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SUMMARY 

The geometrically non-linear forced vibration of fully clamped composite laminated 

plates is studied by the hierarchical finite element method (HFEM). Using the first 

order shear deformation theory (FSDT), Kirchhoff’s hypothesis is relaxed by 

removing the third part, i.e., the transverse normals do not remain perpendicular to 

the midsurface after deformation. Von Kármán’s non-linear strain-displacement 

relationships are employed and the middle plane in-plane displacements are included 

in the model, as well as the rotations about the in-plane axis x and y. The equations of 

motion are developed in the time domain by applying the principle of virtual work. 

The high order polynomials that emerge in the HFEM are integrated by symbolic 

manipulation. These equations are solved in the time domain using Newmark direct 

integration scheme. The time domain response is studied using the phase plane, 

Poincaré maps, Fourier spectra and Lyapunov exponents; periodic, quasi-periodic 

and chaotic motions are obtained. Two different types of forces are considered, the 

results for linear and non-linear analysis are compared with published ones and good 

agreement is found. It is demonstrated that the HFEM requires fewer degrees of 

freedom (DOF) than the more common h-version of the FEM. This is a very 

important advantage in non-linear analysis because the time required to solve the 

non-linear equations of motion increases significantly with the number of DOF.  
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SOMMAIRE 

On s’intéresse ici à l’étude, à l’aide de la Méthode des Eléments Finis Hiérarchiques 

(MEFH), des vibrations forcées, en non-linéaire géométrique, de plaques composites 

encastrées. La modélisation utilisée repose sur la théorie de Reissner-Mindlin 

(déformation au première ordre), avec l’hypothèse de Kirchhoff où le troisième terme 

a été négligé (les normales au feuillet moyen ne sont plus nécessairement 

perpendiculaires à ce feuillet après déformation) et en considérant la relation non-

linéaire tension-déplacement de Von Kármán. Les déplacements du feuillet moyen 

ainsi que les rotations suivant les axes x et y sont introduits dans le modèle. Les 

équations du mouvement sont obtenues par application du principe des travaux 

virtuels. Les polynômes d’ordres élevés qui interviennent dans la méthode des 

éléments finis hiérarchiques sont pris en compte par manipulation symbolique. Les 

équations du mouvement sont résolues numériquement dans le domaine temporel par 

la méthode de Newmark. Les réponses dans le domaine temporel sont analysées en 

étudiant le comportement des trajectoires dans le plan de phase, des sections de 

Poincaré, des spectres de Fourier et par  calcul des exponents de Lyapunov. Deux 

types sollicitations externes sont considérés. Les réponses périodiques, quasi-

périodiques et chaotiques sont mises en évidence. Les résultats pour l’analyse linéaire 

et non-linéaire sont comparés avec ceux publiés et un bon accord est trouvé. Le coût 

numérique pour résoudre les équations non-linéaires du mouvement augmente 

considérablement avec le nombre de degrés de liberté. Ceci est un inconvénient pour 

mener l’analyse de systèmes faiblement amortis où des simulations sur un temps long 

sont exigées. La méthode des MEFH nécessitant moins de degrés de liberté que la 

classique MEF version-h, elle est fortement indiquée pour l’analyse numérique dans 

le domaine temporel des oscillations non-linéaires des plaques composites laminées. 



 

 v

SUMÁRIO 

A vibração forçada em regime não linear geométrico de placas assimétricas 

encastradas em materiais compósitos é estudada pelo método dos elementos finitos 

hierárquico (MEFH). A origem do sistema de eixos encontra-se no plano médio, 

sendo o eixo dos zz normal a este. Usando a teoria de Mindlin para placas (first order 

shear deformation theory), a hipótese de Kirchhoff é relaxada removendo a terceira 

parte, i.e, os deslocamentos transversos não se mantêm perpendiculares à superfície 

média, após deformação. As relações não lineares de von Kármán entre as 

deformações e os deslocamentos são aplicadas e os deslocamentos ao longo do plano 

médio são incluídos no modelo, bem como as rotações dos deslocamentos 

transversos ao longo do eixo dos xx e dos yy. As equações de movimento no domínio 

do tempo são determinadas aplicando os princípios dos trabalhos virtuais. Os 

polinómios de ordem superior que aparecem no MEFH são integrados usando 

manipulação simbólica. Estas equações são resolvidas no domínio do tempo usando o 

método de Newmark. A estabilidade da solução obtida, no domínio do tempo, é 

estudada, usando planos de fase, mapas de Poincaré, espectro de Fourier e expoentes 

de Lyapunov. Soluções periódicas, quase-periódicas e caóticas são obtidas. Dois 

tipos de forças são consideradas, os resultados obtidos em análise linear e não linear 

são comparados com outros publicados e boa concordância é encontrada. É 

demonstrado que o MEFH requer menos graus de liberdade (GL) que a versão-h do 

método. Esta é uma grande vantagem em análise não linear porque o tempo 

necessário para resolver as equações não lineares de movimento aumenta 

significativamente com o número de graus de liberdade. 
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C h a p t e r  1  

INTRODUCTION 

1. GENERAL INTRODUCTION 

Composite laminated structures are used in many areas of engineering such as 

aeronautics, space engineering and naval industry [1.1, 1.2, 1.3]. Those structures 

are submitted to vibrations with large amplitude, therefore in the geometrically 

non-linear regime. Nowadays, typical examples of composite plates are the 

panels used in spaceships, aircrafts and automobiles which are submitted to large 

acoustic, aerodynamic and inertia excitation [1.4]. Vibrations with large 

amplitude cause large tensions and the diminution of life due to fatigue. Quasi 

periodic and chaotic behaviours are other consequences of non-linearity, 

completely ignored by linear models which are normally used [1.5, 1.6]. 

Therefore the study of geometrically non-linear vibration in laminated plates 

made of composite and hybrid materials becomes important. 

A hierarchical finite element method developed recently [1.7 - 1.9], in which the 

model is improved by increasing the number of shape functions in each element, 

needs a small number of degrees of freedom. This is a big advantage, because the 

non-linear equations of motion are solved using iterative methods.  

2. REVIEW OF RESEARCH CARRIED OUT ON PLATE VIBRATIONS 

The combination of two or more materials in order to form a new material with 

better properties is something that can be understood as a simple definition of 

composite materials. There are various types of composite materials: fibre, 

particulate, laminar, flake and filled [1.10]. Laminated composite materials are 

made of layers with different materials, which include fibrous composites and 
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particulate materials. In this case, composites can be either metallic or non-

metallic. Thus there are four possible combinations: metallic in non-metallic, 

non-metallic in metallic, non-metallic in non-metallic and metallic in metallic. 

A lamina is a sheet of composite material. A fibre reinforced lamina consists of 

many fibres embedded in a matrix material like aluminium, or non-metal like a 

thermoset or thermoplastic polymer. The fibres can be continuous or 

discontinuous, wover, unidirectional, bidirectional or randomly distributed. 

Unidirectional fibre reinforced lamina exhibit the highest strength and stiffness in 

the direction of the fibres, but in the transverse direction of the fibres they have 

very low strength and stiffness. Poor bonding between a fibre and matrix results 

in poor transverse properties and failures in the form of a fibre pull out, fibre 

breakage and fibre buckling. Discontinuous fibre reinforced composites have 

lower strength and stiffness than continuous fibre reinforced composites. 

A laminate is a set of laminae stacked to achieve the desired stiffness and 

thickness. As an example, unidirectional fibre reinforced laminae can be stacked 

so that the fibres in each lamina are oriented in the same or different directions. 

The layers are bonded together with the same matrix material. Because of the 

mismatch of material properties between layers, the shear stresses produced 

between the layers, especially at the edges of a laminate, may cause delamination 

[1.11]. 

3. REVIEW OF PLATE VIBRATIONS 

The interest of investigators in large vibration amplitudes of plates has been 

constant since the first revelation of the classical elliptic function solution for 

simply supported plates by Chu and Herrmann [1.12]. Linear free vibration of 

composite plates has been studied in the past. The studies of Bert have largely 

contributed to the development of analytical methods for solution of plate 

problems [1.13, 1.14]. Reddy [1.15 - 1.18] has reviewed the literature extensively 

and focused the attention on the application of the finite element method to linear 
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and non-linear plate problems. For composite plates, non-linear strain 

displacements relationships are most commonly used in the literature for the 

development of non-linear theories.  

Chia[1.19, 1.20] considered the non-linear response of various types of plates. 

Transverse shear deformation, rotatory inertia, anisotropy, initial imperfections, 

and variable rigidity have been discussed and reviewed. Developments in free-

vibration of analysis of symmetric and unsymmetric laminates, non-linear 

vibrations of perfect and geometrically imperfect plates have been carried out by 

Kapania et al. [1.21]. 

To determine the solutions of the general problem of geometrically non-linear 

vibrations numerical, analytical or combined analytical numerical methods can be 

found. The finite element method has been applied to solve non-linear static and 

dynamic problems of plates. Mei is considered as one of the first researchers to 

apply the finite element method to large vibrations amplitudes of plates, namely 

in a work published in 1973 [1.22]. Using the finite element method, Mei et al. 

[1.23] studied the large amplitude steady state forced vibration response of 

symmetrically laminated composite thin rectangular plates, including both in-

plane deformation and inertia in the formulation. 

Most of the research has been carried out in symmetrical composite plates. 

Asymmetrical laminates are harder to analyse, since they exhibit bending-

stretching coupling.  

 Recent investigations in the geometrically non-linear dynamic behaviour of 

symmetric laminated plates using the hierarchical finite element method have 

been developed by W. Han, M. Petyt and P. Ribeiro [1.7-1.9; 1.24-1.28].   

In 2002, B. Harras studied the response of rectangular Carbon Fiber Reinforced 

Plastic (CFRP) and Glare 3 hybrid symmetrically laminated plates in order to 

investigate the non-linear mode shapes and associated bending stress patterns at 

large vibration amplitudes of various types of fully clamped rectangular plates. 

This material offers more resistance to impact than CFRP [1.29].   

As referred so far, geometrically non-linear behaviour of asymmetrical laminated 

plates in composite materials by the hierarchical finite element method is a study 
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that has not been carried out. Based on the model derived in this work, the 

numerical results obtained will be compared to others in geometrically non-linear 

behaviour of symmetrical laminated plates in composite materials. Some 

important conclusions can be found. The first order shear deformation theory is 

used and compared with results obtained using Kirchooff’s hypothesis.  

4. THE HIERARCHICAL FINITE ELEMENT METHOD 

Through the years, structures tended to become more complex. Thus the need to 

develop new methods to analyse them and the evolution of computers led to the 

finite element method, used to build non linear models of structures like plates. 

Finite Element Analysis (FEA) is a computer-based numerical technique. It can 

be used to calculate deflection, stress, vibration, buckling behaviour and many 

other phenomena. It can be used to analyze either small or large-scale deflection 

under loading or applied displacement. It can analyze elastic deformation, or 

"permanently bent out of shape" plastic deformation. The computer is required 

because of the large number of calculations needed to analyze a large structure. 

In the finite element method, a structure is broken down into many small simple 

blocks or elements. The behaviour of an individual element can be described with 

a relatively simple set of equations. Just as the set of elements would be joined 

together to build the whole structure, the equations describing the behaviours of 

the individual elements are joined into a large set of equations (which depends of 

the structure) that describe the behaviour of the whole structure. The computer 

can solve this large set of simultaneous equations. From the solution, the 

computer extracts the behaviour of the individual elements. From this, it can get 

the stress and deflection of all the parts of the structure. The stresses will be 

compared to allowed values of stress for the materials to be used, to see if the 

structure is strong enough [1.30]. 

The term "finite element" distinguishes the technique from the use of 

infinitesimal "differential elements" used in calculus, differential equations, and 
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partial differential equations. The method is also distinguished from finite 

difference equations, for which although the steps into which space is divided are 

finite in size, there is little freedom in the shapes that the discreet steps can take. 

Finite element analysis is a way to deal with structures that are more complex 

than can be dealt with analytically using partial differential equations. FEA deals 

with complex boundaries better than finite difference equations would, and gives 

answers to "real world" structural problems. It has been substantially extended in 

scope during the roughly 40 years of its use. 

Finite Element Analysis makes it possible to evaluate a detailed and complex 

structure, in a computer, during the planning of the structure. The demonstration 

in the computer of the adequate strength of the structure and the possibility of 

improving the design during planning can justify the cost of this analysis work. 

FEA has also been known to increase the rating of structures that were 

significantly over designed and built many decades ago. 

In the absence of Finite Element Analysis (or other numerical analysis), 

development of structures must be based on experience and hand calculations 

only. For complex structures, the simplifying assumptions required to make any 

calculations possible can lead to a conservative and heavy design. A considerable 

factor of ignorance can remain as to whether the structure will be adequate for all 

design loads. Significant changes in designs involve risk. Designs will require 

prototypes to be built and field tested. The field tests may involve expensive 

strain gauging to evaluate strength and deformation. 

In the most used version of the FEM, the shape functions are polynomials with a 

small degree p, and the accuracy of the model is improved by increasing the 

number of elements in the structure. As a result, the number of the finite elements 

increases and their width h decreases, giving to this approach the designation “h-

version of the FEM”. 

Another way of improving the accuracy of the finite element approximation is to 

keep the mesh constant and to increase the number of shape functions over the 

elements. When polynomials are used as shape functions, this approach implies 

an increase in their degree p; thus, it was designated as the “p-version of the finite 
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element method”. If the set of functions corresponding to an approximation of 

lower order p, constitutes a subset of the set of functions corresponding to the 

approximation of order p+1, then the p-version of the FEM is called “hierarchical 

finite element method” (HFEM). 

The use of the p-version of the finite element method has more advantages than 

the use of the  h-version: 

i) To achieve more accurate solutions, a  change in the mesh is not required; 

ii) The linear element matrices for a certain number of shape functions p=p1 

are always submatrices for p=p2 , p2 ≥ p1[1.31, 1.32]. 

iii) If orthogonal polynomials are employed, the linear matrices obtained in the 

hierarchical finite element method are diagonal, thus they are better conditioned 

than the finite element method matrices [1.30]. 

iv) the Inclusion Principle, which states that the eigenvalues of the (n+1) order 

approximation bracket the eigenvalues of the nth order approximation, is valid for 

linear discretized systems modelled by the HFEM. Consequently, the HFEM 

linear solutions converge from above. In general, the Inclusion Principle is not 

valid for systems modelled by the h-version of the FEM [1.32, 1.33]. 

v) Joining elements of different polynomial degree is not difficult; therefore it 

is possible to include at low cost additional degrees of freedom where needed 

[1.31].  

vi) Simple structures can be modelled using just one element, or “super-

element”. This avoids any problems in the satisfaction of inter-element continuity 

and avoids the assemblage of the elements. 

vii) The possibility of choosing the number and type of displacement shape 

functions facilitates the study of the influence of each displacement component. 

For example, the influence of the middle plane in-plane displacement 

components in the dynamic behaviour of a plate can be easily studied. 

viii) The HFEM tends to give accurate results with far fewer DOF than the h-

version of the FEM, because of the flexibility of choosing the shape functions 
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employed according to the problem under study and because of the high order 

shape functions used. This is particularly true for smooth solutions, since strong 

mesh generation may be advantageous in the vicinity of singular points [1.34]. 

As a consequence of these properties, the HFEM model requires less time than 

the FEM, which is a major advantage in non-linear analysis, where the iterative 

methods of solution of the equations of motion involve a reformulation of the 

non-linear matrices in each iteration. 

The quick convergence of the HFEM applied in the study of composite laminated 

plates has been proved [1.7-1.9; 1.24-1.28]. When compared with the h-version 

of the FEM, the HFEM consistently demanded fewer degrees of freedom to 

accurately calculate stresses, displacements and resonance frequencies. 

The large disadvantage of the HFEM is the need to perform integration of high 

order polynomials which costs many operations in numerical integration. Thus 

the use of symbolic computation is required. A detailed introduction to the finite 

element method can be found in references [1.3, 1.32].  

5. OBJECTIVES OF THE PRESENT WORK 

The main objectives of the dissertation that follows this work are:  

1. Development of hierarchic finite elements for asymmetrical laminated 

plates in composite materials. Only symmetric laminates are analysed in this 

thesis. However, a general model valid for symmetric and asymmetric laminates 

was derived for wider future use, and this is the model presented in the following 

text. 

2. Analyse the vibration of plates in geometrically non-linear vibrations. 

To do that, Newmark method will be applied (like finite differences or 

Wilson-θ, the equations of motion are integrated numerically in time). The 

analysis will imply the study of the time response, the phase portraits and 

Fourier spectra. Particular attention will be given to: 
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- Transitions to chaos (implies the determination of Lyapunov exponents); 

- influence of fibre variation. 

Both of these objectives will be achieved and are presented in the following 

chapters. 

6. GENERAL ARRANGEMENT OF CHAPTERS IN THIS THESIS 

This thesis consists of 6 chapters. The first chapter, as has been seen above, is an 

introduction. The last one contains conclusions which summarize the whole work 

and suggests future investigations. The mathematical model for the non-linear 

vibration of composite laminated plates which is based on the Hierarchical Finite 

Element Method is derived in Chapter 2. In Chapter 3, different tools that can be 

used to characterize the responses of non-linear systems are presented, namely, 

Fourier analysis, Poincaré Analysis and Lyapunov exponents. The rest of the 

chapters are about the applications of the p-version finite element model to 

different cases. By applying the Newmark method to solve the equations of 

motion the forced vibrations of composite laminated plates due to transverse 

forces are analysed in Chapter 4. In Chapter 5, in-plane forces are added to the 

external excitation, and the ensuing motions are discussed. 
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MATHEMATICAL MODEL 

    1.  INTRODUCTION 

In this chapter, a hierarchical finite element model for geometrically non-linear 

vibration in unsymmetrical laminated plates made of composite materials is 

developed. The model will be presented in the time domain. 

    2. MATHEMATICAL MODEL 

        2.1 - Field Equations  

In this section, a hierarchical finite element method for asymmetric composite plates 

is presented. The plate with constant thickness h, width a and length b, is composed 

of orthotropic layers oriented at different angles θ. 

The origin of the co-ordinate system is located at the middle plane with the z-axis 

being normal to the mid-plane. Using the first order shear deformation theory 

(FSDT), Kirchhoff’s hypothesis is relaxed by removing the third part, i.e., the 

transverse normals do not remain perpendicular to the midsurface after deformation. 

The inextensibility of transverse normals requires that w is not a function of the 

thickness coordinate, z. The displacement field (Figure 1) of the first-order theory is 

of the form [2.1] 

                               u(x, y, z, t ) = u0(x, y, t )+zФy (x, y, t ) (2. 1)

                               v(x, y, z, t ) = v0(x, y, t) -zФx (x ,y ,t ) (2. 2)

                               w(x, y, z, t) = w0(x, y, t) (2. 3)
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Figure 1 - Plate Element, coordinates, mid-plane displacements and rotations 

where (u0, v0, w0) are the displacements along the coordinate lines of a material point 

on the xy plane, therefore in the mid-plane (z=0), and where Фx and Фy are 
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 the rotations of a transverse normal about the x-axis and the y-axis, respectively. The 

functions (u0, v0, w0, Фx, Фy) are unknown and are to be determined. For thin plates, 

i.e., when the plate in-plane characteristic dimension to thickness ratio is on the order 

50 or higher (a/h≥50) [2.2], the rotation functions Фx and Фy should approach the 

respective slopes of the transverse deflection: 
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In this case, the first order shear deformation theory becomes identical to the classical 

plate theory where Kirchhoff’s hypothesis is followed [2.5]. 

The non-linear strains associated with the displacement field in Figure 1 are 
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where 0
xε , 0

yε  and 0
xyγ  are the in-plane strain components at 0=z defined by the 

von Kármán non-linear strain-displacement relationships[2.3]: 

0 0 0 2
, ,

1 ( )
2

ε = +x x xu w , 0 0 0 2
, ,

1 ( )
2y y yv wε = + , 0 0 0 0 0

, , , ,xy y x x yu v w wγ = + +  (2. 5)

where 0
,xu  represents the partial derivate 0u

x
∂
∂

.  

Figure 2 shows these displacements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The terms xκ , yκ  and xyκ in equation (2. 4) are the curvatures or bending strains, 

which are given by: 
0
y

x x
∂Φ

κ = −
∂

,
0
x

y y
∂Φ

κ =
∂

and 
0 0
y x

xy y x
∂Φ ∂Φ

κ = − +
∂ ∂

 (2. 6) 

The transverse shear strains are  
0 0 0

,zx x ywγ = + Φ , 0 0 0
,yz y xwγ = − Φ  (2. 7) 

  

 

 
 
 
 
 
 
 
 

 

Figure 2 – Displacements of a plate 
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For each element, the middle plane in-plane displacements and the rotations are 

expressed in the form: 

[ ]
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 (2. 8)

where{ }uq , { }vq  and { }qw  are the vectors of generalised in and out-of-plane 

displacements, and { }y
qΦ  and { }x

qΦ  are the vectors of generalised rotations. The 

complete matrix of shape functions 
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 (2. 9)

is constituted by the row vectors of bi-dimensional in-plane, out-of-plane and 

rotational shape functions, which are, respectively, 

{ } ( ) ( ) ( ) ( ) ( ) ( ){ }1 1 1 2, ,...,
i i

Tu
p pN g g g g g g= ξ η ξ η ξ η  (2. 10)

{ } ( ) ( ) ( ) ( ) ( ) ( ){ }1 1 1 2, ,...,
o o

Tw
p pN f f f f f f= ξ η ξ η ξ η  (2. 11)

{ } ( ) ( ) ( ) ( ) ( ) ( ){ }1 1 1 2
, , ,y

p py y

T

y y y y y yN
Φ Φ

Φ = Φ ξ Φ η Φ ξ Φ η Φ ξ Φ η  (2. 12)

{ } ( ) ( ) ( ) ( ) ( ) ( ){ }1 1 1 2
, ,...,x

p px x

T

x x x x x xN
Φ Φ

Φ = Φ ξ Φ η Φ ξ Φ η Φ ξ Φ η  (2. 13)

The vectors {g}, {f}, { yΦ } and { xΦ } are the vectors of in-plane, transverse, and 

rotational one dimensional displacement shape functions; po, pi, 
y

pΦ and 
x

pΦ are the 
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numbers of respective transverse, middle plane, rotation about y and rotation about x, 

displacement shape functions employed; ξ and η are the local coordinates, which are 

given by: 

2 , 2x a y bξ = η =  (2. 14)

In the hierarchical finite element method, one is free to choose the number and set of 

displacement shape functions to be applied in the definition of the element. 

