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Resumo

Neste trabalho, são apresentadas novas formulações relativas ao desenvolvimento de ele-

mentos finitos do tipo ”casca” e ”sólido-casca”. A motivação principal deste estudo consiste

na resolução de problemas estruturais não-lineares envolvendo componentes com reduzida

espessura, através do Método dos Elementos Finitos. Em termos de aplicabilidade prática,

é de realçar a posśıvel utilização dos elementos finitos e procedimentos numéricos propostos

e implementados em problemas industriais de conformação plástica em chapas finas.

Nesse sentido, foram desenvolvidos e implementados elementos finitos bilineares (tipo

”casca”) e trilineares (tipo ”sólido-casca”), cujos respectivos funcionais baseiam-se em

variáveis de deslocamentos. Do ponto de vista da discretização do meio cont́ınuo por meio

de elementos finitos, são utilizados como variáveis primárias campos de deslocamentos

nodais. Formulações desse gênero são reconhecidamente deficientes na análise de estruturas

com reduzidos valores de espessura, devido ao aparecimento de fenómenos numéricos de

retenção (locking), que se revelam através de uma sobre-estimação dos valores de rigidez

associados a determinadas componentes de extensão. Para elementos do tipo ”casca”, de

baixa ordem, surge predominantemente a retenção associada às componentes de extensão

fora do plano (transverse shear locking). Para o caso dos elementos do tipo ”sólido-casca”,

também de baixa ordem, surge adicionalmente a retenção associada aos termos de ex-

tensão linear (componentes directas do tensor das extensões), caracterizando o que ficou

conhecido como retenção volumétrica (volumetric locking). Como resultado global, numa

dada malha de elementos finitos, assiste-se a uma completa deterioração dos valores de

deslocamentos obtidos como solução pelo método ou, nos casos mais favoráveis, a uma

taxa de convergência muito baixa para a solução correcta, mesmo em problemas pura-

mente lineares. Em qualquer desses cenários, uma utilização eficiente do elemento finito

em causa torna-se inviável.

Na resolução dos fenómenos de retenção descritos foi utilizado o conceito de ”ex-

tensões acrescentadas” (enhanced assumed strain method), no qual cada elemento finito

é ”enriquecido” com variáveis adicionais, sem significado f́ısico, responsáveis por provi-

denciar modos de deformação imposśıveis de ser obtidos por uma formulação puramente
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baseada em deslocamentos nodais. O número de variáveis internas a ser utilizado condi-

ciona o desempenho computacional de um dado elemento, sendo muitas vezes escolhido

de acordo com critérios emṕıricos de tentativa e erro. Neste trabalho, por outro lado, é

utilizada uma filosofia de análise das bases dos subspaços de soluções admisśıveis, para

várias formulações publicadas na literatura especializada. Através dessa análise de bases,

caracteriza-se o melhor ou pior comportamento de uma dada formulação e fundamenta-

se assim a escolha quer do número de variáveis acrescentadas por elemento, quer das

respectivas funções a elas associadas.

O resultado final consiste em uma nova classe de elementos finitos com um número

óptimo de variáveis elementares (inferiores ao utilizado em proposas análogas por outros

autores) e com bons desempenhos numa série de testes lineares e não-lineares (plastici-

dade, instabilidade e contacto). A implementação do método das extensões acrescentadas

é feita de forma simplificada comparativamente a outras propostas na literatura, o que

torna a tarefa de implementação numérica particularmente simples. A implementação

de algoritmos para o tratamento de não-linearidades de material e geométrica é feita

adoptando-se uma formulação co-rotacional a cada elemento finito, intuitiva no trata-

mento de problemas gerais envolvendo grandes (ilimitados) deslocamentos e rotações. Essa

formulação co-rotacional permite, adicionalmente, o tratamento matemático objectivo de

fenómenos envolvendo grandes deformações, com o aliciante de exigir uma implementação

computacional relativamente simples e elegante. Não-linearidades relacionadas com prob-

lemas envolvendo situações de contacto, com ou sem atrito, foram resolvidas através da

implementação dos elementos finitos propostos no código comercial Abaqus (user-elements

implementation).

No fim do trabalho, é apresentada uma série de benchmarks numéricos, lineares e

não-lineares, comumente adoptadas na literatura. Adicionalmente, é efectuado um estudo

sobre um componente industrial (S-Rail benchmark), envolvendo plasticidade, grandes

deformações e contacto com atrito, por forma a demonstrar a fiabilidade dos procedimentos

implementados em problemas industriais. Os resultados obtidos atestam acerca robustez

dos elementos finitos propostos, bem como dos algoritmos numéricos implementados.



Summary

In the present work, new formulations for shell and solid-shell finite elements are devel-

oped. The main goal of the present study is the correct numerical and computational

analysis of nonlinear structural problems, involving components with reduced thickness

values, and employing the Finite Element Method. In practical terms, it is interest to high-

light the direct application of the proposed and implemented finite elements and numerical

procedures to industrial sheet metal forming problems.

Within this scope, new bilinear shell type and trilinear solid-shell type finite elements

were formulated and implemented, based on displacement variables. Going from the con-

tinuum media to the discretized finite element space, nodal displacement variables were

taken into account. Displacement-based formulations are know to be affected by lock-

ing effects, characterized by an overestimation of determined stiffness. For the bilinear

displacement-based shell elements, locking appearance is triggered mainly by the numeri-

cal treatment of low thickness values in the structure (transverse shear locking). For the

specific case of low-order solid-shell displacement-based finite elements, and besides the

locking referred before, volumetric locking is also prone to appear. The latter involves the

direct components of the strain tensor, and is related to the numerical inability of a given

formulation to automatically reproduce isochoric deformation paths. As a global result for

a general finite element mesh, and for a deficient formulation, deterioration of displace-

ment values numerically obtained occurs. In the most favorable case, the correct response

might be obtained by the finite element model, but to the expense of a low convergence

rate, even for fully linear behaviors.

In the treatment of locking, and now related to the line of research adopted in the

present work, the Enhanced Assumed Strain Method was adopted, in the way that each

finite element is improved by means of the use of internal variables, without physical

meaning, and responsible for providing strain modes impossible to be obtained by a con-

ventional formulation. The number of internal variables to be used per element influences

the computational performance of the whole algorithm, and is a matter of crucial impor-

tance in the formulation. Sometimes their number is chosen according to specific prob-
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lems to be solved, in a somewhat kind of ”trial-and-error” basis. The present work, on

the other side, intends to present a systematic and rational approach for the choice of the

enhanced variables and functions, based on an analysis of the subspace bases for suitable

solutions avoiding each specific class of locking patterns. The subspace bases study for

well-established formulations in the literature turns clear the requirements that a fully

displacement-based formulation might have, in order to overcome the transverse shear

as well as the volumetric locking problems. As a result, an optimized number of internal

variables are introduced into the formulation, when compared to similar proposals already

published.

The final result is a new class of shell and solid-shell finite elements with improved

results in a range of linear and nonlinear demanding benchmarks. The implementation of

the Enhanced Assumed Strain Method is carried out in a simplified manner when com-

pared with published proposals in the field, turning the coding effort straightforward. The

implementation of algorithms for the modelling of geometric and material nonlinearities

is carried out with the aid of a corotational approach, intuitive in the treatment of large

displacement, rotations and deformations of shell structures. The use of a corotational

formulation, furthermore, avoids considerations about the lack of objectivity in the rate

type constitutive update of stress tensors. Nonlinearities involving contact and friction

effects were dealt with by means of implementation of the proposed finite elements into

the commercial package Abaqus.

Finally, and as a closure for the present research work, a set of numerical benchmarks is

presented, involving demanding linear and nonlinear problems in the shell finite elements

technology field. Additionally, it is taken into account an industrial problem involving

the modelling and simulation of an automotive structural component (S-Rail benchmark),

involving plasticity with large deformations, large displacements and rotations and fric-

tional contact nonlinearities. The obtained results, in the general sense and for both the

shell and solid-shell finite elements, infer about the reliability and accuracy of the new

formulations and numerical algorithms implemented.



Résumé

Dans ce travail sont présentés des nouveaux développements des éléments finis de coque et

solide-coque. La principale motivation de cette étude est l’application de la Méthode des

Elements Finis pour la résolution des problèmes structurels non-linéaires avec components

à faible épaisseur.

Au cours de ce travail, des nouveaux éléments finis bi-linéaire (de coque) e tri-linéaire

(de solide-coque) sont proposés avec variables des déplacements dans les respectives func-

tionnelles. Du point de vise de la descretization des milieux continus par les éléments

finis, les champs des déplacements nodales sont utilises comme variables premières.

L’application de ces formulations pour l’étude des problèmes structurels avec components

à faible épaisseur est traditionnellement cause de problèmes numériques, spécialement

l’apparition du connue phénomène de verrouillage (locking). Pour les éléments de coque,

l’apparition du ”transverse shear locking” est bien connue. L’application de la méthode

des éléments finis au comportement incompressible, ou presque incompressible, avec

des éléments tridimensionnelles est une cause de problème, spécialement l’apparition du

verrouillage volumétrique (volumetric locking). Toutefois, les résultas obtenus avec ces

éléments finis pour le champ des déplacements sont très mauvais, ou, la taxe de conver-

gence est très faible.

En vue de la résolution de ces problèmes, dans ce travail on a utilise la méthode

des déformations augmentées (enhanced assumed strain method). Dans cette méthode

chaque élément finis est enrichisse avec variables additionnelles, sans significat physique,

mais responsables pour l’obtention des modes de déformation, impossibles d’obtenir pour

une formulation des déplacements nodales. Le nombre des variables additionnelles pour

utiliser dans la méthode peut conditionner la performance d’un élément fini, être choisi

pour critères empiriques de tentative-erreur. Dans ce travail l’analyse du sous-espace des

solutions admissibles est effectuée. Cette philosophie, peut caractériser le comportement

d’une formulation et peut permettre la définition du nombre de variables additionnelles.

Le résultat finale est une nouvelle classe d’élément finis avec un nombre optime de

variables additionnelles (inférieur au nombre proposé par outres auteurs) qui montre
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bonne performances en plusieurs exemples linéaire et non linéaire (plasticité, instabilité

et contact). L’implémentation de la méthode des déformations augmentées est obtenu

de forme simplifier. L’implémentation des algorithmes pour la résolution de problèmes

non linéaires du matériel et géométrique est fait pour l’adoption d’une formulation co-

rotacionnelle à chaque élément fini. Cette formulation co- rotacionnelle permettre le

traitement mathématique objectif des phénomènes avec grandes déformations et avec une

implémentation très simple et élégant. L’implémentation des nouveaux éléments finis dans

le software Abaqus (user-elements implementation) on a permis la résolution des problèmes

avec contact.

Dans le fin du travail est présenté un ensemble des benchmarks numériques, linéaire

et non linéaire, usuellement utilisé dans la littérature. En plus, une étude est réalisée

d’un component d’une voiture (S-Rail benchmark), avec déformations plastiques, grandes

déformations et contact avec frottement, montrant la fiabilité des procédures implémentés

en problèmes industriels. Les résultats obtenus montrent la robustesse des éléments finis

proposés et des algorithmes numériques implémentés.
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ēp Rotated plastic strain tensor (spatial)

S̄ Rotated 2nd Piola-Kirchhoff stress tensor



xviii

Ws Displacement-based strain energy

Πint Potential energy coming from internal forces

Πext Potential energy coming from external forces

t Traction force vector

b Volume force vector

ρ Density

t̂ Constrained value of traction force vector

b̂ Constrained value of volume force vector

S Elemental area (reference) for numerical integration

δ Iterative (infinitesimal) operator for variations

∆ Incremental (finite) operator for variations

D Directional derivative operator

Klg
uu Displacement-based nonlinear geometric stiffness matrix

Kuα , Kαu Coupled stiffness matrix coming from EAS and displacement variables

Kαα EAS -based stiffness matrix

Y Elasto-plastic yield (loading) function

P Coefficients-based matrix for yield function

s̄ Deviatoric stress tensor in the local frame

δij Kronecker-delta operator

J2 Second invariant of the deviatoric stress field

ν Poisson’s ratio

E Young’s modulus for elasticity

ϑ Numerically integrated out-of-plane strain component in the local frame

S̄trial Elastic prediction of 2nd Piola-Kirchhoff stress tensor

σ̄trial Elastic prediction of Cauchy stress tensor

Y trial Prediction of the yield function value based on a fully-elastic increment

εp Equivalent plastic strain

σy Isotropic hardening law based on the equivalent plastic strain

Hiso Isotropic hardening linear parameter

λ Plastic multiplier

C̄ Elastic constitutive modulus (material)

C̄a Algorithmic constitutive modulus (material)
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Chapter 1

Introduction

The present work is related to the study, development and implementation of numerical

models and formulations within the Finite Element Method. The core point relies on the

formulation of reliable and robust shell and solid-shell finite elements, suitable for the

simulation of deformation processes on plate and shell structures.

If generality of applications is intended, then the proposed finite element formulation

must inevitably lead to correct results either in linear and nonlinear ranges, thus encom-

passing large displacement, rotation and deformation problems. Numerical or physical

instabilities arising from this class of problems must be correctly treated. Also, nonlinear

material behavior must be taken into account, and specific algorithms dealing with com-

putational plasticity must be implemented. Last but not least, distortion insensitivity is

a desirable aspect, as problems coming from ”real life” often involve irregular geometries.

Well-established shell and solid-shell finite element proposals in the literature some-

times lack one or more aspects of those referred before, and consequently developments

in this specific area are always desirable. The present work aims to provide a contribution

to this field, with the introduction and use of techniques not previously explored. The

whole work was carried out over an ”in-house” 2D finite element program, developed by

P. Areias, former student of the Department of Mechanical Engineering, University of

Porto. The shell and solid-shell finite element implementation, along with the Fortran 90

coding for nonlinear material and geometrical effects, including instabilities, were carried

out in the aim of this Thesis. Nevertheless, results from Abaqus commercial finite element

package are also provided when useful, for the sake of comparisons. Furthermore, some ex-

amples involving contact nonlinearities were also accounted for in the present work, taken

advantage of the implementation of the developed finite elements as ”user-elements” into

Abaqus code.

Chronologically, this Thesis have started with the study and research over the concept

1
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behind degenerated shell elements for thin-shell applications. The main problem affecting

this class of elements is the appearance of the transverse shear locking, a numerical pathol-

ogy responsible for the overestimation of stiffness terms (and the consequent deterioration

of results), when a conjunction of load, boundary and geometric conditions are attained.

From the analysis of common procedures dealing with this problem, such as the Mixed

Interpolation of Tensorial Components (MITC ) or the use of Reduced Integration (RI )

techniques, the advantages and limitations of both techniques can be established . More

important, it becomes patent why formulations entirely based on the displacement field

are often affected by locking effects.

Being identified the problem to be solved, a new element formulation, based on the En-

hanced Assumed Strain method, was then proposed, acting directly over the displacement-

based (conventional) formulation. At the end, a new class of shell finite elements was ob-

tained, with a sound and straightforward theoretical basis, in some cases with superior

results when compared to MITC or RI based elements and, additionally, not including

the physical instabilities of the latter. This subject, with all the steps undertaken, is the

main topic of Chapter 2.

As more generality in the formulation and applications was needed, the research turned

then to the development of the so-called ”solid-shell” type of finite elements, which have

gained increasing interest along the last decade. Devoted to shell applications, but keep-

ing a three-dimensional topology, these elements provide an elegant and straightforward

alternative to shell elements. First of all, and compared to the latter, rotational degrees-

of-freedom are not taken into account in the formulation, which remains entirely based on

(additive) nodal translations, turning simulations in the nonlinear range simpler. Secondly,

constitutive material models can be employed in its three-dimensional form, avoiding the

(somewhat artificial) imposition of plane-stress conditions (characteristic of shell elements)

and providing a natural way to account for through-thickness strain fields. Once again,

the Enhanced Assumed Strain method is used to improve the performance of the conven-

tional brick (8 node) solid element, which suffers from the before-mentioned transverse

shear locking (for low thickness), but also from the volumetric locking pathology, arising

when isochoric plasticity models are treated. As what happened with shell elements, the

correct application of the EAS method turned to be sufficient in dealing with the men-

tioned locking effects, with no need to the inclusion of any other mixed approach into the

formulation. The present work starts with the linear elastic EAS formulation for solid-

shells initially developed by R. J. Alves de Sousa, then providing a proper extension in

order to fully account for nonlinear geometric and material problems, including instabili-

ties. The detailed description of the formulation, behind the presented solid-shell element,
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is carried out in Chapter 3.

Chapter 4 deals with the nonlinear theory and implementation aspects involved in the

present work. The main idea is to provide the whole set of relevant information for sub-

sequent users of the finite element code. The continuum mechanics aspects grounding the

concept of a ”co-rotational” frame, constructed within each element and constituting the

basis of the present work, are described in detail. The choice for this kind of description of

the deformation process turned out to introduce a higher level of simplicity into the treat-

ment of nonlinearities, when compared to other formulations. Nonlinear implementation

aspects, specifically related to the Enhanced Assumed Strain method, are also detailed,

along with the main guidelines in the computational inclusion of the elasto-plastic behav-

ior. Finally in this Chapter, implementation details about the arc-length path-following

technique are also detailed, providing the main basis for the treatment of numerical and

physically-based instabilities along the load-displacement path.

In Chapter 5, an exhaustive set of numerical benchmarks, common in shell and solid-

shell literature, is presented. The main motivation of such a large number of examples

is to cover, as effectively as possible, all the ranges of solicitations, geometries, meshing

distortion levels and boundary conditions available. Also, the chosen examples serve to

show both the convergence and prediction capabilities of the developed Enhanced As-

sumed Strain shell and solid-shell formulations, within the nonlinear frame studied and

implemented. The Chapter ends up with the analysis of an industrial component, whose

simulation involves material, geometric and frictional contact nonlinearities.



Chapter 2

Enhanced Shell Finite Elements

In this chapter, the general guidelines for the implementation of

a reliable Enhanced Assumed Strain (EAS) procedure, tackling the

transverse shear locking problems in thin-shell finite elements, are

developed. Details about the requirements and restrictions involved in

the chosen enhanced shape functions are described. The analysis of

the theoretical capabilities of well-known formulations for transverse

shear locking-free elements is carried out. A new procedure, entirely

based on the EAS method, is then introduced, remarkably improving

the performance of the original degenerated four-node shell element.

2.1 State of the art

In the finite element analysis of shell structures, a landmark can be established with the

work of Ahmad et al. (1970), leading to the so-called degenerated shell element concept.

This formulation is obtained by judiciously imposing some a priori kinematic and mechan-

ical assumptions on the three-dimensional continuum, circumventing the use of classical

thin shell theories (Yang et al., 2000). According to Bucalem and Bathe (1997), some

key features of this class of elements are the applicability to any shell geometry, the use

of
(
C0
)

conforming displacement-based formulations and the adoption of ”engineering”

degrees of freedom, such as displacements and rotations.

However, it is well known that degenerated formulations possess strong deficiencies in

reproducing the behavior of thin-shell structures, leading to locking phenomena. For low

4
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order elements, like the four-node bilinear shell element entirely based on a displacement

formulation, these effects are responsible for the complete deterioration of results coming

from a finite element simulation. This transverse shear locking problem can be traced back

to the fact that the Kirchhoff-Love hypotheses are not automatically reproduced by the

displacement interpolations. The numerically calculated transverse shear strains cannot

then vanish at all points in the element when it is subjected to a pure bending state (Kui

et al., 1985; Andelfinger and Ramm, 1993).

Amongst the approaches to overcome this problem, the simplest and earliest of all

proposed was the use of uniform or selective reduced integration, as firstly reported by

Hughes et al. (1978) and Zienkiewicz et al. (1979). Commonly, the uniform reduced inte-

gration (URI ) procedure leads to spurious zero energy modes, even though for some cases

a correct solution is obtained (Bucalem and Bathe, 1997). The selective reduced integra-

tion (SRI ) technique, on the other hand, presents the same problems but usually on a

smaller extent. In the specific case of plate elements, the work of Belytschko and Tsay

(1983) pioneered a range of contributions using stabilization procedures for controlling

the spurious modes arising from reduced formulations. Other techniques were proposed

to alleviate the excess of stiffness coming from the onset of locking, most of them being

classified as hybrid, mixed or hybrid-mixed methods. For these formulations, independent

field assumptions for strains, stress and/or incompatible displacements can be assumed,

and afterwards introduced into the corresponding functional. The additional fields may

be discontinuous from element to element, so that the corresponding unknowns can be

eliminated at the element level (Militello and Felippa, 1990; Andelfinger and Ramm, 1993).

These methods encomprise procedures such as the Assumed Natural Strain (ANS ) ap-

proach (detailed for bilinear shell elements in the works of Hughes and Tezduyar (1981);

MacNeal (1982); Dvorkin and Bathe (1984); Bathe and Dvorkin (1985) and for higher-

order elements by Huang and Hinton (1986); Bathe and Dvorkin (1986); Bucalem and

Bathe (1993)), and the Enhanced Assumed Strain (EAS ) formulation (firstly introduced

by Simo and Rifai (1990) and afterwards extended by Simo and Armero (1992) and Simo

et al. (1993)). The EAS method was subsequently applied on shell elements by Andelfin-

ger and Ramm (1993); Bischoff and Ramm (1997) and Huettel and Matzenmiller (1999),

to name but a few. The key idea behind the ANS method is the replacement, in the

minimum potential energy principle, of selected displacement-related strains by indepen-

dently assumed strain fields in the element natural coordinates (Yunhua and Eriksson,

1999). A variational basis can be found, for example, in the work of Militello and Felippa

(1990), and the performance of the elements derived from this formulation relies strongly

in correctly choosing the sample strain positions within an element for the assumed (alter-
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native) interpolation. However, deficiencies of results in the presence of irregular meshes

can be pointed out (Andelfinger and Ramm, 1993). Nevertheless, the bilinear MITC4

shell element of Dvorkin and Bathe (1984), based on this mixed interpolation of tensorial

components, is amongst the most employed shell formulations, ”which sometimes cause

difficulties for other assumed strain techniques” (Stander et al., 1989).

The EAS method, on the other hand, and as in the version firstly proposed by Simo

and Rifai (1990), uses a three field mixed functional in terms of displacements, stresses

and an enhanced strain field, relying on the Hu-Washizu-de Veubeke variational principle.

As discussed in that reference, the total strain field is built up as a direct summation of

the (compatible) symmetric gradient of the displacement and the enhanced strain fields.

The latter is not subjected to any inter-element continuity requirement, and can be related

to an incompatible mode field. A first consistent application of the enhanced techniques

in shell analysis came shortly after in the work of Andelfinger and Ramm (1993), for the

linear elastic range. The extension to nonlinear aspects was carried out in subsequent

publications, such as, for instance, the works of Büchter et al. (1994), Roehl and Ramm

(1996), Bischoff and Ramm (1997) and Eckstein and Basar (2000). Relating the low perfor-

mance of MITC4, in the presence of distorted meshes, to in-plane formulation deficiencies,

Andelfinger and Ramm (1993) introduced an enhanced membrane and bending strain

field composed of seven internal (element-wise) parameters. Despite the improvements

obtained, the procedure was not directly extended to the shear strain terms, once they

have kept unaltered the assumed natural strain approach of Dvorkin and Bathe (1984)

in attenuating transverse shear locking effects. In this sense, the problem of transverse

shear locking in thin shell structures seemed to be ”closed”, with no completely distinct

methodologies being proposed in the literature after that.

Within a distinct philosophy, the present work aims to introduce a new approach,

suitable for the direct treatment of the transverse shear locking phenomenon for shell

elements in the low-thickness limit. The methodology relies entirely on the Enhanced

Assumed Strain formulation, and is applied over the formulation of the original degener-

ated four-node shell element. Following previous works of César de Sá and Owen (1986)

and, subsequently, Natal Jorge (1998) and César de Sá and Natal Jorge (1999) for two-

dimensional incompressible problems, shear locking appearance is related to the inability

of a given basis of the null transverse shear strain subspace, implicitly defined by each

finite element formulation, to accurately reproduce a set of required deformation patterns.

A deep analysis of the mixed interpolation of tensorial components and the selective re-

duced integration procedures, thus leading to possible bases for their null transverse shear

strain subspaces, reveals the missing terms on the respective basis for the degenerated for-
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mulation. Performing an enhancement over the covariant shear strain terms coming from

this approach, an enlargement of its subspace is then obtained, leading to a new class of

degenerated shell elements with improved behavior in the thin shell limit.

The specific analysis of the null transverse shear strain subspace carried out in this

way was also helpful in revealing that the MITC4 element itself lacks two missing com-

ponents in any of its possible basis, when compared to SRI -based elements of the same

order. These very same components are neither present in the basis of the degenerated

element. In fact, in trying to reproduce the deformation pattern corresponding to one

of those absent components, both elements’ formulation reveals a strong deterioration of

results. For this specific example, involving a single element, the MITC4 and degenerated

formulations provide the same numerical result, while the SRI approach shows no shear

locking. Besides the improvements obtained by the enhanced degenerated shell element in

what matters to the transverse shear locking, a further progress in the element’s perfor-

mance can be achieved with an additional enhancement over the original in-plane strain

components. This modification leads to better results in some problems involving in-plane

mesh distortion and membrane locking patterns.

Recently, deeper insight into locking phenomena affecting shell elements was brought

forward by the work of Pitkäranta et al. (1995), Chapelle and Bathe (1998) and Malinen

and Pitkäranta (2000) (and, after that, by Bathe et al. (2000); Chapelle and Bathe (2000);

Bathe et al. (2003); Chapelle and Bathe (2003)). Based on a detailed analysis of bending

and membrane-dominated problems, those authors developed a class of benchmark tests

for the characterization of shell elements. In order to fully describe the behavior of the

enhanced strain methodology and elements proposed in this work, this set of tests is carried

out in Chapter 5, along with some classical problems in shell finite elements literature.

This Chapter is organized as follows. In Section 2.2, the basic equations for the kine-

matics of the degenerated shell element are shown, along with the respective equations

for the Green-Lagrange strain tensor on the convective frame. The local axis system at

each Gauss point level, providing a co-rotational space where nonlinear relations are ex-

pressed, is then introduced, along with the update procedure based on the deformation

gradient tensor. In Section 2.3, subspace analyses for the degenerated, reduced integrated

and assumed natural strain formulations are detailed, characterizing the ability of each

approach to be affected (or not) by transverse shear locking effects. Section 2.4 introduces

the developed Enhanced Assumed Strain procedure to deal with this locking in thin shells.

Enhanced strain shell finite elements S4E6P5 , S4E6P7 and MITC4–E2 are defined, along

with their specific enhanced strain functions and variables. Finally, the extension of the

referred points to account for nonlinearities is left to be carried out in Chapter 4.
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2.2 Kinematics of shell displacement-based elements

In dealing with shell formulations directly derived from the degenerated concept, introduced

by Ahmad et al. (1970), a starting point would be the assumption of the existence of a

region B ⊂ R
3, with boundary ∂B, which can be occupied by a given shell element.

Considering the deformation of the continuum, it is also useful to invoke a reference (or

material) and current (or spatial) configurations M ⊂ R
3 and S ⊂ R

3, respectively. In

static analysis, these two configurations mimics successive deformation (loading) stages

(n) and (n+ 1) for a given body partition, without resorting to the time variable.

Departing from a given continuum body into a discretized one, finite elements can be

described within a set of curvilinear (convective) coordinates

ξ = (ξ1, ξ2, ξ3) ≡ [−1, 1] × [−1, 1] × [−1, 1] (2.1)

characterizing a parametric configuration P ⊂ R
3. Related to this parametric set, the

position vector of any point P ∈ B of a shell element can then be defined by (Bathe, 1996;

Chapelle and Bathe, 2003) in the form

nx (ξ) = Nk
nxk +

1

2
ξ3 nak Nk

nv3
k (2.2)

for the configuration (n). In this equation, summation over indices k (nodes) is implicit.

Nodes are assumed to rely on a (reference) mid-surface, being nxk (nodal) position vectors

related to an external system of orthonormal vectors, forming a global triad (e1, e2, e3).

Also in equation (2.2), Nk = Nk

(
ξ1, ξ2

)
are the matrices of two-dimensional isoparametric

shape functions, nak are nodal thickness values and nv3
k represents a (unit) director vector,

normal (at least in the initial state) to the reference surface, and defining the so-called

”thickness direction”.

In detail, for a mid-surface in the convective space, mapped onto B via a function

(chart) φ
(
ξ1, ξ2

)
, a couple of tangent vectors can be defined as (Chapelle and Bathe,

2003)

vα
l =

∂φ
(
ξ1, ξ2

)

∂ξα
, for α = 1, 2 (2.3)

By assumption, these linearly independent vectors are candidates in forming a frame on

the tangent plane to the mid-surface at each point (l). The director vector can then be

explicitly defined as

v3
l =

v1
l × v2

l∥
∥v1

l × v2
l

∥
∥

(2.4)

However, in algorithmic terms and for a nodal point (l = k) within a finite element, the

nodal director vector can be defined, for instance, from the global coordinates of adjacent
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nodes or directly from the user input (ABAQUS, 2002a), in order to its direction coincide

(or be close) to the fiber (thickness) direction (Hughes, 2000). Having the director being

specified, the two auxiliary vectors on (2.3) can be stated with the aid of the global triad.

In this sense, it is possible to enforce (Bathe, 1996) that

v1
k =

e2 × v3
k∥

∥e2 × v3
k

∥
∥

(2.5a)

(
if e2 × v3

k = 0 then v1
k ≡ e1

)
(2.5b)

v2
k = v3

k × v1
k (2.5c)

Unit vectors
(
v1

k,v
2
k,v

3
k

)
on each node then introduce a unique nodal coordinate system

at each configuration.

After deformation, the position of point P can be described in the final configuration

(n+ 1) as
n+1x (ξ) = Nk

n+1xk +
1

2
ξ3 n+1ak Nk

n+1v3
k (2.6)

The displacement field of a given point
(
ξ1, ξ2, ξ3

)
between configurations (n) and (n+ 1)

now appears as
n+1

nu (ξ) = n+1x (ξ) − nx (ξ) (2.7)

Expansion of equation (2.7) gives rise to 5 nodal degrees-of-freedom, comprising three

translations – related to the global frame (e1, e2, e3) – plus two rotations – related to the

nodal frame
(
v1

k,v
2
k,v

3
k

)
– and coming from the general expression

n+1
nu (ξ) = Nk

n+1
nxk +

1

2
ξ3 Nk

(
n+1ak

n+1v3
k − nak

nv3
k

)
(2.8)

In the present work, from configurations (n) to (n+ 1), nodal thickness values are kept

constant and equal to ak = nak = n+1ak. After the completion of iterations until the final

stage (n+ 1), thickness values at Gauss points are updated enforcing the plane-stress

condition, which is usually assumed in this class of degenerated shell elements. Those

Gaussian thickness values are subsequently extrapolated to the nodal points, and a new

deformation stage is started with the corrected nodal thickness value (Yoon et al., 1999;

Cardoso et al., 2002; Cardoso, 2002).

Apart from these considerations about nodal thickness values, nodal director variations

in equation (2.8) can be explicitly described in the nodal frame
(
v1

k,v
2
k,v

3
k

)
as

n+1
nv

3
k = n+1v3

k − nv3
k = θ1

k
nv1

k − θ2
k

nv2
k − 1

2

[(
θ1
k

)2
+
(
θ2
k

)2
]

nv3
k (2.9)

where
(
θ1
k, θ

2
k

)
are the rotational degrees-of-freedom of director nv3

k about auxiliary vectors
nv1

k and nv2
k, respectively. Although valid for large incremental rotations, the contribution
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of the quadratic terms in equation (2.9) to the displacement-based geometric stiffness ma-

trix is not accounted for in the present work, without prejudice of the overall convergence

behavior and with benefit of the computational costs, in the same manner as stated by

Saleeb et al. (1990).

The rotational degrees-of-freedom
(
θ1
k, θ

2
k

)
are also used in the construction of a

rotation-based matrix, responsible for the update of the nodal triad
(
v1

k,v
2
k,v

3
k

)
at each

iteration between two successive load levels (n) and (n+ 1).

Focusing on the current and converged directors at a node, it is possible to state that

n+1v3
k

∣
∣
i
= n+1

n Λi
k

nv3
k (2.10)

for a given iteration (i). The general form of the second-order transformation tensor

adopted in this work follows the Rodrigues formula from rigid body dynamics (Basar

and Weicher, 2000; Büchter and Ramm, 1992; Betsch et al., 1998; Doyle, 2001)

n+1
nΛ

i
k ≡ eΦ

i
k = I2 +

sin (φ)

φ
Φi

k +
1 − cos (φ)

φ2
Φi

k Φi
k (2.11)

for the second-order identity tensor I2. In the equation, Φi
k contains a composition of the

nodal rotational degrees of freedom θ1
k and θ2

k, from (n) to the ith iteration up to (n+ 1),

in the form

[
Φi

k

]
=






0 0 i
nθ

1
k

0 0 −i
nθ

2
k

−i
nθ

1
k

i
nθ

2
k 0




 and with φ =

√
(
i
nθ

1
k

)2
+
(
i
nθ

2
k

)2
(2.12)

once no drilling degrees-of-freedom are employed in the present formulation.

The converged director
(
nv3

k

)
is taken as the reference one, being updated at each it-

eration (i), and leading to a ”pseudo-converged” current director
(

n+1v3
k

∣
∣i
)

with iterative

character. This involves the knowledge of the total values of the rotational degrees-of-

freedom
(
i
nθ

1
k,

i
nθ

2
k

)
from the converged state (n) up to the current iteration (i), respec-

tively. Since the degrees-of-freedom
(
θ1
k, θ

2
k

)
are, by definition, non-additive variables (even

for a small deformation analysis), a special procedure to convert them into additive vari-

ables is employed, following the general guidelines of Crisfield (1997) and detailed in the

following for the sake of completeness.

Consider the accumulated rotation vector (previously additively evaluated) from the

converged state (n) until the previous iteration (i− 1) for a given node as

i−1
nθk =

i−1∑

j=1

j
j−1θ

a
k =







i−1
nθ

1
k

i−1
nθ

2
k

0







; summation over j iterations (2.13)
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where the index (a) enforces the additive character of the (transformed) rotations. If

the iterative variation in the rotational variables corresponds to the vector
(

i
i−1θk

)
, it is

possible to change its non-additive character into an additive one, represented by a new

iterative rotation vector
(

i
i−1θ

a
k

)
, in the form

i
i−1θ

a
k =

[
H
(
i−1

nθk

)]−1 i
i−1θk (2.14)

accounting for

H
(
i−1

nθk

)
=

sin (φ)

φ
I2 +

1

φ2

(

1 − sin (φ)

φ

)

i−1
nθk

[
i−1

nθk

]T
+

1

2




sin
(
φ/2

)

φ/2





2

Φk

(
i−1

nθk

)

(2.15)

and where the function Φk

(
i−1

nθk

)
is evaluated according to equation (2.12). The up-

dated incremental additive variation can now be directly employed in the director update

expressions
(
i−1

nθk + i
i−1θ

a
k

) equations (2.10),(2.11),(2.12)
=⇒

(
n+1

nΛ
i
k

)
(2.16)

The same procedure as detailed for the update of the director
(
nv3

k

)
can be extended in

order to obtain the updated triad
(
n+1v1

k,
n+1v2

k,
n+1v3

k

)
, at each iteration (i). After these

considerations about the nodal frame in each node and configuration, the displacement-

based strain tensor for this class of shell elements can be completely defined.

Taking again a deformation path between configurations (n) and (n+ 1) (and dropping

superscripts (i) for simplicity reasons), the Green-Lagrange strain tensor for a given point

on the convective space
(
ξ1, ξ2, ξ3

)
can be defined in an explicit way. First it is necessary

to establish a set of covariant base vectors from the partial derivatives of the position

vectors (Bathe, 1996; Basar and Weicher, 2000)

n+1gl (ξ) =
∂ n+1x (ξ)

∂ξl
(2.17a)

ngl (ξ) =
∂ nx (ξ)

∂ξl
(2.17b)

each one directly related to its contravariant counterparts n+1gl and ngl, respectively,

and with (l = 1, 2, 3). With the position vector for two successive configurations, it is also

possible to evaluate the two-point relative deformation gradient tensor

n+1
nF (ξ) =

∂ n+1x

∂ nx
= n+1gk ⊗ ngk (2.18)

The displacement-based Green-Lagrange strain tensor Eu, as well as its components, can

then be stated in the form

n+1
nE

u =
1

2

(
n+1

nF
T n+1

nF − I2

)
= Eu

ξjξl
ngj ⊗ ngl (2.19a)
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n+1
nE

u
ξjξl =

1

2








ngj ·
∂ n+1

nu

∂ ξl
+

∂ n+1
nu

∂ ξj
· ngl

︸ ︷︷ ︸

linear part

+
∂ n+1

nu

∂ ξj
· ∂

n+1
nu

∂ ξl

︸ ︷︷ ︸

non-linear part








(2.19b)

The choice of the convective frame as the departure point for strain components evalua-

tions is due to generality reasons and also because the enhanced transverse shear strain

field used in this work is firstly defined in this referential, as will be detailed in the next

section. The first two terms of the right hand side of equation (2.19b) lead to the linear

strain-displacement and, subsequently, linear stiffness matrices. A degrees-of-freedom vec-

tor dk, gathering the translation and rotational components at each node point (k), is

now introduced in the form

dk =
{

u1 u2 u3 θ1 θ2
}T

(2.20)

for uk =
{
u1 u2 u3

}T
.

