1993;
Guezenne 1994; Santos 2000]. Esses dispositivos devem ser escolhidos em função das particularidades da estrutura, de forma a garantir a sua segurança e a minimizar eventuais perturbações no normal funcionamento da via.

O recurso às câmaras fotográficas ou videográficas no decorrer das inspeções, em zonas emersas ou submersas, merece ainda ser destacado como um importante complemento da informação descritiva. Os seus registos podem ser muito úteis para relembrar os inspectores de situações não referenciadas por escrito, para comparar situações correspondentes a diferentes instantes de tempo e para complementar os relatórios da inspecção. Aquando do uso destes equipamentos de gravação de imagem é importante ter o cuidado de anotar de imediato o local, o tempo e a orientação dos vários registos efectuados, de forma a facilitar a sua posterior identificação e interpretação. Jaüregui et al. [2002] referem neste âmbito, a recolha, manipulação e arquivo de toda a informação de uma inspecção de rotina, por meio de um programa designado por QTVR (Quick Time Virtual Reality). Esse programa tem a vantagem de permitir transformar imagens de uma câmara fotográfica em imagens panorâmicas e em filmes que possibilitam uma “navegação” por toda a obra e uma associação dos textos do inspector a cada uma das suas componentes.

Para que as inspecções sejam efectuadas de forma sistemática, deve definir-se previamente uma ordem de codificação dos elementos constituintes da estrutura e depois deve respeitar-se essa sequência na sua observação. Para o efeito, Jorge Brito [1992] apresenta exemplos de esquemas gráficos que ajudam a fazer o levantamento das anomalias, no local da obra. A informação recolhida na visita à obra pode ser registada em bloco de notas, gravador de voz e formato electrónico, por meio da utilização de um PDA (Personal Digital Assistant) ou de um computador portátil. Para evitar lapsos na recolha in loco da informação necessária à definição/classificação dos itens do sistema de gestão em aplicação, devem ser criados check-lists específicos para cada tipo de obra, listando por exemplo os elementos a observar, os danos a inspecionar e os dados necessários ao programa de tratamento de dados. Aníbal Costa e António Arêde [Costa, Arêde 2001] apresentam alguns exemplos de fichas de registo especialmente preparadas para o efeito.
Sendo o principal objectivo de uma inspecção a inventariação e caracterização das anomalias, deve-se ter o cuidado de anotar todas as indicações que possam vir a fornecer informação relativamente a:

- Local de manifestação e extensão afectada;
- Evolução relativamente à situação descrita nos relatórios das inspecções anteriores;
- Indicação das causas prováveis da sua ocorrência;
- Eventual correlação com outros danos (antecessores ou consequentes);
- Resultados dos ensaios de diagnóstico realizados;
- Necessidade de realização de inspecções especiais e de eventuais ensaios complementares;
- Classificação do estado de deterioração;
- Notas e recomendações sobre a perigosidade que lhes é inerente;
- Indicação da urgência de intervenção; apresentação de propostas técnicas de manutenção/reparação, com estimativa dos respectivos custos e do tempo necessário à sua execução.

No que respeita à determinação das causas possíveis para as patologias verificadas e da escolha dos meios de diagnóstico e das técnicas de intervenção mais adequadas ao cenário verificado, Jorge Brito e Fernando Branco [1997] referem a utilização de matrizes de correlação dano/causas, dano/métodos de diagnóstico e dano/técnicas de reparação. Relativamente a obras de arte de betão, Brito et al. [2002] apresentam quadros com causas e evoluções possíveis para algumas das anomalias mais correntes.

A inspecção com recurso exclusivo à observação visual pode, em alguns casos, ser suficiente, no entanto é muitas vezes necessária a realização de alguns ensaios de diagnóstico complementares (e não alternativos), que serão abordados em seguida no ponto 3.3.
3.3 A realização de ensaios complementares à inspecção visual

A realização de ensaios de diagnóstico complementares à inspecção visual das estruturas e a conveniente interpretação desses resultados pode dar um importante contributo aos sistemas de gestão de obras de arte, uma vez que permite identificar, com menor subjectividade e maior precisão, o estado de deterioração de cada um dos seus elementos e, assim, interpretar melhor o comportamento das estruturas ao longo da sua vida útil. Os ensaios podem permitir diminuir o grau de incerteza associado à informação recolhida nas inspecções, resultante de factores como a subjectividade do técnico que as realiza, eventuais impossibilidades de medições de determinados parâmetros, e mesmo dificuldades de atribuição de um nível de classificação devido a insuficientes descrições dos respectivos cenários, especialmente no que respeita a situações especiais.

Esses ensaios devem ser seleccionados de acordo com o tipo de informação pretendido, pelo que devem ser definidos na observação visual prévia e a sua aplicação pode ser generalizada ou restrita a alguns elementos da estrutura, conforme as indicações do inspector. O tipo e o número de ensaios a realizar deve ser fixado em resultado de um compromisso entre o tipo de resultados pretendido, a precisão exigida, a extensão da estrutura, as condicionantes de tempo e a verba disponível. Por vezes a realização de diferentes tipos de ensaios pode ser vantajosa para cruzar informação de ambos e calibrar resultados.

De destacar ainda que a realização de ensaios in loco, em obras como pontes, levanta por vezes problemas de acessibilidade, de condicionantes atmosféricas, de controlo de tráfego ou de restrição da utilização que devem ser equacionados atempadamente [Prine].

3.3.1 Ensaios não-destructivos

Os ensaios designados por não-destructivos podem ser efectuados in situ, sem que deles resultem marcas da sua realização e permitem essencialmente obter informação de carácter qualitativo. São exemplos desse tipo de ensaios:

- **Medicação da resistência superficial do betão com o Esclerómetro de Schmidt**
 O ensaio com o esclerómetro de Schmidt, equipamento portátil de simples utilização, pode ser usado em estruturas de betão para estimar in situ a resistência superficial do material. O ensaio é de muito simples realização, sendo os seus principais inconvenientes o facto de a informação resultante não ser muito precisa e de a idade puder influenciar os valores medidos, pelo que deve ser apenas usado a título comparativo ou para a obtenção de uma primeira ordem de grandeza dos valores da resistência à compressão do betão.

- **Utilização de líquidos penetrantes para deteção de fendas**
 Com a colocação de um spray colorido sobre a superfície do material (após remoção de qualquer tipo de sujidade ou pintura), é possível destacar as zonas com fissuras, onde o líquido entra por capilaridade. Usando líquidos de diferentes viscosidades pode mesmo diferenciar-se fendas de diferentes tamanhos. Esta técnica é especialmente útil para estruturas metálicas, embora seja também aplicável a estruturas de betão. A utilização de líquidos penetrantes deve ser destacada por ser pouco onerosa, de fácil implementação e de simples interpretação. A sua principal restrição é o facto de apenas ser aplicável a superfícies expostas.

- **Utilização de detector de armaduras em elementos de betão armado**
 Um detector de metais apropriado pode permitir localizar as armaduras embebidas em elementos de betão e estimar o seu diâmetro e o seu recobrimento, pelo que pode contribuir para um melhor conhecimento da estrutura em análise. Por vezes, a partir da informação recolhida com esse equipamento é mesmo possível determinar a causa e o risco de corrosão dessas armaduras. É de destacar o facto de este tipo de equipamento ser bastante útil para a selecção dos locais de realização de alguns dos ensaios semi-destructivos que serão referidos em seguida.
- **Medição da probabilidade de corrosão de armaduras pelo potencial electroquímico**
 Estabelecendo uma corrente eléctrica e medindo o potencial electroquímico em termos de voltagem, é possível estimar a probabilidade de corrosão das armaduras de uma estrutura de betão armado. A corrosão não existirá para valores superiores a 0,200V negativos e será bastante provável para valores inferiores a 0,350V negativos. Para a sua realização é necessário remover eventuais pinturas e revestimentos da superfície do material e também garantir uma condutividade mínima do mesmo (no caso do betão, é necessário assegurar um elevado teor de humidade). A sua principal vantagem é assim a possibilidade de detecção da corrosão das armaduras de estruturas de betão armado, antes de ela ser anunciada por visíveis sinais externos.

- **Ensaios sónicos**
 Através da medição da velocidade de propagação de impulsos sonoros, gerados por dispositivos mecânicos (por exemplo com um martelo), através de um material é possível detectar algumas descontinuidades.

- **Ensaios ultra-sónicos**
 A partir da velocidade de propagação de impulsos ultra-sónicos num determinado material é possível detectar algumas descontinuidades (como vazios e fissuras) e, com base em correlações empíricas, estimar algumas características mecânicas do material como o módulo de elasticidade, o coeficiente de Poisson e a resistência à compressão. Para isso é colocado numa face do elemento estrutural um emissor e numa face oposta (medição directa) ou numa face ortogonal (medição indirecta) um receptor, de forma a medir o tempo correspondente à passagem do sinal de um para o outro [Almeida 2000]. Os ensaios ultra-sónicos são mais apropriados para estruturas de grande homogeneidade. Nas estruturas mais heterogéneas, como as de alvenaria, é preferível utilizar os ensaios sónicos. Refira-se ainda que os ensaios ultra-sónicos, quando associados a técnicas de tomografia sónica, tornam possível a obtenção de imagens bi e tridimensionais que poderão ser muito úteis na localização e quantificação da extensão das descontinuidades da estrutura (como por exemplo armaduras envoltas em betão). No entanto, a análise tomográfica é uma técnica de elevada complexidade, pelo que os seus resultados só poderão ser proveitosos caso ela seja efectuada por técnicos experientes, especialmente qualificados para o efeito. Esse facto torna o
custo da sua realização bastante oneroso e restringe a sua aplicação a casos em que este tipo de análise seja efectivamente necessário.

- **Métodos termográficos de determinação da delaminação do betão**
 Usando uma câmara que memorize a temperatura superficial do betão (mau condutor de calor) e fazendo assim o seu mapeamento térmico, pode ser possível identificar zonas com delaminação e com vazios, uma vez que a água neles existentes se pode reflectir numa temperatura diferente. Contudo para o sucesso do ensaio é necessário que o sol incida directamente nessas superfícies.

- **Ensaio com raios X ou γ**
 Fazendo atravessar os materiais por raios X ou γ e deixando-os impressionar um filme colocado na face oposta é possível detectar algumas fissuras e vazios do material, bem como detectar algumas diferenças da sua espessura e densidade. O ensaio permite determinar a forma e o tamanho do defeito (e também das armaduras dentro do betão, por exemplo) a duas dimensões, mas não dá qualquer indicação em profundidade (por exemplo, uma fenda perpendicular ao plano do filme não poderá ser detectada). Uma vez que só pode ser realizado por entidades especialmente autorizadas, devido à sua natureza radioactiva, os custos da sua implementação são bastante elevados.

- **Radar**
 Com um radar de baixa potência e de alta frequência podem detectar-se linhas de separação entre materiais diferenciados (pode, por exemplo, determinar-se a espessura da camada asfáltica num tabuleiro de uma ponte rodoviária) e ainda algumas descontinuidades como fendas e vazios. A interpretação dos resultados obtidos é muito complexa e exige que a sua interpretação seja feita por técnicos experimentados, sendo por isso uma técnica reservada para casos em que seja absolutamente necessária.
3.3.2 Ensaios semi-destrutivos

Serão designados por ensaios semi-destrutivos os ensaios que implicam uma ligeira danificação pontual da estrutura. A sua vantagem em relação aos não-destrutivos é a possibilidade de obtenção de informação mais específica e de carácter não só qualitativo. Alguns deles são realizados in situ e outros em laboratório, devendo o local para a sua realização, ou recolha da amostra, ser escolhido em função da análise visual e de eventuais ensaios não-destrutivos previamente realizados. Enquanto que os ensaios não destrutivos são em geral aplicados em grandes extensões da estrutura, estes, pela sua natureza semi-destrutiva são em geral realizados em alguns pontos localizados a selecionar convenientemente. Seguidamente são feitas sumárias descrições de alguns desses ensaios:

- **Ensaio com endoscópio**
 Introduzindo um endoscópio em orifícios realizados na estrutura pode obter-se, in situ, alguma informação sobre o estado do seu material, em profundidade, por visualização de imagens captadas com fibras ópticas ou com câmaras de vídeo (estas últimas exigindo um orifício de maior diâmetro). Este ensaio, apesar de se basear na observação de imagens, é referido no âmbito dos ensaios complementares à inspecção visual, por implicar a aplicação de técnicas algo complexas que não são de corrente utilização.

- **Ensaios para determinação de características mecânicas do material**
 Através do ensaio de carotes extraídas da estrutura é possível, em laboratório, determinar as principais características mecânicas do material, como por exemplo o seu módulo de elasticidade e a sua resistência à compressão, à tracção e ao corte.

- **Ensaios químicos e físicos**
 Em laboratório, podem ser realizados vários ensaios químicos e físicos sobre as amostras do material recolhidas da estrutura. Os ensaios químicos permitem, por exemplo, determinar os constituintes do material e detectar eventuais elementos potenciadores de determinados danos, como um elevado teor de cloreto. Os
ensaios físicos permitem determinar parâmetros como a densidade do material e a sua capacidade de absorção de água.

- **Controlo da profundidade de carbonatação do betão**
 A profundidade de carbonatação do betão pode ser estimada pela aplicação de fenolftaleína em carotes extralda das estrutura, uma vez que esse reagente permite distinguir as zonas já carbonatadas, com um pH inferior a 9, uma vez que essas não assumem na sua presença uma coloração avermelhada.

- **Ensaios de tracção directa**
 A resistência superficial do betão já endurecido pode ser estimada por medição da força de tracção necessária para o arrancamento de pastilhas metálicas coladas à sua superfície com uma cola tipo epóxida (eventualmente após pré-carotagem no perímetro da pastilha, de modo a que estas possam penetrar ligeiramente).

- **Ensaios com macacos planos para determinação do estado de tensão**
 Os macacos planos (equipamento simples em forma de envelope, com uma entrada e uma saída de óleo) podem, por exemplo, ser usados para determinar o esforço de compressão de uma parede de alvenaria granítica. Para isso o primeiro passo consiste na realização de um entalhe na parede, após colocação prévia de medidores de distâncias entre pontos de ambos os lados [Gregorczyk, Lourenço 2000], de forma a provocar um alívio da tensão segundo uma direcção normal ao corte (visível por uma diminuição da espessura do rasgo). Depois de realizado o entalhe, deve introduzir-se nele um macaco plano e, de forma progressiva, deve aumentar-se a sua pressão até que os medidores de distância retomem a posição inicial do ensaio, o que corresponderá, com alguma aproximação, ao esforço de compressão da parede na direcção perpendicular ao corte. Esta técnica foi originariamente desenvolvida com o objectivo de determinar esforços de compressão mas pode também ser adaptada para determinar esforços de tracção [Calgaro, Lacroix 1997]. De referir ainda que, efectuando vários entalhes com profundidades crescentes pode ainda conhecer-se a variação do estado de tensão ao longo da espessura do elemento.
- **Ensaio com macacos planos para determinação do Módulo de Young**

O Módulo de Young de uma parede de alvenaria pode também ser determinado através de um ensaio com macacos planos [Gregorczyk, Lourenço 2000]. Para isso, deve-se primeiro realizar na parede dois entalhes paralelos, o que corresponderá, com alguma aproximação, a uma anulação da tensão (segundo a direcção perpendicular a esses planos). Depois deve introduzir-se em cada um deles um macaco plano. Seguidamente deverão colocar-se medidores de distâncias, segundo a direcção normal aos entalhes, entre pares de pontos fixos localizados entre macacos. A partir daí pode iniciar-se o ensaio, propriamente dito, aplicando pressões crescentes nos macacos e medindo simultaneamente as variações das distâncias entre os pontos monitorizados, de forma a construir a curva tensão-extensão do material e assim estimar o seu módulo de elasticidade. Uma vez que não é necessário prolongar o ensaio para além da fase elástica de comportamento, o ensaios são em geral interrompidos quando a relação entre tensões e extensões deixa de ser linear.

- **Ensaio com dilatômetro**

Para realizar um ensaio com um dilatômetro numa parede de alvenaria é necessário abrir um furo cilíndrico e bombear água para o mesmo, por meio de equipamento especial (corpo rígido cilíndrico envolto por uma membrana de borracha), de forma a induzir pressões hidrostáticas. A partir da pressão aplicada e dos valores das deformações diametrais medidos (por exemplo com transdutores diferenciais) segundo quatro direções perpendiculares ao eixo do furo, desfasadas de 45° entre si, em ciclos de carga-descarga, é possível, conhecendo o coeficiente de Poisson, estimar o módulo de deformabilidade do material [Almeida 2000].

- **Análise com microscópio**

Numa análise por meio de microscópio de uma amostra de betão é possível fazer o seu estudo petrográfico, identificar vazios e micro-fraturas (entre o ligante e os agregados ou mesmo nos agregados), conhecer a sua composição mineralógica e determinar o seu grau de deterioração. Por vezes, com esta técnica, é ainda possível identificar alguns dos processos de deterioração do betão como a reacção alcalis-sílica (visualização do gel e das zonas de alteração dos
agregados), o ataque dos sulfatos (visualização de cristais) e o processo de carbonatação (tonalidade amarelo-pálido).

- **Ensaio com um gama-densímetro por transparência**
 A partir de carotes do material é possível, em laboratório, usar um gama-densímetro por transparência para medir a sua densidade, a sua porosidade e o seu teor de água. Os resultados obtidos por este processo são pouco significativos em termos absolutos mas poderão ser interessantes em termos relativos, por exemplo evidenciando zonas degradadas do betão (com menor densidade que o betão são).

3.3.3 Outras técnicas experimentais

Para além dos tipos de ensaios anteriormente referidos, pode ainda justificar-se a utilização de outras técnicas experimentais, mais ligadas à monitorização e instrumentação de estruturas [Calgaro, Lacroix 1997; Chase, Washer 1997; Martin et al. 1998; Cunha et al. 2000; Félix et al. 2000; Fernandes, Santos 2001; Costa, Arêde 2002; Cunha et al. 2002; Inaudi et al. 2002; Wang, Zong 2002]. A interpretação do comportamento estrutural das obras de arte em geral pode ser facilitada, por exemplo, através da análise dos resultados relativos a:

- Medicação de deslocamentos lineares ou angulares (relativos ou absolutos);
- Medicação de forças em tirantes e em armaduras de pré-esforço;
- Avaliação indirecta de esforços;
- Medições das reacções em apoios;
- Ensaios de vibração;
- Ensaios de carga (estático e dinâmico).

As leituras efectuadas a partir dessas técnicas poderão ser pontuais ou continuadas, de forma a permitir compreender melhor o seu comportamento instantâneo ou ao longo do tempo. Sendo técnicas bastante onerosas e por vezes difíceis de interpretar, a sua utilização é reservada a situações particulares. Estas técnicas poderão ser usadas, por exemplo, em fase de desenvolvimento do projecto de reparaçao/reabilitação da estrutura,
em paralelo com a sua modelação numérica, em que os resultados experimentais permitem calibrar alguns parâmetros considerados no modelo.

Importa ainda salientar que o investimento na realização de ensaios complementares à inspecção visual, muitas vezes de elevado montante, poderá vir a ser compensado, em parte ou na globalidade, pela diminuição dos custos associados a eventuais incorreções de identificação e classificação dos danos.

Os resultados dos ensaios realizados no âmbito da inspecção devem ser analisados, no seu conjunto, cruzando a informação de diferentes proveniências. A classificação dos itens relativos ao estado global da estrutura e de cada um dos seus elementos, a partir da globalidade da informação recolhida no âmbito da inspecção, será abordada no ponto que se segue.

3.4 Avaliação do estado da estrutura a partir da inspecção

Ao longo da vida útil das obras, a natural degradação dos elementos que a constituem pode dar início ao processo de deterioração da estrutura e consequentemente ao aparecimento de patologias na mesma. Numa primeira fase verifica-se a destruição dos mecanismos de protecção da estrutura, tornando-a mais vulnerável, e depois é iniciada a sua própria deterioração, conduzindo assim, progressivamente, a um maior grau de gravidade do dano.

Segundo Hearn et al [1998], ao longo da vida útil de uma obra podem verificar-se cinco diferentes estados de afectação das estruturas: Protegido, Exposto, Vulnerável, Atacado e Danificado. Estes estados podem, de certa forma, ser relacionados com a classificação dos itens de estado da NBI, ou seja, o estado do tabuleiro, da superestrutura e da infraestrutura. Essa relação pode ser efectuada de acordo com o apresentado na Tabela 3.1, onde a correlação se encontra traduzida por iguais níveis horizontais, pelo que, por exemplo, uma ligeira diminuição da secção corresponderá ao nível 5 de classificação dos itens de estado da NBI e ao estado 3 de afectação.
Tabela 3.1 – Relação entre os estados de afectação e a classificação NBI para o estado do tabuleiro, da superestrutura e da infraestrutura (adaptado de [Hearn, Shum 1998])

<table>
<thead>
<tr>
<th>Estado de afectação</th>
<th>Classificação NBI do estado do tabuleiro, da superestrutura e da infraestrutura</th>
<th>Exemplos de patologias</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Danificado</td>
<td>0 Rotura Fora de serviço</td>
<td>Movimentos verticais ou horizontais que afectam a estabilidade da estrutura.</td>
</tr>
<tr>
<td></td>
<td>1 Rotura iminente Tráfego impedido até implementadas as acções correctivas</td>
<td>Deficiente suporte por erosão das fundações.</td>
</tr>
<tr>
<td></td>
<td>2 Crítico Deterioração avançada de materiais estruturais (fechar se necessário)</td>
<td>Fendihação por fatiga em estruturas metálicas, fendilhação por corte em estruturas de betão.</td>
</tr>
<tr>
<td></td>
<td>3 Grave Possibilidade de ocorrência de roturas localizadas</td>
<td>Acentuada diminuição da secção, delaminação, deterioração.</td>
</tr>
<tr>
<td></td>
<td>4 Insuficiente Patologias significativas em elementos estruturais</td>
<td>Ligeira diminuição da secção, fendilhação superficial, erosão, alguma delaminação.</td>
</tr>
<tr>
<td></td>
<td>5 Suficiente Patologias ligeiras em elementos estruturais</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 Satisfatório Algumas pequenos problemas em elementos estruturais</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 Bom Apenas alguns pequenos problemas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 Muito Bom Não são conhecidos quaisquer problemas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 Excelente</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N Não aplicável</td>
<td></td>
</tr>
<tr>
<td>4 Atacado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Vulnerável</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Exposto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Protegido</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Os ensaios a usar no diagnóstico do estado da estrutura e dos seus elementos devem ser selecionados de acordo com essa evolução, pré-determinada por observação visual. Assim, no caso de obras jovens devem permitir avaliar as capacidades dos dispositivos de protecção, no caso de obras com mais idade devem focar a atenção no processo de
deterioração e só nas mais antigas devem ser realizados com o intuito de qualificar e quantificar o dano.

Na Tabela 3. 2 são definidos o estado de afectação e são indicados alguns ensaios que podem ser realizados para confirmar essa classificação, para o exemplo da corrosão de armaduras embebidas em betão. Nesse exemplo, e ainda segundo Hearn e Shum [1998], o ensaio de determinação do potencial electroquímico para o dano em causa, pode ser usado para ajudar a diferenciar entre os estados Protegido e Exposto (respectivamente para valores superiores e inferiores a 0,200V negativos); o ensaio de determinação do teor de cloretos pode dar indicações sobre a transição entre Exposto e Vulnerável (respectivamente para elevado e baixo teor de cloretos) e, mais tarde, um ensaio ultrasonic pode permitir determinar a fronteira entre Atacado e Danificado.

Tabela 3. 2 – Definição do estado de afectação e ensaios de apoio à sua determinação, para o caso da corrosão das armaduras de betão armado (adaptado de [Hearn, Shum 1998])

<table>
<thead>
<tr>
<th>Estado de afectação</th>
<th>Exposição</th>
<th>Mecanismo de deterioração</th>
<th>Dano</th>
</tr>
</thead>
<tbody>
<tr>
<td>não sim</td>
<td>1 Protegido</td>
<td>Camada de recobrimento em bom estado</td>
<td>Sem corrosão</td>
</tr>
<tr>
<td>sim</td>
<td>2 Exposto</td>
<td>Fendilhação e delaminação do betão</td>
<td>Sem corrosão</td>
</tr>
<tr>
<td>não sim</td>
<td>3 Vulnerável</td>
<td>Armadura à vista</td>
<td>Sem corrosão</td>
</tr>
<tr>
<td>sim</td>
<td>4 Atacado</td>
<td>Armadura à vista</td>
<td>Início da corrosão</td>
</tr>
<tr>
<td>sim</td>
<td>5 Danificado</td>
<td>Armadura à vista</td>
<td>Corrosão</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ensaios:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medição da espessura de recobrimento</td>
</tr>
<tr>
<td>Medição do potencial electroquímico</td>
</tr>
<tr>
<td>Determinação do teor de cloretos</td>
</tr>
<tr>
<td>Determinação da permeabilidade superficial</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ensaios:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radar</td>
</tr>
<tr>
<td>Ultrasones</td>
</tr>
</tbody>
</table>
Assim sendo, a definição dos estados de afectação, para além de ajudar na classificação de alguns dos itens considerados na metodologia de gestão, pode ainda permitir fazer um mapeamento mais objectivo das necessidades de acções de manutenção e de reparação em cada uma das estruturas, muito útil na gestão de um sistema de obras de arte. Na Tabela 3.3 é apresentada a relação entre os níveis de classificação da NBI e o tipo de actuação recomendável e na Tabela 3.4 são indicados os tipos de medidas a implementar para regredir o nível de afectação, de acordo com o proposto por Hearn [1999].

<table>
<thead>
<tr>
<th>Classificação NBI</th>
<th>Tipo de actuação</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 Bom</td>
<td>Manutenção superficial</td>
</tr>
<tr>
<td>6 Satisfatório</td>
<td>Manutenção profunda</td>
</tr>
<tr>
<td>5 Suficiente</td>
<td>Reparação superficial</td>
</tr>
<tr>
<td>4 Insuficiente</td>
<td>Reparação profunda</td>
</tr>
<tr>
<td>3 Grave</td>
<td>Reabilitação</td>
</tr>
<tr>
<td>2 Crítico</td>
<td>Substituição</td>
</tr>
</tbody>
</table>

Tabela 3.4 – Tipo de medidas a implementar para regredir no nível de afectação [Hearn 1999]

<table>
<thead>
<tr>
<th>Nível</th>
<th>Medida</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Protegido</td>
</tr>
<tr>
<td></td>
<td>Recolocação/Renovação da protecção</td>
</tr>
<tr>
<td>2</td>
<td>Exposto</td>
</tr>
<tr>
<td></td>
<td>Remoção dos agentes agressores</td>
</tr>
<tr>
<td>3</td>
<td>Vulnerável</td>
</tr>
<tr>
<td></td>
<td>Estagnação do processo de deterioração</td>
</tr>
<tr>
<td>4</td>
<td>Atacado</td>
</tr>
<tr>
<td></td>
<td>Reparação</td>
</tr>
<tr>
<td>5</td>
<td>Danificado</td>
</tr>
</tbody>
</table>

3.22
No âmbito da forma de arquivo dos dados de uma inspecção numa base de dados, importa ainda destacar a normativa Norte Americana designada por Commonly Recognized Elements (CoRe) [Thompson, Shepard 2000]. Essa normativa foi criada com o intuito de uniformizar os critérios de classificação dos inspectores e de definir regras de arquivo dos dados relativos ao estado de uma determinada estrutura. Os CoRe de uma ponte são elementos genéricos, aos quais podem ser associados sub-elementos, definidos com a preocupação de serem adaptáveis a diferentes obras, de representarem uma determinada função, de terem um mesmo tipo de inspecção e ainda um mesmo mecanismo de deterioração. No caso de outros processos de deterioração como erosão, fadiga e assentamentos, são ainda criados elementos especiais designados por “smart flags”. Para cada um dos elementos deve indicar-se, após visita ao local, as suas principais dimensões, o seu material, a sua função, o respectivo valor económico e a avaliação do estado de afectação (escala de 1 a 5) associado a cada percentagem de extensão de dano (por exemplo, o inspector pode indicar que um determinando elemento está 10% no estado de afectação 1 e 90% no estado de afectação 2). Esta catalogação permite assim uma identificação directa do desempenho físico, de grande importância para a selecção do tipo de intervenção adequado e para a estimativa dos respectivos custos, para além de possibilitar uma avaliação dos tratamentos já realizados. Para facilitar o apoio à decisão, as várias classificações podem ser ponderadas por meio de determinados pesos relativos, por exemplo relativos às respectivas consequências económicas, conduzindo a um Índice de Sanidade (Health Index) com escala entre 0 (muito gravoso) e 100% (óptimo). Para facilitar a utilização deste tipo de codificação numa base de dados organizada segundo a NBI, o FHWA criou um algoritmo de tradução para a codificação, em escala de 0 a 9, dos itens relativos às componentes da estrutura: tabuleiro, superestrutura, infraestrutura e conduta.

Refira-se também que a consulta de um catálogo dos defeitos mais usuais, como o utilizado pela Brisa Auto-estradas de Portugal [Spea - Ingegneria Europea], pode ser mais um elemento de grande utilidade em fase de identificação dos danos, de classificação do seu estado de evolução e gravidade e de análise das respectivas causas e eventuais correlações com outras patologias.
3.5 Considerações finais

Para gerir um parque de pontes é necessário dispor de muita informação relativamente a cada uma das obras e respectivas envolventes. Essa informação é muito vasta e diversificada, devendo por isso ser organizada de forma sistemática, para evitar a insuficiência ou duplicação de dados e facilitar a sua consulta e manipulação. Por esta razão, a utilização de ferramentas informáticas pode ser de grande utilidade na gestão de um sistema de pontes.

Os dados a usar na decisão devem ser, na sua maioria, definidos e actualizados em função dos resultados de campanhas de inspecção periódicas, devidamente planeadas. Para assegurar a homogeneidade da informação e possibilitar a comparação de registos, as inspecções devem ser realizadas de forma padronizada. A observação visual dos técnicos é fundamental mas, sempre que necessário, deve ser complementada com a realização de ensaios experimentais ou mesmo com uma monitorização que ajude a perceber melhor o comportamento da estrutura. Esses ensaios devem ser escolhidos em função do tipo de resultados pretendido, de forma a causar a menor destruição possível.

Para garantir a fiabilidade da informação, a sua recolha deve ser feita com a maior acuidade possível e deve ser verificada por mecanismos que permitam eliminar eventuais erros (check-lists, cruzamento de informação de diferente proveniência, consideração de parâmetros de verificação, etc.). A qualidade de um processo de gestão de obras de arte depende, em primeiro lugar, das suas premissas pelo que a fiabilidade e suficiência do conjunto de dados a analisar é fundamental para assegurar a segurança e funcionalidade das obras de uma forma económica.
CAPÍTULO 4

METODOLOGIA DE APOIO À DECISÃO

Na gestão de um sistema de pontes inclui-se a difícil tarefa de garantir a segurança de utilização de cada uma das obras, minimizando simultaneamente os custos associados ao investimento nas mesmas ao longo da sua vida útil e, em geral, tendo que os enquadrar nos orçamentos disponíveis. Para isso, após uma prévia listagem das obras de manutenção e reforço a realizar em cada uma das pontes, em correspondência com os resultados da análise técnica efectuada nas inspecções, é necessário atribuir prioridades para a implementação das acções de conservação ou reabilitação.

A atribuição dessas prioridades deve ser efectuada de forma objectiva, a partir de uma análise ponderada do conjunto de factores que, de acordo com a política de gestão adoptada, se entendam como sendo condicionantes numa decisão desta natureza.

Neste capítulo será feita referência a uma metodologia de gestão particular que foi implementada nos Estados Unidos da América. A metodologia está especialmente vocacionada para sistemas de pontes rodoviárias, no entanto, com algumas alterações, poderá vir a ser usada na gestão de outro tipo de pontes e mesmo de outras obras de arte.
4.1. Descrição geral da metodologia

Segundo a metodologia que se vai descrever, o apoio à decisão é efectivado a partir da atribuição de uma nota a cada uma das obras de arte. Essa nota resulta da ponderação de dados relativos ao tipo de obra, ao resultado de inspeções e ao tipo de utilização da mesma. Desse modo, o resultado final permite estabelecer uma hierarquia entre as diferentes obras no que respeita à urgência de intervenção em cada uma delas.

Os factores ponderados para a atribuição dessa classificação global são alguns dos referidos no capítulo anterior, designadamente os valores dos seguintes parâmetros (os códigos indicados entre parêntesis correspondem aos da NBI – ver Anexo A):

- Número de faixas de rodagem sobre a estrutura (#28A);
- Largura total da(s) faixa(s) de rodagem (#51);
- Largura da faixa de rodagem de acesso (#32);
- Gabarit mínimo vertical sobre a ponte (#53);
- Tráfego Médio Diário (#29);
- Desvio implicado com o fecho (#19);

e as classificações atribuídas após a inspecção da obra (de acordo com as indicações referidas no capítulo 3 e resumidas nos quadros do Anexo B) aos seguintes itens:

- Estado da superestrutura (#59);
- Estado da infraestrutura (#60);
- Estado da conduta submersa (#62);
- Estado do tabuleiro (#58);
- Avaliação estrutural (#67);
- Avaliação da geometria do tabuleiro (#68);
- Avaliação das limitações espaciais (#69);
- Resposta face ao canal de água (#71);
- Alinhamento dos acessos (#72);
- Tipo de concepção/construção (#43B);
- Importância estratégica (#100);
- Guardas de protecção (#36A);
- Transições das guardas dos acessos para o tabuleiro (#36B);
- Guardas dos acessos (#36C);
- Remate das guardas dos acessos (#36D).

Para além dos itens listados é ainda considerado um Índice de Capacidade de Carga (ICC) cuja determinação é abordada no ponto 4.3. É ainda de referir que alguns dos itens listados poderão ser determinados directa ou indirectamente a partir de outros parâmetros (incluídos na lista, ou não) que com eles estejam relacionados. Por exemplo, a avaliação da geometria do tabuleiro pode ser efectuada a partir do tipo de via, do número de faixas de rodagem, das respectivas larguras, do gabarit vertical e do valor de Tráfego Médio Diário (TMD).

A classificação final atribuída a cada ponte é designada por Rácio de Eficiência Global (REG). A sua determinação deve ser efectuada de acordo com o que será referido no ponto 4.2, em concordância com a publicação base subjacente à metodologia [FHWA 1995].

O Rácio de Eficiência Global é composto por rácios parciais que dão, também eles, indicações relativas ao estado da obra, nomeadamente no que respeita a:
- Segurança Estrutural;
- Funcionalidade;
- Utilidade Pública.

O REG assume valores mais baixos para obras com maiores deficiências estruturais (menor segurança estrutural), menores níveis de funcionalidade e maior utilidade pública. Dessa forma é atribuída uma menor “Eficiência Global” a essas obras, reflectindo assim uma maior urgência na implementação de acções de correcção das anomalias que lhe foram identificadas.

4.2. Cálculo do Rácio de Eficiência Global de uma ponte

O Rácio de Eficiência Global (REG) pode assumir valores entre 0 e 100% e a sua determinação é feita a partir do somatório do Rácio R1 relativo à Segurança Estrutural da
ponte, do Rácio R2 relativo à sua Funcionalidade e do Rácio R3 relativo à sua Utilidade Pública. Adicionadas as parcelas relativas a esses três parâmetros admite-se ainda a possibilidade, no caso de esse somatório superar os 50%, de efectuar algumas Reduções Extraordinárias, subtraindo ao somatório anterior o rácio R4 (com um máximo de 13%), para ter em conta algumas outras questões de âmbito mais geral, como por exemplo o estado das guardas de protecção.

O Rácio relativo à Segurança Estrutural pode variar entre 0 e 55%, pelo que mais de metade do REG é condicionado por esse parâmetro. O segundo rácio de maior peso no REG é a Funcionalidade, com uma variação entre 0 e 30%. A restante parcela, de 15%, corresponde à Utilidade Pública. Na Figura 4.1 estão indicados os valores máximos de cada um desses três rácios, dando uma indicação da importância relativa de cada uma dessas avaliações na determinação do rácio designado como sendo de Eficiência Global.

![Diagrama de rácios](image)

Figura 4.1-- Indicação da importância relativa dos rácios R1, R2 e R3 no valor do REG

É no entanto importante referir, desde já, que o rácio relativo à utilidade pública é também função de R1 e R2, pelo que o seu verdadeiro peso no REG é um tanto menor que o indicado na Figura 4.1. Por outro lado, as fatias relativas à Segurança Estrutural e à Funcionalidade estão representadas com uma importância relativa ligeiramente inferior à real. Para além disso, as reduções extraordinárias, correspondentes a R4, poderão ainda contribuir para uma ligeira redução do peso desses rácios no REG.

A forma de determinação do Rácio de Eficiência Global a partir dos rácios R1, R2, R3 e R4 está explicitada na Tabela 4.1 e o cálculo de cada um desses rácios parciais será mais pormenorizadamente descrito nos pontos 4.2.1 a 4.2.4. deste capítulo.

4.4
Refira-se desde já que os valores indicados dentro de "[]", nesta tabela, e nas que se seguem, correspondem aos mínimos e máximos que as variáveis podem assumir. Nesses intervalos, entenda-se "n" como indicativo de um número infinito e "N" como "não aplicável". Por exemplo, um intervalo de [0-15%] indica que o valor do item pode assumir um qualquer valor entre 0 e 15%; um intervalo de [0-n] corresponde a um item que pode assumir qualquer valor igual ou superior a zero e sempre que é indicado também um "N", o item pode ainda receber a classificação de "não aplicável". De acordo com a filosofia inerente ao cálculo apresentado, quando o valor obtido pela formulação não pertencer ao intervalo indicado, o parâmetro deverá assumir o valor extremo mais próximo.

R - REG	Rádio de Eficiência Global	→	REG	0-100%	
--------	---------------------------	→	R1	[0-55%]	
R1	Rácio de Segurança Estrutural	= 55% - A1 - B1	→	R1	[0-55%]
R2	Rácio de Funcionalidade	= 30% - J - (G + H) - I	→	R2	[0-30%]
R3	Rácio de Utilidade Pública	= 15% - A3 - B3	→	R3	[0-15%]
R4	Reduções extraordinárias do REG	= A4 + B4 + C4	→	R4	[0-13%]

4.1.1 Rácio de Segurança Estrutural

A Segurança Estrutural de uma Ponte será tanto maior quanto maior o respectivo rácio (R1) que deve ser determinado subtraindo a 55% (o seu valor máximo) dois parâmetros redutores - A1 e B1 - de acordo com o indicado na Tabela 4.2.

Se	#59 Estado da superestrutura	[0-9; N]	≤ 2	→	A1 = 55%	→	A1 [0-55%]
----	-----------------------------	----------	-----	→	A1 = 40%		
	ou	[0-9; N]	3	→	A1 = 25%		
	#60 Estado da infraestrutura	[0-9; N]	5	→	A1 = 10%		
		>5		→	A1 = 0%		
Se	#59 Estado da superestrutura	[0-9; N]	N				
	#60 Estado da infraestrutura	[0-9; N]	N				
	#62 Estado da conduta submersa	[0-9; N]	≤ 2	→	A1 = 55%		
			3	→	A1 = 40%		
			4	→	A1 = 25%		
			5	→	A1 = 10%		
			>5	→	A1 = 0%		
Se	#66 ICC - Índice Cap. Carga (ton)	[0-n]	≤32.4	→	B1 = 0%		
			<32.4	→	B1 = 0.3254 x (32.4 - #66)^1.5		

4.5
O parâmetro A1 depende da classificação atribuída ao estado da superestrutura, da infraestrutura e da conduta (quando aplicáveis) e o parâmetro B1 é fixado em função do Índice de Capacidade de Carga (ICC), cuja determinação será abordada no ponto 4.3 deste capítulo.

Tanto A1 como B1 podem assumir valores até 55%. No entanto, nos casos em que a subtração de A1 e B1 aos 55% (valor máximo de R1) resulta negativa, o rácio R1 deve ser considerado nulo (o seu valor mínimo), respeitando assim o intervalo de valores possíveis indicado entre parêntesis rectos.

A variação do parâmetro redutor A1 com o estado da subestrutura, da superestrutura e da conduta, pode ser analisado directamente a partir do gráfico da Figura 4.2, em função do valor mais baixo desses três itens (com os códigos 59, 60 e 62). Como se pode verificar no gráfico, A1 assume o seu valor máximo (55%) e anula consequentemente o valor de R1, quando o estado da superestrutura, da subestrutura ou da conduta é classificado como crítico ou em rotura (valor ≤ 2). Já quando a classificação atribuída a esses itens é melhor ou equivalente a "Satisfatório" (≥6), A1 anula-se e deixa por isso de contribuir para a redução de R1 e consequentemente de REG. Para valores intermédios de classificação desses parâmetros, A1 assume também valores intermédios, de acordo com a curva do gráfico da Figura 4.2.
O parâmetro redutor B1, que varia entre 0 e 55%, pode ser lido directamente a partir da curva representada no gráfico da

Figura 4.3, em função do Índice de Capacidade de Carga. O valor de B1 é nulo para um Índice de Capacidade de Carga igual ou superior a 32.4 toneladas e é máximo quando esse índice é zero.

Assim, as condições que simultaneamente se têm que verificar para que o Rácio de Segurança Estrutural (R1) seja máximo (55%) são:

- que nenhuma das classificações atribuídas aos itens 59, 60 e 62 (estado da subestrutura, da infraestrutura e da conduta) seja inferior a "Satisfatório";
- o Índice de Capacidade de carga seja igual ou superior a 32.4 toneladas.

Por outro lado, as condições necessárias para tornar R1 nulo (o seu valor mais desfavorável) são as que se indicam na Tabela 4.3, sendo de destacar que para tal é também suficiente que o Índice de Capacidade de Carga seja nulo ou que o estado da
superestrutura ou da subestrutura (ou da conduta quando os anteriores não são aplicáveis) seja considerado “Crítico” ou em “Rotura”.

Tabela 4. 3 – Condições para que se anule o Rácio de Segurança Estrutural (R1)

<table>
<thead>
<tr>
<th>Estado mais condionante entre superestrutura, subestrutura ou conduta</th>
<th>Índice de Capacidade de Carga</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crítico, Rotura iminente ou Rotura (≤ 2)</td>
<td>(qualquer)</td>
</tr>
<tr>
<td>Grave</td>
<td>≤ 19.5 toneladas</td>
</tr>
<tr>
<td>Insuficiente (= 4)</td>
<td>≤ 12.0 toneladas</td>
</tr>
<tr>
<td>Suficiente (= 5)</td>
<td>≤ 5.7 toneladas</td>
</tr>
<tr>
<td>(qualquer)</td>
<td>0.0 toneladas</td>
</tr>
</tbody>
</table>

4.1.2 Rácio de Funcionalidade

O Rácio de Funcionalidade, tanto maior quanto o nível de funcionalidade da obra, é determinado subtraindo ao seu valor máximo (30%) os parâmetros reductores J (que varia entre 0 e 13%), G e H (em que o somatório G+H assume valores entre 0 e 15%) e I (com um valor máximo de 2%), de acordo com o explicitado na Tabela 4. 4.