Increasing the order of the shape functions that represent the displacements within the 

element increases the accuracy of the element. In a plate element, there is a set of 

shape functions for the transverse displacements, a set of shape functions for the in-

plane displacements and one set of shape functions for each rotation. 

An element of a layer is now considered and the plate geometric axes are x and y, as 

in Figure 3. The principal material axes are labelled 1 and 2, that is, the 1 direction is 

parallel to the fibbers and the 2 direction is normal to them. 

 

 

 

 

 

 

Mohr’s circle analysis in basic strength of materials can be applied to establish that 
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Analogously, the strain relationship is given by 
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where  
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 (2. 17)

where ( )cosm = θ , ( )sinn = θ , and θ is the positive angle defined, and CL refer to 

the 1-2 plane only. The effects of transverse shear deformation are shown in the 

inclusion of the relations σ − ε4 4 and σ − ε5 5  in composite materials [2.4], therefore 

the equations (2. 15)-(2. 17) are modified to: 
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⎪ ⎪ε
⎪ ⎪

ε⎪ ⎪⎩ ⎭

 (2. 18)

 

Where 

[ ]T =

2 2

2 2

2 2

0 0 2
0 0 2

0 0 0
0 0 0

0 0 ( )

m n mn
n m mn

m n
n m

mn mn m n

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

 (2. 19)

Multiplying (2. 18) by[ ] 1T − , the relationships can be written as 

x

y

yz

zx

xy

σ⎧ ⎫
⎪ ⎪σ⎪ ⎪⎪ ⎪σ⎨ ⎬
⎪ ⎪σ
⎪ ⎪

σ⎪ ⎪⎩ ⎭

=[ ] 1T −

1

2

4

5

6

σ⎧ ⎫
⎪ ⎪σ⎪ ⎪⎪ ⎪σ⎨ ⎬
⎪ ⎪σ⎪ ⎪

σ⎪ ⎪⎩ ⎭

 and 

x

y

yz

xz

xy

ε⎧ ⎫
⎪ ⎪ε⎪ ⎪⎪ ⎪ε⎨ ⎬
⎪ ⎪ε
⎪ ⎪

ε⎪ ⎪⎩ ⎭

=[ ] 1T −

1

2

4

5

6

ε⎧ ⎫
⎪ ⎪ε⎪ ⎪⎪ ⎪ε⎨ ⎬
⎪ ⎪ε⎪ ⎪

ε⎪ ⎪⎩ ⎭

 (2. 20)
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The [ ] 1T −  matrix is obtained by replacing θ by -θ in[ ]T , and is given by 

[ ] 1T −
= 

2 2

2 2

2 2

0 0 2
0 0 2

0 0 0
0 0 0

0 0 ( )

m n mn
n m mn

m n
n m

mn mn m n

⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥− −⎣ ⎦

 (2. 21)

Using Hooke´s law that relates stresses and strains, the general equations for a lamina 

of composite material in terms of the principal material directions (1, 2, 3), where 3 

would represent the z-axis, are given by: 

1

2

4

5

6

σ⎧ ⎫
⎪ ⎪σ⎪ ⎪⎪ ⎪σ⎨ ⎬
⎪ ⎪σ⎪ ⎪

σ⎪ ⎪⎩ ⎭

= 

11 12

12 22

44

55

66

0 0 0
0 0 0

0 0 2 0 0
0 0 0 2 0
0 0 0 0 2

Q Q
Q Q

Q
Q

Q

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

1

2

4

5

6

ε⎧ ⎫
⎪ ⎪ε⎪ ⎪⎪ ⎪ε⎨ ⎬
⎪ ⎪ε⎪ ⎪

ε⎪ ⎪⎩ ⎭

 (2. 22)

Qij are defined in reference [2.4] and are given by: 

11 1 23 32

22 2 31 13

44 23

55 13         

66 12         

12 1 21 31 23

2 12 32 13

(1 ) /      
(1 ) /     

                     
                  
                  

(  ) /
     (  ) /

Q E
Q E
Q G
Q G
Q G
Q E

E

= − ν ν ∆⎧
⎪ = − ν ν ∆⎪
⎪ = λ
⎪ = λ⎨
⎪ = λ⎪

= ν + ν ν ∆

= ν + ν ν ∆⎩

⎪
⎪

  

where ∆ = − ν ν − ν ν − ν ν − ν ν ν12 21 23 32 31 13 21 32 131 2 . 

 

(2. 23)

Displacements in the z-direction are not considered, therefore 23ν = 32ν = 31ν = 13ν =0 

and (2. 23) comes 
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1
11

12 21

2
22

12 21

21 1
12

12 21

44 23

55 13

66 12

1

1

1
      
       

        

EQ

EQ

EQ

Q G
Q G
Q G

⎧ =⎪ − ν ν⎪
⎪

=⎪ − ν ν⎪⎪ ν⎨ =⎪ − ν ν
⎪

= λ⎪
⎪ = λ⎪

=⎪⎩

 (2. 24)
 

 

Here, E1 and E2 are the major and minor Young’s moduli; ν12 and ν21 are the 

Poisson’s ratios; G12 is the shear modulus. [2.4] 1 and 2 denote the principal 

directions of the plate layer. A shear correction factor, λ=5/6, that accounts for the 

fact that the shear stresses are not constant across the section, was introduced in (2. 

24). 

Multiplying equation (2. 20) by [ ]T and substituting in equation (2. 22), we have 

[ ]T

x

y

yz

zx

xy

σ⎧ ⎫
⎪ ⎪σ⎪ ⎪⎪ ⎪σ⎨ ⎬
⎪ ⎪σ
⎪ ⎪

σ⎪ ⎪⎩ ⎭

=

11 12

12 22

44

55

66

0 0 0
0 0 0

0 0 2 0 0
0 0 0 2 0
0 0 0 0 2

Q Q
Q Q

Q
Q

Q

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

[ ]T

ε⎧ ⎫
⎪ ⎪ε⎪ ⎪⎪ ⎪ε⎨ ⎬
⎪ ⎪ε
⎪ ⎪

ε⎪ ⎪⎩ ⎭

x

y

yz

xz

xy

  

which is equivalent to  

x

y

yz

zx

xy

σ⎧ ⎫
⎪ ⎪σ⎪ ⎪⎪ ⎪σ⎨ ⎬
⎪ ⎪σ
⎪ ⎪

σ⎪ ⎪⎩ ⎭

=[ ] 1T −

11 12

12 22

44

55

66

0 0 0
0 0 0

0 0 2 0 0
0 0 0 2 0
0 0 0 0 2

Q Q
Q Q

Q
Q

Q

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

[ ]T

x

y

yz

xz

xy

ε⎧ ⎫
⎪ ⎪ε⎪ ⎪⎪ ⎪ε⎨ ⎬
⎪ ⎪ε
⎪ ⎪

ε⎪ ⎪⎩ ⎭

 

by multiplying both members by [ ] 1T − . This is equivalent to  
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x

y

yz

zx

xy

σ⎧ ⎫
⎪ ⎪σ⎪ ⎪⎪ ⎪σ⎨ ⎬
⎪ ⎪σ
⎪ ⎪

σ⎪ ⎪⎩ ⎭

=

11 12 16

12 22 26

44 45

45 55

16 26 66

0 0

0 0

0 0 0

0 0 0

0 0

Q Q Q

Q Q Q

Q Q

Q Q

Q Q Q

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

2
2
2

x

y

yz

xz

xy

ε⎧ ⎫
⎪ ⎪ε⎪ ⎪⎪ ⎪ε⎨ ⎬
⎪ ⎪ε
⎪ ⎪

ε⎪ ⎪⎩ ⎭

, (2. 25)

Considering 1
2yz yzε = γ , 1

2xz xzε = γ , and 1
2xy xyε = γ , equation (2. 25) comes 

x

y

yz

zx

xy

σ⎧ ⎫
⎪ ⎪σ⎪ ⎪⎪ ⎪σ⎨ ⎬
⎪ ⎪σ
⎪ ⎪

σ⎪ ⎪⎩ ⎭

=

11 12 16

12 22 26

44 45

45 55

16 26 66

0 0

0 0

0 0 0

0 0 0

0 0

Q Q Q

Q Q Q

Q Q

Q Q

Q Q Q

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x

y

yz

xz

xy

ε⎧ ⎫
⎪ ⎪ε⎪ ⎪⎪ ⎪γ⎨ ⎬
⎪ ⎪γ
⎪ ⎪

γ⎪ ⎪⎩ ⎭

 (2. 26)

where ⎡ ⎤⎣ ⎦Q =[ ] 1T − [ ]Q [ ]T is given by 

11Q = 4 2 2 4
11 12 66 222( 2 )Q m Q Q m n Q n+ + +  

12Q = 2 2 4 4
11 22 66 12( 4 ) ( )Q Q Q m n Q m n+ − + +  

16Q = 3 3 2 2
22 11 12 66( )( 2 )mn Q m nQ mn m n Q Q− + − − +

22Q = 4 2 2 4
11 12 66 222( 2 )Q n Q Q m n Q m+ + +  

3 3 2 2
22 11 12 6626 ( )( 2 )Q m nQ mn Q mn m n Q Q= − + + − +  

2 2
44 5544Q Q m Q n= +  

55 4445 ( )Q Q Q mn= −  

2 2
55 4455Q Q m Q n= +  

2 2 2 2 2
11 22 12 6666 2 ) ( )Q Q Q Q m n Q m n= + − + −  

(2. 27)

Equation (2. 26) can be written as 
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At this point the quantities Qij and ijQ  can be determined relating stresses and strains 

in either coordinate system. Equations (2. 28) are the constitutive equations of 

laminae. 

In the following, N is the number of laminae that composes the laminate. For the kth 

laminae, equation (2. 26) can be written as 

x

y

yz

zx

xy k

σ⎧ ⎫
⎪ ⎪σ⎪ ⎪⎪ ⎪σ⎨ ⎬
⎪ ⎪σ
⎪ ⎪

σ⎪ ⎪⎩ ⎭

=
k

Q⎡ ⎤⎣ ⎦

x

y

yz

xz

xy k

ε⎧ ⎫
⎪ ⎪ε⎪ ⎪⎪ ⎪γ⎨ ⎬
⎪ ⎪γ
⎪ ⎪

γ⎪ ⎪⎩ ⎭

 (2. 29)

where all matrices must have the subscript k due to the orientation of the particular 

lamina with respect to the plate x-y coordinates and its unique Q⎡ ⎤⎣ ⎦ . 

Consider equations (2. 1) to (2. 13), and a laminated plate, elastic, with uniform 

thickness h, and each layer of the plate is homogeneous and orthotropic; hk is the 

vectorial distance from the mid-plane, to the upper surface of the kth lamina. 

 

2.2 - Moment-Curvature and stress relations  

The in-plane stress resultants { }, ,x y xyT T T and the moments{ }x y xyM , M , M , 

per unit length are defined by: 

{ } { }
2

2

, , , ,

h

x y xy x y xy
h

T T T dz
−

= σ σ τ∫ , (2. 30)

11 12 16

12 22 26

16 26 66

x x

y y

xy xy

Q Q Q

Q Q Q

Q Q Q

⎡ ⎤⎧ ⎫ ⎧ ⎫σ ε
⎢ ⎥⎪ ⎪ ⎪ ⎪σ = ε⎢ ⎥⎨ ⎬ ⎨ ⎬
⎢ ⎥⎪ ⎪ ⎪ ⎪σ γ⎩ ⎭ ⎩ ⎭⎢ ⎥⎣ ⎦

 

44 45

45 55

yz yz

zx zx

Q Q

Q Q

⎡ ⎤σ γ⎧ ⎫ ⎧ ⎫
= ⎢ ⎥⎨ ⎬ ⎨ ⎬σ γ⎩ ⎭ ⎩ ⎭⎢ ⎥⎣ ⎦

 

(2. 28)
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{ } { }
2

2

, , , ,

h

x y xy x y xy
h

M M M zdz
−

= σ σ τ∫  (2. 31)

 

The shear stress resultants are 

{ } { }
2

2

, ,

h

x y xz yz
h

Q Q dz
−

= τ τ∫  (2. 32)

 

For a laminated plate, the stress components can be integrated across each lamina and 

added together as follows, employing equations (2. 29), (2. 5) and (2. 6), 

{ } { }
11

, , , ,k

k

N h

x y xy x y xyh
k

T T T dz
−=

= σ σ τ∑∫ = 

= { } { }{ }
1 1

0 0 0

1

, , , ,k k

k k

N h h

x y xy x y xy kkh hk kk

Q dz Q k k k zdz
− −=

⎡ ⎤ ⎡ ⎤ε ε τ +⎣ ⎦ ⎣ ⎦∑ ∫ ∫  (2. 33)

Since the derivatives of u0 and v0 (mid-surface displacements) and theQ ’s are not 

functions of z, (2. 33) can be rewritten as: 

{ }, ,x y xyT T T =  

= { } { }{ }
1 1

0 0 0

1
, , , ,k k

k k

N h h

x y xy x y xy kk h hk kk
Q dz Q k k k zdz

− −=

⎡ ⎤ ⎡ ⎤ε ε τ +⎣ ⎦ ⎣ ⎦∑ ∫ ∫  (2. 34)

or, in reduced form, 

[ ] [ ][ ] [ ][ ]0T A B k= ε +  (2. 35)

where  

[ ]1
1
( )

N

ij k k kij
k

A Q h h −
=

= −∑ , [i,j = 1,2,6] (2. 36)

2 21
12

1
( )

N

ij k k kij
k

B Q h h −
=

⎡ ⎤= −⎣ ⎦∑ , [i,j = 1,2,6] (2. 37)

 

From equation (2. 31), 
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{ } { }
11

, , , ,k

k

N h

x y xy x y xyh
k

M M M zdz
−=

= σ σ τ∑∫ = 

= { } { }{ }
1 1

0 0 0 2

1

, , , ,k k

k k

N h h

x y xy x y xy kkh hk kk

Q zdz Q z dz
− −=

⎡ ⎤ ⎡ ⎤ε ε τ + κ κ κ⎣ ⎦ ⎣ ⎦∑ ∫ ∫  

{ } { }{
1 1

0 0 0 2

1
, , , ,k k

k k

N h h

x y xy x y xy kk h hk kk
Q zdz Q z dz

− −=

⎡ ⎤ ⎡ ⎤= ε ε τ + κ κ κ⎣ ⎦ ⎣ ⎦∑ ∫ ∫
 

(2. 38)

or, in reduced form1, 

[ ] [ ][ ] [ ][ ]0M B D= ε + κ  (2. 39)

Where 

3 31
13

1

( )
N

ij k k kij
k

D Q h h −
=

⎡ ⎤= −⎣ ⎦∑ ,[i,j = 1,2,6] (2. 40)

From (2. 22), (2. 5), and (2. 30) to (2. 32), 

kxzτ =2 55 452
k kxz yzQ Qε + ε  

kyzτ = 45 442 2
k kxz yzQ Qε + ε  

hence 

( )55 452x xz yzQ A A= ε + ε  (2. 41)

( )45 442y xz yzQ A A= ε + ε  (2. 42)

Combining (2.32) and (2.36), 

[ ] [ ][ ] [ ][ ]
[ ] [ ][ ] [ ][ ]

0

0

T A B k
M B D k

⎧ = ε +⎪
⎨ = ε +⎪⎩

,  (2. 43) 

we have 

[ ] [ ]
[ ] [ ] { } [ ]{ }
A BT

E
B DM

⎡ ⎤⎧ ⎫
= ε = ε⎨ ⎬ ⎢ ⎥

⎩ ⎭ ⎣ ⎦
 (2. 44)

 

which is equivalent to 

                                                 
1 The notation here used for the reduced form is equal to the representation of the mass matrix defined in section 

2.3.  
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0
11 12 16 11 12 16

0
12 22 26 12 22 26

0
16 26 66 16 26 66

11 12 16 11 12 16

12 22 26 12 22 26

16 26 66 16 26 66

x x

y y

xy xy

x x

y y

xy xy

T A A A B B B
T A A A B B B
T A A A B B B
M B B B D D D
M B B B D D D
M B B B D D D

⎡ ⎤ε⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ε⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ τ

= ⎢ ⎥⎢ ⎥ ⎢ ⎥ κ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ κ
⎢ ⎥⎢ ⎥ ⎢ ⎥
κ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (2. 45)

 

where [ ]A  is the extensional stiffness matrix relating  in-plane stress resultants (N’s) 

to the mid-surface strains ( 0ε ’s); [ ]D  is the flexural stiffness matrix relating the 

stress couples (M’s) to the curvatures (k’s), and [ ]B  is the bending-stretching matrix 

and relates M’s to 0ε ’s and N’s to k’s. The model presented is valid for laminated 

plates which may be not symmetrical about their mid-surface plane. 

 2.3 - Equations of Motion 

The equations of motion of the plate are derived by equating the sum of the virtual 

work of the inertia forces, of the elastic restoring forces, and of external forces to 

zero. In-plane and transverse external forces are considered.  

Combining equations (2. 4), (2. 5) and (2. 6), the strains are expressed as  

{ }
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

x

y

xy

z
z

z

⎧ ⎫ε −⎡ ⎤
⎪ ⎪ ⎢ ⎥ε = − ε⎨ ⎬ ⎢ ⎥
⎪ ⎪ ⎢ ⎥ε −⎣ ⎦⎩ ⎭

 (2. 46)

Where 

{ }ε = 0

0 0

p p
L

b

⎧ ⎫ ⎧ ⎫ε ε
+⎨ ⎬ ⎨ ⎬

ε ⎩ ⎭⎩ ⎭
 (2. 47)

 

The linear membrane and bending strains, { }0
pε and{ }0

bε , and the geometrically 

non-linear membrane strain, { }p
Lε , are defined as  
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{ }0
pε = 

,

,

, ,

x

y

y x

u
v

u v

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪+⎩ ⎭

, { }0
bε =

0

0

0 0

y

x

y x

x

y

y x

⎧ ⎫∂Φ
⎪ ⎪−

∂⎪ ⎪
⎪ ⎪∂Φ⎪ ⎪
⎨ ⎬∂⎪ ⎪
⎪ ⎪∂Φ ∂Φ⎪ ⎪− +

∂ ∂⎪ ⎪⎩ ⎭

, { }p
Lε =

( )
( )

2

,

2

,

, ,

2

2

x

x

x y

w

w

w w

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 (2. 48)

 

Or, in terms of shape functions and generalized displacements, using relation  

(2. 8), 

{ }0
pε =

{ }
{ }

{ } { }

,

,

, ,

0

0

Tu
x

T uu
y

v
T Tu u

y x

N
q

N
q

N N

⎡ ⎤
⎢ ⎥

⎧ ⎫⎢ ⎥
⎨ ⎬⎢ ⎥
⎩ ⎭⎢ ⎥

⎢ ⎥⎣ ⎦

 (2. 49)

{ }0
bε =

{ }
{ }

{ } { }

,

,

, ,

0

0

y

yx

x
y x

T

x

T

y

T T

y x

N
q

N
q

N N

Φ

ΦΦ

Φ
Φ Φ

⎡ ⎤−⎢ ⎥
⎧ ⎫⎢ ⎥ ⎪ ⎪
⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥ ⎩ ⎭

⎢ ⎥−⎢ ⎥⎣ ⎦

 (2. 50)

{ }p
Lε =

{ } { }{ } { }

{ } { }{ } { }

{ } { }{ } { }

1
, ,2

1
, ,2

, ,

TT w w
w x x w

TT w w
w y y w

TT w w
w x y w

q N N q

q N N q

q N N q

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2. 51)

 

The transverse shear strains, { }zxγ  and { }yzγ  are defined as 

yz

zx

γ⎧ ⎫
⎨ ⎬γ⎩ ⎭

=
0
,
0
,

y x

x y

w
w

⎧ ⎫− Φ⎪ ⎪
⎨ ⎬+ Φ⎪ ⎪⎩ ⎭

=
{ } { }
{ } { }

,

,

0

0

x

y
y

x

TTw w
y

TTw
x

qN N
q

N N q

Φ

Φ
Φ

Φ

⎧ ⎫⎡ ⎤− ⎪ ⎪⎪ ⎪⎢ ⎥
⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥⎣ ⎦ ⎪ ⎪⎩ ⎭

 (2. 52)

The principle of virtual work states that: 

0in v exW W Wδ + δ + δ =  (2. 53)
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where inWδ , vWδ  and exWδ  are, respectively, the work done by the inertia, internal 

and external forces due to virtual displacements { }dδ . { }dδ  is given by 

{ } [ ]{ }

δ⎧ ⎫
⎪ ⎪δ⎪ ⎪⎪ ⎪δδ = = δ⎨ ⎬
⎪ ⎪δΦ
⎪ ⎪

δΦ⎪ ⎪⎩ ⎭

x

y

u
v
wd N q  (2. 54)

 

Making use of d’Alembert principle, we obtain the following expression for the 

virtual work of the inertia forces: 

{ } { } { } [ ] [ ] { }( ) { } [ ]{ }TT T T
inW h d d d q h N N d q q M q

Ω Ω
δ = −ρ δ Ω = δ −ρ Ω = − δ∫ ∫
 

 

 (2. 55)

Where [ ]M is the mass matrix:  

[ ] [ ] [ ]TM h N N d
Ω

= ρ Ω =∫   

{ } { }
{ } { }

{ } { }

{ } { }

{ } { }

3

3

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
12

0 0 0 0
12

y y

x x

T Tu u

T Tu u

T Tw w

T T

T T

h N N d

h N N d

h N N d

h N N d

h N N d

Ω

Ω

Ω

Φ Φ

Ω

Φ Φ

Ω

⎡ ⎤ρ Ω
⎢ ⎥
⎢ ⎥

ρ Ω⎢ ⎥
⎢ ⎥

ρ Ω⎢ ⎥= =⎢ ⎥
ρ⎢ ⎥Ω⎢ ⎥

⎢ ⎥
ρ⎢ ⎥Ω⎢ ⎥⎣ ⎦

∫
∫

∫

∫

∫
 

 (2. 56)

where ρ  is the mass density of the material that constitutes the plate, { } { }2

2

d q
q

dt
=  

and Ω  represents the area of the plate. 

