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Abstract
At the crossroads between Africa and Eurasia, Arabia is necessarily a melting pot, its peoples

enriched by successive gene flow over the generations. Estimating the timing and impact of

these multiple migrations are important steps in reconstructing the key demographic events

in the human history. However, current methods based on genome-wide information identify

admixture events inefficiently, tending to estimate only the more recent ages, as here in the

case of admixture events across the Red Sea (*8–37 generations for African input into Ara-

bia, and 30–90 generations for “back-to-Africa”migrations). AnmtDNA-based founder analy-

sis, corroborated by detailed analysis of the whole-mtDNA genome, affords an alternative

means by which to identify, date and quantify multiple migration events at greater time

depths, across the full range of modern human history, albeit for the maternal line of descent

only. In Arabia, this approach enables us to infer several major pulses of dispersal between

the Near East and Arabia, most likely via the Gulf corridor. Although some relict lineages sur-

vive in Arabia from the time of the out-of-Africa dispersal, 60 ka, the major episodes in the

peopling of the Peninsula took place from north to south in the Late Glacial and, to a lesser

extent, the immediate post-glacial/Neolithic. Exchanges across the Red Sea were mainly due

to the Arab slave trade and maritime dominance (from*2.5 ka to very recent times), but had

already begun by the early Holocene, fuelled by the establishment of maritime networks

since*8 ka. The main “back-to-Africa”migrations, again undetected by genome-wide dating

analyses, occurred in the Late Glacial period for introductions into eastern Africa, whilst the

Neolithic wasmore significant for migrations towards North Africa.
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Introduction
The issue of admixture in human populations is normally addressed by genome-wide (GW)
studies, and several approaches have been developed to date admixture events [1,2,3,4,5]. Ad-
mixed populations bear chromosomes with segments of DNA from all contributing source
groups, the size of which decreases over successive generations until recombination renders
them undetectably short. Several algorithms attempt to date admixture events by inferring the
size of the nuclear ancestry segments, and these can work well when dating recent episodes in
human history, such as the sub-Saharan African input into the NewWorld [6], but they fail to
detect several known episodes that took place at earlier times, such as the African input into
Iberia [1] and genetic exchanges across the Red Sea [7]. Simulations with the suite of methods
available at the ADMIXTOOLS package indicated that these methods could detect admixture
events as early as 500 generation ago, but real data did not allow the tracing of such old events
[8]. A recent improved algorithm, called GLOBETROTTER, has been used to tackle the detec-
tion of the co-occurrence of several mixture events by decomposing each chromosome into a
series of haplotypic chunks and then analysing each chunk independently [3], but the problem
of detecting ancient events remains. Its application to the systematic screening of worldwide
admixture events was able to reveal around 100 events, but all occurring over only the past
4,000 years [3].

The uniparental markers, characterised by the absence of recombination, do make possible
the inference of ancestry for the mitochondrial genome and non-recombining, male-specific
portion of the Y chromosome (mtDNA and MSY, respectively), and the dating of some demo-
graphic events (those which leave a signature in the genealogy), provided that a mutation rate
of these molecules is reliably established. For the mtDNA, in the last couple of years, the appli-
cation of various methods has led to quite reliable mutation rates with which to convert genetic
diversities into time [9,10], while the MSY remains prone to more uncertainty [11], although
promising advances are being achieved with whole Y chromosomal mutation rate calibrations
[12,13,14].

At the same time, it is important to emphasize that the age of an mtDNA haplogroup can-
not be directly associated with a migration event, as the diversity that has arisen in the source
population, predating the migration event, would be included in the measurement. Founder
analysis is an attempt to overcome this limitation. This approach picks out founder sequence
types in potential source populations and dates lineage clusters deriving from them in the set-
tlement zone of interest. In a way, the founder analysis allows us to reconstruct the stratigraphy
of the migration events responsible for making up a population genetic pool, analogous to the
archaeological reconstruction of the history of a site by the analysis of its sequential layers
[15,16,17,18].

Some authors have been critical of dating migration events solely based upon the mtDNA
evidence, arguing that maternal lineages do not necessarily represent the entire population,
and are especially sensitive to drift [19]. Nevertheless, mtDNA-based conclusions for many mi-
grations across various regions of the globe have been subsequently supported by genome-wide
results [20,21], despite the limitations of the latter in dating events. In fact, the genealogical ap-
proach taken for mtDNA may overcome the effects of drift more effectively than the use of ge-
nome-wide SNPs, as we recently demonstrated in the highly-drifted Ashkenazi population: the
fine characterisation of mtDNA sequences provided a detailed reconstruction of the maternal
Ashkenazi pool, indicating that at least 80% of the lineages had a deep European ancestry [22],
an influence not so readily identified in worldwide PCAs based on genome-wide data [23].
Thus, we suggest that for high time-depths, the mtDNA remains at present the most
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informative genetic system with which to infer past migrations and estimate their time frames,
allowing us to disentangle the palimpsest that results from the impact of successive migrations.

Several distinct disciplines, including climatology, archaeology and genetics, are beginning
to suggest that Arabia featured a highly dynamic genetic pool over time, since its successful set-
tlement at*60 thousand years ago (ka) during the out-of-Africa dispersal [16,24]. The Arabi-
an Peninsula was exposed to several climate change episodes, with fluctuations between arid
(leading to population contraction) and humid (population expansion) phases, which condi-
tioned its role as a bridge connecting Africa with Eurasia [25,26].This bridge may have been
limited, over long periods or in climatically unfavourable times, to three refuge areas: the Red
Sea coastal plain; the Dhofar and Mahra Mountains and adjacent littoral zone in Yemen and
Oman; and the emerged floodplain within the Persian Gulf basin [27]. In particular, the latter
“Gulf Oasis”may have been fundamental for the survival during arid conditions of the ancient
N(xR) mtDNA lineages coalescing at*60 ka found in Arabia [24], most likely the relicts of
the first migrants; the Gulf was also a preferential contact bridge with the Fertile Crescent.

Since these relict lineages are very minor, however, this signal for the settlement of Arabia
during the successful out-of-Africa migration does not clarify if it was a continuous process
lasting to the present day. The Pleistocene to Holocene continuity versus discontinuity debate
has centred on how far the Arabian population was made up from the producers of the Levan-
tine Pre-Pottery Neolithic B (PPNB)-related industry [28]. After rather sparse Late Palaeolithic
settlement, the archaeological evidence suggests a significant increase in sites throughout Ara-
bia dating from 9–8 ka [29], but it remains unclear if these were the result of newly arrived peo-
ple [30] or locals who adopted the new food-producing technology [31]. The scarcity of secure
stratigraphic reconstructions in the archaeology of the Peninsula has contributed to the uncer-
tainty in dating the major demographic events. We have shown that some of the most frequent
South Arabian mtDNA lineages (such as R0a) display signs of introduction and expansion in
the post-glacial period [32], thus pre-dating the Neolithic, although the global contribution of
this period to the total Arabian maternal gene pool remains to be evaluated.

The archaeological evidence is clearer regarding the remarkable maritime trade system that
Arabia established with Africa, the Near East and India in the ninth to eighth millennia, proba-
bly the earliest worldwide [33]. The maritime traffic was intensified in mid-sixth millennium,
with the appearance of the Pre-Dynastic Egyptian period, which dominated long-distance
trade in the Red Sea [34], while in the Persian Gulf trade was established between communities
in present-day Bahrain, the Oman Peninsula, the Indus Valley and Gujarat [35].This trade con-
tributed to commercial, cultural, linguistic and genetic exchanges. In terms of language expan-
sion in the region, by applying a Bayesian approach to Semitic lexical data, Kitchen et al. [36]
concluded for a single entrance of early Ethio-Semitic languages in Africa, from southern Ara-
bia, at around 2800 years ago, a period when South Arabia was influential in northern Ethiopia.
A well-documented movement of people occurred through the Arab slave trade established be-
tween the 6th and 19th centuries AD [37], bringing African people (from Nubia to Zanzibar)
into the Near East, Arabian Peninsula and even India and China. Estimates indicate that
2,400,000 African people were enslaved along the Red Sea and Indian Ocean routes [38], with a
2:1 female to male ratio [39]. This has also been proposed to explain the high levels of African
L(xMN) lineages observed in Yemen [37,40], but other potential sources for sub-Saharan Afri-
can (but also Indian and Southeast Asian) mtDNA lineages in Arabia may be the result of
Hadrami men spending several generations in diaspora around the Indian Ocean rim and re-
turning to their homeland with women taken from the diaspora [41]. Kivisild et al. [37] also
detected a 12% frequency of haplogroup L6 in their Yemeni population sample from Kuwait,
which is only being marginally observed in Ethiopia and almost absent elsewhere in Africa,
and hypothesised that L6 originated from the successful out-of-Africa migration at*60 ka.
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However, the subsequent characterisation of other Arabian populations, including Yemen and
Oman [42,43,44,45,46,47], did not reproduce the high frequency of this mtDNA lineage in
South Arabia.

