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Abstract— Here we propose a simplified model for the path
planning of an Autonomous Under Vehicle (AUV) in an hori-
zontal plane when ocean currents are considered. The model
includes kinetic equations and a simple dynamic equation. Our
problem of interest is a minimum time problem with state
constraints where the control appears linearly. This problem is
solved numerically using the direct method. We extract various
tests from the Maximum Principle that are then used to validate
the numerical solution. In contrast to many other literature we
apply the Maximum Principle as defined in [9].

I. INTRODUCTION

Optimal control problems for autonomous vehicles have
long proved to be a useful tool for robotics and, in particular,
to determine references trajectories to execute certain tasks.
They have also proved to be of interest to illustrate and test
many theoretical concepts of optimal control (see [1], for
example). Indeed, the path planning of autonomous vehicles
has received considerable attention in the last decade (see
for example, [2] and reference within). In practice, computa-
tional simulations use optimal control to determine reference
trajectories to be followed by the vehicle to accomplish
its mission. Various models have been proposed for such
simulations, with different degree of accuracy. Solving nu-
merically optimal control problems based on accurate models
for AUV’s may be a hard, if not impossible, task given their
complexity. Moreover, validation of the numerical solution
may turn to be a enormous problem. It is however well
accepted that for the task of path planning simple models
capturing the main characteristics of the vehicle are good
enough (see [8]).

Here we propose a simplified model to determine the
path of an Autonomous Underwater Vehicle (AUV) on a
horizontal plane to go from one point to a target set T in
the minimum time when currents are taken into account. We
consider the motion using a simplified point mass model
and we couple the kinetic equations of the motion with
another differential equation depicting the dynamic of the
vehicle. This equation involves the velocity and the thruster’s
force. Noteworthy, we also impose constraints on the velocity
which, in control terms, reduces to the inclusion of state
constraints. We solve the problem numerically using a direct
approach: we first discretize the problem and then, using A
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Mathematical Programming Language (AMPL) as the inter-
face to the optimization solver Interior- Point optimization
solver (IPOPT). Our numerical solution is validated using
various tests provided by the maximum principle. Differing
from other literature we use the Maximum Principle as stated
in [9] where measures are associated with the multipliers of
the state state constraints. In this respect, we also bring to
our discussion the concept of degeneracy of the Maximum
Principle, a crucial aspect in Optimal Control.

Notation: If g ∈ Rm, the inequality g ≤ 0 is interpreted
component-wise. Also, | · | is the Euclidean norm or the
induced matrix norm on Rp×q . The closed unit ball centred at
the origin is denoted by B̄ whereas B denotes the open unit
ball, regardless of the dimension of the underlying space.

For a function h : [a, b] → Rp , we say that h ∈
W 1,1([a, b];Rp) if and only if h is absolutely continuous
and that h ∈ L1([a, b];Rp) iff h is integrable. The norm
of L1([a, b];Rp) is denoted by ‖ · ‖1 and the norm of
L∞([a, b];Rp) is ‖ · ‖∞.

Let C∗([a, b];R) be the dual space of the continuous
functions defined from [a, b] to R, denoted by C([a, b];R),
with supremum norm. The norm of C∗([a, b];R) is denoted
by ‖µ‖TV . The set of elements in C∗([a, b];R) which
take nonnegative values on nonnegative valued functions
in C([a, b];R) is here denoted by C⊕([a, b];R). For µ ∈
C⊕([a, b];R), ‖µ‖TV =

∫
[a,b]

µ(dt).

We use concepts from nonsmooth analysis. They are
well known so we refrain from stating them here but we
refer the reader to [9] for more information. Concerning
nonsmooth analysis we use the following notation: NL

S (x
∗)

is the limiting normal cone to the set S at x∗ (also known as
Mordukhovich normal cone), NC

S (x∗) is the Clarke normal
cone to S at x∗, ∂Lf(x∗) is limiting subdifferential or
Mordukhovich subdifferential of f at x∗ and ∂Cf(x∗) is
(Clarke) subdifferential of f at x∗. If f is Lipschitz contin-
uous near x∗, the convex hull of the limiting subdifferential,
co ∂Lf(x∗) = ∂Cf(x∗).

