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Abstract.  This paper presents a probabilistic fragility analysis for two groups of bridges: simply supported 

and integral bridges. Comparisons are based on the seismic fragility of the bridges subjected to 

accelerograms of two seismic sources. Three-dimensional finite-element models of the bridges were created 

for each set of bridge samples, considering the nonlinear behaviour of critical bridge components. When the 

seismic hazard in the site is controlled by a few seismic sources, it is important to quantify separately the 

contribution of each fault to the structure vulnerability. In this study, seismic records come from earthquakes 

that originated in strike-slip and reverse faulting mechanisms. The influence of the earthquake mechanism 

on the seismic vulnerability of the bridges was analysed by considering the displacement ductility of the 

piers. An in-depth parametric study was conducted to evaluate the sensitivity of the bridges’ seismic 

responses to variations of structural parameters. The analysis showed that uncertainties related to the 

presence of lap splices in columns and superstructure type in terms of integral or simply supported spans 

should be considered in the fragility analysis of the bridge system. Finally, the fragility curves determine the 

conditional probabilities that a specific structural demand will reach or exceed the structural capacity by 

considering peak ground acceleration (PGA) and acceleration spectrum intensity (ASI). The results also 

show that the simply supported bridges perform consistently better from a seismic perspective than integral 

bridges and focal mechanism of the earthquakes plays an important role in the seismic fragility analysis of 

highway bridges. 
 

Keywords:  fragility curves; seismic vulnerability; simply supported bridges; integral bridges; reverse 

and strike-slip seismic sources 

 

 

1. Introduction 
 

Past earthquakes that have occurred in seismically active areas, show that bridge structures are 

one of the most vulnerable and expensive components of highway transportation systems. Bridge 
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service interruptions may lead to loss of lives and/or economic losses during or after an earthquake 

event (Sheikh and Tsang 2011, Venkittaraman 2013, Wang et al. 2013). During the past decades, 

several bridges have been damaged due to the occurrence of earthquakes or other natural disaster 

(Eshghi and Razzaghi 2004, Nicknam et al. 2011, Wang et al. 2009, Wang and Lee 2009, Lin et 

al. 2015). Hence, the study of the expected seismic performance of bridges has attracted the 

attention of several researchers and research groups during the last decades (Jara et al. 2013a, Jara 

et al. 2013b, Varum et al. 2011, Zhang et al. 2008, Lin et al. 2015). The seismic vulnerability of 

highway bridges is usually expressed in the form of fragility curves developed through 

probabilistic analysis (ATC 1985, Gehl and Ayala 2016, Jeon et al. 2015, Padgett and DesRoches 

2008, Shinozuka et al. 2000). Fragility curves for class of bridges present the relationship between 

the probability of reaching or exceeding a certain damage state as a function of ground motion 

intensities (ATC 1985, Billah and Alam 2015). Fragility curves are useful for structures located on 

low and high seismic regions in order to develop retrofit programs, conduct pre-earthquake 

planning and post-earthquake response and evaluation. Several methodologies are developed to 

generate bridge fragility curves. One approach utilizes expert opinions due to earthquake damage 

and loss estimates to generate fragility curves for transportation facilities, including bridges 

(Rossetto and Elnashai 2003). Another way to develop fragility curves is the use of damage 

distribution functions determined based on post-earthquakes field observations or reconnaissance 

reports. Several other researchers developed empirical fragility curves based on the post-

earthquake damage data and observations (Der Kiureghian 2002, Elnashai et al. 2004, Yazgan 

2015). Basoz and Kiremidjian (Basoz and Kiremidjian 1997) present a logistic regression analysis 

to generate empirical fragility curves for the Northridge earthquake bridges damaged data, while 

Shinozuka et al. (Shinozuka et al. 2001) used the parameters of a lognormal probability 

distribution estimated by the Maximum Likelihood Method for Kobe earthquake data. In the lack 

of adequate damage data or expert option, analytical fragility curves are the best choice to assess 

the seismic performance of highway bridges. The curves can be developed by a variety of 

analytical methods, such as elastic spectral method (Hwang 2000), nonlinear static analysis (Dutta 

and Mander 1998, Loh et al. 2002, Monti and Nistico 2002, Banerjee and Shinozuka 2007, 

Siqueiraa et al. 2014), nonlinear response history analysis (NLTHA) (Hwang et al. 2001, Karim 

and Yamazaki 2003, Choi et al. 2004, Elnashai et al. 2004, Choine et al. 2015, Ramanathana et al. 

