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Abstract In this paper we consider a special class of 2D convolutional codes (com-
position codes) with encoders G(d1,d2) that can be decomposed as the product of
two 1D encoders, i.e., G(d1,d2) = G2(d2)G1(d1). In case that G1(d1) and G2(d2)
are prime we provide constructions of syndrome formers of the code, directly from
G1(d1) and G2(d2). Moreover we investigate the minimality of 2D state-space real-
ization by means of a separable Roesser model of syndrome formers of composition
codes, where G2(d2) is a quasi-systematic encoder.

Key words: encoders and syndrome forms, 2D composition codes, 2D state-space
models

1 Introduction and preliminary concepts

Minimal state-space realization of convolutional codes play an important role in ef-
ficient code generation and verification. This question has been widely investigated
in the literature for 1D codes [3, 6], however it is still open for the 2D case. Prelim-
inary results concerning 2D encoder and code realizations have been presented in
[10]. In this paper we study the syndrome former realization problem for a special
class of 2D codes.

We consider 2D convolutional codes constituted by sequences indexed by Z2

and taking values in Fn, where F is a field. Such sequences {w(i, j)}(i, j)2Z2 can be
represented by bilateral formal power series
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ŵ(d1,d2) = Â
(i, j)2Z2

w(i, j)di
1d j

2.

For n 2N, the set of 2D bilateral formal power series over Fn is denoted by F n
2D.

This set is a module over the ring F[d1,d2] of 2D polynomials over F. The set of
matrices of size n⇥ k with elements in F[d1,d2] will be denoted by Fn⇥k[d1,d2].

Given a subset C of sequences indexed by Z2, taking values in Fn, we denote by
Ĉ the subset of F n

2D defined by Ĉ = {ŵ | w 2 C }.

Definition 1. A 2D convolutional code is a subset C of sequences indexed by Z2

such that Ĉ is a submodule of F n
2D which coincides with the image of F k

2D (for
some k 2 N) by a polynomial matrix G(d1,d2), i.e.,

Ĉ = Im G(d1,d2) = {ŵ(d1,d2) | ŵ(d1,d2) = G(d1,d2)û(d1,d2), û(d1,d2) 2 F k
2D}.

It follows, as a consequence of [Theorem 2.2, [8]], that a 2D convolutional
code can always be given as the image of a full column rank polynomial matrix
G(d1,d2) 2 Fn⇥k[d1,d2]. Such polynomial matrix is called an encoder of C . A code
with encoders of size n⇥ k is said to have rate k/n.

A 2D convolutional code C of rate k/n can also be represented as the kernel of
a (n�k)⇥n left-factor prime polynomial matrix ( i.e. a matrix without left nonuni-
modular factors), as follows from [Theorem 1, [12]].

Definition 2. Let C be a 2D convolutional code of rate k/n. A left-factor prime
matrix H(d1,d2) 2 F(n�k)⇥n[d1,d2] such that

Ĉ = ker H(d1,d2),

is called a syndrome former of C .

Note that w is in C if and only if H(d1,d2)ŵ = 0.

Remark 1. This means that whereas codewords are output sequences of an encoder,
they constitute the output-nulling inputs of a syndrome former of the code.

Given an encoder of C , a syndrome former of C can be obtained by constructing
a (n� k)⇥ n left-factor prime matrix H(d1,d2) such that H(d1,d2)G(d1,d2) = 0.
Moreover all syndrome formers of C are of the form U(d1,d2)H(d1,d2), where
U(d1,d2) 2 F(n�k)⇥(n�k)[d1,d2] is unimodular.

2 Composition codes and their syndrome formers

In this section we consider a particular class of 2D convolutional codes generated by
2D polynomial encoders that are obtained from the composition of two 1D polyno-
mial encoders. Such encoders/codes will be called composition encoders/codes. Our
goal is to characterize the syndrome formers of such codes. The formal definition of
composition encoders is as follows.
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Definition 3. An encoder G(d1,d2) 2 Fn⇥k[d1,d2] such that

G(d1,d2) = G2(d2)G1(d1), (1)

where G1(d1) 2 Fp⇥k[d1] and G2(d2) 2 Fn⇥p[d2] are 1D encoders, is said to be a
composition encoder.

Note that the requirement that Gi(di), for i = 1,2, is a 1D encoder is equivalent
to the condition that Gi(di) is a full column rank matrix. Moreover this require-
ment clearly implies that G2(d2)G1(d1) has full column rank, hence the composition
G2(d2)G1(d2) of two 1D encoders is indeed a 2D encoder.

