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Abstract 

 

Chronic pain is accompanied by maladaptive changes at the cellular, structural and functional 

level, affecting multiple brain regions. These changes are thought to underlie the disruption of 

several cognitive functions, which are commonly reported by patients and observed in chronic 

pain animal models. Interactions between the medial prefrontal cortex (mPFC) and the nucleus 

accumbens (NAc) are particularly important in the promotion of goal-directed behaviors, which 

subserves many aspects of behavior performance. During chronic pain, both the mPFC and 

NAc brain regions were shown to have altered activity, and corticostriatal functional 

connectivity seems to be enhanced in humans, prior to pain chronification. Despite all 

knowledge, the corticostriatal reorganization in chronic pain conditions is not completely 

understood. In addition, the impact of this reorganization in cognitive functions that rely on 

the correct functioning of these areas has been poorly explored. 

The present work aimed to investigate the role of the corticostriatal circuitry in the nociceptive 

information processing, and chronic pain-related spatial working memory (sWM) deficits. To 

address this issue, the activity of the glutamatergic pyramidal neurons projecting from the 

prelimbic (PL) mPFC to the NAc core (NAcc) was optogenetically modulated in a rodent model 

of neuropathic pain - spared nerve injury (SNI). The impact of the delay period inhibition of the 

corticostriatal circuit on sWM was assessed in the behavioral performance of both pre-trained 

and non-trained challenges of a delayed non-matching to sample (DNMS) sWM task. The 

impact of the optogenetic inhibition of the corticostriatal circuit was further evaluated on the 

mechanical sensitivity level, using the von Frey filaments test. In addition to the performed 

behavioral analyses, extracellular spiking activity and local field potentials were recorded 

simultaneously from the PL-mPFC and NAcc regions. 

The present results revealed enhanced levels of corticostriatal connectivity after the induction 

of the SNI neuropathic pain model. It was also found that selective corticostriatal circuit 

optogenetic inhibition during the delay period resulted in enhanced performance levels of the 

SNI-treated animals during non-trained DNMS challenges, but this effect was not associated 

with alterations in pain perception. However, the homolog optogenetic modulation of the 

circuit did not have an impact on the performance levels during pre-trained DNMS challenges.  

Together, these findings suggest that restoring the balance of corticostriatal circuitry local 

activity may be an important therapeutic strategy to reverse WM deficits observed during 

painful syndromes. 

Keywords: chronic pain; working memory; corticostriatal circuitry; optogenetics. 
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Sumário 

 

A dor crónica é acompanhada por alterações mal-adaptativas ao nível celular, estrutural e 

funcional, afetando múltiplas áreas do cérebro. Pensa-se que estas alterações estejam na base 

dos défices cognitivos comummente relatados por pacientes e observados em modelos 

animais de dor crónica. As interações entre o córtex pré-frontal medial (mPFC) e o núcleo 

accumbens (NAc) são particularmente importantes na promoção de comportamentos 

direcionados ao um objetivo, contribuindo para variados aspetos da performance 

comportamental. Foi mostrado que durante a dor crónica, o mPFC e o NAc têm a sua atividade 

alterada e, recentemente, foi visto que a conetividade funcional corticoestriatal está 

aumentada em humanos, antes da cronificação da dor. Apesar do conhecimento reunido, a 

reorganização corticoestriatal em estados de dor crónica não é completamente entendida. 

Para além disso, o impacto que esta reorganização tem nas funções cognitivas dependentes do 

correto funcionamento destas áreas tem sido pouco explorado. 

O presente trabalho pretendeu investigar o papel do circuito corticoestriatal no 

processamento da informação nociceptiva e nos défices de working memory de referência 

espacial (sWM) associados à dor crónica. Para isso, a atividade dos neurónios piramidais 

glutamatérgicos que da região do pré-límbico (PL) do mPFC projetam para a zona do core do 

NAc (NAcc) foi modulada optogeneticamente num modelo de dor neuropática – spared nerve 

injury (SNI). O impacto da inibição do circuito corticoestriatal durante o período de delay na 

sWM foi avaliado através da performance comportamental em desafios pré-treinados e não 

treinados de uma tarefa delayed non-matching to sample (DNMS) de sWM. O impacto da 

inibição optogenética do circuito corticoestriatal nos níveis de sensibilidade mecânica foi 

também avaliado, com o teste dos filamentos de von Frey. Para além da análise 

comportamental, também foram feitos registos de potenciais de ação e potenciais de campo 

locais, simultaneamente no PL-mPFC e NAcc.  

Os presentes resultados mostraram que os níveis de conetividade corticoestriatal estão 

aumentados depois da indução do modelo SNI de dor neuropática. Também se verificou que a 

inibição optogenética seletiva do circuito corticoestriatal durante o período de delay resultou 

num aumento dos níveis de performance de animais SNI em desafios DNMS não treinados, 

mas este efeito não foi associado a alterações na perceção da dor. No entanto, homóloga 

modulação optogenética do circuito não teve um impacto nos níveis de performance em 

desafios DNMS pré-treinados.  
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Estes resultados sugerem que o restabelecimento da atividade local do circuito corticoestriatal 

pode ser uma importante estratégia terapêutica na reversão de défices de WM observados em 

síndromes dolorosas.  

Conceitos-chave: dor crónica; working memory; circuito corticoestriatal; optogenética. 
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I. Introduction 

 

1.1. Working memory 
 

Working memory (WM) was defined as the storage and manipulation of information in mind 

over a short period of time, when it is no longer present (Baddeley, 2012). This faculty is 

constantly demanded to successfully guide behavior and was considered “a major 

achievement of evolution” (Goldman-Rakic, 1987). Early studies in monkeys led to the 

conclusion that the PFC has an important role in mediating WM. Lesion to or temporary 

inactivation of the PFC resulted in impaired performance of tasks involving WM in monkeys 

(Jacobsen, 1935, Bauer and Fuster, 1976, Funahashi et al., 1993). These deficits were also 

reproduced in rats (Granon et al., 1994, Kolb et al., 1994, Seamans et al., 1995, Porter and 

Mair, 1997). Importantly, studies on humans based on lesions of the PFC or functional 

magnetic resonance imaging (fMRI) analysis also implicate the PFC in WM (Muller et al., 2002, 

Voytek and Knight, 2010).  

Electrophysiological recordings of PFC neurons in monkeys revealed persistent activity during 

the delay period of a delayed-response task (Fuster and Alexander, 1971, Funahashi et al., 

1989, Miller et al., 1996). It was proposed that this activity codes task-relevant information and 

that it is fundamental for the maintenance of stimulus representations in WM (Courtney et al., 

1997, Riley and Constantinidis, 2015). However, besides the PFC, other brain areas have 

persistent activity during the delay period, including the parietal cortex, sensory cortices and 

subcortical structures, including the caudate, hippocampus and thalamus (Gazzaley et al., 

2004, Christophel et al., 2017). Furthermore, stimulus-specific activity was also found in other 

cortical regions, such as the primary visual cortex and other sensory regions, depending on the 

modality of the stimulus (Harrison and Tong, 2009). There is still no consensus about the 

function of the PFC persistent activity and even about its necessity for information retention in 

WM (D'Esposito and Postle, 2015). A well supported hypothesis proposes that PFC persistent 

activity serves the function of top-down controller over other brain areas, recruited during the 

delay period, thus having an indirect role on storage being held in other structures (Gazzaley 

and Nobre, 2012, D'Esposito and Postle, 2015, Christophel et al., 2017). That is, the PFC is 

thought to exert a central modulatory role, enhancing task-relevant information and 

suppressing task-irrelevant information, which is not a property of sensory cortices (Gazzaley 

and Nobre, 2012). Furthermore, the PFC coordinates the executive aspect of WM. It is in 
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strong communication with non-sensory areas in the basal ganglia, limbic system and 

brainstem, particularly important both conveying information regarding internal goals, reward 

values, and abstract rules and in mediating goal-directed behavior during WM (Miller and 

Cohen, 2001). 

Rhythmic patterns of activity in the brain are thought to contribute to the coordination of 

distinct brain areas during WM. It is hypothesized that synchronization between neuronal 

oscillations potentiates efficient transmission of information between distributed neuronal 

populations (Fries, 2005). In humans, several studies point to a correlation between the 

enhanced amplitude of oscillatory activity in the θ (4-9 Hz), α (9-12 Hz), and γ (30-100 Hz) 

bands and maintenance of WM information (reviewed in Roux and Uhlhaas, 2014). For 

instance, synchronization of neuronal oscillations in the frontoparietal areas was shown to be 

stable and sustained during the retention period of a visual WM task and was content-specific 

(Palva et al., 2010, Salazar et al., 2012), corroborating the role of synchronous oscillatory 

activity in WM. 

In rodents, hippocampal θ activity is a prominent type of oscillation during voluntary 

locomotor behavior which has been particularly well studied (Buzsaki, 2002). Firing of 

individual neurons in the medial PFC (mPFC) was shown to occur phase locked to hippocampal 

θ rhythm during diverse behavioral tasks (Hyman et al., 2005, Siapas et al., 2005). Theta-

frequency entrainment of mPFC firing was shown to be modulated by behavioral demands and 

correlated with performance levels during a spatial WM (sWM) task (Jones and Wilson, 2005, 

Hyman et al., 2010, O'Neill et al., 2013). Besides the mPFC, other areas are entrained to 

hippocampal-θ rhythm, as is the case of the amygdala and striatum (Pare and Gaudreau, 1996, 

Berke et al., 2004). Overall, coherent θ activity is thought to be important in the 

communication between distinct brain regions (Buzsaki, 2002), which seems to be crucial 

during WM.  

In conclusion, WM is a cognitive process that is not restricted to one anatomical place and 

instead is distributed through the brain, involving distinct regions. The PFC is thought to play a 

central role in coordinating this orchestra but, simultaneously, it also seems to depend on the 

intercommunication with other areas, where preprocessing of information occurs. The 

understanding of WM mechanisms is not complete and, in particular, the mechanisms by 

which WM is impaired in pathological states such as chronic pain are not fully understood and 

deserve further investigation (Moriarty et al., 2011). 
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1.1.2. Spatial working memory tasks in rodents 
 

Rodents are widely used to study WM. Motivated by instinctive or learned rewarding 

behaviors, rats and mice can be tested for their capacity to actively maintain information 

during a short period of time, to further guide behavior.  

A classical sWM task is the Morris water maze task. The animal should repeat the pathway 

followed in a first trial, to find a hidden platform in the water maze, and relieve its own stress. 

While in the first trial, the animal finds the platform by extensively exploring the maze, in the 

second trial, the animal relies on sWM to find it faster (Morris et al., 1986). 

The radial arm maze task is based on the natural tendency of rodents to search for food in yet 

unvisited places, a behavior which results in a better outcome for the animal. When positioned 

on a central platform with access to several identical baited arms, the animal tends to visit the 

unvisited arms first, where it can still find the bait, avoiding visited arms. sWM allows the 

animal to discriminate between visited and unvisited arms in a session (S. Olton and J. 

Samuelson, 1976).  

In delayed alternation tasks, the animal is rewarded for alternating a certain behavior. The T-

maze task takes advantage of the tendency of rodents to spontaneously alternate arm visits in 

repeated exposures to the maze. When a delay period is interposed between the first and 

second runs in the T-maze, the rat relies on sWM to decide for the alternative arm, the 

rewarding behavior (Sanchez-Santed et al., 1997). Other tasks resemble the T-maze task 

concept, by rewarding the rat for following the alternative pathway, in mazes of varying 

shapes (Baeg et al., 2003, Cardoso-Cruz et al., 2013, Cardoso-Cruz et al., 2014).  

Another important type of delayed alternation tasks is referred to as delayed non-matching to 

sample (DNMS). In the DNMS task, the alternated behavior is the approach to a given sample. 

The animal is presented with a spatial sample, which becomes absent during a delay period. In 

the end of the delay period, the animal is presented with two (or more) options, containing the 

initial sample, and it is rewarded for choosing the alternative sample. This task requires WM 

for its solution (Olton et al., 1979, Gal et al., 1997, Dunnett et al., 1999). The task usually takes 

place in an operant chamber, in which the spatial samples are usually levers or nose-pokes. 

Being an operant task and possibly fully automatized, the experimenter interference in both 

learning and testing is reduced. This is also an advantage in experiments involving optogenetic 

stimulation. Finally, this task allows the establishment of a fixed delay period, which might be 

convenient in some analysis. 

 



  I. Introduction 

4 
 

1.2. Chronic pain - related cognitive impairments 
 

According to the International Association for the Study of Pain, pain is “an unpleasant sensory 

and emotional experience associated with actual or potential tissue damage” 

(https://www.iasp-pain.org/Taxonomy). Pain experience has a protective role towards 

damaging stimuli. For instance, it triggers reflexive behaviors to escape, terminate and avoid 

tissue damage and potentiates learning. However, pain might persist longer than biologically 

advantageous, becoming pathological and potentially chronic, as is the case of neuropathic 

pain (Costigan et al., 2009). Neuropathic pain results from a “lesion or disease of the 

somatosensory system” (Jensen et al., 2011). Such circumstances might be associated with 

diseases including diabetes, multiple sclerosis, and Parkinson’s disease may arise after contact 

with neurotoxic chemicals, infection, or, very commonly, after traumatic damage to the 

peripheral or central nervous system. Patients report hyperalgesia, allodynia and spontaneous 

pain, this having a great impact on life quality (Costigan et al., 2009). However, the transition 

to neuropathic pain is not inevitable; it is thought that several factors might potentiate an 

imbalance between adaptive and maladaptive reactions occurring after injury (Costigan et al., 

2009). Overall, and transversally to other forms of chronic pain, there is an increased 

excitability and loss of inhibition both in the periphery, spinal cord, and brain (Costigan et al., 

2009).  