II. MINIMUM TIME PROBLEMS WITH STATE
CONSTRAINTS AND CONTROLS APPEARING LINEARLY

In this section we deduce necessary conditions for a
minimum time problem with vector valued state constraints
using techniques provided in [9]. To maintain some of its
generality we consider some data Lipschitz continuous.

Central to all this work is the following general minimum



time optimal control problem with state constraints (M):

Minimize tf
subject to
ẏ(t) = f(y(t)) + g(y(t))u(t) a.e. t ∈ [0, tf ]

u(t) ∈ Ω a.e. t ∈ [0, tf ]

h(y(t)) ≤ 0 for all t ∈ [0, tf ]

(y(0),y(tf )) ∈ {y0} × E.

Here tf is a choice variable to be determined, f : Rn → Rn,
h : Rn → RK are vector functions, g : Rn → Rm×n is a
matrix function, Ω ⊂ Rm and E ⊂ Rn are closed sets and
y0 ∈ Rn. We denote the k components of h by hi (with
i = 1, . . . , k).

A feasible process for (M) is a triple (tf ,y,u), satisfying
the constraints of the problem with tf > 0, where u is a
measurable control functions and y, the state variable, is an
absolutely continuous function. For any tf > 0, we identify
a function y : [0, tf ] → Rn with its extension ye to all
[0,+∞[ by constant extrapolation of end values to the right:
for example, if ỹ ∈ Rn and t > tf , then |ỹ − ye(t)| :=
|ỹ−y(tf )|. In this way, given t1f , t

2
f > 0 and two absolutely

continuous functions y : [a, t1f ] → Rn and y′ : [0, t2f ] → Rn

we define ‖ y− y′ ‖L∞ :=‖ ye − y′
e ‖L∞ , where ye and y′

e

are the extensions of y and y′. We say that (t̄f , ȳ, ū) is a
strong local minimizer for (M) if there exists a ε > 0 such
that t̄f ≤ tf over all feasible processes (tf ,y,u) of (M)
satisfying |tf − t̄f |+ ‖ y − ȳ ‖L∞≤ ε.

As it is customary in the literature (see, for example,
[9]), necessary conditions of optimality for (M) can be
derived reformulating the problem into another problem with
fixed end time1, to which known necessary conditions are
then applied. Assume the following hypotheses, which make
reference to the process (t̄f , ȳ, ū) and parameter ε, hold:

(H1) The set E is closed and Ω ⊂ Rm is a compact set.
(H2) There exist δ > 0, Kf > 0 and Kg > 0 such that,

|ψ(y)− ψ(y′)| ≤ Kf |y − y′|

for all y,y′ ∈ ȳ(t) + δB a.e. t ∈ [0, t̄f ], where
ψ = f and ψ = g.

(H3) The function h is continuously differentiable2.
Assume that the data of our problem (M) satisfy (H1) and

(H2). Following the approach in [9], Chapter 8 (now with the
aforementioned state constraints), we apply the nonsmooth
Maximum Principle given by Theorem 9.3.1, multiple state
constraint version, in [9] (page 331) for (R) with reference
to the strong local minimizer (τ̄ , ȳ, ū, γ̄). This leads to the
following:

Theorem 2.1: Let (t̄f , ȳ, ū) be a stong local minimizer
for (M). Assume that the assumptions (H1)–(H4) are sat-
isfied. Then there exist an absolutely continuous function

1For non autonomous problems, the same can be done when the data is
Lipschitz continuous with respect to time.