2015, Yang et al. 2015, Mosleh et al. 2016a, Nateghi and Shahsavar 2004) and incremental 

dynamic analysis (IDA) (Billah et al. 2013, Billah and Alam 2016, Dezfuli and Alam 2016). In the 

past decades, there have been significant researches regarding seismic vulnerability of buildings, 

however, less investigation has been devoted to bridges (Bojórquez et al. 2012, Mollaioli et al. 

2013, Mosleh et al. 2016b). Also, a large number of highway bridges around the world do not 

achieve the seismic detailing requirements recommended in current codes and guidelines (Caltrans 

2013). Therefore, the development of fragility functions, particularly in what concerns some 

particular classes of bridges, should be a high priority in research activities. 

In the past decades, the construction of integral and continuous bridges in recent decades is 

growing, the implementation of these bridges in some countries is limited due to technical issues 

and existing regulations (Denton and Tsionis 2012). One of the most important advantages of 

integral bridges is the elimination of expansion joints, which reduces maintenance costs during the 

structure life. The installation and maintenance of the expansion joints are expensive and 

sometimes the replacement is even more costly. Another advantage of integral bridges is the 

avoidance of corrosion problems, which are frequently present in expansion joints and seals that 

permit salt-laden run-off water from the roadway surface to make contact with the substructure 

518



 

 

 

 

 

 

Development of fragility curves for RC bridges subjected to reverse and strike-slip seismic sources 

elements. Many problems may originate from leaky joints (Mistry 2005). In addition, elastomeric 

glands can be filled up by trash, clods, and little stones and fail to function properly. Furthermore, 

steel bearings can be exposed to corrosion and elastomers can split or rupture due to sudden and 

unpredictable movements (Paraschos and Amde 2011). Hence, integral bridge construction 

provides better durability performance and lower bridge operating costs. Moreover, the reduction 

of joints in bridge structures leads to substantial savings in the costs of construction and 

maintenance. In particular, the number of bearings in each pier is substantially reduced when 

compared with the case of simply supported multiple-span decks. Another advantage of integral 

bridges is the elimination of the unseating superstructure problem. Moreover, the moment-

resisting connection between superstructure and substructure offers enhanced redundancy in the 

bridge and the energy dissipation capability is increased by increasing the number of plastic hinges 

required to form a collapse mechanism. However, it should be noted that greater demands may be 

transferred from superstructure to substructure in integral systems (Frosch et al. 2009). Previous 

researchers provide different approaches to evaluate the seismic performance of bridges with 

different types of superstructures (Choi et al. 2004, Avsar et al. 2011). Only a few studies have 

been carried out to compare the seismic performance of simply supported bridges with integral 

structures subjected to different seismic sources (Nielson and DesRoches 2007a, Choine et al. 

2015). 

In this study, analytical fragility curves for two common classes of bridges are developed. 

Comparisons considering seismic fragility based on different seismic sources are also drawn. First 

of all, an outline of the used methodology is explained. Secondly, the classification of bridges, 

ground motion selection, definition of damage states, real construction practices, and results of the 

nonlinear dynamic analyses are presented. Thirdly, the fragility curves used to assess the seismic 

vulnerability of common bridges by considering different intensity measures are described. 

Finally, the fragility curves associated with reverse and strike-slip seismic sources are compared. 