In non-pathological conditions, nociceptive information coming from the periphery is 

transmitted by primary afferent neurons to the dorsal horn of the spinal cord. Ascending 

pathways target different areas in the brainstem and forebrain, where nociceptive stimuli are 

integrated and modulated. Neuroimaging studies consistently show that pain experience is 

correlated with increased activity in the primary and secondary somatosensory cortices (S1 

and S2), insular cortex, anterior cingulate cortex (ACC), and other areas of the PFC, and 

subcortically in the thalamic nuclei, basal ganglia and cerebellum (Apkarian et al., 2005, 

Neugebauer et al., 2009). These brain structures (among others identified) constitute the so-

called “pain-matrix” and are thought to have a role in the conscious and aware perception of 

pain, encoding sensory-discriminative and affective-cognitive aspects of pain (Tracey and 

Mantyh, Melzack and Wall, 1965, Price, 2000, Bushnell et al., 2013).  

Neuropathic pain is accompanied by changes occurring at the cellular, structural and 

functional level, in the nociceptive system (Kuner and Flor, 2017). Inflammation, peripheral 

sensitization, and central sensitization processes occur (Costigan et al., 2009, von Hehn et al., 

2012). Increased nociceptive inputs from the periphery to the dorsal horn of the spinal cord 

induce synaptic strengthening via long-term potentiation mechanisms (Woolf, 2011). Synaptic 

https://www.iasp-pain.org/Taxonomy
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plasticity has also been reported in supraspinal areas including the ACC, insular cortex, 

thalamus, amygdala, the S1 and the mPFC (Luo et al., 2014, Kuner and Flor, 2017). A direct 

consequence of central sensitization is that pain perception is no longer directly dependent on 

the peripheral noxious stimulus. On the contrary, pain perception is exacerbated and no longer 

serves a protective purpose (Woolf, 2011). Maladaptive functional plasticity occurring in the 

nociceptive network also includes morphological and structural changes, alterations in 

connectivity and changes in activity patterns (Kuner and Flor, 2017). Due to the redundancy of 

cerebral circuits, plastic changes occurring across the nociceptive system in neuropathic pain 

are believed to impact other brain functions, as is the case of the cognitive function (Hart et 

al., 2000).  

Patients suffering from chronic pain commonly complain of cognitive impairments, which add 

significant difficulties to their daily life. Reported cognitive deficits were shown to be directly 

related to pain severity (Weiner et al., 2006). It is hypothesized that cognitive impairments 

associated with chronic pain are a consequence of limited resources in the brain, which are 

continuously solicited by pain processing and, thus, limit cognitive processing (Eccleston and 

Crombez, 1999). Many clinical and preclinical studies refer impairments in attention, learning, 

memory, executive function, information processing and psychomotor speed, associated with 

chronic pain conditions (reviewed in Moriarty et al., 2011). 

WM normal functioning is fundamental to successfully pursue with many tasks of daily activity. 

Clinical studies report that chronic pain conditions lead to disruptions in WM capacity, as 

assessed by several tests and self-report (Jamison et al., 1988, Lewis et al., 2004, Dick and 

Rashiq, 2007, Lee et al., 2010, Oosterman et al., 2010, Oosterman et al., 2011). Several studies 

in animals also showed that the induction of both inflammatory (Cain et al., 1997, Lindner et 

al., 1999) and neuropathic (Leite-Almeida et al., 2009, Hu et al., 2010, Ren et al., 2011, 

Cardoso-Cruz et al., 2013, Cardoso-Cruz et al., 2014) chronic pain resulted in impaired 

performance in different WM tasks. 

 

1.2.1. Peripheral neuropathic pain animal models 
 

The study of neuropathic pain in human subjects is highly limited, because of the high 

variability of neuropathies and the difficulty to recruit large numbers of patients. Different 

animal models were developed in rodents that result in reproducible neuropathic pain 

symptoms and mimic neuropathies of different etiologies. Early development of peripheral 

nerve injury models resulted from the need to reproduce chronic pain symptoms in animals 



  I. Introduction 

6 
 

and elucidate underlying mechanisms, which could not be studied with the existent acute pain 

models.  

Wall and Gutnick performed a complete transection of the rat sciatic nerve to induce neuroma 

formation (Wall and Gutnick, 1974). As a consequence of complete denervation, intense 

autotomy behavior was described, which is thought to reflect spontaneous pain and mimic 

anesthesia dolorosa (pain in the absence of sensory input) observed in patients. However, 

besides this spontaneous behavior, hyperalgesia and allodynia symptoms are not easy to 

measure in this model, as there is no sensitivity to an applied stimulus (Wall et al., 1979). 

Moreover, complete transection of a nerve is rare and partial lesions are more common in 

clinical neuropathy. After this model, several were developed in which partial nerve lesion is 

induced.  

In the chronic constriction injury model, four tight ligations are placed around the common 

sciatic nerve (Bennett and Xie, 1988). A variant of this model consists of the ligation of the 

common peroneal branch of the sciatic nerve (Vadakkan et al., 2005). Partial lesion of the 

sciatic nerve was also achieved through ligation of 1/3 to 1/2 of the nerve thickness (Seltzer et 

al., 1990). Common to models involving ligation of the nerve, there is some variation in the 

degree of the induced lesion, which is mainly explained by the variable tightness of the ligation 

and type of used suture material (Jaggi et al., 2011). The spinal nerve ligation model consists of 

the tight ligation of L5 or L5 and L6 spinal nerves of the rat, and, according to the authors, 

results in reduced variability when compared with the above models (Kim and Chung, 1992). 

The cuffing of the sciatic nerve model was also designed in the attempt to reduce variation in 

the extent of damage caused to the nerve: a standardized fixed-diameter polyethylene tube 

cuff is applied to the nerve, resulting in consistent levels of nerve damage, as assessed by fiber 

spectrum analysis (Mosconi and Kruger, 1996).  

The spared nerve injury (SNI) consists of the ligation followed by axotomy of the tibial and 

peroneal branches of the rat sciatic nerve, leaving the sural branch intact (Decosterd and 

Woolf, 2000). This model results in robust physiological and behavioral changes that persist up 

to 6 months, with minimal variability among animals. Partial denervation allows testing of 

uninjured skin territories, which become hypersensitive in the result of peripheral sensitization 

mechanisms. The areas of the hindpaw innervated by the sural nerve and by the saphenous 

nerve show increased responsiveness to mechanical and thermal stimulation.  
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1.3. The corticostriatal circuitry 
 

The PFC is the most rostral part of the neocortex. It is particularly important in top-down 

processing, coordinating a broad range of cognitive processes (Miller and Cohen, 2001). The 

anatomy and connectivity of the PFC are crucial for how it influences downstream brain 

regions. It establishes connections with all sensory and motor cortices and with several 

subcortical structures (Miller and Cohen, 2001). In the rodent brain, the PFC is divided in a 

medial region, agrannular insular and orbital regions. The mPFC is involved in several cognitive 

processes, including WM, decision making, attention, goal-directed behavior and inhibitory 

control (Heidbreder and Groenewegen, 2003). It is composed of 15% GABAergic interneurons 

and 85% of glutamatergic pyramidal projection neurons (Ding et al., 2001) and is divided into 

cyto-architectonically distinct parts along its dorsoventral axis: the medial agrannular, ACC, 

prelimbic (PL) and infralimbic cortices (from dorsal to ventral). The medial agrannular cortex 

and ACC are mainly associated with motor behaviors, having important links with the motor 

cortex; the infralimbic cortex is involved in visceral and autonomic activity, establishing 

connections with autonomic sites in the brainstem and spinal cord. In addition, the ACC has a 

relevant role in affective pain processing (Fuchs et al., 2014). The PL cortex is directly involved 

in cognitive processes, establishing important connections with the limbic system and 

cognition related structures (Heidbreder and Groenewegen, 2003, Vertes, 2003).  

Lesions restricted to the PL cortex in rats resulted in the well described deficits in WM tasks, 

broadly associated with the PFC (Delatour and Gisquet-Verrier, 1996, Fritts et al., 1998, 

Ragozzino et al., 1998). The PL sends glutamatergic projections to structures such as the 

nucleus accumbens (NAc), the insular cortex, the amygdala, the midline thalamus (mediodorsal 

and reuniens nuclei) and the hippocampus are important for its role in cognitive processes. It 

equally receives information from these structures through both direct and indirect pathways, 

which are thought to converge affective, motivational, spatial and contextual information to 

the PL (Vertes, 2003).  

The NAc is part of the basal ganglia, located in the ventral striatum. In rodents, it is segregated 

in a core region on its lateral side and a shell region on its ventral side, based on histochemical 

differences (Zahm and Brog, 1992). Recently, a fMRI study showed similar segregation of NAc 

areas in humans (Baliki et al., 2013). In terms of cellular composition, the NAc is constitutively 

composed of GABAergic medium spiny projection neurons. This nucleus is traditionally viewed 

as an important node in the reward circuitry, guiding behavior and directing attention towards 

appetitive stimuli (Floresco, 2015). Especially, it has a critical role in guiding behavior when 

there is ambiguity or uncertainty on what the best behavioral strategy might be to achieve a 
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certain goal (Floresco, 2015). The NAc is commonly considered to be an important interface 

between limbic and motor systems (Mogenson et al., 1993), ultimately mediating action via its 

output projections to motor-related areas, through the ventral pallidum and mediodorsal 

thalamus (Floresco, 2015).  

The NAc receives important dopaminergic afferents from the midbrain, as well as 

glutamatergic afferents coming from cortical areas and the limbic system (Britt et al., 2012). 

NAc processing of incoming information is thought to bias the direction of behavior, facilitating 

the selection of actions that result in the best outcome. Dopaminergic projections to the NAc 

originate in the ventral tegmental area (VTA) and substantia nigra and were described to have 

a role influencing cortical and limbic inputs to the NAc, either amplifying or attenuating 

information, i.e. selecting information to be transmitted through the NAc (Mogenson et al., 

1993). The hippocampus, the amygdala, and the PFC constitute perhaps the most relevant 

cortical and limbic projections to the NAc. These send glutamatergic projections to the NAc in 

a topographically organized manner, conveying information about internal motivations, 

context and environmental stimuli (Britt et al., 2012). The PL strongly projects to the NAc, with 

layer II pyramidal neurons targeting the core subregion and layer V and VI pyramidal neurons 

targeting both the core and shell subregions (Ding et al., 2001). 

WM is one such cognitive process which seems to depend on the biasing action of the NAc. 

Interactions between the mPFC and the NAc are thought to subserve executive function 

aspects of WM, that is, the use of previously obtained information to successfully guide 

behavior (Kimberg and D’Esposito, 1997, Floresco et al., 1999). Consistently, several studies 

including lesions to the NAc or transient disconnection between the NAc and the PL-mPFC in 

rats, resulted in disrupted performance on different WM tasks (Seamans and Phillips, 1994, Gal 

et al., 1997, Floresco et al., 1999, Jongen-Relo et al., 2003). In addition, neuronal activity of the 

mPFC and NAc of rats coded correct/incorrect trials during a spatial delayed alternation task 

(Chang et al., 2002). 

 

1.3.1. The role of the corticostriatal circuitry in pain processing 
 

Several supraspinal brain areas are involved in pain mechanisms, both contributing to the 

sensory-discriminative and affective-cognitive aspects of the pain experience. The PFC was 

shown to be broadly activated during acute painful stimulation (Apkarian et al., 2005). Specific 

subregions of the PFC were associated with the processing of cognitive and affective aspects of 

pain. Imaging studies in humans revealed that the mPFC is activated during anticipation of pain 
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(Porro et al., 2002), that placebo increases activation levels of the dorsolateral and 

orbitofrontal cortices during anticipation of pain (Wager et al., 2004) and that the sensation of 

control over pain has an analgesic effect that is accompanied by increased activation of the 

ventrolateral PFC (Wager et al., 2004). These results highlight the fact that the unpleasantness 

of pain is subjective and highly modulated by emotional and cognitive aspects, such as the 

underlying emotional state, attention/distraction, expectations and cognitive reappraisal 

(Price, 2000, Bushnell et al., 2013). Importantly, the previous results are supportive of a role of 

the PFC in the top-down regulation and modulation of pain perception.  

The NAc integrates pain information from pain processing areas, such as the PFC, amygdala, 

and ACC, and it was also shown to receive direct projections from the spinal dorsal horns 

(Burstein and Giesler, 1989, Newman et al., 1996). While pain is usually an aversive 

experience, pain termination or relief is rewarding, leading to phasic dopamine depressions 

and dopamine release in the NAc, respectively (Schultz, 2013). Importantly, conditioned place 

preference elicited by pain relief was shown to be associated with VTA-mediated dopamine 

release in the NAc, supporting a role of the NAc in mediating pain-relieving/escaping behavior 

(Navratilova et al., 2012). Consistently, fMRI results from humans and rats showed that pain 

onset is accompanied by a decrease, while pain offset is accompanied by an increase in NAc 

activity (Becerra and Borsook, 2008, Becerra et al., 2013). Villemure and colleagues showed 

that reduction of pain unpleasantness perception mediated by improved mood was positively 

correlated with the amount of NAc activation (Villemure et al., 2012). Furthermore, imaging 

studies showed the involvement of corticostriatal projections in positive reappraisal during 

aversive experiences, such as pain (Wager et al., 2008). Overall, the NAc is thought to be 

involved in signaling value and saliency of painful stimuli, ultimately promoting pain-motivated 

behavior and learning.  