Considering the director cosines of the nodal vectors
(
v1

k,v
2
k,v

3
k

)
as v1

k =
{
v11 v12 v13

}T
, v2

k =
{
v21 v22 v23

}T
, v3

k =
{
v31 v32 v33

}T
, the components of the

nodal position vector as xk =
{
x1 x2 x3

}T
– dropping the configurations indices (n) and

(n+ 1) – it is possible to formulate explicit expressions for the linear part of the convective

components of the Green-Lagrange strain tensor (equation (2.19b)) in the form

Eu
ξ1ξ1 =

(
∂x1

∂ξ1
∂N

∂ξ1

)

u1 +

(
∂x2

∂ξ1
∂N

∂ξ1

)

u2 +

(
∂x3

∂ξ1
∂N

∂ξ1

)

u3

+

(
a

2
ξ3
∂N

∂ξ1

(
∂x1

∂ξ1
v11 +

∂x2

∂ξ1
v12 +

∂x3

∂ξ1
v13

))

θ1

−
(
a

2
ξ3
∂N

∂ξ1

(
∂x1

∂ξ1
v21 +

∂x2

∂ξ1
v22 +

∂x3

∂ξ1
v23

))

θ2

(2.21)

Eu
ξ2ξ2 =

(
∂x1

∂ξ2
∂N

∂ξ2

)

u1 +

(
∂x2

∂ξ2
∂N

∂ξ2

)

u2 +

(
∂x3

∂ξ2
∂N

∂ξ2

)

u3

+

(
a

2
ξ3
∂N

∂ξ2

(
∂x1

∂ξ2
v11 +

∂x2

∂ξ2
v12 +

∂x3

∂ξ2
v13

))

θ1

−
(
a

2
ξ3
∂N

∂ξ2

(
∂x1

∂ξ2
v21 +

∂x2

∂ξ2
v22 +

∂x3

∂ξ2
v23

))

θ2

(2.22)

Eu
ξ3ξ3 =

(
a

2
N

(
∂x1

∂ξ3
v11 +

∂x2

∂ξ3
v12 +

∂x3

∂ξ3
v13

))

θ1

−
(
a

2
N

(
∂x1

∂ξ3
v21 +

∂x2

∂ξ3
v22 +

∂x3

∂ξ3
v23

))

θ2

(2.23)
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2Eu
ξ1ξ2 =

(
∂x1

∂ξ1
∂N

∂ξ2
+
∂x1

∂ξ2
∂N

∂ξ1

)

u1 +

(
∂x2

∂ξ1
∂N

∂ξ2
+
∂x2

∂ξ2
∂N

∂ξ1

)

u2 +

(
∂x3

∂ξ1
∂N

∂ξ2
+
∂x3

∂ξ2
∂N

∂ξ1

)

u3+

(
a

2
ξ3
∂N

∂ξ2

(
∂x1

∂ξ1
v11 +

∂x2

∂ξ1
v12 +

∂x3

∂ξ1
v13

)

+
a

2
ξ3
∂N

∂ξ1

(
∂x1

∂ξ2
v11 +

∂x2

∂ξ2
v12 +

∂x3

∂ξ2
v13

))

θ1−
(
a

2
ξ3
∂N

∂ξ2

(
∂x1

∂ξ1
v21 +

∂x2

∂ξ1
v22 +

∂x3

∂ξ1
v23

)

+
a

2
ξ3
∂N

∂ξ1

(
∂x1

∂ξ2
v21 +

∂x2

∂ξ2
v22 +

∂x3

∂ξ2
v23

))

θ2

(2.24)

2Eu
ξ1ξ3 =

(
∂x1

∂ξ1
∂N

∂ξ3
+
∂x1

∂ξ3
∂N

∂ξ1

)

u1 +

(
∂x2

∂ξ1
∂N

∂ξ3
+
∂x2

∂ξ3
∂N

∂ξ1

)

u2 +

(
∂x3

∂ξ1
∂N

∂ξ3
+
∂x3

∂ξ3
∂N

∂ξ1

)

u3+

(
a

2

(

v11

(

N
∂x1

∂ξ1
+ ξ3

∂N

∂ξ1
∂x1

∂ξ3

)

+ v12

(

N
∂x2

∂ξ1
+ ξ3

∂N

∂ξ1
∂x2

∂ξ3

)

+ v13

(

N
∂x3

∂ξ1
+ ξ3

∂N

∂ξ1
∂x3

∂ξ3

)))

θ1−
(
a

2

(

v21

(

N
∂x1

∂ξ1
+ ξ3

∂N

∂ξ1
∂x1

∂ξ3

)

+ v22

(

N
∂x2

∂ξ1
+ ξ3

∂N

∂ξ1
∂x2

∂ξ3

)

+ v23

(

N
∂x3

∂ξ1
+ ξ3

∂N

∂ξ1
∂x3

∂ξ3

)))

θ2

(2.25)

2Eu
ξ2ξ3 =

(
∂x1

∂ξ2
∂N

∂ξ3
+
∂x1

∂ξ3
∂N

∂ξ2

)

u1 +

(
∂x2

∂ξ2
∂N

∂ξ3
+
∂x2

∂ξ3
∂N

∂ξ2

)

u2 +

(
∂x3

∂ξ2
∂N

∂ξ3
+
∂x3

∂ξ3
∂N

∂ξ2

)

u3+

(
a

2

(

v11

(

N
∂x1

∂ξ2
+ ξ3

∂N

∂ξ2
∂x1

∂ξ3

)

+ v12

(

N
∂x2

∂ξ2
+ ξ3

∂N

∂ξ2
∂x2

∂ξ3

)

+ v13

(

N
∂x3

∂ξ2
+ ξ3

∂N

∂ξ2
∂x3

∂ξ3

)))

θ1−
(
a

2

(

v21

(

N
∂x1

∂ξ2
+ ξ3

∂N

∂ξ2
∂x1

∂ξ3

)

+ v22

(

N
∂x2

∂ξ2
+ ξ3

∂N

∂ξ2
∂x2

∂ξ3

)

+ v23

(

N
∂x3

∂ξ2
+ ξ3

∂N

∂ξ2
∂x3

∂ξ3

)))

θ2

(2.26)

The last equations can be grouped in an equivalent (general) single equation in the form

Eu = Mu (ξ)







d1

· · ·
dk







for k = 1, . . . , nnode and with nnode = 4 (2.27)

leading to the linear convective strain-displacement differential matrix (Mu) and, after-

wards, to the linear displacement-based stiffness matrix. An analogous nodal discretiza-

tion also applies to the nonlinear term in equation (2.19b), leading to the correspond-

ing nonlinear strain-displacement matrix and, subsequently, the geometric (initial stress)

displacement-based stiffness operator.

Due to the non-orthogonal character of the convective frame, the linear strain-

displacement operator coming from equations (2.21)-(2.26) will now be projected onto

a new orthonormal frame
(
r1, r2, r3

)
. This local (or ”lamina”, as referred by Hughes

(2000)) coordinate system is used for the constitutive update and for the application

of the plane-stress hypothesis. It is defined at each Gauss point over the undeformed mesh

(being subsequently updated as deformation occurs, as will be described in the following

sections).
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There is not a unique way to choose the starting configuration for the local frame

(Bathe, 1996; Hughes, 2000), and in this work the following straightforward algorithm

was adopted:

1. Let r3 =

{
∂x1

∂ξ1
∂x2

∂ξ1
∂x3

∂ξ1

}T

×
{

∂x1

∂ξ2
∂x2

∂ξ2
∂x3

∂ξ2

}T

2. r3 =
r3

‖r3‖

3. Let r1 =

{
∂x1

∂ξ1
∂x2

∂ξ1
∂x3

∂ξ1

}T

(2.28)

4. r1 =
r1

‖r1‖
5. r2 = r3 × r1

For the general case of anisotropic elasto-plastic behaviors, axes r1 and r2 can be ini-

tially taken coincident with the planar anisotropic axes (rolling and transverse direction,

respectively), with r3 corresponding to the normal direction.

The local frame for each Gauss point is subjected to the rigid-body part of the relative

deformation gradient, between configurations (n) and (n+ 1). In fact, applying a polar

decomposition on the relative deformation gradient of equation (2.18), it follows that

n+1
nF = n+1

nR
n+1

nU (2.29)

where
(
n+1

nR
)

is the orthogonal relative rotation tensor and
(
n+1

nU
)

corresponds to the

relative right stretch tensor. The decomposition in (2.29) can be easily carried out with,

for instance, the algorithm introduced by Franca (1989) (see Box 4.1, in Chapter 4).

Once knowing the local coordinate system at stage (n) and the relative rotation tensor

between stages (n) and (n+ 1), it is possible to perform the update

[
n+1r1 n+1r2 n+1r3

]

= n+1
nR

[
nr1 nr2 nr3

]

(2.30)

In this way, the local coordinate system for a given point is then only affected by the rigid

body component of the total deformation, characterizing this frame as a ”co-rotational”

one, with material strain (and stress) tensors being rotated as if frozen into the deformed

continuum (Qin and Chen, 1988; Peng and Crisfield, 1992; Jiang and Chernuka, 1994a,b;

Moita and Crisfield, 1996; Belytschko et al., 2000).

As stated before, the local system is used for the imposition of the plane-stress con-

ditions over the stress field and, afterwards, for the constitutive update (Chapter 4). The

stress field is kept related to the local coordinate system during deformation, making
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the stress update procedure, in the presence of large elasto-plastic deformations, a di-

rect extension of linear small deformation cases, as recently explored by Arif Masud and

co-workers (Masud et al., 2000; Masud and Tham, 2000).

The strain field, previously formulated in the convective frame, must therefore be

transformed onto the local reference system. This can be achieved with the components

of the director cosines matrix

T
(
ξ1, ξ2, ξ3

)
=






(
ξ1, r1

) (
ξ2, r1

) (
ξ3, r1

)

(
ξ1, r2

) (
ξ2, r2

) (
ξ3, r2

)

(
ξ1, r3

) (
ξ2, r3

) (
ξ3, r3

)




 =










∂ξ1

∂r1

∂ξ2

∂r1

∂ξ3

∂r1

∂ξ1

∂r2

∂ξ2

∂r2

∂ξ3

∂r2

∂ξ1

∂r3

∂ξ2

∂r3

∂ξ3

∂r3










(2.31)

which can be easily evaluated with the alternative expression

T
(
ξ1, ξ2, ξ3

)
=
[

r1 r2 r3
]T

(J)−1 (2.32)

for a given configuration. In this equation, (J) corresponds to the conventional Jacobian

matrix, relating the global position coordinates to the convective frame in the form

J =











∂x1

∂ξ1
∂x2

∂ξ1
∂x3

∂ξ1

∂x1

∂ξ2
∂x2

∂ξ2
∂x3

∂ξ2

∂x1

∂ξ3
∂x2

∂ξ3
∂x3

∂ξ3











(2.33)

The components (Tij) of matrix T in equation (2.32) can be arranged in the form of a

transformation matrix (mapping the convective frame to the local coordinate system) as

l
cT =









T11 T11 T12 T12 T13 T13 T11 T12 T11 T13 T12 T13

T21 T21 T22 T22 T23 T23 T21 T22 T21 T23 T22 T23

2 T11 T21 2 T12 T22 2 T13 T23 (T11 T22) + (T21 T12) (T11 T23) + (T21 T13) (T12 T23) + (T22 T13)

2 T11 T31 2 T12 T32 2 T13 T33 (T11 T32) + (T31 T12) (T11 T33) + (T31 T13) (T12 T33) + (T32 T13)

2 T21 T31 2 T22 T32 2 T23 T33 (T21 T32) + (T31 T22) (T21 T33) + (T31 T23) (T22 T33) + (T32 T23)









(2.34)

where the (c) and (l) refer to the convective and local frames, respectively. The strain

tensor components in the local frame can be finally obtained, from the convective strain

tensor (2.19), simply by the relation

n+1
nĒ

u = n+1
nĒ

u
(
r1, r2, r3

)
= l

cT
n+1

nE
u (2.35)

which obviously also applies to the linear strain-displacement matrices. The nonlinear

(geometric or initial stress) strain-displacement matrix, on the other hand, can be directly
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referred to the updated local frame in the form (Bathe, 1996)

M̄u
∣
∣
nl

=


























Nr1 0 0 a
2v

11
(

ξ3Nr1 + ∂ξ3

∂r1N
)

−a
2v

21
(

ξ3Nr1 + ∂ξ3

∂r1N
)

Nr2 0 0 a
2v

11
(

ξ3Nr2 + ∂ξ3

∂r2N
)

−a
2v

21
(

ξ3Nr2 + ∂ξ3

∂r2N
)

Nr3 0 0 a
2v

11
(

ξ3Nr3 + ∂ξ3

∂r3N
)

−a
2v

21
(

ξ3Nr3 + ∂ξ3

∂r3N
)

0 Nr1 0 a
2v

12
(

ξ3Nr1 + ∂ξ3

∂r1N
)

−a
2v

22
(

ξ3Nr1 + ∂ξ3

∂r1N
)

0 Nr2 0 a
2v

12
(

ξ3Nr2 + ∂ξ3

∂r2N
)

−a
2v

22
(

ξ3Nr2 + ∂ξ3

∂r2N
)

0 Nr3 0 a
2v

12
(

ξ3Nr3 + ∂ξ3

∂r3N
)

−a
2v

22
(

ξ3Nr3 + ∂ξ3

∂r3N
)

0 0 Nr1
a
2v

13
(

ξ3Nr1 + ∂ξ3

∂r1N
)

−a
2v

23
(

ξ3Nr1 + ∂ξ3

∂r1N
)

0 0 Nr2
a
2v

13
(

ξ3Nr2 + ∂ξ3

∂r2N
)

−a
2v

23
(

ξ3Nr2 + ∂ξ3

∂r2N
)

0 0 Nr3
a
2v

13
(

ξ3Nr3 + ∂ξ3

∂r3N
)

−a
2v

23
(

ξ3Nr3 + ∂ξ3

∂r3N
)


























︸ ︷︷ ︸

for node k

(2.36)

where the subscript (nl) refers to its non-linear character and

Nrj =
∂N

∂ξi

∂ξi

∂rj
, summation on i (2.37)

The basic block presented in equation (2.36) is repeated for each node (k) of an ele-

ment, leading to a matrix M̄u
∣
∣
nl

, for the present shell elements, with a total of (9 × 20)

components.

After detailing the strain field coming from an entirely displacement based formulation,

it is time to define the enhanced strain field that will be simply added to the linear

strain tensor in (2.19), in order to eliminate transverse shear locking and, simultaneously,

improve the in-plane behavior of the original degenerated shell element. To this end, a

lengthy verification of the subspace of null transverse shear strains will be carried out, as

detailed in the following.

2.3 Bases for the subspace of null transverse shear strains

2.3.1 Overview

In the analysis of shear locking phenomena, attention is focused on the transverse

components of the strain field, defined in the natural (convective) set of coordinates

ξ = (ξ1, ξ2, ξ3) – equation (2.1). Related to this system, the displacement dependent

strain field components, for a given point within an element, can be represented in vector

form as

Eu ≡ {Eu
ξ1ξ1 Eu

ξ2ξ2 Eu
ξ1ξ2 Eu

ξ1ξ3 Eu
ξ2ξ3}T (2.38)



Sec. 2.3 Bases for the subspace of null transverse shear strains 17

with each strain component being defined by equations (2.21)–(2.26) and the plane-stress

condition in the convective frame
(

Eu
ξ3ξ3 = 0

)

being implicitly accounted for. Recalling

equation (2.27), it is possible to relate the strain field to the nodal displacement variables,

at the element level, in the form

Eu = Mu (ξ)







d1

· · ·
dk







= Mu (ξ) de

via the differential operator (Mu), grouping together contributions from each of the k

nodal points.

The importance in starting with the convective strain field is related to the imposition

of the Kirchhoff constraints for thin-shells, requiring that the transverse (out-of-plane)

convective strain components must vanish as thickness values tends to zero. When applying

the Mindlin-type formulations (characteristic of degenerated elements) this requirement

cannot be simultaneously fulfilled in each point over a specified domain. However, dealing

with an energetic approach, it is possible to formulate an analogous condition in the form

(Huang, 1989)

∫

�

Eu
ξ1ξ3 dξ1 dξ2 = 0 (2.39a)

∫

�

Eu
ξ2ξ3 dξ1 dξ2 = 0 (2.39b)

at the elemental level and area
(
� ≡ dξ1 × dξ2

)
. The assumption that the shear strain

field
(

Eu
ξ1ξ3

)

is a linear function of
(
ξ1
)

and, in a similar manner,
(

Eu
ξ2ξ3

)

is a linear

function of
(
ξ2
)

– linear strain field – leads to the equations in the isoparametric space

∫ 0

−1
Eu

ξ1ξ3 dξ1 = 0 (2.40a)

∫ +1

0
Eu

ξ1ξ3 dξ1 = 0 (2.40b)

∫ 0

−1
Eu

ξ2ξ3 dξ2 = 0 (2.40c)

∫ +1

0
Eu

ξ2ξ3 dξ2 = 0 (2.40d)

Discrete imposition of these constraints directly over the Gauss points then leads to

{

Eu
ξ1ξ3

Eu
ξ2ξ3

}

= Mu
s (ξ) de = 0 (2.41)
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where (Mu
s ) is a sub-matrix of the total operator (Mu) – equation (2.27) – that is, corre-

sponding to the last 2 lines of the latter.

A general displacement field obeying the constraint (2.41) can be then related to an

algebraic subspace in the form

Is
h = {dh ∈ Uh : Mu

s (ξ)de = 0} (2.42)

where Is
h is the subspace of possible deformations associated with a null transverse shear

strain field, with Uh corresponding to an approximation of the linear space of all admissible

solutions U (and coming from the finite element approximation dh for the displacement

field).

Benefiting from previous works in the field (César de Sá and Owen, 1986; César de Sá

and Natal Jorge, 1999), it is possible to infer that, in order to avoid the onset of transverse

shear locking, the discrete finite element solution (uh ≡ de) must lie on the null space of

Mu
s , thus avoiding the trivial solution (uh ≡ 0) to be the unique one. In other words,

any required displacement solution must be a linear combination of the elements of a

given basis of Is
h. If this is not the case, shear locking is therefore verified for the required

displacement field.

Distinct finite element formulations, for a given mesh, will lead to distinct null trans-

verse shear strain subspaces. In the next sections, analyses over the bilinear degenerated,

mixed interpolated MITC4 and bilinear selective reduced elements are performed, aiming

to identify for each one of the elements their respective subspace Is
h and, consequently, to

clarify their ability (or not) to avoid locking behaviors.

2.3.2 Analysis of the degenerated formulation

Referring to equation (2.41), it is possible to enforce that, for a single element,

{

Eu
ξ1ξ3

Eu
ξ2ξ3

}

=

{

Mu
ξ1ξ3

Mu
ξ2ξ3

}

de = 0 (2.43)

where the former matrix (Mu
s ) was further decomposed into the two sub-matrices

(

Mu
ξ1ξ3

)

and
(

Mu
ξ2ξ3

)

.

In the following analysis, a square element placed in the OXY plane is considered.

The normal to the surface of the element is taken coincident with the OZ axis, which is

also responsible for thickness orientation. The element represents then a reference square

in the two-dimensional natural coordinate space D ⊂ R
2, with representative dimensions

D = [−1,+1] × [−1,+1] =
{
(ξ, η) ∈ R

2;−1 ≤ ξ, η ≤ +1
}

(2.44)
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Within this configuration, the in-plane components
(
u1 , u2

)
of the displacement nodal

vector – equation (2.20) – do not interfere with the transverse shear strain field. It is

obvious then that any deformation state in which only the in-plane degrees-of-freedom

are active will inevitably belong to the Is
h subspace, related only to the out-of-plane shear

strain energy.

Therefore, and for the sake of simplicity, these degrees-of-freedom will be ”removed”

from the generalized nodal displacement vector (de), leading to the ”reduced” nodal

degrees-of-freedom vector

dr =
{

u3
k=1 θ1

k=1 θ2
k=1 . . . u3

k=4 θ1
k=4 θ2

k=4

}T
(2.45)

specific to the bilinear element (nnode = 4) and associated with the condition

{

Eu
ξ1ξ3

Eu
ξ2ξ3

}

=

{

Mu
ξ1ξ3

Mu
ξ2ξ3

}

dr = 0 (2.46)

in replacement of equation (2.43). The main goal in the following will be the search

for reduced degrees-of-freedom vectors (dr) respecting condition (2.46) for a given finite

element formulation.

The next step refers then to the extension of the latter equality over all the sample

points used in the numerical integration. For the four-node bilinear shell element, with a

complete 2 × 2 Gauss integration, 8 restrictions coming from (2.46) can be accounted for

as 
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︸ ︷︷ ︸

4×12

dr = 0 (2.47)

and 
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︸ ︷︷ ︸

4×12

dr = 0 (2.48)

where each pair
(
ξ1K , ξ

2
K

)
represents the natural coordinates of a specific integration point

(for K = I, . . . , IV ). Doing so, Mu
ξ1ξ3

(
ξ1K , ξ

2
K

)
and Mu

ξ2ξ3

(
ξ1K , ξ

2
K

)
represent vectors (12

components each), referring to the very same integration point.
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It is worth noting that (Mu
s ) evaluation does not depend on the numerical integration

over the thickness direction and, therefore, the
(
ξ3
)

orientation needs not to be included

in the present analysis. This is quite useful in elastoplastic analyses with shell elements,

where higher order numerical integration along thickness direction is often invoked in order

to catch strong stress and strain gradients.

After these considerations, the analysis of the degenerated four-node (bilinear) shell

element, characterized by a (linear) transverse shear strain field derivable from equations

(2.25) and (2.26), provides a matrix (Mu
s ) with the following characteristics:

rank [Mu
s (ξ)] = 8 ∴ nullity [Mu

s (ξ)] = 4 (2.49)

As a direct consequence, the element can reproduce four fundamental (linearly indepen-

dent) displacement patterns. For a case where a given displacement cannot be obtained as

a linear combination of these four terms, transverse shear locking onset is verified. The dis-

placement configurations forming a possible (admissible) basis of the null transverse shear

strain subspace for the degenerated element (Is
h |d) can be schematically represented in

Fig. 2.1.

D1 D2

D3 D4

Figure 2.1: Basis elements for the null transverse shear strain sub-

space for degenerated elements (one-element mesh).

The arrows in the figure refer to active degrees-of-freedom. In detail, the displacement

vector for the whole element (and following the representation in equation (2.45)) can be
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represented as follows

D1 ⇒ dr = {1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0}T

D2 ⇒ dr = {0, 1, 0,−1, 1, 0,−1, 1, 0, 0, 1, 0}T

D3 ⇒ dr = {−1, 0, 1,−1, 0, 1, 0, 0, 1, 0, 0, 1}T

D4 ⇒ dr = {1, 2,−2,−1, 2, 2, 1,−2, 2,−1,−2,−2}T

(2.50)

An element based on this formulation is able, then, to reproduce these displacement pat-

terns as well as any linear combinations between them.

2.3.3 Analysis of the mixed interpolation approach

The previous analysis is now applied to the four-node bilinear element following the mixed

interpolation approach of Dvorkin and Bathe (1984). The concept behind the formulation

is well-established in the finite element literature (Bathe and Dvorkin, 1985, 1986; Bathe,

1996; Bucalem and Bathe, 1997; Chapelle and Bathe, 1998; Bathe et al., 2000; Chapelle

and Bathe, 2000, 2003) being only summarized in the following. The procedure has roots

in the earlier works of MacNeal (1982) and Hughes and Tezduyar (1981), being also

sometimes classified as an assumed natural strain method, a term coined after the works

of K. C. Park and co-workers (Park, 1986; Park and Stanley, 1986; Stanley et al., 1986).

The mixed interpolation of tensorial components approach (MITC, for short) is a kind

of assumed strain method in the sense that the original, displacement-based, transverse

shear strain field of a given element is re-interpolated based on new sampling points, dis-

tinct from the Gaussian ones, and designed to satisfy the thin-plate/thin-shell conditions

discussed in Section 2.3.1. In a general form, the interpolated transverse shear strain field

is represented by the modified components

EMITC

ξ1ξ3 (ξ) =
2∑

p=1

Np

(
ξ1, ξ2

)
Eu

ξ1ξ3

(
ξ1p , ξ

2
p , 0

)

EMITC

ξ2ξ3 (ξ) =
2∑

q=1

Nq

(
ξ1, ξ2

)
Eu

ξ2ξ3

(
ξ1q , ξ

2
q , 0

)

(2.51)

In the latter, (p) and (q) indices represent the additional (tying, in the original work)

integration points with natural coordinates
(
ξ1p , ξ

2
p

)
and

(
ξ1q , ξ

2
q

)
, respectively, located on

the reference surface
(
ξ3 = 0

)
and associated with the additional shape functions (Np)

and (Nq) (Bathe, 1996).
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Analysis of equations (2.47) and (2.48) for this formulation, specifically for the case

of the 4-node (bilinear) shell element (MITC4 in Dvorkin and Bathe (1984)), reveals a

matrix (Mm
s ) with the following properties:

rank [Mm
s (ξ)] = 4 ∴ nullity [Mm

s (ξ)] = 8 (2.52)

The null transverse shear strain subspace (Is
h |m) for the mixed interpolated MITC4 ele-

ment should, then, be represented by a basis including 8 linearly independent terms, being

a possible candidate the one represented in Fig. 2.2.

Each element in the figure can be expressed by a set of reduced degrees-of-freedom vectors

M1 = D1 M2 = D2

M3 = D3
M4 = D4

M5 M6

M7 M8

Figure 2.2: Basis elements for the null transverse shear strain subspace for the

mixed interpolated MITC4 shell element (one-element mesh).
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in the form

M1 ⇒ dr = {1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0}T

M2 ⇒ dr = {0, 1, 0,−1, 1, 0,−1, 1, 0, 0, 1, 0}T

M3 ⇒ dr = {−1, 0, 1,−1, 0, 1, 0, 0, 1, 0, 0, 1}T

M4 ⇒ dr = {1, 2,−2,−1, 2, 2, 1,−2, 2,−1,−2,−2}T

M5 ⇒ dr = {0, 1, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0}T

M6 ⇒ dr = {0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 1, 0}T

M7 ⇒ dr = {0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 1}T

M8 ⇒ dr = {0, 0, 0, 0, 0,−1, 0, 0, 1, 0, 0, 0}T

(2.53)

It can be noted that the first four terms of the MITC4 shell element basis (M1 ⇒ M4)

are exactly those reproduced by the degenerated element subspace. The remaining four

terms (M5 ⇒ M8) do not belong to the latter null transverse shear strain subspace. Thus,

any imposed displacement field, as long as being a linear combination of the (M5 ⇒ M8)

terms, will inevitably force the degenerated formulation to lock.

2.3.4 Analysis of the selective reduced technique

Starting with the degenerated element formulation, an additional analysis is performed

over the selective reduced integration (SRI ) procedure (Hughes et al., 1978; Zienkiewicz et

al., 1979). For this purpose, a reduced Gaussian integration (one-point quadrature order)

is adopted for the calculation of just the transverse shear strain terms.

The analysis of this formulation from the standpoint of equations (2.47) and (2.48),

leads to a matrix (Mr
s) characterized by

rank [Mr
s (ξ)] = 2 ∴ nullity [Mr

s (ξ)] = 10 (2.54)

A possible basis, defining the null transverse shear strain subspace (Is
h |r) for the SRI

bilinear shell element, is reproduced in Fig. 2.3. For these possible patterns, the reduced
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degrees-of-freedom vectors are given by

S1 ⇒ dr = {1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0}T

S2 ⇒ dr = {0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0}T

S3 ⇒ dr = {−1, 0, 1,−1, 0, 1, 0, 0, 1, 0, 0, 1}T

S4 ⇒ dr = {0, 1, 0,−1, 1, 0,−1, 1, 0, 0, 1, 0}T

S5 ⇒ dr = {0, 1, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0}T

S6 ⇒ dr = {0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 1, 0}T

S7 ⇒ dr = {0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 1}T

S8 ⇒ dr = {0, 0, 0, 0, 0,−1, 0, 0, 1, 0, 0, 0}T

S9 ⇒ dr = {0, 1, 0, 0, 1, 0, 0,−1, 0, 0,−1, 0}T

S10 ⇒ dr = {0, 0,−1, 0, 0, 1, 0, 0, 1, 0, 0,−1}T

(2.55)

S1

S3 = M3 S4 = M2

S5 = M5 S6 = M6

S7 = M7 S8 = M8

S2

S9 S10

Figure 2.3: Basis elements for the null transverse shear strain subspace

for the selectively reduced shell element (one-element mesh).
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The subspace basis obtained with this formulation is composed of 10 terms. As can

be seen in the figure, terms (S3) → (S8) are included in the subspace basis of the MITC4

shell element. Additionally, terms (M1) and (M4) of this last element can be obtained as

a linear combination of the (Si) terms above in the form

M1 = S1 + S2 (2.56)

and

M4 = α1 S1 + α2 S2 + α3 S9 + α4 S10
(
α1, α2, α3, α4, α1 ∈ R

3
)

(2.57)

From all the previous analysis, it can be verified that the subspace for the SRI formulation

encompasses the previous ones (degenerated and mixed interpolated), once the statement

Is
h|r ⊃ Is

h|m ⊃ Is
h|d (2.58)

is verified.

In addition, from Fig. 2.3, it is interesting to note that some deformation patterns

pertaining to the selectively reduced integration element are not included amongst the

MITC4 and degenerated element bases, and cannot be spanned by either of them. In case

of imposing these displacement patterns, the mixed interpolation element will verify the

occurrence of transverse shear locking phenomenon, performing in the very same manner

as the degenerated element. Based on this conclusion, two sample example problems are

proposed. Data values values adopted in the examples are merely indicative and, therefore,

only a qualitative solution is sought, with no real physical meaning intended.

Example 1 Consider a single bilinear square element with sides measuring two units

(L = 2), so that no distinction needs to be made between physical and isoparametric coor-

dinates. The element possesses a thickness value of (a = 0.0002) and linear material prop-

erties given by a Young’s modulus
(
E = 2.11 × 1011

)
and a Poisson coefficient (ν = 0.3).

The element is restrained in such a way that only one type of rotations per node (rotation

type
(
θ1
k

)
, following equation (2.45)) is allowed as shown in Fig. 2.4(a). In the figure the

specific rotations activated amongst the total degrees of freedom are indicated. The arrows

also correspond to applied unity moments.

Comparing the last figure with the patterns represented in Fig. 2.1, 2.2 and 2.3, it is

possible to retain some conclusions. First of all the degenerated formulation can not, by

itself, reproduce the imposed deformation from any linear combination of the basis terms

showed in Fig. 2.1. In using the mixed and selective reduced interpolations, this problem

is not likely to happen, with the deformation pattern in Fig 2.4(a) being easily obtained
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from the following linear combinations

example 1 =⇒
{

M5 + M6

S5 + S6

}

. (2.59)

of the terms already presented in equations (2.53) and (2.55).

M =11

M =11 M =-11

M =-11

example 1
a)

example 2

M =-11

M =11

M =-11

M =11

b)

Figure 2.4: Allowed degrees-of-freedom for: a) Example 1 and b) Example 2.

Arrows also indicate directions of the applied unity moments.

Following this idea, both MITC4 and SRI shell elements might be supposed to reproduce

the displacement field imposed, while the degenerated element would be expected to lock.

In fact, for the application of unit moments along the rotational degrees of freedom (as

depicted in the Fig. 2.4(a)), the numerically obtained rotations values are as following

degenerated formulation =⇒
∣
∣θ1

k

∣
∣ = 2.21801 × 10−7

mixed interpolation formulation =⇒
∣
∣θ1

k

∣
∣ = 6.46919

selective reduced formulation =⇒
∣
∣θ1

k

∣
∣ = 6.46919

(2.60)

Qualitatively, the discrepancy is patent between the rotation values obtained for the de-

generated and MITC4/SRI formulations. Elements based on the latters present the same

rotational response to the imposed load and boundary conditions, as expected from the

null transverse shear strain subspace analysis. On the meanwhile, the element based on

the degenerated approach virtually gives no value for the rotation variable, which is in

accordance to the points discussed so far.

Example 2 The same geometry, material and boundary conditions from the previous

example are now applied in this test case. The only difference is the orientation of the
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applied unity-value moments, as represented in Fig. 2.4(b), enforcing a distinct rotation

field.

From what is being discussed so far, the imposed analysed configuration would only

be obtained from the SRI formulation (in fact, the resultant rotational field corresponds

to the specific term S9, in Fig. 2.3). Once neither the degenerated nor the mixed interpo-

lated elements can reproduce the present field, it is supposed that both elements would

ultimately reveal a tendency to lock. In fact, this actually happens, as can be verified with

the numerical results in the following

degenerated formulation =⇒
∣
∣θ1

k

∣
∣ = 2.21801 × 10−7

mixed interpolation formulation =⇒
∣
∣θ1

k

∣
∣ = 2.21801 × 10−7

selective reduced formulation =⇒
∣
∣θ1

k

∣
∣ = 18.48340

(2.61)

The obtained values reveal a poor behaviour of the mixed interpolation approach, contrast-

ing with the previous example, with both MITC4 and the degenerated element leading to

the very same numerical results. About the element based on the SRI formulation, as its

null shear strain subspace accounts for the rotation pattern in Fig. 2.4(b), no transverse

shear locking effects are verified.

2.4 Treatment of the transverse shear locking using the

EAS method

Following previous works in 2D analysis (César de Sá and Natal Jorge, 1999; César de Sá

et al., 2001), the enhanced assumed strain (EAS ) approach is employed in the following

in order to increase the performance of the original degenerated formulation. Theoretical

details about the method can be found in the pioneering works by J. C. Simo and co-

workers (Simo and Rifai, 1990; Simo and Armero, 1992; Simo et al., 1993).

From the analysis of these references (and also from posterior works in the field),

it can be inferred that the specific problem of the transverse shear locking in thin-shell

finite elements was never before successfully treated with the EAS method. This is quite

interesting, once the method is known to prove effectively in dealing with other pathologies

of displacement-based elements, such as locking in low-order 2D elements (Simo and Rifai,

1990; Simo and Armero, 1992), volumetric constraints in 3D elements (Simo et al., 1993)

and membrane locking in shell elements (Andelfinger and Ramm, 1993), just to name the

initial works in the literature. Therefore, the study carried out in the present work, in the

opinion of the author, would represent a step further into the knowledge of the transverse

shear locking pathology in thin-shell finite element analysis.



28 Enhanced Shell Finite Elements Chap. 2

The starting point in the present work was the choice of a suitable enhanced strain

function to be added to the displacement-based strain field, in the form

E = Eu + Eα = Mu (ξ)







d1

· · ·
dk







+ Mα (ξ)







α1

· · ·
αl







(2.62)

involving a number of (l) internal variables, defined at the element level and afterwards

condensed out of the system of equations.

The approach in equation (2.62) is representative of the linear methodology initially

introduced by Simo and Rifai (1990). Afterwards, for nonlinear geometric applications,

those authors introduced a new methodology involving the additive enhancement of the

displacement field gradient (or, in other words, the multiplicative enhancement of the

deformation gradient) (Simo and Armero, 1992; Simo et al., 1993). In the present work,

however, the additive enhancement of the displacement-based strain field is kept and

extended to nonlinear kinematics. This procedure has the advantage of introducing a

more straightforward implementation and lower computational costs, at the same time

with no loss in the quality of the final solution (Andelfinger and Ramm, 1993; Bischoff

and Ramm, 1997; Klinkel and Wagner, 1997; Klinkel et al., 1999; Vu-Quoc and Tan, 2003).

The main aspect of the formulation, at this point, relies entirely on the choice of

the enhanced strain-displacement differential operator (Mα) in equation (2.62). Following

previous works in 2D analysis (César de Sá and Natal Jorge, 1999; César de Sá et al.,

2001), the enhanced functions that will act over the displacement-based transverse shear

strain components involve the introduction of the two-dimensional bubble-function in the

form

N2
α

(
ξ1, ξ2

)
=
(
1 − ξ1ξ1

) (
1 − ξ2ξ2

)
(2.63)

This specific choice of functions is grounded on improved results obtained for distorted

meshes in incompressibility conditions (César de Sá and Natal Jorge, 1999), and also in

bending-dominated situations for two-dimensional problems (César de Sá et al., 2001).