In this work, we use mtDNA to provide a detailed stratigraphic characterisation of key de-
mographic events in Arabia since the first successful out-of-Africa migration*60 ka. We per-
formed mtDNA founder analysis for Arabia and neighbouring regions, aiming to ascertain and
date the main dispersal episodes. The founder analysis was applied to the unbiased HVS-I data-
base available for the region, and interpreted in the light of the more precise dating information
gathered from whole-mtDNA sequences of informative haplogroups [24,32,47,48]. We also
updated the phylogenetic trees of haplogroups J, T, L4 and L6, by performing 83 new whole-
mtDNA sequences. We further tested our inferences from the HVS-I based founder analysis
with a whole-mtDNA founder analysis using haplogroups J and T. The mtDNA information is
put in perspective with results from genome-wide analyses of published data [3,23,49,50], fo-
cused for the first time on inferring the local Arabian population structure, which has been
overlooked in the worldwide context of previous autosomal work.

Results/Discussion

Continuity of Pleistocene/Holocene settlement
Previous work has already provided genetic evidence for the exchange of lineages between the
Near East and Arabia. This was confirmed with whole-mtDNA sequencing of the Eurasian
macrohaplogroup N (including its branches X, I, W, N1a, N1b and some R lineages), which is
dominant in Arabia, attaining a frequency of 66%–83% [24,32,47,48]. The obvious missing ele-
ment in those studies was the whole-mtDNA sequencing of Arabian JT lineages, which we
have performed here, providing a detailed phylogeographic analysis in Supplemental Material
(outline topology in S1 and S2 Figs.; S1 Text). Following the pattern for the remaining N line-
ages, the frequency and diversity maps (S3, S4, S5, S7, S12, S13, S16 and S19 Figs.; S3 and S4
Tables) of JT lineages, displaying similarity across the Near East and Arabian Peninsula, as well
as the many basal Arabian lineages (S8, S9, S10, S11, S14, S15, S17, S18, S20, S21, S22 and S23
Figs.), suggest that both regions were in close contact throughout the late Pleistocene and Holo-
cene. Haplogroup J assumes a more important role in Arabia overall than haplogroup T, as tes-
tified by frequencies (between 7.7–20.6% and 3.2–10.2%, respectively) and the many star-like J
sub-clades observed in Arabia, dating to*6–7 ka. These expansions in haplogroup J are re-
flected in the BSP analysis (S6 Fig.), for which the main increase in effective size was between
8–12 ka in Arabia (S6A Fig.), after the expansion observed in the Near East around 11–15 ka
(S6B Fig.). Haplogroup J also shows signs of having crossed into eastern Africa, particularly the
sub-clade J1d1a1, necessarily after its emergence in Arabia at*7.1 ka (S14 Fig.). Thus hap-
logroup JT indicates that demographic expansion in Southwest Asia was a continuous phe-
nomenon from the Late Glacial period to the Neolithic period.

In order to dissect the apparent continuous genetic exchange between Arabia and the Near
East since the late Pleistocene, we performed a founder analysis for all Eurasian haplogroups
assuming the Near East, Iran and Pakistan as source and Arabia as sink (identified founders re-
ported in S6 and S7 Tables). Fig. 1A displays the overall pattern, which seems to favour the pe-
riods around 1ka, 10 ka and 16 ka for migrations. Based on this information, we further
imposed these dates as migration events to represent broadly, respectively, recent events, the
Younger Dryas/Neolithic transition and the Late Glacial period. The results indicate that the
Late Glacial period (Fig. 1B) was the most important migratory period, responsible for the in-
troduction of 40–54% of the lineages (mainly belonging to the haplogroups K, U2, U3, U4,
N1a1a, N1a1b, H5 and HV1; S24 and S25 Figs. and detailed description in S1 Text). At the
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Younger Dryas/Neolithic boundary, 34–41% of lineages, mainly unclassified HV, R0a, J1b, T1a
and M1 migrated to Arabia. The remaining 12–19% moved very recently,*1 ka, and consists
of derived lineages, (including J1d1a, K1, HV8 and N1a3). Although it is hard to discriminate
clearly between the Near Eastern and Pakistan/Iranian influences, due to their largely shared
mtDNA pool, the results suggest a higher Pakistan/Iranian impact in the east (41%) than in the
west (25%) of Arabia for private founders, but just 14% and 11%, respectively, when consider-
ing the overall pool. This seems to indicate that the Pakistan/Iranian contribution was recent,

Fig 1. Founder analysis results. Probabilistic distribution of founder clusters across migration times, with
time scanned at 200 year intervals from 0–60 ka, using f1 (blue line) and f2 criteria (red line), when
considering putative migrations: (A) from the Near East, Iran and Pakistan to Arabia; (C) from Africa into
Arabia plus the Near East and Iran; (E) Arabia plus the Near East and Iran into eastern Africa; (G) Arabia plus
the Near East and Iran into North Africa; and probabilistic proportion of founder clusters considering different
migration events, using f1 (blue bar) and f2 criteria (red bar), when considering putative migrations: (B) from
the Near East, Iran and Pakistan to Arabia; (D) from African into Arabia plus the Near East and Iran; (F)
Arabia plus the Near East and Iran into eastern Africa; (H) Arabia plus the Near East and Iran into North
Africa.

doi:10.1371/journal.pone.0118625.g001
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as the lineages introduced from this region did not reach high frequencies, and as expected its
impact was higher in the eastern Arabian countries.

We next tested the robustness of the founder analysis by using whole-mtDNA genomes
and HVS-I from haplogroups J and T alone (Fig. 2). The 17 whole-mtDNA founders identified
(S8 Table) contributed to the overall pattern of migration displayed in Fig. 2A, which displays
two main peaks, at 1 ka and 10 ka. When imposing the model of three migrations (Fig. 2B),
30% of JT lineages were introduced at 1ka, 50% at 10ka and 20% at 16ka. These results match
closely the inferences based only on HVS-I information (Fig. 2C,D).

We should emphasize that no one-to-one correspondence of founder types between whole-
mtDNA genomes and HVS-I can be expected, as there is no such precise correspondence be-
tween the whole-mtDNA and HVS-I trees, due in part to the differences in resolution but also
no doubt to the small samples size at present for the whole-mtDNAs. We must also beware
that other factors may also confound the analysis in particular circumstances. An extreme—
but very unusual—instance is haplogroup J1d1a. Here, the HVS-I based founder analysis dates
the founders to 1.0 ka, while the whole-mtDNA analysis indicates that it expanded in Arabia at
least 6.1 ka. This discrepancy is due to 18 HVS-I sequences belonging to the root haplotype
largely from central Saudi Arabia, an artefact of the sampling location (central Saudi Arabia is
extremely arid and has had historically very low population size, with habitation restricted to
oases, undoubtedly leading to severe genetic drift), while the remaining more diverse samples
are from Yemen (as for most of the whole-mtDNAs). If the Saudi samples are disregarded, a ρ
estimate for the founder age in Arabia increases to*6–7 ka, fitting more closely with the
whole-mtDNA result. Allowing for such inevitable noise effects from the datasets, the similari-
ty between the whole-mtDNA and HVS-I analyses is indeed striking, and we conclude that it is
reasonable to infer that the picture suggested by the whole-population HVS-I founder analysis
is not giving a very misleading impression of the dispersal history of the region.