This is equivalent to, in simplified notation, 
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[ ] [ ]

[ ]

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

p

p

b

Ry

Rx

M

M
M M

M

M

⎡ ⎤⎡ ⎤⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤⎣ ⎦⎢ ⎥

= ⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2. 57)

where [Mp] and [Mb] are the in-plane and out-of-plane inertia matrices, [MRy] and 

[MRx] are due to the rotatory inertia. 

The variation vWδ may be expressed as: 

{ } { } { }T T
v

T
W d Q d

MΩ Ω

⎧ ⎫
δ = −δ ε Ω − δγ Ω⎨ ⎬

⎩ ⎭
∫ ∫  (2. 58) 

Substituting equations (2. 47) and (2. 44) in (2. 58), 

[ ] { } { }( )0 0

0 00 0

T Tp pp p
TL L

v b bW E d Q d
Ω Ω

⎛ ⎞ ⎛ ⎞⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎧ ⎫ε εε ε⎜ ⎟δ = −δ + + Ω− δγ Ω⎜ ⎟⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎜ ⎟⎜ ⎟ε ε⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭⎝ ⎠⎝ ⎠
∫ ∫  (2. 59) 

= [ ] [ ] { } { }0 0

0 00 0

T Tp pp p
TL L

b bE E d Q d
Ω Ω

⎛ ⎞⎛ ⎞⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎧ ⎫ε εε ε⎜ ⎟−δ + + Ω − δγ Ω⎜ ⎟⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎜ ⎟⎜ ⎟ε ε⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭⎝ ⎠⎝ ⎠
∫ ∫  

= [ ] [ ] [ ] [ ]0 0 0 0

0 0 0 00 0 0 0

T T T Tp p p pp p p p
L L L L

b b b bE E E E d
Ω

⎛ ⎞⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫ε ε ε εε ε ε ε⎜ ⎟−δ + + + Ω⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎜ ⎟ε ε ε ε⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎝ ⎠
∫     

{ } { }T Q d
Ω

− δγ Ω∫ = 

[ ]

( , , )
( , , )
( , , )

0
0

T
u

v
T

w

x

y

u P x y t
v P x y t
w N dP x y t

Ω

δ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪δ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪δ= Ω⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪δφ
⎪ ⎪ ⎪ ⎪

δφ⎪ ⎪ ⎪ ⎪⎩ ⎭⎩ ⎭

∫  (2. 60)

Where ( , , )uP x y t , ( , , )vP x y t and ( , , )wP x y t  are the distributed forces (N/m2) applied to 

the plate in the x, y, z directions, respectively. The linear stiffness matrix[ ]1K , non-
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linear stiffness matrices,[ ]2K ,[ ]3K  and [ ]4K and the vector of external forces { }P  

are defined as follows: 

[ ] { } { }

[ ] [ ]
[ ] [ ] { } { }

0 0

0 0

0 0

0 0

Tp p
T

b b

Tp p
T

b b

E d Q d

A B
d Q d

B D

Ω Ω

Ω Ω

⎛ ⎞⎧ ⎫ ⎧ ⎫ε ε⎜ ⎟δ Ω − δγ Ω⎨ ⎬ ⎨ ⎬⎜ ⎟ε ε⎩ ⎭ ⎩ ⎭⎝ ⎠
⎛ ⎞⎡ ⎤⎧ ⎫ ⎧ ⎫ε ε⎜ ⎟= δ Ω − δγ Ω⎨ ⎬ ⎨ ⎬⎢ ⎥⎜ ⎟ε ε⎩ ⎭ ⎩ ⎭⎣ ⎦⎝ ⎠

∫ ∫

∫ ∫

 

={ } [ ]{ }1
Tq K qδ , (2. 61)

[ ] [ ] [ ]
[ ] [ ]

0 0

0 00 0

T Tp pp p
L L

b b

A B
E d d

B DΩ Ω

⎛ ⎞ ⎛ ⎞⎡ ⎤⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎧ ⎫ε εε ε⎜ ⎟ ⎜ ⎟δ Ω = δ Ω⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟ε ε⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭ ⎣ ⎦⎝ ⎠ ⎝ ⎠
∫ ∫  

={ } [ ]{ }2
Tq K qδ , (2. 62)

[ ] [ ] [ ]
[ ] [ ]

0 0

0 00 0

T Tp pp p
L L

b b

A B
E d d

B DΩ Ω

⎛ ⎞ ⎛ ⎞⎡ ⎤⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎧ ⎫ε εε ε⎜ ⎟ ⎜ ⎟δ Ω = δ Ω⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟ε ε⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭⎣ ⎦⎝ ⎠ ⎝ ⎠
∫ ∫  

={ } [ ]{ }3
Tq K qδ  (2. 63)

[ ] [ ] [ ]
[ ] [ ]0 0 0 0

T Tp p p p
L L L LA B

E d d
B DΩ Ω

⎛ ⎞ ⎛ ⎞⎡ ⎤⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫ε ε ε ε⎜ ⎟ ⎜ ⎟δ Ω = δ Ω⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎣ ⎦⎝ ⎠ ⎝ ⎠
∫ ∫  

={ } [ ]{ }4
Tq K qδ  (2. 64)

{ } [ ] { } { }

( , , )
( , , )
( , , )

0
0

u

v
TT T

w

P x y t
P x y t

q N d q PP x y t
Ω

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪δ Ω = δ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

∫ , (2. 65)
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where{ }

( , , )
( , , )
( , , )

0
0

u

v

w

P x y t
P x y t

P P x y t

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

. 

Therefore, equation (2. 59) may be expressed as  

vWδ =-{ } [ ] [ ] [ ] [ ]( ){ }1 2 3 4
Tq K K K K qδ + + +  (2. 66)

 

The generalized excitation forces exWδ can be expressed in terms of the actual 

forces and the shape functions of the HFEM, by means of the virtual work executed 

by these forces. For example, if ( )jP t represents a transverse concentrated force 

acting at the point x= jx and ( ), ,dP x y t represents a transverse distributed force, the 

virtual work of the external forces is given by: 

( ) ( ) { } ( ){ }( ) ( ) , , ( , ) T
ex j j j d w wW P t x x y y P x y t w x t d q P t

Ω
⎡ ⎤δ = δ − δ − + δ Ω = δ⎣ ⎦∫

 
(2. 67)

where ( )jx xδ − represents a spatial Dirac delta functions given by 

0

( )

( ) 1

j j

L

j

x x x x

x x dx

δ − ≠

δ − =∫
 (2. 68)

So that ( ) ( ) ( )j j jP t x x y yδ − δ − has units of distributed force (N/m2).  

Substituting equations (2. 61)-(2. 65) into equation (2. 60) and allowing the virtual 

generalized displacements to be arbitrary, gives the time domain equations of motion 

in generalized coordinates: 

{ } [ ]{ } { } [ ] [ ] [ ] [ ]( ){ } { } ( ){ }1 2 3 4 0T T Tq M q q K K K K q q P t− δ − δ + + + + δ =  (2. 69)

This is equivalent to, 
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{ } [ ]{ } [ ] [ ] [ ] [ ]( ){ } ( ){ }( )1 2 3 4 0Tq M q K K K K q P tδ − − + + + + =   

[ ]{ } [ ]{ } [ ] [ ] [ ]( ){ } ( ){ }1 2 3 4M q K q K K K q P t⇔ + + + + =   

[ ]{ } [ ]{ } [ ]{ } { }M q Kl q Knl q P⇔ + + =  (2. 70)

In a more detailed form, equation (2. 70) may be written as follows: 

[ ]

[ ]

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

y

x

p u

vp

w
b

Ry

Rx

M q
qM
qM
qM
qM

Φ

Φ

⎡ ⎤⎡ ⎤ ⎧ ⎫⎣ ⎦⎢ ⎥ ⎪ ⎪⎢ ⎥⎡ ⎤ ⎪ ⎪⎣ ⎦⎢ ⎥ ⎪ ⎪ +⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥

⎡ ⎤ ⎪ ⎪⎢ ⎥⎣ ⎦
⎪ ⎪⎢ ⎥ ⎩ ⎭⎢ ⎥⎣ ⎦

  

11 12 11 12
1 1 1 1

21 22 21 22
1 1 1 1

11 12 13
1 1 1

11 12 21 11 22 12 23
1 1 1 1 1 1 1

21 22 31
1 1 1

0

0

0 0

p p pb pb

p p pb pb

bp bp b b

bp bp

K K K K

K K K K

K K K

K K K K K K K

K K K

γ γ γ

γ γ γ

γ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

21 32 22 33
1 1 1 1

y

x

u

v

w

b b

q
q
q
q

q
K K K K

Φ

Φγ γ

⎡ ⎤
⎧ ⎫⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎨ ⎬

⎢ ⎥ ⎪ ⎪
⎢ ⎥ ⎪ ⎪
⎢ ⎥ ⎪ ⎪⎩ ⎭⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

  

 

[ ]

{ }
{ }
{ }

11
2

21
2

11 12 31 13
3 3 2 3 4

0 0 0 0

0 0 0 0

0 0
00 0 0 0 0
00 0 0 0 0

y

x

u u

v v

w w

K q P
qK P
q PK K K K K
q

q
Φ

Φ

⎡ ⎤⎡ ⎤ ⎧ ⎫⎣ ⎦ ⎧ ⎫⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥⎡ ⎤ ⎪ ⎪⎣ ⎦ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪+ =⎨ ⎬ ⎨ ⎬⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎩ ⎭⎩ ⎭⎣ ⎦

, (2. 71)

Where  

11 12
1 1

21 22
1 1

p p

p p

K K

K K

⎡ ⎤⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦

,
11 12

1 1

21 22
1 1

b b

b b

K K

K K

⎡ ⎤⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦

,
11 12

1 1

21 22
1 1

pb pb

pb pb

K K

K K

⎡ ⎤⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦

, 
11 12

1 1

21 22
1 1

bp bp

bp bp

K K

K K

⎡ ⎤⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦

,  
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11 12 13
1 1 1

21 22 23
1 1 1

31 32 33
1 1 1

K K K

K K K

K K K

γ γ γ

γ γ γ

γ γ γ

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

, 

11
2

21
2

31
2

K

K

K

⎡ ⎤⎡ ⎤⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤⎣ ⎦⎣ ⎦

 and 11 12 13
3 3 3K K K⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦  indicate the area 

which 1
pK⎡ ⎤⎣ ⎦ , 1

bK⎡ ⎤⎣ ⎦ , 1
pbK⎡ ⎤⎣ ⎦ , 1

bpK⎡ ⎤⎣ ⎦ , 1K γ⎡ ⎤⎣ ⎦ , [ ]2K  and [ ]3K occupy, respectively. 

1
pK⎡ ⎤⎣ ⎦ is the in-plane linear stiffness matrix, 1

bK⎡ ⎤⎣ ⎦  is the out-plane linear stiffness 

matrix, 1
pbK⎡ ⎤⎣ ⎦ and 1

bpK⎡ ⎤⎣ ⎦  are the in-plane/bending coupling matrices, and 1K γ⎡ ⎤⎣ ⎦ is 

the shear linear stiffness matrix; they form the linear [ ]1K  matrix. [ ]2K , [ ]3K  and 

[ ]4K represent the nonzero part of the non-linear stiffness matrices and 

{ } { } { } { }{ }0 0
T

u v wP P P P=  is the vector of generalized external forces. These 

matrices are defined in the following sections, with the exception of[ ]3K . As is 

demonstrated in reference [2.1], by comparing the form of [ ]3K  and[ ]2K , 

[ ]3K =2[ ]2
TK .  

From equation (2. 71), the system can be split in two parts: 

0 0 0 0

0 0 0 0
y

x

u

v
p

w

p

q
q

M
q

M q

q
Φ

Φ

⎧ ⎫
⎪ ⎪
⎪ ⎪⎡ ⎤⎡ ⎤⎣ ⎦ ⎪ ⎪⎢ ⎥ +⎨ ⎬

⎢ ⎥⎡ ⎤ ⎪ ⎪⎣ ⎦⎣ ⎦
⎪ ⎪
⎪ ⎪⎩ ⎭

 

11 12 11 12
1 1 1 1

21 22 21 22
1 1 1 1

0

0
y

x

u

vp p pb pb

w
p p pb pb

q
q

K K K K
q

K K K K q

q
Φ

Φ

⎧ ⎫
⎪ ⎪
⎪ ⎪⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎪ ⎪⎢ ⎥ +⎨ ⎬

⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
⎪ ⎪
⎪ ⎪⎩ ⎭
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{ }
{ }

11
2

21
2

0 0 0 0

0 0 0 0
y

x

u

v

u
w

v

q
q

K Pq
PK q

q
Φ

Φ

⎧ ⎫
⎪ ⎪
⎪ ⎪⎡ ⎤⎡ ⎤ ⎧ ⎫⎣ ⎦ ⎪ ⎪ ⎪ ⎪⎢ ⎥+ =⎨ ⎬ ⎨ ⎬

⎢ ⎥⎡ ⎤ ⎪ ⎪⎩ ⎭⎪ ⎪⎣ ⎦⎣ ⎦
⎪ ⎪
⎪ ⎪⎩ ⎭

                                                  (2. 72) 

And 

[ ]

[ ]

0 0

0 0

0 0
y

x

b w

Ry

Rx

M q
M q

M q
Φ

Φ

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥ ⎪ ⎪⎡ ⎤⎢ ⎥ ⎨ ⎬⎣ ⎦

⎢ ⎥ ⎪ ⎪
⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎩ ⎭

+ 

11 12 13
1 1 1

11 12 21 11 22 12 23
1 1 1 1 1 1 1

21 22 31 21 32 22 33
1 1 1 1 1 1 1

0 0

y

x

u

v

bp bp b b
w

bp bp b b

q
K K K q

qK K K K K K K
qK K K K K K K
q

γ γ γ

γ γ γ

γ γ γ Φ

Φ

⎧ ⎫
⎪ ⎪⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎪⎢ ⎥ ⎪⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + + ⎨ ⎬⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎪

⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
⎪⎩

⎪
⎪ +
⎪
⎪
⎪⎭

 

[ ] { }11 12 31 13
3 3 2 3 4 0 0
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0 0 0 0 0 0y
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v w

w

q
K K K K K q P

q
q

q
Φ

Φ

⎧ ⎫
⎪ ⎪⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + ⎧ ⎫⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪+ =⎢ ⎥ ⎨ ⎬ ⎨ ⎬

⎢ ⎥ ⎪ ⎪ ⎪ ⎪
⎩ ⎭⎢ ⎥ ⎪ ⎪⎣ ⎦

⎪ ⎪⎩ ⎭

 (2. 73) 

In not too thick plates and if the in-plane displacements are much smaller than the 

transverse displacements, the in-plane inertia can be neglected. Therefore, from 

(2.72), comes 
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1 1 1 1
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1 1 1 1
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q
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q
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q
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Φ

⎧ ⎫
⎪ ⎪
⎪ ⎪⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎪ ⎪⎢ ⎥ +⎨ ⎬

⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
⎪ ⎪
⎪ ⎪⎩ ⎭
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K Pq
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Φ
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⎪ ⎪
⎪ ⎪⎡ ⎤⎡ ⎤ ⎧ ⎫⎣ ⎦ ⎪ ⎪ ⎪ ⎪⎢ ⎥+ =⎨ ⎬ ⎨ ⎬

⎢ ⎥⎡ ⎤ ⎪ ⎪⎩ ⎭⎪ ⎪⎣ ⎦⎣ ⎦
⎪ ⎪
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                                                    (2. 74)

Solving (2.74) for u

v

q
q

⎧ ⎫
⎨ ⎬
⎩ ⎭

, comes 

{ }
{ }

1 111 12 11 12 11 12
1 1 1 1 1 1

21 22 21 22 21 22
1 1 1 1 1 1

p p p p pb pb
u u y

p p p p pb pb
v v x

K K K K K Kq P q
q P qK K K K K K
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Φ

Φ
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 (2. 75) 
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(2. 76) 

Replacing (2.75) in (2. 76) the reduced equations of motion are obtained. 

From (2. 70), the mass matrix[ ]M , the linear stiffness matrix[ ]Kl  and the non-linear 

stiffness matrix [ ]Knl  are given by: 
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,  

the latter with terms which are either linear or quadratic functions of { }wq . The 

vector of external forces { }P  is given by 
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⎧ ⎫⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦⎪ ⎪⎪ ⎪⎡ ⎤ ⎡ ⎤= − −⎨ ⎬⎣ ⎦ ⎣ ⎦
⎪ ⎪

⎡ ⎤ ⎡ ⎤− −⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

 (2. 77) 

If a distributed force that impinges on the plate’s surface in the z direction is 

considered, then{ } { } 0u vP P= = . Therefore, from equation (2.72), the new force 

vector is given by 
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 (2. 78) 

 2.4 - Derivation of the Matrices Used in the Equations of Motion 

 2.4.1 - Linear stiffness matrix [ ]1K  

From equation (2. 61), 
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⎛ ⎞⎧ ⎫ ⎧ ⎫ε ε⎜ ⎟δ Ω⎨ ⎬ ⎨ ⎬⎜ ⎟ε ε⎩ ⎭ ⎩ ⎭⎝ ⎠
∫ =

[ ] [ ]
[ ] [ ]

0 0

0 0

Tp p

b b

A B
d

B DΩ

⎛ ⎞⎡ ⎤⎧ ⎫ ⎧ ⎫ε ε⎜ ⎟δ Ω =⎨ ⎬ ⎨ ⎬⎢ ⎥⎜ ⎟ε ε⎩ ⎭ ⎩ ⎭⎣ ⎦⎝ ⎠
∫  

{ } [ ]{ } { } [ ]{ } { } [ ]{ } { } [ ]{ }( )0 0 0 0 0 0 0 0

T T T Tp p b p p b b bA B B D d
Ω

= δ ε ε + δ ε ε + δ ε ε + δ ε ε Ω∫  

 (2. 79)

The linear [ ]1K  matrix consists of four independent parts. The in plane stiffness 

matrix, 1
pK⎡ ⎤⎣ ⎦ , the bending stiffness matrix, 1

bK⎡ ⎤⎣ ⎦ , and the coupling in-plane/bending 

matrices 1 1,pb bpK K⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  which are obtained from (2. 79).  

Therefore, 
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{ } { }1
T pq K q⎡ ⎤= δ ⎣ ⎦  (2. 80) 

The bending stiffness matrix 1
bK⎡ ⎤⎣ ⎦  is derived considering the virtual 
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 (2. 81)

Matrix 1
pbK⎡ ⎤⎣ ⎦  is obtained from the integral { } [ ]{ }

Ω
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(2. 82)

Matrix 1
bpK⎡ ⎤⎣ ⎦  is obtained from the integral { } [ ]{ }

Ω
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p in the integral, comes 
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 (2. 83)

One verifies, as expected, that 1 1

Tbp pbK K⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ . 

 2.4.2 – Non-linear stiffness matrix [ ]2K  and [ ]3K  

In this section the non-linear stiffness matrix [ ]2K is derived. [ ]3K is proved to be 

twice the transpose of [ ]2K , i.e., [ ] [ ]3 22 TK K= [2.1]. Both [ ]2K and [ ]3K are linear 

functions of the generalised displacements.  