In order to exemplify the adopted methodology, component (S9) of the null shear

strain subspace for the SRI formulation (as described in equation (2.55) and in Example

2) is once again analysed. However, instead of moments, unity value rotations are applied

over the activated degrees of freedom (Figure 2.5).
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Figure 2.5: Shear strain Eu
ξ1ξ3 at Gauss points (I, II, III, IV) for the degenerated shell element

Focusing on the
(

Eu
ξ1ξ3

)

transverse shear strain term, from equations (2.17)–(2.19) it

can be stated that

2Eu
ξ1ξ3 =

(
∂x

∂ξ1
· ∂u
∂ξ3

)

+

(
∂x

∂ξ3
· ∂u
∂ξ1

)

(2.64)

taking only the linear part of the total strain and dropping the state indices. Adopting the

same geometric and material configuration of Example 2, the displacement-based shear

strain in equation (2.64) is obtained for each Gauss point for the degenerated element.

From the subspace analysis described in the previous sections, it is clear that this element

cannot reproduce the imposed displacement pattern.

The deformation values obtained can then be split over the contributions of each term

in the right-hand side of equation (2.64), as schematically shown in Figure 2.5. As it can

be seen, shear strain values are not null at Gauss points for this type of boundary-load

configuration, as it would be desirable in order not to introduce shear locking effects into

the formulation.

Aiming to force the degenerated element to obey the Kirchhoff-Love condition (equa-

tions (2.40a) and (2.40b)), an enhanced strain field (equation (2.62)) is then added to the

Green-Lagrange displacement-based strain tensor, with the resulting total strain being

defined, in the isoparametric space, as

Eξ1ξ3 = Eu
ξ1ξ3 + Eα

ξ1ξ3 (2.65)

Doing so, the total strain field component in equation (2.65) now aims to provide the

missing term for expression (2.64), thus forcing the summation represented in Figure
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2.5 to be zero. The same procedure can be extended to the analysis of the
(
Eξ2ξ3

)
strain

component, including afterwards the (S10) term into the degenerated null transverse shear

strain subspace (Is
h |d).

In the end, an optimized expression can be developed for the transverse enhanced shear

strain field in the form

{

Eα
ξ1ξ3

Eα
ξ2ξ3

}

2

= Mα
(
ξ1, ξ2

)∣
∣
2

α|2 =






∂Nα

∂ξ2
0

0
∂Nα

∂ξ1






{

α1

α2

}

(2.66)

based on the
(
ξ1, ξ2

)
partial derivatives of the bubble function (2.63) and introducing a

two-component vector with internal (element-wise) variables (α|2).
The enhanced strain vector (2.66) can then be directly used in equation (2.62). The

result is a strain field identical to the one coming from the degenerated formulation, but

now including the so-far missing strain components (S9) and (S10), until now exclusive of

the selective reduced approach.

2.4.1 The S4E4 and S4E4P7 shell elements

The four-node degenerated element, after the enhancement analysis performed in the pre-

vious section, presents an increased subspace dimension. However, an important part of

deformation configurations is still missing when compared to MITC4 and SRI formula-

tions. These configurations refer to elements (S5), (S6), (S7) and (S8) of the subspace

basis represented in Figure 2.3.

With the enhanced assumed strain method, and following the previous developments,

it is possible to conceive a total shear strain field that simultaneously encompasses these

four terms and also the two displacement patterns treated before. To accomplish this

objective, a new enhanced shear strain field is proposed in the form

{

Eα
ξ1ξ3

Eα
ξ2ξ3

}

4

= Mα
(
ξ1, ξ2

)∣
∣
4

α|4 =






∂Nα

∂ξ2
0

∂Nα

∂ξ1
0

0
∂Nα

∂ξ1
0

∂Nα

∂ξ2












α1

α2

α3

α4







(2.67)

As can be immediately noticed, the
(
Mα

(
ξ1, ξ2

)∣
∣
4

)
matrix comprises the matrix

(
Mα

(
ξ1, ξ2

)∣
∣
2

)
stated in equation (2.66). This four-variable enhancement, with the cor-

respondent internal variables field (α|4), now allows for the reproduction of the 6 configu-

rations previously missing – (S5), (S6), (S7) and (S8) – as well as the previously analysed

(S9) and (S10) terms.
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The explanation why this four-variable enhancement provides six additional displace-

ment patterns for the basis of the null transverse shear strain subspace comes from the

fact that the eight restrictions (equations (2.47) and (2.48)), imposing the null shear strain

at the Gauss points, result now in only six linear independent equations. As the effective

number of elemental degrees of freedom is 16 (12 from the reduced vector – equation (2.45)

– plus 4 internal variables), the final number of displacement configurations turns out to

be 10.

At this point, it is possible to introduce two new four-node bilinear shell elements,

both of them based on the original degenerated formulation. The first element possesses

an enhancement as presented in equation (2.67), acting only over the transverse shear

strain field and involving 4 internal variables. In this sense, it is coined S4E4, due to

the number of nodes and internal variables, with the (E ) letter referring to shear strain

enhancement only.

The second proposed element encompass not only the preceding shear strain enrich-

ment but also an in-plane enhancement introduced by Andelfinger and Ramm (1993). This

element is labelled S4E4P7 in the following, where the previous notation was extending

to accommodate the in-plane enhancement (P letter), including seven internal variables.

Following the work of Andelfinger and Ramm (1993), the respective interpolation matrix

for the in-plane enhancement is defined as

Mβ (ξ) ≡ Mβ
(
ξ1, ξ2

)
∣
∣
∣
7

=






ξ1 0 0 0 ξ1ξ2 0 0

0 ξ2 0 0 0 ξ1ξ2 0

0 0 ξ1 ξ2 0 0 ξ1ξ2




 (2.68)

with the respective enhanced strain field given by







Eβ

ξ1ξ1

Eβ

ξ2ξ2

Eβ

ξ1ξ3







= Mβ
(
ξ1, ξ2

)
∣
∣
∣
7







β1

β2

β3

β4

β5

β6

β7







(2.69)

2.4.2 The S4E6 and S4E6P7 shell elements

The developed subspace analysis guided so far the choice of the enhanced terms to be

included in the transverse shear strain field. As can be stated from the work of the author

(César de Sá et al., 2002), the obtained elements with four additional internal variables
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provided an improvement over the original degenerated element although, however, their

performances were still far from ”ideal” results, when thickness values involved tended to

vanish. Examples involving those elements (S4E4 and S4E6P7 ) were not included in the

present work, being nevertheless presented in the paper of César de Sá et al. (2002).

On the other side, benefiting from the enhancement terms coming from the subspace

analysis, a further improvement on the quality of the results can be obtained including

in equation (2.67) the cross derivatives of the bubble function in order to
(
ξ1
)

and
(
ξ2
)
.

This extension over the enhanced polynomial functions leads then to a new interpolation

matrix for the transverse shear strain terms on the form

Mα
(
ξ1, ξ2

)∣
∣
6

=






∂Nα

∂ξ2
0

∂Nα

∂ξ1
0

∂Nα

∂ξ1
∂Nα

∂ξ2
0

0
∂Nα

∂ξ1
0

∂Nα

∂ξ2
0

∂Nα

∂ξ1
∂Nα

∂ξ2




 (2.70)

The matrix
(
Mα

(
ξ1, ξ2

)∣
∣
6

)
can then be related, within the context of the present work,

to an optimal choice for the enhanced interpolation for the transverse shear strain terms.

In this case, the internal variable field is ultimately represented by a vector with six

components.

Similarly to before, the elements obtained from this formulation are termed S4E6 and

S4E6P7 , for cases including just a transverse shear or a transverse shear plus an in-plane

enhancement, respectively. The in-plane enhancement follows again the one coming from

equation (2.68).

2.4.3 A computational improvement: the S4E6P5 shell element

At this point, a slightly distinct enhanced in-plane strain field can be introduced, just

involving five (instead of seven) internal variables, and not interfering with the enhanced

transverse shear strain field (6 variables) previously defined. This modification, leading

to the S4E6P5 shell element, involves no loss in accuracy for linear test cases when com-

pared to the S4E6P7 element and, involving less internal variables, provides a relative

computational gain in terms of CPU time.

The improved in-plane enhanced strain-displacement matrix follows the work of Betsch

et al. (1996), being given by

Mβ (ξ) ≡ Mβ
(
ξ1, ξ2

)
∣
∣
∣
5

=






ξ1 0 0 0 0

0 ξ2 0 0 0

0 0 ξ1 ξ2 ξ1ξ2




 (2.71)

With results for linear problems completely equivalent to those given by the S4E6P7

shell elements, the S4E6P5 bilinear shell element turned out to be the optimal choice for
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applications in nonlinear problems, as can be inferred from the examples chapter in the

end of the present work.

2.4.4 A distinct approach: the MITC4–E2 enhanced + assumed strain

shell element

Changing the approach adopted herein, the MITC4 bilinear shell element of Dvorkin and

Bathe (1984) is now focused in the following.

As detailed in the analysis of the null transverse shear strain subspace described in

Section 2.3.3, the chosen basis of the element has two missing components when compared

to the one provided by the SRI formulation, namely the (S9) and (S10) terms of Figure

2.3. As detailed in the beginning of this section, these two components can be directly

included into the deformation field, with the aid of the EAS method and using only two

internal variables (equation (2.66)).

In this way, it is possible to improve the performance of the MITC4 shell element,

combining the assumed strain method with the enhanced assumed strain approach, just

specifically affecting the transverse shear strain field. The shell finite element therefore

obtained is termed MITC4–E2 in this work, following the previous notation, and involves

an improved transverse strain field in the general form

{

Eξ1ξ3

Eξ2ξ3

}

=

{

EANS
ξ1ξ3

EANS
ξ2ξ3

}

+

{

Eα
ξ1ξ3

Eα
ξ2ξ3

}

2

(2.72)

with the assumed natural strain terms being as in equations (2.51) and the interpolation

matrix used in the enhanced strain field as defined in equation (2.66). As it would be

expected, a new analysis of the Example 2 treated before, now with this improved element,

provides the very same result as the SRI formulation.
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Chapter 3

Enhanced Solid-Shell Finite

Elements

In this chapter, the concept of ”solid-shell” is explored, as an alter-

native to degenerated shell elements. Starting from a trilinear, 8 node,

three-dimensional element, improvements are carried out in order to

overcome numerical pathologies such as the volumetric locking – ap-

pearing in incompressible or near incompressible problems – and the

transverse shear strain locking – dominant in conventional formula-

tions when thickness values tend to diminish. Based on a subspace

analysis similar to the one carried out in Chapter 2, a reliable fully

integrated solid-shell is then introduced, based on the Enhanced Strain

Method and with a low number of internal variables when compared

to formulations well-established in the literature.

3.1 State of the art

Finite element analysis of shell structures goes back in time until the onset of the so-called

degenerated approach in works of Ahmad et al. (1970) and Zienkiewicz et al. (1979), as well

as in early papers of Ramm (Ramm, 1977), and afterwards with Hughes and co-workers

(Hughes and Liu, 1981; Hughes and Carnoy, 1983), among others. Following the exposed

in the previous chapter, brick elements were soon found to be prone to the appearance

of volumetric and transverse shear locking effects. The first one comes, for instance, from

35
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metal plasticity models, where plastic deformation is taken to be isochoric or, in other

words, incompressible (Boër et al., 1986). The second one comes from the analysis of

thin shells, where the limit between ”thick” and ”thin” geometries is somewhat difficult

to establish, with the occurrence of locking not only strictly relying on thickness/length

ratios, as demonstrated by Chapelle, Bathe and co-workers (Chapelle and Bathe, 1998;

Bathe et al., 2000; Chapelle and Bathe, 2000; Bathe et al., 2003; Chapelle and Bathe,

2003).

In order to circumvent these parasitic phenomena, selective reduced integration (or,

equivalently, u/p formulation, mean-dilatation technique and B-bar methods) - for volu-

metric locking - and the ”mixed interpolation of tensorial components”/assumed strain

method - for transverse shear locking - had arisen as possible and successful techniques.

Examples in the literature are, for instance, the works of Taylor et al. (1968); Key (1969);

Argyris et al. (1974); Fried (1974); Nagtegaal et al. (1974); Malkus (1976); Hughes (1977);

Malkus and Hughes (1978); Hughes (1980); Simo and Taylor (1982) and Simo et al. (1985),

representing the grounds of the computational treatment of incompressibility, in elastic

and elasto-plastic finite element cases. Papers of Hughes and Tezduyar (1981); MacNeal

(1982); Dvorkin and Bathe (1984) and Bathe and Dvorkin (1986), on the other hand,

showed the earlier contributions in dealing with transverse shear locking.

For the specific case of shell elements, original plane-stress assumptions were enough to

avoid or postpone incompressibility issues in the nonlinear material range (Ramm, 1977;

Hughes and Liu, 1981; Simo et al., 1990a; Gruttmann et al., 1992; Basar et al., 1992),

although at the expense of the inclusion of a rotation tensor into the formulation. As

more generality was needed, higher order theories including thickness change via extensible

director fields and ”layerwise” approaches were developed, including (or not) rotational

variables. Reference material in the field can be found in the works of (Simo et al., 1990b;

Braun et al., 1994; Büchter et al., 1994; Betsch and Stein, 1995; Dvorkin et al., 1995;

Sansour, 1995; Betsch et al., 1996; Betsch and Stein, 1996; Basar and Ding, 1997; Bischoff

and Ramm, 1997; Sorić et al., 1997; Basar and Itskov, 1999; Betsch and Stein, 1999;

Eberlein and Wriggers, 1999; Huettel and Matzenmiller, 1999; el-Abbasi and Meguid,

2000; Brank et al., 2002) and Cardoso et al. (2002), although the list is far from being

complete.

Despite the good results obtained by shell formulations in thick and thin shell prob-

lems, interest in trilinear (eight node) brick-type elements, resting solely on translation-

type degrees-of-freedom, has been increasing over the last decade. A relative advantage

gained with this three-dimensional formulation would then be the avoidance of a spe-

cific treatment for rotation variables. On the other side, for this kind of elements, locking
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pathologies must be appropriately treated while keeping its scope of application indepen-

dent of thickness values. Such a hexahedral solid element should also naturally incorporate

kinematical formulations typical of shell approaches with, at the same time, the automatic

account for thickness variations.

According to Wriggers et al. (1996), reliable three-dimensional elements for shell-type

applications with finite strains can be obtained using the Enhanced Assumed Strain (EAS )

method of Simo and co-workers (Simo and Rifai, 1990; Simo and Armero, 1992; Simo et al.,

1993). Representative lines of research in this field are, for example, the intensive work

of Schweizerhof and co-workers (Freischlager and Schweizerhof, 1996; Hauptmann and

Schweizerhof, 1998; Hauptmann et al., 2000; Doll et al., 2000; Harnau and Schweizerhof,

2002); as well as Klinkel and Wagner (1997); Klinkel et al. (1999); Wagner et al. (2002)

and Miehe (1998). Examples of recent papers on the field are the works of Vu-Quoc and

Tan (2003) and Legay and Combescure (2003).

All these works have the common feature that enhanced assumed strain, assumed strain

method and/or selective integration procedures have been combined in order to obtain a

wide class of solid-shell elements with good performances. For typical shell problems,

solid-shell elements can then represent an alternative with, as stated before, a simpler

formulation when compared to shell elements, although more advantages can be specified.

In metal forming simulations involving two-sided contact along the thickness direction (as

in the presence of blank-holder) and in composites delamination problems (demanding an

accurate evaluation of interlaminar shear and normal stresses), numerical simulations can

be effectively carried out with this class of finite elements.

The grounds of the present work rely on the recent paper of Alves de Sousa et al.

(2003a), where a new class of three-dimensional EAS elements for incompressible linear

cases was introduced. Starting with a sound analysis of the deformation subspace granting

the incompressibility condition (divu = 0), an enhanced strain field was then developed

and introduced into the functional of the classical displacement-based solid element. It

was then shown that the inclusion of 6 enhanced variables, acting on the volumetric

components of the strain field, was sufficient to avoid the volumetric locking phenomenon.

A first proposal for a new 3D element, characterized by a total of 18 internal variables

has proved to be effective in solving general three-dimensional problems (HCiS18 solid

element).

The adopted EAS approach avoids the direct use of classical selective reduced integra-

tion, consistent just for material models with decoupled isochoric and volumetric behavior.

Another important feature was that the element has proved to be reliable in thin shell

problems. However, for the specific case of shell structures, it is shown that the use of only
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12 enhanced parameters (leading to more computational efficiency) was enough for the

obtention of sound results (Alves de Sousa et al., 2003a). Doing so, 6 enhanced variables

are responsible for the elimination of transverse shear locking effects, without resorting

to assumed strain methods and following the guidelines adopted for shell elements, as de-

tailed in the previous chapter. The resulting solid-shell finite element, then coined HCiS12

solid-shell element, is then extended and applied in large deformation elasto-plastic shell

problems in this work.

The distinguishing characteristic of the present formulation can be summarized by

the fact that only the Enhanced Assumed Strain method is used to simultaneously treat

volumetric and transverse shear locking in classical thin-shell problems. This point contrast

with the generalized use of the assumed natural strain approach (for the transverse shear

locking) and/or the selective reduced integration technique (for near-incompressibility

constraints) in well-established solid-shell formulations in the literature. As cited before,

linear benchmarks are provided in reference (Alves de Sousa et al., 2003a), while the

extension of the methodology to account for nonlinear geometric as well as elasto-plastic

problems is carried out in the present work.

Besides leading to an unified and ”neat” formulation for the solid-shell element as a

whole, the present formulation relies upon an enhanced strain field based on the derivatives

of a three-dimensional ”bubble-function”. This specific choice of functions is grounded on

improved results obtained for distorted meshes in incompressibility conditions, and also

in bending-dominated situations for two-dimensional problems (César de Sá and Natal

Jorge, 1999; César de Sá et al., 2001).

This chapter is organized as follows. In Section 3.2, kinematic aspects of the

displacement-based formulation for solid-shell finite elements are described in a concise

way. Section 3.3 details the procedures involved in the subspace analysis for volumetric

locking, in order to provide a comparative study between fully and reduced integrated

formulations for brick-type elements. The number of necessary enhanced (element-wise)

internal variables is introduced, in order to provide a fully integrated solid-shell finite el-

ement able to solve either volumetric and transverse shear locking. In Section 3.4, these

concepts are applied in the formulation of the HCiS12 and HCiS18 solid-shell elements,

with an overview of the algorithmic aspects related to the finite element implementation,

focusing on the specific form of the enhanced strain-displacement matrices implemented.

Nonlinear benchmarks involving the HCiS12 solid-shell element are finally presented in

Chapter 5, while the nonlinear aspects of the implementation are described in Chapter 4.
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3.2 Kinematics of solid-shell displacement-based elements

Contrary to shell elements, where rotation variables about a director vector are defined at

each node, solid-shell elements are based upon the presence of physical nodes at the top

and bottom of a (virtual) reference surface. Each node is defined by its position vector

referred to the initial (undeformed or converged) configuration and the final (deformed

or iterative) configuration. For the initial configuration, any point inside a given 8-node

(hexahedral) element can be defined by its position vector, after being projected onto the

upper and lower surfaces in the form (Hauptmann and Schweizerhof, 1998; Hauptmann et

al., 2000; Harnau and Schweizerhof, 2002; Remmers et al., 2003; Vu-Quoc and Tan, 2003)

nx (ξ) = nx
(
ξ1, ξ2, ξ3

)
=

1

2

[(
1 + ξ3

)
nxt

(
ξ1, ξ2

)
+
(
1 − ξ3

)
nxb

(
ξ1, ξ2

)]
(3.1)

The subscripts (t) and (b) denote the projections of the variable onto the top and bottom

surface, respectively. Implicit in eq. (3.1) is the degenerated-shell assumption that the

normals to the element mid-surface remain straight but not necessarily normal during

the deformation, therefore resulting the distinguish concepts of ”normal” and ”director”

vectors (the latter referring solely to the vector pointing from the lower to the upper

surfaces of the element).

The formulation is equivalent to a shell approach

nx (ξ) =
1

2

[
nxt

(
ξ1, ξ2

)
+ nxb

(
ξ1, ξ2

)]
+

1

2
ξ3
[
nxt

(
ξ1, ξ2

)
− nxb

(
ξ1, ξ2

)]

= nxm

(
ξ1, ξ2

)
+

1

2
ξ3a

(
ξ1, ξ2

)
nv3

(
ξ1, ξ2

)
(3.2)

including a director vector nv3 at the projected position of the point onto the element

mid-surface (nxm) and the thickness a
(
ξ1, ξ2

)
. Equivalent expressions can be obtained for

the deformed configuration.

Equations (3.1) and (3.2) involve an a priori definition of the thickness orientation of

the finite element. This starting point restricts the formulation to those class of problems

usually solved by shell elements, although the number of nodes as well as degrees-of-

freedom involved are still those coming from a three-dimensional approach. This fact

characterize the ”solid-shell” designation.

The displacement field can be give, as usual, by

n+1
nu (ξ) = n+1x (ξ) − nx (ξ) (3.3)

Convected basis vector in the initial and deformed configurations can be defined, as carried

out with the shell elements, in the form

n+1gl (ξ) =
∂ n+1x (ξ)

∂ξl
(3.4a)
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ngl (ξ) =
∂ nx (ξ)

∂ξl
(3.4b)

This gives the grounds to the definition of the incremental deformation gradient between

configurations (n) and (n+ 1)

n+1
nF (ξ) =

∂ n+1x

∂ nx
= n+1gk ⊗ ngk (3.5)

and, consequently, the displacement-based Green-Lagrange strain tensor

n+1
nE

u =
1

2

(
n+1

nF
T n+1

nF − I2

)
= Eu

ξjξl
ngj ⊗ ngl (3.6a)

n+1
nE

u
ξjξl =

1

2








ngj ·
∂ n+1

nu

∂ ξl
+

∂ n+1
nu

∂ ξj
· ngl

︸ ︷︷ ︸

linear part

+
∂ n+1

nu

∂ ξj
· ∂

n+1
nu

∂ ξl

︸ ︷︷ ︸

non-linear part








(3.6b)

Also from the shell finite elements analysis of Chapter 2, comes the definition of the

local frame in each Gauss point over a solid-shell element. Once the thickness direction is

specified in the latter, it is straightforward to employ the set of equations (2.28) in order to

obtain an initial local frame on the element. With deformation, this local frame is affected

with the rigid-body part of the total deformation – see equation (2.29). The stress and

strain tensors are then related to this frame leading to a corotational approach, identical

to the one adopted for the shell elements in Chapter 2. The transformation procedures,

from the convective frame to the local system, are the same as already specified for the

shell elements, particular in what refers to the transformation of the convective-based

Green-Lagrange strain tensor – equation (2.35). Finally, the non-linear part of the strain-

displacement matrix (coming from the second member of the right-hand side of eq. (3.6))

in the local frame is analogous to the one presented in equation (2.36). Details on the

displacement-based formulation for three-dimensional elements can be found, for instance,

in the work of Bathe (1996).

3.3 Subspace analysis for volumetric locking

The incompressibility problem can be analysed, in a general sense, as a constrained mini-

mization of a given functional (César de Sá and Natal Jorge, 1999), similar to what have

been carried out for the transverse shear locking phenomena in Chapter 2.

In basic terms, the goal is to find, in a linear space of admissible solutions (Uh), a

specific finite element-based displacement solution (uh) (subset of the continuous dis-

placement field – u), such that it minimizes the total energy of the system granting, at
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the same time, the incompressibility constraint. This (approximated) finite element solu-

tion will then be located in the subspace of the incompressible deformations (Iv
h) being,

by definition, contained in the space of all the solutions. These statements can be posed

in the mathematical form

Iv
h = {uh ∈ Uh : div (uh) = 0} (3.7)

which is analogous to the primary constraint adopted for the transverse shear locking

treatment (see eq. (2.42), Chapter 2). Implicit in this equation is that both the linear

space (Uh) and its respective subspace (Iv
h), once being generated by the finite element

method, are approximations of their continuum counterparts (Uh ≈ U and Iv
h ≈ I).

A two field finite element solution might be expressed for linear elasticity (César de

Sá and Natal Jorge, 1999), in the form

[

K
lg
uu Qv

−Qv 0

][

uh

ph

]

=

[

Fe

0

]

(3.8)

for a vector of external forces (Fe), vectorial hydrostatic pressure field (ph) and the

displacement-based linear stiffness matrix
(

K
lg
uu

)

. Directly from the equation, comes the

incompressibility constraint in its discrete form as

Qvuh = 0 ≡ Qv N(ξ)de = 0 (3.9)

function of the element degrees-of-freedom vector (de) and the three-dimensional shape

functions (N (ξ)). In the present work, the three-dimensional analysis relies on the tri-

linear 8-node isoparametric finite element, with the degrees-of-freedom vector spanning a

total of 24 components and shape functions as given in Bathe (1996).

As was dealt with in the transverse shear locking analysis of thin shells, in order to

avoid the trivial solution
(
uh = 0

)
in eq. (3.9), the displacement field

(
uh
)

provided by

the finite element method must belong to the null space of (Qv) and, consequently, to the

subspace of the incompressible deformations (Iv
h). Therefore, reproducible displacement

patterns, avoiding volumetric locking, must be represent a linear combination of a given

basis of the subspace (Iv
h).

In this sense, volumetric locking phenomenon might occurs (for a combination of load-

ing and boundary conditions) when the expected displacement solution can not be repro-

duced by any linear combination of the elements of a given basis of (Iv
h). As happened

with the shell finite element analysis of the last chapter, different formulations will in-

evitably lead to distinct predictability characteristics, which in turn is directly related to

the dimension of its incompressible subspace.
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Following the work of Alves de Sousa et al. (2003a), in order to fully characterize the

subspace (Iv
h) for a three-dimensional isoparametric formulation, consider an eight node

hexahedral element within a volumetric domain

Ve ≡ ξ1 × ξ2 × ξ3 = [−1, 1] × [−1, 1] × [−1, 1] (3.10)

in the natural coordinates set. In the following, the calculations involving the element are

assumed to be carried out with a full numerical integration rule, i.e., with 2 × 2 × 2 inte-

gration points along each convective axis. Considering small strains, the incompressibility

condition expressed in eq. 3.7 can be explicitly defined as

∫

Ve

div (u) dVe =

∫

Ve

(
∂u1

∂ξ1
+
∂u2

∂ξ2
+
∂u3

∂ξ3

)

dVe = 0 (3.11)

Imposing a finite element discretization, the incompressibility condition can be expressed

at the element level with the inclusion of the isoparametric shape functions, in the form
[
∂N1

∂ξ1
∂N1

∂ξ2
∂N1

∂ξ3
(. . .)

∂N8

∂ξ1
∂N8

∂ξ2
∂N8

∂ξ3

]

︸ ︷︷ ︸

Qv N (ξ)

de = 0 (3.12)

Extension of this equation to account for each of the 2×2×2 Gauss points in the element,

allows for the explicit definition of the constraint operator

Qv N (ξ) = Mu (ξ) =

=













−a −a −a a −c −c c c −b −c a −c −c −c a c −b c b b b −b c c

−a −c −c a −a −a c a −c −c c −b −c −b c c −c a b c c −b b b

−c −c −b c −a −c a a −a −a c −c −b −b b b −c c c c a −c b c

−c −a −c c −c −b a c −c −a a −a −b −c c b −b b c b c −c c a

−c −c −a c −b −c b b −b −b c −c −a −a a a −c c c c b −c a c

−c −b −c c −c −a b c −c −b b −b −a −c c a −a a c a c −c c b

−b −b −b b −c −c c c −a −c b −c −c −c b c −a c a a a −a c c

−b −c −c b −b −b c b −c −c c −a −c −a c c −c b a c c −a a a













(3.13)

where the constants presented in eq. (3.13) refer to the following terms

a =
1

8
(1 + f) (1 + f) (3.14a)

b =
1

8
(1 − f) (1 − f) (3.14b)

c =
1

8
(1 + f) (1 − f) (3.14c)

with f =

√
3

3
(3.14d)
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The matrix presented in eq. (3.13) possess a rank of 7. As, for a trilinear three-dimensional

finite element, the total number of degrees-of-freedom is 24, the dimension of the subspace

of admissible solutions (Uh) has an upper-limit of 24. Therefore, the subspace of incom-

pressible deformations will be characterized by a dimension of 17, i.e.,

rank [Qv N (ξ)] = 7 ∴ nullity [Qv N (ξ)] = 17 (3.15)

If, for the same element’s topology, a full reduced numerical integration rule, consisting

of just one Gauss point
(
ξ1 = ξ2 = ξ3 = 0

)
, imposition of eq. (3.12) will then lead to a

subspace of dimension 23, still for a maximum dimension of 24 for the space of admissible

solutions. For this case, the matrix on eq. (3.13) now appears in the form

Qv N (ξ) =

=
1

8

[

−1 −1 −1 +1 −1 −1 +1 +1 −1 −1 +1 −1 (· · · )

(· · · ) −1 −1 +1 +1 −1 +1 +1 +1 +1 −1 +1 +1
]

(3.16)

and, consequently,

rank [Qv N (ξ)] = 1 ∴ nullity [Qv N (ξ)] = 23 (3.17)

Comparing the elements of candidate bases for the subspace of the incompressible defor-

mations, coming from complete and reduced approaches, it can be clearly inferred that

the use of the reduced integration allows for the reproduction of more six incompressible

displacement modes than with the complete integration.

Since any admissible displacement solution (respecting the incompressibility restrain)

must be a linear combination of a given basis for Iv
h, reduced techniques are automatically

less prone to show volumetric locking problems when compared with the full numerical

integration approach, for a given imposed displacement or boundary condition set (Alves

de Sousa et al., 2003a). A graphic illustration of possible linearly independent candidates

for the subspace basis of the reduced formulation can be seen in Fig. 3.1 and 3.2.

The nodal displacement field associated with each element can be defined by the

general degrees-of-freedom vector (dr)

dr =
{

u1
k=1 u2

k=1 u3
k=1 . . . u1

k=8 u2
k=8 u3

k=8

}T
(3.18)

in a way similar to the one introduced in eq. (2.45), on Chapter 2. It is worth noting that,

contrasting to what happens with the transverse shear locking in shell elements, now all

the 24 displacement-type degrees-of-freedom within an element contribute to the analysis

and treatment of volumetric locking.
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Figure 3.1: Set of possible linearly independent elements for the

incompressible deformations subspace basis – edges’ translation

modes
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Figure 3.2: Set of possible linearly independent elements for the incompressible

deformations subspace basis – expansion/contraction, hourglass and warping

modes
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Displacement vectors reproducing each of the patterns in Fig. 3.1 and 3.2 can be

represented as follows

V1 ⇒ dr = {1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}T

V2 ⇒ dr = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0}T

V3 ⇒ dr = {0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}T

V4 ⇒ dr = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0}T

V5 ⇒ dr = {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}T

V6 ⇒ dr = {0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}T

V7 ⇒ dr = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0}T

V8 ⇒ dr = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0}T

V9 ⇒ dr = {0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}T

V10 ⇒ dr = {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0}T

V11 ⇒ dr = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}T

V12 ⇒ dr = {0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0}T

V13 ⇒ dr = {−1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0,−1, 0,−1, 1, 0,−1, 0, 0, 0, 0, 0, 0}T

V14 ⇒ dr = {0, 0, 0, 0, 0, 0, 1, 0, 1,−1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0,−1,−1, 0,−1}T

V15 ⇒ dr = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,−1, 0,−1,−1, 0,−1, 1, 0, 1, 1, 0}T

V16 ⇒ dr = {1,−1, 0,−1,−1, 0,−1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}T

V17 ⇒ dr = {0,−1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,−1,−1, 0, 0, 0, 0, 0, 0, 0, 1,−1}T

V18 ⇒ dr = {0, 0, 1, 0, 0,−1, 0, 0,−1, 0, 0, 1, 0, 0,−1, 0, 0, 1, 0, 0, 1, 0, 0,−1}T

V19 ⇒ dr = {1, 0, 0,−1, 0, 0,−1, 0, 0, 1, 0, 0,−1, 0, 0, 1, 0, 0, 1, 0, 0,−1, 0, 0}T

V20 ⇒ dr = {−1, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0}T

V21 ⇒ dr = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,−1, 0, 0, 1, 0, 0,−1}T

V22 ⇒ dr = {0, 0, 0, 1, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 1, 0, 0, 0, 0, 0}T

V23 ⇒ dr = {0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0}T

(3.19)

Still from Fig. 3.1 and 3.2, it is possible to split the displacement modes into two

main groups: a first one – containing modes 1-17 – which is reproducible by both the

complete and selective reduced integration formulations; and a second group – containing

the remaining 18-23 modes – which can be reproduced solely resorting to a reduced inte-

gration approach. In this sense, imposition of the latter patterns will lead to the onset of

volumetric locking when a complete integration procedure is adopted.

From the point of view of the type of distortion introduced in each hexahedral element,

the displacement modes can be further divided into four categories:

• simple edge translations along the OX, OY or OZ axes (modes 1-12);

• expansion or contraction of a given element’s face (modes 13-17);
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• ”hourglass” modes (Belytschko and Bindeman, 1993);

• ”warping” modes (Belytschko and Bindeman, 1993).

In the following sections – and based on the described subspace analysis and charac-

terization – enhanced strain-based procedures, tailored for the overcoming of volumetric

(and subsequently transverse shear) locking in solid and solid-shell elements are presented

and described in detail.

3.4 Volumetric and transverse shear locking treatment

3.4.1 Basic formulation

From the exposed before, total reduced integration as well as selective reduced integration

have proved to be efficient approaches on attenuating the volumetric locking phenomenon.

The performed subspace analysis was useful in providing an extra insight into the limita-

tions of complete integration techniques in incompressible or nearly-incompressible situa-

tions.

On the opposite, for bending-dominated situations, results coming from reduced for-

mulations are known to not be completely reliable. Moreover, selective reduced approaches

are limited to the analysis of material models where, implicitly, stress tensor fields could

be split into volumetric and deviatoric components.

Allowing for the inclusion of specific strain modes into, for instance, a displacement-

based formulation, Enhanced Assumed Strain procedures are able to (at least theoret-

ically) be designed for precise applications or, in other words, to directly treat a set of

undesirable pathologies within the original formulation. In this sense, the main goal of this

section is to provide the major guidelines for an EAS -based formulation, applied directly

over a (conventional) displacement-based approach for three-dimensional finite elements.

The resulting advantages of this procedure are twofold: firstly, the treatment of the volu-

metric locking arising in incompressible (or nearly-incompressible) situations and coming

from material properties or from elasto-plastic isochoric material models. Secondly, the

numerical treatment of the transverse shear locking arising from the use of hexahedral

elements in thin-shell structures modelling. This last point directly leads to the definition

of a new solid-shell element with a low number of internal variables per element, when

compared with the major solid-shell elements in the literature.

Starting with the volumetric locking pathology, attention is focused on the

displacement-based, full integrated (2 × 2 × 2 Gauss points) eight-node three dimensional

finite element. From the subspace analysis of the previous section, the goal is to enable
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the formulation to automatically cover the 23 incompressible displacement modes coming

from a selectively reduced approach. As for the transverse shear locking in thin shells

of Chapter 2, the crucial point is the introduction of an enhanced strain field, based on

element-wise internal variables, and added to the displacement-based strain tensor. In this

sense, eq. (2.62), Chapter 2 is recalled

E = Eu + Eγ = Mu (ξ)







d1

· · ·
dk







+ Mγ (ξ)







γ1

· · ·
γl







(3.20)

but now referred to a new set of internal variables (γ), which must provide the extra

deformation modes 18-23 in Fig. 3.2. Once again, the formalism of eq. (3.20) follows

the general guidelines of Simo and Rifai (1990) for linear problems. The extension of

this procedure, for the specific cases of the elements treated in the present work, will be

detailed in the next chapter.