O parâmetro J é o resultado do somatório de 6 factores intermédios (A2, B2, C2, D2, E2 e F2), com um valor máximo final de 13%. Esses factores são determinados em função da classificação atribuída, respectivamente, aos seguintes itens:

- Estado do tabuleiro (#58);
- Avaliação estrutural (#67);
- Avaliação da geometria do tabuleiro (#68);
- Avaliação das limitações espaciais (#69);
- Resposta face ao canal de água (#71);
- Apreciação do alinhamento dos acessos (#72).

Os factores intermédios associados a cada um desses itens, de acordo com o apresentado no quadro da Tabela 4. 4, são:
- máximos quando a respectiva classificação corresponde a um nível igual ou inferior a 3 (com o significado de "Grave", no caso do item 58, e de "Acções correctivas urgentes", no caso dos itens 67 a 71);
- mínimos (nulos) quando corresponde a um nível igual ou superior a 6 (com o significado de "Satisfatório", no caso do item 58, e de "Corresponde ao critério mínimo actual", no caso dos itens 67 a 71);
- valores entre o mínimo e o máximo, em situações intermédias, relativamente às duas descritas nos itens anteriores.
| Se | #58 Estado do tabuleiro | [0-9; N] | ≤ 3 → A2 = 5%
| | | | = 4 → A2 = 3%
| | | | = 5 → A2 = 1%
| | → J = A2 + B2 + C2 + D2 + E2 + F2
| | → J [0-13%]
| Se | #67 Avaliação estrutural | [0-9; N] | ≤ 3 → B2 = 4%
| | | | = 4 → B2 = 2%
| | | | = 5 → B2 = 1%
| Se | #68 Avaliação da geometria do tabuleiro | [0-9; N] | ≤ 3 → C2 = 4%
| | | | = 4 → C2 = 2%
| | | | = 5 → C2 = 1%
| Se | #69 Avaliação das limitações espaciais | [0-9; N] | ≤ 3 → D2 = 4%
| | | | = 4 → D2 = 2%
| | | | = 5 → D2 = 1%
| Se | #71 Resposta face ao canal de água | [0-9; N] | ≤ 3 → E2 = 4%
| | | | = 4 → E2 = 2%
| | | | = 5 → E2 = 1%
| Se | #72 Apreciação alinhamento dos acessos | [0-9; N] | ≤ 3 → F2 = 4%
| | | | = 4 → F2 = 2%
| | | | = 5 → F2 = 1%
| Se | #29 Volume de tráfego médio diário (TMD) | [0-n] | → X = #29 / #28A
| | #51 Largura total faixa(s) de rodagem (m) | [0-n] | → Y = #51 / #28A
| | → G+H [0-15%]
| Se | #32 Largura de rod. de acesso (m) | [0-n] | > (0.6 + #51)
| | #43B Tipo de concepção/construção | [0-22] | #19 (condules)
| | → G = 5%
| Se | #28A N° faixas rodagem sobre a estrutura | [0-n] | = 1
| | → H = 15% x (5.5 - Y) / [0-15%]
| Se | #28A N° faixas rodagem sobre a estrutura | [0-n] | = 2; Y ≥ 4.9
| | | | = 3; Y ≥ 4.6
| | | | = 4; Y ≥ 4.3
| | | | ≥ 5; Y ≥ 3.7
| | → H = 0%
| Se | #28A N° faixas rodagem sobre a estrutura | [0-n] | > 1
| | → H [0-15%]
| | Y < 2.7 m
| | X > 50
| | X ≤ 50
| | → H = 15%
| | → H = 7.5%
| | Y ≥ 2.7 m
| | X > 50
| | X ≤ 50
| | → H = 0%
| | 50 < X ≤ 125
| | → H = 15% x (4 - Y)
| | 125 < X ≤ 375
| | → H = 15% x (4.3 - Y)
| | 375 < X ≤ 1350
| | → H = 15% x (4.9 - Y) / 1.2
| | X > 1350
| | → H = 15% x (4.9 - Y) / 0.3
| Se | #100 Importância estratégica | [0-3] | >0
| | #53 Gabarit min. vertical sobre ponte(m) | [0-n] | ≥ 4.87 m
| | | | < 4.87 m
| | → I = 0%
| | → I = 2%
| Se | #100 Importância estratégica |[0-3] | = 0
| | #53 Gabarit min. vertical sobre ponte(m) | [0-n] | ≥ 4.26 m
| | | | < 4.26 m
| | → I = 0%
| | → I = 2%
Figura 4.4 – Variação do parâmetro redutor J com os itens 58, 67, 68, 69, 71 e 72

No gráfico da Figura 4.4 estão representadas algumas curvas que ilustram os valores de J correspondentes a diversos cenários, onde se pode verificar por exemplo que:

- J assume o valor 0% quando a classificação média dos factores intermédios é de 6 (significando “Satisfatório”, no caso do item 58, e “Corresponde ao critério mínimo actual”, no caso dos itens 67 a 71);

- J assume o valor 6% quando a classificação média dos factores intermédios é de 5 (significando “Suficiente”, no caso do item 58 e “Melhor que o mínimo exigível para tolerar que não seja destruído”, no caso dos itens 67 a 71);

- J assume o valor 13%, quando a classificação média dos factores intermédios é de 4 (significando de “Insuficiente”, no caso do item 58, e “Cumpre o mínimo tolerável para se manter como está”, no caso dos itens 67 a 71).

O parâmetro G assume o valor de 5% quando, para um tipo de obra que não uma conduta (classificação do item #43B – “Tipo de concepção/construção” – diferente de 19), se
verifica na zona da obra um estreitamento da largura da faixa de rodagem superior a 0.6m (a determinar pela subtração da largura da faixa de rodagem na zona da ponte à largura da faixa de rodagem dos acessos). Nos casos em que essa condição não se verifica o valor de G deve ser considerado nulo.

O valor de H pode ser determinado, seguindo as indicações da Tabela 4.4 ou por leitura nas curvas representadas no gráfico da Figura 4.5, a partir dos seguintes dados:

- Largura média das faixas de rodagem (quociente entre a “Largura total da(s) faixa(s) de rodagem” e o “Número de faixas de rodagem sobre a estrutura”);
- Volume médio de tráfego diário por faixa (quociente entre o “TMD - Volume de Tráfego Médio Diário” e o “Número de faixas de rodagem sobre a estrutura”).

![Diagrama da largura média de cada faixa de rodagem](image)

Figura 4.5 – Variação do parâmetro redutor H com a largura média (de cada faixa de rodagem) e com o tráfego médio diário (por faixa de rodagem)

Da análise do gráfico anterior pode assim concluir-se que o Parâmetro H faz reflectir na classificação global da ponte o grau de adequação da largura da faixa de rodagem ao nível de volume de tráfego a que está sujeita.

Os valores de G e de H devem ser somados e no caso do valor resultante ser superior a 15% deve considerar-se apenas um valor de G+H = 15% (por ser este o valor máximo atribuído a esse somatório).
De acordo com o referido os parâmetros G e H serão simultaneamente nulos quando se verificar uma das condições indicadas no quadro da Tabela 4. 5.

Tabela 4. 5 – Tabela com as condições necessárias para anular o factor G+H

<table>
<thead>
<tr>
<th>Nº Faixas de rodagem</th>
<th>TMD médio por faixa de rodagem (X)</th>
<th>Largura média por faixa de rodagem (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(qualquer)</td>
<td>≥ 5,5 m</td>
</tr>
<tr>
<td>2</td>
<td>(qualquer)</td>
<td>≥ 4,9 m</td>
</tr>
<tr>
<td>3</td>
<td>(qualquer)</td>
<td>≥ 4,6 m</td>
</tr>
<tr>
<td>4</td>
<td>(qualquer)</td>
<td>≥ 4,3 m</td>
</tr>
<tr>
<td>5</td>
<td>(qualquer)</td>
<td>≥ 3,7 m</td>
</tr>
<tr>
<td>> 1</td>
<td>X ≤ 50</td>
<td>≥ 2,7 m</td>
</tr>
<tr>
<td></td>
<td>50<X ≤ 125</td>
<td>≥ 4,0 m</td>
</tr>
<tr>
<td></td>
<td>125<X ≤ 375</td>
<td>≥ 4,3 m</td>
</tr>
<tr>
<td></td>
<td>X > 375</td>
<td>≥ 4,9 m</td>
</tr>
</tbody>
</table>

Relativamente ao parâmetro redutor I, o seu valor deverá ser de 2% quando, numa ponte estratégica, o gabarit mínimo vertical sobre a ponte for inferior a 4.87m (altura necessária para a passagem dos veículos dos bombeiros) ou quando, numa ponte não estratégica, o gabarit mínimo vertical sobre a ponte for inferior a 4.26m. Nos casos em que a altura livre sobre o tabuleiro for superior à referida, para cada um dos casos, o parâmetro redutor deve ser considerado nulo.

Assim, para que o Rácio de Funcionalidade (R2) seja máximo (30%), é necessário que os parâmetros J, G+H e I assumam simultaneamente valores nulos, ou seja que:

- a classificação média atribuída aos itens 58, 67, 68, 69, 71 e 72, seja igual ou superior a 6 (correspondente ao nível “Satisfatório”), conforme evidenciado no gráfico da Figura 4. 4;
- se verifique uma das condições indicadas na Tabela 4. 5;
- a altura livre sobre o tabuleiro seja superior a 4.87m (ou a 4.26m se a ponte não for considerada estratégica).
Por outro lado, para anular o Rácio de Funcionalidade bastará que se verifique simultaneamente que:

- A sua classificação média seja de “Insuficiente”, “Grave”, “Crítico” ou em “Rotura”;
- A largura da faixa de rodagem seja insuficiente para o volume de tráfego de via, cumprindo as condições indicadas na Tabela 4. 6;
- O seu gabarit mínimo vertical seja insuficiente (ou seja inferior a 4.87m no caso de pontes não estratégicas ou a 4.26 no caso de pontes estratégicas).

Tabela 4. 6 – Tabela com as condições para maximizar o factor G+H

<table>
<thead>
<tr>
<th>N° Faixas de rodagem</th>
<th>TMD médio por faixa de rodagem (X)</th>
<th>Largura média por faixa de rodagem (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≤ 0.6m</td>
<td>≥ 0.6m</td>
</tr>
<tr>
<td>1</td>
<td>(qualquer)</td>
<td>4.3 m</td>
</tr>
<tr>
<td></td>
<td>50 < X ≤ 125</td>
<td>3.0 m</td>
</tr>
<tr>
<td>> 1</td>
<td>125 < X ≤ 375</td>
<td>3.3 m</td>
</tr>
<tr>
<td></td>
<td>375 < X ≤ 1350</td>
<td>3.7 m</td>
</tr>
<tr>
<td></td>
<td>X > 1350</td>
<td>4.6 m</td>
</tr>
</tbody>
</table>

4.1.3 Rácio de Utilidade Pública

A Utilidade Pública da ponte é reflectida no rácio R3, de acordo com o apresentado na Tabela 4. 7, sendo o seu valor determinado pela subtração aos 15% (o valor máximo) dos parâmetros A3 (entre 0 e 15%) e B3 (entre 0 e 2%), sendo que nos casos em que o resultado dessa operação for negativo se deve considerar o seu valor como nulo.
Tabela 4.7 - Tabela explicativa do cálculo de R3

<table>
<thead>
<tr>
<th>R3</th>
<th>Rácio de Utilidade Pública = 15% - A3 - B3</th>
<th>0-15%</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>Importância estrutural e funcional = (R1+R2)/85</td>
<td>→ A3 [0-15%]</td>
</tr>
<tr>
<td>#29</td>
<td>Volume tráfego médio diário (TMD) [0-n]</td>
<td>A3 = [(#29 x #19) / (320000 x k)] x 15%</td>
</tr>
<tr>
<td>#19</td>
<td>Desvio em caso de fecho(km) [0-n]</td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td>Importância estratégica [0-3]</td>
<td>>0 → B3 = 2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>= 0 → B3 = 0%</td>
</tr>
</tbody>
</table>

Sendo A3 determinado pela expressão:

\[
A3 = \frac{\text{Desvio} \times \text{TMD}}{320000 \times \frac{R1+R2}{85\%}} \times 15\%
\]

este parâmetro redutor de R3 é tanto maior quanto:

- Maior o volume de tráfego médio diário (#29) da via sobre a ponte;
- Maior a extensão do desvio implicado em caso de interdição à circulação sobre a ponte (#19);
- Menor a importância estrutural e funcional da ponte (avaliadas pelos rácios R1 e R2).

Ou seja, as pontes nas condições referidas terão menor rácio de Utilidade Pública e, consequentemente, menor valor de REG, pelo que serão mais rapidamente eleitas para acções de conservação/reabilitação.

No gráfico da Figura 4.6 estão representadas algumas curvas que permitem determinar A3, para vários valores de desvio, em função do volume médio de tráfego diário. Essas curvas correspondem a níveis máximos de importância estrutural e funcional (R1 + R2 = 85%), no entanto, quando esse somatório for inferior, poderá continuar a utilizar-se o gráfico, desde que o valor do desvio, ou o valor do TMD, seja reduzido na mesma proporção. Refira-se ainda que a um desvio nulo corresponde um parâmetro A3 igualmente nulo.
Figura 4.6 – Variação do parâmetro redutor A3 com o tráfego médio diário (TMD) (#29) e com o desvio necessário em caso de fecho (#19)

O parâmetro redutor B3 deve ser considerado igual a 2% para as obras consideradas estratégicas do ponto de vista da defesa do país e da população (quando são fundamentais para permitir chegar, por exemplo, a hospitais) e igual a zero nos restantes casos.

Assim sendo, o rácio R3 assume o seu valor máximo (15%) quando a ponte não é estratégica e o desvio necessário em caso de fecho é nulo (um volume de tráfego nulo numa ponte não estratégica, conduziria igualmente a um R3 de 15%, no entanto esta situação não se coloca uma vez que só se verificaria se a obra se encontrasse fechada ao trânsito). Por outro lado, R3 anula-se quando R1 e R2 são simultaneamente nulos ou ainda quando se verificam situações como as indicadas na Tabela 4.8 (para valores intermédios do somatório R1 + R2, podem igualmente fazer-se leituras a partir do quadro, desde que se admitam interpolações lineares).
Tabela 4. 8 – Algumas das condições para que se anule o Rácio de Utilidade Pública (R3)

<table>
<thead>
<tr>
<th>DESIVO</th>
<th>TMD</th>
<th>TMD</th>
<th>TMD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>não estratég.</td>
<td>estratég.</td>
<td>não estratég.</td>
</tr>
<tr>
<td>≥ 5 km</td>
<td>≥ 64000</td>
<td>≥ 55467</td>
<td>≥ 45176</td>
</tr>
<tr>
<td>≥ 10 km</td>
<td>≥ 32000</td>
<td>≥ 27733</td>
<td>≥ 22588</td>
</tr>
<tr>
<td>≥ 15 km</td>
<td>≥ 21333</td>
<td>≥ 18489</td>
<td>≥ 15059</td>
</tr>
<tr>
<td>≥ 20 km</td>
<td>≥ 16000</td>
<td>≥ 13867</td>
<td>≥ 11294</td>
</tr>
<tr>
<td>≥ 25 km</td>
<td>≥ 12800</td>
<td>≥ 11093</td>
<td>≥ 9035</td>
</tr>
<tr>
<td>≥ 30 km</td>
<td>≥ 10667</td>
<td>≥ 9244</td>
<td>≥ 7529</td>
</tr>
<tr>
<td>≥ 35 km</td>
<td>≥ 9143</td>
<td>≥ 7924</td>
<td>≥ 6454</td>
</tr>
<tr>
<td>≥ 40 km</td>
<td>≥ 8000</td>
<td>≥ 6933</td>
<td>≥ 5647</td>
</tr>
<tr>
<td>≥ 45 km</td>
<td>≥ 7111</td>
<td>≥ 6163</td>
<td>≥ 5020</td>
</tr>
<tr>
<td>≥ 50 km</td>
<td>≥ 6400</td>
<td>≥ 5547</td>
<td>≥ 4518</td>
</tr>
</tbody>
</table>

4.1.4 Rácio de reduções extraordinárias

Quando o somatório dos rácios parciais referidos anteriormente - R1, R2 e R3 - for igual ou superior a 50% poderão ainda efetuar-se algumas reduções extraordinárias, a determinar segundo o explicado na Tabela 4. 9.

Tabela 4. 9 - Tabela explicativa do cálculo de R4

<table>
<thead>
<tr>
<th>R4 Reduções extraordinárias do REG = A4 + B4 + C4</th>
<th>→ R4 [0-13%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Se (R1 + R2 + R3) < 50%</td>
<td>→ R4 = 0%</td>
</tr>
<tr>
<td>#19 Desvio em caso de fecho(km)</td>
<td>→ A4 = [7.9x10^-(-11)] x [(#19)^4] → A4 [0-5%]</td>
</tr>
<tr>
<td>Se #43B Tipo de concepção/construção [0-22]</td>
<td>→ B4 = 5% → B4 [0-5%]</td>
</tr>
<tr>
<td>= 10 asna sobre tabuleiro</td>
<td></td>
</tr>
<tr>
<td>= 12 arco sobre tabuleiro</td>
<td></td>
</tr>
<tr>
<td>= 13 suspensa</td>
<td></td>
</tr>
<tr>
<td>= 14 atirantada</td>
<td></td>
</tr>
<tr>
<td>= 15 móvel - lavadiga</td>
<td></td>
</tr>
<tr>
<td>= 16 móvel - basculante</td>
<td></td>
</tr>
<tr>
<td>= 17 móvel - rotativa</td>
<td></td>
</tr>
<tr>
<td>Senão:</td>
<td>→ B4 = 0%</td>
</tr>
<tr>
<td>Se #36A Guardas de protecção [0-1.N]</td>
<td>se 2 deles são nulos → C4 = 1% → C4 [0-3%]</td>
</tr>
<tr>
<td>#36B Transições guardas acessos p/ tab. [0-1.N]</td>
<td>se 3 deles são nulos → C4 = 2%</td>
</tr>
<tr>
<td>#36C Guardas dos acessos [0-1.N]</td>
<td>se 4 deles são nulos → C4 = 3%</td>
</tr>
<tr>
<td>#36D Remate das guardas dos acessos [0-1.N]</td>
<td>restantes casos → C4 = 0%</td>
</tr>
</tbody>
</table>

4.17
Capítulo 4

O rácio R4 é obtido pela soma de três factores parciais, A4 (entre 0 e 5%), B4 (entre 0 e 5%), e C4 (entre 0 e 3%), sendo que:

- A4 induz reduções no REG, entre 0 e 5%, nos casos em que uma eventual interdição à utilização da ponte implique um desvio de trânsito de elevada extensão (de acordo com a curva do gráfico da Figura 4.7);

- B4 reduz 5% o valor de REG quando ao tipo de concepção da estrutura está associado um risco elevado, como no caso de asnas ou arcos sobre o tabuleiro e no caso de pontes suspensas, atirantadas ou móveis;

- C4 pode variar entre 0 e 3%, dependendo do facto de as guardas do tabuleiro e dos acessos, bem como as transições entre ambas e o remate das mesmas, estarem ou não em boas condições.

Figura 4.7 – Variação do parâmetro redutor A4 com o desvio implicado por fecho.

As Reduções extraordinárias do REG (R4) não são aplicáveis quando a soma de R1, R2 e R3 é inferior a 50%.

Quando estas reduções são aplicáveis, R4 assume o seu valor máximo (13%) quando se verificam, simultaneamente, os seguintes cenários:

- desvio necessário em caso de fecho de ponte superior a 50km;
- ponte de um dos seguintes tipos:
 - ponte suspensa,
 - ponte atirantada,
 - ponte móvel,
- ponte com asna sobre o tabuleiro,
- ponte com arco sobre o tabuleiro;
- nenhum dos seguintes itens cumpre as disposições regulamentares:
 - guaridas de protecção na zona do tabuleiro,
 - transição das guardas do tabuleiro para as guardas da zona dos acessos,
 - guaridas de protecção na zona dos acessos,
 - remate das guardas de protecção na zona dos acessos;

e assume o seu valor mínimo (0%) quando:
- o fecho da ponte não implica uma maior extensão do percurso entre dois pontos principais, de cada um dos lados da mesma;
- o tipo de concepção/construção não é de elevado risco;
- as guardas de protecção dos seus utentes cumprem as disposições regulamentares.

4.1.5 Interpretação final dos resultados

O Rácio de Eficiência Global classifica, como o próprio nome indica, a eficiência da ponte, tentando, inversamente, traduzir a urgência de realização de obras de reparação ou reforço na mesma. O seu valor pode variar entre 0 e 100%, devendo-se interpretar:
- os seus valores mais elevados como correspondentes a obras em melhor estado;
- os seus valores mais baixos como correspondentes a obras em que urge tomar medidas correctivas relativamente aos danos identificados na inspecção.

O valor de REG é tanto maior quanto maiores os Rácio de Segurança Estrutural (R1), de Funcionalidade (R2) e de Utilidade Pública (R3) e quanto menores as suas Reduções Extraordinárias (R4). Estes rácios parciais, cada um com o respectivo significado (ver Tabela 4. 10), ajudam a explicar e interpretar o resultado final do REG. No entanto, na análise individual dos rácios é importante ter presente o facto dos valores finais de R3 e R4 serem também afectados por R1 e R2. Por exemplo, para que o Rácio de Eficiência Global assuma o valor zero, basta que R1 e R2 sejam simultaneamente nulos, uma vez que quando esses dois rácios assumem valor zero os rácios R3 e R4 também se anulam.
Relembre-se ainda que o rácio relativo à Segurança Estrutural (R1) é o que assume maior importância no valor final do REG. Refira-se, a título de exemplo, que uma ponte com um R1 nulo terá em consequência um R3 baixo e um R4 nulo, pelo que o valor de REG não poderá ir muito além de 30% (resultantes da parcela relativa à funcionalidade).

Pode dizer-se, resumindo o que foi dito nos pontos anteriores, que o Rácio de Eficiência Global (REG) assume a sua classificação máxima (100%) quando simultaneamente se verifica que:

- a classificação mais condicionante de entre o estado da subestrutura, o estado da superestrutura e o estado da conduta é de um nível “Satisfatório” ou superior;
- o Índice de Capacidade de carga é igual ou superior a 32.4 toneladas;
- a avaliação da estrutura, do estado e geometria do tabuleiro, das limitações espaciais, da resposta face ao canal de água e do alinhamento dos acessos é, em média, igual ou superior a “Satisfatório”;
- a ponte não é considerada estratégica;
- o fecho da ponte não implica um percurso mais extenso;
- o tipo de concepção/construção não é de elevado risco;
- as guardas de protecção dos seus utentes cumprem as disposições regulamentares.

Em oposição, REG assume a sua classificação mínima (0%) quando, por exemplo, se verificam simultaneamente as seguintes condições:

- se verificam as condições indicadas na Tabela 4. 3, como por exemplo um Índice de Capacidade de Carga nulo ou um estado da superestrutura, da subestrutura ou da conduta considerado “Crítico” ou em “Rotura”;
- o estado do tabuleiro e a avaliação da estrutura, da geometria do tabuleiro, das limitações espaciais, do canal de água e do alinhamento dos acessos é, em média, igual ou inferior a “Insuficiente”.

A Tabela 4. 10 apresenta, resumidamente, um esquema de interpretação dos resultados obtidos para cada um dos rácios que compõem o REG.
Tabela 4.10 – Interpretação dos rácios R1, R2, R3 e R4.

<table>
<thead>
<tr>
<th>> R1</th>
<th>> Segurança Estrutural</th>
<th>< Urgência de Intervenção</th>
<th>> REG</th>
</tr>
</thead>
<tbody>
<tr>
<td>> R2</td>
<td>> Funcionalidade</td>
<td>< Urgência de Intervenção</td>
<td>> REG</td>
</tr>
<tr>
<td>> R3</td>
<td>< Utilidade Pública</td>
<td>< Urgência de Intervenção</td>
<td>> REG</td>
</tr>
<tr>
<td>> R4</td>
<td>> Reduções Extraordinárias</td>
<td>> Urgência de Intervenção</td>
<td>< REG</td>
</tr>
</tbody>
</table>

A finalizar relembr-se que o Rácio de Eficiência Global (REG) pretende atribuir prioridades de intervenção entre um conjunto de obras, pelo que será tanto menor quanto maior a necessidade de actuar correctivamente na ponte em avaliação.

4.3. Capacidade de Carga de uma ponte existente

A capacidade de uma ponte é quantificada em fase de projecto, mas ao longo da sua vida útil vai sendo depreciada, por acção de diversos agentes agressores. Assim, é importante que os técnicos responsáveis façam uma actualização permanente dessa informação, sempre que se verifiquem alterações significativas do seu estado geral, como por exemplo a redução da secção de elementos estruturais.

Para que essa classificação seja objectiva, pode-se por exemplo adoptar o método de avaliação da capacidade de carga de pontes existentes referido no *Manual for Condition Evaluation of Bridges* [AASHTO 1994]. Esse método pode ser aplicado às pontes mais correntes, a partir de informação recolhida em elementos de projecto, quando existentes, e em inspecções periódicas ou extraordinárias.

Segundo esse método a avaliação das pontes passa pela determinação de um Rácio de Carga (RC) para cada um dos seus elementos mais críticos, para os vários tipos de esforços (flexão, corte, etc.), de acordo com a expressão:

\[
RC = \frac{C - y_0 G}{y_0 Q (1 + IM)}
\]
em função das seguintes variáveis:

C – Capacidade resistente (C – capacity)
G – Efeito das cargas permanentes no elemento (D – dead loads)
Q – Efeito das sobrecargas no elemento (L – live loads)
IM – Factor de impacto
γG – Coeficiente a aplicar às cargas permanentes
γQ – Coeficiente a aplicar às sobrecargas

A capacidade resistente e os efeitos referidos devem ser entendidos, em geral, como os correspondentes esforços internos na estrutura. Na fixação do valor de C pode ser útil a consulta de algumas das publicações da AASHTO [1989,1994], em que são dadas algumas indicações sobre a resistência de alguns materiais em função da sua idade.

O factor de impacto não deve ser considerado superior a 0.3 e deve ser calculado, em função do vão da ponte em metros (L), a partir da expressão: IM = 15.24 (L+38.1) [AASHTO 1994]. O seu valor poderá ser reduzido nas situações em que, por exemplo devido ao deficiente alinhamento da rodovia em relação ao tabuleiro da ponte, a velocidade de circulação sobre a obra seja reduzida.

O RC a considerar para cada vão da ponte, ou mesmo para a globalidade da obra, deverá ser o valor mais condicionante (o mais baixo) de entre os rácios dos seus elementos críticos. Para que a obra possa funcionar sem restrições, o seu RC tem que ser superior à unidade e, nesses casos, a sobrecarga máxima que a mesma poderá suportar poderá ser obtida pelo produto desse rácio pelo peso do veículo tipo. Nos casos em que RC resulte inferior à unidade, o seu valor deve ser confirmado por uma investigação mais detalhada de forma a evitar considerações demasiado conservativas. Contudo, se após essa reanálise o seu valor se mantiver inferior à unidade, deve-se restringir a utilização da ponte tendo em conta a carga limite da mesma, de acordo com esse rácio.
Segundo a AASHTO [1994], o cálculo pode ser efectuado de acordo com dois tipos diferentes de abordagem, a que corresponderão os dois índices seguintes:

ICC – Índice de Capacidade de Carga (IR – Inventory Ratio)
Correspondente à determinação da sobrecarga que a estrutura tem capacidade de suportar em condições normais de serviço (tendo em conta o tipo e a extensão de deterioração de cada um dos elementos). O seu valor permite uma comparação com a capacidade considerada em projecto para as novas pontes.

ICF - Índice de Capacidade de Funcionamento (OR – Operating Ratio)
Correspondente à determinação da segurança das obras existentes, em que o conhecimento da estrutura permite diminuir a incerteza e possibilita a utilização de menores coeficientes de segurança. O seu valor é assim usado sobretudo em situações de implementação de restrições de utilização da obra, em que uma análise demasiado conservativa poderia acarretar custos adicionais bastante elevados (por exemplo, uma limitação do peso dos veículos utilizadores de uma ponte rodoviária).

utilizando um dos seguintes métodos:

TAD – Tensões Admissíveis (AS – Allowable Stress)
Em que as cargas actuais são combinadas de forma a induzir o esforço máximo no elemento, sem que a tensão máxima admissível do material, afectada de um factor de segurança apropriado, seja ultrapassada.

FC – Factor de Carga (LF – Load Factor)
Em que é efectuada uma análise do comportamento do elemento quando submetido às várias cargas a que está sujeito (cada uma delas multiplicada por um factor correspondente à respectiva incerteza), determinando o limite a partir do qual a resistência do material é excedida (método mais recente que o TAD).

Assim, os valores dos coeficientes \(\gamma_d \) e \(\gamma_o \) devem ser considerados em função do tipo de classificação a efectuar, de acordo com o indicado na Tabela 4.11.
Tabela 4.11 – Coeficientes \(\gamma_0 \) e \(\gamma_0 \) em função do nível e do método de classificação

[AASHTO 1994]

<table>
<thead>
<tr>
<th></th>
<th>ICC - Índice de Capacidade de Carga</th>
<th>ICF - Índice de Capacidade de Funcionamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAD – Tensões Admissíveis</td>
<td>(\gamma_0 = 1.00)</td>
<td>(\gamma_0 = 1.00)</td>
</tr>
<tr>
<td></td>
<td>(\gamma_0 = 1.00)</td>
<td></td>
</tr>
<tr>
<td>FC – Factor de Carga</td>
<td>(\gamma_0 = 1.30)</td>
<td>(\gamma_0 = 1.30)</td>
</tr>
<tr>
<td></td>
<td>(\gamma_0 = 2.17)</td>
<td></td>
</tr>
</tbody>
</table>

O National Cooperative Highway Research Program [2001] refere um outro método, o FCR - Factor de Carga e Resistência (Load and Resistance Factor Rating). Este método, sendo mais próximo da filosofia de projecto designada por FCRP - Factor de Carga e Resistência de Projecto (Load and Resistance Factor Design), permite uma maior uniformidade na definição do nível de segurança. Enquanto que os métodos anteriormente referidos (TAD e FC) são de natureza determinística, o FCR combina dados estatísticos, teorias probabilísticas e considerações dos próprios técnicos envolvidos para obter o valor do Rácio de Carga. Esse rácio é determinado para cada um dos elementos, ou mesmo componentes ou ligações, para cada um dos estados limites e tendo em consideração os esforços mais desfavoráveis, de forma simples ou combinada (por exemplo flexão, esforço axial, flexão e esforço axial, etc.). O cálculo do Rácio de Carga é efectuado com base na expressão dos métodos anteriores, mas com algumas diferenças, como por exemplo:

- O valor das cargas permanentes pode ser subdividido em parcelas relativas ao peso das próprias componentes estruturais, dos revestimentos e de outros elementos da obra. Os coeficientes que lhes são aplicáveis podem assumir valores diferentes, com valores iguais ou superiores à unidade, mas com um máximo de 1.25 para o peso próprio das componentes e com um máximo de 1.5 para os revestimentos, podendo ser diminuído para 1.25, caso a sua espessura tenha sido medida no local.

- O factor de impacto, IM, deve ser considerado igual a 33%, podendo ser diminuído quando a superfície do tabuleiro se encontra em boas condições.

- O coeficiente \(\gamma_0 \) pode assumir valores entre 1.4 e 1.8, em função do volume médio diário de tráfego de pesados [Minervino, Sivakumar 1999], sendo maior nos casos
em que esse volume é desconhecido ou mais elevado (uma vez que aumenta a probabilidade de cruzamento de veículos pesados).

- Numa análise de estados limites últimos, para ajustar o valor da capacidade resistente do elemento, em função do estado da arte corrente e de forma a que o índice de fiabilidade seja igual ou superior ao limite mínimo estabelecido, C deverá ser multiplicada pelos seguintes coeficientes de redução (sem que o produto de ϕ_c por ϕ_s seja inferior a 0.85, para que a redução global não seja demasiado severa):

 - **Coeficiente de Projeto (ϕ)**
 Função do nível de fiabilidade pretendido, à semelhança do considerado no projecto de estruturas novas segundo o método FCRP;

 - **Coeficiente de Condição (ϕ_c)**
 Para ter em conta a incerteza associada à definição das resistências de materiais degradados e ainda de forma a antecipar a provável deterioração futura correspondente ao período entre inspecções. Este coeficiente assume por isso valores mais próximos de 1 (o seu máximo) quando a mesma se encontra em bom estado e mais próximos de 0.85 (o seu mínimo) caso esteja em mau estado e a resistência tenha sido, por isso, determinada com um maior grau de incerteza (este factor pode ser definido a partir do item #59 da NBI, relativo ao Estado da Subestrutura);

 - **Coeficiente do Sistema (ϕ_b)**
 Dependente do nível de redundância da estrutura. Nos casos de elevada hiperestaticidade, o coeficiente deve ser superior à unidade e, nos casos de menor redundância estrutural, deve ser inferior à unidade, de forma a minorar a capacidade resistente [Moses 2001].

Este método, o FCR, é mais parecido com o FC do que com o TAD, por reflectir uma previsão da variabilidade de algumas das cargas (por exemplo o veículo tipo e o vento), através de ajustes com coeficientes adicionais.

4.4. Política de definição de prioridades de intervenção

Como já foi referido o Rácio de Eficiência Global (REG), abordado no ponto 4.2, pode ser usado como elemento auxiliar da gestão de um sistema de pontes, por permitir ordenar o conjunto das obras em função da urgência de implementação de obras de reabilitação em cada uma delas. Assim, conhecido o REG de cada uma das pontes de um sistema, o gestor pode agendar as intervenções directamente a partir dessa lista ou pode ainda adoptar outras políticas mais complexas que conjuguem essa classificação com outros parâmetros decisores.

<table>
<thead>
<tr>
<th>Se</th>
<th>Então</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rácio de Eficiência Global (REG) < 30%</td>
<td>Pode concorrer à obtenção de fundos para reabilitação/substituição</td>
</tr>
<tr>
<td>ou se</td>
<td></td>
</tr>
<tr>
<td>Rácio de Eficiência Global (REG) < 50%</td>
<td></td>
</tr>
<tr>
<td>Custos de substituição > 1,2x Custos de reabilitação</td>
<td></td>
</tr>
<tr>
<td>ou se</td>
<td></td>
</tr>
<tr>
<td>Rácio de Eficiência Global (REG) < 50%</td>
<td></td>
</tr>
<tr>
<td>Ponte estruturalmente deficiente</td>
<td></td>
</tr>
<tr>
<td>ou se</td>
<td></td>
</tr>
<tr>
<td>Rácio de Eficiência Global (REG) < 50%</td>
<td></td>
</tr>
<tr>
<td>Ponte funcionalmente obsoleta</td>
<td></td>
</tr>
<tr>
<td>Se</td>
<td></td>
</tr>
<tr>
<td>Rácio de Eficiência Global (REG) < 80%</td>
<td></td>
</tr>
<tr>
<td>> 50%</td>
<td></td>
</tr>
<tr>
<td>então</td>
<td>Pode concorrer à obtenção de fundos para reabilitação</td>
</tr>
<tr>
<td>Se</td>
<td></td>
</tr>
<tr>
<td>Rácio de Eficiência Global (REG) > 80%</td>
<td></td>
</tr>
<tr>
<td>então</td>
<td>Não pode concorrer</td>
</tr>
</tbody>
</table>
A título de exemplo, refira-se a política adoptada pelo U.S. Department of Transportation – Federal Highway Administration que decidiu atribuir fundos de financiamento apenas às pontes que cumprissem as condições indicadas no esquema da Tabela 4. 12 [FHWA; Ralls 2002].

As designações de “Ponte Estruturalmente Deficiente” e de “Ponte Funcionalmente Obsoleta” indicadas devem ser entendidas de acordo com o seguinte:

- **Ponte Estruturalmente Deficiente (ESD)**
 Ponte que cumpre as condições indicadas na Tabela 4. 13 e na Tabela 4. 14, sendo por isso incapaz de suportar as cargas a que pode estar sujeita.

- **Ponte Funcionalmente Obsoleta (FOB)**
 Ponte que cumpre as condições indicadas na Tabela 4. 13 e na Tabela 4. 15, não estando por isso adequada ao tipo de tráfego a que pode estar sujeita.

Tabela 4. 13 – Condições para uma ponte ser classificável como Estruturalmente Deficiente ou Funcionalmente Obsoleta [FHWA]

<table>
<thead>
<tr>
<th>Se</th>
<th>#112</th>
<th>É, por definição, uma ponte?</th>
<th>= 1 (Sim)</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>Ano actual - ano de construção</td>
<td>> 10</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>Ano actual - ano de reconstrução</td>
<td>> 10</td>
<td></td>
</tr>
</tbody>
</table>

Tabela 4. 14 – Condições para uma ponte ser considerada Estruturalmente Deficiente [FHWA]

<table>
<thead>
<tr>
<th>Se</th>
<th>#58</th>
<th>Estado do tabuleiro</th>
<th>[0:9; N]</th>
<th>≤ 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ou</td>
<td>#59</td>
<td>Estado da superestrutura</td>
<td>[0:9; N]</td>
<td>≤ 4</td>
</tr>
<tr>
<td>ou</td>
<td>#60</td>
<td>Estado da infraestrutura</td>
<td>[0:9; N]</td>
<td>≤ 4</td>
</tr>
<tr>
<td>ou</td>
<td>#62</td>
<td>Estado da conduta submersa</td>
<td>[0:9; N]</td>
<td>≤ 4</td>
</tr>
<tr>
<td>e</td>
<td>Se</td>
<td>#67</td>
<td>Avaliação estrutural</td>
<td>[0:9; N]</td>
</tr>
<tr>
<td>ou</td>
<td>#71</td>
<td>Resposta face ao canal de água</td>
<td>[0:9; N]</td>
<td>≤ 4 caso #42B = 0 ou #42B = 5 a 9</td>
</tr>
</tbody>
</table>
Tabela 4.15—Condições para uma ponte ser considerada Funcionalmente Obsoleta [FHWA]

<table>
<thead>
<tr>
<th>Se não é ESD (Estruturalmente Deficiente)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Se #68 Avaliação da geometria do tabuleiro [0-9; N] ≤ 3</td>
</tr>
<tr>
<td>ou #69 Avaliação das limitações espaciais [0-9; N] ≤ 3</td>
</tr>
<tr>
<td>ou #72 Alinhamento dos acessos [0-9; N] ≤ 3</td>
</tr>
</tbody>
</table>

Se #67 Avaliação estrutural [0-9; N] ≤ 3

ou #71 Resposta face ao canal de água [0-9; N] ≤ 3 caso #428 = 0 ou #428 = 5 a 9

Na Tabela 4.13, o item 112 ("É, por definição, uma ponte?") deve ser classificado tendo em conta a definição de ponte da FHWA [1995].

Segundo Scherer e Glagola [1994], nos Estados Unidos da América cerca de metade das pontes da NBI foram construídas antes de 1940 e mais de 24 000 são classificadas de "Estruturalmente Deficientes" ou "Funcionalmente Obsoletas". De acordo com Chase e Washer [1997], a maior percentagem de pontes estruturalmente deficientes corresponde, de entre os registos da NBI, às pontes em aço (que nessa base de dados correspondem a 42% das obras).

4.5. Considerações finais

Neste capítulo foi apresentada e explorada uma metodologia de gestão de pontes rodoviárias, usada nos Estados Unidos da América para a atribuição dos fundos de financiamento de intervenções de reabilitação/substituição desse tipo de obras de arte.

Nessa metodologia as pontes são classificadas através de um Rácio de Eficiência Global, em resultado dos respectivos níveis de Segurança Estrutural, Funcionalidade e Utilidade Pública. Essa classificação é efectuada em função de um grande conjunto de dados relativos ao desempenho rodoviário da ponte, às características gerais da obra e ainda à sua capacidade de carga. Essa capacidade de carga deverá ser determinada com uma análise detalhada que evite considerações demasiado conservativas (que conduziriam a
CAPÍTULO 5

PROGRAMA DE APOIO À GESTÃO DE PONTES

Com o intuito de possibilitar a aplicação da metodologia de gestão descrita no capítulo anterior, a um conjunto de pontes portuguesas, foi desenvolvida uma ferramenta de cálculo, em português, com capacidade para:

a) **Arquivar em Base de Dados** a informação relativa a cada uma das obras do conjunto que constitui o sistema, de forma a permitir, em qualquer altura, uma fácil consulta e actualização da mesma.

b) **Classificar automaticamente cada uma das pontes** através dos respectivos Rácios de Eficiência Global (incluindo os correspondentes rácios parciais) e da identificação das pontes "Estruturalmente Deficientes" ou "Funcionalmente obsoletas".

c) **Apoiar o gestor na análise da informação da Base de Dados** e na identificação das prioridades de intervenção em cada uma das obras.

A designação escolhida para o programa foi **REGpontes**, pelo facto de as suas potencialidades referidas, ditas de uma forma mais resumida, serem:

a) **REGistar** os dados de um conjunto de pontes;

b) **calcular o REG** (Rácio de Eficiência Global) de cada uma delas;

c) **ajudar a gerir (REGer)** o sistema em análise.
A apresentação do programa é feita em seguida, no ponto 5.1, e a calibração dos seus resultados é descrita posteriormente no ponto 5.2. A terminar o capítulo, no ponto 5.3, são ainda apontados alguns dos possíveis desenvolvimentos futuros para o REGpontes.

5.1 Apresentação do programa desenvolvido

O formato escolhido para o programa foi o Microsoft Excel e a linguagem usada para a programação das suas funções foi o Visual Basic Application aplicado a essa folha de cálculo (os códigos encontram-se apresentados no Anexo C). A escolha desse formato, de comum utilização, foi feita de forma a facilitar a implementação do programa. Por outro lado, dada a simplicidade de manipulação dos dados na própria folha de cálculo, a ferramenta possibilita a criação de diversos tipos de relatórios, adaptados a diferentes filosofias de gestão.

Uma das principais vantagens que se reconhece no formato escolhido é o facto de dispensar a importação e a exportação de informação para outros programas, caso se pretenda trabalhá-los de forma personalizada. Para além disso, sendo o Excel uma ferramenta de domínio bastante generalizado, o programa permitirá uma fácil habitação ao ambiente de trabalho. Por outro lado, uma vez que o código do programa se encontra disponível, o próprio utilizador pode implementar alterações que melhor o ajustem às suas necessidades específicas.

O REGpontes é constituído por cinco módulos, cada uma deles correspondente a um separador diferente da folha de cálculo, conforme se pode visualizar na Figura 5.1. As designações adoptadas para cada um desses módulos e as descrições sumárias das respectivas potencialidades são as seguintes:

- **BaseDados** [arquivo/consulta da informação e classificação dos registos]
- **Relatório** [relatórios com listagens selectivas da informação a analisar]
- **MemCalc** [explicação do cálculo e apresentação de resultados parciais]
- **Classif** [tabelas com códigos de arquivo]
- **Ajuda** [instruções de utilização do programa]
Nos pontos 5.1.1 a 5.1.5 é feita a descrição mais pormenorizada de cada um desses módulos e são apresentadas algumas figuras ilustrativas dos respectivos écrans de trabalho.

5.1.1 Módulo “Base Dados”

A “BaseDados” é o módulo nuclear do REGpontes, a partir do qual se pode manipular toda a informação e classificar cada uma das obras.