Considering equation (2. 62), 

[ ] { } [ ]{ }0
2

0 0

Tp p
TL

b E d q K q
Ω

⎛ ⎞⎧ ⎫ ⎧ ⎫ε ε⎜ ⎟δ Ω = δ⎨ ⎬ ⎨ ⎬⎜ ⎟ε ⎩ ⎭⎩ ⎭⎝ ⎠
∫ . Therefore, 

[ ] [ ] [ ]
[ ] [ ]

0 0

0 0

A
0 0

T Tp pp p
L L

b b

B
E d d

B DΩ Ω

⎛ ⎞ ⎛ ⎞⎡ ⎤⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎧ ⎫ε εε ε⎜ ⎟ ⎜ ⎟δ Ω = δ Ω =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟ε ε⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭ ⎣ ⎦⎝ ⎠ ⎝ ⎠
∫ ∫  

{ } [ ]{ } { } [ ]{ }( )0 0A B
T Tp p b p

L L d
Ω

= δε ε + δε ε Ω∫  (2. 84)

From the definition of{ }0
pε , { }0

bε and{ }p
Lε , equations (2. 49), (2. 50) and (2. 51), 

results that 
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Evaluating each term separately,  
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Separating the terms with { }T
uq and{ }T

vq , 
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 (2. 85)
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(2. 87)

{ } { } { }{ }( { } { } { }{ }
{ } { } { }{ } { } { } { }{ }
{ } { } { }{ } { } { } { }{ } )

1
, 12 , , , 16 , ,2

, 22 , , , 26 , ,

, 26 , , , 66 , ,2 2

T TT Tu w w u w w
y w x x x w x x

T TT Tu w w u w w
y w y y x w y y

T TT Tu w w u w w
y w x y x w x y

V N A q N N N A q N N

N A q N N N A q N N

N A q N N N A q N N d

Ω
⎡ ⎤ = + +⎣ ⎦

+ + +

+ + Ω =

∫
 

{ } { }( ){ } { }{ }(
{ } { }( ){ } { }{ }

{ } { }( ){ } { }{ } )

1
, 12 , 16 , ,2

, 22 , 26 , ,

, 26 , 66 , ,2

TTu u w w
y x w x x

TTu u w w
y x w y y

TTu u w w
y x w x y

N A N A q N N

N A N A q N N

N A N A q N N d

Ω
= + +

+ +

+ + Ω

∫
 

(2. 88)

The term { }2
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T TT w w
y w x y w

T TT w w
y w x y w

T TT w w
x w x y w

B q N N q

q N B q N N q

q N B q N N q

q N B q N N q

q N B q N N q

q N B q N N q

q N B q N N q

Φ

Φ
Φ

Φ
Φ

Φ
Φ

Φ
Φ

Φ
Φ

Φ
Φ

−

− δ +

+ δ −

− δ +

+ δ −

− δ +

+ δ dΩ

 

Separating the terms with { }y

T
qΦδ and{ }x

T
qΦδ , 

{ } { } { } { }{ }( { } { } { }{ }

{ } { } { }{ } { } { } { }{ }
{ } { } { }{ } { } { } { }{ } ) { }

{ } { } { } { }{ }( { } { } { }{ }

1
, 11 , , , 16 , ,2

, 12 , , , 26 , ,

1
, 16 , , , 66 , ,2

1
, 12 , , , 16 , ,2

2 2

y y

y

y y

y y

x x

x

T T TT Tw w w w
x w x x y w x x

T TT Tw w w w
x w y y y w y y

T TT Tw w w w
x w x y y w x y w

T T TT Tw w w w
y w x x x w x x

q N B q N N N B q N N

N B q N N N B q N N

N B q N N N B q N N d q

q N B q N N N B q N N

Φ Φ
Φ Ω

Φ Φ

Φ Φ

Φ Φ
Φ Ω

= δ − − −

− − −

− − Ω +

+ δ + +

+

∫

∫
{ } { } { }{ } { } { } { }{ }
{ } { } { }{ } { } { } { }{ } ) { }

, 22 , , , 26 , ,

, 26 , , , 66 , ,2 2

x x

x x

T TT Tw w w w
y w y y x w y y

T TT Tw w w w
y w x y x w x y w

N B q N N N B q N N

N B q N N N B q N N d q

Φ Φ

Φ Φ

+ +

+ + Ω =
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{ }y

T
q YΦ

⎡ ⎤= δ ⎣ ⎦ { }wq +{ }x

T
q ZΦ

⎡ ⎤δ ⎣ ⎦ { }wq  (2. 89)

where 
 

{ } { } { }{ }( { } { } { }{ }

{ } { } { }{ } { } { } { }{ }
{ } { } { }{ } { } { } { }{ } )

{ } { }( ){ } { }{ }(
{ } { }( ){ }

1
, 11 , , , 16 , ,2

, 12 , , , 26 , ,

, 16 , , , 66 , ,

1
, 11 , 16 , ,2

, 12 , 26

2 2

y y

y y

y y

y y

y y

T TT Tw w w w
x w x x y w x x

T TT Tw w w w
x w y y y w y y

T TT Tw w w w
x w x y y w x y

TT w w
x y w x x

x y w

Y N B q N N N B q N N

N B q N N N B q N N

N B q N N N B q N N d

N B N B q N N

N B N B q

φ φ

Ω

φ φ

φ φ

φ φ

Ω

φ φ

⎡ ⎤ = − − −⎣ ⎦

− − −

− − Ω =

= − − +

+ − −

∫

∫
{ }{ }

{ } { }( ){ } { }{ } )
, ,

, 16 , 66 , ,2 y y

TT w w
y y

TT w w
x y w x y

N N

N B N B q N N dφ φ

+

− − Ω

 

(2. 90) 

{ } { } { }{ }( { } { } { }{ }

{ } { } { }{ } { } { } { }{ }
{ } { } { }{ } { } { } { }{ } )

1
, 12 , , , 16 , ,2

, 22 , , , 26 , ,

, 26 , , , 66 , ,2 2

x x

x x

x x

T TT Tw w w w
y w x x x w x x

T TT Tw w w w
y w y y x w y y

T TT Tw w w w
y w x y x w x y

Z N B q N N N B q N N

N B q N N N B q N N

N B q N N N B q N N d

Φ Φ

Ω

Φ Φ

Φ Φ

⎡ ⎤ = + +⎣ ⎦

+ + +

+ + Ω =

∫

 

{ } { }( ){ } { }{ }(
{ } { }( ){ } { }{ }

{ } { }( ){ } { }{ } )

1
, 12 , 16 , ,2

, 22 , 26 , ,

, 26 , 66 , ,2

x x

x x

x x

TT w w
y x w x x

TT w w
y x w y y

TT w w
y x w x y

N B N B q N N

N B N B q N N

N B N B q N N d

Φ Φ

Ω

Φ Φ

Φ Φ

= + +

+ + +

+ + Ω

∫
 

(2. 91)

 

Summing the two integrals obtained, from equation (2. 84) results: 

{ } [ ]{ }2
Tq K qδ = 

={ } { } { } { }T T
u w v wq U q q V q⎡ ⎤ ⎡ ⎤δ + δ⎣ ⎦ ⎣ ⎦ +{ }y

T
q YΦ

⎡ ⎤δ ⎣ ⎦ { }wq +{ }x

T
q ZΦ

⎡ ⎤δ ⎣ ⎦ { }wq = 
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{ } [ ]{ }2
y y

x x

T T
u u

v v

w w

Uq q
Vq q

q K qq qY
q q

Z

Φ Φ

Φ Φ

⎧ ⎫⎡ ⎤⎣ ⎦δ δ⎧ ⎫ ⎧ ⎫⎪ ⎪
⎪ ⎪ ⎪ ⎪⎪ ⎪⎡ ⎤δ δ⎪ ⎪ ⎪⎣ ⎦⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬δ δ⎡ ⎤⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎣ ⎦⎪ ⎪ ⎪ ⎪ ⎪ ⎪δ δ⎩ ⎭ ⎩ ⎭⎡ ⎤⎪ ⎪⎣ ⎦⎩ ⎭

 

The non-zero part of the non-linear stiffness matrix [ ]2K  is: 

[ ]2

U

V
K

Y

Z

⎧ ⎫⎡ ⎤⎣ ⎦⎪ ⎪
⎪ ⎪⎡ ⎤⎪⎣ ⎦ ⎪= ⎨ ⎬

⎡ ⎤⎪ ⎪⎣ ⎦⎪ ⎪
⎡ ⎤⎪ ⎪⎣ ⎦⎩ ⎭

 (2. 92)

 2.4.3 – Non-linear stiffness matrix [ ]4K  

In this section the non-linear stiffness matrix, [ ]4K  is derived. The [ ]4K  matrix is a 

quadratic function of the transverse displacement w and depends only upon the out-

of-plane shape functions and corresponding generalised displacements{ }wq . Within 

the three non-linear stiffness matrices, [ ]4K  is the main source of geometric non-

linearity. 

From equation (2. 64), 

[ ] { } [ ]{ }40 0

Tp p
TL LE d q K q

Ω

⎛ ⎞⎧ ⎫ ⎧ ⎫ε ε⎜ ⎟δ Ω = δ =⎨ ⎬ ⎨ ⎬⎜ ⎟⎩ ⎭ ⎩ ⎭⎝ ⎠
∫  

[ ] [ ]
[ ] [ ]0 0

Tp p
L LA B

d
B DΩ

⎛ ⎞⎡ ⎤⎧ ⎫ ⎧ ⎫ε ε⎜ ⎟= δ Ω =⎨ ⎬ ⎨ ⎬⎢ ⎥⎜ ⎟⎩ ⎭ ⎩ ⎭⎣ ⎦⎝ ⎠
∫ { } [ ]{ }( )Tp p

L LA d
Ω

δ ε ε Ω∫  

(2. 93) 
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From the definition of { }p
Lε  in equation (2. 51), results that 

{ } [ ]{ }( )Tp p
L LA d

Ω
δ ε ε Ω =∫  

{ }

{ } { }{ }
{ } { }{ }
{ } { }{ }

{ } { }{ } { }

{ } { }{ } { }

{ } { }{ } { }

1
, , , ,2

11 12 16
1 1

, , 12 22 26 , ,2 2

16 26 66
, , , ,2

TT TT Tw w w w
w x x w x x w

T TT T Tw w w w
w w y y w y y w

T TT Tw w w w
w x y w x y w

q N N q N N qA A A
q q N N A A A q N N q d

A A Aq N N q N N q
Ω

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥⎡ ⎤⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥= δ Ω⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

∫

{ }

{ } { }{ } { } { }{ } { } { }{ }
{ } { }{ } { } { }{ } { } { }{ }
{ } { }{ } { } { }{ } { } { }{ }

{ } { }{ } { }

{ }

, , 11 , , 12 , , 16

1
, , 12 , , 22 , , 262

, , 16 , , 26 , , 66

1
, ,2

1
,2

2

2

2

TT T TT T Tw w w w w w
w x x w y y w x y

T T TT T T Tw w w w w w
w w x x w y y w x y

T T TT T Tw w w w w w
w x x w y y w x y

TT w w
w x x w

T
w

q N N A q N N A q N N A

q q N N A q N N A q N N A

q N N A q N N A q N N A

q N N q

q N

Ω

⎛ ⎡ ⎤+ +⎜ ⎢ ⎥
⎜ ⎢ ⎥= δ + + ×⎜ ⎢ ⎥
⎜ ⎢ ⎥

+ +⎜ ⎢ ⎥⎣ ⎦⎝

×

∫

{ }{ } { }

{ } { }{ } { }
,

, ,

Tw w
y y w

TT w w
w x y w

N q d

q N N q

⎞⎡ ⎤
⎟⎢ ⎥
⎟⎢ ⎥ Ω⎟⎢ ⎥
⎟⎢ ⎥
⎟⎢ ⎥⎣ ⎦ ⎠

{ } { } { }{ } { } { }{ } { } { }{ }( )(
{ } { }{ } { } { } { }{ } { } { }{ }(
{ } { }{ } ) { } { }{ } { }

{ } { }{ } { } { }{ } { } { }{ }( )
{ } { }

1
, , 11 , , 12 , , 162

1
, , , , 12 , , 222

1
, , 26 , ,2

, , 16 , , 26 , , 66

,

2

2

2

T T TT T T Tw w w w w w
w w x x w y y w x y

T T TT T Tw w w w w w
w x x w w x x w y y

T TT Tw w w w
w x y w y y w

T T TT T Tw w w w w w
w x x w y y w x y

T w
w x

q q N N A q N N A q N N A

q N N q q N N A q N N A

q N N A q N N q

q N N A q N N A q N N A

q N

Ω
= δ + + ×

× + + +

+ × +

+ + ×

×

∫

{ } { }),

Tw
y wN q dΩ
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{ } { } { }{ } { } { }{ } { } { }{ }( )(
{ } { }{ } { } { }{ } { } { }{ }(
{ } { }{ } ) { } { }{ }

{ } { }{ } { } { }{ } { } { }{ }( )
{ } { }{ }

1
, , 11 , , 12 , , 162

1
, , , , 12 , , 222

1
, , 26 , ,2

, , 16 , , 26 , , 66

, ,

2

2

2

T T TT T T Tw w w w w w
w w x x w y y w x y

T T TT T Tw w w w w w
w x x w x x w y y

T TT Tw w w w
w x y w y y

T T TT T Tw w w w w w
w x x w y y w x y

T w w
w x y

q q N N A q N N A q N N A

q N N q N N A q N N A

q N N A q N N

q N N A q N N A q N N A

q N N

Ω
= δ + + ×

× + + +

+ × +

+ + ×

×

∫

) { }T

wd qΩ

{ } [ ]{ }4
Tq K q= δ  

(2. 94) 

 

 2.4.4 - Shear Linear Stiffness Matrix 1K γ⎡ ⎤⎣ ⎦  

From equation (2. 59), and considering 44 45

45 55

x yz

y zx

Q Q Q
Q Q Q

⎡ ⎤ γ⎧ ⎫ ⎧ ⎫
= ⎢ ⎥⎨ ⎬ ⎨ ⎬γ⎩ ⎭⎢ ⎥⎩ ⎭ ⎣ ⎦

, 

{ } { }( )T Q d
Ω

δγ Ω∫ = 44 45

45 55

T
zx yz

yz zx

Q Q
d

Q QΩ

⎡ ⎤γ γ⎧ ⎫ ⎧ ⎫
δ Ω⎢ ⎥⎨ ⎬ ⎨ ⎬γ γ⎩ ⎭⎢ ⎥⎩ ⎭ ⎣ ⎦

∫  

From yz

zx

γ⎧ ⎫
⎨ ⎬γ⎩ ⎭

=
{ } { }
{ } { }

,

,

0

0

x

y
y

x

TTw w
y

TTw
x

qN N
q

N N q

Φ

Φ
Φ

Φ

⎧ ⎫⎡ ⎤− ⎪ ⎪⎪ ⎪⎢ ⎥
⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥⎣ ⎦ ⎪ ⎪⎩ ⎭

, the integral 

becomes
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{ } { }
{ } { }

{ } { }
{ } { }

, ,

, ,

0 0

0 0

x x

y y
y y

x x

T
T TT Tw ww w

y y

T TT Tw w
x x

q qN N N N
q q d

N N N Nq q

Φ Φ

Φ ΦΩ Φ Φ

Φ Φ

⎛ ⎞⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤− −⎜ ⎟⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥⎜ ⎟δ Ω =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎝ ⎠

∫
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{ } { } { }
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y
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y y y

T T T Tw w w w w w w wT
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T Tw w
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T Tw w
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T T T Tw w w w
y x y x

T

N Q N N Q N N Q N N Q Nq
q N Q N N Q N

q N Q N N Q N

N Q N N Q N N Q N N Q N

N Q N N Q N

Φ Φ
Φ Ω

Φ ΦΦ

Φ Φ Φ Φ

Φ Φ Φ Φ

⎡ + + +⎧ ⎫δ ⎢
⎪ ⎪⎪ ⎪ ⎢= δ +⎨ ⎬ ⎢
⎪ ⎪ ⎢δ⎪ ⎪⎩ ⎭ − −⎢⎣

+ − −

−

∫

{ }
{ } { } { } { }55 45

x

y

yx x x x

w
T

T T

q
d q

qN Q N N Q N

Φ

ΦΦ Φ Φ Φ

⎤
⎧ ⎫⎥
⎪ ⎪⎥ ⎪ ⎪Ω⎥ ⎨ ⎬

⎥ ⎪ ⎪
⎥ ⎪ ⎪⎩ ⎭− ⎥⎦

 

{ } { }1
Tq K qγ⎡ ⎤= δ ⎣ ⎦  (2. 95)

3. DISPLACEMENT SHAPE FUNCTIONS 

As referred in section 2.1, a matrix of shape functions is considered, and four sets of 

shape functions are required: one set of in-plane shape functions, one set of out-of-

plane shape functions, one set of rotation about x shape functions and one set of 

rotation about y shape functions  (2. 10)-(2. 13). 

The HFEM relies on the utilization of high order shape functions and ill-conditioning 

is common in high order polynomials. For this reason, trigonometric shape functions 

are suggested in [2.7]. Nevertheless, with the Rodrigue’s form of Legendre 

polynomials no ill-condition problems were met and it was decided to continue using 

them. Thus, the in-plane shape functions are given by 

( ) ( )2( )
2 1

2
0

1 2 2 5 !!
, 2

2 !( 2 1)!

r nINT
r n

r n
n

r n
g r

n r n
− −

−
=

− − −
= ξ >

− −∑  (2. 96)
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And the out-of-plane shape functions are given by 

( ) ( )2( )
2 1

0

1 2 2 7 !!
, 4

2 !( 2 1)!

r nINT
r n

r n
n

r n
f r

n r n
− −

=

− − −
= ξ >

− −∑  (2. 97)

where r!! = r(r-2)…(2 or 1), 0!! = (-1)!!= 1 and 2( )rINT  denotes the integer part 

of 2
r . The rotation shape functions about x and y are equal to the in-plane shape 

functions. 

In APPENDIX A, the first out-of-plane and in-plane shape functions are plotted; the 

shape functions rf , 1 4r≤ ≤ are cubic polynomials not represented.  

It can be seen from the plots that: 

(i) the in-plane shape functions have zero displacements at 1ξ = − and 1ξ = ; the 

Legendre ( )4r > out-of-plane shape functions have both zero displacements and 

slope at these points. These shape functions satisfy fully clamped boundary 

conditions; 

(ii) the odd number in-plane and Legendre out-of-plane shape functions are 

symmetric, while the even number are anti-symmetric. The adequate shape functions 

regarding the symmetries of the problem under study can be chosen, thus reducing 

the number of degrees of freedom. 

 

 

 

4. NEWMARK METHOD 
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In the previous sections, a finite element model was derived and the undamped 

equations of motion were obtained. Introducing damping matrix[ ]C , these equations 

may be written as: 

[ ]{ } [ ]{ } [ ]{ } { }M q C q K q P+ + =  (2. 98)

Where [ ]M  and [ ]K are the mass and stiffness matrices; { }P is the vector of 

externally applied loads. 

The equations of motion are integrated in time domain, directly, that is without 

transformation of co-ordinates [2.6]. In essence, direct numerical integration is based 

in two ideas. First, instead of trying to satisfy (2. 98) at any time t, it is aimed to 

satisfy (2. 98) only at discrete time intervals t∆ apart. The second idea in which a 

direct integration method is based is that a variation of displacements and 

accelerations within each time interval t∆ is assumed.   

In the following, displacement and acceleration vectors at time 0 are denoted by 

{ }0q and{ }0q , respectively, are known, and let the solution to the differential 

equation (2. 98) be required from time 0 to time ft , in intervals of t∆ . 

To determine the solution of the displacements and accelerations at time t t+ ∆ , the 

equations (2. 98) at time t t+ ∆ are also considered: 

[ ]{ } [ ]{ } [ ]{ } { }t t t t t t t tM q C q K q P+∆ +∆ +∆ +∆+ + =  (2.99)

It is assumed that the accelerations within each time interval, t∆ are given by 

{ } { } { } { }( )1 ,0t t t tq q q q t
t

+∆= + − τ ≤ τ ≤ ∆
∆

 (2.100)

 

Integrating (2.100) gives 

{ } { } { } { } { }( ) 21
2

t t t t tq q q q q
t

+∆= + τ + − τ
∆

 (2.101)

 

since { } { }tq q= when 0τ = . Integrating again gives 
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{ } { } { } { } { } { }( )2 31 1
2 6

t t t t t tq q q q q q
t

+∆= + τ + τ + − τ
∆

 (2.102)

 

since { } { }tq q=  when 0τ = .  

Evaluating (2.101) and (2.102) at tτ = ∆  gives 

{ } { } { } { }( )2
t t t t t ttq q q q+∆ +∆∆

= + +  (2.103)

and 

{ } { } { } ( ) { } { }( )
2

2
6

t t t t t t tt
q q q t q q+∆ +∆∆

= + ∆ + +  (2.104)

In the Newmark method, equations (2.103) and (2.104) are assumed to take the form 

[2.6] 

{ } { } ( ){ } { }1t t t t t tq q t q q+∆ +∆⎡ ⎤= + ∆ − α + α⎣ ⎦  (2.105)

and 

{ } { } { } ( ) { } { }2 1
2

t t t t t t tq q q t t q q+∆ +∆⎡ ⎤⎛ ⎞= + ∆ + ∆ − δ + δ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (2.106)

Taking 1
2

α = and 1
4

δ = corresponds to assuming that the acceleration is constant and 

equal to the average value { } { }( ) 2t t tq q +∆+ within the interval ( ),t t t+ ∆ . 