2We remark that the forthcoming analysis holds if Lipschitz continuity
of h is imposed instead of (H3). However, for our propose, (H3) is enough
and it will somewhat simplify the exposition.

p : [0, t̄f ] → Rn and µi ∈ C⊕([0, t̄f ]), i = 1, . . . , k such
that

supp{µi} ⊂ {s ∈ [0, t̄f ] : hi(ȳ(s)) = 0} (1)

and

(a) (p, µ1, µ2, . . . , µk, λ) 6= (0, 0, . . . , 0, 0),

(b) −ṗ(t) ∈ ∂Cy q(t) ·
(
f(ȳ(t)) + g((ȳ(t))ū(t)

)
,

(c) q(t) · (f(ȳ(t)) + g(ȳ(t))ū(t)) =

max
u∈A

q(t) · (f(ȳ(t)) + g(ȳ(t))u),

(d) −q(t) ·
(
f(ȳ(t)) + g((ȳ(t))ū(t)

)
= λ,

(e) −q(T ) ∈ NL
E (ȳ(t̄f )),

where (b)–(d) hold for almost every a.e. t ∈ [0, t̄f ] and q is

q(t) :=


p(t) +

∫
[0,t)

k∑
i=1

∇hi(ȳ(t))µi(ds) t < t̄f .

p(t̄f ) +

∫
[0,t̄f ]

k∑
i=1

∇hi(ȳ(t))µi(ds) t = t̄f .

III. AUV PROBLEM

We consider the problem of determining the path of an
Autonomous Underwater Vehicle (AUV) on a horizontal
plane to go from one point to a target set T in the minimum
time when currents are taken into account. We describe the
motion using a simplified point mass model. For information
on more realistic models of underwater vehicles we refer the
reader to [2], for example.

A word of caution is need here. In what follows, and to
keep our notation in agreement with the literature on AUVs,
we use the variable u to define the urge velocity of the
vehicle while the control variable is denoted by u.

We consider the following simplified kinematic model
(see, for example, [8] and references therein):

ẋ(t) = u(t) cos(φ(t)) + vx,
ẏ(t) = u(t) sin(φ(t)) + vy,

φ̇(t) = r(t),

where (x, y) denotes the position of the vehicle on the
horizontal plane of constant depth, while φ represents its
orientation, u is the velocity of the vehicle, r the angular
velocity and v = (vx, vy) the current velocity, which might
depend on the position on the horizontal plane. The above
equations are as in the well known Zermelo’s problem. How-
ever, we couple these equations with a simplified dynamics
equation of the form: u̇(t) = f(t) −Ku(t)|u(t)|, where u,
the surge velocity of the vehicle, is a state and the thruster’s
force f is an additional control. The term −Ku(t)|u(t)|
depicts the quadratic drag force (see [4]) and, throughout
this paper, we consider K = 1. We assume that the velocity
is limited u(t) ∈ [0, 2]. Clearly, the velocity is not negative
and so the term −Ku(t)|u(t)| in u̇(t) = f(t)−Ku(t)|u(t)|,
can written simply by Ku2(t). As in Zermelo’s problem we
consider that the velocity of ocean currents is known. For
simplicity of the analysis, we assume that the velocity of the
currents has components merely on the x but depending on



the y position: v(t) = (0.8tanh(y(t)), 0). To reflect the fact
that the power of the thruster is limited and to bound the
heading rate (making the model more realistic), we impose
the control variables (f, r) to take values in a given control
set: (f, r) ∈ [−5, 5]× [−π, π].

Our aim is to determine the minimum time tf needed to
drive the vehicle from the point (x0, y0) = (40,−2) to the
target set

T =
{
(x, y) : x2 + y2 ≤ 0.05

}
. (2)

The initial and final configurations of the vehicle are
(x0, y0, φ0, u0) = (40,−2, π, 0) and (xf , yf , φf , uf ) =
(x1, y1, π, 0), where (x1, y1) ∈ T . Putting all together and
considering h(x, y, φ, u) = (h1(x, y, φ, u), h2(x, y, φ, u)),
with h1(x, y, φ, u) = u − 2 and h2(x, y, φ, u) = −u, we
now have the optimal control problem:

(P )



Minimize tf

subject to
ẋ(t) = u(t) cos(φ(t)) + 0.8 tanh(y(t)) a.e.,
ẏ(t) = u(t) sin(φ(t)) a.e.,

φ̇(t) = r(t) a.e.,
u̇(t) = f(t)− u(t).|u(t)| a.e.,
(x(0), y(0), φ(0), u(0)) = [40,−2, π, 0],

(x(tf ), y(tf ), φ(tf ), u(tf )) ∈ T × {(π, 0)}
h(x(t), y(t), φ(t), u(t)) ≤ 0 for all t ∈ [0, tf ]

(f, r) ∈ [−5, 5]× [−π, π].