The core aspect of the enhanced strain field is the particular form of the (Mγ) operator

in eq. (3.20). For the present solid enhanced element, the starting point is the inclusion

of nine additional variables for the enhanced strain field, each one related to a single

component of the spatial derivatives of the displacement field (Alves de Sousa et al.,

2003a). The derivatives involve the three-dimensional counterpart of the bubble-function

presented in eq. (2.63), that is

N3
γ

(
ξ1, ξ2, ξ3

)
=
(
1 − ξ1ξ1

) (
1 − ξ2ξ2

) (
1 − ξ3ξ3

)
(3.21)

A first differential enhanced strain-displacement matrix can then be achieved in the form

Mγ (ξ)|9 =
























∂N3
γ

∂ξ1
0 0 0 0 0 0 0 0

0
∂N3

γ

∂ξ2
0 0 0 0 0 0 0

0 0
∂N3

γ

∂ξ3
0 0 0 0 0 0

0 0 0
∂N3

γ

∂ξ1
∂N3

γ

∂ξ2
0 0 0 0

0 0 0 0 0
∂N3

γ

∂ξ1
∂N3

γ

∂ξ3
0 0

0 0 0 0 0 0 0
∂N3

γ

∂ξ2
∂N3

γ

∂ξ3
























(3.22)

Accounting for this matrix, equation (3.12) can be rewritten in an extended form as

[

Mu
(
ξ1, ξ2, ξ3

)
Mγ

(
ξ1, ξ2, ξ3

)∣
∣
9

]

de = 0 (3.23)
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In a similar way as considered in building the preliminary matrix (Mu (ξ)) in eq. (3.13),

for a complete 3D integration rule eq. (3.23) turns out to be in the form



















Mu (ξ)

d d d

−d d d

−d −d d

d −d d

d d −d
−d d −d
−d −d −d
d −d −d

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



















de = 0 (3.24)

where

d = f
(
1 − f2

)2
(3.25)

with, as referred before,

f =

√
3

3

The subspace of incompressible deformations for this mixed proposal will be then charac-

terized by

rank
[

Mu
(
ξ1, ξ2, ξ3

)
Mγ

(
ξ1, ξ2, ξ3

)∣
∣
9

]

= 7 (3.26)

with, consequently,

nullity
[

Mu
(
ξ1, ξ2, ξ3

)
Mγ

(
ξ1, ξ2, ξ3

)∣
∣
9

]

= 26 (3.27)

From the exposed so far, equation (3.24) points to a possible basis for the subspace of

incompressible deformations, the latter now with a total dimension of 20. This value

comes from considering an overall number of degrees-of-freedom per element (24 + 9),

less the number of linearly dependent columns in the final differential matrix (7, from eq.

(3.26)) and the number of null displacement modes, represented by the null columns in eq.

(3.24). It is worth noting that the last six neglected modes respect the incompressibility

constraint – trivial solution of null displacements – although involving non-zero values

for the enhanced field. The possible 20 modes are represented by the first 20 elements

in Figures 3.1 and 3.2. Still, 3 additional modes are missing, when compared to those

obtained by a reduced formulation.

In order to provide the inclusion of these modes into the subspace basis, three more

internal variables are proposed. The latter come from the second derivatives of the bubble-

function (3.21), and are arranged in a new enhanced strain-displacement operator in the
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form

Mγ (ξ)|12 =































Mγ (ξ)|9

∂2N3
γ

∂ξ1∂ξ2
∂2N3

γ

∂ξ1∂ξ3
∂2N3

γ

∂ξ2∂ξ3

∂2N3
γ

∂ξ1∂ξ2
∂2N3

γ

∂ξ1∂ξ3
∂2N3

γ

∂ξ2∂ξ3

∂2N3
γ

∂ξ1∂ξ2
∂2N3

γ

∂ξ1∂ξ3
∂2N3

γ

∂ξ2∂ξ3

0 0 0

0 0 0

0 0 0































(3.28)

These new three terms ensure the incompressibility constraint, as previously stated by

Simo et al. (1993), Korelc and Wriggers (1996) and de Borst and Groen (1999). The

equivalent of eq. (3.24), but now considering (Mγ (ξ)|12), would be given by



















[eq.8]

d d d

−d d d

−d −d d

d −d d

d d −d
−d d −d
−d −d −d
d −d −d

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

e e e

−e e −e
e −e −e

−e −e e

e −e −e
−e −e e

e e e

−e e −e



















de = 0 (3.29)

once again considering

d = f
(
1 − f2

)2
and f =

√
3

3

and now introducing

e = f2 + 1 (3.30)

As the rank is kept the same (see eq. (3.26)), the increase in the overall degrees-of-freedom

vector (physical and enhanced ones) leads to a subspace of incompressible deformations

with a final dimension of 23 (coming from 24+12-7-6), after neglecting the null displace-

ment modes in eq. (3.29). Therefore, the total number of linearly independent (and non-

null) displacement modes pertaining to the reduced formulation is finally achieved.
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3.4.2 The HCiS18 solid element

Once the theoretical requirements for a volumetric locking-free 3D element were achieved,

attention is focused on the elimination of transverse shear locking in thin shell applications.

In fact, the formulations detailed in the last Section showed to be prone to the onset of

transverse shear locking in problems originally treated by plate or shell elements, when

low values of thickness are considered (Alves de Sousa et al., 2002).

Dealing just with the shear components of the enhanced strain field (in order to pre-

serve the volumetric locking-free patterns discussed before), 6 new internal variables are

added to the enhanced strain field, resulting in a new interpolation matrix coming from

an extension of the one presented in eq. (3.28), in the form

Mγ (ξ)|18 =



















Mγ (ξ)|12

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

∂2N3
γ

∂ξ1∂ξ3
∂2N3

γ

∂ξ2∂ξ3
0 0 0 0

0 0
∂2N3

γ

∂ξ1∂ξ2
∂2N3

γ

∂ξ2∂ξ3
0 0

0 0 0 0
∂2N3

γ

∂ξ1∂ξ2
∂2N3

γ

∂ξ1∂ξ3



















(3.31)

This proposal is, to some extent, based on the approach previously suggested by Andelfin-

ger and Ramm (1993). Nevertheless, two major differences must be pointed out. First, the

functions involved in both formulations are not the same. Second, and most important,

the present enhanced strain element, thereafter called HCiS18 , needs a total of 18 vari-

ables, compared to the 21 of Andelfinger and Ramm (1993). This difference may prove of

importance, since each additional internal variable added represents an overspend in CPU

time. The HCiS18 three-dimensional element proved to be reliable in problems usually

leading to the appearance of volumetric and transverse shear locking, with either regu-

lar and distorted mesh topologies (Alves de Sousa et al., 2002, 2003a,b; Alves de Sousa,

2003c).

3.4.3 The HCiS12 solid-shell element

A distinct approach, although benefiting from the previous analysis, can lead to an element

suitable for the modelling of thin geometries, typically treated with shell elements. In

this case, however, the three-dimensional kinematic relations are kept unchanged, as the

element topology, thus generating the concept of ”solid-shell” element.
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The adopted methodology has its starting point in the split of the matrix (Mγ (ξ)|18)

on eq. (3.31) into two separate matrices (Alves de Sousa et al., 2003a). The first one,

named (Mγ (ξ)|vl), encompasses the enhanced deformation modes directly related to the

volumetric part of the total enhanced strain tensor (thus also directly related to volumetric

locking), being defined as

Mγ (ξ)|vl =































∂N3
γ

∂ξ1
0 0

∂2N3
γ

∂ξ1∂ξ2
∂2N3

γ

∂ξ1∂ξ3
∂2N3

γ

∂ξ2∂ξ3

0
∂N3

γ

∂ξ2
0

∂2N3
γ

∂ξ1∂ξ2
∂2N3

γ

∂ξ1∂ξ3
∂2N3

γ

∂ξ2∂ξ3

0 0
∂N3

γ

∂ξ3
∂2N3

γ

∂ξ1∂ξ2
∂2N3

γ

∂ξ1∂ξ3
∂2N3

γ

∂ξ2∂ξ3

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0































(3.32)

where the subscript (vl) points to the volumetric locking analysis. The direct additive

application of the enhanced differential operator (3.32) on the displacement-based original

strain tensor is satisfactory in order to enlarge the incompressible deformations subspace

to a dimension of 23. For this case a three-dimensional finite element, less susceptible to

be affected by locking, can be obtained. In fact, from the comparison between equations

(3.32) and (3.28), imposition of the incompressibility constraint (3.12) in each of the 8

Gauss points over an element will provide a matrix similar to the one presented in the

equality (3.29), but now without the six null columns in the latter. Therefore, in this case

the incompressible deformations subspace can be characterized by

rank
[

Mu
(
ξ1, ξ2, ξ3

)
Mγ

(
ξ1, ξ2, ξ3

)∣
∣
9

]

= 7 (3.33)

and, consequently,

nullity
[

Mu
(
ξ1, ξ2, ξ3

)
Mγ

(
ξ1, ξ2, ξ3

)∣
∣
9

]

= 23 (3.34)

As a consequence, the number of linearly independent components in the subspace basis

will equal those coming from reduced formulations.

The remaining part of (Mγ (ξ)|18) is finally represented by the (Mγ (ξ)|tsl) matrix in

the form
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Mγ (ξ)|tsl =

=
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γ
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(3.35)

where, analogously to eq. (3.32), the subscript (tsl) points to the transverse shear locking

analysis. The major difference between the previous analyzed HCiS18 solid element and

the presently introduced HCiS12 solid-shell one is related to the specific aspect of the

matrix Mγ (ξ)|tsl.
Benefiting from the exposed in Chapter 2, and departing from the HCiS18 formulation,

the enhanced concepts used in shell elements S4E6P5 and S4E6P7 will be directly applied

here. Doing so, the 6 enhanced variables therein included in the displacement-based strain

field (equation (2.70), Chapter 2) will be retained now, replacing the 12 internal variables

involved in eq. (3.35). Transverse strain energy terms can, then, also be taken for granted

to vanish with the three-dimensional element, for thickness values tending to diminish.

The enhanced strain field is, as carried out until this point, additively included in the

displacement-based formulation, now considering the modified differential matrix

Mγ (ξ)|∗tsl =

















0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

∂N2
α

∂ξ2
0

∂N2
α

∂ξ1
0
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α
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0
∂N2

α
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0

∂N2
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0

∂2N2
α
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(3.36)

for the two-dimensional bubble-functions already referred

N2
α

(
ξ1, ξ2

)
=
(
1 − ξ1ξ1

) (
1 − ξ2ξ2

)

The final enhanced strain differential operator is, therefore, a combination of the previous

matrices, that is

Mγ (ξ)|12 =
[

Mγ (ξ)|vl Mγ (ξ)|∗tsl
]

(3.37)

The main advantage of the HCiS12 solid-shell element, when compared with the HCiS18

solid element, is its lower number of variables. Compared with other elements in the
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literature, the use of a total of just 12 internal parameters for each element is still an

improvement. Another point of interest remains in that only the enhanced assumed strain

method is employed for both the treatment of volumetric and transverse shear locking

in an unified way. The most referred solid-shell elements in the literature – Freischlager

and Schweizerhof (1996); Hauptmann and Schweizerhof (1998); Hauptmann et al. (2000);

Doll et al. (2000); Harnau and Schweizerhof (2002); Klinkel and Wagner (1997); Klinkel

et al. (1999); Wagner et al. (2002) and Miehe (1998) – employs combinations of distinct

approaches, such as reduced integration (for volumetric locking) and the assumed natural

strain method (for the transverse shear locking). The HCiS18 solid element, on the other

side, does not need to have a preferred convective direction for thickness dimension, an

argument that is valid in the case of the HCiS12 solid-shell element. This can be clear seen

from the aspect of the derivatives involved in eq. (3.36), where the
(
ξ3
)

is not taken into

account. Nevertheless, it is worth remembering that this requirement is not such a strong

imposition, once the range of applicability of element HCiS12 is, by definition, related to

the analysis of shell structures or problems classically treated with shell elements. Other

solid-shell elements in the literature, in addition, also need an a-priori definition of the

thickness direction if, for instance, the assumed natural strain procedure of Dvorkin and

Bathe (1984) is employed.

For linear test cases using the HCiS12 solid-shell element, as well as examples involving

the HCiS18 solid element, the reader is suggested to see the work of Alves de Sousa et

al. (2003a) and the references herein. Implementation details regarding the treatment of

nonlinearities are given in Chapter 4, with nonlinear benchmarks involving the HCiS12

solid-shell element being discussed in Chapter 5. The implemented nonlinear concepts,

as applied to the solid-shell formulation (as well as to the before mentioned EAS shell

element), will be presented in the next chapter.

3.5 Further reading

• Alves de Sousa RJ, Natal Jorge RM, Fontes Valente RA, César de Sá

JMA (2003) A new volumetric and shear locking-free 3D enhanced strain element.

Engineering Computations 20: 896–925;

• Fontes Valente RA, Alves de Sousa RJ, Natal Jorge RM (2004) An en-

hanced strain 3D element for large deformation elastoplastic thin-shell applications.

Computational Mechanics 34: 38–52.



Chapter 4

Topics in Nonlinear Formulations

This chapter is devoted to the algorithmic guidelines followed in the

numerical implementation within the in-house finite element program

used in the present work. Starting with the specific nonlinear contin-

uum mechanics topics employed, the theoretical frame behind the co-

rotational approach is described. After that, the extension of the En-

hanced Assumed Strain method to account for nonlinearities is treated

in detail, with the main advantages of the adopted approach being

highlighted. Computational plasticity aspects are described, along with

the main steps in the corresponding implementation for the previously

treated shell and solid-shell elements. Finally, the main characteris-

tics of the arc-length path-following technique are described in detail,

in the way they were implemented.

4.1 Nonlinear continuum mechanics

In this section, the author aims to introduce and describe the main aspects related to the

nonlinear continuum mechanics fundamentals, as employed and implemented in this work.

The choice of build up a section rather than an entire chapter in the field is two-fold. Firstly,

there are a relatively high number of didactic books dealing with the subject, ranging

from concise to advanced treatments, either adopting a theoretical or applied approaches.

Secondly, in providing a summary description of this topic, the author would more easily

highlight the points that have been indeed accounted for in the development of the thesis.

55
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Nevertheless, and among the references studied, it is worth noting the works of Truesdell

and Noll (1965), Marsden and Hughes (1994),Khan and Huang (1995), Chadwick (1999),

Novozhilov (1999), Basar and Weicher (2000), Belytschko et al. (2000), Doghri (2000),

Doyle (2001), Fung and Tong (2001), Gambin (2001), Haupt (2002) and Dhondt (2004),

just to name those published in monograph forms.

As described in Chapters 2 and 3, the kinematics aspects behind the formulation

of S4E6P5 shell and HCiS12 solid-shell finite elements include the evaluation of the

displacement-based Green-Lagrange strain tensor, in the convective frame, from the basic

equations in tensorial and components forms

n+1
nE

u =
1

2

(
n+1

nF
T n+1

nF − I2

)
= Eu

ξjξl
ngj ⊗ ngl

n+1
nE

u
ξjξl =

1

2








ngj ·
∂ n+1

nu

∂ ξl
+

∂ n+1
nu

∂ ξj
· ngl

︸ ︷︷ ︸

linear part

+
∂ n+1

nu

∂ ξj
· ∂

n+1
nu

∂ ξl

︸ ︷︷ ︸

non-linear part








For the subsequent constitutive behavior simulation of the material, however, this strain

tensor needs to be transformed (referred to) a local frame, defined in each Gauss point

within an element, and following the rigid body rotation part of the overall deformation

imposed between (load) states (n) and (n+ 1). After that, the co-rotated (local) Green-

Lagrange strain tensor
(
n+1

nĒ
u
)

is then available. From the implementation point-of-view,

this last tensor is obtained directly from the strain-displacement differential matrix, firstly

evaluated in the convective frame and afterwards transformed to the local frame with the

aid of the previously defined operator

l
cT =









T11 T11 T12 T12 T13 T13 T11 T12 T11 T13 T12 T13

T21 T21 T22 T22 T23 T23 T21 T22 T21 T23 T22 T23

2 T11 T21 2 T12 T22 2 T13 T23 (T11 T22) + (T21 T12) (T11 T23) + (T21 T13) (T12 T23) + (T22 T13)

2 T11 T31 2 T12 T32 2 T13 T33 (T11 T32) + (T31 T12) (T11 T33) + (T31 T13) (T12 T33) + (T32 T13)

2 T21 T31 2 T22 T32 2 T23 T33 (T21 T32) + (T31 T22) (T21 T33) + (T31 T23) (T22 T33) + (T32 T23)









with each component being calculated from expressions (2.31) and (2.32), already pre-

sented in Chapter 2.

As stated in that Chapter, the local frame is first built considering the distortion

pattern of each element. This criterion is somewhat arbitrary, but it was the one that best

”affects” each Gauss points with the distortion characteristics of a given finite element.

After that, and with the beginning of the simulation, the local frame is subsequently

updated based on the rotation tensor coming from the incremental deformation gradient

n+1
nF = n+1

nR
n+1

nU
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The incremental character of the deformation gradient is the basis of an ”updated La-

grangian” algorithmic implementation, where each converged state becomes the reference

one for the following load increment. The current local frame at each increment (and

iteration) during a deformation path is then simply given in the form

[
n+1r1 n+1r2 n+1r3

]

= n+1
nR

[
nr1 nr2 nr3

]

For a given increment between states (n) and (n+ 1), and specifically for a given iteration

(i), the ”driving force” of the whole algorithm is the cumulative (degrees-of-freedom)

displacement vector
(
i
nd
)
, encompassing the displacement (and rotation, for shells) nodal

variables within an element. It is worth remembering that, for the shell elements introduced

in the present work, the rotation-like variables need a specific treatment in order to be

described in an additive way (see equations (2.11)–(2.16) in Chapter 2).

The incremental rotation tensor
(
n+1

nR
)

is theoretically obtained from the so-called

”polar decomposition theorem”, mostly with the determination of the eigenvalues of the

right Cauchy-Green tensor
(
C = FTF = U2

)
. In practice, a set of numerical algorithms

are provided in the literature. In some of them, and particularly for the case of shell

elements – for instance, in the works of Yoon et al. (1999) and Cardoso et al. (2002)

– a 2D simplified procedure is employed, based on Cayley-Hamilton theorem for linear

algebra (Marsden and Hughes, 1994). However, as in the present work three-dimensional

elements are introduced, a more general procedure was adopted for the computation of

a true (three-dimensional based) rotation tensor. This is in conformity with the original

proposal of Franca (1989), and is presented in Box 4.1 in the end of the Section (where

indices were dropped out for simplifying purposes).

The main advantage of the adoption of a co-rotational local frame is the simplified

treatment of nonlinearities in the following, either geometric (Section 4.2) or material

(Section 4.3). About the latter, a complete description of the constitutive behavior of a

given body can be obtained resorting to material stress and strain co-rotational tensors,

continuously referred to the local frame and, consequently, following the deformation path

from the beginning. Examples of such tensors are the second Piola-Kirchhoff stress tensor

and the Green-Lagrange strain tensor, evaluated at the continuously rotated local reference

system. This fact turns to be very useful, once the enhanced assumed strain procedure

was entirely designed resorting to the material frame. Additionally, the use of material

tensors avoids objectivity questions within the formulation. In fact, the primary choice of

a reference system rotating with the continuum body grant the objectivity requirements,

for an observer situated at the body and affected by the rotation (but not the stretch)

part of the deformation.
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In general terms, starting from the total deformation gradient for a given Gauss point

(ξ) at a given stage (n+ 1), as a function of a previous (equilibrated) state (n) (Flanagan

and Taylor, 1987)
n+1F (ξ) = nF (ξ) n+1

nF (ξ) (4.2)

it is possible to define the velocity gradient between (n) and (n+ 1) states (now dropping

the Gauss point position vector) in the form

L =
dF

dt
F−1 (4.3)

where
dF

dt
= R

dU

dt
+
dR

dt
U (4.4)

and

F−1 = (RU)−1 = U−1R−1 (4.5)

Substitution of equations (4.4) and (4.5) into the expression for the velocity gradient

tensor (4.3), leads to the important relation

L =
dR

dt
RT

︸ ︷︷ ︸

Ω

+R
dU

dt
U−1RT (4.6)

The rotation rate tensor (Ω) physically represents the rate of rigid-body rotation at a given

material point (instantaneous spatial gradient or angular velocity) about a predefined axis

(Dienes, 1979). Its importance is related to the definition of the Green-Naghdi-McInnis

objective stress rate of the Cauchy stress (σ) in the form (Marsden and Hughes, 1994;

Doghri, 2000)
G

σ = σ̇ − Ωσ + σΩ (4.7)

The velocity gradient can be alternatively decomposed into a symmetric (D) and anti-

symmetric (W) parts

L = D + W (4.8)

representing the spatial rate of deformation and the spin rate tensors, respectively, and

given by

D =
1

2

(
L + LT

)
= R

(
dU

dt
U−1

)

s

RT (4.9)

and

W =
1

2

(
L − LT

)
=
dR

dt
R−1 + R

(
dU

dt
U−1

)

a

RT (4.10)
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where the subscripts (a) and (s) denote the anti-symmetric and symmetric part of the

respective tensor, that is,
(
dU

dt
U−1

)

s

=
1

2

(
dU

dt
U−1 + U−1dU

dt

)

(4.11a)

(
dU

dt
U−1

)

a

=
1

2

(
dU

dt
U−1 − U−1dU

dt

)

(4.11b)

The spin rate tensor (W) represents the rate of deformation of the principal axes of the

spatial rate of deformation (D). This tensor is used in the definition of the Jaumann stress

rate of the Cauchy stress tensor in the form (Marsden and Hughes, 1994; Doghri, 2000)

J

σ = σ̇ − Wσ + σW (4.12)

which are formally identical to the Green-Naghdi-McInnis objective stress rate of equation

(4.7). The only difference is the anti-symmetric term affecting the spin tensor (W) in

(4.10).

Once the rotation tensor from the polar decomposition of (F) is entirely used for the

update of the local reference frame, the principal material lines of (U) and
(

dU
dt

)
are kept

the same and, consequently, the tensor
(

dU
dt

U−1
)

is equal to its symmetric part. In that

case, equations (4.9) and (4.10) are simplified

D = R
dU

dt
U−1RT (4.13)

W =
dR

dt
R−1 (4.14)

At this point, the tensors (Ω) and (W) are identical, with the principal axes of (D) being

coincident to those of (U).

The symmetric part of the second term in the right-hand side in equation (4.6) points

to the rotated (or rotation neutralized) deformation rate tensor

d̄ =
1

2

(

U̇U−1 + U−1U̇
)

(4.15)

which defines an instantaneous strain rate in the local (follower) reference frame. From

the orthogonality character of the rotation tensor (R) it is possible to define the rotated

deformation rate as the pull-back of the spatial rate of deformation (D) in (4.9) as

d̄ = RTDR (4.16)

Once the spatial rate of deformation tensor is work-conjugated to the spatial Cauchy stress

tensor, it is possible to define a rotation neutralized (rotated) spatial stress tensor, related,

therefore, to the local co-rotational frame, and expressed as

σ̄ = RTσR (4.17)
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This rotated stress tensor is, obviously, energy-conjugated to the rotated deformation rate
(
d̄
)

which, following equation (4.15), is of pure stretch character.

The next steps are based on the classical work of Hughes (1984), also treated in

detail by Doghri (2000). Following these references, any objective stress rate tensor can be

rewritten simply by means of a time derivative of its corresponding rotated stress tensor.

Therefore, within the framework of the relative rotation tensor
(
n+1

nR
)
, it is possible to

link the objective Green-Naghdi-McInnis stress rate
(

G

σ
)

to the time derivative of the

previous rotated Cauchy stress tensor (σ̄) in the form

dσ̄

dt
=
(
n+1

nR
)T G

σ
(
n+1

nR
)

or, equivalently, (4.18a)

G

σ =
(
n+1

nR
) dσ̄

dt

(
n+1

nR
)T

(4.18b)

Since
(

G

σ
)

is an objective stress rate, the following equalities are valid

G

σ = c : D =⇒ dσ̄

dt
= c̄ : d̄ (4.19)

for the spatial and rotated 4th order constitutive tensors (c) and (c̄), respectively.

Starting from the rotated Cauchy stress tensor, a constitutive update between (n) and

(n+ 1) configurations can be performed in the form

n+1σ̄ = nσ̄ + ∆t
dσ̄

dt
(4.20)

This equation will be the basic one for the update of stress in the following. Retaining

the hypothesis that elastic strains developed during deformation remains small when com-

pared to the plastic counterparts (as is common in ductile metal plasticity, with an elastic

modulus orders of magnitude greater than the plastic yield stress value), it follows that

Fe ≈ I2 (4.21)

and, consequently,

L = ḞeF−e + FeḞpF−pF−e = Le + FeLpF−e ≈ Le + Lp (4.22)

where the superscripts (e) and (p) point to the elastic and plastic parts of deformation,

respectively. Doing so, the symmetric part of (L) can be then written in the form

D ≈ De + Dp (4.23)

Substitution in (4.16) leads to

d̄ = RT (De + Dp)R = d̄e + d̄p (4.24)
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As this strain rate has an instantaneous definition, its computational treatment requires

an integration over the time step between configurations (n) and (n+ 1) (Yoon et al.,

1999)

n+1
nē =

∫ tn+1

tn

d̄ dt ≡ n+ 1

2

n d̄∆t (4.25)

The mid-point configuration
(
n+ 1

2

)
is introduced in order to ensure an unconditionally

stable and second-order accurate transition from the continuum to the discrete algorithmic

formulation (Key and Krieg, 1982; Pinsky et al., 1983; Hughes, 1984; Ortiz and Popov,

1985). With the spatial incremental tensor in (4.25), the algorithmic counterpart of the

state equation (4.20) is simply an extension of the linear framework, in the form

n+1σ̄ = nσ̄ + n+1
nσ̄ ≡ nσ̄ + c̄

(
n+1

nē − n+1
nē

p
)

(4.26)

The last detail in the implementation of the constitutive equations is the transforma-

tion of the incremental spatial tensors to incremental material tensors. For small strains
(
n+1

nU ≈ I2

)
and following the previously defined rotated local axes, the incremental ro-

tated (co-rotational) Cauchy stress tensor turns to be equivalent to the incremental rotated

2nd Piola-Kirchhoff stress tensor (Belytschko et al., 2000; Doghri, 2000), and it is possible

to rewrite equation (4.26) in the form (Masud et al., 2000; Masud and Tham, 2000)

n+1σ̄ = nσ̄ + n+1
nσ̄ = nσ̄ + n+1

nS̄ (4.27)

In consequence, the increment on the material stress tensor
(
n+1

nS̄
)

referred to the (ro-

tated) local frame (and thus affected by the rigid-body rotation part of the deformation)

can be directly summed up to the converged spatial-based Cauchy stress tensor (nσ̄), in

a way identical to the one used for small strain theories (Doghri, 2000). The algorithmic

treatment of equation (4.27) will be detailed in Section 4.3.

Remark : This equivalence of the second Piola-Kirchhoff and the Cauchy stress ten-

sors for small strains can be further illustrated in considering both tensors related to

conventional (out of the body) frames, as appears in classical approaches of continuum

mechanics (Doghri, 2000). By definition, the relation between these material and spatial

tensors is given by

S = det (F)F−1σF−T

= det (F) (RU)−1
σ (RU)−T

(4.28)

For small strains, the following simplifications are carried out

U ≈ I2 =⇒ F ≈ R and det (F) ≈ 1 (4.29)
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and equation (4.28) can be stated as

S = R−1σR−T = RTσR (4.30)

which is a pull-back of the Cauchy stress tensor – just involving the rigid-body rotation

part of the deformation – from the spatial (current) onto the material (converged) fixed

frames. Physically, the second Piola-Kirchhoff stress tensor acts as if ”frozen” into a co-

ordinate system rotating with the body. This behavior is represented by equation (4.27).
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Box 4.1. Algorithm for the Polar Decomposition

(some indices were dropped out for simplifying purposes)

i. Determine the right Cauchy-Green deformation tensor

C = FTF

ii. Compute the invariants of C

IC = tr C

IIC = 1
2

[
I2
C − tr

(
C2
)]

IIIC = detC

iii. Compute the additional variable

k = I2
C − 3IIC

iv. Check the lower bound for k

IF
(
k ≤ 10−5

)
THEN

g =

(
IC
3

) 1

2

U = gI2

U−1 = g−1I2

EXIT

ELSE

v. Directly calculate the largest eigenvalue g

l = I3
C − 9

2ICIIC + 27
2 IIIC

φ = cos−1

(
l

k
3

2

)

g2 = 1
3

[

IC + 2k
1

2 cos
(

φ
3

)]

vi. Compute the invariants of U

IIIU = (IIIC)
1

2

IU = g +
(

− g2 +IC + 2IIIU

g

) 1

2

IIU =
I2
U−IC

2

vii. Calculate U and U−1

U =
(

1
IU IIU−IIIU

) [
IUIIIUI2 +

(
I2
U − IIU

)
C − C2

]

U−1 =
(

1
IIIU

)

(IIUI2 − IUU + C)

ENDIF

viii. Finalize

R = FU−1

END
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4.2 Nonlinear implementation of the EAS method

4.2.1 General aspects

The core point of this work relies on the Enhanced Assumed Strain method, in its lin-

ear version as originally presented by Simo and Rifai (1990). The main goal in adopting

this kind of mixed formulation is, for the present work, the efficient elimination of the

transverse shear as well as volumetric locking pathologies in shell and solid-shell finite ele-

ments. For the shell elements, enhanced terms are judiciously chosen and directly included

into the displacement-based convective strain field, in order to enlarge the subspace of null

(transverse shear strain) energy modes and, consequently, retain the Kirchhoff–Koiter con-

ditions in situations where a pure displacement-based formulation (theoretically grounded

on the Reissner-Mindlin hypotheses) would fail. For solid-shell elements, additionally, en-

hanced strain modes are included into the formulation in order to automatically account

for the incompressibility conditions. These topics were already covered in Chapters 2 and

3. In this Section, nonlinear algorithmic aspects related to the Enhanced Assumed Strain

method are covered, in order to provide an overview of the procedures implemented by

the author.

In the present work, and although dealing with nonlinearities, the original frame of

additive enhancement over the displacement-based convective Green-Lagrange strain ten-

sor is kept, in a way successfully employed at first by Ramm and co-workers (Andelfinger

and Ramm (1993) – linear cases – and Bischoff and Ramm (1997) – nonlinear cases),

after that by Klinkel and Wagner (1997) and Klinkel et al. (1999) and, more recently,

consolidated by Vu-Quoc and Tan (2003). As showed in these references, this approach is

indeed computationally simpler (and leading to virtually the same results) than the one

originally advocated by Simo and Armero (1992) and subsequently used, for example, by

Simo et al. (1993) and Miehe (1998).

In general terms, and as in the linear analysis, the starting point relies in the Hu-

Washizu-de Veubeke 3-field functional for static cases (Bischoff and Ramm, 1997)

ΠHWV (u,E,S) =

∫

V

Ws (E) dV +

∫

V

S :

[
1

2

(
FT F − I2

)
− E

]

dV − Πext (4.31a)

Πext =

∫

V

u · b̂ ρdV +

∫

S

u · t̂dS (4.31b)

where the displacement (u), the Green-Lagrange strain tensor (E) and the – energy con-

jugated counterpart – 2nd Piola-Kirchhoff stress tensor (S) are independent variables.

Equations (4.31a) and (4.31b) involve the displacement-driven strain energy (Ws), the
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traction and volume force vectors (t) and (ρb), respectively, altogether with their cor-

responding prescribed fields (̂t) and (b̂), over control area S and volume V. It is also

worth noting that all variables are referred to the reference configuration (either initial

or converged), while the boundary conditions for the displacement field were omitted in

equation (4.31).

As described in Chapters 2 and 3, the total strain field coming from the Enhanced

Assumed Strain method is then assumed to be composed of a compatible (displacement-

based) and an element-wise part, in the form (Simo and Rifai, 1990)

E = Eu + Eα (4.32)

where the left indexes relating to the (current) configuration were omitted for the sake of

simplicity, while the right indexes report to the characteristic of the strain field (note that

the α index now has a more general character, encompassing the enhancements already

presented for the transverse shear and the volumetric lockings in the previous chapters).

Substitution of equation (4.32) into (4.31a), together with (4.31b), and the imposition

of an orthogonality condition between the stress field and the enhanced strain field (Simo

and Rifai, 1990; Simo and Armero, 1992; Simo et al., 1993) in the form
∫

V

S : Eα dV = 0 (4.33)

reduces the number of independent variables in the original functional to just two. The

weak form of this modified (enhanced) functional is obtained with the Gateaux or direc-

tional derivative, leading to the total variation (Vu-Quoc and Tan, 2003)

δΠ (u,Eα) = δΠint − δΠext (4.34a)

δΠint =

∫

V

(δEu + δEα) :
∂Ws (Eu + Eα)

∂ (Eu + Eα)
dV (4.34b)

δΠext =

∫

V

δu · b̂ ρ dV +

∫

S

δu · t̂dS (4.34c)

The weak form can now be expanded via a truncated Taylor series about the solution

(fixed point) at the nth state (u|n , Eα|n) (Bischoff and Ramm, 1997)

δΠ
(
u|n+1 , E

α|n+1

)
≈ δΠ (u|n , Eα|n) + D [δΠ] (u|n , Eα|n) · (∆u,∆Eα) (4.35)

where, in the present context, the (∆) operator points to a finite variation between (n)

and (n+ 1) states.

The finite element interpolation for the enhanced strain field is described next, along

with the explicit expression for the D [δΠ] operator and the main advantages of including

the additive approach as in (4.32).
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4.2.2 Linearized discrete weak form

After the description of the interpolation functions and variables for both the

displacement-based and enhanced strain fields for shell and solid-shell elements (Chap-

ters 2 and 3, respectively), the second member of the right-hand side of the linearized

weak form (4.35) can be rewritten (dropping the state and elemental indices) in the form

D [δΠ] (d,α) · (∆d,∆α) =
∂
(
δΠint − δΠext

)

∂ (d,α)
· (∆d,∆α) (4.36)

as described, for instance, in the works of Bischoff and Ramm (1997); Klinkel and Wagner

(1997); Klinkel et al. (1999) and Vu-Quoc and Tan (2003). Including the corresponding

displacement and enhanced based interpolation, the variations in (4.36) take the form

δΠint (d,α) = δdT

∫

V

(
M̄u

)T
S̄dV + δαT

∫

V

(
M̄α

)T
S̄ dV (4.37a)

δΠext (d) = δdT

∫

V

NTb̂ ρ dV + δdT

∫

S

NTt̂dS (4.37b)

where the
(
M̄α

)
matrix refer to the enhanced strain tensor in the local frame while, in

the same way,
(
S̄
)

points to the 2nd Piola-Kirchhoff stress tensor also related to the local

orthogonal frame.

Focusing on the variation of the internal part (4.37a) of the whole potential, it is

possible to state that

D
[
δΠint

]
· (∆d,∆α) =

∂
(
δΠint

)

∂d
· ∆d +

∂
(
δΠint

)

∂α
· ∆α

= δdT
[(

Klg
uu + Knlg

uu

)

∆d + Kuα∆α
]

+

+ δαT [Kαu∆d + Kαα∆α]

(∀ δd , ∀ δα)

(4.38)

Linear and nonlinear geometric (initial stress) stiffness matrices (Klg
uu and K

nlg
uu , respec-

tively) are defined as in a fully displacement-based formulation (Bathe, 1996), coming

from the expressions defined in Chapters 2 and introduced in Chapter 3.

The main result of the inclusion of the enhanced parameters into the variational for-

mulation is the appearance of the coupling stiffness matrices (Kαu,Kuα), as well as the

introduction of the fully-enhanced stiffness operator (Kαα), all of them possessing the

same structure as in the linear formulation of Simo and Rifai (1990).

In fact, the adopted additive approach (4.32) leads to a straightforward algorithmic

extension from the linear case, with no inclusion of nonlinear geometric stiffness ma-

trices associated with the enhanced variables, as happens in formulations based on the
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multiplicative enhancement of the deformation gradient, as in the works of Simo and

Armero (1992) and Miehe (1998), among others. The final result (Bischoff and Ramm,

1997; Klinkel and Wagner, 1997; Klinkel et al., 1999; Vu-Quoc and Tan, 2003) is then an

equivalent system of equations, on matrix form, presented as

[ (

K
lg
uu + K

nlg
uu

)

Kuα

Kαu Kαα

]{

∆d

∆α

}

=







∫

V

NTb̄ ρ dV +
∫

S

NTt̄dS −
∫

V

(
M̄u

)T
S̄ dV

−
∫

V

(
M̄α

)T
S̄ dV







(4.39)

The internal force vectors related to displacement and enhanced fields, (
∫

V

(
M̄u

)T
S̄dV,

∫

V

(
M̄α

)T
S̄ dV, ) come from the discrete form of equation (4.34b). Also, no coupling be-

tween the two enhanced strain field appears in the equivalent expression (4.39), and the

two fields can be treated altogether in the implementation.