Pain chronification is accompanied by maladaptive structural plasticity in pain pathways, which 

is believed to underlie pain persistence and exacerbation as well as serious cognitive and 

affective comorbidities (Kuner and Flor, 2017). Imaging studies showed that several cortical 

and subcortical areas activated during acute pain stimulation are abnormally activated during 

chronic pain, as is the case of the PFC (Apkarian et al., 2001, Zhuo, 2008). In fact, a meta-

analysis of human neuroimaging studies indicated a higher incidence of PFC activation in 

chronic pain as compared with experimentally induced pain (Apkarian et al., 2005). The 

authors speculate that this might reflect a stronger involvement of cognitive and affective 

components in chronic pain versus acute pain. Accordingly, prefrontal activation was more 

extensive during heat allodynia than during painful thermal stimulation in humans (Lorenz et 

al., 2002). An increase in fMRI mPFC activity was found to correlate with the intensity of pain 



  I. Introduction 

10 
 

in patients with chronic back pain. This exacerbation was proposed to reflect the persistent 

negative emotional state of the patients (Baliki et al., 2006).  

Electrophysiological patch clamp recordings in a neuropathic pain model showed increased 

intrinsic excitability of layer V ACC pyramidal neurons (Blom et al., 2014). Moreover, 

optogenetic stimulation of ACC inhibitory neurons resulted in a strong decrease in pain 

perception (Gu et al., 2015). Cordeiro Matos and Zhang analyzed layers II/III of ACC and PL 

mPFC regions from neuropathic pain rats and equally found increased intrinsic excitability in 

pyramidal neurons (Cordeiro Matos and Zhang, 2015). This was also observed in layer V 

neurons of the PL of neuropathic pain rats (Wu et al., 2016). However, disparate observations 

were reported pointing to a deactivation of PL pyramidal neurons, in spite of enhanced input 

glutamatergic synaptic transmission (Wang et al., 2015, Zhang et al., 2015). 

A study in rats showed that during neuropathic pain, layer II/III of the PL-mPFC region 

undergoes severe morphological and functional changes and that there is an increase in 

synaptic currents of the N-methyl-D-aspartate (NMDA) component (Metz et al., 2009). The 

authors suggest that these changes might be related with increased glutamatergic inputs, 

possibly causing excitotoxicity and neuronal loss in this brain area. In fact, decreased 

prefrontal gray matter density was found in both humans and rats in chronic pain conditions 

(Apkarian et al., 2004, Seminowicz et al., 2009). Curiously, another study showed that selective 

infusion of a NMDA partial agonist in the PL region of the mPFC had antinociceptive properties 

in rats with neuropathic pain. This antinociceptive effect was proposed to result from drug-

induced dissociation of relationships previously formed with spontaneous pain in the PL 

(Millecamps et al., 2007). This hypothesis is supportive of the idea that chronic pain is a 

maladaptive state of continuous learning in which aversive emotional associations are 

persistently made, and there is inability to extinguish them (Apkarian et al., 2009). It is further 

assumed that in such condition, the circuitry involved in reward/punishment learning must be 

in an activated state (Apkarian et al., 2009). 

Lidocaine infusion in the NAc of a rat neuropathic pain model was shown to reduce 

neuropathic pain symptoms, revealing an important role of the NAc in the maintenance of 

chronic pain (Chang et al., 2014). Furthermore, a longitudinal study of a rat neuropathic pain 

model showed reorganization of NAc functional connectivity with different brain regions, 

including the mPFC, hippocampus, thalamus, sensorimotor cortices, cingulate, insula and 

orbitofrontal cortex (Chang et al., 2014). These changes were also accompanied by reductions 

in dopamine receptors (D1 and D2) expression (Chang et al., 2014). These changes are in 

agreement with a previous study in which the infusion of a dopamine receptor (D1 and D2) 

agonist diminished allodynia of neuropathic pain rats (Sarkis et al., 2011). A recent study 
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showed that reduced extracellular dopamine levels in the NAc during neuropathic pain leads 

to the disinhibition of a subset of NAc neurons related with aversive events and negative affect 

(indirect spiny projection neurons), which the authors showed to underlie allodynia symptoms 

(Ren et al., 2016). Blocking NMDA receptor activation in the NAc resulted in decreased 

neuropathic pain symptoms, suggesting an involvement of NAc glutamate NMDA receptor 

activation in the maintenance of pain symptoms (Sarkis et al., 2011). Together, these results 

suggest altered dopaminergic and glutamatergic activity in the NAc during chronic pain.  

In humans, an imaging study showed that the NAc was differently activated in chronic back 

pain patients and in healthy individuals, when submitted to an acute painful thermal stimulus 

(Baliki et al., 2010). Interestingly, NAc functional connectivity with the mPFC was stronger in 

chronic back pain patients but not in healthy controls (Baliki et al., 2010). More recently, it was 

found that increased corticostriatal functional connectivity (between mPFC and NAc regions) 

could accurately predict pain chronification after a subacute back pain episode (Baliki et al., 

2012).  

These emerging results suggest that persistent pain acts as a persistent aversive motivation, 

likely engaging the corticostriatal circuitry and altering its normal functionality (Apkarian et al., 

2012). Cognitive deficits associated with chronic pain conditions are broadly attributed to 

chronic pain-induced reorganization in the brain. In this regard, it is expected that alterations 

in normal corticostriatal circuitry function might impair cognitive tasks that depend on its 

proper functioning. 

 

1.3.2. Optogenetic tools for manipulating specific circuits in the brain 
 

Functional dissection of neural circuits seems to be crucial for the understanding of the neural 

substrates of behavior. Several approaches have been used to interfere with neural activity. 

Electrical manipulation of cells allows high temporal precision but greatly lacks cell-type 

specificity. Pharmacological and genetic approaches, on the contrary, can achieve high degrees 

of cell-type specificity, but without temporal precision relevant for the neural events timescale 

(Fenno et al., 2011). Optogenetics enables in vivo efficient excitation and inhibition of neurons, 

with high cell-type specificity and millisecond time resolution. This is achieved via illumination 

of light-sensitive ionic channels (“opsins”), genetically encoded in the neurons of interest. 

Selectively targeting a defined subset of neurons and manipulating its activity is a very useful 

tool to establish links between neural activity and biological functionality.  
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Opsins are naturally occurring light-sensitive proteins composed of 7 transmembrane helixes 

(Zhang et al., 2011). Upon light stimulation, these proteins are capable of transporting ions 

across the cell membrane. Opsins also allow the control of intracellular biochemical signaling 

(Pierce et al., 2002). Some of the most studied opsins are microbial (type I), and play a role in 

phenomena such as phototaxis, energy storage, and development, but opsins also occur in 

animals (type II), where they have a role in vision, in the circadian rhythm and in pigment 

regulation (Zhang et al., 2011). Optogenetics makes use of opsin properties to perturb target 

excitable cells. Opsins either act as light-activated ion pumps or as light-gated ion channels, 

potentially resulting in inhibition or excitation of target cells, respectively (Zhang et al., 2011).  

Bacteriorhodopsins were first identified in Halobacterium halobium (Oesterhelt and 

Stoeckenius, 1971). These opsins actively transport protons from the intracellular to the 

extracellular space, resulting in hyperpolarization of the membrane. Other opsins act as 

bacteriorhodopsin-type proton-pumps, such as the proteorhodopsins and archaeorhodopsins. 

First found in archaebacteria, halorhodopsins (HR) pump chloride ions from the extracellular to 

the intracellular space, thus leading to the hyperpolarization of the membrane (Matsuno-Yagi 

and Mukohata, 1977). Channelrhodopsins (ChRs) act as light-gated ion channels. 

Channelrhodopsin-1 was identified in green algae Chlamydomonas reinhardtii by Nagel et al. 

(Nagel et al., 2002). After ChR-1, other ChRs were identified and studied. ChRs allow passive 

transport of cations, through a channel pore. Upon light illumination, cations flow down the 

electrochemical gradient, resulting in depolarization of the membrane and potentially, in an 

action potential.  

Identification and characterization of microbial opsins was essential in the development of 

optogenetic tools. In 2005, Boyden et al. published the first paper on the use of opsins for fast 

neuronal activation. They used ChR2 to photostimulate cultured hippocampal neurons 

(Boyden et al., 2005). Since then, opsin genes have continuously been molecularly engineered 

to increase functionality and comply with different experimental design demands. The 

alterations aim to manipulate opsin tolerability, kinetics, spectral and trafficking properties 

(Carter and de Lecea, 2011). For instance, earlier ChRs were not able to evoke spike trains at 

frequencies higher than 40Hz, which occurs physiologically. Molecular modifications were 

made to accelerate channel closure kinetics, allowing accurate functioning on higher 

frequencies (Gunaydin et al., 2010). Natronomonas pharaonis HR (NpHR) when expressed in 

mammalian neurons has impaired subcellular localization. Second and third generation 

versions of NpHR (eNpHR and eNpHR3.0, respectively) have successively improved membrane 

trafficking, resulting in increased photocurrents and tolerability (Gradinaru et al., 2010). 
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Several strategies are available for targeting opsin gene expression to a given neuronal 

population. One of the most common methods uses viral expression systems. Infection of 

target cells with replication deficient virus, such as the lentivirus or the adeno-associated virus 

(AAV) allows high levels of opsin gene expression within a short time (2-6 weeks) and 

prolonged for several months, with no adverse effects (Zhang et al., 2010). Different viruses 

and virus pseudotypes implicate different cell tropism and transduction mechanisms. Cell-type 

specificity might be further improved by the choice of an adequate promoter. However, to fit 

in viral vectors, the promoter size is limited, which greatly reduces available cell-type specific 

promoters (Luo et al., 2008). Nevertheless, viral expression systems allow multiple strategies 

that combine genetic and anatomic specificity (Yizhar et al., 2011). For example, a specific 

projection might be selected if light stimulation is made in the terminal projection site, instead 

of in the cell soma site. Another strategy uses a recombinase-dependent system: a virus 

encoding Cre-recombinase is injected in the terminal projection site, and a Cre-recombinase 

dependent virus is injected into the cell soma site. Cells carrying Cre-recombinase dependent 

virus become light sensitive where they intersect the Cre-injected site (Cre moves trans-

synaptically). Alternatively to using combined virus injections, Cre-dependent virus can be 

injected in mice endogenously expressing Cre under cell-specific promoters. This allows highly 

specific cell targeting and a high number of gene copies when a strong promoter is used. Opsin 

gene targeting might also be achieved by creating mouse transgenic lines expressing the 

desired opsin under the control of a cell-type specific promoter. Although this strategy is highly 

reliable, it is also expensive and time-consuming (Yizhar et al., 2011). In utero electroporation 

allows delivery of a high number of copies of DNA of any size, at different time points in early 

development. This allows precise spatiotemporal targeting of gene expression (Yizhar et al., 

2011).  

Photocurrents are generated upon adequate illumination of opsin-expressing cells. Light 

sources are most commonly lasers or LEDs. Both allow sharp spectral tuning of light, and 

several wavelengths matching opsin absorption peak can be obtained. Laser beams have 

particularly low divergence, which facilitates light focusing, important when coupling light into 

optical fibers, for instance. LED systems have lately been developed to also allow connection to 

optical fibers with greater coupling efficiencies (Clements et al., 2013). LEDs are relatively 

cheaper and have an easier set-up than lasers, which makes them an increasingly popular 

option in many experimental designs. Besides light sources, light delivery systems, as well as 

light propagation in the brain tissue should be considered, in order to obtain optimal light 

conditions in the targeted area. When targeting superficial cortical layers, LEDs can be 

mounted over a cranial window, leaving the tissue intact. When targeting deep areas of the 
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brain, optical fibers are usually used to conduct light with enough efficiency and without 

interfering with animal behavior. Once reaching the brain tissue, light propagates as a 

combination of absorption and scattering by the tissue. Light propagation is also dependent on 

the intensity and wavelength of the incident light, resulting in varying light spread patterns.  

Light properties in the source and physical properties of the light delivery system should be 

precisely defined regarding optimal illumination of opsin-expressing cells. In order to achieve 

the desired in vivo effect, the light should be delivered to the opsins with the correct 

wavelength, intensity and temporal pattern (Mohanty and Lakshminarayananan, 2015). 
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1.4. Aims 
 

Recent evidence points to an abnormal corticostriatal function during chronic pain conditions. 

In healthy states, the corticostriatal circuitry is broadly involved in goal-directed behavior, 

bridging motivations with behavioral action. There is lacking knowledge on how chronic pain 

interferes with normal corticostriatal function and how this might contribute to chronic pain –

related cognitive deficits.  

 

The overall aim of the present work was to investigate the role of the corticostriatal circuitry in 

mnemonic information processing and its impact in the manifestation of pain-related sWM 

deficits. In specific, the following questions were targeted:  

 

(1) How does the corticostriatal circuit activity differently affect the performance of pre-

trained and non-trained challenges of a sWM task in a neuropathic pain condition? 