Problem (P ) is a minimum time problem with control
appearing linearly in the dynamics and with state constraints.
Here y = (x, y, φ, u) is the state variable, u = (f, r) is
the control variable and p = (px, py, pφ, pu) is the adjoint
multiplier. It is then a simple matter to see that (P ) is in
the form of (M) for the appropriate choice of f and g. The
Hamiltonian function for (P ) is then

H(y,p,u) =
pxu cos(φ) + 0.8pxtanh(y) + pyusinφ+ pφr + pu(f − u2).

Assume that (t̄f , ȳ = (x̄, ȳ, φ̄, ū), ū = (f̄ , r̄)) is a strong
local solution of (P ). Since the data of (P ) satisfies the
conditions under which Theorem 2.1 holds, we deduce that
there exist absolutely continuous function p, Borel regular
measures µ1, µ2and λ ≥ 0, not all 0, such that

ṗx = 0, (3)

ṗy = −0.8px
1

cosh2(ȳ)
, (4)

ṗφ = pxū(t)sin(φ̄)− pyū cos(φ̄), (5)
ṗu = −px cos(φ̄)− pysin(φ̄) + 2qu(t)ū, (6)
pφr̄ + quf̄ = max

(f,r)∈[−5,5]×[−π,π]
pφr + quf, (7)

(with all the above holding for almost every t ∈ [0, t̄f ])
together with

−λ = pxū cos(φ̄) + 0.8pxtanh(ȳ) + pyū sin(φ̄)

+pφr̄ + qu(f̄ − ū2),
(8)

(−px(t̄f ),−py(t̄f )) ∈ NL
T (x̄(t̄f ), ȳ(t̄f )), (9)

(in (3)–(8) we drop the t in all variable to simplify the
notation) where

qu(t) =


pu(t) +

∫
[0,t)

µ1(ds)−
∫
[0,t)

µ2(ds), t < t̄f .

pu(t̄f ) +

∫
[0,t̄f ]

µ1(ds)−
∫
[0,t̄f ]

µ2(ds), t = t̄f ,

and supp{µi} are subsets of the active sets of hi, i = 1, 2.
Next we extract information about the optimal solution

from the above conditions. Before proceeding it is worth to
recall the following facts:

F1) Since our final state y(t̄f ) is constrained, we cannot,
a priori, assume that λ = 1.

F2) The left-continuous function of bounded variation
ν(t) =

∫
[0,t)

µ1(dσ) can be further decomposed uniquely
as

ν(t) = νa(t) + νs(t) + νj(t),

where νa(t) =
∫ t

0
ν̇a(s)ds is an absolutely continuous func-

tion, νs(t) =
∫
[0,t)

µs
2(ds) is a continuous but not absolutely

continuous function and νj is a pure jump function with at
most a countable number of jumps. Let τi denote the points
of discontinuity of ν.

F3) A state constraint h(ȳ(t)) ≤ 0 has a boundary interval
[tb0, t

b
1] if h(ȳ(t)) = 0 for all t ∈ [tb0, t

b
1] and the points tb0

and tb1 are called junctions points if h(ȳ(t)) < 0 for t in
neighbourhoods of those point, on the left of tb0 and on the
right of tb1 (in this case tb0 is called an entry point and tb1
an exit point), it has a contact point if there exist σi and
δ > 0 such that h(ȳ(σi)) = 0 and h(ȳ(t)) < 0 for all
t ∈ ([σi − δ, σi[∪]σi, σi + δ[) ∩ [0, t̄f ] and, finally, it has an
interior interval [ti0, t

i
1] if h(ȳ(t)) < 0 for all t ∈]ti0, ti1[.

We are now in position to turn to our problem. Problem
(P ) has two state inequality constraints that are never simul-
taneously active. Taking into account the physical meaning
of the problem it is to be expected that h2 will be active only
at the extreme points t = 0 and t = t̄f (since ū(0) = ū(t̄f ))
and, consequently, it is reasonable to expect that there is no
boundary interval for h2. The same, however, cannot be said
about h1.