The response at time t t+ ∆ is obtained by evaluating the equation of motion at time 

t t+ ∆ , that is 

[ ]{ } [ ]{ } [ ]{ } { }t t t t t t t tM q C q K q P+∆ +∆ +∆ +∆+ + =  (2.107)

In order to obtain an equation for{ }t tq +∆ , equation (2.106) is solved for { }t tq +∆  which 

gives 



Chapter 2 – Mathematical Model 66  

 

{ }
( )

{ } { }( ) { } { }2
1 1 1 1

2
t t t t t t tq q q q q

tt
+∆ +∆ ⎛ ⎞= − − − −⎜ ⎟δ∆ δ⎝ ⎠δ ∆

 (2.108)

Replacing{ }t tq +∆ , given in (2.108) in (2.105) gives 

{ } { } { }( ) { } { }1 1
2

t t t t t t tq q q q t q
t

+∆ +∆α α α⎛ ⎞ ⎛ ⎞= − + − + ∆ −⎜ ⎟ ⎜ ⎟δ∆ δ δ⎝ ⎠ ⎝ ⎠
 (2.109)

Substituting (2.108) and (2.109) into (2.107), 

[ ]
( )

{ } { }( ) { } { }

[ ] { } { }( ) { } { }

[ ]{ } { }

2
1 1 1 1

2

1 1
2

t t t t t

t t t t t

t t t t

M q q q q
tt

C q q q t q
t

K q P

+∆

+∆

+∆ +∆

⎛ ⎞⎛ ⎞− − − − +⎜ ⎟⎜ ⎟⎜ ⎟δ∆ δ⎝ ⎠δ ∆⎝ ⎠
⎛ α α α ⎞⎛ ⎞ ⎛ ⎞+ − + − + ∆ − +⎜ ⎟ ⎜ ⎟⎜ ⎟δ∆ δ δ⎝ ⎠ ⎝ ⎠⎝ ⎠

+ = ⇔

  

( )
[ ] { } { }( ) [ ]{ } [ ]{ }

[ ] { } { }( ) [ ]{ } [ ]{ }

[ ]{ } { }

2

1 1 1 1
2

1 1
2

t t t t t

t t t t t

t t t t

M q q M q M q
tt

C q q C q t C q
t

K q P

+∆

+∆

+∆ +∆

⎛ ⎞⇔ − − − − +⎜ ⎟δ∆ δ⎝ ⎠δ ∆

α α α⎛ ⎞ ⎛ ⎞+ − + − + ∆ − +⎜ ⎟ ⎜ ⎟δ∆ δ δ⎝ ⎠ ⎝ ⎠
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Solving for { }t tq +∆ , 
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( )
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2 2
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1 1 1 1
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t t t t t

t t t

M C K q
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P M q M q M q
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C q C q t C q
t

+∆

+∆

⎛ ⎞α
+ + =⎜ ⎟

⎜ ⎟δ ∆ δ ∆⎝ ⎠
⎛ ⎞+ + + − +⎜ ⎟δ∆ δ⎝ ⎠δ ∆

α α α⎛ ⎞ ⎛ ⎞+ − − − ∆ −⎜ ⎟ ⎜ ⎟δ∆ δ δ⎝ ⎠ ⎝ ⎠

  

Placing together terms in { }tq , { }tq and { }tq , in the second member, 
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(2.111)

If{ }tq , { }tq  and { }tq are known, then { }t tq +∆ can be calculated using (2.111). 

Equations (2.108) and (2.109) can be used to determine { }t tq +∆ and{ }t tq +∆ . The time 

history of the response is obtained from time 0 to time ft , in intervals of t∆ .  

Therefore, from equations (2.108), (2.109) and (2.111) the Newmark Method is given 

by 

[ ] [ ] [ ]( ){ } { } [ ] [ ]( ){ }
[ ] [ ]( ){ } [ ] [ ]( ){ }

{ } { } { }( ) { } { }

{ } { } { }( ) { } { }

1 2 1 2
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1 3 5
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t t t t t

t t

t t t t t t t

t t t t t t t

a M a C K q P a M a C q

a M a C q a M a C q

q a q q a q a q

q a q q a q a q

+∆ +∆

+∆ +∆

+∆ +∆

+ + = + + +

+ − + + −

= − − −

= − + +
 

(2.112)

where 

( )1 22

3 4

5 6

1 , ,

1 , 1 ,

1 1 , 1
2 2

a a
tt

a a
t

a a t

α
= =

δ∆δ ∆

α⎛ ⎞= = −⎜ ⎟δ∆ δ⎝ ⎠
α⎛ ⎞ ⎛ ⎞= − = ∆ −⎜ ⎟ ⎜ ⎟δ δ⎝ ⎠ ⎝ ⎠

 (2.113)

The set of linear equations given in (2.112) is solved in order to determine{ }t tq +∆ . 

In reference [2.6] the stability of the method is investigated and it is stated that the 

method is unconditionally stable if 
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0,50α ≥ and ( )20, 25 0,5δ ≥ + δ   (2.114)

Unless α is taken to be 1
2 , the method introduces artificial damping, which can be 

negative (when 1
2α < ). In the Newmark integration scheme, as an unconditionally 

stable method (choosing parameters verifying (2.114), the time step t∆ is based upon 

the period corresponding to the highest frequency likely to contribute to the response, 

nω . According to reference [2.6], good accuracy is obtained with a time step given 

by 50n tω ∆ = π .  

The Newmark method can be extended to non-linear dynamic analysis. This requires 

that iteration must be performed at each time step in order to satisfy equilibrium. 

Also, the non-linear stiffness matrix must be formed and triangularized at each 

iteration or at selective points in time. 

5. CLOSING COMMENTS 

The mathematical model of the p-version HEFM for asymmetrically laminated 

rectangular plates is given in this chapter. The equations of motion are obtained and 

the matrices in the equations of motion are derived for the asymmetrically laminated 

rectangular plates, with a detailed description of the matrices involved. All these 

matrices are finally expressed as the integration of shape functions and their 

derivatives. In the implementation of the model, the differentiation and the 

integration of the polynomials will be calculated symbolically to find out the exact 

values via symbolic computation method using MAPLE.   

The model is derived in time domain by applying the finite element method, the 

principle of virtual work and the d’Alembert’s principle. Because the problems to be 

analysed do not involve singularities and the geometry of the plate is very regular, 

only one element was used. The model developed in this chapter is applied to the 

study of the geometrical non-linear vibrations of plates in following chapters. 
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C h a p t e r  3  

TOOLS TO ANALYSE MOTIONS 

1.  INTRODUCTION 

In Chapter 2, the mathematical model of the p-version of the FEM has been derived 

including geometrical non-linearity for thick, asymmetric composite laminated 

rectangular plates. In order to solve the non-linear equations of motion, the Newmark 

method was presented. In this chapter different tools that can be used to characterize 

the responses of non-linear systems are presented.  

In non-linear vibrations, there are several parameters that influence the time 

dependence of the response: time variation, space dependence and amplitude of the 

external excitation, properties of the structure, initial and boundary conditions, etc. 

Depending on these parameters, the oscillations may be periodic – including 

harmonic, sub-harmonic and super-harmonic – quasi-periodic or even chaotic [3.1, 

3.7]. 

Unlike equilibrium equations, periodic solutions are characterized by one basic 

frequencyω . The spectrum of a periodic signal consists of a spike at the frequency 0 

and spikes at integer multiples ofω .  

A quasi-periodic solution is a dynamic solution characterized by two or more 

incommensurate1 frequencies. Although the waveform of a quasi-periodic signal may 

look complex because of the presence of many sinusoids in it, calculating its 

spectrum would reveal its simplicity. In principle, the spectrum can be used to 

distinguish a quasi-periodic signal from a periodic signal in that the spikes in the 

spectrum of a quasi-periodic signal are not spaced at integer multiples of a particular 

                                                 
1 Two frequencies 1 2 and ω ω are said to be incommensurate if 1 2/ ω ω is an irrational number. 
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frequency [3.2]. Poincaré Maps are also used to determine the stability of a quasi-

periodic solution. 

Chaotic solutions will also be studied in this thesis; there is no precise definition for a 

chaotic solution because it cannot be represented through standard mathematical 

functions. A chaotic solution is an aperiodic solution which is endowed with some 

special characteristics. From a practical point of view, chaos can be defined as a 

bounded steady-state behaviour that is not an equilibrium solution or a periodic 

solution or a quasi-periodic solution. The attractor associated with a chaotic motion 

in state space is not a simple geometrical object like a finite number of points, a 

closed curve or a torus. Chaotic attractors are complicated geometrical objects that 

possess fractal dimensions.  The spectrum of a chaotic signal contains spikes that 

indicate the predominant frequencies of the signal [3.2]. 

In this chapter, tools such as Fourier spectra [3.2], Poincaré Maps [3.3, 3.5] and 

Lyapunov exponents [3.3, 3.5], which are used to characterize the responses of non-

linear systems, will be presented.   

2. FOURIER SPECTRA  

The Fourier or frequency spectra help in distinguishing among periodic, quasi-

periodic, and chaotic motions and are typically used to study stationary signals. The 

frequency spectrum can be either amplitude or a power spectrum. In an amplitude 

spectrum, the Fourier amplitude is displayed at each frequency. On the other hand, in 

a power spectrum, the square of the Fourier amplitude per unit time is displayed at 

each frequency [3.2]. 

The Fourier transform of a signal ( )x t is defined as  

 ( ) ( ) 2i tX x t e dt
+∞

− πω

−∞

ω = ∫  (3.4)
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where ωdenotes the frequency, ( )X ω is an integrable2 complex quantity.  

In theory, the Fourier transform can be used to determine the frequency content of a 

signal ( )X ω if it is known for −∞ < ω< +∞ and is integrable. However, a stationary 

signal that exists for all ω  is not integrable. Besides, in practice, ( )X ω is known for 

only a finite length of time cT and hence the so called finite Fourier transform is used:  

( ) ( ) 2

0

,
cT

i t
cX T x t e dt− πωω = ∫  (3.5)

where, again, ( ), cX Tω  is a complex quantity.  

Fourier methods will only be employed to determine the harmonic content of 

periodic oscillations. The finite Fourier transform provides a mechanism for 

representing a signal as the sum of simple sine and cosine functions, which 

correspond to discrete lines in the frequency spectrum. In this work, the signal is a 

time series obtained from the numerical integration of the equations of motion. This 

time series is collected over a finite time cT and consists of a discrete number of 

points obtained at a chosen sampling frequency. The period of the stationary motions 

is related with the excitation period, and one easily selects a length of numerical data 

that coincides with the period. These data is modelled as a sum of sine and cosine 

functions of time t [3.2]. To obtain the frequency spectra of quasi-periodic and 

chaotic oscillations, other tools of signal processing, like the power spectral density 

function are recommended. 

The Fourier transform of discrete data is obtained using the discrete Fourier 

transform (DFT). It is a procedure for modifying the Fourier transform so as to 

permit its computation on a digital computer. Hence, a discrete Fourier transform is 

an approximation of the continuous Fourier transform. A special case of the DFT 

transform is the fast Fourier transform (FFT) It is essentially an efficient 

computational scheme that takes advantage of certain symmetry properties in the 

                                                 
2 ( )X ω is integrable if ( )

+∞

−∞
< +∞∫ x t dt  
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cosine and sine functions at their points of evaluation in order to achieve speed over 

conventional methods [3.2]. 

Suppose that we sample a periodic, continuous time function X(t) at a sequence of N 

points with equal time intervals of length ∆  seconds, starting at time 0t , with 

period ∆N ; the discrete Fourier transform is given by 

( ) ( )( )( )

( ) ( )( )

1 2
0

1 2 2
2

1 2
0

2 1
2

2 11 2

2 1
2

+

−
=

+

−
=

⎡ π − −⎡ ⎤
= + −⎢ ⎢ ⎥∆⎢ ⎣ ⎦⎣

⎤π − −⎡ ⎤
− ⎥⎢ ⎥∆ ⎥⎣ ⎦⎦

∑

∑

N

n
n

N

n
n

n t t
X t c c cos

N N

n t t
c sin

N

 (3.6)

and the coefficients , 1,..., 2=kc k N  are given by 

( )( )

( )( ) ( )

1
1

2 1
1

2 2
1

2 1 1
, 2,..., 2

2 1 1
, 2,..., 2 1

N

n
n

N

m n
n

N

m n
n

c s

m n
c s sin m N

N

m n
c s cos m N

N

=

−
=

−
=

=

π − −⎡ ⎤
= − =⎢ ⎥

⎣ ⎦
π − −⎡ ⎤

= = +⎢ ⎥
⎣ ⎦

∑

∑

∑

 (3.7)

If N is odd, mc is defined from 2 to 1
2
+N . The dominant frequencies correspond to 

the higher values of Pk, where Pk are the components of a vector {P} of length 

2N as follows 

( )
1 1

2 2
2 2 2 1 2,..., 1 2− −

=

= + = +k k k

P c

P c c k N
 (3.8)

These values correspond to the energy spectrum of the signal. In particular, 

kP corresponds to the energy level at frequency 1 1, 1,2,...,
2

− +
=

∆
k Nk
N

.  

The time series of a periodic motion has the appearance of a uniform trace, and the 

corresponding spectrum has one basic frequency. If the response spectrum of a 

system excited by a harmonic excitation contains solely a line at the excitation 

frequency, the motion is a linear periodic motion. On the other hand, if the response 

spectrum contains lines at frequencies which are multiples of the excitation 
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frequency, then the motion is non-linear periodic.  The spectrum of a periodic motion 

consists of a single basic frequency. When the spectrum has n basic frequencies (i.e., 

n incommensurate frequencies), the corresponding motion is no longer periodic and 

is called an n-period quasi-periodic motion. The spectrum of a chaotic motion has a 

continuous or broadband character [3.5]. 

The spectra of random motions such as noise also have continuous or broadband 

character, but chaotic motions can be distinguished from noise by using the character 

of the spectrum and tools, such as dimension calculations and Lyapunov exponents. 

For the spectrum associated with a chaotic motion, the Fourier amplitudes are 

frequency dependent in the broadband region. These amplitudes scale as1 αω , where 

ω is the frequency and α is a positive integer. For the spectrum associated with a 

random motion, the Fourier amplitudes in the broadband region are either frequency 

independent or frequency dependent and do not follow the 1 αω scaling law [3.2]. 

The Fourier analysis is not well suited for signals with transient effects that occur 

over a short period of time because it is not localized in time. This problem can partly 

be overcome by conducting Fourier analysis in different time windows. The location 

of the time window adds a time dimension to the overall analysis. For a signal with 

short-lived transient events, it is desirable to use functions such as wavelets, that are 

localized in time and frequency to represent the signal rather than sine and cosine 

functions that extend over all time [3.2].  

 3. POINCARÉ MAPS   

In this section, we consider periodic solutions of dynamical systems, especially 

continuous-time systems. For continuous values of time, the evolution of a system is 

governed by either an autonomous or a non-autonomous system of differential 

equations. Only non-autonomous systems are studied. In these systems the equations 

are of the form 
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{ } { }( ){ },x F x t=  (3.9)

Where { }x  is finite dimensional,{ } nx ∈ , t∈ and { }F explicitly depends on t. 

The vector { }F  is often referred to as vector field, the vector { }x  is called state 

vector because it describes the state of the system, and the space n in which { }x  

evolves is called a state space. A state space is called a phase space when one-half of 

the states are displacements and the other one-half are velocities [3.2].  

Let the initial state of the system at time 0t be{ }0x , and let I represent a time interval 

that includes 0t . In general, a projection of a solution ( ){ }0 0, ,x t t x  of (3.9) onto the n-

dimensional state space is referred to as trajectory or an orbit of the system trough the 

point{ } { }0x x= . In other words, the solution could be thought of as a point that 

moves along a trajectory, occupying different positions at different times similar to 

the way a planet moves through the space. An orbit is represented by { }( )0xγ orΓ . 

The orbit obtained for times 0t ≥ passing through the point { }0x at 0t =  is called a 

positive orbit and is denoted by { }( )0x+γ ; the orbit obtained for times 0t ≤  is called 

a negative orbit and is denoted by { }( )0x−γ . Also, { }( ) { }( )0 0x x+ −Γ = γ ∪ γ , where 

the symbol ∪ stands for the union operator.  

Equation (3.9) is also referred to as an evolving equation. Let the evolution of the 

system described by this equation be controlled by a set of parameters E. To make 

this parameter dependence explicit, we describe the evolution by  

{ } { }( ){ }, ;x F x t E=  (3.10)

where E is a vector of control parameters. Formally, nE∈  and the vector function 

{ }F  can be represented as{ } 1: n m nF × × → . 

Next, some facts from the theory of ordinary-differential equations are stated [3.4]. If 

the scalar components of { }F  are 0C in a domain D  of the { }( ),x t space, then a 

solution ( ){ }0 0, ,x t t x satisfying the conditions { } { }0x x= at 0t t= exists in a small 
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time interval around 0t in D . Moreover, if the scalar components of { }F  are 1C in D, 

then the solution { }( ){ }0 0, ,x t t x is unique in a small time interval around 0t . If the 

existence and uniqueness of solutions of a system of the form (3.10) are ensured, then 

this system is deterministic. This means that two integral curves starting from two 

different initial conditions cannot intersect each other in the extended state space.  

Equation (2.71) depends explicitly on time; therefore it represents a non-autonomous 

system. 

A dynamic solution { } ( ){ }x X t=  of a continuous time system is periodic with least 

period T if ( ){ } ( ){ }X t h X t+ = and ( ){ } ( ){ }X t X t+ τ ≠ for 0 T< <τ . For these 

solutions, Poincaré introduced the notion of orbital stability.  

Let 1Γ represent the orbit of u and 2Γ represent the orbit of v for all times. The 

periodic solutions u and v have different periods 1T  and 2T , and hence, the 

corresponding motions evolve on different time scales. The orbit 1Γ is said to be 

orbitally stable if, given a small number 0ε > , there exists ( ) 0δ = δ ε >  such that if 

( ) ( )0u t v t= − = τ < δ for some τ , then there exist 1t  and 2t  for which 

( ) ( )1 2u t v t− < ε . Further, if 2Γ tends to 1Γ as t →∞ , then we say 1Γ is 

asymptotically stable. In Poincaré stability, we examine how “close” orbits are in the 

state space.  

In the following chapter Poincaré maps are used to determine if the solutions are 

periodic, quasi-periodic or chaotic [3.3].  

A Poincaré section is a hypersurface3 in the state space that is transverse to the flow 

of a given system of equations. The state space is given by 

( ){ } { }( ){ }. ; 0nx t F x t ≠  (3.11)

 

                                                 
3 In a n-dimensional space, a hypersurface is a surface whose dimension is less than n.  
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where ( ){ }nx t is a vector normal to the selection located at { }x , ( ){ };F x t is the 

vector field describing the flow, and the dot indicates the dot product. A Poincaré 

section is denoted byΣ . Although the time interval between two successive 

intersections of a trajectory with a chosen Poincaré section is not constant in all 

situations, we can collect the points on the Poincaré section by stroboscopically 

monitoring the state variables at intervals of the period T [3.5]. 

In Poincaré Maps, a finite number of points corresponds to a periodic motion, an 

infinite number of points filling up a closed curve corresponds to quasi-periodic 

motion, and an infinite number of orderly distributed points (usually) corresponds to 

chaotic motion. 

 

4. LYAPUNOV EXPONENTS  

 

For a dynamical system, sensitivity to initial conditions is quantified by the 

Lyapunov exponents. For example, consider two trajectories with nearby initial 

conditions on an attractor. When the attractor is chaotic, the trajectories diverge, on 

average, at an exponential rate characterized by the largest Lyapunov exponent [3.6]. 

Considering the non-autonomous system given in (3.9), a particular trajectory 

( ){ }1x t  and a neighbour of that trajectory (defined by the diameter, of the sphere) at 

some instance of time 0t , the purpose is to evaluate how another trajectory ( ){ }2x t   

diverges from ( ){ }1x t , as the system evolves. This way, the Lyapunov exponent 

evaluates the time evolution of a sphere’s axes.  

The variation of the diameter may be expressed as ( ) 0 2 td t d λ=  [3.5]. Therefore,  

( )
( )2

1 log
0

d t
t d

⎛ ⎞
λ = ⎜ ⎟⎜ ⎟

⎝ ⎠
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If the exponent λ  is negative or equal to zero, then the trajectory ( ){ }2x t does not 

diverge from ( ){ }1x t ; on the other hand, if λ  is positive, the trajectory ( ){ }2x t  

diverges exponentially from the original orbit, characterizing chaos [3.5]. 

This concept is also generalized for the spectrum of Lyapunov 

exponents, , 1, 2,...,i i nλ = , by considering a small n-dimensional sphere of initial 

conditions, where n is the number of equations (or, equivalently, the number of state 

variables) used to describe the system. As time progresses, the sphere evolves into an 

ellipsoid whose principal axes expand (or contract) at rates given by the Lyapunov 

exponents [3.6]: 

( )
( )2

1lim log
0

i
i t

i

d t
t d→∞

⎡ ⎤⎛ ⎞
λ = ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

, 1,..,i n=  

where ( )id t  measures the growth of an infinitesimal n-sphere of initial conditions at 

0t = in terms of the i ’th ellipsoidal axis. 

The presence of a positive exponent is sufficient to diagnose chaos and represents 

local instability in a particular direction. If more than one Lyapunov exponent is 

positive then there is hipercaos. Note that for the existence of an attractor, the overall 

dynamics must be dissipative, i.e., globally stable, and the total rate of contraction 

must outweigh the total rate of expansion. Thus, even when there are several positive 

Lyapunov exponents, the sum across the entire spectrum is negative. 

Wolf et al [3.6] explain the Lyapunov spectrum by providing the following 

geometrical interpretation. First, arrange the n principal axes of the ellipsoid in the 

order of most rapidly expanding to most rapidly contracting. It follows that the 

associated Lyapunov exponents will be arranged such that  

1 2 ... nλ λ λ≥ ≥ ≥  
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where 1λ and nλ  correspond to the most rapidly expanding and contracting principal 

axes, respectively. Next, recognize that the length of the first principal axis is 

proportional to 12 tλ ; the area determined by the first two principal axes is proportional 

to ( )1 22 t+λ λ ; and the volume determined by the first k principal axes is proportional 

to ( )1 2 ...2 k t+ + +λ λ λ . Thus, the Lyapunov spectrum can be defined such that the 

exponential growth of a k-volume element is given by the sum of the k largest 

Lyapunov exponents. Note that information created by the system is represented as a 

change in the volume defined by the expanding principal axes.  