 

(2) How does the corticostriatal circuit activity affect nociceptive responses in a 

neuropathic pain condition? 
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II. Methodologies 

 

2.1. Materials and methods 

2.1.1. Animals 
 

A total of 20 young adult male Wistar rats (weight between 250 and 350 g) were used for the 

experiments (Sham: n=10, SNI: n=10). Animals were purchased from the local animal facility 

and housed under controlled humidity (50-55%) and temperature (22-24 ºC) levels, on a 12h 

light/dark cycle. Throughout experiments, animals’ body weight was limited to 90-95% of ad 

libitum feeding levels, with free access to water, unless otherwise stated. All animal 

experiments were performed in accordance with the guidelines of the European Union 

(2010/63/CE) and with the Research and Ethical Issues of the International Association for the 

Study of Pain (Zimmermann, 1983). The experimental protocols were approved by the local 

Ethical Committee for Animal Use and national Direção Geral de Alimentação e Veterinária 

board (Lisbon, Portugal).  

 

2.1.2. Opsin gene delivery 
 

In order to optogenetically inhibit PL-mPFC glutamatergic neurons projecting to the NAcc, HR 

expression was induced via injection of AAV vectors in the PL-mPFC. The virus carried a vector 

construct encoding the eNpHR3.0 protein and the mCherry fluorescent protein, under the 

human synapsin-1 (hSyn) promoter (vector construct: rAAV5/hSyn-eNpHR3.0-mCherry-WPRE, 

3.0x1012 vg/mL, UNC Gene Therapy Vector Core). AAV serotype 5 has great compatibility with 

the nervous tissue, resulting in high levels of opsin gene expression, for prolonged periods of 

time, without aversive effects (Yizhar et al., 2011). Third-generation enhanced Natronomonas 

HR (variant eNpHR3.0) is an enhanced version of the Natronomonas HR protein (Gradinaru et 

al., 2010). It achieves inhibition of neurons by pumping chloride ions into the intracellular 

space, with high efficiency. The hSyn promoter restricts protein expression to neurons, driving 

strong opsin expression in both excitatory and inhibitory neurons. Moreover, this promoter 

allows consistent expression levels along processes, even in distant axon terminals (Diester et 

al., 2011).  
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2.1.3. Light delivery 
 

In order to selectively stimulate PL-mPFC glutamatergic neurons projecting to the NAcc, light 

with a specific wavelength was delivered to the NAcc, targeting axon terminals of HR-

expressing neurons.  

Light was delivered through a thin optical fiber (8 mm long; 200 µm wide; 0.66 NA) implanted 

in the NAcc. The optical fiber was connected to an optical patch cable, which transmitted light 

from a LED driver (Plexon LD-1 Single Channel LED-Driver; Plexon Inc., Dallas, TX, USA). An 

optical commutator was used to allow free rotation of the optical patch cable, facilitating free 

movement of the animal during behavioral testing. A transistor-transistor logic (TTL) pulse 

train generator (Prizmatix Pulser 2.0, Israel) was connected to the LED driver (Plexon LD-1 

Single Channel LED-Driver; Plexon Inc., Dallas, TX, USA) to control optical stimulation 

parameters. 

Optogenetic stimulation consisted of a continuous pulse of orange LED light (λ=620 nm), with 

light intensity calibrated to 5 mW at the tip of the optical fiber. Light intensity was calculated 

to achieve a dispersion of 1 mm at the tip of the optical fiber.  

 

2.1.4. Surgical Procedures 
 

Virus injection, optical fiber, multi-electrode array implantation and the SNI/Sham lesion were 

performed in the same intervention. Rats were anesthetized with an intraperitoneal injection 

of a ketamine (75 mg/kg) and medetomidine (0.5 mg/kg) mixture and placed in a stereotaxic 

frame (David Kopf Instruments, Tujunga, CA, USA) after checking for absence of reflexes 

(corneal-blink and hindpaw withdrawal). Body temperature was regularly checked and 

maintained at 37ºC with the aid of an electric blanket. In order to prevent animals’ eye drying 

during surgery, a lubricant was applied. During surgical procedures, 0.5 mL of saline solution 

was administered subcutaneously every hour.  

For the stereotaxic brain surgery (Cardoso-Cruz et al., 2011), the head of the rat was shaved 

and cleaned with antiseptic solution (Betadine™) and a longitudinal incision was made on the 

skin. The skull was exposed and the muscle and connective tissue were blunt-dissected. The 

following coordinates relative to Bregma were used for stereotaxic targeting of PL-mPFC and 

NAcc structures: [PL-mPFC]: -3.2 mm anterio-posterior (AP), 0.5-0.9 medio-lateral (ML), 3.4 

mm dorso-ventral (DV); [NAcc]: 1.6 AP, 0.8 ML, 7.0 DV. A craniotomy was made over the 

region of interest, and the dura mater was removed. A volume of 1 µL of virus was injected 
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into the PL-mPFC region. Virus was delivered at a rate of 0.1 µL/min, using a 2 µL Hamilton 

microsyringe (Model 7001 KH, Hamilton). After infusion, the syringe was maintained in the 

injection site for 5 minutes before slow removal. The optical fiber was coupled to the 

microelectrodes structure. The not exposed bottom portion of the optical fiber ferrule was 

covered with a zirconia film before assembly in the implant structure. Four screws were fixed 

to the skull in order to stabilize the implant and for grounding purposes. The structure was 

fixed with dental acrylic.  

The SNI model was induced as described by the authors (Decosterd and Woolf, 2000). Briefly, a 

small incision was made on the skin of the rat thigh contralateral to the side of the electrodes 

and fiber implantation and virus injection. The biceps femoris muscle was blunt-dissected, 

exposing the three branches of the sciatic nerve. The common peroneal and tibial nerves were 

ligated with non-absorbent 5.0 silk in two places and a portion of the nerve (2-4 mm) was 

removed. The sural nerve was left intact. The control sham lesion consisted of an equal 

amount of skin and muscle incision, without nerve lesion.  

After all the described procedures, anesthesia was reverted with subcutaneous administration 

of antipamezole (5.0 mg/kg). Analgesic carprofen (4.4 mg/kg) and antibiotic enrofloxacin (5.0 

mg/Kg) solutions were administered subcutaneously after surgery and every 24 hours during 

the following 3 days. During a 7 day recovery period, the animals had free access to water and 

food. After surgery, each animal was housed individually until the end of the experiments.  

 

2.1.5. Von Frey filaments test 
 

The von Frey filaments test was used to assess the mechanical sensory threshold in the rats 

(Chaplan et al., 1994). The behavioral test took place in a plastic cage with a wire mesh floor (5 

mm2/square mesh), through which mechanical stimulation was performed. Each rat was 

allowed 15 minutes to acclimatize to the apparatus before testing. The rat was then tested in 

the mid-plantar area of the hindpaw, ipsilateral to the SNI/Sham lesion. Stimulation of the paw 

consisted of perpendicularly touching the hindpaw with a von Frey filament (Aesthesiometer, 

Somedic, SWEDEN) until it slightly bended. Each stimulus lasted for a maximum of 

approximately 5 seconds, or until a response occurred. Paw withdrawal, licking or flinching 

were considered positive responses. In the case of an ambiguous response, the stimulus was 

repeated. Stimulation was repeated for von Frey filaments of successively decreasing forces. 

Each filament was tested 10 times and the sensory threshold for noxious mechanical 

stimulation was determined as the force required to elicit at least 5 out of 10 positive 
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responses, according to the up-and-down method described by Dixon (Dixon, 1980). 

Mechanical sensitivity threshold was measured with and without simultaneous optogenetic 

stimulation. In both cases, the rat was placed in the test cage with the patch cable connected. 

Optical stimulation was applied during 10 seconds and filament stimulation was performed 

after the onset of optical stimulation. There was always a period with no optical stimulation 

between each filaments stimulation. The von Frey filaments test was performed at least 1 hour 

after DNMS probe sessions to eliminate any possible impact on cognitive performance. 

 

2.1.6. Spatial working memory task 
 

sWM performance was assessed with a classical DNMS task. The DNMS task was performed in 

a square maze (45cm x 45cm x 40cm), with two retractable levers (one in the left and one in 

the right) and a pellet dispenser in the center, either located in the same wall (Figure 1).  

 

Figure 1 – Schematic representation of the DNMS task. Each trial of the DNMS task starts with the 

exposure of the sample lever (green). Upon sample lever press a delay period begins, in which both 

levers are retracted. After the delay period, the rat should choose the opposite lever (green) among the 

two available levers to obtain a reward. 

 

Retractable levers position was identified by distinct visual cues (geometric figures). In the 

room there were also external visual cues. The position of the maze, visual cues and light 

intensity were maintained throughout the experiments. A trial of the task is composed of two 

phases: a sample phase and a choice phase, separated by a delay interval (Figure 2). Each trial 

is separated by an inter-trial interval (ITI) of 10 seconds. The sample phase is initiated when 

one of the two levers (sample) is randomly exposed (equal probability for each lever). The 

lever exposure is accompanied by a sound cue of 400 Hz and 400 milliseconds duration. The 

rat should press the presented lever within 20 seconds. Upon lever-press, the lever is retracted 

and a delay interval (1, 3, 6, 9, 12 or 18 seconds) is initiated. The choice phase begins in the 

end of the delay period with the exposure of the two levers, and this is accompanied by a 

second sound cue of 400 Hz and 400 milliseconds duration. The rat should press one of the 

two levers within 30 seconds, resulting in the retraction of both levers. A correct choice is 
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counted if the rat presses the opposite lever pressed during the sample phase, resulting in the 

delivery of a reward through the pellet dispenser – a chocolate-flavored food pellet (45 mg 

sucrose) (BioServ, Frenchtown, NJ, USA). If the rat fails to do the sample or the choice phases 

within the predicted time, exposed levers retract and an omission is signaled by a sound cue of 

800 Hz and 400 milliseconds duration. The OpenControl software (adapted to this task) was 

used to automatically control experimental parameters and to record task events (Aguiar et 

al., 2007).  

 

Figure 2 – Temporal organization and parameters of a DNMS task trial. Each trial of the DNMS task is 

preceded by an inter-trial interval (ITI). The exposure of sample and choice levers is signaled by a 400 Hz 

tone (blue), and the time to press these is limited to 20 and 30 seconds, respectively. If these time-

intervals are exceeded, they are classified as an omission and signaled by a 800 Hz tone (orange). The 

correct choice lever-press is accompanied by the delivery of sucrose-pellet reward. The choice lever-

press time is termed as the latency of choice response. 

 

2.1.7. Neural recordings 
 

The neural signals were recorded through 15 tungsten isonel-coated microelectrodes (PL-

mPFC: 8, NAcc: 7) of 35 µm in diameter, with impedances varying between 0 and 0.7 MΩ at 1 

kHz. The microelectrodes were connected to a wireless head-stage transmitter (W16, Triangle 

Biosystems), which provided wireless connection between the implanted multielectrode 

structure and the Multineuron Acquisition Processor system (16-MAP, PlexonInc, Dallas, TX, 

USA). Spiking activity and local-field potentials (LFPs) were recorded simultaneously from the 

same electrodes. Recorded neural signals were preamplified (10000-25000X) and digitized at 

40 kHz for identification of single-unit waveforms. Neural data was sorted online (SortClient 

2.6; Plexon) and validated offline (Offline Sorter 2.8; Plexon), according to five cumulative 

criteria (Cardoso-Cruz et al., 2011, 2013a). Extracellular LFPs were extracted by low-frequency 

(0.3–200 Hz) filtering of the raw signals. LFPs were preamplified and digitized at 1 kHz. A video-
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tracking system (CinePlex 2, Plexon) was installed over the behavioral maze in order to record 

behavioral responses across experimental sessions. Video recordings and neuronal data were 

synchronized.  

 

2.1.8. Histology 
 

Histological analyses were performed in the end of the experiments, to confirm correct viral 

expression and optical fiber and microelectrodes location. The rats were deeply anesthetized 

with pentobarbital (200 mg/kg) and transcardially perfused with 0.1 M phosphate buffered 

saline (PBS), followed by 4% paraformaldehyde in PBS. Rat brains were dissected and post-

fixed in 4% paraformaldehyde overnight at 4ºC. Rat brains were then transferred to 30% 

sucrose in PBS and stored at 4ºC during at least 3 days before further processing. Brain coronal 

slices (40 µm) were made with a freezing microtome (Leica Biosystems), washed in 0.1 M PBS 

and mounted on gelatinized glass slides. Alternating brain slices were stained with thionine for 

optical microscopy or coverslipped with mounting medium (50% glycerol in PBS) and DAPI 

fluorescent stain for fluorescence microscopy. Fluorescence microscopy images were obtained 

using a fluorescence microscope (Zeiss AxioImager.Z1) with the Apotome system (optical 

sectioning using structured illumination). Images were processed using the AxioVision 

microscope software (Apotome.2, Zeiss). 