Fig 2. Founder analysis results on JT lineages. Probabilistic distribution of founder clusters across
migration times, with time scanned at 200 year intervals from 0–60 ka, using f1 (blue line) and f2 criteria (red
line), when considering putative migrations from the Near East, Iran and Pakistan to Arabia for (A) whole-
mtDNA genomes or (C) HVS-I for haplogroups J and T; and probabilistic proportion of founder clusters
considering different migration events, using f1 (blue bar) and f2 criteria (red bar), when considering putative
migrations from the Near East, Iran and Pakistan to Arabia for (B) whole-mtDNA genomes or (D) HVS-I for
haplogroups J and T.

doi:10.1371/journal.pone.0118625.g002
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Although it is not possible to date securely events as old as the ones occurring in the Pleisto-
cene/Holocene transition based on genome-wide data alone, it is interesting to observe how
the patterns of shared genome-wide ancestry support the inferences made for the mtDNA. All
the Arabian populations form a close group with Near East populations in PC analysis (Fig. 3),
with the first component explaining 44% of the diversity and partitioning populations along a
west–east axis, and the second component explaining 8% and organising populations on a
north–south axis. A few individuals in Arabian populations most probably had recent ancestry
within Africa (especially for Yemen) or Pakistan (in the United Arab Emirates; UAE). Yemen
shows the highest dispersion along the first axis, testifying again the higher African input in the
closest country to the Horn of Africa. We confirmed the clustering of Yemeni Jews with Bedou-
in and Saudi Arabians, already identified previously [23], and probably indicating that they
were less open to recent admixture with non-Arabian populations than their Yemeni Arab/
Muslims neighbours.

The ADMIXTURE results indicate that K = 6 (Fig. 4 and Table 1; other K plots are displayed
in S38 Fig.) is the number of clusters that best represents the population structure of the ana-
lysed populations. Here it is already possible to distinguish between a Southwest Asian/Cauca-
sian and an Arabian/North African component; these two components have similar
proportions of*30% each in Yemen and UAE, but the Arabian/North African proportion in-
creases to 52–60% in Saudi and Bedouin. In Near Eastern populations, correspondingly, the
Southwest Asian/Caucasian component rises to*50% and the Arabian/North African cluster
decreases to*20–30%, even in Palestinians (similar to the Samaritans and some of the

Fig 3. PCA results. Scatter plot of individuals, showing the first two principal components. Each symbol
corresponds to one individual and the colour indicates the region of origin.

doi:10.1371/journal.pone.0118625.g003
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Druze), highlighting their primarily indigenous origin, with the most extreme values for the
Druze, carrying the Southwest Asian/Caucasian component at*80%.

European background is higher in Near Eastern populations (around 9–15%) than in Arabia
(1.5–5%) while the African ancestry is*25% in Yemen, and then 4–8% in all Arabian and
Near East populations except in Samaritans and Druze, with 0–2%. The UAE has a substantial
pool from South Asia (21%) similar to the proportion displayed in Iran (24%), which falls to
below 10% in all other Arabian and Near Eastern populations, except Turkey (18%).

ADMIXTURE allows us to calculate FST values between the components in order to quanti-
fy their similarity (Fig. 5A). For K = 6, Arabia showed a lower distance from the Near East
(0.046), than from Europe (0.052), eastern Africa (0.098) and finally western Africa (0.140).
Arabia and the Near East have similar genetic distances from eastern African (0.098 and 0.097,
respectively), double that of the value between western and eastern Africa (0.046). When evalu-
ating FST values in pairwise comparisons between Arabian and Near Eastern populations
(Fig. 5B), we see that FST values are higher between Yemen and all other populations (and also
for comparisons with Samaritans, but these results may be biased by low sample size). The
UAE is closer to Jordan, Syria and Lebanon than Saudi Arabia is; while Saudi are closer to
Palestinians, Druze and Samaritans than UAE. Thus, FST values support lower or similar genet-
ic distances between UAE and Near Eastern populations as between Saudi and Near Eastern
populations, while Yemen is clearly more divergent.

Exchanges across the Red Sea—from Africa into Arabia
Founder analysis of the dispersal of sub-Saharan lineages from Africa into Arabia plus the
Near East and Iran (both regions have to be considered together due to the relatively low num-
ber of L(xMN) sequences) showed a predominant migration peak at 0–0.8 ka (Fig. 1C). When

Fig 4. ADMIXTURE results. Population structure inferred by ADMIXTURE analysis. Each individual is represented by a vertical (100%) stacked column of
genetic components proportions shown in colour for K = 6.

doi:10.1371/journal.pone.0118625.g004
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checking these founders (S9 and S10 Tables), we see that most of them display clearly young
ages, but several have ages*13 ka (S15 Table). So, we tested a model based on three periods of
migration (Fig. 1D), and their impact was: 31–40% for 1 ka (middle of Arab slave trade, 6th–

Table 1. Estimates of admixture proportions (%) and date of admixture (in generations) calculated in ROLLOFF when using western (Yoruba)
and eastern (Maasai) African and Italians + Spanish as ancestral populations.

Population Sample
Size

Western
African
ancestry
proportion
(%) ±
standard
error

Eastern
African
ancestry
proportion
(%) ±
standard
error

Southwest
Asian/
Caucasian
ancestry
proportion
(%) ±
standard
error

Arabian/
North
African
ancestry
proportion
(%) ±
standard
error

European
ancestry
proportion
(%) ±
standard
error

South Asian
ancestry
proportion
(%) ±
standard
error

Estimated
date of
admixture
using
ROLLOFF
using
Western
African
parental
population

Estimated
date of
admixture
using
ROLLOFF
using
Eastern
African
parental
population

Yemen 9* 16.935 ±
15.960

7.747 ±
5.333

30.777 ±
9.896

32.398 ±
6.030

3.217 ± 2.77 8.926 ±
3.727

21.019 ±
7.450

11.556 ±
3.878

Saudi
Arabia

20 1.694 ±
5.223

4.033 ±
4.235

34.227 ±
8.955

52.479 ±
18.957

2.722 ±
3.879

4.844. ±
4.975

30.762 ±
4.907

25.430 ±
3.011

Yemen
Jews

15 0.001 ±
0.000

5.105 ±
0.826

47.542 ±
1.525

45.693 ±
1.598

0.565 ±
0.699

1.094 ±
1.187

n/a n/a

UAE 14 6.408 ±
9.118

1.817 ±
2.014

34.432 ±
4.312

34.378±
21.632

1.689 ±
1.931

21.276 ±
17.660

8.900 ± 1.642 8.923 ± 1.795

Bedouin 45 2.005 ±
2.213

4.692 ±
4.246

24.903 ±
19.909

60.057±
30.707

5.400 ±
4.700

2.944 ±
2.285

37.546 ±
3.104

27.734 ±
1.532

Lebanon 7 1.243 ±
4.854

4.670 ±
3.148

51.547 ±
2.519

21.092 ±
4.062

14.543 ±
2.791

6.905 ±
4.854

n/a n/a

Syria 16 1.586 ±
1.451

3.413 ±
1.952

49.742 ±
4.880

23.260 ±
5.283

12.864 ±
4.532

9.135 ±
3.387

37.334 ±
4.365

26.181 ±
4.428

Jordan 20 3.205 ±
5.629

7.289 ±
6.404

47.833 ±
7.442

25.055 ±
3.209

11.171 ±
2.436

5.447 ±
2.169

32.871±
4.106

29.470 ±
3.671

Samaritan 3 0.001 ±
0.000

0.190 ±
0.777

63.029 ±
2.282

26.358 ±
2.709

8.946 ±
4.104

0.475 ±
0.496

n/a n/a

Druze 42 0.178 ±
0.365

1.869 ±
1.082

80.100 ±
14.498

9.919 ± 7.730 6.123 ±
5.089

1.812 ±
1.664

n/a n/a

Palestinian 46 2.222 ±
1.760

6.119 ±
2.147

51.538 ±
4.397

27.396 ±
2.153

9.153 ±
1.826

3.572 ±
1.302

29.008 ±
2.194

11.556 ±
3.878

Iran 20 1.701 ±
3.196

1.022 ±
1.818

50.678 ±
4.259

11.850 ±
5.614

11.135 ±
2.916

23.614 ±
3.944

n/a n/a

Turkey 19 0.069 ±
0.029

0.194 ±
0.312

49.188 ±
3.258

8.993 ± 2.904 23.798 ±
3.503

17.758 ±
2.504

n/a n/a

Ethiopia 19 3.911 ±
3.047

58.139 ±
8.479

12.146 ±
5.638

25.469 ±
5.495

0.179 ±
0.442

0.157 ±
0.297

93.223±
9.678

n/a

Maasai 19 15.808 ±
12.911

78.060 ±
15.009

0.412 ± 0.911 4.120 ± 3.043 0.096 ±
0.315

0.736 ±
1.858

47.007±
2.933

n/a

Egypt 12 5.553 ±
1.553

15.117 ±
4.878

39.826 ±
5.130

30.499 ±
6.343

8.380 ±
2.245

0.624 ±
0.630

30.034±
3.233

22.766 ±
2.890

Morocco 25 12.199 ±
10.473

12.066 ±
2.951

21.360 ±
4.827

28.872 ±
5.736

25.502 ±
7.971

0.001 ±
0.000

n/a n/a

Tunisia 12 9.815 ±
2.927

10.437 ±
1.212

26.002 ±
4.057

30.991 +
6.178

22.754 ±
5.354

0.001 ±
0.000

n/a n/a

N/A—not assigned.