A word of caution in this regard is called for. Indeed,
the fact that h2 is active at t = 0, because ū(0) = 0,
could undermine the applicability of the necessary conditions
(a)–(d) of Theorem 2.1 since it is well known that when
the initial state is on the boundary of a state constraint,
the maximum principle may fail to provide any information
about the solution, i.e., the maximum principle may be
degenerate. In such situations, nondegenerate forms of the
maximum principle have been established in the literature
under different constraints qualifications (see, for example,
[5] and references within). However, it is a simple matter to
see that the inward pointing velocity condition (see in [5])
holds: there exists a control u(t) = (π, f), where f ∈ [1, 5[
(for example), such that, for t in a neighbourhood of 0 we
have ∇h2(ȳ(0)) · (f(ȳ(0)) + g(ȳ(0))u(t)) = −f < 5.



Since the control appears linearly in the Hamiltonian,
we know that the optimal solution of our problem is a
concatenation of bang and singular arcs. We say that [trs0 , t

rs
1 ]

is a singular interval for the control component r if r̄(t) ∈
]−π, π[ for t ∈]trs0 , t

rs
1 [ and that [tfs0 , t

fs
1 ] is a singular interval

for the control component f if f̄(t) ∈]−5, 5[ for t ∈]tfs0 , t
fs
1 [.

Let us define the switching function as

ψ(ȳ(t),p(t)) =

[
ψf (ȳ(t),p(t))
ψr(ȳ(t),p(t))

]
=

[
qu(t)
pφ(t)

]
.

Evaluating ψ along the optimal trajectory ȳ and for a certain
p, ψ depends on t. Thus we write merely ψ(t) when the
dependence on ȳ and p is clearly understood. From (7), we
get the following control laws: f̄(t) = −5 if ψf (t) > 0;
f̄(t) = fs(t) if ψf (t) = 0; f̄(t) = 5 if ψf (t) < 0; r̄(t) =
−π if ψr(t) > 0; r̄(t) = rs(t) if ψr(t) = 0; r̄(t) = π
if ψr(t) < 0. Both fs and rs, the values of the singular
controls, represent values in ]− 5, 5[ and ]− π, π[.

Preparing for the validation of numerical results, we
consider a situation that suggests itself from the physiscal
meaning of our problem. Let us then suppose that there exists
no boundary interval for h2 and there exist only one boundary
interval for h1, [tb0, t

b
1] ⊂ [0, t̄f ], where tb0 ∈]0, t̄f [ is the first

point where h1(ȳ(t)) = 0 and tb1 is the last point where
h1(ȳ(t)) = 0. We also assume that there is not other contact
points for both h1 and h2 besides those mentioned above. In
such situation we deduce that:
(1) for all t ∈ [tb0, t

b
1] we have ū(t) = 2. Consequently ˙̄u(t) =

0 and f̄(t) = 4 for t ∈]tb0, tb1[. Thus ]tb0, t
b
1[⊆]tfs0 , t

fs
1 [ and

since f̄ is singular, we have qu(t) = 0 for all t ∈]tb0, tb1[.
Recall that in this situation we have3

qu(t) = pu(t) for t ∈ [0, tb0[, (10)

and
0 = pu(t) +

∫
[0,t)

µ1(dσ) for t ∈]tb0, tb1[. (11)

(2) Using the notation introduced in F2, we have νj(τi) =
µ1({τi}) = ν(τ+i ) − ν(τ−i ) and νj(t) = 0 if t 6= τi. Since
ν(t) = 0 for t < tb0 and qu(t) = 0 for t ∈]tb0, tb1[ we have
two possibilities: (i) either τ1 = tb0 and then µ1({τ1}) 6= 0
and 0 = pu(t) + µ1({τ1}) + νa(t), (ii) or, tb0 is not a point
of discontinuity of ν and then we have µ1({τ1}) = 0 and
pu(t) = νa(t).
(3) Doing a similar analysis at tb1 we conclude from the above
that, then at tb0 and at tb1 we have

qu(t
b+
0 )− qu(t

b−
0 ) = µ1{tb0}, qu(tb+1 )− qu(t

b−
1 ) = µ1{tb1}.