A Base de Dados deste módulo permite o arquivo sistemático de um vasto conjunto de itens, obra a obra. A cada item corresponde uma linha e a cada obra corresponde uma coluna. Alguns desses itens, os comuns à generalidade das pontes rodoviárias, são fixos (ver lista comentada no Anexo A) e outros poderão ser definidos pelo próprio utilizador. Com o objectivo de facilitar a comparação da informação e a sua consulta na Base de Dados, a alguns desses parâmetros são associadas tabelas com indicação de códigos numéricos (apresentados no Anexo B). A esses códigos corresponde uma informação mais descritiva que automaticamente vai sendo apresentada ao utilizador, quer para apoio à introdução de novos registos, quer para descodificar informação já arquivada.

A consulta e a actualização da informação arquivada na Base de Dados, obra a obra e item a item, pode ser efectuada neste módulo, através de comandos específicos de criação de novos registos, de procura de registos já arquivados e de memorização de eventuais alterações. Relativamente à memorização das alterações, é de referir que, quando a data e os códigos da informação de base que se alterou não são coincidentes com os valores iniciais, o rearquivo pode ser automaticamente efectuado como um novo registo, de forma a permitir guardar informação de diferentes instantes de tempo, para cada uma das obras.
Relativamente à classificação de cada uma das obras, ela é efectuada automaticamente, de acordo com a metodologia descrita no Capítulo 4 e é explicitada ao utilizador no módulo “MemCalc”. Essa classificação é feita por indicação de:

- Classificação Estrutural: aviso quando “Estruturalmente Deficiente” (ESD);
- Classificação Funcional: aviso quando “Funcionalmente obsoleta” (FOB);
- Valor do Rácio de Eficiência Global (REG) e valores dos respectivos rácios parciais (que dão indicações sobre a Segurança Estrutural, a Funcionalidade e a Utilidade Pública da obra).

<table>
<thead>
<tr>
<th>CE</th>
<th>Classificação Estrutural</th>
<th>CRER</th>
<th>Rácio de Eficiência Global</th>
<th>71.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>Rácio de Segurança Estrutural</td>
<td>43%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>Rácio de Funcionalidade</td>
<td>12%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>Rácio de Utilidade Pública</td>
<td>15%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>Reduções extraordinárias do REG</td>
<td>0%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 5.2 – Ecrã do módulo “BaseDados”

Na Figura 5.2a) pode visualizar-se, no início de cada linha, uma parte da lista dos itens da Base de Dados. Nessa mesma figura, à frente de cada um dos itens pode-se ainda...
observar os valores do registo corrente e os botões de auxílio à sua interpretação. Os botões de comando para manipulação do registo corrente são os que se podem observar no canto superior direito da mesma imagem. Na Figura 5. 2b), é possível visualizar parte do arquivo de dados. Na imagem aparecem de forma parcial os registos relativos a três diferentes obras, uma em cada coluna, indicando na linha correspondente a cada item o respectivo valor. Para auxiliar o utilizador na interpretação das classificações atribuídas a cada um dos registos, os resultados são visualmente apresentados de acordo com um código de cores que faz uma distinção qualitativa dos mesmos, em valores “Bons”, “Médios” e “Maus” (ver Figura 5. 10 apresentada no ponto 5.1.5).

5.1.2 Módulo “Relatório”

O módulo “Relatório” permite criar relatórios de apoio às tarefas de decisão, com tabelas e gráficos relativos à totalidade ou a parte das obras da Base de Dados.

Para isso o utilizador deverá selecionar as obras que pretende incluir no relatório, através de um dos três seguintes critérios (ver Figura 5. 3a):

- código descritivo + intervalo de códigos numéricos (valor mínimo e valor máximo);
- código da via + intervalo quilométrico (valor mínimo e valor máximo);
- gama de valores de REG (valor mínimo e valor máximo).

E também escolher, de entre o conjunto de itens da Base de Dados, os parâmetros que pretende ver indicados na tabela, para cada um dos registos. Essa escolha pode ser efectuada por marcação com um ticket, dos itens pretendidos, na secção ilustrada parcialmente na Figura 5. 3b.

![Figura 5. 3 – Ecrã do módulo “Relatório”](image-url)
Depois da seleção das obras e dos itens a listar, é então gerada a tabela (ver exemplo apresentado na Figura 5.4). Simultaneamente, é automaticamente actualizado um gráfico (ver Figura 5.5) com os valores do Rácio de Eficiência Global das obras tabeladas, para melhor percepção do conjunto de resultados obtidos.

Figura 5.4 – Exemplo de uma tabela gerada automaticamente

Figura 5.5 – Exemplo de um gráfico gerado automaticamente

Uma outra função disponível neste módulo é a ordenação dos gráficos e das tabelas, em função dos valores de REG dos respectivos registos, para dar indicações sobre a urgência relativa de intervenção em cada uma das obras.
5.1.3 Módulo “MemCalc”

O módulo “MemCalc” explica ao utilizador o cálculo efectuado automaticamente com o programa, uma vez que lhe permite:

- Conhecer a metodologia de classificação implícita ao REGpontes (descrita no Capítulo 4), a partir da sua explicitação em quadros com as fórmulas de cálculo do Rácio de Eficiência Global (ver exemplo na Figura 5. 6) e com as condições necessárias para que uma ponte seja classificada como “Estruturalmente Deficiente” (ESD) ou como “Funcionalmente Obsoleta” (FOB).

- Consultar resultados parciais do cálculo efectuado para qualquer um dos registos da Base de Dados, a selecionar pela indicação dos respectivos códigos descritivo e numérico (canto superior direito da Figura 5. 7a) e, no caso da ocorrência de erros de classificação, detectar a sua origem e localização (Figura 5. 7b).

- Efectuar um cálculo isolado, exclusivamente a partir da indicação avulsa dos dados que para isso são necessários (zona de fundo branco na Figura 5. 7), e em seguida visualizar todos os resultados parciais, em paralelo com a explicitação da metodologia de classificação aplicada.

Figura 5. 6 – Quadros explicativos do cálculo automático de REG
MEMÓRIA DE CÁLCULO DE UMA OBRA

DADOS NECESSÁRIOS AO CÁLCULO

<table>
<thead>
<tr>
<th>Código (90)</th>
<th>Valor (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>06 ICC - Índice Capacidade Carga (ton)</td>
<td>B1 [0-0.50]</td>
</tr>
<tr>
<td>06 Estudo da superestrutura</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>06 Estudo da infraestrutura</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>02 Estudo do conduto submerso</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>07 Avisação estrutural</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>08 Avisação da georreferência do tabuleiro</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>09 Avisação das limitações específicas</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>07 Resposta face ao canal de água</td>
<td>2</td>
</tr>
<tr>
<td>07 Ablação dos acostamentos</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>07 Ablação das rotas de rodagem sobre a estrutura</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>07 Tráfego estático diário (TMD)</td>
<td>6</td>
</tr>
<tr>
<td>07 Largura total (x) tabuleiro (m)</td>
<td>5000</td>
</tr>
<tr>
<td>07 Largura da faixa de rodagem de acesso (m)</td>
<td>6</td>
</tr>
<tr>
<td>07 Tipo de concepção/construção</td>
<td>0</td>
</tr>
<tr>
<td>07 Importância estratégica</td>
<td>5.06</td>
</tr>
<tr>
<td>07 Calibração vertical sobre a ponte(n)</td>
<td>9</td>
</tr>
<tr>
<td>07 Desvio implicado com o tráfego</td>
<td>1</td>
</tr>
<tr>
<td>07 Avisação de proteção</td>
<td>1</td>
</tr>
<tr>
<td>07 Transição guarida acessos tabuleiro</td>
<td>1</td>
</tr>
<tr>
<td>07 Guarida dos acostamentos</td>
<td>1</td>
</tr>
<tr>
<td>07 Rede de guaridas dos acostamentos</td>
<td>0</td>
</tr>
</tbody>
</table>

VALOR DE CÁLCULO

- **R1** Rádio de Segurança Estrutural [0-100%] = 40%
- **R2** Rádio de Funcionalidade [0-150%] = 8%
- **R3** Rádio de Utilidade Pública [0-300%] = 100%
- **R4** Reduções extraordinárias do REG [0-100%] = 10%

RÁDIO DE SEGURANÇA ESTRUTURAL

<table>
<thead>
<tr>
<th>Código (90)</th>
<th>Valor (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>06 ICC - Índice Capacidade Carga (ton)</td>
<td>B1 [0-0.50]</td>
</tr>
<tr>
<td>06 Estudo da superestrutura</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>06 Estudo da infraestrutura</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>02 Estudo do conduto submerso</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>07 Avisação estrutural</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>08 Avisação da georreferência do tabuleiro</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>09 Avisação das limitações específicas</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>07 Resposta face ao canal de água</td>
<td>2</td>
</tr>
<tr>
<td>07 Ablação dos acostamentos</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>07 Ablação das rotas de rodagem sobre a estrutura</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>07 Tráfego estático diário (TMD)</td>
<td>6</td>
</tr>
<tr>
<td>07 Largura total (x) tabuleiro (m)</td>
<td>5000</td>
</tr>
<tr>
<td>07 Largura da faixa de rodagem de acesso (m)</td>
<td>6</td>
</tr>
<tr>
<td>07 Tipo de concepção/construção</td>
<td>0</td>
</tr>
<tr>
<td>07 Importância estratégica</td>
<td>5.06</td>
</tr>
<tr>
<td>07 Calibração vertical sobre a ponte(n)</td>
<td>9</td>
</tr>
<tr>
<td>07 Desvio implicado com o tráfego</td>
<td>1</td>
</tr>
<tr>
<td>07 Avisação de proteção</td>
<td>1</td>
</tr>
<tr>
<td>07 Transição guarida acessos tabuleiro</td>
<td>1</td>
</tr>
<tr>
<td>07 Guarida dos acostamentos</td>
<td>1</td>
</tr>
<tr>
<td>07 Rede de guaridas dos acostamentos</td>
<td>0</td>
</tr>
</tbody>
</table>

Locação da erro

<table>
<thead>
<tr>
<th>Código (90)</th>
<th>Valor (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>06 ICC - Índice Capacidade Carga (ton)</td>
<td>B1 [0-0.50]</td>
</tr>
<tr>
<td>06 Estudo da superestrutura</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>06 Estudo da infraestrutura</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>02 Estudo do conduto submerso</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>07 Avisação estrutural</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>08 Avisação da georreferência do tabuleiro</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>09 Avisação das limitações específicas</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>07 Resposta face ao canal de água</td>
<td>2</td>
</tr>
<tr>
<td>07 Ablação dos acostamentos</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>07 Ablação das rotas de rodagem sobre a estrutura</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>07 Tráfego estático diário (TMD)</td>
<td>6</td>
</tr>
<tr>
<td>07 Largura total (x) tabuleiro (m)</td>
<td>5000</td>
</tr>
<tr>
<td>07 Largura da faixa de rodagem de acesso (m)</td>
<td>6</td>
</tr>
<tr>
<td>07 Tipo de concepção/construção</td>
<td>0</td>
</tr>
<tr>
<td>07 Importância estratégica</td>
<td>5.06</td>
</tr>
<tr>
<td>07 Calibração vertical sobre a ponte(n)</td>
<td>9</td>
</tr>
<tr>
<td>07 Desvio implicado com o tráfego</td>
<td>1</td>
</tr>
<tr>
<td>07 Avisação de proteção</td>
<td>1</td>
</tr>
<tr>
<td>07 Transição guarida acessos tabuleiro</td>
<td>1</td>
</tr>
<tr>
<td>07 Guarida dos acostamentos</td>
<td>1</td>
</tr>
<tr>
<td>07 Rede de guaridas dos acostamentos</td>
<td>0</td>
</tr>
</tbody>
</table>

REGISTRO DE ERROS

<table>
<thead>
<tr>
<th>Código (90)</th>
<th>Valor (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>06 ICC - Índice Capacidade Carga (ton)</td>
<td>B1 [0-0.50]</td>
</tr>
<tr>
<td>06 Estudo da superestrutura</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>06 Estudo da infraestrutura</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>02 Estudo do conduto submerso</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>07 Avisação estrutural</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>08 Avisação da georreferência do tabuleiro</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>09 Avisação das limitações específicas</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>07 Resposta face ao canal de água</td>
<td>2</td>
</tr>
<tr>
<td>07 Ablação dos acostamentos</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>07 Ablação das rotas de rodagem sobre a estrutura</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>07 Tráfego estático diário (TMD)</td>
<td>6</td>
</tr>
<tr>
<td>07 Largura total (x) tabuleiro (m)</td>
<td>5000</td>
</tr>
<tr>
<td>07 Largura da faixa de rodagem de acesso (m)</td>
<td>6</td>
</tr>
<tr>
<td>07 Tipo de concepção/construção</td>
<td>0</td>
</tr>
<tr>
<td>07 Importância estratégica</td>
<td>5.06</td>
</tr>
<tr>
<td>07 Calibração vertical sobre a ponte(n)</td>
<td>9</td>
</tr>
<tr>
<td>07 Desvio implicado com o tráfego</td>
<td>1</td>
</tr>
<tr>
<td>07 Avisação de proteção</td>
<td>1</td>
</tr>
<tr>
<td>07 Transição guarida acessos tabuleiro</td>
<td>1</td>
</tr>
<tr>
<td>07 Guarida dos acostamentos</td>
<td>1</td>
</tr>
<tr>
<td>07 Rede de guaridas dos acostamentos</td>
<td>0</td>
</tr>
</tbody>
</table>

REGISTRO DE ERROS

<table>
<thead>
<tr>
<th>Código (90)</th>
<th>Valor (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>06 ICC - Índice Capacidade Carga (ton)</td>
<td>B1 [0-0.50]</td>
</tr>
<tr>
<td>06 Estudo da superestrutura</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>06 Estudo da infraestrutura</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>02 Estudo do conduto submerso</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>07 Avisação estrutural</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>08 Avisação da georreferência do tabuleiro</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>09 Avisação das limitações específicas</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>07 Resposta face ao canal de água</td>
<td>2</td>
</tr>
<tr>
<td>07 Ablação dos acostamentos</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>07 Ablação das rotas de rodagem sobre a estrutura</td>
<td>N [0-R, N]</td>
</tr>
<tr>
<td>07 Tráfego estático diário (TMD)</td>
<td>6</td>
</tr>
<tr>
<td>07 Largura total (x) tabuleiro (m)</td>
<td>5000</td>
</tr>
<tr>
<td>07 Largura da faixa de rodagem de acesso (m)</td>
<td>6</td>
</tr>
<tr>
<td>07 Tipo de concepção/construção</td>
<td>0</td>
</tr>
<tr>
<td>07 Importância estratégica</td>
<td>5.06</td>
</tr>
<tr>
<td>07 Calibração vertical sobre a ponte(n)</td>
<td>9</td>
</tr>
<tr>
<td>07 Desvio implicado com o tráfego</td>
<td>1</td>
</tr>
<tr>
<td>07 Avisação de proteção</td>
<td>1</td>
</tr>
<tr>
<td>07 Transição guarida acessos tabuleiro</td>
<td>1</td>
</tr>
<tr>
<td>07 Guarida dos acostamentos</td>
<td>1</td>
</tr>
<tr>
<td>07 Rede de guaridas dos acostamentos</td>
<td>0</td>
</tr>
</tbody>
</table>

a - Valores iniciais, intermédios e finais

b - Identificação de erros

Figura 5.7 – Memória de cálculo

Na Figura 5.7a), o primeiro quadro corresponde à lista de itens que servem de base à classificação automaticamente efectuada. O segundo quadro indica os valores obtidos para o REG, bem como os respectivos rácios parciais, e depois o terceiro quadro ilustra, a título de exemplo, a apresentação dos valores parcelares obtidos no cálculo automático.
Na Figura 5. 7b) pode visualizar-se o quadro de localização de erros de dados ou resultados.

5.1.4 Módulo "Classif"

Finalmente, no módulo "Classif" é possível consultar os quadros com a correspondência entre os códigos associados a alguns dos parâmetros da base de dados e a informação implícita nos mesmos, que vão sendo usados ao longo de outros módulos do programa, de forma a, conforme já referido, facilitar a consulta e a comparação de diferentes registos.

Este módulo é assim meramente consultivo, sendo as tabelas que nele se podem visualizar ilustradas parcialmente na Figura 5. 8 e apresentadas na íntegra no Anexo B.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5A</td>
<td>1</td>
<td>Via principal sobre a estrutura</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Via única sob a estrutura</td>
</tr>
<tr>
<td></td>
<td>A-Z</td>
<td>Várias vias sob a estrutura</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Via internacional</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Via nacional</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Via regional</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Via distrital</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Estrada de cidade</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Estrada nacional</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Estrada regional</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Outra</td>
</tr>
<tr>
<td>5B</td>
<td>0</td>
<td>Nenhuma das restantes</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Via principal</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Via alternativa</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Desvio</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Curto ramal ferroviário</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>De negociação</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Rampa, Ramal da ligação</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Aua não desclassificada e/ou de serviço</td>
</tr>
<tr>
<td>5C</td>
<td>8</td>
<td>Não aplicável</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Norte</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Este</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Sul</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Oeste</td>
</tr>
</tbody>
</table>

Figura 5. 8 – Imagem parcial do módulo “Classif”

5.1.5 Módulo “Ajuda”

O último módulo do REGpontes é designado por “Ajuda”, uma vez que pode auxiliar o utilizador na manipulação dos restantes módulos, e pode ser consultado sempre que pretendido.
No seu ecrã são explicadas, passo a passo, as funções associadas a cada um dos restantes módulos do programa, bem como as respectivas instruções de utilização (ver Figura 5. 9).

<table>
<thead>
<tr>
<th>EPOSICIONAL</th>
<th>IMPRIMIR ESTAS NOTAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consultar a Base de Dados</td>
<td>Movimentar o cursor (de cima para baixo e da esquerda para a direita) (a cada coluna corresponde uma obra de arte e a cada linha corresponde um item arquivado)</td>
</tr>
<tr>
<td>Cria novo registo (variáveis classificadas) e adiciona-l-o à Base de Dados</td>
<td>Premir CRIAR NOVO REGISTO</td>
</tr>
<tr>
<td></td>
<td>Introduzir os dados do novo registo na coluna H</td>
</tr>
<tr>
<td></td>
<td>Premir CLASSIFICAR</td>
</tr>
<tr>
<td></td>
<td>Ver cálculo pormenorizado no separador Mem_calculo</td>
</tr>
<tr>
<td>BaseDados</td>
<td>Premir ADICIONAR À BASE DE DADOS</td>
</tr>
<tr>
<td>Consultar registros da Base de Dados (efetuar alterações)</td>
<td>Premir em FAZER UMA PESQUISA</td>
</tr>
<tr>
<td></td>
<td>Indicar o nome e o código do registo a procurar (nos locais indicados) e fazer ENTER</td>
</tr>
<tr>
<td></td>
<td>Premir em PROCURAR</td>
</tr>
<tr>
<td></td>
<td>Effectuam as alterações pretendidas ao registo e GRAVAR ALTERAÇÕES</td>
</tr>
<tr>
<td></td>
<td>NOTA: a gravação é feita num novo registo quando a data dos nossos dados de obra são alterados</td>
</tr>
<tr>
<td>Actualizar todos os rácios</td>
<td>Premir em ACTUALIZAR RESULTADOS NA BASE DE DADOS</td>
</tr>
<tr>
<td>Apagar um registo</td>
<td>Apagar na base de dados a coluna da base de dados correspondente a essa obra</td>
</tr>
<tr>
<td>Criar uma tabela resumo onde conste um determinado conjunto de obras e onde para cada um deles sejam listados os itens seleccionados</td>
<td>Seleccionar com um "ticket" os itens e indicar para cada um dos obras</td>
</tr>
<tr>
<td></td>
<td>Indicar as características do conjunto de registos a listar na tabela resumo (3 opções:</td>
</tr>
<tr>
<td></td>
<td>- código de identificação e intervalo de número de identificação</td>
</tr>
<tr>
<td></td>
<td>- código de idade principal e intervalo quadrimétrico</td>
</tr>
<tr>
<td>Relatório</td>
<td>- intervalo de REG (Rácio de Eficiência Global)</td>
</tr>
<tr>
<td></td>
<td>Premir o botão LISTAR relativo ao tipo de seleção pretendido</td>
</tr>
<tr>
<td></td>
<td>Ordenar as obras pelo REG</td>
</tr>
<tr>
<td></td>
<td>Premir ORDENAR POR REG</td>
</tr>
<tr>
<td>Mem_calculo</td>
<td>Obter o relatório final</td>
</tr>
<tr>
<td></td>
<td>Indicar a designação do relatório (se pretendido) e prima TABELA e GRÁFICO</td>
</tr>
<tr>
<td>Ver cálculo descrito ou erro de classificação de um registo da Base de Dados</td>
<td>Indicar o código e o número do registo da base de dados, cuja memória de cálculo se pretende visualizar premir PROCURAR e consultar a informação apresentada na página.</td>
</tr>
<tr>
<td>Fazer um cálculo isoleado</td>
<td>Indicar apenas os DADOS NECESSÁRIOS AO CÁLCULO e o cálculo é automático</td>
</tr>
<tr>
<td>Classific</td>
<td>Consultar classificações</td>
</tr>
<tr>
<td></td>
<td>Movimentar o cursor (de cima para baixo e da esquerda para a direita)</td>
</tr>
</tbody>
</table>

Figura 5. 9 – Instruções de utilização de cada um dos módulos do programa

Para além disso, como se pode visualizar na Figura 5. 10, são ainda apresentados alguns quadros explicativos do que será apresentado nos restantes módulos, designadamente no que respeita a:

- Códigos de erro;
- Códigos de cores automaticamente associados a alguns dos resultados (valor do Rácio de Eficiência Global e Classificações Estrutural e Funcional), de forma a
ajudar a diferenciar os valores “Bons” (cor azul), “Médios” (cor verde) e “Maus” (cor vermelha);

- Notas breves de apoio à interpretação dos resultados finais do Rácio de Eficiência Global e respectivos rácios parciais (R1, R2, R3 e R4), bem como da Classificação Estrutural e da Classificação Funcional.

Figura 5.10 – Notas de interpretação de resultados

Relativamente às imagens de todos os ecrãs do REGpontes, importa ainda referir que as zonas destacadas com fundo branco são, para além dos botões de comando das diversas funções, as zonas onde o utilizador tem permissão para intervir (o que também é identificável durante a própria utilização do programa, uma vez que os restantes campos se encontram bloqueados). Esse é um exemplo das notas apresentadas no módulo “Ajuda” (ver Figura 5.11).

Figura 5.11 – Notas gerais

5.2 Calibração dos resultados

A calibração dos valores do Rácio de Eficiência Global (REG) calculados com o REGpontes, foi feita por comparação com os resultados, para os mesmos dados, obtidos com o programa PONTIS, anteriormente apresentado no Capítulo 2.
Para isso foram selecionadas 20 obras de arte caracterizadas na base de dados do PONTIS, de forma a constituir uma amostra representativa de variados tipos de estruturas e de diversas gamas de REG. Na Figura 5. 12 é feita uma caracterização das obras que constituem essa amostra, em termos de material principal, máximo vão e comprimento total.

Figura 5. 12 – Caracterização do conjunto das 20 obras de arte selecionadas da base de dados do Pontis, para calibração dos resultados da classificação com o REGpontes, de acordo com o material principal, o máximo vão e o comprimento total.

As obras de arte escolhidas incluem estruturas de variados tipos e as suas datas de construção correspondem a períodos de tempo entre o ano de 1910 e o ano de 1987.
Os dados dessas obras foram introduzidos no REGpontes para calcular as respectivas classificações. Os resultados obtidos no cálculo do REG dessas estruturas foram os apresentados na Figura 5.13, em comparação com os valores do parâmetro que lhe é equivalente no PONTIS, o Sufficiency Ratio (SR).

Figura 5.13 – Comparação dos resultados do cálculo do Rácio de Eficiência Global (REG) com o PONTIS e com o REGpontes

Como se pode verificar pela análise do gráfico apresentado, as diferenças máximas entre os resultados dos dois programas são inferiores ao ponto percentual (sendo o valor resultante do cálculo com o REGpontes, por vezes ligeiramente superior e por vezes ligeiramente inferior ao do PONTIS). A explicação para essas pequenas divergências, dada a ordem de grandeza das mesmas, deverá estar relacionada apenas com arredondamentos nomeadamente na conversão do sistema métrico americano para o sistema métrico internacional.

Os resultados obtidos neste estudo comparativo permitiram assim aumentar a confiança no cálculo do Rácio de Eficiência Global, de forma automática, com o programa desenvolvido, o REGpontes.
5.3 Desenvolvimentos futuros do programa

Um dos possíveis desenvolvimentos futuros da actual versão do REGpontes é a implementação de um novo módulo de análise histórica das obras, ou seja da análise da sua evolução ao longo do tempo. A sua implementação passaria pela construção da curva do estado da obra nos instantes de tempo correspondentes aos registos existente na base de dados e ainda de uma curva com a previsão da sua evolução, para os anos seguintes, de modo a facilitar a calendarização de acções de manutenção ou reparação.

Para que o programa possa vir a fazer a previsão da evolução do estado de cada uma das estruturas, a partir de um modelo a estudar, será no entanto necessário dispor, para cada obra, de vários registos correspondentes a diferentes instantes de tempo. Essa foi a razão pela qual esta função não foi ainda implementada neste trabalho, tendo assim ficado reservada para um desenvolvimento futuro.

Depois desse módulo, relativo ao historical de cada uma das obras, estar desenvolvido, poderá ainda criar-se um outro relativo a custos dos vários tipos de intervenção para que o programa possa automaticamente conjugar esse conjunto de dados e propor estratégias de intervenção com base numa optimização do rácio custo/benefício.

Outro campo que pode ainda vir a ser explorado a partir do REGpontes é o da correlação automática do tipo de intervenções necessárias, em cada uma das obras, com as soluções propostas num catálogo a elaborar. Esse catálogo deveria ser criado previamente, a partir de experiências já devidamente testadas, e poderia ir sendo actualizado após avaliação do sucesso de cada uma das soluções, pela análise da evolução do Estado Global da obra após a implementação do tipo de intervenção adoptado.

Para além dos desenvolvimentos anteriormente referidos, poderá ainda vir a efectuar-se uma adaptação do REGpontes e da metodologia que lhe está subjacente, de forma a permitir a sua aplicação a vários outros tipos de estruturas como por exemplo vias de comunicação, instalações portuárias, edifícios e monumentos.
CAPÍTULO 6

ESTUDO DE UM CONJUNTO DE PONTES

No presente capítulo serão apresentados e comentados os resultados da aplicação da metodologia de classificação de obras de arte descrita anteriormente (Capítulo 4), a um sistema de pontes portuguesas, utilizando o REGpontes (programa apresentado no Capítulo 5). As pontes a analisar foram selecionadas de entre o conjunto de pontes rodoviárias do distrito de Viana do Castelo - ver Figura 6.1 - que se encontram sob a jurisdição do IEP (Instituto de Estradas de Portugal).

Figura 6.1 – Enquadramento da rede rodoviária do Distrito de Viana do Castelo

No ponto 1 deste capítulo são explicitados os critérios adoptados para a seleção do sistema de pontes a estudar e é efectuada uma breve caracterização do mesmo. Seguidamente, no ponto 6.2, é referida uma primeira classificação, exclusivamente baseada na informação de relatórios de inspeções, que é depois complementada com dados recolhidos no local, conduzindo aos resultados apresentados no ponto 6.3.
6.1 Constituição do sistema de pontes

Do conjunto de pontes rodoviárias sob a jurisdição do IEP, no distrito de Viana do Castelo, foi escolhido o subconjunto das obras que foram inspecionadas no ano de 2001. Depois, a partir desse sub-conjunto, foi então selecionado o sistema a estudar, de forma a constituir uma amostra de 40 pontes com as seguintes características:

- Idades diversas;
- Características dimensionais variadas;
- Diversificados tipos de concepção e de material estrutural;
- Diferentes tipos de vias.

Dessa amostra de 40 pontes foi ainda destacada uma sub-amostra de 20, para uma análise mais pormenorizada, com a preocupação de constituir um conjunto de obras igualmente variado.

Na Figura 6. 2 pode visualizar-se um esquema com o enquadramento das 40 obras da amostra e das 20 da sub-amostra, no conjunto das pontes rodoviárias do Distrito de Viana do Castelo que se encontram sob a tutela do Instituto de Estradas de Portugal.

Figura 6. 2 – Enquadramento das pontes seleccionadas para a amostra e sub-amostra

A localização das pontes que constituem a amostra e a sub-amostra está indicada no mapa da rede rodoviária do Distrito de Viana do Castelo que se apresenta na Figura 6. 3. As pontes foram assinaladas através de códigos numéricos, de 0 até 40, que neste texto passarão a ser usados para a sua identificação.
Estudo de um conjunto de pontes

Figura 6.3 – Localização das pontes analisadas
Capítulo 6

Para caracterizar os sistemas de pontes que constituem a amostra e a sub-amostra, desde a Figura 6.4 até à Figura 6.6, são apresentados gráficos que caracterizam essas obras de acordo, respectivamente, com:

- O principal material estrutural (betão, metal, alvenaria);
- O comprimento do maior vão;
- O comprimento total da estrutura.

Figura 6.4 – Caracterização das pontes da amostra e da sub-amostra de acordo com o principal material estrutural de cada uma delas

Na Figura 6.4 pode verificar-se que a maioria das pontes da amostra e da sub-amostra são em alvenaria, significando cerca de 60% do número total, e as menos representadas são as pontes metálicas, correspondendo a 13% e a 20% do total das pontes da amostra e da sub-amostra, respectivamente. O aumento da percentagem de representação das pontes metálicas da amostra (13%) para a sub-amostra (20%), resulta do facto de ter sido escolhida quase a totalidade das obras com esse material para integrar a sub-amostra, de forma a reunir exemplares de características diversificadas.

Pela mesma razão, também no que respeita às principais características dimensionais dos sistemas escolhidos (Figura 6.5 e Figura 6.6), se verifica que as obras de características menos usuais na amostra passam a assumir maiores pesos relativos na sub-amostra. Refira-se ainda que uma vez que as obras da amostra foram também seleccionadas com critérios de diversidade, de entre o conjunto de pontes rodoviárias do Distrito de Viana do Castelo, o mesmo se poderá verificar entre esses dois grupos.
Relativamente ao sub-grupo de obras com um vão de comprimento inferior a 6m, que segundo a AASHTO [1994] não devem ser consideradas pontes, é de referir que estas foram tratadas no presente trabalho de modo idêntico ao das restantes obras (até para teste da adequabilidade do REGontes, e da metodologia que lhe é subjacente, no que respeita a este tipo de estruturas). Essas pontes, com vão inferior ou igual à 6m, estão representadas na amostra e na sub-amostra com um peso significativo, de cerca de 45% (Figura 6. 5), sendo quase todas elas relativas a pontes de alvenaria. No que respeita a pontes com vãos máximos superiores a 24m, apenas 3 das pontes da sub-amostra (15%) verificam essa condição, sendo uma delas metálica e as outras duas em betão.

Figura 6. 5 – Caracterização da amostra e da sub-amostra de acordo com o comprimento do máximo vão das pontes que as constituem

Figura 6. 6 – Caracterização da amostra e da sub-amostra de acordo com o comprimento total das pontes que as constituem
Os comprimentos das pontes dos dois sistemas considerados são distribuídos por diferentes gamas de valores de acordo com as percentagens indicadas nos gráficos da Figura 6.6, onde se pode verificar que a maioria corresponde a valores entre os 10 e os 50m, tanto na amostra como na sub-amostra. As pontes de comprimentos superiores a 200m são apenas 3 (7.5% das pontes da amostra e 15% nas pontes da sub-amostra), duas delas correspondentes a obras em que o maior vão é superior a 24m.

6.2 Classificação do conjunto de pontes da amostra

Os dados utilizados na classificação de cada uma das 40 pontes da amostra foram definidos a partir da informação disponibilizada pela Delegação do Distrito de Viana do Castelo do Instituto de Estradas de Portugal (IEP), nos seguintes documentos:

- Listagem de pontes sob a tutela do Instituto de Estradas de Portugal (IEP), no Distrito de Viana do Castelo;
- Elementos cartográficos, com representação da rede viária, relativos ao distrito de Viana do Castelo;
- Relatórios de inspeção de algumas pontes (da autoria das várias empresas que forma contratadas pelo IEP para efectuar as inspecções);
- Volume de trâfego médio diário, no ano de 2000, para os postos de contagem referidos na Tabela 6.1.

Uma vez que a informação recolhida nesses elementos não é, por si só, suficiente para definir objectivamente o conjunto de parâmetros utilizados na classificação efectuada com o REGpontes, foi admitida uma gama de valores possíveis para os itens desconhecidos, de forma a determinar, com os valores extremos mais favoráveis, um REG máximo e, com os valores extremos mais desfavoráveis, um REG mínimo. Para garantir alguma homogeneidade na classificação do conjunto das pontes consideradas, foram previamente estabelecidos alguns critérios para a definição dos valores dos vários itens necessários à classificação (cálculo do REG e atribuição das Classificações Estrutural e Funcional), que se encontram listados no quadro da Tabela 6.2.
Conforme referido na Tabela 6. 2, o Estado de Conservação indicado nos relatórios de inspecção consultados (para os diferentes elementos, em particular, e para a obra no seu todo) foi também um dos dados considerados na fixação dos valores de alguns dos itens. Na Tabela 6. 3 é apresentada a escala de classificação desse parâmetro segundo as indicações estabelecidas pelo ICERR [2001], um ex-instituto do IEP, bem como a sua correspondência com os valores atribuídos aos estados da superestrutura, da infraestrutura, da conduta e do tabuleiro.
Tabela 6.2 – Critérios adoptados na definição dos dados necessários à classificação das pontes de acordo com a metodologia subjacente ao REGpontes

<table>
<thead>
<tr>
<th>Item</th>
<th>Critério de definição dos dados para a classificação</th>
</tr>
</thead>
<tbody>
<tr>
<td>#42B Tipo de serviço sobre a estrutura</td>
<td>De acordo com o indicado no relatório de inspecção.</td>
</tr>
<tr>
<td>#49 Comprimento da estrutura (m)</td>
<td>Quando desconhecido, o seu valor foi considerado como variável entre a largura da faixa de rodagem e 20m (de forma a reflectir um estrangulamento da via, respectivamente, mínimo e máximo).</td>
</tr>
<tr>
<td>#43B Tipo de concepção/construção</td>
<td>De definido a partir dos valores de TMD conhecidos para alguns postos de contagem.</td>
</tr>
<tr>
<td>#28A Nº de faixas de rodagem sobre a estrutura</td>
<td>Entre 0 (não estratégica) e 1 (estratégica).</td>
</tr>
<tr>
<td>#51 Largura total da(s) faixa(s) de rodagem (m)</td>
<td>Quando omissão no relatório de inspecção, considerado igual a 9m.</td>
</tr>
<tr>
<td>#32 Largura da faixa de rodagem de acesso (m)</td>
<td>Entre 0 e um máximo fixado em função dos dados cartográficos.</td>
</tr>
<tr>
<td>#29 Tráfego médio diário (TMD)</td>
<td>De acordo com a descrição existente no relatório de inspecção e com a conversão efectuada a partir do EC (Estado de Conservação) atribuído pelos inspectores para a obra, em geral, e para cada um dos seus elementos, em particular.</td>
</tr>
<tr>
<td>#100 Importância estratégica</td>
<td>Quando omissão no relatório de inspecção, considerado variável entre 2 e 6 (os valores extremos que afectam o resultado do cálculo do REG).</td>
</tr>
<tr>
<td>#53 Gabarit mínimo vertical sobre a ponte(m)</td>
<td>Quando não classificável a partir dos dados do relatório de inspecção, considerado como variável entre 0 (o seu valor mínimo) e 1 (o seu valor máximo).</td>
</tr>
<tr>
<td>#19 Desvio necessário em caso de fecho(km)</td>
<td>Dada a insuficiência de dados para a sua determinação, foi sempre considerada uma boa capacidade de carga das pontes, pelo que se definiu para todas, um ICC de 99ton.</td>
</tr>
<tr>
<td>#36A Guardas de protecção</td>
<td>Quando desconhecidos, considerados como sendo, pelo menos, 10 anos anteriores à data de inspecção.</td>
</tr>
<tr>
<td>#36B Transições guardas acessos-tabuleiro</td>
<td></td>
</tr>
<tr>
<td>#36C Guardas dos acessos</td>
<td></td>
</tr>
<tr>
<td>#36D Remate das guardas dos acessos</td>
<td></td>
</tr>
<tr>
<td>#67 Avaliação estrutural</td>
<td></td>
</tr>
<tr>
<td>#68 Avaliação da geometria do tabuleiro</td>
<td></td>
</tr>
<tr>
<td>#69 Avaliação das limitações espaciais</td>
<td></td>
</tr>
<tr>
<td>#71 Resposta face ao canal de água</td>
<td></td>
</tr>
<tr>
<td>#72 Alinhamento dos acessos</td>
<td></td>
</tr>
<tr>
<td>#66 ICC - Índice de capacidade de carga (mtons)</td>
<td></td>
</tr>
<tr>
<td>#27 Ano de construção</td>
<td></td>
</tr>
<tr>
<td>#106 Ano de reconstrução</td>
<td></td>
</tr>
</tbody>
</table>
Tabela 6.3 – Conversão do EC para a escala de classificação do estado da superestrutura (#58), da infraestrutura (#59), da conduta (#60) e do tabuleiro (#62)

<table>
<thead>
<tr>
<th>EC - Estado de Conservação</th>
<th>Classificação para #58,#59,#60 e #62</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Óptimo</td>
<td>9 Excelente</td>
</tr>
<tr>
<td>Qualidade do material e execução perfeitas. Não é necessário efetuar qualquer reparação.</td>
<td></td>
</tr>
<tr>
<td>1 Bom</td>
<td>8 Muito Bom</td>
</tr>
<tr>
<td>Qualidade do material e execução boas. Não é necessário efetuar qualquer reparação. Alguns defeitos sem importância no comportamento e durabilidade da obra.</td>
<td></td>
</tr>
<tr>
<td>2 Sofrível</td>
<td>7 Bom</td>
</tr>
<tr>
<td>Qualidade do material e execução defeituosas. Podem ser especificadas reparações não prioritárias. (Pode, por exemplo, ser visível a quadricula de armaduras resultante de um recobrimento deficiente mas ainda sem exposição de armaduras).</td>
<td></td>
</tr>
<tr>
<td>3 Mau</td>
<td>6 Satisfatório</td>
</tr>
<tr>
<td>Qualidade do material e execução má. São especificadas reparações. Funcionamento defeituoso com influência na durabilidade da obra.</td>
<td></td>
</tr>
<tr>
<td>4 Mau a muito mau</td>
<td>5 Suficiente</td>
</tr>
<tr>
<td>Qualidade do material e execução má. São propostas reparações prioritárias. Funcionamento defeituoso com influência na durabilidade e comportamento da obra. Não cumpre o nível de serviço para o qual foi concebido.</td>
<td></td>
</tr>
<tr>
<td>5 Perigoso</td>
<td>4 Insuficiente</td>
</tr>
<tr>
<td>Estado de conservação extremamente perigosos para a segurança dos utentes. Poderão ser propostas reparações altamente prioritárias ou a sua substituição. Pode ser necessário impor restrições à exploração da obra.</td>
<td></td>
</tr>
</tbody>
</table>

Depois de ter fixado, a partir da informação disponível e segundo os critérios anteriormente referidos, todos os dados relativos a cada uma das pontes da amostra, foi feita a sua introdução na base de dados do REGpontes, que automaticamente classificou cada uma das obras, para os dois cenários considerados (o mais favorável e o mais desfavorável). Os dados considerados e os resultados obtidos são apresentados no Anexo D.
Na Figura 6. 7 são apresentados os dois valores obtidos para o Rácio de Eficiência Global, o mínimo (correspondente ao cenário mais desfavorável) e o máximo (correspondente ao cenário mais favorável), de cada uma das pontes da amostra. Na figura as pontes encontram-se listadas por ordem crescente do respectivo valor médio do REG, de forma a evidenciar as prioridades relativas de intervenção em cada uma delas. No entanto, uma vez que a diferença entre o REG máximo e o REG mínimo de cada uma das pontes é bastante elevada (varia entre 15% e 71%, com uma média de 34%), a esta classificação está ainda associada uma elevada incerteza. Essa incerteza será depois diminuída, para as pontes da sub-amostra, em segunda análise (ver ponto 6.3).

De qualquer modo, pela análise dos valores médios (semi-soma do REG mínimo e do REG máximo), obtidos nesta classificação para cada uma das pontes, pode verificar-se que o REG assume, em média, um valor de 49%, com um desvio padrão de 19%. O seu valor é superior a 50% em 21 das 40 obras.

Verificou-se uma menor incerteza nas obras com valores mais altos de REG, uma vez que esses casos correspondem a situações de maior segurança estrutural, em que, de certa forma, a informação é apresentada nos relatórios de inspecção com um menor grau de subjectividade.

Sendo o REG resultante do somatório de três rácios parciais (R1, R2 e R3), a menos de eventuais reduções extraordinárias (R4), na Figura 6. 8 são depois apresentados os valores mínimos e máximos obtidos para cada um desses rácios. As obras forma listadas da mesma forma que na Figura 6. 7, ou seja por ordem crescente do REGmédio.

Conforme se pode verificar na Figura 6. 8, a média obtida para os rácios parciais do REG é de 33% para R1 (variável entre 0 e 55%), de 7% para R2 (variável entre 0 e 30%) e de 9% para R3 (variável entre 0 e 15%), indicando valores razoáveis para a segurança estrutural e maus para a funcionalidade.
Figura 6.7 – Valores mínimos e máximos de REG obtidos para as pontes da amostra, listados por ordem do valor médio correspondente
Em termos de diferenças entre cada par de valores mínimo/máximo, a gama de variação é em média de:

- 12% para R1, correspondente a 22% do valor máximo possível para esse rácio;
- 10% para R2, correspondente a 34% do valor máximo possível para esse rácio;
- 12% para R3, correspondente a 80% do valor máximo possível para esse rácio;

Analisando esses valores pode verificar-se que a maior incerteza da classificação efectuada está associada a itens de utilidade pública e de funcionalidade, o que se explica pelo facto de as inspetções de 2001 não terem sido efectuadas com a preocupação de reunir os dados específicos da classificação subjacente ao REGpontes, sendo a informação registada em relatório principalmente de carácter estrutural.

Uma vez que se considerou um Índice de Capacidade de Carga máximo para cada uma das pontes, os valores do Rácio de Segurança Estrutural (R1) vão assumindo valores de 0, 15, 30, 45 e 55%, conforme a classificação atribuída ao estado da superestrutura ou da infraestrutura seja de 2, 3, 4, 5 ou superior a 5, respectivamente. O principal material estrutural da generalidade das pontes com um Rácio de Segurança Estrutural máximo (55%), é a alvenaria.

Os valores máximos obtidos para o Rácio de Funcionalidade quase não ultrapassam os 15%, ou seja 50% do valor máximo possível desse rácio, indicando um baixo nível de funcionalidade das obras, em relação às exigências da metodologia de classificação adoptada. A incerteza associada a este parâmetro, no âmbito da primeira análise das pontes da amostra, fica a dever-se sobretudo ao desconhecimento de informação relativa a dados como o alinhamento dos acessos e as limitações espaciais.

