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3.Glossary 

Aa- Amino Acids 

AA-Arachidonic acid 

ACE-Angiotensin I-converting enzyme 

AD-Atopic Dermatitis 

ADRB2- beta-2 adrenergic receptor  

AGTR1-Angiotensin II type 1 receptor 

ACQ7- Asthma control questionnaire 7 

APCs- Antigen-Presenting Cells 

Apo A1- Apolipoprotein A1 

APRE- Acute phase response elements 

Asp- Aspergillus 

BCR- B cell antigen receptor 

BR- Biliverdin reductase 

CCL20-C-C ligand motif 20 

CCL22-C-C chemokine motif 22 

CCR6 Chemokine Receptor Type 6 

CD4- Thelper Cells 

CD4 + CD25 + Treg- Regulatory Cells 

CD5- B cell IgM receptor 

CD6- Cluster of differentiation belonging to the family of cysteine-rich capturing receptors 

CD8-cytotoxic T cells 

CD11 / CD18- family of β-integrins 

CD22- Cluster of differentiation 22 transmembrane receptor of the B cells 

CD23- Low affinity IgE receptor 

CD40 - co-stimulatory protein of APCs 

CD54- Co-stimulatory Protein of Antigen-Presenting Cells 

CD86- Co-stimulatory Protein of Antigen-Presenting Cells 

CD163- Hp-Hb complex receptor 

CD206- Mannose receptor  

CIC-Immune complexes 

CO-Carbon monoxide 

COX- Cyclooxygenase 

CVD-Cardiovascular Disease 

CXCL10-CXC motif chemokine 10 

DAMPs- Molecular patterns associated with injury 
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Dcs- Dendritic cells 

Dc1- Dendritic cells type 1 

Dc2- Type 2 dendritic cells 

CVD-Cardiovascular Disease 

DEP- Diesel exhaust particles 

Derp1-Molecular allergen 1 of the dematofagoides pteronyssinus 

Derp2- Molecular Allergen 2 of the dematofagoides pteronyssinus 

DNA- Deoxyribonucleic acid 

ECP- Eosinophil cationic protein 

ECM-extracellular matrix 

EGF- Epidermal growth factor 

Eos-Eosinophils 

FOXP3 Forkhead box p3: Tregs marker 

Fe2 + - Ferrous iron 

Fe3 + Ferric Iron 

FeNO-Exhaled nitric oxide 

FLG-Filaggrin  

FOXP3- Forkhead box p3: Tregs marker 

FEV1 Forced expiratory volume in 1 second 

GATA3-trans-specific transcription factor T 3 cells 

GINA- Guidelines for the Global Asthma Initiative 

GM-CSF- colony stimulating factor granulocyte-macrophages 

GREs- Glucocorticoid and response elements 

GSTM1-  GSTM1 glutathione S-transferase mu 1 

GSTT1- glutathione S-transferase theta 1 

Hb- Hemoglobin 

HbSR- Hb Capturing Receptor 

HDL-High Density Lipoprotein 

12-HETE-12-Hidoxy eicosatetraenoic 

HIF1α-transcription factors inducible by hypoxia 1α 

HIF-2α-transcription factors inducible by hypoxia 2α 

HIF1AN- Hypoxia-inducible factor 1-alpha inhibitor 

HIV-1-Human Immunodeficiency Virus type 1 

HO- Heme-oxygenase 

Hp- Haptoglobin 

Hp * 1-Haptoglobin allele 1 

Hp * 2- Allele 1 of Haptoglobin 

https://www.ncbi.nlm.nih.gov/gene/2944
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Hp1 -1- Homozygous for Haptoglobin Allele 1 

Hp2-1- Heterozygotes for Haptoglobin allele1 and 2 

Hp2-2 - Homozygous for Haptoglobin Allele 2 

Hp-Hb-complex Hp-Hb 

ICAM-1- Intercellular adhesion molecule 1 

IFNγ- Interferon gamma 

IgE- Immunoglobulin E 

IL-1RI- Type 1 IL-1 receptor 

IL-1-RII-IL-1 receptor type 2 

IL-1RA- IL1 Type 1 Receptor Antagonist 

IL-2 Interleukin 2 

IL-4-- Interleukin 4 

IL-5-- Interleukin 5 

IL-6-- Interleukin 6 

IL-10- Interleukin 10 

IL-12-Interleukin 12 

IL-13-- Interleukin 13 

IL-17-- Interleukin 17 

IL-18- Interleukin 18 

IL-21-- Interleukin 21 

IL-23-- Interleukin-23 

IL-27-- Interleukin 27 

INOS- Inducible nitric oxide synthase 

ISAC-  Immuno Solid-phase Allergen Chip 

ITreg- Induced / adaptive regulatory T cells 

LBA-Bronchoalveolar lavage 

LELP-1- late cornified envelope-like proline-rich 1 

LO- Lipoxygenase 

LPS- Lipopolysaccharide 

LTA- Lymphotoxin α 

M1- Classically-activated macrophages 

M2- Activated type 2 macrophages 

M2a- Macrophages activated by the alternating route type 2a 

M2b- Activated macrophages type 2b 

M2c- Activated macrophages type 2c 

M4-macrophages inducible by platelet chemokines 

M-DC: macrophages that originate dendritic cells 
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Mb-Macrophage Inducible by Hp-Hb Complexes 

Mc-Mastocytes 

M-CSF- macrophage colony stimulating factor 

MCP1-Monocyte Chemoattractant Protein 

MDDCs - dendritic cells derived from monocytes 

MD2 - myeloid differentiation factor 2 

M-HA: Macrophages associated with hemorrhage 

MHC-Major Histocompatibility System 

MMP2- Matrix metalloproteinase 2  

MMP9- Matrix metalloproteinase 9 

Mo-Monocytes 

M-ox: Spongy cells 

MPO- Myeloperoxidase 

MRNA-messenger RNA 

MTHFR- Methylene tetrahydrofolate reductase  

NADPH oxidase -Nicotinamide adenine dinucleotide phosphate oxidase 

NF-E2- Factor 2 related to erythroid nuclear factor2 

NF-kB- nuclear factor Kβ 

NGF- neuronal growth factor 

NK-Natural killer cells 

NLRs- Nod-Like-Receptors 

NO- Nitric Oxide 

NO2- Nitrogen dioxide 

NOS- Nitric oxide synthase 

NOS2A- Inducible nitric oxide synthase  

NOS3- Endothelial nitric oxide synthase 

NTBI- Plasma labile iron not bound to transferrin 

NTreg- Natural regulatory T cells 

NU-Neutrophils 

O3-Ozone 

24p3- Acute Phase Protein 

PAF- platelet activating factor 

PAGE - polyacrylamide gel electrophoresis 

PAI-1 Plasminogen activator inhibitor 1 

PALMs - lipid mediators associated with pollens 

PAMPs- Molecular patterns associated with pathogens 

PAQLQ- Quality of life questionnaire for asthmatic patients in pediatrics 
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PAR-2-Protease Activated Receptor 

PCR-C-reactive protein 

PD20- Dose of provocation test that decreases respiratory rates of 20% 

PDc2-Plasmocytoid dendritic cells 

PGE2- Prostaglandin E2 

PGF2α- Prostaglandin F2α 

PKC-protein kinase C 

PPRs- Pathogen Recognition Receptors 

PST- Proline Serine Threonine 

RAST- Radioallergosorbent test 

RORγT- Transcription factor related to the ortho-retinoic acid receptor 

RNI- Reactive nitrogen species 

ROI- Reactive Oxygen Intermediates 

ROS - Reactive Oxygen Species 

SCD163-Soluble receptor for the Hp-Hb complex 

SCRC- Cysteine-rich capturing receptors 

SP-A- Surfactant Protein A 

SP-D- Surfactant Protein D 

SPRR- small proline rich proteins  

STAT3- Signal transducer and transcription activator 3 

Syk- Tyrosine Kinase 

TAM-macrophage associated with tumors 

Tbet- T cell transcription factor 

Tconv- Conventional T cells 

TCR-T cell receptor 

TGFβ- transforming factor of growth β 

Th0- naive T cells 

Th1- Thelper type 1 cells 

Th2-Thelper type 2 cells 

Th3- T helper 3 regulatory cells 

Th17- Thelper 17 type cells 

TLRs-Toll-Like-Receptors 

TNFα- Tumor necrosis factor α 

Tr1- Regulatory cells type 1 

Treg- Regulatory T cells 

TSLP-Lymphopoietin of thymic stroma 

TWEAK-factor-like receptor for apoptosis-inducing weak tumor necrosis 
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TxA2-Thromboxane A2 

VEGF- Vascular endothelial growth factor 

VOC- Volatile Organic Compounds 
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4- Abstract 

 

Background: Atherosclerosis and CVD might be associated with the traditional CV risk 

factors such as age and hypertension as well as nontraditional risk factors comprising current 

inflammation associated with asthma and genetic polymorphisms that predisposes to 

different status of oxidative stress and inflammation. In this multiple risk factor assessment, 

the risk charts that are based only on traditional risk factors  are  insufficient to capture CV 

risk extent in bronchial asthma and CVDs in general. The purpose of this thesis is to analyze 

the role of the different polymorphisms as emerging risk factors for CVD and asthma control 

and severity. 

Material and Methods: It has been performed a clinical case-control study between 

asthmatics patients (356) and volunteer controls (153) for the polymorphisms of: Renin-

angiotensin system; NO associated system; BETA2- adrenergic receptors; Detoxification; 

Atopic march; Epigenetics. It has been done a   literature revue and meta-analysis 

accomplished with comprehensive meta-analysis software version 2 for CVD and the 

polymorphisms of: Renin-angiotensin system; NO associated system; BETA2- adrenergic 

receptors; Detoxification; Atopic march; Epigenetics.  Genomic DNA Isolation and 

quantification. Genotyping: PCR, PCR-RFLP; PCR – multiplex. PAGE for haptoglobin 

polymorphism. Serum Hp concentration was determined by nephelometry.  Determination of 

plasma concentration of MPO was performed using the ELISA technique. All statistical 

analysis was carried out using the SPSS 21.0 software. The results were considered 

statistically significant for p<0.05. The Genetic Risk score of: endothelial dysfunction ((ACE) 

and nitric oxide (NOS) gene polymorphisms)); endothelial dysfunction and epigenetics 

(MTHFR+(ACE) and nitric oxide (NOS) gene polymorphisms); uncontrolled asthma (NOS2-

IVS16+ 88T>G , ACE I/D and age) and allergic asthma (MTHFR and GSTT1 and ACE and 

gender). 

Results: For the different polymorphisms of: Renin-angiotensin system; NO associated 

system; BETA2- adrenergic receptors; Detoxification; Atopic march; Epigenetics; the 

systematic literature review and meta-analysis; the case control clinical study; the haplotype 

and epistatic interactions; the endothelial dysfunction in asthma and genetic risk scores, 

drive to novel disease classification/endotypes and emergent non-traditional risk factors and 

phenotypes in CVD and asthma severity. The role of ACE (I/D) polymorphism, in asthmatic 

patients is a controversy risk factor to the severity of asthma, but we concluded that those 

who has an allele D have protection of having asthma, in this hospital - based population and 

there are more genotypes II in the asthmatics than controls. In the Systematic literature 

review for CVD if the DD genotype is present there is susceptibility to Heart disease. In this 

study group there is not a significant evidence, that AGTR1 gene A1166C polymorphism 

could be a genetic marker for the pathophysiology of asthmatic disease. In the Systematic 

literature review for CVD the risk of having heart condition in those that express allele C  

there is a trend to be decreased although n.s..For haptoglobin asthmatics had lower levels of 

the circulating Hp when compared to the control-group and that this difference is associated 

with Hp 2-2 genotype. In asthmatics, Hp levels are different between genotypes (with age 

≥15 years). In the Systematic literature review for CVD if the Hp2.2 genotype is present there 

is higher susceptibility to Heart condition. For Intron 4 polymorphism of the eNOS gene those 

who express allele b (ab+bb) have an increased risk of having asthma. In the Systematic 
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literature review for CVD the risk of having heart condition in this eNOs polymorphism is n.s.. 

For NOS2 polymorphism (exon 16-14CT) those who are homozygous for the allele C have a 

protection of    having asthma. NOS2 polymorphism (intron 16 - 88GT) there is no increased 

risk of having asthma. NOS2 polymorphism (intron 20 - IVS20 + 524 GA) those who express 

allele A (AG+AA) have protection of having asthma when compared with controls. In the 

Systematic literature review for CVD usually, there is no inducible nitric oxide synthase 

(NOS2) in the normal heart, however macrophages associated with inflammation could 

express it. For MPO Polymorphism (- 463 GA)  those who are homozygous for the allele G 

(higher enzyme activity) have protection of having asthma. There are differences in MPO 

levels by genotypes being the AA and GA  with lower MPO levels than GG and associated 

with gender. In the Systematic literature review for CVD there is a higher risk and significant 

if the AA genotype is present in MPO (−463G>A (rs2333227) polymorphism and 

susceptibility to Heart condition. For the Polymorphism on the Receptor beta2adrenergic 

Arg16 Gly (rs1042713) Those who have allele A as homozygous or heterozygous and 

younger than 30 years, have an increased risk of asthma. In the Systematic literature review 

for CVD the risk of having heart condition if the GG genotype is present in Beta2 

adrenoreceptor polymorphisms: Arg16Gly (rs1042713). For detoxification enzymes the 

GSTT1*0 is more frequent in asthmatics and GSTT1+ in controls and there is an increased 

risk of being allergic asthmatics if they are GSTT1*0 and women. There are no differences in 

the frequencies of genotypes between asthmatics and controls for GSTM1. For the literature 

review and CVD and GSTT1 associated with overall effect significant if the null genotype is 

present and susceptibility to Heart condition For the literature review and CVD and GSTM1 

the overall effect is non significant n.s. and susceptibility to Heart condition. There is not a 

significant evidence, that LELP1 polymorphism (rs7534334) could be a genetic marker for 

atopic asthma (p>0.05) in this hospital-based population. For the literature review and CVD 

the induction of SPRR expression by IL-6 cytokines could be a central mechanism of an 

‘innate' defense system in response to stress and induction of SPPR genes may serve a 

novel cell protective strategy in CVD.For MTHFR polymorphism : C677T (rs1801133) There 

is a trend to have statistical differences between asthmatics and controls, being the CC  

more frequent in asthmatic allergic patients.In the literature review for CVD is associated with 

a significant overall  effect if the genotype CC   is present  and susceptibility to Heart 

condition. Significant SNPs in asthma vs controls; controlled/uncontrolled asthma; allergic vs 

non-allergic asthma were used to create different genetic models and construct haplotype, 

epistatic interaction and genetic risk score for each participant by analyzing the coefficients 

for each of the resulting variables after statistical analysis. 

Conclusion: The mapping of genetic susceptibility by candidate genes approach and the 

mechanistic approach of asthma and CVD is considered a hallmark of asthma and CVD, 

putting the emerging biomarkers and genetic susceptibility to disease in relation to asthma 

and CVD as the mainstream in omics profiling and its response to target therapy and 

precision Medicine. 
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5- Resumo 

Introdução:  A aterosclerose e DCV podem estar associadas aos factores de risco de CV 

tradicionais, como idade e hipertensão, bem como factores de risco não tradicionais que 

compreendem a inflamação atual associada à asma e polimorfismos genéticos que 

predispõem a diferentes condições de stress oxidativo e inflamação. Nesta avaliação de 

factores múltiplos de risco, os scores de risco que se baseiam apenas em fatores de risco 

tradicionais são insuficientes para capturar a extensão do risco CV na asma brônquica e 

CVDs em geral. O objetivo desta tese é analisar o papel dos diferentes polimorfismos como 

factores de risco emergentes para CVD, controlo e gravidade da asma. 

Material e métodos: Foi realizado um estudo clínico caso-controlo entre pacientes 

asmáticos (356) e controlos voluntários (153) para os polimorfismos de: sistema Renina-

angiotensina; sistema associado ao NO; Receptores Beta2-adrenérgicos; isoenzimas 

Glutatião S-transferases - enzimas de fase II ou de reacões de conjugação; Marcha atópica; 

Epigenética. Foi realizada uma revisão de literatura e meta-análise realizada com o software 

de meta-análise versão 2 para CVD e os polimorfismos de: sistema Renina-angiotensina; 

sistema associado ao NO; Receptores Beta2-adrenérgicos; Glutatião S-transferases 

isoenzimas- enzimas de fase II ou de reacões de conjugação; Marcha atópica; Epigenética. 

Isolamento e quantificação de DNA genómico. Genotipagem: PCR, PCR-RFLP; PCR - 

multiplex. PAGE para o polimorfismo de haptoglobina. A concentração de Hp foi 

determinada por nefelometria. A determinação da concentração plasmática de MPO foi 

realizada utilizando a técnica ELISA. Todas as análises estatísticas foram realizadas com o 

software SPSS 21.0. Os resultados foram considerados estatisticamente significativos para 

p <0,05. O índice de risco genético de: disfunção endotelial ((ACE) e polimorfismos de 

genes de óxido nítrico (NOS)); Disfunção endotelial e epigenética (MTHFR + (ACE) e 

polimorfismos do gene de óxido nítrico (NOS)), asma  não controlada (NOS2-IVS16 + 88T> 

G, ACE I / D e idade) e asma alérgica (MTHFR ,GSTT1 e ACE e género). 

Resultados: Para os diferentes polimorfismos de :sistema Renina-angiotensina; sistema 

associado ao NO; Receptores Beta2-adrenérgicos; Glutatião S-transferases isoenzimas- 

enzimas de fase II ou de reacões de conjugação; Marcha atópica; Epigenética: revisão 

sistemática da literatura e metanálise; Estudo clínico de caso-controlo;  haplótipo e as 

interações epistáticas; a disfunção endotelial na asma e os scores de risco genético, 

conduzem a novas classificações / endótipos de doença e fatores de risco não-tradicionais 

emergentes associados a fenótipos em DCV e gravidade da asma. O papel do polimorfismo 

ACE (I / D), em asmáticos é um fator de risco controverso para a gravidade da asma, mas 

concluiu-se que aqueles que têm um alelo D têm proteção de ter asma, nesta população 

hospitalar e existem mais genótipos II nos asmáticos do que nos controlos. Na revisão da 

literatura sistemática para DCV se o genótipo DD estiver presente, existe uma 

susceptibilidade para doença cardíaca. Neste grupo de estudo não há evidências 

significativas, que o polimorfismo no gene AGTR1 (A1166C) poderia ser um marcador 

genético para a fisiopatologia da doença asmática. Na revisão da literatura sistemática para 

DCV, o risco de ter doença cardíaca naqueles que expressam o alelo C há uma tendência 

para estar diminuída, embora n.s.. Nos asmáticos o estudo da haptoglobina revelou níveis 

mais baixos de Hp circulante quando comparados ao grupo controlo e que essa diferença 

está associada ao genótipo Hp 2-2. Nos asmáticos, os níveis de Hp são diferentes entre os 

genótipos (com idade ≥ 15 anos). Na revisão da literatura sistemática para DCV se o 
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genótipo Hp2.2 estiver presente, há maior susceptibilidade à doença cardíaca. Para o 

polimorfismo Intrão 4 do gene eNOS, aqueles que expressam o alelo b (ab + bb) têm um 

risco aumentado de ter asma. Na revisão da literatura sistemática para DCV, o risco de ter 

doença cardíaca neste polimorfismo eNOs é n.s .. Para o polimorfismo NOS2 (exão 16-

14CT), aqueles que são homozigóticos para o alelo C têm proteção de asma. Polimorfismo 

NOS2 (intron 16 - 88GT) não há risco aumentado de ter asma. O polimorfismo NOS2 (intron 

20 - IVS20 + 524 GA) aqueles que expressam o alelo A (AG + AA) têm proteção de asma 

quando comparados com os controlos. Na revisão sistemática da literatura para DCV 

geralmente, não há sintase induzível do óxido nítrico (NOS2) no coração normal, no entanto, 

os macrófagos associados à inflamação podem expressá-lo. Para o polimorfismo MPO (- 

463 GA), aqueles que são homozigóticos para o alelo G (maior atividade enzimática) têm 

proteção de asma. Existem diferenças nos níveis de MPO por genótipos que são AA e GA 

com níveis mais baixos de MPO do que GG e associados ao género. Na revisão sistemática 

da literatura para DCV, existe um risco maior e significativo se o genótipo AA estiver 

presente no polimorfismo MPO (-463G> A (rs2333227) e susceptibilidade à doença 

cardíaca. Para o Polimorfismo no Receptor beta2adrenérgico Arg16 Gly (rs1042713) 

aqueles que têm alelo A como homozigoto ou heterozigoto e com menos de 30 anos, 

apresentam um risco aumentado de asma. Na revisão sistemática da literatura para DCV, o 

risco de ter doença cardíaca se o genótipo GG estiver presente nos polimorfismos dos 

receptores Beta2 adrenérgico: Arg16Gly (rs1042713). Para as isoenzimas Glutatião S-

transferases - enzimas de fase II ou de reações de conjugação, o GSTT1 * 0 é mais 

frequente em asmáticos e GSTT1 + nos controlos e há um risco aumentado de serem 

asmáticos alérgicos se forem GSTT1 * 0 e género feminino. Não há diferenças nas 

freqüências de genótipos entre asmáticos e controlos para GSTM1. Para a revisão da 

literatura e DCV e GSTT1 está associado com o efeito global significativo se o genótipo nulo 

estiver presente e a suscetibilidade à doença cardíaca. Para a revisão da literatura e DCV e 

GSTM1, o efeito global não é significativo n.s. e susceptibilidade para doença cardíaca. Não 

há evidências significativas de que o polimorfismo LELP1 (rs7534334) possa ser um 

marcador genético para a asma atópica nesta população hospitalar. Para a revisão da 

literatura e DCV, a indução de expressão de SPRR por citocinas como a  IL-6 poderia ser 

um mecanismo central de um sistema de defesa "inato" em resposta ao stress e a indução 

de genes SPPR pode servir para uma nova estratégia de proteção celular na DCV. Para o 

polimorfismo MTHFR: C677T (rs1801133). Existe uma tendência para ter diferenças 

estatísticas entre asmáticos e controlos, sendo o CC mais freqüente em doentes alérgicos 

asmáticos. Na revisão da literatura para DCV está associada a um efeito global significativo 

se o genótipo CC estiver presente e susceptibilidade para doença cardíaca. Para os SNPs 

significativos na asma versus controlos; asma controlada / não controlada; asma alérgica 

versus não alérgica foram utilizados diferentes modelos genéticos para construir haplótipos, 

interacção epistática e score de risco genético para cada participante, analisando os 

coeficientes para cada uma das variáveis resultantes da análise estatística. 

Conclusão: O mapeamento da susceptibilidade genética pela abordagem dos genes 

candidatos e a abordagem mecanística da asma e DCV são consideradas uma 

característica da asma e das doenças cardiovasculares, colocando os biomarcadores 

emergentes e a susceptibilidade genética para a doença na análise de endótipo/fenótipo 

destas doenças e na possível resposta a terapêuticas alvo no âmbito da medicina de 

precisão. 
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CHAPTER I-Introduction 
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I.1.Epidemiology 

 

Non communicable diseases (NCDs) (1) such as cardiovascular diseases, cancer, diabetes 

and respiratory diseases, among others, are considered the leading cause of worldwide 

morbidity and mortality. They share, among them, the fact that they are associated with 

certain lifestyles, specific modifiers of each individual (genetic susceptibility) and 

environmental exposure (epigenetic susceptibility). 

The risk factors (1,2)  of the NCDs with the greatest impact are hypertension (HT), smoking, 

alcohol, dyslipidemia, obesity, atherogenic diet and sedentary lifestyle. 

Asthma is a disease that is closely linked to atopy evolving with paroxysmal episodes that 

may be associated with a pattern of severity in which airway remodeling and inflammation ( 

mainly Th2 high or Th2 low) predominate (3). 

Each of the hallmark characteristics - canonical pathways - of asthma  (4–13) (inflammation, 

remodeling, airway hyperreactivity, oxidative stress, innate and adaptive immunity) is the 

expression of a complex network of molecules, very diverse both within any given patient in 

time and between any patients. 

The susceptibility to asthma and its more severe forms as well as the association and or 

predisposition to cardiovascular diseases accompanies the development of new biomarkers 

(6,14,15), associated with the markers of genetic susceptibility that define and characterize 

the different endotypes and asthma phenotypes. 

According to some authors (6,12,14) the biomarkers can be characterized as relevant for the 

pathobiological knowledge of the disease, response to therapy and prognostic evolution – 

putting  the genetic factors and biomarkers as central and required in future studies of 

susceptibility and surveillance of diseases. 

The mapping of genetic susceptibility by candidate genes and the mechanistic approach of 

asthma is considered as a constituent of the analysis of the emerging biomarkers in relation 

to asthma and its response to therapy. 

The present thesis focuses on the genetic determinants of atopy, asthma and CVD, trying to 

approach a study of candidate genes and susceptibility to asthma through a case-control 

study conducted in a cohort of ambulatory asthma patients with various types of asthma: 

Intermittent and persistent moderate or severe, which after a period of optimization of two 

months and adequate clinical follow-up according to the severity of the disease were 

characterized as controlled and uncontrolled (ACQ-7 and PAQLQ) .The susceptibility to 

Cardiovascular disease is evaluated through a systematic review of the literature for 

candidate genes under study. 
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I.2. Physiopathology of Asthma and CVD and polymorphisms studied: a) Renin-

Angiotensin-System; b) Nitric Oxide (NO) associated systems; c) Beta-2 adrenergic 

receptors; d) Detoxification; e) Atopic march; f) Epigenetics 

 

 

We sought to understand the functional and regulatory pathways that play central roles in the 

pathobiology of asthma and CVD and to understand the overlap between the pathways that 

orchestrate inflammation and endothelial dysfunction in both diseases (Fig.I.2.1). 

 

 

 

Fig.I.2.1:  The different candidate genes/SNPs and pathways studied in this thesis. 

The genetic constituents of the renin-angiotensin-aldosterone system (RAAS), a 

neurohormonal pathway that is activated in many Cardiovascular diseases such as: IHD; 

CAD; MI; cardiomyopathy; MI and HTA among others, has also an important role in asthma 

and CVD as will be showed in this thesis. 

ACE also inactivates bradykinin, substance P and neurokinin A, which plays important roles 

in the pathogenesis of asthma specially in neurogenic inflammation. There are 3 genotypes: 

insertion homozygote II; deletion homozygote DD; heterozygotes DI. The serum ACE levels 

with DD is reported to be double that of II type and intermediate in DI type (16–18) . 

RAS (Fig.I.2.2) has been associated with HTA and with inflammatory response, pulmonary 

hypertension, fibrosis and asthma.  Angiotensin II is a profibrotic and    Immunomodulator 

molecule through TGF beta. ACE is involved in the catabolism of bradykinins and 

tachykinins. The C-terminal domain is the major catalytic site in cleaving the angiotensin I 

into angiotensin II in inflammatory response. Bioavailability of nitric oxide (NO) associated 

with RAS is also an important factor in the pathophysiolgy of asthma (16-18). 
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Fig.I.2.2: The different genes coding for the components of these pathways are included in 

this study and related with Heart diseases such as : IHD; CAD; MI; cardiomyopathy; MF and 

HTA among others ( adapted from Jakubiak et al 2008  (18)) and the physiopathology of 

asthma. 

ACE plays a vital role in the renin-angiotensin-system (RAS) which regulates blood pressure 

by converting angiotensin I into a powerful vasoconstrictor and bronchoconstrictor, 

angiotensin II, that also has an important role in airway remodeling and in inactivation of 

bradykinin and tachykinins which are potent bronchoconstrictors and mediators of 

inflammatory reactions. (II with lower levels of ACE; II< ID<DD). 

The renin-angiotensin system (RAS) plays a crucial role in  the pathophysiology of 

cardiovascular conditions, such as hypertension, heart failure, endothelial dysfunction, and 

endothelial and airway remodeling in diseases such as asthma (19)(20). 

 

 

kinins 
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Fig.I.2.3: RAS with opposing biological functions and its receptors.( adapted from Hrenak et 

al 2016 (19)). 

 

The RAS incorporates molecules with opposing biological actions (Fig.I.2.3).In a way we 

have the vasoconstrictive,bronchoconstrictive,  pro-proliferative, and pro-inflammatory 

molecules, such as ACE, angiotensin II (Ang II), and AT1 receptors. The opposing effect 

involves ACE2, angiotensin 1–7 (Ang 1–7), angiotensin type 2 (AT2) receptor, Mas receptor 

or N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) , which counteracts the SDKP  and being 

the opposing arm of the potentially harmful actions of RAS (21–24). Angiotensin-converting 

enzyme (24) cleaves angiotensin I, bradykinin, neurotensin and other substrates . In part, 

this is due to its two independent catalytic domains:  angiotensin II is produced by the ACE 

C-domain; the anti-fibrotic peptide AcSDKP, are substrates only of the ACE N-domain. 

Endothelial-mesenchymal transition  is a  mechanism that regulates  fibrosis with a potential 

role in development of diseases such hypertension and asthma because of  the acquiring of  

stem cell properties and generating connective tissue, and its potential as a novel 

mechanism for tissue regeneration and remodeling (24,25). The Myoendothelial Junction and 

the  Smooth Muscle to Endothelial Cell Communication and  Endothelial Cell to Smooth 

Muscle Communication is a key feature in disease severity namely asthma and CVD as it is 

the heme-iron bioavailability  to the also very important modulation  of NO signaling, cell-cell 

communication,  endothelial cell function, and vascular tone (25)(26). 

The signaling pathways (27), related with ACE polymorphism regulating the cytokine 

production by T cells, could induce a different Th profile modulating the immune response in 

asthma by interfering with TGF beta and Tregs. 
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ACE could interfere with NO release 28–31 either by direct activation of the B1 receptor or 

indirectly, through bradykinin effects on the B2 receptor. Potentiation of kinins might happen 

when ACE had lower activity. 

It is known that type 1 angiotensin II (Ang II) receptor (AGTR1) (30,31) could be related with 

the pathogenesis of bronchial asthma.  It is involved in Th polarization, through different 

signaling pathways modulating allergic airway inflammation, and also may participate in 

airway remodeling and bronchoconstriction, and regulation of ACE activity that could be 

related with AGTR1 polymorphism. The purpose of this study is to analyse the association 

between AGTR1 1166A/C (rs5186) gene polymorphism with asthma severity.  

RAS is reportedly activated in severe acute attacks of asthma, as evidenced by elevations of 

plasma renin and Ang II levels and Ang II causes a bronchoconstriction in patients with mild 

asthma.  AT1(29,30) receptors are involved in the effects of Ang II including a 

bronchoconstriction 

The ROS produced by NADPH (32–36) oxidases seem to have 2 general downstream 

physiological roles. Superoxide produced by NOX 2 is required for the respiratory burst that 

occurs in phagocytes. Superoxide and hydrogen peroxide (NOX derived ROS) derived from 

NADPH oxidase proteins/family could activate downstream signaling pathways that 

regulates: cell growth; differentiation, apoptosis; vascular tone and remodeling. 

p42/44 ERK (MEK-1/2) –is the main contribute to the Ang II-elicited bronchial smooth muscle 

(BSM) hyperresponsiveness (37,38). 

The mechanism of Ang II in bronchoconstriction(38,39) is related with the fact that in the  

mammalian cells , they express multiple mitogen-activated protein kinases (MAPKs)  

including the well characterized extracellular signal-regulated kinase (ERK) pathway.  

p42/44 ERK (34,38,39), which is critical in the mitogenic response, is phosphorylated by 

mitogen-activated protein/ ERK kinase (MEK1/2).  MAPK activation is typically associated 

with cell growth, but recent findings indicate that the pathway is also responsible for vascular 

contraction. The bronchoconstriction induced by Ang II was mediated by AT1 receptor 

phosphorylation of p42/44 ERK pathway MAPKs - in bronchial smooth muscle. 

NO produced in the environment could lead to nitrosative stress(40) and then airway 

inflammation and remodeling. nitrotyrosine formation is common  via the reaction between 

NO and O2− in addition to the myeloperoxidase-mediated pathway (41). 

Because reactive oxygen and related species including nitric oxide (NO) have a potent 

proinflammatory action, these molecules may be involved in the airway inflammatory process 

in asthma(42–44) (Fig.I.2.4). 

Large amounts of NO and ONOO- may target numerous proteins and enzymes critical for 

cell survival and signaling. These include signaling molecules involved in cytokine signaling 

like JAK or STAT proteins, as well as MAPK pathways, some G proteins and transcription 
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factors. Nitration of cysteines in these proteins may lead to their activation or inactivation 

(41,43,44) . 

After allergen exposure and asthmatic airway inflammation we could have  NO, O2−  and 

peroxynitrite-induced nitration(41). 

Endothelial dysfunction is related to abnormalities in nitric oxide (NO) and in the activation of 

the renin-angiotensin system. Angiotensin converting enzyme (ACE) and nitric oxide (NOS) 

gene polymorphisms, are important in endothelial dysfunction and in the pathophysiology of 

asthma and CVD(102) (Fig.I.2.5) (45). 

 

 

Fig.I.2.4: Nitric oxide in asthma. (adapted from Clempus et al ; 2006 (46)) 
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Fig.I.2.5: Endothelial dysfunction in respiratory diseases ( adapted from Green et al 

2017(47)) 
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Fig.I.2.6: Angiotensin II-stimulated activation of vascular NAD(P)H oxidases (NOXs); 

(adapted from Cai et al 2003(48); Holgate et al 2009 (49)). 

Activation of the angiotensin Type 1 receptor of Angiotensin II (AGTR1) leads to 

phosphorylation of p47phox (Fig.I.2.6). Between AT1 receptor stimulation and 

phosphorylation of p47phox there is the activation of phospholipase D (PLD), protein kinase 

C (PKC) and c-Src tyrosine kinase. Phosphorylation of p47phox and its binding to the 

membrane oxidase components; c-Src also activates in  trans the epidermal growth factor 

receptor (EGFR), which leads to activation of phosphatidylinositol 3-kinase (PI3K) and Rac-

1. Translocation of Rac-1 to the membrane activates the NOXs and sustains its function. 

The mechanism of Ang II in bronchoconstriction is related with the fact that in the mammalian 

cells, they express multiple mitogen-activated protein kinases (MAPKs) including the well 

characterized extracellular signal-regulated kinase (ERK) pathway.  p42/44 ERK, which is 

critical in the mitogenic response, is phosphorylated by mitogen-activated protein/ ERK 

kinase (MEK1/2). MAPK activation is typically associated with cell growth, but recent findings 

indicate that the pathway is also responsible for vascular contraction. The 

bronchoconstriction induced by Ang II was mediated by AT1 receptor phosphorylation of 

p42/44 ERK pathway MAPKs - in bronchial smooth muscle (37,38,48) . 
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Fig.I.2.7: Pathways of endothelial dysfunction in the airways.(adapted from Brandes et al 

2005(34)) 

Many single nucleotide polymorphisms involved in CVD are also hallmarks of asthma and 

could affect  the susceptibility and outcome of asthma severity that will be addressed in this 

Thesis: A) RENIN-ANGIOTENSIN SYSTEM: ACE polymorphism of I / D (287 bp, on 

chromosome 17q23, intron 16 (rs1799752); Polymorphism for Type 1 receptor of Angiotensin 

II (AGTR1) 1166A / C (rs5186); B) Nitric Oxide ASSOCIATED SYSTEM: Haptoglobin 

polymorphism (1.1, 2.1, 2.2): Intron 4 polymorphism of the eNOS gene; NOS2 polymorphism 

(exon 16-14CT): NOS2 polymorphism (intron 16 - 88GT); NOS2 polymorphism (intron 20 - 

IVS20 + 524 GA); MPO Polymorphism (- 463 GA); C) BETA2ADRENERGIC RECEPTORS: 

Polymorphism Receptor beta2adrenergic Arg16 Gly (rs1042713); D) DETOXIFICATION: 

GSTM1 polymorphism: search for null genotypes (homozygous for the allele GSTM1 * 0) (M-

); GSTT1 polymorphism: null genotype search (Homozygous homing for the GSTT1 * 0 

allele) (T-); E) ATOPIC DERMATITIS (AD) AND ASTHMA-ATOPIC MARCH: LELP1; F) 

EPIGENETICS: MTHFR polymorphism MTHFR: C677T (rs1801133). 

It is known that NO has a relevant role in inflammation, vascular and muscular tonus in 

asthma. Inducible nitric oxide synthase (iNOS) modulates the amount of NO that could be 

related with iNOS polymorphism.  The purpose of this study is to analyze the association 

between inducible nitric oxide synthase (iNOS) gene polymorphism iNOS intron 20 (IVS20 + 

524 G>A-rs944722; exon 16-14CT- rs 2297518; intron 16 - 88GT-(rs9282801) ) with asthma 

severity when compared with a control group of healthy blood donors. The major 

Hiperglycemia 

Lipid peroxidation 



36 

 

pathogenesis of asthma is chronic inflammation.   In asthmatic airways, activated mast cells, 

eosinophils and T helper 2 lymphocytes (Th2) are predominant.   Although nitric oxide (NO) 

hyperproduction due to inducible NO synthase (iNOS) is observed in asthma and diseases 

like COPD, nitrotyrosine formation is common via the reaction between NO and O2− in 

addition to the myeloperoxidase-mediated pathway.  Because reactive oxygen and related 

species including nitric oxide (NO) have a potent proinflammatory action, these molecules 

may be involved in the airway inflammatory process in asthma. Large amounts of NO and 

ONOO- may target numerous proteins and enzymes critical for cell survival and signaling. 

These include signaling molecules involved in cytokine signaling like JAK or STAT proteins, 

as well as MAPK pathways, some G proteins and transcription factors. Nitration of cysteines 

in these proteins may lead to their activation or inactivation. Nitric oxide is produced by a 

family of NOS isoforms that convert L-arginine into NO and L-citrulline using oxygen and 

NADPH as cosubstrates . Three NOS isozymes have been identified to date: neuronal NOS 

(nNOS or NOS I), inducible NOS (iNOS or NOS II) and endothelial NOS (eNOS or NOS 

III)(44). 

One of the functional polymorphisms with relevance to iNOS enzyme activity constitutes a 

transition from C to T located at exon 16 (position 2087) and which causes a substitution of 

the serine amino acid for leucine at codon 608 (Ser608Leu). This variation increases the 

expression of the enzyme in the target cells, resulting in high levels of NO, being responsible 

for the genetic susceptibility and severity of various respiratory diseases. The gene encoding 

the NOS2 enzyme is called NOS2A and is found on the long arm of chromosome 17q11.2-12 

It consists of 27 exons that span 37 Kb and encodes a 131 kDa protein (1145 amino acids) 

The iNOS gene has a transcription start site in exon 2 and a stop codon in exon 27, 

exhibiting two different functional catalytic domains, the oxygen domain encoded by exons 1-

13 and reductase domain by exons 14-26 responsible for susceptibility, severity and disease 

modifying endotype/phenotype of several diseases (44).  

Intron 16 + 88 G> T (rs9282801): one of the functional polymorphisms with relevance to 

iNOS enzyme activity constitutes a transition from T to G in intron 16 (rs9282801). They 

might affect the splicing or protein expression of the gene increasing NOS2 activity and NO 

synthesis. The gene encoding the NOS2 enzyme is called NOS2A and is found on the long 

arm of chromosome 17q11.2-12 . It consists of 27 exons that span 37 Kb and encodes a 131 

kDa protein (1145 amino acids) . The iNOS gene has a transcription start site in exon 2 and 

a stop codon in exon 27, exhibiting two different functional catalytic domains, the oxygen 

domain encoded by exons 1-13 and reductase domain by exons 14-26 responsible for 

susceptibility, severity and disease modifying endotype/phenotype of several diseases (44).   
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One of the functional polymorphisms with relevance to iNOS enzyme activity constitutes a 

transition from G to A in intron 20 (rs944722). It might affect the splicing or protein 

expression of the gene increasing NOS2 activity and NO synthesis. 

The gene encoding the NOS2 enzyme is called NOS2A and is found on the long arm of 

chromosome 17q11.2-12 . It consists of 27 exons that span 37 Kb and encodes a 131 kDa 

protein (1145 amino acids). The iNOS gene has a transcription start site in exon 2 and a stop 

codon in exon 27, exhibiting two different functional catalytic domains, the oxygen domain 

encoded by exons 1-13 and reductase domain by exons 14-26 responsible for susceptibility, 

severity and disease modifying endotype/phenotype of several diseases (44).  

eNOS polymorphism is important in asthma because it plays an important role in bronchial 

hyperreactivity, interferes with immunomodulation and airway inflammation by down-

regulating Th1 cells at sites of chronic inflammation and polarizing the Th2 response, 

eosinophilic inflammation, and are related with higher levels of IgE,it also interacts with No 

availability on endothelial and is potential role on smooth muscle cells and on endothelial 

dysfunction in the airways. 

eNOS plays an important role in bronchial hyperreactivity, interferes with immunomodulation 

and airway inflammation by down-regulating Th1 cells at sites of chronic inflammation and 

polarizing the Th2 response, eosinophilic inflammation, and are related with higher levels of 

IgE.  Endothelial Nitric Oxide synthase is expressed in vascular endothelium, airway 

epithelium and other cell types is able to generate NO, which performs important functions in 

respiratory diseases such asthma. In humans, the gene encoding eNOS is located on 

chromosome 7q35-36, with 26 exons spanning 21 Kb and produces a protein with about 

1203 aminoacids .  Most of the variations described in the eNOS gene occur in introns. A 27 

base pair (bp) repeat polymorphism was identified in intron 4 of the gene. This polymorphism 

influences the mRNA expression, and thus the protein concentration and its enzymatic 

activity. eNOS polymorphism is important in asthma because it plays an important role in 

bronchial hyperreactivity, interferes with immunomodulation and airway inflammation by 

down-regulating Th1 cells at sites of chronic inflammation and polarizing the Th2 response, 

eosinophilic inflammation, and are related with higher levels of IgE (50,51). 

Candidate gene-association studies put NOS and ACE enzymes as important regulators of 

oxidative stress, bronchial hyperresponsiveness , endothelial homeostasis and vascular 

remodeling through the up-regulation of angiogenic factors and the release of angiogenic 

mediators (Fig.I.2.7 and Fig.I.2.8). The endothelium (Fig.I.2.9) has emerged as a key 

regulator of vascular homeostasis, with its barrier and active signal/cytokine transducer for 

circulating and tissue influences that could modify the endothelial phenotype from quiescent 

to activated endothelial phenotype and orchestrate remodeling and the physiopathology of 

asthma (50,51). 
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Fig.I.2.8: Endothelial homeostasis and dysfunction in disease ( CVD and asthma). (adapted 

from Conti et al; 2013(52)) 
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Fig.I.2.9: Vasculogenesis; angiogenesis and arteriogenesis (adapted from Carmeliet et al, 

2000) (53).  