The 2D composition code C associated with G(d1,d2) is such that

Ĉ = Im G(d1,d2) = G2(d2)(Im G1(d1))

= {ŵ(d1,d2) | 9 ẑ(d1,d2) 2 Im (G1(d1)) such that ŵ(d1,d2) = G2(d2)ẑ(d1,d2)}.

We shall concentrate on a particular class of composition codes, namely on those
that admit a composition encoder G(d1,d2) as in (1) with G2(d2) and G1(d1) both
right-prime encoders (i.e., they admit a left polynomial inverse), and derive a proce-
dure for constructing the corresponding syndrome formers based on 1D polynomial
methods. This procedure will be useful later on for the study of state-space realiza-
tions.

It is important to observe that as G2(d2) and G1(d1) are both assumed to have
polynomial inverses, then G(d1,d2) also has a 2D polynomial left inverse (given
by the product of the left inverses of G1(d1) and G2(d2)) and therefore G(d1,d2)
is right-zero prime1(rZP). Recall that if a 2D convolutional code admits a right-
zero prime encoder then all its rFP encoders are rZP. Moreover, the corresponding
syndrome formers are also lZP (see Prop. A.4 of [4]).

Since G2(d2)2 Fn⇥p[d2] is right-prime there exists a unimodular matrix U(d2)2
Fn⇥n[d2] such that

U(d2)G2(d2) =


Ip
0

�
.

We shall partition U(d2) as

U(d2) =


L2(d2)
H2(d2)

�
, (2)

where L2(d2) has p rows.

1 A polynomial matrix G(d1,d2) is right/left-zero prime (rZP/lZP) if the ideal generated by the
maximal order minors of G(d1,d2) is the ring F[d1,d2] itself, or equivalently if and only if ad-
mits a polynomial left/right inverse. Moreover right/left-zero primeness implies right/left-factor
primeness(rFP/lFP).
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It is easy to check that, if H1(d1) 2 F(p�k)⇥p[d1] is a syndrome former of
the 1D convolutional code Im G1(d1) (i.e., H1(d1) is left-prime and is such that
H1(d1)G1(d1) = 0), then


H1(d1)L2(d2)

H2(d2)

�
G2(d2)G1(d1) = 0. (3)

This reasoning leads to the following proposition.

Proposition 1. Let C , with Ĉ = Im G(d1,d2), be a composition code with G(d1,d2)2
Fn⇥k[d1,d2] such that G(d1,d2) = G2(d2)G1(d1), where G2(d2) 2 Fn⇥p[d2] and
G1(d1)2Fp⇥k[d1] are both right-prime 1D encoders. Let further H1(d1)2F(p�k)⇥p[d1]

be a 1D syndrome former of Im G1(d1) and define


L2(d2)
H2(d2)

�
as in (2). Then

H(d1,d2) =


H1(d1)L2(d2)

H2(d2)

�

is a syndrome former of C .

Proof. Since (3) is obviously satisfied and H(d1,d2) has size (n� k)⇥ n, we only
have to prove that H(d1,d2) is left-factor prime. Note that as H1(d1) is left-prime,
there exists R1(d1) 2 Fp⇥(p�k)[d1] such that H1(d1)R1(d1) = Ip�k. Now it is easy to
see that

R(d1,d2) =U(d2)
�1


R1(d1) 0

0 In�p

�
.

constitutes a polynomial right inverse of H(d1,d2). Consequently H(d1,d2) is left-
zero prime which implies that it is left-factor prime as we wish to prove.

3 State-space realizations of encoders and syndrome formers

In this section we recall some fundamental concepts concerning 1D and 2D state-
space realizations of transfer functions, having in mind the realizations of encoders
and syndrome formers.

A 1D state-space model
(

x(t +1) = Ax(t)+Bu(t)
w(t) =Cx(t)+Du(t)

denoted by S 1D(A,B,C,D) is a realization of dimension m of M(d) 2 Fs⇥r[d] if
M(d) =C(Im�Ad)�1Bd+D. Moreover, it is a minimal realization if the size of the
state x is minimal among all the realizations of M(d). The dimension of a minimal
realization of M(d) is called the McMillan degree of M(d) and is given by µ(M) =

intdeg


M(d)
Ir

�
, where intdegM(d) is the maximum degree of its r- order minors

[11].
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As for the 2D case, there exist several types of state-space models [1, 2]. In
our study we shall consider separable Roesser models [13]. These models have the
following form:

8
><

>:

x1(i+1, j) = A11x1(i, j)+A12x2(i, j)+B1u(i, j)
x2(i, j+1) = A21x1(i, j)+A22x2(i, j)+B2u(i, j)
y(i, j) =C1x1(i, j)+C2x2(i, j)+Du(i, j)