Relativamente ao Rácio de Utilidade Pública (R3), nesta primeira fase de classificação, há ainda uma grande incerteza, sendo, na generalidade dos casos, esperado um valor entre o mínimo (0%) e o máximo (15%) possíveis para R3. Essa variação está directamente relacionada com o facto de, por se desconhecer a extensão do desvio de trânsito implicado num eventual fecho da ponte (item 19), se ter considerado que esse item poderia assumir valores entre 0 (implicando de imediato a anulação do parâmetro A3) e um máximo estimado em função dos dados cartográficos.
Figura 6.8 – Valores mínimos e máximos de R1 (Segurança Estrutural), R2 (Funcionalidade) e R3 (Utilidade Pública), obtidos para as pontes da amostra
Na Figura 6.9 a gama de resultados obtida para cada um dos REG é novamente apresentada, em comparação com o respectivo Estado de Conservação (EC), por grupos formados de acordo com cada um dos três principais grupos de material estrutural (betão, metal e alvenaria). As pontes metálicas são as que apresentam o menor valor médio de REG (37%), em oposição às pontes de alvenaria (REG médio de 53%), contudo a diferença entre a gama de valores obtida para os vários grupos não é muito significativa.

Figura 6.9 – Valores médios de REG das pontes da amostra e respectiva gama de variação entre REG mínimo e REG máximo, em comparação com o correspondente EC

A listagem das pontes em cada um dos grupos foi efectuada por ordem crescente do valor médio do REG de cada uma das obras e, como se pode ver, é uma ordem que não difere
muito da que se obteria a partir dos valores dos respectivos Estados de Conservação. Essa relação aparece visto que esse item (no seu valor global e também nos seus valores parciais relativos a cada parte da estrutura) foi considerado na definição dos dados desta classificação, sendo as diferenças registadas resultantes do facto do REG ter um carácter mais abrangente. Verifica-se ainda que o valor médio encontrado para o REG fica, por várias vezes, ligeiramente aquém do patamar correspondente ao respectivo Estado de Conservação, uma vez que a classificação de Funcionalidade do conjunto das obras, considerada no cálculo do REG, é em geral baixa. As exceções verificadas são correspondentes aos casos em que as obras não são de grande utilidade pública (por terem em geral um baixo volume de tráfego diário e um desvío em caso de fecho pouco significativo).

Para concluir a análise dos resultados da classificação das pontes da amostra, na Figura 6. 10 são apresentados os valores médios do REG, para grupos formados de acordo com o comprimento do vão e com o comprimento total. Como se pode observar, há uma grande uniformidade entre os vários grupos. No entanto, pode dizer-se que as obras com tendência para apresentar uma maior eficiência global são, em média, as de menores vãos e de menores comprimentos (com a excepção das pontes com comprimentos entre 50 e 200m, pouco significativas nesta amostra uma vez que representam menos de 1% das pontes da amostra), sem que essas diferenças sejam, no entanto, muito acentuadas.

Figura 6. 10 – Caracterização dos valores médios correspondentes aos valores de REG máximo e de REG mínimo, obtidos para o conjunto das pontes da amostra, de acordo com grupos relativos ao seu máximo vão e ao seu comprimento total.
6.3 Classificação do conjunto de pontes da sub-amostra

Conforme referido no ponto anterior, a variabilidade dos resultados obtidos para a classificação das pontes da amostra foi elevada. Esse facto foi essencialmente devido à falta de informação relativa a itens de funcionalidade e de utilidade pública como:

- Avaliação da geometria do tabuleiro (item 68);
- Avaliação das limitações estruturais (item 69);
- Alinhamento dos acessos (item 72);
- Guardas de protecção do tabuleiro (item 36A) e dos acessos (item 36C);
- Transições das guardas do tabuleiro para os acessos (item 36B);
- Remate das Guardas dos acessos (item 36D).

Assim sendo, entendeu-se que se poderia, para algumas das obras de arte da amostra (as 20 pontes da sub-amostra), diminuir a incerteza desse tipo de dados, efectuando uma visita ao local com o intuito especifico de os avaliar.

Depois de realizadas algumas campanhas para recolha desses dados (no decorrer do ano de 2003) foi admitido que a situação no ano de 2001 para os itens enumerados não seria muito diferente da encontrada e que, por isso, os valores que anteriormente foram considerados como a variar entre um determinado intervalo poderiam assim ser especificamente definidos. Dessa forma foi então possível determinar um valor de REG para cada obra, em vez de um intervalo de valores possíveis, e fazer uma análise mais objectiva do sistema de pontes.

Em 6.3.1 é feita uma análise pormenorizada de algumas das pontes da sub-amostra e depois no ponto 6.3.2 é efectuada uma análise global relativa a todas as suas obras.

6.3.1 Análise pormenorizada de algumas das pontes da sub-amostra

Neste ponto são apresentadas e explicitadas as classificações de 6 das 20 pontes da sub-amostra (as pontes com os códigos 2, 3, 12, 14, 23 e 27), seleccionadas de forma a incluir estruturas de diferentes idades, em vários tipos de vias, representativas dos três grupos de principal material estrutural (betão, metal e alvenaria) e das diferentes gamas de valores obtidas para o REG (incluindo a obra de maior REG e a obra de menor REG).
Ponte Internacional de Valença (código 2)

A ponte Internacional de Valença, construída no ano de 1886, é simultaneamente rodoviária (tabuleiro inferior) e ferroviária (tabuleiro superior) e como o próprio nome indica constitui uma travessia fronteiriça. O seu maior vão tem cerca de 15m e o seu comprimento total é de 375m. Os seus tabuleiros são suportados por vigas metálicas, sendo as principais treliçadas, com cinco vãos, em pórtico fechado, e apoiadas em pilares (com coronamento em betão) e encontros de cantaria granítica por meio de apoios metálicos (ver fotografias da Figura 6.1 e da Figura 6.2).

Figura 6.1 – Vista Geral de Poente

Figura 6.2 – Vistas de Nascente
Os danos referenciados no relatório de inspeção consultado fazem referência apenas à abertura de juntas na zona dos encontros e a outras patologias que à data já se encontravam em reparação.

O rácio de segurança estrutural obtido para a ponte de Valença foi de 45%, o que corresponde apenas a uma redução de 10% do seu valor máximo, que resulta do facto de os estados da superestrutura e da infraestrutura terem sido definidos como “suficientes”. Assim, a partir do valor de R1 pode dizer-se que a segurança estrutural da ponte é boa.

Já a funcionalidade da obra obteve uma classificação baixa (R2 = 9%), devido ao estrangulamento da via à entrada da ponte (a diferença entre a largura das faixas de rodagem na ponte e nos acessos é superior a 0.6m), a uma largura da via insuficiente para o volume de tráfego (a largura de cada faixa é inferior a 2,7m para um TMD sobre a mesma superior a 50) e ainda a algumas outras pequenas penalizações devido a factores como, por exemplo, as limitações espaciais (reduzido gabarit horizontal e vertical).

Ao rácio R3 foi atribuído o seu valor máximo (15%) pelo que se pode considerar que a utilidade pública da estrutura é praticamente nula. Isso acontece pelo facto de o tráfego na ponte ser pouco intenso e por haver uma ponte paralela, bastante próxima, que possibilita o desvio do trânsito em caso de necessidade de interdição da sua utilização.

Apesar da ponte ser rodo-ferroviária, a sua classificação corresponde, exclusivamente, à sua funcionalidade e utilidade pública sob o ponto de vista rodoviário. Em casos como este, as entidades responsáveis por ambas as vias devem concertar a estratégia de gestão a adoptar.

Pelo facto de esta ponte ter, conforme referido, a “asna sobre o tabuleiro” (tipo de concepção/construção considerado de grande vulnerabilidade), foram ainda consideradas reduções extraordinárias do REG no valor de 5%.

Assim, o Rácio de Eficiência Global obtido foi de 64%, pelo que a ponte não necessita de intervenção urgente.
Ponte de Lanheses sobre o Rio Lima (código 3)

A ponte de Lanheses sobre o Rio Lima, projectada pelo Engenheiro Edgar Cardoso e construída no ano de 1982, tem um tabuleiro em betão armado e pré-esforçado, com 8 vãos, apoiado num sistema de vigas principais e secundárias, conforme se pode visualizar nas imagens da Figura 6.3 à Figura 6.5. O vão máximo tem 30m de comprimento e o comprimento total da estrutura é de 1 269m.

Figura 6.3 - Vista Poente

Figura 6.4 - Vista Nascente

Os principais danos referenciados no relatório de inspeção consultado são:

- Degradação das cornijas, dos encontros e dos pilares (ao nível do betão e das armaduras);
- Deficiente funcionamento e degradação dos aparelhos de apoio;
- Infra-escavação das fundações.

Da classificação efectuada resultou um valor de R1 de 30%, significando um nível médio de Segurança Estrutural, devido ao “insuficiente” estado da superestrutura e da infraestrutura.

A funcionalidade da obra, medida com um R2 de 8%, é baixa devido à insuficiente largura da via face ao volume de tráfego (a largura de cada faixa é inferior a 4,9m para um TMD sobre a mesma superior a 1 350) e a outras pequenas penalizações essencialmente relacionadas com o grave estado do tabuleiro e o nível 4 de avaliação estrutural.
Em oposição ao verificado na ponte de Valença, o rádio R3 apresenta um valor nulo, significando neste caso uma grande importância do ponto de vista dos seus utilizadores, essencialmente devido à grande extensão do desvio implicado numa eventual interdição de circulação sobre a mesma.
Nesta obra não são consideradas reduções extraordinárias devido ao somatório dos restantes rácios ser inferior a 50%.

A Eficiência Global da obra de arte resultante dos rácios parciais referidos é baixa (38% de REG) e a ponte foi classificada como Estruturalmente Deficiente (ESD), pelo que deverão ser estudadas medidas correctivas dos danos identificados em inspecção.

Ponte sobre o Rio Âncora (código 12)

A ponte sobre o Rio Âncora foi construída na segunda metade da década de 70 e mais tarde, na década de 80, foi intervencionada para reperfilamento, impermeabilização e substituição de juntas. A sua estrutura é de betão e tem um só vão de 34m (ver imagens da Figura 6. 7 e da Figura 6. 8).

![a) – Vista de Sudoeste](image1)

![b) – Vista de Noroeste](image2)

Figura 6. 7 – Alçado Oeste

![Figura 6. 8 - Pormenores do encontro Sul](image3)
A sua segurança estrutural e a sua funcionalidade (30% de R1 e 10% de R2) apresentam níveis idênticos aos da ponte de Lanheses e as considerações a tecer sobre esses parâmetros são também da mesma natureza.

Já relativamente a R3, o valor obtido (8%) indica uma utilidade pública de nível médio resultante do elevado volume de tráfego registado na via e das classificações obtidas para a segurança estrutural e para a funcionalidade.

Nesta ponte não são aplicáveis reduções extraordinárias (uma vez que o somatório de R1, R2 e R3 é inferior a 50%) pelo que a Eficiência Global da ponte é de gama média (48% de REG). É ainda de referir que a obra cumpre as condições para a atribuição da designação de “Estruturalmente Deficiente” (ESD), pelo que deverão ser tomadas medidas que permitam elevar a sua eficiência.

Passagem Superior ao Caminho de Ferro em Caminha (código 14)

A passagem superior ao caminho-de-ferro, junto à estação ferroviária de Caminha, tem um único vão de 10.6m e um comprimento total de 19.6m (ver fotografias da Figura 6. 9 à Figura 6. 12). Trata-se de uma obra do ano de 1955, com um tabuleiro em betão, apoiado em vigas metálicas longitudinais que, por sua vez, se apoiam em encontros de alvenaria granítica.
Figura 6.10 - Pormenores da face inferior do tabuleiro

Figura 6.13 - Vistas Norte
Os principais danos referenciados no relatório de inspecção desta obra são:
- Corrosão nas vigas metálicas do tabuleiro e nos aparelhos de apoio;
- Fendiulação;
- Armaduras à vista nos elementos de betão armado.

Tendo os estados da superestrutura e da infraestrutura sido considerados "Críticos", o valor obtido para o rácio R1 foi de 15%, evidenciando o baixo nível de segurança estrutural da ponte.
A funcionalidade da obra foi também classificada como muito baixa \((R2 = 5\%)\), devido essencialmente à necessidade de acções correctivas urgentes, considerada na avaliação estrutural, e ao grave estado do tabuleiro.

O rácio \(R3\) apresenta o seu valor nulo de forma a reflectir na classificação final a elevada utilidade pública da obra, essencialmente devido às implicações do elevado desvio de trânsito implicado numa eventual interdição de utilização da ponte.

Pelo facto do somatório de \(R1\), \(R2\) e \(R3\) ser inferior a 50\%, não foram aplicadas reduções extraordinárias \((R4)\) e o Rácio de Eficiência Global resultante foi de 20\% (o valor mais baixo obtido no conjunto de pontes da sub-amostra). A obra foi também classificada como “Estruturalmente Deficiente” e, face aos resultados obtidos, é grande a urgência na implementação de acções correctivas dos danos verificados.

Ponte de Tourim (código 23)

A Ponte de Tourim, ilustrada nas fotografias da Figura 6. 13 à Figura 6. 15, é uma ponte em cantaria de granito, com fundações directas. Tem um só vão de 10m em arco abatido e com um comprimento total de 18m.

![Figura 6. 13 - Vistas Norte](image-url)
Os danos detectados pelos inspectores na Ponte de Tourim foram apenas algumas pequenas fendas, descritas como “aparentemente não condicionantes da estabilidade da estrutura”.

Figura 6.14 - Pormenores de ligação entre pedras
Depois de definidos os parâmetro de classificação da obra de arte, foi obtido para R1 o valor máximo desse parâmetro (55%) devido à sua elevada segurança estrutural.

Para o rácio relativo à funcionalidade da obra, R2, foi obtido um valor de 13% (funcionalidade média/baixa), devido a algumas penalizações resultantes do baixo gabarit vertical da ponte (2.9m) e da inadequada largura das faixas de rodagem relativamente ao volume de tráfego (a largura de cada faixa é inferior a 2,7m para um TMD superior a 50 veículos).

O valor obtido para o rácio R3 (12%) está próximo do máximo para este parâmetro, reflectindo assim uma baixa utilidade pública da obra, essencialmente relacionada com o baixo volume de tráfego da via em que a mesma se insere.

Devido à inexistência de guardas nas zonas de acesso à ponte e uma vez que o somatório dos rácios R1, R2 e R3 é superior a 50%, foram efectuadas reduções extraordinárias ao REG com um valor de 2%.

O REG obtido para a ponte de Tourim foi assim de 78% (o valor mais elevado no conjunto de pontes da sub-amostra), pelo que a obra demonstra elevada eficiência global.
Ponte de Ponte da Barca (código 27)

A Ponte de Ponte da Barca está classificada como monumento nacional (ver inscrições da placa da Figura 6. 18) e apresenta um elevado interesse estrutural. É uma obra medieval, construída no século XV, reparada e alargada em 1896 e recuperada mais tarde em 1932.

Conforme se pode visualizar no conjunto de fotografias apresentado entre a Figura 6. 16 e a Figura 6. 21, trata-se de uma ponte de cantaria granítica. Tem 10 arcos em ogiva, o maior deles vencendo um vão de 17.5m, e 182m de comprimento total. As suas fundações são directas.

Figura 6. 16 - Vista de Nascente

Figura 6. 17 - Vista de Poente
Como se pode ler nas inscrições da placa ilustrada na Figura 6. 18, "entre os arcos, nos tímpanos, vêem-se alguns olhais góticos" e a reforçar os pilares há "talha-mares agudos e robustos botaréus prismáticos".

PONTE MEDIEVAL

MONUMENTO NACIONAL

É uma das mais importantes pontes medievais do país. Ergue-se sobre o rio Lima, onde antes se fazia a passagem de barca.

Construída no século XV, apresenta dez arcos em ogiva de tamanhos variáveis. Entre os arcos, nos tímpanos, vêem-se alguns olhais góticos. Reforçam os pilares talha-mares agudos e robustos botaréus prismáticos. O pavimento em cavalete, está debruado de parapeitos, que modilhões borgonheses ajudam a sustentar.

Ao centro, surgem dois belos espaldares, com os brasões dos Arcos de Valdevez, no lado poente, e o de Ponte da Barca, no lado nascente.

Figura 6. 18 - Placa documentativa e pormenor de um Espaldarte

Figura 6. 19 - Pormenor dos arcos
As principais patologias referenciadas no relatório da inspecção efectuada no ano de 2001 a esta ponte, foram algumas fissuras em pedras, aberturas de juntas e deformações em guarda-corpos, provocadas por excesso de carga na plataforma e pelo assentamento e desprendimento do talha-mar entre o quinto e o sexto arcos (que se pode visualizar na Figura 6. 20).

Figura 6. 20 - Pormenores dos muros timpano

O tabuleiro tem apenas uma faixa de rodagem que serve os dois sentidos de tráfego, alternados por meio de semáforos. O seu pavimento é constituído por paralelepípedos de calçada granítica (ver Figura 6. 21).

Figura 6. 21 - Face superior do tabuleiro
Tendo os estados da superestrutura e da infraestrutura sido considerados “Suficientes”, para o rácio R1 resultou um valor de 30%, que classifica a segurança estrutural da ponte como média.

A funcionalidade da obra é baixa (R2 = 8%), pelo facto de a largura da via não ser a apropriada para o seu volume de tráfego (a largura da faixa de rodagem é inferior a 4,9m para um TMD sobre a mesma superior a 1350), e ainda devido ao insuficiente estado do tabuleiro e à avaliação estrutural.

O rácio R3 apresenta um valor baixo (4%), significando alguma utilidade pública, devido essencialmente ao volume de tráfego verificado e à extensão do desvio que o trânsito terá que efectuar caso seja necessária a interdição da circulação na mesma.

As reduções extraordinárias (R4) são nulas devido ao somatório dos restantes rácios ser inferior a 50%.

Assim, da classificação efectuada para a Ponte de Ponte da Barca resultou um Rácio de Eficiência Global da gama média/baixa (42%) e a atribuição da designação de “Estruturalmente Deficiente”, pelo que se exige a tomada de medidas que reponham o nível de resposta desejado.

6.1.1 Análise global do conjunto de pontes da sub-amostra

Neste ponto são apresentados e comentados os resultados da classificação obtida para o conjunto de pontes que constituem a sub-amostra. Os dados considerados e os resultados obtidos nessa classificação são apresentados no Anexo D.

Para ilustrar, de forma resumida, o tipo de obras em análise, da Figura 6. 1 à Figura 6. 4 são apresentados quadros com fotografias de cada uma das 20 pontes da sub-amostra. As imagens são acompanhadas de uma descrição sumária das suas principais características (principal material estrutural, ano de construção e reconstrução, largura e comprimento total, número de vãos e comprimento do vão máximo) e dos resultados obtidos na sua classificação (valores dos rácios parciais R1 a R4, valor do REG e classificação estrutural e funcional).
<table>
<thead>
<tr>
<th>Ponte de Caminha sobre o Rio Coura</th>
<th>EN13 - km 91,96</th>
<th>Código numérico: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material: Bет./Alv.</td>
<td>R1 (Seg. Est.): 30%</td>
<td></td>
</tr>
<tr>
<td>(Re)construção: 1950</td>
<td>R2 (Func.): 9%</td>
<td></td>
</tr>
<tr>
<td>Largura total (m): 8.06</td>
<td>R3 (Ut. Pub.): 0%</td>
<td></td>
</tr>
<tr>
<td>Comprimento (m): 374.5</td>
<td>R4: 0%</td>
<td></td>
</tr>
<tr>
<td>Nº de vãos: 28</td>
<td>REG (Ef. Global): 39%</td>
<td></td>
</tr>
<tr>
<td>Vão máximo (m): 14.6</td>
<td>CE/CF: ESD</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ponte Internacional de Valença</th>
<th>EN13 - km 119,35</th>
<th>Código numérico: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material: Met./Alv.</td>
<td>R1 (Seg. Est.): 45%</td>
<td></td>
</tr>
<tr>
<td>(Re)construção: 1886</td>
<td>R2 (Func.): 9%</td>
<td></td>
</tr>
<tr>
<td>Largura total (m): 8.7</td>
<td>R3 (Ut. Pub.): 15%</td>
<td></td>
</tr>
<tr>
<td>Comprimento (m): 333.1</td>
<td>R4: 5%</td>
<td></td>
</tr>
<tr>
<td>Nº de vãos: 5</td>
<td>REG (Ef. Global): 64%</td>
<td></td>
</tr>
<tr>
<td>Vão máximo (m): 69.05</td>
<td>CE/CF:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ponte de Lanheses sobre o Rio Lima</th>
<th>EN305 - km 23</th>
<th>Código numérico: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material: Bет.</td>
<td>R1 (Seg. Est.): 30%</td>
<td></td>
</tr>
<tr>
<td>(Re)construção: 1982</td>
<td>R2 (Func.): 8%</td>
<td></td>
</tr>
<tr>
<td>Largura total (m): 11.5</td>
<td>R3 (Ut. Pub.): 0%</td>
<td></td>
</tr>
<tr>
<td>Comprimento (m): 1268.6</td>
<td>R4: 0%</td>
<td></td>
</tr>
<tr>
<td>Nº de vãos: 8</td>
<td>REG (Ef. Global): 38%</td>
<td></td>
</tr>
<tr>
<td>Vão máximo (m): 30</td>
<td>CE/CF: ESD</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ponte de Portuzelo</th>
<th>EN202 - km 3,201</th>
<th>Código numérico: 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material: Alv.</td>
<td>R1 (Seg. Est.): 15%</td>
<td></td>
</tr>
<tr>
<td>(Re)construção: 1951</td>
<td>R2 (Func.): 9%</td>
<td></td>
</tr>
<tr>
<td>Largura total (m): 8</td>
<td>R3 (Ut. Pub.): 0%</td>
<td></td>
</tr>
<tr>
<td>Comprimento (m): 36.1</td>
<td>R4: 0%</td>
<td></td>
</tr>
<tr>
<td>Nº de vãos: 5</td>
<td>REG (Ef. Global): 24%</td>
<td></td>
</tr>
<tr>
<td>Vão máximo (m): 4.45</td>
<td>CE/CF:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ponte sobre o Ribeiro de S. Vicente</th>
<th>EN302 - km 1,74</th>
<th>Código numérico: 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material: Alv./Bet./Met.</td>
<td>R1 (Seg. Est.): 15%</td>
<td></td>
</tr>
<tr>
<td>(Re)construção: ?</td>
<td>R2 (Func.): 14%</td>
<td></td>
</tr>
<tr>
<td>Largura total (m): 23.7</td>
<td>R3 (Ut. Pub.): 0%</td>
<td></td>
</tr>
<tr>
<td>Comprimento (m): 6</td>
<td>R4: 0%</td>
<td></td>
</tr>
<tr>
<td>Nº de vãos: 3</td>
<td>REG (Ef. Global): 29%</td>
<td></td>
</tr>
<tr>
<td>Vão máximo (m): 1.2</td>
<td>CE/CF:</td>
<td></td>
</tr>
</tbody>
</table>

Figura 6.1 – Pontes 1, 2, 3, 10 e 11 da sub-amostra
<table>
<thead>
<tr>
<th>Ponte sobre o Rio Ânora</th>
<th>EN13 - km 81,96</th>
<th>Código numérico: 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material: Bet.</td>
<td></td>
<td>R1 (Seg. Est.): 30%</td>
</tr>
<tr>
<td>(Re)construção: 1978/85</td>
<td></td>
<td>R2 (Func.): 10%</td>
</tr>
<tr>
<td>Largura total (m): 18</td>
<td></td>
<td>R3 (Ut. Pub.): 8%</td>
</tr>
<tr>
<td>Comprimento (m): 48</td>
<td></td>
<td>R4: 0%</td>
</tr>
<tr>
<td>Nº de vãos: 1</td>
<td></td>
<td>REG (Ef. Global): 48%</td>
</tr>
<tr>
<td>Vão máximo (m): 34</td>
<td></td>
<td>CE/CF: ESD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Passagem Sup. Cam. Ferro em Caminha</th>
<th>EN301 - km0,35</th>
<th>Código numérico: 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material: Met./Bet./Alv.</td>
<td></td>
<td>R1 (Seg. Est.): 15%</td>
</tr>
<tr>
<td>(Re)construção: 1955</td>
<td></td>
<td>R2 (Func.): 5%</td>
</tr>
<tr>
<td>Largura total (m): 9</td>
<td></td>
<td>R3 (Ut. Pub.): 0%</td>
</tr>
<tr>
<td>Comprimento (m): 19,6</td>
<td></td>
<td>R4: 0%</td>
</tr>
<tr>
<td>Nº de vãos: 1</td>
<td></td>
<td>REG (Ef. Global): 20%</td>
</tr>
<tr>
<td>Vão máximo (m): 10,6</td>
<td></td>
<td>CE/CF: ESD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ponte sobre a Ribeira do Pêgo</th>
<th>EN13 - km 71,71</th>
<th>Código numérico: 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material: Alv.</td>
<td></td>
<td>R1 (Seg. Est.): 30%</td>
</tr>
<tr>
<td>(Re)construção: ?</td>
<td></td>
<td>R2 (Func.): 9%</td>
</tr>
<tr>
<td>Largura total (m): 15,5</td>
<td></td>
<td>R3 (Ut. Pub.): 11%</td>
</tr>
<tr>
<td>Comprimento (m): 24,5</td>
<td></td>
<td>R4: 0%</td>
</tr>
<tr>
<td>Nº de vãos: 19</td>
<td></td>
<td>REG (Ef. Global): 50%</td>
</tr>
<tr>
<td>Vão máximo (m): 0,9</td>
<td></td>
<td>CE/CF: ESD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Passagem Sup. ao Cam. Ferro em Seixas</th>
<th>EN13 - km 93,43</th>
<th>Código numérico: 19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material: Alv.</td>
<td></td>
<td>R1 (Seg. Est.): 55%</td>
</tr>
<tr>
<td>(Re)construção: 1965</td>
<td></td>
<td>R2 (Func.): 15%</td>
</tr>
<tr>
<td>Largura total (m): 12</td>
<td></td>
<td>R3 (Ut. Pub.): 1%</td>
</tr>
<tr>
<td>Comprimento (m): 5,6</td>
<td></td>
<td>R4: 3%</td>
</tr>
<tr>
<td>Nº de vãos: 1</td>
<td></td>
<td>REG (Ef. Global): 68%</td>
</tr>
<tr>
<td>Vão máximo (m): 5,6</td>
<td></td>
<td>CE/CF: ESD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ponte sobre o Ribeiro de S. Vicente</th>
<th>EN302-2 - km 1,74</th>
<th>Código numérico: 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material: Bet.</td>
<td></td>
<td>R1 (Seg. Est.): 45%</td>
</tr>
<tr>
<td>(Re)construção: ?</td>
<td></td>
<td>R2 (Func.): 13%</td>
</tr>
<tr>
<td>Largura total (m): 23,1</td>
<td></td>
<td>R3 (Ut. Pub.): 14%</td>
</tr>
<tr>
<td>Comprimento (m): 4,4</td>
<td></td>
<td>R4: 0%</td>
</tr>
<tr>
<td>Nº de vãos: 1</td>
<td></td>
<td>REG (Ef. Global): 72%</td>
</tr>
<tr>
<td>Vão máximo (m): 1,2</td>
<td></td>
<td>CE/CF: ESD</td>
</tr>
</tbody>
</table>

Figura 6.2 – Pontes 12, 14, 17, 19 e 20 da sub-amosta
<table>
<thead>
<tr>
<th>Ponte sobre o Ribeiro de Santa Marinha</th>
<th>EN302-1 - km 2,574</th>
<th>Código numérico: 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material: Alv.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Re)construção: ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Largura total (m): 4.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comprimento (m): 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nº de vãos: 2</td>
<td>R1 (Seg. Est.): 15%</td>
<td></td>
</tr>
<tr>
<td>Vão máximo (m): 4</td>
<td>R2 (Func.): 0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R3 (Ut. Pub.): 10%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R4: 0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>REG (Ef. Global): 25%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CE/CF:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ponte sobre o Rio Frio</th>
<th>EN302-1 - km 0,11</th>
<th>Código numérico: 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material: Alv.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Re)construção: ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Largura total (m): 4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comprimento (m): 18.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nº de vãos: 3</td>
<td>R1 (Seg. Est.): 45%</td>
<td></td>
</tr>
<tr>
<td>Vão máximo (m): 3.9</td>
<td>R2 (Func.): 9%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R3 (Ut. Pub.): 15%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R4: 2%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>REG (Ef. Global): 67%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CE/CF:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ponte de Tourim</th>
<th>EN305 - km 8,639</th>
<th>Código numérico: 23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material: Alv.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Re)construção: ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Largura total (m): 6.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comprimento (m): 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nº de vãos: 1</td>
<td>R1 (Seg. Est.): 55%</td>
<td></td>
</tr>
<tr>
<td>Vão máximo (m): 10</td>
<td>R2 (Func.): 13%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R3 (Ut. Pub.): 12%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R4: 2%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>REG (Ef. Global): 78%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CE/CF:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ponte dos Arcos de Valdevêz</th>
<th>EN101 - km 52,77</th>
<th>Código numérico: 26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material: Alv.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Re)construção: 1880</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Largura total (m): 6</td>
<td>R1 (Seg. Est.): 45%</td>
<td></td>
</tr>
<tr>
<td>Comprimento (m): 56</td>
<td>R2 (Func.): 12%</td>
<td></td>
</tr>
<tr>
<td>Nº de vãos: 4</td>
<td>R3 (Ut. Pub.): 15%</td>
<td></td>
</tr>
<tr>
<td>Vão máximo (m): 10.8</td>
<td>R4: 0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>REG (Ef. Global): 72%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CE/CF:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ponte de Ponte da Barca</th>
<th>EN101 - km 56,82</th>
<th>Código numérico: 27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material: Alv.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Re)construção: 1761/932</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Largura total (m): 5.4</td>
<td>R1 (Seg. Est.): 30%</td>
<td></td>
</tr>
<tr>
<td>Comprimento (m): 182</td>
<td>R2 (Func.): 8%</td>
<td></td>
</tr>
<tr>
<td>Nº de vãos: 9</td>
<td>R3 (Ut. Pub.): 4%</td>
<td></td>
</tr>
<tr>
<td>Vão máximo (m): 17.5</td>
<td>R4: 0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>REG (Ef. Global): 42%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CE/CF:</td>
<td></td>
</tr>
</tbody>
</table>

Figura 6.3 – Pontes 21, 22, 23, 26 e 27 da sub-amostra
<table>
<thead>
<tr>
<th>Ponte</th>
<th>EN</th>
<th>Código numérico:</th>
<th>Material:</th>
<th>Largura total (m):</th>
<th>Comprimento (m):</th>
<th>Nº de vãos:</th>
<th>Vão máximo (m):</th>
</tr>
</thead>
<tbody>
<tr>
<td>de Bertliandos</td>
<td>202</td>
<td>29</td>
<td>met./alv.</td>
<td>6.5</td>
<td>15.2</td>
<td>1</td>
<td>15.2</td>
</tr>
<tr>
<td></td>
<td>km 18,84</td>
<td></td>
<td>7</td>
<td></td>
<td>15.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R1 (Seg. Est.): 30%</td>
<td>R2 (Func.): 7%</td>
<td>R3 (Ut. Pub.): 5%</td>
<td>R4: 0%</td>
<td>REG (Ef. Global): 42%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CE/CF: ESD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>de Santar</td>
<td>202-1</td>
<td>31</td>
<td>met./alv.</td>
<td>4.1</td>
<td>27.3</td>
<td>2</td>
<td>13.7</td>
</tr>
<tr>
<td></td>
<td>km 2,638</td>
<td></td>
<td>1890</td>
<td></td>
<td>27.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R1 (Seg. Est.): 15%</td>
<td>R2 (Func.): 4%</td>
<td>R3 (Ut. Pub.): 11%</td>
<td>R4: 0%</td>
<td>REG (Ef. Global): 30%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CE/CF: ESD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dos Campos</td>
<td>113</td>
<td>32</td>
<td>alv.</td>
<td>11.5</td>
<td>6.2</td>
<td>1</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>km 109,3</td>
<td></td>
<td>1870/948</td>
<td></td>
<td>6.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R1 (Seg. Est.): 55%</td>
<td>R2 (Func.): 15%</td>
<td>R3 (Ut. Pub.): 0%</td>
<td>R4: 0%</td>
<td>REG (Ef. Global): 70%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CE/CF: ESD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>de S. Gonçalo</td>
<td>113</td>
<td>33</td>
<td>alv.</td>
<td>14.2</td>
<td>5.3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>km 102,5</td>
<td></td>
<td>1864</td>
<td></td>
<td>5.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R1 (Seg. Est.): 55%</td>
<td>R2 (Func.): 15%</td>
<td>R3 (Ut. Pub.): 9%</td>
<td>R4: 3%</td>
<td>REG (Ef. Global): 76%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CE/CF: ESD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>de Saim</td>
<td>305</td>
<td>38</td>
<td>alv.</td>
<td>6.8</td>
<td>28.4</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>km 7,253</td>
<td></td>
<td>?</td>
<td></td>
<td>28.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R1 (Seg. Est.): 15%</td>
<td>R2 (Func.): 9%</td>
<td>R3 (Ut. Pub.): 5%</td>
<td>R4: 0%</td>
<td>REG (Ef. Global): 29%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CE/CF: ESD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 6. 4 – Pontes 29, 31, 32, 33 e 38 da sub-amostra
Na Figura 6.5 são apresentados os valores obtidos para os REG do conjunto das 20 pontes da sub-amostra (apresentadas nos quadros da Figura 6.1 à Figura 6.4), listando as obras por ordem crescente desse parâmetro, de forma a, de acordo com a metodologia apresentada no capítulo 4, evidenciar as prioridades relativas de reabilitação de cada uma delas.

Figura 6.5 – Ráios de Eficiência Global das obras de arte da sub-amostra e indicação das pontes Estruturalmente Deficientes (ESD)
Uma vez que o rácio de Eficiência Global resulta do somatório de rácios parciais relacionados com a segurança estrutural, a funcionalidade e a utilidade pública da obra, no gráfico da Figura 6.6, são apresentados os resultados dos rácios correspondentes (respectivamente, R1, R2 e R3), pela mesma ordem de listagem da figura anterior. Ao somatório das barras com os valores dos rácios R1 a R3, corresponde o valor de REG (apresentado na Figura 6.5) a menos do rácio R4, relativo às reduções extraordinárias.

Figura 6.6 – Rácios de Segurança Estrutural, de Funcionalidade e de Utilidade Pública do sistema de pontes da sub-amostra
Os valores de REG obtidos para o conjunto variam entre um mínimo de 20% (Passagem Superior ao Caminho de Ferro em Caminha) e um máximo de 78% (Ponte de Tourim), com um valor médio de 49% e um desvio padrão de 20%.

Como se pode concluir na análise dos gráficos apresentados, o cenário obtido não é muito positivo uma vez que 12 das 20 pontes do sistema apresentam Rácios de Eficiência Global até 50%, denotando a necessidade de execução de obras que corrijam as anomalias detectadas nas campanhas de inspecção, de forma a assegurar os níveis de segurança e eficiência desejados. Nessas pontes com um valor de REG até 50% há ainda a destacar o facto de serem, em geral, obras simultaneamente classificadas como Estruturalmente Deficientes, o que reforça a insuficiência estrutural das mesmas e a urgência da sua reabilitação. As pontes 10, 11, 17 e 21 não são assinaladas como sendo Estruturalmente Deficientes uma vez que, não tendo vãos com mais de 6m de comprimento, não se enquadram na definição de ponte apresentada pela FHWA [1995] e não verificam as condições necessárias para serem classificáveis como tal (Capítulo 4). De acordo com os critérios da [FHWA 1995] para atribuição de fundos de financiamento, as pontes só se poderão candidatar a fundos para reabilitação caso tenham um REG inferior a 80% e a fundos para reabilitação/substituição caso tenham um REG inferior a 50% (entre outras condições anteriormente referidas no capítulo 4), de onde se pode inferir que em todas as obras da amostra poderá ser considerada uma reabilitação.

Importa no entanto referir que o estado global das pontes desta sub-amostra será provavelmente inferior ao estado das pontes do conjunto inicial (a globalidade das pontes do distrito de Viana do Castelo sob a jurisdição do IEP), uma vez que as campanhas de inspecção do ano 2001 terão sido realizadas, preferencialmente, nas obras em pior estado.

No que respeita à análise dos rácios parciais (Figura 6.6), pode verificar-se que:

- O rácio relativo à segurança estrutural (com um máximo de 55%) apresenta, em média, valores de 34%;
- O rácio R2, com uma média de 10%, nunca apresenta valores superiores a 15% (50% do seu valor máximo), o que evidencia uma baixa funcionalidade do conjunto;
- O rácio de utilidade pública assume valores entre o seu mínimo e o seu máximo, com uma grande variabilidade.
Pode ainda verificar-se que a ordem de listagem das obras de acordo com o Rádio de Eficiência Global não é muito dispar da de listagem de acordo com o rácio de segurança estrutural (o rácio parcial com maior peso no REG). A diferença verifica-se apenas nas pontes 19 e 32 que, por estarem situadas em vias de maior tráfego e por implicarem um maior desvio do tránsito em caso de fecho, relativamente às pontes 26 e 20, apresentam menor rácio de utilidade pública (R3) e consequentemente menor valor de REG.

Na Figura 6. 7 são apresentados os valores do REG das obras de arte da sub-amostra, em comparação com os valores anteriormente apresentados na Error! Reference source not found. (a gama de valores de REG inicialmente admitida e os valores do EC). Como se pode verificar, os valores do REG obtidos para as pontes da sub-amostra não são muito diferentes dos valores médios obtidos na primeira análise da amostra, pelo que será de esperar o mesmo relativamente às pontes da amostra não incluídas na sub-amostra.

Figura 6. 7 – Valores médios de REG (e respectiva gama de variação) para cada ponte da amostra e valores do REG para cada ponte da sub-amostra, em comparação com EC
Na Figura 6. 8 esses valores obtidos para o REG, de cada uma das 20 pontes, são comparados com os seus principais resultados parciais:

- **segurança estrutural** (traduzida no gráfico pelo valor resultante da conversão do rádio R1 para uma escala de 0 a 100%);
- **funcionalidade** (indicada pela conversão de R2 para uma escala de 0 a 100%);
- **utilidade pública** (reflectida pela inversão e conversão do rádio R3 para uma escala de 0 a 100%, para que a um maior valor corresponda uma maior utilidade pública).

![Gráficos de pontes em betão e metálicas](image)

Figura 6. 8 – Valores de REG para cada ponte da sub-amostra, em comparação com a segurança estrutural, com a funcionalidade e com a utilidade pública

6.40
Na análise da figura anterior pode verificar-se que a ordem de listagem segundo o REG, à exceção da ponte 26, corresponde à ordem de listagem segundo o rácio de segurança estrutural (R1 - o rácio com maior peso no cálculo do REG). Essa exceção aparece pelo facto de a ponte 26 (Ponte dos Arcos) ter uma utilidade pública bastante inferior à das pontes 19 e 32, situadas em vias de maior intensidade de tráfego.

No que respeita à funcionalidade, as pontes metálicas são as que apresentam valores mais baixos. Dentro dessas há que destacar a nº31 que, essencialmente devido à reduzida largura média de cada faixa de rodagem (1.2m), tem um R2 de apenas 4% (num máximo de 30%). No entanto, no sistema analisado, a obra com menor funcionalidade é a ponte de betão sobre o Ribeiro de Santa Marinha (nº21) que apresenta um rácio R2 nulo, por ter uma faixa de rodagem com uma largura média de apenas 3.7m para um volume médio de tráfego diário superior a 2000 veículos.

Outro facto que se deve destacar na análise dos rácios de funcionalidade é que, conforme já referido, os valores máximos obtidos nesta sub-amostra são da ordem dos 15% (num máximo de 30%) o que significa que, relativamente aos critérios estabelecidos no cálculo desse parâmetro, as estruturas classificadas ficam em geral aquém dos níveis desejáveis. Fazendo uma análise dos resultados parciais do cálculo do rácio R2, verifica-se que o principal responsável por essa situação é o parâmetro redutor G+H que é máximo (15%) para a generalidade das pontes da sub-amostra. Por essa razão, pode concluir-se que a baixa funcionalidade das pontes classificadas está, sobretudo, relacionada com a inadequação da largura das faixas de rodagem ao volume de tráfego da via.

Quanto ao rácio relativo à utilidade pública, medido essencialmente a partir do desvio necessário em caso de fecho e do volume de tráfego da via, verifica-se uma grande dispersão de valores, sendo de destacar as seguintes situações extremas:

- Um R3 próximo do máximo, para as pontes 2, 20 e 26, significando uma baixa importância dessas obras, do ponto de vista da sua utilização pública;

- Um R3 nulo para as pontes 1, 3, 10, 11, 14, 19 e 32, classificando essas obras como sendo de grande utilidade pública.

Em termos de resultados médios do Rácio de Eficiência Global, para cada um dos três grupos de principal material estrutural, pode ver-se no gráfico da Figura 6.9 que os
resultados da análise das obras da sub-amostra confirmam os anteriormente obtidos para a análise mais grosseira das obras da amostra. Continua a verificar-se um maior valor para as pontes de alvenaria e um menor valor para as pontes metálicas, embora com uma menor diferença.

Figura 6.9 – Resultados médios de REG obtidos para grupos formados de acordo com o principal material estrutural, o vão máximo e o comprimento total das pontes da amostra e da sub-amostra

Já no que respeita à análise por grupos relativos ao vão máximo e ao comprimento máximo de cada uma das estruturas (ver Figura 6.9) continua a verificar-se para a sub-amostra que as obras com maior eficiência global são as com vãos até 6m e com comprimentos totais iguais ou inferiores a 10m, sem no entanto se registarem diferenças muito acentuadas.
Efectuando uma análise de acordo com os parâmetros parciais que definem a eficiência global das obras (R1, R2 e R3 convertidos em escalas de 0 a 100% de forma a que aos valores mais altos correspondam, respectivamente, maior segurança estrutural, maior funcionalidade e maior utilidade pública), verifica-se que os grupos com menor REG médio são correspondentes aos grupos que, em média, apresentam uma menor segurança estrutural e uma menor funcionalidade.

Figura 6.10 - Resultados médios de segurança estrutural, funcionalidade e utilidade pública obtidos para grupos formados de acordo com o principal material estrutural, o vão máximo e o comprimento total das pontes da sub-amostra.

6.43
6.2 Considerações finais e conclusões

A utilização do REGpontes e aplicação da metodologia de gestão que lhe é subjacente a algumas das pontes rodoviárias do Distrito de Viana do Castelo, permitiu testar a sua aplicabilidade à realidade portuguesa. Com a análise efectuada foi possível caracterizar o panorama do conjunto de obras consideradas, essencialmente no que respeita à segurança estrutural, mas tendo também em consideração alguns factores relativos à funcionalidade e utilidade pública das obras.

Quando, como no caso considerado, as inspecções das várias pontes de um mesmo sistema são realizadas por diferentes entidades, torna-se difícil comparar o estado de cada uma das obras e estabelecer prioridades de intervenção. Por essa razão, nestas situações, uma ferramenta como a utilizada pode ser de grande importância para homogeneizar o tipo de classificação de cada uma das obras e destacar as situações mais problemáticas.