 

 

 

 

 

 

 

 

The Candidate gene-association and GWAS studies put NOS, ACE enzymes (Fig.I.2.10) and 

ADRB2 as important regulators of oxidative stress, bronchial hyperresponsiveness and 

endothelial dysfunction. Even over, the activation of ADRB2 caused by beta agonists could 

lead to uncoupling of eNOS and overproduction of ROS such as peroxynitrite and endothelial 

dysfunction (50,51).  
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Fig.I.2.10: ACE, AGTR1 and eNOs polymorphisms- involved signaling pathways Nitric oxide 

in asthma. (adapted from Bergeron et al  2010(50); Manuyakorn et al  2011(51)) 

 

 

 

eNOS/NOS3 polymorphism 
(rs1799983) 

rs1799752 
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Myeloperoxidase (MPO) is a lysosomal heme-containing enzyme catalyzing the conversion 

of superoxide-generated hydrogen peroxide into hypochlorous acid is important in regulating 

oxidative stress through production of hypohalogenic oxidants that may further mediate 

oxidative modification of lipids, proteins and DNA, and also has a key role in innate immune 

system (54). 

MPO may also be involved in the pathophysiology of irreversible airflow obstruction in 

asthmatics (54). 

The MPO -463 G/A polymorphism, which is localized in the promoter region of the 

myeloperoxidase gene, plays a role in regulating myeloperoxidase activity. While the G allele 

provides high myeloperoxidase activity, the mutant A allele causes loss of this activity.   The 

purpose of this study is to analyze the association between single nucleotide polymorphism 

in the MPO promoter region of the gene, −463G>A (rs2333227) 

locatedonchromosome17q23.1with asthma severity when compared with a control group of 

healthy blood donors and its relation with MPO levels (54) . 

Haptoglobin (Hp), an alfa2-sialoglycoprotein known to bind free hemoglobin (Hb) has been 

implicated in modulation of Th1/Th2 response, intervening in   innate and adaptive immune 

response. The   Hp locus is situated at  16q22 chromosome, being in humans, polymorphic 

for the αchain. The α chain of Hp has 2 major co-dominant alleles Hp*1 and Hp*2, with 3 

genotype variants, Hp1-1, Hp2-1, Hp2-2.  Asthma is considered a heterogeneous disease, 

characterized most of the times by a Th2 inflammatory response. Haptoglobin (Hp), is an 

alfa2-sialoglycoprotein known to bind free hemoglobin (Hb) and has been implicated in 

modulation of Th1/Th2 response, Intervening in innate and adaptive immune response. The 

Hp locus is situated at 16q22 chromosome, being in humans, polymorphic for the α chain. 

The α chain of Hp has 2 major co-dominant alleles Hp*1 and Hp*2, with 3 genotype variants, 

Hp1-1, Hp2-1, Hp2-2. The aim of the study is to establish a relation between Hp genotypes 

and Hp levels (intermediate phenotype), and the pathophysiology of asthma when compared 

with a control group of healthy blood volunteers. Haptoglobin (Hp), known to bind free 

hemoglobin (Hb) could also be related with NO bioavailability and inflammation of the 

airways (55-59). 

ADRB2-beta 2 adrenergic receptor is a G-protein-coupled receptor encoded by the ADRB2 

gene located at 5q31-32. ADRB2 is polymorphic with more than 49 polymorphisms and 2 

variants Ins/Del identified. The frequencies of polymorphisms Arg16Gly could be 59% and 

Gln27Glu 29%. These polymorphisms could be associated with altered expression, ligand 

binding, coupling, or regulation phenotypes.  Clinical studies to date have revealed that some 

of these polymorphisms have a significant disease modifying effect or alter the response to 

treatment. In this study we focus on polymorphisms that alter the protein sequence at 

nucleotide 46: Glycine to Arginine at codon 16 (Gly16Arg) (A > G); minor allele frequency 
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approximately(MAF) 0.4–0.5. Patients who are homozygous for Arg16 and/or Glu 27 may be 

more susceptible to tachyphylaxis with chronic use of beta2- agonists (60,61).  

In ADRB2-beta 2 adrenergic receptor polymorphisms some clinical studies to date have 

revealed that some of the polymorphisms have a significant disease modifying effect or alter 

the response to treatment. 

In this study we focus on one polymorphism that alter the protein sequence at nucleotide 46: 

Glycine to Arginine at codon 16 (Gly16Arg) (A > G). Minor allele frequency approximately 

(MAF) 0.4–0.5.   Arg/Arg homozygotes for the Arg16Gly polymorphism in the beta2 

adrenoreceptor gene (ADRB2) have a reduced response to short acting beta2 agonists.  A 

codon 16 Arg/Arg genotype may identify patients at risk for deleterious or nonbeneficial 

effects of regularly scheduled therapy with inhaled beta2 –agonists. These patients may be 

candidates for alternative schedules of therapy, earlier initiation of anti- inflammatory agents, 

or both.  Patients who are homozygous for Arg16 may be more susceptible to tachyphylaxis 

with chronic use of beta2- agonists. LABA don´t seem to affect it, although they had less 

benefit if are homozygous Arg16 (60,61). 

Phase II detoxification enzymes (62-64) particularly the glutathione S-transferases (GSTs), 

are important in the inflammatory responses associated with xenobiotic or reactive oxygen 

compounds.  

The inability of GST variants of the enzymes to detoxify the reactive oxygen species (ROS) 

contributes to the activation of the inflammatory process, bronchoconstriction, and asthma 

symptoms.  

An increasing risk for asthmatic disease and an increase in individual susceptibility to pro-

allergy effects associated with xenobiotics have been demonstrated to be linked to functional 

polymorphisms. 

GSTT1  is located on chromosome 22q11.23, with eight thousand one hundred and seventy-

nine bases, and also has two alleles, one wildtype (GSTT1 * 1) and one null allele (GSTT1 * 

0). Individuals homozygous for the null allele (Homozygous homing the GSTT1 * 0 allele:T-) 

can not express the GSTT1 protein that is why they coul be a candidate gene when studying 

respiratory diseases. 

Phase II detoxification enzymes, particularly the glutathione S-transferases (GSTs), are 

important in the inflammatory responses associated with xenobiotic or reactive oxygen 

compounds. The inability of GST variants of the enzymes to detoxify the reactive oxygen 

species (ROS) contributes to the activation of the inflammatory process, bronchoconstriction, 

and asthma symptoms. An increasing risk for asthmatic disease and an increase in individual 

susceptibility to pro-allergy effects associated with xenobiotics have been demonstrated to 

be linked to functional polymorphisms of GST enzymes, in particular, GSTM1 and GSTT1 
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null polymorphisms. One of these genes, GSTM1, encodes for a class m GST isoenzyme 

involved in polycyclic aromatic hydrocarbons (PAHs) detoxification. Another polymorphic 

gene of the same family is GSTT1 which encodes for a class q GST that catalyzes the 

conjugation of halomethanes in human erythrocytes (62-64). 

GSTM1  is a gene located on chromosome 1p13.3, with twenty-one thousand two hundred 

and forty-four bases and has two alleles, one wildtype (GSTM1 * 1) and one non-functional 

null allele (GSTM1 * 0) .  Homozygous individuals for the null allele of GSTM1 have a 

deletion that leads to non-transcription of messenger RNA and non-translation of GSTM1 

protein  ;GSTM1 is expressed in the airways that is why it could be a candidate gene when 

we are studying respiratory diseases. Phase II detoxification enzymes, particularly the 

glutathione S-transferases (GSTs), are important in the inflammatory responses associated 

with xenobiotic or reactive oxygen compounds. The inability of GST variants of the enzymes 

to detoxify the reactive oxygen species (ROS) contributes to the activation of the 

inflammatory process, bronchoconstriction, and asthma symptoms. An increasing risk for 

asthmatic disease and an increase in individual susceptibility to pro-allergy effects 

associated with xenobiotics have been demonstrated to be linked to functional 

polymorphisms of GST enzymes, in particular, GSTM1 and GSTT1 null polymorphisms. One 

of these genes, GSTM1, encodes for a class m GST isoenzyme involved in polycyclic 

aromatic hydrocarbons (PAHs) detoxification (62-64). 

DNA methylation (65), an epigenetic feature of DNA like acetylation could modulate gene 

expression involves methyltransferases that use the methyl donor S-adenosyl-L-methionine. 

Methylenetetrahydrofolate reductase (MTHFR) catalyzes the synthesis of 5-

methyltetrahydrofolate (5-methylTHF), the methyl donor for synthesis of methionine from 

homocysteine and precursor of S-adenosyl-L-methionine. About 85% of the general 

population carries a variant such as C677T mutation in the MTHFR gene associated with 

higher blood homocysteine also a risk factor for cardiovascular disease. T/T genotypes had a 

diminished level of DNA methylation. 

MTHFR C677T polymorphism (Fig.I.2.11) which is associated with decreased enzyme 

activity, and thus increases the availability of 5,10-methylenetetrahydrofolate for DNA 

synthesis, which partially explains the reduced methylation in those with TT genotype. 

Methylene tetrahydrofolate reductase (MTHFR) is an enzyme in folate metabolism and plays 

a key role in DNA biosynthesis and epigenetics through methylation. The role of this enzyme 

is to catalyse the reaction of 5,10-methyl-tetrahydrofolate (MTHF) to 5-MTHF, which is part of 

the folate metabolism. 5,10-MTHF is required for DNA synthesis, whereas its product 5-

MTHF is the methyl donor for regeneration of methionine from homocysteine for methylation.  

MTHFR C677T polymorphism in the MTHFR gene have recently been the focus of studies 

on disease risk. The nucleotide polymorphism 677 C>T (rs1801133) is located within the 
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coding region for the catalytic domain of MTHFR and results in an amino acid substitution 

from an alanine to a valine at codon position 222 (exon 4). The 677 C>T variant has been 

associated with a reduced enzyme activity (65). 

 

 

 

 

 
 

Fig.I.2.11: A common (thermolabile) variant: MTHFR polymorphism MTHFR: C677T 

(rs1801133)  associated with elevated plasma homocysteine, itself could be an independent 

risk factor for CVD and other diseases related with remethylation cycle (adapted from 

Galagher  et al 1996 (66)). 

Studies of association of genes in Atopic Dermatitis (AD) (67) put in evidence the cluster of 

the EDC and other barrier candidates, but the most important associations were related to 

FLG (filaggrin) and two null mutations (R510X and 2282del4). In this study we have studied 

the role of LELP1 (another EDC gene) polymorphism (late cornified envelope-like proline-rich 

1) [rs7534334]. The molecular signature of AD is mainly associated with Th2 , IgE high 

(extrinsic) and IgE low (intrinsic) mediated by keratinocyte, thymic stromal lymphopoietin 

(TSLP) regulating dendritic cells. This Th2 activation contributes to barrier disfunction by 

impairing FLG and other skin barrier genes expression. IL-22 and IL-33 play also its role, in 
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this Th2 driven inflammation by allergens, associated with FLG and other EDC gene 

polymorphisms that lead to barrier dysfunction and could contribute to AD and atopic march. 

The chromosomal region 1q21 has been linked to allergy and atopic dermatitis in previous 

studies, with a peak linkage overlying the epidermal differentiation complex (EDC). The EDC 

contains various important genes, such as involucrin (IVL), loricin (LOR), the small proline-

rich protein (SPRR) gene family, profilaggrin (FLG) and trichohyalin (THH) encoding 

structural components of the epidermis, and the S100 gene family encoding calcium-binding 

proteins involved in signaling. The next gene to be identified as a possible factor in the 

development of AD and that might also be involved in atopic asthma, is LELP-1(late cornified 

envelope-like proline-rich 1). This gene encodes a late cornified envelope-like proline-rich 

protein and the (SNP) rs7534334, an intron variant on gene of LELP1 might be related with 

atopic disease (67).  

A phenotype (14,15,68,69) is defined as the “observable properties of an organism that are 

produced by the interactions of the genotype and the environment”. The concept of the 

phenotype has been suggested to be the prelude to that of the ‘endotype’, wherein a specific 

biological pathway is identified that explains the observable properties of a phenotype. 

 The definition of a true phenotype (or endotype) requires a unifying and consistent natural 

history, consistent clinical and physiological characteristics, an underlying pathobiology with 

identifiable biomarkers and genetics and a predictable response to general and specific 

therapies. 

Mechanistic and common pathway approach based on candidate genes and on the sufficient 

cause framework of disease try to find new biomarkers and to explain what the current 

guidelines for asthma diagnosis and management do not recognize. 

GWAS (70) studies may show some limitations namely the need of meticulous phenotypic 

classification of disease cases and selection of an appropriate disease-free control group are 

critical initial steps in complex disease mapping, adding to the lack of functional biological 

plausibility using in vivo or in vitro experimental models 

The identification of distinct asthma phenotypes has fostered the concept of specific targeted 

or personalized therapies – PRECISION MEDICINE based in the emerging endotype-driven 

therapeutic strategies.  

Each of the hallmark characteristics - canonical pathways - of asthma (inflammation, 

remodeling, airway hyperreactivity, oxidative stress, innate and adaptive immunity) is the 

expression of a complex network of molecules, very diverse both within any given patient in 

time and between any two patients.  

Although asthma has been considered as a single disease for years, recent studies have 

increasingly focused on its heterogeneity.  
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The characterization of this heterogeneity has promoted the concept that asthma consists of 

multiple phenotypes or consistent groupings of characteristics.  

Asthma phenotypes were initially focused on combinations of clinical characteristics, but they 

are now evolving to link biology to phenotype. 

Recently, several genes and genetic loci has been associated with asthma and have been 

described as common susceptibility factors for the disease.  

In complex diseases such as asthma and CVD (68,69,14,15,18,19), a large number of 

molecular and cellular components may interact through complex networks involving gene–

gene and gene–environment interactions. 

If we think that asthma is mainly a Th2  high  or Th2 low, disease then hypertension and 

CVD might be associated with a Th1 or Th17 profile (71-74). 

For each SNP, in this thesis different genetic models: additive_1 , additive_2   and potential 

dominant  and recessive effects were evaluated by combining homozygote and heterozygote 

variant carriers for comparison with reference in susceptibility to asthma, severity and allergic 

status. 
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II.1. Objectives  

 

 

General Objectives 

This thesis intends to identify non-traditional and emergent risk factors of CVD and 

susceptibility to asthma control and severity of the disease. 

 

 

 

Specific Objectives 

In this thesis it has been evaluated the impact of inflammation and endothelial dysfunction 

on the development of asthma susceptibility and control and concurrent CVD. 

For CVD we had done a literature review and meta-analysis; for asthma we had done an 

epidemiological case-control study and estimation of genetic risk score 

According to that we studied the different polymorphisms related with different biochemical 

and signaling pathways in CVD and bronchial asthma :a)renin-angiotensin system  ( ACE  

polymorphism of I / D (287 bp, on chromosome 17q23, intron 16 (rs1799752);  Polymorphism 

for Type 1 receptor of Angiotensin II (AGTR1) 1166A / C (rs5186); b)NO associated system ( 

Haptoglobin polymorphism (1.1, 2.1, 2.2); Intron 4 polymorphism of the eNOS gene; NOS2 

polymorphism (exon 16-14CT); NOS2 polymorphism (intron 16 - 88GT); NOS2 

polymorphism (intron 20 - IVS20 + 524 GA); MPO Polymorphism (- 463 GA; c)beta2 

adrenergic receptors (Receptor beta2adrenergic polymorphism Arg16 Gly (rs1042713); 

d)detoxification (GSTM1 polymorphism and GSTT1 polymorphism; e) atopic dermatitis and 

asthma LELP1 (rs7534334); f)Epigenetics(Methylations of DNA and Histones) and 

homocysteine levels( MTHFR polymorphism C677T (rs1801133). 

. 
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CHAPTER III. Material and Methods  
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III.1. Material and Methods for The Literature review and meta-analysis in Cardio-
vascular disease  

 
For the CVD study on the impact of inflammation and endothelial dysfunction associated with 

CVD we performed a literature review and meta-analysis that was accomplished with 

comprehensive meta-analysis software version 2. The Polymorphisms studied were: 

 
A) RENIN-ANGIOTENSIN SYSTEM 
ACE polymorphism of I / D (287 bp, on chromosome 17q23, intron 16 
(rs1799752) 
Polymorphism for Type 1 receptor of Angiotensin II (AGTR1) 1166A / C (rs5186) 
B) NO ASSOCIATED SYSTEM 
Haptoglobin polymorphism (1.1, 2.1, 2.2) 
Intron 4 polymorphism of the eNOS gene 
NOS2 polymorphism (exon 16-14CT) 
NOS2 polymorphism (intron 16 - 88GT) 
NOS2 polymorphism (intron 20 - IVS20 + 524 GA) 
MPO Polymorphism (- 463 GA) 
C) BETA2ADRENERGIC RECEPTORS 
Polymorphism Receptor beta2adrenergic Arg16 Gly (rs1042713) 
D) DETOXIFICATION 
GSTM1 polymorphism: search for null genotypes (homozygous for the allele 
GSTM1 * 0) (M-) 
GSTT1 polymorphism: null genotype search (Homozygous homing for the GSTT1 
* 0 allele) (T-) 
E) ECZEMA AND ASTHMA 
LELP1 
F) EPIGENETICS 
MTHFR polymorphism MTHFR: C677T (rs1801133) 

For the review of the literature, a research was done in EBSCohost using Mesh descriptors: 

"Polymorphisms entitled for the thesis" - terms of the subject and "cardiovascular disease"; 

Dates: no temporal limit; Academic journals; English language. Those that are removed or 

were repeated or did not have in the title the reference to the SNPs or CVD. Additional 

research was conducted whose research intercepted these topics with the subtopics of 

"genetic determinants of cardiovascular disease". The references selected for this article 

from the literature review are representative and do not include all the bibliographic research 

carried out and had not temporal limit. Statistical analysis was performed by using the 

software comprehensive meta-analysis version 2. 

III.2. Material and Methods for Clinical study in asthmatic patients vs controls:  

Type of study: Epidemiologic study, Case / Control study for bronchial asthma. Study group: 

Asthma patients at the CHLN-HSM Allergy Clinic; N = 153;  

Control group: healthy volunteers; N = 356 

Sample Characterization: The sample will consist of both controlled and uncontrolled 

asthmatic patients and the control group of healthy volunteers. For a power of 90% and with 
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p <0.05, with an allele frequency in the control population of 40% and with OR> 1.5 with 95% 

CI, it is estimated a sample that approaches the 140 individuals (75).  

Informed consent: signed by all patients.  

 

The participants were:  the control group with 356 healthy volunteers and 153 asthmatic 

patients from the Immunology Service of the Santa Maria Hospital-CHLN. The diagnosis of 

asthma will be classified according to the guidelines of the Global Initiative for Asthma 

(GINA) (76), , taking into account the episodic nature of dyspnea, wheezing, cough, chest 

tightness, frequency of symptoms, Presence of nocturnal symptoms, frequency of 

exacerbations, use of relief medication, FEV1 and PEF values, and daily variability. The 

definition of patients with uncontrolled asthma and patients with controlled asthma was 

performed by assessing the level of asthma control by a validated instrument: Asthma 

Control Questionnaire - ACQ7 The cut-point considered is clinical practice 0.75 (for Who are 

aged> 17 years), and PAQLQ Pediatric Asthma Quality of Life Questionnaire-Portuguese 

version by Juniper (7-17 years) (<4 implies uncontrolled 

asthma)(http://www.qoltech.co.uk/questionnaires.htm). 

 This evaluation will be performed after patient selection, and submission to an 8-week (3-

appointments) of therapeutic optimization period according to GINA guidelines(125). Patients 

who maintain at least one uncontrolled asthma indicator within the last month (frequent use 

of relief medication, nocturnal asthma wakes, frequent wheezing / dyspnea with limitation of 

daily activities, exacerbations leading to the use of the Emergency department, FEV1 <80% 

and no improvement or worsening of the score (Asthma Control Questionnaire) - ACQ-7 or 

PAQLQ, will be classified as having uncontrolled asthma. The remaining patients will be 

considered as controlled. 

The exclusion criteria are: individuals who do not agree to participate in the study; 

noncompliance with anti-asthmatic therapy (assessed through completion of the patient diary 

card-Asthma Clinical Research Network); The existence of other comorbidities that may 

interfere with the severity of the respiratory disease; The existence of a diagnosis of Chronic 

Obstructive Pulmonary Disease or other lung disease; Smoking; Patients with HIV infection, 

parasitized or otherwise infected ,with anemia, renal failure or chronic liver disease.  

All asthmatic participants will be characterized in relationship to socio-demographic variables 

(ethnicity, gender, age, country of origin, place of residence, profession, years of schooling), 

clinical history, longevity of asthmatic disease, absence of other pulmonary pathology and 

others exclusion criteria; Non-specific inhaled challenge test with positive methacholine 

and/or positive bronchodilation test; Skin prick tests, total IgE, RAST and ISAC, FeNO.  

The condition of controlled and uncontrolled asthma will be related to: a) the type of allergens 

to which they are sensitized Skin tests in Prick performed according to the recommendations 

http://www.qoltech.co.uk/questionnaires.htm
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of the European Academy of Allergy and Clinical Immunology (EAACI) using the ALK 

allergen battery -Abello. Saline serum as a negative control and 10 mg / ml histamine as a 

positive control. Skin tests are considered positive if at least one allergen has a papule 

greater than 3 mm in diameter after subtraction of the negative control; b) Asthma severity 

(Intermittent and Persistent: mild / moderate / severe) according to GINA guidelines ; for 

asthma severity levels after therapeutic optimization period (Controlled / Partially Controlled / 

Uncontrolled); C) classification of asthma exacerbations according to GINA guidelines (mild, 

moderate, severe and imminent respiratory arrest); D) FEV1 and PD20 in the non-specific 

inhalation provocation test with methacholine according to ATS standards. Inhaled 

provocation test is performed with methacholine, administered through a dosimeter 

M.E.F.A.R. MB3, with an aerosol flow rate of 39μL / 5 nebulizations, the patient inhales each 

concentration of methacholine 5 times from the residual volume to the total lung capacity.  

Respiratory function is measured 3 minutes after the inhalation of each methacholine dose 

through forced expiration maneuvers with a spirometer. The test is considered complete 

when a reduction of FEV1 ≥20% or after inhalation of the last dose of methacholine is 

measured for the first time. The dose of methacholine that causes a reduction of FEV1 = 

20% (PD20 FEV1) is calculated by linear interpolation of the last two points of the dose-

response curve; E) total IgE levels measured by fluoroenzyme immunoassay (Pharmacia, 

Uppsala, Sweden and specific RAST-In vitro-RadioAllergoAbsorvent (RAST) test for the 

detection of specific IgE antibodies circulating in serum-EIA (Pharmacia, Uppsala, Sweden) 

and molecular allergen diagnostic with the Immuno-Solid phase Allergen Chip (ISAC) - ISAC 

microarray (Thermofisher Phadia) that allows simultaneous detection of allergen specific IgE 

to a wide range of molecular allergen components ; F) Nitric oxide in the exhaled air-Nitric 

oxide assay of the air exhaled for 6 seconds with Nioxmino.ADULTS: FeNO (ppb) <5; 5-25 

(Improbable) ; 25-50 (Present but moderate); > 50 (significant); CHILDREN: FeNO (ppb) <5; 

5-20 (Unlikely) ; 20-35 (Present but moderate); > 35 (significant) - g) consumption of beta2 

mimetics short acting (Salbutamol; Terbutaline) and long acting (Salmeterol; Formoterol); H) 

inhaled corticosteroids (Beclomethasone dipropionate, Budesonide / Budesonide suspension 

for nebulization, Fluticasone / Fluticasone nebules and dose, i) administration of anti-

cholinergics / Parasympatholytics (ipratropium bromide, tiotropium); J) Methylxanthines 

(aminophylline; theophylline); L) leukotriene receptor antagonists (montelukast; zafirlukast); 

M) Oral corticosteroids (Prednisone, Prednisolone, Methylprednisolone, Deflazacort, 

Betamethasone); N) Anti-IgE monoclonal antibody (IgG1k) (Omalizumab) or anti IL5-

mepolizumab; O) existence (active / in the past) or not of specific immunotherapy  .p) levels 

of peripheral blood ECP and eosinophil count.  

Asthmatic patients are compared with a group of healthy volunteers according to the 

polymorphisms studied and a correlation is made by systematic and comprehensive 
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review of the literature with the same polymorphisms for cardiovascular disease. The 

study population consisted of healthy volunteers individuals in the control group and 

asthmatics from a Portuguese cohort.   

Written informed consent was obtained from all participating individuals. Patients were 

diagnosed by physicians for asthma according to the guidelines of GINA (76).  and as having 

atopy or not according to WAO/ EAACI guidelines (77) they were examined for a self-

reported history of breathlessness, wheezing, and other atopic comorbidities such as rhinitis, 

atopic dermatitis, drug allergy, food allergy, urticarial among others, and family history. Atopic 

individuals have a positive skin prick test (SPT) for at least one of the common environmental 

allergens or the presence of specific IgE, associated with high serum IgE levels estimated 

using enzyme-linked immunosorbent assay and suffered from asthma. The level of control of 

asthmatic disease was evaluated with instrument validated for the Portuguese version by 

Juniper ACQ7 and PAQLQ.( http://www.qoltech.co.uk/questionnaires.htm ) The exclusion 

criteria are: individuals who do not agree to participate in the study; Noncompliance with anti-

asthmatic therapy (assessed through completion of the patient diary card-Asthma Clinical 

Research Network); The existence of other comorbidities that may interfere with the severity 

of the respiratory disease; The existence of a diagnosis of Chronic Obstructive Pulmonary 

Disease or other lung disease; Smoking; Patients with HIV infection, parasitized or otherwise 

infected; with anemia, renal failure or chronic liver disease. The diagnosis of asthma is based 

on clinical symptoms, physical examination and airway reversibility with FEV1 and/or FVC 

response of 200 mL or greater and 12% improvement from baseline after bronchodilator as 

albuterol(ATS). 

 

Genomic DNA Isolation and quantification 

 
I) Extraction of genomic DNA 

Whole blood samples were collected in 10 ml EDTA tubes and stored at -20 ° C. DNA was 

obtained from 2 ml of blood using a non-enzymatic method by the salting-out technique 

adapted from the method of DK Lahiri and JI Nurnberger Jr.(78). 

 

II) DNA quantification 

 

Quantification in (ng / μl) and determination of purity of genomic DNA (ratio between 

absorbances at 260 and 280 nm) was performed on a full-spectrum spectrophotometer 

(NanoDrop® ND-2000). The DNA was solubilized in TE buffer (Tris EDTA pH = 8) and stored 

at 4 ° C. 

http://www.qoltech.co.uk/questionnaires.htm
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Genotyping ( Annexes Figs:1a-12a) 

ACE polymorphism of I / D (287 bp, on chromosome 17q23, intron 16 (rs1799752)-

Fig1a- Annexes 

The polymorphism I/D of ACE gene was detected using the forward primer 5’- 

CTGGAGACCACTCCCATCCTTTCT-3’ and the reverse primer 5’- 

GATGTGGCCATCACATTCGTCAGAT-3’. The PCR reaction was performed in a final 

volume of 25 µL using 200 ng of genomic DNA, 10 pmol of both primers, 12.5 µl of 

DreamTaq Green PCR Master Mix (2X) (Thermo Scientific®). The PCR reaction started with 

an initial denaturation at 94ºC for 2 minutes, followed by 35 cycles for 45 seconds at 94ºC, 

45 seconds at 58ºC and 45 seconds at 72ºC, with a final extension of 5 minutes at 72ºC. 

Fragments were separated by electrophoresis on a 2% agarose gel for 60 minutes at 110V 

and visualized by ethidium bromide staining.  

There was one fragment of 477 bp for homozygous I/I, two fragments of 477 bp and 190 bp 

for heterozygous I/D and one fragment of 190 bp for homozygous D/D. 

Polymorphism for Type 1 receptor of Angiotensin II (AGTR1) 1166A / C (rs5186) -Fig2a- 

Annexes 

The A1166C polymorphism at the ATlR locus was detected using the forward primer 5’- 

ATAATGTAAGCTCATCCACC – 3’and the reverse 5’- GAGATTGCATTTCTGTCAGT– 3’ 

.The underlined base in the sense strand primer is a base mismatch, introduced to produce a 

(DdeI) restriction site, whenever the cytosine (C) of the A1166C polymorphism is present in 

the template. If adenine (A) is present, there is no restriction site. PCR was performed in a 

total reaction volume of 50 µl containing 10 pmol of each primer, 0.2 mM of each dNTP, 3 µl 

of 1.5 mM MgCI2, 5 µl of 10 x incubation buffer and 0.5 U AmpliTaq DNA polymerase, and 

400 ng genomic DNA. The PCR reaction started with an initial denaturation step at 94°C for 

5 min, 35 cycles of PCR consisting of 94°C for 30 sec, 51°C for 30 sec and 72°C for 45 sec. 

A final extension step at 72°C for 7 min ended the PCR. Twenty microliters of the reaction 

product were then exposed to 10 U of the enzyme (DdeI). Fragments were separated by 

electrophoresis on a 2% agarose gel for 60 minutes at 110V and visualized by ethidium 

bromide staining.  

Haptoglobin polymorphism (1.1, 2.1, 2.2) -Fig3a- Annexes 

The determination of the genetic polymorphism of haptoglobin was performed from Plasma 

Hp by polyacrylamide gel electrophoresis (PAGE)(79).  

Determination of the genetic polymorphism of haptoglobin is performed from plasma Hp by 

4.7% polyacrylamide gel (PAGE) in 0.504M TRIS-HCl buffer solution, pH 8.9. Samples for 

gel application (10μL) are prepared using 40% (w / v) sucrose, 28.2mg / mL Hb and 3: 2: 4 

plasma at a final volume of 45μL. For the coloring of the resulting bands of electrophoresis 

the contact staining method is used, using 16mM o-dianisidine in 50% (v / v) acetic acid and 
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thereafter 0.6% (v / v) hydrogen peroxide. Hp phenotypes are determined by polyacrylamide 

gel electrophoresis, and the corresponding genotype is assigned. Determination of the 

Haptoglobin (Hp) plasmatic concentration 

Serum Hp concentration was determined by nephelometry- (BN ProSpec from Siemens 

Healthcare Diagnostics) in mg / dL. 

 Intron 4 polymorphism of the eNOS gene-)-Fig4a- Annexes 

The polymorphism 4 b/a of NOS3 gene was detected using the forward primer 5’- 

AGGCCCTATGGTAGTGCCTTT-3’ and the reverse primer 5’- 

TCTCTTAGTGCTGTGGTCAC-3’. The PCR reaction was performed in a final volume of 25 

µL using 200 ng of genomic DNA, 10 pmol of both primers, 12.5 ml of DreamTaq Green PCR 

Master Mix (2X) (Thermo Scientific®). The PCR reaction started with an initial denaturation 

at 94ºC for 2 minutes, followed by 35 cycles for 30 seconds at 94ºC, 30 seconds at 53ºC and 

45 seconds at 72ºC, with a final extension of 5 minutes at 72ºC. Fragments were separated 

by electrophoresis on a 3% agarose gel for 120 minutes at 110V and visualized by ethidium 

bromide staining.  

There was one fragment of 420 bp for homozygous b/b, two fragments of 393 bp and 420 bp 

for heterozygous a/b and one fragment of 393 bp for homozygous a/a. 

NOS2 polymorphism (exon 16-14CT), NOS2 polymorphism (intron 16 - 88GT) 

NOS2 polymorphism (intron 20 - IVS20 + 524 GA)-Fig5a; -Fig6a; -Fig7a- Annexes 

The polymorphisms -14 C/T in exon 16 and -88 G/T in intron 16 of NOS2 gene were 

detected using the forward primer 5’-TAAACCAACTTCCGTGGTGGG-3’ and the reverse 

primer 5’-AGCTGGAGAATGGAGCTGGAC-3’. The PCR reaction was performed in a final 

DreamTaq 

Green PCR Master Mix (2X) (Thermo Scientific®). The PCR reaction started with an initial 

denaturation at 94ºC for 2 minutes, followed by 35 cycles for 45 seconds at 94ºC, 45 

seconds at 61ºC and 45 seconds at 72ºC, with a final extension of 5 minutes at 72ºC. The 

PCR products were digested with 10U of TaSI (Thermo Scientific®) for 16 hours at 65ºC for 

exon 16 and with 10U of AdeI (Thermo Scientific®) for 16 hours at 37ºC for intron 16.  

Fragments were separated by electrophoresis on a 2% agarose gel for 90 minutes at 85V 

and visualized by ethidium bromide staining.  

For -14 C/T in exon 16, there were two fragments of 285 bp and 170 bp for homozygous 

without mutation (CC), four fragments of 285 bp, 170 bp, 137 bp and 33 bp for heterozygous 

CT and  two fragments of 285 bp and 137 bp for homozygous with mutation (TT). 

For -88 G/T in intron 16, there was an undigested fragment of 455 bp for homozygous 

without mutation (GG), three fragments of 455 bp, 263 bp and 192 bp for heterozygous GT 

and two fragments of 263 bp and 192 bp for homozygous with mutation (TT). 
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The polymorphism 524 G/A in intron 20 of NOS2 gene was detected using the forward 

primer 5’-TTATCCCAATCCCAGCCACTCG-3’ and the reverse primer 5’-

GCCAGGCTCTGTTTCTCTGATCC-3’. The PCR reaction was performed in a final volume of 

50 µL using 200 ng of genomic DNA, 10 pmol of both primers, 25 µl of DreamTaq Green 

PCR Master Mix (2X) (Thermo Scientific®). The PCR reaction started with an initial 

denaturation at 94ºC for 2 minutes, followed by 35 cycles for 45 seconds at 94ºC, 45 

seconds at 59ºC and 45 seconds at 72ºC, with a final extension of 5 minutes at 72ºC. The 

PCR product was digested with 10U of HinfI (Thermo Scientific®) for 16 hours at 37ºC. 

Fragments were separated by electrophoresis on a 4% agarose gel for 90 minutes at 85V 

and visualized by ethidium bromide staining.  

There were three fragments of 75 bp, 54 bp and 39 bp for homozygous without mutation 

(GG), four fragments of 129 bp, 75 bp, 54 bp and 39 bp for heterozygous GA and  two 

fragments of 129 bp and 39 bp for homozygous with mutation (AA). 

MPO Polymorphism (- 463 GA)- Fig8a- Annexes 

MPO polymorphism was analyzed by PCR-RFLP in genomic DNA. PCR was performed with 

the following reaction mixture: 20 pmol of forward and reverse primers of sequences 5'-

GTATAGGCACACAATGGTGAG-3 'and 5'-GCAATGGTTCAAGCGATTCTTC-3', 

respectively; 200μM PCR Nucleotide Mix, containing four dNTPs; 25mM MgCl 2; 1 U of Taq 

polymerase; And 200ng of genomic DNA, to a final volume of 50μl. The PCR conditions used 

were hot start at 94 ° C for 2 minutes, followed by 35 cycles of 1 minute at 94 ° C 

(denaturation), 1 minute at 59 ° C (annealing), 1 minute at 72 ° C (extension), adding a 7 

minute extension to 72 ° C. 

The reaction product is 350 bp and was digested with Ssi I (Acyl) 5U / μl endonuclease 

(Thermo Scientific) at 37 ° C for 16 hours. The hydrolyzed fragments were subjected to 3% 

(m / v) agarose gel (SeaMem® LE Agarose) electrophoresis in TAE (20 mM Tris-Acetate, 1 

mM EDTA, pH 8.0) with 10 μg / ml ethidium bromide, For 90 min at 85V.  

MPO levels 

Determination of plasma concentration of MPO was performed using the "Human 

Myeloperoxidase Immunoassay" Kit from "R & D Systems". This method is based on the 

ELISA technique, an enzyme-linked immunosorbent assay. 

Polymorphism of the Receptor beta2adrenergic Arg16 Gly (rs1042713)- Fig9a- 

Annexes 

The polymorphism 16ArgGly of ADRB2 gene was detected using the forward primer 

sequence 5'-CCTTCTTGCTGGCACCCCAT-3 'and the reverse primer 5'-

GGAAGTCCAAAACTCGCACCA-3'. The PCR reaction was performed in a final volume of 25 

µL using 200 ng of genomic DNA, 10 pmol of both primers, 12,5 µl of DreamTaq Green PCR 

Master Mix (2X) (Thermo Scientific®). The PCR reaction started with an initial denaturation 
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at 94ºC for 2 minutes, followed by 35 cycles for 30 seconds at 94ºC, 30 seconds at 60ºC and 

45 seconds at 72ºC, with a final extension of 5 minutes at 72ºC. The PCR product was 

digested with 10U of NcoI (Thermo Scientific®) for 16 hours at 37ºC. 

Fragments were separated by electrophoresis on a 3% agarose gel for 90 minutes at 85V 

and visualized by ethidium bromide staining.  

There was one fragment of 308 bp for homozygous without mutation (ArgArg), three 

fragments of 308 bp, 291 bp and 17 bp for heterozygous ArgGly and two fragments of 291 

bp and 17 bp for homozygous with mutation (GlyGly). 

GSTT1 and GSTM1 polymorphisms- Fig.10 a- Annexes 

The two polymorphisms in the (GSTM1 and GSTT1) genes were performed by PCR-

Multiplex technique using  5 primers. Primers 1 and 2 are specific for GSTM1 and GSTM4 

with the following sequences respectively 5'-GCCATCTTGTGCTACATTGCCCG-3 'and 5'-

ATCTTCTCCTCTTCTGTCTCCCC-3'. (GSTM4 will serve as a control for DNA amplification 

because it has no polymorphisms). Primer 3 is specific for GSTM1 and has the sequences 

5'-TTCTGGATTGTAGCAGATCATGCCC-3 '. Primers 4 and 5 are specific for GSTT1 and 

have the following sequences respectively 5'-TTCCTTACTGGTCCTCACATCTC-3 'and 5'-

TCACCGGATCATGGCCAGCA-3'. The PCR reaction was performed in a final volume of 50 

µL using 200 ng of genomic DNA, 10 pmol of each primer, 25 µl of DreamTaq Green PCR 

Master Mix (2X) (Thermo Scientific®) and 2.5 μl Of DMSO (dimethylsulfoxide). The PCR 

reaction started with an initial denaturation at 94ºC for 2 minutes, followed by 40 cycles for 45 

seconds at 94ºC, 45 seconds at 58ºC and 45 seconds at 72ºC, with a final extension of 5 

minutes at 72ºC. Fragments were separated by electrophoresis on a 3% agarose gel for 120 

minutes at 100V and visualized by ethidium bromide staining.  

In the analysis of the PCR product, we observed 3 bands: one with 230 base pairs, resulting 

from the action of primer 1 and 3 (which will identify the GSTM1 sequence), a band with 157 

pairs of bases Resulting from the action of primers 1 and 2 (which identifies the GSTM4 

sequence) and a band with 480 base pairs resulting from the action of primers 4 and 5 

(which identifies GSTT1). 

Atopic march- LELP1  -Fig.11a- Annexes  

The LELP-1 [rs7534334]genotypes were determined by the polymerase chain reaction and 

restriction fragment length polymorphism (PCR-RFLP) technique, the polymorphic region 

was amplified in a 50 μl reaction mixture: 10 mM of each primer (forward: 5´- 

CCTCCACCATGTACAACGCT-3´; and reverse: 5´- TTGCATTAAACCCATGCAGCC-3´), 200 

ng of genomic DNA and 0.2 mM of PCR nucleotide Mix Thermo Scientific® DreamTaq Green 

containing 10 mM dNTPs, 1.5 mM MgCl2, 1 U Taq polymerase. PCR conditions involved an 

initial denaturation of DNA at 94°C for 3 min, followed by 35 cycles of amplification at 94°C 

for 30 s, 53°C for 45 s, 72°C for 1 min and 30 s and one cycle at 72°C for 5 min. The 
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amplified fragments of 506 bp were then digested by the restriction endonuclease MwoI at 

60°C for 3 hr according to the manufacturer’s recommendations. The digestion products 

were analyzed by electrophoresis in 3% agarose gel stained with ethidium bromide (10 

μg/mL) for 60 minutes, with 80 volts. With this process we are able to differentiate genotypes: 

the TT genotype gives rise to one single band of 506 bp; the CC genotype appears as two 

bands, one with 339 bp, and other with 167 bp; the CT genotype has all the three bands. 

MTHFR polymorphism: C677T (rs1801133)- Fig12a- Annexes 

The C/T polymorphism of MTHFR (C677T) gene was detected using the forward primer : 5´-

TGAAGGAGAAGGTGTCTGCGGGA – 3´and the reverse primer 5´- 

AGGACGGTGCGGTGAGAGTG – 3’. The PCR reaction was performed in a final volume of 

50 µL using 200 ng of genomic DNA, 10 pmol of both primers, 25 µl of DreamTaq Green 

PCR Master Mix (2X) (Thermo Scientific®). The PCR reaction started with an initial 

denaturation at 94ºC for 2 minutes, followed by 30 cycles for 30 seconds at 94ºC, 30 

seconds at 61ºC and 60 seconds at 72ºC, with a final extension of 7 minutes at 72ºC. The 

PCR product was digested with 10U of HinfI (Thermo Scientific®) for 16 hours at 37ºC. 

Fragments were separated by electrophoresis on a 4% agarose gel for 90 minutes at 85V 

and visualized by ethidium bromide staining.  

There was one fragment of 198 bp for homozygous without mutation (CC), three fragments 

of 198 bp,175 bp and 23 bp for heterozygous CT and two fragments of 175 bp and 23 bp for 

homozygous with mutation (TT). 

 

 

 

Statistical Analysis 

Descriptive data of continuous and categorical variables is presented as descriptive statistics 

with frequencies, percentage and central tendency measures. Normal distribution is 

assessed with normality tests. After the assumption or not of the normality: parametric and 

non-parametric tests were used, and logistic regression models were built and adjusted for 

age and gender. 

The Hardy-Weinberg equilibrium is based on the distribution of the contrasting alleles p (wild 

allele) and q (mutant allele), according to the development of Newton's binomial (p2 + 2pq + 

q2 = 1). Observed genotype frequencies were tested for deviation from Hardy- Weinberg 

equilibrium (HWE) with the Chi-square goodness-of-fit test. This test was also used to 

evaluate the significant differences between groups, in and within the two populations, in 

order to know if the odds ratio (OR) test was justifiable. 
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The frequencies of the various genotypes of the polymorphisms studied in the different 

categories of samples were determined and tabulated according to contingency tables. The 

analyzes of these were made through the chi-square χ2 analysis, to study the genotypic and 

allelic differences, between the cases and the controls. Homozygous and heterozygous 

individuals for each of the alleles, variants for each polymorphism, were compared to 

homozygotes for the wild-type allele. 

 In the two cohorts OR for patients risk and the corresponding 95% confidence intervals 

(95% CI) were calculated using logistic regression analysis. This test was applied to the 

polymorphisms, to analyze its risk factor individually. All statistical analyses were carried out 

using the SPSS 21.0 software. The results were considered statistically significant for 

p<0.05. 