 

2.1.9. Experimental protocol 
 

Animals were subjected to a pre-training period in the DNMS task (Figure 3). During this 

period, the rat should learn to press one of two available levers, as a mechanism to obtain a 

food pellet. For this, animals were put in the maze and allowed to explore during 15-minute 

daily sessions. Both retractable levers were exposed and pressing of any of the levers resulted 

in the delivery of a food pellet. The pre-training period lasted until the animal was able to 

press any of both levers (approximately 10-15 days of training). When this was achieved, the 

learning curve was initiated. The learning curve consisted of a period of training in the DNMS 

task with a 1-second delay interval during 10 consecutive days (one daily session of 40 trials). 

Only animals that achieved at least 80% of correct trials during the last 3 days of the learning 

curve were allowed to continue in further experiments. Animals that achieved criterion were 

submitted to surgery. After recovering for at least 7 days, animals were subjected to a 

retraining period in the DNMS task, which consisted of 5 days of training in the 1-second 
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DNMS challenge (one daily session of 40 trials). Probe recording sessions were initiated 4 

weeks after surgeries in order to guarantee strong HR expression in the axon terminals of the 

infected neurons and to guarantee the stability of the SNI neuropathic pain model. Each 

animal was tested in the DNMS task on 5 different delay challenges: 3, 6, 9, 12 and 18-second 

DNMS challenges. Animals were tested on three probe sessions: after training (I) 3-second and 

(II) 6-second DNMS challenges; and without previous training (II) 9, 12 and 18-second DNMS 

challenges. Training on the 3 and 6-second DNMS challenges lasted for 6 days (one daily 

session of 40 trials), immediately preceding probe sessions. 

Optogenetic stimulation was performed during the whole delay period (whole) in all DNMS 

challenges. Additionally for the 6-second DNMS challenges, the optical stimulation was also 

applied during the first half of the delay period (early) and during the second half of the delay 

interval (late). In control sessions no stimulation was performed (off). For the 3- and 6-second 

DNMS challenges, off sessions were composed of 40 trials and remaining sessions were 

composed of 30 trials. For the 9-, 12- and 18-second DNMS challenges, all sessions were 

composed of 25 trials. Animals were tested randomly on each behavioral paradigm. 

 

Figure 3 – Experimental timeline. After completing the 10 days of the DNMS learning curve, animals 

were submitted to surgery (day 0). After they had already recovered from surgery, they were retrained 

on the 1-second DNMS challenge during 5 days (aprox. day 14). They were trained in the 3-second 

DNMS challenge for 6 days (aprox. day 21), after which they were tested in probe sessions, when virus 

expression was thought to be optimal and pain levels of SNI animals were stable (aprox. day 28). They 

were then trained in the 6-second DNMS challenge for 6 days (aprox. day 35) and tested in probe 

sessions in the end (aprox. day 42). Finally, the animals were tested in the 9, 12 and 18-DNMS 

challenges without previous training (aprox. day 45). 

 

2.1.10. Data analysis  
 

Three DNMS task behavioral parameters were analysed: performance, percentage of 

omissions, and mean latency of choice lever response. Performance was calculated for each 

session as the percentage of correct trials on the total number of completed trials. Omissions 

were calculated for each session as the percentage of omissions on the total number of trials. 
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Mean latency of choice response corresponded to the time elapsed between choice levers 

exposure and choice lever-press, averaged per session.  

Neuronal data was processed offline with NeuroExplorer 4 (NEX; Plexon), and then analysed 

with MATLAB (MathWorks). Population firing activity was examined during the delay period. 

Spiking activity data was presented as z-scores and smoothed using a Gaussian filter (3-point). 

To examine whether the recorded neurons exhibited task-related activity during DNMS task 

choice phase, the PL-mPFC firing activiy was examined around choice lever-press using 

perievent-time histograms (PETHs: time-window [-2, 3] sec; t=0 sec corresponds to lever-press 

moment; bin=50 msec). To examine reward-related activity, the NAcc firing activity was also 

examined around choice lever-press using PETHs (PETHs: time-window [-2, 5] sec; t=0 sec 

corresponds to lever-exposure moment; bin=50 msec). In perievent neuronal activity color 

maps, data was normalized individally across each recorded cell, and smoothed using the 

fspecial function (MATLAB native function). In PETHs, data was normalized and smoothed 

using a Gaussian filter (3-point). For the LFP analysis, 5 frequency bands were considered: 1-4 

Hz (δ), 4-9 Hz (θ), 9-15 Hz (α), 15-30 Hz (β) and 30-50 Hz (γ). Spectral properties of PL-mPFC 

and NAcc LFP signals were calculated during the delay period and also during a portion of the 

DNMS task ITI. The power spectral density (PSD) of the LFP signals was calculated during the 

delay period using the fast Fourier transform analysis (FFT 512-point) (MATLAB native 

function) in the 0-50 Hz range of frequencies (0.19 Hz resolution). Quadratic coherence (COH2) 

between PL-mPFC and NAcc areas was calculated during the delay period to measure the 

spectral coupling of corticostriatal LFP signals, in the 0-50 Hz range of frequencies. Ranging 

from 0 to 1, high values of COH2 indicate great coupling of signals phases and low values 

indicate poor coupling of signals phases, for a given frequency (Cardoso-Cruz et al., 2013a, 

Cardoso-Cruz et al., 2014). Partial directed coherence (PDC) was calculated during the delay 

period and during the ITI (between the 3 and 7 sec) to quantify the frequency-domain 

connectivity between the PL-mPFC and NAcc in the 0-50 Hz range of frequencies. Also ranging 

from 0 to 1, high values of PDC indicate strong connectivity between recorded areas and low 

values indicate poor connectivity between recorded areas, for a given frequency (Cardoso-Cruz 

et al., 2013a, Cardoso-Cruz et al., 2014). Histograms of PSD, COH2 and PDC analysis were 

smoothed using a Gaussian filter (3-point). 
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2.1.11. Statistical analysis 
 

The Kolmogorov-Smirnov (KS) test (with Dallal-Wilkinson-Lilliefor-corrected p-value) (Prism 

6.0; GraphPad) was used to test for normality of the data. To identify differences between 

groups and stimulation protocols in the tested behavioral parameters (DNMS task parameters 

and von Frey measurements), the Kruskal-Wallis (KW) analysis of ranks test, followed by post 

hoc Dunn’s tests (Prism 6.0; GraphPad) were used. The population firing distributions of 

experimental groups or conditions were compared using the 2-sample Kolmogorov Smirnov 

(KS2) test (MATLAB). For the performed spectral analyses, comparisons between experimental 

groups and frequency bands were based on the two-way analysis of variance (ANOVA) (group 

x frequency band), followed by Bonferroni post hoc tests (MATLAB). Comparisons between 

experimental groups and stimulation protocols were based on the two-way ANOVA (group x 

stimulation protocol). To study the correlation between PDC activity in the theta frequency 

band and performance in the DNMS task, the Pearson correlation test was used (MATLAB 

native function). The level of significance was set as 5%. Results are presented as the mean ± 

standard error of the mean (SEM).  
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III. Results 

 

3.1. DNMS task learning curve 
 

The DNMS task learning curve consisted of 10 sessions of the 1-second DNMS challenge. Three 

parameters of the task were evaluated on each session: performance, percentage of omissions 

and mean latency of choice response (Figure 4). Throughout the learning curve, the evaluated 

parameters suggested robust learning of the task rules for this challenge. Performance level 

increased from 59.62 % ± 3.426 on day 1 to 91.75 % ± 1.690 on day 10 (Figure 4A). The 

percentage of omissions decreased from 30.63 ± 5.216 on day 1 to 0.625 ± 0.4322 on day 10 

(Figure 4B). The mean latency of choice response decreased from 2.89 sec ± 0.216 on day 1 to 

1.17 sec ± 0.031 on day 10 (Figure 4C).  

 

Figure 4 – Behavioral parameters during the DNMS task learning curve. A, Throughout the 10 days of 
the learning curve, performance levels increased to over 80%. B, The percentage of omissions per 
session became residual. C, The mean latency of choice response decreased and stabilized. Values are 
presented as mean ± SEM.  
 

3.2. Halorhodopsin expression validation 
 

Expression of eNpHR3.0 opsins was targeted to PL-mPFC glutamatergic neurons projecting to 

the NAcc. Optical stimulation was performed in the NAcc and neural data was recorded from 

the PL-mPFC and NAcc areas (Figure 5A). Specific optical stimulation of eNpHR3.0 opsins 

results in the active transport of chloride ions from the extracellular to the intracellular space 

of eNpHR3.0-expressing neurons, inhibiting its activity (Figure 5B). 

In order to validate anatomically precise eNpHR3.0 expression and functional activity, 

histological and electrophysiological validations were performed. Histological analysis revealed 

a robust virus expression in cell bodies in the PL-mPFC (Figure 5C, left and upper right panels) 

and in neuronal processes in the NAcc (Figure 5C, lower right panel). Animals with insufficient 
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virus expression in the PL-mPFC and NAcc, as well as animals with incorrect optical fiber 

positioning were excluded from results in protocols involving optogenetic stimulation, but 

included in control protocols. Optical stimulation resulted in a reduction of the firing frequency 

of eNpHR3.0-expressing neurons, as shown by the firing activity of the representative PL-mPFC 

neuron illustrated, with and without optical stimulation (Figure 5D, left and right panels, 

respectively).  

 

 

Figure 5 – Targeted corticostriatal circuit, and validation of eNpHR3.0 opsin tissue expression and 
function. A, Expression of eNpHR3.0 opsins was targeted to PL-mPFC glutamatergic neurons projecting 
to the NAcc. An optical fiber was implanted in the NAcc and microelectrodes were implanted in the PL-
mPFC and NAcc. Neural signals were transmitted through a wireless transmitter. B, Orange LED light 
(λ=620 nm) stimulation of eNpHR3.0 opsins results in the transport of chloride ions from the 
extracellular to the intracellular space of eNpHR3.0-expressing neurons; this leads to fast 
hyperpolarization of the neuronal membrane, thus preventing initiation of action potentials. C, 
Histological expression of eNpHR3.0::mCherry. The left panel shows eNpHR3.0::mCherry expression in 
the PL-mPFC, at 3.2 mm posterior to Bregma (red: mCherry; blue: DAPI). The upper right panel shows 
eNpHR3.0::mCherry expression in PL-mPFC neurons soma and axon hillocks (in some neurons the axon 
is visible) (red: mCherry; blue: DAPI). The lower right panel shows eNpHR3.0::mCherry expression in 

A C 

B D 
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neuronal processes in the NAcc (red: mCherry). D, Firing activity of a PL-mPFC representative neuron. 
The photostimulation was delivered during 3 seconds with a fixed intensity of 5 mW (left histogram), 
and resulted in a significant decrease of spiking activity when compared to spontaneous activity without 
photostimulation (right histogram) (bin resolution of 100 msec). 

 

3.3. Optogenetic modulation of the corticostriatal circuit during the 

delay period of pre-trained DNMS challenges 

3.3.1. Effects of optogenetic modulation on working memory 

performance  
 

The impact of the optogenetic modulation of the corticostriatal circuit on working memory 

was investigated through evaluation of the behavioral performance on pre-trained DNMS 

challenges: 3- and 6-second (see Materials and Methods section) (Figure 6). 

The performance level of SNI animals in the 3-second DNMS challenge was slightly lower than 

that of Sham animals. However, statistical analysis revealed no significant differences in the 

performance level between experimental groups and optogenetic stimulation protocols 

(Figure 6A). In the case of the percentage of omissions (Figure 6B), no statistical differences 

were observed between experimental groups, as well as across stimulation protocols. 

However, it is important to note that the mean percentage of omissions decreased across the 

whole delay period stimulation protocol. In terms of response latency to choice lever-press, 

data showed no significant effects across experimental groups, as well as across stimulation 

protocols (Figure 6C). 

In the case of the 6-second DNMS challenge, no significant effects were observed in the 

performance level between experimental groups and stimulation protocols (Figure 6D). 

Interestingly, SNI-treated animals showed a higher performance level when compared to 

control animals, specifically across the late delay period stimulation protocol. In addition, the 

SNI-treated animals revealed a higher mean percentage of omissions across all stimulation 

protocols (Figure 6E), but this increase was not statistically significant. In the case of response 

latency to choice lever-press, our data showed no significant effects across experimental 

groups, as well as across stimulation protocols (Figure 6F). 
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Figure 6 – Optogenetic modulation did not significantly impact behavioral performance of pre-trained 
3- and 6-second DNMS challenges. Performance level (A), percentage of omissions (B), and mean 
latency of choice response (C) in the 3-second DNMS challenge. Performance level (D), percentage of 
omissions (E), and mean latency of choice response (F) in the 6-second DNMS challenge. [3-second]: off: 
Sham: n=10, SNI: n=10; whole: Sham: n=8, SNI: n=6; [6-second]: off: Sham: n=10, SNI: n=10; whole, early 
and late: Sham: n=7, SNI: n=6. Values are presented as mean ± SEM. 
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3.3.2. Effects of optogenetic modulation on corticostriatal circuit firing 

activity during working memory delay period 
 

The effect of optogenetic modulation on the firing activity of PL-mPFC and NAcc recorded 

neurons was analyzed during the delay period of the 3- and 6-second DNMS challenges (Figure 

7). It is important to note that the firing activity of both recorded areas changed its dynamics 

during the delay period. This occurred in both experimental groups for all tested paradigms. 