* By eliminating one individual with a high level of African ancestry.

doi:10.1371/journal.pone.0118625.t001
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Fig 5. Matrices of FST distances.Matrices of FST values between ADMIXTURE components (A) and
Arabian and Near Eastern populations (B).

doi:10.1371/journal.pone.0118625.g005
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19th centuries); 38% for 2.5 ka (Arabian dominance of the Red Sea trade routes); and 22–31%
for 13ka (close to the Younger Dryas). As the great majority of lineages migrated in the two
very recent putative events, at similar ages, this contributes to the dominant young peak in
Fig. 1C, while the approximately one-third of sequences that were introduced later is responsi-
ble for the long tail of the curve (instead of a sharper peak). No clear pattern of association be-
tween haplogroup and event was observable, probably reflecting high levels of heterogeneity in
the source (S32 and S33 Figs. and detailed description in S1 Text). Thus, the Arabian maritime
dominance and slave trade (from very recently, back until*2.5 ka) were the main contributors
(*69–78%) to the African ancestry into Arabia, Near East and Iran, but the entrance seems to
have been initiated as early as the end of the Pleistocene. Clearly, no lineages could be assigned
to the out-of-Africa migration event.

In order to provide more information to the issue of possible relicts of the out-of-Africa mi-
gration, we further investigated two relatively rare African haplogroups (L4 and L6), phyloge-
netically close to L3, by whole-mtDNA sequencing (outline topology in S26 Fig. and detailed
topology in S28, S29 and S30 Figs.; S1 Text). L4 is more frequent nowadays in eastern Africa
followed by the Near East (S27A Fig.; S5 Table). The whole-mtDNA-based date points to an
origin at*87 ka, predating the out-of-Africa dispersal (as well as its sub-clade, L4b, dating
to*86 ka). So, in theory, this sister haplogroup of L3 could have crossed into Arabia along
with L3 during the initial out-of-Africa movement. Phylogenetically, however, the few Arabian
L4 lineages are derived, supporting an explanation in more recent exchange networks between
eastern Africa and Arabia for their dispersal, concordant with the recent signs of population
growth detected for L4 in BSPs (S31A Fig.; and dominating also S31B Fig.; S14 Table). L6, at
similarly low frequencies in Yemen and eastern Africa (S27B Fig.), dates to 23.1 [15.8–30.5] ka,
and is likely to have migrated from eastern Africa into Arabia after that period, most probably
very recently as testified by a very derived L6a sub-clade observed in three Yemenis (sharing
the same lineage).

The genome-wide analyses performed here on the available data from Arabian populations
provide estimates of African admixture, with disentanglement between western and eastern Af-
rican gene pool contributions (Table 1). The eastern African background is around 4.0% in
Saudi and Bedouin,*7.7% in Yemen (although Yemen Jews have a lower admixture of 5.1%),
and 1.8% in UAE; this input decreases beyond Jordan, and is negligible in Samaritans, Druze,
Turks and Iranians. The western African component also varies between 2.0 and 6.4%, except
for Yemen (16.9%) where it has likely been inflated due to indirect recent migration (the Bantu
component which is present in many eastern African populations). The ROLLOFF estimates
for the event of admixture were 8–27 generations ago when using eastern Africa as parental
population, and 8–37 generations using a western African source.

Both date estimates are compatible with the Arab slave trade, which operated between the
6th and 19th centuries AD, mainly from eastern Africa (from Nubia to Zanzibar), although
many of these populations bear a significant western African component (as shown in Fig. 4).
These values are in agreement with the estimates of Moorjani et al. [1] for Levantine groups,
showing a 4–15% African ancestry and about 32 generations ago for the event of admixture, in-
terpreted as consistent with close political, economic, and cultural links with Egypt in the late
Middle Ages. They also estimated 72 generations ago for the event leading to 3–5% sub-Saha-
ran ancestry in diverse Jewish populations, arguing that this reflecting descent of these groups
from a common ancestral population that already had some African ancestry prior to the Jew-
ish Diaspora.

Hodgson et al. [7] focused on the back-to-Africa migration in the Horn of Africa, and ob-
tained ages from 2.2–4.7 ka for the admixture event when using the ROLLOFF and ALDER
methods. The authors relied on other approaches in order to evaluate the hypothesis of two or
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more distinct episodes of non-African admixture in the Horn of Africa: they identified a non-
African Ethio-Somali component in eastern African populations in the ADMIXTURE analysis
for which FST-based dating methods indicated an age of divergence from North African/Arabi-
an populations of 23–25 ka, leading to a possible window of migration pre-LGM. These results
fit well with the conclusions we reached in this study through the analysis of the maternal
mtDNA pool.

Exchanges across the Red Sea—from Arabia into Africa
The Bab-el-Mandab strait and the Red Sea were also important for dispersal in the opposite
direction, the “back-to-Africa”migrations. Founder analysis (Fig. 1E; S11 and S12 Tables) led
to the identification of peaks of migration at*10–15 ka. Given these results, we inferred two
main migration events, at*10 ka (representing the Neolithic and beginning of maritime
trade) and at*16ka (Late Glacial period), as well as an episode at*2 ka which could repre-
sent recent times (specifically, Arabian dominance of the Red Sea routes). The proportions
(Fig. 1F) for migration contributed by these events were: 14–31% at*2 ka (for N1, R0a, T, J, K
and X); 33–36% at*10ka (U6a1a, J1d1a, M1 and R0a); and 33%–54% at*16ka (M1 and
HV1). A detailed analysis of these haplogroup distributions in the migration events is provided
in S1 Text, S34 and S35 Figs.

Interpreting these results in the light of available whole-mtDNA sequences, only the intro-
duction of N1 seems younger than expected, most probably due to lack of HVS-I resolution for
this haplogroup. Two main founders (comprising haplogroups N1a and I) are at the root of N1
sub-clades (dating to 15.9 and 21.8 ka, respectively). Another founder in N1a could be placed
in the sub-clade identified in the whole-mtDNA sequencing from Somalia reported by Fer-
nandes et al. [24], bearing the substitution at position 16213; but the HVS-I data show that this
is more frequent in Africa (seven individuals) than in Arabia (one individual), so this Arabian
individual may be a recent introduction into Arabia of an N1a sub-clade that had evolved with-
in Africa (dating to 0.9 ka [24]).

The phylogenetic analyses for N(xR) lineages performed by Fernandes et al. [24] also pro-
vided insights into back-to-Africa movements, evidently at various time periods. Some lineages
(I, N1a and N1f) displayed deep branches in eastern Africa, a sign of introduction in Africa
which could have begun as early as*40 ka (the upper bound defined by the TMRCA of the
founder clades) and extending till*15 ka (the lower bound defined by the TMRCA of the de-
rived African clades). The migration of J1d1a lineages into eastern Africa in the Neolithic peri-
od is confirmed in the whole-mtDNA sequencing (S14 Fig.) and complemented by the
frequency interpolation and founder analysis (S13 Fig.) performed here.