Futuramente a classificação efectuada pode ser estendida às restantes obras do sistema e os seus resultados podem ainda vir a ser actualizados e refinados através da realização de novas inspecções principais, que incluam à partida o cálculo do REG e uma análise estrutural detalhada que permita a determinação da capacidade de carga de cada ponte.

A partir dos resultados obtidos no cálculo dos Rácos de Eficiência, em termos de valores parciais e finais, pode dizer-se para as pontes consideradas que:

- Para além de trabalhos de manutenção, em cerca de metade das obras são necessários trabalhos de reparação e reforço, em alguns casos com bastante urgência, para melhorar o seu desempenho estrutural e assegurar a segurança desejável;

- A funcionalidade das obras, em relação às exigências estabelecidas pela metodologia de classificação aplicada, é inferior ao nível considerado médio. A inadaptação da largura das faixas de rodagem, na zona das pontes, face ao volume de tráfego da via, resultante sobretudo da elevada idade das obras, constitui a principal razão dessa insuficiência ao nível da utilização rodoviária;

- Em termos médios, as pontes com menor segurança estrutural e com um mais baixo nível de funcionalidade, são as metálicas, em oposição às de alvenaria.
que apresentam os maiores valores para esses parâmetros, senão que no entanto essa diferença seja muita significativa.
CAPÍTULO 7

CONCLUSÃO

Com o intuito de desenvolver um sistema de gestão de pontes aplicável à realidade portuguesa, foi efectuado um estudo sobre o que nesse âmbito tem vindo a ser desenvolvido a nível internacional. Nesse estudo, foi identificada uma metodologia norte-americana de classificação de pontes rodoviárias, que foi estudada pormenorizadamente por se ter considerado de grande interesse para a caracterização de um parque de obras de arte desse tipo. Para a aplicação dessa metodologia às pontes portuguesas, foi então desenvolvida uma ferramenta de cálculo de classificação das obras. O programa, que se designou por REGPontes, foi calibrado e depois usado na avaliação de um conjunto de pontes rodoviárias do distrito de Viana do Castelo. Com a sua aplicação a casos práticos foi possível evidenciar a sua importância na identificação das situações mais críticas e na atribuição de prioridades relativas de intervenção.

Dada a grande abrangência da gestão de obras de arte, o trabalho representa essencialmente um primeiro passo para o desenvolvimento futuro de outras vertentes dentro do mesmo âmbito, que mais tarde possam vir a ser conjugadas numa única ferramenta informática. A previsão da evolução da deterioração das pontes ao longo do tempo; a proposta automática de soluções-tipo de manutenção, reparação e reforço; a avaliação da segurança de estruturas existentes e a optimização da programação das intervenções ao longo da vida das obras, são alguns exemplos dessas outras áreas de interesse, a que se faz referência na secção relativa aos desenvolvimentos futuros.
7.1. Considerações e conclusões finais

Da pesquisa efectuada sobre as estratégias de gestão de obras de arte e sobre as ferramentas de apoio a essa tarefa que vão sendo adoptadas em várias partes do mundo, pode concluir-se que, embora existam em formatos muito variados, têm em geral uma estrutura base com muitos pontos comuns. Os módulos mais usuais que aparecem, umas vezes de forma isolada e outras vezes de forma conjugada, são os seguintes: inventariação do conjunto das obras a gerir; classificação da importância da obra em termos funcionais, económicos, culturais e históricos; classificação do estado da estrutura e previsão de cenários de evolução futura; programação das intervenções em cada uma das obras e quantificação de custos para uma análise económica com vista à optimização dos rácios custo/benefício.

As premissas da tomada de decisões, no âmbito da gestão de obras como as pontes, são constituídas por um grande conjunto de parâmetros técnicos e económicos. Por essa razão, a recolha desses dados deve ser efectuada de forma rigorosa, a partir de elementos do projecto (da obra inicial e de eventuais intervenções posteriores) e de campanhas de inspecção realizadas ao local com recurso à observação visual e, se necessário, também a técnicas experimentais. Uma vez que esses dados vão constituir as premissas das decisões, é essencial assegurar a sua acuidade, validade, actualidade, clareza e suficiência, pelo que importa implementar mecanismos que ajudem a conferir-lhes essas características.

A análise dos rácios parciais de Segurança Estrutural, Funcionalidade, Utilidade Pública, bem como do rácio de Eficiência Global, calculados de acordo com a metodologia norte-americana apresentada no Capítulo 4, permitem efectuar um pré-processamento dos dados e facilitar assim a sua interpretação. Esse tratamento prévio da informação permite tomá-la mais comparável, sendo por isso importante para evidenciar as situações mais críticas. O facto de esses rácios serem já usados na classificação de pontes rodoviárias de outros países constitui ainda uma vantagem adicional, uma vez que torna possível que essa comparação seja mesmo feita a nível internacional.

O programa REGpontes que se desenvolveu, constitui uma ferramenta de assessoria à gestão de um parque de pontes rodoviárias que poderá vir a ser aplicada em Portugal. A
sua base de dados permite arquivar sistematicamente um conjunto de dados e possibilita depois a sua rápida consulta, comparação e actualização. A partir dos dados introduzidos, o programa calcula automaticamente os rácios anteriormente referidos e, em função dos resultados, ordena as obras de acordo com as respectivas prioridades de intervenção.

O ambiente de trabalho do REGpontes, o Microsoft Excel, sendo já de comum utilização, possibilita a sua rápida implementação. Para além disso, o ambiente adoptado possibilita que tanto o seu input como o seu output sejam trabalhados pelo utilizador, directamente na folha de cálculo. Assim sendo, poderão criar-se vários tipos de relatórios, adaptados às necessidades específicas de cada entidade gestora, relativos a cada uma das pontes em particular ou a um conjunto de obras com determinadas características.

O código de programação do REGpontes, em linguagem Visual Basic Application, pode ser acedido pelos utilizadores sempre que pretendido. Essa possibilidade permite assim a total exploração da ferramenta informática e possibilita ainda a sua manipulação para uma eventual adaptação a determinadas especificidades. A estrutura modular do programa possibilita também a sua utilização por etapas, com diferentes utilizadores, e prepara o REGpontes para um alargamento futuro das suas potencialidades, por inclusão de novos módulos.

Os resultados da classificação atribuída pelo REGpontes foram calibrados por comparação com os resultados obtidos, para os parâmetros equivalentes, com o programa PONTIS. Essa comparação foi efectuada para um conjunto de obras de arte de diversificadas características e os resultados obtidos permitiram concluir que os valores são muito aproximados, havendo apenas ligeiras divergências relacionadas com a conversão do sistema métrico.

A aplicabilidade do programa à realidade portuguesa foi testada na avaliação de 40 das pontes rodoviárias do distrito de Viana do Castelo. As 40 pontes foram primeiramente classificadas com base em relatórios de inspeção existentes e depois, para um sub-conjunto de 20, foi feita uma análise mais refinada, complementada com os dados recolhidos na sua observação. O conjunto e o sub-conjunto foram seleccionados com o cuidado de incluir obras de características variadas no que concerne à sua idade, aos materiais aplicados, ao tipo de funcionamento estrutural, às dimensões e e ao tipo de via rodoviária em que estão inseridas.
Capítulo 7

A análise desses casos práticos, à luz da metodologia estudada e com a utilização do programa desenvolvido, permitiu evidenciar a importância de uma ferramenta deste tipo essencialmente aos seguintes níveis:

- Organização da informação relativa a cada uma das obras;
- Homogeneização das classificações atribuídas por diferentes inspectores;
- Caracterização da eficiência de um conjunto de obras de arte no que respeita à sua Segurança Estrutural, Funcionalidade e Utilidade Pública;
- Estabelecimento de prioridades de intervenção;
- Chamada de atenção para as situações mais críticas.

Numa análise futura, para efeitos de tomada de decisões, os dados deverão ser definidos com base em inspecções recentes que sejam à partida realizadas tendo em conta o tipo de inventariação subjacente à metodologia de avaliação. No entanto, a análise desses casos práticos, permitiu evidenciar a importância de uma ferramenta deste tipo na organização da informação, na homogeneização das classificações de diferentes inspectores e na chamada de atenção para as situações de maior urgência de intervenção.

A partir dos resultados obtidos na classificação das pontes rodoviárias consideradas, pôde constatar-se que a funcionalidade das pontes rodoviárias consideradas é na generalidade baixa em relação às exigências da classificação subjacente à metodologia norte-americana adoptada. Esse facto está essencialmente associado a uma insuficiência da largura da faixa de rodagem face ao volume de tráfego da via, o que de alguma forma se explica com o facto de serem pontes construídas há muito anos e, por isso, concebidas para menores exigências de tráfego.

Os resultados obtidos na classificação dessas obras permitiram ainda constatar que, em média, as pontes com menor segurança estrutural e funcionalidade, em termos da sua classificação por principal material estrutural, são as metálicas. Curiosamente esta constatação está de acordo com o verificado, conforme foi referido no Capítulo 4, nas pontes registadas na base de dados NBI dos Estados Unidos da América. Embora o número de pontes consideradas no estudo efectuado não permita uma generalização em relação à realidade do país, de qualquer forma, em conjunto com a tendência verificada nessa grande base de dados, pode constatar-se que esse tipo de obras, talvez por
deficiente manutenção e insuficiente reposição dos elementos de proteção do processo de deterioração desse material, se tornam mais vulneráveis.

7.2. Desenvolvimentos futuros

Dada a grande amplitude do tema deste trabalho, o seu desenvolvimento futuro pode ser feito em múltiplas vertentes. Assim, em seguida serão referidas alguns dos possíveis trabalhos que, na sequência deste, poderão ser desenvolvidos no âmbito da gestão de obras de arte e depois implementados como novos módulos do programa REGpontes.

O acompanhamento, ao longo dos próximos anos, das pontes estudadas neste trabalho e de algumas outras a selecionar, permitirá registar os níveis de classificação do estado de cada uma das obras, em diversos instantes de tempo. Essa classificação deverá ser baseada na observação visual e nos resultados de um determinado conjunto de testes experimentais. A informação recolhida poderá então constituir um histórico e servir de base para o estudo de modelos de previsão da evolução comportamental das obras, em função do grau de deterioração, do nível de afectação, das características da obra e do seu grau de exposição. No caso de durante esse período de observação das obras se implementar algum tipo de restrição de utilização (velocidade, carga, etc.) ou se realizar algum tipo de intervenção, de manutenção ou correção, poderá ainda vir a ser possível estudar a sua influência no comportamento e na evolução do estado da ponte, testando a eficiência de algumas soluções.

A compilação de um conjunto de soluções-tipo de manutenção, reforço e reparação, em função das características da obra e do cenário de deterioração, bem como a análise de relações de causa-efeito associadas à deterioração das pontes, poderão permitir dotar o programa com capacidades periciais. Se essas soluções e relações forem devidamente arquivadas numa base de dados, que possa periodicamente ser actualizada, o programa poderá efectuar correlações automáticas com cada um dos registos, sugerindo então ao utilizador algumas das medidas a adoptar.

Da conjugação do modelo de previsão da evolução do comportamento e da base de dados de soluções-tipo, poderá ainda ser efectuado um estudo global da vida útil da obra,
definindo a altura mais oportuna para a implementação dos vários tipos de intervenção, de forma a permitir a sua programação antecipada, optimizando a afectação dos recursos disponíveis para o conjunto das obras.

Outro dos possíveis desenvolvimentos futuros será a calibração dos coeficientes a usar no cálculo da capacidade de carga e na avaliação da segurança de pontes existentes, a efectuar também com base no estudo de um conjunto diversificado de pontes.

Uma vez que as decisões de gestão de obras de arte são também muito condicionadas pelos investimentos financeiros associados às soluções técnicas, poderá ainda incluir-se no programa um módulo de análise económica que pondere os rácios custo/benefício das diferentes hipóteses admitidas, para também dessa forma apoiar o gestor nas suas opções.

Por último, o programa desenvolvido, especialmente vocacionado para pontes rodoviárias, poderá vir a ser adaptado também a gestão de outro tipo de obras de arte.
REFERÊNCIAS BIBLIOGRÁFICAS

A

B

C

CEN (1994). "Eurocode 1 - Basis of design and actions on Structures - Part 1: Basis of design".

Clemente, J., Cruz, P. (2002). "Inspection, Maintenance and Rehabilitation of Railway Bridges in Portugal", First International Conference on Bridge Maintenance, Safety and Management, Barcelona, Spain, IABMAS.

Flaig, K., Lark, R. (1999). "Integration of Reliability-Based Assessment Techniques into a Advanced BMS", *8th International Bridge Management Conference*.

G

Hajdin, R. (2002). "Road Structures Management in Switzerland - Recent Developments", *First International Conference on Bridge Maintenance, Safety and Management*, Barcelona, Spain, IABMAS.

ICERR (2001). "Inspeções a obras de arte - Codificação de elementos e graus de conservação/manutenção".

Jaúregui, D., White, K., Pate, J., Woodward, C. (2002). "Improvement of Routine Bridge Inspections Using a Virtual Reliability Based Management Program", First International Conference on Bridge Maintenance, Safety and Management, Barcelona, Spain, IABMAS.

L

Lassen, B. (2003). "Bridge Management Trough the Internet with DANBROweb", 9th International Bridge Management Conference, Orlando, 244-251.

M

N

P

Prine, D. "Problems associated with nondestructive evaluation of bridges".
R

S

ANEXO A

ITENS DA BASE DE DADOS

<table>
<thead>
<tr>
<th>Item</th>
<th>Descriptive</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>8A</td>
<td>Identificação da ponte - código</td>
<td>Considerar como uma só obra, duas estruturas de eixos muito próximos, com separação intransponível ou não.</td>
</tr>
<tr>
<td>8B</td>
<td>Identificação da ponte - número</td>
<td>Descrever narrativamente a localização da obra, se possível indicando distâncias aos principais pontos de referência.</td>
</tr>
<tr>
<td>8C</td>
<td>Identificação da ponte - nome</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Localização</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Distrito</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Concelho</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Divisão Administrativa</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Cidade/Vila/Aldeia</td>
<td></td>
</tr>
<tr>
<td>6A</td>
<td>Nome(s) das vias interceptadas</td>
<td></td>
</tr>
<tr>
<td>6B</td>
<td>Importância das vias interceptadas</td>
<td></td>
</tr>
<tr>
<td>5D</td>
<td>N°/código da via principal</td>
<td>Considerar a via sobre a estrutura para as pontes rodoviárias e a via sob a estrutura para túneis, passagens de peões e pontes ferroviárias.</td>
</tr>
<tr>
<td>11</td>
<td>Ponto Quilométrico (km)</td>
<td>Considerar a de classe mais elevada (ou, em caso de igualdade, a de menor código de referência) quando houver mais do que uma via concorrente.</td>
</tr>
<tr>
<td>7</td>
<td>Tipo de utilização da via sobre a estutura</td>
<td></td>
</tr>
<tr>
<td>5A</td>
<td>Posicionamento da via principal na ponte</td>
<td>Incluir estradas principais e secundárias, urbanas ou rurais, e excluir rampas e terrenos privados.</td>
</tr>
<tr>
<td>5B</td>
<td>Tipo de via principal</td>
<td></td>
</tr>
<tr>
<td>5C</td>
<td>Tipo de serviço da via principal</td>
<td></td>
</tr>
<tr>
<td>5E</td>
<td>Sentido da quilometragem da via principal</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Pertence à rede principal para pesados?</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Pertence à rede de estradas principais?</td>
<td></td>
</tr>
<tr>
<td>13A</td>
<td>Referência na rede de estradas principais</td>
<td></td>
</tr>
<tr>
<td>13B</td>
<td>Nº da sub-via da rede de estradas principais</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Latitude</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Longitude</td>
<td></td>
</tr>
<tr>
<td>98A</td>
<td>Código do estado vizinho co-responsável</td>
<td></td>
</tr>
<tr>
<td>98B</td>
<td>Percentagem de co-responsabilidade</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Nº da estrutura no estado co-responsável</td>
<td></td>
</tr>
</tbody>
</table>
Anexo A

<table>
<thead>
<tr>
<th>Item</th>
<th>Descritivo</th>
<th>Observações</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Ano de construção</td>
<td>Observações. Considerar a reconstrução mais recente (excluindo pequenas obras como pinturas em elementos metálicos ou substituição de guardas).</td>
</tr>
<tr>
<td>105</td>
<td>Ano de reconstrução</td>
<td></td>
</tr>
<tr>
<td>42A</td>
<td>Tipo de serviço sobre a estrutura</td>
<td></td>
</tr>
<tr>
<td>42B</td>
<td>Tipo de serviço sob a estrutura</td>
<td></td>
</tr>
<tr>
<td>28A</td>
<td>Nº faixas de rodagem sobre a estrutura</td>
<td>Considerar apenas as faixas rodoviárias.</td>
</tr>
<tr>
<td>28B</td>
<td>Nº de faixas de rodagem sob a estrutura</td>
<td>Considerar apenas as faixas rodoviárias.</td>
</tr>
<tr>
<td>19</td>
<td>Desvio implicado com o fecho(km)</td>
<td>Indicar a extensão do desvio necessário em caso de fecho (que possa ser usado por qualquer um dos tipos de veículo que possam passar sobre a obra), medido pelo diferencial dos trajectos anterior e posterior à interdição de circulação.</td>
</tr>
<tr>
<td>29</td>
<td>Tráfego médio diário (TMD)</td>
<td>Considerar o valor conhecido mais recente (mesmo que a obra se encontre encerrada), incluindo o tráfego de peusados.</td>
</tr>
<tr>
<td>109</td>
<td>Tráfego médio diário de pesados</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Ano de quantificação do TMD (item 29)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Descritivo</th>
<th>Observações</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>É, por definição, uma ponte?</td>
<td>Segundo a AASHTO, ponte é uma estrutura sobre uma depressão ou obstrução do terreno (exceto água, rodovia, ferrovia), que suporta a passagem de tráfego ou outras cargas rolando que tem mais de 6m de vão (medido ao longo do eixo da via) e que pode também incluir conduetas com uma distância livre entre suportes inferior a metade do vão que lhes é contíguo.</td>
</tr>
<tr>
<td>100</td>
<td>Importância estratégica</td>
<td>Considerar a importância sob o ponto de vista dos acessos a centros hospitalares, bombeiros e equipamentos de defesa militar.</td>
</tr>
<tr>
<td>37</td>
<td>Importância histórica</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Tipo de utilização da via principal</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Existência de estrutura paralela</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>Direção do tráfego rodoviário</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Carácter provisório</td>
<td>Indicar a(s) parte(s) da estrutura com caráter provisório.</td>
</tr>
<tr>
<td>105</td>
<td>Enquadramento em zona especial</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Portagem</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Dono de obra</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Responsável pela manutenção</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Descritivo</td>
<td>Observações</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>45</td>
<td>Nº de vias (zona principal)</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Nº de vias (acessos)</td>
<td></td>
</tr>
<tr>
<td>43A</td>
<td>Tipo de material (zona principal)</td>
<td></td>
</tr>
<tr>
<td>43B</td>
<td>Tipo de concepção/construção (zona principal)</td>
<td></td>
</tr>
<tr>
<td>44A</td>
<td>Tipo de material (acessos)</td>
<td></td>
</tr>
<tr>
<td>44B</td>
<td>Tipo de concepção/construção (acessos)</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>Tipo de estrutura do tabuleiro</td>
<td></td>
</tr>
<tr>
<td>108A</td>
<td>Tabuleiro - tipo de camada de desgaste</td>
<td></td>
</tr>
<tr>
<td>108B</td>
<td>Tabuleiro - tipo de membrana</td>
<td></td>
</tr>
<tr>
<td>108C</td>
<td>Tabuleiro - proteção superficial</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Comprimento do vão máximo (m)</td>
<td>Medir pelo eixo da via principal (mesmo quando a via principal se encontra sob a estrutura).</td>
</tr>
<tr>
<td>49</td>
<td>Comprimento da estrutura (m)</td>
<td></td>
</tr>
<tr>
<td>50A</td>
<td>Largura do passeio da esquerda (m)</td>
<td>Somar as larguras livres entre passeios e separadores.</td>
</tr>
<tr>
<td>50B</td>
<td>Largura do passeio da direita (m)</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Largura total da(s) faixa(s) de rodagem (m)</td>
<td>Incluir bermas e zonas centrais quando as condições do piso forem idênticas à da faixa de rodagem (para diferentes larguras, em cada uma das extremidades da obra, considerar a menor entre ambas).</td>
</tr>
<tr>
<td>52</td>
<td>Largura do tabuleiro (fora a fora) (m)</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Largura da faixa de rodagem de acesso (m)</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>A largura da estrutura é variável?</td>
<td>Ignorar variações ligeiras nas extremidades.</td>
</tr>
<tr>
<td>33</td>
<td>Separador entre diferentes sentidos</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>inclinação (°)</td>
<td>Considerar o ângulo entre o eixo de um pilar e uma linha normal ao eixo da via.</td>
</tr>
<tr>
<td>47</td>
<td>Gabarit horizontal da via principal (m)</td>
<td>Não considerar como restrições os separadores (nivelados ou transponíveis) e, caso haja obstáculos entre vias, considerar a menor largura entre cada um dos lados.</td>
</tr>
<tr>
<td>55B</td>
<td>Gabarit horizontal exterior sob a estrutura (m)</td>
<td>Caso haja via (caso contrário não é aplicável) considerar a menor largura livre entre a extremidade exterior da via (ou eixo entre carris no caso de ferrovia) e uma barreira rígida ou um talude.</td>
</tr>
<tr>
<td>56</td>
<td>Gabarit horizontal interior sob a estrutura (m)</td>
<td>Caso haja separator central (caso contrário não é aplicável) considerar a menor largura livre entre a extremidade interior da via (ou eixo entre carris no caso de ferrovia) e uma barreira rígida.</td>
</tr>
<tr>
<td>10</td>
<td>Gabarit mínimo vertical da via principal (m)</td>
<td>altura do mais alto veículo que pode passar sob a ponte.</td>
</tr>
<tr>
<td>53</td>
<td>Gabarit mínimo vertical sobre a ponte (m)</td>
<td>altura do mais alto veículo que pode passar sobre a ponte.</td>
</tr>
<tr>
<td>54B</td>
<td>Gabarit vertical sob a estrutura (m)</td>
<td>menor altura vertical livre sob a estrutura até a face inferior da superestrutura.</td>
</tr>
<tr>
<td>54A</td>
<td>Tipo de via sob a estrutura</td>
<td></td>
</tr>
<tr>
<td>55A</td>
<td>Tipo de via sob a estrutura, à direita</td>
<td></td>
</tr>
</tbody>
</table>
Anexo A

<table>
<thead>
<tr>
<th>Item</th>
<th>Descrição</th>
<th>Observações</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>Há controlo de navegação?</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>Espaço vertical livre para a navegação</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Espaço vertical para navegação (m)</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Espaço horizontal para navegação (m)</td>
<td>Dispositivos de proteção à navegação como bóias.</td>
</tr>
<tr>
<td>111</td>
<td>Proteção dos pilares/encontros</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Descrição</th>
<th>Observações</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>Estado do tabuleiro</td>
<td>Não considerar o estado de elementos não estruturais como passeios, parapeitos e guardas.</td>
</tr>
<tr>
<td>59</td>
<td>Estado da superestrutura</td>
<td>Considerar a parte da estrutura sobre os apoios.</td>
</tr>
<tr>
<td>60</td>
<td>Estado da infraestrutura</td>
<td>Considerar a parte da estrutura sob os apoios.</td>
</tr>
<tr>
<td>61</td>
<td>Capacidade de escoamento da água</td>
<td>Avaliar o escoamento, tendo atenção que velocidades excessivas da água podem originar erosão (affectando o item 60).</td>
</tr>
<tr>
<td>62</td>
<td>Estado da conduta submersa</td>
<td>Considerar conduta (para as condutas os items 58, 59 e 60 não são aplicáveis) como sendo uma estrutura submersa, com capacidade hidráulica e com material estrutural em todo o seu perímetro, aterrazada ou suportada no leito de um curso de água.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Descrição</th>
<th>Observações</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>Método de determinação de ICC</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>ICC - Índice Capacidade Carga (ton.)</td>
<td>Considerar igual a 99,9 para as estruturas em que a sobrecarga é insignificante face à sua capacidade de carga.</td>
</tr>
<tr>
<td>63</td>
<td>Método de determinação de ICF</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>ICF - "Operating Rating" (ton.)</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Sobrecargas de projecto</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Necessidade de reclusão de cargas</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Restrições impostas/recomendadas</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Descrição</th>
<th>Observações</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>Avaliação estrutural</td>
<td>Avaliar a necessidade de redução da velocidade de circulação devido ao desalinamento, vertical ou horizontal, entre os acessos e o tabuleiro.</td>
</tr>
<tr>
<td>68</td>
<td>Avaliação da geometria do tabuleiro</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Avaliação das limitações espaciais</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Resposta face ao canal de água</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Alinhamento dos acessos</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>Avaliação das fundações (erosão)</td>
<td></td>
</tr>
<tr>
<td>36A</td>
<td>Guardas de proteção</td>
<td>Avaliar a geometria e as condições de resistência do material.</td>
</tr>
<tr>
<td>36B</td>
<td>Transição guardas acessos-tabuleiro</td>
<td>Avaliar as ligações entre as guardas da ponte e as dos acessos.</td>
</tr>
<tr>
<td>36C</td>
<td>Guardas dos acessos</td>
<td>Avaliar a proteção aos veículos que, por exemplo, possam estar parados à entrada ou saída da ponte devido a um semáforo.</td>
</tr>
<tr>
<td>36D</td>
<td>Remate das guardas dos acessos</td>
<td>Avaliar o remate das guardas dos acessos.</td>
</tr>
</tbody>
</table>
Inspeção

<table>
<thead>
<tr>
<th>Item</th>
<th>Descrição</th>
<th>Observações</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td>Inspeções de rotina (nº meses)</td>
<td>Indicar o nº de meses entre inspeções.</td>
</tr>
<tr>
<td>90</td>
<td>Data de inspeção de rotina (mês/ano)</td>
<td></td>
</tr>
<tr>
<td>92A</td>
<td>Inspeções a elementos críticos (nº meses)</td>
<td>Indicar o nº de meses entre inspeções ou N se não aplicável.</td>
</tr>
<tr>
<td>93A</td>
<td>Data inspeção a elem. críticos (mês/ano)</td>
<td></td>
</tr>
<tr>
<td>92B</td>
<td>Inspeções subaquáticas (nº meses)</td>
<td>Indicar o nº de meses entre inspeções ou N se não aplicável.</td>
</tr>
<tr>
<td>93B</td>
<td>Data de inspeção subaquática (mês/ano)</td>
<td></td>
</tr>
<tr>
<td>92C</td>
<td>Outras insp. extraordinárias (nº meses)</td>
<td>Indicar o nº de meses entre inspeções ou N se não aplicável.</td>
</tr>
<tr>
<td>93C</td>
<td>Data outra inspeção extraordinária (mês/ano)</td>
<td></td>
</tr>
</tbody>
</table>

Trabalhos

<table>
<thead>
<tr>
<th>Item</th>
<th>Descrição</th>
<th>Observações</th>
</tr>
</thead>
<tbody>
<tr>
<td>75A</td>
<td>Trabalhos a realizar na estrutura</td>
<td>Indicar o tipo de trabalho (ex: substituição ou reforço de um determinado elemento, alargamento, etc) a realizar na estrutura.</td>
</tr>
<tr>
<td>75B</td>
<td>Quem poderá realizar esses trabalhos?</td>
<td>Verificar a capacidade de realização desses trabalhos sem recorrer a contratação de outrem.</td>
</tr>
<tr>
<td>76</td>
<td>Comprimento da zona a melhorar (m)</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>Custo reparação da estrutura</td>
<td>Não incluir custos de reparação da via.</td>
</tr>
<tr>
<td>95</td>
<td>Custo de reparação da via</td>
<td>Não incluir custos de manutenção.</td>
</tr>
<tr>
<td>96</td>
<td>Custo total de reparação</td>
<td>Somatório dos itens 94 e 95 com eventuais custos extraordinários (não incluir manutenção).</td>
</tr>
<tr>
<td>97</td>
<td>Ano de estimativa de custo</td>
<td>Ano de estimativa dos custos indicados nos itens 94, 95 e 96.</td>
</tr>
<tr>
<td>114</td>
<td>Tráfego médio diário previsto (TMD)</td>
<td>Previsão para o tráfego na via principal para um futuro de cerca de 20 anos.</td>
</tr>
<tr>
<td>115</td>
<td>Ano da previsão do TMD anterior</td>
<td></td>
</tr>
</tbody>
</table>

Classificação (IEP)

<table>
<thead>
<tr>
<th>Item</th>
<th>Descrição</th>
<th>Observações</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>Estado conservação (IEP)</td>
<td></td>
</tr>
<tr>
<td>EM</td>
<td>Estado de manutenção (IEP)</td>
<td></td>
</tr>
<tr>
<td>UM</td>
<td>Manutenção - Urgência actuação (IEP)</td>
<td></td>
</tr>
<tr>
<td>UR</td>
<td>Reparação - Urgência actuação (IEP)</td>
<td></td>
</tr>
<tr>
<td>UI</td>
<td>Insp. detalhada - Urgência actuação (IEP)</td>
<td></td>
</tr>
</tbody>
</table>

Entidade

<table>
<thead>
<tr>
<th>Item</th>
<th>Descrição</th>
<th>Observações</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO</td>
<td>Dono de Obra</td>
<td></td>
</tr>
<tr>
<td>PJ</td>
<td>Projectista</td>
<td></td>
</tr>
<tr>
<td>CT</td>
<td>Construtor</td>
<td></td>
</tr>
<tr>
<td>FI</td>
<td>Fiscalização</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Descrição</td>
<td>Observações</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>CE</td>
<td>Classificação Estrutural</td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>Classificação Funcional</td>
<td></td>
</tr>
<tr>
<td>REG</td>
<td>Rácio de Eficiência Global</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>Rácio de Segurança Estrutural</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>Rácio de Funcionalidade</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>Rácio de Utilidade Pública</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>Reduções extraordinárias do REG</td>
<td></td>
</tr>
</tbody>
</table>
ANEXO B

CÓDIGOS DE CLASSIFICAÇÃO

5A - Posicionamento da via principal na ponte

<table>
<thead>
<tr>
<th>5A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Via principal sobre a estrutura</td>
</tr>
<tr>
<td>2</td>
<td>Via única sob a estrutura</td>
</tr>
<tr>
<td>A-Z</td>
<td>Várias vias sob a estrutura</td>
</tr>
</tbody>
</table>

5B - Tipo de via Principal

<table>
<thead>
<tr>
<th>5B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Via Internacional</td>
</tr>
<tr>
<td>2</td>
<td>Via nacional</td>
</tr>
<tr>
<td>3</td>
<td>Via regional</td>
</tr>
<tr>
<td>4</td>
<td>Via destral</td>
</tr>
<tr>
<td>5</td>
<td>Estrada de cidade</td>
</tr>
<tr>
<td>6</td>
<td>Estrada Nacional</td>
</tr>
<tr>
<td>7</td>
<td>Estrada Regional</td>
</tr>
<tr>
<td>8</td>
<td>Outra</td>
</tr>
</tbody>
</table>

5C - Tipo de serviço da via principal

<table>
<thead>
<tr>
<th>5C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Nenhuma das restantes</td>
</tr>
<tr>
<td>1</td>
<td>Via principal</td>
</tr>
<tr>
<td>2</td>
<td>Via alternativa</td>
</tr>
<tr>
<td>3</td>
<td>Desvio</td>
</tr>
<tr>
<td>4</td>
<td>Curto ramal ferroviário</td>
</tr>
<tr>
<td>6</td>
<td>De negócio</td>
</tr>
<tr>
<td>7</td>
<td>Rampa, conector</td>
</tr>
<tr>
<td>8</td>
<td>Rua não classificada e/ou de serviço</td>
</tr>
</tbody>
</table>

5E - Sentido de quilometragem da via principal

<table>
<thead>
<tr>
<th>5E</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Não aplicável</td>
</tr>
<tr>
<td>1</td>
<td>Norte</td>
</tr>
<tr>
<td>2</td>
<td>Este</td>
</tr>
<tr>
<td>3</td>
<td>Sul</td>
</tr>
<tr>
<td>4</td>
<td>Oeste</td>
</tr>
</tbody>
</table>
12 - Pertence à rede de estradas principais?
35 - A largura da estrutura é variável?
104 - Pertence à rede nacional rodoviária?
110 - Pertence à rede principal para pesados?
112 – É, por definição, uma ponte?

<table>
<thead>
<tr>
<th>12</th>
<th>0</th>
<th>Não</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>1</td>
<td>Sim</td>
</tr>
<tr>
<td>104</td>
<td>Desconhecido/Não aplicável</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20 - Portagem

<table>
<thead>
<tr>
<th>20</th>
<th>1</th>
<th>Ponte com portagem</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Numa via com portagem</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Sem portagem</td>
<td></td>
</tr>
</tbody>
</table>

26 - Tipo de utilização da via principal

<table>
<thead>
<tr>
<th>26</th>
<th>1</th>
<th>Rural - via principal inter-regional</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Rural - via principal regional</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Rural - via destral</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Rural - estrada municipal</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Rural - estrada secundária</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Rural - rua local</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Urbana - via principal inter-regional</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Urbana - via principal regional</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Urbana - via destral</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Urbana - estrada municipal</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Urbana - estrada secundária</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Urbana - rua local</td>
<td></td>
</tr>
</tbody>
</table>

31 - Sobregras de projecto

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
<th>Outro ou desconhecido</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ponte de classe I</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ponte de classe II</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Pedonal</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Ferroviária</td>
<td></td>
</tr>
</tbody>
</table>

33 - Separador entre diferentes sentidos

<table>
<thead>
<tr>
<th>33</th>
<th>0</th>
<th>Sem separador central</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Separação física entre vias</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ligeira elevação central mas linearidade entre vias</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Separação central não transponível</td>
<td></td>
</tr>
</tbody>
</table>
Códigos de classificação

36A - Guardas de protecção
36B - Transições guardas de acessos p/ tabuleiro
36C - Guardas dos acessos
36D - Remate das guardas dos acessos

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>36A</td>
<td>0</td>
<td>Em máis condições</td>
</tr>
<tr>
<td>36B</td>
<td>1</td>
<td>Em boas condições</td>
</tr>
<tr>
<td>36C</td>
<td>N</td>
<td>Não aplicável ou não exigível</td>
</tr>
<tr>
<td>36D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

37 - Importância histórica

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Faz parte de registos históricos</td>
</tr>
<tr>
<td>2</td>
<td>Classificável como monumento/lugar histórico nacional</td>
</tr>
<tr>
<td>3</td>
<td>Possivelmente classificável como monumento/lugar histórico nacional</td>
</tr>
<tr>
<td>4</td>
<td>Significado histórico indeterminável à data</td>
</tr>
<tr>
<td>5</td>
<td>Não classificável como monumento/lugar histórico</td>
</tr>
<tr>
<td>D</td>
<td>Desconhecido</td>
</tr>
</tbody>
</table>

38 - Há controlo de navegação?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Sem controlo de navegação</td>
</tr>
<tr>
<td>1</td>
<td>Com controlo de navegação</td>
</tr>
<tr>
<td>N</td>
<td>Não aplicável (sem linha de água))</td>
</tr>
<tr>
<td>D</td>
<td>Desconhecido</td>
</tr>
</tbody>
</table>

41 - Restrições impostas/recomendadas

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Aberta sem restrições</td>
</tr>
<tr>
<td>B</td>
<td>Aberta - limitações recomendáveis mas não implementadas</td>
</tr>
<tr>
<td>D</td>
<td>Aberta - a sua utilização será limitada ou não permitida</td>
</tr>
<tr>
<td>E</td>
<td>Espera intervenção - estrutura temporária para suportar cargas</td>
</tr>
<tr>
<td>G</td>
<td>Nova estrutura ainda não aberta ao tráfego</td>
</tr>
<tr>
<td>K</td>
<td>Fechada a todo o tipo de tráfego</td>
</tr>
<tr>
<td>P</td>
<td>Tráfego restringido em função da carga</td>
</tr>
<tr>
<td>R</td>
<td>Utilização restrita (ex: em função da velocidade ou nº de veículos)</td>
</tr>
</tbody>
</table>

42A - Tipo de serviço sobre a estrutura

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>42A</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Outro</td>
</tr>
<tr>
<td>1</td>
<td>Rodovia</td>
</tr>
<tr>
<td>2</td>
<td>Ferrovia</td>
</tr>
<tr>
<td>3</td>
<td>Ciclovia/Pedovia</td>
</tr>
<tr>
<td>4</td>
<td>Rodovia e ferrovia</td>
</tr>
<tr>
<td>5</td>
<td>Rodovia - pedovia</td>
</tr>
<tr>
<td>6</td>
<td>Passagem superior</td>
</tr>
<tr>
<td>7</td>
<td>Terceiro nível</td>
</tr>
<tr>
<td>8</td>
<td>Quarto nível</td>
</tr>
<tr>
<td>9</td>
<td>Edifício ou praça</td>
</tr>
</tbody>
</table>
Anexo B

42B - Tipo de serviço sob a estrutura

<table>
<thead>
<tr>
<th>Número</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Outro</td>
</tr>
<tr>
<td>1</td>
<td>Rodovia (com ou sem circulação pedonal)</td>
</tr>
<tr>
<td>2</td>
<td>Ferrovia</td>
</tr>
<tr>
<td>3</td>
<td>Cidovia/Pedovia</td>
</tr>
<tr>
<td>4</td>
<td>Rodovia e ferrovia</td>
</tr>
<tr>
<td>5</td>
<td>Linha de água</td>
</tr>
<tr>
<td>6</td>
<td>Rodovia - linha de água</td>
</tr>
<tr>
<td>7</td>
<td>Ferrovia - linha de água</td>
</tr>
<tr>
<td>8</td>
<td>Rodovia - Ferrovia - Linha de Água</td>
</tr>
<tr>
<td>9</td>
<td>Estuário</td>
</tr>
</tbody>
</table>

43A - Tipo de material (acessos)

44A - Tipo de estrutura do tabuleiro

<table>
<thead>
<tr>
<th>Número</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Outro</td>
</tr>
<tr>
<td>1</td>
<td>Betão</td>
</tr>
<tr>
<td>2</td>
<td>Betão contínuo</td>
</tr>
<tr>
<td>3</td>
<td>Aço</td>
</tr>
<tr>
<td>4</td>
<td>Aço contínuo</td>
</tr>
<tr>
<td>5</td>
<td>Betão pré-esforçado ou pós-tensionado</td>
</tr>
<tr>
<td>6</td>
<td>Betão contínuo pré-esforçado ou pós-tensionado</td>
</tr>
<tr>
<td>7</td>
<td>Madeira</td>
</tr>
<tr>
<td>8</td>
<td>Alvenaria</td>
</tr>
<tr>
<td>9</td>
<td>Alumínio, ferro forjado, ferro fundido</td>
</tr>
</tbody>
</table>
Códigos de classificação

43B - Tipo de concepção/construção (zona principal)

<table>
<thead>
<tr>
<th>Código</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Outro</td>
</tr>
<tr>
<td>1</td>
<td>Ponte com tabuleiro e com funcionamento de laje</td>
</tr>
<tr>
<td>2</td>
<td>Ponte com sistema de vigas paralelas</td>
</tr>
<tr>
<td>3</td>
<td>Ponte com conjunto de vigas principais e secundárias sob o pavimento</td>
</tr>
<tr>
<td>4</td>
<td>Ponte com viga em "T"</td>
</tr>
<tr>
<td>5</td>
<td>Ponte com múltiplas vigas em caixão</td>
</tr>
<tr>
<td>6</td>
<td>Ponte de viga única em caixão</td>
</tr>
<tr>
<td>7</td>
<td>Ponte em pórtico</td>
</tr>
<tr>
<td>8</td>
<td>Ponte ortogonal</td>
</tr>
<tr>
<td>9</td>
<td>Ponte com asna sob o tabuleiro</td>
</tr>
<tr>
<td>10</td>
<td>Ponte com asna sobre o tabuleiro</td>
</tr>
<tr>
<td>11</td>
<td>Ponte com arco sob o tabuleiro</td>
</tr>
<tr>
<td>12</td>
<td>Ponte com arco sobre o tabuleiro</td>
</tr>
<tr>
<td>13</td>
<td>Ponte suspensa</td>
</tr>
<tr>
<td>14</td>
<td>Ponte aterrada</td>
</tr>
<tr>
<td>15</td>
<td>Ponte móvel - levadiça</td>
</tr>
<tr>
<td>16</td>
<td>Ponte móvel - basculante</td>
</tr>
<tr>
<td>17</td>
<td>Ponte móvel - rotativa</td>
</tr>
<tr>
<td>18</td>
<td>Túnel</td>
</tr>
<tr>
<td>19</td>
<td>Conduta</td>
</tr>
<tr>
<td>20</td>
<td>Mistura de tipos</td>
</tr>
<tr>
<td>21</td>
<td>Ponte com viga em caixão segmentada</td>
</tr>
<tr>
<td>22</td>
<td>Viga-canal</td>
</tr>
</tbody>
</table>

54A - Tipo de via sob a estrutura

<table>
<thead>
<tr>
<th>Código</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Rodovia inferior</td>
</tr>
<tr>
<td>R</td>
<td>Ferrovia inferior</td>
</tr>
<tr>
<td>N</td>
<td>Nem rodovia, nem ferrovia</td>
</tr>
</tbody>
</table>

58 - Estado do tabuleiro

<table>
<thead>
<tr>
<th>Código</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Rotura</td>
</tr>
<tr>
<td>1</td>
<td>Rotura iminente</td>
</tr>
<tr>
<td>2</td>
<td>Critico</td>
</tr>
<tr>
<td>3</td>
<td>Grave</td>
</tr>
<tr>
<td>4</td>
<td>Insuficiente</td>
</tr>
<tr>
<td>5</td>
<td>Suficiente</td>
</tr>
<tr>
<td>6</td>
<td>Satisfatório</td>
</tr>
<tr>
<td>7</td>
<td>Bom</td>
</tr>
<tr>
<td>8</td>
<td>Muito Bom</td>
</tr>
<tr>
<td>9</td>
<td>Excelente</td>
</tr>
<tr>
<td>N</td>
<td>Não aplicável</td>
</tr>
</tbody>
</table>

B.5
Anexo B

61 - Capacidade de escoamento da água

<table>
<thead>
<tr>
<th>Nível</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Colapso devido ao canal de água - necessidade de substituição</td>
</tr>
<tr>
<td>1</td>
<td>Colapso devido ao canal de água - necessidade de intervenção</td>
</tr>
<tr>
<td>2</td>
<td>O caudal aumentou - ponte está próxima de um nível de colapso</td>
</tr>
<tr>
<td>3</td>
<td>Proteção das margens destruídas</td>
</tr>
<tr>
<td>4</td>
<td>Proteção das margens quase inexistente</td>
</tr>
<tr>
<td>5</td>
<td>Proteção das margens com erosão</td>
</tr>
<tr>
<td>6</td>
<td>Margens a deslizar/derrubar</td>
</tr>
<tr>
<td>7</td>
<td>Necessidade de proteção das margens</td>
</tr>
<tr>
<td>8</td>
<td>Margens protegidas ou com vegetação</td>
</tr>
<tr>
<td>9</td>
<td>Sem deficiências</td>
</tr>
<tr>
<td>N</td>
<td>Não aplicável</td>
</tr>
</tbody>
</table>