As was seen in Chapters 2 and 3, the enhanced strain interpolation matrices
(
Mα,Mβ ,Mγ

)
, defined in the convective frame, pass the primary design condition origi-

nally imposed by Simo and Rifai (1990)
∫

�

Mα
(
ξ1, ξ2

)
dξ1dξ2 = 0;

∫

�

Mβ
(
ξ1, ξ2

)
dξ1dξ2 = 0;

∫

�

Mγ
(
ξ1, ξ2, ξ3

)
dξ1dξ2dξ3 = 0

(4.40)

for the presented shell (α and β enhancement type) and solid-shell elements (γ enhance-

ment type), respectively. Before their use in the overall system of equations (4.39), the

enhanced matrices need, however, to be transformed onto the local reference frame. This

is accomplished in the way proposed by Simo and Rifai (1990) (and subsequently in Simo

and Armero (1992) and Simo et al. (1993)), evaluating the already defined transformation

matrix
(
l
cT
)

both in the element’s center
(
ξ1 = ξ2 = ξ3 = 0

)
and in the analyzed Gauss

point itself
(
ξ1, ξ2, ξ3

)
. The enhanced strain-displacement matrix in the local frame can

be then stated in the form

M̄α
(
ξ1, ξ2, ξ3

)
=

det l
cT0

det l
cTξ

l
cT0 Mα

(
ξ1, ξ2

)
(4.41a)

M̄β
(
ξ1, ξ2, ξ3

)
=

det l
cT0

det l
cTξ

l
cT0 Mβ

(
ξ1, ξ2

)
(4.41b)

M̄γ
(
ξ1, ξ2, ξ3

)
=

det l
cT0

det l
cTξ

l
cT0 Mγ

(
ξ1, ξ2, ξ3

)
(4.41c)

where
l
cT0

= l
cT(0, 0, 0) and l

cTξ = l
cT
(
ξ1, ξ2, ξ3

)
(4.42)

This transformation is supposed to grant the satisfaction of the patch-test over a single

element, for a general-purpose distorted configurations.
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4.3 Constitutive update algorithms

In this section, it is explicitly defined the return algorithm implemented for the elasto-

plasticity constitutive behavior simulation. An isotropic model of von Mises with isotropic

hardening was initially taken into account. This choice of characteristics for the consti-

tutive model is motivated by its spread use in the elasto-plastic evaluation of new finite

elements.

The numerical implementation of constitutive models for the proposed shell elements

is straightforward, benefiting from the imposition of a plane-stress behavior, a common as-

sumption in the analysis of thin-shell structures. The algorithm details of implementation

follow the classical works of Ramm and Matzenmiller (1988) and Brank et al. (1997), the

starting point of the predictor-corrector procedure of return mapping is equation (4.27),

and the overall procedure is described in Boxes 3.2 and 3.3 in the end of this Section.

The simplicity of this algorithm comes from the imposition of the plane-stress condition

directly into the formulation, turning the first and second derivative of the yield (loading)

function
(
n+1Y

)
, related to the stress field, a simple task. In fact, implicit in the steps on

Boxes 3.2 and (mainly) 3.3, it is defined that

∂
(
n+1Y

)

∂σ̄
= Pσ̄ (4.43)

and
∂2
(
n+1Y

)

∂σ̄2
= P (4.44)

where the (P) matrix components are constants in the form

P =











2/3 symm.
−1/3

2/3
0 0 2

0 0 0 2

0 0 0 0 2











(4.45)

Additionally, in Box 3.2, the calculation of the trial (supposed elastic) stress increment

is performed on the intermediate point
(
n+ 1

2

)
between the converged state (n) and the

current step (n+ 1), at a given iteration. To do so, the total incremental-iterative displace-

ment and internal variables field (accumulated from the converged state) is considered.

For the particular case of the presented shell elements, this implies the obtaining of the

equivalent (additive-type) total rotation degrees-of-freedom within the analyzed step, in

a way referred to in Chapter 2. The use of the approximated strain increments at the

mid-step is in conformity with the conclusions of Hughes (1984), who established that the



Sec. 4.3 Constitutive update algorithms 69

constitutive (discrete) analysis over point
(
n+ 1

2

)
represents a second-order approxima-

tion to the exact integration of the instantaneous rate of strain, between states (n) and

(n+ 1).

For the three-dimensional constitutive implementation suitable for the HCiS12 solid-

shell element, the adopted procedures followed those described in the FEAP finite element

program theory manual (Taylor, 2003). The general aspects are close to those described

for the plane-stress based algorithm for the shell elements in Boxes 3.2 and 3.3.

Nevertheless, main differences remain in the first and second derivatives of the yield

function, relative to the local (rotated) Cauchy stress tensor (counterpart of equations

(4.43) and (4.44) for the plane-stress hypothesis). The starting point is the (local) devia-

toric stress field components, defined in the form (Alves de Sousa, 2003c)

s̄ij = σ̄ij −
1

3
σ̄ij δij (4.46)

for the Kronecker-delta operator

δij = 1 , if i = j

= 0 , if i6=j
(4.47)

The second invariant of the deviatoric stress field can be stated as

J2 =
1

2
s̄ij s̄ji (4.48)

From the definition of the invariants, the scalar (J2) is kept unchanged irrespective of the

reference frame for the stress field. The algorithm is then complete with the calculation

of the first and second derivatives of the yield function, simply defined as

∂
(
n+1Y

)

∂σ̄
=

1

2
√
J2

{

s̄11 s̄22 s̄33 s̄12 s̄13 s̄23

}T
(4.49)

and
∂2
(
n+1Y

)

∂σ̄2
=

=

√
3

2
√
J2




















2

3
− s̄11s̄11

2J2
−1

3
− s̄11s̄22

2J2
−1

3
− s̄11s̄33

2J2
− s̄11s̄12

J2
− s̄11s̄13

J2
− s̄11s̄23

J2
2

3
− s̄22s̄22

2J2
−1

3
− s̄22s̄33

2J2
− s̄22s̄12

J2
− s̄22s̄13

J2
− s̄22s̄23

J2
2

3
− s̄33s̄33

2J2
− s̄33s̄12

J2
− s̄33s̄13

J2
− s̄33s̄23

J2

2 − 2s̄12s̄12

J2
−2s̄12s̄13

J2
−2s̄12s̄23

J2

symmetric 2 − 2s̄13s̄13

J2
−2s̄13s̄23

J2

2 − 2s̄23s̄23

J2




















(4.50)
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respectively.

For the specific case of the shell elements proposed in the present work, the thickness

update is performed enforcing the plane-stress condition over each Gauss point. Therefore,

thickness values relative to the interpolation points within an element are obtained and

afterwards extrapolated to each node pertaining to the mentioned element. The process is

carried out as follows (Yoon et al., 1999). After calculation of the updated stress field at

the material cycle described, updated thickness strain values are obtained from the elastic

(isotropic) material properties along with the equilibrated (at the material level) plastic

strain field components in the form

Ēξ3ξ3 = − ν

E

(
n+1σ̄ξ1ξ1 + n+1σ̄ξ2ξ2

)
−
(

n+1Ēp

ξ1ξ1 + n+1Ēp

ξ2ξ2

)

(4.51)

and the updated thickness value at this point is given by

n+1a
(
ξ1, ξ2, ξ3

)
= exp (ϑ) na

(
ξ1, ξ2, ξ3

)
(4.52)

where
(
n+1a

)
and (na) are the current (updated) and converged values of the thickiness

at Gauss point
(
ξ1, ξ2, ξ3

)
. The factor (ϑ) corresponds to the integral (summation) of the

normal out-of-plane strain component, along the thickness direction
(
ξ3
)
, in the form

ϑ ≡ ϑ
(
ξ1, ξ2

)
=

∫

ξ3

Ēξ3ξ3

(
ξ1, ξ2, ξ3

)
dξ3 (4.53)
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Box 4.2. Return-Mapping Algorithm for the von Mises Plasticity Model (1)

i. Trial (elastic) incremental material stress tensor in the local frame

n+1
nS̄ = C̄



n+1Ēu + n+1Ēα

︸ ︷︷ ︸

n+1Ē

−nĒp



 ≡ n+1
nS̄

trial

Remark: The strain fields are derived from the mid-point

configuration-based strain-displacement matrices
n+ 1

2

nM̄u ;
n+ 1

2

nM̄α

ii. Trial (elastic) incremental Cauchy stress tensor in the local frame
n+1

nσ̄ trial ≡ n+1
nS̄

trial

iii. Update of the (co-rotational) Cauchy stress tensor
n+1σ̄ trial = nσ̄ + n+1

nσ̄ trial

iv. Evaluation of the yield function
n+1Y trial = 1

2

(
n+1σ̄ trial

)T
P
(
n+1σ̄ trial

)
− 1

3

(
σy

(
n+1εp

))2

based on the effective plastic strain value
n+1εp = nεp

and on the correspondent strain-induced isotropic hardening law

σy

(
n+1εp

)
= σy0 + Hiso

n+1εp

v. Check for plasticity onset

IF
(
n+1Y trial ≤ 0

)
THEN

n+1σ̄ = n+1σ̄ trial

EXIT

ELSEIF
(
n+1Y trial > 0

)
THEN

GOTO Box 4.3

ENDIF
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Box 4.3. Return-Mapping Algorithm for the von Mises Plasticity Model (2)

i. Determination of the plastic multiplier (λ) through the closed cycle on (k)

initialize variables:
(
k = 0; λk = 0; λk+1 = 1; TOLER = 10−7

)

DO WHILE

(
λk+1 − λk

λk+1

)

> TOLER

starting with the yield condition as a function of (λk)
n+1Y (λk) = . . .

for a corrected effective plastic strain in the form

n+1εp = nεp + λk

(√
2
3 (n+1σ̄T P n+1σ̄)

)

evaluate the derivative

dn+1Y

dλk
=

(

1 −
(

2

3

)1.5

σy

(
n+1εp

) dσy

(
n+1εp

)

dn+1εp
λk√

σ̄T P σ̄

)

d
(

1
2 σ̄T P σ̄

)

dλk
−

−
(

2

3

)1.5

σy

(
n+1εp

) dσy

dn+1εp

√
σ̄T P σ̄

now it is possible to perform the plastic multiplier update

λk+1 = λk −
n+1Y (λk)
(

dn+1Y (λk)
dλk

) ; λ = λk+1

update the iteration counter (k = k + 1)

ENDDO

ii. Evaluate the algorithmic tangent modulus

C̄a =
(
C̄−1 + λP

)−1

iii. Definition of the updated (plastic) Cauchy stress tensor in the local frame
n+1σ̄ = C̄a

(
n+1Ēu + n+1Ēα − nĒp

)

iv. Update the Green-Lagrange plastic strain tensor
n+1Ēp = nĒp + λPn+1σ̄

v. Update the effective plastic strain

n+1εp = nεp + λ
(√

2
3 (n+1σ̄T P n+1σ̄)

)

vi. Evaluate the consistent elasto-plastic constitutive operator

C̄p = C̄a −
(
C̄aPn+1σ̄

) (
n+1σ̄TPC̄

a)

A+
(
n+1σ̄TPC̄

a
Pn+1σ̄

)

where

A =
4

9




σy

(
n+1εp

)2 dσy(n+1εp)
dn+1εp

1 − 2
3λ

dσy(n+1εp)
dn+1εp
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4.4 The arc-length path-following technique

4.4.1 General aspects

In dealing with the analysis of shell structures, the possible occurrence of structural in-

stabilities must be accounted for. On the viewpoint of the numerical simulation pro-

cess, this is equivalent to the tracing of load-displacement paths for problems with

possible zero or negative tangent stiffness matrices. In summary, the use of particular

path-following techniques would be desirable for situations where a conventional Newton-

Raphson incremental-iterative technique, simply based on load-level control, fail.

The first (and simpler approach) to force the incremental-iterative algorithm to pass

limit points (corresponding to maximum and minimum load bounds) was the switch

to a displacement control advance technique (Sabir and Lock, 1972; Batoz and Dhatt,

1979). Although efficient in reproducing load-deflection curves with the presence of ”snap-

through” zones, this path-following approach fails in situations where ”snap-back” be-

haviour appears (Crisfield, 1997, volume 1).

A general algorithm, suitable for handling the two before-referred situations, would

be the so-called ”arc-length” continuation method, presented in commercial finite element

programs and also implemented by the author within the present work. Loosely speaking,

the method ”extend” the displacement-based equilibrium equation (driver of the conven-

tional Newton-Raphson approach), in order to account for the linear distance between two

successive points in the load-deflection nonlinear path. This linear distance is taken as the

radius of a cylinder, out of the plane defined by the load-deflection curve (and with the

center in the known configuration), intersecting the load-deflection plane in the desired

(next iteration or increment) point 1.

The roots of the arc-length method appeared in the early developments of the Riks

algorithm (Wempner, 1971; Riks, 1972, 1979). Its current formalism came thereafter with

the works of Crisfield (1981, 1983), and after that with the contributions of Powell and

Simons (1981), Ramm (1981, 1982), Bathe and Dvorkin (1983), Watson and Holzer (1983),

Simo et al. (1984), Gierlinski and Graves-Smith (1985), César de Sá (1986), Schweizerhof

and Wriggers (1986), Forde and Sttemer (1987), Belleni and Chulya (1987), Clarke and

Hancock (1990) and more recently by the works of Barbosa (1992), Huang and Atluri

(1995), Vila et al. (1995), Feng et al. (1996), Feng et al. (1997), Hellweg and Crisfield

(1998), Widjaja (1998), Szyszkowski and Husband (1999) and de Souza Neto and Feng

(1999), providing developments on prediction and convergence capabilities over the original

1Implicit on this statement is the implementation, in the present work, of the ”cylindrical version” of

the arc-length method, as devised in the works of Crisfield, within the frame of proportional loading.
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version.

A survey of the method can also be found in the book of Crisfield (1997, volume 1) and

in the work of Riks (1992). In the following, the main relevant points for implementation

are highlighted.

For a load increment (state) (n+ 1), at equilibrium iteration (i+ 1), the nodal dis-

placement vector
(
n+1di+1

)
coming from the Newton-Raphson method can be given as

n+1di+1 = nd + n+1
nd

i+1 (4.54)

thus involving the known converged displacement vector at state (n) – (nd) – along with

the iterative variation on the latter, from the first to the last iteration within the increment,

in the form
n+1

nd
i+1 = n+1

nd
i + δd (4.55)

where (δd) is the iterative displacement vector, solution of the linearized residual equation

K
(
n+1di

)
δd = −r

(
n+1di, nρ+ n+1

nρ
)

(4.56)

with the residual vector (r) being subjected to the nonlinear constraint

r
(
n+1di, nρ+ n+1

nρ
)

= Fi
(
n+1di

)
−
(
nρ+ n+1

nρ
)
Fe = 0 (4.57)

involving the equilibrium between the internal force vector
(
Fi
)

and the external force

vector (Fe), affected by the load factor
(
nρ+ n+1

nρ
)
, which is fully attained after the

convergence in (n+ 1) configuration. In the equations before, it is implicit the influence of

the enhanced assumed strain internal variables either in the overall stiffness matrix (K)

or in the internal force vector
(
Fi
)
, as shown in the system of equations (4.39). Therefore,

the representation of the internal force vector as function of the displacement field alone in

(4.57) points to the condensed form of the equilibrium equations, which retain the formal

structure of those coming from a single-field (displacement-based) functional. Nevertheless,

this simplified representation is useful since the implementation of the arc-length path-

following procedure relies in the displacement-load vectorial space.

For a fixed referential external load vector (Fe), if the load level parameter
(
nρ+ n+1

nρ
)

is considered fixed (and known) in advance, one comes to a conventional load control

advance procedure in the Newton-Raphson algorithm. The arc-length method, however,

treats this increment (better to say, its iterative variation (δρ)) as a primary variable of the

nonlinear problem, being the value of
(
n+1

nρ
)

unknown at the beginning of the increment.

Once a new variable is introduced in the system, a new constraint equation is needed.

Considering again a given iteration (i) in the load-displacement path, focusing on the
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iterative displacement vector
(
n+1

nd
i
)

and the corresponding iterative load factor
(
n+1

nρ
i
)
,

it is possible to define the linear distance from the converged state (n) up to (i), in the

load-displacement space, as (Crisfield, 1981, 1983)

l2 =
(
n+1

nd
i
)T n+1

nd
i + ψ2

(
n+1

nρ
i
)2

(Fe)T Fe (4.58)

This extra constraint to the residual one (4.57) thus limit the length of the incremental

solution which, in turn, is an approximation to the incremental arc length. For a fixed

(desired) length value, the load parameter iterative variation can then be calculated. The

weighting parameter
(
ψ2
)

scales the contribution of either the incremental displacements

and loads (de Souza Neto and Feng, 1999; Crisfield, 1997). In this sense, equation (4.58) is

general and is characteristic of the spherical version of the arc-length method. For the more

widely used cylindrical arc-length method (adopted in the present work), the weighting

parameter is just set to zero and the constraint equation turns out to be simply given by

(
n+1

nd
i
)T n+1

nd
i = l2 ∴

(
n+1

nd
i
)T n+1

nd
i − l2 = 0 (4.59)

Having specifying the required length (l), it is possible to linearize the residual constraint

(4.57) altogether with the length constraint (4.59) via a truncated Taylor series, leading

to a linearized system of equations (for the cylindrical version of the arc-length method)

in the form
[

K
(
n+1di

)
−Fe

2
(
n+1

nd
i
)T

0

]{

δd

δρ

}

= −
{

r
(
n+1di, nρ+ n+1

nρ
i
)

(
n+1

nd
i
)T n+1

nd
i − l2

}

(4.60)

for the iterative displacement and load factor variations (δd, δρ), respectively.

In practice, and once the ”equivalent” stiffness matrix in (4.60) is neither symmetric nor

banded, it is more convenient to adopt a non-consistent scheme (de Souza Neto and Feng,

1999), where the original augmented system of equations to be solved at each iteration is

replaced by the decoupled equations

[

K
(
n+1di

)
−Fe

]
{

δd

δρ

}

= −r
(
n+1di, nρ+ n+1

nρ
i
)

(4.61)

along with the direct enforcement of restriction (4.59) for iteration (i+ 1) (Batoz and

Dhatt, 1979)
(
n+1

nd
i+1
)T n+1

nd
i+1 = l2 (4.62)

Equation (4.61) is equivalent to the introduction of a load factor perturbation (δρ)

into the residual constraint (4.57), which then turns to be the unbalanced vector
{
r
(
n+1di, nρ+ n+1

nρ+ δρ
)}

.
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Directly from equation (4.61), the iterative displacement vector (δd) can be split into

two parts, in the form (de Souza Neto and Feng, 1999)

δd = δd∗ + δρ δd̄ (4.63)

where the iterative vector (δd∗) comes directly from the Newton-Raphson procedure for

the load controlled path-following method

δd∗ = −K−1r (4.64)

and
(
δd̄
)

is the tangential solution for the reference (external) load

δd̄ = K−1Fe (4.65)

Substituting equation (4.63) into (4.55), together with the constraint (4.62), will lead to

the scalar quadratic equation

aδρ2 + bδρ+ c = 0 (4.66)

where the real coefficients are given as

a = δd̄T δd̄ (4.67a)

b = 2
(
n+1

nd
i + δd̄∗

)T
δd̄ (4.67b)

c =
(
n+1

nd
i + δd̄∗

)T (n+1
nd

i + δd̄∗
)
− l2 (4.67c)

Solving of equation (4.66) will give, at best, two possible real roots that can be used in

the iterative update of the load level, and one of them must be chosen (as shown in the

next section). After that decision point, the load level can be finally obtained for iteration

(i+ 1) as
n+1

nρ
i+1 = n+1

nρ
i + δρ (4.68)

as well as the corresponding nodal displacement vector (4.55)

n+1
nd

i+1 = n+1
nd

i + δd

and the constraint condition applied to the residual force vector is evaluated

r
(
nd + n+1

nd
i + δd , nρ+ n+1

nρ
i + δρ

)
= 0 (4.69)

The whole calculations are repeated and iterations are carried out until equation (4.69) is

satisfied.
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4.4.2 Implementation details

Load level and arc-length for the first increment, first iteration

In the predictor phase of the first increment of the analysis, the initial value of the load

level, to be imposed over the reference external load vector, can be simply given in the

form

δρ = +
l√

δd̄T δd̄
(4.70)

as a function of an arc-length value, given by the user, and valid for the first increment
(
l ≡ 1

0l
)
. This expression can be further used for the predictor phase of any new increment,

where the (+) sign on the right-hand side of equation (4.70) is replaced by a (±) choice

(as detailed in the following).

Nevertheless, for this equation to be valid, it is necessary to specify the initial arc length

value. This parameter is characteristic of each particular problem, not being, therefore,

known in advance by the user. In order to overcome this question, in the present work it

is assumed that the analysis starts as a load-controlled advancing procedure, being the

incremental load a specific fraction of the total one. Doing so, the initial guess of the

arc-length value is simply obtained from equation (4.70) in the form

1
0l = δρ

√

δd̄T δd̄ (4.71)

where it is implicit the assumption of (0 < δρ ≤ 1.0). Within this imposed initial load

increment, the arc-length obtained in (4.71) is kept constant, and the iterative process is

conducted. If convergence is not attained, the load level imposed is simply reduced to a

half. On the other side, if convergence is attained, the arc-length value is updated for the

next increment, depending on the comparison between the number of desired iterations

on the increment (given by the user) and the actual number of iterations just performed

by the algorithm, following the relation (Ramm, 1981, 1982), (Crisfield, 1997, volume 1)

n+1
nl =

√

Nopt

Nact

(
n

n−1 l
)

(4.72)

where
(

n
n−1 l

)
and

(
n+1

nl
)

are the previously used and predicted (next) arc-length values,

respectively. This criterion of adjustment of the arc-length is nevertheless used in the

whole numerical simulation.

Upper and lower bounds for the arc-length values

In order to control the evolution of the numerical solution provided by the algorithm, it

is useful to provide upper and lower bounds for the arc-length value, from one increment
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to the other. After the recalculation at the end of a given step – in the way suggested in

equation (4.72), this value is compared with those bounds, in order not to allow severe

drifts (and, consequently, losses in convergence) in subsequent steps. The maximum (lmax)

and minimum (lmin) bounds specification is somewhat arbitrary and, to some extent,

problem dependent. Nevertheless, in the present work the adopted solution is a function

of the adopted arc-length in the first successfully converged increment, that is,
(
1
0l
)

in

equation (4.71), in the form

(lmax) = 3.0 1
0l (4.73a)

(lmin) = 0.01 1
0l (4.73b)

These limit values are those adopted in the examples covered in Chapter 5.

Sign and value of the load level prediction for a new increment

After the update of the arc-length value for a new increment, it is necessary to compute

the corresponding increment in the load level. In this predictor state (i = 0), and for a

increment other than the first, equation (4.70) is correctly written in the form

δρ = ± l√
δd̄T δd̄

(4.74)

The problem that now arises is the proper choice of the sign to be used in equation

(4.74), in order to define the path to be covered by the algorithm in the beginning of a

new increment. Usual undertaken procedures are the evaluation of the sign of the current

tangent stiffness determinant and the sign coming from the calculation of the incremental

work. The common point between these two approaches is the fact that both methods rely

on information of just the current equilibrium point (in the beginning of the increment).

As pointed out by de Souza Neto and Feng (1999), the choice of the sign for (δρ) takes no

account for the previous history of the solution path, which may lead to erroneous choices

in the presence of bifurcations and snap-back zones.

The criterion chosen in the present work, based on previous investigations of Feng et al.

(1996) and de Souza Neto and Feng (1999), takes the ”recent” history of the near points

along the equilibrium path, involving the previous converged incremental displacement
(

n
n−1d

)
and its predictor (current) iterative variation

(
δd̄
)
, in the form

sign (δρ) = sign
(

n
n−1d δd̄

)
(4.75)

Remark 1: At this point, a question arises as if the inclusion of just one previous state in

the determination of the sign for equation (4.74) would be sufficient for the correct repro-

duction of complex load-displacement paths. Going back a specific number of converged
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states, along with the collection of information about load and displacement incremental

variations would, theoretically, provide a deeper insight into the main characteristics of

the path evolution. This idea is on the core of the predictor-corrector approach of Kim

and Kim (2001), who employed information, for a predictor iteration of a given increment,

about the 3 previous converged increments. In this reference, this whole set of data was

treated in an unified way within the framework of neural networks. Within the present

work, on the other hand, a similar but simplified procedure was implemented, in order to

provide a higher convergence rate. However, the results (or their rate of convergence) did

not change drastically when compared to the standard implementation of the arc-length

procedure.

Remark 2: Abaqus finite element program (ABAQUS, 2002a) proposes a small differ-

ence in the implementation. For a new increment (other than the first) the last iterated

stiffness matrix is used in the evaluation of the iterative displacement vectors (4.64) and

(4.65). The key idea is to keep a previously stiffness matrix, in the general case affected

by material nonlinearities, other than a fully elastic-based one (implicit in those equa-

tions). Likewise what was described in Remark 1 before, for the examples studied in the

present work, this modification did not turned itself of great importance, with the overall

results not changing when compared to the conventional procedure described before. It is

worth noting, nevertheless, that the stiffness matrix described accounts for nonlinear ge-

ometric effects automatically, once the local reference frame is updated at each converged

(equilibrium) point.

Choosing the appropriate root for (δρ)

In solving the quadratic equation (4.66), two real roots are obtainable in the general case

(δρ1 , δρ2). The choice relies (César de Sá, 1986; de Souza Neto and Feng, 1999) in the

specific value of the iterative change (δρ) that would yield the minimum angle between the

two successive displacement vectors
(
n+1

nd
i
)

and
(
n+1

nd
i+1
)

(maximum internal product),

that is

δρ = arg

{

max
δρ̄ | aδρ̄2+bδρ̄+c=0

[(
n+1

nd
i
)T (n+1

nd
i + δd∗ + δρ̄δd̄

)]
}

(4.76)

As mentioned before, there are cases where no real roots are obtained. In this case, in-

stead of aborting the analysis, the algorithm simply retrocedes to the last converged

configuration, scaling down the value of the arc-length for the current increment with the

corresponding recalculation of the incremental load level.



Chapter 5

Numerical Examples

In this chapter benchmark cases are presented in order to evaluate the

performance of the shell and solid-shell formulations implemented. In-

trinsically, the adopted (and implemented) nonlinear material and ge-

ometric procedures are also tested. Solutions taken from the literature

are used for comparison purposes, and a complete characterization of

the overall procedures introduced in this work is then achieved.

5.1 Enhanced shell elements - Linear elastic problems

Although most of the time involving simple geometries, loading and boundary conditions,

the following linear problems give a deep insight into the convergence behaviour of the

proposed shell elements’ formulations. The evolution of the solution quality starting from

coarse meshes into refined ones is compared to well-established approaches. Two conclu-

sions that must prevail after these tests: the improvement obtained with elements S4E6P5 ,

S4E6P7 and MITC4–E2 when compared to the original degenerated and assumed natural

strain formulations, respectively; and the very same response achieved by elements S4E6P5

and S4E6P7 , turning the use of 5 internal variables for membrane locking treatment the

optimum choice.

80
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5.1.1 Effect of mesh distortion

Out-of-plane loads

In order to evaluate the effect of mesh distortion, the analysis of a thin square, simply

supported plate under uniform pressure (Bathe and Dvorkin, 1985) is carried out. Two dif-

ferent types of distortion patterns are adopted, according to Fig. 5.1. The nodal positions

in the figure were based on the indications of Saleeb and Chang (1987), who also advanced

a Poisson’s ratio of ν = 0.3 for this problem. Young modulus and pressure load values

are not referred in those works, but once the reference solution comes from the Kirchhoff

theory, this is not a problem. Also no values are advanced for the geometric relations,

except that the length to thickness ratio of the plate must be equal to L/a = 1000. Due

to symmetry, only a quarter of the plate is represented.

The normalized out-of-plane displacements (wfem/wanalytical) at point C obtained with

the proposed finite elements are compared with the values of the assumed natural strain

bilinear shell element (Dvorkin and Bathe, 1984), as given in the work of Saleeb and Chang

(1987). Results obtained with the original bilinear degenerated shell element relying on

the approach of Ahmad et al. (1970) are also presented, all of them being summarized in

Table 5.1. In the latter it is noticeable the good results of elements S4E6P5 , S4E6P7 and

MITC4–E2 for both mesh topologies I and II, while the original degenerated formulation

completely locks. In mesh II, a fixed distortion parameter ∆ is employed, being defined

as ∆ = L/10.

A distinct comparison analysis can be carried out with the transverse shear strain

enhancement proposed by Simo and Rifai (1990), in the way implemented by Sansour and

Bocko (1998), and applied over the mesh II in Fig. 5.1 for varying distortion parameters

∆. Material and geometric parameters are now different from the previous ones: Young

modulus E = 1.0 × 107, Poisson ratio ν = 0.3, length L = 100 and thickness a = 0.1. The

plate is now considered clamped and a concentrated load is applied directly at point C,

while its correspondent vertical displacement is monitored.

Normalized results obtained by elements S4E6P5 , S4E6P7 and MITC4–E2 for differ-

ent values of the distortion parameter ∆, are compared to those coming from the work

of Sansour and Bocko (1998), using the formulation of Simo and Rifai (1990), as stated

before. They are presented in Table 5.2, and show a pattern of mesh sensitivity for all

formulations. Nevertheless, the element based on the enhancement proposed by Simo and

Rifai (1990) reveals the poorest performance. Elements S4E6P5 and S4E6P7 also present

a decrease in the quality of results. The best performance is however obtained with the

MITC4–E2 element, reproducing almost the same results over the analysed range of dis-
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tortion. The assumed natural strain formulation of Dvorkin and Bathe (1984) leads to the

same results as the latter formulation.

In-plane loads

A cantilever beam, modelled by two elements as shown in Fig. 5.2, is loaded by a pair of

concentrated forces, inducing a resultant moment on the structure. The idea of this test

is to compare the response of a given element formulation when submitted to increasing

levels of in-plane mesh distortion. Material, geometry, boundary and loading parameters

are according to Fig. 5.2, based on the works of Simo and Rifai (1990), Andelfinger and

Ramm (1993) and Slavković et al. (1994). Similar analysis including different boundary

conditions can be found in the papers of Lautersztajn-S and Samuelsson (2000) and César

de Sá et al. (2001). Andelfinger and Ramm (1993) use different parameters (keeping the

same boundary conditions), and their results were re-normalized to be included in this

work. The distortion level is reflected by the geometrical parameter δ, as represented in

the figure before, while the goal is the monitoring of the vertical displacement (i.e., along

OY ) of point C.

For comparison purposes, a plane strain formulation including 5 enhanced parameters,

as introduced by Simo and Rifai (1990), the membrane enhanced element (7 parameters)

of Andelfinger and Ramm (1993) and the 4-node (membrane) enhanced shell element of

Slavković et al. (1994) (both including the interpolation scheme of Dvorkin and Bathe

(1984)) are considered. In the first of the references before, results from the classical

assumed stress approach of Pian and Sumihara (1985) and the well-known modified in-

compatible modes element of Taylor et al. (1976) are presented, being also reproduced

here for comparisons. Shell elements S4, S4R and S4R5 from ABAQUS commercial code

(ABAQUS, 2002a) and the mixed interpolated element of Dvorkin and Bathe (1984) itself

(as implemented by the author) are also considered.

In Fig. 5.3 it is shown the evolution of the numerical solution provided by the above

formulations. It is worth noting the crucial role of a correct membrane (in-plane) enhance-

ment on the overall response. Dvorkin and Bathe (1984) and MITC4–E2 formulations

present the worst behaviors, even for the undistorted mesh, and mainly due to the ab-

sence of those strain improvement. Nevertheless, focusing in the use of 7 internal variables

in the in-plane strain field, and comparing the results obtained using the formulation of

Andelfinger and Ramm (1993) with those provided by the S4E6P7 shell element, it is no-

ticeable the better performance of the last approach. This difference can be explained by

the transformation matrices employed in the present work, mapping the convective frame

into the local (elemental) system, which are of different character than those employed by
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Simo and Rifai (1990) and Andelfinger and Ramm (1993). This also can help to justify

the different results provided by Simo and Rifai (1990) and S4E6P5 formulations, both

involving 5 internal variables acting over the membrane strain field, where it is noticeable

the superior quality of the later formulation (S4E6P7 formulation, involving 7 parameters

does not greatly influence the final result). It is interesting to note that for the maximum

distortion level (δ = 5) the reference solution is attained with S4E6P5 and S4E6P7 shell

elements.

Also of interest is the inability of shell bilinear finite elements (with full or selec-

tive/reduced numerical integration rules) from ABAQUS commercial code to reproduce

acceptable numerical results, as can be seen in Table 5.3, even for the undistorted mesh.

For the sake of completeness, Fig. 5.4 shows the monitoring of the vertical displacement

of the point D in Fig. 5.2, for the S4E6P5 , S4E6P7 and MITC4–E2 shell formulations

presented.

5.1.2 Transverse shear locking test with warped elements over a cylin-

drical surface

Usually, shell finite elements fail when mesh configurations involve out-of-plane distortion

patterns. An interesting example where this aspect can be explored involves a coarse mesh

over a cylindrical surface. In this case, even for a regular (mapped) mesh, warped elements

appear. If the mesh is then further distorted over the surface, the problem turns out to

be even more difficult.

Following these lines, Andelfinger and Ramm (1993) proposed the analysis of an in-

finitely long curved panel, defined by a quarter of a cylinder (Fig. 5.5), clamped on one

end and free on the other. A constant momentum is applied on the latter, so that the

problem can be considered as a ”pure bending” one. Geometric properties of the structure

refer to a radius R = 10.0, demonstrative length L = 10 and varying values of the thickness

(a). Elastic material properties are given by the Young’s modulus E = 103 along with the

Poisson’s ratio ν = 0.3. In this problem, and as have been pointed out by Andelfinger and

Ramm (1993), only transverse shear locking is involved, which turns out this test case

useful on the evaluation of the enhanced strain procedures proposed for shell elements. In

this sense, and in order to test the transverse shear locking of the finite elements involved,

the thickness of the cylinder is successively reduced by a factor of 10, leading to a value

of displacement (component u1 in the figure) increased each time by a factor of 103.

Following the steps of Andelfinger and Ramm (1993), starting with an initial thickness

value of a = 10.0 (a/R = 1.0) and focusing on the regular 3 × 3 mesh in Fig. 5.5, as

thickness values decrease, the evolution of displacement is correctly reproduced by both



84 Numerical Examples Chap. 5

the formulation of Dvorkin and Bathe (1984) and by the present transverse shear strain

enhanced approach (included in the S4E6P5 and S4E6P7 shell elements).

However, if the mesh is distorted – forcing even further the elements to be more warped

– shell elements based on the approach of Dvorkin and Bathe (1984) show severe shear

locking. In this case, the evolution of displacements shows an increase of a factor of 10, in

opposition to the expected factor of 103, as first noticed by Andelfinger and Ramm (1993).

The distorted mesh adopted in the present work follow this reference, corresponding to the

second mesh on Fig. 5.5. In detail, the level of distortion can be assessed by the projected

mesh view presented in Fig. 5.6.

A transverse shear locking treatment using the enhanced assumed transverse shear

strain proposed in this work provides, on the other hand, results that are more stable

than those coming from the mixed interpolation of the tensorial components formulation.

This can be seen in the analysis of the graph presented in Fig. 5.7. In the figure, it is shown

the ratio between a displacement solution coming from the distorted mesh
(
u1

dist

)
when

compared to its counterpart obtained with regular elements
(
u1

reg

)
. Also in the graph,

values for element MITC4 are shown as previously presented by Andelfinger and Ramm

(1993).

It is clear that elements relying on the formulation proposed by Dvorkin and Bathe

(1984) (MITC4 and MITC4-E2, in the present case) rapidly have showed an increase in

stiffness (locking) as thickness values tend to zero in this example. On the other hand,

the enhanced assumed strain procedure, grounding shell elements S4E6P5 and S4E6P7 ,

proved to be less sensitive to thickness variations (although still showing some differences

from the solution provided by the regular 3 × 3 mesh).

Finally, and for completeness purposes, results coming from the selective reduced for-

mulation, as implemented by Andelfinger and Ramm (1993) on bilinear shell elements, are

also shown in Fig. 5.7. The evolution of results are similar to those of elements S4E6P5

and S4E6P7 , but showing less sensitivity to thickness reduction. Additionally, and in

accordance to what was verified by Andelfinger and Ramm (1993), transverse shear lock-

ing onset is dependent on the boundary conditions. Once the symmetry conditions are

removed, leading to a curved shell with three free edges, deterioration of results for the

distorted mesh is not verified.

5.1.3 Plate bending I

A square plate with clamped edges is subjected to a concentrated load F, applied at

its center (Andelfinger and Ramm, 1993). Following this reference, and benefiting from

symmetry, one quadrant of the structure is modelled with two coarse meshes: with 2 × 2
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and 4×4 elements, following a mapped pattern. The center point’s out-of-plane deflection

obtained with the present formulation is analysed and compared with the results coming

from the works of Dvorkin and Bathe (1984) and Andelfinger and Ramm (1993).

The plate is characterized by the following geometric parameters: length L = 100

and thickness a = 1. Elastic material parameters involve the Young’s modulus E = 104

consistent unities and a Poisson’s ratio of ν = 0.3. In order to have a unity-valued out-

of-plane (w) deflection at the center of the plate, the concentrated load is taken equal

to P = 16.367, according to the relation w = 0.061PL
2

Ea
3 , based on the Kirchhoff theory.