 

 

2. Bridge characteristics 
 

This study develops fragility curves for two bridge classes subjected to ground motions of two 

seismic sources. For both the simply supported and integral bridge classes, a group of concrete 

bridges in Iran are modelled. Two major bridge classes are analysed: simply supported structures 

on elastomeric bearings at the seat abutments and column bents and continuous bridges. Based on  
 

 

Table 1 Structural attributes for the bridge samples for each two bridge classes 

Bridge 

classes 

Column 

height 

(Hcol) , (m) 

Column 

Diameter 

(m) 

Longitudinal 

steel ratio (%) 

Span 

length 

(L) , (m) 

Number 

of spans 

1st natural 

period (s) 

Bearing stiffness (kN/mm) 

Column Abutment 

Kz Kv Kz Kv 

CC-C 4 1.0 1.125 20 4 0.36 - - 1077 3.12 

CC-C 6 1.0 1.125 20 4 0.63 - - 1077 3.12 

CC-C 8 1.0 1.125 20 4 0.73 - - 1077 3.12 

CC-S 6 1.1 1.2 24 4 0.99 695 2.53 695 2.53 

CC-S 9 1.2 1.56 32 6 1.38 5024 5.63 13219 10.8 

CC-S 10.5 1.3 1.06 20 6 1.17 5023 5.59 13214 10.79 
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the superstructure connection, section bridge classes are divided into column-continuous (CC-C) 

and column-simply supported (CC-S) bridges. Fig. 1 displays schematic drawings of sample 

bridges in the longitudinal and transverse directions and their components that constitute the 

general attributes of the bridges. The models include different bridge lengths and column heights. 

Table 1 shows the overall dimensions of the bridges and structural attributes of the bridge samples 

for each two bridge class. Circular solid columns are considered for two major bridge classes. 

Based on the analysis of Iran bridge inventory, Mosleh (Mosleh 2016) found that most of the 

bridges in Iran have skew angles less than 5°, therefore the effect of skew angle is eliminated in 

this study (Mosleh et al. 2016a). 

For each bridge class, different case studies are considered; Shinozuka et al. (Shinozuka et al. 

2000) considered ten sample bridge classes, whereas six samples were analyzed by Choine et al. 

(Choine et al. 2015). Nielson (Nielson 2005) considered eight sample case studies for each bridge 

classification. In this study, for each bridge classification, three real bridges are considered as case 

studies. 

 

 

3. Numerical analysis of the bridges 

 

Nonlinear response history analyses are accomplished by adopting a three-dimensional 

structural model (Fig. 2), using SAP 2000 (Computers and Structures Inc. 2009) software. The 

superstructure is composed of cast-in-place reinforced concrete (RC) slabs over RC girders in the 

CC-S system and voided slabs supported on columns in CC-C structures. Voided slabs were 

introduced in the software by considering the equivalent moment of inertia and a mass correction 

factor. The superstructure mass includes slabs, girders, diaphragms, parapets, asphalt, and 

sidewalks. Superstructure elements are assumed to remain in the elastic range of behaviour and are 

protected by a capacity design for simply supported bridges. However, for integral bridges, the 

bending moment demands in deck in all analyses were determined and verified that demands are in 

the range of the elastic behaviour in the slab. This bridge behaviour is understandable considering 

the limited quantities of longitudinal reinforcement in piers of old Iran bridges that make the 

columns weak elements. Shell elements are utilized to model the deck and diaphragms. The 

substructure of the bridge consists of the bent system and abutments. Elastomeric bearings, 

modelled using link elements, are located between the substructure and superstructure. Frame 

elements are utilized to model the columns, girders, and the cap beams by considering six degree 

of freedom at each node. By taking into account the Caltrans recommendation (Caltrans 2013), 

elastic springs in the longitudinal and transverse directions are utilized to model the abutments and 

backfill soil. The abutments are designed to provide unimpeded traffic access from the bridge and 

an economical means of resisting bridge inertial loads developed during ground excitations. The 

resisting movement at the abutment is provided by backfill passive pressure force, and it depends 

on the material properties of the backfill. Abutment longitudinal response analysis could be 

explained by utilizing a bilinear approximation of the force-deformation relationship or the 

nonlinear force-deformation relationship (Shamsabadi 2007). 

The bilinear demand, which includes the effective abutment stiffness, is influenced by 

expansion gaps, and it includes a realistic value for the embankment fill response. Based on force 

deflection results from large-scale abutment testing (Maroney 1995, Shamsabadi 2007, Stewart et 

al. 2007) and passive earth pressure, the initial stiffness Ki is considered as14.35 kN/mm/m 

according to the Caltrans recommendation (Caltrans 2013) The initial abutment’s stiffness could 
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be adjusted proportionally to the back-wall height of the abutment as: Kabut=Ki×wa×(ha/1.7), where 

ha and wa are the height and width of the back-wall for seat abutments, respectively.  