Next, the method used by Wolf et al. to compute the largest non-negative Lyapunov 

exponent is presented. It is based in evaluating distances between points and the 

trajectory. Given the time series ( ){ }x t , an n-dimensional phase portrait is 

reconstructed with delay coordinates [3.6], i.e., a point on the attractor is given by  

 ( ){ } ( ){ } ( )( ){ }{ }, ,..., 1x t x t x t n+ τ + − τ , 

where τ  is the almost arbitrary delay time. Considering ( ){ }0Z t  the nearest 

neighbour to the initial point ( ){ }0x t and 0L , the distance between ( ){ }0x t  and 

( ){ }0Z t  is given by ( ){ } ( ){ }0 0 0L x t Z t= −  where  represents the Euclidean 

norm.  

Defining an hipersphere with ray ε  centred in ( ){ }0x t  such that ( ){ }0Z t is inside the 

hipersphere, i.e., ( ){ } ( ){ }0 0 0L x t Z t= − < ε  the time evolution is followed from  

( ){ }0x t  to ( ){ }0Z t  until, in an instant 1 0t t= + τ  the distance between those points, 

'
0L , is greater than ε . In that moment, ( ){ }0Z t is replaced by another neighbour, 

closer to ( ){ }1x t , that is in the direction of the segment '
0L  and such that  

( ){ } ( ){ }1 1 1L x t Z t= − < ε . 
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The process follows until all the points ( ){ }ix t  are analysed. The largest positive 

Lyapunov exponent is obtained as an average of ( )'
2log i iL L along the trajectory, 

i.e.,  
'1

1 2
00

1 log
M

i

iM i

L
t t L

−

=

⎛ ⎞
λ = ⎜ ⎟− ⎝ ⎠

∑  

where M is the number of times a new neighbour was chosen close to the trajectory.  

In practice, where a finite number of points in the time series are considered and the 

presence of noise is usual, the selection of a neighbour point placed in the direction of 

the segment '
1iL −  is not possible. The criterion is the selection of a point inside a cone 

of height ε  with an angle of 9
πθ =  and the symmetry axes matches the 

segment '
1iL − . If no point is found, the angle is increased. Finally, the closest 

neighbour is chosen, regardless of θ andε . 

5. CLOSING COMMENTS 

In this chapter three methods to determine the type of time domain solution were 

presented.  

For the Fourier Spectra of a signal, periodic motion always shows up a discrete 

frequency spetrum. So does quasi-periodic motion, displaying the two or more 

incommensurate frequencies involved, and possibly sub-harmonics, higher 

harmonics, and linear combinations of these. Chaotic motion produces a continuous 

broadband spectrum with spikes at the dominating frequencies.  

Representing motion in a Poincaré map, it is usually easy to distinguish periodic and 

non-periodic motion. Summing up the possible sets of Poincaré maps, a finite 

number of points corresponds to a periodic motion, an infinite number of points 

filling up a closed curve corresponds to quasi-periodic motion, and an infinite 

number of orderly distributed points (usually) corresponds to chaotic motion. 
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Finally, Lyapunov exponents essentially measure the average rates of convergence or 

divergence of nearby orbits in the phase space. A positive Lyapunov exponent is 

among the strongest indicators of chaotic motion. If 0,  1,i i nλ < =  then the solution 

is an equilibrium point; if 1 0 and 0,  2,i i nλ = λ < = , then a periodic solution is 

obtained; if 1 2 0 and 0,  3,i i nλ = λ = λ < =  then a quasi-periodic solution is obtained.  



C h a p t e r  4  

FORCED VIBRATION ANALYSIS OF PLATES -

TRANSVERSE FORCE 

 
1.  INTRODUCTION 

In Chapter 2, the mathematical model of the p-version of the FEM has been derived 

including geometrical non-linearity for thick, asymmetric laminated rectangular 

plates. In this chapter, only symmetrically laminated plates, i.e,[ ] 0B = , made of 

composite materials are studied. Before applying the model to geometrically non-

linear analysis, it is worth applying the model to linear free vibration analysis. The 

excitation used in the forced vibration is a harmonic plane wave. The convergence of 

the model developed is studied. Results are also presented for non-linear forced 

vibrations. Fully clamped symmetrically laminated rectangular plates are here 

analysed. A different number of in-plane and out-of-plane shape functions are 

considered and the obtained results are compared with numerical results from the 

literature.  

The study of linear dynamic behaviour of plates is not a new topic. Leissa [4.1] gave 

an extensive study of plate vibration. Lin and Kin [4.2] used classical laminated plate 

theory to compute the natural frequencies of un-symmetrically laminated, rectangular 

plates. Reddy [4.3] developed a finite element method based on a typical first order 

laminated theory and computed the natural frequencies of simply supported, anti-

symmetric angle-ply, laminated plates. Bert and Mayberry [4.4] predicted the natural 

frequencies of un-symmetrically laminated plates with clamped edges using Raleigh-

Ritz energy method. Chow, Liew and Lam [4.5] investigated the free vibration of 

symmetrically laminated plates with the Raleigh-Ritz method using admissible 2-D 

orthogonal polynomials. Some experimental work on the dynamic response of 
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laminated plates under acoustic excitation was carried out in the Institute of Sound 

and Vibration Research at Southampton University [4.14]. 

One of the main applications of laminated composite plates is that of skin-panels in 

aircraft. These panels, especially those near the jet engine’s exhaust, work under high 

level acoustic pressure environment combined with pressure due to service loads. In 

this work, the dynamic response of laminated composite plates excited by harmonic 

plane waves is investigated. The Newmark method presented in Chapter 2 is applied 

to solve the equations of motion.  

In order to analyse the time domain response of the plate’s vibrations, the tools 

presented in Chapter 3 are used to determine the presence of a periodic, quasi-

periodic or chaotic motion. 

2. PLATES ANALYSED 

Three symmetric, rectangular graphite/epoxy composite laminated plates are 

considered, therefore, there is no bending-twisting stiffness, i.e., [ ] 0B = . Their 

geometrical and material properties are defined in Table 1 and in Table 2. It was 

assumed that G13 and G23 are equal to G12. 

 
Table 1- Geometrical properties of the plates 

Plate Number of lamina Laminae orientation a(m) b(m) h(m) 
1 8 (90,-45,45,0)sym. 0.48 0.32 0.001 
2 5 ( ), , , ,θ −θ θ −θ θ  0.3 0.3 0.001 
3 3 (45,-45,45) 0.5 0.5 0.005 

 
 

Table 2 – Material properties of the plates 

Plate   E11                
(N/m2) 

   E22            
(N/m2) 

G12              

   (N/m2) 
           ρ               

(Kgm-3) 12ν  
1 120.5× 910  9.63× 910   3.58× 910  1540 0.32 
2 173.0× 910  E11/15.4 0.79×  E22 1540 0.3 
3 206.84× 910  5.171× 910  2.5855× 910  2564.856 0.25 
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The mode shapes of laminated composite rectangular plates depend not only upon the 

aspect ratio of the plates, but also on the elastic properties of the laminae and the 

orientations. For symmetrically laminated composite rectangular plates, the mode 

shape patterns are complicated by twisting-bending coupling. This coupling distorts 

the mode shapes of the plates. It is difficult to find a purely symmetric or 

antisymmetric mode in symmetrically laminated rectangular plates. Errors are 

inevitable if only symmetric or antisymmetric displacement functions are used in 

modelling a certain mode for this kind of plates.   

         
3. LINEAR VIBRATION ANALYSIS 

3.1 - Convergence with the number of shape functions 

Consider a fully clamped rectangular carbon fibre reinforced symmetrically 

laminated plate. The plate displacement shape functions in the x and the y axes were 

defined in Chapter 2, as well as the rotations. These functions satisfy the fully 

clamped theoretical boundary conditions, i.e., zero displacement and zero slopes 

along the four plate edges; moreover they have been used and shown to be 

appropriate in previous studies on the vibration of fully clamped rectangular plates 

[4.8, 4.9, and 4.10]. The analytical expressions of the shape functions of the clamped-

clamped plate are given in Chapter 2.  

In this convergence study, a different number of in plane and out of plane shape 

functions are used in the model. In order to analyse the convergence of the linear 

frequencies, seven rotational shape functions are used in plates 1 and 3, and nine are 

considered in plate 2. The convergence of the model is assured comparing the values 

obtained for the natural frequencies, ω , with published results.  

The influence of pθ in the prediction of the linear frequencies is also considered, and 

the results are discussed for plate 1. In Tables 3 to 7, the convergence of the first four 

linear frequencies, iω , i=1,2,3,4, of the plates is studied: 
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Table 3- Natural frequencies of plate 1 with pi= pθ =7 
po          4               5 6 7 8 9 10 11 

DOF        114            123 134 147 162 179 198 219 
  1ω  511.149 511.112 511.111 511.105 511.104 511.101 511.101 511.100
 2ω  645.189 644.977 644.967 644.959 644.956 644.953 644.951 644.948
 3ω  902.541 886.334 886.328 886.310 886.308 886.300 886.299 886.294
  4ω   1313.790 1307.348 1301.312 1301.272 1301.198 1301.154 1301.140 1301.111
 

 
Table 4 - Natural frequencies of plate 2 with pi= pθ =7, 045θ =  

po          4               5 6 7 8 9 10 11 
DOF        114            123 134 147 162 179 198 219 
  1ω  762.888 762.863 762.838 762.831 762.828 762.825 762.824 762.822
 2ω  1419.717 1419.674 1419.507 1419.505 1419.475 1419.474 1419.464 1419.463
 3ω  1647.676 1647.104 1646.861 1646.838 1646.809 1646.798 1646.789 1646.782
  4ω   2234.666 2219.137 2218.961 2218.928 2218.873 2218.860 2218.843 2218.835

 
Table 5 – Linear natural frequency parameter λ and linear frequencies of symmetrically five 

layer angle-ply ( )00θ = , square plate 2 with fully clamped edges, pi= pθ =9, ( )
1

2 4 2
0/h a D⎛λ = ρ ω⎜

⎝
, 

( )
3

11
0

12 2112 1
E h

D
⎞

= ⎟⎟− υ υ ⎠
, (Graphite/Epoxy, 11 22 12 22 12/ 15.4, / 0.79, 0.30E E G E= = υ = ) 

po 4 5 6 7 
/λ ω  iλ  iω  iλ  iω  iλ  iω  iλ  iω  
 23.840 812.856 23.839 812.819 23.839 812.819 23.839 812.816 
 29.705 1012.815 29.704 1012.797 29.701 1012.677 29.700 1012.677
 42.813 1459.733 41.744 1423.701 41.744 1423.301 41.704 1421.928
 62.924 2145.456 62.922 2145.369 60.202 2052.649 60.202 2052.649
 64.563 2201.322 64.562 2201.293 62.900 2144.633 62.900 2144.627

po 8 9 10 11 
/λ ω  iλ  iω  iλ  iω  iλ  iω  iλ  iω  
 23.839 812.816 23.839 812.811 23.839 812.811 23.839 812.809 
 29.700 1012.677 29.700 1012.672 29.700 1012.671 29.700 102.668 
 41.704 1421.928 41.703 1421.920 41.703 1421.920 41.703 1421.916
 60.146 2050.720 60.145 2050.711 60.145 2050.711 60.144 2050.674
 62.900 2144.627 62.900 2144.626 62.899 2144.603 62.899 2144.603
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Table 6 - Natural frequencies of plate 3 with pi= pθ =7 
po          4               5 6 7 8 9 10 11 

DOF        114            123 134 147 162 179 198 219 
  1ω  954.792 952.956 952.610 952.478 952.377 952.321 952.270 952.236
 2ω  1558.468 1557.922 1557.105 1556.940 1556.650 1556.603 1556.429 1556.402
 3ω  2234.674 2203.451 2196.995 2196.100 2195.495 2195.155 2194.925 2194.925
  4ω   2318.568 2273.654 2270.775 2269.591 2269.494 2268.938 2268.906 2268.572

 
 

From Tables 3 to 6, the convergence of the first four linear frequencies is assured for 

all the plates studied. In order to validate the model, in Tables 7, 8 and 9, the results 

obtained with the first order shear deformation model for thick plates, are compared 

with results obtained with the HFEM from the thin plate theory.   
 

Table 7- Convergence of the first four linear frequencies (rad/s) of Plate 1, with the number of 
out of plane shape functions 

* - Thin Plate theory  **- First Order Shear Deformation Theory for thick plates 

 
 

Table 8 - Convergence of the first four linear frequencies (rad/s) of Plate 2, 45º=θ , with pi=pθ 
=7 and the number of out of plane shape functions 

 
 

[4.9]* FSDT** 
Mode po=7, 49 

DOF 
po =5, pi =7,  
pθ=7, n=123

po=6,  pi=7, 
pθ=7, 
n=134 

po=7,  pi=7, 
pθ=7, 
n=147 

po=8,  pi=7, 
pθ=7, 
n=162 

po=8,  pi=8, 
pθ=8, 
n=192 

po=8,  pi=9,  
pθ=9, n=226

1 511.390 511.112 511.111 511.105 511.104 511.091 511.087 
2 645.281 644.977 644.967 644.959 644.956 644.895 644.881 
3 886.217 886.334 886.328 886.310 886.308 886.167 885.628 
4 - 1307.348 1301.312 1301.272 1301.198 1236.386 1235.338 

[4.10] FSDT 
Mode 

po=7, 64 DOF po =4, pi =7,    
pθ=7, n=114 

po =5, pi =7,    
pθ=7, n=123 

po =6, pi =7,     
pθ=7, n=134 

1 763.0961 762.888 762.863 762.838 
2 1419.927 1419.717 1419.674 1419.507 
3 1647.361 1647.676 1647.104 1646.861 
4 2219.133 2234.666 2219.137 2218.961 
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It can be seen from the two Tables that the linear frequencies for po differ very 

slightly. Increasing po, the linear frequency, decreases monotonically towards a certain 

value, i.e., the errors between them decrease with the increase of po. Excellent 

convergence properties of the HFEM in the linear frequency analysis of 

symmetrically laminated plates are observed.  

Table 7 and 8, the linear frequencies are lower than those obtained in [4.9, 4.10]. 

Although more shape functions are used, with 192 DOF for plate 1, and 134 DOF for 

plate 2, the thick plate theory gives better approximations than the thin plate theory 

where the rotatory inertia and shear deformation are neglected.  
 

Table 9 - Convergence of the first four linear frequencies (rad/s) of Plate 3, with pi= pθ =7 and 
the number of out of plane shape functions 

[4.11] FSDT 
Mode 

po=6, 36 DOF po =4, pi =7,   
pθ=7, n=114 

po =5, pi =7,   
pθ=7, n=123 

po =6, pi =7,     
pθ=7, n=134 

1 1574.96 954.792 952.956 952.610 
2 2577.55 1558.468 1557.922 1557.105 
3 3671.02 2234.674 2203.451 2196.995 
4 - 2318.568 2273.654 2270.775 

 

Possible reasons for the large differences encountered in  

Table 9 are not only the different theories employed, but also the material properties 

assumed here for G13 and G23, shear moduli which are not necessary in [4.11]. 

In Tables 7, 8 and 9, the element defined can determine correctly the first four linear 

frequencies of thin plates. 

 

 3.2 - The effect of b/h in the linear frequencies  

In Tables 10, 11 and 12 the thickness of plate 1, 2 and 3 is changed and the 

convergence of the first four linear frequencies, iω , i=1,2,3,4, of the plates is studied. 
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Table 10- Variation of the linear frequencies of vibration /different thickness of plate 1 with 134 
DOF 

iω  1ω  2ω  3ω  4ω  
Model         

b/h= 10000 7.816 14.249 16.954 23.060 
     

b/h= 1000 163.640 206.504 283.790 418.477 
      

b/h = 100 1626.940 2052.411 2819.598 4045.113 
      

b/h = 10 11205.824 14284.606 19578.063 23055.506 
 
 
 

Table 11- Variation of the linear frequencies of vibration /different thickness of plate 2, 45ºθ = , 
with 134 DOF 

iω  1ω  2ω  3ω  4ω  
Model         

b/h= 1000 228.939 426.110 494.431 666.204 
      

b/h = 100 2281.255 4238.556 4912.275 6614.088 
      

b/h = 10 18111.411 31179.616 34244.400 44915.726 
 
 

Table 12- Variation of the linear frequencies of vibration /different thickness of plate 3 with 134 
DOF 

wi 1ω  2ω  3ω  4ω  
Model         

b/h= 1000 96.557 158.203 225.939 231.694 
      

b/h = 100 952.610 1557.105 2196.995 2270.775 
      

b/h = 10 5557.992 8642.435 10187.659 12030.861 
 

From the three tables above, for thin ( b
h =1000) and moderately thick ( b

h =100) 

plates, the linear frequencies obtained are smaller than those of thick ( b
h =10) plates, 

as expected. 
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  3.3 - Influence of the fibre orientation in the prediction of the 

linear frequencies 

In this section, a fibre orientation study is carried out for plate 2. In Table 13, the 

results for 7 out-of-plane and 9 rotational shape functions are presented and 

compared with published results. 

Table 13 – Linear natural frequency parameter λ  of symmetrically five layer angle-ply, square 
plate 2 with fully clamped edges and different angle orientation 

       Mode 1 2 3 4 
θ  

     Method     
0º FSDT 23.839 29.700 41.704 60.202 
0º CPT [4.14] [4.15] 23.852 29.715 41.721 60.229 
30º FSDT 22.704 36.526 53.967 57.118 
30º CPT [4.14] 22.713 36.546 54.012 57.156 
45º FSDT 22.372 41.621 48.282 65.032 
45º CPT [4.14] 22.381 41.645 48.316 65.086 

Outstanding agreement for all the three groups of results with three different 

anglesθ , can be clearly seen in this table. In all the cases, the frequency parameters 

given by the first order shear deformation model are smaller than those given in 

[4.14] and [4.15]. It may be due to the inclusion of in-plane displacements and 

transverse shear deformation in the model developed in this thesis, which could 

slightly reduce the stiffening effects caused by neglecting these factors.  

4. NON-LINEAR FORCED VIBRATION ANALYSIS 

 4.1 - Introduction 

In this section, the discussion of forced vibration of a rectangular plate is studied 

using the HFEM, and equation (2.71) is solved by the Newmark method. If a 

distributed force that impinges on the plate’s surface only in the z direction is 
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considered, then { } { } 0u vP P= =  and the new force vector is given by equation 

(2.78).  

In non-linear vibrations, there are several parameters that influence the time 

dependence of the response: time variation, space dependence and amplitude of the 

external excitation, properties of the structure, initial and boundary conditions, etc. 

Depending on these parameters, the oscillations may be periodic – including 

harmonic, sub-harmonic and super-harmonic – quasi-periodic or even chaotic [4.12]. 

Quasi-periodic motion has a finite number of frequency components where some of 

them are not related by a rational number; therefore, its time signal is non-repetitive. 

A chaotic signal is as well non-repetitive in the time domain and has a very wide 

frequency spectrum. 

For various amplitudes and frequencies of excitation, time domain simulations of the 

response of the plates were carried out. A FORTRAN [4.13] Newmark integration 

routine was used.  

Applying the principle of the virtual work, the generalised external forces in the 

transverse direction were obtained in Chapter 2. It is recalled that for a distributed 

transverse force in the z direction one has the following expression: 

{ } { } ( , , )w
dP N P x y t d

Ω
= Ω∫  (4.1)

where { }wN is the out of plane shape function vector. If a harmonic plane wave 

impinges on the plate’s surface in the normal direction then 

( )( , , ) cos ,dP x y t F t k k= ω − ∈   (4.2)

where F is the magnitude of the applied force, ω is the frequency of the harmonic 

wave and k  is the phase. Substituting (4.2) in (4.1), we have 

{ } { } ( )

{ } ( )

cos

cos

wP F N d t k

f t k
Ω

= Ω ω −

= ω −

∫
 (4.3)
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The generalised external force vector { }f has only a real part in the above equation. 

It is interesting to note that most of the components in { }f are zero. For a plate with 

fully clamped edges in which only the shape functions generated by equation (2.96) 

are used, only ( )1f is different from zero. In this situation 

( ) ( ) ( )
1 1

4 4
1 1

1
4

abf F f d f d
− −

= ξ ξ η η∫ ∫  (4.4)

in which, a and b are the in-plane dimensions of the plate, ( )4f ξ  and ( )4f η  are the 

first shape functions generated using equation (2.96). 

 4.2 - Numerical results 

Plate 2 is excited by a harmonic wave of 4 N/m2 and 123 DOF (pi=7, po=5, pθ=7) are 

considered in the model. The fibres orientation varies from 0ºθ = to 45ºθ = . The 

force applied to the plate is increased to 3000 N/m2 for 30ºθ = and 45ºθ = ; for 

0ºθ =  it is increased to 3300 N/m2, and the results are discussed. For amplitudes of 

vibration of the order of the thickness of the plate, the solution was always periodic 

and highly dominated by the harmonic with frequency equal to the excitation 

frequency (principal harmonic).   

Plate 1 is excited by a harmonic wave of 5 N/m2, and 123 DOF are considered. The 

force applied to the plate is increased to 3000 N/m2, at 511.112 rad/s. The results 

obtained are also discussed. 

In Figure 1, the time domain response of the plate 2, 45ºθ = is presented for different 

values of α. Figure 2, shows that a closed path is obtained in the phase plane, 

therefore, the motion is periodic.  
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Figure 1 – Time domain response of Plate 2, ( ), , , ,− −45 45 45 45 45  due to harmonic excitation by 

a plane wave of 4 N/m2 

 

 
 

 
Figure 2 – Phase plane of the steady state forced vibration (4 N/m2) of Plate 2, 

( ), , , ,− −45 45 45 45 45  with different values of α
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Considering these responses, the influence of the loss parameter in the vibration of 

plate 2 is investigated. In Figure 1, with α = 0.01, the amplitude calculated at or near 

a point where it attains its maximum, maxw h , is given by 0.000941; with α = 0.001, 

the value of maxw h is 0.00801, and when α = 0.0001, maxw h  is 0.01466. Therefore, 

diminishing the value of α implies an increase in the amplitude of vibration, as 

expected. In the following, α is 0.0001. 