(4)

where A11, A12, A21, A22, B1, B2, C1, C2 and D are matrices over F, with suitable
dimensions, u is the input-variable, y is the output-variable, and x = (x1,x2) is the
state variable where x1 and x2 are the horizontal and the vertical state-variables,
respectively. The dimension of the system described by (4) is given by the size of
x. Moreover either A12 = 0 or A21 = 0. The separable Roesser model corresponding
to equations (4) with A12 = 0 is denoted by S 2D

12 (A11,A21,A22,B1,B2,C1,C2,D),
whereas the one with A21 = 0 is denoted by S 2D

21 (A11,A12,A22,B1,B2,C1,C2,D).
The remaining considerations of this section can be stated for both cases when

A12 = 0 or A21 = 0, however we just consider A12 = 0; the case A21 = 0 is completely
analogous, with the obvious adaptations.

Definition 4. S 2D
12 (A11,A21,A22,B1,B2,C1,C2,D) is said to be a realization of the

2D polynomial matrix M(d1,d2) 2 Fs⇥r[d1,d2] if

M(d1,d2) =
⇥
C1 C2

⇤I �A11d1 0
�A21d2 I �A22d2

��1✓B1
0

�
d1 +


0

B2

�
d2

◆
+D.

As it is well known different realizations of M(d1,d2) may not have the same
dimension. For the sake of efficient implementation, we are interested in studying
the realizations of M(d1,d2) with minimal dimension. Such realizations are called
minimal. The Roesser McMillan degree of M(d1,d2), µR(M), is defined as the di-
mension of a minimal realization of M(d1,d2).

Note that every polynomial matrix M(d1,d2) 2 Fs⇥r[d1,d2] can be factorized as
follows:

M(d1,d2) = M2(d2)M1(d1), (5)

where M2(d2) =
h
In | · · · | Ind`2

2

i
N2 2 Fs⇥p[d2] and M1(d1) = N1

h
Ik . . . Ikd`1

1

iT
2

Fp⇥r[d1], with N2 and N1 constant matrices.
If N2 has full column rank and N1 has full row rank we say that (5) is an op-

timal decomposition of M(d1,d2). As shown in [7, 9], if (5) is an optimal decom-
position, given a minimal realization S 1D(A11,B1,C̄1, D̄1) of M1(d1) (of dimension
µ(M1)) and a minimal realization S 1D(A22, B̄2,C2, D̄2) of M2(d2) (of dimension
µ(M2)) then the 2D system S 2D

12 (A11,A21,A22,B1,B2,C1,C2,D), where A21 = B̄2C̄1,
B2 = B̄2D̄1, C1 = D̄2C̄1 and D = D̄2D̄1, is a minimal realization of M(d1,d2) of di-
mension µR(M) = µ(M1)+µ(M2). A similar reasoning can be made if we factorize
M(d1,d2) = M̄1(d1)M̄2(d2), where M̄1(d1) 2 Fs⇥p̄[d1] and M̄2(d2) 2 F p̄⇥r[d2], for



6 Ettore Fornasini, Telma Pinho, Raquel Pinto and Paula Rocha

some p 2 N, to obtain a minimal realization S 2D
21 (A11,A12,A22,B1,B2,C1,C2,D) of

M(d1,d2).
Note that, since both encoders and syndrome formers are (2D) polynomial ma-

trices, they both can be realized by means of (4). However, when considering
realizations of an encoder G(d1,d2) = G2(d2)G1(d1) we shall take A12 = 0 and
y = w; on the other hand when considering realizations of a syndrome former
H(d1,d2) = H1(d1)H2(d2), we shall take A21 = 0, u = w and y = 0, (cf. Remark
1).

4 Minimal syndrome former realizations of a special class of

composition codes

In the sequel the composition codes C to be considered are such that Ĉ = Im G(d1,d2),
where the encoder G(d1,d2) is as in (1) and satisfies the following properties:

(P1) – G1(d1) is a minimal 1D polynomial encoder2 (for instance, prime and column
reduced 3), with full row rank over F;

(P2) – G2(d2) is a quasi-systematic 1D polynomial encoder, i.e., there exists an in-

vertible matrix T 2 Fn⇥n such that T G2(d2) =


Ip

Ḡ2(d2)

�
, Ḡ2(d2)2 F(n�p)⇥p[d2].

Note that both G1(d1) and G2(d2) are minimal encoders of the corresponding
1D convolutional codes. Moreover, G(d1,d2) is a minimal encoder of C , i.e., it has
minimal Roesser McMillan degree among all encoders of C , [10, 9], in the sequel
we denote this minimal degree by µ(C ).