Soil-structure interaction is neglected assuming hard soil sites and column bents are fixed at the 

bottom. Elastomeric bearings are located between the superstructure and substructure components, 

without any dowel or connecting device. The lateral and vertical stiffnesses of the elastomeric 

bearing were modelled as a spring, as proposed by Priestly et al. (Priestly et al. 1996). 

Shear bearing stiffness can be calculated as Kv=
h

GA
, where G is the shear modulus of rubber 

(taken as 1 MPa), A is the gross rubber area, and h is the total rubber height. Vertical bearing 

 

 

 

 
(a) (c) 

 
 

(b) (d) 

Fig. 1 General characteristics of (a) simply supported bridge, (b) integral bridge, (c) transverse view of 

simply supported bridge and (d) transverse view of integral bridge 

 

 
Fig. 2 Finite element model of the four span simply-support bridge classification 
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stiffness is determined as Kz=
hKGS

GAKS

)(6

6
2

2


, where k is the rubber bulk modulus and S is the shape 

factor (Table 1). The mass and stiffness proportional Rayleigh damping coefficients were 

determined considering the first two modal periods (Aviram et al. 2008). Nonlinear analyses with 

direct integration, including P-∆ effects, were conducted in two orthogonal directions to evaluate 

the seismic vulnerability of the bridges.  

To determine the material properties of the bridge elements, concrete cores and bars specimens 

were obtained (Fig. 3). Three samples of each bridge component were collected. Table 2 shows 

mean values of specimen strengths obtained after testing in laboratory. The longitudinal 

reinforcement was tested in tension to determine the class of reinforcing steel, yield stress, and 

ultimate stress. The concrete strength was also determined by conducting test with a Schmidt 

hammer.  

It is important to remark that nonlinear behaviour of the structure is obtained directly from the 

nonlinear stress-strain relationship of concrete and steel, therefore the reliability of nonlinear 

bridge members depends on the accuracy of the material properties considered. Reinforcing steel 

bars are modelled utilizing bilinear steel material model with kinematic hardening behaviour 

according to the Caltrans recommendation (Caltrans 2013). Nominal yield strain (ɛy) and expected 

yield strain (ɛye) are considered as 0.0021 and 0.0023, respectively, the ultimate tensile strain (ɛsu) 

that is bar size dependent is determined as 0.12. The effect of confinement is to enhance the 

compression strength and ductility capacity on concrete. For the confined concrete, previous 

researchers developed different stress-strain relationships (Bazant and Bhat 1976, Kent and Park 

1971, Mander et al. 1988, sheikh and Uzumeri 1980). Some of the proposed methods have 

restriction in the range of condition (e.g., circular or rectangular sections), however the method 

suggested by Mander et al. (Mander et al. 1988) is applicable to all section shapes and all levels of 

confinement according to the following equations 
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where f ćc and ɛcc are concrete stress and strain at peak stress, f ĺ is the effective lateral confining 

stress and ɛcu is the ultimate compression strain respectively. fyh is the yield strength of the 

transverse reinforcement, εsu is the steel strain at the maximum tensile stress, f′cc is the compressive 

strength of the confined concrete, ρs is the volumetric ratio of confining steel, Ah is the cross-

sectional area of transverse reinforcement, D′ is the diameter of the confined concrete core, ke is 

confinement coefficient, ρcc is the ratio of area of longitudinal reinforcement to area of core of the 

section, ds is diameter of spiral, and s is the longitudinal spacing of hoops or spirals. Modulus of 
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(a) (b) (c) 

Fig. 3 Characterization procedures and sampling (a) soil around the abutment to obtain the abutment 

dimension, (b) longitudinal and transversal reinforcements, (c) Facial reconstruction after the procedures 

 
Table 2 Statistical material properties of highway bridges in Iran 

 

f ć (col) 

MPa 

f ć (cap beam) 

MPa 

f ć (girder) 

MPa 

fsy (bar) 

MPa 

fsu(bar) 

MPa 

CC-C 31 - - 392 588 

CC-S 24 24 16-27 392-520 588-665 

 

 

elasticity (Ec) for normal weight concrete and Shear modulus, Gc, for ν=0.2 are determined as: 

Ec= cf5000  and Gc=
)2(1 v

Ec


 post-elastic stiffness is obtained as modulus of strain hardening. 