62 - Estado da conduta submersa

<table>
<thead>
<tr>
<th>Nível</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ponte fechada - substituição necessária</td>
</tr>
<tr>
<td>1</td>
<td>Ponte fechada - necessário implementar acções correctivas</td>
</tr>
<tr>
<td>2</td>
<td>Rotura da secção da conduta</td>
</tr>
<tr>
<td>3</td>
<td>Danos muito graves</td>
</tr>
<tr>
<td>4</td>
<td>Danos graves</td>
</tr>
<tr>
<td>5</td>
<td>Deterioração/Desintegração moderada</td>
</tr>
<tr>
<td>6</td>
<td>Deterioração/Desintegração inicial (perda de simetria de forma, etc)</td>
</tr>
<tr>
<td>7</td>
<td>Algumas deficiências (fendas de retração, corrosão superficial,etc)</td>
</tr>
<tr>
<td>8</td>
<td>Deficiências ligeiras que não afectam o estado da conduta</td>
</tr>
<tr>
<td>9</td>
<td>Sem deficiências</td>
</tr>
<tr>
<td>N</td>
<td>Não aplicável</td>
</tr>
</tbody>
</table>

63 - Método de determinação de ICF

65 - Método de determinação de ICC

<table>
<thead>
<tr>
<th>Nível</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Factor de carga</td>
</tr>
<tr>
<td>2</td>
<td>Esforços admissíveis</td>
</tr>
<tr>
<td>3</td>
<td>Factor de carga e resistência</td>
</tr>
<tr>
<td>4</td>
<td>Teste de carga</td>
</tr>
<tr>
<td>5</td>
<td>Nenhuma análise efectuada</td>
</tr>
</tbody>
</table>
67 - Avaliação estrutural
68 - Avaliação da geometria do tabuleiro
69 - Avaliação das limitações espaciais
71 - Resposta face ao canal de água
72 - Alinhamento dos acessos

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ponte fechada</td>
</tr>
<tr>
<td>1</td>
<td>Não usado</td>
</tr>
<tr>
<td>2</td>
<td>Substituição urgente</td>
</tr>
<tr>
<td>67</td>
<td>Acções correctivas urgentes</td>
</tr>
<tr>
<td>68</td>
<td>Limite mínimo tolerável para manter como está</td>
</tr>
<tr>
<td>69</td>
<td>Melhor que mínimo exigível para tolerar que não seja destruído</td>
</tr>
<tr>
<td>71</td>
<td>Correspondente ao critério mínimo actual</td>
</tr>
<tr>
<td>72</td>
<td>Melhor que o critério mínimo actual</td>
</tr>
<tr>
<td>8</td>
<td>Correspondente aos critérios desejáveis</td>
</tr>
<tr>
<td>9</td>
<td>Superior aos critérios desejáveis</td>
</tr>
<tr>
<td>N</td>
<td>Não aplicável</td>
</tr>
</tbody>
</table>

70 – Necessidade de restrição de cargas

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ICF mais de 39,9% abaixo das cargas regulam. -> restrição de cargas</td>
</tr>
<tr>
<td>1</td>
<td>ICF 30 a 39,9% abaixo das cargas regulam. -> restrição de cargas</td>
</tr>
<tr>
<td>2</td>
<td>ICF 20 a 29,9% abaixo das cargas regulam. -> restrição de cargas</td>
</tr>
<tr>
<td>3</td>
<td>ICF 10 a 19,9% abaixo das cargas regulam. -> restrição de cargas</td>
</tr>
<tr>
<td>4</td>
<td>ICF 0,1 a 9,9% abaixo das cargas regulam. -> restrição de cargas</td>
</tr>
<tr>
<td>5</td>
<td>ICF ao nível das cargas regulamentares - restrição não necessária</td>
</tr>
</tbody>
</table>

100 - Importância estratégica

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Não é estratégica</td>
</tr>
<tr>
<td>1</td>
<td>Integra via estratégica principal</td>
</tr>
<tr>
<td>2</td>
<td>Integra via estratégica secundária</td>
</tr>
<tr>
<td>3</td>
<td>Ligação a via estratégica</td>
</tr>
</tbody>
</table>

101 - Existência de estrutura paralela

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Com trânsito no sentido crescente de quilometragem da via principal</td>
</tr>
<tr>
<td>L</td>
<td>Com trânsito no sentido decrescente de quilometragem da via principal</td>
</tr>
<tr>
<td>N</td>
<td>Não há estrutura paralela</td>
</tr>
</tbody>
</table>

102 – Direcção do tráfico rodoviário

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Não sujeito a tráfico rodoviário</td>
</tr>
<tr>
<td>1</td>
<td>Um sentido de circulação</td>
</tr>
<tr>
<td>2</td>
<td>Dois sentidos de circulação</td>
</tr>
<tr>
<td>3</td>
<td>Uma só faixa de rodagem com dois sentidos</td>
</tr>
</tbody>
</table>
Anexo B

107 - Tipo de estrutura do tabuleiro

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Betão in situ</td>
</tr>
<tr>
<td>2</td>
<td>Painéis de betão pré-fabricado</td>
</tr>
<tr>
<td>3</td>
<td>Chapa xadrez aberta</td>
</tr>
<tr>
<td>4</td>
<td>Chapa xadrez fechada</td>
</tr>
<tr>
<td>5</td>
<td>Placas de aço</td>
</tr>
<tr>
<td>6</td>
<td>Chapa ondulada</td>
</tr>
<tr>
<td>7</td>
<td>Alumínio</td>
</tr>
<tr>
<td>8</td>
<td>Madeira</td>
</tr>
<tr>
<td>9</td>
<td>Outro</td>
</tr>
<tr>
<td>N</td>
<td>Não aplicável/Desconhecida</td>
</tr>
</tbody>
</table>

108A - Tabuleiro – tipo de camada de desgaste

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Nenhuma</td>
</tr>
<tr>
<td>1</td>
<td>Betão monólitico</td>
</tr>
<tr>
<td>2</td>
<td>Betão integral</td>
</tr>
<tr>
<td>3</td>
<td>Aditivo de latex no betão</td>
</tr>
<tr>
<td>4</td>
<td>Betão fluido</td>
</tr>
<tr>
<td>5</td>
<td>Recobrimento de epoxy</td>
</tr>
<tr>
<td>6</td>
<td>Betuminoso</td>
</tr>
<tr>
<td>7</td>
<td>Madeira</td>
</tr>
<tr>
<td>8</td>
<td>Gravilha</td>
</tr>
<tr>
<td>9</td>
<td>Outra</td>
</tr>
<tr>
<td>N</td>
<td>Não aplicável</td>
</tr>
</tbody>
</table>

108B - Tabuleiro - tipo de membrana

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Nenhuma</td>
</tr>
<tr>
<td>1</td>
<td>Montada in situ</td>
</tr>
<tr>
<td>2</td>
<td>Fabrico industrial</td>
</tr>
<tr>
<td>3</td>
<td>Epoxy</td>
</tr>
<tr>
<td>8</td>
<td>Desconhecida</td>
</tr>
<tr>
<td>9</td>
<td>Outra</td>
</tr>
<tr>
<td>N</td>
<td>Não aplicável</td>
</tr>
</tbody>
</table>

108C - Tabuleiro - protecção superficial

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Nenhuma</td>
</tr>
<tr>
<td>1</td>
<td>Reforço com epoxy</td>
</tr>
<tr>
<td>2</td>
<td>Reforçada</td>
</tr>
<tr>
<td>3</td>
<td>Outra cobertura de impermeabilização/reforço</td>
</tr>
<tr>
<td>4</td>
<td>Proteção catódica</td>
</tr>
<tr>
<td>6</td>
<td>Polímeros integrados</td>
</tr>
<tr>
<td>7</td>
<td>Selagem interna</td>
</tr>
<tr>
<td>8</td>
<td>Desconhecida</td>
</tr>
<tr>
<td>9</td>
<td>Outra</td>
</tr>
<tr>
<td>N</td>
<td>Não aplicável</td>
</tr>
</tbody>
</table>
111 - Protecção dos pilares/encontros

<table>
<thead>
<tr>
<th>N.º</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Protecção para navegação não necessária</td>
</tr>
<tr>
<td>2</td>
<td>Existente e em funcionamento</td>
</tr>
<tr>
<td>3</td>
<td>Existente no local mas deterioraça</td>
</tr>
<tr>
<td>4</td>
<td>Existente mas deve ser reavaliada/redimensionada</td>
</tr>
<tr>
<td>5</td>
<td>Não existente mas é necessária a reavaliação desse parâmetro</td>
</tr>
<tr>
<td>N</td>
<td>Não aplicável</td>
</tr>
</tbody>
</table>

113 - Avaliação das fundações (erosão)

<table>
<thead>
<tr>
<th>N.º</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A ponte colapsou</td>
</tr>
<tr>
<td>1</td>
<td>Rotura iminente das fundações</td>
</tr>
<tr>
<td>2</td>
<td>Erosão das fundações - necessário agir no imediato!</td>
</tr>
<tr>
<td>3</td>
<td>Estado crítico - Fundações instáveis para a erosão existente</td>
</tr>
<tr>
<td>4</td>
<td>Fundações expostas - protecção necessária</td>
</tr>
<tr>
<td>5</td>
<td>Fundações (calculadas para a erosão) semi-expostas</td>
</tr>
<tr>
<td>6</td>
<td>Não foi avaliado o potencial de erosão</td>
</tr>
<tr>
<td>7</td>
<td>Já foram tomadas medidas de correção de problemas de erosão</td>
</tr>
<tr>
<td>8</td>
<td>Fundações estáveis para a erosão prevista</td>
</tr>
<tr>
<td>9</td>
<td>Fundações em terra seca excepto em marés-altas</td>
</tr>
<tr>
<td>N</td>
<td>Não está sobre linha de água</td>
</tr>
<tr>
<td>T</td>
<td>Sujeta a marés muito altas em que a erosão não foi considerada</td>
</tr>
<tr>
<td>U</td>
<td>Fundação desconhecida - risco de erosão não pode ser avaliado</td>
</tr>
</tbody>
</table>

EC - Estado conservação (IEP)

EM - Estado de manutenção (IEP)

UM - Manutenção - Urgência actuação (IEP)

UR - Reparação - Urgência actuação (IEP)

UI - Inspeção detalhada - Urgência actuação (IEP)

<table>
<thead>
<tr>
<th>EC</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Óptimo</td>
</tr>
<tr>
<td>1</td>
<td>Bom</td>
</tr>
<tr>
<td>2</td>
<td>Sofrível</td>
</tr>
<tr>
<td>3</td>
<td>Mau</td>
</tr>
<tr>
<td>4</td>
<td>Mau a muito mau</td>
</tr>
<tr>
<td>5</td>
<td>Extremamente mau ou perigoso para a segurança dos utentes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EM</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Não são necessários trabalhos de manutenção</td>
</tr>
<tr>
<td>M</td>
<td>São necessários trabalhos de manutenção</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UM</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Interdição total ao trânsito</td>
</tr>
<tr>
<td>B</td>
<td>Proibição a pesados</td>
</tr>
<tr>
<td>C</td>
<td>Limitação de velocidade</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UR</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Actuação imediata</td>
</tr>
<tr>
<td>2</td>
<td>Actuação a médio prazo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UI</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Actuação imediata</td>
</tr>
<tr>
<td>2</td>
<td>Actuação a médio/longo prazo</td>
</tr>
</tbody>
</table>
ANEXO C

LISTAGENS DO CÓDIGO DO REGpontes

Sub Pesquisa_Codigo_Nome()

'Ler o número e o código da ponte procurada

Sheets("BaseDados").Select
ncodigo = Cells(11, 9).Value
nponte = Cells(12, 9).Value
col_ponte = 0
nrepete = 0

'Calcular o numero de pontes com dados inseridos em BaseDados

If ncodigo = "" Then ' pesquisa só por n

ult_col = 11
Do Until Cells(12, ult_col).Text = "fim"

If Cells(12, ult_col).Value = nponte Then
 col_ponte = ult_col
 nrepete = nrepete + 1
End If

ult_col = ult_col + 1
Loop

Else
 If nponte = "" Then ' pesquisa só por código

 ult_col = 11
 Do Until Cells(11, ult_col).Text = "fim"

 If Cells(11, ult_col).Value = ncodigo Then
 col_ponte = ult_col
 nrepete = nrepete + 1
 End If

 ult_col = ult_col + 1
 Loop

Else
 ' pesquisa por código e n

 ult_col = 11
 Do Until Cells(12, ult_col).Text = "fim"

 If Cells(12, ult_col).Value = nponte And Cells(11, ult_col).Value = ncodigo Then
 col_ponte = ult_col
 nrepete = nrepete + 1
 End If

End If
ult_col = ult_col + 1
Loop
End If
End If

If col_ponte > 0 Then
 k = 1
 Do While k < 200
 Cells(k, 9) = Sheets("BaseDados").Cells(k, col_ponte)
 k = k + 1
 Loop
End If

Cells(10, 9) = ""
Cells(10, 10) = ""

'Informar o utilizador caso a ponte procurada não exista
If col_ponte = 0 Then
 Cells(10, 10) = "NÃO CONSTA DA BASE DE DADOS!"
End If

'Informar quando há mais do que um registo com esse código e número
If nrepete > 1 Then
 Cells(10, 9) = nrepete
 Cells(10, 10) = "REGISTOS NA BASE DE DADOS!"
End If
End If

'explicar o significado dos itens (quadro com códigos de classificação)

k = 24
Do While k <= 29
 Cells(k, 10) = Cells(k, 11)
 k = k + 1
Loop

k = 40
Do While k <= 47
 Cells(k, 10) = Cells(k, 11)
 k = k + 1
Loop

Cells(51, 10) = Cells(51, 11)
Cells(52, 10) = Cells(52, 11)
Cells(67, 10) = Cells(67, 11)
Cells(68, 10) = Cells(68, 11)
Cells(76, 10) = Cells(76, 11)
Cells(77, 10) = Cells(77, 11)

k = 79
Do While k <= 84
 Cells(k, 10) = Cells(k, 11)
 k = k + 1
Loop

Cells(86, 10) = Cells(86, 11)
Cells(88, 10) = Cells(88, 11)
Cells(92, 10) = Cells(92, 11)
Cells(96, 10) = Cells(96, 11)

k = 98
Do While k <= 102
 Cells(k, 10) = Cells(k, 11)
 k = k + 1
Loop

Cells(104, 10) = Cells(104, 11)
Cells(106, 10) = Cells(106, 11)
Cells(108, 10) = Cells(108, 11)
Cells(109, 10) = Cells(109, 11)
Cells(110, 10) = Cells(110, 11)

k = 112
Do While k <= 121
 Cells(k, 10) = Cells(k, 11)
 k = k + 1
Loop

k = 142
Do While k <= 146
 Cells(k, 10) = Cells(k, 11)
 k = k + 1
Loop

'calculo dos rácios do registo corrente
ult_col = 9

'copiar os dados necessários para o cálculo de "BaseDados" para "MemCalc"
Cells(3, ult_col).Select
Sheets("MemCalc").Cells(8, 10) = Sheets("BaseDados").Cells(105, ult_col)
Sheets("MemCalc").Cells(9, 10) = Sheets("BaseDados").Cells(99, ult_col)
Sheets("MemCalc").Cells(10, 10) = Sheets("BaseDados").Cells(100, ult_col)
Sheets("MemCalc").Cells(11, 10) = Sheets("BaseDados").Cells(102, ult_col)
Sheets("MemCalc").Cells(12, 10) = Sheets("BaseDados").Cells(98, ult_col)
Sheets("MemCalc").Cells(13, 10) = Sheets("BaseDados").Cells(112, ult_col)
Sheets("MemCalc").Cells(14, 10) = Sheets("BaseDados").Cells(113, ult_col)
Sheets("MemCalc").Cells(15, 10) = Sheets("BaseDados").Cells(114, ult_col)
Sheets("MemCalc").Cells(16, 10) = Sheets("BaseDados").Cells(115, ult_col)
Sheets("MemCalc").Cells(17, 10) = Sheets("BaseDados").Cells(116, ult_col)
Sheets("MemCalc").Cells(18, 10) = Sheets("BaseDados").Cells(53, ult_col)
Sheets("MemCalc").Cells(19, 10) = Sheets("BaseDados").Cells(56, ult_col)
Sheets("MemCalc").Cells(20, 10) = Sheets("BaseDados").Cells(64, ult_col)
Sheets("MemCalc").Cells(21, 10) = Sheets("BaseDados").Cells(66, ult_col)
Sheets("MemCalc").Cells(22, 10) = Sheets("BaseDados").Cells(41, ult_col)
Sheets("MemCalc").Cells(23, 10) = Sheets("BaseDados").Cells(80, ult_col)
Sheets("MemCalc").Cells(24, 10) = Sheets("BaseDados").Cells(74, ult_col)
Sheets("MemCalc").Cells(25, 10) = Sheets("BaseDados").Cells(55, ult_col)
Sheets("MemCalc").Cells(26, 10) = Sheets("BaseDados").Cells(118, ult_col)
Sheets("MemCalc").Cells(27, 10) = Sheets("BaseDados").Cells(119, ult_col)
Sheets("MemCalc").Cells(28, 10) = Sheets("BaseDados").Cells(120, ult_col)
Sheets("MemCalc").Cells(29, 10) = Sheets("BaseDados").Cells(121, ult_col)

Sheets("MemCalc").Cells(198, 10) = Sheets("BaseDados").Cells(52, ult_col).Value
Sheets("MemCalc").Cells(199, 10) = Sheets("BaseDados").Cells(61, ult_col).Value
Sheets("MemCalc").Cells(200, 10) = Sheets("BaseDados").Cells(49, ult_col).Value
Sheets("MemCalc").Cells(201, 10) = Sheets("BaseDados").Cells(50, ult_col).Value

'devolver os resultados do cálculo efectuado em "MemCalc"

Call Verifica_dados(erro, erroce, errocf)

Sheets("BaseDados").Select

If erro = "FitDad" Then
Anexo C

Cells(3, ult_col) = erro
Cells(5, ult_col) = ""
Cells(6, ult_col) = ""
Cells(7, ult_col) = ""
Cells(8, ult_col) = ""
End If

If erro = "ErrAd" Then
Cells(3, ult_col) = erro
Cells(5, ult_col) = ""
Cells(6, ult_col) = ""
Cells(7, ult_col) = ""
Cells(8, ult_col) = ""
End If

If erro = 0 Then
Cells(3, ult_col) = Sheets("MemCalc").Cells(32, 10)
Cells(5, ult_col) = Sheets("MemCalc").Cells(34, 10)
Cells(6, ult_col) = Sheets("MemCalc").Cells(36, 10)
Cells(7, ult_col) = Sheets("MemCalc").Cells(38, 10)
Cells(8, ult_col) = Sheets("MemCalc").Cells(40, 10)
End If

If erroce = "ErrDad" Then
Cells(1, ult_col) = erroce
Else
If Sheets("MemCalc").Cells(226, 11) = "ESD" Then Cells(1, ult_col) = "ESD"
End If

If errocf = "ErrDad" Then
Cells(2, ult_col) = errocf
Else
If Sheets("MemCalc").Cells(245, 11) = "FOB" Then Cells(2, ult_col) = "FOB"
End If

Cells(11, 9).Select

End Sub

Sub Calcula_todos_raciais()

'calcula os rácios do registo corrente e de todos os registos da base de dados
Sheets("BaseDados").Select

ult_col = 8
Do Until Sheets("BaseDados").Cells(12, ult_col).Text = "fim"

'copiar os dados necessários para o cálculo de "BaseDados" para "MemCalc"
Cells(3, ult_col).Select
Sheets("MemCalc").Cells(8, 10) = Sheets("BaseDados").Cells(105, ult_col)
Sheets("MemCalc").Cells(9, 10) = Sheets("BaseDados").Cells(99, ult_col)
Sheets("MemCalc").Cells(10, 10) = Sheets("BaseDados").Cells(100, ult_col)
Sheets("MemCalc").Cells(11, 10) = Sheets("BaseDados").Cells(102, ult_col)
Sheets("MemCalc").Cells(12, 10) = Sheets("BaseDados").Cells(98, ult_col)
Sheets("MemCalc").Cells(13, 10) = Sheets("BaseDados").Cells(112, ult_col)
Sheets("MemCalc").Cells(14, 10) = Sheets("BaseDados").Cells(113, ult_col)
Sheets("MemCalc").Cells(15, 10) = Sheets("BaseDados").Cells(114, ult_col)
Sheets("MemCalc").Cells(16, 10) = Sheets("BaseDados").Cells(115, ult_col)
Sheets("MemCalc").Cells(17, 10) = Sheets("BaseDados").Cells(116, ult_col)
Sheets("MemCalc").Cells(18, 10) = Sheets("BaseDados").Cells(53, ult_col)
Sheets("MemCalc").Cells(19, 10) = Sheets("BaseDados").Cells(56, ult_col)

C.4
Sub Verifica_dados(err, erroce, errocf)

err = 0
erroce = 0
errocf = 0
'erro de cálculo do REG
k = 32
Do While k <= 40
 If Sheets("MemCalc").Cells(k, 3) = "ErCalc" Then erro = "ErCalc"
k = k + 1
Loop

'erro por falta de dados para o REG (que substitui o erro de cálculo)
k = 8
Do While k <= 29
 If Sheets("MemCalc").Cells(k, 3).Text = "FltDad" Then erro = "FltDad"
k = k + 1
Loop

'erro por falta de dados para a classificação estrutural
k = 9
Do While k <= 16
 If Sheets("MemCalc").Cells(k, 3).Text = "FltDad" Then erroce = "FltDad"
k = k + 1
 If k = 14 Then k = 16
Loop

k = 198
Do While k <= 201
 If Sheets("MemCalc").Cells(k, 3).Text = "FltDad" Then erroce = "FltDad"
k = k + 1
Loop

'erro por falta de dados para a classificação funcional
k = 13
Do While k <= 17
 If Sheets("MemCalc").Cells(k, 3).Text = "FltDad" Then errocf = "FltDad"
k = k + 1
Loop

k = 198
Do While k <= 201
 If Sheets("MemCalc").Cells(k, 3).Text = "FltDad" Then errocf = "FltDad"
k = k + 1
Loop

End Sub

Sub GuardarAlterações()
' Ler o número e o código da ponte procurada
ncodigo = Cells(11, 9).Value
nponte = Cells(12, 9).Value
col_ponte = 0
nrepete = 0

' Procurar a ponte selecionada
ult_col = 11
Do Until Cells(12, ult_col).Text = "fim"
 If Cells(12, ult_col).Value = nponte And Cells(11, ult_col).Value = ncodigo Then
 col_ponte = ult_col
 nrepete = nrepete + 1
 End If
 ult_col = ult_col + 1
Loop

C.6
Cells(10, 9) = ""
Cells(10, 10) = ""

'Informar o utilizador caso a ponte procurada não exista
ou caso haja mais do que um registo com esse nome e código
If col_ponte = 0 Then
 Cells(10, 10) = "ESTE REGISTO NÃO CONSTAVA DA BASE DE DADOS!"
 GoTo 200
End If

If nrepete > 1 Then
 Cells(10, 9) = nrepete
 Cells(10, 10) = "REGISTROS COM ESTE NOME E CÓDIGO NA BASE DE DADOS!"
 GoTo 200
End If

If nrepete = 1 Then data = Cells(124, col_ponte)

'Guardar na base de dados substituindo o registo inicial
caso a data e os códigos não tenham sido alterados
If Cells(124, 9) = data And Cells(11, 9) = ncodigo And Cells(12, 9) = nponte Then
 k = 1
 Do While k < 202
 Cells(k, col_ponte) = Cells(k, 9)
 Cells(k, col_ponte).Select
 k = k + 1
 Loop
Else

Columns("L:L").Select
Selection.Insert Shift:=xlToRight
 k = 1
 Do While k <= 202
 Cells(k, 12) = Cells(k, 9).Text
 k = k + 1
 Loop
End If

200 Cells(13, 9).Select
Cells(13, 9).Select

End Sub

Sub Relatório_REG_min_max()

Sheets("Relatório").Cells(10, 8) = "
(escreva aqui a designação deste relatório)"

'Leer o intervalo de REG das pontes procuradas
Sheets("Relatório").Select
regmin = Cells(8, 11).Value
regmax = Cells(8, 14).Value
nregistos = 0

If Cells(8, 11) = "" Then regmin = regmax
If Cells(8, 14) = "" Then regmax = regmin
If regmin > regmax Then
 regmin = Cells(8, 14).Value
 regmax = Cells(8, 11).Value
End If

'Definir início e fim da tabela Relatório e da base de dados
lin_in_tab = 11
lin_fin_tab = 212
lin_in_base = 1
lin_fin_base = 202
col_in_tab = 11
col_fin_tab = 150
col_in_base = 12
col_fin_base = fim' o fim da base de dados é definido pela escrita de fim na 1ª linha da sua última coluna

'Apagar a tabela anterior
Range("h1:gz250").Select
Selection.ClearContents

'E escrever a tabela Relatório
col_base = col_in_base
col_tab = col_in_tab
lin_tab = lin_in_tab
Do Until Sheets("BaseDados").Cells(1, col_base).Text = "fim"

 If Sheets("BaseDados").Cells(3, col_base) <> "#VALUE!" And
 Sheets("BaseDados").Cells(3, col_base) = regmax And Sheets("BaseDados").Cells(3, col_base) = regmin Then
 nregistos = nregistos + 1

 lin_base = lin_in_base
 Do While lin_base <= lin_fin_base

 If Cells(lin_base, 7) = True Then
 Cells(lin_tab, 8) = Cells(lin_base, 3)
 Cells(lin_tab, 9) = Sheets("BaseDados").Cells(lin_base, 5)
 Cells(lin_tab, 10) = Sheets("BaseDados").Cells(lin_base, 6)
 Cells(lin_tab, col_tab) = Sheets("BaseDados").Cells(lin_base, col_base)

 lin_tab = lin_tab + 1
 End If

 End If

 End If

Loop

 col_tab = col_tab + 1
End If

col_base = col_base + 1

Loop

'Informar o utilizador caso a ponte procurada não exista
If nregistos = 0 Then
 Cells(lin_in_tab, col_in_tab - 2) = "NENHUM REGISTO NA BASE DE DADOS!"
End If

Sheets("Relatório").Cells(9, 11).Select
End Sub
Sub Adicionar_a_BaseDados()

Columns("1:13").Select
Selection.Insert Shift:=xlToRight

k = 1
Do While k <= 202
 Cells(k, 12) = Cells(k, 8).Text
 k = k + 1
Loop

Cells(11, 8).Select
End Sub

Sub Calcular_racivos_do_corrente()

' calcula os rácios do registo corrente
Sheets("BaseDados").Select

ult_col = 8

' copiar os dados necessários para o cálculo de "BaseDados" para "MemCalc"
Sheets("MemCalc").Cells(8, 10) = Cells(105, ult_col)
Sheets("MemCalc").Cells(9, 10) = Cells(99, ult_col)
Sheets("MemCalc").Cells(10, 10) = Cells(100, ult_col)
Sheets("MemCalc").Cells(11, 10) = Cells(102, ult_col)
Sheets("MemCalc").Cells(12, 10) = Cells(98, ult_col)
Sheets("MemCalc").Cells(13, 10) = Cells(112, ult_col)
Sheets("MemCalc").Cells(14, 10) = Cells(113, ult_col)
Sheets("MemCalc").Cells(15, 10) = Cells(114, ult_col)
Sheets("MemCalc").Cells(16, 10) = Cells(115, ult_col)
Sheets("MemCalc").Cells(17, 10) = Cells(116, ult_col)
Sheets("MemCalc").Cells(18, 10) = Cells(116, ult_col)
Sheets("MemCalc").Cells(19, 10) = Cells(56, ult_col)
Sheets("MemCalc").Cells(20, 10) = Cells(64, ult_col)
Sheets("MemCalc").Cells(21, 10) = Cells(66, ult_col)
Sheets("MemCalc").Cells(22, 10) = Cells(41, ult_col)
Sheets("MemCalc").Cells(23, 10) = Cells(80, ult_col)
Sheets("MemCalc").Cells(24, 10) = Cells(74, ult_col)
Sheets("MemCalc").Cells(25, 10) = Cells(55, ult_col)
Sheets("MemCalc").Cells(26, 10) = Cells(118, ult_col)
Sheets("MemCalc").Cells(27, 10) = Cells(119, ult_col)
Sheets("MemCalc").Cells(28, 10) = Cells(120, ult_col)
Sheets("MemCalc").Cells(29, 10) = Cells(121, ult_col)
Sheets("MemCalc").Cells(198, 10) = Cells(52, ult_col).Value
Sheets("MemCalc").Cells(199, 10) = Cells(61, ult_col).Value
Sheets("MemCalc").Cells(200, 10) = Cells(49, ult_col).Value
Sheets("MemCalc").Cells(201, 10) = Cells(50, ult_col).Value

' devolver os resultados do cálculo efetuado em "MemCalc" e avisar os erros

Call Verifica_dados(erro, erroe, errocf)

Sheets("BaseDados").Select

If erro = "FItDad" Then
 Cells(3, ult_col) = erro
 Cells(6, ult_col) = ""
 Cells(7, ult_col) = ""
 Cells(8, ult_col) = ""
End If

If erro = "ErrDad" Then
 Cells(3, ult_col) = erro
Sub Preparar_pesquisa()

' mostrar só a coluna de pesquisa
Columns("E:J").Select
Selection.EntireColumn.Hidden = False
Columns("H:K").Select
Selection.EntireColumn.Hidden = True

' limpar campos da coluna i
Columns("I:12").Select
Selection.ClearContents

With Selection
 .HorizontalAlignment = xlGeneral
 .VerticalAlignment = xlBottom
 .WrapText = False
 .Orientation = 0
 .AddIndent = False
 .IndentLevel = 0
 .ShrinkToFit = False
 .ReadingOrder = xlContext
 .MergeCells = False
End With
With Selection
 .HorizontalAlignment = xlLeft
 .VerticalAlignment = xlBottom
 .WrapText = False
 .Orientation = 0
 .AddIndent = False
 .IndentLevel = 0
 .ShrinkToFit = False
End With
End Sub
.ReadingOrder = xlContext
.MergeCells = False
End With
.Range("J8").Select

Cells(11, 9) = "Escreva aqui o código (8A) da obra"
Cells(12, 9) = "Escreva aqui o número (8B) da obra e clique em PROCURAR"

Cells(11, 9).Select

Sub Relatório_cod_n_lista()

Sheets("Relatório").Cells(10, 8) = "(escreva aqui a designação deste relatório)"

'Ler a via/km das pontes procuradas
Sheets("Relatório").Select
cod = Cells(1, 11).Value
nmin = Cells(2, 11).Value
nmax = Cells(2, 14).Value
nregistos = 0

If Cells(2, 11) = "" Then nmin = nmax
If Cells(2, 14) = "" Then nmax = nmin

If nmin > nmax Then
 nmin = Cells(2, 14).Value
 nmax = Cells(2, 11).Value
End If

'Definir início e fim da tabela Relatório e da base de dados
lin_in_tab = 11
lin_fim_tab = 220
lin_in_base = 1
lin_fim_base = 202
col_in_tab = 11
col_fim_tab = 300
col_in_base = 12
col_fim_base = fim' o fim da base de dados é definido pela escrita de fim na 1ªlinha da sua última coluna

'Apagar a tabela anterior
.Range("h11:qz220").Select
Selection.ClearContents

'Escrever a tabela Relatório
col_base = col_in_base
col_tab = col_in_tab
lin_tab = lin_in_tab
Do Until Sheets("BaseDados").Cells(1, col_base).Text = "fin"

If nmin = "" Or nmax = "" Then
 If Sheets("BaseDados").Cells(11, col_base).Value = cod Then
 nregistos = nregistos + 1
 lin_tab = lin_in_tab
 lin_base = lin_in_base
 Do While lin_base <= lin_fim_base

C.11
If Cells(lin_base, 7) = True Then
 Cells(lin_tab, 8) = Cells(lin_base, 3)
 Cells(lin_tab, 9) = Sheets("BaseDados").Cells(lin_base, 5)
 Cells(lin_tab, 10) = Sheets("BaseDados").Cells(lin_base, 8)
 Cells(lin_tab, col_tab) = Sheets("BaseDados").Cells(lin_base, col_base)
 lin_tab = lin_tab + 1
End If
lin_base = lin_base + 1
Loop

Else
 If (cod = "" Or Sheets("BaseDados").Cells(11, col_base).Value = cod) And
 nregistos = nregistos + 1
 lin_tab = lin_in_tab
 lin_base = lin_in_base
 Do While lin_base <= lin_fin_base
 If Cells(lin_base, 7) = True Then
 Cells(lin_tab, 8) = Cells(lin_base, 3)
 Cells(lin_tab, 9) = Sheets("BaseDados").Cells(lin_base, 5)
 Cells(lin_tab, 10) = Sheets("BaseDados").Cells(lin_base, 8)
 Cells(lin_tab, col_tab) = Sheets("BaseDados").Cells(lin_base, col_base)
 lin_tab = lin_tab + 1
 End If
 lin_base = lin_base + 1
 Loop
 col_tab = col_tab + 1
 End If
 col_base = col_base + 1
 End If
Loop

'Se informar o utilizador caso a ponte procurada não exista
 If nregistos = 0 Then
 Cells(lin_in_tab, col_in_tab - 2) = "NENHUM REGISTO NA BASE DE DADOS!"
 End If
Sheets("Relatório").Cells(2, 11).Select
End Sub

Sub Relatório_Via_km_listas()

Sheets("Relatório").Cells(10, 8) = " (escreva aqui a designação deste relatório)"

'Se ler a via/km das pontes procuradas
Sheets("Relatório").Select
nvia = Cells(4, 11).Value
nkmin = Cells(5, 11).Value
nkmax = Cells(5, 14).Value
nregistos = 0
If Cells(5, 11) = "" Then nkmin = nkmax
If Cells(5, 14) = "" Then nkmax = nkmin
If nkmin > nkmax Then
 nkmin = Cells(5, 14).Value
nkmax = Cells(5, 11).Value
End If

'Definir início e fim da tabela Relatório e da BaseDados
lin_in_tab = 11
lin_fim_tab = 200
lin_in_base = 1
lin_fim_base = 202
col_in_tab = 11
col_fim_tab = 300
col_in_base = 12
col_fim_base = fim'
o fim da base de dados é definido pela escrita de fim na 1ª linha da
sua última coluna

'Apagar a tabela anterior
Range("h11:gs220").Select
Selection.ClearContents
c = col_in_tab - 3

'E escrever a tabela Relatório
col_base = col_in_base
col_tab = col_in_tab
lin_tab = lin_in_tab
Do Until Sheets("BaseDados").Cells(1, col_base).Text = "fim"
If nkmin = "" Or nkmax = "" Then

If Sheets("BaseDados").Cells(21, col_base).Value = nvia Then
 nregistros = nregistros + 1
 lin_tab = lin_in_tab
 lin_base = lin_in_base
 Do While lin_base <= lin_fim_base

 If Cells(lin_base, 7) = True Then
 Cells(lin_tab, 8) = Cells(lin_base, 3)
 Cells(lin_tab, 9) = Sheets("BaseDados").Cells(lin_base, 5)
 Cells(lin_tab, 10) = Sheets("BaseDados").Cells(lin_base, 6)
 Cells(lin_tab, col_base) = Sheets("BaseDados").Cells(lin_base,
col_base)

 End If
 lin_base = lin_base + 1

 Loop

 col_tab = col_tab + 1
 End If
 col_base = col_base + 1
Else

If (nvia = "" Or Sheets("BaseDados").Cells(21, col_base).Value = nvia) And
Sheets("BaseDados").Cells(21, col_base).Value <> "" And Sheets("BaseDados").Cells(22,
 nregistros = nregistros + 1

 lin_tab = lin_in_tab
 lin_base = lin_in_base
 Do While lin_base <= lin_fim_base

 If Cells(lin_base, 7) = True Then
 Cells(lin_tab, 8) = Cells(lin_base, 3)
 Cells(lin_tab, 9) = Sheets("BaseDados").Cells(lin_base, 5)
 Cells(lin_tab, 10) = Sheets("BaseDados").Cells(lin_base, 6)
 Cells(lin_tab, col_base) = Sheets("BaseDados").Cells(lin_base,
col_base)

 End If
 lin_base = lin_base + 1

 Loop

 col_tab = col_tab + 1
 End If
 col_base = col_base + 1
Else

If (nvia = "" Or Sheets("BaseDados").Cells(21, col_base).Value = nvia) And
Sheets("BaseDados").Cells(21, col_base).Value <> "" And Sheets("BaseDados").Cells(22,
 nregistros = nregistros + 1

 lin_tab = lin_in_tab
 lin_base = lin_in_base
 Do While lin_base <= lin_fim_base

 If Cells(lin_base, 7) = True Then
 Cells(lin_tab, 8) = Cells(lin_base, 3)
 Cells(lin_tab, 9) = Sheets("BaseDados").Cells(lin_base, 5)
 Cells(lin_tab, 10) = Sheets("BaseDados").Cells(lin_base, 6)
 Cells(lin_tab, col_base) = Sheets("BaseDados").Cells(lin_base,
col_base)
lin_tab = lin_tab + 1
End If
lin_base = lin_base + 1
Loop
 col_tab = col_tab + 1
End If
col_base = col_base + 1
End If
Loop

'Informar o utilizador caso a ponte procurada não exista
If nregistos = 0 Then
 Cells(lin_in_tab, col_in_tab - 2) = "NENHUM REGISTO NA BASE DE DADOS!"
End If

Sheets("Relatório").Cells(5, 11).Select
End Sub

Sub Novo_registo()

'esconder a coluna de pesquisa
Columns("G:J").Select
Selection.EntireColumn.Hidden = False

'colocar os itens do quadro na posição 1
k = 24
 Do While k <= 29
 Cells(k, 10) = 1
 k = k + 1
 Loop

k = 40
 Do While k <= 47
 Cells(k, 10) = 1
 k = k + 1
 Loop

k = 79
 Do While k <= 84
 Cells(k, 10) = 1
 k = k + 1
 Loop

k = 98
 Do While k <= 102
 Cells(k, 10) = 1
 k = k + 1
 Loop

k = 112
 Do While k <= 121
 Cells(k, 10) = 1
 k = k + 1
 Loop

k = 142
 Do While k <= 146
 Cells(k, 10) = 1
 k = k + 1
 Loop

Cells(51, 10) = 1
Cells(52, 10) = 1
Cells(67, 10) = 1
Cells(68, 10) = 1
Cells(76, 10) = 1
Cells(77, 10) = 1
Cells(86, 10) = 1
Cells(88, 10) = 1
Cells(92, 10) = 1
Cells(96, 10) = 1
Cells(104, 10) = 1
Cells(106, 10) = 1
Cells(108, 10) = 1
Cells(109, 10) = 1
Cells(110, 10) = 1

'apagar os itens sem quadro
Columns("I:1").Select
Selection.EntireColumn.Hidden = True

Range("H1:H23").Select
Application.CutCopyMode = False
Selection.ClearContents
Range("H30:H39").Select
Selection.ClearContents
ActiveWindow.SmallScroll Down:=23
Range("H40:H50").Select
Selection.ClearContents
Range("H53:H66").Select
Selection.ClearContents
Range("H69:H75").Select
Selection.ClearContents
Range("H76").Select
Selection.ClearContents
Range("H85").Select
Selection.ClearContents
Range("H87").Select
Selection.ClearContents
Range("H89").Select
Selection.ClearContents
ActiveWindow.SmallScroll Down:=8
Range("H90:H91").Select
Selection.ClearContents
Range("H93:H95").Select
Selection.ClearContents
Range("H97").Select
Selection.ClearContents
ActiveWindow.SmallScroll Down:=15
Range("H103").Select
Selection.ClearContents
Range("H103").Select
Selection.ClearContents
Range("H107").Select
Selection.ClearContents
Range("H111").Select
Selection.ClearContents
ActiveWindow.SmallScroll Down:=13
Range("H112:H141").Select
Selection.ClearContents
Range("H147:H202").Select
Selection.ClearContents
ActiveWindow.LargeScroll Down:=8
Range("N1").Select

Sub Ordenar_por_reg()
 Range("K1:L212").Select
 Selection.Sort Key1:=Range("K13"), Order1:=xlAscending, Header:=xlGuess, _
 OrderCustom:=1, MatchCase:=False, Orientation:=xlLeftToRight, _
 DataOption1:=xlSortNormal
 Range("H10").Select
End Sub
Anexo C

Sub Print_Preview()
 ActiveWindow.SelectedSheets.PrintPreview
End Sub

Sub Ver_graf()
 ActiveSheet.ChartObjects("Chart 410").Activate
 ActiveChart.ChartArea.Select
 ActiveWindow.SelectedSheets.PrintPreview
End Sub

Sub Pesquisa_Codigo_Numero_para_mem()
 'Ler o número e o código da ponte procurada
 Sheets("MemCalc").Select
 ncodigo = Cells(1, 11).Value
 nponte = Cells(2, 11).Value
 col_ponte = 0
 nrepete = 0

 'Calcular o número de pontes com esses dados, em BaseDados
 If ncodigo = "" Then ' pesquisa só por n°
 ult_col = 11
 Do Until Sheets("BaseDados").Cells(12, ult_col).Text = "fim"
 If Sheets("BaseDados").Cells(12, ult_col).Value = nponte Then
 col_ponte = ult_col
 nrepete = nrepete + 1
 End If
 ult_col = ult_col + 1
 Loop
 Else
 If nponte = "" Then ' pesquisa só por código
 ult_col = 11
 Do Until Sheets("BaseDados").Cells(11, ult_col).Text = "fim"
 If Sheets("BaseDados").Cells(11, ult_col).Value = ncodigo Then
 col_ponte = ult_col
 nrepete = nrepete + 1
 End If
 ult_col = ult_col + 1
 Loop
 Else
 ' pesquisa por código e n°
 ult_col = 11
 Do Until Sheets("BaseDados").Cells(12, ult_col).Text = "fim"
 If Sheets("BaseDados").Cells(12, ult_col).Value = nponte And
 Sheets("BaseDados").Cells(11, ult_col).Value = ncodigo Then
 col_ponte = ult_col
 nrepete = nrepete + 1
 End If
 ult_col = ult_col + 1
 Loop
 End If
 End If

C.16
ult_col = ult_col + 1
Loop
End If
End If

Cells(5, 10) = ""
Cells(5, 11) = ""

'Informar o utilizador caso a ponte procurada não exista
If col_ponte = 0 Then
 Cells(5, 11) = "NÃO CONSTA DA BASE DE DADOS!"
End If

'Informar que há mais que um registo com esse número e código
If col_ponte > 0 Then
 If nrepete > 1 Then
 Cells(5, 10) = nrepete
 Cells(5, 11) = "REGISTOS NA BASE DE DADOS!"
 End If
End If

If col_ponte > 0 Then
 ult_col = col_ponte
 'copiar os dados de "BaseDados" para "MemCalc"
 Sheets("MemCalc").Cells(8, 10) = Sheets("BaseDados").Cells(105, ult_col)
 Sheets("MemCalc").Cells(9, 10) = Sheets("BaseDados").Cells(99, ult_col)
 Sheets("MemCalc").Cells(10, 10) = Sheets("BaseDados").Cells(100, ult_col)
 Sheets("MemCalc").Cells(11, 10) = Sheets("BaseDados").Cells(102, ult_col)
 Sheets("MemCalc").Cells(12, 10) = Sheets("BaseDados").Cells(98, ult_col)
 Sheets("MemCalc").Cells(13, 10) = Sheets("BaseDados").Cells(112, ult_col)
 Sheets("MemCalc").Cells(14, 10) = Sheets("BaseDados").Cells(113, ult_col)
 Sheets("MemCalc").Cells(15, 10) = Sheets("BaseDados").Cells(114, ult_col)
 Sheets("MemCalc").Cells(16, 10) = Sheets("BaseDados").Cells(115, ult_col)
 Sheets("MemCalc").Cells(17, 10) = Sheets("BaseDados").Cells(116, ult_col)
 Sheets("MemCalc").Cells(18, 10) = Sheets("BaseDados").Cells(53, ult_col)
 Sheets("MemCalc").Cells(19, 10) = Sheets("BaseDados").Cells(56, ult_col)
 Sheets("MemCalc").Cells(20, 10) = Sheets("BaseDados").Cells(64, ult_col)
 Sheets("MemCalc").Cells(21, 10) = Sheets("BaseDados").Cells(66, ult_col)
 Sheets("MemCalc").Cells(22, 10) = Sheets("BaseDados").Cells(41, ult_col)
 Sheets("MemCalc").Cells(23, 10) = Sheets("BaseDados").Cells(80, ult_col)
 Sheets("MemCalc").Cells(24, 10) = Sheets("BaseDados").Cells(74, ult_col)
 Sheets("MemCalc").Cells(25, 10) = Sheets("BaseDados").Cells(85, ult_col)
 Sheets("MemCalc").Cells(26, 10) = Sheets("BaseDados").Cells(116, ult_col)
 Sheets("MemCalc").Cells(27, 10) = Sheets("BaseDados").Cells(119, ult_col)
 Sheets("MemCalc").Cells(28, 10) = Sheets("BaseDados").Cells(120, ult_col)
 Sheets("MemCalc").Cells(29, 10) = Sheets("BaseDados").Cells(121, ult_col)
End If

Sheets("MemCalc").Cells(32, 10).Select
End Sub
ANEXO D

DADOS E RESULTADOS

No presente anexo são apresentados quadros com os dados considerados e os resultados obtidos na classificação do conjunto de pontes do Instituto de Estradas de Portugal, inseridas na rede rodoviária do distrito de Viana do Castelo, que foram escolhidas para integrar a amostra e a sub-amostra, de acordo com o referido no Capítulo 6.