From the genome-wide results, we can infer this back-to-Africa migration was considerable,
leading to a proportion of 12% of Near Eastern and 26% Arabian ancestry in Ethiopia
(Table 1). The ROLLOFF estimate for the date of admixture was 93 generations ago—twice as
old as the time of African admixture in Arabia and Near East. For comparison, in the Maasai
from Kenya and Tanzania, the Eurasian component is an order of magnitude lower (4.5%),
and the time of admixture is 47 generations, reflecting most probably later admixture events.

The parallel introduction of Eurasian lineages from the Near East, Iran and Arabia into
North Africa through the Sinai Peninsula revealed two well-defined peaks (Fig. 1G) at*2.4 ka
and 6.8 ka with the f1 criterion, and two peaks at*9.0 ka and*12.4 ka when using the f2 cri-
terion. This seems to point to a significant role for dispersal in the Neolithic period, consistent
with results obtained for the North African MSY pool, interpreted as suggesting a large Neo-
lithic origin [51]. A major Neolithic impact is supported when imposing periods for the migra-
tion of founders (Fig. 1H), leading to: 7–16% at*2 ka, mainly HV1 and other undefined HV
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lineages, M1 and U (U6a1, K1a1); 52–58% at*10 ka for most of HV, U (U5b, U5 and K), T
(some T2c1 and T2b), J (J1d1a, J2a2b and other undefined J), and X; and 26%–41% at*16 ka
for some HV, T (T1a, T2) and U (U3, U3a, U5b1b, U5a, U6a) lineages (S1 Text, S36 and S37
Figs.). It seems likely that some JT lineages, especially T ones, were introduced into Northeast
Africa before the Neolithic, following Late Glacial population expansions in the Near East/Ara-
bia. Then, locally they could have been involved in population expansions in the Neolithic peri-
od, leading to signs of autochthonous founder effects, such as the one detected in the El-Hayez
oasis (400 km southwest of Cairo) for sub-haplogroup T1a2a [52].

The link between U6 and M1 and the settlement of North Africa from the Near East at
*45 ka advanced previously [53,54] was recently put into question [55] because their sub-
clades do not all seem to display the same history: U6a is*10 ka older than M1a and M1b,
and sub-clades of the former coalesce before or around the LGM while sub-clades of the latter
date to the post-LGM. In our founder analysis for North Africa, a strong Late Glacial signal
was detected for U6.

At the genome-wide level, Egypt is quite similar to its Levantine neighbours, displaying a
mainly Near Eastern (39.8%) and Arabian/North African (30.5%) background, with slightly
higher western (5.6%) and eastern (15.1%) African proportions, and lower European (8.4%)
and South Asian (0.6%) proportions. The ROLLOFF estimate for admixture in Egypt (using
Africans and Europeans as ancestral populations) was 30 generations, predictably young due
to continuous gene flow between the two regions. Morocco and Tunisia presented similar west-
ern (9.8–12.2%) and eastern African (10.4–12.1%) components and roughly twice the magni-
tude for each of the European (22.8–25.5%), Near Eastern (21.4–26.0%) and Arabian (28.9–
31.0%) pools. Again these young dates show that simple genome-wide dating approaches
based on linkage disequilibrium decay must be applied cautiously in complex scenarios of sev-
eral migrations occurring over a long span of time, such as the ones which took place across
the Red Sea, North Africa [56] and Iberia [57].

Conclusions
The detailed evaluation of the Arabian and neighbouring mtDNA pools has allowed us to es-
tablish a genetic stratigraphy of Arabia’s maternal line of descent, testifying to the pivotal role
of the Peninsula at the crossroads between Africa and Eurasia. The successful out-of-Africa mi-
gration led to continuous settlement of parts of the Peninsula, most probably centred on the
Gulf Oasis, which likely functioned as the cradle for the emergence of the haplogroup N line-
ages. No haplogroup L(xMN) relicts of this migration into Arabia are detected in mtDNA
founder analysis and we have confirmed their absence by whole-mtDNA sequencing of line-
ages from L3 [16] and its sister clades L4 and L6.

Although it is likely that the Gulf Oasis region eventually formed part of an extended source
region together with the Near East, if we assume that the Near East was the main source popu-
lation for current Arabian diversity, the Late Glacial period was responsible for the introduc-
tion of 40–54% of lineages, the Younger Dryas/Neolithic for 34–41%, and recent times (at
1.0 ka) for the remaining 12–19%. The Neolithic in Arabia was more characterised by the ex-
pansion in effective size of local haplogroup N lineages, mostly within R0a and J, than by the
entrance of new lineages. Arabia, together with the Near East and Iran, was involved in the
“back-to-Africa”migration of Eurasian lineages, beginning in the Pleistocene but becoming
more significant with the establishment of maritime commercial routes. The Late Glacial peri-
od was more important for bringing Eurasian lineages into eastern Africa, probably reflecting
the higher impact of this period in the expansion of Arabian populations, while the Neolithic,
especially linked to the Near East, affected to a greater extent the dispersals towards North
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Africa. The biparental genome averaged the African input to 6–25% of the Arabian pool, con-
cordant with the 35% female and 0% male inputs estimated from uniparental systems. ROLL-
OFF dating of admixture events across the Red Sea suggested recent ages of 8–37 generations
for the African input into Arabia, 93 generations for the Arabian/Near Eastern input into east-
ern Africa and 30 generations for North Africa.

We conclude by emphasising that different parts of the genome of an admixed population
often tell different stories—so the strategy must involve independent evaluation of (large)
linked blocks. This is precisely what we do when analysing the diverse mtDNA lineages found
in a population, but because mtDNA is a single linked locus, the different stories then emerge
from the different lineages, carried by different individuals within a population. Probably, re-
gions of the nuclear genome with a low recombination rate will allow estimation of older
events, as soon as more complete nuclear genomes are available from more populations, over-
coming the limits of molecular resolution of current genome-wide SNPs.

Materials and Methods

Samples for whole-mtDNA sequencing and statistical comparisons
We previously characterised the mtDNA diversity in populations from eastern Africa [16], the
Arabian Peninsula [42,46,47], and the African Sahel [58], by sequencing the hypervariable seg-
ments I and in some cases II (HVS-I and HVS-II) using a procedure described previously [59].
This information was used to assign mtDNA sequences to haplogroups, following the most up-
to-date phylogenetic evidence, reported on the PhyloTree website [60],checking the classifica-
tion against the output of the Haplogrep software [61]. We then selected 26 UAE and 31
Yemen samples belonging to haplogroups J and T, and some belonging to haplogroups L4 and
L6 for whole-mtDNA sequencing, amounting into a total of 26 (L4: 1 Burkina Faso, 2 Chad, 2
Dubai, 4 Ethiopia, 2 Kenya, 1 Niger, 1 Nigeria, 1 Nubia, 5 Somalia and Sudan; L6: 2 Ethiopia, 1
Kenya and 2 Somalia) (S1 Table).

We followed the methodology and quality control procedures of Pereira et al. [62], and mu-
tations were scored relative to the revised Cambridge reference sequence [63]. The sequences
obtained are reported in S1 Table and have been deposited in GenBank (accession numbers
KP316996-KP317078).

For the whole-mtDNA analyses (S1 and S2 Tables), we used a total of 1779 samples of JT
whole-mtDNA sequences (57 new, 1722 published) and 57 L4/L6 sequences (26 new, 31 pub-
lished) in the reconstruction of their phylogenetic trees. We constructed a database of HVS-I
and HVS-II sets from African, Arabian, European, Near Eastern, Iranian and Pakistani popula-
tions, amounting to 42,485 sequences, for founder analysis; these data are summarised in S6,
S7, S8, S9, S10, S11 and S12 Tables. By the Arabian Peninsula, we assumed the territory covered
by present-day Oman, UAE (which together we sometimes identified as eastern Arabia), Saudi
Arabia and Yemen (western Arabia) countries. In the Near East, we included Iraq, Jordan, Isra-
el/Palestine, Turkey, Lebanon and Syria.

This study obtained ethical approval from the Ethics Committee of the University of Porto,
Portugal (11/CEUP/2011). Written informed consent was obtained from all sampled individu-
als, except from illiterate people who provided oral consent and a fingerprint instead of signa-
ture. The Ethics Committee approved this procedure.