 

 

4. Capacity limit states 

 

Past earthquakes showed that bridges presented seismic pathologies related to unseating 

problems, liquefaction, collision between adjacent deck segments, bearing damages, shear key 

failures, column damages among others (Avsar and Yakut 2012). This study is particularly 

focused on the influence of two seismic sources in damage limit states of bridge columns. Column 

damages are mainly due to shear, shear-flexure, or flexure (Choine et al. 2015). Zhu et al. (Zhu et 

al. 2007) analysed a 125-column database and showed that aspect ratios (length/depth) smaller 

than two conducted to shear failures whereas columns with an aspect ratio greater than four failed 

in flexure mode. In this study all length/depth ratios of the columns are greater than four (Table 1), 

therefore the shear failure mechanism is not considered and it is assumed a flexure failure. A CC-S 

system in the longitudinal direction behaves as a cantilever structural system, and thus plastic 

hinges can only form at the bottom of the columns. However, in the transverse direction, the 

columns and cap beam form a frame-type system. In this case, plastic hinges can develop at both 

the top and bottom of the columns. CC-C bridge classes have a rigid connection between 

substructure and superstructure in both directions, and therefore concentrated plastic hinges based 

on the Caltrans recommendation (Caltrans 2013) are assigned to the bottom and top of the 

columns. Moment-curvature relationships describe the nonlinear behaviour of the elements. Fig. 4 

shows a moment-curvature plot and an elastic-perfectly plastic idealization generated with the 

SAP2000 program (Computer and Structures Inc. 2009), which identifies the curvatures 
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corresponding to the damage states. The equivalent curvature (φy) corresponds to the relative 

displacement of the column when the vertical reinforcing bars at the bottom of the column reach 

the yield point. φy is obtained by extrapolating the line joining the origin and the point 

corresponding to the first yielding point of a reinforcing bar up to the nominal moment capacity 

Mn. Mn is the bending moment corresponding to εc=0.005, where εc is the compressive strain of a 

concrete column (Priestley et al. 1987, Priestley et al. 1996). The curvature φy and Mn are the 

moment at the section yield point on the idealized graph, given as 
e

n
y

EI

M
 . This bilinear 

representation was used to obtain φy and Mn; however, the numerical model considers the complete 

moment-rotation relationship (Fig. 4(c)) to characterize the plastic hinge behaviour. Degradation in 

pier strength happens when the maximum moment Mmax is reached. 

Finally, concrete crushing occurs at the ultimate curvature (φultimate) when the concrete strain is 

equal to εcu, where εcu is the compression strain corresponding to the rupture of the transverse 

confining steel which calculated as '

cc

suyhs

cu
f

εfp
ε

1.4
0.004 , however 

sD'

A
p h

s

4
  .The strain limit 

can be calculated utilizing the energy balance approach (Mander et al. 1988). Note that fyh is the 

yield strength of the transverse reinforcement, εsu is the steel strain at the maximum tensile stress, 

f′cc is the compressive strength of the confined concrete, ρs is the volumetric ratio of confining 

steel, Ah is the cross-sectional area of transverse reinforcement, D′ is the diameter of the confined 

concrete core, and s is the longitudinal spacing of hoops or spirals. Since the curvature over the 

plastic hinge length is assumed to be constant, the rotation angle can be determined as θ=φ×Lp. 