The results are listed in Table 5.4 and again comparisons are carried out related to the

original degenerated approach of Ahmad et al. (1970), the assumed natural strain method

of Dvorkin and Bathe (1984) and the enhanced strain field as proposed by Andelfinger

and Ramm (1993).

For both meshes, the results obtained with elements S4E6P5 , S4E6P7 and MITC4–E2

are quite acceptable when compared with the reference solutions referenced before.

5.1.4 Plate bending II

In this example, the previous clamped square plate is again taken into account for moni-

toring of the central point deflection, but now allowing a higher length to thickness ratio.

The convergence of the finite element solution is investigated as the mesh is refined.

This test case, proposed by Kui et al. (1985), was then analysed with a value of

104 for the length to thickness ratio (L/a), in order to emphasize any tendency toward

transverse shear locking appearance. Following the latter reference, the plate is subjected

to an uniformly distributed load with, due to symmetry, only a quarter of the structure

being analysed.

The obtained out-of-plane displacement (w) is normalized using the expression

wnorm =
wD

PL4 (5.1)

involving the external pressure P, the complete side length L and the flexural rigidity of

the plate D. The latter is function of the thickness a of the plate, the Young’s modulus(
E = 3.0 × 106

)
and the Poisson’s ratio (ν = 0.3), in the form (Ugural, 1981)

D =
Ea3

12 (1 − ν2)
(5.2)

The results are presented in Table 5.5. Not surprisingly, the degenerated formulation of

Ahmad et al. (1970) shows a strong level of shear locking. On the other side, elements



86 Numerical Examples Chap. 5

S4E6P5 , S4E6P7 and MITC4–E2 lead to the same result as those obtained using the

formulations of Dvorkin and Bathe (1984) and Kui et al. (1985).

5.1.5 Cook’s membrane problem

As introduced by Simo et al. (1989b), a trapezoidal plate clamped on one end and sub-

jected to a distributed in-plane bending load, as shown in Fig. 5.8, is analysed. Other

references dealing with this problem in the linear range are, for instance, the works of

Ibrahimbegović et al. (1990) (plane stress elements), Slavković et al. (1994) (shell ele-

ments) and Kasper and Taylor (2000) (plane strain elements), among others.

In this example, in-plane shear deformations are predominant, which represents a test

for the membrane enhancement employed in the present work. Besides that, the robustness

of a given finite element formulation is tested against the skewed mesh topology employed,

as shown in Fig. 5.8 for a representative 8 × 8 elements model.

The geometry, material, boundary and load conditions are also represented in Fig.

5.8. The idea is to correctly evaluate the vertical (in the direction of the applied force F)

displacement of the free end mid-point. The reference solution was taken as 23.91 (Simo et

al., 1989a), and the corresponding results obtained with S4E6P5 , S4E6P7 and MITC4–

E2 shell elements are represented in Fig. 5.9, for a increasingly refinement level. Results

obtained with the mixed-interpolated (Dvorkin and Bathe, 1984) bilinear shell element, as

published by Slavković et al. (1994), are also reproduced. As stated before, the inclusion

of a in-plane shear strain field into the formulation greatly improves the convergence ratio

obtained, when compared with elements only prepared to transverse shear strain locking.

Once again, there is small difference in the choice between 5 or 7 internal variables for the

membrane enhanced strain field, only visible for the coarser meshes.

5.1.6 Morley’s 30o skew plate

Another classical problem for the testing of distortion influence and transverse shear lock-

ing is the skew, simply supported plate originally introduced by Morley (1963), who pro-

vided an analytical series solution to the boundary value problem.

The idea is once more to evaluate the performance of the proposed elements when

used in coarse and distorted meshes. The distortion level is defined by the 30o angle in

Fig. 5.10, where a representative mesh of 4 × 4 elements over the entire plate is shown.

About the kind of mapping used in the adopted meshes, it follows the indications of Simo

et al. (1989b), who considered the topology in Fig. 5.10 ”a demanding configuration due

to the rhombic shape of the elements and the lack of mesh refinement at the singularity

points” (the obtuse vertices).
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Still about the geometric parameters, a characteristic length to thickness ratio L/a =

100 is employed (L = 100 and a = 1). Additionally, material properties refer to a Young’s

modulus of E = 105 and Poisson’s ratio ν = 0.3. The loading conditions are represented

by a uniformly distributed pressure of P = 1. These parameters agree with those advanced

by Andelfinger and Ramm (1993) (Fig. 5.10).

The results obtained with the S4E6P5 , S4E6P7 and MITC4–E2 formulations are com-

pared with those by Andelfinger and Ramm (1993), using an enhancement of the in-plane

strain field. These authors also tested the assumed natural strain formulation of Dvorkin

and Bathe (1984), and the corresponding results are reproduced here. Additionally, an

enhanced plate element proposed by Simo and Rifai (1990) is also used as reference, as

implemented by Yunhua and Eriksson (1999). For the sake of completeness, results coming

from the original degenerated approach are also taken into account. A set of meshes is

considered, comprising 4 × 4, 8 × 8, 16 × 16 and 32 × 32 shell elements. All results are

shown in Table 5.6 and graphically in Fig. 5.11. The value of 4.640 for the out-of-plane

displacement of point C in Fig. 5.10 is taken according to Andelfinger and Ramm (1993),

and is adopted here as the reference solution.

It is worth noting the improvement over the solution coming from the assumed natural

strain formulation, when combined with the enhanced strain approach. This can be seen

with the results of element MITC4–E2 . Nevertheless, the results of S4E6P5 and S4E6P7

elements are coincident and equal to those from MITC4–E2 . Andelfinger and Ramm

(1993) concluded that their enhancement over the in-plane strain field was crucial for

a better performance of the assumed natural strain formulation of Dvorkin and Bathe

(1984). However, for the present case, the proposed transverse shear strain enhancement

has revealed enough for the overall results. In fact, and as can be seen from the author’s

work in César de Sá et al. (2002), no influence exclusively coming from the in-plane

enhancement was verified, with the respective internal variables playing no role in the

analysis. Another useful conclusion can be traced when comparing the present formulations

with the performance of S4R5 shell element of ABAQUS commercial code (ABAQUS,

2002b) for the coarser meshes. Keeping the same aspect ratio as before, S4R5 presents a

displacement error of 7.7% (4 × 4 elements) and 7.9% (8 × 8 elements), when compared

to the respective reference solution. The S4E6P5 , S4E6P7 and MITC4–E2 formulations

are characterized by deviations of −2.8% and −4.4%, respectively, for the same mesh

topologies. For more refined meshes, the results in all cases are closer to the reference

solutions. Still analyzing the same coarse meshes, a couple of error level comparisons

can also be carried out in relation to the results of Simo et al. (1989b). These authors

obtain values of −3.9% and −4.3% for errors in displacement values with the cited meshes,
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employing stress resultant based shell elements with the assumed natural strain method.

5.1.7 Shearing analysis of a twisted beam

This problem deals with the analysis of a clamped beam that is twisted by 90o, subjected

to loading patterns inducing bending and warping over the finite elements. A first version

of the problem was introduced by MacNeal and Harder (1985), who provided a reference

solution for a thick beam. Simo et al. (1989b) adopted a ”more demanding version of the

same problem”, involving then a thin twisted shell, which became a classical problem in

shell elements evaluation (Parisch, 1991; Batoz and Dhatt, 1992). This version is analysed

in this work, and a schematically representation of the modelled structure is represented in

Fig. 5.12, along with geometric, material and boundary data. Mesh topologies consisting

of 1 × 6, 2 × 12, 4 × 24 and 8 × 48 shell elements (width direction × length direction) are

employed (Simo et al., 1989b). About the loading conditions, two cases of end loading are

considered:

(a) Unit shear load along the width direction;

(b) Unit shear load along the thickness direction.

For each of these load patterns, values for the beam end deflection (on the load di-

rection) come from the work of Simo et al. (1989b). They are used here for comparison

purposes and are given by: 1.390 for the in-plane loading (load case (a)), and 0.3431 for

the out-of-plane loading (load case (b)). The results obtained with S4E6P5 , S4E6P7 and

MITC4–E2 shell elements are the same, all of them being in accordance to those presented

by Simo et al. (1989b), as can be stated from Tables 5.7 and 5.8 (showing the normalized

results). It is interesting to note that even for the coarser mesh of 1 × 6 elements, the

proposed formulations lead to the reference result.

5.1.8 Circular plate subjected to a combination of loads and boundary

conditions

This is another interesting problem to evaluate the influence of mesh distortion upon

the proposed shell elements behavior. The main goal is to evaluate the evolution of the

displacement field of points over a circular plate subjected to concentrated and uniformly

distributed loads, with strong (clamped) or soft (simply supported) boundary conditions.

Between the authors that treated this test case are Simo and Rifai (1990), Belytschko and

Leviathan (1994), Liu et al. (2000) and Piltner and Joseph (2001), to name but a small

sample.
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Starting with the guidelines of Belytschko and Leviathan (1994), a circular plate with

radius R = 10.0, uniform thickness a = 0.1 (R/a = 100), Young’s modulus E = 3.0 × 106

and Poisson’s ratio ν = 0.3 is considered. In this first configuration, the plate is assumed to

be clamped on the circumferential edge and subjected to a point load on its center. Due to

symmetry conditions, only a quarter of the plate is considered and meshed with distorted

elements, as can be seen in Fig. 5.13. In their work, Belytschko and Leviathan (1994) only

analysed the mesh containing 48 elements, although employing elements less distorted than

those presented here. For this specific mesh, the deflection of the nodes along one edge are

monitored and compared to analytical results coming from the Kirchhoff and Reissner-

Mindlin theories. As the plate thickness tends to vanish, the two theories converge to the

same analytical results, and the behaviour of S4E6P5 , S4E6P7 and MITC4–E2 elements

is represented in Fig. 5.14. It is patent the very good behavior of the proposed elements.

For the sake of completeness, a convergence analysis with successive mesh refinements

(Fig. 5.13) is presented in Table 5.9, with the results being normalized to the solution for

deflections w = 0.7242. It is evident the good quality of the results for the whole mesh

range.

Another type of configuration dealing with a circular plate with the same mesh config-

urations as in Fig. 5.13 was introduced by Simo and Rifai (1990), being further analysed

by Liu et al. (2000) and Piltner and Joseph (2001). Now, the plate has a radius value of

R = 5.0, with thickness a = 0.1 (R/a = 50), Young’s modulus E = 10.92 and Poisson’s ra-

tio ν = 0.3. However, the greater differences are on the boundary and loading conditions.

The plate is now considered as simply-supported on its limiting edges (out-of-plane dis-

placement restriction), being subjected to a uniformly distributed pressure P = 1. Again,

the central node out-of-plane deflection is monitored, and a reference value of 3.9831×104

is advanced (Simo and Rifai, 1990) for normalization purposes. Besides the comparison

of the results obtained with the present elements with those proposed by Simo and Rifai

(1990) and Piltner and Joseph (2001), values coming from the work of Hughes and Tez-

duyar (1981) are also included, due to their overall good quality. The results from that

comparison are presented in Table 5.10. It is clear the robust performance of the elements

proposed, even for the coarser mesh of 3 elements.

5.1.9 Scordelis-Lo roof problem

In this classical example a shallow cylindrical shell is supported by rigid diaphragms and is

subjected to its self-weight, leading to a membrane-dominated problem. Earlier references

to treat this test case are, firstly, the original work of Scordelis and Lo (1964), and later on

with the contributions of Ashwell (1976); Belytschko et al. (1985); MacNeal and Harder
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(1985); Saleeb et al. (1987); Simo et al. (1989b); Andelfinger and Ramm (1993); Belytschko

and Leviathan (1994); Sze et al. (1997); Liu et al. (2000), among others, and also in the

books of Batoz and Dhatt (1992); Bernadou (1996).

The physical basis of the problem is an arched roof (as an aircraft hanger) supported

only at its curved edges in a way that the curved shape is kept unmodified. These boundary

conditions reflect themselves as u = w = φy = 0 in Figure 5.15, where φy represents the

rotation related to the global axis OY . The geometry is such that the center point of the

roof (apex point) moves upward under the self-weight (directed downwards) load.

For this problem the vertical displacement at the midpoint of the free edge (point A

in Figure 5.15) is monitored, and a reference numerical solution of w = 0.3024 is taken

into account, as documented by Belytschko et al. (1985) and (Simo et al., 1989a), who

reported directly to the solution obtained by Scordelis and Lo (1964). Due to symmetry,

only one quarter of the structure is considered, as shown in the mapped area of the figure,

where the geometric and material properties are also outlined. For the sake of compar-

isons, displacement values obtained with the assumed natural strain formulation (Dvorkin

and Bathe, 1984) and coming from the conjunction of this approach and the enhanced as-

sumed strain formulation (Andelfinger and Ramm, 1993) are considered. Values obtained

using the degenerated formulation (Ahmad et al., 1970) are also taken into account. Mesh

topologies consisting of 4×4, 6×6 and 8×8 elements were chosen, and the corresponding

(normalized) results are presented in Table 5.11 and graphically in Figure 5.16.

From the table and figure cited, it is evident the better performance of elements

S4E6P5 and S4E6P7 which, even for the coarser mesh, lead virtually to the reference

result. Comparing the S4E6P7 element with the one coming from the formulation of

Andelfinger and Ramm (1993), it is patent the improvement obtained with the shear en-

hancement proposed in this work when compared to the assumed natural strain method

(adopted in the last reference), once the in-plane enhancement is the same for both ap-

proaches. Element MITC4–E2 , additionally, provides very similar results than those com-

ing from the assumed natural strain approach (as implemented by Andelfinger and Ramm

(1993)).

5.1.10 Pinched cylinder problem

This example (ABAQUS, 2002b) deals with the analysis of a finite length circular cylinder,

bounded by rigid diaphragms in its ends (as in the example before). The cylinder is

subjected to a pair of concentrated forces, as shown schematically in Fig. 5.17, altogether

with a sample mesh over one eight of the whole structure. This classical test is used

to evaluate the behavior of shell formulations when reproducing inextensional bending
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modes and complex membrane states. Following Belytschko et al. (1985), this example is

one among three that constitute ”an obstacle course for shell elements” (the remaining

two examples are the Scordelis-Lo roof case treated before and the pinched hemispherical

shell, analysed in the following).

In Fig. 5.17 geometric, material and load data are given in consistent unities. The

thickness of the cylinder is 1/100 of its radius, and the displacement of point A in the

figure along OZ direction is monitored. A reference value w = 1.825× 10−5 is adopted for

comparison and normalization purposes, coming from the work of Lindberg et al. (1969)

and based on a series solution provided by Flügge (1973).

The results obtained with S4E6P5 , S4E6P7 and MITC4–E2 formulations are com-

pared to those obtained with the assumed natural strain approach (Bucalem and Bathe,

1993, 1997), the selective reduced integration (Belytschko et al., 1985) and with the origi-

nal degenerated approach. Mapped meshes with 4× 4, 10× 10 and 20× 20 shell elements

are employed, and the convergence behavior for each studied formulation is shown in Fig.

5.18. The convergence rate for all formulations are quite the same, with the in-plane and

out-of-plane proposed enhancement being effective in the elimination of locking effects.

5.1.11 Hemispherical shell problem

This test case deals with a free hemispherical shell which is subjected to point loads of

opposite signs. Since the problem geometry, loads and boundary conditions are symmetric,

only a quarter of the structure needs to be modelled by finite elements. The geometric,

material and boundary details are schematically presented in Fig. 5.19 , following works of

Simo et al. (1989b) and Bucalem and Bathe (1993). The symmetry boundary conditions

imposed on the mesh surface are sufficient to keep the problem well-conditioned, with no

need to extra restraints (although the introduction of extra constrained nodes is common

in the literature, as in Parisch (1991)).

This problem performs a challenging test of an element’s ability to represent inexten-

sional modes, exhibiting almost no membrane strains. When treated with coarse meshes,

the resulting skewed elements lead to fewer degrees of freedom when compared with a

regular mesh. In these cases, the element’s ability to handle rigid body rotations about

their normal vectors is checked, with large sections of the structure rotating almost as

rigid bodies.

An analytical answer of 0.0924 (MacNeal and Harder, 1985) is used for the normal-

ization of results and the values obtained with the stress resultant-based shell element of

Simo et al. (1989a,b) are also represented. Also considered are the results obtained with

the assumed natural strain bilinear shell element of Dvorkin and Bathe (1984).
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A convergence study is represented in Fig. 5.20, for successively refined meshes. For the

coarser mesh of 4 elements per side of the mesh surface, it is noticeable the improvement

obtained with the S4E6P5 and S4E6P7 formulations, when compared to the assumed

natural strain formulation. It is also worth noting that the inclusion of just two enhanced

variables and keeping the assumed natural strain approach (MITC4–E2 formulation) leads

to a relatively small improvement on the results for the coarser mesh. In this sense, the

transverse shear locking formulation entirely based on enhanced variables is clearly more

efficient. When compared to the formulation of Simo et al. (1989a,b) (and also to the

works of Belytschko and Leviathan (1994), Groenwold and Slander (1995), Cardoso et al.

(2002), Cardoso (2002) and Choi and Lee (2003)), the greater difference rely on the coarser

mesh, although the results tend to converge to superior values as the mesh is refined. The

original degenerated element, on the other hand, presents a strong locking for all meshes

employed.

5.1.12 Raasch’s hook problem

According to Kemp et al. (1998), this test is useful in the evaluation of a given element’s

ability to properly reproduce coupling among bending, extension and twisting deformation

patterns. The geometry corresponds to a curved strip rigidly clamped at one end and

subjected to a unit load distributed along the width of the free end. Figure 5.21 shows the

top view of the hook, modelled by two circular segments connected at the tangent point.

Geometric, material, boundary and loading conditions are according to the work of Knight

(1997). A reference solution of 5.027, for the displacement in the load direction of the free

edge, is employed (Knight, 1997; Kemp et al., 1998; Massin and al Mikdad, 2002). Mesh

topologies consisting of 1×9, 3×18, 5×36, 10×72 and 20×144 shell elements are analysed,

as shown in Fig. 5.22. The performance of the proposed S4E6P5 , S4E6P7 and MITC4–E2

elements is compared to those obtained with the assumed natural strain formulation of

Dvorkin and Bathe (1984) (as implemented by the author). In addition, results coming

from the work of Kemp et al. (1998) and from the commercial code ABAQUS (ABAQUS,

2002b), using S4R and S4 shell elements are taken into account. Kemp et al. (1998)

proposes an enhancement of the displacement field using a total number of 23 internal

variables to improve the four-node shell element.

The results for the above formulations are presented in Fig. 5.23. The convergence

rate of shell elements S4E6P5 , S4E6P7 and MITC4–E2 are quite good, with almost the

reference result (deviation of 0.7%) already with the coarse mesh of 5× 36 elements. The

bilinear shell element employing the mixed interpolation procedure of Dvorkin and Bathe

(1984) shows a very low convergence rate in this example, while ABAQUS S4R shell
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element presents very poor results for the coarser mesh. In relation to the formulation of

Kemp et al. (1998), only with 23 internal variables the convergence is acceptable. Elements

using 17 and 20 enhanced parameters, as shown in that reference, lead to unacceptable

results, with a lower convergence rates as the number of additional variables decreases.

In this sense, elements S4E6P5 and S4E6P7 , entirely based in respectively 11 and 13

enhanced parameters represent a noticeable evolution. In addition, it is also worth noting

the improvement obtained with MITC4–E2 shell element, with the inclusion of just 2

enhanced parameters into the formulation.

5.1.13 Bending dominated test I - Partly clamped hyperbolic paraboloid

In analyzing the asymptotic behavior of shell elements as thickness values tend to zero,

it is possible to define problems as being membrane or bending dominated. When this

distinction is not clear the asymptotic deformation character is said to pertain to an

intermediate state (Pitkäranta et al., 1995).

Following the analysis of Malinen and Pitkäranta (2000), bending-dominated problems

are known to be hard tests for standard finite element formulations, which sometimes

provide a poor approximation for inextensional displacements, with the consequent onset

of deficient numerical results.

A particularly interesting bending-dominated test case was introduced in the work of

Chapelle and Bathe (1998) (further developed by Bathe et al. (2000) and Chapelle and

Bathe (2003), with a predominant finite elements and mathematical insights, respectively).

The problem consists of a hyperbolic paraboloid shell structure, loaded by self weight and

clamped along one side, as schematically represented in Fig. 5.24. The geometric, material

and load data are those coming from Bathe et al. (2000), and only one-half of the structure

needs to be modelled with finite elements. Directions OX, OY and OZ correspond to a

global coordinate set, the first two generating a projection plane with bounds [−0.5; +0.5].

The out-of-plane coordinate of each point in the paraboloid is then obtained using the

relation Z = X2 − Y 2. The self-weight load adopted can be represented in vectorial form

as {0; 0;−8000} acting, then, along the OZ global direction.

Bathe et al. (2000) proposes the monitoring of point A in Fig. 5.24 (coordinatesX = 0.5

and Y = 0), with the analysis of the strain energy error obtained with a finite element

discretization, when compared with a reference value. Once for this problem there is no

analytical solution for displacements (and, consequently, strain energy) Bathe et al. (2000)

adopted a converged value obtained with a refined mesh of 16-node shell elements as the

reference value. In the present work, the energy resulting from this solution is also adopted

for comparison purposes. The behavior of S4E6P5 , S4E6P7 and MITC4–E2 formulations
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is compared to the one coming from the bilinear assumed natural strain shell element of

Dvorkin and Bathe (1984), as reproduced in Bathe et al. (2000).

About the finite element meshes, sequences of (N ×N/2) elements, whereN represents

the subdivisions along the X-axis, were adopted (N = 4, 8, 16, 32, 64). For instance, in Fig.

5.24 a representative mesh of 16×8 elements is shown. Following the proposal of Bathe et

al. (2000), thickness-length (a/L) relations of 1/100, 1/1000 and 1/10000 are considered.

Graphically, the strain energy error of the finite element solution in comparison to the

reference value is represented by the scalar value

Eerror =
E − Eh

E
= 1 − Eh

E
(5.3)

with Eh being the strain energy resulting from the finite element approximation while E

refers to the reference value.

The performance of the S4E6P5 , S4E6P7 and MITC4–E2 formulations can be stated

from the analysis of Fig. 5.25, 5.26 and 5.27 where, as stated before, the results of Bathe et

al. (2000) using the assumed natural strain formulation are also included for comparison.

Elements S4E6P5 , S4E6P7 and MITC4–E2 show similar results for the whole range

of thickness to length ratios. For coarser meshes, these elements reveals an excess of

flexibility when compared to the results from Bathe et al. (2000). As the meshes are

refined, however, the results rapidly approach the reference solution. One conclusion not

shown in the graphs, but demonstrated with the author’s work in César de Sá et al.

(2002), is the importance of the use of 6 enhanced variables in the transverse strain field.

For a/L values of 1000 and 10000, the bilinear shell element with just 4 transverse shear

enhanced variables presents a strong transverse shear locking pattern, with the consequent

deterioration of results.

5.1.14 Bending dominated test II - Free cylindrical shell

In this example, a cylindrical shell of uniform thickness a, length 2 × L and radius R is

loaded by an axially-constant pressure distribution. The pressure varies with the angular

distance from the apex (see Fig. 1 in Bathe et al. (2000)) following the function

p (ϕ) = P0 cos (2ϕ) (5.4)

where the amplitude factor P0 is scaled according to thickness values as

P0 = p0a
3 (5.5)

being p0 a constant independent of a.
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The cylinder possesses free ends with no kinematical constraints, being self-supported

by the load pattern. The geometry, material and load data are the ones provided by the

study of Bathe et al. (2000). This problem has been extensively described by the group of

Juhani Pitkäranta, with the publication of an analytical locking insight for various shell

models early in 1995 (Pitkäranta et al., 1995). The reference solutions for the test case

are the ones published in the paper of Malinen and Pitkäranta (2000).

In this simulation, 1/8 of the structure were modelled by uniform mesh patterns of

N × 2N elements, being N (N = 4, 8, 16, 32) the number of elements along the axial

direction. As for the previous example, thickness to length ratios a/L of 1/100, 1/1000

and 1/10000 were employed, and a strain energy analysis was carried out, as in the last

example, with the results being presented in Fig. 5.28, 5.29 and 5.30.

In this example all the proposed elements performed in a very similar way. For the

thickness-length ratio of 1/100 the assumed natural strain formulation revealed is clearly

superior, as for the most refined mesh (32 × 64 elements) the S4E6P5 , S4E6P7 and

MITC4–E2 elements keep an strain energy deviation of 1.0%. However, as thickness values

decrease, all formulations tend to converge to the same performance.

5.1.15 Membrane dominated test I - Clamped cylindrical shell

The geometry and loading for this example are the same as for the previous one, but now

the cylinder presents clamped ends. This modification leads to a membrane dominated

problem, where pure bending is inhibited but still conducting to a well-posed problem

(Pitkäranta et al., 1995; Chapelle and Bathe, 1998; Bathe et al., 2000; Chapelle and

Bathe, 2000).

Although the load pattern remains the same, it is scaled in a way consistent of the

membrane characteristic of the asymptotic behaviour. Doing so, eq. 5.5 is replaced by

P0 = p0a (5.6)

that is, the load amplitude now being a linear function of thickness values.

Using the same mesh configuration as for the free cylinder problem before, the strain

energy is evaluated for every element formulation, along with the thickness-length ratios

described before. Reference solutions come from Pitkäranta et al. (1995) and Malinen and

Pitkäranta (2000), and results from the assumed natural strain formulations (Bathe et al.,

2000) are again used for comparison purposes. The overall results are reproduced in Fig.

5.31, 5.32 and 5.33.

As thickness values tends to zero, the strain energy error implicit in all formulations

increases. Nevertheless, S4E6P5 , S4E6P7 and MITC4–E2 formulations present similar
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results as those shown by Bathe et al. (2000) for the bilinear mixed interpolated shell

element. Anyhow, for the coarser mesh (N = 4) the latter provides slightly better perfor-

mances, although the mesh refinement tends to make differences between the elements to

vanish.

5.1.16 Membrane dominated test II - Clamped hemispherical cap

This benchmark, proposed by Chapelle and Bathe (1998), represents a hemisphere of

radius R and uniform thickness a, fully clamped and subjected to an axisymmetric pressure

distribution on its outer surface (directed inward, as in Fig. 11 in the previous reference).

The imposed load is the same as the cylinder considered before, with the amplitude being

scaled linearly with the thickness.

For the numerical simulation, the pertained data values are those from Bathe et al.

(2000), including the adopted mesh parameters (such as the number of divisions in each of

the directions of the structure). As usual with spherical type structures, a demonstrative

1/4 partition of the shell is divided into 3 macro-surfaces (mesh-areas), each of one being

modelled in a mapped way (in a similar fashion as in the hemispherical shell of Fig. 5.19).

The results from the mixed interpolated bilinear shell element in Bathe et al. (2000) are

reproduced for comparison, with the range of thickness to radius adopted being the same

as in the previous examples (a/R = 1/100, 1/1000, 1/10000).

Similar to what happened with the hemispherical test of Section 5.1.11, this prob-

lem is well-suited for assessing distortion sensitivity levels on low-order, bilinear finite

elements, once the surface able to be reproduced by the finite elements is only a crude

representation of the real one. Not having an analytical solution, references values coming

from Bathe et al. (2000) have employed 1D highly refined meshes with axisymmetric ele-

ments. Doing so, benchmark values are attained for the displacement of the cap apex and,

consequently, the strain energy used in this work. The results obtained with the present

S4E6P5 , S4E6P7 and MITC4–E2 formulations can be assessed in Fig. 5.34, 5.35 and

5.36, for the representative value of elements N along the latitude direction.

From the obtained results, it is clear a low convergence pattern of the solution for all

the formulations (including the values from the assumed natural strain approach) although

S4E6P5 and S4E6P7 formulations still show the best results.

5.2 Enhanced shell elements - Non-linear problems

After the preliminary linear tests, this section aims to evaluate the S4E6P5 shell el-

ement performance, within the non-linear framework implemented, when compared to



Sec. 5.2 Enhanced shell elements - Non-linear problems 97

other shell formulations in the literature. This particular choice of finite element is re-

lated to the equivalent results, in the majority of the problems, obtained with S4E6P5

and S4E6P7 formulations (being, additionally, superior to element MITC4–E2 , as seen in

some of the problems before). It is then shown that the proposed 6-parameter enhanced

transverse shear strain procedure, in conjunction with the 5 membrane internal variables,

leads to equivalent results than those provided by well-established procedures such as the

mixed interpolation of tensorial components and the reduced integration scheme for shell

structures.

In the following examples, relative convergence tolerances for forces and displacements

were set to 1.0×10−5. Both convergence indicators were treated simultaneously in each

analysis. Some problems involved the use of the ”cylindrical” standard arc-length method

of Crisfield (Crisfield, 1981, 1983, 1997). The first examples relate to nonlinear geometric

problems, being followed by a set of large deformations elasto-plastic numerical examples.

On the linear material examples, two points along the thickness direction are adopted.

5.2.1 Roll-up of a cantilever beam

In this classical nonlinear geometric benchmark, an initially flat clamped beam on one

end is subjected to a (gradually increasing) bending moment on the free end. Starting in

the paper of Simo et al. (1990a) until the more recent works of Zhu and Zacharia (1996);

Betsch et al. (1998); Cardoso (2002); Massin and al Mikdad (2002), to name but a few,

this example has been treated by a variety of authors.

Resorting to the original problem (Simo et al., 1990a), the length of the beam is L = 10,

with width w = 1 and thickness a = 0.1. Material properties involved are the elasticity

modulus E = 1.2 × 107 and Poisson coefficient ν = 0.0. For a specific imposed moment

value of

(
M0 =

2πEI

L

)
, the cantilever free tip performs a complete turn, while the beam

collapses into a perfect cylinder (in the equation before, I represents the second-order

moment of the beam cross-section, in relation to the bending moment direction).

Different mesh configurations are employed by different authors. Nevertheless, in the

present case the choice of Simo et al. (1990a) is adopted. This consists of a mesh with

25 × 1 shell elements, along the longitudinal and width directions, respectively. For both

S4E6P5 and S4E6P7 formulations, the application of the analytical moment stated be-

fore leads to the correct final deformation, as can be seen in Fig. 5.37, where successive

deflection stages are also shown. The final configuration is achieved without the appear-

ance of singularities in the rotation matrix involving the rotational degrees-of-freedom, a

mathematical deficiency that appears in the work of Massin and al Mikdad (2002).



98 Numerical Examples Chap. 5

5.2.2 Torsion of a flat plate strip

This well-known test case (see, for example, Simo et al. (1990a), Cardoso et al. (2002),

Cardoso (2002), among others) involves large rotations and displacements, illustrating the

robustness of the proposed element for this kind of situations. As represented in Fig. 5.38,

a torsional moment is imposed to the midside node on the free edge of a clamped flat plate

strip, in order to impose a final total rotation of 180o 1. The geometric parameters involved

are the length L = 1.0, width w = 0.25 and thickness a = 0.1. Material properties relate

to Young modulus E = 12.0×106 and Poisson coefficient ν = 0.32. The final configuration

is attained in five equally spaced load-steps, with the corresponding displacement stages,

without magnification, being represented in Fig. 5.39. For comparison purposes, Simo et al.

(1990a) provides the best reported result in the literature, reaching the final configuration

after 3 load steps.

5.2.3 Nonlinear geometric analysis of a twisted beam

Motivated by the linear analysis of the twisted beam presented in Section 5.1.7, a geomet-

rically nonlinear simulation of the structure shown in Fig. 5.12 is now performed with the

S4E6P5 shell formulation, employing the coarse 2×12 mesh. To enforce the most demand-

ing situation, both in-plane and out-of-plane loadings are applied simultaneously. All the

geometric, material and boundary conditions are kept the same, but the load level is now

defined as F = 250× λ, with λ ranging from 0.0 to 1.0. This load level (and, additionally,

the coarse mesh employed) is enough to induce large displacement and rotations to the el-

ements involved. The results for the in-plane and out-of-plane displacements components

are presented altogether in Fig. 5.40, and are identical to those provided with S4E6P7

shell element. The maximum load factor is attained in 48 steps, and the final deformed

beam configuration is shown in Fig. 5.41. It is worth noting that Sansour and Kollmann

(2000) also analysed a nonlinear geometric version of the twisted beam, but with different

geometry and mesh topology (2× 24 bilinear shell elements), and only accounting for the

in-plane load component (as in case (a) in Section 5.1.7).

1As far as the knowledge of the author, no specific value of the external moment is defined in the

literature for this particular example and set of properties. Therefore, the value M = 1100.0 was adopted

in this work, corresponding to the moment that causes a 180o rotation in a plate strip simulated in

ABAQUS program, with an equal mesh of S4 shell elements. The total rotation in ABAQUS takes 10

increments to be completely performed.
2Similar analysis with distinct properties were carried out, for instance, in Parisch (1995) and Zhu and

Zacharia (1996).
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5.2.4 Cantilever ring plate

Motivated by the classic work of Basar et al. (1992), a ring plate subjected to a vertical

line load on one end and clamped on the other (Fig. 5.42) is considered. According to

Basar et al. (1992), this test can be considered ”the most sensitive” in the evaluation

of finite rotation models, involving large rigid body rotations and displacements. Other

works dealing with this example are, for instance, Büchter and Ramm (1992); Wriggers

and Gruttmann (1993); Brank et al. (1995); Sansour and Bocko (1998); Li (2000); Li

and Zhan (2000); Sansour and Kollmann (2000). With respect to geometric parameters,

internal radius is Ri = 6 while external radius is Re = 10. Thickness is set constant over

the plate and equal to a = 0.03. The applied distributed line load has a nominal value of

Ftot = 100.0×λ per unit length, where λ is a load factor. Regarding material parameters,

the Young modulus considered is set to E = 2.1×1010 with a Poisson ratio of ν = 0.0.

In the present numerical simulation two meshes were considered: a coarse mesh con-

figuration, with 2×16 elements, and a refined mesh with 6×40 S4E6P5 shell elements

(radial×circumferential direction). For each mesh, the obtained displacements (along OZ)

of points A and B (Fig. 5.42) are compared with those obtained by Simo and Rifai (as

reproduced in Basar et al. (1992)), for a maximum load factor of 2.0. According to the

last work, this limited load factor is enough for comparisons purposes, corresponding to

the load zone with more drastic shape variations. The results for each point are presented

in Fig. 5.43. It is clear the good behavior of S4E6P5 element, even for the less refined

mesh. It is worth noting that the solution, for each mesh, is attained within 12 steps, and

without resorting to an arc-length control procedure (as adopted in Brank et al. (1995)).

The results are also comparable to those obtained with reduced integration procedures

(Cardoso, 2002).

Going further with the maximum applied load, for a total load level of λ = 20 the

final configuration for both meshes, as represented in Fig. 5.44, can be obtained. At these

configurations, displacements for point B are 21.655 and 23.889, for the 2×16 and 6×40

meshes, respectively (over 2 times the external radius value in each case). It is interesting

to note that even with the coarser mesh adopted, this final load level can be achieved.

5.2.5 Snap-through and snap-back analysis

In this case the large rotation response of a pinched cylindrical shell is analyzed. The

shell, schematically represented in Fig. 5.45, is subjected to a concentrated load on point

A. In the figure, L1 = 508.0, L2 = 507.15 and R = 2540.0. Thickness value considered is

a = 6.35. Material parameters are E = 3102.75 and ν = 0.3. The maximum load level

attained is Ftot = 1000.0. Due to the symmetry of the problem, only one quarter of the
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structure is modelled with a mesh of 5×5 S4E6P5 shell elements.

In addition to model the structure with a regular mesh, a perturbation in selected

elements (gray area in Fig. 5.45) is introduced. For this case, a particular node (C in the

figure) is set movable, leading to four distorted configurations each of one including a

different ”collapsed” quadrilateral element, also shown in the figure. To the knowledge of

the author, this kind of strong distortion (and the correspondent influence in the results)

was never before treated in the literature.

The straight edges of the structure are hinged while the curved edges are taken free.

This kind of boundary conditions induces an unstable behavior clearly represented in the

graphic of Fig. 5.46, where displacements of points A and B (along OZ) are represented for

the regular mesh. These are compared with results presented by Horrigmoe and Bergan

(1978), and the good agreement between the two solutions is noticeable. The presented

solution made use of the ”cylindrical” arc-length procedure, being the results also in

agreement with those presented by Crisfield (1981).

For the case of the distorted meshes, the results are presented in Figures 5.47 and

5.48 for points A and B, respectively. When compared with the results from the regular

mesh the deviations are evident (mainly due to the fact that a low number of elements is

employed in the whole mesh). Nevertheless, for the present case, it is noticeable the strong

influence of the distortion level, even when restricted to a narrow area.

5.2.6 Pinched hemispherical shell with non-linear geometric behavior

This problem is an extension of a benchmark problem for linear analysis (MacNeal and

Harder, 1985), and was firstly extended to the non-linear range in the work of Simo et al.