If tb0 (or tb1) is not a discontinuity point of qu, then
µ1({tb0}) = 0 (µ1({tb1}) = 0).
(4) Moreover, qu has no jumps inside the boundary interval
and νa(t) = 0 if t ∈ [0, tb0] ∪ [tb1, t̄f ].
(5) We can then write

pu(t) =


qu(t) if t ∈ [0, tb0[,

qu(t
b−
0 )− νa(t) if t ∈]tb0, tb1],

qu(t) + qu(t
b−
0 ) + qu(t

b+
1 ) if t ∈]tb1, t̄f ].

(12)

3The fact that the measure µ1 is assumed 0 here is because of the
nondegeneracy of our maximum principle.

(6) Based on the physical meaning of r, it is not unreason-
able to expect that r takes singular values except at small
neighbourhoods of 0 and t̄f and when ū(t) 6= 0. We then
foreseen the existence of a singular interval [tr0, t

r
1], with

0 < tr0 < tr1 < t̄f and that [tb0, t
b
1] ⊂ [tr0, t

r
1]. Seeking a

closed form for rsing we set ψr(t) = 0 for t ∈ [tb0, t
b
1]. We

have d
dtψr(t) = 0 for t ∈]tr0, tr1[ and, using this equality, the

fact that ū(t) 6= 0 and imposing that d2

dt2ψr = 0 we get

r
(
px(t) cos(φ̄(t)) + py(t) sin(φ̄(t))

)
− ṗy(t) cos(φ̄(t)) = 0.

If

px(t) cos(φ̄(t)) + py(t) sin(φ̄(t)) 6= 0 for t ∈]tr0, tr1[, (13)

then the generalized Legendre-Clebsch condition
∂

∂r

( d2
dt2

ψr

)
6= 0 holds allowing us to deduce that

rs(ȳ(t)) = −0.8 cos2(φ̄(t))
1

cosh2(ȳ(t))
. (14)

The expression (14) holds provided that cos φ̄(t) 6= 0 for
t ∈]tr0, tr1[.
(7) It remains to know if there exists a singular interval
for f outside or containing the boundary interval and what
value would f take there. However, an analysis for ψf

analogous to the one in (6) above is not possible since we

have
∂

∂f

( d2
dt2

ψf

)
= qu(t) = 0 and so it does not provide a

test for optimality of this arc.

IV. NUMERICAL RESULTS

We now present the numerical solution of problem (P )
as defined in section 3 with T as in (2). We use the
Euler Method to solve AUV’s problem with 10000 grid
nodes. As mentioned in the Introduction, we use the Applied
Modeling Programming Language, AMPL, as the interface
with version 3.8.0 of IPOPT. When the trapezoidal method
is used instead of the Euler method the computed controls
and state exhibit small but nevertheless significant numerical
chattering at the switching points.

We obtain t̄f = 14.944 as the minimum time. We provide
the computed values of the endpoints of the state x and y
and the initial values of the multipliers in the table below.

Numerical results for (x(0), y(0)) = (40,−2):

t̄f = 14.944,
x(t̄f ) = 0.15625, y(t̄f ) = −0.15995
px(0) = −0.35811, py(0) = −0.05657,
pφ(0) = 0.000112, pu(0) = 0.14208.

In figure 1 we present the trajectory in the horizontal plane
and, in figure 2, the computed optimal controls .
The controls r and f are both discontinuous and bang-
singular-bang with two switching points. The control r̄ has
switching points t1 ≈ 0.05 and t2 ≈ 14.7, the switching
points of f̄ are approximately 0.64 and 14.62 The computed
state variables are plotted in figure 3. The computed values
show that the singular interval of f̄ coincides with the
boundary interval of the state constraint u− 2 ≤ 0 as shown
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Fig. 1. Minimum time trajectory for the AUV for (x(0), y(0)) =
(40,−2).
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Fig. 2. Optimal controls r and f the AUV for (x(0), y(0)) =
(40,−2).
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Fig. 3. State variables for the AUV problem. Scales on the vertical
axes are different.

in figure 4, where the graph of the state variable u is plotted
together with the graph of the control f̄ . Our analysis shows
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Fig. 4. The computed values of u plotted together with those of f .

that the multiplier qu must be 0 along the boundary arc. This
is confirmed by the numerical values as shown in figure 5
where we present the computed multipliers px, py , pφ and
qu. Since the computed solution reaches the boundary of T
in the fourth quadrant, we deduce from (9) and (3) that we
should have px(t) = px(t̄f ) < 0 and py(t̄f ) > 0: this is
confirmed by the computed values as seen in figure 5.
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Fig. 5. State variables for the AUV problem. Scales on the vertical
axes are different.