Different proposals exist to estimate the hinge length (LP); in this research the expression proposed 

by (Priestly et al. 1996) as follow: Lp=0.08L+0.022fyedbl≥0.044fyedbl, where fye is the yield strength 

of the reinforcing bars and dbl is the diameter of the longitudinal reinforcing bars. Outside of the 

plastic hinge length, the behaviour of the column is assumed to be linear. In order to quantify 

damage states, the relative displacement ductility ratio of a column is used. This variable is 

defined as: 
1Δ

Δ i
iμ  , where μi= ductility demand at the ith damage state, Δi= relative displacement 

at the top of a column at the corresponding limit state i and Δ1= relative displacement of a column 

when the longitudinal reinforcing bars reach the first yield, calculated as follows: Δ1=
2

1
3

1
L , where  

 

 

  
 

(a) (b) (c) 

Fig. 4 (a): Moment-curvature diagram of columns, (b): Distribution of a cantilever column curvature and 

displacement, (c): Plastic hinges behaviour in the nonlinear numerical model 
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L= the distance from the plastic hinge to the point of contra-flexure and φ1= the curvature 

correspondent to the relative displacement of a column when the vertical reinforcing bars at the 

bottom of the column reaches the first yield. Hence, µ1, denotes the first limit state corresponding 

to a first yield displacement ductility ratio equal to 1. The second damage state, µy, represents the 

yield displacement ductility ratio, calculated as: 
1

2

1 Δ3

1

Δ

Δ L
μ

yy

y


 , where φy= the curvature 

correspondent to the relative displacement of a column when the vertical reinforcing bars at the 

bottom of the column reaches the yield (Fig. 4(a)). The displacement ductility corresponding to the 

third damage state which is nominated (µ2 or µ4) is the displacement ductility ratio corresponding 

to εc=0.002 or εc=0.004 for the columns with or without lap splices, respectively, where εc is the 

compressive strain at the concrete column (Hwang et al. 2001). Hence Δ3 can be estimated as 

follow: )
2

(ΔΔ 23

p

p

L
Lθ  , as which θp and Lp are the rotation and the plastic hinge length, 

respectively. The plastic hinge rotation can be calculated as: θp=(φ3-φy)Lp, where φ3 is the 

curvature of a column when εc=0.002 or εc=0.004 for the columns with or without lap splices, 

respectively. Finally, forth damage state which is nominated µ2max or µ4max can be calculated as 

follows: μ2max=μ2+3 or μ4max=μ4+3 (Hwang et al. 2001, FHWA 1995). 

 

 

5. Ground motion selection 

 

The seismic hazard level of earthquake ground motions can be identified by different ground 

motion intensity measures. The selected seismic records and intensity measures influence the 

reliability of bridge fragility curves. An appropriate correlation between seismic damages and 

hazard levels of ground motions is very important in the selection of intensity measures. PGA, 

peak ground velocity (PGV) and peak ground displacement (PGD) are examples of commonly 

used IMs. Optimal IMs selection can be supported by an examination of several characteristics of 

IMs that have been discussed by several studies (Baker 2005, Padgett et al. 2008, Iervolino et al. 

2010, Bradley et al. 2015). In the study of Zelaschi et al. (Zelaschi et al. 2015) the analysis of RC 

bridges by providing a statistically sound comparison of analytical fragility curves due to 

traditional and innovative intensity measures of an extensive bridge is proposed. In the study of 

Buratti and Tavano (Buratti and Tavano 2014) by utilizing cloud analysis with a set of 40 recorded 

accelerograms, the sufficiency and efficiency of ground motion intensity is analysed. In particular, 

the peak ground displacement was founded the most efficient and sufficient intensity measure. In 

the study of Bradley et al. (Bradley et al. 2015) four methods were selected for dynamic seismic 

response analyses when the fundamental seismic hazard is quantified with ground motion 

simulation instead of empirical ground motion prediction equations. (Avsar 2009) analysed several 

ground motion intensity measures (ASI, PGV, PGA, and PGA/PGV). He found that ASI and PGV 

intensities have better correlation with the seismic damage of the bridge components. In the study 

of Padget et al. (Padget et al. 2008) it is noted that spectrally based quantities perform better 

correlation than PGA. Spectral accelerations at certain periods are employed as well (FEMA 2003, 

Nielson and DesRoches 2006). 