Statistical analyses of mtDNA data
For the phylogenetic reconstructions, preliminary reduced-median network analyses [64] led
to a suggested branching order for the trees, which we then constructed most parsimoniously
by hand. We used the mtDNA-GeneSyn software [65] to convert files.
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In order to estimate the time to the most recent common ancestor (TMRCA) for specific
clades in the phylogeny, we used the ρ statistic [18] and maximum likelihood (ML). We used ρ
(the mean sequence divergence from the inferred ancestral haplotype of the clade in question)
with a mutation rate estimate for the whole-mtDNA sequence of one substitution in every
3624 years, correcting for purifying selection, and a synonymous mutation rate of one substitu-
tion in every 7884 years [66]. Standard errors were estimated as before [67]. We obtained the
ML estimates of branch lengths using PAML 3.13 [68], assuming the HKY85 mutation model
with gamma-distributed rates (approximated by a discrete distribution with 32 categories). We
converted mutational distance in ML to time using the same whole-mtDNA genome clock.

In order to investigate the population demography associated with the different hap-
logroups analyzed (J/T and L4/L6), we obtained Bayesian skyline plots (BSPs) [69] from
BEAST 1.4.6 [70] for a total of 1720 and 57 (J/T and L4/L6, respectively) whole-mtDNA se-
quences with a relaxed molecular clock (lognormal in distribution across branches and uncor-
related between them) and the HKY model of nucleotide substitutions with gamma-distributed
rates (10 gamma categories). BSPs estimate the effective population size through time using
random sequences from a given population, but have also proved effective with individual hap-
logroups data [71]. For this analysis, we used a mutation rate of 2.6129 x10−5, previously cali-
brated using internal calibration points within the L3 phylogeny [16]. BEAST uses a Markov-
chain Monte-Carlo (MCMC) approach to sample from the posterior distributions of model pa-
rameters (branching times in the tree and substitution rates). Specifically, we ran 100,000,000
iterations, with samples drawn every 10,000 MCMC steps, after a discarded burn-in of
10,000,000 steps. We checked for convergence to the stationary distribution and sufficient sam-
pling by inspection of posterior samples. We visualized the Bayesian skyline plots (BSPs) with
Tracer v1.3 [69]. We used a generation time of 25 years and forced the larger haplogroups to be
monophyletic in the analysis: MCMC updates which violated this assumption were rejected. In
order to perform a systematic comparison and description of the increment periods in the ef-
fective population size of the BSP, we calculated a rate of population size change through time.

To visualize the geographical distribution of haplogroups J, T, L4 and L6, we constructed in-
terpolation maps using the “Spatial Analyst Extension” of ArcView version 3.2 (www.esri.com/
software/arcview/). We used the “Inverse Distance Weighted” (IDW) option with a power of
two for the interpolation of the surface. IDW assumes that each input point has a local influ-
ence that decreases with distance. The geographic location used is the centre of the distribution
area from which the individual samples of each population were collected. The data used are
listed in S3, S4 and S5 Tables.

In order to estimate the times of migrations into and from the Arabian Peninsula, we em-
ployed founder analysis [15]. This method assumes a strict division between assumed source
and sink populations and two criteria (f1 and f2) for identifying founder sequences to partly
allow for homoplasy and back migrations, by ensuring that sequence matches are not at the
tips of the source phylogeny. Founders must have at least one (f1) or two (f2) derived branches
in the source population. The first step is to reconstruct, haplogroup by haplogroup, the HVS-I
networks in the range 16051–16400 bp of the reference sequence [63]; we then identified foun-
ders and descendants using an in-house computer tool [72]; and finally we estimated the age of
the migration of each founder using the ρ statistic [18], assuming an HVS-I mutation rate of
one mutation every 16,677 years [66].

Four paths of migration were tested: (1) from Africa into Arabia plus the Near East and Iran
(identified through the L(xMN) haplogroups); (2) from the Near East, Iran and Pakistan into
the Arabian Peninsula (N haplogroups); (3) from Arabia plus Near East and Iran into eastern
Africa (N and M1 haplogroups); and (4) from Arabia plus Near East and Iran into North Af-
rica (N and M1 haplogroups). We included Pakistan in path (2) as we were also interested in
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inferring the more eastern contribution into the Arabian Peninsula. In order to assess the error
in the Bayesian partitioning across the different migration times realistically, we calculated an
effective number of samples for each founder cluster. This was obtained by multiplying the
number of samples for each founder cluster by a ratio of the variance assuming a star-like net-
work and the variance calculated as in Saillard et al. [67].

We scanned the distribution of founder ages for each region, defining equally spaced 200-
year intervals for each migration from 0–70 ka. For each case, we also investigated the propor-
tion of introduction of lineages during putative migrations occurring in certain periods of time.
We selected these migration events by combining three distinct lines of evidence: the peaks de-
tected in the founder analysis; historical/archaeological evidence; and dates from whole-
mtDNA sequences belonging to informative haplogroups in the region (such as R0a, JT, N1,
N2, I, L3 and L4/L6). We represented the probabilistic proportions of introduction for each
lineage at each of the putative migration periods in graphs resembling the images from the
STRUCTURE analysis.

In order to further validate the HVS-I founder analysis into Arabia we compared it with the
results obtained from a founder analysis using whole-mtDNA genomes belonging to hap-
logroups J and T. We only used an f1 criterion (since the sampling from the source was too
scarce to allow an f2 criterion) and we detected 17 founders (S8 Table). The assumptions of the
founder method do not allow the use of a time-dependent clock. Therefore, given the relatively
small difference between the mutation rate for time zero (average 2562 years for a mutation to
happen) and the mutation rate for the oldest founder (average 2667 years for a mutation to
happen) we used the intermediate value (2614 years for a mutation to happen) as an estimate
for the overall range. As with the HVS-I founder analysis, we performed a preliminary scan
analysis and estimated relative contributions of JT lineages in a three-migration model.

Genome-wide database
We assembled genome-wide data for 790 samples from eight geographic groups (sub-Saharan
Africa, North Africa, Arabian Peninsula, Near East, Iran, Europe, Caucasus and South Asia)
from previously published data sets (S13 Table). The samples from Behar et al. [23] were geno-
typed using Illumina the 610K and 660K bead arrays, while those from Li et al. [49] were
screened with Illumina 650K bead arrays, and those from Hellenthal et al. [3] with Illumina
660K bead arrays. We obtained the genotypes from Maasai, an ethnic group located in Kenya,
from the HapMap phase III release (http://hapmap.ncbi.nlm.nih.gov/). We used PLINK 1.05
[73] to check that individuals and SNPs had a genotyping success of 97%. We used a Python
in-house script to merge genotypes from the various chips and ended up with a total of 309,474
common autosomal single nucleotide polymorphisms (SNPs). We pruned the full dataset for
linkage disequilibrium (LD), removing SNPs in strong LD (r2 > 0.4) with nearby markers in a
window of 50 SNPs (advanced by 10 SNPs each time); a total of 215,286 SNPs remained for
further analyses.

Genome-wide statistical analyses
We analysed the 790 samples with the ADMIXTURE software [74] which provides a maxi-
mum likelihood estimation of the population structure. We tested several numbers of clusters
or ancestral populations, K (from three to six), with termination criteria for independent runs
for each K value established when the log-likelihood increased by less than 10−4 between itera-
tions. We performed across-validation to check the K value with the lowest cross-validation
error, which would represent the most accurate modelling choice.
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We carried out the principal component (PC) analysis, which infers worldwide axes of
human genetic variation from the allele frequencies of various populations, using the smartpca
tool, available in the EIGENSOFT package [75]. We evaluated the statistical significance of
each PC through the Tracy-Widom statistics, computed at the EIGENSOFT tool twstats. As we
were focused in Arabia, we did not include all populations in the analysis, especially the west-
ern African ones, in order to maximise the resolution.

To estimate the ages of putative admixture events in populations displaying statistical evi-
dence of admixture, we used the ROLLOFF method [1] implemented in the ADMIXTOOLS
software package [8]. This method is based on the decay of admixture LD in the target popula-
tion, performing a local ancestry inference. We ran the ROLLOFF method for Arabia and
some Near Eastern populations, using the unpruned set, with Maasai individuals (from the
HapMap dataset, selected after the ADMIXTURE analysis, as the ones displaying>80% east-
ern African ancestry) and Italy plus Spain (extracted from 1000 Genomes database; http://
browser.1000genomes.org/index.html) as ancestral populations. We also performed this analy-
sis by replacing Maasai by Yoruba, from western Africa, to check for the influence of the select-
ed African ancestral population, and as some eastern African populations also have a high
western African component (such as Luhya in Webuye, Kenya, in the 1000 Genomes
database).