(1990a). After that, a number of authors have extensively treated the problem, such as

Sansour and Bufler (1992); Parisch (1995); Bischoff and Ramm (1997); Betsch et al. (1998);

Sansour and Bocko (1998); el-Abbasi and Meguid (2000); Li and Zhan (2000); Sansour

and Kollmann (2000); Wang and Thierauf (2001), just to name a few of them dealing

with shell formulations. In most of these references, the original results from Simo et al.

(1990a) are quoted, and therefore they are adopted here as the reference for comparison.

In this test case (similar to the one presented in Section 5.1.11), a hemispherical shell

with an 18o hole at the top is subjected to two inward and two outward forces 90o apart.

Due to symmetry, only one-quarter of the structure is analyzed, and a schematic mesh of

8×8 shell elements is represented in Fig. 5.49. A refined mesh consisting of 16×16 elements

is also taken into account.

Material and geometric properties considered are: E = 6.825×107, ν = 0.3, radius

R = 10 and thickness a = 0.04. The load factor is taken to increase from λ = 0.0 until the
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final value λ = 100.0. Although a higher maximum load level might be used, the present

choice provides the better range for comparison with other formulations.

The obtained results are in agreement with those provided by Simo et al. (1990a)

(employing the mixed interpolation of transverse shear strains and the refined mesh of

16×16 elements to achieve the converged solution), and are presented in Fig. 5.50. With

the latter mesh, S4E6P5 shell element shows a very close behavior to the reference one,

with some improvements when compared to the 8×8 mesh. Here, the additional membrane

enhanced variables of formulation S4E6P7 provides better results starting from the coarser

mesh. Anyway, from the figure, it is noticeable the excellent performance both elements.

Although not included in the graphic, the results obtained with S4E6P5 shell element

and those provided by Simo et al. (1990a), both with the coarse mesh of 8×8 elements,

are equivalent.

For the sake of completeness, deformed configurations for both the 8 × 8 and 16 × 16

meshes for the maximum load factor λ = 100.0 are presented in Fig. 5.51. Also in the

figure, the final configuration for a load factor λ = 200.0 and a mesh with 16 × 16 shell

elements is shown.

5.2.7 Pinching of a clamped cylinder

This test problem accounts for a cylindrical shell, fully clamped at one end and subjected

to a pair of concentrated loads at the other (free) end. The two load acts in opposite

directions, and a sketch of the problem is given in Fig. 5.52.

One-quarter of the structure is analyzed with a mapped mesh of 16×16 elements,

following the works of Brank et al. (1995) and Ibrahimbegović et al. (2001). Additionally,

mapped coarser meshes of 8 × 8, 10 × 10 and 12 × 12 S4E6P5 shell elements are also

accounted for. The elastic material properties are E = 2.0685×107 and ν = 0.3. The

length of the cylinder is L = 3.048, with radius of R = 1.016 and thickness a = 0.03. The

nominal load in Fig. 5.52 is Ftot = 1600×λ, where the load factor employed is supposed to

vary between λ = 0.0 to λ = 1.0. The main goal in this numerical test is the monitoring

of the displacement (on the load direction) of point A in Fig. 5.52.

The present results, obtained with the enhanced transverse shear strain method, are

compared with the results of Brank et al. (1995), using a 16 × 16 mesh. In the latter

reference, a four-node degenerated, stress resultant based, shell element with mixed inter-

polation of transverse shear strain was employed. Also results coming from the S4E6P7

shell element, and reported in Fontes Valente et al. (2003) are included. The reason is

that in the latter case, good results were obtained with coarser meshes of 12 × 12 and

14 × 14. Below these values, numerical instabilities arise, following the patterns reported
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for the first time by Crisfield and Peng (1996) in this specific example. From the analysis

of Fig. 5.53, 5.54 and 5.55, it is clear that, for these meshes, S4E6P5 shell element re-

tain those numerical instabilities, with the reproduction of the reference solution for the

16×16 mesh (see Fig. 5.56). In this case, therefore, it is interesting to note the influence of

the lack of the 2 internal membrane enhanced variables when compared to S4E6P7 shell

formulation. For that most refined mesh, the results coming from the two elements coin-

cide, and an evolution of deformed patterns is presented in Fig. 5.57. All tested meshes,

anyway, reproduce displacement levels that go beyond the highest physically possible dis-

placement of the loaded points (which is the radius of the cylinder), being attained with

the ”cylindrical” arc-length procedure.

5.2.8 Stretching of a cylinder with free ends

In this geometrically nonlinear example, the cylindrical shell shown in Fig. 5.58 is sub-

jected to a pair of concentrated forces, inducing large displacements and rotations to the

finite elements. This example involves a combination of membrane and bending defor-

mation modes, and have been analyzed in a number of publications, including Sansour

and Bufler (1992); Peng and Crisfield (1992); Jiang and Chernuka (1994a); Brank et al.

(1995); Sansour and Bocko (1998); Sansour and Kollmann (2000); Masud et al. (2000);

Ibrahimbegović et al. (2001), to name but a few, using with shell and solid elements.

The total length of the shell is L = 10.35, with a radius R = 4.953 and thickness

a = 0.094. Material properties are: Young modulus E = 10.5×106, and Poisson ratio

ν = 0.3125. No boundary conditions are applied to the free ends of the shell, being the

applied load pair responsible for the equilibrium of the cylinder.

Making use of the symmetry conditions, one eighth of the structure is modelled with

two distinct topologies: 12×8 elements (Jiang and Chernuka, 1994a) and 16×8 elements

(Masud et al., 2000) (number of elements along the periphery and along the semi-length,

respectively) with regular meshes. Additionally, a distorted mesh as presented in Fig. 5.58

is analyzed. For this case, 12×8 shell elements are used, the smaller one located next to

the point where the concentrated load is applied. In each direction (periphery and semi-

length) the last element (away from the load point) is characterized by a length 10 times

greater than the smaller one.

The total load in the figure increases until a maximum value of Ftot = 40000×λ. For

the arc-length parameters specified before, the problem can be solved with the S4E6P5

shell element in a total of 29 steps (in order to catch accurately the abrupt path changes

in the displacement evolution). This evolution for points A and B is traced and compared

with the corresponding one obtained by (Jiang and Chernuka, 1994a) and also (Masud
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et al., 2000), with the results being plotted in Fig. 5.59 (for point A) and Fig. 5.60 (for

point B). The final configuration, for the load factor λ = 1.0, with the 12×8 distorted and

16 × 8 regular meshes, is shown in Fig. 5.61.

From both graphs, some conclusions can be attained. Ranging from the coarse to the

most refined (regular) mesh, the solution tends to equal the one obtained by Jiang and

Chernuka (1994a), departing from that of Masud et al. (2000). The reason might be the fact

that the latter authors employed a 3D formulation (with reduced integration procedure

for transverse shear locking), in opposition to Jiang and Chernuka (1994a), who (as in

the present work) adopted a shell formulation (although employing mixed interpolation of

transverse shear components). For the distorted mesh case, the evolution of displacements

remains close to those coming from the regular patterns, not showing excessive deviations.

Still from Fig. 5.59 and 5.60, it is clear that the simulation response of the cylinder

can be divided into two main phases: a first one dominated by the bending strain energy

and characterized by large displacements and rotations; and a second one associated with

a stiffer response coming from membrane strain energy terms. The transition between the

two behaviors presents a localized and abrupt buckling, noticeable mainly over point B.

It is also worth noting that the present solutions for S4E6P5 shell formulation is also in

agreement with results provided by Sansour and Bufler (1992) (in their so-called ”hybrid

strain” formulation), Peng and Crisfield (1992), Brank et al. (1995) and Ibrahimbegović

et al. (2001), although in these cases no localized buckling was tracked (being, however,

reproduced in the recent work of Sansour and Kollmann (2000), employing an enhanced

formulation). For the sake of completeness, the maximum physically acceptable load factor

(for which the displacement of point B in Fig. 5.58 equals the radius value) corresponds

to λ = 1.74, and the overall presented results are equivalent to those using the S4E6P7

formulation (Fontes Valente et al., 2003).

5.2.9 Elasto-plastic bending of a clamped beam

In this very simple example a cantilever beam with elasto-plastic behavior is analysed. The

length to thickness ratio is L/a = 100, corresponding to the test case previously analysed

by Dvorkin et al. (1995) and subsequently by Eberlein and Wriggers (1999), among others.

The geometry of the beam is characterized by the length L = 10, thickness a = 0.1

and width w = 1.0. The beam is clamped on one end, being subjected to concentrated

loads on the (opposite) free edge (Fig. 5.62). Material properties refer to a Young modulus

E = 1.2× 107, Poisson coefficient ν = 0.3, initial yield stress σy0 = 2.4× 104 and isotropic

hardening coefficient Hiso = 1.2 × 105, (for a linear hardening law of the type σy (εp) =

σy0 + Hisoε
p). Following Dvorkin et al. (1995), the adopted mesh consists of 20 equally-
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spaced S4E6P5 shell elements along the longitudinal direction of the beam. This is also in

accordance with Eberlein and Wriggers (1999), for its so-called ”5–parameter” formulation

(with an inextensible director field and no drilling degrees-of-freedom).

With the main parameters defined, the displacement of the free end is monitored (as

a function of the applied external load) and compared to those presented in the cited

references (Dvorkin et al., 1995; Eberlein and Wriggers, 1999). The resulting graph for the

present simulation is presented in Fig. 5.63. The agreement between all the formulations

is noticeable. For the sake of completeness, it is important to refer the quadrature rule

for the numerical integration in the out-of-plane direction. In the work of Dvorkin et al.

(1995), 4 Gauss points are considered along the thickness direction, while the use of 5

integration points is invoked by Eberlein and Wriggers (1999). About the present work, 5

Gauss points along thickness direction are considered.

5.2.10 Elasto-plastic stretching of a short cylinder with free edges

In this test case, the cylindrical shell of Section 5.2.8 is again analysed. As stated before,

previous formulations tackling this example include, among others, the works of Peng

and Crisfield (1992), Sansour and Bufler (1992), Jiang and Chernuka (1994a), Brank

et al. (1995), Masud et al. (2000) and Ibrahimbegović et al. (2001). In all these cases,

only geometric nonlinearities were considered, while the nonlinear material analysis have

previously been considered by Masud and Tham (2000). Data and results from this last

work will be treated as the reference for comparisons in the following.

The initial configuration corresponds to the cylindrical geometry already presented in

Section 5.2.8 (see Fig. 5.58), involving a total length of L = 10.35, radius of R = 4.953 and a

constant thickness value a = 0.094. Material properties are: Young modulus E = 10.5×106,

and Poisson’s ratio ν = 0.3125. As said before, no boundary conditions are applied to the

free ends of the shell, with the load pair being responsible for the equilibrium of the

cylinder. Plastic parameters are the initial yield stress σy0 = 1.05 × 105, and a linear

isotropic hardening coefficient of Hiso = 10.5 × 105. Mesh topology differs from that of

Section 5.2.8, following now the proposal of Masud and Tham (2000), that is: 16 × 8

S4E6P5 enhanced shell elements (now restricted to the regular mesh). The numbers once

more relate to elements along the periphery and the semi-length directions, respectively.

The external load level for this elasto-plastic example corresponds to Ftot = 40000×λ,

where λ ranges from 0.0 until 1.0. Results for the deflection of points A and B in Fig.

5.58, as a function of the λ parameter, are given altogether in Fig. 5.64. In the work of

Masud and Tham (2000), a mesh of 16 × 8 × 2 three-dimensional elements with reduced

integration was employed.
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This example is characterized by two well-defined deformation zones: an initial part

which is bending-dominated; and the final part, with deformations mainly coming from

membrane effects. In the initial region, characterized by large rotations and displacements,

the S4E6P5 formulation is almost coincident with the reference one. After the buckling

point, visible in the graph of Fig. 5.64, the proposed shell formulation tends to present

a softer response when compared to the continuum-like (3D) elements presented by Ma-

sud and Tham (2000). Contrasting with the constant load increments procedure of these

authors, in the present example the ”cylindrical” arc-length control procedure was used,

with implementation following the general guidelines of Crisfield (Crisfield, 1981, 1983),

and including the refinements introduced by de Souza Neto and Feng (1999). The overall

deformation path is completed in 29 load (arc-controlled) steps, in opposition to the 140

employed by Masud and Tham (2000).

5.2.11 Channel-section beam with plasticity

A channel-section (U-shaped) beam, clamped at one end and subjected to a concentrated

force at its free end, is now analysed. The geometry is according to Fig. 5.65, where values

for length, width, height and thickness of the beam follow those originally proposed by

Chroscielewski et al. (1992). Well-known works following with the treatment of this prob-

lem within shell formulations are, for instance, (Ibrahimbegović and Frey, 1994; Betsch

et al., 1996; Eberlein and Wriggers, 1999; Li and Zhan, 2000). All of these formulations

employ drilling degrees-of-freedom. Particularly in the case of Betsch et al. (1996), the

folded zones of the plate are modelled with rigid intersections accounting for 3 rotational

degrees-of-freedom. Also for these formulations, only non-linear geometric analyses were

performed, exception being the work of Eberlein and Wriggers (1999), where for the first

time elasto-plasticity were accounted for. Therefor, data parameters and results coming

from Eberlein and Wriggers (1999) will be taken as the reference ones, for the present

work.

In this sense, an initial yield stress σy0 = 5.0× 103 and isotropic hardening coefficient

Hiso = 0.0 (perfect plasticity) were adopted. The director update procedure invoked in

the present work – along with the inextensibility condition – are similar to the procedures

adopted in the so-called ”5/6–parameter” formulation of Eberlein and Wriggers (1999)

(pages 247-248). The main difference remains in that S4E6P5 shell element does not

include drilling rotations in its formulation, treating in the same way smooth and folded

thin plates or shells. According to the conclusions of Eberlein and Wriggers (1999), such

a formulation would ”completely fail in the present example”. However, the behavior

of the proposed enhanced strain element is quite acceptable (mainly in the combined
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elasto-plastic non-linear geometric case), as can be clearly seen in Fig. 5.66, where the

displacement of the loaded node (in the direction of F in Fig. 5.65) is shown graphically,

both for only geometric (nlgeom) and geometric plus material (nlgeom+ep) non-linearities.

In reference Eberlein and Wriggers (1999), a mesh consisting of 24×72 shell elements was

considered, while in the present work 24 × 36 S4E6P5 elements were adopted (further

mesh refinements have given the same results). About the number of load steps in each

analysis, the non-linear geometric path was achieved in 56 increments, compared to 90 for

the full geometric and material non-linear behavior. In both cases, the ”cylindrical” arc-

length control procedure was employed. It is also worth mention that just two Gauss points

along thickness direction were adopted (contrasting with the formulation of Eberlein and

Wriggers (1999), employing five Gauss points along thickness direction).

As advanced by Eberlein and Wriggers (1999), equivalent plastic strain peaks occur

near the clamped end of the structure, and start in the early stages of loading. With the

increase of deformation, however, residual plastic zones along the longitudinal direction

of the beam appear, as can be seen in Fig. 5.67, where the deformed configuration for an

absolute displacement of 1.471 (of the loaded node point) is represented.

5.2.12 Elasto-plastic analysis of a simply-supported plate

In this example, a simply-supported square plate is subjected to a set of pressure loads, as

shown schematically in Fig. 5.68. This example has been treated in a number of references,

including shell and solid-shell formulations and adopting a number of mesh topologies –

see, for instance, (Büchter et al., 1994; Miehe, 1998; Eberlein and Wriggers, 1999; Betsch

and Stein, 1999; Hauptmann et al., 2000; Doll et al., 2000; Harnau and Schweizerhof,

2002). About Fig. 5.68, and following the previous references, the total length of the plate

is 2L = 508, with thickness a = 2.54 consistent unities. Only one quarter of the plate needs

to be analysed, due to symmetry. Material behavior is described by a Young’s modulus

E = 6.9×104, Poisson’s ratio ν = 0.3, initial yield stress σy0 = 248 and isotropic hardening

coefficient Hiso = 0.0 (for a linear hardening law of the type σy (εp) = σy0 + Hisoε
p). For

each simulation just 2 Gauss points along thickness direction are employed, once for a

higher interpolation order the same results were obtained. For comparison, Eberlein and

Wriggers (1999) adopt five Gauss points along thickness direction, while Doll et al. (2000)

and Harnau and Schweizerhof (2002) invoke 6 integration points. About boundary and

loading conditions, displacements along the OZ direction are restrained on the outer edges,

while a deformation dependent pressure load p = f × p0 is applied on one side of the shell,

for a nominal load level of p0 = 10−2.

In the present work, 4 mesh topologies were adopted to attest the convergence behavior
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of the proposed enhanced strain formulation: a first coarser mesh consisting of equally-

spaced 15 × 15 S4E6P5 shell elements (as represented in Fig. 5.68); a second mesh with

the same number of elements but refined towards the outer corners (as adopted by Eber-

lein and Wriggers (1999)); a third mesh consisting of 24 × 24 regularly spaced elements

(following Betsch and Stein (1999)) and a last, extremely refined, mesh with 1375 ele-

ments, as recently suggested by Cardoso et al. (2002). The last 3 meshes are schematically

represented in Fig. 5.69.

Figure 5.70 shows the load-deflection curve, for a maximum load factor (f = 60.0),

with the corresponding out-of-plane deflection of the central point of the plate (point C in

Fig. 5.69). Results are compared to those provided by Eberlein and Wriggers (1999) and

Betsch and Stein (1999). Within the analysed meshes, all of them converge to the solution

presented by Betsch and Stein (1999). The only exception is the regular mesh with 15×15

shell elements, and just for the range of displacement between 30 to 65 consistent unities,

where the present solution approach the one by Eberlein and Wriggers (1999). However,

the overall behavior obtained with S4E6P5 shell element is quite good.

More insight into this problem can be obtained with the analysis of the deformed

configuration (f = 60.0) for each mesh, as represented in Figures 5.71, 5.72, 5.73 and 5.74.

The deformed structures assume a ”pillow-like” configuration, with the elements in the

corner zones being subjected to a high level of out-of-plane distortions (naturally more

visible with the regular mesh of 15×15 elements). From the plots of the equivalent plastic

strain levels, it is noticeable the onset of their maximum values in the corner zones of the

plates. The number of load increments necessary to reach the load factor (f = 60.0) are:

44 for the 15 × 15 regular mesh; 47 for the 15 × 15 refined mesh; 54 for the 24 × 24 mesh

and, finally, 56 for the 1375 shell element’s mesh. Also from the figures, it is possible to

assess some level of mesh dependency of the equivalent plastic strain numerical values, an

interesting aspect which is not addressed in the previous references.

A deeper insight of the structural behavior can be further retained with the increase

of the load factor applied to the pressure loads. In Fig. 5.75, six deformation stages of

the plate (viewed from the top) are represented, for the refined mesh of 1375 elements.

The first one (Fig. 5.75, (a)) represents the deformed plate for a load factor (f = 285.4).

At this stage, the out-of-plane displacement verified for point C (Fig. 5.69) is equal to

121.4 consistent unities. More relevant than this is the fact that, at this load factor, it

can be verified the onset of wrinkles at the mid-side of each plate’s edge. With a further

increase of the load factor, this phenomenon is even more noticeable, as represented in the

sequence on Fig. 5.75(b) (load factor f = 386.8), Fig. 5.75(c) (load factor f = 479.9) and

Fig. 5.75(d) (load factor f = 557.6), corresponding to central point displacements of 131.6,
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140.5 and 149.0, respectively. Above this load level, and with an even higher load factor,

the plate is only able to accommodate more deformation if adopting a spherical shape. The

corner zones of the plate (still those with higher levels of plastic strains) tend, therefore,

to assume a rounded shape (losing their sharp aspect still visible on Fig. 5.75(a), (b) and

(c)). The spread of plastic areas is noticeable, starting in configuration (b), with the plate,

for the final two steps (Fig. 5.75(e) and (f)), virtually covered by plastic zones as a whole.

Displacement of the central point for the last two configurations is equal to 157.0 and

164.5, for load factors of (f = 600.7) and (f = 635.5), respectively. Dimetric projections of

configurations at load levels (a), (c) and (f) are reproduced in Fig. 5.76, where the final

rounded shape of the plate can be further observed.

5.2.13 Pinched cylinder including elasto-plasticity

This last example deals with a cylindrical shell, subjected to a pair of concentrated loads

and bounded by rigid diaphragms on its extremities. It is a common benchmark in shell

and solid-shell elements technology, and have been treated by a number of authors (firstly

by Simo and Kennedy (1992) and after that, for instance, with Wriggers et al. (1996);

Brank et al. (1997); Sorić et al. (1997); Miehe (1998); Eberlein and Wriggers (1999);

Sansour and Kollmann (2000)). In the present work, the problem will be considered in the

same way as stated in the last references, particularly following Miehe (1998) and Eberlein

and Wriggers (1999).

The initial geometry of the shell is as illustrated in Fig. 5.77, where the mesh area

is just one eight of the cylinder, due to symmetry reasons. Geometrical data refer to the

whole length of the cylinder L = 600, the radius R = 300 and thickness a = 3. The

rigid diaphragm boundary condition acts in a way that only displacements along the

OY direction are allowed in the cylinder free-ends. Material properties are the elasticity

modulus E = 3000.0, Poisson’s coefficient ν = 0.3, initial yield stress σy0 = 24.3 and

isotropic hardening coefficient Hiso = 300.0, for the same linear hardening law used in the

previous examples.

After Miehe (1998) and Eberlein and Wriggers (1999), a mesh consisting of 32 × 32

S4E6P5 shell elements is employed. In the present work, however, the previously referred

incremental load controlled procedure, based on the Newton-Raphson method with the

”cylindrical” arc-length control, is used (in contrast to the works cited before, which

employed displacement controlled advance methods to ensure stable convergence).

In Fig. 5.78 the displacement of the loaded node is monitored and plotted against the

total load level F in Fig. 5.77. For the same mesh, and as said before, the results coming

from the presented elasto-plastic formulation applied to the S4E6P5 enhanced strain shell
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element are compared to the solid-shell formulation proposed by Miehe (1998) and to the

”5–parameter” shell formulation of Eberlein and Wriggers (1999). The results are almost

coincident in the major displacement range, with the present element being slightly more

flexible for displacements greater than 175 consistent unities (being in accordance with

results obtained by Wriggers et al. (1996) for a 3D formulation – not shown in the figure).

Even dealing with a load control procedure, convergence is easily achieved, with the whole

displacement path being covered in 108 (automatically incremented) load steps. For the

sake of completeness, evolution of the equivalent plastic strain, in successive deformation

states, is shown in Fig. 5.79.

5.3 Enhanced solid-shell elements - Non-linear problems

In this section, the performance of the HCiS12 enhanced solid-shell element is evaluated

in the non-linear range. An extensive treatment of linear problems has been previously

carried out by Alves de Sousa et al. (2003a), for a set of classical benchmarks in shell finite

element analysis, not being covered in the present work.

5.3.1 Thick-wall sphere problem with geometric nonlinearity

Enhanced strain methods are known to provide non-stable response in the nonlinear range

for large homogeneous compressive strain states. This pathology has been identified by a

number of authors, with a sound analysis being carried out initially by Wriggers and Reese

(1996) and, subsequently, in references (Korelc and Wriggers, 1996; Reese et al., 1999;

Reese and Wriggers, 2000; Reese, 2002, 2003), to name but a few. The common point in

all these works is the focusing on plane-strain and full three-dimensional problems.

As the formulation for the present case, on the other side, is devoted to simulation of

typical shell problems, the analysis of a (free) thick-wall sphere subjected to an internal

pressure field was chosen in order to attest the level of occurrence of numerical instabilities

in compression loading cases.

The problem is accounted for following the guidelines of Kasper and Taylor (2000), who

considered a geometrically linear, nearly incompressible, problem. In the present work,

material, boundary conditions and geometric data are kept the same (elastic modulus

E = 250, inner radius Ri = 7.5, external radius Re = 10.0 and a varying Poisson’s ratio

ν). However, a nonlinear geometric behavior is now also taken into account, altogether

with a higher pressure load (internal pressure p = 2.0). Mesh topology also follows the one

presented in reference (Kasper and Taylor, 2000), being reproduced in Fig. 5.80, where a

symmetric (undeformed) one-eight of the total volume is depicted.
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The evolution of the radial displacements with the Poisson’s ratio, for nodes located

at both the internal and external radius, is shown in Table 5.12. Apart from the variation

of the results as incompressibility condition is progressively achieved, it is worth reporting

that, for values of ν ≥ 0.49999999, convergence is completely lost and hourglass patterns

appears (even for the relatively low displacement values involved).

5.3.2 Elastic large deflections (membrane) bending problem

This example relates to the analysis of a clamped beam which is loaded by a transverse

force F = 1000 on its free edge (see, for instance, references (Simo et al., 1990a,b)).

The resultant in-plane bending deformation is reproduced using a mesh of 10 solid-shell

elements, in both regular and distorted patterns (Betsch et al., 1996; Miehe, 1998). The

elastic properties refer to a bulk modulus of κ = 83.33×105 and a Lame’s parameter of µ =

38.46×105, whilst the geometry is characterized by the relationship height/width/length

of h/w/l = 0.1/0.1/1.0 consistent units.

In order to infer the effect of mesh distortion in the nonlinear geometric range, three

meshes are considered as represented in Fig. 5.81. The first two meshes are defined follow-

ing the previous references, the skewed pattern of the second mesh obtained, in the present

work, with the translation of nodes (0.05 unit) along the beam axis. A third mesh is taken

into account (coming from the 90o rotation of the second one) in order to evaluate a real

tridimensional mesh distortion level. The load-deflection curves for the displacement of

nodes A and B is presented in Fig. 5.82 and compared to the solution presented by Simo,

Fox and Rifai (Simo et al., 1990a,b). For the shown meshes the results are almost the same,

being in good agreement with those presented in the last references. It is worth noting

that results with HCiS12 solid-shell element also correspond to those obtained by Miehe

(Miehe, 1998) (with a solid-shell enhanced+assumed strain formulation) and by Betsch et

al. (Betsch et al., 1996) (using a bilinear shell formulation incorporating extensibility of

the director field and also enhanced strains).

5.3.3 Elastic large deflections (out-of-plane) bending problem

Consider now an elastic cantilever beam with length L = 10 and rectangular section with

constant width w = 1, clamped in one end and subjected to (out-of-plane) point loads

on the opposite (free) end. This example has been treated by a number of authors, either

with extensible-director shell or solid-shell formulations, such as in (Simo et al., 1990b),

(Büchter et al., 1994), (Parisch, 1995), (Miehe, 1998) and (el-Abbasi and Meguid, 2000),

among others.
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Following the last two references, the thickness of the beam is taken as a = 0.1, and

the material properties are defined as E = 107 and ν = 0.3. The external load considered

has a constant value of F = 40×λ, where for the present case λ is a geometrical factor,

function of the thickness, and defined as (λ = 103×a3). In the present work three mapped

meshes were considered, with 10, 16 and 20 HCiS12 elements along the length direction.

For the small deformation theory, a solution of 16.0 consistent unities for the tip

displacement can be advanced (el-Abbasi and Meguid, 2000), according to linear beam

theory. In this case, HCiS12 element gives results of 15.820 (10 elements’ mesh), 15.880

(16 elements’ mesh) and 15.890 (20 elements’ mesh).

In case of large rotations and displacements, the same load level as before is now

applied in 10 equal steps, as proposed by el-Abbasi and Meguid (2000). Following this

reference, solutions are compared to a theoretical one, coming from the work of Frisch-Fay

(1962). The analysis of the present results for the three meshes and the theoretical one

is presented in Fig. 5.83. For the three meshes, it is noticeable the performance of the

proposed element, with solutions in good agreement with the reference one. Still referring

to the work of el-Abbasi and Meguid (2000), no Poisson’s locking appears with HCiS12

element in this test case.

Focusing on the 16×1×1 mesh, and based on the proposal of Hauptmann et al. (2000),

a set of numerical analysis with different Poisson’s ratio is carried out. The load level is the

same as before, being likewise applied in 10 equal steps. The results presented in Fig. 5.84

clearly show a virtually insensitivity of the load-deflection curve for the various Poisson’s

coefficients presented.

5.3.4 Nonlinear geometric pinching of a clamped cylinder

In this test problem an elastic cylindrical shell, fully clamped at one end, is subjected to a

pair of concentrated loads at its free end. Following references dealing with shell elements,

such as Stander et al. (1989); Brank et al. (1995); Ibrahimbegović et al. (2001); Fontes

Valente et al. (2003) and, more recently, Sze et al. (2004), a regular mesh of 16×16 elements

is employed (Fig. 5.85). An additional mesh topology with 20×20 solid-shell elements over

the mid-surface of the cylinder is also considered. In both cases, only 1 element along the

radial direction is employed. For the sake of comparison, Sze et al. (2004) analyses the

performance of Abaqus shell element S4R (ABAQUS, 2002a), obtaining reliable results

with mesh topologies consisting of 32×32 and 40×40 elements.

Elastic constitutive parameters are Young modulus E = 2.0685× 107 and Poisson

coefficient ν = 0.3. The length of the cylinder is L = 3.048, with mean radius of R = 1.016

and thickness a = 0.03. Nominal load in Fig. 5.85 is Ftot = 1600×λ, where the load factor
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employed is supposed to vary between λ = 0.0 to λ = 1.0. Due to symmetry, only 1/4 of

the structure needs to be meshed.

The results obtained with HCiS12 element for the deflection of the point under the

concentrated load is represented in Fig. 5.86, and compared to those of Brank et al. (1995).

The value of the cylinder radius is highlighted in the picture, establishing the physical limit

of the deformation. From the last picture it is clear that the refined mesh of 20×20×1

is necessary in order the results can be in good agreement with those from the reference.

However, the overall predictive capability of the presented solid-shell formulation in an

example traditionally analyzed with shell elements is worth noting. In Fig. 5.87 successive

deformed equilibrium configurations at different load stages are shown for the coarser

mesh over one half of the cylinder, until a value of displacement near its radius.

5.3.5 Unstable behavior of a shallow roof structure

In this classical shell example, the snap-through and snap-back load-displacement path of a

cylindrical shell is analyzed (see references Horrigmoe and Bergan (1978); Crisfield (1981);

Surana (1983); Oliver and Oñate (1984); Sansour and Bufler (1992); Cho et al. (1998);

Eriksson and Pacoste (2002); Massin and al Mikdad (2002); Fontes Valente et al. (2003);

Sze et al. (2004), to name but a few) . The structure, schematically represented in Fig. 5.88

(not on scale), is mapped with 5×5 HCiS12 elements over one-quarter of its mid-surface,

along with 2 elements in the thickness direction. The imposition of these two elements is

related to the proper reproduction of the hinged support over the straight edges. About

the input data for this problem, linear dimensions are L1 = 508.0 and L2 = 507.15, with

a nominal radius R = 2540.0 and thickness value of a = 6.35. Material parameters are

E = 3102.75 and ν = 0.3. The maximum load level attained is equal to Ftot = 1000.

The displacement along OZ direction for points A and B is reproduced in Fig. 5.89,

plotted against the reference load level and compared to the solution advanced by Horrig-

moe and Bergan (1978), coming from a shell formulation. It is noticeable the agreement

between both solutions, with the proposed approach spanning the whole nonlinear range

in a total of 39 arc-length controlled steps.

A deeper insight into the performance of the HCiS12 solid-shell element can be ob-

tained by comparisons with the results coming from the hexahedral finite element pro-

posed in the work of Areias et al. (2003a) (detailed in Areias et al. (2003b)). The latter

formulation is also based on the EAS method, but now relying on the use of 18 internal

variables per element, being similar to the HCiS18 solid element on Chapter 3 (references

Alves de Sousa et al. (2003a,b); Alves de Sousa (2003c)), in the sense that derivatives of

a bubble-function are employed in the enhanced strain-displacement matrix.
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Back to the example in analysis, in the work of Areias et al. (2003a) a slightly more

refined mesh, consisting of 6×6×2 elements, is adopted. The corresponding displacement-

load path is presented in Fig. 5.90, where it is visible the close correspondence between the

results coming from Areias et al. (2003a) and those obtained with the solid-shell element

HCiS12 , no matter the lower number of internal variables of the latter formulation.

5.3.6 Geometric- and material- nonlinear analysis of a pinched hemi-

spherical shell

The well-known nonlinear geometric hemispherical shell test case, introduced by Simo et

al. (1990a), is now considered with the inclusion of elastoplastic effects. This combined

nonlinear behavior has been previously investigated by Masud and Tham (2000), based

on a class of reduced integrated solid elements (Liu et al., 1998; Masud et al., 2000).

According to reference (Masud and Tham, 2000), geometric and elastic parameters, as

well as restraint conditions, are kept the same as in the work of Simo et al. (1990a), while

a new set of plastic properties in coherent unities (initial yield stress σy0 = 6.825×105;

isotropic linear hardening factor Hiso = 6.825×106 ) are now introduced.

In (Masud and Tham, 2000), a maximum load level of F = 400.0 is proposed (in

opposition to the value of 200.0 in (Simo et al., 1990a)), along with mapped meshes of

16×16×2 and 18×18×2 elements. For the sake of comparison, the results using the last

topology are included in this work.

In the present simulation, a coarser mesh of 16×16×1 HCiS12 solid-shell elements

was adopted. The results obtained for the displacement along the OX and OY directions

(traction and compression external loads, respectively) are represented in Fig. 5.91. It is

noticeable the good correspondence between the present and reference results, even with

the lower number of elements in the earlier case. It is also worth noting that the complete

deformation path is obtained in 20 steps, 5 times less than the number of increments

adopted by Masud and Tham (2000). The deformed configuration for the maximum load

level is shown in Fig. 5.92.

5.3.7 Elastic and elastoplastic stretching of a short cylinder with free

ends

A cylindrical shell is submitted to a pair of concentrated forces, inducing large displace-

ments and rotations to the elements. A schematic representation is presented in Fig. 5.93

where, due to symmetry reasons, only one octant of the hole shell is showed. Previous

publications dealing with this example include, among others, the works of Peng and Cr-

isfield (1992), Sansour and Bufler (1992), Jiang and Chernuka (1994a), Brank et al. (1995),
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Masud et al. (2000), Ibrahimbegović et al. (2001) and Fontes Valente et al. (2003). In all

of these cases, only geometric nonlinearities were taken into account, whereas a nonlinear

material analysis has previously been considered in the work of Masud and Tham (2000).

The starting point relies on an initially cylindrical geometry characterized by a length

of L = 10.35, radius of R = 4.953 and a constant thickness value a = 0.094. Material

properties are: Young modulus E = 10.5×106, and Poisson’s ratio ν = 0.3125. No boundary

conditions are applied to the free ends of the shell, being the load pair responsible for the

equilibrium of the cylinder. Plastic parameters are the initial yield stress σy0 = 1.05×105,

and a linear isotropic hardening coefficient of Hiso = 10.5×105, as adopted in reference

(Masud and Tham, 2000).

Mesh topologies are analogous to those employed in (Fontes Valente et al., 2003),

that is: 12×8×1 HCiS12 elements, regular and distorted, and also 16×8×1 elements

(regular only). The numbers relate to elements along the periphery, the semi-length and

radial directions, respectively. In Fig. 5.93, the distorted pattern with 12×8×1 elements is

schematically represented. The main goal is to evaluate the effects of mesh distortions in

the final solution of the proposed solid-shell element. For this distorted mesh, the element

most far away from the load point is 10 times larger than the smaller one.

The maximum load level, both for the elastic and elasto-plastic cases, is Ftot = 40000×λ,

where λ ranges from 0.0 until 1.0. Results for the deflection of points A and B, as a function

of the λ parameter, are given respectively in Fig. 5.94 and 5.95 (for the purely nonlinear

geometric case) and in Fig. 5.96 and 5.97 (for the elasto-plastic nonlinear geometric case).

For the present HCiS12 element, all curves were obtained with the arc-length procedure,

as stated before, in a total of 26 automatic load steps.

In both the elastic and elasto-plastic cases, the present solution tends to follow the one

obtained in (Masud et al., 2000) and (Masud and Tham, 2000), but with less elements.

For the coarser meshes, in the elastic case, there is a deviation of results when compared

to the earlier reference. It is also interesting to note, for this example, the increase in

displacements when distorted elements are employed, in opposition to what happened with

the enhanced shell elements (see Figures 5.59 and 5.60). For the refined mesh employed,

the results are acceptable either in the elastic and elasto-plastic regimens, still keeping a

lower number of increments to achieve the full deformation path.

Once again it would be interesting to compare the results obtained with the HCiS12

solid-shell element with those coming from the work of Areias et al. (2003a). In the latter,

only the elastic nonlinear geometric configuration was analyzed, with the aid of a regular

mesh consisting of 16×8 ×2 elements, each one with 18 element-wise EAS variables.