The PL-mPFC population firing activity for the 3-second DNMS challenge revealed different 

activity patterns across both experimental groups without light delivery (off: KS2=0.77, 

p~0.0000, Figure 7A, left panel). Interestingly, whole stimulation during the delay period 

enhanced differences of firing activity between Sham and SNI-treated animals (KS2=0.99, 

p~0.0000, Figure 7A, right panel). In the case of the 6-second DNMS challenge, firing 

distributions of Sham and SNI-treated animals were significantly different in all stimulation 

protocols (off: KS2=0.56, p~0.0000; whole: KS2=0.99, p~0.0000; early :KS2=0.74, p~0.0000 and 

late: KS2=0.90, p~0.0000; Figure 7B). Similarly to the 3-second DNMS challenge, optogenetic 

inhibition enhanced the differences observed between experimental groups. 

In relation to the NAcc population firing activity, for the 3-second DNMS challenge, no 

significant differences between groups were found in the off stimulation protocol (Figure 7C, 

left panel). However, significant differences were found between Sham and SNI animals in the 

whole stimulation protocol (KS2=0.99, p~0.0000; Figure 7C, right panel). In the 6-second DNMS 

challenge, significant group differences were found across all stimulation protocols (off: 

KS2=0.38, p~0.0002; whole: KS2=0.48, p~0.0001; early: KS2=0.67, p~0.0000 and late: KS2=0.74, 

p~0.0000; Figure 7D). Similarly to what happened with the PL-mPFC firing activity, optogenetic 

stimulation resulted in increased group differences in delay period firing activity patterns of 

NAcc recorded neurons.  
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Figure 7 – Corticostriatal firing activity fluctuated during working memory delay period. Population 
firing activity of PL-mPFC neurons in the 3-second DNMS challenge (A), and in the 6-second DNMS 
challenge (B). Population firing activity of NAcc neurons in the 3-second DNMS challenge (C), and in the 
6-second delay challenge (D). t=0 sec corresponds to the sample lever-press moment, when the delay 
period begins. Bin resolution of 50 msec. Sham: n=5, SNI: n=4. Values are presented as z-scores. 
Comparisons of firing distributions between experimental groups were based on KS2 test; ns=“not 
significant”. 

 

3.3.3. Effects of optogenetic modulation on corticostriatal circuit power 

spectral oscillations during working memory delay period 
 

To study the effect of optogenetic modulation on the power oscillations in corticostriatal 

circuit, the recorded LFP signals were analyzed during the delay period of 3- and 6-second 

DNMS challenges (Figure 8). Notably, the power oscillation profiles revealed that the major 

power differences occurred in the θ frequency band (4-9 Hz) in both recorded areas across all 

tested paradigms (Figure 8A). 

Regarding the PSD profile of PL-mPFC LFPs in the 3-second DNMS challenge, there were no 

statistical differences between Sham and SNI groups. However, ANOVA revealed a significant 

effect, across frequency bands in both optogenetic stimulation protocols (off: F(4, 35)=111.9, 

p<0.0001; whole: F(4,35)=96.43, p<0.0001; Figure 8B). In the case of the 6-second DNMS 

challenge, statistical analysis revealed no significant differences between experimental groups, 

but a significant effect was observed across frequency bands, across all stimulation protocols 

(off: F(4,35)=57.81, p=0.0001; whole: F(4,35)=100.70, p<0.0001; early: F(4,35)=75.45, p<0.0001; late: 

F(4,35)=82.02, p<0.0001; Figure 8C). In addition, ANOVA revealed a significant interaction effect 

(groups x frequency bands factors) across whole and late stimulation protocols (F(4,35)=5.638, 

p=0.0013; and F(4,35)=4.31, p=0.0061, Figure 8C, second and fourth panels, respectively). In the 

A B 
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case of the whole delay period stimulation protocol, post hoc analysis revealed a higher δ 

power activity in Sham-treated animals when compared to SNI-treated animals (p<0.05), and 

an opposite power activity across α frequency band (p<0.01) (Figure 8C, second panel). In the 

case of late delay period stimulation protocol, post hoc analysis revealed an increase of alpha 

frequency band power activity in SNI-treated animals (p<0.05; Figure 8C, fourth panel).  

In the case of the PSD profile of NAcc LFPs in the 3-second DNMS challenge, no statistical 

differences were found between experimental groups, but there was a significant effect across 

frequency bands for both stimulation protocols (off: F(4, 35)=121.1, p<0.0001; whole: 

F(4,35)=145.00, p<0.0001; Figure 8D). In respect to the 6-second DNMS challenge, no statistical 

differences between groups, but a significant effect across frequency bands was observed 

across all stimulation protocols (off: F(4,35)=222.5, p=0.0001; whole: F(4,35)=112.4, p<0.0001; 

early: F(4,35)=131.4, p<0.0001; late: F(4,35)=124.9, p<0.0001; Figure 8E). In addition, statistical 

analysis revealed a significant interaction effect between experimental groups, and frequency 

bands across the off and early stimulation protocols (off: F(4,35)=2.847, p=0.0383; early: 

F(4,35)=3.245, p=0.0230; Figure 8E, first and third panels, respectively). Post hoc analysis 

revealed an important decrease of δ power activity in SNI-treated animals when compared to 

control animals in the absence of light stimulation (p<0.05, Figure 8E, first panel).  
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Figure 8 – Working memory delay period was characterized by predominance of θ oscillations. A, PSD 
profiles of PL-mPFC and NAcc LFPs activity in the 3- and 6-second DNMS challenges show a 
predominance of θ frequency band power in both recorded areas and experimental groups, across all 
tested paradigms (bin resolution of 1 Hz). B, C, PSD profiles of PL-mPFC LFPs activity per frequency band 
show similar patterns for Sham and SNI animals in the majority of tested paradigms. The exception was 
observed for the 6-second DNMS challenge in α-band with a power increase for whole and late 
protocols, and in δ-band with a decrease for the whole protocol in SNI-treated animals (C). D, E, PSD 
profiles of NAcc LFPs activity per frequency band also indicate similar activity between experimental 
groups and stimulation protocols, except for a decrease of δ power activity in the off stimulation 
protocol for SNI-treated animals in the 6-second DNMS challenge (E). Sham: n=5, SNI: n=4. Values are 
presented as mean ± SEM. Comparisons between experimental groups and frequency bands were based 
on the two-way ANOVA (group x frequency band), followed by post hoc Bonferroni test. *p<0.05; 
**p<0.01. 
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3.3.4. Effects of optogenetic modulation on corticostriatal circuit spectral 

coherence oscillations during working memory delay period  
 

The effect of photostimulation in the corticostriatal circuit coherence activity of eNpHR3.0-

expressing rats is illustrated in Figure 9. A strong COH2 activity was observed across the θ 

frequency band for all tested paradigms (Figure 9A). In the case of the 3-second DNMS 

challenge, ANOVA revealed no significant differences between experimental groups and 

frequency bands (Figure 9B). In the case of the 6-second DNMS challenge, no statistical 

differences were found between experimental groups, but there were statistical differences 

between frequency bands (off: F(4, 35)=10.49, p<0.0001; whole: F(4,35)=6.282, p=0.0006; early: 

F(4,35)=11.28, p<0.0001; late: F(4,35)=9.612, p<0.0001; Figure 9C).  

 

 

Figure 9 – Corticostriatal coherence was higher in the θ frequency band during working memory delay 
period. A, Traces of COH2 in the corticostriatal circuit (bin resolution of 1 Hz). B, C, Corticostriatal COH2 
per frequency band of Sham and SNI animals was not significantly different in any tested paradigm. 
Sham: n=5, SNI: n=4. Values are presented as mean ± SEM.  
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3.3.5. Effects of optogenetic modulation on corticostriatal connectivity 

during working memory delay period  
 

To study the effect of optogenetic modulation on the corticostriatal connectivity, PDC activity 

was analyzed during the delay period of 3- and 6-second DNMS challenges (Figure 10). PDC 

activity values clearly showed a peak in the corticostriatal connectivity in the θ frequency 

band, indicating an increase of information processed across this frequency band (Figure 10A). 

Considering this result, averaged values of PDC activity in the θ frequency band were 

considered to further analysis.  

In the 3-second DNMS challenge, ANOVA revealed no significant differences in θ PDC activity 

between experimental groups and stimulation protocols (Figure 10B). In the case of the 6-

second DNMS challenge, no significant differences were found in the PL-mPFC>>NAcc 

direction between experimental groups and stimulation protocols (Figure 10C, left panel). 

However, a significant effect was observed between experimental groups and stimulation 

protocols in the NAcc>>PL-mPFC direction (group: F(1,14)=4.346, p=0.0463, stimulation protocol: 

F(1,14)=3.060, p=0.0444; Figure 10C, right panel). Moreover, post hoc tests revealed a higher 

NAcc>>PL-mPFC PDC activity for SNI–treated animals in the absence of optical stimulation 

(p<0.01; Figure 10C, right panel).  
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Figure 10 – SNI-treated animals increased their NAcc>>PL-mPFC connectivity during working memory 
delay period. A, Bidirectional PDC activity in the 3- and 6-second DNMS challenges (bin resolution of 1 
Hz). In all paradigms, there was a peak of PDC values in the θ frequency band. B, C, Analysis of 
bidirectional PDC activity in the θ frequency band in the 3-second (B) and in the 6-second DNMS 
challenge (C). SNI-treated animals presented a higher θ frequency band NAcc>>PL-mPFC direction 
connectivity, in the absence of light delivery across the 6-second DNMS challenge. Sham: n=5, SNI: n=4. 
Values are presented as mean ± SEM. Comparisons between groups and frequency bands were based 
on the two-way ANOVA (group x frequency band), followed by post-hoc Bonferroni test. **p<0.01. 
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3.3.6. Correlation between corticostriatal connectivity and working 

memory performance 
 

To determine whether corticostriatal θ frequency band connectivity was modulated by 

behavioral flexibility required for correct decision-making processes, a correlation between the 

level of corticostriatal PDC θ frequency connectivity during the delay period and DNMS 

performance level was performed. The present data showed that, globally, an increase of the 

performance level is accompanied by an increase of the corticostriatal circuit connectivity level 

in both circuit directions (Figure 11). 

The PL-mPFC>>NAcc direction connectivity in θ-band was positively correlated with the 

performance level of both experimental groups across the 3-second DNMS challenge. ([off]: 

Sham: R2=0.8945, p=0.0150; SNI: R2=0.9178, p=0.0420; [whole]: Sham: R2=0.8945, p=0.0150; 

SNI: R2=0.9178, p=0.0420; Figure 11A, left and right panels, respectively). In the case of the 6-

second DNMS challenge without optical stimulation, a significant positive correlation was 

observed in both experimental groups (Sham: R2=0.8901, p=0.0160; SNI: R2=0.9328, p=0.0342, 

Figure 11B, first panel). No significant correlations between PL-mPFC>>NAcc connectivity and 

performance were encountered in the remaining stimulation protocols. In ascending circuit 

direction, from NAcc to PL-mPFC, in the 3-second DNMS challenge, the data showed only a 

significant positive correlation between PDC activity and performance in SNI-treated animals 

across the whole delay period stimulation (R2=0.9451, p=0.0278, Figure 11C, right panel). For 

the 6-second DNMS challenge, significant positive correlations were found for Sham animals in 

the whole and early stimulation protocols (whole: R2=0.9473, p=0.0267; early: R2=0.9674, 

p=0.0165, Figure 11D, second and third panels, respectively). 
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3.3.7. PL-mPFC firing activity during working memory decision-making 
 

To evaluate whether PL-mPFC firing activity was affected by the moment of decision between 

two alternative levers in the DNMS task, PL-mPFC population firing activity was analyzed 

around the choice lever-press moment (Figure 12).  

Interestingly, both Sham and SNI neurons showed a consistent elevation of firing activity in the 

moment that precedes the lever-press (t=0 sec). This effect was observed in off, as well as in 

on (here referring to whole and late) stimulation protocols (Figure 12A). An example of two 

illustrative neurons is given in Figure 12B. In terms of PL-mPFC population activity, both 

experimental groups showed different firing distributions in the absence or in the presence of 

light delivery (off: KS2=0.24, p<0.0050; on: KS2=0.27, p<0.0010; Figure 12C). Notably, SNI 

neurons had increased firing activity, when compared to control neurons. Finally, and as 

expected, optogenetic stimulation (on) resulted in a decrease in the frequency of firing of both 

Sham and SNI neurons, when compared with no stimulation (off) (Sham: KS2=0.29, p~0.0000; 

SNI: KS2=0.37, p~0.0000; Figure 12D). 
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Figure 12 – PL-mPFC firing activity was increased during working memory decision-making. A, 
Perievent neuronal activity color maps of Sham and SNI neurons, in off and on stimulation protocols (bin 
resolution of 50 msec). A marked increase of spiking activity was observed around the choice lever-press 
moment for both experimental groups (t=0 sec corresponds with the choice lever-press moment). B, 
Perievent time histograms of a representative Sham and SNI neuron, in the absence and in the present 
of light stimulation (bin resolution of 50 msec). C, D, Population firing activity of Sham and SNI groups, in 
off and on stimulation protocols (bin resolution of 100 msec). Data for this analysis were collected from 
both 3- and 6-second DNMS challenge sessions, indiscriminately. Sham: n=5, SNI: n=4. Comparisons of 
firing distributions between experimental groups were based on the KS2 test. 

 

3.3.8. NAcc neuronal activity across correct and incorrect trials 
 

To examine whether NAcc firing activity differently encoded correct and incorrect trials, NAcc 

population firing activity was analyzed around choice lever response (Figure 13).  