Genetic Risk score of: endothelial dysfunction ((ACE) and nitric oxide (NOS) gene 

polymorphisms)); endothelial dysfunction and epigenetics (MTHFR+(ACE) and nitric oxide 

(NOS) gene polymorphisms)); uncontrolled asthma (IVS16+ 88T>G, ACE I/D and age) and 

allergic asthma (MTHFR and GSTT1 and ACE and gender). 

Significant SNPs in asthma vs controls; controlled/uncontrolled asthma; allergic vs non-

allergic asthma were used to create different genetic models and construct a genetic risk 

score for each participant by summing the coefficients for each of the resulting variables after 

statistical analysis with Stepwise multivariate logistic regression with backward elimination. 
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CHAPTER IV.  Results 
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IV.1.Literature review and meta-analysis with the SNPs entitled for this Thesis and its 

role in CVD 

The systematic literature review and meta-analysis for the polymorphisms for CVD included 

in the study are : a) Renin-Angiotensin-System; b) Nitric Oxide (NO) associated systems; c) 

Beta-2 drenergic receptors ; d) Detoxification; e) Atopic march; f) Epigenetics 

The  pathophysiology of Cardiovascular diseases and the chronic stimulation of the renin-

angiotensin-aldosterone system (RAAS), affects the cardiovascular system  through, 

increased vasoconstriction, sodium and water retention, heart remodeling and myocardial 

fibrosis. The use of angiotensin-converting-enzyme inhibitors (ACEIs), angiotensin II type 1 

receptor blockers (ARBs) and aldosterone antagonists among others as therapeutic targets . 

The variance in the genetic constitution of this pathway might represent a predisposing factor 

to Cardiovascular diseases and be implicated in the risk of disease manifestation and 

response to therapy in certain patients 

The genetic constituents of the renin-angiotensin-aldosterone system (RAAS) and NO, a 

neurohormonal pathway that is activated in many Cardiovascular diseases such as: IHD; 

CAD; MI; cardiomyopathy; MI and HTA among others, has also an important role in asthma 

as will be showed in this thesis. 

Haptoglobin namely Hp2.2 genotype is a susceptibility risk to Heart diseases such as: IHD; 

CAD; MI; cardiomyopathy; MF and HTA among others. 

The pathophysiology of Cardiovascular diseases and the chronic stimulation of the renin-

angiotensin-aldosterone system (RAAS), affects the cardiovascular system through, 

increased vasoconstriction, sodium and water retention, heart remodeling and myocardial 

fibrosis. The use of angiotensin-converting-enzyme inhibitors (ACEIs), angiotensin II type 1 

receptor blockers (ARBs) and aldosterone antagonists among others as therapeutic targets. 

The variance in the genetic constitution of this pathway might represent a predisposing factor 

to Cardiovascular diseases and be implicated in the risk of disease manifestation and 

response to therapy in certain patients. 

In the EDC the SPRR proteins are downstream target of gp130 cytokine receptor signaling, 

confers cardiomyocyte protection in response to environmental stress. SPRR could be 

downstream effectors of the stress response mediated by IL-6 family cytokines. Therefore, 

the induction of SPRR expression by IL-6 cytokines could be a central mechanism of an 

‘innate' defense system in response to stress and induction of SPPR genes may serve a 

novel cell protective strategy. 

DNA methylation, an epigenetic feature of DNA like acetylation could modulate gene 

expression involves methyltransferases that use the methyl donor S-adenosyl-L-methionine. 

Methylenetetrahydrofolate reductase (MTHFR) catalyzes the synthesis of 5-

methyltetrahydrofolate (5-methylTHF), the methyl donor for synthesis of methionine from 
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homocysteine and precursor of S-adenosyl-L-methionine. About 85% of the general 

population carries a variant such as C677T mutation in the MTHFR gene associated with 

higher blood homocysteine also a risk factor for cardiovascular disease. T/T genotypes had a 

diminished level of DNA methylation compared with those with the C/C but according to 

folate status, only the T/T subjects with low levels of folate accounted for the diminished DNA 

methylation- folate dependent. An elevated plasma level of the amino acid homocysteine is a 

significant and independent risk factor for the development of coronary heart disease. 

Individuals with the MTHFR 677 TT genotype had a higher risk of CHD compared with 

individuals with the CC genotype. There was significant heterogeneity between the results 

obtained in European populations compared with American populations (which might largely 

be explained by interaction between the MTHFR 677C-->T polymorphism and folate status if 

we are considering the hypomethylation status as a susceptibility to CVD. 

In this thesis there will be a comprehensive literature review and meta-analysis for the 

different polymorphisms studied in asthma and its importance in CVD. Polymorphisms 

studied:  

Many single nucleotide polymorphisms could affect  the outcome of CVD pathophysiology 

and severity that will be addressed in this thesis: A) RENIN-ANGIOTENSIN SYSTEM: ACE 

polymorphism of I / D (287 bp, on chromosome 17q23, intron 16 (rs1799752); Polymorphism 

for Type 1 receptor of Angiotensin II (AGTR1) 1166A / C (rs5186); B) NO ASSOCIATED 

SYSTEM: Haptoglobin polymorphism (1.1, 2.1, 2.2): Intron 4 polymorphism of the eNOS 

gene; NOS2 polymorphism (exon 16-14CT): NOS2 polymorphism (intron 16 - 88GT); NOS2 

polymorphism (intron 20 - IVS20 + 524 GA); MPO Polymorphism (- 463 GA); C) 

BETA2ADRENERGIC RECEPTORS: Polymorphism Receptor beta2adrenergic Arg16 Gly 

(rs1042713); D) DETOXIFICATION: GSTM1 polymorphism: search for null genotypes 

(homozygous for the allele GSTM1 * 0) (M-); GSTT1 polymorphism: null genotype search 

(Homozygous homing for the GSTT1 * 0 allele) (T-); E) ECZEMA AND ASTHMA-ATOPIC 

MARCH: LELP1; F) EPIGENETICS: MTHFR polymorphism MTHFR: C677T (rs1801133). 
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IV.1.Literature review and meta-analysis with the SNPs entitled for this Thesis and its 

role in CVD 

 
 
 
A) RENIN-ANGIOTENSIN SYSTEM 

ACE polymorphism of I / D (287 bp, on chromosome 17q23, intron 16 (rs1799752) 

The  pathophysiology of Cardiovascular diseases and the chronic stimulation of the renin-

angiotensin-aldosterone system (RAAS)(1,2), affects the cardiovascular system and different 

phenotypes and severity of the disease. 

 

  

 

 

Number of studies combined: k = 6 
 
                                      OR           95%-CI    z  p-value 
Fixed effect model   1.6529 [1.3526; 2.0198] 4.91 < 0.0001 
Random effects model 1.6488 [1.3485; 2.0159] 4.87 < 0.0001 
 

Fig. IV.1.1: Forest plot with the Genetic model : DD/total( heart diseases(HDs) (CAD; MI; 

cardiomyopathy; HT)(80-85). 

 

Genetic model ): DD/total( heart diseases(HDs) (CAD; MI; cardiomyopathy, HT) 

These studies had low heterogeneity (0%) the values of fixed and random effect are very 

similar and is associated with significant overall effect: OR: 1.6529 [1.3526; 2.0198] z=4.91 

p< 0.0001,if the DD genotype is present and susceptibility to Heart condition(CAD; EAM; 

cardiomyopathy; HT) The risk of having heart condition in those that are DD is almost 2. 
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Number of studies combined: k = 6 
 
                                      OR           95%-CI     z  p-value 
Fixed effect model   0.5880 [0.4638; 0.7457] -4.38 < 0.0001 
Random effects model 0.4951 [0.2389; 1.0258] -1.89   0.0586 
 
 

Fig. IV.1.2: Forest plot with the Genetic model: II/total( heart diseases(HDs) (CAD; MI; 

cardiomyopathy; HT) 80-85. 

 

Genetic model ): II/total( heart diseases(HDs) (CAD; MI; cardiomyopathy; HT) 

These studies had high heterogeneity (86%) the values of fixed and random effect are very 

similar and is associated with non significant overall effect if we consider the random effect, 

although a trend might be present: OR: 0.4951 [0.2389; 1.0258] z=-1.89   p=0.0586 ,if the II  

genotype is present and susceptibility to Heart condition(CAD; MI; cardiomyopathy; HT) The 

risk of having heart condition in those that are II is 53,5% decreased. 
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A) RENIN-ANGIOTENSIN SYSTEM 

Polymorphism for Type 1 receptor of Angiotensin II (AGTR1) 1166A / C (rs5186) 

 

The pathophysiology of Cardiovascular diseases and the chronic stimulation of the renin-

angiotensin-aldosterone system (RAAS) (18,19), affects the cardiovascular system and 

different phenotypes and severity of the disease. 

 

 

 

 

Number of studies combined: k = 5 
 
                                       OR           95%-CI     z  p-value 
Fixed effect model   0.8985 [0.7576; 1.0655] -1.23   0.2186 
Random effects model 0.6452 [0.4047; 1.0287] -1.84   0.0656 

 

Fig. IV.1.3: Forest plot with the Genetic model: AC+CC/total  (heart diseases(HDs) (HT, 

CAD, MI,HF.)(18,86-89). 

 

 

Genetic model ): AC+CC/total  ( heart diseases(HDs) (HT, CAD, MI,HF.) 

These studies had high heterogeneity (65%) the values of fixed (OR:0.90)and random effect 

(OR:0.65) are very similar and are associated with decreased risk of Heart Disease (HT, 

CAD, MI, etc..) if the Allele C (AC+CC) is present in AGTR1 polymorphism and susceptibility 

to HDs and susceptibility to Heart condition (HT, CAD, MI,HF) .The risk of having heart 

condition in those that express allele C  there is a trend to be  decreased although n.s.. 
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Number of studies combined: k = 5 
 
                                         OR           95%-CI    z  p-value 
Fixed effect model   1.2076 [0.9268; 1.5735] 1.40   0.1624 
Random effects model 1.2455 [0.8378; 1.8517] 1.09   0.2779 
 

Fig. IV.1.4: Forest plot with the Genetic model: CC /total  ( heart diseases(HDs) (HT, CAD, 

MI,HF) (18,86-89). 

 

 

Genetic model): CC /total (heart diseases(HDs) (HT, CAD, MI,HF) 

These studies had moderately high heterogeneity (41%) the values of fixed (OR:1.21) and 

random (OR:1.25) effect are very similar and favors increased risk if the CC genotype is 

present in AGTR1 polymorphism and susceptibility to HDs (HT, CAD, MI,HF) .The risk of 

having heart condition in those that express CC genotype is non significant. 
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B) NO ASSOCIATED SYSTEMS 
Haptoglobin polymorphism (1.1, 2.1, 2.2) 

 

The Hp phenotypes have different biochemical and biophysical characteristics and functional 
efficiencies that account for their distinct antioxidant and immunomodulatory capacities in 
asthma and CVD (90).  

 

 

 

 

 

 

Number of studies combined: k = 6 
 
                                      OR           95%-CI    z  p-value 
Fixed effect model   1.3664 [1.1557; 1.6155] 3.65   0.0003 
Random effects model 1.9288 [1.1524; 3.2283] 2.50   0.0124 
 

Fig. IV.1.5: Forest plot with the Genetic modelHp2.2/total( heart diseases(HDs) (CHD; CHD 

and DM;CAD mortality; CABG<45 years)(91-96). 

Genetic model): Hp2.2/total (heart diseases(HDs) (CHD; CHD and DM;CAD mortality; 

CABG<45 years) 

These studies had high heterogeneity (79%) the values of fixed and random effect are 

slightly different and is associated with significant overall effect : OR: 1.9288 [1.1524; 3.2283] 

z=2.50   p=0.0124,if the Hp2.2  genotype is present  and susceptibility to Heart condition 

(CHD; CHD and DM;CAD mortality; CABG<45 years). The risk of having heart condition in 

those that are Hp 2.2 is almost 2. 
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Number of studies combined: k = 6 
 
                                      OR           95%-CI     z  p-value 
Fixed effect model   0.7596 [0.6030; 0.9568] -2.34   0.0195 
Random effects model 0.6484 [0.3583; 1.1731] -1.43   0.1521 
 

Fig. IV.1.6: Forest plot with the Genetic model: Hp1.1/total (heart diseases(HDs) (CHD; CHD 

and DM;CAD mortality; CABG<45 years) (91-96). 

 

Genetic model): Hp1.1/total (heart diseases(HDs) (CHD; CHD and DM; CAD mortality; 

CABG<45 years) 

These studies had high heterogeneity (79%) the values of fixed and random effect are and 

are associated with non significant overall effect :OR:  0.6484 [0.3583; 1.1731]; z=-1.43  ; p= 

0.1521,if the Hp1.1  genotype is present and susceptibility to Heart condition (CHD; CHD and 

DM;CAD mortality; CABG<45 years). The risk of having heart condition in those that are Hp 

1.1 has although an effect tendentially to be decreased . 

 

 

B) NO ASSOCIATED SYSTEMS 
 

Intron 4 polymorphism of the eNOS gene ( rs1799983) 

 
 

NOS catalyzes the conversion of L: -arginine to L: -citrulline and NO and under particular 

circumstances reactive oxygen species (ROS) can be generated due to NO uncoupling. 

Nitric oxide synthase is involved in nitric oxide’s metabolism most nitric oxide synthase 

activity in the normal heart is present in endothelium and related with eNos- endothelial 



69 

 

isoform of nitric oxide synthase. Neuronal nitric oxide synthase is uncertain associated with 

nerves and ganglion cells. Usually, there is no inducible nitric oxide synthase (NOS2) in 

the normal heart, however macrophages associated with repair following various 

forms of cardiac damage contain this isoform-NOS2 and its expression is induced by 

pro-inflammatory mediators (97). 

 

 

Number of studies combined: k = 6 
 
                                       OR           95%-CI     z  p-value 
Fixed effect model   0.9086 [0.7209; 1.1452] -0.81   0.4170 
Random effects model 0.8755 [0.5693; 1.3463] -0.61   0.5447 
 
Fig. IV.1.7: Forest plot with the Genetic model:bb/total  ( heart diseases(HDs) (HT) (98-103).  

 

Genetic model ): bb/total  ( heart diseases(HDs) (HT) 

These studies had high heterogeneity (68%) the values of fixed (OR:0.91)and random effect 

(OR:0.88) are very similar and are associated with decreased risk of Heart Disease (HT) if 

the genotype bb is present in eNOS polymorphism and susceptibility Heart condition (HT) 

although n.s..  
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Number of studies combined: k = 4 
 
                                     OR           95%-CI    z  p-value 
Fixed effect model   1.8504 [0.7219; 4.7428] 1.28   0.2001 
Random effects model 1.6333 [0.4627; 5.7654] 0.76   0.4459 
 
Fig. IV.1.8: Forest plot with the Genetic model: aa/total (heart diseases(HDs) (HT) 

(98,99,101,103).  

 

Genetic model): aa/total (heart diseases(HDs) (HT) 

These studies had low heterogeneity (22%) the values of fixed (OR:1.85)and random effect 
(OR:1.63) are very similar and are associated with increased risk of Heart Disease (HT) if the 
genotype aa is present in eNOS polymorphism and susceptibility Heart condition(HT) 
although n.s..  
 

B) NO ASSOCIATED SYSTEMS 
 

NOS2 polymorphism (exon 16-14CT) 

NOS2 polymorphism (intron 16 - 88GT) 

NOS2 polymorphism (intron 20 - IVS20 + 524 GA) 

Usually, there is no inducible nitric oxide synthase (NOS2) in the normal heart, 

however macrophages associated with repair following various forms of cardiac 

damage contain this isoform-NOS2 and its expression is induced by pro-inflammatory 

mediators (44,104). 
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However, some authors refer that in some inflammatory diseases such as rheumatoid 

arthritis there is a the potential contribution of inducible and endothelial nitric oxide synthase 

(iNOS/ NOS2) gene polymorphisms to cardiovascular (CV) events. 

Several candidate genes (EGF, LTA, HIF1A, HIF1AN, MMP2, MMP9, iNOS, NOS3 and 

VEGF) play a role in angiogenesis and endothelial dysfunction. Polymorphisms in 

angiogenesis-related 

genes have been associated with CVD and respiratory diseases such as asthma. Inducible 

nitric oxide synthase (iNOS) catalysis the synthesis of nitric oxide (NO), which can be 

proangiogenic and iNOS is overexpressed in some diseases (e.g.: asthma) and some 

inflammatory cells such as macrophages. 

Accelerated atherosclerosis and CVD might be associated with the traditional CV risk factors 

such as age and hypertension as well as non-traditional risk factors comprising current 

inflammation associated with asthma and genetic polymorphisms that predisposes to 

different status of oxidative stress and inflammation. In this multiple risk factor assessment, 

the risk charts that are based only on traditional risk factors are insufficient to capture CV risk 

extent in bronchial asthma. 

 

B) NO ASSOCIATED SYSTEM 

MPO Polymorphism (- 463 GA) 

 

 

 

 

 

                                        OR           95%-CI    z  p-value 
Fixed effect model   1.2007 [0.9983; 1.4442] 1.94   0.0521 
Random effects model 1.1928 [0.9193; 1.5477] 1.33   0.1845 
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Fig. IV.1.9: Forest plot with the Genetic model: (AA+GA vs GG): GG/total (heart 

diseases(HDs) (CAD; Nephrosclerosis hypertensive; HT; Carotid atherosclerosis)-

Dominant(105-110). 

 

Genetic model (AA+GA vs GG): GG/total(heart diseases(HDs) (CAD; Nephrosclerosis 

hypertensive; HT; Carotid atherosclerosis)-Dominant 

These studies had medium heterogeneity (45%) the values of fixed and random effect are 

very similar and is associated with higher overall effect and a trend to be significant 

(p=0,0521) if the GG genotype is present in MPO (−463G>A (rs2333227) polymorphism and 

susceptibility to Heart condition CAD; Nephrosclerosis hypertensive; HT; Carotid 

atherosclerosis) in the Fixed effect model. The random overall effect is non significant 

(n.s.)(p=0.1845). 

                          
 
Genetic model (GG+AG vs AA): AA/total ( heart disease (CAD; Nephrosclerosis 

hypertensive; HT; Carotid atherosclerosis) Recessive 

 

 

 

 

Number of studies combined: k = 4 

 

                                        OR           95%-CI    z  p-value 

Fixed effect model   1.3418 [1.0857; 1.6583] 2.72   0.0065 

Random effects model 1.3420 [1.0857; 1.6588] 2.72   0.0065 

 

 

 



73 

 

Fig. IV.1.10: Forest plot with the Genetic model :(GG+AG vs AA): AA/total (heart disease 

(CAD; Nephrosclerosis hypertensive; HT; Carotid atherosclerosis) Recessive (105-107,109). 

 

 

Interpretation:  These studies had low heterogeneity (0%) the values of fixed and random 

effect are very similar and is associated with higher risk and significant (if we consider the 

fixed effect model) if the AA genotype is present in MPO (−463G>A (rs2333227) 

polymorphism and susceptibility to Heart condition CAD; Nephrosclerosis hypertensive; HT; 

Carotid atherosclerosis) in the Fixed effect model (p= 0.0065).  This CI95% shows that the 

overall effect is significant with a global risk effect (fixed effect) is 1,34 of having a heart 

condition (CAD; Nephrosclerosis hypertensive; HT; Carotid atherosclerosis) if the AA 

genotype is present. The study of Nikpoor et al with great weight (28,2%) the CI95% shows 

that the effect is significant with OR 1,56 of having a heart condition. 

 

 

C) BETA2ADRENERGIC RECEPTORS 

Polymorphism of beta2adrenergic receptor Arg16 Gly (rs1042713) 

 

 

 

 

 

 

Number of studies combined: k = 6 

 

                                       OR           95%-CI    z  p-value 

Fixed effect model   1.2038 [0.9750; 1.4864] 1.72   0.0847 

Random effects model 1.1937 [0.9660; 1.4751] 1.64   0.1011 
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Fig. IV.1.11: Forest plot with the Genetic model :(GG+AG vs AA): AA/total( heart disease 

(MI; CHF and HF; HT)-Dominant (111-116).  

 

 

Genetic model (GG+AG vs AA): AA/total (heart disease (MI; CHF and HF; HT)-Dominant 

These studies had low heterogeneity (0%) the values of fixed and random effect are very 

similar and is associated with higher risk although not significant if the AA genotype is 

present in Beta2 adrenoreceptor polymorphisms: Arg16Gly (rs1042713) and susceptibility to 

Heart condition (MI; CHF and HF; HT). This CI95% shows that the overall effect is non 

significant(ns). Even in the study of Leineweber et al with major weight (31,7%) the CI95% 

shows that the effect is non significant (n.s.). 

 

 

Genetic model (AA+AG vs GG): GG/total (heart disease (MI; CHF and HF; HT)-Recessive 

 

 

 

 

 

Number of studies combined: k = 6 

 

                                      OR           95%-CI    z  p-value 

Fixed effect model   1.3303 [1.1267; 1.5708] 3.37   0.0008 

Random effects model 1.2952 [0.9835; 1.7055] 1.84   0.0655 

 

 

Fig. IV.1.12: Forest plot with the Genetic model :( AA+AG vs GG): GG/total( heart disease 

(MI; CHF and HF; HT)-Recessive (111-116). 
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These studies had moderately high heterogeneity (56%) the values of fixed and random 

effect are very similar and is associated with higher risk and significant (if we consider the 

fixed effect model) if the GG genotype is present in Beta2 adrenoreceptor polymorphisms: 

Arg16Gly (rs1042713) and susceptibility to Heart condition (MI; CHF and HF; HT). This 

CI95% shows that the overall effect is significant with a global risk effect (fixed effect) is 1,33 

of having a heart condition (MI; CHF and HF; HT) if the GG genotype is present, and 

significant. Two studies of Leineweber et al with major weight (31,7%) and Xie et al (weight 

9,9%) the CI95% shows that the effect is significant with OR 1,45 and 2.20 respectively of 

having a heart condition. 

 
 

D) DETOXIFICATION 

GSTM1 polymorphism:search for null genotypes (homozygous for the allele GSTM1 * 0) (M-) 

GSTT1 polymorphism: null genotype search (Homozygous homing for the GSTT1 * 0 allele) 

(T-) 

 

GSTM1 

 

 

 

Number of studies combined: k = 8 

 

                                        OR           95%-CI     z  p-value 

Fixed effect model   2.1079 [1.8856; 2.3564] 13.12 < 0.0001 

Random effects model 1.4878 [0.7248; 3.0543]  1.08   0.2789 

 

 

Fig. IV.1.13: Forest plot with the Genetic model :( GSTM1 * 0/total( heart diseases(HDs) 

(CAD associated or independent of smoking status; HT (117-124). 
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Genetic model): GSTM1 * 0/total (heart diseases(HDs) (CAD associated or independent of 

smoking status; HT) 

These studies had high heterogeneity (96%) the values of fixed and random effect are 

different and is associated with overall effect non significant n.s. (p=0,2789) if the null 

genotype is present in and susceptibility to Heart condition (CAD associated or independent 

of smoking status; HT). Random effects model 1.4878 [0.7248; 3.0543] z=1.08; p= 0.2789. 

 

 

GSTT1 

 

 
 
 

Number of studies combined: k = 5 
 
                                       OR           95%-CI     z  p-value 
Fixed effect model   3.6413 [3.0498; 4.3476] 14.29 < 0.0001 
Random effects model 2.3599 [1.0018; 5.5595]  1.96   0.0495 
 

Fig. IV.1.14: Forest plot with the Genetic model :(GSTT1 * 0/total( heart diseases(HDs) (CAD 

associated or independent of smoking status; HT) (118,120-123). 

 

Genetic model): GSTT1 * 0/total (heart diseases(HDs) (CAD associated or independent of 

smoking status; HT) 

These studies had high heterogeneity (95%) the values of fixed and random effect are 

different and is associated with overall effect significant (p=0,0495) if the null genotype is 

present in and susceptibility to Heart condition (CAD associated or independent of smoking 

status; HTA). Random effects model 2.3599 [1.0018; 5.5595] z=1.96; p=   0.0495; with OR of 

having heart condition of 2 if they are GSTT1 * 0. 
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E) ECZEMA AND ASTHMA 
LELP1 

 

Epidermal keratinocytes(125) undergo a terminal differentiation and programmed cell death 

(physiological apoptosis) known as cornification . Cornification leads to the cornified layer, 

and different genes proceed in an organized sequence to provide this outermost skin barrier 

in the spinous and granular layers that express proteins like keratins (namely: K1, K2 and 

K10) and non- keratin proteins like filaggrin (FLG), loricrin (LOR), involucrin (IVL) and small 

proline rich proteins (SPRRs). These proteins are cross-linked in the cornified cell envelope 

by transglutaminase enzymes, and this insoluble envelope associated with the keratin-

containing macrofibrils fills corneocytes and with the lipids ,forms the skin barrier that protect 

from dehydration and environment allergens(67) . 

Atopic dermatitis (AD)(126) is a skin disease often associated with a progression for other 

atopic comorbidities such as asthma in what we know as atopic march. It affects 20% of 

children and 60% of them will have asthma. The mechanistic approach to AD involves genes 

of a defective skin barrier such as EDC and those genes associated with 

immunedisregulation and allergic disease. Besides FLG mutations (FLG-null mutations 

R501X and 2282del4) that predisposes to increased risk of AD other proteins like SPRR 

where LELP-1polymorphism is included might also have an important role in modulation of 

AD and asthma. 

The association of SPRR proteins and CVD is because they are a downstream target 

signaling, and confer cardiomyocyte protection in response to environmental stress. SPRR 

could be downstream effectors of the stress response mediated by IL-6 family cytokines. 

Therefore, the induction of SPRR expression by IL-6 cytokines could be a central mechanism 

of an ‘innate' defense system in response to stress and induction of SPPR genes may serve 

a novel cell protective strategy in CVD. 
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F) EPIGENETICS 
MTHFR polymorphism MTHFR: C677T (rs1801133) 

DNA methylation (127), an epigenetic feature of DNA like acetylation  could  modulate gene 

expression involves methyltransferases that use the methyl donor S-adenosyl-L-methionine. 

Methylenetetrahydrofolate reductase (MTHFR) catalyzes the synthesis of 5-

methyltetrahydrofolate (5-methylTHF), the methyl donor for synthesis of methionine from 

homocysteine and precursor of S-adenosyl-L-methionine. About 85% of the general 

population carries a variant such as C677T mutation in the MTHFR gene associated with 

higher blood homocysteine also a risk factor for cardiovascular disease. T/T genotypes had a 

diminished level of DNA methylation compared with those with the C/C but according to 

folate status, only the T/T subjects with low levels of folate accounted for the diminished DNA 

methylation- folate dependent. An elevated plasma level of the amino acid homocysteine is a 

significant and independent risk factor for the development of coronary heart disease. 

Individuals with the MTHFR 677 TT genotype had a higher risk of CHD compared with 

individuals with the CC genotype. There was significant heterogeneity between the results 

obtained in European populations compared with American populations (which might largely 

be explained by interaction between the MTHFR 677C-->T polymorphism and folate status if 

we are considering the hypomethylation status as a susceptibility to CVD. 

 

 

 

 

Number of studies combined: k = 6 
 
                                      OR           95%-CI    z  p-value 
Fixed effect model   1.2114 [0.9756; 1.5042] 1.74   0.0824 
Random effects model 1.2030 [0.9656; 1.4988] 1.65   0.0994 
 

Fig. IV.1.15: Forest plot with the Genetic model : TT/total ( heart diseases(HDs) (CHD; 

CAD;MI; CAD <45 years)(128-133). 
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MTHFR polymorphism MTHFR: C677T (rs1801133) 

Genetic model): TT/total (heart diseases(HDs) (CHD; CAD;MI; CAD <45 years) 

These studies had low heterogeneity (1%) the values of fixed (OR:1,21) and random effect 

(OR:1,20) are very similar and is associated with a non significant overall effect: 1.2114 

[0.9756; 1.5042] z=1.74   ; p=0.0824, if the genotype TT   is present and susceptibility to 

Heart condition (CHD; CAD;MI; CAD <45 years).  

 

 

 

 

 

 

Number of studies combined: k = 6 
 
                                     OR           95%-CI     z  p-value 
Fixed effect model   0.7196 [0.6311; 0.8206] -4.91 < 0.0001 
Random effects model 0.6552 [0.4428; 0.9694] -2.12   0.0344 
 

Fig. IV.1.16: Forest plot with the Genetic model : CC/total( heart diseases (HDs) (CHD; 

CAD;MI; CAD <45 years) (128-133). 

  

MTHFR polymorphism MTHFR: C677T (rs1801133) 

Genetic model): CC/total (heart diseases(HDs) (CHD; CAD;MI; CAD <45 years) 

These studies had high heterogeneity (85%) the values of fixed (OR:0,72) and random effect 

(OR:0,66) are very similar   and is associated with a significant overall effect: Random effects 

model: OR:0.6552 [0.4428; 0.9694] z=-2.12; p= 0.0344, if the genotype CC   is present and 

susceptibility to Heart condition (CHD; CAD;MI; CAD <45 years), there is a decreased risk of 

HDs. 
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IV.2. Clinical study: Case-Control study with the SNPs entitled for this Thesis 

 

DEMOGRAPHIC CHARACTERISTICS OF THE STUDY POPULATION 

 

 

In this sample we had studied 356 (69,9%) individuals in the control group and 153 (30,1%) 

in the asthma group. 

For the age if we display the results by 3 groups (<15 years; 15-30 years and >30 years) we 

will obtain these results 
 

Table IV.2.1: Participant’s demographic and clinical characteristics. 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are differences in the age between patients and controls (p<0.001) being the 

asthmatics younger than controls: (Control group: <15: 0(0,0%); 15- 

30:64(18%)¸>30:292(82%); Asthmatics: <15: 18(11,9%); 15-30:42(27,8%)¸>30:91(60,3%) );  

 
The mean age ± SD; min, max, in asthmatics (38,30±18,52;7;86). The mean age ± SD; min, 

max, in control group (43,46±13,01;18;85) 

 

 

 Controls Asthma p value 

N (%) 356 (69.9) 153 (30.1) n.a. 
Female 198 (55.6) 101(66.0) 

0.037* 
Male 158 (44.4) 52 (34.0) 
Age (years; mean±; 
min-max)  

(43,46±13,01;18;85) 
(n=356) 

 (38,30±18,52;7; 
86)(n=151) 

0.001† 

< 15 0 (0.0) 18 (11.9) 
<0.001* 15-30 64 (18.0) 42 (27.8) 

 > 30 292 (82.0) 91 (60.3) 

Atopy/No  Atopy n.a. 
128/23 

(84.8/15.2) 
n.a. 

Asthma controlled / 
Asthma not 
controlled 

n.a. 107/44(70.9/29.1)  n.a. 

Bolded results are less than 0.05 of statistical significance; p*, p value of χ2 test 

values, the values represent absolute frequencies (relative frequencies, %); p†, 

Independent sample T-test, the values represent means ± standard deviation 

(SD); n.a., non applicable. 

 



81 

 

There are differences in the gender distribution between patients and controls (p=0.037); 

(Table V.1.1) 198 females (55,6%)and 158 males in the control group (44,4%) vs 101 

females (66%)and 52 (34%)males in the control group; there are more females in the 

asthmatics. 

 
We had 107 (70.9%) asthmatic patients with controlled asthmatic symptoms and 44(29.1%) 

with uncontrolled asthmatic symptoms: Control of asthma assessed by (ACQ7 and PAQLQ). 

We had 23 (15.2%) asthmatic non-allergic patients and 128(84.8%) asthmatic allergic 

patients. 

A) RENIN-ANGIOTENSIN SYSTEM 
ACE polymorphism of I / D (287 bp, on chromosome 17q23, intron 16 (rs1799752) 
 
 
Asthmatics: n=98; were compared with a control group of n=187 healthy volunteers. The 

(I/D) polymorphism was determined by PCR- Polymerase chain reaction. The Control group 

is in HWE (χ2=1.517; p=0.468).  

Table IV.2.2:  Demographic and clinical characteristics of the study population. 

 

 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bolded results are less than 0.05 of statistical significance. 
p* χ2 test values; the values represent absolute frequencies (relative frequencies, %). 
p † Independent sample T-test; the values represent means ± standard deviation (SD). 
n.a.: non applicable. 
 
 

 (ACE) 
insertion/deletion 
(I/D) polymorphism 
(287 base pairs, on 
chromosome 17q23, 
intron 16(rs4340) 

Controls Asthma 

p value 

N (%) 187 (65.6) 98 (34.4) n.a. 
Female 63 (33.7) 64(65.3) 

<0.001 
Male 124 (63.3) 34 (34.7) 
Age (years)   (41,34±11,75)  (38,96±17,6) 0.229† 

< 15 0 (0.0) 9(9.2) 

<0.001 15-30 42 (22.5) 27 (27.6) 

 > 30 145 (77.5) 62 (63.3) 
Atopy/No Atopy n.a. 82/16 (83.7/16.3) n.a. 
Asthma controlled / 
Asthma not 
controlled 

n.a. 67/31(68.4/31.6)  n.a. 
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We had studied for ACE polymorphism (287 bp, in chromosome 17q23, intron 16 
(rs1799752)187 individuals in the control group and 98 in the asthma group (Table V.1.2). 

We had studied 63 (33,7%) females and 124 (66,3%) males in the control group; 64 (65,3%) 

females and 34 (34,7%) males in the asthma group. We had more females in the 

asthmatics(p<0.001). 

We had studied 16(16.3%) asthmatic non-allergic patients and 82(83.7%) asthmatic allergic 
patients. 

We had studied 67 (68.4%) asthmatic patients with controlled asthmatic symptoms and 

31(31.6%) with uncontrolled asthmatic symptoms: Control of asthma assessed by (ACQ7 

and PAQLQ). 

 

 

 

Table IV.2.3: Distribution of alleles and genotypes by groups in ACE polymorphism (287 bp, 
in chromosome 17q23, intron 16 (rs1799752) 

 
 

ACE I/D Controls Asthma p value OR(95%CI)a 

Allele I  (0.33)  (0.38) 0.290 1.235[0.862-
1.769] Allele  D  (0.67)  (0.62)  

DD n (%) 88(47.1) 49(50.0) 0.006 

 ID n (%) 73(39.0) 23(23.5 

II n (%) 26(13.9) 26(26.5) 

 

In asthmatics the frequencies of genotypes are: DD (50%); ID (25,3%); II (26, 5%).In the 

controls the frequencies of genotypes are: DD (41,7%); ID (39%); II (13,9%). There are 

statistical differences between these groups (p=0.006). There are more genotypes II in the 

asthmatics than controls. 

 
In asthmatics the frequencies of allele I were 0,38 and allele D: 0,62. In control group, the 

frequencies of allele I were 0,33 and for allele D: 0,67. There is no statistical differences 

between these groups (χ2 test: 1,120; OR: 1,235; CI95%:[0,862;1,769]; (p=0.290). 

There is statistical difference between the distribution of genotypes by gender in asthmatics 

vs control group (p<0,001). There are more men in the control group (66,3%) and more 

women in the asthmatics (65,3%). 
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There is no statistical difference between the distribution of genotypes by controlled and 

uncontrolled asthma groups (p=0,781). 

There is no statistical difference between the distribution of genotypes by allergic and non-

allergic asthma groups (p=0,180). 

 
Genetic models (Table IV.2.4): in the Dominant model( ID+IIvs DD) those who are 

homozygous for the alleleD have no increased risk of having asthma( crude: OR: 1,148; 

95%CI :[0,703;1,876]; pvalue=0,580;adjusted values: OR: 11,130; 95%CI :[0,674;1,895]; pb 

value=0,644). 

In the recessive model those who express allele D (ID+DD) have protection of having asthma 

( decreased risk of 53,5% (crude) of having asthma) (OR crude:0,465; 95%CI :[0,251;0,861]; 

p a value=0,015);(OR adjusted:0,496; 95%CI :[0,259;0,949]; p b value=0,034); (decreased risk 

of 50,4% (adjusted) of having asthma). 

In the additive model 1(DD vs ID) those who are heterozygous with genotype ID have no 

increased risk of asthma when compared with control although that might be a trend in the 

crude OR for protection of having asthma ( crude:OR :0,566; 95%CI :[0,315;1,015]; 

pvalue=0,056; adjusted: OR: 0,590; 95%CI :[0,318;1,095]; pvalue=0,095). 

In the additive model 2(DD vs II) those who are homozygous for the allele I (genotypes II) 

have no increase of the risk of asthma when compared with controls (crude OR:1,796; 

95%CI :[0,941;3,427]; p avalue=0,076);(OR adjusted: 1,757; 95%CI :[0,890;3,470]; p 

bvalue=0,104). 
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Table IV.2.4: Genetic models in ACE polymorphism (287 bp, in chromosome 17q23, intron 

16 (rs1799752) and risk of asthma-susceptibility of disease. 

 
 
 
 

Dominant 
model 

N 
cases/controls 

OR 
crudea[95%CI]; p  
avalue 

OR 
adjustedb[95%CI]; 
p bvalue 

II+ID 48/99 referent  

DD 49/88 1,148[0,703;1,876]; 
p a value=0,580 

1,130[0,674;1,895]; 
pb value=0,644 

 

Recessive 
Model 

N 
cases/controls 

OR crude[CI]; p  
avalue 

OR adjusted[CI]; 
p bvalue 

II 72/161 referent  

ID+DD 25/26 0,465[0,251;0,861]; 
pvalue=0,015 

0,496[0,259;0,949]; 
pvalue=0,034 

 

Additive1 N 
cases/controls 

OR crude[CI]; p  
avalue 

OR adjusted[CI]; 
p bvalue 

DD 49/88 referent  

ID 23/73 0,566[0,315;1,015]; 
pvalue=0,056 

0,590[0,318;1,095]; 
pvalue=0,095 

 

Additive2 N 
cases/controls 

OR crude[CI]; p  
avalue 

OR adjusted[CI]; 
p bvalue 

DD 49/88 referent  

II 26/26 1,796[0,941;3,427]; 
p avalue=0,076 

1,757[0,890;3,470]; 
p bvalue=0,104 

 
 
Conclusion: The role of ACE (I/D) polymorphism, in asthmatic patients is a controversy risk 
factor to the severity of asthma, but we concluded that those who has an allele D have 

protection of having asthma (OR crude: 0,465[0,251;0,861]; pvalue=0,015); 53,5% 
decreased risk;(OR adjusted: 0,496[0,259;0,949]; pvalue=0,034; 50,4% decreased risk) in 

this hospital - based population. Genotypes II are more prevalent in the asthmatics than 
controls. 
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A)RENIN-ANGIOTENSIN SYSTEM 
Polymorphism of the type 1 Angiotensin II receptor  (AGTR1) 1166A/C(rs5186) 
 
 
Asthmatic patients: n=97 were compared with a control group of n = 33 healthy blood donors. 

The AGTR1 1166A/C polymorphism was determined by PCR-RFLP . The control group is in 

HWE (χ2 test=0,247; p value=0,884). 

 
 
 
Table IV.2.5:  Demographic and clinical characteristics of the study population 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bolded results are less than 0.05 of statistical significance. 
p* χ2 test values; the values represent absolute frequencies (relative frequencies, %). 
p † Independent sample T-test; the values represent means ± standard deviation (SD). 
n.a.: non applicable. 

 
We had studied (Table IV.2.5) 33 individuals in the control group and 97 asthmatics. There is 

no statistical difference in the mean age between groups(p=0,802), and by subgroups of 

age(p=0,177). 

There is no statistical difference for gender between asthmatics and controls frequencies for 

Polymorphism of the type 1 Angiotensin II receptor I(AGTR1) 1166A/C(rs5186) (p=0 ,408). 

There is no statistical difference between the distribution of genotypes by controlled and 

uncontrolled asthma groups (p=0 ,585) 

(Polymorphism of 
the type 1 
Angiotensin 
IIreceptorI(AGTR1) 
1166A/C(rs5186) 

 

Controls Asthma 

p value 

N (%) 33 (25.4) 97 (74.6) n.a. 
Female 25 (75.8) 64(66.0) 

0.408 
Male 8 (24.2) 33 (34.0) 
Age (years)   (38,55±17,54 )  (39,27±17,54 ) 0.802† 

< 15 0 (0.0) 9(9.3) 

0,177 15-30 11 (33.3) 26 (26.8) 

 > 30 22 (66.7) 62 (63.9) 
Atopy/No Atopy n.a. 82/15 (84.5/13.5) n.a. 
Asthma controlled / 
Asthma not 
controlled 

n.a. 67/30(69.1/30.9)  n.a. 
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There is no statistical difference between the distribution of genotypes by allergic and non-

allergic asthma groups (p=0 ,418). 

 

 

Table IV.2.6: Distribution of alleles and genotypes by groups in Polymorphism of the type 1 

Angiotensin II receptor I(AGTR1) 1166A/C(rs5186) 

 

 

AGTR1 
1166A/C(rs5186) 

Controls Asthma 
p value 

OR(95%CI)a 

Allele A          0.55 0.57 
0.872 

0.916[0.523-
1.607] Allele  C  0.45 0.43 

AA n (%) 9(27.3) 27(27.0) 0.873 

 AC n (%) 18(54.5) 56(57.7) 

CC n (%) 6(18.2) 14(14.4) 

 

 

In asthmatics (Table IV.2.6) the frequencies of genotypes are: AA(27,8%); AC(57,7%); 

CC(14,4%).In the controls  the frequencies of genotypes are : AA(27,3%); AC(54,5%); 

CC(18,2%). There are no statistical differences between these groups (p=0.873). The allelic 

frequencies are, for the control group: Allele A:0,55; Allele C: 0,45; for the asthmatics: Allele 

A:0,57; Allele C: 0,43. There is no increased risk of being asthmatic:  OR: 0,916; 95%CI 

:[0,523;1,607]; pvalue=0,872. 

 

 

Genetic models: There is no increased risk of being asthmatics for those that are 

homozygous for AA: Dominant model(CC+ACvsAA): n.s. (OR: 1,029; 95%CI: [0,424;2,493]; 

p avalue=0,950) crude; n.s. (OR:0,951; 95%CI :[0,386;2,345]; p bvalue=0,913) adjusted (age 

and female gender). 

There is no increased risk of being asthmatics for those that have allele A in the genotypes 

(AC+AA): Recessive model ( CCvsAA+AC): n.s.( OR: 1,317, 95%CI :[0,461;3,766]; p 

avalue=0,607)crude; n.s.(OR: 1,312; 95%CI :[0,450;3,821]; p bvalue=0,619) adjusted (age 

and female gender). 