For plate 2, 45ºθ = , and for plate 1, the Fourier  spectra of the periodic responses  

due to a harmonic wave of 4 and 5 N/m2 are defined. In Figures 3 and 4, the spectrum 

of the Fourier series of the plates excited at the first mode of vibration is presented. 

Once the spectrum consists of a single basic frequency, a periodic motion is 

achieved. The near absence of harmonics indicates that the plate is practically in the 

linear regime, which is a result of the small amplitudes of oscillation. 

 

 
Figure 3 – Fourier spectrum of forced 

vibration of plate 2, (45,-45, 45,-45, 45) due 
to and harmonic excitation by a plane wave 

of 4 N/m2 

 
Figure 4 - Fourier spectrum of forced 

vibration of plate1, due to and harmonic 
excitation by a plane wave of 5 N/m2 

 

In Figures 5-16 the distributed force applied to plate 2 is increased; the response and 

the phase planes are presented. 

Amplitude of 
Harmonics 

Harmonics of ω

Amplitude of 
Harmonics 

Harmonics of ω  
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Figure 5 - Phase plane of the steady state 
forced vibration (50 N/m2) of plate 2, (45,-

45,45,-45,45)  due to harmonic excitation by a 
plane wave 

Figure 6 - Time domain response of Plate 2, 
(45,-45,45,-45,45) due to harmonic excitation 

by a plane wave of 50 N/m2  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 - Phase plane of the steady state forced 
vibration (500 N/m2) of plate 2, (45,-45,45,-

45,45)  due to harmonic excitation by a plane  
wave 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8 - Time domain response of Plate 2, 
(45,-45,45,-45,45) due to harmonic excitation 
by a plane wave of 500 N/m2 

 

Figure 9 - Phase plane of the steady state 
forced vibration (1000 N/m2) of plate 2, (45,-
45,45,-45,45) due to harmonic excitation by 

a plane wave 
 

Figure 10 - Time domain response of Plate 2, 
(45,-45,45,-45,45) due to harmonic excitation 

by a plane wave of 1000 N/m2  
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Figure 11 - Phase plane of the steady state 

forced vibration (2000 N/m2) of plate 2, (45,-
45,45,-45,45) due to harmonic excitation by a 

plane wave 
 

Figure 12 - Time domain response of Plate 2, 
(45,-45,45,-45,45) due to harmonic excitation 

by a plane wave of 2000 N/m2

 
Figure 13 - Phase plane of the steady state 

forced vibration (2500 N/m2) of plate 2, (45,-
45,45,-45,45) due to harmonic excitation by a 

plane wave 

 
Figure 14 - Time domain response of Plate 2, 
(45,-45,45,-45,45) due to harmonic excitation 

by a plane wave of 2500 N/m2

 
Figure 15 - Phase plane of the steady state 

forced vibration (3000 N/m2) of plate 2, (45,-
45,45,-45,45) due to harmonic excitation by a 

plane wave 

 
Figure 16 - Time domain response of Plate 2, 
(45,-45,45,-45,45) due to harmonic excitation 

by a plane wave of 3000 N/m2

maxw
h

 

maxw
h

 

maxw
h

 

maxw
h

maxw
h

maxw
h

( )t s  

( )t s  

( )t s  

w  

w  

w  



Chapter 4 – Forced Vibration of Plates –Transverse Force    96 

 

Closed paths are obtained in the phase planes for all the forces applied, therefore 

periodic motions are achieved. The values of max /w h are presented in Table 14, 

where dP represents the distributed applied force. 

Table 14 – Forced Vibration, Plate 2, 45ºθ = , po=5 

( )2/
dP

N m
 4dP =  50dP =  500dP = 1000dP = 2000dP =  2500dP =  3000dP =

1/ lω ω  max /w h  
1.0005 0.0147 0.1797 1.0536 1.5300 2.2628 2.5889 2.8998 

The amplitude of vibration, max /w h , increases as the force applied to the plate 

increases, but the relation between them is not linear. Considering plate 2 

with 30ºθ = , the phase planes and the time domain responses for a force varying 

from 4 N/m2 to 3000 N/m2 are given by 
 

 
Figure 17 - Phase plane of the steady state 

forced vibration (4N/m2) of plate 2, (30,- 30, 
30,- 30, 30) due to harmonic excitation by a 

plane wave 
 

 
Figure 18 - Time domain response of Plate 2, 

(30,- 30, 30,- 30, 30) due to harmonic 
excitation by a plane wave of 4 N/m2  
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Figure 19 - Phase plane of the steady state 

forced vibration (50N/m2) of plate 2, (30,- 30, 
30,- 30, 30) due to harmonic excitation by a 

plane wave 

 
Figure 20 - Time domain response of Plate 2, 

(30,- 30, 30,- 30, 30) due to harmonic 
excitation by a plane wave of 50 N/m2

 
Figure 21 - Phase plane of the steady state 

forced vibration (500N/m2) of plate 2, (30,- 30, 
30,- 30, 30) due to harmonic excitation by a 

plane wave 

 
Figure 22 - Time domain response of Plate 2, 

(30,- 30, 30,- 30, 30) due to harmonic 
excitation by a plane wave of 500 N/m2

 
Figure 23 - Phase plane of the steady state 

forced vibration (1000N/m2) of plate 2, (30,- 30, 
30,- 30, 30) due to harmonic excitation by a 

plane wave 

 
Figure 24 - Time domain response of Plate 2, 

(30,- 30, 30,- 30, 30) due to harmonic excitation 
by a plane wave of 1000 N/m2
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Figure 25 - Phase plane of the steady state 

forced vibration (2500N/m2) of plate 2, (30,- 30, 
30,- 30, 30) due to harmonic excitation by a 

plane wave 
 

 
Figure 26 - Time domain response of Plate 2, 

(30,- 30, 30,- 30, 30) due to harmonic excitation 
by a plane wave of 2500 N/m2

 
Figure 27 - Phase plane of the steady state 

forced vibration (3000N/m2) of plate 2, (30,- 30, 
30,- 30, 30) due to harmonic excitation by a 

plane wave 

 
Figure 28 - Time domain response of Plate 2, 

(30,- 30, 30,- 30, 30) due to harmonic excitation 
by a plane wave of 3000 N/m2

The amplitudes of vibration of plate 2, with 30ºθ = and for different distributed 

forces considered are presented in Table 15 and it can be seen that the amplitude of 

vibration increases as the force increases. 
Table 15 - Forced Vibration, Plate 2, 30ºθ = , po=5 

( )2/
dP

N m
 4dP =  50dP =  500dP = 1000dP = 2500dP =  3000dP =

1/ lω ω  max /w h  
1.0004 0.0141 0.1732 1.0147 1.4739 2.5232 2.8444 

Comparing with the results obtained in Table 14, for 30ºθ =  the amplitudes of 

vibration are lower than those obtained for 45ºθ = . 

maxw
h

 

maxw
h

 

w  

maxw
h

 

maxw
h

( )t s  
 

( )t s  

w  



Chapter 4 – Forced Vibration of Plates –Transverse Force    99 

 

Finally, the results obtained for plate 2 with 0ºθ = are given by: 

 
Figure 29 - Phase plane of the steady state 

forced vibration (4 N/m2) of plate 2, (0,-0, 0, -
0,0), due to harmonic excitation by a plane 

wave 

 
Figure 30 - Time domain response of Plate 2, 
(0,-0, 0, -0,0)., due to harmonic excitation by a 

plane wave of 4 N/m2

 
Figure 31 - Phase plane of the steady state 
forced vibration (50 N/m2) of plate 2, (0,-0, 

0, -0,0), due to harmonic excitation by a 
plane wave 

 

 
Figure 32 -  Time domain response of Plate 
2, (0,-0, 0, -0,0)., due to harmonic excitation 

by a plane wave of 50 N/m2

 
Figure 33 - Phase plane of the steady state 

forced vibration (500 N/m2) of plate 2, (0,-0, 
0, -0,0), due to harmonic excitation by a 

plane wave 

 
Figure 34 - Time domain response of Plate 
2, (0,-0, 0, -0,0)., due to harmonic excitation 

by a plane wave of 500 N/m2
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Figure 35 - Phase plane of the steady state 
forced vibration (1000 N/m2) of plate 2, (0,-
0, 0, -0,0), due to harmonic excitation by a 

plane wave 
 

 
Figure 36 - Time domain response of Plate 
2, (0,-0, 0, -0,0)., due to harmonic excitation 

by a plane wave of 1000 N/m2

 
Figure 37 - Phase plane of the steady state 
forced vibration (2500 N/m2) of plate 2, (0,-
0, 0, -0,0), due to harmonic excitation by a 

plane wave 

 
Figure 38 - Time domain response of Plate 
2, (0,-0, 0, -0,0)., due to harmonic excitation 

by a plane wave of 2500 N/m2

 
Figure 39 - Phase plane of the steady state 
forced vibration (3000 N/m2) of plate 2, (0,-
0, 0, -0,0), due to harmonic excitation by a 

plane wave 

 
Figure 40 - Time domain response of Plate 
2, (0,-0, 0, -0,0)., due to harmonic excitation 

by a plane wave of 3000 N/m2
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Figure 41 - Phase plane of the steady state 
forced vibration (3300 N/m2) of plate 2, (0,-
0, 0, -0,0), due to harmonic excitation by a 

plane wave 

 
Figure 42 - Time domain response of Plate 
2, (0,-0, 0, -0,0)., due to harmonic excitation 

by a plane wave of 3300 N/m2 

 

 

Table 16 - Forced Vibration, Plate 2,po=5 

( )2

dP

N / m
 4dP =  50dP = 500dP = 1000dP = 2500dP =  3000dP =  3300dP =

1/ lω ω  max /w h  
1.0002 0.0124 0.1524 0.9172 1.3322 2.2490 2.5414 2.7125 

 
 

In  

Table 16, for plate 2 and for 0ºθ = , the value of max /w h increases as the force 

increases. Comparing with θ=30º and θ=45º, one sees that the lower vibration 

amplitudes occur for this orthotropic plate.  

In figures 43-48, a periodic motion is achieved for Plate 1, (90,-45, 45, 0)sym., 

increasing the force applied from 5 N/m2 to 1250 N/m2, and the results are given by: 
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Figure 43 - Phase plane of the steady state 

forced vibration (5 N/m2) of plate 1, (90,-45, 
45, 0)sym., due to harmonic excitation by a 

plane wave. 

 
Figure 44 - Time domain response of Plate 1, 
(90,-45, 45, 0)sym., due to harmonic excitation 

by a plane wave of 5 N/m2

 
Figure 45 - Phase plane of the steady state 

forced vibration (1000 N/m2) of plate 1, (90,-
45, 45, 0)sym., due to harmonic excitation by a 

plane wave. 

 
Figure 46 - Time domain response of Plate 1, 
(90,-45, 45, 0)sym., due to harmonic excitation 

by a plane wave of 1000 N/m2

 
Figure 47 - Phase plane of the steady state 

forced vibration (1250 N/m2) of plate 1, (90,-
45, 45, 0)sym., due to harmonic excitation by a 

plane wave 

 
Figure 48 - Time domain response of Plate 1, 
(90,-45, 45, 0)sym., due to harmonic excitation 

by a plane wave of 1250 N/m2
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Table 17 shows that as the force increases, the amplitude of vibration also increases, 

as expected. 

Table 17 - Forced Vibration, Plate 1,po=5 

( )2/
dP

N m
 5dP =  1000dP = 1250dP =

1/ lw w  max /w h  
1.0001 0.0397 2.5077 2.8924 

Considering plate 2, with 45ºθ =  excited by a plane wave of 4 N/m2, the Poincaré 

map is given by 

 
Figure 49 – Poincaré map of plate 2, º= 45θ  excited by a plane wave of 4 N/m2 

The attractor is given by ( ) ( ), -2,22E-6;1,10E-2w w = . Increasing the force applied to 

the plate, the Poincaré maps obtained are given by 

 
Figure 50 - Poincaré map of plate 2 

º= 45θ excited by a plane wave of 50 N/m2 

 

 Figure 51 - Poincaré map of plate 2 
º= 45θ excited by a plane wave of 500 N/m2 
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w  
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Figure 52 - Poincaré map of plate 2 º= 45θ  

excited by a plane wave of 1000 N/m2 

 

 
Figure 53 - Poincaré map of plate 2 

º= 45θ excited by a plane wave of 2000 N/m2 

 
Figure 54 - Poincaré map of plate 2 º= 45θ  

excited by a plane wave of 2500 N/m2 

 
Figure 55 - Poincaré map of plate 2 

º= 45θ excited by a plane wave of 3000 N/m2 

From the Poincaré maps in Figures 50 – 55, a stable solution is found. The attractors 

obtained for a distributed force are presented in Table 18. 

 
Table 18 – Attractor points for vibration of plate 2, (45,-45,45,-45,45) with different forces 

applied to the plate, .= 0 0001α  
Force 

( )2/N m  ( ),w w  

4 -0.000002221029 0.011001843 
50 -0.000026992038 0.13423767 
500 -0.000086438719 0.69142843 
1000 -0.000086060785 0.77764522 
2000 -0.00012402394 0.32740296 
2500 -0.00018110176 -0.11912573 
3000 -0.00027464819 -0.68290308 

w  w  

w  w  

w  w  

w  w  
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Considering plate 2, with 30ºθ =  excited by a plane wave increased from 4 N/m2 to 

3000 N/m2 the Poincaré maps are given by 

 
Figure 56 - Poincaré map of plate 2 

º= 30θ excited by a plane wave of 4 N/m2 

 
Figure 57 - Poincaré map of plate 2 

º= 30θ excited by a plane wave of 50 N/m2 

 
Figure 58 - Poincaré map of plate 2 

º= 30θ excited by a plane wave of 500 N/m2 

 
Figure 59 - Poincaré map of plate 2 

º= 30θ excited by a plane wave of 1000 
N/m2 

 

 
Figure 60 - Poincaré map of plate 2 

º= 30θ excited by a plane wave of 2500 
N/m2 

 
Figure 61 - Poincaré map of plate 2 

º= 30θ excited by a plane wave of 3000 
N/m2 
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From Figures 56 – 61, a stable fixed point is obtained, and the attractors are given 

in Table 19: 
Table 19 - Attractor points for vibration of plate 2, (30,-30,30,-30,30) with different forces 

applied to the plate, .= 0 0001α  
Force 

( )2/N m  ( ),w w  

4 -0,000002181 0,010768813 
50 -0,000026514 0,131442280 
500 -0,000088687 0,682919900 
1000 -0,000090239 0,774106780 
2500 -0,000177679 0,041165870 
3000 -0,000253100 -0,404419910 

 
For 0ºθ = , a stable fixed point is also obtained for each force applied to the plate, 

and the attractors are given by 

Table 20 - Attractor points for vibration of plate 2, (0,0,0,0,0) with different forces applied 
to the plate, .= 0 0001α  

Force 
( )2/N m  ( ),w w  

4 -0,000002044 0,009946810 
50 -0,000024766 0,121444390 
500 -0,000085226 0,605365370 
1000 -0,000118215 0,669787950 
2500 -0,000105753 -0,061999104 
3000 -0,000162891 -0,511205420 
3300 -0,000210974 -0,800784570 

 

For plate 1, the attractors are given in Table 21: 
 

Table 21 - Attractor points for vibration of plate 1, with different forces applied to the plate, 
.= 0 0001α  

Force 
( )2/N m  ( ),w w  

5 -0,000003785 0,019950001 
1000 -0,000059534 0,121326650 
1250 -0,000112039 -0,167648940 
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5. CONCLUSIONS  

In this chapter, forced vibrations of composite laminated plates modelled by the 

HFEM are analysed. Linear and non-linear analyses are carried out. The linear 

frequencies were determined for plate 1, 2 and 3, and by comparison with 

numerical results, the model is validated and it is demonstrated that the linear 

natural frequencies of the first order shear deformation model for thick plates are 

lower than those from the thin plate theory, where the rotatory inertia and shear 

deformation are neglected. The influence of b
h was investigated, and as expected, 

for thin and moderately thick plates, the linear frequencies are lower than for thick 

plates. Therefore, the thicker the plate, the higher the linear natural frequencies 

predicted.  

The influence of the fibres orientation is studied for plate 2 with 

0º ,  30º  and 45ºθ = and the linear natural frequency parameter is determined. As 

the angle increases, the value of the linear natural frequency parameter also 

increases, which indicates that the fibres orientations influence the linear natural 

parameter, therefore the value of the linear natural frequency. 

In non-linear forced vibrations, plate 2 ( )0 30  and 45ºº , ºθ = , and plate 1 are 

studied. The force impinging on the plate’s surface is increased. 

Plate 1 is excited by a harmonic wave of 5 N/m2 to 3000 N/m2, at 511.112 rad/s 

and 123 DOF are considered. Plate 2 is excited by a harmonic wave of 4 N/m2 and 

123 DOF (pi=7, po=5, pθ=7) are considered in the model. The fibres orientation 

varies from 0ºθ = to 45ºθ = . The force applied to the plate is increased to 3000 

N/m2 for 30ºθ = and 45ºθ = ; for 0ºθ =  it is increased to 3300 N/m2. The 

influence of the loss parameter is investigated and is concluded that diminishing 

the value of α implies an increase in the amplitude of vibration. For amplitudes of 

vibration of the order of the thickness of the plate, the solution was always 

periodic and highly dominated by the harmonic with frequency equal to the 

excitation frequency (principal harmonic).   
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In both cases, as the force increases, so does the amplitude of vibration. Periodic 

motions are obtained for both plates and the results are confirmed with the 

computation of Poincaré maps and the Fourier spectrum.  
 

 



 

C h a p t e r 5  

FORCED VIBRATION OF LAMINATED PLATES - 

LONGITUDINAL AND TRANSVERSE FORCE 

1. INTRODUCTION 

In the previous chapter, forced vibration analysis in the transverse direction was 

considered. In this chapter, the force applied to the plate is changed and is applied in 

the transverse and longitudinal direction. Forces in the plane are constant and 

compressive. New types of solutions are found. The plates here analysed are given in 

Tables 1 and 2 of Chapter 4 and the equations of motion are solved using the 

Newmark method presented in Chapter 2. In order to analyse the time domain 

response of the plate’s vibrations, the tools presented in Chapter 3 are used to 

determine the presence of a periodic, quasi-periodic or chaotic motion.  

2. NON-LINEAR FORCED VIBRATION ANALYSIS 

 2.1  -  Distributed Applied Force  

In this section, the forced vibration of a rectangular plate is studied using the HFEM, 

and equation (2.71) is solved by the Newmark method. When a distributed load in the 

transverse and longitudinal direction is applied, the generalized forces are given by 

equation (2.77) in Chapter 2.  
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 2.2 - Numerical results 

For plate 2, and for a fibre orientation of 45ºθ = , two cases are considered: in the 

first case, the plate is excited at 5000 N/m2 in the x direction, 7000 N/m2 in the y 

direction and in the z direction the force varies from 500 N/m2 to 7000 N/m2 for an 

excitation frequency of 762.888 rad/s; in the second case, the forces in the x, y and z 

directions are kept at 10000 N/m2 but the frequency of excitation is changed from 

762.888 rad/s to 900 rad/s; 114 DOF (pi=7, po=4, pθ=7) are considered in the model, 

and the results are discussed. In the first case, the damping factor,α , is equal to 

0.00001and in the second is 0.000001 . 

For plate 3, two other cases are studied: in the first case, the forces in the x, y, z 

directions are equal and are increased from 15000 N/m2 to 100000 N/m2; in the 

second case the plate is excited at 5000 N/m2 in the x direction, 7000 N/m2 in the y 

direction and in the z direction the force varies from 7500 N/m2 to 50000 N/m2. In the 

first case, the damping factor, α , is equal to 0.00001and in the second is 0.000001 . 

 In both cases the excitation frequency is 980.592 rad/s. The results obtained are also 

discussed. For both plates, the damping factor,α , is equal to 0.00001 . 

In Figure 1, the time domain response and the phase plane of plate 2 are presented for 

a force of 5000 N/m2 in the x direction, 7000 N/m2 in the y direction and 500 N/m2 in 

the z direction. 

 

 

 
Figure 1 - Time history and phase plane of Plate 2, ( ), , , ,− −45 45 45 45 45  due to excitation of 

( ) ( ), , , ,= 5000 7000 500x y zF F F N/m2 
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Figure 2 - Poincaré map of Plate 2, due to excitation ( ) ( ), , , ,= 5000 7000 500x y zF F F N/m2 

 

From Figures 1 and 2, one sees that for ( ) ( ), , 5000,7000,500x y zF F F =  N/m2, a 

periodic solution is obtained. In fact, the phase portrait is closed, and the Poincaré 

map tends to a point.  

In Figures 3 to 8, the force in the z direction is increased to 7000 N/m2.