In selecting the appropriate intensity measure, one of the most important principles is to 

account with the appropriate level of correlation between the hazard level of the ground motion 

and the degree of a constant seismic damage in the bridge. Therefore, the reliability of the fragility 
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curves is proportional to the selected intensity measure and the level of correlation with the 

seismic damage. Existing ground motion intensities can be directly calculated from ground motion 

records, such as peak ground acceleration (PGA). In this method PGA can be obtained directly 

from earthquake record databases without any additional information. Another intensity measure is 

based on the use of response spectrum of a ground motion for certain range of periods. Since PGA 

is one parameter with common applications in earthquake engineering, it is considered as 

representative for the first method investigated. However, the use of a single spectral acceleration 

could lead to unrealistic acceleration values that the bridge is expected to experience. The bridge 

acceleration level can be influenced by higher mode effects, therefore, by using spectrum intensity 

parameters, as a second approach, instead of considering a single period value, it is possible to 

deal with a period range over response spectra of the earthquake databases, and this approach can 

be more realistic (FEMA 2003, Nielson 2005). The area under an elastic response spectrum (5% 

damped) between periods Ti and Tf is defined as the ASI with the following function: 


f

i

T

T
dTξT,SAASI )(  (Von Thun et al. 1998, Yakut and Yılmaz 2008, Avsar et al. 2011), where Ti 

and Tf are the initial and final periods of the interval. Based on modal analyses of the bridge 

samples, fundamental period values vary between 0.36 and 1.38 s. In order to consider the higher 

mode effects and cover the elongated period of the bridge structure due to nonlinear actions, 

periods Ti and Tf are selected as 0.3 and 1.45 s. The fundamental period for the CC-C bridges 

ranges from 0.36 to 0.73 s. This interval for CC-S bridges is between 0.99 and 1.38 s. Fig. 5 

presents the response spectra and mean values of the selected earthquake ground motions with a 

5% damping ratio, for reverse and strike-slip faults. Table 3 present some important features of the 

earthquakes selected and some characteristics of the ground motions. R is the epicentral distance. 

Earthquake mechanisms along active fault systems in Iran suggest the dominance of strike-slip 

faulting and reverse faulting. Due to the high density of active faults in Iran and the inaccuracy of 

the macro-seismic data of the area, the sources of some of the earthquakes have been related to 

more than one fault. Therefore, the development of studies on the seismic vulnerability of bridges 

based on different seismic sources seems to be necessary (Berberian 1994). Ground motions with 

PGA smaller than 0.05 g typically do not produce damages in bridges, and therefore seismic 

records with PGA<0.05 g were not considered. A suite of 104 earthquake ground motions 

satisfying the following conditions were selected: (a): all earthquake ground motions recorded in 

Iran, (b): ground motions recorded from other regions having the same seismic sources (strike-slip 

and reverse faulting mechanisms), (c): all bridges assumed to be recorded on hard soil, (d):  

 

 
Table 3 Some important parameters of the selected earthquake ground motions 

Reverse fault 

Earthquake Station Year Mw 
R 

(Km) 

PGA 

(g) 

ASI 

(g*s) 

Chi-Chi CWB 99999 TCU015 1999 7.62 101.62 0.1125 0.3582 

Chi-Chi CWB 9999917 NSY 1999 7.62 63.29 0.1348 0.4184 

Chi-Chi CWB 9999917 ALS 1999 7.62 37.83 0.1748 0.6110 

Chi-Chi CWB 99999 TCU070 1999 7.62 47.86 0.2058 0.7546 

Chi-Chi CWB 99999 CHY029 1999 7.62 39.70 0.2595 0.7854 

Chi-Chi CWB 99999 TCU047 1999 7.62 86.39 0.3643 0.9836 
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Table 3 Continued 

Reverse fault 

Earthquake Station Year Mw 
R 

(Km) 

PGA 

(g) 

ASI 

(g*s) 