The NAcc population firing activity was strikingly different across correct and incorrect trials 

(Figure 13A). During correct trials, both Sham and SNI neurons exhibited elevated firing activity 

before choice levers-press, which decreased after response (Figure 13B, left panel). In contrast, 
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C D 



  III. Results 
 

40 
 

during incorrect trials, firing activity was decreased before choice levers-press and increased 

after response (Figure 13B, right panel). Although showing the same above described pattern, 

Sham and SNI groups were shown to have statistically different firing activity distributions in 

correct trials (KS2=0.3143, p~0.0000; Figure 13B, left panel). For incorrect trials, no significant 

differences were found between experimental groups (Figure 13B, right panel). Figure 13C 

illustrates the firing activity of two representative neurons across correct and incorrect trials.  

 

 

Figure 13 – NAcc revealed different reward-related activity across correct and incorrect trials. A, 
Perievent neuronal activity color maps of Sham and SNI neurons across correct and incorrect trials (bin 
resolution of 50 msec). During correct trials, recorded neurons increased their activity before choice 
lever-press (t=0 corresponds with the choice lever exposure moment). An opposite effect was observed 
during incorrect trials. B, NAcc population firing activity of Sham and SNI groups across correct and 
incorrect trials (bin resolution of 100 msec). Correct trials were associated with a decrease in firing 
activity, while incorrect trials were associated with an increase in firing activity. C, Perievent time 
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histograms of a representative Sham and SNI neuron across correct and incorrect trials (bin resolution of 
50 msec). Comparisons of firing distributions between experimental groups were based on the KS2 test; 
ns=“not significant”. Sham: n=5, SNI: n=4. Data for this analysis were collected from both 3- and 6-
second DNMS challenge sessions, indiscriminately. 

 

3.4. Optogenetic modulation of the corticostriatal circuit during the 

delay period of non-trained DNMS challenges with increased complexity  

3.4.1. Effects of optogenetic modulation on working memory 

performance 
 

The impact of the optogenetic modulation of the corticostriatal circuit on working memory 

was further investigated through evaluation of the behavioral performance on non-trained 

DNMS challenges with higher delay periods: 9-, 12-, and 18-second (see Materials and 

Methods section) (Figure 14). Overall, optogenetic stimulation resulted in an improved 

performance level of SNI-treated animals, but did not have an impact in control animals 

(Figure 14A and 14B). In addition, both experimental groups revealed an increase in the 

latency response to choice lever-press when compared to low-complexity trained DNMS 

challenges (Figure 14C and 14D), but no significant oscillations were observed in the 

percentage of performed omissions (Figure 14E and 14F). 

Statistical analysis revealed a significant delay-dependent decrease of performance level 

across both experimental groups in the absence of light stimulation, which is a hallmark of WM 

tasks (off: KW=31.84, p=0.0002; Figure 14A, left panel). For the whole delay period stimulation 

protocol, significant differences were observed between groups and DNMS challenges 

(KW=20.46, p=0.0153; Figure 14A, right panel). Post hoc analysis revealed a higher 

performance level of SNI-treated animals in the 18-second DNMS challenge when compared to 

controls (p<0.05; Figure 14A, right panel). 

For Sham-treated animals, intra-group analysis showed a significant effect across DNMS 

challenges (KW=23.77, p=0.0047; Figure 14B, left panel), but not across stimulation protocols. 

In relation to SNI-treated animals, statistical analysis revealed a significant effect across 

stimulation protocols (KW=23.77, p=0.0047; Figure 14B, right panel). Post hoc analysis 

revealed that optogenetic inhibition of eNpHR3.0-expresing SNI-treated animals significantly 

increased their working memory performance for 9- and 18-second DNMS challenges (p<0.05, 

and p<0.01, respectively; Figure 14B, right panel).  

In respect to the mean latency of choice response, statistical analysis revealed no significant 

differences between experimental groups when tested in the absence of light stimulation or 
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with whole delay period stimulation. However, there was a significant effect of the delay 

period length across both stimulation protocols (off: KW=53.40, p<0.0001, and whole: 

KW=26.94, p<0.0014, Figure 14C). Intra-group statistical analysis of Sham and SNI-treated 

animals indicated no significant differences between stimulation protocols, but a significant 

effect of the delay period length was visible across both experimental groups (Sham: 

KW=42.96, p<0.0001; SNI: KW=37.46, p<0.0001; Figure 14D). Overall, the mean latency of 

choice response was similarly low in the 3- and 6-DNMS challenges and higher for more 

complex DNMS challenges. Interestingly, mean latency of choice response levels in the 9-, 12-, 

and 18-second DNMS challenges decreased with increasing length of the delay period (Figure 

14C and 14D). 

Statistical analysis of the percentage of omissions revealed no significant differences between 

experimental groups when tested in the off or in the whole delay period stimulation (Figure 

14E). Moreover, intra-group comparisons revealed no significant differences between 

stimulation protocols (Figure 14F).  
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Figure 14 – Optogenetic stimulation improved SNI but not Sham performance level in non-trained 
DNMS challenges A, B, Performance levels of Sham and SNI groups in 3-, 6-, 9-, 12- and 18-second 
DNMS challenges, per stimulation protocol (A) and per experimental group (B). Optical stimulation 
during the delay period resulted in significantly improved performance levels in SNI-treated animals in 
the 9- and 18-second DNMS challenges, but did not impact performance level of Sham-treated animals. 
C, D, Mean latency of choice response of Sham and SNI groups in 3-, 6-, 9-, 12- and 18-second DNMS 
challenges. There was an effect of the delay period length on the mean latency of choice response, 
across all paradigms. E, F, Percentage of omissions per session of Sham and SNI groups in 3-, 6-, 9-, 12- 
and 18-second DNMS challenges. [3- and 6-seconds]: off: Sham: n=10, SNI: n=10; whole: Sham: n=8, SNI: 
n=6; [9- and 18- seconds]: off: Sham: n= 4, SNI: n=9; whole: Sham: n=3, SNI: n=5; [12-seconds]: off: 
Sham: n=10, SNI: n=9; whole: Sham: n=3, SNI: n=5. Values are presented as mean ± SEM. Comparisons 
between experimental groups and stimulation protocols were based on the KW test (3- and 6-second 
DNMS challenges were included), followed by Dunn’s post hoc test. *p<0.05; **p<0.01. 
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3.5. Effects of the optogenetic modulation of the corticostriatal circuit on 

nociception 
 

Mechanical sensory threshold values were measured with the von Frey filaments test (Figure 

15). Measurements were performed at least one hour after DNMS task probe sessions. The 

effects of optogenetic modulation of PL-mPFC excitatory neurons were tested applying an 

inhibitory pulse of 5 mW and in the absence of light stimulation. Statistical analysis revealed 

significant differences in the mechanical sensory threshold between experimental groups 

(KW=25.78, p<0.0001). Post hoc analysis showed that the pressure needed to evoke a 

response was lower in the SNI group when compared to the Sham group (light off: Sham vs. 

SNI, p<0.001; and light on: Sham vs. SNI, p<0.05; Figure 15). Moreover, no significant 

optogenetic stimulation effects were observed in intra-group comparisons (Sham: light off vs. 

on, n.s.; and SNI: light off vs. on, n.s.). 

 

Figure 15 – Corticostriatal circuit selective inhibition 
did not produce antinociceptive effects. Mechanical 
sensory threshold was measured with the von Frey 
filaments test. SNI-treated animals were significantly 
more responsive to von Frey filament stimulation than 
control animals, independently of optogenetic 
stimulation. In fact, optical stimulation did not induce 
significant differences in the mechanical sensory 
threshold of Sham and SNI-treated animals. [off]: 
Sham: n=10, SNI: n=10; [5 mW]: Sham: n=7, SNI: n=5. 
Values are presented as mean ± SEM. Comparisons 
between experimental groups and stimulation 
protocols were based on the KW test, followed by 
Dunn’s post hoc test. *p<0.05; ***p<0.001. 

 

 

3.6. Changes in corticostriatal connectivity induced by the SNI model of 

neuropathic pain 
 

To examine alterations of spontaneous corticostriatal connectivity oscillations across 

experimental groups, the PDC activity was analyzed during a portion of the ITI period of the 

DNMS task (Figure 16B). This portion of time is thought to be relatively less affected by task-

related activity. 

Similarly to the PDC activity profile observed during the delay period, PDC activity also had a 

strong θ frequency band component (Figure 16A). In the case of the PL-mPFC>>NAcc direction, 

ANOVA revealed significant differences between experimental groups and frequency bands 
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(F(1,35)=15,50, p=0.0004, and F(4,35)=72.94, p<0.0001, respectively). Post hoc analysis specifically 

revealed that PDC activity in the α frequency band was increased in SNI-treated animals when 

compared with control animals (p<0.05, Figure 16C, upper panel). In the NAcc>>PL-mPFC 

direction, differences were found between frequency bands but not across experimental 

groups (F(4,35)=58.66, p<0.0001; Figure 16C, lower panel).  

 

 

Figure 16 – SNI-treated animal showed a different corticostriatal connectivity profile when compared 
to controls. A, Bidirectional PDC activity during the ITI in Sham- and SNI-treated animals (bin resolution 
of 1 Hz). The red rectangle highlights the α frequency band, in which PDC values in the PL-mPFC>>NAcc 
direction were significantly higher for the SNI group. B, For the ITI PDC activity analysis, signal was 
extracted from 4 seconds of the ITI (represented in the scheme as signal block), from 3- and 6-second 
DNMS challenges. C, PDC values in the PL-mPFC>>NAcc (up) and NAcc>>PL-mPFC (down) directions, per 
frequency band. In the upper right corners, corresponding traces of PDC activity are represented (bin 
resolution of 1 Hz). Sham: n=5, SNI: n=4. Comparisons between groups and frequency bands were based 
on the two-way ANOVA (group x frequency band), followed by post hoc Bonferroni test. *p<0.05. 
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IV. Discussion 

 

The present work contributed to the elucidation of how chronic pain impacts the normal 

functioning of the corticostriatal circuit and how these alterations affect the performance of a 

sWM task. The obtained results showed that (1) optogenetically inhibiting the corticostriatal 

circuit during the delay period of non-trained WM challenges resulted in a strong 

enhancement of the performance levels of SNI-treated animals, while not affecting the levels 

of Sham animals; (2) the selective inhibition of the circuit did not reveal antinociceptive 

effects; (3) the descending corticostriatal functional connectivity was constitutively altered in 

SNI-treated animals; (4) local firing activity in the PL-mPFC and NAcc was highly modulated by 

the execution of the sWM task in pre-trained paradigms; and (5) the corticostriatal functional 

connectivity in the θ frequency range was important for the correct execution of a pre-trained 

sWM task.  

 

4.1. Optogenetic modulation of the corticostriatal circuit during the 

delay period of pre-trained DNMS challenges 
 

Different studies in rodents showed that chronic pain associated with different etiologies 

resulted in impaired performance in tasks involving WM (Cain et al., 1997, Lindner et al., 1999, 

Leite-Almeida et al., 2009, Hu et al., 2010, Cardoso-Cruz et al., 2013a, Cardoso-Cruz et al., 

2014). In the present study, it was observed that the performance levels of SNI-treated animals 

on pre-trained low-complexity DNMS challenges was not significantly impaired, suggesting 

that training might have resulted in the recovery of chronic pain-related WM deficits. In this 

regard, previous results evaluated DNMS task performance after the induction of the rat 

adjuvant arthritis model of chronic pain and showed that performance levels of chronic pain 

rats increased with training on the task (Cain et al., 1997, Lindner et al., 1999). WM deficits 

induced by the SNI model of neuropathic pain were also reduced in severity after several days 

of training in the T-maze and in the figure-8 maze sWM tasks (Cardoso-Cruz et al., 2013a, 

Cardoso-Cruz et al., 2014). 

Repeated performance of a cognitive task results in a transition from flexible and attentive 

strategies to more automatic strategies to solve the task, possibly engaging different 

mechanisms (Gardner et al., 2013). Recent results showed that optogenetically suppressing 

mPFC activity during the delay period of a WM task did not have an impact in the performance 
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of well-trained animals (Liu et al., 2014). Similarly, the present study shows that optogenetic 

inhibition of the corticostriatal circuit did not have an impact in the performance levels of pre-

trained low-complexity DNMS challenges. In addition and as expected, it did not significantly 

alter the number of omissions and the mean latency of choice response.  

Chang and colleagues described correlated firing activity between mPFC and NAc neurons 

during cocaine-self administration, showing the importance of the communication between 

these two areas in reward-seeking behavior (Chang et al., 2000). Neuronal activity in these 

areas was also recorded during a WM task performance, in which rats had to press the 

matching lever. In both the mPFC and NAc regions, the authors identified neurons with delay 

period-related activity, with either increasing or decreasing firing patterns, during the whole 

delay period or during a specific portion of it (Chang et al., 2002). Interestingly, recordings 

from rat mPFC neuronal ensembles revealed that neuronal activity dynamically changed during 

the learning process of a figure-8 maze sWM task (Baeg et al., 2003).  