Results for points A and B are shown in Fig. 5.98 and 5.99, respectively, for the load range
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of interest, following the proposal of Masud et al. (2000) and Masud and Tham (2000),

and the references herein. It can be seen that the HCiS12 element results are comparable

to those presented by the solid-shell element from Areias et al. (2003a), even (for that

case) involving less elements in the mesh and less internal variables in each element.

5.3.8 Elasto-plastic analysis of a simply supported plate with pressure

loads

In this test case the inflation of a square plate is analyzed. This example has been treated

before in a number of references, including Miehe (1998); Betsch and Stein (1999); Eber-

lein and Wriggers (1999); Doll et al. (2000); Hauptmann et al. (2000) and Harnau and

Schweizerhof (2002). Along these references, a variety of mesh topologies is employed,

while in references (Doll et al., 2000; Harnau and Schweizerhof, 2002) a higher number of

Gauss points (6) is employed for the integration in thickness direction.

The geometric properties for this test are defined by the relations

length/width/thickness of 508/508/2.54 consistent unities (Betsch and Stein, 1999).

The plate is submitted to an uniformly distributed load of p = 60 p0, where p0 = 10−2.

Material properties are given as E = 6.9×104, with a perfectly plastic law characterized

by an initial yield stress of σy0 = 248 (Hiso = 0). Boundary conditions only restrain

the displacements in the direction normal to the plate, being applied to just the lower

nodes of the mesh (defined over one quarter of the plate). Do to this fact, it is valid

the occurrence of a sort of ”edge-rotations” and, as the pressure value increases, the

plate assumes a ”pillow-type” deformation mode, changing from a bending dominated

deformation (in the beginning) to a membrane dominated one.

From the meshes available for comparison, a 15×15×1 topology, refined in the corners

(inspired by Eberlein and Wriggers (1999)) and a second one with 24×24×1 mapped

elements (following Betsch and Stein (1999)) are adopted. The so-called ”6-parameter”

formulation on reference (Eberlein and Wriggers, 1999) is the one chosen for comparison

purposes. For both meshes, the maximum load level is attained in 45 load steps, and

the resulting out-of-plane displacement curves are shown in Fig. 5.100, where the central

node of the plate was monitored. It can be seen that the present results are in agreement

with both reference solutions, although the predictive capability of few HCiS12 elements

approaches the values obtained with the refined mesh, even with a two-point integration

rule across thickness direction. The deformed configurations for the full load and both

meshes are represented in Fig. 5.101.

As carried out in some of the previous examples, some conclusions can be taken from

the comparison of results coming from the present HCiS12 solid-shell element and the
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one from the work of Areias et al. (2003a), accounting for more internal variables. In

the latter reference, a mapped mesh consisting of 24×24× 1 elements is considered, with

the corresponding results been shown in Fig. 5.102. In the figure, results coming from

the work of Eberlein and Wriggers (1999) are kept for reference. It is interesting to note

that the formulation presented by Areias et al. (2003a), still with more internal variables

per element, provided results (for this example) stiffer than the ones obtained with the

HCiS12 solid-shell element. In fact, the load-displacement curve coming from the last

reference (with the refined mesh of 24×24× 1) is comparable to the one obtained with

15×15× 1 HCiS12 elements. Nevertheless, it is worth remembering that, from Fig. 5.100,

results obtained with the HCiS12 element are in accordance to those referred to by Betsch

and Stein (1999), using a shell formulation.

As carried out with the shell version of this example (Section 5.2.12), the increase of the

pressure level over the plate tend to induce the appearance of wrinkles, shown in its onset

on Fig. 5.103. This phenomenon was also related by Areias et al. (2003a), although with a

deformed configuration presenting just one wrinkle at each mid-side of the inflated plate,

whereas in the present case two wrinkles are formed, in the same pattern as happened

within the presented shell formulation (see example at Section 5.2.12).

5.3.9 Elasto-plastic nonlinear geometric response of a pinched cylinder

This example deals with the elastoplastic deformation of a thin-walled cylinder, submitted

to a pair of concentrated forces. It is a classical test to analyze the behavior of finite

element in problems involving localized plasticity and strong shape modifications. Earlier

works dealing with this problem includes the contributions of Simo and Kennedy (1992),

Wriggers et al. (1996), Hauptmann and Schweizerhof (1998), Miehe (1998), Eberlein and

Wriggers (1999) and Wagner et al. (2002), among others.

For the present case, comparisons will be carried out with the results presented in ref-

erences (Wriggers et al., 1996) and (Miehe, 1998). Following these guidelines, the cylinder

geometry is characterized by a relation radius/thickness/length of 300/3/300 consistent

unities, respectively. The boundary conditions are such that the circular shape of the

cylinder’s end is preserved although free deformation in longitudinal direction is allowed.

Once each element has upper and lower nodes, a ”hard support”, in the sense of Wag-

ner et al. (2002), is considered. A von Mises yield criterion is assumed, with yield stress

σy0 = 24.3 and a linear isotropic hardening parameter Hiso = 300. Elastic parameters are

κ = 2500 and µ = 1154 (Miehe, 1998). Two discretization models were accounted for: a

coarse mesh of 16×16×1 elements (Wriggers et al., 1996; Wagner et al., 2002) and a finer

one with 32×32×1 elements (Wriggers et al., 1996; Miehe, 1998; Eberlein and Wriggers,
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1999), applied over one eighth of the cylinder, benefiting from symmetric geometry. The

simulation is performed in a load-controlled way and the whole path is covered, with the

arc-length method, in 65 steps for both meshes. The obtained results for the displacement

value in the external load direction (against this same load) are presented in Fig. 5.104.

For both meshes, a good agreement between the present and reference results is obtained.

For the refined mesh, the HCiS12 element agrees quite well with the results presented in

the work of Miehe (1998). It is also worth noting that the apparent ”snap-through” behav-

ior noticeable in the 16×16×1 mesh almost disappear with the adoption of the 32×32×1

mesh, reproducing a mesh-dependent behavior already pointed out by Hauptmann and

Schweizerhof (1998).

In a way similar to the example before, comparisons are carried out between the

present HCiS12 solid-shell element and the solid element introduced by Areias et al.

(2003a), both grounded on the EAS approach. For completeness, results coming from the

shell formulation proposed by Eberlein and Wriggers (1999) are also taken into account,

being presented in Fig. 5.105. In a way similar to the last example, the 18-internal variable

based element from Areias et al. (2003a) seems to behave in a way stiffer than both the

HCiS12 solid-shell and the shell formulation of Eberlein and Wriggers (1999), namely in

the final stages of deformation. A remarkable point in the element coming from Areias et

al. (2003a), for the present example, is the lack of instabilities in the load-deflection path

for the coarse mesh presented by those authors (16×16×1 solid elements). Nevertheless,

this numerical effect do disappear with mesh refinement, as can be clearly seen by the

behaviour of the HCiS12 solid-shell element and from the work of Eberlein and Wriggers

(1999), for more refined meshes.

Finally, in Fig. 5.106 a sequence of deformed configurations for the adopted meshes is

presented, starting from the undeformed point and ranging until the physically acceptable

displacement value of 300 consistent unities (equal to the cylinder radius).

5.4 Industrial applications

5.4.1 Hydro-bulge forming of a circular plate including anisotropy

This example is a well-known and useful test to determine stress vs. strain curves as

well as forming limit diagrams for a given material, being also adopted on the validation

of anisotropic models. In this case, and although the geometric, loading and boundary

conditions could induce symmetric strain contours with deformation, anisotropic prop-

erties of the 2008-T4 Aluminum alloy analyzed will inevitably lead to differences from

purely isotropic plasticity models. For the latter case, approximate analytical solutions
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are available (Marciniak et al., 2002). The chosen anisotropic constitutive model follows

the criterion proposed by Barlat et al. (1991) for aluminum alloys, while implementation

details are according the works of Parente (2003) and Parente et al. (2004).

The bulge forming starts with a circular plate with an initial radius R = 81 mm

and initial thickness a = 1.24 mm. Isotropic material properties refer to Young modulus

E = 69 GPa, Poisson coefficient ν = 0.33, isotropic hardening factor Hiso = 0.0, initial yield

stress value of σy0 = 185.0 MPa, saturation yield stress value of σy∞ = 408.0 MPa and

exponential hardening factor n = 6.14. All these terms are interrelated in the evolution

law for the yield stress level, as a function of the equivalent plastic strain value, in the

form

σy = σy0 + Hiso ε
p + (σy∞ − σy0)

(
1 − e−nεp)

(5.7)

Anisotropic parameters, in turn, are given as the values for the constant parameters to

be used in the criterion proposed by Barlat et al. (1991), being numerically equal to

C1 = 1.223, C2 = 1.014, C3 = 0.986, C4 = 1.0, C5 = 1.0, C6 = 1.0 and m = 11.0, for the

present example (Yoon, 1996; Cardoso, 2002).

The adopted finite element mesh consists of 392 elements, following the mesh distri-

bution represented in Figure 5.107, where one-fourth of the plate is represented due to

symmetry reasons. The same mesh was used either for shell or solid-shell elements, both

adopting the same distribution over the circular plate. For the S4E6P5 shell element, 5

Gauss points over the thickness direction were adopted, whilst for the HCiS12 solid-shell

element, that direction was discretized with one single element, corresponding to the use

of 2 integration points. The finite element model is a simplified one, when compared to

other authors (Yoon, 1996; Cardoso, 2002), since no contact between the blank-holder and

the plate (blank) was taken into account. Instead, the borders of the plate are considered

clamped, and the hydrostatic pressure load is represented by an uniform pressure load

over the plate surface, with nominal value of p0 = 4 MPa.

Starting with the imposition of an isotropic von Mises material model, it is possible

to establish a set of comparisons between the present shell and solid-shell formulations

against results coming from shell and three-dimensional elements of Abaqus finite-element

commercial code (shell elements S4, S4R, S4R5 and 3D elements C3D8 and C3D8i). Shell

elements in Abaqus code have employed 5 Gauss points through-thickness direction, in

accordance to what was done with the present shell element. In the same manner, the plate

thickness was discretized by one three-dimensional element in the Abaqus model, corre-

sponding to 2 Gauss points in that direction. The analysis of the out-of-plane apex point

displacement evolution, with increasingly pressure levels, led to the graphs represented in

Figures 5.108 and 5.109, for the shell and three-dimensional finite elements, respectively.
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It is interesting to note that with the present shell and solid-shell formulations, both

elements are able to avoid locking effects for the set of boundary, geometry and loading

conditions. Additionally, for the present example, the methodology behind the enhanced

shell and solid-shell elements has not revealed sensitivity to the mesh distortion (namely on

the apex zone), which is frequently a strong pitfall for enhanced-based finite elements in the

literature. The results obtained with the present finite elements are close to those obtained

with Abaqus commercial code. Nevertheless, deviations appear between the simulation

results with the S4E6P5 and HCiS12 finite elements and the experimental ones.

In order to assess the importance of the constitutive law on the quality of the solution,

results with the S4E6P5 shell element and the anisotropic criterion Yld’91 (Barlat et al.,

1991) are also considered. Experimental results (including anisotropic effects) give a final

pole displacement of approximately 23 millimeters (Yoon, 1996). For the shell enhanced

assumed strain element, results now including the anisotropic criterion of Barlat et al.

(1991) are reproduced in Figure 5.110 and compared to the experimental data. At the

final pressure level, the enhanced assumed strain shell formulation led to a pole displace-

ment of 23.6 millimeters, which is in good agreement with the experimental solution, and

considerably higher than the analogous result considering an isotropic yield criterion.

For the sake of completeness, equivalent plastic strain contours are presented for spec-

imens with rolling directions at 0o and 45o relative to a reference direction OX. On algo-

rithm terms, the local axis
(
r1
)

of each Gauss point (Chapters 2 and 3) is initially taken

along these directions, at the start of the numerical process. Subsequent deformation will

drive the evolution of the local triad, as described in the chapters before. For a rolling

direction of 0o with OX, the contour plots of the equivalent plastic strains are reproduced

in Figure 5.111, for the maximum pressure level. For a rolling direction of 45o relative to

the reference direction, contour plots of the equivalent plastic strain now change, as can

be seen in Figure 5.112. From the last figure, it is visible the lack of concentricity of the

contour curves, as well as the influence of measurements along distinct rolling directions,

as expected when considering anisotropic constitutive evolution laws.

5.4.2 Forming of the S-Rail industrial component (Numisheet’96 )

This (now classical) benchmark was proposed within the scope of the NUMISHEET (1996)

International Conference, as the test B2, thereafter being known simply as the S-Rail

problem. It consists in the forming, by deep-drawing, of an initial plane metal blank into

a final component with a S-shaped three-dimensional geometry.

From the whole problem set posed at the Conference, only the forming of the aluminum

alloy (Al 6111-T4) sheet will be simulated in this work. From the two blank-holding force
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levels proposed, the value of 10 KN was the one chosen. This combination of material and

blank-holding force leads to interesting characteristics of the deformed final part, as will

be seen in the following.

Simulation of contact and friction conditions were carried out by means of the im-

plementation of the HCiS12 enhanced assumed strain solid-shell element into Abaqus

commercial code (user defined finite element capabilities). This allows for the full use

of the contact search and stiffness contribution calculation directly from the commercial

package.

Geometry definitions for the blank, die, punch and blank-holder are provided in the

NUMISHEET (1996) proceedings. All the tools are considered rigid in the simulation.

The initial thickness of the blank is a = 1.0 mm, and the elastic material constants are

the Young modulus E = 69 GPa and the Poisson coefficient ν = 0.3. Following indications

posed on the last reference, the averaged value for the friction coefficient to be used in the

simulation is equal to µ = 0.1.

About the hardening constitutive law for this specific problem, the simulation was

carried out following the indications of Stephen J. Makosey and Kwansoo Chung – at

that time at ALCOA (Aluminum Company of America) – who belonged to the simulation

group SB2.21 (NUMISHEET (1996), page 670 in the proceedings). The reason for this

choice remains in the fact that those authors provide the complete set of parameters for

the full characterization of the hardening law. In this sense, the yield behavior is assumed

to be independent of the rate of deformation, with a hardening law following a Voce’s

function in the form

σy = A − B e(−Cεp) (5.8)

The set of constants in the equation was defined through ALCOA testing experiments,

and happens to be A = 368 MPa, B = 207 MPa and C = 9.74. The mesh employed in

the simulation consists of 6000 solid-shell elements, with a total of 21160 nodes, and is in

conformity with the mesh used by Areias et al. (2003b) who, on turn, adopts solid-shell

elements with a higher number of internal variables (18) than in the present case.

Schematic views of the tools, the mesh and the deformed structure, as modelled in

Abaqus commercial code, are presented in Figures 5.113, 5.114 and 5.115, respectively.

In Figure 5.116, it is possible to assess the evolution of the punch height with the punch

force, during the deformation process. From the set of 6 curves coming from experimental

analysis, as published in the proceedings of the NUMISHEET (1996) Conference (page

637), only the upper and lower curves were reproduced and shown in the present work

(references EB2.03 and EB2.01, respectively). From the graph in Figure 5.116, it is possible

to infer that the results provided by the HCiS12 solid-shell element, as implemented in
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Abaqus, are within the range of results obtained experimentally.

The present results are also compared with results coming from other finite element

(implicit) codes, and published in the proceedings of the NUMISHEET (1996) Conference

(page 742). The corresponding graph can be seen in Figure 5.117. In the latter, all the

6 curves presented in the conference proceedings were now reproduced, for the sake of

completeness. All results have distinct patterns, although it is valid to say that the curve

obtained with the HCiS12 solid-shell element follow the evolution trend of the majority

of authors.

Finally, Figures 5.118, 5.119 and 5.120 provide detailed views of the formed final part.

For the material and blank-holder force adopted in the simulation, wrinkles onset is visible

at the end of the forming process. The wrinkling zone is more noticeable in the detailed

pictures on Figures 5.119 and 5.120, and its presence in the real formed part was actually

verified by experimental means.
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5.5 Tables

normalized deflection (wfem/wanalytical)

formulation Mesh I Mesh II

Ahmad et al. (1970) 0.000 0.000

Bathe and Dvorkin (1985) 1.010 0.930

S4E6P5 0.997 0.984

S4E6P7 0.997 0.984

MITC4-E2 1.007 0.927

Table 5.1: Plates with distorted meshes - Results for point C for simply-supported edges

and uniform pressure loads. Mesh II uses ∆ = L/10
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normalized deflection (wfem/wanalytical)

distortion value (∆) Sansour and Bocko (1998) S4E6P5, S4E6P7 MITC4-E2

0.0 0.8310 0.8694 0.8694

2.5 0.0344 0.8267 0.8650

5.0 0.0085 0.7739 0.8533

7.5 0.0036 0.7174 0.8352

10.0 0.0020 0.6632 0.8114

12.5 0.6161 0.7792

Table 5.2: Influence of distortion level ∆ on mesh II - Results for point C for clamped

edges and concentrated load

deflection value

distortion parameter (δ) S4 S4R S4R5

0 84.69 907.1 7356.0

1 57.69 838.1 3536.0

2 30.31 666.3 1302.0

3 24.46 471.4 578.1

4 14.74 303.7 304.8

5 7.325 154.6 189.3

Table 5.3: Cantilever beam with distorted mesh - Results for ABAQUS bilinear shell

elements
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absolute deflection

formulation 2 × 2 elements 4 × 4 elements

Ahmad et al. (1970) 0.0082 0.0347

Dvorkin and Bathe (1984) 0.8683 0.9690

Andelfinger and Ramm (1993) 0.8885 0.9762

S4E6P5 0.8694 1.0150

S4E6P7 0.8694 1.0150

MITC4-E2 0.8694 1.0020

analytical solution 1.0000

Table 5.4: Clamped plate - Central point deflection for the concentrated load case

normalized deflection

formulation 2 × 2 elements 4 × 4 elements 5 × 5 elements

Ahmad et al. (1970) 0.000 0.000 0.000

Kui et al. (1985) 1.211 1.250 1.256

Dvorkin and Bathe (1984) 1.211 1.251 1.256

S4E6P5 1.211 1.251 1.256

S4E6P7 1.211 1.251 1.256

MITC4-E2 1.211 1.251 1.256

analytical solution 1.270

Table 5.5: Clamped plate - Central point normalized deflection (×10−3) for the distributed

load case
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Mesh Dvorkin and Bathe (1984) Andelfinger and Ramm (1993) Yunhua and Eriksson (1999)

4 × 4 3.9182 4.2122 3.9305

8 × 8 3.8991 4.2239 3.9841

16 × 16 4.1875 4.3738 4.2727

32 × 32 4.4098 4.4827 4.4668

Mesh Ahmad et al. (1970) Ref. Solution

4 × 4 0.1151 4.6400

8 × 8 0.3841 4.6400

16 × 16 0.9882 4.6400

32 × 32 1.9110 4.6400

Mesh S4E6P5 S4E6P7 MITC4-E2

4 × 4 4.5090 4.5090 4.5090

8 × 8 4.4380 4.4380 4.4380

16 × 16 4.4820 4.4820 4.4820

32 × 32 4.5610 4.5610 4.5610

Table 5.6: Morley’s skew plate - Out-of-plane deflection of point C for different meshes

and formulations

normalized deflection wfem/wref.

mesh size Simo et al. (1989b) S4E6P5, S4E6P7, MITC4-E2

1 × 6 0.9914 1.0000

2 × 12 0.9978 0.9986

4 × 24 0.9993 0.9978

8 × 48 1.0000 1.0000

Table 5.7: Twisted beam - Normalized results for load case (a) in Fig. 5.12
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normalized deflection wfem/wref.

mesh size Simo et al. (1989b) S4E6P5, S4E6P7, MITC4-E2

1 × 6 0.9505 1.0000

2 × 12 0.9860 0.9863

4 × 24 0.9971 0.9962

8 × 48 1.0000 1.0000

Table 5.8: Twisted beam - Normalized results for load case (b) in Fig. 5.12

S4E6P5, S4E6P7, MITC4-E2

number of elements absolute value normalized values

3 0.8390 1.1585

12 0.7327 1.0117

48 0.7258 1.0002

192 0.7255 1.0001

768 0.7243 1.0000

Table 5.9: Circular plate with clamped edges and concentrated loads - Convergence of

results for central point deflection with the mesh refinement presented in Fig. 5.13
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normalized result wfem/wref.

nb. elements Hughes and Tezduyar (1981) Simo and Rifai (1990)

3 not available not available

12 0.9809 0.9281

48 0.9954 0.9827

192 0.9989 0.9958

768 0.9998 0.9990

nb. elements Piltner and Joseph (2001) S4E6P5, S4E6P7, MITC4-E2

3 not available 0.8605

12 0.9366 0.9448

48 0.9819 0.9861

192 0.9954 0.9969

768 0.9788 0.9996

Table 5.10: Circular plate with simply-supported edges and pressure loads - Convergence

of results for central point deflection with the mesh refinement presented in Fig. 5.13

normalized result (wfem/wanalytical)

formulation 5 nodes per side 7 nodes per side 9 nodes per side

Ahmad et al. (1970) 0.06806 0.10152 0.13439

Dvorkin and Bathe (1984) 0.93651 not available 0.97315

Andelfinger and Ramm (1993) 1.04068 not available 1.00625

S4E6P5 1.00099 1.01323 1.00165

S4E6P7 1.00099 1.01323 1.00165

MITC4-E2 0.90046 0.95800 0.96892

Table 5.11: Scordelis-Lo roof problem - Normalized result at point A on the free edge
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radial displacement
(
×10−2

)
Poisson’s ratio Ri = 7.5 Re = 10.0

ν = 0.3 8.750 6.305

ν = 0.49 8.049 4.589

ν = 0.499 8.014 4.509

ν = 0.4999 8.000 4.510

ν = 0.49999 8.000 4.540

ν = 0.499999 8.000 4.583

ν = 0.4999999 7.989 4.598

Table 5.12: Nonlinear geometric thick-wall sphere - Evolution of radial displacements for

an internal pressure level p = 2.0
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10000



162 Numerical Examples

x

y
z

undeformed

configuration

M/M =0.250

M/M =0.500 M/M =0.750

M/M =1.000

Figure 5.37: Results for the roll-up analysis of a clamped beam for various imposed (nor-

malized) moments (M/M0)



Figures 163

x

y

z

M
W

L

clamped end

Figure 5.38: Torsion of a plate strip - Initial configuration

e)

x

y

z

a)

b)

c)

d)

f)

Figure 5.39: Torsion of a plate strip - 5-Step deformation sequence



164 Numerical Examples

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

0

2

4

6

8

10

load factor (λ)

d
i
s
p
l
a
c
e
m
e
n
t
 
o
f
 
l
o
a
d
e
d
 
p
o
i
n
t

in−plane displacement component
out−of−plane displacement component

2×12 S4E6P5 shell elements

Figure 5.40: Nonlinear geometric analysis of the twisted beam (Fig. 5.12) - Results for a

(combined) load level F = 250 × λ



Figures 165

x y

z

x(y)

z

x

yz

x

y
z

Figure 5.41: Nonlinear geometric analysis of the twisted beam (Fig. 5.12) - Deformed

configuration for a load factor λ = 1.0



166 Numerical Examples

x

y

z

c lamped end

a

Ri

Re

A

B

Ft ot

Figure 5.42: Cantilever ring - Schematic representation involving geometry, boundary and

loading conditions



Figures 167

0 2 4 6 8 10 12
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

displacement (OZ)

l
o
a
d
 
f
a
c
t
o
r

Basar et al. (1992) point A
Basar et al. (1992) point B
S4E6P5, 2x16 elem., point A
S4E6P5, 2x16 elem., point B
S4E6P5, 6x40 elem., point A
S4E6P5, 6x40 elem., point B

point A 

point B 

Figure 5.43: Cantilever ring - Displacements evolution for points A and B in Fig. 5.42



168 Numerical Examples

a) b)

Figure 5.44: Cantilever ring - Final configuration for a load factor λ = 20. (a) 2×16 mesh;

(b) 6 × 40 mesh



Figures 169

B

hinged

R

Ftot

A

hinged

free edge

free edge

L1

a

L
2

x

y
z

x

y

z

C

C C

C

C

mesh #1 mesh #2 mesh #3 mesh #4

Figure 5.45: Snap-through and snap-back analysis - Shallow shell model with regular mesh

and details of distorted mesh areas



170 Numerical Examples

0 5 10 15 20 25 30 35
−400

−200

0

200

400

600

800

1000

displacement (OZ)

l
o
a
d
 
v
a
l
u
e
 
(
F
t
o
t
)

Horrigmoe and Bergan (1978), point A
Horrigmoe and Bergan (1978), point B
S4E6P5, point A, regular mesh
S4E6P5, point B, regular mesh

Figure 5.46: Snap-through and snap-back analysis - Results for the regular 5 × 5 mesh



Figures 171

0 5 10 15 20 25 30 35
−400

−200

0

200

400

600

800

1000

displacement (OZ)

l
o
a
d
 
v
a
l
u
e
 
(
F
t
o
t
)

S4E6P5 − regular mesh
S4E6P5 − distorted mesh #1
S4E6P5 − distorted mesh #2
S4E6P5 − distorted mesh #3
S4E6P5 − distorted mesh #4

Figure 5.47: Snap-through and snap-back analysis - Results for point A (distorted meshes)



172 Numerical Examples

0 5 10 15 20 25 30
−400

−200

0

200

400

600

800

1000

displacement (OZ)

l
o
a
d
 
v
a
l
u
e
 
(
F
t
o
t
)

S4E6P5 − regular mesh
S4E6P5 − distorted mesh #1
S4E6P5 − distorted mesh #2
S4E6P5 − distorted mesh #3
S4E6P5 − distorted mesh #4

Figure 5.48: Snap-through and snap-back analysis - Results for point B (distorted meshes)



Figures 173

x y

z

18º

F = -y �F =x �

free edge

sy
m

m
e
try

(O
Y
Z
)

sy
m

m
e
tr

y
(O

X
Z
)

Figure 5.49: Pinched hemisphere with an 18o hole - Mesh, loading and boundary conditions

(one quadrant represented)



174 Numerical Examples

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

load factor

a
b
s
o
l
u
t
e
 
d
i
s
p
l
a
c
e
m
e
n
t

Simo, Fox and Rifai (1990) 256 elements (OX)
S4E6P5 − 64 elements (OX)
S4E6P5 − 256 elements (OX); S4E6P7 − 64/256 elements (OX)
Simo, Fox and Rifai (1990) 256 elements (OY)
S4E6P5 − 64 elements (OY)
S4E6P5 − 256 elements (OY); S4E6P7 − 64/256 elements (OY)

OY direction

OX direction

Figure 5.50: Pinched hemisphere with an 18o hole - Results for various mesh configurations



Figures 175

X

Z Y

a) b)

c)

Figure 5.51: Pinched hemisphere with an 18o hole - Final configurations for: (a) 8 × 8
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Figure 5.56: Clamped cylindrical shell problem - Results for point A in Fig. 5.52 with an
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Figure 5.57: Clamped cylindrical shell problem - Sequence of deformed configurations, for

the 16×16 elements, and displacements of: (a) 0.202R, (b) 0.550R, (c) 0.739R, (d) 0.985R,

(e) 1.335R, (f) 1.584R
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distorted mesh



Figures 183

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

displacement (OZ)

l
o
a
d
 
f
a
c
t
o
r
 
(

λ
)

Jiang and Chernuka (1994) − 12x8 elements (shell elements)
Masud et al. (2000) 16x8x2 (solid elements)
S4E6P5 − 12x8 elements − regular mesh
S4E6P5 − 12x8 elements − distorted mesh
S4E6P5 − 16x8 elements

Figure 5.59: Stretching of a free cylinder - Results for point A in Fig. 5.58



184 Numerical Examples

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

displacement (OX)

l
o
a
d
 
f
a
c
t
o
r
 
(

λ
)

Jiang and Chernuka (1994) 12x8 elements (shell elements)
Masud et al. (2000) 16x8x2 elements (solid elements)
S4E6P5 − 12x8 elements − regular mesh
S4E6P5 − 12x8 elements − distorted mesh
S4E6P5 − 16x8 elements
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Figure 5.61: Stretching of a free cylinder - Final configuration (λ = 1.0) for the distorted

(12 × 8) and regular (16 × 8) meshes



186 Numerical Examples

x

y

z

clamped edge

L

w

F/2

F/2
a

Figure 5.62: Elasto-plastic cantilever beam - Geometry and boundary conditions
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Figure 5.63: Elasto-plastic cantilever beam - Deflection values following the evolution of

the load level F



188 Numerical Examples

−5 −4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

displacement of points (A) and (B)

l
o
a
d
 
f
a
c
t
o
r
 
(

λ
)

Masud and Tham (2000) 16x8x2 elements, point (A)
Masud and Tham (2000) 16x8x2 elements, point (B)
S4E6P5 element, 16x8 elements, point (A)
S4E6P5 element, 16x8 elements, point (B)

Figure 5.64: Free cylindrical shell - Displacement of points A and B in Fig. 5.58 for a given

load factor (λ)



Figures 189

x

y

z

clamped end

L = 36

h = 6

w = 2

thickness = 0.05

E = 10

= 0.333

7

�

h

w

F

L
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Figure 5.68: Simply-supported plate - Problem definition with a representative regular

mesh of 15 × 15 elements
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Figure 5.71: Simply-supported plate - Deformed configuration for the 15×15 regular mesh

with a load factor f = 60
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Figure 5.80: Nonlinear geometric thick-wall sphere - Finite elements’ mesh adopted, with

a total of 2100 solid-shell elements
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Figure 5.81: Membrane (in-plane) bending benchmark - Initial configurations for 3 different

meshes
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Figure 5.85: Clamped cylinder problem - Mesh, loading and boundary conditions
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Figure 5.86: Clamped cylinder problem - Deflection curve for loaded point
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Figure 5.87: Clamped cylinder problem - Sequence of deformed configurations for displace-

ments of: a) 0.26 R, b) 0.58 R, c) 0.72 R, d) 0.97 R
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Figure 5.94: Stretching of a cylinder - Results for point A, elastic case
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Figure 5.95: Stretching of a cylinder - Results for point B, elastic case
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Figure 5.96: Stretching of a cylinder - Results for point A, elasto-plastic case
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Figure 5.97: Stretching of a cylinder - Results for point B, elasto-plastic case
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Figure 5.98: Stretching of a cylinder - Results for point A (elastic case) coming from

solid-shell formulations
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Figure 5.99: Stretching of a cylinder - Results for point B (elastic case) coming from

solid-shell formulations
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Figure 5.102: Simply supported plate - Results for the out of plane deflection of the center

node, coming from the comparison of solid-shell formulations
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Figure 5.103: Simply supported plate - Deformed configuration at the onset of wrinkling

in the mid-sides (p = 4.06) for the 24×24×1 mesh
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Figure 5.104: Pinched cylinder problem - Load deflection curve for the loaded point
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Figure 5.106: Pinched cylinder problem - Sequence of deformed configurations for both

meshes. (a) Initial configurations; Deformed meshes at (b) w ≈ 100, (c) w ≈ 200, (d)

w ≈ 300
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Figure 5.108: Hydro-bulge forming - Results for shell elements under isotropic constitutive

evolution



Figures 233

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

pole displacement (mm)

p
r
e
s
s
u
r
e
 
l
o
a
d
 
(
M
P
a
)

HCiS12 solid−shell element

C3D8 Abaqus solid element
C3D8i Abaqus solid element

experimental data

Figure 5.109: Hydro-bulge forming - Results for solid-shell elements under isotropic con-

stitutive evolution
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Figure 5.110: Hydro-bulge forming - Results for the enhanced assumed strain shell ele-

ment, considering the anisotropic yield criterion of Barlat et al. (1991)
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direction at 0o, considering the anisotropic yield criterion of Barlat et al. (1991) (pressure

level of 4 MPa)
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Figure 5.113: S-Rail problem - Definition of tools
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Figure 5.114: S-Rail problem - Detail of the finite element mesh over the undeformed

plate, consisting of 6000 solid-shell elements
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Figure 5.115: S-Rail problem - Deformed configuration
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Figure 5.116: S-Rail problem - Comparison between present simulation results and upper

and lower bounds of experimental results
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Figure 5.119: S-Rail problem - Detailed representation of the deformed model, focusing

on the presence of wrinkles (top view)
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Figure 5.120: S-Rail problem - Detailed representation of the deformed model, focusing

on the presence of wrinkles (bottom view)



Chapter 6

Conclusions and Future Works

In this work a new class of shell and solid-shell finite elements for the simulation of

shell structures was formulated and presented. The elements are based on the Enhanced

Assumed Strain (EAS ) method, and are suited for the treatment of numerical pathologies

such as the transverse shear locking and volumetric locking, arising either in the linear

and nonlinear ranges (either material and/or geometric). The distinguishing point of the

present finite elements relies on the fact that just the EAS approach is used, together with

the conventional, displacement-based, formulation.

The studied shell elements (Chapter 2), for instance, do not make use of other mixed

techniques, such as the Mixed Interpolation of Tensorial Components formulation (adopted

by almost all well-established formulations in the literature). Therefore, the solely use of

a enhanced strain field was enough to completely eliminate the transverse shear locking

for thin shells, irrespective of curvature values. This behavior proved successful either in

regular and distorted meshes, which very often poses severe problems for enhanced-based

formulations. At the end, a fully integrated four-node, bilinear shell element was achieved,

proving to be robust and reliable in linear as well as nonlinear demanding numerical

benchmarks.

For the solid-shell formulations (Chapter 3), the main goal was to achieve a simpler

formulation (and implementation), altogether with a higher generality, when compared to

the referred shell elements. This is particular true for the fact that solid-shell elements

deals exclusively with (additive-type) degrees-of-freedom – thus skipping particular treat-

ment of rotation nodal variables, present in shell elements – and also that, with solid-shell

elements, full 3D material laws can be included directly into the constitutive models –

avoiding the ad hoc consideration of plane-stress hypothesis at each Gauss point level,

characteristic of shell elements. The presented solid-shell elements use the Enhanced As-

sumed Strain method to overcome parasitic phenomena such as the volumetric locking
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(arising when dealing with computational plasticity) and the transverse shear locking,

for low thickness values. The resulting hexahedral element revealed a high level of pred-

icability, although employing a minimum set of internal (element-wise) variables, when

compared to well-known solid-shell formulations in the literature. Additionally, and in

contrast to what is common in published papers, the present formulation makes use of

just the EAS formulation.

Starting from an in-house finite element code prepared for 2D finite elements, this

thesis involved the study and implementation of the referred shell elements (linear and

nonlinear) as well as the solid-shell elements, in the nonlinear range. The particular im-

plementation adopted for the EAS method for nonlinear problems (Chapter 4) turned

to be a straightforward and efficient choice, mainly because the same theoretical struc-

ture of the original EAS approach for linear problems was kept unaltered, which results

in small computational effort for the very same final performance. This can be attested

from the overall quality of results obtained in the nonlinear geometric range, in problems

with or without numerical instabilities (Chapter 5). On the other side, accounting for the

integration of the constitutive equations within a local frame, rigidly moving with each

finite element, has allowed for a simplified computational treatment of nonlinear material

problems, ending up with a constitutive update procedure which is totally equivalent to

the one commonly used in small deformation problems. Both shell and solid-shell elements

have led to a series of publications within the research group of the author, such as the

references César de Sá et al. (2002); Alves de Sousa et al. (2002, 2003a,b); Fontes Valente

et al. (2003, 2004a,b,c), in chronological order.

The implementation of the proposed EAS -based elements in Abaqus commercial code

(as user-elements) have allowed for the treatment of more demanding problems, namely

involving contact nonlinearities. Preliminary results were also presented in this work, while

further improvements and testing are still on course.

In the meanwhile, extensions to this work are being carried out within the group the

author is involved with. First of all, it is on course the extension of the present formula-

tion to problems accounting for anisotropic material effects, either applied to shell (Fontes

Valente et al., 2004b) and solid-shell (Parente et al., 2004) finite elements. Also, some

developments were already achieved in the modelling of cyclic load effects in aluminum

alloy parts, including material anisotropy, which have involved the formulation and imple-

mentation of kinematic hardening constitutive models, and whose initial numerical results

were recently presented (Yoon et al., 2003).

Another ongoing research field still relies on finite element technology. Seeking for

an enhanced strain solid-shell element computationally more cost-effective than the one
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shown in the present work, it is now under study the conjunction between the EAS

methodology and reduced integrated techniques. Although the formulation here intro-

duced proved to be reliable and effective, the account for reduced integration procedures

would at least improve the computational economy of the solid-shell element for large-

scale (industrial) problems. Some encouraging results for geometrically linear problems

were already achieved (Alves de Sousa et al., 2004), while the fully nonlinear study is

being carried out at the present.

Finally, application of the described concepts into composite analysis and simulation,

as well as in the biomechanical description of the behavior of soft tissues, are in the initial

stages. Furthermore, an extensive insight into the proposed shell element MITC4–E2 is

still needed, and will be dealt with in the near future.
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