We plotted the correlation between SNPs as a function of genetic distance for all chromo-
somes. Ages (in number of generations) were estimated by fitting an exponential distribution
to the decay of these correlation coefficients. The estimated age (in number of generations) for
the admixture event is the average of dates for all chromosomes. The FST values between pairs
of ADMIXTURE components (K = 6) were estimated using ADMIXTURE, while the ones be-
tween pairs of populations were performed using vcf tools (http://vcftools.sourceforge.net/).

Supporting Information
S1 Fig. Schematic tree of haplogroup J. Ages (in ka) indicated are maximum likelihood esti-
mates obtained for the whole-mtDNA genome.
(TIF)

S2 Fig. Schematic tree of haplogroup T. Ages (in ka) indicated are maximum likelihood esti-
mates obtained for the whole-mtDNA genome.
(TIF)

S3 Fig. Frequency maps based on HVS-I data for haplogroups J (A) and T (B).
(TIF)

S4 Fig. Distribution maps for haplogroup J for the diversity measures π (A) and ρ (B)
based on HVS-I data.
(TIF)

S5 Fig. Distribution maps for haplogroup T for the diversity measures π (A) and ρ (B)
based on HVS-I data.
(TIF)

S6 Fig. Bayesian skyline plot indicating hypothetical effective population size through time
based on data from haplogroup J of Arabia (A) and Near East (B) and from haplogroup T
of Arabia (C) and Near East (D).
(TIF)
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S7 Fig. Frequency maps based on HVS-I data for haplogroups J1b.
(TIF)

S8 Fig. Phylogenetic tree of haplogroup J1b. Labels on the branches represent nucleotide po-
sitions of transitions, and transversions when followed by a suffix “A,” “G,” “C,” or “T”; inser-
tions are indicated by a dot followed by the number of repetitions and the nucleotide position;
reversions by “!”; green indicates synonymous, brown non-synonymous, yellow other coding
region, and black control region substitutions. Individual identification is indicated as well as
the geographic origin when known (geographic regions are grouped by colour code according
to the key). Near the nodes, the TMRCA is indicated (mean and 95% confidence interval) for ρ
based on whole-mtDNA sequences (in black), ρ based on synonymous diversity (in green) and
for maximum likelihood (in blue).
(TIF)

S9 Fig. Phylogenetic tree of haplogroup J1b1. Labels on the branches represent nucleotide
positions of transitions, and transversions when followed by a suffix “A,” “G,” “C,” or “T”; re-
versions by “!”; green indicates synonymous, brown non-synonymous, yellow other coding re-
gion, and black control region substitutions. Individual identification is indicated as well as the
geographic origin when known (geographic regions are grouped by colour code according to
the key). Near the nodes, the TMRCA is indicated (mean and 95% confidence interval) for ρ
based on whole-mtDNA sequences (in black), ρ based on synonymous diversity (in green) and
for maximum likelihood (in blue).
(TIF)

S10 Fig. Phylogenetic tree of haplogroup J1b1a. Labels on the branches represent nucleotide
positions of transitions, and transversions when followed by a suffix “A,” “G,” “C,” or “T”; re-
versions by “!”; green indicates synonymous, brown non-synonymous, yellow other coding re-
gion, and black control region substitutions. Individual identification is indicated as well as the
geographic origin when known (geographic regions are grouped by colour code according to
the key). Near the nodes, the TMRCA is indicated (mean and 95% confidence interval) for ρ
based on whole-mtDNA sequences (in black), ρ based on synonymous diversity (in green) and
for maximum likelihood (in blue).
(TIF)

S11 Fig. Phylogenetic tree of haplogroup J1b2. Labels on the branches represent nucleotide
positions of transitions, and transversions when followed by a suffix “A,” “G,” “C,” or “T”; re-
versions by “!”; green indicates synonymous, brown non-synonymous, yellow other coding re-
gion, and black control region substitutions. Individual identification is indicated as well as the
geographic origin when known (geographic regions are grouped by colour code according to
the key). Near the nodes, the TMRCA is indicated (mean and 95% confidence interval) for ρ
based on whole-mtDNA sequences (in black), ρ based on synonymous diversity (in green) and
for maximum likelihood (in blue).
(TIF)

S12 Fig. Frequency maps based on HVS-I data for lineages within haplogroup J defined by
the transition at 16193, which mainly corresponds to haplogroup J1d, but can also include
haplogroup J2d.
(TIF)

S13 Fig. Frequency maps based on HVS-I data for the sub-haplogroup J1d1a.
(TIF)
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S14 Fig. Phylogenetic tree of haplogroup J1d1. Labels on the branches represent nucleotide
positions of transitions, and transversions when followed by a suffix “A,” “G,” “C,” or “T”; dele-
tions are indicated “d”; reversions by “!”; green indicates synonymous, brown non-synony-
mous, yellow other coding region, and black control region substitutions. Individual
identification is indicated as well as the geographic origin when known (geographic regions are
grouped by colour code according to the key). Near the nodes, the TMRCA is indicated (mean
and 95% confidence interval) for ρ based on whole-mtDNA sequences (in black), ρ based on
synonymous diversity (in green) and for maximum likelihood (in blue).
(TIF)

S15 Fig. Phylogenetic tree of haplogroup J1d2. Labels on the branches represent nucleotide
positions of transitions, and transversions when followed by a suffix “A,” “G,” “C,” or “T”; in-
sertions are indicated by a dot followed by the number of repetition and the nucleotide posi-
tion; reversions by “!”; green indicates synonymous, brown non-synonymous, yellow other
coding region, and black control region substitutions. Individual identification is indicated as
well as the geographic origin when known (geographic regions are grouped by colour code ac-
cording to the key). Near the nodes, the TMRCA is indicated (mean and 95% confidence inter-
val) for ρ based on whole-mtDNA sequences (in black), ρ based on synonymous diversity (in
green) and for maximum likelihood (in blue).
(TIF)

S16 Fig. Frequency maps based on HVS-I data for haplogroup J2.
(TIF)

S17 Fig. Phylogenetic tree of haplogroup J2a2. Labels on the branches represent nucleotide
positions of transitions, and transversions when followed by a suffix “A,” “G,” “C,” or “T”; re-
versions by “!”; green indicates synonymous, brown non-synonymous, yellow other coding re-
gion, and black control region substitutions. Individual identification is indicated as well as the
geographic origin when known (geographic regions are grouped by colour code according to
the key). Near the nodes, the TMRCA is indicated (mean and 95% confidence interval) for ρ
based on whole-mtDNA sequences (in black), ρ based on synonymous diversity (in green) and
for maximum likelihood (in blue).
(TIF)

S18 Fig. Phylogenetic tree of haplogroup J2a2a. Labels on the branches represent nucleotide
positions of transitions, and transversions when followed by a suffix “A,” “G,” “C,” or “T”; in-
sertions are indicated by a dot followed by the number of repetition and the nucleotide posi-
tion; reversions by “!”; green indicates synonymous, brown non-synonymous, yellow other
coding region, and black control region substitutions. Individual identification is indicated as
well as the geographic origin when known (geographic regions are grouped by colour code ac-
cording to the key). Near the nodes, the TMRCA is indicated (mean and 95% confidence inter-
val) for ρ based on whole-mtDNA sequences (in black), ρ based on synonymous diversity (in
green) and for maximum likelihood (in blue).
(TIF)

S19 Fig. Frequency maps based on HVS-I data for the haplogroup J2a2b.
(TIF)

S20 Fig. Phylogenetic tree of haplogroup T1a. Labels on the branches represent nucleotide
positions of transitions, and transversions when followed by a suffix “A,” “G,” “C,” or “T”; in-
sertions are indicated by a dot followed by the number of repetition and the nucleotide posi-
tion; reversions by “!”; green indicates synonymous, brown non-synonymous, yellow other
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coding region, and black control region substitutions. Individual identification is indicated as
well as the geographic origin when known (geographic regions are grouped by colour code ac-
cording to the key). Near the nodes, the TMRCA is indicated (mean and 95% confidence inter-
val) for ρ based on whole-mtDNA sequences (in black), ρ based on synonymous diversity (in
green) and for maximum likelihood (in blue).
(TIF)