There is no increased risk of being asthmatics for those that are homozygous for allele A vs 

heterozygous AC genotypes (Additive 1 model): n.s. (OR: 1,037; 95%CI :[0,412;2,609]; p 

avalue=0,938)crude; n.s. (OR: 1,155; 95%CI :[0,446;2,990]; p bvalue=0,766) adjusted (age 

and female gender). 
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There is no increased risk of being asthmatics for those that are homozygous for allele A vs 

homozygous for allele C genotypes (Additive 2 model): n.s. (OR: 1,286;  95%CI: 

[0,380;4,347]; p avalue=0,686)crude; n.s.(OR: 1,324; 95%CI: [0,380;4,616]; p bvalue=0,660) 

adjusted (age and gender). 

 
Conclusion: In this study group there is not a significant evidence, that AGTR1 gene 

A1166C polymorphism could be a genetic marker for the pathophysiology of asthmatic 

disease 

 
 
B) NO ASSOCIATED SYSTEMS 
Haptoglobin polymorphism (1.1, 2.1, 2.2) 
 
In a group of 113 asthmatic patients and 50 controls we studied the Hp levels that were 

determined by nephelometry and genotypes by polyacrylamide gel electrophoresis (PAGE). 

Statistical analysis was performed with statistical software PASW version 18, having 

established a level of significance of p< 0.05. The control group is in HWE(χ2=1.282; 

p=0.527).  

 

Haptoglobin polymorphism (Hp1-1, Hp2-1, Hp2-2) 

 
Table IV.2.7: Participant’s demographic and clinical characteristics 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bolded results are less than 0.05 of statistical significance. 
p* χ2 test values; the values represent absolute frequencies (relative frequencies, %). 
p † non-parametric Mann-Whitney; the values represent means ± standard deviation (SD). 
n.a.: non applicable. 
 

Haptoglobin 
polymorphism- Hp1-
1, Hp2-1, Hp2-2 

Controls Asthma 
p value 

N (%) 50 (30.7) 113 (69.3) n.a. 
Female 45 (90.0) 68(60.2) 

<0.001 
Male 5(10.0) 45 (39.8) 
Age (years)   (50.4±13.44 )  (40.6±18,43 ) 0.001† 

< 15 0 (0.0) 11(9.8) 

0.004 15-30 5 (10.0) 27 (24.1) 

 > 30 45 (90.0) 74 (66.1) 
Atopy/No Atopy n.a. 82/14 (85.4/14.6) n.a. 
Asthma controlled / 
Asthma not 
controlled 

n.a. 61/35(63.5.3/36.5)  n.a. 
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We had studied 50 individuals in the control group and 113 in the asthmatics (Table IV.2.7). 

There are differences in the distribution of gender between asthmatics (F/M:68(60.2%); 

45(39.8)) and controls (F/M:45(90.0%); 5 (10.0%)) ( <0.001). being more females in the 

controls and more males in the asthma group. 

The mean age is different across controls and asthma (p=0.001).There are also differences 

when we stratify by age being youngest the asthmatics and older the control group 

(p=0.004). 

 

 

 
 

 
Fig.IV.2.1: - Distribution of age between asthma and controls (p=0,001; Mann-Whitney, non-

parametric test). 

 

 

 

Age 
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Table IV.2.8: Distribution of alleles and genotypes by groups in Haptoglobin polymorphism- 

Hp1-1, Hp2-1, Hp2-2 

 

 

Haptoglobin 
polymorphism- 
Hp1-1, Hp2-1, 
Hp2-2 

Controls Asthma 

p value 

OR(95%CI)a 

Hp*1          0.39 0.58 0,641 0.866 [0.535-
1.400] Hp*2  0.61 0.42 

Hp1-1n (%) 5(10.0) 21(18.6) 
0,311 

 Hp2-1 n (%) 29(58.0) 54(47.8) 

Hp2-2 n (%) 16(32.0) 38(33.6) 

 

 

 
 

Hp genotype (Hp 1-1(21(18.6%)) , Hp 2-1(54(47.8%)) , Hp 2-2(38(33.6%) )   distribution in 

asthmatics, are not statistical different from control group (Hp 1-1(5(10%)) , Hp 2-1 

(29(58%)), Hp 2-2(16(32%)) )(p= 0.311).  

Allelic (Hp*1:0.39 and Hp*2:0.61 ) in controls and Allelic (Hp*1:0.58 and Hp*2:0.42) in 

asthma. Allelic (Hp*1 and Hp*2 ) in asthma vs control group: there is no increased risk of 

asthma in those with Hp*2 vs  Hp*1 : (OR: 0.866; 95%CI: [0.535-1.400]; p=0.641). 
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Fig.IV.2.2:Distribution of Hp levels between asthma and controls (p=0.132; Distribution of 

Hp levels between asthma and controls (p=0.132; parametric Student’s T test).  

 

When we compared asthmatics with control group we verified that in asthma, the levels of Hp 

are always lower than in the control group although there is no statistical difference between 

groups (124,73±51,00vs137,88±51,39mg/dL) (p=0.132). 

 

 

 

 

 

 

 

 

 

Hp 
levels 
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Hp levels by Genotypes in controls 

 

 

 

 

 

 

 

    

 

Fig.IV.2.3: Distribution of Hp levels by genotypes  in control group (p=0,075; Mann-Whitney 

non-parametric test). 

There are no differences in Hp levels by genotype in control group: Hp 1-

1(175.80±15.79mg/dL) , Hp 2-1(136.55±53.47mg/dL), Hp 2-2(128.44±51.44mg/dL) 

 

 

Genotypes 

Hp 
levels 
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Hp levels by Genotypes in asthma 

 

      

 

 

Fig.IV.2.4:Hp levels by genotype in asthma group (p<0.001; ANOVA parametric test). 
 
In asthma group: those who express Hp 2-2 had the lower levels of the circulating protein 
when compared with  Hp 2-1 and Hp 1-1 (Hp 1-1 :144,95 ± 48,23 mg/dL vs  Hp 2-1 
:137,37±49,58 mg/dL vs Hp 2-2 :95,61±41,94mg/dL)  (p<0.001)(pos-hoc analysis). 
In the control group: There are no differences of Hp levels by genotypes (Hp 1-1 :175,8 ± 
15,79 mg/dL vs  Hp 2-1 :136,55±53,47 mg/dL vs Hp 2-2 :128,44±51,43mg/dL) (p=0,075).  
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Hp levels by genotype according to age 

 

 

 

There are no differences in the frequencies of  genotypes accross asthma (p=0,347)  or 

control group(p=0,134) according to age cutoff (<15 years; 15-30 years; >30 years). 

 

Fig.IV.2.5: Hp levels across genotypes in asthma (ages <15 years).  

There are  no differences accross genotypes by asthma (<15 years)(p=0,897-ANOVA 

parametric test).( (Hp 1-1 :86,25 ± 52,82 mg/dL vs  Hp 2-1 :100,67±46,80 mg/dL vs Hp 2-2 

:89,00)mg/dL. 
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Fig.IV.2.6:Hp levels across genotypes in asthma (ages 15-30 years).  

There are  differences accross genotypes by asthma (15-30 years)(p=0,002-ANOVA 

parametric test).( (Hp 1-1 :158,00 ± 55,07 mg/dL vs  Hp 2-1 :115,33±29,57 mg/dL vs Hp 2-2 

:74,7±38,19)mg/dL. 
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Fig.IV.2.7: Hp levels across genotypes in controls (>30 years).  

There are no differences accross genotypes by controls (>30 years)(p=0,104-Kruskal Wallis 

non- parametric test).( (Hp 1-1 :175,80 ± 15,79 mg/dL vs  Hp 2-1 :138,38±58,04 mg/dL vs Hp 

2-2 :128,44±51,44)mg/Dl. 

Genotypes 

Hp 
levels 

(mg/dL) 
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Fig.IV.2.8: Hp levels across genotypes in asthma (>30 years).  

There are  differences accross genotypes by asthma (>30 years)(p<0.001-Kruskal Wallis 

non- parametric test).( (Hp 1-1 :159,08 ± 28,58 mg/dL vs  Hp 2-1 :152,69±49,94 mg/dL vs Hp 

2-2 :103,59±41,98)mg/dL. 
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In those asthmatics with age ≥15 years Hp levels are different by genotype (p<0.05): 1-1 and 

2-1 differ from 2-2.[ In those patients15-30 years(p=0,002); in those patients >30 

years(p<0,001)]. Those patients with age <15 years, Hp levels were no different between 

genotypes (p>0,05)(p=0,897). 

 

Conclusions: 
In asthma group: those who express Hp 2-2 had the lower levels of the circulating protein 

when compared with Hp 2-1 and Hp 1-1 (Hp 1-1 :144,95 ± 48,23 mg/dL vs Hp 2-1 

:137,37±49,58 mg/dL vs Hp 2-2 :95,61±41,94mg/dL)  (p<0.001)(pos-hoc analysis). 

 In the control group: There are no differences of Hp levels by genotypes (Hp 1-1 :175,8 ± 

15,79 mg/dL vs Hp 2-1 :136,55±53,47 mg/dL vs Hp 2-2 :128,44±51,43mg/dL) (p=0,075).  

There are  differences accross genotypes by asthma (15-30 years)(p=0,002-ANOVA 

parametric test).( (Hp 1-1 :158,00 ± 55,07 mg/dL vs  Hp 2-1 :115,33±29,57 mg/dL vs Hp 2-2 

:74,7±38,19)mg/dL.There are  differences accross genotypes by asthma (>30 

years)(p<0.001-Kruskal Wallis non- parametric test).( (Hp 1-1 :159,08 ± 28,58 mg/dL vs  Hp 

2-1 :152,69±49,94 mg/dL vs Hp 2-2 :103,59±41,98)mg/dL. In those asthmatics with age  ≥15 

years Hp levels are different by genotype (p<0.05): 1-1 and 2-1 differ from 2-2.[ In those 

patients15-30 years(p=0,002); in those patients >30 years(p<0,001)].Those patients with age 

<15 years, Hp levels were no different between genotypes (p>0,05)(p=0,897). 

 

 

 

 

B) NO ASSOCIATED SYSTEM 
Intron 4 polymorphism of the eNOS gene (rs1799983) 

 

 

Asthmatic patients (n= 159) were compared with a control group (n=108); the polymorphisms 

were analyzed by PCR (Polymerase chain reaction). Control of asthma assessed by 

validated instrument (ACQ7 and PAQLQ). Statistical analysis was performed with PASW 

version 18 establishing a significance level of p< 0.05. The control group is not in HWE 

(χ2=7.699; p=0.021).  
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Table IV.2.9: Participant’s clinical and demographic characteristics. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bolded results are less than 0.05 of statistical significance. 
p* χ2 test values; the values represent absolute frequencies (relative frequencies, %). 
p † non-parametric Mann-Whitney; the values represent means ± standard deviation (SD). 
n.a.: non applicable. 
 
 

 

We had studied 159 individuals in the control group and 108 in the asthmatics (Table IV.2.9). 

There are differences in the distribution of gender between asthmatics (F/M:69(63.9%); 

39(36.1)) and controls (F/M:77(48.4%); 82(51.6%)) (p=0,018) being more females in the 

asthmatics and more males in the control group. 

The mean age is not different across controls and asthma(p=0.085). Although there are 

differences when we stratify by age being youngest the asthmatics and older the control 

group (<0.001). 

eNOS polymorphism 
(rs1799983) 
 

Controls Asthma 
p value 

N (%) 159 (59.6) 108 (40.4) n.a. 
Female 77 (48.4) 69(63.9) 

0.018 
Male 82(51.6) 39 (36.1) 
Age (years)   (39,81±10,9 )  (37,06±18,46 ) 0.085† 

< 15 0 (0.0) 14 (13.0) 

<0.001 15-30 35 (22.0) 31 (28.7) 

 > 30 124 (78.0) 63 (58.3) 
Atopy/No Atopy n.a. 89/19 (82.4/17.6) n.a. 
Asthma controlled / 
Asthma not 
controlled 

n.a. 80/28(74.1/25.9)  n.a. 
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Table IV.2.10: Distribution of alleles and genotypes by groups in eNOS polymorphism 

(rs1799983) 

 
 
 

eNOS 
polymorphism 
(rs1799983) 
 

 

Controls Asthma 

p value 

OR(95%CI)a 

Allele b          0.85 0.79 0.098 
0.663 [0.420-1.048] 

Allele  a   0.15 0.21 

bb n (%)  107(67.3) 76(70.4) 
0,009 

 ab n (%)  36(22.6) 24(28.7) 

aa n (%)  16(10.1) 8(0.9) 

  

 
In asthmatics the frequencies of allele b were 0.85 and allele a: 0.15 In control group, the 

frequencies of allele b were 0.79 and for allele a : 0.21 ; (OR: 0.663; 95%CI: [0.420-1.048]; 

p=0.098). There is no statistical difference between these groups (p=0.098) and no 

increased risk bf being asthmatic for those that express the Allele a in asthmatics vs controls. 

Genotypes in asthmatics were: bb: 70.4%; ab:28.7 %; aa: 0.9% and for control group: bb: 

67.3%; ab: 22.6%; aa: 10.1%. There is statistical difference between these groups (p=0.009). 

Being the the genotypes aa less frequent in asthmatics. 

 

 

 
Genetic models (Table IV.2.11) In the genetic models we had considered as Major allele: b 

and minor a. In the Dominant model (aa+ab vs bb) those who are homozygous for the allele 

b have no increased risk of having asthma (crude: OR: 1.154[.680;1.960]; p  avalue 

=0.596;adjusted values: OR: 1.228[.715;2.108]; p  bvalue =0.456). In the recessive model 

those who express allele b (ab+bb) have an increased risk almost 12 times (crude) and 
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almost 14 times (adjusted) of having asthma when compared with control (OR: 

11,972[1,563;91,683]; p  avalue =0,017 ;OR: 13,582[1,757;104,967]; p bvalue =0,012). 

 In the additive model 1(bb vs ab) those who are heterozygous with genotype ab have no 

increased risk of asthma when compared with control (crude:OR 1,212[0,690;2,129]; p  

avalue =0,503 ; adjusted: OR: 1,161[0,653;2,064]; p bvalue =0,610). 

In the additive model 2(bb vs aa) those who are homozygous for the allele a (genotypes aa) 

have protection of having asthma when compared with control( crude:OR 

0,088[0,011;0,678]; p  avalue =0.020); adjusted:OR: 0,076[0,010;0,596]; p bvalue =0.014). 

 

 
 
 
 
 
 
Table IV.2.11:Genetic models for   eNOS polymorphism (rs1799983) 

 
 
 

Dominant 
model 

N 
cases/controls 

OR crude[CI]; p  
avalue 

OR adjusted[CI]; 
p bvalue 

aa+ab 32/52 referent  

bb 76/107 1.154[.680;1.960]; 
p  avalue =0.596 

1.228[.715;2.108]; 
p  bvalue =0.456 

 

Recessive 
Model 

N 
cases/controls 

OR crude[CI]; p  
avalue 

OR 
adjusted[CI]; p 
bvalue 

aa 1/16 referent  

ab+bb 107/143 11,972[1,563;91,683]; 
p  avalue =0,017 

13,582[1,757;10
4,967]; p bvalue 
=0,012 

 

Additive1 N 
cases/controls 

OR crude[CI]; p  
avalue 

OR adjusted[CI]; p 
bvalue 

bb 76/107 referent  

ab 31/36 1,212[0,690;2,129]; 
p  avalue =0,503 

1,161[0,653;2,064]; 
p bvalue =0,610 

 

Additive2 N 
cases/controls 

OR crude[CI]; p  
avalue 

OR adjusted[CI]; p 
bvalue 

bb 76/107 referent  

aa 1/16 0,088[0,011;0,678]; 
p  avalue =0.020 

0,076[0,010;0,596]; 
p bvalue =0.014 
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Conclusion: those who express allele b (ab+bb) have an increased risk almost 12 times 

(crude) and almost 14 times (adjusted) of having asthma when compared with control (OR: 

11,972[1,563;91,683]; p  avalue =0,017 ;OR: 13,582[1,757;104,967]; p bvalue =0,012). 

Those who are homozygous for the allele a (genotypes aa) have protection of having asthma 

when compared with control (crude: OR 0,088[0,011;0,678]; p  avalue =0.020); adjusted:OR: 

0,076[0,010;0,596]; p bvalue =0.014). 

 

 

 

 

B) NO ASSOCIATED SYSTEM 

NOS2 polymorphism (exon 16-14CT) 

 

NOS2 polymorphism (intron 16 - 88GT) 

 

NOS2 polymorphism (intron 20 - IVS20 + 524 GA) 

 

 

Asthmatics were compared with a control group ; the polymorphisms were analyzed by PCR-

RFLP. Control of asthma assessed by ACQ7 and PAQLQ. Statistical analysis with PASW 

version 18 ;a significance level of p< 0.05.   

B) NO ASSOCIATED SYSTEM 

 

NOS2 polymorphism (exon 16-14CT)- iNOS: exon 16: + 14C> T (Ex16+14C>T, Ser608Leu; 

rs 2297518; antisense sequence. 

 

We had studied 72 controls of healthy volunteers and 102 asthmatics. Polymorphisms 

analyzed by PCR-RFLP(Polymerase chain reaction- restriction fragment length 

polymorphism) . Control of asthma assessed by validated instrument (ACQ7 and PAQLQ). 

Statistical analysis was performed with PASW 18, establishing a significance level of p< 

0.05. The control group is in HWE (χ2=0.061; p=0.970).  
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Table IV.2.12:Participant’s demographic  and clinical characteristics. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Bolded results are less than 0.05 of statistical significance. 
p* χ2 test values; the values represent absolute frequencies (relative frequencies, %). 
p † non-parametric Mann-Whitney; the values represent means ± standard deviation (SD). 
n.a.: non applicable. 
 

We had studied 72 (41.4) individuals in the control group and 102 (58.6) in the asthmatics 

There are differences in the distribution of gender between asthmatics (F/M: 67(65.7); 35 

(34.3)) and controls (F/M: 25(34.7); 47(65.3) )(p(<0.001) being more females in the 

asthmatics and more males in the control group. 

The mean age is no different across controls and asthma (p=0.060- Mann-Whitney non-

parametric test). . There are also differences when we stratify by age being youngest the 

asthmatics and older the control group (=0.001). 

In asthmatics the frequencies of allele C were 0.81 and allele T: 0.19 In control group, the 

frequencies of allele C were 0.92 and for allele T : 0.08 ; (OR: 2.858; 95%CI: [1.409-5.796]; 

p=0.004). There is statistical difference between these groups (p=0.004) with an increased 

risk of being asthmatic for those that express the Allele T of almost 3 times in asthmatics vs 

controls. 

Genotypes in controls were: CC: 86.1%; CT:12.5 %; TT: 1.4% and for asthma group: CC: 

65.7%; CT: 30.4%; TT: 3.9%. There is statistical difference between these groups (p=0.01). 

The genotypes who express allele C are more frequent in controls and those who express 

allele T in asthmatics. 

 
 
 

Ex16+14C>T 
polymorphism 

Controls Asthma 
p value 

N (%) 72 (41.4) 102 (58.6) n.a. 
Female 25(34.7) 67(65.7) 

<0.001 
Male 47(65.3) 35 (34.3) 
Age (years)   (42,29±12,02 )  (38,10±19,02 ) 0.060† 

< 15 0 (0.0) 12 (12.0) 

=0.001 15-30 13(18.1) 30 (30.0) 

 > 30 59 (81.9) 58 (58.0) 
Atopy/No Atopy n.a. 84/16 (84.0/16.0) n.a. 
Asthma controlled / 
Asthma not 
controlled 

n.a. 74/26 (74.0/26.0) n.a. 
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Genotype and allelic frequencies between groups (asthma and controls) 

Table IV.2.13: Distribution of alleles and genotypes by groups in Ex16+14C>T-NOS 2 

polymorphism 

 

Ex16+14C>T-
NOS 2 
polymorphism 

Controls Asthma 
p value 

OR(95%CI)a 

C          0.92 0.81 0.004 2.858 [1.409-
5.796] T  0.08 0.19 

CC (%) 9(86.1) 35(65.7) 
0.010 

 CT n (%) 84(12.5) 62(30.4) 

TT n (%) 78(1.4) 56(3.9) 

 

 

In asthmatics the frequencies of Allele C 0.81 and of Allele T 0.19; in controls: 0.92 and 0.08 

respectively. There is statistical difference between these groups with a risk of being 

asthmatic of almost 3  for Allele T(OR:2.858;IC95%[1.409;5.796]; p  a value =0.004; 

Genotypes in the asthmatics- CC: 65.7%; CT: 30.4%; TT: 3.9%; in control group- CC: 86.1%; 

CT:12.5%; TT: 1.4%. There is statistical difference between these groups (p=0.01).Being the 

genotypes who express allele T more frequent in asthmatics and those who express allele C 

in controls. 

In the genetic models we had considered as Major allele: C and minor T. 

 
 
In the Dominant model (CT+TT vs CC) those who are homozygous for the allele C have a 

protection of    having asthma when compared with controls (crude: OR: 0.309; ;95%CI:  

[0.141;0.676]; p  avalue =0.003;adjusted values: OR: 0.326; 95%CI:  [0.144;0.738]; p  bvalue 

=0.007). 

In the recessive model (TT vs CT+CC ) have no increased risk of having asthma when 

compared with controls (crude) and (adjusted) (OR: 0,345;95%CI:  [0,038;3,153]; p  avalue 

=0,346;OR: 0,347; 95%CI: [0,034;3,582]; p bvalue =0,374. 

 In the additive model 1(CC vs CT) those who are heterozygous with genotype CT have an 

increased risk of asthma of 3 times when compared with controls (crude:OR: 3,187 ; 95%CI: 

[1,406;7,227]; p  avalue =0,006 ; adjusted: OR: 3,002; 95%CI [1,276;7,062]; p bvalue =0,012). 

In the additive model 2 (CC vs TT) those who are homozygous for the allele T (genotypes 

TT) have not increased risk of having asthma when compared with controls (crude:OR 

:5,701; 95%CI :[0,403;34,025]; p  avalue =0,248); and 7 when adjusted for age and gender 

(adjusted:OR: 3,700; , 95%CI :[0,345;39,681]; p bvalue =0,280). 

 



104 

 

Table IV.2.14: Genetic models for   Ex16+14C>T  iNOS gene polymorphism in cases and 

controls and their association with the risk of asthma 

 

 

Dominant 
model 

N 
cases/controls 

OR crude; 
[95%CI]; p  avalue 

OR adjusted 
[95%CI]; p bvalue 

CT+TT 35/10 referent  

CC 67/62 0.309[0.141;0.676]; 
p  avalue =0.003 

0.326[0.144;0.738]; 
p  bvalue =0.007 

 

Recessive 
Model 

N 
cases/controls 

OR crude[95%CI CI]; 
p  avalue 

OR 
adjusted[95%CI 
CI]; p bvalue 

TT 4/1 referent  

CT+CC 98/71 0,345[0,038;3,153]; p  
avalue =0,346 

0,347[0,034;3,58
2]; p bvalue 
=0,374 

 

Additive1 N 
cases/controls 

OR crude[95%CI 
CI]; p  avalue 

OR adjusted[95%CI 
CI]; p bvalue 

CC 67/62 referent  

CT 31/9 3,187[1,406;7,227]; 
p  avalue =0,006 

3,002[1,276;7,062]; p 
bvalue =0,012 

 

Additive2 N 
cases/controls 

OR crude[95%CI 
CI]; p  avalue 

OR adjusted[95%CI 
CI]; p bvalue 

CC 56/78 referent  

TT 35/9 3,701[0,403;34,025]; 
p  avalue =0,248 

3,700[0,345;39,681]; 
p bvalue =0,280 

 

 

 
 

Results: For this polymorphism in asthmatics the frequencies of Allele C 0.81 and of Allele T 

0.19; in controls: 0.92 and 0.08 respectively. There is statistical difference between these 

groups with a risk of being asthmatic of almost 3 for Allele T(OR:2.858;IC95%[1.409;5.796]; 

p  a value =0.004; 

Genotypes in the asthmatics- CC: 65.7%; CT: 30.4%; TT: 3.9%; in control group- CC: 86.1%; 

CT:12.5%; TT: 1.4%. There is statistical difference between these groups (p=0.01). Being the 

genotypes who express allele T more frequent in asthmatics and those who express allele C 

in controls. 
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In the Dominant model (CT+TT vs CC) those who are homozygous for the allele C have a 

protection of    having asthma when compared with controls (crude: OR: 0.309; ;95%CI:  

[0.141;0.676]; p  avalue =0.003;adjusted values: OR: 0.326; 95%CI:  [0.144;0.738]; p  bvalue 

=0.007). 

In the recessive model ( TT vs CT+CC ) have no increased risk of having asthma when 

compared with controls (crude) and (adjusted) (OR: 0,345;95%CI:  [0,038;3,153]; p  avalue 

=0,346;OR: 0,347; 95%CI: [0,034;3,582]; p bvalue =0,374. 

 In the additive model 1(CC vs CT) those who are heterozygous with genotype CT have an 

increased risk of asthma of 3 times when compared with controls (crude: OR: 3,187 ; 95%CI: 

[1,406;7,227]; p  avalue =0,006 ; adjusted: OR: 3,002; 95%CI [1,276;7,062]; p bvalue =0,012). 

In the additive model 2 (CC vs TT) those who are homozygous for the allele T (genotypes 

TT) have not increased risk of having asthma when compared with controls (crude: OR 

:5,701; 95%CI :[0,403;34,025]; p  avalue =0,248); and 7 when adjusted for age and gender 

(adjusted: OR: 3,700; , 95%CI :[0,345;39,681]; p bvalue =0,280). 

 

 
 
 
 
 
 
 
B) NO ASSOCIATED SYSTEM 

 

NOS2 polymorphism (intron 16 - 88GT) (rs9282801) 

 
 

  

We had studied 72 controls and 97 asthmatics. Asthmatic patients were compared with a 

control group of healthy volunteers; polymorphisms analyzed by PCR-RFLP(Polymerase 

chain reaction- restriction fragment length polymorphism) . Control of asthma assessed by 

validated instrument (ACQ7 and PAQLQ). Statistical analysis was performed with PASW 18, 

establishing a significance level of p< 0.05. The control group is in HWE (χ2=2.485; p=0.289).  
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Table IV.2.15: Participant’s clinical and demographic characteristics. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Bolded results are less than 0.05 of statistical significance. 
p* χ2 test values; the values represent absolute frequencies (relative frequencies, %). 
p † non-parametric Mann-Whitney; the values represent means ± standard deviation (SD). 
n.a.: non applicable. 
 

 

 

 

We had studied 72 individuals in the control group and 97 in the asthmatics 

There are differences in the distribution of gender between asthmatics (F/M:60(61.9%); 

37(38.1)) and controls (F/M:25(34.7%); 47(65.3%)) (p=0,001) being more females in the 

asthmatics and more males in the control group. 

The mean age is different across controls and asthma(p=0.025) (Mann-Whitney non-

parametric test) , being the youngest in the asthma group. There are also differences when 

we stratify by age being youngest (<30 years) in the asthma group and older in the control 

group (<30 years) (<0.001). 

. 

 

 

 

iNOSintron 16  + 88 

G>T (rs9282801) Controls Asthma 

p value 

N (%) 72 (42.6) 97 (57.4) n.a. 
Female 25 (34.7) 60(61.9) 

0.001 
Male 47(65.3) 37 (38.1) 
Age (years)   (42,13±11,67 )  (36,78±19,39 ) 0.025† 

< 15 0 (0.0) 15 (15.8) 

<0.001 15-30 13 (18.1) 27 (28.4) 

 > 30 59 (81.9) 53 (55.8) 
Atopy/No  Atopy n.a. 89/19 (82.4/17.6) n.a. 
Asthma controlled / 
Asthma not 
controlled 

n.a. 80/28(74.1/25.9)  n.a. 



107 

 

Table IV.2.16:Distribution of alleles and genotypes by groups in iNOSintron 16  + 88 G>T 

(rs9282801) 

 

iNOSinton 16  
+ 88 G>T 
(rs9282801) 

Controls Asthma 
p value 

OR(95%CI)a 

G          0.72 0.64 0,175 1.418 [0.890-
2.259] T  0.28 0.36 

GG (%) 37(45.4) 55(56.9) 
0,330 

 GT n (%) 27(37.1) 28(29.2) 

TT n (%) 13(17.5) 14(13.9) 

 

 

In asthmatics the frequencies of allele G were 0.64 and allele T: 0.36 In control group, the 

frequencies of allele G were 0.72 and for allele T : 0.28 ; (OR: 1.418; 95%CI: [0.890-2.259]; 

p=0.175). There is no statistical difference between these groups (p=0.175) and no 

increased risk of being asthmatic for those that express the AlleleT in asthmatics vs controls. 

Genotypes in asthmatics were: GG: 56.9%; GT:29.2 %; TT: 13.9% and for control group: 

GG: 45.4%; GT: 37.1%; TT: 17.5%. There is no statistical difference between these groups 

(p=0.330) 

In the Dominant model (TT+ GT vs GG) there is no increased risk of having asthma when 

compared with control (crude: OR: 0.628[.340;1.160]; p  avalue =0.137;adjusted values: OR: 

0.665[0.346;1.278]; p  bvalue =0.221). 

In the recessive model (TT vs GT+GG) there is no increased risk of having asthma when 

compared with control (OR: 0,759[0,325;1,773]; p  avalue =0,524;OR: 0,715[0,291;1,766]; p 

bvalue =0,469). 

 In the additive model 1(GG vs GT) there is no increased risk of having asthma when 

compared with control (crude:OR 1,597[0,804;3,172]; p  avalue =0,181 

; adjusted: OR: 1,449[0,701;2,992]; p bvalue =0,317). 

In the additive model 2(GGvsTT) there is no increased risk of having asthma when compared 

with control (crude:OR: 1,584[0,651;3,855]; p  avalue =0.311; adjusted:OR: 

1,707[0,644;4,529]; p bvalue =0.282). 
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Table IV.2.17:Genetic models for   iNOSintron 16  + 88 G>T (rs9282801) in cases and 

controls and their association with the risk of asthma 

 
 

Dominant 
model 

N 
cases/controls 

OR crude[CI]; p  
avalue 

OR adjusted[CI]; 
p bvalue 

TT+GT 53/31 referent  

GG 44/41 0.628[.340;1.160]; 
p  avalue =0.137 

0.665[0.346;1.278]; 
p  bvalue =0.221 

 

Recessive 
Model 

N 
cases/controls 

OR crude[CI]; p  
avalue 

OR 
adjusted[CI]; p 
bvalue 

TT 17/10 referent  

GT+GG 62/80 0,759[0,325;1,773]; p  
avalue =0,524 

0,715[0,291;1,7
66]; p bvalue 
=0,469 

 

Additive1 N 
cases/controls 

OR crude[CI]; p  
avalue 

OR adjusted[CI]; p 
bvalue 

GG 44/41 referent  

GT 36/21 1,597[0,804;3,172]; 
p  avalue =0,181 

1,449[0,701;2,992]; 
p bvalue =0,317 

 

Additive2 N 
cases/controls 

OR crude[CI]; p  
avalue 

OR adjusted[CI]; p 
bvalue 

GG 44/41 referent  

TT 17/10 1,584[0,651;3,855]; 
p  avalue =0.311 

1,707[0,644;4,529]; 
p bvalue =0.282 

 

 
 

 

 
 

Results: For this polymorphism there is no increased risk of having asthma when compared 

with controls. 
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B) NO ASSOCIATED SYSTEM 
 

NOS2 polymorphism (IVS20 + 524 G>A-rs944722) 

 

 

Asthmatic patients were compared with a control group of healthy blood donors; 

polymorphisms analyzed by PCR-RFLP(Polymerase chain reaction- restriction fragment 

length polymorphism) . Control of asthma assessed by validated instrument (ACQ7 and 

PAQLQ). Statistical analysis was performed with PASW 18, establishing a significance level 

of p< 0.05. The control group is in HWE (χ2=2.645; p=0.266).  

 
 

Table IV.2.18:Participant’s demographic and clinical characteristics. 

 

 
 

 

 

 
 
 
 
 
 
 
 
 
Bolded results are less than 0.05 of statistical significance. 

p* χ2 test values; the values represent absolute frequencies (relative frequencies, %). 
p † non-parametric Mann-Whitney; the values represent means ± standard deviation (SD). 
n.a.: non applicable. 
 

There are differences in the distribution of gender between asthmatics (F/M:101(66.0%); 

52(34.0)) and controls (F/M:59(34.5%); 112(65.5%)) (p(<0.001) being more females in the 

asthmatics and more males in the control group. 

The mean age is different across controls and asthma (p=0.027- Mann-Whitney non-

parametric test). There are also differences when we stratify by age being youngest the 

asthmatics and older the control group (<0.001). 

 

IVS20 + 524 G>A-
rs944722  

Controls Asthma 
p value 

N (%) 171 (52.8) 153 (47.3) n.a. 
Female 59(34.5) 101(66.0) 

<0.001 
Male 112(65.5) 52 (34.0) 
Age (years)   (42,18±11,78 )  (38,30±18,52 ) 0.027† 

< 15 0 (0.0) 18 (11.9) 

<0.001 15-30 36 (21.1) 42 (27.8) 

 > 30 134 (78.9) 91 (60.3) 
Atopy/No  Atopy n.a. 128/23 (84.8/15.2) n.a. 
Asthma controlled / 
Asthma not 
controlled 

n.a. 107/44(70.9/29.1)  n.a. 
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Table IV.2.19: Distribution of alleles and genotypes by groups in IVS20 + 524 G>A-rs944722 

 

IVS20 + 524 
G>A-rs944722) 

Controls Asthma 
p value 

OR(95%CI)a 

G          0.30 0.43 p<0.001 1.785 [1.291-
2.468] A  0.70 0.57 

GG (%) 9(5.3) 35(22.9) 
p<0.001 

 GA n (%) 84(49.1) 62(40.5) 

AA n (%) 78(45.6) 56(36.6) 

 

 

In asthmatics the frequencies of allele G were 0.43 and allele A: 0.57 In control group, the 

frequencies of allele G were 0.30 and for allele A : 0.70 ; (OR: 1.785; 95%CI: [1.291-2.468]; 

p<0.001). There is statistical difference between these groups (p<0.001) with an increased 

risk of being asthmatic for those that express the Allele G of 1.8 times in asthmatics vs 

controls. 

Genotypes in controls were: GG: 5.3%; GA:49.1 %; AA: 45.6% and for asthma group: GG: 

22.9%; GA: 40.5%; AA: 36.6%. There is statistical difference between these groups 

(p<0.001).GG genotypes are more frequent in asthmatics. 

. 
Genotype and allelic frequencies between groups(asthma and controls) 

In asthmatics the frequencies of Allele G 0.43 and of Allele A 0.57; in controls: 0.30 and 0.70 

respectively. There is statistical difference between these groups with a risk of being 

asthmatic of almost 2 (OR:1.785;IC95%[1.291;2.468]; p  avalue <0.001; 

Genotypes in the asthmatics- GG: 22.9%; GA: 40.5%; AA: 36.6%; in control group- GG: 

5.3%; GA:49.1%; AA: 45.6%. There is statistical difference between these groups (p<0.001). 

 

In the genetic models we had considered as Major allele: A and minor G. 

 

In the Dominant model (GG+AG vs AA) those who are homozygous for the allele A have no 

increased risk of having asthma (crude: OR: 0.688[.441;1.075]; p  avalue =0.101;adjusted 

values: OR: 0.709[.441;1.138]; p  bvalue =0.155). 

In the recessive model those who express allele A (AG+AA) have protection of having 

asthma when compared with controls (crude) and (adjusted) (OR: 0,187[0,087;0,405]; p  

avalue <0,001;OR: 0,145[0,063;0,332]; p bvalue <0,001). 
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 In the additive model 1(AA vs AG) those who are heterozygous with genotype AG have no 

increased risk of asthma when compared with controls (crude:OR 1,028[0,639;1,653]; p  

avalue =0,909 ; adjusted: OR: 0,939[0,562;1,570]; p bvalue =0,810). 

In the additive model 2(AA vs GG) those who are homozygous for the allele G (genotypes 

GG) have increased risk of having asthma when compared with controls 5 times (crude:OR 

5,417[2,412;12,164]; p  avalue <0,001); and 7 when adjusted for age and gender 

(adjusted:OR: 6,873[2,832;16,680]; p bvalue <0,001). 

 

 

Table IV.2.20: Genetic models for   IVS20 + 524 G>A-rs944722 iNOS gene polymorphism 

in cases and controls and their association with the risk of asthma 

 

Dominant 
model 

N 
cases/controls 

OR crude[95%CI]; 
p  avalue 

OR adjusted 
[95%CI]; p bvalue 

GG+AG 97/93 referent  

AA 56/78 0.688[.441;1.075]; 
p  avalue =0.101 

0.709[.441;1.138]; p  
bvalue =0.155 

 

Recessive 
Model 

N 
cases/controls 

OR crude[95%CI CI]; 
p  avalue 

OR 
adjusted[95%CI 
CI]; p bvalue 

GG 35/9 referent  

AG+AA 118/162 0,187[0,087;0,405]; p  
avalue <0,001 

0,145[0,063;0,33
2]; p bvalue 
<0,001 

 

Additive1 N 
cases/controls 

OR crude[95%CI 
CI]; p  avalue 

OR adjusted[95%CI 
CI]; p bvalue 

AA 56/78 referent  

AG 62/84 1,028[0,639;1,653]; 
p  avalue =0,909 

0,939[0,562;1,570]; p 
bvalue =0,810 

 

Additive2 N 
cases/controls 

OR crude[95%CI 
CI]; p  avalue 

OR adjusted[95%CI 
CI]; p bvalue 

AA 56/78 referent  

GG 35/9 5,417[2,412;12,164]; 
p  avalue <0,001 

6,873[2,832;16,680]; 
p bvalue <0,001 
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Results: We had 171 controls and 153 asthmatics. For this polymorphism: in asthmatics the 

frequencies of allele G were 0.43 and allele A: 0.57 In control group, the frequencies of allele 

G were 0.30 and for allele A : 0.70 ; (OR: 1.785; 95%CI: [1.291-2.468]; p<0.001). There is 

statistical difference between these groups (p<0.001) with an increased risk of being 

asthmatic for those that express the Allele G of 1.8 times in asthmatics vs controls.  

In the Dominant model (GG+AG vs AA) those who are homozygous for the allele A have no 

increased risk of having asthma (crude: OR: 0.688[.441;1.075]; p  avalue =0.101;adjusted 

values: OR: 0.709[.441;1.138]; p  bvalue =0.155). 

In the recessive model those who express allele A (AG+AA) have protection of having 

asthma when compared with controls (crude) and (adjusted) (OR: 0,187[0,087;0,405]; p  

avalue <0,001;OR: 0,145[0,063;0,332]; p bvalue <0,001 ). 

In the additive model 1(AA vs AG) those who are heterozygous with genotype AG have no 

increased risk of asthma when compared with controls ( crude:OR 1,028[0,639;1,653]; p  

avalue =0,909 ; adjusted: OR: 0,939[0,562;1,570]; p bvalue =0,810). 

In the additive model 2(AA vs GG) those who are homozygous for the allele G (genotypes 

GG) have increased risk of having asthma when compared with controls 5 times ( crude:OR 

5,417[2,412;12,164]; p  avalue <0,001); and 7 when adjusted for age and gender 

(adjusted:OR: 6,873[2,832;16,680]; p bvalue <0,001). 
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B) NO ASSOCIATED SYSTEM 

 

MPO Polymorphism (- 463 GA)- rs2333227 

 

 Asthmatic patients (n= 152) were compared with a control group (n=247); the 

polymorphisms were analyzed by PCR-RFLP (Polymerase chain reaction- restriction 

fragment length polymorphism). The control group is in HWE (χ2 test=0,500 for control 

group; p value=0,779). 

 

 Table IV.2.21: Participant’s demographic and clinical characteristics 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Bolded results are less than 0.05 of statistical significance. 
p* χ2 test values; the values represent absolute frequencies (relative frequencies, %). 
p † Non parametric Mann Whitney test; the values represent means ± standard deviation 
(SD). n.a.: non applicable. 
 

We had studied 247 individuals in the control group and 152 in the asthma group. 

The mean age in the control group for 247 individuals is 40,69±11,3 years and the mean age 

in the asthma group for 150 individuals is 38,27±18,6 years. There is no difference in the 

distribution of age across groups (p=0.096);(Table IV.2.21). 

We had studied 106 females(42.95) and 141 males (57.1%) in the control group and 100 

females (65.8%) and 52 males (34.2%). There are more women in the asthma grouo and 

more males in the control group (p<0.001); (Table IV.2.21). 

MPO  (- 463 GA 
 (rs2333227) 

Controls Asthma 
p value 

N (%) 247 (61.9) 152 (38.1) n.a. 
Female 106 (42.95) 100(65.8) 

<0.001 
Male 141 (57.1) 52  (34.2) 
Age (years)   (40,69±11,3 )  (38,27±18,6 ) 0.096† 

< 15 0 (0.0) 18 (12.0) 

<0.001 15-30 55 (22.3) 42 (28.0) 

 > 30 192 (77.7) 90 (60.0) 
Atopy/No Atopy n.a. 127/23 (84.7/15.3) n.a. 
Asthma controlled / 
Asthma not 
controlled 

n.a. 106/44(70.7/29.3)  n.a. 
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We had studied in the control group:0 (<15 years)(0,0%); 55(15-30 years)(22,3%); 192(>30 

years)(77,7%).In the asthma group there are 18 (<15 years)(12,0%); 42(15-30 years)(28%); 

90(>30 years)(60%).There are more younger than 30 years in the asthma group and more 

older than 30 years in the control group(p<0.001). In the asthmatics there are 127 allergic 

and 23 non allergic (84.7%/15.3%); and 106 with controlled asthma symptoms and 44 with 

uncontrolled asthma symptoms (70.7%/29.3%)-Table 1. 

There are no differences in the distribution of genotypes by age( controls (p=0,349) and 

asthma(p=0,435)), allergy satus(p=0,585) (asthmatics) and controlled/uncontrolled asthma 

(p=0,145) (asthmatics). 

 

 

Table IV.2.22: Distribution of alleles and genotypes by groups in MPO (- 463 GA 

(rs2333227). 

 

MPO (- 463 
GA 
(rs2333227) 

Controls Asthma 
p value 

OR(95%CI)a 

Allele G          0.70 0.49 p<0,001 2,423 [1,802-
3,259] Allele  A  0.30 0.51 

GG n (%) 125(50.6) 29(19.1) 
p<0,001 

 GA n (%) 97(39.3) 92(60.5) 

AA n (%) 25(10.1) 31(20.4) 

 

 
There are differences in the distribution of genotypes between asthmatics and controls 

(p<0,001) being the GG genotype more frequent in controls (50,6% vs 19,1%) and those who 

express allele A : GA (60,5% vs 39,3%) and AA (20,4% vs 10,1%) genotypes more frequent 

in the asthmatics. 