Os resultados das classificações foram obtidos com o programa REGpontes, apresentado no Capítulo 5, em função, exclusivamente, dos itens assinalados com o seguinte símbolo: *.

As designações “a-min” e “a-max” correspondem, respectivamente, aos valores mínimos e máximos obtidos no estudo das pontes da amostra.

Os resultados designados por “s.a.” são correspondentes aos valores obtidos no segundo estudo efectuado, para o conjunto de pontes da sub-amostra.
Dados

<table>
<thead>
<tr>
<th>8B</th>
<th>Identificação da ponte - número</th>
<th>1</th>
<th>Ponte de Caminha</th>
<th>Rio Coura</th>
<th>EN13</th>
<th>91,96</th>
</tr>
</thead>
<tbody>
<tr>
<td>8C</td>
<td>Identificação da ponte - nome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6A</td>
<td>Nome(s) das vias interceptadas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5D</td>
<td>N° código da via principal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Ponto quilométrico (km)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Nº de vãos (zona principal)</td>
<td>28</td>
<td></td>
<td></td>
<td>5</td>
<td>119,4</td>
</tr>
<tr>
<td>43A</td>
<td>Tipo de material (zona principal)</td>
<td>1</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>43B</td>
<td>* Tipo de concepção/construção</td>
<td>2</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>* Ano de construção</td>
<td></td>
<td></td>
<td></td>
<td>1886</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>* Ano de reconstrução</td>
<td></td>
<td></td>
<td></td>
<td>1950</td>
<td></td>
</tr>
<tr>
<td>42B</td>
<td>* Tipo de serviço sob a estrutura</td>
<td>5</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>28A</td>
<td>* Nº faixas de rodagem sobre a estrutura</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

19	* Desvio implicado com o fecho (km)	40	0	20	5	0	2
29	* Tráfego médio diário (TMD)	10347	10347	10347	1000	1000	1000
48	Comprimento do vão máximo (m)	14,61	14,61	14,61	69,05	69,05	69,05
49	* Comprimento da estrutura (m)	374,5	374,5	374,5	333,3	333,3	333,3
51	* Largura total da(s) faixa(s) de rodagem (m)	5,8	5,8	5,8	4,8	4,8	4,8
32	* Largura da faixa de rodagem de acesso (m)	20	5,8	7,8	20	4,8	8
53	* Gabarit mínimo vertical sobre a ponte(m)	99,99	99,99	99,99	5,06	5,06	5,06

112	É, por definição, uma ponte?	1	1	1	1	1	1
100	* Importância estratégica	1	0	1	1	0	0
58	* Estado do tabuleiro	3	5	4	4	5	5
59	* Estado da superestrutura	3	5	4	4	5	5
60	* Estado da infraestrutura	3	5	4	4	5	5
62	* Estado da conduta submersa	N	N	N	N	N	N

67	* Avaliação estrutural	4	4	4	4	5	5
68	* Avaliação da geometria do tabuleiro	3	3	6	2	6	6
69	* Avaliação das limitações espaciais	2	6	7	2	6	4
71	* Resposta face ao canal de água	5	5	5	3	3	7
72	* Alinhamento dos acessos	2	6	6	2	6	4

36A	* Guardas de proteção	0	0	0	0	1	1
36B	* Transição guardas acessos-tabuleiro	0	1	0	0	1	1
36C	* Guardas dos acessos	0	1	0	0	1	1
36D	* Remate das guardas dos acessos	0	1	0	0	1	1

EC	Estado conservação (IEP)	3	3	3	2	2	2
EM	Estado de manutenção (IEP)	M	M	M	M	M	M
UM	Manutenção - Urgência actuação (IEP)	1	1	1	1	1	1
UR	Reparação - Urgência actuação (IEP)	2	2	2	2	2	2

Resultados

<table>
<thead>
<tr>
<th></th>
<th>a-min</th>
<th>a-max</th>
<th>s.a.</th>
<th></th>
<th>a-min</th>
<th>a-max</th>
<th>s.a.</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>15%</td>
<td>45%</td>
<td>30%</td>
<td>30%</td>
<td>45%</td>
<td>45%</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>2%</td>
<td>7%</td>
<td>9%</td>
<td>2%</td>
<td>9%</td>
<td>9%</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>0%</td>
<td>15%</td>
<td>0%</td>
<td>12%</td>
<td>15%</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>5%</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>REG</td>
<td>17%</td>
<td>67%</td>
<td>39%</td>
<td>44%</td>
<td>64%</td>
<td>64%</td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>ESD</td>
<td>ESD</td>
<td>ESD</td>
<td>CE</td>
<td>ESD</td>
<td>ESD</td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>ESD</td>
<td>ESD</td>
<td>ESD</td>
<td>CF</td>
<td>ESD</td>
<td>ESD</td>
<td></td>
</tr>
</tbody>
</table>

D.2
DADOS

<table>
<thead>
<tr>
<th>8B</th>
<th>Identificação da ponte - numero</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>8C</td>
<td>Identificação da ponte - nome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6A</td>
<td>Nome(s) das vias interceptadas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5D</td>
<td>Nº/código da via principal</td>
<td>23</td>
<td>119</td>
</tr>
<tr>
<td>11</td>
<td>Ponto quilométrico (km)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Nº de vãos (zona principal)</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>43A</td>
<td>Tipo de material (zona principal)</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>43B</td>
<td>* Tipo de concepção/construção</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>* Ano de construção</td>
<td>1982</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>* Ano de reconstrução</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42B</td>
<td>* Tipo de serviço sob a estrutura</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>28A</td>
<td>* Nª faixas de rodagem sobre a estrutura</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>* Desvio implicado com o fecho (km)</td>
<td>30 0 30</td>
<td>10 0</td>
</tr>
<tr>
<td>29</td>
<td>* Tráfego médio diário (TMD)</td>
<td>15000 10000 8000</td>
<td>10000 3000</td>
</tr>
<tr>
<td>48</td>
<td>Comprimento do vão máximo (m)</td>
<td>30 30 30</td>
<td>1,2 1,2</td>
</tr>
<tr>
<td>49</td>
<td>* Comprimento da estrutura (m)</td>
<td>1269 1269 1269</td>
<td>6 6</td>
</tr>
<tr>
<td>51</td>
<td>* Largura total da(s) faixa(s) de rodagem (m)</td>
<td>9 9 9</td>
<td>6 6</td>
</tr>
<tr>
<td>32</td>
<td>* Largura da faixa de rodagem de acesso (m)</td>
<td>20 9 9</td>
<td>20 6</td>
</tr>
<tr>
<td>53</td>
<td>* Gabarit mínimo vertical sobre a ponte(m)</td>
<td>99,9 99,9 99,9</td>
<td>99,9 99,9</td>
</tr>
<tr>
<td>112</td>
<td>É, por definição, uma ponte?</td>
<td>1 1 1</td>
<td>0 0</td>
</tr>
<tr>
<td>100</td>
<td>* Importância estratégica</td>
<td>1 0 1</td>
<td>1 0</td>
</tr>
<tr>
<td>58</td>
<td>* Estado do tabuleiro</td>
<td>2 3 3</td>
<td>6 6</td>
</tr>
<tr>
<td>59</td>
<td>* Estado da superestrutura</td>
<td>2 4 4</td>
<td>6 6</td>
</tr>
<tr>
<td>60</td>
<td>* Estado da infraestrutura</td>
<td>2 4 4</td>
<td>6 6</td>
</tr>
<tr>
<td>62</td>
<td>* Estado da conduta submersa</td>
<td>N N N</td>
<td>N N</td>
</tr>
<tr>
<td>66</td>
<td>* ICC - Índice Capacidade Carga (ton)</td>
<td>99 99 99</td>
<td>99 99</td>
</tr>
<tr>
<td>67</td>
<td>* Avaliação estrutural</td>
<td>2 3 4</td>
<td>6 6</td>
</tr>
<tr>
<td>68</td>
<td>* Avaliação da geometria do tabuleiro</td>
<td>2 6 6</td>
<td>6 6</td>
</tr>
<tr>
<td>69</td>
<td>* Avaliação das limitações espaciais</td>
<td>2 6 7</td>
<td>2 6</td>
</tr>
<tr>
<td>71</td>
<td>* Resposta face ao canal de água</td>
<td>6 6 9</td>
<td>6 6</td>
</tr>
<tr>
<td>72</td>
<td>* Alinhamento dos acessos</td>
<td>2 6 6</td>
<td>2 6</td>
</tr>
<tr>
<td>36A</td>
<td>* Guardas de protecção</td>
<td>1 1 0</td>
<td>1 1</td>
</tr>
<tr>
<td>36B</td>
<td>* Transição guardas acessos-tabuleiro</td>
<td>0 1 0</td>
<td>0 1</td>
</tr>
<tr>
<td>36C</td>
<td>* Guardas dos acessos</td>
<td>0 1 0</td>
<td>0 1</td>
</tr>
<tr>
<td>36D</td>
<td>* Remate das guardas dos acessos</td>
<td>0 1 0</td>
<td>0 1</td>
</tr>
<tr>
<td>EC</td>
<td>Estado conservação (IEP)</td>
<td>4 4 4</td>
<td>1 1</td>
</tr>
<tr>
<td>EM</td>
<td>Estado de manutenção (IEP)</td>
<td>M M M</td>
<td>M M</td>
</tr>
<tr>
<td>UM</td>
<td>Manutenção - Urgência actuação (IEP)</td>
<td>1 1 1</td>
<td></td>
</tr>
<tr>
<td>UR</td>
<td>Reparação - Urgência actuação (IEP)</td>
<td>1 1 1</td>
<td></td>
</tr>
</tbody>
</table>

RESULTADOS

<table>
<thead>
<tr>
<th></th>
<th>a-min</th>
<th>a-max</th>
<th>s.a.</th>
<th>a-min</th>
<th>a-max</th>
<th>s.a.</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td></td>
<td></td>
<td></td>
<td>0%</td>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td>R2</td>
<td></td>
<td></td>
<td></td>
<td>2%</td>
<td>16%</td>
<td>8%</td>
</tr>
<tr>
<td>R3</td>
<td></td>
<td></td>
<td></td>
<td>5%</td>
<td>15%</td>
<td>5%</td>
</tr>
<tr>
<td>R4</td>
<td></td>
<td></td>
<td></td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>REG</td>
<td></td>
<td></td>
<td></td>
<td>2%</td>
<td>61%</td>
<td>38%</td>
</tr>
<tr>
<td>CE</td>
<td></td>
<td></td>
<td></td>
<td>ESD</td>
<td>ESD</td>
<td>ESD</td>
</tr>
<tr>
<td>CF</td>
<td></td>
<td></td>
<td></td>
<td>FitDad</td>
<td>FitDad</td>
<td>FitDad</td>
</tr>
</tbody>
</table>

D.3
Dados

<table>
<thead>
<tr>
<th>Código</th>
<th>Descrição</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>8B</td>
<td>Identificação da ponte - número</td>
<td>86</td>
<td>86</td>
</tr>
<tr>
<td>8C</td>
<td>Identificação da ponte - nome</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>6A</td>
<td>Nome(s) das vias interceptadas</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>5D</td>
<td>Número do código da via principal</td>
<td>114,8</td>
<td>111,5</td>
</tr>
<tr>
<td>11</td>
<td>Ponto quilométrico (km)</td>
<td>111,5</td>
<td>111,5</td>
</tr>
<tr>
<td>45</td>
<td>N° de vias (zona principal)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>43A</td>
<td>Tipo de material (zona principal)</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>43B</td>
<td>Tipo de concepção/construção</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>Ano de construção</td>
<td>1882</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>Ano de reconstrução</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42B</td>
<td>Tipo de serviço sob a estrutura</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>28A</td>
<td>N° faixas de rodagem sobre a estrutura</td>
<td>99,9</td>
<td>99,9</td>
</tr>
<tr>
<td>19</td>
<td>Desvio implicado com o fecho (km)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>29</td>
<td>Tráfego médio diário (TMD)</td>
<td>10000</td>
<td>10000</td>
</tr>
<tr>
<td>48</td>
<td>Comprimento do vão máximo (m)</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>49</td>
<td>Comprimento da estrutura (m)</td>
<td>38,2</td>
<td>5</td>
</tr>
<tr>
<td>51</td>
<td>Largura total da(s) faixa(s) de rodagem (m)</td>
<td>4,5</td>
<td>6,6</td>
</tr>
<tr>
<td>32</td>
<td>Largura da faixa de rodagem de acesso (m)</td>
<td>20</td>
<td>4,5</td>
</tr>
<tr>
<td>53</td>
<td>Gabarit mínimo vertical sobre a ponte (m)</td>
<td>99,9</td>
<td>99,9</td>
</tr>
<tr>
<td>112</td>
<td>É, por definição, uma ponte?</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>Importância estratégica</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>58</td>
<td>Estado do tabuleiro</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>59</td>
<td>Estado da superestrutura</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>60</td>
<td>Estado da infraestrutura</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>62</td>
<td>Estado da conduta submersa</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>66</td>
<td>ICC - Índice Capacidade Carga (ton)</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>67</td>
<td>Avaliação estrutural</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>68</td>
<td>Avaliação da geometria do tabuleiro</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>69</td>
<td>Avaliação das limitações espaciais</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>71</td>
<td>Resposta face ao canal de água</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>72</td>
<td>Alinhamento dos acessos</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>36A</td>
<td>Guardas de proteção</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>36B</td>
<td>Transição guardas acessos-tabuleiro</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>36C</td>
<td>Guardas dos acessos</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>36D</td>
<td>Remate das guardas dos acessos</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>EC</td>
<td>Estado conservação (IEP)</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>EM</td>
<td>Estado de manutenção (IEP)</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>UM</td>
<td>Manutenção - Urgência actuação (IEP)</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>UR</td>
<td>Reparação - Urgência actuação (IEP)</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>

Resultados

<table>
<thead>
<tr>
<th>Código</th>
<th>Descrição</th>
<th>a - min</th>
<th>a - max</th>
<th>s.a.</th>
<th>a - min</th>
<th>a - max</th>
<th>s.a.</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>Rácio de Segurança Estrutural</td>
<td>30%</td>
<td>45%</td>
<td>30%</td>
<td>30%</td>
<td>45%</td>
<td>30%</td>
</tr>
<tr>
<td>R2</td>
<td>Rácio de Funcionalidade</td>
<td>2%</td>
<td>13%</td>
<td>2%</td>
<td>2%</td>
<td>13%</td>
<td>2%</td>
</tr>
<tr>
<td>R3</td>
<td>Rácio de Utilidade Pública</td>
<td>1%</td>
<td>15%</td>
<td>1%</td>
<td>1%</td>
<td>15%</td>
<td>1%</td>
</tr>
<tr>
<td>R4</td>
<td>Reduções extraordinárias do REG</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>REG</td>
<td>Rácio de Eficiência Global</td>
<td>33%</td>
<td>73%</td>
<td>33%</td>
<td>33%</td>
<td>74%</td>
<td>33%</td>
</tr>
<tr>
<td>CE</td>
<td>Classificação Estrutural</td>
<td>FitDad</td>
<td>FitDad</td>
<td>FitDad</td>
<td>FitDad</td>
<td>FitDad</td>
<td>FitDad</td>
</tr>
<tr>
<td>CF</td>
<td>Classificação Funcional</td>
<td>FitDad</td>
<td>FitDad</td>
<td>FitDad</td>
<td>FitDad</td>
<td>FitDad</td>
<td>FitDad</td>
</tr>
</tbody>
</table>
Dados

<table>
<thead>
<tr>
<th>Identificação da ponte - número</th>
<th>8B</th>
<th>7</th>
<th>Ponte Bairro Grande</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identificação da ponte - nome</td>
<td>8C</td>
<td>EN202</td>
<td>EN201</td>
<td></td>
</tr>
<tr>
<td>Nome(s) das vias interceptadas</td>
<td>6A</td>
<td>107,8</td>
<td>41,46</td>
<td></td>
</tr>
<tr>
<td>Nº/código da via principal</td>
<td>5D</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ponto quilométrico (km)</td>
<td>11</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Nº de vãos (zona principal)</td>
<td>45</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Tipo de material (zona principal)</td>
<td>43A</td>
<td>1</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Tipo de concepção/construção</td>
<td>43B</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Ano de construção</td>
<td>27</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Ano de reconstrução</td>
<td>106</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Tipo de serviço sob a estrutura</td>
<td>42B</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Nº faixas de rodagem sobre a estrutura</td>
<td>28A</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Desvio implicado com o fecho (km)	19	0	0
Tráfego médio diário (TMD)	29	3000	5003
Comprimento do vão máximo (m)	48	1,2	3,05
Comprimento da estrutura (m)	49	5,4	25,8
Largura total da(s) faixa(s) de rodagem (m)	51	4,5	6
Largura da faixa de rodagem de acesso (m)	32	4,5	20
Gabarit mínimo vertical sobre a ponte(m)	53	99,9	99,9

É, por definição, uma ponte?	112	0	0
Importância estratégica	100	1	1
Estado do tabuleiro	58	6	6
Estado da superestrutura	59	4	4
Estado da infraestrutura	60	4	4
Estado da conduta submersa	62	N	N
ICC - Índice Capacidade Carga (ton)	66	99	99

Avaliação estrutural	67	4	4
Avaliação da geometria do tabuleiro	68	2	2
Avaliação das limitações espaciais	69	2	2
Resposta face ao canal de água	71	2	2
Alinhamento dos acessos	72	2	2

Guardas de proteção	36A	0	0
Transição guardas acessos-tabuleiro	36B	0	0
Guardas dos acessos	36C	0	0
Remate das guardas dos acessos	36D	0	0

Estado conservação (IEP)	EC	2	2
Estado de manutenção (IEP)	EM	M	M
Manutenção - Urgência actuação (IEP)	UM	2	2
Reparação - Urgência actuação (IEP)	UR	2	2

Resultados

Rádio de Segurança Estrutural	R1	30%	45%
Rádio de Funcionalidade	R2	2%	14%
Rádio de Utilidade Pública	R3	1%	15%
Reduções extraordinárias do REG	R4	0%	3%
Rádio de Eficiência Global	REG	33%	73%

| Classificação Estrutural | CE | FitDad |
| Classificação Funcional | CF | FitDad |
DADOS

<table>
<thead>
<tr>
<th>Código</th>
<th>Descrição</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>8B</td>
<td>Identificação da ponte - número</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8C</td>
<td>Identificação da ponte - nome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6A</td>
<td>Nome(s) das vias interceptadas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5D</td>
<td>N°/código da via principal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Ponto quilométrico (km)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>N° de vias (zona principal)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43A</td>
<td>Tipo de material (zona principal)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43B</td>
<td>Tipo de concepção/constução</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Ano de construção</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>Ano de reconstrução</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42B</td>
<td>Tipo de serviço sob a estrutura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28A</td>
<td>N° faixas de rodagem sobre a estrutura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Desvio implicado com o fecho (km)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Tráfego médio diário (TMD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Comprimento do vão máximo (m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Comprimento da estrutura (m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Largura total da(s) faixa(s) de rodagem (m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Largura da faixa de rodagem de acesso (m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Gabarit mínimo vertical sobre a ponte (m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>E, por definição, uma ponte?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Importância estratégica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Estado do tabuleiro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Estado da superestrutura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Estado da infraestrutura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Estado da conduta submersa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>ICC - Índice Capacidade Carga (ton)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Avaliação estrutural</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Avaliação da geometria do tabuleiro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Avaliação das limitações espaciais</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Resposta face ao canal de água</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Alinhamento dos acessos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36A</td>
<td>Guardas de proteção</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36B</td>
<td>Transição guardas acessos-tabuleiro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36C</td>
<td>Guardas dos acessos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36D</td>
<td>Remate das guardas dos acessos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td>Estado conservação (IEP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM</td>
<td>Estado de manutenção (IEP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UM</td>
<td>Manutenção - Urgência actuação (IEP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UR</td>
<td>Reparação - Urgência actuação (IEP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RESULTADOS

<table>
<thead>
<tr>
<th>Código</th>
<th>Descrição</th>
<th>a-min</th>
<th>a-max</th>
<th>s.a.</th>
<th>a-min</th>
<th>a-max</th>
<th>s.a.</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>Rádio de Segurança Estrutural</td>
<td>0%</td>
<td>30%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>Rádio de Funcionalidade</td>
<td>2%</td>
<td>8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>Rádio de Utilidade Pública</td>
<td>0%</td>
<td>15%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>Reduções extraordinárias do REG</td>
<td>0%</td>
<td>1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REG</td>
<td>Rádio de Eficiência Global</td>
<td>2%</td>
<td>52%</td>
<td>17%</td>
<td>64%</td>
<td>24%</td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>Classificação Estrutural</td>
<td>ESD</td>
<td>ESD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>Classificação Funcional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D.6
DADOS

8B	Identificação da ponte - numero	11	P. s/ Ribeirão S. Vicente				
8C	Identificação da ponte - nome	12	Ponte de Ancora				
6A	Nome(s) das vias interceptadas		Ribeirão S. Vicente				
5D	N°/código da via principal	EN202	EN13				
11	Ponto quilométrico (km)	1,4	81,96				
45	N° de vãos (zona principal)	3	1				
43A	Tipo de material (zona principal)	8	1				
43B	* Tipo de concepção/construção	1	1				
27	* Ano de construção	1978					
106	* Ano de reconstrução	1985					
42B	* Tipo de serviço sob a estrutura	5	5				
28A	* N° faixas de rodagem sobre a estrutura	2	2				
19	* Desvio implicado com o fecho (km)	10	0	5	15	0	5
29	* Tráfego médio diário (TMD)	18660	18660	18660	10347	10347	10347
48	Comprimento do vão máximo (m)	1,2	1,2	1,2	34	34	34
49	* Comprimento da estrutura (m)	6	6	6	48	48	48
51	* Largura total da(s) faixa(s) de rodagem (m)	14	14	14	8	8	8
32	* Largura da faixa de rodagem de acesso (m)	20	14	20	20	12	8
53	* Gabarit mínimo vertical sobre a ponte(m)	99,9	99,9	99,9	99,9	99,9	99,9
112	É, por definição, uma ponte?	0	0	1	1	1	
100	* Importância estratégica	1	0	1	1	0	
58	* Estado do tabuleiro	4	5	4	4	4	
59	* Estado da superfestrutura	3	3	3	4	4	
60	* Estado da infraestrutura	3	3	3	4	4	
62	* Estado da conduta submersa	N	N	N	N	N	
67	* Avaliação estrutural	2	5	3	4	4	
68	* Avaliação da geometria do tabuleiro	2	6	7	6	6	
69	* Avaliação das limitações espaciais	2	6	9	2	6	8
71	* Resposta face ao canal de água	3	3	3	6	6	
72	* Alinhamento dos acessos	2	8	9	2	6	8
36A	* Guardas de proteção	1	1	1	0	0	
36B	* Transição guardas acessos-tabuleiro	0	1	1	0	1	
36C	* Guardas dos acessos	0	1	1	0	1	
36D	* Remate das guardas dos acessos	0	1	0	0	1	
EC	Estado conservação (IEP)	4	4	4	4	3	
EM	Estado de manutenção (IEP)	M	M	M	M	M	
UM	Manutenção - Urgência actuação (IEP)	1	1	1	1		
UR	Reparação - Urgência actuação (IEP)	2	2	2	2		

RESULTADOS

<table>
<thead>
<tr>
<th></th>
<th>a-min</th>
<th>a-max</th>
<th>s.a.</th>
<th>a-min</th>
<th>a-max</th>
<th>s.a.</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>15%</td>
<td>15%</td>
<td>15%</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td>R2</td>
<td>12%</td>
<td>24%</td>
<td>14%</td>
<td>2%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>R3</td>
<td>0%</td>
<td>15%</td>
<td>0%</td>
<td>0%</td>
<td>15%</td>
<td>8%</td>
</tr>
<tr>
<td>R4</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>REG</td>
<td>27%</td>
<td>54%</td>
<td>29%</td>
<td>32%</td>
<td>55%</td>
<td>48%</td>
</tr>
<tr>
<td>CE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D.7
Dados

8B	Identificação da ponte - número	13	P. Rego das Preces Rego das Preces EN13 87,03
8C	Identificação da ponte - nome	14	PS ao CF Caminha Caminho de Ferro EN301 0,35
6A	Nome(s) das vias interceptadas		
5D	Nº/código da via principal		
11	Ponto quilométrico (km)		
45	Nº de vãos (zona principal)	2	1
43A	Tipo de material (zona principal)	1	3
43B	* Tipo de concepção/construção	5	2
27	* Ano de construção	1970	1955
106	* Ano de reconstrução		
42B	* Tipo de serviço sob a estrutura	5	2
28A	* Nº faixas de rodagem sobre a estrutura	2	2
19	* Desvio implicado com o fecho (km)	2 0	50 0 20
29	* Tráfego médio diário (TMD)	10347 10347	5000 500 4000
48	Comprimento do vão máximo (m)	1,48 1,48	10,6 10,6 10,6
49	* Comprimento da estrutura (m)	4,16 4,16	19,6 19,6 19,6
51	* Largura total da(s) faixa(s) de rodagem (m)	7 7	7 7 7
32	* Largura da faixa de rodagem de acesso (m)	20 14	20 7 7
53	* Gabarit mínimo vertical sobre a ponte(m)	99,9 99,9	99,9 99,9 6
112	É, por definição, uma ponte?	0 0	1 1 1
100	* Importância estratégica	1 0	1 0 0
58	* Estado do tabuleiro	2 2	2 2 3
59	* Estado da superestrutura	2 2	2 3 3
60	* Estado da infraestrutura	2 4	2 3 3
62	* Estado da conduta submersa	N N	N N N
66	* ICC - Índice Capacidade Carga (ton)	99 99	99 99 99
67	* Avaliação estrutural	2 2	2 2 3
68	* Avaliação da geometria do tabuleiro	2 2	2 6 6
69	* Avaliação das limitações espaciais	2 6	2 6 6
71	* Resposta face ao canal de água	4 6	N N N
72	* Alinhamento dos acessos	2 6	2 6 5
36A	* Guardas de proteção	0 1	1 1 1
36B	* Transição guardas acessos-tabuleiro	0 1	1 1 1
36C	* Guardas dos acessos	0 1	1 1 1
36D	* Remate das guardas dos acessos	0 1	0 1 1
EC	Estado conservação (IEP)	4 4	4 4 4
EM	Estado de manutenção (IEP)	M M	M M M
UM	Manutenção - Urgência actuação (IEP)	1 1	1 1 1
UR	Reparação - Urgência actuação (IEP)	1 1	1 1 1

Resultados

R1	Rácio de Segurança Estrutural	a-min	a-max	s.a.	a-min	a-max	s.a.
R2	Rácio de Funcionalidade	0%	0%	0%	15%	15%	
R3	Rácio de Utilidade Pública	2%	2%	2%	9%	5%	
R4	Reduções extraordinárias do REG	0%	15%	0%	15%	0%	
REG	Rácio de Eficiência Global	0%	0%	0%	0%	0%	

<p>| CE | Classificação Estrutural | ESD | ESD | ESD |
| CF | Classificação Funcional | | | |</p>
<table>
<thead>
<tr>
<th>8B</th>
<th>Identificação da ponte - número</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>8C</td>
<td>Identificação da ponte - nome</td>
<td>PS ao CF Vila Fria</td>
<td>PS ao CF Afife</td>
</tr>
<tr>
<td>6A</td>
<td>Nome(s) das vias interceptadas</td>
<td>Caminho de Ferro</td>
<td>Caminho de Ferro</td>
</tr>
<tr>
<td>5D</td>
<td>Nº/código da via principal</td>
<td>EN308</td>
<td>EN13</td>
</tr>
<tr>
<td>11</td>
<td>Ponto quilométrico (km)</td>
<td>2,088</td>
<td>80,09</td>
</tr>
<tr>
<td>45</td>
<td>Nº de vãos (zona principal)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>43A</td>
<td>Tipo de material (zona principal)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>43B</td>
<td>* Tipo de concepção/construção</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>* Ano de construção</td>
<td>1962</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>* Ano de reconstrução</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>42B</td>
<td>* Tipo de serviço sob a estrutura</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>28A</td>
<td>* Nº faixas de rodagem sobre a estrutura</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>Desvio implicado com o fecho (km)</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>* Tráfego médio diário (TMD)</td>
<td>6400</td>
<td>6400</td>
</tr>
<tr>
<td>48</td>
<td>Comprimento do vão máximo (m)</td>
<td>10347</td>
<td>10347</td>
</tr>
<tr>
<td>49</td>
<td>* Comprimento da estrutura (m)</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>51</td>
<td>* Largura total da(s) faixa(s) de rodagem (m)</td>
<td>22,7</td>
<td>22,7</td>
</tr>
<tr>
<td>52</td>
<td>* Largura da faixa de rodagem de acesso (m)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>53</td>
<td>* Garantir mínimo vertical sobre a ponte(m)</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>112</td>
<td>É, por definição, uma ponte?</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>* Importância estratégica</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>58</td>
<td>* Estado do tabuleiro</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>59</td>
<td>* Estado da superestrutura</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>60</td>
<td>* Estado da infraestrutura</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>62</td>
<td>* Estado da conduta submersa</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>66</td>
<td>* ICC - Índice Capacidade Carga (ton)</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>67</td>
<td>* Avaliação estrutural</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>68</td>
<td>* Avaliação da geometria do tabuleiro</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>69</td>
<td>* Avaliação das limitações espaciais</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>71</td>
<td>* Resposta face ao canal de água</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>72</td>
<td>* Alinhamento dos acessos</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>36A</td>
<td>* Guardas de protecção</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>36B</td>
<td>* Transição guardas acessos-tabuleiro</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>36C</td>
<td>* Guardas dos acessos</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>36D</td>
<td>* Remate das guardas dos acessos</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>EC</td>
<td>Estado conservação (IEP)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>EM</td>
<td>Estado de manutenção (IEP)</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>UM</td>
<td>Manutenção - Urgência actuação (IEP)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>UR</td>
<td>Reparação - Urgência actuação (IEP)</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

RESULTADOS

<table>
<thead>
<tr>
<th></th>
<th>a-min</th>
<th>a-max</th>
<th>s.a.</th>
<th>a-min</th>
<th>a-max</th>
<th>s.a.</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>Rácio de Segurança Estrutural</td>
<td>15%</td>
<td>30%</td>
<td>30%</td>
<td>45%</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>Rácio de Funcionalidade</td>
<td>2%</td>
<td>10%</td>
<td>2%</td>
<td>13%</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>Rácio de Utilidade Pública</td>
<td>0%</td>
<td>15%</td>
<td>10%</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>Reduções extraordinárias do REG</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>REG</td>
<td>Rácio de Eficiência Global</td>
<td>17%</td>
<td>55%</td>
<td>42%</td>
<td>73%</td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>Classificação Estrutural</td>
<td>ESD</td>
<td>ESD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>Classificação Funcional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D.9
DADOS

<table>
<thead>
<tr>
<th>8B</th>
<th>Identificação da ponte - número</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>8C</td>
<td>Identificação da ponte - nome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6A</td>
<td>Nome(s) das vias interceptadas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5D</td>
<td>N°/código da via principal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Ponto quilométrico (km)</td>
<td>71,71</td>
<td>9,112</td>
</tr>
<tr>
<td>45</td>
<td>N° de vias (zona principal)</td>
<td>19</td>
<td>4</td>
</tr>
<tr>
<td>43A</td>
<td>Tipo de material (zona principal)</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>43B</td>
<td>* Tipo de concepção/construção</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>27</td>
<td>* Ano de construção</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>* Ano de reconstrução</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42B</td>
<td>* Tipo de serviço sob a estrutura</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>28A</td>
<td>* N° faixas de rodagem sobre a estrutura</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>* Desvio implicado com o fecho (km)</td>
<td>10347</td>
<td>10347</td>
</tr>
<tr>
<td>29</td>
<td>* Tráfego médio diário (TMD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Comprimento do vão máximo (m)</td>
<td>0,9</td>
<td>0,9</td>
</tr>
<tr>
<td>49</td>
<td>* Comprimento da estrutura (m)</td>
<td>24,5</td>
<td>24,5</td>
</tr>
<tr>
<td>51</td>
<td>* Largura total da(s) faixa(s) de rodagem (m)</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>32</td>
<td>* Largura da faixa de rodagem de acesso (m)</td>
<td>20</td>
<td>7</td>
</tr>
<tr>
<td>53</td>
<td>* Gabarit mínimo vertical sobre a ponte(m)</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>112</td>
<td>É, por definição, uma ponte?</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>* Importância estratégica</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>58</td>
<td>* Estado do tabuleiro</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>59</td>
<td>* Estado da superestrutura</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>60</td>
<td>* Estado da infraestrutura</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>62</td>
<td>* Estado da conduta submersa</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>66</td>
<td>* ICC - Índice Capacidade Carga (ton)</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>67</td>
<td>* Avaliação estrutural</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>68</td>
<td>* Avaliação da geometria do tabuleiro</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>69</td>
<td>* Avaliação das limitações espaciais</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>71</td>
<td>* Resposta face ao canal de água</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>72</td>
<td>* Alinhamento dos acessos</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>36A</td>
<td>* Guardas de proteção</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>36B</td>
<td>* Transição guardas acessos-tabuleiro</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>36C</td>
<td>* Guardas dos acessos</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>36D</td>
<td>* Remate das guardas dos acessos</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>EC</td>
<td>Estado conservação (IEP)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>EM</td>
<td>Estado de manutenção (IEP)</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>UM</td>
<td>Manutenção - Urgência actuación (IEP)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>UR</td>
<td>Reparação - Urgência actuación (IEP)</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

RESULTADOS

<table>
<thead>
<tr>
<th></th>
<th>a-min</th>
<th>a-max</th>
<th>s.a.</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>30%</td>
<td>45%</td>
<td>30%</td>
</tr>
<tr>
<td>R2</td>
<td>2%</td>
<td>14%</td>
<td>9%</td>
</tr>
<tr>
<td>R3</td>
<td>0%</td>
<td>15%</td>
<td>11%</td>
</tr>
<tr>
<td>R4</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>REG</td>
<td>32%</td>
<td>74%</td>
<td>50%</td>
</tr>
<tr>
<td>CE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D.10
<table>
<thead>
<tr>
<th>DADOS</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8B</td>
<td>Identificação da ponte - numero</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>8C</td>
<td>Identificação da ponte - nome</td>
<td>PS ao CF Seixas</td>
<td>P. s/ Rib/S.Vicente</td>
</tr>
<tr>
<td>6A</td>
<td>Nome(s) das vias interceptadas</td>
<td>CF - linha do Minho</td>
<td>Rib/S.Vicente</td>
</tr>
<tr>
<td>5D</td>
<td>N°/código da via principal</td>
<td>EN13</td>
<td>EN302-2</td>
</tr>
<tr>
<td>11</td>
<td>Ponto quilométrico (km)</td>
<td>93,43</td>
<td>1,74</td>
</tr>
<tr>
<td>45</td>
<td>N° de vãos (zona principal)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>43A</td>
<td>Tipo de material (zona principal)</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>43B</td>
<td>Tipo de concepção/construção</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>Ano de construção</td>
<td>1965</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>Ano de reconstrução</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42B</td>
<td>Tipo de serviço sob a estrutura</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>28A</td>
<td>N° faixas de rodagem sobre a estrutura</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>Desvio imp. com o fecho (km)</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>Tráfego médio diário (TMD)</td>
<td>10347</td>
<td>10347</td>
</tr>
<tr>
<td>48</td>
<td>Comprimento do vão máximo (m)</td>
<td>5,6</td>
<td>5,6</td>
</tr>
<tr>
<td>49</td>
<td>Comprimento da estrutura (m)</td>
<td>5,6</td>
<td>5,6</td>
</tr>
<tr>
<td>51</td>
<td>Largura total da(s) faixa(s) de rodagem (m)</td>
<td>6,33</td>
<td>6,33</td>
</tr>
<tr>
<td>52</td>
<td>Largura da faixa de rodagem de acesso (m)</td>
<td>20</td>
<td>6,33</td>
</tr>
<tr>
<td>53</td>
<td>Gabarit mínimo vertical sobre a ponte(m)</td>
<td>99,9</td>
<td>99,9</td>
</tr>
<tr>
<td>112</td>
<td>É, por definição, uma ponte?</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>Importância estratégica</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>58</td>
<td>Estado do tabuleiro</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>59</td>
<td>Estado da superestrutura</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>60</td>
<td>Estado da infraestrutura</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>62</td>
<td>Estado da conduta submersa</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>66</td>
<td>ICC - Índice Capacidade Carga (ton)</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>67</td>
<td>Avaliação estrutural</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>68</td>
<td>Avaliação da geometria do tabuleiro</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>69</td>
<td>Avaliação das limitações espaciais</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>71</td>
<td>Resposta face ao canal de água</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>72</td>
<td>Alinhamento dos acessos</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>36A</td>
<td>Guards de proteção</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>36B</td>
<td>Transição guards acessos-tabuleiro</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>36C</td>
<td>Guards dos acessos</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>36D</td>
<td>Remate das guards dos acessos</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>EC</td>
<td>Estado conservação (IPE)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>EM</td>
<td>Estado de manutenção (IPE)</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>UM</td>
<td>Manutenção - Urgência actuação (IPE)</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>UR</td>
<td>Reparação - Urgência actuação (IPE)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>RESULTADOS</td>
<td>a-min</td>
<td>a-max</td>
<td>s.a.</td>
</tr>
<tr>
<td>R1</td>
<td>Rádio de Segurança Estrutural</td>
<td>55%</td>
<td>55%</td>
</tr>
<tr>
<td>R2</td>
<td>Rádio de Funcionalidade</td>
<td>3%</td>
<td>15%</td>
</tr>
<tr>
<td>R3</td>
<td>Rádio de Utilidade Pública</td>
<td>0%</td>
<td>15%</td>
</tr>
<tr>
<td>R4</td>
<td>Reduções extraordinárias do REG</td>
<td>3%</td>
<td>0%</td>
</tr>
<tr>
<td>REG</td>
<td>Rádio de Eficiência Global</td>
<td>55%</td>
<td>85%</td>
</tr>
</tbody>
</table>

CE Classificação Estrutural
CF Classificação Funcional
Dados

<table>
<thead>
<tr>
<th>Código</th>
<th>Descrição</th>
<th>Valor1</th>
<th>Valor2</th>
</tr>
</thead>
<tbody>
<tr>
<td>8B</td>
<td>Identificação da ponte - número</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>8C</td>
<td>Identificação da ponte - nome</td>
<td>P. Rib* Santa Martinha</td>
<td>Ponte s/ Rio Frio</td>
</tr>
<tr>
<td>6A</td>
<td>Nome(s) das vias interceptadas</td>
<td>Rib* Santa Martinha</td>
<td>Rio Frio</td>
</tr>
<tr>
<td>5D</td>
<td>N° código da via principal</td>
<td>EN302-1</td>
<td>EN302-1</td>
</tr>
<tr>
<td>11</td>
<td>Ponto quilométrico (km)</td>
<td>2,574</td>
<td>0,11</td>
</tr>
<tr>
<td>45</td>
<td>N° de vias (zona principal)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>43A</td>
<td>Tipo de material (zona principal)</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>43B</td>
<td>Tipo de concepção/construção</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>27</td>
<td>Ano de construção</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>106</td>
<td>Ano de reconstrução</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>42B</td>
<td>Tipo de serviço sob a estrutura</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>28A</td>
<td>N° faixas de rodagem sobre a estrutura</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>Desvio implicado com o fecho (km)</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>Trâfego médio diário (TMD)</td>
<td>8000</td>
<td>1000</td>
</tr>
<tr>
<td>48</td>
<td>Comprimento do vão máximo (m)</td>
<td>4</td>
<td>3,9</td>
</tr>
<tr>
<td>49</td>
<td>Comprimento da estrutura (m)</td>
<td>15</td>
<td>18,4</td>
</tr>
<tr>
<td>51</td>
<td>Largura total da(s) faixa(s) de rodagem (m)</td>
<td>7,4</td>
<td>3,5</td>
</tr>
<tr>
<td>32</td>
<td>Largura da faixa de rodagem de acesso (m)</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>53</td>
<td>Gabarit mínimo vertical sobre a ponte (m)</td>
<td>2,25</td>
<td>2,1</td>
</tr>
<tr>
<td>112</td>
<td>É, por definição, uma ponte?</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>58</td>
<td>Estado do tabuleiro</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>59</td>
<td>Estado da superestrutura</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>60</td>
<td>Estado da infraestrutura</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>62</td>
<td>Estado da conduta submersa</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>66</td>
<td>ICC - Índice Capacidade Carga (ton)</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>67</td>
<td>Avaliação estrutural</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>68</td>
<td>Avaliação da geometria do tabuleiro</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>69</td>
<td>Avaliação das limitações espaciais</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>71</td>
<td>Resposta face ao canal de águas</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>72</td>
<td>Alinhamento dos acessos</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>36A</td>
<td>Guardas de proteção</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>36B</td>
<td>Transição guardas acessos-tabuleiro</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>36C</td>
<td>Guardas dos acessos</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>36D</td>
<td>Remate das guardas dos acessos</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EC</td>
<td>Estado conservação (IEP)</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>EM</td>
<td>Estado de manutenção (IEP)</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>UM</td>
<td>Manutenção - Urgência atuação (IEP)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>UR</td>
<td>Reparação - Urgência atuação (IEP)</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Resultados