The present results showed that the population firing activity of PL-mPFC and NAcc neurons 

was variable during the delay period of the DNMS task, according to what was previously 

described (Chang et al., 2002, Baeg et al., 2003). This pattern reflects the overall activity of the 

recorded neurons, which have distinct individual firing patterns. A slight increase in the 

population firing activity was evident in the SNI-treated animals in comparison with control 

animals. In addition, the results showed that partial optogenetic modulation of the 

corticostriatal circuit did not disrupt but induced slight changes in delay period firing dynamics. 

In this regard, it should be further noted that a strong reduction in population firing activity 

with optogenetic stimulation was not expected.  

There is agreement in relation to the central role of the mPFC in decision-making (Miller and 

Cohen, 2001). The firing activity of mPFC neurons was shown to be modulated by the decision 

moment in different WM tasks (Baeg et al., 2003, Horst and Laubach, 2012, Cardoso-Cruz et 

al., 2013a). Specifically, it was shown that more mPFC neurons increase their firing rate in 

correct trials of a WM spatial navigation task, implicating this elevation of activity in successful 

decision making (Cardoso-Cruz et al., 2013a). Here, it was shown that the PL-mPFC population 

firing activity drastically increased in the choice moment of the DNMS task and that this 

pattern was not disrupted by the SNI lesion. The conservation of this pattern in animals with 

the SNI lesion has been previously reported in our laboratory in the execution of a figure-8 

maze task (Cardoso-Cruz et al., 2013a).  

The NAc is broadly involved in guiding behavior (Floresco, 2015) and its activity was long 

shown to be highly modulated by rewarding events and reward predictive cues, evolving 

during learning of a reward acquisition task (Miyazaki et al., 1998). The NAc is thought to be in 
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the interface between the limbic and motor systems, linking motivations with actions 

(Mogenson et al., 1993). Its activity was previously shown to be modulated by correct and 

incorrect responses in a WM task. Namely, its activity was increased before correct choices but 

not before incorrect choices (Chang et al., 2002). Similarly, a strong segregation of NAcc 

population firing activity during correct and incorrect trials was verified in the present work, 

with NAcc population firing activity showing an increase prior to a correct response and a 

decrease prior to an incorrect response. Importantly, segregation of NAcc activity in terms of 

correct and incorrect trials was not disrupted by the SNI lesion.  

Theta oscillatory activity has a relevant role in learning and mnemonic processes (Buzsaki, 

2002). Particularly, the entrainment of mPFC spiking activity to hippocampal θ-rhythm was 

shown to be important during WM decision-making (Jones and Wilson, 2005, Benchenane et 

al., 2010, Hyman et al., 2010). It has been reported that this synchronization was enhanced 

during correct WM decision-making and increased with learning (Benchenane et al., 2010, 

Hyman et al., 2010). In the NAc, oscillatory activity was shown to have a peak in the θ 

frequency band, during the performance of a radial arm maze task (Berke et al., 2004). 

Coherence between NAc spiking activity and the hippocampal θ rhythm was also increased 

during decision making (Berke et al., 2004, DeCoteau et al., 2007). Overall, these results show 

that, in both areas, demanding behavioral moments are transiently associated with increased 

coherence with a common ongoing hippocampal θ activity, which is thought to facilitate 

information transfer between coherent brain regions (Buzsaki, 2002). In the present study it is 

shown that the delay period of low-complexity pre-trained DNMS challenges was 

characterized by prominent power activity in the θ frequency range, in both the PL-mPFC and 

NAcc areas, which is in agreement with previous observations (Berke et al., 2004, Jones and 

Wilson, 2005, Benchenane et al., 2010, Hyman et al., 2010, Cardoso-Cruz et al., 2013a). The 

analysis of delay period corticostriatal COH2 revealed that phase-coupling between PL-mPFC 

and NAcc regions was stronger in the θ frequency band, which suggests potential coordinated 

information processing along the corticostriatal circuit in this frequency range. However, the 

COH2 analysis only indicates the extent of activity synchrony between the two areas, and does 

not inform of causal interactions between the two structures. This interaction was examined 

using the partial directed coherence (PDC) analysis, which is based on the principle of Granger 

causality and provides information about how the two structures are functionally connected 

(Sameshima and Baccalá, 1999). PDC analysis confirmed that corticostriatal connectivity was 

particularly high in the θ frequency range, across all tested conditions.  

Several results support a role of functional connectivity in the mPFC networks during WM 

processes. It has been shown that before rats performed correct responses in a Y-maze WM 
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task, mPFC functional connectivity increased, but not before incorrect responses (Xie et al., 

2014, Wei et al., 2015). The level of connectivity among local PFC neurons was altered during 

learning of a figure-8 maze task (Baeg et al., 2007). In this regard, WM deficits induced both by 

propofol anesthesia (Xu et al., 2013) or Alzheimer’s disease (Liu et al., 2016) were shown to be 

associated with decreased PFC functional connectivity in the γ frequency band. Studies from 

our laboratory showed that chronic pain can lead to abnormally reduced functional 

connectivity, between the mPFC and the mediodorsal thalamus (Cardoso-Cruz et al., 2013b), 

and between the mPFC and hippocampus (Cardoso-Cruz et al., 2013a).  

The present study showed that corticostriatal connectivity level in the θ frequency range was 

modulated by performance levels in low-complexity pre-trained DNMS paradigms, with a 

higher connectivity associated with a better performance. This strongly supports the 

importance of corticostriatal communication during WM performance. In addition, it is 

important to refer that corticostriatal functional connectivity in the ascending direction (from 

NAcc to PL-mPFC) was significantly higher in SNI animals when compared with control animals 

in the 6-second DNMS challenge without optical stimulation.  

Overall, the optogenetic modulation of the corticostriatal circuit had no significant effects in 

the performance levels of low-complexity pre-trained DNMS challenges, which was associated 

with no significant effects in the firing and oscillatory patterns of the corticostriatal circuit. In 

spite of the lack of differences between SNI-treated animals and control animals in the 

performance of the task, important differences were found in the local corticostriatal firing 

activity patterns and corticostriatal connectivity during the DNMS task delay period. 

 

4.2. Optogenetic modulation of the corticostriatal circuit during the 

delay period of non-trained DNMS challenges with increased complexity  
 

The PFC is known to be particularly important in new and attention-demanding situations, 

mediating the ability to adapt to changing conditions (Miller and Cohen, 2001). PFC projections 

to the NAc, and particularly to the core region, were implicated in behavioral flexibility, 

integrating behavioral consequences to produce adequate behavior (Block et al., 2007). Lesion 

studies showed that the mPFC is important in the formation of associations between actions 

and consecutive outcomes, which underlies instrumental conditioning, but not in the 

maintenance and manifestation of such associations (Ostlund and Balleine, 2005). In respect to 

WM, while optogenetically suppressing mPFC activity during the delay period was shown to 

have no impact in the performance of pre-trained animals, it significantly impaired learning 
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and acquisition of a WM task (Liu et al., 2014). The corticostriatal circuitry is known to be 

broadly involved in mediating reward-seeking and goal-directed behavior (Miyazaki et al., 

2004), which is essential to the execution of the DNMS task. In the present work it was shown 

that the optogenetic inhibition of the corticostriatal circuit during the execution of high-

complexity non-trained DNMS challenges resulted in highly enhanced performance levels of 

the SNI-treated animals, but not of control animals. This suggests that corticostriatal adequate 

communication might be particularly relevant in WM, when more flexible and adaptive 

responses are required. In these challenges, performance levels decreased with increasing 

length of the delay period, nearing chance level. Optogenetic stimulation of the circuit 

prevented this decrease in SNI-treated animals. In spite of this effect on performance, the 

number of omissions and mean latency of choice response were not significantly altered. 

Notably, the mean latency levels were higher in high-complexity non-trained DNMS challenges 

when compared to pre-trained challenges, suggesting that overtraining resulted in optimized 

timing of responses.  

 

4.3. The impact of optogenetic modulation of the corticostriatal circuit 

on nociception  
 

Chronic pain induces general reorganization in the brain. The SNI model of neuropathic pain 

was shown to induce morphological and functional changes in the mPFC (Metz et al., 2009), 

and it leads to a decrease in prefrontal volume (Seminowicz et al., 2009). At the network level, 

resting state fMRI analysis showed that prolonged pain caused by the SNI lesion significantly 

altered connectivity patterns in the rat limbic system (Baliki et al., 2014). A broadband power 

increase was found both in neuropathic and inflammatory chronic pain models in the PFC and 

S1 brain regions (LeBlanc et al., 2016). Noteworthy, Baliki and colleagues found that increased 

corticostriatal functional connectivity in humans (mPFC and NAc) accurately predicted pain 

chronification (Baliki et al., 2012).  

In the present study, SNI-treated animals were characterized by increased descending (from 

PL-mPFC to NAcc) corticostriatal functional connectivity in the α frequency range. Despite 

inherent differences between functional connectivity analysis in this study and in Baliki’s study 

(Baliki et al., 2012), as well as the differences between rat and human homolog brain regions, 

the present results certainly support the possibility that similar mechanisms are occurring in 

the corticostriatal circuitry of both species in chronic pain conditions. It was recently proposed 

that abnormal integration of nociceptive inputs and contextual information during chronic 
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pain might be the consequence of altered information flow, in which disrupted oscillatory 

activity certainly has a contribution (Ploner et al., 2017). A mechanism for information flow in 

the brain was proposed, implicating α and β oscillations in the coding of predictions and γ 

oscillations in the coding of prediction errors (discrepancy between reality and predictions) 

(Bauer et al., 2014). Moreover, recent experimental evidence showed that top-down 

influences associated with prediction coding were mediated by increased functional 

connectivity in the α and β bands from higher to lower hierarchical brain areas, while bottom-

up influences associated with prediction error coding were mediated by increased functional 

connectivity in the γ band from lower to higher brain areas (Michalareas et al., 2016). In this 

regard, the observed increased descending corticostriatal connectivity in the α frequency 

range might reflect a generalized abnormal descending information flow, associated with 

chronic pain (Ploner et al., 2017). 

There is broad evidence for an altered activation state in different brain areas after the onset 

of chronic pain (Apkarian et al., 2005). In rats, both layers II/III of the ACC and PL-mPFC and 

layer V of the PL-mPFC were shown to have increased intrinsic excitability in chronic pain 

conditions. Optogenetically activating the infralimbic region of the mPFC had a facilitatory 

effect on pain (Ji and Neugebauer, 2012). Reversely, optogenetically inhibiting the ACC area of 

the mPFC resulted in strongly reduced pain perception (Gu et al., 2015). Layers II, V and VI of 

the mPFC strongly project to the NAcc, suggesting that PL-mPFC glutamatergic input to the 

NAcc might be altered in chronic pain conditions (Ding et al., 2001). Optogenetic activation of 

this circuit was shown to have anti-hyperalgesic effects in rats with neuropathic pain (Lee et 

al., 2015). Here, it was shown that the partial optogenetic inhibition of the corticostriatal 

circuit did not have a significant impact on the mechanical sensitivity threshold of both SNI and 

control animals. However, it should be noted that a tendency for an analgesic effect of the 

optogenetic inhibition was noted in both groups. In this regard, it should be considered that a 

higher intensity of light stimulation than the one used in the present protocol (5 mW) might 

have produced different results in behavioral performance and nociceptive responses.  
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V. Conclusions 

 

In this study it was shown that the corticostriatal circuit had altered functionality during 

chronic pain. This conclusion is mainly supported by the observed differences in corticostriatal 

connectivity induced by chronic pain, and by a selective effect of the optogenetic modulation 

of the circuit on the WM performance level of SNI-treated animals. In specific, the following 

conclusions can be taken: 

 

 The cognitive enhancement caused by the optogenetic modulation of the circuit was 

not mediated by a transient relief in pain levels. Instead, it is hypothesized that 

prolonged pain induces changes in corticostriatal activity, which are susceptible to 

modulation through optogenetic inhibition of the circuit. The most relevant evidence 

for this was the observation that the SNI lesion induced an increase in descending 

corticostriatal connectivity in the α frequency range.  

 The cognitive enhancement caused by the optogenetic modulation of the circuit was 

restricted to high-complexity non-trained challenges. This suggests that, independently 

of equal underlying chronic pain-induced corticostriatal changes, the different novelty 

and complexity of the WM challenge differently engages the circuit.  

 The analysis of the corticostriatal firing and oscillatory patterns during the 

performance of low-complexity pre-trained WM challenges highlighted the role of 

both the PL-mPFC and NAcc regions in critical epochs of the task, and revealed the 

importance of the corticostriatal functional connectivity in the θ frequency band for 

the correct performance of the WM task. These findings might be common to high-

complexity non-trained challenges. However, learning might have a modulatory effect 

in the corticostriatal neuronal activity. 

 The neuronal activity of SNI-treated animals was slightly increased during the delay 

period of low-complexity pre-trained DNMS challenges, and descending corticostriatal 

functional connectivity in the θ frequency band was found to be increased in SNI-

treated animals. These changes are probably common to high-complexity non-trained 

challenges, which supports the idea that the observed enhancement in performance 

levels is related to chronic pain-induced changes in corticostriatal activity. 
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Investigation of the neuronal correlates of the corticostriatal activity during high-complexity 

non-trained DNMS challenges would provide a better insight into the exact mechanisms by 

which performance is enhanced by optogenetic modulation. In addition, optogenetically 

activating the corticostriatal circuit during the performance of the same DNMS challenges 

would certainly further contribute to the elucidation of how neuropathic pain influences the 

role of the corticostriatal circuit during WM information processing. 
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