The allelic frequencies are in controls:Allele G: 0.70; Allele A: 0.30; and in asthmatics: Allele 

G: 0.49; Allele A: 0.51.OR: 2,423; IC95%:[1,802-3,259]; p<0,001; are significantly different 

being the Allele A more frequent in asthmatics and Allele G in controls.There I s a risk of 2 

times of being asthmatic if they express Allele A. 

Conclusion: In the Dominant model( AA+GA vs GG) those who are homozygous for the 

allele G (higher enzyme activity) have protection of having asthma( crude: 

OR:0.230[0.143;0.370]; p  avalue <0.001;adjusted values: OR:0.252[0,155;0,409]; p bvalue 

<0.001 ). In the recessive model those who express allele G (GA+GG) have protection of 

having asthma (OR:0,440[0,248;0,778]; p  avalue e=0,005;OR: 0,433[0,240;0,782]; p bvalue 

=0,005). In the additive model 1(GGvsGA) those who are heterozygous with genotype GA 

have an increased risk of asthma of almost 4 times when compared with control( crude:OR 
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4,088[2,493;6,703]; p  avalue <0.001; adjusted: OR:3,690[2,225;6,117]; p bvalue <0.001).In 

the additive model 2(GGvsAA) those who are homozygous for the allele A (genotypes AA) 

have an increased risk of asthma of 5 times when compared with control( crude:OR 

5,345[2,752;10,382]; p  avalue <0.001; adjusted:OR5,065[2,571;9,975]; p bvalue <0.001)  

(Table V.1.23). 

 

 

 
Table IV.2.23: Genetic models in MPO (- 463 GA  (rs2333227 ) in cases and controls and 

their association with the risk of asthma: susceptibility of disease. 

 

  

Dominant 
model 

N 
cases/controls 

OR crude[CI]; p  
avalue 

OR adjusted[CI]; p 
bvalue 

AA+GA 123/122 referent referent 

GG 29/125 0.230[.143;0.370]; 
p  avalue <0.001 

0.252[0,155;0,409]; 
p bvalue <0.001 

 

Recessive 
Model 

N 
cases/controls 

OR crude[CI]; p  
avalue 

OR adjusted[CI]; p 
bvalue 

AA 31/25 referent referent 

GA+GG 121/222 0,440[0,248;0,778]; 
p  avalue e=0,005 

0,433[0,240;0,782]; 
p bvalue =0,005 

 

Additive1 N 
cases/controls 

OR crude[CI]; p  
avalue 

OR adjusted[CI]; p 
bvalue 

GG 29/125 referent referent 

GA 92/97 4,088[2,493;6,703]; 
p  avalue <0.001 

3,690[2,225;6,117]; 
p bvalue <0.001 

 

Additive2 N 
cases/controls 

OR crude[CI]; p  
avalue 

OR adjusted[CI]; p 
bvalue 

GG 29/125 referent referent 

AA 31/25 5,345[2,752;10,382]; 
p  avalue <0.001 

5,065[2,571;9,975]; 
p bvalue <0.001 
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MPO LEVELS BY GENOTYPES IN CASES AND CONTROLS 

 

 
  

The role of myeloperoxidase gene promoter region polymorphism in asthma. 

Myeloperoxidase (MPO) is important in regulating oxidative stress through production of 

hypohalogenic oxidants that may further mediate oxidative modification of lipids, proteins and 

DNA, and also has a key role in innate immune system. MPO may also be involved in the 

pathophysiology of irreversible airflow obstruction in asthmatics. The purpose of this study is 

to analyze the association between single nucleotide polymorphism in the MPO promoter 

region of the gene, −463G>A (rs2333227) with asthma severity when compared with a 

control group of healthy blood donors and its relationship with MPO levels (determined by 

ELISA kit).  

Material and Methods:Asthmatic patients (n= 90) were compared with a control group (n=65); 

the polymorphisms were analyzed by PCRRFLP (Polymerase chain reaction restriction 

fragment length polymorphism). MPO levels determined by ELISA kit. Control of asthma 

assessed by validated instrument (ACQ7 and PAQLQ). Statistical analysis was performed 

with PASW version 18 establishing a significance level of p< 0.05.  
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Fig.IV.2.9: MPO levels by genotype in control group (p=0.514). 
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Fig.IV.2.10:MPO levels by genotype in asthma group(p<0.001). 

 

The mean MPO levels where no different in asthmatics(N=90) (25.18 ±26.57 ng/mL) when 

compared with control group (N=65) (32.83 ±33.94 ng/mL)(p=0.526) (p>0.05)-Mann-Whitney 

non-parametric test. 

In the control group the distribution of MPO ng/mL by genotypes (mean±SD; min,max): GG: 

(36,60±37.53;3.4;152.6)  GA:(31.53±32.30;3.1;120 )  AA: (19.43±18.59;6.3;56.4). 

In the asthma group the distribution of MPO ng/mL by genotypes (mean±SD; min,max): GG: 

(51.51±47.28;6.8;188.4)  GA:(18.55±13.82;5.85;79 )  AA: (22.37±17.32;7.1;71.45). 

There are differences in MPO levels by genotypes(p<0.001)( Kruskal-Wallis non parametric 

Test) in the asthmatics: GG: GG: (51.51±47.28;6.8;188.4)  GA:(18.55±13.82;5.85;79 )  AA: 

(22.37±17.32;7.1;71.45). ; being the AA and GA  with lower MPO levels than GG . 

There are no differences in MPO levels by genotypes(p=0.514) in the control group : GG: 

(36,60±37.53;3.4;152.6)  GA:(31.53±32.30;3.1;120 )  AA: (19.43±18.59;6.3;56.4); p=0.393)( 

Kruskal-Wallis non parametric Test). 

Distribution of MPO levels by gender in controls 
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Fig.IV.2.11: MPO levels by gender in controls (Mann-Whitney non parametric test (p<0,001) 

 

 

 

 

 

 

 
 

Females Males 



120 

 

 

Fig.IV.2.12: MPO levels by gender in asthmatics (Mann-Whitney non parametric test 

(p=0.038) 

 

 

There are differences in MPO levels by gender in asthmatics (p=0.038) and in control group 

(p=0.000), having the women in controls higher levels and in the asthmatics lower levels. 

Control Group: women (mean±SD; min,max): (43.30±31.87;8.4;120)  ; men (mean±SD; 

min,max): (23.29±33.38;3.1;152.6).   

Asthma group: women (mean±SD; min,max): (23.84±29.83;5.85;188.41)  ; men (mean±SD; 

min,max): (26.51±23.11;7.1;129.40).   

 

 

 

 

 

 

Females Males 
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Fig.IV.2.13:MPO levels by age cutoff in control group ( p=0,579; Mann-Whitney non-

parametric test). 

 

 

 

 

 

 

 

Age 
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Fig.IV.2.14:MPO levels by age cutoff in asthma group (p=0,080; Mann-Whitney non-

parametric test). 

 

 
There are no differences in MPO levels by age cutoff(<15; 15-30; >30 years) in asthmatics 

(p=0.080) and in control group (p=0.579). There are no differences in the distribution of MPO 

levels by, allergy satus (p=0.946)(asthmatics)and controlled/uncontrolled asthma( 

p=0.693)(asthmatics). 

Conclusion: The mean MPO levels where no different in asthmatics(N=90) (25.18 ±26.57 

ng/mL) when compared with control group (N=65) (32.83 ±33.94 ng/mL)(p=0.526) (p>0.05)-

Mann-Whitney non-parametric test. 

There are differences in MPO levels by genotypes(p<0.001)( Kruskal-Wallis non parametric 

Test) in the asthmatics: GG: GG: (51.51±47.28;6.8;188.4)  GA:(18.55±13.82;5.85;79 )  AA: 

(22.37±17.32;7.1;71.45). ; being the AA and GA  with lower MPO levels than GG . 

Age 
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There are no differences in MPO levels by genotypes(p=0.514) in the control group : GG: 

(36,60±37.53;3.4;152.6)  GA:(31.53±32.30;3.1;120 )  AA: (19.43±18.59;6.3;56.4); p=0.393)( 

Kruskal-Wallis non parametric Test). 

There are differences in MPO levels by gender in asthmatics (p=0.038) and in control group 

(p=0.000), having the women in controls higher levels and in the asthmatics lower levels 

 

 

 
C) BETA2ADRENERGIC RECEPTORS 
Polymorphism of beta2adrenergic Receptor Arg16 Gly (rs1042713) 
 

 

 

 

The Arg16Gly polymorphism determined with polymerase chain reaction- restriction fragment 
length polymorphism(PCR-RFLP). We had 91 individuals in the control group and 84 

asthmatics. The control group is not in HWE (χ2 test=7,134 for control group; p 
value=0,028). 

 

 
Table IV.2.24:Demographic and clinical characteristics of the study population 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bolded results are less than 0.05 of statistical significance. 
p* χ2 test values; the values represent absolute frequencies (relative frequencies, %). 
p † T test for independent samples; the values represent means ± standard deviation (SD). 
n.a.: non applicable. 

Beta2 
adrenoreceptor 
polymorphisms: 
Arg16Gly 
(rs1042713)  

Controls Asthma 

p value 

N (%) 91 (52.0) 84(48.0) n.a. 
Female 75 (82.4) 47(56.0) 

<0.001 
Male 16 (17.6) 37 (44.0) 
Age (years)   (52,31±14,22 )  (37,08±18,5 ) p<0.001† 

< 15 0 (0.0) 11(13.1) 

p<0.001 15-30 6(6.6) 24 (28.6) 

 > 30 85 (93.4) 49 (58.3) 
Atopy/No Atopy n.a. 75/9 (89.3/10.7) n.a. 
Asthma controlled / 
Asthma not 
controlled 

n.a. 58/26(69.0/31.0)  n.a. 
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We had studied 91 (52%) individuals in the control group and 84 (48%) asthmatics.  

Distribution of gender in asthmatics and controls that had been successfully genotyped to 

ADRB2 polymorphism Arg16 Gly(rs1042713): There are in the control group 75 ( 82,4% ) 

women and 16 (17,6%)men. There are in the asthma group 47 (56,0%) women and 37 

(44,0%)men. There are more women in the control group(p<0.001). 

The distribution of age across both groups successfully genotyped to ADRB2 polymorphism 

Arg16 Gly(rs1042713). 

There are differences in the age between groups (p<0.001). Being the asthmatics ( x̅ 

=37.08±18.488) younger than the control group ( x̅ =52.31±14.219) )( Student’s t parametric 

test). 

There are no differences in the distribution of gender among the different genotypes in the 

control group (p=0,432). There are no differences in the distribution of gender among the 

different genotypes in the control group (p=0,520). There are no differences in the distribution 

of controlled and uncontrolled asthma among the asthmatic group (p=0,432). There are no 

differences in the distribution of controlled and uncontrolled asthma among the genotypes 

(AA,AG,GG) in the asthmatic group (p=0,592). There are no differences in the distribution of 

allergic and nonallergic asthma among the genotypes (AA,AG,GG) in the asthmatic group 

(p=0,592). 

The variables age and gender are not independent and being male and younger than 30 

years (younger than 30 years :OR:10,119[3,974;25,767]; p value<0,001 )increases per se 

the risk of asthma in this hospital based population (gender  male.OR:3,690[1,850;7,361]; p 

value<0,001 ).  

 
 
 

 

 
Table IV.2.25:Distribution of  alleles and genotypes by groups in Beta2 adrenoreceptor 

polymorphisms :Arg16Gly (rs1042713) 

 

 

Arg16Gly 

(rs1042713) 

 

Controls Asthma 

p value 

OR(95%CI)a 

Allele A          0.59 0.61 
0,710 

1,111 [0,724-
1,705] Allele  G  0.41 0.39 

AA n (%) 23(25.3) 21(25.0) 0.274 

 AG n (%) 61(67.0) 61(72.6) 

GG n (%) 7(7.7) 2(2.4) 
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We had studied in the control group AA (25,3%), AG (67,0%) and GG (7,7%) in the asthma 

group we had AA (25,0%), AG (72,6%%) and GG (2,4%). There are no differences in 

genotype frequencies distribution between groups (p=0,274)  (Table IV.2.25). 

The allelic frequencies between controls :Allele A (0.59); Allele G (0.41); and asthmatics: 

Allele A (0.61) and Allele G (0.39); OR: 1,111; IC95%:[0,724-1,705]; p=0,710; are not 

significantly different (Table V.1.25). 

There is no increased risk of being asthmatics for those that are homozygous for AA: 

Dominant model(GG+AGvsAA): n.s.( OR: 0,986[0,497;1,952]; p avalue=0,967)crude; 

n.s.(OR: 1,471[0,666;3,250]; p bvalue=0,340) adjusted (age and female gender) (Table 

IV.2.25). 

 

Genetic models (Table IV.2.26):There is no increased risk of being asthmatics for those that 

are homozygous and heterozygous for Allele A: Recessive model (GG vs AG+AA): n.s.( OR: 

3,417[0,689;16,934]; p avalue=0,132)crude; n.s. although there is a trend when adjusted for 

age and female gender(OR: 5,465[0,908;32,889]; p bvalue=0,064) . 

There is no increased risk of being asthmatics for those that are homozygous for allele A vs 

heterozygous AG genotypes (Additive 1 model): n.s.(OR: 1,095[0,549;2,183]; 

pvalue=0,796)crude; n.s.(OR: 0,745 [0,334;1,662]; pvalue=0,472) adjusted(age and gender).  

There is no increased risk of being asthmatics for those that are homozygous for allele A vs 

homozygous for allele G genotypes(Additive 2 model): n.s.( OR: 0,313[0,058;1,678]; 

pvalue=0,175)crude.  

Although when adjusted for age and gender it becomes significant: those who are 

homozygous for allele G genotypes have a protection of 90,8% of having asthma (OR: 

0,092[0,2010;0,817]; pvalue=0,032). 
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Table IV.2.26: Genetic models in Beta2 adrenoreceptor polymorphisms :Arg16Gly 

(rs1042713) and risk of asthma: susceptibility of disease. 

 

Dominant 
model 

N 
cases/controls 

OR 
crudea[95%CI]; 
pvalue 

OR 
adjustedb[96%CI]; 
pvalue 

GG+AG 63/68 referent referent 

AA 21/23 0,986[0,497;1,952]; 
p avalue=0,967 

1,471[0,666;3,250]; p 
bvalue=0,340 

 

Recessive 
Model 

N 
cases/controls 

OR crude[CI]; p  
avalue 

OR adjusted[CI]; p 
bvalue 

GG 2/7 referent referent 

AG+AA 82/84 3,417[0,689;16,934]; 
p avalue=0,132 

5,465[0,908;32,889]; 
p bvalue=0,064 

 

Additive1 N 
cases/controls 

OR crude[CI]; p  
avalue 

OR adjusted[CI]; p 
bvalue 

AA 21/23 referent referent 

AG 61/61 1,095[0,549;2,183]; 
pvalue=0,796 

0,745[0,334;1,662]; 
pvalue=0,472 

 

Additive2 N 
cases/controls 

OR crude[CI]; p  
avalue 

OR adjusted[CI]; p 
bvalue 

AA 21/23 referent referent 

GG 2/7 0,313[0,058;1,678]; 
pvalue=0,175 

0,092[0,2010;0,817]; 
pvalue=0,032 

 

 
Conclusion: There is no increased risk of being asthmatics for those that are homozygous 

for AA: Dominant model(GG+AGvsAA): n.s.(OR: 0,986[0,497;1,952]; p avalue=0,967)crude; 

n.s. (OR: 1,471[0,666;3,250]; p bvalue=0,340) adjusted (age and female gender). 

There is no increased risk of being asthmatics for those that are homozygous and 

heterozygous for Allele A: Recessive model (GG vs AG+AA): n.s.( OR: 3,417[0,689;16,934]; 

p avalue=0,132)crude; n.s. although there is a trend when adjusted for age and female 

gender (OR: 5,465[0,908;32,889]; p bvalue=0,064) . 

There is no increased risk of being asthmatics for those that are homozygous for allele A vs 

homozygous for allele G genotypes (Additive 2 model): n.s.( OR: 0,313[0,058;1,678]; 

pvalue=0,175)crude.  Although when adjusted for age and gender it becomes significant: 

those who are homozygous for allele G genotypes have a protection of 90,8% of having 

asthma (OR: 0,092[0,2010;0,817]; pvalue=0,032. 
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D) DETOXIFICATION 

GSTT1 

Asthmatic patients (n= 62) were compared with a control group (n=90); the polymorphisms ( 

GSTT1) were analyzed by using the PCR-Multiplex technique.   There are differences in the 

distribution of gender between asthmatics (F/M:40(64.5%); 22(35.5)) and controls 

(F/M:37(41.1%); 53(58.9%)) (p=0,005) being more females in the asthmatics and more 

males in the control group. The mean age is not different across controls and 

asthma(p=0.208). Although there are differences when we stratify by age being youngest the 

asthmatics and older the control group (<0.001). 

Table IV.2.27:Participant’s demographic and clinical characteristics 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Bolded results are less than 0.05 of statistical significance. 
p* χ2 test values; the values represent absolute frequencies (relative frequencies, %). 
p † non-parametric Mann-Whitney; the values represent means ± standard deviation 
(SD).n.a.: non applicable. 
 

 

 

 

 

 

 

 

GSTT1 non_null/null 
polymorphisms 

Controls Asthma 
p value 

N (%) 90 (59.2) 62 (40.8) n.a. 
Female 37 (41.1) 40(64.5) 

0.005 
Male 53(58.9) 22  (35.5) 
Age (years)   (40,49±10,96 )  (37,92±19,94 ) 0.208† 

< 15 0 (0.0) 8 (13.3) 

<0.001 15-30 19 (21.1) 18 (30.0) 

 > 30 71 (78.9) 34 (56.7) 
Atopy/No Atopy n.a. 53/7 (88.3/11.7) n.a. 
Asthma controlled / 
Asthma not 
controlled 

n.a. 42/18(70.0/30.0)  n.a. 



128 

 

Table IV.2.28: Distribution of  alleles and genotypes by groups GSTT1 null/ non_null 

polymorphisms 

 

GSTT1 null/ 

non_null 

polymorphisms 
Controls Asthma 

p value 

GSTT1*0 28 (31.1%) 31(50%) p=0.029 
GSTT1+ 62(68.9%) 31(50%); 

 
 
 
 
In asthmatics the genotype frequencies of GSTT1*0 were: 31(50%) and GSTT1+ were: 

31(50%); in the control group the genotype frequencies of GSTT1*0 were: 28 (31.1%) and 

GSTT1+ were: 62(68.9%). There are differences in the frequencies of genotypes between 

asthmatics and controls(p=0.029). being the GSTT1*0 more frequent in asthmatics and 

GSTT1+ in controls. 

There is 12.5 times the risk of bein allergic asthmatics if they are GSTT1*0 and women 

(OR:12.449; [1.189-130.429]; p=0.035). There is no increased risk of having uncontrolled 

asthma symptoms for those that are GSTT1*0, in this hospital based sample(p=0.084). 

 

Conclusion: There are differences in the frequencies of genotypes between asthmatics 

and controls(p=0.029). being the GSTT1*0 more frequent in asthmatics and GSTT1+ in 

controls. 

There is 12.5 times the risk of bein allergic asthmatics if they are GSTT1*0 and women 

(OR:12.449; [1.189-130.429]; p=0.035). There is no increased risk of having uncontrolled 

asthma symptoms for those that are GSTT1*0, in this hospital based sample(p=0.084). 
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D) DETOXIFICATION 

GSTM1 polymorphism:search for null genotypes (homozygous for the allele GSTM1 * 0) (M-) 

 

 

GSTM1 

 

. 

Asthmatic patients (n= 62) were compared with a control group (n=93); the polymorphisms ( 

GSTM1) were analyzed by using the PCR-Multiplex technique. 

 

 
Table IV.2.29:Participant’s demographic and clinical characteristics 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bolded results are less than 0.05 of statistical significance. 
p* χ2 test values; the values represent absolute frequencies (relative frequencies, %). 
p † non-parametric Mann-Whitney; the values represent means ± standard deviation (SD). 
n.a.: non applicable. 
 

 

We had studied 90 individuals in the control group and 62 in the asthmatics. 

There are differences in the distribution of gender between asthmatics (F/M:40(64.5%); 

22(35.5)) and controls (F/M:40(43%); 53(57%)) (p=0,005) being more females in the 

asthmatics and more males in the control group. 

GSTM1 
non_null/null 
polymorphisms 

Controls Asthma 
p value 

N (%) 93 (60.0) 62 (40.0) n.a. 
Female 40 (43) 40(64.5) 

0.009 
Male 53(57) 22  (35.5) 
Age (years)   (40,40±10,94 )  (37,92±19,94 ) 0.217† 

< 15 0 (0.0) 8 (13.3) 

<0.001 15-30 20 (21.5) 18 (30.0) 

 > 30 73 (78.5) 34 (56.7) 
Atopy/No  Atopy n.a. 53/7 (88.3/11.7) n.a. 
Asthma controlled / 
Asthma not 
controlled 

n.a. 42/18(70.0/30.0)  n.a. 
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The mean age is not different across controls and asthma(p=0.217). Although there are 

differences when we stratify by age being youngest the asthmatics and older the control 

group (<0.001). 

Table IV.2.30:Distribution of  alleles and genotypes by groups GSTM1 null/ non_null 

polymorphisms 

 

 

GSTM1 null/ 

non_null 

polymorphisms 
Controls Asthma 

p value 

GSTM1*0 48 (51.6%) 34(54.8%) p=0.693 
GSTM1+ 45(48.4% 28(45.2%) 

 

 

In asthmatics the genotype frequencies of GSTM1*0 were: 34(54.8%) and GSTM1+ were: 

28(45.2%); in the control group the genotype frequencies of GSTM1*0 were: 48 (51.6%) and 

GSTM1+ were: 45(48.4%). There are no differences in the frequencies of genotypes 

between asthmatics and controls(p=0.693).  

 

There is no more susceptibility in the group of asthmatic allergics for the null homozygous 

GSTM1( p=0.998), and to be uncontrolled asthmatics(p=0.615). 

Conclusion: There are no differences in the frequencies of genotypes between asthmatics 

and controls(p=0.693). There is no more susceptibility in the group of asthmatic allergics for 

the null homozygous GSTM1(p=0.998), and to be uncontrolled asthmatics(p=0.615). 

 

 
E) ECZEMA AND ASTHMA 

LELP-1 (late cornified envelope-like proline-rich 1) polymorphism [rs7534334] located within 

the EDC 

Asthmatic patients (n= 131) were compared with a control group (n=110); the polymorphisms 

were analyzed by PCR-RFLP (Polymerase chain reaction- restriction fragment length 

polymorphism). Control of asthma assessed by validated instrument (ACQ7 and PAQLQ). 

Statistical analysis was performed with PASW version 18 establishing a significance level of 

p< 0.05. The control group is in HWE (χ2=0.044; p=0.978).  
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Table IV.2.31:Participant’s demographic and clinical characteristics 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Bolded results are less than 0.05 of statistical significance. 
p* χ2 test values; the values represent absolute frequencies (relative frequencies, %). 
p † non-parametric Mann-Whitney; the values represent means ± standard deviation (SD). 
n.a.: non applicable. 
 

We had studied 110 individuals in the control group and 131 in the asthmatics. 

There are differences in the distribution of gender between asthmatics (F/M:84(64.1%); 

47(35.9)) and controls (F/M:42(38.2%); 68(61.8%)) ( <0.001).being more females in the 

asthmatics and more males in the control group. 

The mean age is different across controls and asthma (p=0.037- non-parametric Mann-

Whitney). There are also differences when we stratify by age being youngest the asthmatics 

and older the control group (<0.001). 
 

 

 

 

 

 

 

LELP1 
polymorphism 
[rs7534334] 

Controls Asthma 
p value 

N (%) 110 (54.4) 131 (45.6) n.a. 
Female 42 (38.2) 84(64.1) 

<0.001 
Male 68(61.8) 47 (35.9) 
Age (years)   (42,82±10,88 )  (38,40±19,24 ) 0.037† 

< 15 0 (0.0) 16 (12.4) 

<0.001 15-30 15 (13.6) 37 (28.7) 

 > 30 95 (86.4) 76 (58.9) 
Atopy/No Atopy n.a. 111/18 (86/14) n.a. 
Asthma controlled / 
Asthma not 
controlled 

n.a. 92/37(71.3/28.7)  n.a. 
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Table IV.2.32:Distribution of alleles and genotypes by groups in LELP1 polymorphism  

[rs7534334] 

 

 

LELP1 
polymorphism 
[rs7534334] 

Controls Asthma 
p value 

OR(95%CI)a 

Allele C          0.64 0.67 0,529 0.870 [0.597-
1.267] Allele  T  0.36 0.33 

CC n (%) 45(40.9) 60(45.8) 
0,745 

 CT n (%) 50(45.5) 55(42.0) 

TT n (%) 15(13.6) 16(12.2) 

 

 

In asthmatics the frequencies of allele C were 0.67 and allele T: 0.33 In control group, the 

frequencies of allele C were 0.64 and for allele T : 0.36 ; (OR: 0.870; 95%CI: [0.597-1.267]; 

p=0.529). There is no statistical difference between these groups (p>0.05). Genotypes in 

asthmatics were: CC: 45.8%; CT:42 %; TT: 12.2% and for control group: CC: 40.9%; CT: 

45.5%; TT: 13.6%. There is no statistical difference between these groups(p=0,745) 

(p>0.05).  

Genetic models : Genetic models for   LELP1 polymorphism [rs7534334].  

In the Dominant model (TT+CT vs CC) those who are homozygous for the allele C have no 

increased risk of having asthma (crude: OR: 1.221; 95%IC:[0.731;2.038]; p  avalue 

=0.446;adjusted values: OR: 1.069; 95%IC:[0,624;1,831]; p bvalue =0.807). In the recessive 

model (TT vs CT+CC) there is no increased risk of having asthma (OR: 1,135; 

95%IC:[0,533;2,415]; p  avalue e=0,743;OR: 1,025; 95%IC:[ [0,468;2,248]; p bvalue =0,950). 

In the additive model 1(CCvsCT) there is  no increased risk of having asthma ( crude:OR 

0,825; 95%IC:[ [0,479;1,422]; p  avalue =0,488; adjusted: OR: 0,938; 95%IC:[0,529;1,664]; p 

bvalue =0.828).In the additive model 2(CCvsTT) there is  no increased risk of having asthma 

( crude:OR 0,800[0,358;1,787]; p  avalue =0.586; adjusted:OR: 0,960; 95%IC :[0,411;2,240]; 

p bvalue =0.925). 

There is no increased risk of being allergic/nonallergic asthmatics for those that are 

homozygous for CC(pa=0,578); (pb=0,377). 

There is no increased ris of being uncontrolled asthmatics for those that are homozygous for 

CC(pa=0,523); (pb=0,486). 

There is no increased ris of being allergic/nonallergic asthmatics for those that are 

homozygous for CC and hetrozygous CT(pa=0,556); (pb=0,424). 
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There is no increased ris of being uncontrolled asthmatics for those that are homozygous for 

CC and heterozygous CT(pa=0,728); (pb=0,672). 

There is no increased ris of being uncontrolled asthmatics by genotypes (p=0,680). 

There is no increased ris of being allergic/non allergic by genotypes (p=0,781). 

Conclusion: In asthmatics the frequencies of allele C were 0.67 and allele T: 0.33 In control 

group, the frequencies of allele C were 0.64 and for allele T : 0.36 ; (OR: 0.870; 95%CI: 

[0.597-1.267]; p=0.529). There is no statistical difference between these groups (p>0.05). 

Genotypes in asthmatics were: CC: 45.8%; CT:42 %; TT: 12.2% and for control group: CC: 

40.9%; CT: 45.5%; TT: 13.6%. There is no statistical difference between these 

groups(p=0,745) (p>0.05). There is not a significant evidence, that LELP1 polymorphism 

(rs7534334) could be a genetic marker for atopic asthma (p>0.05) in this hospital-based 

population.  

 

F) EPIGENETICS 

MTHFR C677T (rs1801133) 

 

MTHFR C677T polymorphism evaluated by PCR-RFLP . We had 67 individuals in the control 

group and 139 asthmatics.The control group is in HWE (χ2 test=0,796 for control group; p 

value=0,671). 

 

Table IV.2.33:Demographic and clinical characteristics of the study population 

 

 
 
 
 
 

Bolded results are less than 0.05 of statistical significance. 
p* χ2 test values; the values represent absolute frequencies (relative frequencies, %). 
p † non-parametric Mann-Whitney; the values represent means ± standard deviation (SD). 
n.a.: non applicable. 
 

(Polymorphism of 

the  MTHFR C677T 

(rs1801133) 

Controls Asthma 

p value 

N (%) 67 (32.5) 139 (67.5) n.a. 
Female 45 (67.2) 90(64.7) 

0.853 
Male 22(32.8) 49 (35.3) 
Age (years)   (38,31±10,21 )  (38,04±18,94 ) 0.636† 

< 15 0 (0.0) 17(12.4) 

0,004 15-30 15 (22.4) 39 (28.5) 

 > 30 52 (77.6) 81 (59.1) 
Atopy/No Atopy n.a. 116/21 (84.7/15.3) n.a. 
Asthma controlled / 
Asthma not 
controlled 

n.a. 98/39(71.5/28.5)  n.a. 
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We had studied 67 individuals in the control group and 139 asthmatics.  

There is no statistical difference in the mean age between groups(p=0,636) . there are 

statistical differences by subgroups of age(p=0,004), being youngest the asthmatics and 

older the control group. 

We had 45 (67.2%) females and 22 males (32.8%) in the control group and 90 (64.7%) 

females and 49 males (35.3%) in the asthmatics. There are no statistical differences 

between these groups (p=0.853). 

We had for CC in the control group 20(44.4%) females and 10 males (45.5%) ; for CT in the 

control group 18(40.0%) females and 8 males (36.4%) ; for TT in the control group 7(15.6%) 

females and 4 males (18.2%) . There are no statistical differences between these groups 

(p=0.944). 

We had for CC in the asthma group 40(44.4%) females and 28 males (57.1%) ; for CT in the 

asthma group 39(43.3%) females and 16 males (32.7%) ; for TT in the asthma 

group11(12.2%) females and 5 males (10.2%) . There are no statistical differences between 

these groups (p=0.355). 

For genotype CC: we had 50 (51%) asthmatic patients with controlled asthmatic symptoms 

and 17(43.6%) with uncontrolled asthmatic symptoms; for genotype CT: we had 38(38.8%) 

asthmatic patients with controlled asthmatic symptoms and 17(43.7%) with uncontrolled 

asthmatic symptoms; for genotype TT: we had 10 (10.2%) asthmatic patients with controlled 

asthmatic symptoms and 5(12.8%) with uncontrolled asthmatic symptoms. There are no 

statistical differences between these groups (p=0.722). Control of asthma assessed by 

(ACQ7 and PAQLQ). 

For genotype CC: we had 6 (28.6%) asthmatic allergic patients and 61(52.6%) with 

asthmatic non-allergic patients; for genotype CT: we had 13(61.9%) asthmatic allergic 

patients and 42(36.2%) with asthmatic non-allergic patients; for genotype TT: we had 2 

(9.5%) asthmatic allergic patients and 13(11.2%) with asthmatic non-allergic patients. There 

is a trend to have statistical differences between these groups (p=0.079), being the CC 

(52.6%) more frequent in asthmatic allergic patients and CT (61.9%) in asthmatic non-

allergic patients. 
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Table IV.2.34: Distribution of alleles and genotypes by groups in Polymorphism of MTHFR 

C677T (rs1801133) 

 
 

MTHFR C677T 

(rs1801133) 

 

Controls Asthma 

p value 

OR(95%CI)a 

Allele C          0.64 0.69 0.421 0.816[0.528-
1.260] Allele  T  0.36 0.31  

CC  n (%) 30(44.8) 68(48.9) 0.606 

 CT n (%) 26(38.8) 55(39.6) 

TT n (%) 11(16.4) 16(11.5) 

 

 
In asthmatics the frequencies of genotypes are: CC (48,9%); CT (39,6%); TT (11, 5%).In the 

controls the frequencies of genotypes are: CC (44,8%); CT (38,8%); TT (16,4%).There are 

no statistical differences between these groups (p=0.606).  

The Allele frequencies are:in control group: Allele C:0,64; Allele T: 0,36. In the asthmatics: 

Allele C:0,69; Allele T: 0,31. There is no increased risk of asthma: OR:0,816; CI 

95%:[0,528;1,260]; p avalue=0,421. 

 

Genetic models: There is no increased risk of being asthmatics for those that are 

homozygous for CC: Dominant model(TT+CTvsCC): n.s. (OR: 0,847[0,472;1,520]; p 

avalue=0,577)crude; n.s. (OR: 0,856[0,475;1,545]; p bvalue=0,607) adjusted(age and female 

gender). 

There is no increased risk of being asthmatics for those that are heterozygous and 

homozygous for allele C: Recessive model (TTvs CT+CC ): n.s.( OR: 1,510; [95%CI] 

:[0,658;3,464]; p avalue=0,331)crude; n.s.(OR: 1,596; [95%CI ] [0,688;3,702]; p 

bvalue=0,276) adjusted (age and gender). 

 

There is no increased risk of being asthmatics for those that are homozygous for allele C vs 

heterozygous CT genotypes(Additive 1 model): n.s.( OR: 0,933; [95%CI ][0,495;1,760]; 

pvalue=0,831)crude; n.s.(OR: 0,962; [95%CI ][0,508;1,823]; pvalue=0,906) adjusted(age and 

gender). 

There is no increased risk of being asthmatics for those that are homozygous for allele C vs 

homozygous for allele T genotypes (Additive 2 model): n.s.( OR: 0,642[0,266;1,547]; 

pvalue=0,323)crude; n.s.(OR: 0,637[0,260;1,561]; pvalue=0,324) adjusted (age and gender). 
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Conclusion: There is a trend to have statistical differences between these groups (p=0.079), 

being the CC (52.6%) more frequent in asthmatic allergic patients and CT(61.9%) in 

asthmatic non-allergic patients. 
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IV.3. Clinical study: Haplotype and epistatic interactions 

In control vs asthma after univariate analysis we considered for the model: GSTT1 (null), 

MPO (GA or AA) and (GG or GA), Nos2 exon 16 (CT orTT); Nos2 intron 20 (GG); eNOS (bb 

or ab); ACE (II). 

Statistical analysis with logistic regression: Haplotype analysis (in the same gene) 

Exon 16 (CT or TT = 1) and others = 0 and also intron 20 (GG) = 1, all others = 0. Variable 

Haplotype1 = exao16 CTorTT and intron 20 GG; All others = 0. Epistatic: exon16 + intron20 

+ eNOS + ACE 1 = exao16 CTouTT and intron 20 GG and eNOs bb or ab and ACE II; All 

others = 0. Epistatic: GSTT1, MPO, exon16 + intron20 + eNOS + ACE: 1 = null GSTT1 and 

MPO GA or AA and exon16 CTorTT and intron 20 GG and eNOs bb or ab and ACE II; All 

others = 0. 

Controlled / uncontrolled asthma: NOS2intron16 increase of GT in uncontrolled and ECA 

ID + II- protective and DD risk. Epistatic: NOS2intron16 + ECA  = 1 (intron 16 GT and ECA 

DD) and remaining = 0 

Allergic-Non allergic asthma:  MTHFR: increased CC in asthmatics allergic; GSTT1 null; 

ECA ID 

In the analysis of Asthma vs controls: 

For the haplotype analysis at NOS 2  , the overall difference in haplotype frequencies 

between asthmatics and controls pointed to an increased risk of asthma: there is a risk of 

being asthmatics when compared with controls for those that are (CT+TT) at Ex16 +14C>T 

and GG at (intron 20 + 524 G> A gene polymorphisms ( p=0,011), but because of the limited 

number of individuals due to low variant allele frequency for the haplotype analysis   we have 

to be cautious about these results. 

The epistatic interaction between (CTorTT)at Ex16 +14C>T and  GG at (intron 20 + 524 G> 

A and eNOs bb or ab and  ACE II , gene polymorphisms are n.s.( Fisher test p=0,497 ) 

The epistatic interaction between (CTorTT)at Ex16 +14C>T and  GG at (intron 20 + 524 G> 

A and eNOs bb or ab , gene polymorphisms are significant. ( Fisher test p=0,013). The 

epistatic frequencies between between (CTorTT)at Ex16 +14C>T and  GG at (intron 20 + 

524 G> A and eNOs bb or ab  in asthmatics  vs controls pointed to an increased risk of 

asthma : there is a risk of being  asthmatics when compared with controls for those that are 

(CT+TT)at Ex16 +14C>T and  GG at (intron 20 + 524 G> A and eNOs bb or ab, gene 

polymorphisms( p=0,013), but because of the limited number of individuals due to low variant 

allele frequency for the  epistatic  analysis   we have to be cautious about this results. 

The epistatic interaction between MPO GA or AA and GSTT1 null polymorphisms, and 

asthma risk vs controls. There is a risk of being asthmatic when compared with controls for 

those that are: MPO GA or AA and GSTT1 null polymorphisms) (Qui square;  p=0,004). We 

obtained an OR crudea:3.125[1.489-6.558]; pa=0.003; OR adjusted ( for age and 
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gender)b:3.151[1.458-6.808]; pb=0.004 it increases the risk of being asthmatic of 

approximately 3 times. 

In the analysis of Controlled vs uncontrolled asthma: 

The epistatic interaction between NOS2: IVS16+ 88T>G (GT) and ACE I/D(DD) 

polymorphisms, and uncontrolled asthma risk in asthmatics. There is a risk of being 

uncontrolled asthmatic when compared with controlled asthmatics for those that are: IVS16+ 

88T>G (GT) and ACE I/D(DD) polymorphisms) (Fisher exact test p=0,025). We obtained an 

OR crudea:4.317[1.234-15.107]; pa=0.022; OR adjusted (just for age because there are no 

statistical differences between gender distribution in controlled and uncontrolled asthma) 

b:4.739[1.184-18.968]; pb=0.028 it increases the risk of being uncontrolled of approximately 5 

times. 

In the analysis of Allergic vs Non allergic asthma: (the epistatic interaction between 

MTHFR(CC) and GSTT1 null and ACE ID where 1; the others are 0). 

For the epistatic interaction analysis at MTHFR(CC) and GSTT1 null and ACE ID, the overall 

difference in frequencies between allergic asthmatics and non allergics pointed to a trend of 

increased risk of allergic asthma when compared with non allergic asthma for those that are 

MTHFR(CC) and GSTT1 null and ACE ID gene polymorphisms(p=0,085), but because of the 

limited number of individuals in the non allergics group for the epistatic analysis   we have to 

be cautious about these results. 

For the epistatic interaction analysis at MTHFR(CC) and GSTT1 null, the overall difference in 

frequencies between allergic asthmatics and non allergics pointed to a trend of increased risk 

of allergic asthma when compared with non allergic asthma for those that are MTHFR(CC) 

and GSTT1 null gene polymorphisms(p=0,052), but because of the limited number of 

individuals in the non allergics group for the epistatic analysis   we have to be cautious about 

these results. 
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IV.4. Clinical study: Endothelial dysfunction in asthma 

Endothelial dysfunction in asthma 

 

Background: Recent studies indicate that endothelial dysfunction is related to abnormalities 

in nitric oxide (NO) and in the activation of the renin-angiotensin system. Angiotensin 

converting enzyme (ACE) and nitric oxide (NOS) gene polymorphisms, are important in 

endothelial dysfunction and in the pathophysiology of asthma. The purpose of this study is to 

analyze the association between :  cytokine-inducible (iNOS or NOS-2) NOS2 (exon 16 + 

14C> T);  NOS2 (intron 16 + 88 G> T);  NOS2 (intron 20 + 524 G> A); constitutive NOS 

(cNOS): endothelial NOS (eNOS), also known as nitric oxide synthase 3 (NOS3) ,  eNOS 

4b/4a (27 VNTRs) and ACE gene insertion/deletion (I/D)   polymorphisms with asthma 

susceptibility and severity . 

Material and Methods: Asthmatics (n= 47) were compared with a control group (n=45). The 

polymorphisms   were analyzed by PCR and PCR-RFLP. Control of asthma assessed by 

(ACQ7 and PAQLQ). Statistical analysis with PASW version 18 establishing a significance 

level of p< 0.05. 

Results: The mean age of the 47 asthmatics was 39.04  ±18.72 ; 29 females and 18 males; 

39 atopics and 8 non-atopics; 34 with controlled and 13 with uncontrolled asthma.The mean 

age of the 45 individuals in the control group was 42.87 ±11.01; 14 females and 31 

males;There are more women in the asthmatic group when compared with controls (p= 

0.006) and they are younger than controls(p=0.011) (Table IV.4.1a). 

For the different SNPs that we had studied there are differences in the allelic frequencies 

distribution between controls and asthma for NOS2(Ex16 +14C>T), being the allele T more 

frequent in asthma. Those who express T allele have a risk of having asthma 4.387[1.523-

12.635]] ; pb=0.006 . For  IVS20 + 524G>A there is no differences in allelic distribution of 

frequencies between controls and asthmatics(pa=0.094). Although when adjusted for age and 

gender there is a risk of almost 2 for those who express allele G ( 1.903[1.011-3.583], 

p=0.046).  (Table IV.4.2a). 

 For the different SNPs that we had studied there are differences in the allelic frequencies 

distribution between controlled and uncontrolled asthma: there is a trend (adjusted for age 

and female gender):OR2.916[0.970-8.765]; pb=0.057.  For NOS2 (intron 16 + 88 G> T)), 

being a trend for the allele T to be more frequent in asthma. There are differences in the 

allelic frequencies distribution between controlled and uncontrolled asthma for ACE gene 

insertion/deletion (I/D)   polymorphism: (crude and adjusted for age and female gender):OR: 

0.217[0.068-0.697]]; pa=0.010;OR: 0.132[0.034-0.517]; pb=0.004 ; being the Allele I protector 

to asthma (Table IV.4.2 ). 

https://en.wikipedia.org/wiki/Cytokine
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For each SNP, additive_1 , additive_2   and potential dominant effects were evaluated by 

combining homozygote and heterozygote variant carriers for comparison with  reference :  for 

NOS2 :Ex16 +14C>T: , there are differences between controls and asthmatics in the different 

genetic models (additive_1;OR:7.259[1.736-30.350]; p=0.007) and (dominant 

model;OR:5.311[1.477-19.095]; p=0.011): there is a risk of being asthmatic of 7.3 for those 

who express genotype CT and 5.3 for those who express the allele T. For NOS2 (intron 20 + 

524 G> A): For IVS20 + 524G>A, there are differences between controls and asthmatics in 

the different genetic models (additive_2;OR: 4.654[1.165-18.601] ; p=0.030) , there is a risk 

of being asthmatic of almost 5 for those who express genotype GG.  (Table IV.4.3). There is 

no statistical difference (p>0.05) for the other SNPs studied concerning allelic and genotype 

frequencies between asthmatics and controls. Trend tests assume ordinal steps to 

homozygous with major allele, heterozygous and homozygous with minor allele genotypes, 

respectively, the trend is statistically significant for NOS2:Ex16 +14C>T: 

12.08/p=0.00051(Table IV.4.3a) 

For each SNP, additive and potential dominant effects were evaluated also by combining 

homozygote and heterozygote variant carriers for comparison with  reference,  comparing 

controlled and not controlled asthma : For IVS16+ 88T>G, there are differences between 

Controlled and uncontrolled asthmatics in the different genetic models (additive_1;OR: 

12.406[1.576-97.620]; p=0.017) and (dominant ; OR: 7.917[1.389-45.122]; p=0.020): there is 

a risk of being uncontrolled asthmatic of 12 for those who express genotype GT and almost 8 

for those who express the allele T. For ACE I/D there are differences between Controlled and 

uncontrolled asthmatics in the different genetic models (additive_2: 0.064 [0.005-0.857]; 

p=0.038) and (dominant model; OR: 0.146 [0.025-0.845]; p=0.032): there is a protection of 

being uncontrolled asthmatic for those who express genotype II and for those who express 

the allele I . For IVS20 + 524G>A, 27-bp repeat in intron 4-eNOS, Ex16 +14C>T  there are 

no differences between Controlled and uncontrolled asthmatics in the different genetic 

models (additive_1; additive_2 and dominant model (Table IV.4.4a). Trend tests assume 

ordinal steps to homozygous with major allele, heterozygous and homozygous with minor 

allele genotypes, respectively, the trend is statistically significant for ACE I/D polymorphism  : 

5.67/p=0.0172( Table IV.4.4a). 