<table>
<thead>
<tr>
<th>Código</th>
<th>Rácio de Segurança Estrutural</th>
<th>a-min</th>
<th>a-max</th>
<th>s.a.</th>
<th>a-min</th>
<th>a-max</th>
<th>s.a.</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td></td>
<td>0%</td>
<td>30%</td>
<td>15%</td>
<td>30%</td>
<td>55%</td>
<td>45%</td>
</tr>
<tr>
<td>R2</td>
<td></td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>13%</td>
<td>9%</td>
</tr>
<tr>
<td>R3</td>
<td></td>
<td>0%</td>
<td>15%</td>
<td>10%</td>
<td>12%</td>
<td>15%</td>
<td>15%</td>
</tr>
<tr>
<td>R4</td>
<td></td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>3%</td>
<td>2%</td>
</tr>
<tr>
<td>REG</td>
<td></td>
<td>0%</td>
<td>45%</td>
<td>25%</td>
<td>42%</td>
<td>80%</td>
<td>67%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Código</th>
<th>Classificação Estrutural</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Código</th>
<th>Classificação Funcional</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF</td>
<td></td>
</tr>
<tr>
<td>N°</td>
<td>Descrição</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>8B</td>
<td>Identificação da ponte - número</td>
</tr>
<tr>
<td>8C</td>
<td>Identificação da ponte - nome</td>
</tr>
<tr>
<td>6A</td>
<td>Nome(s) das vias interceptadas</td>
</tr>
<tr>
<td>5D</td>
<td>N°/índice da via principal</td>
</tr>
<tr>
<td>11</td>
<td>N° quilométrico (km)</td>
</tr>
<tr>
<td>45</td>
<td>N° de vãos (zona principal)</td>
</tr>
<tr>
<td>43A</td>
<td>Tipo de material (zona principal)</td>
</tr>
<tr>
<td>43B</td>
<td>Tipo de concepção/construção</td>
</tr>
<tr>
<td>27</td>
<td>* Ano de construção</td>
</tr>
<tr>
<td>106</td>
<td>* Ano de reconstrução</td>
</tr>
<tr>
<td>42B</td>
<td>* Tipo de serviço sob a estrutura</td>
</tr>
<tr>
<td>28A</td>
<td>* N° faixas de rodagem sobre a estrutura</td>
</tr>
<tr>
<td>19</td>
<td>Desvio implicado com o fecho (km)</td>
</tr>
<tr>
<td>29</td>
<td>Tráfego médio diário (TMD)</td>
</tr>
<tr>
<td>48</td>
<td>Comprimento do vão máximo (m)</td>
</tr>
<tr>
<td>49</td>
<td>Comprimento da estrutura (m)</td>
</tr>
<tr>
<td>51</td>
<td>Largura total da(s) faixa(s) de rodagem (m)</td>
</tr>
<tr>
<td>32</td>
<td>* Largura da faixa de rodagem de acesso (m)</td>
</tr>
<tr>
<td>53</td>
<td>* Gabarit mínimo vertical sobre a ponte (m)</td>
</tr>
<tr>
<td>112</td>
<td>É, por definição, uma ponte?</td>
</tr>
<tr>
<td>100</td>
<td>Importância estratégica</td>
</tr>
<tr>
<td>58</td>
<td>* Estado do tabuleiro</td>
</tr>
<tr>
<td>59</td>
<td>* Estado da superestrutura</td>
</tr>
<tr>
<td>60</td>
<td>* Estado da infraestrutura</td>
</tr>
<tr>
<td>62</td>
<td>* Estado da conduta submersa</td>
</tr>
<tr>
<td>66</td>
<td>* ICC - Índice Capacidade Carga (ton)</td>
</tr>
<tr>
<td>67</td>
<td>Avaliação estrutural</td>
</tr>
<tr>
<td>68</td>
<td>Avaliação da geometria do tabuleiro</td>
</tr>
<tr>
<td>69</td>
<td>Avaliação das limitações espaciais</td>
</tr>
<tr>
<td>71</td>
<td>* Resposta face ao canal de água</td>
</tr>
<tr>
<td>72</td>
<td>* Alinhamento dos acessos</td>
</tr>
<tr>
<td>36A</td>
<td>* Guardas de proteção</td>
</tr>
<tr>
<td>36B</td>
<td>* Transição guardas acessos-tabuleiro</td>
</tr>
<tr>
<td>36C</td>
<td>* Guardas dos acessos</td>
</tr>
<tr>
<td>36D</td>
<td>* Remate das guardas dos acessos</td>
</tr>
<tr>
<td>EC</td>
<td>Estado conservação (IEP)</td>
</tr>
<tr>
<td>EM</td>
<td>Estado de manutenção (IEP)</td>
</tr>
<tr>
<td>UM</td>
<td>Manutenção - Urgência actuação (IEP)</td>
</tr>
<tr>
<td>UR</td>
<td>Reparação - Urgência actuação (IEP)</td>
</tr>
</tbody>
</table>

RESULTADOS

<table>
<thead>
<tr>
<th></th>
<th>a-min</th>
<th>a-max</th>
<th>s.a.</th>
<th>a-min</th>
<th>a-max</th>
<th>s.a.</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>55%</td>
<td>55%</td>
<td>55%</td>
<td>55%</td>
<td>55%</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>0%</td>
<td>13%</td>
<td>13%</td>
<td>1%</td>
<td>21%</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>0%</td>
<td>15%</td>
<td>12%</td>
<td>9%</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
<td>0%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>REG</td>
<td>53%</td>
<td>81%</td>
<td>78%</td>
<td>65%</td>
<td>91%</td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FOB</td>
</tr>
</tbody>
</table>

DADO
DADOS

<table>
<thead>
<tr>
<th>Código</th>
<th>Dados</th>
<th>25</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>8B</td>
<td>Identificação da ponte - numero</td>
<td>11.6</td>
<td>52.77</td>
</tr>
<tr>
<td>8C</td>
<td>Identificação da ponte - nome</td>
<td>Ponte dos Ferrinhos</td>
<td>Ponte dos Arcos</td>
</tr>
<tr>
<td>6A</td>
<td>Nome(s) das vias interceptadas</td>
<td>Ribeiro dos Ferrinhos</td>
<td>Rio Vez</td>
</tr>
<tr>
<td>5D</td>
<td>N°/código da via principal</td>
<td>EN308</td>
<td>EN101</td>
</tr>
<tr>
<td>11</td>
<td>Ponto quilométrico (km)</td>
<td>45</td>
<td>5</td>
</tr>
<tr>
<td>45</td>
<td>N° de vãos (zona principal)</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>43A</td>
<td>Tipo de material (zona principal)</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>43B</td>
<td>* Tipo de concepção/construção</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>27</td>
<td>* Ano de construção</td>
<td>1880</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>* Ano de reconstrução</td>
<td>1998</td>
<td></td>
</tr>
<tr>
<td>42B</td>
<td>* Tipo de serviço sob a estrutura</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>28A</td>
<td>* N° faixas de rodagem sobre a estrutura</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>* Desvio implicado com o fecho (km)</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>* Tráfego médio diário (TMD)</td>
<td>6376</td>
<td>6376</td>
</tr>
<tr>
<td>48</td>
<td>Comprimento do vão máximo (m)</td>
<td>9.52</td>
<td>9.52</td>
</tr>
<tr>
<td>49</td>
<td>* Comprimento da estrutura (m)</td>
<td>10.62</td>
<td>10.62</td>
</tr>
<tr>
<td>51</td>
<td>* Largura total da(s) faixa(s) de rodagem (m)</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>32</td>
<td>* Largura da faixa de rodagem de acesso (m)</td>
<td>20.5</td>
<td>20.5</td>
</tr>
<tr>
<td>53</td>
<td>* Gabarit mínimo vertical sobre a ponte (m)</td>
<td>2.8</td>
<td>2.8</td>
</tr>
</tbody>
</table>

RESULTADOS

<table>
<thead>
<tr>
<th>Código</th>
<th>Resultado</th>
<th>a-min</th>
<th>a-max</th>
<th>s.a.</th>
<th>a-min</th>
<th>a-max</th>
<th>s.a.</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>Rádio de Segurança Estrutural</td>
<td>15%</td>
<td>45%</td>
<td>45%</td>
<td>45%</td>
<td>45%</td>
<td>45%</td>
</tr>
<tr>
<td>R2</td>
<td>Rádio de Funcionalidade</td>
<td>0%</td>
<td>12%</td>
<td>2%</td>
<td>15%</td>
<td>12%</td>
<td>15%</td>
</tr>
<tr>
<td>R3</td>
<td>Rádio de Utilidade Pública</td>
<td>5%</td>
<td>15%</td>
<td>12%</td>
<td>15%</td>
<td>15%</td>
<td>15%</td>
</tr>
<tr>
<td>R4</td>
<td>Reduções extraordinárias do REG</td>
<td>0%</td>
<td>2%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>REG</td>
<td>Rádio de Eficiência Global</td>
<td>20%</td>
<td>70%</td>
<td>59%</td>
<td>75%</td>
<td>72%</td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>Classificação Estrutural</td>
<td></td>
<td></td>
<td>ESD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>Classificação Funcional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D.14
<table>
<thead>
<tr>
<th>DADOS</th>
<th>27</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>8B Identificação da ponte - numero</td>
<td>P. Ponte da Barca</td>
<td>P. int. s/río Trancoso</td>
</tr>
<tr>
<td>8C Identificação da ponte - nome</td>
<td>Rio Lima</td>
<td>Rio Trancoso</td>
</tr>
<tr>
<td>6A Nome(s) das vias interceptadas</td>
<td>EN101</td>
<td>EN301</td>
</tr>
<tr>
<td>5D N°/código da via principal</td>
<td>56,82</td>
<td>94,21</td>
</tr>
<tr>
<td>11 Ponto quilométrico (km)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45 Nº de vãos (zona principal)</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>43A Tipo de material (zona principal)</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>43B * Tipo de concepção/construção</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>27 * Ano de construção</td>
<td>1781</td>
<td>1880</td>
</tr>
<tr>
<td>106 * Ano de reconstrução</td>
<td>1932</td>
<td></td>
</tr>
<tr>
<td>42B * Tipo de serviço sob a estrutura</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>28A * Nº faixas de rodagem sobre a estrutura</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>19 * Desvio implicado com o fecho (km)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>29 * Tráfego médio diário (TMD)</td>
<td>8467</td>
<td>8467</td>
</tr>
<tr>
<td>48 Comprimento do vão máximo (m)</td>
<td>17,5</td>
<td>5</td>
</tr>
<tr>
<td>49 * Comprimento da estrutura (m)</td>
<td>182</td>
<td>6,4</td>
</tr>
<tr>
<td>51 * Largura total da(s) faixa(s) de rodagem (m)</td>
<td>3,8</td>
<td>9,3</td>
</tr>
<tr>
<td>52 * Largura da faixa de rodagem de acesso (m)</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>53 * Gabarit mínimo vertical sobre a ponte (m)</td>
<td>99,9</td>
<td>3,7</td>
</tr>
<tr>
<td>112 É, por definição, uma ponte?</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>100 * Importância estratégica</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>58 * Estado do tabuleiro</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>59 * Estado da superestrutura</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>60 * Estado da infraestrutura</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>62 * Estado da conduta submersa</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>66 * ICC - Índice Capacidade Carga (ton)</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>67 * Avaliação estrutural</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>68 * Avaliação da geometria do tabuleiro</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>69 * Avaliação das limitações espaciais</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>71 * Resposta face ao canal de água</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>72 * Alinhamento dos acessos</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>36A * Guardas de protecção</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>36B * Transição guardas acessos-tabuleiro</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>36C * Guardas dos acessos</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>36D * Remate das guardas dos acessos</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EC Estado conservação (IEP)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>EM Estado de manutenção (IEP)</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>UM Manutenção - Urgência actuação (IEP)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>UR Reparação - Urgência actuação (IEP)</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

RESULTADOS

<table>
<thead>
<tr>
<th></th>
<th>a-min</th>
<th>a-max</th>
<th>s.a.</th>
<th>a-min</th>
<th>a-max</th>
<th>s.a.</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 Rácio de Segurança Estrutural</td>
<td>15%</td>
<td>30%</td>
<td>30%</td>
<td>0%</td>
<td>45%</td>
<td></td>
</tr>
<tr>
<td>R2 Rácio deFuncionalidade</td>
<td>2%</td>
<td>11%</td>
<td>8%</td>
<td>0%</td>
<td>14%</td>
<td></td>
</tr>
<tr>
<td>R3 Rácio de Utilidade Pública</td>
<td>0%</td>
<td>15%</td>
<td>4%</td>
<td>0%</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>R4 Reduções extraordinárias do REG</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>REG Rácio de Eficiência Global</td>
<td>17%</td>
<td>56%</td>
<td>42%</td>
<td>0%</td>
<td>71%</td>
<td></td>
</tr>
<tr>
<td>CE Classificação Estrutural</td>
<td>ESD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF Classificação Funcional</td>
<td>ESD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dados

<table>
<thead>
<tr>
<th>Código</th>
<th>Descrição</th>
<th>Valor</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>8B</td>
<td>Identificação da ponte - número</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>8C</td>
<td>Identificação da ponte - nome</td>
<td>Ponte de Bertiandos</td>
<td>Ponte de Ferreira</td>
</tr>
<tr>
<td>6A</td>
<td>Nome(s) das vias intersectadas</td>
<td>Rio Estorões</td>
<td>Rio Labruja</td>
</tr>
<tr>
<td>5D</td>
<td>Número/código da via principal</td>
<td>EN202</td>
<td>EN202</td>
</tr>
<tr>
<td>11</td>
<td>Ponto quilométrico (km)</td>
<td>18,84</td>
<td>23,76</td>
</tr>
<tr>
<td>45</td>
<td>Número de vãos (zona principal)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>43A</td>
<td>Tipo de material (zona principal)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>43B</td>
<td>Tipo de concepção/construção</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>Ano de construção</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>Ano de reconstrução</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42B</td>
<td>Tipo de serviço sob a estrutura</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>28A</td>
<td>Número de faixas de rodagem sobre a estrutura</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>Desvio implicado com o fecho (km)</td>
<td>15, 7104, 7104</td>
<td>10, 0</td>
</tr>
<tr>
<td>29</td>
<td>Tempo médio diário (TMD)</td>
<td>7104, 7104, 7104</td>
<td>8000, 4000</td>
</tr>
<tr>
<td>48</td>
<td>Comprimento do vão máximo (m)</td>
<td>15,2, 15,2, 15,2</td>
<td>15,16, 15,16</td>
</tr>
<tr>
<td>49</td>
<td>Comprimento da estrutura (m)</td>
<td>15,2, 15,2, 15,2</td>
<td>15,2, 15,2</td>
</tr>
<tr>
<td>51</td>
<td>Largura total da faixa(s) de rodagem (m)</td>
<td>5,6, 5,6, 5,6</td>
<td>5,6, 5,6</td>
</tr>
<tr>
<td>32</td>
<td>Largura da faixa de rodagem de acesso (m)</td>
<td>20, 5,6, 5,6</td>
<td>20, 5,6</td>
</tr>
<tr>
<td>53</td>
<td>Gabarito mínimo vertical sobre a ponte (m)</td>
<td>99,9, 99,9, 99,9</td>
<td>99,9, 99,9</td>
</tr>
<tr>
<td>112</td>
<td>É, por definição, uma ponte?</td>
<td>1, 1, 1</td>
<td>1, 1</td>
</tr>
<tr>
<td>100</td>
<td>Importância estratégica</td>
<td>1, 0, 1</td>
<td>1, 0</td>
</tr>
<tr>
<td>58</td>
<td>Estado do tabuleiro</td>
<td>3, 4, 3</td>
<td>3, 4</td>
</tr>
<tr>
<td>59</td>
<td>Estado da superfície</td>
<td>3, 4, 4</td>
<td>3, 4</td>
</tr>
<tr>
<td>60</td>
<td>Estado da infraestrutura</td>
<td>3, 4, 4</td>
<td>3, 4</td>
</tr>
<tr>
<td>62</td>
<td>Estado da conduta submersa</td>
<td>N, N, N</td>
<td>N, N</td>
</tr>
<tr>
<td>67</td>
<td>Avaliação estrutural</td>
<td>3, 4, 3</td>
<td>3, 4</td>
</tr>
<tr>
<td>68</td>
<td>Avaliação da geometria do tabuleiro</td>
<td>2, 6, 6</td>
<td>2, 6</td>
</tr>
<tr>
<td>69</td>
<td>Avaliação das limitações espaciais</td>
<td>2, 6, 5</td>
<td>2, 6</td>
</tr>
<tr>
<td>71</td>
<td>Resposta face ao canal de água</td>
<td>2, 6, 6</td>
<td>2, 6</td>
</tr>
<tr>
<td>72</td>
<td>Alinhamento dos acessos</td>
<td>2, 6, 6</td>
<td>2, 6</td>
</tr>
<tr>
<td>36A</td>
<td>Guardas de proteção</td>
<td>0, 1, 0</td>
<td>0, 1</td>
</tr>
<tr>
<td>36B</td>
<td>Transição guardas acessos-tabuleiro</td>
<td>0, 1, 0</td>
<td>0, 1</td>
</tr>
<tr>
<td>36C</td>
<td>Guardas dos acessos</td>
<td>0, 1, 0</td>
<td>0, 1</td>
</tr>
<tr>
<td>36D</td>
<td>Remate das guardas dos acessos</td>
<td>0, 1, 0</td>
<td>0, 1</td>
</tr>
<tr>
<td>EC</td>
<td>Estado conservação (IEP)</td>
<td>3, 3, 3</td>
<td>3, 3</td>
</tr>
<tr>
<td>EM</td>
<td>Estado de manutenção (IEP)</td>
<td>M, M, M</td>
<td>M, M</td>
</tr>
<tr>
<td>UM</td>
<td>Manutenção - Urgência actuação (IEP)</td>
<td>1, 1, 1</td>
<td>1, 1</td>
</tr>
<tr>
<td>UR</td>
<td>Reparação - Urgência actuação (IEP)</td>
<td>1, 1, 1</td>
<td>1, 1</td>
</tr>
</tbody>
</table>

Resultados

<table>
<thead>
<tr>
<th>Código</th>
<th>Descrição</th>
<th>a-min</th>
<th>a-max</th>
<th>s.a.</th>
<th>a-min</th>
<th>a-max</th>
<th>s.a.</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>Rádio de Segurança Estrutural</td>
<td>15%</td>
<td>30%</td>
<td>30%</td>
<td>15%</td>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td>R2</td>
<td>Rádio de Funcionalidade</td>
<td>2%</td>
<td>10%</td>
<td>7%</td>
<td>2%</td>
<td>10%</td>
<td>7%</td>
</tr>
<tr>
<td>R3</td>
<td>Rádio de Utilidade Pública</td>
<td>0%</td>
<td>15%</td>
<td>5%</td>
<td>0%</td>
<td>15%</td>
<td>5%</td>
</tr>
<tr>
<td>R4</td>
<td>Reduções extraordinárias do REG</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>REG</td>
<td>Rádio de Eficiência Global</td>
<td>17%</td>
<td>55%</td>
<td>42%</td>
<td>17%</td>
<td>55%</td>
<td>42%</td>
</tr>
<tr>
<td>CE</td>
<td>Classificação Estrutural</td>
<td>ESD</td>
<td>ESD</td>
<td>ESD</td>
<td>ESD</td>
<td>ESD</td>
<td>ESD</td>
</tr>
<tr>
<td>CF</td>
<td>Classificação Funcional</td>
<td>ESD</td>
<td>ESD</td>
<td>ESD</td>
<td>ESD</td>
<td>ESD</td>
<td>ESD</td>
</tr>
</tbody>
</table>
Dados e Resultados

<table>
<thead>
<tr>
<th>DADOS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8B</td>
<td>Identificação da ponte - número</td>
<td>31</td>
</tr>
<tr>
<td>8C</td>
<td>Identificação da ponte - nome</td>
<td>Ponte de Santar</td>
</tr>
<tr>
<td>6A</td>
<td>Nome(s) das vias interceptadas</td>
<td>Rio Vez</td>
</tr>
<tr>
<td>5D</td>
<td>N° código da via principal</td>
<td>EN202-1</td>
</tr>
<tr>
<td>11</td>
<td>Ponto quilométrico (km)</td>
<td>2,638</td>
</tr>
<tr>
<td>45</td>
<td>Nº de vãos (zona principal)</td>
<td>2</td>
</tr>
<tr>
<td>43A</td>
<td>Tipo de material (zona principal)</td>
<td>3</td>
</tr>
<tr>
<td>43B</td>
<td>Tipo de concepção/construção</td>
<td>2</td>
</tr>
<tr>
<td>27</td>
<td>Ano de construção</td>
<td>1890</td>
</tr>
<tr>
<td>106</td>
<td>Ano de reconstrução</td>
<td>1948</td>
</tr>
<tr>
<td>42B</td>
<td>Tipo de serviço sob a estrutura</td>
<td>5</td>
</tr>
<tr>
<td>28A</td>
<td>Nº faixas de rodagem sobre a estrutura</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>Desvio implicado com o fecho (km)</td>
<td>15</td>
</tr>
<tr>
<td>29</td>
<td>Tráfego médio diário (TMD)</td>
<td>5000</td>
</tr>
<tr>
<td>48</td>
<td>Comprimento do vão máximo (m)</td>
<td>13,7</td>
</tr>
<tr>
<td>49</td>
<td>Comprimento da estrutura (m)</td>
<td>27,3</td>
</tr>
<tr>
<td>51</td>
<td>Largura total da(s) faixa(s) de rodagem (m)</td>
<td>2,4</td>
</tr>
<tr>
<td>32</td>
<td>Largura da faixa de rodagem de acesso (m)</td>
<td>20,2</td>
</tr>
<tr>
<td>53</td>
<td>Gabarit mínimo vertical sobre a ponte (m)</td>
<td>99,9</td>
</tr>
<tr>
<td>112</td>
<td>É, por definição, uma ponte?</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>Importância estratégica</td>
<td>1</td>
</tr>
<tr>
<td>58</td>
<td>Estado do tabuleiro</td>
<td>3</td>
</tr>
<tr>
<td>59</td>
<td>Estado da superestrutura</td>
<td>3</td>
</tr>
<tr>
<td>60</td>
<td>Estado da infraestrutura</td>
<td>3</td>
</tr>
<tr>
<td>62</td>
<td>Estado da conduta submersa</td>
<td>N</td>
</tr>
<tr>
<td>67</td>
<td>Avaliação estrutural</td>
<td>3</td>
</tr>
<tr>
<td>68</td>
<td>Avaliação da geometria do tabuleiro</td>
<td>2</td>
</tr>
<tr>
<td>69</td>
<td>Avaliação das limitações espaciais</td>
<td>2</td>
</tr>
<tr>
<td>71</td>
<td>Resposta face ao canal de água</td>
<td>2</td>
</tr>
<tr>
<td>72</td>
<td>Alinhamento dos acessos</td>
<td>2</td>
</tr>
<tr>
<td>36A</td>
<td>Guardas de proteção</td>
<td>0</td>
</tr>
<tr>
<td>36B</td>
<td>Transição guardas acessos-tabuleiro</td>
<td>0</td>
</tr>
<tr>
<td>36C</td>
<td>Guardas dos acessos</td>
<td>0</td>
</tr>
<tr>
<td>36D</td>
<td>Remate das guardas dos acessos</td>
<td>0</td>
</tr>
<tr>
<td>EC</td>
<td>Estado conservação (IEP)</td>
<td>4</td>
</tr>
<tr>
<td>EM</td>
<td>Estado de manutenção (IEP)</td>
<td>M</td>
</tr>
<tr>
<td>UM</td>
<td>Manutenção - Urgência actuação (IEP)</td>
<td>1</td>
</tr>
<tr>
<td>UR</td>
<td>Reparação - Urgência actuação (IEP)</td>
<td>1</td>
</tr>
</tbody>
</table>

Resultados

<table>
<thead>
<tr>
<th>RESULTADOS</th>
<th>a-min</th>
<th>a-max</th>
<th>s.a.</th>
<th>a-min</th>
<th>a-max</th>
<th>s.a.</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>Rácio de Segurança Estrutural</td>
<td>15%</td>
<td>30%</td>
<td>15%</td>
<td>55%</td>
<td>55%</td>
</tr>
<tr>
<td>R2</td>
<td>Rácio de Funcionalidade</td>
<td>2%</td>
<td>16%</td>
<td>4%</td>
<td>3%</td>
<td>15%</td>
</tr>
<tr>
<td>R3</td>
<td>Rácio de Utilidade Pública</td>
<td>0%</td>
<td>15%</td>
<td>11%</td>
<td>0%</td>
<td>15%</td>
</tr>
<tr>
<td>R4</td>
<td>Reduções extraordinárias do REG</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>2%</td>
<td>0%</td>
</tr>
<tr>
<td>REG</td>
<td>Rácio de Eficiência Global</td>
<td>17%</td>
<td>61%</td>
<td>30%</td>
<td>56%</td>
<td>85%</td>
</tr>
</tbody>
</table>

| CE | Classificação Estrutural | ESD | ESD | ESD |
| CF | Classificação Funcional | | | |
Dados

<table>
<thead>
<tr>
<th>Item</th>
<th>Valor 1</th>
<th>Valor 2</th>
<th>Valor 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>8B</td>
<td>Identificação da ponte - número</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>8C</td>
<td>Identificação da ponte - nome</td>
<td>Ponte de S. Gonçalo</td>
<td>Ponte da Formigosa</td>
</tr>
<tr>
<td>6A</td>
<td>Nome(s) das vias interceptadas</td>
<td>Regato de S. Gonçalo</td>
<td>Ribero da Formigosa</td>
</tr>
<tr>
<td>5D</td>
<td>Número/código da via principal</td>
<td>EN13</td>
<td>EN13</td>
</tr>
<tr>
<td>11</td>
<td>Ponto quilométrico (km)</td>
<td>102,5</td>
<td>114,3</td>
</tr>
<tr>
<td>45</td>
<td>Número de vias (zona principal)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>43A</td>
<td>Tipo de material (zona principal)</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>43B</td>
<td>Tipo de concepção/construção</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>27</td>
<td>Ano de construção</td>
<td>1864</td>
<td>1864</td>
</tr>
<tr>
<td>106</td>
<td>Ano de reconstrução</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42B</td>
<td>Tipo de serviço sob a estrutura</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>28A</td>
<td>Número de faixas de rodagem sobre a estrutura</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>Desvio implicado com o fecho (km)</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>Tráfego médio diário (TMD)</td>
<td>12542</td>
<td>12542</td>
</tr>
<tr>
<td>48</td>
<td>Comprimento do vão máximo (m)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>49</td>
<td>Comprimento da estrutura (m)</td>
<td>5,3</td>
<td>5,3</td>
</tr>
<tr>
<td>51</td>
<td>Largura total da(s) faixa(s) de rodagem (m)</td>
<td>2,8</td>
<td>5,6</td>
</tr>
<tr>
<td>32</td>
<td>Largura da faixa de rodagem de acesso (m)</td>
<td>20</td>
<td>2,8</td>
</tr>
<tr>
<td>53</td>
<td>Gabarit mínimo vertical sobre a ponte (m)</td>
<td>99,9</td>
<td>99,9</td>
</tr>
<tr>
<td>112</td>
<td>É, por definição, uma ponte?</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>Importância estratégica</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>58</td>
<td>Estado do tabuleiro</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>59</td>
<td>Estado da superestrutura</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>60</td>
<td>Estado da infraestrutura</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>62</td>
<td>Estado da conduta submersa</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>66</td>
<td>ICC - Índice Capacidade Carga (ton)</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>67</td>
<td>Avaliação estrutural</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>68</td>
<td>Avaliação da geometria do tabuleiro</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>69</td>
<td>Avaliação das restrições</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>71</td>
<td>Resposta face ao canal de água</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>72</td>
<td>Alinhamento dos acessos</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>36A</td>
<td>Guardas de proteção</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>36B</td>
<td>Transição guardas acessos-tabuleiro</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>36C</td>
<td>Guardas dos acessos</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>36D</td>
<td>Remate das guardas dos acessos</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>EC</td>
<td>Estado conservação (IEP)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>EM</td>
<td>Estado de manutenção (IEP)</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>UM</td>
<td>Manutenção - Urgência actuação (IEP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UR</td>
<td>Reparação - Urgência actuação (IEP)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resultados

<table>
<thead>
<tr>
<th>Item</th>
<th>a-min</th>
<th>a-max</th>
<th>s.a.</th>
<th>a-min</th>
<th>a-max</th>
<th>s.a.</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 Rádio de Segurança Estrutural</td>
<td>55%</td>
<td>55%</td>
<td>55%</td>
<td>0%</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>R2 Rádio de Funcionalidade</td>
<td>3%</td>
<td>15%</td>
<td>15%</td>
<td>2%</td>
<td>13%</td>
<td></td>
</tr>
<tr>
<td>R3 Rádio de Utilidade Pública</td>
<td>0%</td>
<td>15%</td>
<td>9%</td>
<td>0%</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>R4 Reduções extraordinárias do REG</td>
<td>3%</td>
<td>1%</td>
<td>3%</td>
<td>0%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>REG Rádio de Efiabilidade Global</td>
<td>55%</td>
<td>84%</td>
<td>76%</td>
<td>2%</td>
<td>43%</td>
<td></td>
</tr>
<tr>
<td>CE Classificação Estrutural</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF Classificação Funcional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ESD</td>
</tr>
</tbody>
</table>

D.18
Dados e Resultados

<table>
<thead>
<tr>
<th>Código</th>
<th>Descrição</th>
<th>Pontaço da Lapela</th>
<th>Ponte da Gadanha</th>
</tr>
</thead>
<tbody>
<tr>
<td>8B</td>
<td>Identificação da ponte - numero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8C</td>
<td>Identificação da ponte - nome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6A</td>
<td>Nome(s) das vias interceptadas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5D</td>
<td>N°/código da via principal</td>
<td>EN101</td>
<td>EN101</td>
</tr>
<tr>
<td>11</td>
<td>Ponto quilométrico (km)</td>
<td>11.64</td>
<td>13.31</td>
</tr>
<tr>
<td>45</td>
<td>N° de vias (zona principal)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>43A</td>
<td>Tipo de material (zona principal)</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>43B</td>
<td>Tipo de concepção/construção</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>27</td>
<td>Ano de construção</td>
<td>1874</td>
<td>1874</td>
</tr>
<tr>
<td>106</td>
<td>Ano de reconstrução</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42B</td>
<td>Tipo de serviço sob a estrutura</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>28A</td>
<td>N° faixas de rodagem sobre a estrutura</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>Desvio implicado com o fecho (km)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>29</td>
<td>Tráfego médio diário (TMD)</td>
<td>8467 8467</td>
<td>8467 8467</td>
</tr>
<tr>
<td>48</td>
<td>Comprimento do vão máximo (m)</td>
<td>2.3 2.3</td>
<td>8 8</td>
</tr>
<tr>
<td>49</td>
<td>Comprimento da estrutura (m)</td>
<td>4.3 4.3</td>
<td>13 13</td>
</tr>
<tr>
<td>51</td>
<td>Largura total da(s) faixa(s) de rodagem (m)</td>
<td>4.8 4.8</td>
<td>4.4 4.4</td>
</tr>
<tr>
<td>32</td>
<td>Largura da faixa de rodagem de acesso (m)</td>
<td>20 4.8</td>
<td>20 4.4</td>
</tr>
<tr>
<td>53</td>
<td>Garcia mínimo vertical sobre a ponte(m)</td>
<td>3.5 3.5</td>
<td>7 7</td>
</tr>
<tr>
<td>112</td>
<td>É, por definição, uma ponte?</td>
<td>0 0</td>
<td>1 1</td>
</tr>
<tr>
<td>100</td>
<td>Importância estratégica</td>
<td>1 0</td>
<td>1 0</td>
</tr>
<tr>
<td>58</td>
<td>Estado do tabuleiro</td>
<td>6 6</td>
<td>6 6</td>
</tr>
<tr>
<td>59</td>
<td>Estado da superestrutura</td>
<td>6 6</td>
<td>6 6</td>
</tr>
<tr>
<td>60</td>
<td>Estado da infraestrutura</td>
<td>6 6</td>
<td>6 6</td>
</tr>
<tr>
<td>62</td>
<td>Estado da conduta submersa</td>
<td>N N</td>
<td>N N</td>
</tr>
<tr>
<td>66</td>
<td>ICC - Índice Capacidade Carga (ton)</td>
<td>99 99</td>
<td>99 99</td>
</tr>
<tr>
<td>67</td>
<td>Avaliação estrutural</td>
<td>6 6</td>
<td>5 5</td>
</tr>
<tr>
<td>68</td>
<td>Avaliação da geometria do tabuleiro</td>
<td>2 6</td>
<td>2 6</td>
</tr>
<tr>
<td>69</td>
<td>Avaliação das limitações espaciais</td>
<td>2 6</td>
<td>2 6</td>
</tr>
<tr>
<td>71</td>
<td>Resposta face ao canal de água</td>
<td>6 6</td>
<td>6 6</td>
</tr>
<tr>
<td>72</td>
<td>Alinhamento dos acessos</td>
<td>2 6</td>
<td>2 6</td>
</tr>
<tr>
<td>36A</td>
<td>Guardas de proteção</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>36B</td>
<td>Transição guardas acessos-tabuleiro</td>
<td>0 1</td>
<td>0 0</td>
</tr>
<tr>
<td>36C</td>
<td>Guardas dos acessos</td>
<td>0 1</td>
<td>0 0</td>
</tr>
<tr>
<td>36D</td>
<td>Remate das guardas dos acessos</td>
<td>0 1</td>
<td>0 0</td>
</tr>
<tr>
<td>EC</td>
<td>Estado conservação (IEP)</td>
<td>1 1</td>
<td>1 1</td>
</tr>
<tr>
<td>EM</td>
<td>Estado de manutenção (IEP)</td>
<td>M M</td>
<td>M M</td>
</tr>
<tr>
<td>UM</td>
<td>Manutenção - Urgência actuação (IEP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UR</td>
<td>Reparação - Urgência actuação (IEP)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resultados

<table>
<thead>
<tr>
<th>Código</th>
<th>Nome</th>
<th>a-min</th>
<th>a-max</th>
<th>s.a.</th>
<th>a-min</th>
<th>a-max</th>
<th>s.a.</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>Rádio de Segurança Estrutural</td>
<td>55%</td>
<td>55%</td>
<td></td>
<td>55%</td>
<td>55%</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>Rádio de Funcionalidade</td>
<td>1%</td>
<td>13%</td>
<td>2%</td>
<td>14%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>Rádio de Utilidade Pública</td>
<td>7%</td>
<td>15%</td>
<td>7%</td>
<td>15%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>Reduções extraordinárias do REG</td>
<td>3%</td>
<td>0%</td>
<td>3%</td>
<td>3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REG</td>
<td>Rádio de Eficiência Global</td>
<td>60%</td>
<td>83%</td>
<td>61%</td>
<td>81%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>Classificação Estrutural</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>Classificação Funcional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DADOS</td>
<td>8B</td>
<td>Identificação da ponte - número</td>
<td>37</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8C</td>
<td>Identificação da ponte - nome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6A</td>
<td>Nome(s) das vias interceptadas</td>
<td></td>
<td>Ponte dos Cavaleiros</td>
<td>Ponte de Salm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5D</td>
<td>Nº/código da via principal</td>
<td>EN303</td>
<td>EN305</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Ponto quilométrico (km)</td>
<td>14.21</td>
<td>7.253</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Nº de vãos (zona principal)</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43A</td>
<td>Tipo de material (zona principal)</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43B</td>
<td>Tipo de concepção/construção</td>
<td>11</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Ano de construção</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>Ano de reconstrução</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42B</td>
<td>Tipo de serviço sob a estrutura</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28A</td>
<td>Nº faixas de rodagem sobre a estrutura</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Desvio implicado com o fecho (km)</td>
<td>10</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Tráfego médio diário (TMD)</td>
<td>2590</td>
<td>2590</td>
<td>5000</td>
<td>100</td>
<td>2500</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Comprimento do vão máximo (m)</td>
<td>8,75</td>
<td>8,75</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Comprimento da estrutura (m)</td>
<td>28,8</td>
<td>28,8</td>
<td>28,4</td>
<td>28,4</td>
<td>28,4</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Largura total da(s) faixa(s) de rodagem (m)</td>
<td>4,4</td>
<td>4,4</td>
<td>5,2</td>
<td>5,2</td>
<td>5,2</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Largura da faixa de rodagem de acesso (m)</td>
<td>20</td>
<td>4,4</td>
<td>20</td>
<td>5,2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Gabarit mínimo vertical sobre a ponte(m)</td>
<td>6,9</td>
<td>6,9</td>
<td>4,1</td>
<td>4,1</td>
<td>4,1</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>É, por definição, uma ponte?</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Importância estratégica</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Estado do tabuleiro</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Estado da superestrutura</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Estado da infraestrutura</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Estado da conduta submersa</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>ICC - Índice Capacidade Carga (ton)</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>** Avaliação estrutural**</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>** Avaliação da geometria do tabuleiro**</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>** Avaliação das limitações Espaciais**</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>** Resposta face ao canal de água**</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>** Alinhamento dos acessos**</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>36A</td>
<td>** Guardas de proteção**</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>36B</td>
<td>** Transição guardas acessos-tabuleiro**</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>36C</td>
<td>** Guardas dos acessos**</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>36D</td>
<td>** Remate das guardas dos acessos**</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td>** Estado conservação (IEP)**</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM</td>
<td>** Estado de manutenção (IEP)**</td>
<td>M</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UM</td>
<td>** Manutenção - Urgência actuação (IEP)**</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>UR</td>
<td>** Reparação - Urgência actuação (IEP)**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RESULTADOS</th>
<th>a-min</th>
<th>a-max</th>
<th>s.a.</th>
<th>a-min</th>
<th>a-max</th>
<th>s.a.</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>Rádio de Segurança Estrutural</td>
<td>30%</td>
<td>55%</td>
<td>15%</td>
<td>15%</td>
<td>15%</td>
</tr>
<tr>
<td>R2</td>
<td>Rádio de Funcionalidade</td>
<td>3%</td>
<td>15%</td>
<td>0%</td>
<td>20%</td>
<td>9%</td>
</tr>
<tr>
<td>R3</td>
<td>Rádio de Utilidade Pública</td>
<td>10%</td>
<td>15%</td>
<td>0%</td>
<td>15%</td>
<td>5%</td>
</tr>
<tr>
<td>R4</td>
<td>Reduções extraordinárias do REG</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>REG</td>
<td>Rádio de Eficiência Global</td>
<td>43%</td>
<td>85%</td>
<td>15%</td>
<td>50%</td>
<td>29%</td>
</tr>
<tr>
<td>CE</td>
<td>Classificação Estrutural</td>
<td></td>
<td></td>
<td>ESD</td>
<td>ESD</td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>Classificação Funcional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NÚMERO</td>
<td>DESCRIÇÃO</td>
<td>39 Ponte do Anhel</td>
<td>40 Ponte da Travanca</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------------</td>
<td>-------------------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8B</td>
<td>Identificação da ponte - número</td>
<td>EN306 40,18</td>
<td>EN306 5,39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8C</td>
<td>Identificação da ponte - nome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6A</td>
<td>Nome(s) das vias interceptadas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5D</td>
<td>N°/código da via principal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Ponto quilométrico (km)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>N° de vias (zona principal)</td>
<td>3 8</td>
<td>2 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43A</td>
<td>Tipo de material (zona principal)</td>
<td>11 8</td>
<td>1 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43B</td>
<td>* Tipo de concepção/construção</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>* Ano de construção</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>* Ano de reconstrução</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42B</td>
<td>* Tipo de serviço sob a estrutura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28A</td>
<td>* N° faixas de rodagem sobre a estrutura</td>
<td>1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>* Desvio implicado com o fecho (km)</td>
<td>50 0</td>
<td>30 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>* Tráfego médio diário (TMD)</td>
<td>2791 2791</td>
<td>2791 2791</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Comprimento do vão máximo (m)</td>
<td>6,7 6,7</td>
<td>1,5 1,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>* Comprimento da estrutura (m)</td>
<td>14,9 14,9</td>
<td>3,8 3,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>* Largura total da(s) faixa(s) de rodagem (m)</td>
<td>3,3 3,3</td>
<td>6,6 6,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>* Largura da faixa de rodagem de acesso (m)</td>
<td>3,3 3,3</td>
<td>6,6 6,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>* Gabarit mínimo vertical sobre a ponte(m)</td>
<td>1,7 1,7</td>
<td>1,5 1,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>É, por definição, uma ponte?</td>
<td>1 1</td>
<td>0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>* Importância estratégica</td>
<td>1 0</td>
<td>1 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>* Estado do tabuleiro</td>
<td>2 2</td>
<td>3 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>* Estado da superestrutura</td>
<td>3 3</td>
<td>4-2 4-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>* Estado da infraestrutura</td>
<td>2 2</td>
<td>5-3 5-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>* Estado da conduta submersa</td>
<td>N N</td>
<td>N N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>* ICC - Índice Capacidade Carga (ton)</td>
<td>99 99</td>
<td>99 99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>* Avaliação estrutural</td>
<td>3-2 3-2</td>
<td>2 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>* Avaliação da geometria do tabuleiro</td>
<td>2 6</td>
<td>2 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>* Avaliação das limitações espaciais</td>
<td>2 6</td>
<td>2 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>* Resposta face ao canal de água</td>
<td>2 6</td>
<td>6 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>* Alinhamento dos acessos</td>
<td>2 6</td>
<td>2 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36A</td>
<td>* Guardas de proteção</td>
<td>0 0</td>
<td>1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36B</td>
<td>* Transição guardas acessos-tabuleiro</td>
<td>0 0</td>
<td>0 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36C</td>
<td>* Guardas dos acessos</td>
<td>0 0</td>
<td>0 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36D</td>
<td>* Remate das guardas dos acessos</td>
<td>0 0</td>
<td>0 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td>Estado conservação (IEP)</td>
<td>4 4</td>
<td>2 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM</td>
<td>Estado de manutenção (IEP)</td>
<td>M M</td>
<td>M M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UM</td>
<td>Manutenção - Urgência actuação (IEP)</td>
<td>2 2</td>
<td>1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UR</td>
<td>Reparação - Urgência actuação (IEP)</td>
<td>1 1</td>
<td>1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESULTADOS</td>
<td>a-min a-max s.a. a-min a-max s.a.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>Rádio de Segurança Estrutural</td>
<td>0% 0%</td>
<td>55% 55%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>Rádio de Funcionalidade</td>
<td>0% 8%</td>
<td>0% 7%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>Rádio de Utilidade Pública</td>
<td>0% 15%</td>
<td>7% 15%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>Reduções extraordinárias do REG</td>
<td>0% 0%</td>
<td>2% 0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REG</td>
<td>Rádio de Eficiência Global</td>
<td>0% 23%</td>
<td>60% 77%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>Classificação Estrutural</td>
<td>FitDad FitDad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>Classificação Funcional</td>
<td>FitDad FitDad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>