S21 Fig. Phylogenetic tree of haplogroup T2a1. Labels on the branches represent nucleotide
positions of transitions, and transversions when followed by a suffix “A,” “G,” “C,” or “T”; in-
sertions are indicated by a dot followed by the number of repetition and the nucleotide posi-
tion; reversions by “!”; green indicates synonymous, brown non-synonymous, yellow other
coding region, and black control region substitutions. Individual identification is indicated as
well as the geographic origin when known (geographic regions are grouped by colour code ac-
cording to the key). Near the nodes, the TMRCA is indicated (mean and 95% confidence inter-
val) for ρ based on whole-mtDNA sequences (in black), ρ based on synonymous diversity (in
green) and for maximum likelihood (in blue).
(TIF)

S22 Fig. Phylogenetic tree of haplogroup T2c. Labels on the branches represent nucleotide
positions of transitions, and transversions when followed by a suffix “A,” “G,” “C,” or “T”; in-
sertions are indicated by a dot followed by the number of repetition and the nucleotide posi-
tion; reversions by “!”; green indicates synonymous, brown non-synonymous, yellow other
coding region, and black control region substitutions. Individual identification is indicated as
well as the geographic origin when known (geographic regions are grouped by colour code ac-
cording to the key). Near the nodes, the TMRCA is indicated (mean and 95% confidence inter-
val) for ρ based on whole-mtDNA sequences (in black), ρ based on synonymous diversity (in
green) and for maximum likelihood (in blue).
(TIF)

S23 Fig. Phylogenetic tree of haplogroups T2i and T2g. Labels on the branches represent nu-
cleotide positions of transitions, and transversions when followed by a suffix “A,” “G,” “C,” or
“T”; insertions are indicated by a dot followed by the number of repetition and the nucleotide
position; reversions by “!”; green indicates synonymous, brown non-synonymous, yellow other
coding region, and black control region substitutions. Individual identification is indicated as
well as the geographic origin when known (geographic regions are grouped by colour code ac-
cording to the key). Near the nodes, the TMRCA is indicated (mean and 95% confidence inter-
val) for ρ based on whole-mtDNA sequences (in black), ρ based on synonymous diversity (in
green) and for maximum likelihood (in blue).
(TIF)

S24 Fig. Probabilistic proportion of founder clusters considering three migration periods
(1.0, 10.0 and 16.0 ka), using the f1 criterion and by assuming a Near East, Iran and Paki-
stan source for migrations into Arabian Peninsula. The haplogroup affiliations of the foun-
ders are indicated in the bottom.
(TIF)

S25 Fig. Probabilistic proportion of founder clusters considering three migration periods
(1.0, 10.0 and 16.0 ka), using the f2 criterion and by assuming a Near East, Iran and Paki-
stan source for migrations into Arabian Peninsula. The haplogroup affiliations of the foun-
ders are indicated in the bottom.
(TIF)
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S26 Fig. Schematic tree of haplogroups L4 and L6. Ages (in ka) indicated are maximum like-
lihood estimates obtained with the whole-mtDNA genome.
(TIF)

S27 Fig. Frequency maps based on HVS-I data for haplogroups L4 (A) and L6 (B).
(TIF)

S28 Fig. Phylogenetic tree of haplogroup L4a. Labels on the branches represent nucleotide
positions of transitions, and transversions when followed by a suffix “A,” “G,” “C,” or “T”; re-
versions by “!”; green indicates synonymous, brown non-synonymous, yellow other coding re-
gion, and black control region substitutions. Individual identification is indicated as well as the
geographic origin when known (geographic regions are grouped by colour code according to
the key). Near the nodes, the TMRCA is indicated (mean and 95% confidence interval) for ρ
based on whole-mtDNA sequences (in black), ρ based on synonymous diversity (in green) and
for maximum likelihood (in blue).
(TIF)

S29 Fig. Phylogenetic tree of haplogroup L4b. Labels on the branches represent nucleotide
positions of transitions, and transversions when followed by a suffix “A,” “G,” “C,” or “T”; re-
versions by “!”; green indicates synonymous, brown non-synonymous, yellow other coding re-
gion, and black control region substitutions. Individual identification is indicated as well as the
geographic origin when known (geographic regions are grouped by colour code according to
the key). Near the nodes, the TMRCA is indicated (mean and 95% confidence interval) for ρ
based on whole-mtDNA sequences (in black), ρ based on synonymous diversity (in green) and
for maximum likelihood (in blue).
(TIF)

S30 Fig. Phylogenetic tree of haplogroup L6. Labels on the branches represent nucleotide po-
sitions of transitions, and transversions when followed by a suffix “A,” “G,” “C,” or “T”; rever-
sions by “!”; green indicates synonymous, brown non-synonymous, yellow other coding
region, and black control region substitutions. Individual identification is indicated as well as
the geographic origin when known (geographic regions are grouped by colour code according
to the key). Near the nodes, the TMRCA is indicated (mean and 95% confidence interval) for ρ
based on whole-mtDNA sequences (in black), ρ based on synonymous diversity (in green) and
for maximum likelihood (in blue).
(TIF)

S31 Fig. Bayesian Skyline Plot (BSP), indicating the median of the hypothetical effective
population size through time based on data from haplogroup L4 (A) and haplogroups L4
and L6 (B), assuming a generation time of 25 years.
(TIF)

S32 Fig. Probabilistic proportion of founder clusters considering three migration periods
(1.0, 2.5 and 13.0 ka), using the f1 criterion and assuming an African source for migrations
into Arabian Peninsula plus the Near East and Iran. The haplogroup affiliations of the foun-
ders are indicated in the bottom.
(TIF)

S33 Fig. Probabilistic proportion of founder clusters considering three migration periods
(1.0, 2.5 and 13.0 ka), using the f2 criterion and assuming an African source for migrations
into Arabian Peninsula plus Near East and Iran. The haplogroup affiliations of the founders
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are indicated in the bottom.
(TIF)

S34 Fig. Probabilistic proportion of founder clusters considering three migration periods
(2.0, 10.0 and 16.0 ka), using the f1 criterion and assuming Arabian Peninsula plus Near
East and Iran migrations into eastern Africa. The haplogroup affiliations of the founders are
indicated in the bottom.
(TIF)

S35 Fig. Probabilistic proportion of founder clusters considering three migration periods
(2.0, 10.0 and 16.0 ka), using the f2 criterion and assuming Arabian Peninsula plus Near
East and Iran migrations into eastern Africa. The haplogroup affiliations of the founders are
indicated in the bottom.
(TIF)

S36 Fig. Probabilistic proportion of founder clusters considering three migration periods
(2.0, 10.0 and 16.0 ka), using f1 criterion and assuming Arabian Peninsula plus Near East
and Iran migrations into North Africa. The haplogroup affiliations of the founders are indi-
cated in the bottom.
(TIF)

S37 Fig. Probabilistic proportion of founder clusters considering three migration periods
(2.0, 10.0 and 16.0 ka), using the f2 criterion and assuming Arabian Peninsula plus Near
East and Iran migrations into North Africa. The haplogroup affiliations of the founders are
indicated in the bottom.
(TIF)

S38 Fig. Population structure inferred by ADMIXTURE analysis. Each individual is repre-
sented by a vertical (100%) stacked column of genetic components proportions shown in col-
our for K = 3, 4 and 5.
(TIF)

S1 Table. Haplotypes for whole-mtDNA sequences that were fully characterised in this
study and the corresponding geographic region.
(DOCX)

S2 Table. Published whole-mtDNA sequences used in all phylogenetic tree with the corre-
sponding origin and subclade affiliation.
(DOCX)

S3 Table. Diversity values of ρ and π used for the interpolation maps of the haplogroups J,
T and L4.
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S4 Table. Frequency values used in the reconstruction of the interpolation maps for the
haplogroups J, T, J1d1a and J2a2b.
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S5 Table. Frequency values used in the reconstruction of the interpolation maps for the
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S6 Table. Founder lineages identified when using f1 criterion from the Near East, Iran and
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