For the haplotype analysis at NOS 2  , the overall difference in haplotype frequencies 

between asthmatics  and controls pointed to an increased risk of asthma : there is a risk of 

being  asthmatics when compared with controls for those that are (CT+TT)at Ex16 +14C>T 

and  GG at (intron 20 + 524 G> A gene polymorphisms( p=0,012), but because of the limited 

number of individuals due to low variant allele frequency for the  haplotype analysis   we 

have to be cautious about this results.The epistatic interaction between  NOS2: IVS16+ 

88T>G (GT+TT ) and ACE I/D( ID+DD) polymorphisms, and uncontrolled asthma risk in 
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asthmatics we obtained an OR crudea:5.400[1.345-21.675]; pa=0.017; OR 

adjustedb:9.582[1.524-60.227]; pb=0.016 it increases the risk of being uncontrolled of 

approximately 10 times(Data not showed). 

From logistic regression analysis including significant results from univariate analysis (Table 

IV.4.3a), we concluded that the risk of having asthma for intron 20 + 524 G> A gene 

polymorphism and NOS2(Ex16 +14C>T, are not independent of each other and gender. 

For the next logistic regression evaluation of genetic risk score, we considered as models: 

the genotype homozygous for the major allele as 0 and the association of genotypes with 

minor allele as 1. 

Stepwise multivariate logistic regression with backward elimination (p-value for retention 

=0.10) was conducted in significant SNPs in asthma vs controls and adjusted for gender and 

age. We constructed a genetic risk score for each participant by summing the coefficients for 

each of the resulting variables after stepwise regression analyses. The variables included in 

the model were: Ex16 +14C>T and gender. For this SNP, the risk genotypes (CT or TT) were 

coded as 1 and the non-risk genotype(CC) as 0. For gender female was considered as the 

risk and coded as 1 and male 0. We obtained 4    risk scores of being asthmatic for this 

model: high genetic risk score=3.187; intermediate genetic risk score:(1.045 or 1.150); low 

genetic risk score=-0,992.The individuals that has a high genetic risk score according to this 

model have an increased risk of 14.500 of having asthma comparing to those low genetic 

risk score. 

From logistic regression analysis including significant results from univariate analysis (Table 

IV.4.4a) between controlled and uncontrolled asthma, we concluded that the risk of having 

uncontrolled asthma for NOS2: IVS16+ 88T>G (GT+TT) and ACE I/D(ID+II) polymorphisms, 

are not independent of each other and age. 

Stepwise multivariate logistic regression with backward elimination (p-value for retention 

=0.10) was conducted in significant SNPs between controlled and uncontrolled asthma and 

adjusted for gender and age. We constructed a genetic risk score for each participant by 

summing the coefficients for each of the resulting variables after stepwise regression 

analyse. The variables included in the model were: IVS16+ 88T>G, ACE I/D and age. For 

these SNPs: the risk genotype for IVS16+ 88T>G  (GT or TT) were coded as 1 and the non-

risk genotype(GG) as 0; the risk genotype for ACE I/D (DD) were coded as 0 and the non-

risk genotype(ID+II) as 1. Age considered as continuous variable. We divided the Genetic 

risk score in tertiles as T1: ≤ -2,68(low genetic risk score) ; T2: >-2,68 ≤-0,98 (intermediate 

genetic risk score); T3: >-0,98(high genetic risk score). The individuals that has a high 

genetic risk score according to this model have an increased risk of 7.222 of having asthma 

comparing to those with intermediate genetic risk score. In the uncontrolled group we had 0 
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individuals in the low grade Genetic risk score that is why it is not used as reference in this 

logistic regression model(Table IV.4.5a and Table IV.4.6a). 
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IV.5.Clinical study: Genetic Risk Scores 

Genetic Risk score of endothelial dysfunction: ((ACE) and nitric oxide (NOS) gene 

polymorphisms)); endothelial dysfunction and epigenetics (MTHFR+(ACE) and nitric oxide 

(NOS) gene polymorphisms)); uncontrolled asthma (IVS16+ 88T>G , ACE I/D and age) and 

allergic asthma (MTHFR and GSTT1 and ACE and gender). 

Stepwise multivariate logistic regression with backward elimination (p-value for retention 

=0.10) was conducted in significant SNPs in asthma vs controls and adjusted for gender and 

age. We constructed a genetic risk score for each participant by summing the coefficients for 

each of the resulting variables after stepwise regression analyses. The variables included in 

the model were: Ex16 +14C>T and gender. For this SNP, the risk genotypes (CT or TT) were 

coded as 1 and the non-risk genotype(CC) as 0. For gender female was considered as the 

risk and coded as 1 and male 0. We obtained 4    risk scores of being asthmatic for this 

model: high genetic risk score=3.187; intermediate genetic risk score:(1.045 or 1.150); low 

genetic risk score=-0,992.The individuals that has a high genetic risk score according to this 

model have an increased risk of 14.500 of having asthma comparing to those low genetic 

risk score. 

From logistic regression analysis including significant results from univariate analysis 

between controlled and uncontrolled asthma, we concluded that the risk of having 

uncontrolled asthma for NOS2: IVS16+ 88T>G (GT+TT ) and ACE I/D( ID+II) polymorphisms 

,  are not independent of each other and age. 

Stepwise multivariate logistic regression with backward elimination (p-value for retention 

=0.10) was conducted in significant SNPs between controlled and uncontrolled asthma and 

adjusted for gender and age. We constructed a genetic risk score for each participant by 

summing the coefficients for each of the resulting variables after stepwise regression 

analyse. The variables included in the model were: IVS16+ 88T>G , ACE I/D and age. For 

these SNPs: the risk genotype for IVS16+ 88T>G (GT or TT) were coded as 1 and the non-

risk genotype(GG) as 0; the risk genotype for ACE I/D (DD) were coded as 0 and the non-

risk genotype(ID+II) as 1. Age considered as continuous variable. We divided the Genetic 

risk score in tertiles as T1: ≤ -2,68(low genetic risk score) ; T2: >-2,68 ≤-0,98 (intermediate 

genetic risk score); T3: >-0,98(high genetic risk score).The individuals that has a high genetic 

risk score according to this model have an increased risk of 7.222 of having asthma 

comparing to those with intermediate genetic risk score. In the uncontrolled group we had 0 

individuals in the low grade Genetic risk score that is why it is not used as reference in this 

logistic regression model 

Genetic Risk score of endothelial dysfunction and epigenetics (MTHFR+eNOs and 

iNOs and ACE polymorphisms 
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Stepwise multivariate logistic regression with backward elimination (p-value for retention 

=0.10) was conducted in significant SNPs between controlled and uncontrolled asthma and 

adjusted for gender and age. We constructed a genetic risk score for each participant by 

summing the coefficients for each of the resulting variables after stepwise regression 

analyse. The different SNPs:  IVS16+ 88T>G  and ACE I/D are not independent of MTHFR in 

logistic regression, but the variables included in the model after Stepwise multivariate logistic 

regression with backward elimination, were: IVS16+ 88T>G , ACE I/D and age. For these 

SNPs: the risk genotype for IVS16+ 88T>G  (GT or TT) were coded as 1 and the non-risk 

genotype(GG) as 0; the risk genotype for ACE I/D (DD) were coded as 0 and the non-risk 

genotype(ID+II) as 1. Age considered as continuous variable. We divided the Genetic risk 

score in tertiles as T1: ≤ -2,809(low genetic risk score) ; T2: >-2,80 ≤-0,99 (intermediate 

genetic risk score); T3: >-0,98(high genetic risk score). 

The individuals that has a high genetic risk score (T3) according to this model have an 

increased risk of 10.889 (OR: 10.889 [1.140-103.977]; p=0.038) of having uncontrolled 

asthma comparing to those with low genetic risk score(T1). There is no increased risk 

between T1 and T2(OR: 5.091 [0.496-52.285]; p=0.171) or between T2 and T3(OR: 2.139 

[0.472-9.699]; p=0.324). 

Genetic Risk Score of uncontrolled asthma   

Stepwise multivariate logistic regression with backward elimination (p-value for retention 

=0.10) was conducted in significant SNPs between controlled and uncontrolled asthma and 

adjusted for age. We constructed a genetic risk score for each participant by summing the 

coefficients for each of the resulting variables after stepwise regression analyse. The 

variables included in the model were: IVS16+ 88T>G , ACE I/D and age. For these SNPs: 

the risk genotype for IVS16+ 88T>G  (GT ) were coded as 1 and the non-risk genotype (GG 

an TT) as 0; the risk genotype for ACE I/D (DD) were coded as 1 and the non-risk 

genotype(ID+II) as 0. Age considered as continuous variable. We divided the Genetic risk 

score in tertiles as T1: ≤ -1,78 (low genetic risk score) ; T2: >-1,78 ≤-0,86 (intermediate 

genetic risk score); T3: >-0,86(high genetic risk score). The individuals that has a high 

genetic risk score according to this model have an increased risk of almost 22 :OR: 

21.818[2.495-190.825](p=0,005) of having uncontrolled asthma comparing to those with low 

genetic risk score. There are differences in age distribution between controlled and 

uncontrolled asthma: younger the controlled asthmatics: mean±SD(34,00±19,96 years) and 

older the uncontrolled asthmatics: mean±SD (56,46±14,29 years). 

Genetic Risk Score of allergic asthma   

MTHFR and GSTT1 and ACE 

Allergic vs Non allergic asthma: (the epistatic interaction between MTHFR(CC) and 

GSTT1 null and ACE ID where 1; the others are 0) 
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For the epistatic interaction analysis at MTHFR(CC) and GSTT1 null and ACE ID, the overall 

difference in frequencies between allergic asthmatics and non allergics pointed to a trend of 

increased risk of allergic asthma when compared with non-allergic asthma for those that are 

MTHFR(CC) and GSTT1 null and ACE ID gene polymorphisms(p=0,085), but because of the 

limited number of individuals in the non allergics group for the epistatic analysis   we have to 

be cautious about these results. 

For the epistatic interaction analysis at MTHFR(CC) and GSTT1 null, the overall difference in 

frequencies between allergic asthmatics and non allergics pointed to a trend of increased risk 

of allergic asthma when compared with non-allergic asthma for those that are MTHFR(CC) 

and GSTT1 null gene polymorphisms (p=0,052), but because of the limited number of 

individuals in the non allergics group for the epistatic analysis   we have to be cautious about 

these results. 

Genetic risk allergic asthma with GST and gender (the only that remain significant after 

Stepwise multivariate logistic regression with backward elimination) 

Stepwise multivariate logistic regression with backward elimination (p-value for retention 

=0.10) was conducted in significant SNPs in allergics vs non-allergics asthmatics and 

adjusted for gender and age. We constructed a genetic risk score for each participant by 

summing the coefficients for each of the resulting variables after stepwise regression 

analyses. The variables included in the model were: GSTT1  and gender. For this SNP, the 

risk genotype (GSTT1*0 null genotype) were coded as 1 and the non-risk genotype 

(GSTT1*1 non null genotype) as 0.For gender  female was considered as 1. However in this 

case being female, confers protection of being allergic with OR:0,242 [0.068-0.857]; p=0,028;  

and male 0. 

We obtained 4  risk scores of being allergics  asthmatics for this model: high genetic  risk 

score=22.744; intermediate genetic  risk score:(2.944 or 20.493); low genetic risk 

score=0.693. 

There are differences between allergic and non-allergic asthmatics(p=0,007) in the 4  risk 

scores of being allergics  asthmatics for this model: high genetic  risk score=22.744 (11/0); 

intermediate genetic  risk score:( 2.944 (19/1) or 20.493 (11/0)); low genetic risk score=0.693 

(12/6) respectively. 

The individuals that has a intermediate genetic  risk score according to this model have an 

increased risk of 15.000 of being allergic asthmatics comparing to those with  low genetic risk 

score (OR: 15.000) [1.629-138.156]; p=0,017. The individuals that has a high  or 

intermediate genetic  risk scores according to this model have an increased risk of 20.500  

(OR: 20.500) [2.243-187.355]; p=0,007of being allergic asthmatics comparing to those with  

low genetic risk score.We didn´t compare high with low genetic  risk scores because there is 

no individuals in the group of non allergic with high  genetic  risk score. 
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CHAPTER V. Discussion 
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CHAPTER V. Discussion 

 

Many shared pathways (134-138) ,are common to CVD and asthma , and this approach 

could elucidate about risk genes and its polymorphisms as emerging risk factors, with 

disease developing processes with similar pathogenesis and pleiotropic effects. 

For the The I / D ACE polymorphism that might  be related to hypertension and the D allele 

predisposes to higher blood pressure values, as well as to four major groups of diseases 

(obesity, dyslipidemia, diabetes and hypertension ) and is associated with  higher ACE levels 

(31) that is a risk factor for cardiovascular disease . Clinical trials reported a role for genes 

encoding components of the renin angiotensin system (ACE and AT1R) in influencing 

hypertension and other CVD , and provided a possible interaction between these two loci. 

In this literature review and meta-analysis for CVD in this thesis, if the DD genotype is 

present and susceptibility to Heart condition (CAD; EAM; cardiomyopathy; HTA) The risk of 

having heart condition in those that are DD is almost 2, and if the II genotype is present and 

susceptibility to Heart condition (CAD; EAM; cardiomyopathy; HTA) there is a trend of having 

heart condition in those that are II and the risk is 53,5% decreased. 

In asthma some authors found DD genotype of ACE polymorphism was involved in 

susceptibility to asthma(139),although not related with the  degree of airway obstruction 

(140). But for others  D allele of ACE polymorphism did not show an association with either 

asthma or asthma severity (141)(31). 

In this study for asthma patients:  we concluded that those who has an allele D have 

protection of having asthma (OR crude: 0,465[0,251;0,861]; pvalue=0,015; 53,5% decreased 

risk);(OR adjusted:0,496[0,259;0,949]; pvalue=0,034; 50,4% decreased risk) in this hospital - 

based population. Genotypes II are more prevalent in the asthmatics than controls. 

In asthma and in a hospital-based population, the ACE SNP genotype II in intron 16 (287 bp 

on chromosome 17q23 (rs1799752)) was found to be the most frequent (p <0.05). So, 

patients with asthma in which genotype II is more prevalent could have a similar prevalence 

of genetic risk factors for cardiovascular disease as in the Portuguese population in general. 

In the polymorphism in type 1 receptor of Angiotensin II (AGTR1) 1166A / C (rs5186) 

does not appear to be a risk factor for asthma (p> 0.05) in the studied group although it may 

be for cardiovascular disease. Allele C of this polymorphism is associated with hypertension 

namely essential hypertension(142).  

For some authors the Genotypes CC are associated with Pulmonary arterial hypertension 

(PAH) developed at later age in the  1166C polymorphism in AGTR1(142) .In sarcoidosis 

AT2R1 genotypes CC and AA possibly increase the risk (30) or have no interference with the 

prognosis of respiratory disease(31). 
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In this literature review and meta-analysis for CVD in this thesis: The risk of having 

heart condition in those that express allele C there is a trend to be decreased although n.s. 

The risk of having heart condition in those that express CC genotype is non significant. 

In this study for asthma patients: In this study group there is not a significant evidence, 

that AGTR1 gene A1166C polymorphism could be a genetic marker for the pathophysiology 

of asthmatic disease. 

For Haptoglobin there has been implication between  carotid intima-media thickness, CVD 

mortality, and Type 2 Diabetes ( T2DM) and Hp2-2 polymorphism (143).Other studies  found 

(Hp1-1) polymorphism as a risk factor for coronary heart disease (CHD) mortality (91). 

Free Hb and Hp bound to Hb inactivate NO, Hp alone does not. An increase in the level of 

circulating Hp-Hb may inhibit NO formation and endothelium relaxation, enhancing the risk of 

CVD and endothelial dysfunction in asthma. The  Hp1-1:Hb complex is removed from 

circulation more rapidly than the other Hp complexes and might have also  a role in CVD and 

endothelial dysfunction in asthma and NO bioavailability interfering in oxidative stress, 

inflammation and immunomodulation in asthma (90). 

In this literature review and meta-analysis for CVD in this thesis: if the Hp2.2 genotype 

is present and susceptibility to Heart condition (CHD; CHD and DM;CAD mortality; CABG<45 

years). The risk of having heart condition in those that are Hp 2.2 is almost 2. Hp1-1 is 

associated with non significant overall. If the Hp1.1 genotype is present and susceptibility to 

Heart condition (CHD; CHD and DM;CAD mortality; CABG<45 years). The risk of having 

heart condition in those that are Hp 1.1 has although an effect tendentially to be decreased 

although n.s.. 

In this study for asthma patients: The distribution of Hp * 1 and Hp * 2 allelic frequencies 

and genotype frequencies (Hp 1-1, Hp 2-1, Hp 2-2) did not present statistically significant 

differences between the asthmatic patients and the control group (p> 0 , 05). Hp 2-2 present 

lower circulating protein levels when compared to Hp 2-1 and Hp 1-1, and the difference is 

statistically significant (p = 0.000). Lower levels of Hp in individuals who are homozygous for 

allele 2 may be associated with an increased risk of cardiovascular disease and other 

comorbidities that may compromise the prognosis of these patients. 

For the NO associated systems there are 3 isoenzymes of the nitric oxide synthase (NOS): 

neuronal (nNOS or NOSI-chromosome 12); Inducible NOS (iNOS or NOS II) - on 

chromosome 17; Endothelial NOS (eNOS or NOS III) on chromosome 7. 

Nitric oxide (NO) originated from NOS, in addition of being a signaling molecule, plays an 

important role in the defense mechanisms against infectious agents and participates in the 

inflammatory process, correlating with bronchial hyperreactivity and asthma severity. The 

amount of NO can be modulated by NOS (I, II, III) polymorphisms. NO either directly or 

through interference with homocysteine levels may interfere with CVD(44). 
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The endothelial nitric oxide synthase (eNOS) could be a candidate gene for coronary 

artery disease (CAD) (144) although there is some controversy about this subject (144). 

Endothelial cells produce nitric oxide (NO), that regulates blood pressure and vascular blood 

flow. Endothelial nitric oxide synthase (eNOS) gene polymorphisms are associated with 

coronary artery disease, and other CVD such as hypertension. 

In this literature review and meta-analysis for CVD in this thesis: Endothelial nitric oxide 

synthase (eNOS) is one of the most important candidate genes in coronary artery diseases 

and CVD in general namely the functional polymorphism (bb) within eNOS gene : a 27 bp 

VNTR on its intron 4.  

These studies had high heterogeneity (68%) the values of fixed (OR:0.91)and random effect 

(OR:0.88)are very similar and are associated with decreased risk of Heart Disease(HTA) if 

the genotype b/b is present in eNOS polymorphism and susceptibility to Heart 

condition(HTA) although n.s.. For a/a: These studies had low heterogeneity (22%) the values 

of fixed (OR:1.85)and random effect (OR:1.63)are very similar and are associated with 

increased risk of Heart Disease(HTA) if the genotype aa is present in eNOS polymorphism 

and susceptibility Heart condition(HTA) although n.s..  

In this study for asthma patients:  For some authors (145) the bb genotype is associated 

with pulmonary hypertension and hypoxemia in some patients with respiratory disease.. 

In our study group: for the polymorphism in eNOS intron 4: Homozygous a / a; 

Heterozygotes ab; Homozygous b / b shows differences in the distribution of genotypes (p 

<0.05) between asthmatics and control group. Being the least frequent a /a on asthmatics.  

Those who express allele b (ab+bb) have an increased risk almost 12 times (crude) and 

almost 14 times (adjusted) of having asthma when compared with control (OR: 

11,972[1,563;91,683]; p  avalue =0,017 ;OR: 13,582[1,757;104,967]; p bvalue =0,012). Those 

who are homozygous for the allele a (genotypes aa) have protection of having asthma when 

compared with control (crude:OR 0,088[0,011;0,678]; p  avalue =0.020); adjusted:OR: 

0,076[0,010;0,596]; p bvalue =0.014). 

In this literature review and meta-analysis for CVD in this thesis NOS2 polymorphism 

(intron 16 - 88GT); NOS2 polymorphism (exon 16-14CT); NOS2 polymorphism (intron 20 - 

IVS20 + 524 GA): Usually, there is no inducible nitric oxide synthase (NOS2) in the normal 

heart (44,104), however macrophages associated with repair following various forms of 

cardiac damage contain this isoform-NOS2 and its expression is induced by pro-

inflammatory mediators. 

However, some authors refer that in some inflammatory diseases such as rheumatoid 

arthritis there is the potential contribution of inducible and endothelial nitric oxide synthase 

(iNOS/ NOS2) gene polymorphisms to cardiovascular (CV) events. 
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Several candidate genes (EGF, LTA, HIF1A, HIF1AN, MMP2, MMP9, iNOS, NOS3 and 

VEGF) play a role in angiogenesis and endothelial dysfunction. Polymorphisms in 

angiogenesis-related genes have been associated with CVD and respiratory diseases such 

as asthma. Inducible nitric oxide synthase (iNOS)  catalyzes the synthesis of nitric oxide 

(NO), which can be proangiogenic and iNOS is overexpressed in some diseases (e.g.: 

asthma) and some inflammatory cells such as macrophages. 

Accelerated atherosclerosis and CVD might be associated with the traditional CV risk factors 

such as age and hypertension as well as non-traditional risk factors comprising current 

inflammation associated with asthma and genetic polymorphisms that predisposes to 

different status of oxidative stress and inflammation. In this multiple risk factor assessment, 

the risk charts that are based only on traditional risk factors are insufficient to capture CV risk 

extent in CVD and bronchial asthma. 

NOS2 polymorphism (Intron 16 + 88 G> T) (rs9282801) - In this study for asthma patients:   

One of the functional polymorphisms with relevance to iNOS enzyme activity constitutes a 

transition from T to G in intron 16 (rs9282801) .  For this polymorphism there is no increased 

risk of having asthma when compared with controls. 

NOS2 polymorphism (intron 20 - IVS20 + 524 GA) - In this study for asthma patients    : 

One of the functional polymorphisms with relevance to iNOS enzyme activity constitutes a 

transition from G to A in intron 20 (rs944722). It might affect the splicing or protein 

expression of the gene increasing NOS2 activity and NO synthesis. We had 171 controls and 

153 asthmatics. For this polymorphism: in asthmatics the frequencies of allele G were 0.43 

and allele A: 0.57 In control group, the frequencies of allele G were 0.30 and for allele A : 

0.70 ; (OR: 1.785; 95%CI: [1.291-2.468]; p<0.001). There are statistical differences between 

these groups (p<0.001) with an increased risk of being asthmatic for those that express the 

Allele G of 1.8 times in asthmatics vs controls.  In the Dominant model( GG+AG vs AA) those 

who are homozygous for the allele A have no increased risk of  having asthma( crude: OR: 

0.688[.441;1.075]; p  avalue =0.101;adjusted values: OR: 0.709[.441;1.138]; p  bvalue 

=0.155). In the recessive model those who express allele A (AG+AA) have protection of 

having asthma when compared with controls (crude) and (adjusted) (OR: 0,187[0,087;0,405]; 

p  avalue <0,001;OR: 0,145[0,063;0,332]; p bvalue <0,001).  In the additive model 1(AA vs 

AG) those who are heterozygous with genotype AG have no increased risk of asthma when 

compared with controls ( crude:OR 1,028[0,639;1,653]; p  avalue =0,909 ; adjusted: OR: 

0,939[0,562;1,570]; p bvalue =0,810). In the additive model 2(AA vs GG) those who are 

homozygous for the allele G (genotypes GG) have increased risk of having asthma when 

compared with controls 5 times ( crude:OR 5,417[2,412;12,164]; p  avalue <0,001); and 7 

when adjusted for age and gender (adjusted:OR: 6,873[2,832;16,680]; p bvalue <0,001). In 



151 

 

relation to INOS intron 20 (IVS20 + 524 G> A (rs944722) the G allele and the GG genotype 

are more frequent in asthmatic patients when compared with controls. 

NOS2 polymorphism (exon 16-14CT)- In this study for asthma patients:   In this 

polymorphism the T allele is a risk factor for asthma, and the T allele is more frequent in 

asthmatic patients when compared with controls and is also associated with many diseases 

namely neoplastic diseases. 

Being the genotypes who express allele T more frequent in asthmatics and those who 

express allele C in controls. This single-nucleotide polymorphisms in coding region, exon16 

of iNOS causes non-synonymous amino acid substitution, that is also implicated in CVD. 

Induction of iNOS due to the different polymorphisms in this gene in cardiovascular tissues 

could contribute significantly to the depressed pressor response in anti-hypertensive 

response to vasoactive agents and potentially lead to endothelial dysfunction (44).  For this 

polymorphism in asthmatics the frequencies of Allele C 0.81 and of Allele T 0.19; in controls: 

0.92 and 0.08 respectively. There is statistical difference between these groups with a risk of 

being asthmatic of almost 3  for Allele  T(OR:2.858;IC95%[1.409;5.796]; p  a value =0.004. 

Genotypes in the asthmatics- CC: 65.7%; CT: 30.4%; TT: 3.9%; in control group- CC: 86.1%; 

CT:12.5%; TT: 1.4%. There is statistical difference between these groups (p=0.01).Being the 

genotypes who express allele T more frequent in asthmatics and those who express allele C 

in controls.  

In the Dominant model( CT+TT vs CC) those who are homozygous for the allele C have a 

protection of    having asthma when compared with controls ( crude: OR: 0.309; ;95%CI:  

[0.141;0.676]; p  avalue =0.003;adjusted values: OR: 0.326; 95%CI:  [0.144;0.738]; p  bvalue 

=0.007). 

In the recessive model ( TT vs CT+CC ) have no increased risk of having asthma when 

compared with controls (crude) and (adjusted) (OR: 0,345;95%CI:  [0,038;3,153]; p  avalue 

=0,346;OR: 0,347; 95%CI: [0,034;3,582]; p bvalue =0,374. 

 In the additive model 1(CC vs CT) those who are heterozygous with genotype CT have an 

increased risk of asthma of 3 times when compared with controls ( crude:OR: 3,187 ; 95%CI: 

[1,406;7,227]; p  avalue =0,006 ; adjusted: OR: 3,002; 95%CI [1,276;7,062]; p bvalue =0,012). 

In the additive model 2 (CC vs TT) those who are homozygous for the allele T (genotypes 

TT) have not increased risk of having asthma when compared with controls ( crude:OR 

:5,701; 95%CI :[0,403;34,025]; p  avalue =0,248); and 7 when adjusted for age and gender 

(adjusted:OR: 3,700; , 95%CI :[0,345;39,681]; p bvalue =0,280). 

Myeloperoxidase (MPO)  is an important enzyme (147,148), in the regulation of oxidative 

stress through the production of hypoalogenated compounds, which may also contribute to 

the oxidative modification of lipids, proteins and DNA and also play an important role in 

innate immunity. Still play an important role in irreversible airway obstruction in asthmatics. 
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MPO can accelerate the process of atherosclerosis through oxidative stress, modifying high 

and low density lipoproteins and production of other bioactive molecules. The polymorphism 

(MPO 463G> A, rs2333227) results in different expressions at the MPO level and the AA 

genotype may be protective against CVD. Myeloperoxidase (MPO) -463G/A gene 

polymorphism may be associated with an increased risk of developing coronary artery 

disease (CAD) and increased mortality associated with CVD. 

In this literature review and meta-analysis for CVD in this thesis: for the genetic model 

GG/total ,this studies had medium heterogeneity (45%) the values of fixed and random effect 

are very similar and is associated with higher overall effect and a trend to be significant 

(p=0,0521)if the GG genotype is present in MPO (−463G>A (rs2333227) polymorphism 

and susceptibility to Heart condition CAD; Nephrosclerosis hypertensive; HTA; Carotid 

atherosclerosis) in the Fixed effect model   .The random overall effect is non significant 

(ns)(p=0.1845). 

For the Genetic model  AA/total( heart disease (CAD; Nephrosclerosis hypertensive; HTA; 

Carotid atherosclerosis), this studies had low heterogeneity (0%) the values of fixed and 

random effect are very similar and is associated with higher risk and significant ( if we 

consider the fixed effect model)if the AA genotype is present in MPO (−463G>A (rs2333227) 

polymorphism and susceptibility to Heart condition CAD; Nephrosclerosis hypertensive; 

HTA; Carotid atherosclerosis) in the Fixed effect model (p= 0.0065).  This CI95% shows that 

the overall effect is significant with a global risk effect (fixed effect) is 1,34 of having a heart 

condition (CAD; Nephrosclerosis hypertensive; HTA; Carotid atherosclerosis) if the AA 

genotype is present. The study of Nikpoor et al with great weight (28,2%) the  CI95% shows 

that the effect is significant with OR 1,56 of having a heart condition. 

In this study for asthma patients:  For MPO the polymorphism -463 GA (rs2333227) in the 

promoter region of the gene, genotypes carrying the allele A are more frequent in asthmatics 

and the genotypes bearing the G allele more frequent in the controls. 

MPO levels: Asthma levels in MPO are higher than in the control group, genotypes 

expressing the A allele are related to lower levels (being the AA and GA  with lower MPO 

levels than GG)  as well as a tendency to have allergic asthma. There are differences in 

MPO levels by gender in asthmatics (p=0.038) and in control group (p=0.000), having the 

women in controls higher levels and in the asthmatics lower levels.  Allele A appears to be 

associated with lower levels of MPO in asthmatic patients as well as a tendency to have 

allergic asthma and a lower prevalence of CVD, and may be protective (the AA genotype) for 

premature coronary disease. 

In the beta2-adrenergic receptor (ADRB2) gene , the polymorphisms: Arg16 Gly 

(rs1042713) the Arg / Arg homozygotes for the polymorphisms: Arg16 Gly (rs1042713) have 

a reduced response to beta2 agonists being subject to tachyphylaxis which makes these 
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patients susceptible to novel therapeutic approaches. The Arg allele was associated with 

poor asthma control, a worst lung function and bronchial hyperreactivity (60,61). 

In relation to hypertension and cardiovascular disease, the in vitro studies of agonist 

stimulation of the Gly receptors show an increase in downregulation. 

In this literature review and meta-analysis for CVD in this thesis:   These studies had 

low heterogeneity (0%) the values of fixed and random effect are very similar and is 

associated with higher risk although not significant if the AA genotype is present in Beta2 

adrenoreceptor polymorphisms: Arg16Gly (rs1042713) and susceptibility to Heart 

condition (MI; CHF and HF; HTA). This CI95% shows that the overall effect is non 

significant(ns). Even in the study of Leineweber et al with major weight (31,7%) the  CI95% 

shows that the effect is non significant (ns). 

These studies had moderately high heterogeneity (56%) the values of fixed and random 

effect are very similar and is associated with higher risk and significant (if we consider the 

fixed effect model) if the GG genotype is present in Beta2 adrenoreceptor polymorphisms: 

Arg16Gly (rs1042713) and susceptibility to Heart condition (MI; CHF and HF; HTA). This 

CI95% shows that the overall effect is significant with a global risk effect( fixed effect) is 1,33 

of having a heart condition (MI; CHF and HF; HTA) if the GG genotype is present, and 

significant. Two studies of Leineweber et al with major weight(31,7%) and Xie et al (weight 

9,9%) the  CI95% shows that the effect is significant with OR 1,45 and 2.20 respectively of 

having a heart condition. 

In this study for asthma patients:  In this study population those who have allele A as 

homozygous or heterozygous and younger than 30 years, have an increased risk: 

OR:7,134[1,064;47,842]; p value=0,043 of having asthma. 

The major risk factors for cardiovascular disease (CVD) are related to changes in cholesterol 

metabolism , blood pressure regulation , diabetes, obesity among others(62).However like in 

respiratory diseases and cancer the exposure to environmental pollutants and tobacco 

exposure could also increase CVD risk and asthma susceptibility. The concept that the 

mechanisms of detoxification regulate disease susceptibility through detoxification 

mechanisms such as  Glutathione S-transferases (GSTs) is very important in asthma and 

CVD. 

In this literature review and meta-analysis for CVD in this thesis; Genetic model): 

GSTM1 * 0/total (heart diseases(HDs) (CAD associated or independent of smoking status; 

HTA);   these studies had high heterogeneity (96%) the values of fixed and random effect are 

different and is associated with overall effect non significant n.s. (p=0,2789)if the null 

genotype is present in and susceptibility to Heart condition (CAD associated or independent 

of smoking status; HTA). Random effects model 1.4878 [0.7248; 3.0543]  z=1.08 ;p=  

0.2789. 
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Genetic model : GSTT1 * 0/total( heart diseases(HDs) (CAD associated or independent of 

smoking status; HTA); these studies had high heterogeneity (95%) the values of fixed and 

random effect are different and is associated with overall effect significant (p=0,0495)if the 

null genotype is present in and susceptibility to Heart condition (CAD associated or 

independent of smoking status; HTA). Random effects model 2.3599 [1.0018; 5.5595]  

z=1.96;p=   0.0495; with OR of having heart condition of 2 if they are GSTT1 * 0. 

In this study for asthma patients:  In this study sample for GSTT1 : There are differences 

in the frequencies of genotypes between asthmatics and controls(p=0.029). being the 

GSTT1*0 more frequent in asthmatics and for GSTM1 There are no differences in the 

frequencies of genotypes between asthmatics and controls. 

The chromosomal region 1q21 that has been linked to allergy,atopic dermatitis and asthma 

in previous studies, with a peak linkage overlying the epidermal differentiation complex 

(EDC) and its genes polymorphisms are also related with an increased risk of CVD. 

In this thesis we have studied LELP1 polymorphism LELP-1(67) (late cornified envelope-like 

proline-rich 1) polymorphism [rs7534334] located within the EDC complex and There is not a 

significant evidence, that LELP1 polymorphism (rs7534334) could be a genetic marker for 

atopic asthma (p>0.05) in this hospital-based population.  

MTHFR could have a role on epigenetics and susceptibility to asthma and CVD and related 

with  homocysteine metabolism representing another model of gene-environment interaction 

but its role in asthma and atopy is controversial (149). 

Elevations in homocysteine may be caused by genetic defects in enzymes involved in its 

metabolism such as the polymorphism in the gene coding for the 5,10-methylene 

tetrahydrofolate reductase (MTHFR) (C677T, Ala --> Val) that is associated with a decreased 

activity of the enzyme due to its thermolability. In case of homozygosity (TT) for the Val 

allele, a relative deficiency in the remethylation process of homocysteine into methionine 

leads to a mild-to-moderate hyperhomocysteinemia, a condition recognized as an 

independent risk factor for atherosclerosis and CVD. 

In this literature review and meta-analysis for CVD in this thesis: Genetic model ): 

TT/total( heart diseases(HDs) (CHD; CAD;MI; CAD <45 years); this studies had low 

heterogeneity (1%) the values of fixed ( OR:1,21) and random effect (OR:1,20) are very 

similar and is associated with a non  significant overall  effect : 1.2114 [0.9756; 1.5042] 

z=1.74   ; p=0.0824,if the genotype TT   is present  and susceptibility to Heart condition 

(CHD; CAD;MI; CAD <45 years).  Genetic model ): CC/total( heart diseases(HDs) (CHD; 

CAD;MI; CAD <45 years); this studies had high heterogeneity (85%) the values of fixed ( 

OR:0,72) and random effect (OR:0,66) are very similar and is associated with a significant 

overall  effect : Random effects model : OR:0.6552 [0.4428; 0.9694] z=-2.12  ; p= 0.0344 ,if 
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the genotype CC   is present  and susceptibility to Heart condition (CHD; CAD;MI; CAD <45 

years), there is a decreased risk of HDs. 

In this study for asthma patients:  in this study sample for (MTHFR) (C677T, Ala --> Val) 

in asthmatics there is a trend to have statistical differences between these groups (p=0.079), 

being the CC (52.6%) more frequent in asthmatic allergic patients and CT(61.9%) in 

asthmatic non-allergic patients. Epigenetics is likely to be involved in the biology and 

molecular pathways of the major nosologic cardiac syndromes, putting MTHFR in the 

pipeline of candidate genes in asthma and CVD. 

There is a molecular, cellular and clinical heterogeneity among patients with asthma and 

patients with CVD. This heterogeneity might link some genetic risk profiles that could be 

helpful to decide target therapies and delineate prevention programs. 

These assumptions define the need of profiling genetic risk scores and noninvasive 

biomarkers that could better engage against the epidemics of NCDs worldwide and facilitate 

the assessment of novel target therapies as in asthma as in CVD. 
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CHAPTER VI. Conclusions 
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CHAPTER VI. Conclusions 

 

These polymorphisms may lead to different genotype-dependent therapeutic responses as 

well as different methylation pattern that could contribute to different endotypes / phenotypes 

in asthma with different probabilities of developing asthma and/or cardiovascular diseases 

and its most relevant risk factors such as obesity, dyslipidemia, diabetes and hypertension as 

well as more severe or/and atopic asthma. 

The characterization of heterogeneity of asthma and CVD has promoted the concept that 

these diseases +«of multiple phenotypes or consistent groupings of characteristics.  

These phenotypes were initially focused on combinations of clinical characteristics, but they 

are now evolving to link biology to phenotype. 

The mapping of genetic susceptibility by candidate genes approach and the mechanistic 

approach of asthma and CVD is considered a hallmark of asthma and CVD, putting the 

emerging biomarkers and genetic susceptibility to disease in relation to asthma and CVD as 

the mainstream in its response to target therapy. 

Co-morbidities such as Cardiac failure and lifestyle and environmental (like pollutants indoor 

and outdoor) and social factors not related with the disease-“treatable traits”-could influence 

its outcome (systemic inflammation non-type 2-alternate asthma paradigm) . Otherwise 

inflammatory subtypes of asthma (namely allergic inflammation type 2 high-current asthma 

paradigm) could have biomarkers that points to a better or worst response to corticosteroids 

and might differentiate among the heterogeneity of the asthma disease and be a better guide 

to precision medicine and target therapies. 
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CHAPTER VII. Future perspectives 
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CHAPTER VII. Future perspectives 

 

The association between different gene polymorphisms and the phenotypic expression of 

heart diseases and susceptibility to asthma and its severity is the main scope of this thesis. 

With this thesis I also wanted to investigate what could be the influence of genetic factors 

when compared with conventional risk factors and its additive effect on the outcome of the 

disease and co-morbidities. 

Asthma and CVD has been considered as single diseases for years, but recent studies have 

increasingly focused on its heterogeneity linking genetic predisposition to phenotypes.  

The genetic factors and biomarkers will be central and required in future studies when we 

intended to evaluate a particular outcome, or personalizing emerging therapies (although 

they might require validation and standardization). 

Gene polymorphisms and expression, functionality of protein networks, complex interactions 

between genetic, epigenetic such as environmental factors, associated with the integration of 

multiple levels of information is nowadays the hallmark of bioinformatics and systems 

medicine and could update the progress in pharmacogenomics and pathophysiology of 

asthma and cardiovascular diseases. 
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 CHAPTER IX.Annexes (Figs.) 

 

 

Gel photos 

 

 

 

Fig. 1a  : The insertion/deletion (I/D) polymorphism of ACE (rs4340). 

 

 

 

 

                

 

Fig. 2a : The polymorphism of AGTR1 1166A/C (rs5186) was determined by PCR-RFLP 
and, according with the fragment, we have: (lines 1, 3, 4 and 8: AA (350 bp); Line 5: CC (139 
+ 211 bp) and Line 2, 6 and 7: AC (350 + 139 + 211 bp).  
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Fig.3a: Haptoglobin Genotypes in polyacrylamide gel 

 

 

 

 

 

 

 

 

 

 

 
Fig 4a:eNos polymorphism(Alelo a/a - 393 bp (Homozygous); Alelo a/b – 393 bp and 420 bp 
(Heterozygous); Alelo b/b – 420 bp (Homozygous – wild type) 
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Fig. 5a - Electrophoretic profile of NOS2 gene fragments (exon-16) on agarose gel. M-DNA 

molecular weight marker (DNA Ladder 50 bp); 2 and 5 homozygous phenotype without CC 

mutation (285 bp + 170 bp); 1 and 3 heterozygous phenotype CT (285 bp + 170 bp + 137 bp 

+ 33 bp); 4 - homozygous phenotype with TT mutation (285 bp + 137 bp). 
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Fig. 6a - Electrophoretic profile of fragments of the NOS2 gene (intron-16) on agarose gel. 

M-DNA molecular weight marker (DNA Ladder 50 bp); 2, 3 and 4 - homozygous phenotype 

without GG mutation (455 bp); 5 and 7-heterozygous phenotype GT (455 bp + 263 bp + 192 

bp); 1 and 6 - homozygous phenotype with TT mutation (263 bp + 192 bp). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7a - Electrophoretic profile of NOS2 gene fragments (intron 20) on agarose gel. M-DNA 

molecular weight marker (DNA Ladder 50 bp); 5 - homozygous phenotype without GG 

mutation (75 bp + 54 + 39 bp); 3, 6 and 8 - heterozygous phenotype GA (129 bp + 75 bp + 

54 bp + 39 bp); 1, 2, 4 and 7 - homozygous phenotype with AA mutation (129 bp + 39 bp). 
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Fig.8a: The polymorphism of MPO (−463G>A (rs2333227)) was determined by PCR-RFLP: 
lines 3 and 8: AA (289 bp+ 61 pb); Lines 2, 6 and 7: AG (289 + 169 + 120 + 61 bp) and Line 
4, 5 and 9: GG (169 + 120 + 61 bp). The M (line 1) is the DNA ladder (50 bp GeneRuler). 
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Fig.9a: Agarose 3 % with different genotype of Arg16Gly  polymorphism determined with 
polymerase chain reaction- restriction fragment length polymorphism.n There were one 
fragment of 308 bp for homozygous without mutation (ArgArg), three fragments of 308 bp, 
291 bp and 17 bp for heterozygous ArgGly and  two fragments of 291 bp and 17 bp for 
homozygous with mutation (GlyGly). 