In what follows, we shall derive a syndrome former construction for the code C ,
based on Proposition 1. Define

H1(d1) =


L1(d1) 0

0 I

�
2 F(n�k)⇥n[d1] and H2(d2) =


I 0

�Ḡ2(d2) I

�
T 2 Fn⇥n[d2],

where L1(d1)2 F(p�k)⇥p[d1] and
⇥
�Ḡ2(d2) I

⇤
2 F(n�p)⇥n[d2] are 1D syndrome for-

mers of the 1D convolutional codes Im G1(d1) and Im G2(d2), respectively. Let

H(d1,d2) = H1(d1)H2(d2) (6)

=


L1(d1) 0
�Ḡ2(d2) I

�
T. (7)

2 A minimal 1D encoder is an encoder with minimal McMillan degree among all the encoders of
the same code.
3 A full row (column) rank matrix M(d) 2 Fn⇥k[d] is said to be row (column) reduced if
intdegM(d) is equal to the sum of the row (column) degrees of M(d); in that case µ(M) =
intdegM(d).
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It is easy to see that H(d1,d2) is a syndrome former of C . It can be shown that it is
possible to assume, without loss of generality, that (6) is an optimal decomposition
of H(d1,d2). Then

µR(H) = µ(H1)+µ(H2) = µ(L1)+µ(�Ḡ2) = µ(L1)+µ(G2).

Note that since L1(d1) is a syndrome former of the 1D convolutional code Im G1(d1)
and G1(d1) is a minimal encoder of Im G1(d1), it follows that µ(L1) � µ(G1),
[5, 6], and hence µR(H) � µR(G). Moreover, µ(L1) = µ(G1) if L1(d1) has min-
imal McMillan degree among all syndrome formers of Im G1(d1), for instance, if
L1(d1) is row reduced, [5, 6], (which can always be assumed without loss of general-
ity, since otherwise pre-multiplication of H(d1,d2) by a suitable unimodular matrix
U(d1) yields another syndrome former for C , with L1(d1) row reduced); in this case
µR(H) = µR(G).

Thus given the encoder G(d1,d2) we have constructed a syndrome former
H(d1,d2), as in Proposition 1. Moreover, based on the special properties of G(d1,d2),
we have shown that the minimal realizations of H(d1,d2) have dimension µR(H) =
µR(G) = µ(C ) (recall that G(d1,d2) is a minimal encoder).

We next show that µR(H) is minimal among the McMillan degree of all syn-
drome formers of C with similar structure as H(d1,d2).

Theorem 1. Let C , with Ĉ = Im G(d1,d2), be a 2D composition code, and as-
sume that G(d1,d2) = G2(d2)G1(d1), where G1(d1) and G2(d2) satisfy proper-

ties (P1) and (P2), respectively. Let further H̃(d1,d2) =


X1(d1) 0
X21(d2) X22(d2)

�
T be

a syndrome former of C , where X1(d1) 2 F(p�k)⇥p[d1], X21(d2) 2 F(n�p)⇥p[d2],
X22(d2) 2 F(n�p)⇥(n�p)[d2] and T 2 Fn⇥n as in (P2). Then µR(H̃)� µ(C ).

Proof. Note that H̃(d1,d2)G(d1,d2) = 0 if and only if
(

X1(d1)G1(d1) = 0�
X21(d2)+X22(d2)Ḡ2(d2)

�
G1(d1) = 0.

(8)

Then X1(d1) must be a syndrome former of the 1D convolutional code Im G1(d1)
and consequently µ(X1) � µ(G1) [6]. On the other hand we have that X21(d2)+

X22(d2)Ḡ2(d2) = 0, that is equivalent to
⇥
X21(d2) X22(d2)

⇤ I
Ḡ2(d2)

�
= 0, and there-

fore
⇥
X21(d2) X22(d2)

⇤
is a syndrome former of the 1D convolutional code


I

Ḡ2(d2)

�
.

Hence µ
�⇥

X21 X22
⇤�

� µ
✓

I
Ḡ2

�◆
, since


I

Ḡ2(d2)

�
is a minimal encoder of Im


I

Ḡ2(d2)

�
.

Now, since H̃(d1,d2) =


X1(d1) 0

0 I

�
I 0

X21(d2) X22(d2)

�
T , it is not difficult to see that
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µR(H̃) = µ(X1)+µ
�⇥

X21 X22
⇤�

� µ(G1)+µ
✓

I
Ḡ2

�◆

= µ(G1)+µ
✓

T�1


I
Ḡ2

�◆
= µR(G) = µ(C ).

Corollary 1. Using the notation and conditions of Theorem 1, the syndrome for-
mer of C given by (7) has minimal Roesser McMillan degree among all syndrome
formers of the same structure.
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