A careful analysis of the computed values of φ, pφ
and px confirms that (13) holds. Confronting the numerical
expression of the analytical value of the rs in (14) with the
computed value of r̄, shown in 6, we see they coincide. The
numerics also show that the multiplier λ is 1 as shown in
the right side of figure 6 where the Hamiltonian is plotted
verifying (apart from some residual numerical chattering) (8).
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Fig. 6. The graph of the analytic value of r in (14) and the numerical
value of the optimal control r: they match.
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Fig. 7. The computed value of the Hamiltonian that is equal to −λ
(see (8)): the computed λ is indeed 1.

With the computed values we can determine the values of
the bounded variations functions (see, in this respect, F2 in
section III)

µ1({tb0}) ≈ 0.0011, µ1({tb1}) ≈ 0.0014, µ2({T}) ≈ 0.0011

and to pu. Those atoms are responsible for the discontinuity
of qu at the boundary points and the final time. To finalize
this section, we emphasize the fact that we use the constraint
u(t) ∈ [0, 2] to compute all our numeric findings. However,
running the codes with u(t) ∈ [−2, 2] produces exactly the
same values apart form the value µ2 (that it is not present)
and, consequently, qu has no discontinuity in the last instant.



V. SENSITIVITY WITH RESPECT TO INITIAL CONDITIONS

To test the sensivity of the solution we calculate the
trajectories for different for different values of (x(0), y(0)),
keeping (φ(0), u(0)) = (π, 0). Graphs of various trajectories
are shown in figure 8. The profile of the trajectories do
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Fig. 8. Minimum time trajectory for the AUV for various values
of (x(0), y(0)).

not change. Observe that in the cases studied, the vehicle
is initially oriented towards the left (the y axe). It is then
to be expected that the vehicle moves forward and never
backwards to get to the target. The same may not hold if we
change the initial orientation of the vehicle as we illustrate
next. To do so we consider the following initial and final
conditions:
(O1) (x(0), y(0), φ(0), u(0)) = (0, 0, 0, 0),
(O2) (x(tf ), y(tf ), φ(tf ), u(tf ) ∈ T1×{(0, 0)} where T1 ={

(x, y) : (x− 40)2 + (y + 2)2 ≤ 0.052
}

,
(O3) u(t) ∈ [−2, 2].
The vehicle now starts at the origin oriented towards the west
and should arrive at a small ball around the pint (40,−2),
placed in the east. The computed minimum time is now
16.341.
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Fig. 9. For the minimum time problem when (O1)–(O3) are
enforced, trajectory of the AUV in the x0y plane in the top and
the graphs of velocity u and the controls r e f in the bottom.

Clearly from figure 9 the AUV moves backward for
a while, then it turns forwards to continue with forward
movement for a brief period, returning to the backward
movement so that it can stop at the target with the prescribed
orientation. The velocity u has three boundary arcs: we have

u(t) = −2 for (approximately) t ∈ [0.64, 4.53] and for
t ∈ [8, 89, 16, 79] while u(t) = 2 for t ∈ [5.50, 7.91].

Finally, we observe that abrupt changes in the controls
as those computed in the present paper, are generally unde-
sirable because they may cause equipment malfunctions. To
avoid such situation we propose to add a running cost to the
objective of (P ). Instead of minimizing tf we propose to
minimize

tf +

∫ tf

0

(f2(t) + r2(t))dt.

For (P ) equipped with this new cost, the computed values
show that the minimum cost may be highly increased. With
the initial and final conditions described in previous section
we get for minimum time 31.0311 that is slightly greater
than twice the minimum time obtained before.
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