 

 

 

Fig.10 a: The presence of 230 bp fragment represent GSTM1 non-null genotypes; The 

presence of 480 bp fragment represent GSTT1 non-null genotypes; the 157 bp fragment 

corresponds to GSTM4 is used as a internal control for amplification 

AG      AA      AG                                                                                                                                                                               AA      AG AG       AG        AG        AG   AG      

308 

291 

480 bp 
230 bp 
157 bp 
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Fig.11a:LELP1 polymorphism: : the TT genotype gives rise to one single band of 506 bp; the 
CC genotype appears as two bands, one with 339 bp, and other with 167 bp; the CT 
genotype has all the three bands. 

 

 

 

 

 

 

 

 

                                        

 

Fig12a: MTHFR gene polymorphism C677T (rs1801133) (PCR-RFLP MTHFR): There were 
one fragment of 198 bp for homozygous without mutation (CC), three fragments of 198 
bp,175 bp and 23 bp for heterozygous CT and  two fragments of 175 bp and 23 bp for 
homozygous with mutation (TT). 
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Table IV.4.1a:Participant’s demographic and clinical characteristics 

 
 
 

 

 

 

 

 

 

 

 

 

Bolded results are less than 0.05 of statistical significance; p*, p value of χ2 test values, the 

values represent absolute frequencies (relative frequencies, %); p†, Independent sample T-

test, the values represent means ± standard deviation (SD); n.a., non applicable. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 Controls Asthma p value 

N (%) 45 (48.9) 47 (51.1) n.a. 
Female 14 (31.1) 29(61.7) 

0.006* 
Male 31 (68.9) 18 (38.3) 
Age (years)   (42.87 ±11.014)  (39.04  ±18.72) 0.234† 

< 15 0 (0.0) 5 (10.6) 
0.011* 15-30 6 (13.3) 13 (27.7) 

 > 30 39 (86.7) 29 (61.7) 
Atopy/No  Atopy n.a. 39/8 (83.0/17.0) n.a. 
Asthma controlled / 
Asthma not 
controlled 

n.a. 34/13(72.3/27.7)  n.a. 
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Table IV.4.2a: Distribution of allele frequencies  between controls and asthmatics   

 

 

IVS16+ 88T>G Controls Asthma p value OR(95%CI)a p a OR(95%CI)b p b 

Allele G 70 (0.78) 64 (0.68) 
0.140 

1.00(reference)    

Allele  T 20 (0.22) 30 (0.32) 1.641[0.848-3.173] 0.141 1.491[0.738-3.011] 0.265 

Ex16 +14C>T Controls Asthma      

Allele  C 85 (0.94) 73 (0.78) 
0.002 

1.00(reference)    

Allele  T 5 (0.06) 21 (0.22) 4.890[1.756-13.619] 0.002 4.387[1.523-12.635] 0.006 

IVS20 +524G>A Controls Asthma      

Allele  A 57 (0.63) 47 (0.50) 
0.094 

1.00(reference)    

Allele  G 33 (0.37) 47 (0.50) 1.727[0.958-3.114] 0.069 1.903[1.011-3.583] 0.046 

27-bp repeat in 

intron 4-eNOS 
Controls Asthma 

 
 

 
  

Allele  b 74 (0.82) 79(0.84) 
0.894 

1.00(reference)    

Allele  a 16 (0.18) 15 (0.16) 0.878[0.406-1.901] 0.742 0.770[0.332-1.784] 0.542 

ACE I/D Controls Asthma      

Allele D 52 (0.58) 59 (0.63) 
0.589 

1.00(reference)    

Allele  I 38(0.42) 35 (0.37) 0.812[0.449-1.467] 0.490 0.735[0.389-1.387] 0.342 

Bolded results are less than 0.05 of statistical significance. The values for allele frequencies represent absolute 

frequencies (relative frequencies, %). OR a , odds ratio, crude values; OR b , odds ratio; values adjusted for age and 

gender; CI, confidence interval; p values for  χ2 test values; pa, crude values; pb, values adjusted for age and gender 

(regression binary logistic). 
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Table IV.4.3a:Distribution of genotype frequencies  between asthmatics and controls 

 

 

SNPs Asthma/Controls   OR(95%CI)   pa    OR(95%CI)b            pb 

IVS16+ 88T>G      

GG 24/30 1.00(reference)    

GT 16/10 2.000[0.769-5.198] 0.233 1.506[0.519-4.374] 0.451 

TT 7/5 1.750[0.493-6.213] 0.581 2.002[0.486-8.255] 0.337 

GT/TT 23/15 1.917[0.825-4.455] 0.191 1.650[0.649-4.195] 0.293 

Ex16 +14C>T      

CC 29/41 1.00(reference)    

CT 16/3 7.540 [2.011-28.273] 0.002 7.259[1.736-30.350] 0.007 

TT 2/1 2.828[0.245-32.672] 0.571 1.005[0.071-14.248] 0.997 

CT/TT 18/4 6.363[1.949-20.771] 0.002 5.311[1.477-19.095] 0.011 

IVS20 + 524G>A      

AA 16/17 1.00(reference)    

GA 15/23 0.693[0.270-1.779] 0.446 0.681[0.242-1.919] 0.467 

GG 16/5 3.400[1.010-11.451] 0.048 4.654[1.165-18.601] 0.030 

GA/GG 31/28 1.176[0.501-2.760] 0.709 1.252[0.502-3.123] 0.630 

27-bp repeat in intron 4-eNOS      

bb 33/32 1.00(reference)    

ab 13/10 1.261[.484-3.283] 0.817 1.422[0.481-4.210] 0.525 

aa 1/3 0.323[.032-3.272] 0.627 0.142[0.010-2.082] 0.154 

ab/aa 14/13 1.044[0.425-2.563] 1.000 1.036 [0.381-2.815] 0.945 

ACE I/D      

DD 24/16 1.00(reference)    

ID 11/20 0.367[0.139-0.968] 0.070 0.360 [0.113-1.148] 0.084 

II 12/9 0.889 [0.305-2.94] 1.000 0.689 [0.213-2.230] 0.534 

ID/II 22/29 0.506[0.218-1.173] 0.166 0.435 [0.167-1.135] 0.089 

Bolded results are less than 0.05 of statistical significance.The values for genotype 

frequencies represent absolute frequencies . OR a odds ratio, crude values; OR b odds ratio, 

values adjusted for age and gender; CI, confidence interval; pa, crude values; pb, values 

adjusted for age and gender (regression binary logistic). n.a., non applicable. 
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Table IV.4.4a:Distribution of genotype frequencies  between controlled and uncontrolled 

asthma 

 

 

 

 

      

SNPs Controlled/uncontrolled 

asthma 

OR(95%CI)a pa OR(95%CI)b pb 

IVS16+   88T>G      

GG 21/3 1.00(reference)    

GT 8/8 7.000[1.476-

33.207] 

0.014 12.406[1.576

-97.620] 

0.01

7 

TT 5/2 2.000[0.321-

12.463] 

0.458 1.765[0.259-

12.017] 

0.56

2 

GT/TT 13/10 5.385[1.246-

23.277] 

0.024 7.917[1.389-

45.122] 

0.02

0 

Ex16 +14C>T      

CC 21/8 1.00(reference)    

CT 11/5 1.193 [0.314-

4.531] 

0.795 1.161[0.247-

5.454] 

0.85

0 

TT 2/0 n.a. n.a. n.a. n.a. 

CT/TT 13/5 1.010[0.271-

3.757] 

0.989 1.054[0.229-

4.844] 

0.94

6 

IVS20 + 524G>A      

AA 9/7 1.00(reference)    

GA 13/2 0.198[0.033-

1.181] 

0.075 0.185[0.019-

1.783] 

0.14

4 

GG 12/4 0.429[0.095-

1.925] 

0.269 0.469[0.089-

2.478] 

0.37

3 

GA/GG 25/6 0.309[0.082-

1.167] 

0.083 0.343[0.075-

1.579] 

0.17

0 
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27-bp repeat in 

intron 4-eNOS 

     

bb 23/10 1.00(reference)    

ab 11/2 0.418[0.078-

2.243] 

0.309 0.297[0.047-

1.858] 

0.19

4 

aa 0/1 n.a. n.a. n.a. n.a. 

ab/aa 11/3 0.627[0.143-

2.747] 

0.536 0.440 [0.086-

2.262] 

0.32

6 

ACE I/D      

DD 14/10 1.00(reference)    

ID 9/2 0.311[0.055-

1.762] 

0.187 0.272 [0.037-

2.018] 

0.20

3 

II 11/1 0.127 [0.014-

1.151] 

0.067 0.064 [0.005-

0.857] 

0.03

8 

ID/II 20/3 0.221[0.051-

0.955] 

0.043 0.146 [0.025-

0.845] 

0.03

2 

      

Bolded results are less than 0.05 of statistical significance.The values for genotype 

frequencies represent absolute frequencies . OR a odds ratio, crude values; OR b odds ratio, 

values adjusted for age and gender; CI, confidence interval; pa, crude values; pb, values 

adjusted for age and gender (regression binary logistic). n.a., non applicable. 

 

 

 F 
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Table IV.4.5a: Differences in  Genetic risk score between asthma and controls(Low; 
Intermediate; High) 
 
 

 

Genetic risk score Control/asthma pa value ORa(95%CI)  pa value 

low risk score= 

-0,992 

29/10 <0,001 1.00(reference)  

intermediate  risk 

score=1.045 

12/19 4.592[1.657-

12.724] 

0,003 

intermediate  risk 

score =1.150 

2/8 11.600[2.102-

64.013] 

0,005 

high  risk score=3.187 2/10 14.500[2.703-

77.779] 

0,002 

 

 

 

 

Bolded results are less than 0.05 of statistical significance.The values for Genetic risk score 

frequencies represent absolute frequencies . OR a odds ratio, crude values; CI, confidence 

interval; pa, crude values; (regression binary logistic). 
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Table IV.4.6a:Differences in  Genetic risk score between Controlled/Uncontroled asthma 

(Low; Intermediate; High) 

 

 

 

Genetic risk score Controlled/Uncon

troled asthma 

pa value ORa(95%CI)  pa value 

low risk score 

 ≤ -2,68 

15/0 <0,001 n.a. n.a 

intermediate  risk score 

 >-2,68 ≤-0,98 

13/3 1.00(reference)  

high  risk score 

>-0,98 

6/10 7.222[1.440-

36.224] 

0,016 

 

 

Bolded results are less than 0.05 of statistical significance.The values for Genetic risk score 

frequencies represent absolute frequencies . OR a odds ratio, crude values; CI, confidence 

interval; pa, crude values; (regression binary logistic).n.a.: because  in the uncontrolled group 

we had 0 individuals in the low grade Genetic risk score. 
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Abstract 
Background: Atopic dermatitis (AD) that begins in childhood and is the first step of the so-

called 'atopic march'. The chromosome 1q21 region has been associated with AD and 

psoriasis, with a peak in Epidermal Differentiation Complex (EDC) in a region of 2.05 Mb. The 

aim of this work was to study LELP-1 (late cornified envelope-like proline-rich 1) polymorphism 

[rs7534334] located within the EDC, in AD and asthma in two European populations: Portugal 

and Poland. 

Methods: We studied 110 individuals in the control group and 129 asthmatics in the 

Portuguese cohort; 100 controls and 45 patients with AD and asthma in the Poland cohort. 

Written informed consent was obtained from all participating individuals. LELP-1 genotypes 

were determined by the PCR-RFLP technique. All statistical analyses were carried out using 

SPSS 21.0 software. 

Results: The results were considered statistically significant with p<0.05. We found that the 

CC genotype was more frequent in Poland’s cohort with AD and asthma when compared with 

controls (p=0.004), (OR: 2.80 [1.34-5.82]; adjusted p=0.006) and the C allele was also a risk 

factor (OR: 2.40 [1.35-4.28]; adjusted p=0.003) to both diseases in this group. When compared 

the cohort from Portugal with Poland, there was a trend for TT genotype to be a risk for asthma 

in the Portuguese cohort (OR=7.49 [0.92-60.91], adjusted p=0.06). C allele was more frequent 

in the cohort from Poland and T allele, in the cohort from Portugal (p=0.047). 

Conclusion: These findings demonstrate that genetic variation of skin barrier genes like LELP-1 might 

contribute  
to allergic diseases. 

Keywords: LELP-1; Atopy; Atopic dermatitis; Asthma; Portugal;  

Poland  

Introduction 
Epidermal keratinocytes undergo a terminal differentiation and programmed cell death (physiological apoptosis) 

known as cornification [1-3]. Cornification leads to the cornified layer, and different genes proceed in an organized 

sequence to provide this outermost skin barrier in the spinous and granular layers that express proteins like keratins 

(namely: K1, K2 and K10) and non- keratin proteins like filaggrin (FLG), loricrin (LOR), involucrin (IVL) and small 

proline rich proteins (SPRRs) [4-7]. These proteins are cross-linked in the cornified cell envelope by transglutaminase 

enzymes, and this insoluble envelope associated with the keratin-containing macrofibrils fills corneocytes and with 

the lipids ,forms the skin barrier that protect from dehydratation and environment allergens [4].  
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Atopic dermatitis (AD), or eczema, is a skin disease often associated with other allergic diseases, such as, allergic 

rhinitis and asthma [8,9]. AD is very common in westernized societies, where it affects about 20% of children and 3% 

of adults [8-12]. In children with AD about 60% will develop asthma, being a strong predictor of subsequent asthma 

development and the natural history of atopic march. The biological approach of AD implies a defective barrier 

defect, and overexpression of inflammatory mediators associated with immune dysregulation [9]. 

FLG mutations predispose significantly to an increased risk to develop atopic eczema. Apart from FLG other proteins 

involved in skin barrier functions such as SPRR, lipids synthesis and metabolism, protease and protease inhibitor 

function, all seem to play a role. Besides skin barrier function, immune deviation versus a Th2 dominance and 

increased IgE production is also genetically determined. Polymorphisms have been found in genes encoding IL-4, IL-

13 and STAT-6, and recently a polymorphism on the high-affinity IgE receptor gene has been found. Using genome-

wide association studies, new genes with yet unknown functions have been determined to be associated with atopy 

and atopic eczema [13,14,15,16]. 

The molecular signature of AD is mainly associated with Th2 [8,1719] IgE high (extrinsic) and IgE low (intrinsic) 

mediated by keratinocyte thymic stromal lymphopoietin (TSLP) regulating dendritic cells. This Th2 activation 

contributes to barrier disfunction by impairing FLG and other skin barrier genes expression [20-23]. IL-22 and IL-33 

play also its role, [24,25] in this Th2 driven inflammation by allergens, associated with FLG and other EDC gene 

polymorphisms, and are also important in other allergic diseases such as asthma, besides AD. Biphasic T cell 

response in the skin (Th2 cells in acute AD; Th1 cells in chronic AD) [8] and reduced skin innate immune response 

[26,27] are characteristics of this disease. 

The epidermal and dermal AD transcriptomes and their respective contributions to abnormalities in respective 

immune and barrier phenotypes have been highlighted recently in lesional and nonlesional AD skin [28]. 

The upregulated genes in lesional epidermal transcriptome consisted of proliferation-related, EDC, inflammatory 

antimicrobial genes and the upregulated genes dermal transcriptome included T-cell activation, IL-2 receptor α, Th2-

related, Th22, Th17-related and collagen genes [24,25]. 

Studies of association of genes in AD put in evidence the cluster of the EDC [7,23] and other barrier candidates [29], 

but the most important associations were related to FLG (filaggrin) [13,30-32] and two null mutations (R510X and 

2282del4) [33,34]. In this study we have studied the role of LELP1 (another EDC gene) polymorphism (late cornified 

envelope-like proline-rich 1) [rs7534334] (a polymorphism 258 bp downstream of the LELP1) using the HapMap 

database (HapMap data rel28 Phase II+III, August 10, NCBI B36 assembly) and its association with atopic dermatitis 

and asthma in a Portuguese and Poland’s cohort. 

LELP1 codes for a SPRR (cornifin) family protein, [35] assuming that many of those proteins (FLG, SPRR, loricrin, 

involucrin) are stored and released from keratohyalin granules in the granular layer .The cell membrane is then, 

covered with cross-linked intercellular proteins forming the cornified envelope [2,6,36,37]. Transglutaminases 

crosslink intercellular proteins and also link lipids to the cornified envelope, forming also the lipid envelope to 

provide a water barrier function [37]. 

The chromosome 1q21 region [38] has been associated with skin pathology like AD, ichthyosis vulgaris and psoriasis, 

in a region of about 2.05Mb (mega basis) in Epidermal Differentiation Complex (EDC). 
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Bronchial epithelial cells and keratinocytes were found to have a high degree of overlap in gene expression [39]. 

Bronchial epithelial cells, similar to keratinocytes, express components that are able to form a cross-linked protein 

envelope that may contribute to an effective barrier against noxious stimuli and pathogens [39]. SPRRs are part of 

the portfolio of genes expressed by both bronchial epithelial cells and keratinocytes in response to pro-inflammatory 

cytokines, suggesting the importance of these proteins in host defense [40,41]. There is an epithelial-specific 

molecular signature of gene expression in bronchial epithelial cells and keratinocytes comprising a family member of 

keratins, small proline-rich proteins and proteinase inhibitors [39]. 

It has become clear that epithelia and also epithelial tissues [42,43] have three main mechanisms to protect the 

organism from pathogens [39], pollutants and allergens. First, the epithelial cells form an impermeable barrier which 

both prevents pathogen entry and minimizes dehydration (xerosis). Secondly, epithelial cells are capable of 

producing defense molecules such as antimicrobial peptides and proteinase inhibitors. Finally, these cells are able to 

produce signaling molecules such as cytokines and chemokines, playing an active role in innate and adaptive 

immunity. 

The aim of this work was to study the role of LELP-1 (late cornified envelope-like proline-rich 1) polymorphism 

[rs7534334] located on EDC, in atopic dermatitis and asthma in two different European populations: Portugal and 

Poland. 

Material and Methods 
The study population consisted of 110 individuals in the control group and 129 asthmatics from the Portuguese 

cohort and 100 controls and 45 AD with asthma from the Poland cohort. 

Written informed consent was obtained from all participating individuals. The genetic study on EDC has been 

approved by the Independent Bioethics Commission for research. 

Patients were diagnosed by physicians for asthma according to the guidelines of GINA, and as having atopy or not 

according to WAO/ EAACI guidelines, they were examined for a self-reported history of breathlessness, wheezing, 

atopic dermatitis and family history, atopic individuals have a positive skin prick test (SPT) for at least one of the 

common environmental allergens or the presence of specific IgE ,associated with high serum IgE levels estimated 

using enzyme-linked immunosorbent assay and suffered from asthma, or AD and asthma. The SCORAD (SCOring 

Atopic Dermatitis) index was completed in all patients with AD. The demographic and clinical details of the study 

population are given in Table 1. 

Genomic DNA Isolation 
Whole blood samples from patients and controls were stored with EDTA at -20°C. The genomic DNA was isolated 

through a nonenzymatic method (salting out method) adapted from Lahiri, D. K., & Nurnberger, J. I et al., 1991 [44]. 

http://dx.doi.org/10.4172/2155-6121.1000229
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Genotyping of Lelp-1 [Rs7534334] 
The LELP-1 genotypes were determined by the polymerase chain reaction and restriction fragment length 

polymorphism (PCR-RFLP) technique, the polymorphic region was amplified in a 50 μl reaction mixture: 10 mM of 

each primer (forward: 5´- CCTCCACCATGTACAACGCT-3´; and reverse: 5´- TTGCATTAAACCCATGCAGCC-3´), 200 ng of 

genomic DNA and 0.2 mM of PCR nucleotide Mix Thermo Scientific® DreamTaq Green containing 10 mM dNTPs, 1.5 

mM MgCl2, 1 U Taq polymerase. PCR conditions involved an initial denaturation of DNA at 94°C for 3 min,  
Portugal  Controls Asthma p. 
N (%)  110 (46.0) 129 (54.0) n.a. 
Female 42 (38.2) 82 (63.6) 

<0.001  
   

Male 68 (61.8) 47 (36.4)  

 Age (years) † 110 (42.82 ± 

10.88) 
129 (38.40 ± 19.24) 0.027 

<1515-30> 30 
0 (0.0) 16 (12.4) 

 <0.001  15 (13.6) 37 (28.7) 
95 (86.4) 76 (58.9) 

Atopy  n.a. 111 (86.0) n.a. 
Asthma controlled  n.a. 92 (71.3) n.a. 
Poland   Controls  AD and Asthma p. 
N (%)  100 (69.0) 45 (31.0) n.a. 
Female  64 (64.0) 27 (60.0) 

0.712  
   

Male  36 (36.0) 18 (40.0)  

Age (years) †† 100 (25) [18-61] 45 (23) [7-59] 0.027 

<15 15-30> 30 
0 (0.0) 8 (17.8) 

 <0.001  66 (66.0) 27 (60.0) 
34 (34.0)  10 (22.2) 

Atopy  n.a. 38 (84.4) n.a. 
Asthma controlled  n.a. 45 (100.0) n.a. 
SCORAD †  n.a. 45 (54.7 ± 20.5) n.a. 
The  values  represent   absolute   frequencies  (relative   frequencies,   %)   for dichotomous dependent variables. Values statistically significant for p value <0.05; p, χ2 

test values. p, † Independent sample-test; and values are means ± standard deviation (SD). p, †† Mann-Whitney-test; and values are (median) and [range]. n.a., non 

applicable; AD, Atopic Dermatitis; SCORAD, SCOring AD index. 

Table 1: Participant´s characteristics of Portugal and Poland with asthma, AD and controls. 

followed by 35 cycles of amplification at 94°C for 30 s, 53°C for 45 s, 72°C for 1 min and 30 s and one cycle at 72°C for 

5 min. The amplified fragments of 506 bp were then digested by the restriction endonuclease MwoI at 60°C for 3 hr 

according to the manufacturer’s recommendations. The digestion products were analyzed by electrophoresis in 3% 

agarose gel stained with ethidium bromide (10 μg/mL) for 60 minutes, with 80 volts. With this process we are able to 

differentiate genotypes: the TT genotype gives rise to one single band of 506 bp; the CC genotype appears as two 

bands, one with 339 bp, and other with 167 bp; the CT genotype has all the three bands. Statistical Analysis 

Observed genotype frequencies were tested for deviation from HardyWeinberg equilibrium (HWE) with the Chi-

square goodness-of-fit test. This test was also used to evaluate the significant differences between groups, in and 

within the two populations, in order to know if the odds ratio (OR) test was justifiable. In the two cohorts OR for 

patients risk and the corres ponding 95% confidence intervals (95% CI) were calculated using logistic regression 

analysis. This test was applied to the polymorphism, to analyze its risk factor individually. The power of the sample 
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was verified every time there were statistical differences among genotype distribution. All statistical analyses were 

carried out using the SPSS 21.0 software. The results were considered statistically significant for p<0.05. 

Results 
LELP-1 polymorphism [rs7534334] was evaluated in the 2 cohorts: Portugal and Poland, within 2 atopic diseases: 

AD and asthma. Table 1 shows the characteristics of participants of these two cohorts compared with controls. 

In the Portuguese cohort there are differences in gender, being the females more frequent in asthmatics and males 

in the control group (p<0.001) (Table 1). The asthmatics in the Portuguese cohort were younger than the control 

group (p=0.027) (Table 1) and this was more evident when we stratified the groups being the older than 30 years 

more frequent in the control group (p<0.001) (Table 1). The asthmatic patients were in the majority of them atopic 

(86%) and had their asthma symptoms controlled (71.3%) (Table 1). 

In the Polish cohort there were no differences by gender (p=0.712) (Table 1). The patients (AD and asthma) from 

Poland were younger than the control group (p=0.027) (Table 1) and this was more evident when we stratified the 

groups by age being the older than 30 years more frequent in the control group (p<0.001) (Table 1). The majority of 

asthmatic patients are atopic (84.4%), all of them had the asthma symptoms controlled under anti-asthmatic 

treatment. The SCORAD index has been done in all patients with AD with a mean (mean ± SD: 54.7 20.5) compatible 

with a more severe cutaneous disease (Table 1).There is a significant difference (p=0.035) being the value of SCORAD 

by genotype (mean ± SD): CC (52.96 ± 18.94); CT(59.72 ± 19.9) and TT (8 ± 0). We think that these findings might be 

indicative of a trend for those who express allele C to have higher values, but we think that we must increase the 

sample to have more robust results. 

In the control group and between the two cohorts, there were statistical significances in gender and age; being the 

females more frequent among the controls of the Poland’s cohort and the males among the Portuguese cohort 

(p<0.001) (data not showed); and the controls from Poland were younger than the control group from Portugal 

(p<0.001) (data not shown). 

LELP-1 polymorphism [rs7534334] 

For LELP-1 polymorphism [rs7534334] in the Portuguese cohort with asthma comparing with controls, there were no 

differences in genotype and allele frequencies (p>0.05) (Table 2). The genotype distributions in asthma and controls 

were in HWE (p>0.05) (data not shown). 

The CC genotype was more frequent in the cohort from Poland with AD and asthma (p=0.004) (power sample>0.8) 

(Table 2) being a risk (OR: 2.80 [1.34-5.82]; adjusted p=0.006) to both diseases in this cohort when compared to 

controls (Table 2). The genotype distributions in patients and controls were in HWE (p>0.05) (data not showed). The 

C allele (p=0.001) was more frequent in the cohort from Poland with asthma and atopic dermatitis being a risk factor 

to both diseases in this group (OR: 2.40 [1.35-4.28]; adjusted p=0.003) (Table 2). 
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The values for the genotypes and respective allele frequencies represent absolute frequencies (relative frequencies, %). Values statistically significant for p value < 0.05; 
AD, Atopic Dermatitis; OR, odds ratio; CI, confidence interval; p, χ2 test values; p a, crude values; p b, values adjusted for age and gender (binary logistic regression). 

Table 2: Distribution of LELP-1 [rs7534334] genotype in asthma, AD and controls in the two cohorts (Portugal and Poland). 

    OR [95% CI] 
  

OR adjusted b   
  

p a 
  

p b 
p  OR crude a 

Portugal  Controls  Asthma 
           

LELP-1 n=110  n=129      
rs7534334   

CC 45 (40.9) 58 (45.0) 
   1.18 [0.71-1.97] 1.07 [0.62-1.83] 0.528 0.807 

CT 50 (45.5) 55(42.6) 0.817  0.89 [0.53-1.45]  0.95 [0.55-1.62] 0.662 0.841 

TT 15 (13.6) 15 (13.6) 
   0.90 [0.42-1.91] 0.90 [0.42-1.91] 0.777 0.95 

C 140 (0.64 140 (0.64 0.565  1.12 [0.77-1.64] 1.04 [0.70-1.55] 0.546 0.834 

  T 80 (0.36) 87 (0.35)  
   0.89 [0.61-1.30] 0.96 [0.65-1.42] 0.546 0.834 

Poland  Controls AD and Asthma      
LELP-1 n=100 n=45 

rs7534334   

CC 32 (32.0) 26 (57.8) 
   2.91 [1.41-6.00] 2.80 [1.34-5.82] 0.004 0.006 

CT 53 (53.0) 18 (40.0) 0.004  0.59 [0.29-1.21] 0.60 [0.29-1.24] 0.149 0.167 

TT 15 (15.0) 1 (2.2) 
   0.13 [0.02-1.00] 0.14 [0.02-1.07] 0.051 0.058 

C 117 (0.59) 70 (0.78) 0.001  2.45 [1.39-4.39] 2.40 [1.35-4.28] 0.002 0.003 

T 83 (0.41) 20 (0.22) 
   0.41 [0.23-0.71] 0.42 [0.23-0.74] 0.002 0.003 

 

There were significant differences in the mean age between the two cohorts, being the patients in the Portuguese 

cohort older then  

the Poland’s patients (p<0.001) (Table 3). Comparing the 2 cohorts of patients there were no significant differences 

in gender distribution or atopic status (p>0.05) (Table 3). 

When comparing the two cohorts, the CC genotype was more evident in the cohort from Poland and the TT 

genotype in the cohort from Portugal although it didn’t reach the significance level (p=0.094) (Table 4). When 

considering all possible models of genotype analysis within these two cohorts, we found a trend for TT genotype to 

be a risk in asthma in the Portuguese cohort when comparing with patients with AD and asthma from Poland cohort 

(adjusted values: OR=7.49 [0.9260.91], p=0.06) (Table 4). 
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For allele frequencies, there were significant differences in the 2 cohorts, being the C allele more frequent in Poland 

and the T allele in Portugal (p=0.047) (Table 4). These results were reflected in risk analysis being, the C allele 

protector and the T allele a risk for asthma in in the Portuguese population when compared with the cohort from 

Poland (OR=0.53 [0.29-0.95] and OR=1.90 [1.06-3.42], adjusted p=0.033, respectively) (Table 4). 

Discussion 
This study is part of a project which purpose is to identify novel polymorphisms in genes involved in skin barrier 

function and its association with atopic diseases. 

LELP1, is a protein-coding gene located at chromosome 1q21 that belongs to the cornifin family (SPRR). The SPRR 

gene family, which includes the rs7534334- tag SNP of LELP1 is in the EDC complex that contains various other 

important genes such as IVL, LOR, FLG , trichohyalin (THH) and the S100 gene family [2,6,37]. 

Some authors [35], have found an association of this chromosome 1q21 tagged single nucleotide polymorphism 

(SNPs) within the LELP1 gene [rs7534334] with serum IgE levels. These results pointed to the need for research on 

LELP1 and other genes on EDC that could be related with many inflammatory diseases of the skin like AD and 

psoriasis. 

However, most of the studies that have been done linking EDC with atopic disease involves the two null mutations in 

the FLG gene (R501X and 2282del4), that are associated with skin diseases like AD and asthma with AD [33,45]. As far 

as we know, this is the first paper studying LELP1 on the EDC, in 2 European cohorts with atopic disease (AD and 

asthma). 

In the Portuguese cohort there were statistical differences within the control group by gender, being the females 

more frequent in asthmatics and males in the control group (p<0.001) and the asthmatics in the Portuguese cohort 

were younger than the control group (p=0.027). 

In the Poland cohort there were no differences by gender (p=0.712) and the patients (AD and asthma) from Poland 

were younger than the control group (p=0.027). 

According to authors that found differences in asthma and gender namely sex hormone estrogen and the 

physiopathology of asthma and increases in IL-4 and IL-13 production (46) we performed our analysis adjusted for 

gender and age between the controls and the patient groups. 

In our study with LELP1 polymorphism [rs7534334] we found that the CC genotype was more frequent in Poland’s 

cohort with AD and asthma when compared with controls (p=0.004), (OR: 2.80 [1.345.82]; adjusted p=0.006) and the 

C allele was also a risk factor (OR: 2.40 [1.35-4.28]; adjusted p=0.003) to both diseases in this group. When compared 

the cohort from Portugal with Poland, there was a trend for  
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Poland & Portugal  AD and Asthma Asthma  p 

N (%) 45 (25.9) 129 (74.1) 76 (58.9) 

Female  27 (60.0)  82 (63.6) 0.722 

Male 18 (40.0) 47 (36.4) 
  

Age (years) †† 45 (23) [7-59] 129 (38.0) [7-86]  <0.001 

<15 8 (17.8) 16 (12.4) 
  

15-30 27 (60.0) 37 (28.7) <0.001 

>30 10 (22.2) 76 (58.9) 
  

Atopy 38 (84.4) 111(86.0) 0.807 
The values represent absolute frequencies (relative frequencies, %) for dichotomous dependent  variables.  Values  statistically  significant  for  p value <0.05; p, χ2 test 

values. p, †† Mann-Whitney-test; and values are (median) and [range]. AD, Atopic Dermatitis; n.a., non applicable. 
Table 3: Participant´s characteristics of Poland and Portugal with asthma , AD. 
TT genotype to be a risk for asthma in the Portuguese cohort (OR=7.49 [0.92-60.91], adjusted p=0.06). C allele was 

more frequent in the cohort from Poland and T allele, in the cohort from Portugal (p=0.047). 

The molecular basis for the skin barrier deficiency could be a secondary phenomenon associated with the 

epidermal differentiation complex (EDC) and barrier candidate genes like FLG ( filaggrin) and LELP1 (late cornified 

envelope-like proline-rich 1) as we found in our results. 

Other authors [35], refer a correlation of log10 serum IgE levels and rs7534334 in a group of asthmatic patients 

being the mutant genotype (TT) in patients, those with higher levels of IgE comparing with controls (TT) and 

comparing with wild type genotype (CC) in patients (3.49 ± 0.91 vs 2.43 ± 0.52 vs 2.92 ± 0.59) .This point to the 

works who  

showed that when skin barrier function is compromised even without skin disease there is an increased incidence 

of atopic disease [28]. 

The clinical manifestations of atopic dermatitis in infancy are different from adults; first the lesions are on the 

cheeks and scalp, then the flexures, the posterior area of the scalp and popliteal region. In adults lichenified 

plaques of the flexures, head and neck are more frequent, with a chronic and relapsing skin inflammation, and a 

disturbance of epidermal-barrier function and IgE-mediated sensitization to allergens.  

   OR [95% CI] b 

OR adjusted  
a 

p  
b 

p  p a 

OR crude  
Portugal and 

Poland 
AD and Asthma Asthma      

LELP-1 n=45 n=129     
rs7534334   

CC 26 (57.8) 58 (45.0)  0.60 [0.30-1.19] 0.57 [0.28-1.17] 0.140 0.124 

CT 18 (40.0) 55 (42.6) 0.094 1.12 [0.56-2.23] 1.12 [0.54-2.31] 0.758 0.766 
TT 1 (2.2) 16 (12.4)  6.23 [0.80-48.40] 7.49 [0.92-60.91] 0.080 0.060 

C 70 (0.78) 171 (0.66) 0.047 0.56 [0.32-0.98] 0.53 [0.29-0.95] 0.043 0.033 
T 20 (0.22) 87 (0.34)  1.78 [1.02-3.12] 1.90 [1.06-3.42] 0.043 0.033 

The values for the genotypes and respective allele frequencies represent absolute frequencies (relative frequencies, %). Values statistically significant for p value<0.05; 
AD, Atopic Dermatitis OR, odds ratio; CI, confidence interval; pa, χ2 test values; p b, crude values; pc, values adjusted for age (regression binary logistic). 

Table 4: Distribution of LELP-1 [rs7534334] genotype between asthma and AD in the two cohorts (Portugal and Poland). 
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AD might be the first step of the so-called “atopic march” [9] that include other allergic disorders later in life such 

as asthma and allergic rhinitis. 

Some authors proposed that in a “dual” allergen exposure hypothesis the low dose exposure through the lesional 

skin in AD of the allergens might interfere with the uptake of the Langerhan’s cells that could polarize to a Th2 

response and IgE diathesis. By other way: early high dose exposition could induce tolerance, being proposed that 

Th1 and Tregs might interfere with the gut-associated lymphoid tissue and develop tolerance. 

In this hypothesis sensitization to allergens occur in the environmental exposure through the skin while the 

tolerance might occur when the allergens contact with the atopic patient via other route of absorption namely oral 

for food allergens [47]. 

This dual hypothesis point to the prioritization of the intensive treatment of AD in early infancy to decrease allergic 

sensitization and the atopic march with the emergence of asthma and allergic rhinitis [9,47-49]. 

LELP1 is a protein-coding gene located at chromosome 1q21 that belongs to the cornifin (SPRR) family and the 

allele T might be related with a poor prognosis of the disease, if we think that the families of small proline-rich 

proteins are present in epithelial cells of the airways and skin that utilize similar mechanisms in host defense [39]. 

The SPRR family are also induced in respiratory epithelia as a squamous cell marker metaplasia [41,50]. 

Being the skin barrier deficiency a secondary phenomenon associated with the EDC, FLG has demonstrated how 

the study of a monogenic trait could provide insight into a complex trait disease and the significance of FLG null 

mutations as a genetic risk factor for atopic dermatitis. This barrier defect could be present even in the absence of 

eczema [26,28,33,47], which could help us to understand the physiopathology of AD associated with LELP1 

polymorphism [rs7534334] and other polymorphisms located on genes of EDC complex. 

Different genes are expressed in a coordinated sequence to provide the structural component of cornification. 

Keratin intermediate filaments form a complex conglomerate in the cytoplasm and, after the removal of cell 

organelles, fill the cell interior. In addition, a number of proteins are cross-linked by transglutamination in the cell 

periphery to form the so-called cornified envelope where LELP1 as a member of epidermal differentiation complex 

(EDC) could be a barrier candidate gene. 

As soon as keratinocytes are detached from the basement membrane of the epithelium, they change their gene 

profile under the control of many transcription factors [1,4]. 

In addition, keratins and the inflammatory profile can also regulate pathways involved in growth, proliferation, 

migration and apoptosis of epithelial cells [3]. The small proline-rich proteins are encoded by the EDC [2,37,40], 

where LELP1 play its role. The proteins that are encoded in this region share similarities, particularly in the 

glutamine- and lysine-rich regions that are involved in the action of the transglutaminases. Bronchial epithelial cells 

and keratinocytes not only share structural characteristics, but also share functional characteristics and that is why 

many barrier genes could be related with the “atopic march” and the pathophysiology of AD and respiratory 

diseases such allergic asthma. 

The epithelial cells of the airways and the skin, utilize also similar defense mechanisms against infection [39], 

pollutants and allergens, despite the different structure of the epithelia. 

Bronchial epithelial cells and keratinocytes have a high degree of overlap in gene expression and bronchial 

epithelial cells like keratinocytes, express proteins and other components that are able to form a cross-linked 
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protein envelope that may contribute to a barrier against allergens, pollutants and pathogens. That could be 

compromised in patients with LELP-1 polymorphism [rs7534334]. 

It has been demonstrated that peptides that could be related with defense mechanisms besides barrier function, 

like LELP1 that codifies a protein belonging to the cornifin (SPRR) family [16] could be lower in skin with AD, and 

that the Th2 cytokines could also play a role by interfering with the expression of these peptides [20,40,43]. IL13 (a 

Th2 cytokine), could induce the expression of small proline-rich proteins (SPRR) in airway epithelium during allergic 

inflammation in the animal models [40]. 

LELP 1 which codes for one of the small proline-rich proteins (SPRR), expressed in both bronchial epithelial cells and 

keratinocytes in response to pro-inflammatory cytokines, might be related with the pathophysiology of atopic 

dermatitis and also with host defense against allergens, pollutants and microbes and might interfere with 

respiratory disease and “allergic march”. 

Our results point to the importance of the impaired skin barrier function on trans-epidermal entry of allergens and 

secondary development of allergic diseases like asthma and rhinitis. Some genome-wide association studies, point 

to the fact that FLG could partially tag some other mutations like those near LCE3E (rs61813875) [51,52] and 

according to this, we think that it might be important to study other polymorphisms in genes from the EDC 

complex namely FLG (loss-of-function mutations (R501X and 2282del4), in order to more accurately understand 

the importance of this complex in asthma, AD or other allergic diseases. 

We also think that one of our limitations is the sample size, and we hope that in the future we could have larger 

cohorts to increase the robustness of our study. 

These kind of studies are important because of the regulation of expression of epidermal barrier proteins and its 

clinical relevance on defense mechanisms in inflammatory disorders that affects epithelial surfaces [5,7,9] like AD 

and asthma and constitute an important therapeutic strategy for allergic diseases. 

Conclusion 
Altogether, these findings demonstrate that as much as immune mechanisms and IgE hipersensitivity, genetic 

variation of skin barrier genes might contribute to major atopic diseases such as atopic dermatitis and bronchial 

asthma. 

We could then infer that we should readily treat atopic dermatitis in early childhood, reducing inflammation in the 

skin, permeability to allergens and so preventing allergen sensitization. In the same way the “dual hypothesis” 

could help us to understand how helpful it could be to decrease the environmental exposure to allergens in the 

“allergic march” and the development of allergic diseases. 

These kinds of studies are important because of the regulation in expression of epidermal barrier proteins and its 

clinical relevance on defense mechanisms in inflammatory disorders that could affect epithelial surfaces in atopy 

and might constitute an important therapeutic target in allergic diseases. 
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A B S T R A C T

Asthma is considered a heterogeneous disease, characterized most of the times by a Th2 inflammatory response. 

Haptoglobin (Hp), is an alfa2-sialoglycoprotein known to bind free hemoglobin (Hb) and has been implicated in 

modulation of Th1/Th2 response, Intervening in innate and adaptive immune response. The Hp locus is situated at 

16q22 chromosome, being in humans, polymorphic for the α chain. The α chain of Hp has 2 major co-dominant 

alleles Hp*1 and Hp*2, with 3 genotype variants, Hp1-1, Hp2-1, Hp2-2. The aim of the study is to establish a relation 

between Hp genotypes and Hp levels (intermediate phenotype), and the pathophysiology of asthma when compared 

with a control group of healthy blood donors. In a group of 114 asthmatic patients and 50 controls we studied the Hp 

levels that were determined by nephelometry and genotypes by polyacrylamide gel electrophoresis (PAGE). 

Statistical analysis was performed with statistical software PASW version 18, having established a level of 

significance of p< 0.05.  

  

We found that Allelic (Hp*1 e Hp*2) and Hp genotypes (Hp 1-1, Hp 2-1, Hp 2-2) distribution in asthmatics, are not 

statistical different from   control group (p> 0.05). There is no statistical differences in the asthmatics between, 

gender, age-group, atopics and nonatopics, controlled and non-controlled asthma (p>0, 05). The different genotypes 

seem not to be related with an increased risk of having asthma when compared with the control group (p>0, 05). In 

control group there is no statistical differences in Hp levels by genotype and age- group (p>0, 05). When we compare 

asthmatics with control group we verified that in asthma , the levels of Hp are always lower than in the control group  

(125,13±50,95vs137,86±51,39mg/dL) and   there   was  a  statistical   difference   in   Hp22   genotype   (95,60±41,43  

vs 128, 40±51,48mg/dL) (p<0, 05). In asthmatics Hp levels, are statistical different between ages >30 years and <15 

years (135.6±50.05 vs 87.45± 38.89 mg/dL) (p<0.05). In asthmatics Hp levels, present statistical differences by 

genotype (p=0,000). Those  who  express  Hp  2-2 had  the  lower  levels  of  the  circulating  protein   

when compared with Hp 2-1 and Hp 1-1(95,6 ± 41,93 vs  137,37±49,58 vs  

146,09±47,37mg/dL)  ,and it is statistical different (p=0.000 ).In those asthmatics with age   ≥15 years Hp levels are 

different by genotype (p<0.05): 1-1 and 2-1 differ from 2-2. Those patients with age <15 years, Hp levels were no 

different between genotypes (p>0, 05).  In a pos-Hoc analysis Hp 2-2 is an independent factor, as age <15 years, 

associated with lower levels of Hp.  