 
Figure 3 - Time history of Plate 2, due to 

excitation 
( ) ( ), , , ,= 5000 7000 1000x y zF F F N/m2 

 
Figure 4 - Phase plane of the steady state 

forced vibration 
( ) ( ), , , ,= 5000 7000 1000x y zF F F  N/m2 of 

plate 2 
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Figure 5 - Time history of Plate 2, due to 

excitation 
( ) ( ), , , ,= 5000 7000 3000x y zF F F N/m2 

 
Figure 6 - Phase plane of the steady state 

forced vibration 
( ) ( ), , , ,= 5000 7000 3000x y zF F F  N/m2 of 

plate 2 

 
Figure 7 - Time history of Plate 2, due to 

excitation 
( ) ( ), , , ,= 5000 7000 7000x y zF F F N/m2 

 
Figure 8 - Phase plane of the steady state 

forced vibration 
( ) ( ), , , ,= 5000 7000 7000x y zF F F  N/m2 of 

plate 2 
 

From Figures 3 to 8, different types of solutions are found. The Poincaré maps of 

these responses were computed and are presented in Figures 9 to 11. 
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Figure 9 - Poincaré map of Plate 2, due to 

excitation 
( ) ( ), , , ,= 5000 7000 1000x y zF F F N/m2 

 
Figure 10 - Poincaré map of Plate 2, due to 

excitation 
( ) ( ), , , ,= 5000 7000 3000x y zF F F N/m2 

 
Figure 11 - Poincaré map of Plate 2, due to excitation ( ) ( ), , , ,= 5000 7000 7000x y zF F F N/m2 

 

For a force of 1000 N/m2 in the z direction, once an closed path is obtained in the 

phase plane(Figure 4) and the Poincaré map (Figure 9) tends to a closed line, a quasi-

periodic solution was found; for 3000zF =  N/m2 (Figure 10), a cloud of points in the 

Poincaré map may represent a chaotic solution (to be confirmed with the computation 

of Lyapunov exponents); in Figure 11, once a single point is obtained in the Poincaré 

map, a periodic solution is obtained. In Figure 12 the Fourier spectrum for the 

excitation ( ) ( )5000 7000 7000=x y zF ,F ,F , , is presented. 

w  

w  w  

w w
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Figure 12 - Fourier spectrum of forced of Plate 2, due to excitation 

( ) ( ), , , ,= 5000 7000 7000x y zF F F N/m2 

Figure 12 confirms the results obtained in the Poincaré map. For  N/m2 a 

periodic solution is found, where harmonics of the excitation frequency are involved.  

In Figure 13, a positive Lyapunov exponent is obtained therefore a chaotic motion is 

achieved for 3000zF =  N/m2. 

 
Figure 13 – Highest Lyapunov exponent for Plate 2, due to excitation 

( ) ( ), , , ,= 5000 7000 3000x y zF F F N/m2 

Evolution Time (orbits)

Lyapunov 
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The following case study is plate 2, where the forces in the x, y and z directions are 

kept at 10000 N/m2 but the frequency of excitation is changed from 762.888 rad/s to 

900 rad/s. 

 

 

 
 
 
 
 
 

 
Figure 14 - Time history of Plate 2, due to excitation ( ) ( ), , , ,= 10000 10000 10000x y zF F F N/m2, 

.ω = 762 888 rad/s 
 

 

 

 

 
 
,  

 

 
Figure 15 - Poincaré map and phase plane of the steady state forced vibration 

( ) ( ), , , ,= 10000 10000 10000x y zF F F  N/m2 of plate 2, .ω = 762 888 rad/s 

 

In Figures 14 and 15, a closed path is obtained in the phase plane and the Poincaré 

map consists of a single point, therefore a periodic solution is found. 

Considering 800ω = rad/s and 900ω = rad/s, the time domain responses and the 

phase plane are given in Figures 16 to 19: 
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Figure 16 – Time history of Plate 2, due to 

excitation 
( ) ( ), , , ,= 10000 10000 10000x y zF F F N/m2, 

ω = 800 rad/s 

 
Figure 17 – Phase Plane of Plate 2, due to 

excitation 
( ) ( ), , , ,= 10000 10000 10000x y zF F F N/m2, 

ω = 800 rad/s 

 
Figure 18 - Time domain response of Plate 

2, due to excitation 
( ) ( ), , , ,= 10000 10000 10000x y zF F F N/m2, 

ω = 900 rad/s 

 
Figure 19 - Phase Plane of Plate 2, due to 

excitation 
( ) ( ), , , ,= 10000 10000 10000x y zF F F N/m2, 

ω = 900 rad/s 
 

It is difficult to ascertain, from the phase planes, if the path is closed or not. 

Apparently it is not, meaning that the solution is not periodic. This is - again 

apparently - confirmed by the Poincaré maps in Figures 20 and 21, although more 

points would be necessary to distinguish between a periodic motion with a large 

period or a not periodic motion. 
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Figure 20 – Poincaré Map of Plate 2, due to 

excitation 
( ) ( ), , , ,= 10000 10000 10000x y zF F F N/m2, 

ω = 800 rad/s 
 

 
Figure 21 - Poincaré Map of Plate 2, due to 

excitation 
( ) ( ), , , ,= 10000 10000 10000x y zF F F N/m2, 

ω = 900 rad/s 

 

In Figures 22 to 39, the time domain response, the phase plane and the Poincaré map 

of plate 3 are presented for a force increased from 15000 N/m2 to 100000 N/m2 in x, 

y, z directions and 980.592ω =  rad/s. 

 
Figure 22 - Time history of Plate 3, due to excitation ( ) ( ), , , ,= 15000 15000 15000x y zF F F N/m2, 

.ω = 980 592 rad/s 
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Figure 23 – Phase plane of Plate 3, due to 

excitation 
( ) ( ), , , ,= 15000 15000 15000x y zF F F N/m2, 

.ω = 980 592 rad/s 

 
Figure 24 – Poincaré map of Plate 3, due to 

excitation 
( ) ( ), , , ,= 15000 15000 15000x y zF F F N/m2, 

.ω = 980 592 rad/s 
  

 
Figure 25 - Time history of Plate 3, due to excitation ( ) ( ), , , ,= 20000 20000 20000x y zF F F N/m2, 

.ω = 980 592 rad/s 

 
Figure 26 – Phase plane of Plate 3, due to 

excitation 
( ) ( ), , , ,= 20000 20000 20000x y zF F F N/m2, 

.ω = 980 592 rad/s 

 
Figure 27 -Poincaré of Plate 3, due to 

excitation 
( ) ( ), , , ,= 20000 20000 20000x y zF F F N/m2, 

.ω = 980 592 rad/s 
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Figure 28 - Time history of Plate 3, due to excitation ( ) ( ), , , ,= 30000 30000 30000x y zF F F N/m2, 

.ω = 980 592 rad/s 

 
Figure 29 – Phase plane of Plate 3, due to 

excitation 
( ) ( ), , , ,= 30000 30000 30000x y zF F F N/m2, 

.ω = 980 592 rad/s 

 
Figure 30 –Poincaré map of Plate 3, due to 

excitation 
( ) ( ), , , ,= 30000 30000 30000x y zF F F N/m2, 

.ω = 980 592 rad/s 

 
Figure 31 - Time history of Plate 3, due to excitation ( ) ( ), , , ,= 40000 40000 40000x y zF F F N/m2, 

.ω = 980 592 rad/s 
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Figure 32 – Phase plane of Plate 3, due to 

excitation 
( ) ( ), , , ,= 40000 40000 40000x y zF F F N/m2, 

.ω = 980 592 rad/s 

 
Figure 33 – Poincaré map of Plate 3, due to 

excitation 
( ) ( ), , , ,= 40000 40000 40000x y zF F F N/m2, 

.ω = 980 592 rad/s 

 
Figure 34 - Time history of Plate 3, due to excitation ( ) ( ), , , ,= 70000 70000 70000x y zF F F N/m2, 

.ω = 980 592 rad/s 

 
Figure 35 – Phase plane of Plate 3, due to 

excitation 
( ) ( ), , , ,= 70000 70000 70000x y zF F F N/m2, 

.ω = 980 592 rad/s 

 
Figure 36 – Poincaré map of Plate 3, due to 

excitation 
( ) ( ), , , ,= 70000 70000 70000x y zF F F N/m2, 

.ω = 980 592 rad/s 
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Figure 37 – Time history of Plate 3, due to excitation 

( ) ( ), , , ,= 100000 100000 100000x y zF F F N/m2, .ω = 980 592 rad/s 

 

 
Figure 38 – Phase plane of Plate 3, due to 

excitation 
( ) ( ), , , ,= 100000 100000 100000x y zF F F  

N/m2, .ω = 980 592 rad/s 

 
Figure 39  – Poincaré map of Plate 3, due to 

excitation 
( ) ( ), , , ,= 100000 100000 100000x y zF F F  

N/m2, .ω = 980 592 rad/s 

 

In all the cases presented above, the time domain response represents a periodic 

solution. As the force increases, so does the amplitude of vibration, as expected. 

For the second case of plate 3, in Figures 40 to 60, the force is increased from 7500 

N/m2 to 50000 N/m2 in the z direction and ( ) ( ), 5000,7000x yF F =  N/m2. 
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Figure 40 – Time history of Plate 3, due to excitation ( ) ( ), , , ,= 5000 7000 7500x y zF F F N/m2, 

.ω = 980 592 rad/s 

 
Figure 41 – Phase plane of Plate 3, due to 

excitation 
( ) ( ), , , ,= 5000 7000 7500x y zF F F N/m2, 

.ω = 980 592 rad/s 
 

 
Figure 42 – Poincaré map of Plate 3, due to 

excitation 
( ) ( ), , , ,= 5000 7000 7500x y zF F F N/m2, 

.ω = 980 592 rad/s 

 

 
Figure 43 – Time history of Plate 3, due to excitation ( ) ( ), , , ,= 5000 7000 8500x y zF F F N/m2, 

.ω = 980 592 rad/s 
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Figure 44 – Phase plane of Plate 3, due to 

excitation 
( ) ( ), , , ,= 5000 7000 8500x y zF F F N/m2, 

.ω = 980 592 rad/s 

 
Figure 45 – Poincaré map of Plate 3, due to 

excitation 
( ) ( ), , , ,= 5000 7000 8500x y zF F F N/m2, 

.ω = 980 592 rad/s 

 
Figure 46 – Time history of Plate 3, due to excitation ( ) ( ), , , ,= 5000 7000 10000x y zF F F N/m2, 

.ω = 980 592 rad/s 

 
Figure 47 – Phase plane of Plate 3, due to 

excitation 
( ) ( ), , , ,= 5000 7000 10000x y zF F F N/m2, 

.ω = 980 592 rad/s 
 

 
Figure 48 – Poincaré map of Plate 3, due to 

excitation 
( ) ( ), , , ,= 5000 7000 10000x y zF F F N/m2, 

.ω = 980 592 rad/s 
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Figure 49 – Time history of Plate 3, due to excitation ( ) ( ), , , ,= 5000 7000 15000x y zF F F N/m2, 

.ω = 980 592 rad/s 

 
Figure 50 – Phase plane of Plate 3, due to 

excitation 
( ) ( ), , , ,= 5000 7000 15000x y zF F F N/m2, 

.ω = 980 592 rad/s 

 
Figure 51 – Poincaré map of Plate 3, due to 

excitation 
( ) ( ), , , ,= 5000 7000 15000x y zF F F N/m2, 

.ω = 980 592 rad/s 

 
Figure 52 – Time history of Plate 3, due to excitation ( ) ( ), , , ,= 5000 7000 20000x y zF F F N/m2, 

.ω = 980 592 rad/s 
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Figure 53 – Phase plane of Plate 3, due to 

excitation 
( ) ( ), , , ,= 5000 7000 20000x y zF F F N/m2, 

.ω = 980 592 rad/s 

 
Figure 54 – Poincaré map of Plate 3, due to 

excitation 
( ) ( ), , , ,= 5000 7000 20000x y zF F F N/m2, 

.ω = 980 592 rad/s 

 
Figure 55 – Time history of Plate 3, due to excitation ( ) ( ), , , ,= 5000 7000 35000x y zF F F N/m2, 

.ω = 980 592 rad/s 

 
Figure 56 – Phase plane of Plate 3, due to 

excitation 
( ) ( ), , , ,= 5000 7000 35000x y zF F F N/m2, 

.ω = 980 592 rad/s 

 
Figure 57 – Poincaré map of Plate 3, due to 

excitation 
( ) ( ), , , ,= 5000 7000 35000x y zF F F N/m2, 

.ω = 980 592 rad/s 
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Figure 58 – Time history of Plate 3, due to excitation ( ) ( ), , , ,= 5000 7000 50000x y zF F F N/m2, 

.ω = 980 592 rad/s 

 
Figure 59 – Phase plane of Plate 3, due to 

excitation 
( ) ( ), , , ,= 5000 7000 50000x y zF F F N/m2, 

.ω = 980 592 rad/s 

 
Figure 60 – Poincaré map of Plate 3, due to 

excitation 
( ) ( ), , , ,= 5000 7000 50000x y zF F F N/m2, 

.ω = 980 592 rad/s 
 

From the figures above, one sees that the response to harmonic, transverse 

excitations, in the presence of in-plane constant forces, can be of several types: 

periodic, but almost harmonic; periodic, with strong influence of harmonics of the 

excitation frequency; quasi-periodic and chaotic. To remove all doubts about the 

possibly quasi-periodic motions it would be necessary to compute the two largest 

Lyapunov exponents [5.1] 
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3. CONCLUSIONS  

In this chapter, forced vibrations of composite laminated plates modelled by the 

HFEM are analysed. The main difference from Chapter 4 is the change of the force 

applied to the plate. 

For plate 2, two cases are considered: in the first case, the plate is excited at 5000 

N/m2 in the x direction, 7000 N/m2 in the y direction and in the z direction the force 

varies from 500 N/m2 to 7000 N/m2 for an excitation frequency of 762.888 rad/s; in 

the second case, the forces in the x, y and z directions are kept at 10000 N/m2 but the 

frequency of excitation is changed from 762.888 rad/s to 900 rad/s. For the first case 

as the force in the z direction increases, so does the amplitude of vibration. Periodic, 

quasi-periodic and chaotic motions are obtained and the results are confirmed with 

the computation of Poincaré maps, Fourier spectrum and Lyapunov exponents. In the 

second case, increasing the excitation frequency, quasi-periodic solutions are 

obtained and the amplitude of vibration diminishes as the excitation frequency 

increases. 

For plate 3, two other cases are considered: in the first case, the forces in the x, y, z 

directions are equal and are increased from 15000 N/m2 to 100000 N/m2; in the 

second case the plate is excited at 5000 N/m2 in the x direction, 7000 N/m2 in the y 

direction and in the z direction the force varies from 7500 N/m2 to 50000 N/m2. In 

both cases the excitation frequency is 980.592 rad/s. In the first case, as the force in 

all the directions increase, so does the amplitude of vibration. Once a closed line is 

obtained in the phase plane and the Poincaré map consists of a single point, a periodic 

solution is obtained. For the second case, only when the plate is excited with a force 

of 7500 N/m2, a periodic solution is obtained. In all the other responses, possible 

quasi-periodic solutions are obtained. To remove all doubts it would be necessary to 

compute the two largest Lyapunov exponents. 

It must be mentioned, that it was assumed that the plate always vibrate in the linear 

elastic regime. Naturally, for engineering applications it ought to be confirmed if the 

elastic limit is not passed. The same is true in what delamination is concerned. 



C h a p t e r  6  

CONCLUSIONS AND SUGGESTIONS FOR 

FUTURE STUDY 

1.  CONCLUSIONS 

Composite laminated structures are used in many areas of engineering such as 

aeronautics, space engineering and naval industry. They are often subjected to large 

dynamic excitation levels. As a result, they can undergo large amplitude, which 

cause large tensions and the diminution of life due to fatigue. 

In this thesis, the geometrically non-linear forced vibration of fully clamped 

composite laminated plates was studied. The hierarchical finite element method 

(HFEM) was used to create the spatial model.  The equations of motion for 

asymmetrically composite laminated plates were derived in the time domain and 

Newmark direct integration scheme was used to solve them. The implementation 

was carried out in FORTRAN. In the HFEM, particularly in non-linear analysis, 

high order shape functions must be integrated. The symbolic manipulator MAPLE 

was used to carry out this task, thus defining very accurately the mass and stiffness 

matrices that constitute the model.  

Employing the flexibility of choosing different shape functions to construct the 

HFEM model, the convergence as a function of the number of shape functions was 

studied. The number of in-plane shape functions required for accuracy increases as 

the amplitude of vibration displacement and the non-linearity increase. The use of 

less in-plane shape functions than the necessary increases the stiffness of the model. 

For larger amplitudes of vibration, more in-plane than out-of-plane shape functions 

become necessary.  The HFEM gives accurate solutions with far fewer DOF than 

the h-version of the FEM. The influence of b
h was investigated, and as expected, 

for thin and moderately thick plates, the linear frequencies are lower than for thick 
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plates. Therefore, the thicker the plate, the higher the linear natural frequencies 

predicted.  

The influence of the fibres orientation is studied for a particular plate, considering 

0º ,  30º  and 45ºθ = and determining a linear natural frequency parameter. 

Comparing with other numerical results, the FSDT for thick plates the parameters 

are lower than those obtained in the classical plate theory (CPT). As the angle 

increases, the value of the linear natural parameter also increases, which indicates 

that the fibres orientations influence the linear natural frequency. 

In the non-linear analysis, the time domain response for symmetrically laminated 

composite rectangular plates was obtained for three plates. The force was changed 

in all the directions and periodic, quasi-periodic and chaotic motions were obtained. 

In order to analyse solutions, tools such as phase plane, Poincaré maps, Fourier 

spectra and Lyapunov exponents were used. Periodic, quasi-periodic and chaotic 

solutions were obtained and the results were discussed. On the other hand, 

regarding the amplitude of vibration, for all the plates studied, as the force 

increased, so did the amplitude of vibration.  

2.  SUGGESTIONS FOR FUTURE WORK 

Based on the work discussed in the thesis, the following suggestions for future 

investigation can be made: 

i). Once a general model valid for symmetric and asymmetric laminates was 

derived, work needs to be carried out in asymmetrical plates;  

ii). Because of the persistent increasing demands on the performance of 

mechanical structures and the rising importance of lightweight construction, the 

mathematical models to describe mechanical systems have to meet increasingly 

high accuracy. Therefore work can be carried out in the experimental analysis of the 

plates presented in this thesis;  

iii). To obtain the frequency spectrum of quasi-periodic and chaotic oscillations, 

other tools of signal processing, like the power spectral density function should be 

implemented; 
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iv). The algorithm used from Wolf computes the largest non-negative Lyapunov 

exponent from a time series. The computation of the complete spectrum from the 

equations of motion, and from its linearization, instead of using the time series 

needs to be made;  

 

v). The study carried out intended to find non-periodic motion in plates excited 

harmonically. Thus, academically, some of the amplitudes considered for the forces 

were very large. As referred before, it will be necessary to validate the linear elastic 

relationship and the integrity of the plates for very large displacements.  
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APPENDIX A 

The first out-of-plane shape functions after the cubic polynomials are given by 
 

( ) ( ) ( )2 4
5 1 8 1 4 1 8f = − ξ + ξ  

3 5
6 (1/8) -(1/4) +(1/8)f = ξ ξ ξ  

2 4 6
7 -(1/48)+(3/16) -(5/16) +(7/48)f = ξ ξ ξ  

3 5 7
8 -(1/16) +(5/16) -(7/16) +(3/16)f = ξ ξ ξ ξ  

( ) 2 4 6 8
9 3/384 -(15/96) +(35/64) -(63/96) +(99/384)f = ξ ξ ξ ξ  

3 5 7 9
10 (5/128) -(35/96) +(63/64) -(33/32) +(143/384)f = ξ ξ ξ ξ ξ  

( ) 2 4 6 8 10
11 - 1/256 +(35/256) -(105/128) +(231/128) -(429/256) +(143/256)f = ξ ξ ξ ξ ξ  

3 5 7 9 11
12 -(7/256) +(105/256) -(231/128) +(429/128) -(715/256) +(221/256)f = ξ ξ ξ ξ ξ ξ  

( ) 2 4 6 8 10
13

12

7/3072 -(63/512) +(1155/1024) -(1001/256) +(6435/1024) -(2431/512) +

(4199/3072)

f = ξ ξ ξ ξ ξ

ξ
3 5 7 9 11

14
13

(21/1024) -(231/512) +(3003/1024) -(2145/256) +(12155/1024) -(4199/512) +

(2261/1024)

f = ξ ξ ξ ξ ξ ξ

ξ

( ) 2 4 6 8
15

10 12 14

- 3/2048 +(231/2048) -(3003/2048) +(15015/2048) -(36465/2048) +

(46189/2048) -(29393/2048) +(7429/2048)

f = ξ ξ ξ ξ

ξ ξ ξ
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In-plane shape functions  

( ) 2
2 - 1/2 +(1/2)g = ξ  

3
3 -(1/2) +(1/2)g = ξ ξ  

( ) 2 4
4 1/8 -(3/4) +(5/8)g = ξ ξ  

3 5
5 (3/8) -(5/4) +(7/8)g = ξ ξ ξ  

( ) 2 4 6
6 - 1/16 +(15/16) -(35/16) +(63/48)g = ξ ξ ξ  

3 5 7
7 -(5/16) +(35/16) -(63/16) +(99/48)g = ξ ξ ξ ξ  

( ) 2 4 6 8
8 5/128 -(105/96) +(315/64) -(693/96) +(1287/384)g = ξ ξ ξ ξ  

3 5 7 9
9 (35/128) -(105/32) +(693/64) -(429/32) +(715/128)g = ξ ξ ξ ξ ξ  

( ) 2 4 6 8 10
10 - 7/256 +(315/256) -(1155/128) +(3003/128) -(6435/256) +(2431/256)g = ξ ξ ξ ξ ξ  

3 5 7 9
11

11

-(63/256) +(1155/256) -(3003/128) +(6435/128) -(12155/256) +

(4199/256)

g = ξ ξ ξ ξ ξ

ξ
 

( ) ( ) ( ) ( ) ( )
( ) ( )

2 4 6 8
12

10 12

21/1024 - 693/512 + 15015/1024 - 15015/256 + 109395/1024 -

46189/512 + 29393/1024

g = ξ ξ ξ ξ

ξ ξ
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