  

Although no statistical differences were find between Hp genotype and allelic distribution  in the group of asthmatics  

when compared to  control group we verified that asthmatics had lower levels of the circulating Hp when compared 

to the control- group and that this difference is associated with Hp 2-2 genotype. In asthmatics, Hp levels are 

different between genotypes (with age ≥15 years) because Hp levels are lower in the Hp2-2 genotype when 

compared with the other genotypes.In the future, studies done with Hp should be controlled by age , because the Hp 

levels are lower in the pediatric group. These data point to differences among groups that could be related to Hp 

genotypes, and possibly with different immunological profiles.    

     © Copy Right, Research Alert, 2016, Academic Journals. All rights reserved.  
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INTRODUCTION 

Haptoglobin (Hp), an alpha 2-sialoglycoprotein (acute phase protein), that is known by its ability to bind free 

hemoglobin (Hb) and to form an Hp-Hb complex that allows the recycling of globin and heme [1-4]. The Hp-Hb 

complex can be cleared receptor [5-7]. Hp consists of two different polypeptide chains, the α and β-chain. The Hp α 

gene, located in 16q22 chromosome, is highly polymorphic in humans, presenting 2 major co-dominant alleles: Hp*1 and Hp*2 

that originate 3 from plasma by two different pathways, one in the hepatocyte (90%) and another in monocytes- 

macrophages by the CD163 

different genotypes: Hp1-1, 2-1 and 2-2. The Hp gene has two major alleles: Hp*1, (with five exons) and Hp*2, (with 

seven exons) which probably arose from a duplication event involving exons 3 and 4, producing a 61 kDa protein. In 

its ancestral form, Hp is a dimer, however, the Hp 1–2 encoded protein exists as linear polymers containing 2–8 

monomers, while the Hp 2–2 encoded protein exists as circular polymers of 3–10 Hp monomers [8]. 

These genetic variants present different affinities to bind hemoglobin [9] and so can modulate the toxicity and 

inflammatory nature of free iron, namely its capacity to consume  nitric  oxide  [10,11]  and  to  serve  as  a  Fenton  

reagent  [9].  Besides its antioxidant role, Hp also plays an immunoregulatory function, through the CD163 receptor 

in macrophages, modulating the cytokine profile released after endocytosis of the Hp-Hb complex [9].  

One of the consequences of the allergic reaction is the increase of free hemoglobin. Hp*1 has greater affinity for 

free Hb presenting higher antioxidant capacity; on the other hand, Hp*2 has less affinity for Hb, being associated 

with more susceptibility to oxidative stress damage [9, 12-15]. As a response to tissue injury or infection, the target 

cells segregated IL-1β and TNFα that activate endothelial cells and neutrophils. The activated neutrophils, the first 

line of defense in immune response, help in the recruitment of other inflammatory cells, which promote reactive 

oxygen species (ROS) generation [16]. Hp is synthesized during neutrophils differentiation and is stored to be 

released when these are activated. Hp synthesis occurs mainly at hepatocyte level, and also in the alveolar 

macrophages and lung eosinophils with active inflammation, but not in the healthy lung [17]. The Hp binds to Apo-

A1, protecting from free radical attack and preventing HDL to form complexes with other lipoproteins. The Hp has 

the ability to inhibit lipoxygenase and cicloxygenase activity, modulating the synthesis of prostaglandins and 

leukotrienes [13]. Hp is also an excellent suppressor of T cell proliferation [13]. The macrophages activated by the 

complex Hp2-2: Hb through the CD163 receptor deviates T helper response to a Th1 profile, while macrophages 

activated by complex Hp1-1: Hb phagocytosis produces Th2 cytokines. The balance between these T cell responses 

is particularly important in the extravascular space, since a localized expression of Hp minimizes tissue injury [9].  

In extravascular space, dendritic cells respond to alert signals, like oxidative stress, and interact with 

antigens/allergens. These dendritic cells differentiate to mature cells and migrate to lymphatic nodes, where they 

interact with naïve T cells. Being the Hp a ligand to monocytes and macrophages, this protein may play an 

important role in the activation of these immune cells [9].  

  

Allergic asthma is an inflammatory disease where predominates a Th2 response in the bronchial airways. Th2 

response might be related to a more ancestral immune response. Asthma appears as a result from a failure in the 

immunoregulatory mechanisms of the respiratory epithelium. According to the “hygiene hypothesis”, a lack of Th1 

response stimulation upon the adaptive immunity leads to a prevalence of Th2 response [19, 20]. Nowadays,  there  
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has  been  an  increase  prevalence  of  autoimmune  diseases  (Th1 diseases) in the western societies, namely type I 

Diabetes and multiple sclerosis, suggesting that both diseases (Th1 and Th2) can coexist in the same patient. These 

data seem to oppose the bipolarization of an immunological environment Th1 or Th2, and points to a deficient 

regulation in both diseases (role of the Treg cells). Nevertheless, the defenders of this hypothesis assert that the 

absence of necessary stimulation could deprive the immune system from the necessary signals to the development 

of regulatory pathways able to control Th1 and Th2 response. Advances in the immunology field, came to focus the 

attention in the central role of innate immunity, as the “orchestrator” of immune response and maintenance of 

tolerance [21].  

 The activation of innate immunity through the antigen presenting cells (APCs), where are involved the Hp and its 

receptor, CD163 (marker of M2 macrophages), might be an additional factor in Th2 polarization of allergic response, 

similarly to the allergens [19]. Identically to the Th1/Th2 nomenclature, the polarized macrophages are reported as 

M1 and M2 [22, 23]. The M1, also designed as activated by classic pathway, can be induced by IFNγ, LPS, TNF-α and 

GM-CSF. These macrophages act in the initial phase of the inflammation and produce great amounts of pro-

inflammatory cytokines (IL1-β, TNFα, IL-6), oxygen free radicals and nitrogen compounds, and participate as 

effectors in the polarized reactions Th1. The resolution phase is characterized by macrophages that produce anti-

inflammatory cytokines with high phagocytic capacity and overexpression of the mannose receptor, CD206 and the 

Hb-Hp receptor, CD163. M2 macrophages are activated by the alternate pathway and can be induced by IL-4, IL-13, 

immune complexes, IL-10, glucocorticoids, activin-A (a member of the TGF-β family) and IL- 21. In general, M1 

macrophages are IL-12 high, IL-23 high and IL-10 low [22]. Despite participating in Th1 response, they are also 

responsible for the resistance against intracellular parasites and activity against the tumoral cells [22]. In contrast, 

M2 macrophages are IL-12 low, IL-23 low, IL-10 high, and have a variable capacity to produce inflammatory cytokines 

with a Th2 profile [22]. They are associated with atopic and allergic asthma, being able to promote the proliferation 

and tumor metastization.  

 The aim  of this  study is  to  establish  a  relation  between Hp  genotype  and  asthma susceptibility and to correlate 

the Hp genotype with plasma Hp levels (intermediate phenotypeendotype) establishing a possible, relationship 

between the modulation of Th1/Th2 immune response by Hp polymorphism and asthma pathophysiology.  

 

 MATERIAL AND METHODS  

  

To identify if there were differences in the two groups, we did a case-control study with a group of 114 asthmatic 

patients, (Immuno Allergy Department-CHLN/HSM-Director: Prof. Manuel Barbosa), 70 females and 44 males, mean 

age 41±18 years; in the control group were 50 healthy blood donors, 45 females and 5 males, mean age 50±13 years. 

Asthmatic patients were classified according to severity in intermittent and persistent (mild/moderate/severe) 

asthma as stated by GINA classification [24] (Global Initiative for Asthma) and according to levels of asthma control 

(controlled, partly controlled and uncontrolled) in compliance with ACQ7 (Asthma Control Questionnaire, 

Portuguese Version by Juniper) and PAQLQ (Pediatric Asthma Quality of Life Questionnaire- Portuguese Version by 

Juniper adjusted for patients between 7-17 years with at least 6 months of therapeutics for asthma) [25].  

  

The sample consisted in 98 atopics and 16 non atopics (according to the definition of atopy by the WAO/EAACI 

[26]); 45 with uncontrolled asthma (evaluated by validated instrument ACQ7 (cutpoint: 0.75) and PAQLQ: global 

score is the average of all the answers, < 4 imply uncontrolled asthma) and 69 with controlled asthma. The 

exclusion criteria  were  non  adhesion  to  the  anti-asthmatic  therapy;  existence  of  other  co- morbidities that 
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could interfere with the severity of the respiratory disease; existence of a diagnosis of chronic obstructive 

pulmonary disease or another pulmonary disease; smoking habits and other co-infections, namely HIV, parasitosis 

or other type of infection ,  anemia or chronic liver disease. All participants gave their written informed consent for 

the study.  Written informed consent was obtained from all participating individuals. The genetic study was done 

under the standards of the Bioethics Commission for research at Lisbon Medical School.  

Patients were diagnosed by physicians for asthma according to the guidelines of GINA, and as having atopy or not 

according to WAO/EAACI guidelines, they were examined for a selfreported history of breathlessness, wheezing, 

atopic dermatitis and family history, atopic individuals have a positive skin prick test (SPT) for at least one of the 

common environmental allergens or the presence of specific IgE ,associated with high serum IgE levels estimated 

using enzyme-linked immunosorbent assay and suffered from asthma.  

Blood samples were collected after an overnight fast. The determination of the haptoglobin polymorphism was 

done from plasma samples (Hb-supplemented plasma) using a phenotyping method for Hp, based on 

polyacrylamide gel (4.7% in TRIS/HCl 0.504M, pH 8.9) electrophoresis (PAGE) followed by o-dianisidine staining, and 

assigned corresponding genotype. The Hb-supplemented samples for application into the gel (10μL) were 

previously prepared using a mixture of 40% sacarose (w/v), Hb 282 mg/mL and plasma in the 3:2:4 proportion for a 

final volume of 45μL. For identification of the Hp migratory bands we used a method of coloration by contact with 

o-dianisidine 16mM in 50% acetic acid and, subsequently, with 0.6% hydrogen peroxide (Fig.1). Samples underwent 

electrophoresis for 180 minutes (180 V, 0.05 A; Cleaver). Plasma haptoglobin concentration was measured by 

nephelometric method on a BN ProSpec (Siemens Helthcare Diagnostics) [27].  

Statistical analysis was performed with Statistical software, and the continuous variables were summarized as 

means (standard deviation) or as medians according to their homogeneity. Categorical variables (allele and 

genotypes frequencies) were compared with the c2 test. Continuous variables among patients and controls were 

compared with Student t test. To compare the Hp levels in the different groups defined for genotype and age 

group, an ANOVA test was used, after verified the normality and the homogeneity of the variances, and pos-Hoc 

tests. Associations are given as odds ratios with a confidence interval established at 95%. All statistical analysis was 

done using PASW version18. A twosided probability value of p < 0.05 was considered significant.  

  

  

RESULTS  

 

There were no statistically significant differences regarding the distribution of Hp genotypes between asthmatics and 

controls (Hp1-1: 19.3 vs 10.0, Hp 2-1: 47.4 vs 58.0, Hp 2-2: 33.3 vs 32.0, p> 0.05), as well as in their allele frequencies 

(Hp 1*: 0.43 vs 0.39, Hp 2*:0.57 vs 0.61, p> 0.05) (Table 1). Our results concerning the frequency of allele 1 in the 

control group are consistent with those described by Carter and Worwood relatively to the European population 

(Fig.2) [28]. The Hp genotype frequencies among the asthmatic patients showed no statistically significant 

differences between males and females, uncontrolled and controlled asthma, atopic or non-atopic, age- group (p> 

0.05).  
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 Table 1 Haptoglobin genotype and allele frequencies in  

  asthma and control group  

   ASTHMA    CONTROL    

GENOTYPE  N  Frequency (%)  N  Frequency (%)  p- value  
Hp 1-1  22  0.193  5  0.10    
Hp 2-1  54  0.474  29  0.58  >0.05  
Hp 2-2  38  0.333  16  0.32    
Hp* 1    0.39    0.43  >0.05  

Hp* 2    0.61    0.57    

   

 
  

Figure 1 Plasma Hp levels (mg/d  L) in asthmatics stratified by  
   Age-group  
    

 
  

Figure 2 Plasma Hp levels stratified   by Hp genotypes (genotype-phenotype association) in asthmatics.         

  

In patients with asthma (Table 2), the plasma concentration of Hp (intermediate phenotype) did not differ 

significantly between controlled and uncontrolled asthma, atopic and non atopic and between males and females, 

there is, however, a significant variation with age, having the patients with age > 30 years (135.60 ± 50.05 mg/dL); 

15- 30 years (111.00 ± 48.43 mg/dL) and <15 years (87.45 ± 38.89 mg/dL)( ANOVA p=0,008 between > 30 years and 

<15 years: pos- hoc test) (Fig. 3). The asthmatics with Hp 2-2 genotype presented lower concentrations of circulating 

protein when compared with patients Hp 2-1 and Hp 1-1 (95.60 ± 41.93 vs 137.37 ± 49.58 vs 146.09 ± 47.36 mg/dL), 

being this difference statistically significant (p = 0.000, ANOVA) (Fig. 4); this pattern was not observed among 

individuals in the control group. These differences in Hp concentration was significant only in asthmatics aged ≥ 15, 
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with no differences in patients <15 years (ANOVA) (Fig. 5). When analyzing the levels of circulating Hp between 

asthmatics and controls (Fig. 6), it was found that, overall, no statistically significant differences between mean 

values of this protein was found among both groups (125.13±50.95 vs 137.86 ± 51.39 mg/dL, p> 0.05), despite the 

Hp 2-2 individuals (95.6 ± 41.9 vs 128.4 ± 51.5 mg/dL)  presented significantly  differences  in  mean  Hp  values  

between  asthma  and  control  group (p=0,018)  (Fig.  6). Relatively to Hp 1-1 and Hp 2-1 genotypes, no  significant 

differences   were   observed   between   asthmatics   and  controls  (146.09±47.36  vs 175.8±15.78 ;p> 0.05;   

137.37± 49.58 vs 136.55 ± 53.46; p> 0.05 ) (Fig. 7). Thus, although not always significant, the asthma group had lower 

mean values of circulating Hp.  

 Table 2 Plasma concentrations of Hp in asthmatics, stratified by: age; gender; clinical characteristics; and by Hp 

genotype  

   

 
<15 years  11  87,45±37.8 

AGE  15-29 years   

   

 

 

 

 

 
 

 

 

 
Figure 3 Plasma Hp concentrations  in asthmatics patients, stratified  by Hp genot ype and age-groups.  
  

 
 GENDER 

   

 

ASTHMA 

ATOPY 

 
GENOTYPE 

≥30 years  

Female 
Male 

Controlled 
Uncontrolled 

YES 
NO 

Hp 1-1 

Hp 2-1 

Hp 2-2 

76 
70 
46 
69 
47 
98 
18 

22 

54 

38 

135,60±50,05 
129.17 ±53.36 
118.70±46.73 
120.81±46.79 
131,75±56.64 
126.81±51.83 
114.87±45.27 

146.09±47.36 

137.37±49.58 

95.60±41.93 

 

 

 
0,288 

 
0.264 

0.388 

 

 

0.000 

  
N   Hp SD (mg/dL)   p - value   
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 Figure 4 Plasma Hp levels in asthmatics and controls, stratified by the haptoglobin genotypes.  
  

In the control group there were no differences in the levels of Hp between individuals with age > 30 years (138.99 ± 

53.67 mg/dL) and 15- 30 years (127.76 ± 23.08 mg/dL) ;(p=0.648), the same with their distribution by genotype (Hp 

1-1: 175.8 ± 15.78 mg/dL vs Hp 2-1: 136.55 ± 53.46mg/dL vs Hp2-2: 128.40 ± 51.48mg/dL, p = 0.196 (ANOVA). The 

control group followed the Hardy-Weinberg equilibrium.  

 

 DISCUSSION  

  

With this study it was possible to put in evidence that the genetic polymorphism for the α chain of Hp may be 

associated with differences in haptoglobin levels and that  these differences are more pronounced in the asthmatics 

with longer disease evolution (the differences in relation to the Hp   genotype are observed only in patients aged > 

15 years). These observations could be derived from differences in the activation and polarization of macrophages 

(M1 and M2) in the innate immunity system, and therefore different immune response, Th1 (pro-inflammatory) or 

Th2 (anti-inflammatory) [22]. The genetic polymorphism of haptoglobin has a major role, by conditioning the nature 

and intensity of the response of macrophages to extravascular and extracorpuscular hemoglobin, and potentially 

interfering with modulation of immunity that accompanies the allergic response and bronchial asthma [13, 18]. 

Haptoglobin also plays an important role  by interacting  with  CD22  and  the  integrin  CD11b/CD18,  as  recipients  

of  the haptoglobin in the cells of the immunological system [29,30].  

The toxicity and inflammatory nature of free hemoglobin is due to its ability to consume nitric oxide and to act as an 

oxidant, producing highly reactive radicals such as anion superoxide and hydroxyl. Haptoglobin binds to hemoglobin, 

inhibiting the ability of Hb to act as an oxidant and promoting its removal, despite the Hp-Hb complex is not 

completely inert and can also catalyze the formation of oxygen radicals. The removal of the Hp-Hb complex is done 

through hepatocytes and the CD163 receptor of monocytes/ macrophages. In the extravascular space there is only 

one way to remove the Hp-Hb, the CD163 receptor on macrophages [5, 9]. The allele 1 seems to generate a complex 

Hp1-Hb redox-inactive that binds to the CD163 receptor of the macrophage, inducing the secretion of anti-

inflammatory cytokines such as IL-10 and TGF-β. By contrast, the allele 2 potentiate the generation of a complex 

redox active Hp2-Hb, with release of pro-inflammatory cytokines, and consequent vascular injury and inflammation 
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[9, 13]. Atopy and allergic asthma may be due to an M2 polarization of innate immunity (with an important role for 

the Hp-CD163 receptor on macrophages) and consequent Th2 polarization in detriment of the adaptive immunity, 

Th1 [20, 22]. This polarization of the immune response may be related to genetic polymorphism of haptoglobin.  

The highest values of circulating haptoglobin were observed in asthmatics with longer time of disease evolution 

(>15 years of age) , and this increase was dependent on Hp genotype (Hp1-1> Hp 2-1 > Hp 2-2). This fact might be 

related to the chronicity of the disease, reflecting a stress response and consequent induction of the release of 

glucocorticoids and catecholamines, which stimulate the production of haptoglobin and other acute phase proteins 

[31]. The agegroup under 15 years has lower levels of haptoglobin when compared with patients aged > 30 years 

(p< 0.05). The difference in the Hp levels between genotypes occurs particularly in the age- group over 30 years (p< 

0.05). The asthmatics with genotype Hp 2-2 have lower levels of circulating haptoglobin when compared with Hp1-1 

and 2-1 (p<0.05). Many studies point to the fact that the Hp1-1 genotype is associated with higher levels of Hp and 

a Th2 profile, whereas the Hp2-2 genotype was associated with lower levels of Hp and a Th1 profile [13, 28]. It is 

also described that asthma and respiratory allergy, are associated with the lowest levels of Hp [-32], and that this 

protein could act as a natural antagonist of the activation of the immune system when related to a series of 

stimulus. On the other hand, it  was  observed  a  lower  expression  of  the  CD163  receptor  on  macrophages  of 

individuals who express Hp2-2 genotype, and that Hp1-1:Hb complex increases the activity of casein kinase II (CK II) 

associated with CD163 phosphorylation , leading to a distinct mechanism of activation as well as a different profile 

of cytokines after endocytosis of Hp1-1 complex (with increase of IL-10) versus Hp2-2 [33,34].  

  

CONCLUSIONS  

Considering the results obtained, and the population samples studied, we believe it is essential  to  increase  the  

number  of  patients  studied  in  each  subgroup,  in  order  to increase the statistical power, leading to a better 

characterization of these subgroups, particularly, that under 15 years.We also think that future studies must be 

controlled by age-group, and that different polymorphisms  could lead to different genotypespecific response to 

treatment and different asthma endotypes/phenotypes among patients. Our results suggest an important role of 

haptoglobin polymorphism in bronchial asthma, possibly associated with the polarization of the immune response, 

disease severity and response to antiasthmatic therapy.  
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Introduction 

The  bioavailability of NO could be associated with endothelial dysfunction, and with 

bronchial hyperresponsiveness in asthma, it could  interfere with pro-angiogenic or 

anti-angiogenic status,exerting diverse physiological actions related with  vasodilation, 

inflammation, platelet physiology and vessel growth. In association ACE is related with 

the conversion of angiotensin I to angiotensin II that acts as  a  potent vasoconstrictor , 

and is also related with bronchoconstriction and bronchial hyperresponsiveness(49,53). 

Candidate gene-association studies put NOS and ACE enzymes as important 

regulators of oxidative stress, bronchial hyperresponsiveness , endothelial homeostasis 

and vascular remodeling through the up-regulation of angiogenic factors and the 

release of angiogenic mediators. The endothelium has emerged as a key regulator of 

vascular homeostasis, with its barrier and active signal/ cytokine transducer for 

circulating and tissue influences that could modify the endothelial phenotype from  

quiescent to activated endothelial phenotype and orchestrate remodeling and the 

physiopathology of asthma (50,150). 

Angiotensin-converting enzyme (ACE) is an enzyme in the renin-angiotensin system 

and circulating ACE may proceed from the vascular endothelial as it is a membrane-

bound enzyme of the cell and it catalyzes  the conversion of angiotensin I to 

angiotensin II and inactivation of the vasodilatory and bronchoconstrictor 

bradykinin(137,151).  

The ACE gene with an  insertion/deletion (I/D) polymorphism, is associated with the 

presence or absence of a 287-bp fragment in intron 16. The D allele is associated with 

higher circulating and tissue ACE levels and has been associated with asthma and 

other respiratory and cardiovascular diseases(137,151-153). 

Nitric oxide (NO) is synthesized after  oxidation of L-arginine, by nitric oxide synthases 

(NOS),with  three isoforms : two constitutive, the neuronal NOS (nNOS, NOS-1) and 

endothelial (eNOS, NOS-3), and one inducible NOS (iNOS, NOS-2). NOS2 (exon 16 + 

14C> T), NOS2 (intron 16 + 88 G> T), NOS2 (intron 20 + 524 G> A), and NOS3 eNOS 

4a/b (27 VNTRs) polymorphisms could be related with the levels of NO and in the 

context of inflammatory cytokines in asthma and other diseases results in changes in  

NO production, contributing to endothelial dysfunction, damage of tissues and 

modifying the course of asthma(44,154-162).  

Patients with asthma and with ACE and NOS genetic polymorphisms,  have different 

degrees of endothelial dysfunction , that could be involved in “ angiogenic switch”at 

different levels of angiogenesis pathway,changes in  NO bioavailability, different 
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activation of  tissue renin-angiotensin system, decreased vasodilatory response and 

increased vascular remodeling that  could be associated with the severity and 

progression of asthma. 

The purpose of this study is to analyze the association between : NOS2 (exon 16 + 

14C> T); NOS2 (intron 16 + 88 G> T); NOS2 (intron 20 + 524 G> A); eNOS 4a/b (27 

VNTRs) and ACE gene insertion/deletion (I/D) polymorphisms with asthma 

susceptibility and severity. 

Methods 

The study population consisted of 45 individuals in the control group and 47 asthmatics 

from a Portuguese cohort. 

 Written informed consent was obtained from all participating individuals. The genetic 

study  has been approved by Ethics Commission for research. 

Patients were diagnosed by physicians for asthma according to GINA 

guidelines(3,163), and as having atopy or not according to WAO/EAACI 

guidelines(164), they were examined for a history of breathlessness, wheezing, interval 

between daytime symptoms, night awaking, dose of reliever and controller, activity 

limitation due to asthma , family history, and comorbidities such as rhinitis, atopic 

dermatitis, among others.Atopic individuals have a positive skin prick test (SPT) for at 

least one of the  common environmental allergens or  the presence of specific IgE 

,associated with high serum IgE levels estimated using enzyme-linked immunosorbent 

assay .The demographic and clinical details of the study population are given in Table-

1.  

Control of asthma assessed by (ACQ7 and PAQLQ). Statistical analysis with PASW 

version 18 establishing a significance level of p< 0.05. 

Genomic DNA isolation and quantification: Whole blood samples from patients and 

controls were stored with EDTA at -20ºC. The genomic DNA was isolated through a 

non-enzymatic method (salting out method). 

The polymorphisms -14 C/T in exon 16 and -88 G/T in intron 16 of NOS2 gene were 

detected using the forward primer 5’-TAAACCAACTTCCGTGGTGGG-3’ and the 

reverse primer 5’-AGCTGGAGAATGGAGCTGGAC-3’. The PCR reaction was 

performed in a final volume of 50 L using 200 ng of genomic DNA, 10 pmol of both 

primers, 25 µl of DreamTaq Green PCR Master Mix (2X) (Thermo Scientific®). The 

PCR reaction started with an initial denaturation at 94ºC for 2 minutes, followed by 35 

cycles for 45 seconds at 94ºC, 45 seconds at 61ºC and 45 seconds at 72ºC, with a 

final extension of 5 minutes at 72ºC. The PCR products were digested with 10U of 
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TaSI (Thermo Scientific®) for 16 hours at 65ºC for exon 16 and with 10U of AdeI 

(Thermo Scientific®) for 16 hours at 37ºC for intron 16.  

Fragments were separated by electrophoresis on a 2% agarose gel for 90 minutes at 

85V and visualized by ethidium bromide staining.  

For -14 C/T in exon 16, there were two fragments of 285 bp and 170 bp for 

homozygous without mutation (CC), four fragments of 285 bp, 170 bp, 137 bp and 33 

bp for heterozygous CT and  two fragments of 285 bp and 137 bp for homozygous with 

mutation (TT). 

For -88 G/T in intron 16, there was an undigested fragment of 455 bp for homozygous 

without mutation (GG), three fragments of 455 bp, 263 bp and 192 bp for heterozygous 

GT and  two fragments of 263 bp and 192 bp for homozygous with mutation (TT). 

The polymorphism 524 G/A in intron 20 of NOS2 gene was detected using the forward 

primer 5’-TTATCCCAATCCCAGCCACTCG-3’ and the reverse primer 5’-

GCCAGGCTCTGTTTCTCTGATCC-3’. The PCR reaction was performed in a final 

volume of 50 µL using 200 ng of genomic DNA, 10 pmol of both primers, 25 µl of 

DreamTaq Green PCR Master Mix (2X) (Thermo Scientific®). The PCR reaction 

started with an initial denaturation at 94ºC for 2 minutes, followed by 35 cycles for 45 

seconds at 94ºC, 45 seconds at 59ºC and 45 seconds at 72ºC, with a final extension of 

5 minutes at 72ºC. The PCR product was digested with 10U of HinfI (Thermo 

Scientific®) for 16 hours at 37ºC. 

Fragments were separated by electrophoresis on a 4% agarose gel for 90 minutes at 

85V and visualized by ethidium bromide staining.  

There were three fragments of 75 bp, 54 bp and 39 bp for homozygous without 

mutation (GG), four fragments of 129 bp, 75 bp, 54 bp and 39 bp for heterozygous GA 

and  two fragments of 129 bp and 39 bp for homozygous with mutation (AA). 

The polymorphism 4 b/a of NOS3 gene was detected using the forward primer 5’- 

AGGCCCTATGGTAGTGCCTTT-3’ and the reverse primer 5’- 

TCTCTTAGTGCTGTGGTCAC-3’. The PCR reaction was performed in a final volume 

of 25 µL using 200 ng of genomic DNA, 10 pmol of both primers, 12.5 ml of DreamTaq 

Green PCR Master Mix (2X) (Thermo Scientific®). The PCR reaction started with an 

initial denaturation at 94ºC for 2 minutes, followed by 35 cycles for 30 seconds at 94ºC, 

30 seconds at 53ºC and 45 seconds at 72ºC, with a final extension of 5 minutes at 

72ºC. Fragments were separated by electrophoresis on a 3% agarose gel for 120 

minutes at 110V and visualized by ethidium bromide staining.  

There were one fragment of 420 bp for homozygous b/b, two fragments of 393 bp and 

420 bp for heterozygous a/b and one fragment of 393 bp for homozygous a/a. 
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The polymorphism I/D of ACE gene was detected using the forward primer 5’- 

CTGGAGACCACTCCCATCCTTTCT-3’ and the reverse primer 5’- 

GATGTGGCCATCACATTCGTCAGAT-3’. The PCR reaction was performed in a final 

volume of 25 L using 200 ng of genomic DNA, 10 pmol of both primers, 12.5 µl of 

DreamTaq Green PCR Master Mix (2X) (Thermo Scientific®). The PCR reaction 

started with an initial denaturation at 94ºC for 2 minutes, followed by 35 cycles for 45 

seconds at 94ºC, 45 seconds at 58ºC and 45 seconds at 72ºC, with a final extension of 

5 minutes at 72ºC. Fragments were separated by electrophoresis on a 2% agarose gel 

for 60 minutes at 110V and visualized by ethidium bromide staining.  

There were one fragment of 477 bp for homozygous I/I, two fragments of 477 bp and 

190 bp for heterozygous I/D and one fragment of 190 bp for homozygous D/D. 

Results 

The mean age of the 47 asthmatics was 39.04  ±18.72 ; 29 females and 18 males; 39 

atopics and 8 non-atopics; 34 with controlled and 13 with uncontrolled asthma.The 

mean age of the 45 individuals in the control group was 42.87 ±11.01; 14 females and 

31 males;There are more women in the asthmatic group when compared with controls 

(p= 0.006) and they are younger than controls(p=0.011) (Table 1).For the different 

SNPs that we had studied there are differences in the allelic frequencies  distribution 

between controls and asthma for NOS2(Ex16 +14C>T), being the allele T more 

frequent in asthma. Those who express T allele have a risk of having asthma 

4.387[1.523-12.635]] ; pb=0.006 . For  IVS20 + 524G>A there is no differences in allelic 

distribution of frequencies between controls and asthmatics(pa=0.094). Although when 

adjusted for age and gender there is a risk of almost 2 for those who express allele G ( 

1.903[1.011-3.583], p=0.046).  (Table 2). 

For the different SNPs that we had studied there are differences in the allelic 

frequencies  distribution between controlled and uncontrolled asthma: there is a 

trend(adjusted for age and female gender):OR2.916[0.970-8.765]; pb=0.057, for  NOS2 

(intron 16 + 88 G> T)), being a trend for the allele T to be more frequent in asthma. 

There are differences in the allelic frequencies  distribution between controlled and 

uncontrolled asthma for ACE gene insertion/deletion (I/D)   polymorphism : (crude and 

adjusted for age and female gender):OR: 0.217[0.068-0.697]]; pa=0.010;OR: 

0.132[0.034-0.517]; pb=0.004 ; being the Allele I protector to asthma  (Table 3). 

 For each SNP, additive_1 , additive_2   and potential dominant effects were evaluated 

by combining homozygote and heterozygote variant carriers for comparison with  

reference :  for NOS2 :Ex16 +14C>T: , there are differences between controls and 

asthmatics in the different genetic models (additive_1;OR:7.259[1.736-30.350]; 
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p=0.007) and (dominant model;OR:5.311[1.477-19.095]; p=0.011): there is a risk of 

being asthmatic of 7.3 for those who express genotype CT and 5.3 for those who 

express the allele T. For NOS2 (intron 20 + 524 G> A): For IVS20 + 524G>A, there are 

differences between controls and asthmatics in the different genetic models 

(additive_2, OR: 4.654[1.165-18.601] ; p=0.030) , there is a risk of being asthmatic of 

almost 5 for those who express genotype GG.  (Table 4). There is no statistical 

difference (p>0.05) for the other SNPs studied concerning allelic and genotype 

frequencies between asthmatics and controls. Trend tests assume ordinal steps  to 

homozygous with major allele, heterozygous and homozygous with minor allele 

genotypes, respectively, the trend is statistically significant for NOS2:Ex16 +14C>T: 

12.08/p=0.00051(Table 4). 

For each SNP, additive and potential dominant effects were evaluated also by 

combining homozygote and heterozygote variant carriers for comparison with  

reference,  comparing controlled and not controlled asthma : For IVS16+ 88T>G, there 

are differences between Controlled and uncontrolled asthmatics in the different genetic 

models (additive_1;OR: 12.406[1.576-97.620]; p=0.017) and (dominant model; OR: 

7.917[1.389-45.122]; p=0.020): there is a risk of being uncontrolled asthmatic of 12 for 

those who express genotype GT and almost 8 for those who express the allele T. For 

ACE I/D there are differences between Controlled and uncontrolled asthmatics in the 

different genetic models (additive_2;OR: 0.064 [0.005-0.857]; p=0.038) and (dominant 

model_;OR: 0.146 [0.025-0.845]; p=0.032): there is a protection of being uncontrolled 

asthmatic for those who express genotype II and for those who express the allele I . 

For IVS20 + 524G>A, 27-bp repeat in intron 4-eNOS, Ex16 +14C>T  there are no 

differences between Controlled and uncontrolled asthmatics in the different genetic 

models (additive_1; additive_2 and dominant model ( Table 5). Trend tests assume 

ordinal steps  to homozygous with major allele, heterozygous and homozygous with 

minor allele genotypes, respectively, the trend is statistically significant for ACE I/D 

polymorphism  : 5.67/p=0.0172( Table 5).  For the haplotype analysis at NOS 2  , the 

overall difference in haplotype frequencies between asthmatics  and controls pointed to 

an increased risk of asthma : there is a risk of being  asthmatics when compared with 

controls for those that are (CT+TT)at Ex16 +14C>T and  GG at (intron 20 + 524 G> A 

gene polymorphisms( p=0,012), but because of the limited number of individuals due to 

low variant allele frequency for the  haplotype analysis   we have to be cautious about 

this results.The epistatic interaction between  NOS2: IVS16+ 88T>G (GT+TT ) and 

ACE I/D( ID+DD) polymorphisms, and uncontrolled asthma risk in asthmatics we 

obtained an ORcrudea:5.400[1.345-21.675]; pa=0.017; ORadjustedb:9.582[1.524-
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60.227]; pb=0.016 it increases the risk of being uncontrolled of approximately 10 

times(data not showed). 

From logistic regression analysis including significant results from univariate 

analysis(Table4),we concluded that the risk of having asthma for intron 20 + 524 G> A 

gene polymorphism and  NOS2(Ex16 +14C>T,  are not independent of each other and 

gender . 

For the next logistic regression evaluation of genetic risk score, we considered as 

models : the genotype homozygous for the major allele as 0 and the association of 

genotypes with minor allele as 1. 

Stepwise multivariate logistic regression with backward elimination (p-value for 

retention =0.10) was conducted in significant SNPs in asthma vs controls and adjusted 

for gender and age. We constructed a genetic risk score for each participant by 

summing the coefficients for each of the resulting variables after stepwise regression 

analyses. The variables included in the model were: Ex16 +14C>T  and gender. For 

this SNP, the risk genotypes(CT or TT) were coded as 1 and the non-risk 

genotype(CC) as 0. For gender  female was considered as the risk and coded as 1 and 

male 0.We obtained 4    risk scores of being asthmatic for this model: high genetic  risk 

score=3.187; intermediate genetic  risk score:(1.045 or 1.150); low genetic risk score=-

0,992.The individuals that has a high genetic  risk score according to this model have 

an increased risk of 14.500 of having asthma comparing to those low genetic risk 

score(Table-6). 

From logistic regression analysis including significant results from univariate 

analysis(Table5) between controlled and uncontrolled asthma ,we concluded that the 

risk of having uncontrolled asthma for NOS2: IVS16+ 88T>G (GT+TT ) and ACE I/D( 

ID+II) polymorphisms ,  are not independent of each other and age. 

Stepwise multivariate logistic regression with backward elimination (p-value for 

retention =0.10) was conducted in significant SNPs between controlled and 

uncontrolled asthma and adjusted for gender and age. We constructed a genetic risk 

score for each participant by summing the coefficients for each of the resulting 

variables after stepwise regression analyses. The variables included in the model were: 

IVS16+ 88T>G , ACE I/D and age. For these SNPs: the risk genotype for IVS16+ 

88T>G  (GT or TT) were coded as 1 and the non-risk genotype(GG) as 0; the risk 

genotype for ACE I/D (DD) were coded as 0 and the non-risk genotype(ID+II) as 1. Age 

considered as continuous variable.We divided the Genetic risk score in tertiles as T1: ≤ 

-2,68(low genetic  risk score) ; T2: >-2,68 ≤-0,98 (intermediate genetic  risk score); T3: 

>-0,98(high genetic  risk score).The individuals that has a high genetic  risk score 
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according to this model have an increased risk of 7.222 of having asthma comparing to 

those with intermediate genetic risk score. In the uncontrolled group we had 0 

individuals in the low grade Genetic risk score that is why it is not used as reference in 

this logistic regression model(Table-7). 

Discussion 

Airway remodeling is a feature of Th2 inflammation in asthma and is linked to 

angiogenesis and endothelial dysfunction. The Th2 linked inflammation is associated 

with epithelial, stromal, dendritic and other immune cells derived cytokines like thymic 

stromal lymphopoietin (TSLP),IL-33,IL-25(epithelial cytokines) IL-4, IL-5 ,  IL-13 and IL-

9 among others(165). Innate and adaptive immunity are crucial in Th2 inflammation in 

asthma,  and endothelium could have a  role in adaptive T cell response but its role in 

physiopathology of asthma remains unclear(166).  

Otherwise endothelial cells have the  potential to produce several key molecules 

involved in allergic inflammation and bronchial asthma such as periostin and other 

inflammatory cytokines. 

IL-25 , a  member of the IL-17 cytokine family(167), promotes responses similar to 

Th2(IL-4, IL-5, IL-13) and is associated with increased number of  eosinophils , mucus, 

profibrogenic stroma, activation of alternative macrophage pathway, subepithelial layer 

thickening, airway smooth muscle hyperplasia and hypertrophy, angiogenesis and 

airway hyperreactivity(168,169). 

IL-25 and other Th2-cytokines contribute to bronchial mucosal vascular remodeling 

through  endothelial layer and vascular smooth muscle cells upregulating angiogenic 

factors, that includes , angiogenin, endothelin-1,epidermal growth factor (EGF), insulin-

like growth factor (IGF-1) and vascular endothelial growth factor (VEGF). NO can be a 

positive or negative in modulating angiogenic factors depending on the amounts 

produced, by NOS (170).There is also an interference in the angiogenic course  

between VEGF and the renin-angiotensin system in vascular biology and 

pathophysiology of asthma(171,172). 

Endothelial dysfunction is the result of disruption of the balance between vasoactive 

mediators and inflammation (173). It  implies diminished availability of nitric oxide (NO)( 

mainly vasodilator) with an imbalance in the contribution of other endothelium-derived  

factors, such as endothelin-1 (ET-1)( vasoconstrictor ) and angiotensin among others. 

RAS  and NOS play a key role in endothelial dysfunction and vascular remodeling, in 

part by its action on vascular tonus but also because they are  involved in ROS 

signaling , interfering with senescence of endothelial cells,  increased endothelial cell 

proliferation and inflammatory status. 
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Endothelium as an active integrant of the blood vessels, play a critical role in vascular 

homeostasis(174,175) and vascular endothelial cells could synthesize nitric oxide from 

L-arginine.RAS could act in a paracrine and autocrine way, renin has been identified in  

the smooth muscle layer, angiotensinogen in the adventitia and ACE is a membrane-

bound enzyme that cleaves the carboxyterminal of Angiotensin I leading to  

Angiotensin II and is also involved in the metabolism of Bradykinin that could release 

NO and it is vasodilator and  bronchoconstrictor(145,176). 

There is also an age-related endothelial dysfunction with increased ROS production 

and downregulation of eNOS are mutually responsible for impaired bioavailability of NO 

and endothelial vasodilator dysfunction associated with an upregulation of TNF-

alfa(177) associated with a sustained ROS signaling that induces senescence of 

endothelial cells with impairment of endothelial progenitor cells . 

This imbalance between senescent/apoptotic endothelial cells and endothelial 

progenitor cells is also characteristic of asthma and for some authors could elicit  Th2 

response in asthmatics(165) angiogenesis and airway remodeling. 

From the  3 isoforms of NOS (the enzyme that synthesizes NO in the cell.):  neuronal 

NOS (NOS1), inducible NOS (NOS2) and endothelial NOS (NOS3); iNos can be 

expressed in many cells associated with inflammation(such allergic inflammation) and 

produces large amounts of NO; eNOS is mainly expressed in endothelial cells and is 

able to regulate  the quiescent and activated endothelial phenotype contributing to 

endothelial homeostasis, The disturbance on redox vascular balance leads to 

uncoupling of eNOS and the  generation of  reactive oxygen species (ROS) instead of 

NO, ending up also in endothelial dysfunction(178,179) ,.  

According to our results for NOS2(Ex16 +14C>T), those who express T allele have a 

risk of having asthma ; for NOS2 (intron 20 + 524 G> A): those who are heterozygous 

GA have a protection of having asthma and also when they express Allele A 

(GA+AA)have also a  protection of having asthma. Comparing controlled and not 

controlled asthma For NOS2 : IVS16+ 88T>G : there is a risk of being  not controlled 

when compared with  controlled for those that are GT ;  those who express Allele T 

(GT+TT)have also higher risk of  being  non controlled, and there is also a trend in the 

allelic frequencies for the allele T to be more frequent in the uncontrolled asthma . For 

ACE gene insertion/deletion (I/D)   polymorphism those who express Allele I (ID/II)have 

protection of having asthma and uncontrolled asthma. For the haplotype analysis at 

NOS 2  , the overall difference in haplotype frequencies between asthmatics  and 

controls pointed to an increased risk of asthma : (CT+TT)at Ex16 +14C>T and  GG at 

(intron 20 + 524 G> A gene polymorphisms.The epistatic interaction between  NOS2: 
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IVS16+ 88T>G (GT+TT ) and ACE I/D( ID+DD) polymorphisms, it increases the risk of 

being uncontrolled of approximately 10 times. 

Angiogenesis and vascular leakage are prevalent in asthma and pharmacological 

control of bronchial vascular remodeling is an important issue in respiratory diseases , 

as  vascular oxidative stress can be reduced and NO restored with drugs in the group 

of angiotensin-converting enzyme-inhibitors,  angiotensin receptor blockers, statins and 

inhaled corticosteroids can positively affect all three main aspects of the vascular 

component of airway remodeling in asthma: vasodilatation, increased vascular 

permeability, and angiogenesis. 

These single nucleotide polymorphisms could lead to different genotype-specific 

response to therapy and different endotypes/phenotypes. 

 

 

 

 

 

 

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 