Chi-Chi CWB 99999 TCU095 1999 7.62 95.70 0.5283 0.9555 

Chi-Chi CWB 99999 CHY042 1999 7.62 59.80 0.0823 0.3204 

Northridge USC 90015 LA - Chalon Rd 1994 6.69 14.92 0.2148 0.6436 

Northridge CDMG 24688 LA - UCLA Grounds 1994 6.69 18.62 0.3908 0.5169 

Northridge CDMG 24400 LA - Obregon Park 1994 6.69 39.39 0.4673 0.5258 

Northridge CDMG 24278 Castaic - Old Ridge Route 1994 6.69 40.68 0.4898 1.3978 

Northridge USC 90014 Beverly Hills - 12520 Mulhol 1994 6.69 16.27 0.5102 0.7722 

Northridge CDMG 24538 Santa Monica City Hall 1994 6.69 22.45 0.5908 0.7541 

Sanfernando CDMG 24278 Castaic - Old Ridge Route 1971 6.61 25.36 0.2994 0.5545 

Whittier Narrows CDMG 14403 LA - 116th St School 1987 5.99 21.26 0.3408 0.4750 

Capemendocino CDMG 89509 Eureka - Myrtle & West 1992 7.01 53.34 0.1668 0.4060 

Capemendocino CDMG 89324 Rio Dell Overpass - FF 1992 7.01 22.64 0.4244 1.1312 

Tabas 9102 Dayhook 1978 7.40 20.63 0.3505 0.6363 

Tabas 9101 Tabas 1978 7.40 55.24 0.8128 1.8350 

strike-slip fault 

Earthquake Station Year Mw 
R 

(Km) 

PGA 

(g) 

ASI 

(g*s) 

Morgan Hill CDMG 57007 Corralitos 1984 6.19 30.05 0.0983 0.2518 

Parkfield Parkfield,CA - Cholame 2E; CSMIP, station 36230 2004 6.00 14.50 0.4690 0.3919 

Parkfield Parkfield,CA - Cholame 3E; CSMIP, station 36450 2004 6.00 14.80 0.6020 0.5767 

Manjil BHRC 99999 Abbar 1990 7.40 40.43 0.5051 0.6819 

Morgan Hill CDMG 57383 Gilroy Array #6 1984 6.19 36.34 0.2814 0.6678 

Morgan Hill USGS 1652 Anderson Dam (Downstream) 1984 6.19 16.67 0.3426 0.7637 

Kobe JMA 99999 KJMA 1995 6.90 18.27 0.7105 2.3653 

Imperial Valley UNAMUCSD 6604 Cerro Prieto 1979 6.53 24.82 0.1760 0.4926 

Duzce LAMONT 531 Lamont 531 1999 7.14 27.74 0.1445 0.3066 

Victoria UNAMUCSD 6604 Cerro Prieto 1980 6.33 33.73 0.5722 0.8592 

Parkfield CDMG 1438 Temblor pre-1969 1966 6.19 40.26 0.2934 0.4252 

Landers CDMG 12149 Desert Hot Springs 1992 7.28 27.33 0.1407 0.4373 

Landers SCE 23 Coolwater 1992 7.28 82.12 0.3733 0.9593 

Kobe 99999 TOT 1995 6.90 123.33 0.0765 0.1483 

Duzce LAMONT 1062 Lamont 1062 1999 7.14 29.27 0.2101 0.3952 

Duzce LAMONT 375 Lamont 375 1999 7.14 24.05 0.7367 0.7387 

Parkfield Coalinga,CA - Slack Canyon; Hidden, ValleyRanch 2004 6.00 32.10 0.2710 1.0390 

Imperial Valley USGS 5051 Parachute Test Site 1979 6.53 48.62 0.1661 0.2487 

Duzce LAMONT 1061 Lamont 1061 1999 7.14 31.56 0.1174 0.2559 

Kocaeli ERD 99999 Goynuk 1999 7.51 77.63 0.1387 0.4894 
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(a) (b) 

Fig. 5 Response spectra of the selected ground motions (5%damping), (a): reverse and (b): strike-slip faults 

 

 

moment magnitude, Mw, varying between 5.99 and 7.62, (e): two horizontal orthogonal 

components are considered in the nonlinear response history analyses. The earthquake ground 

motions were downloaded from the strong motion database of PEER 

(http://peer.berkeley.edu/smcat/) and COSMOS (http://db.cosmoseq.org/scripts/default.plx). 

The response spectrum of each ground motion is determined by taking the square root of the 

sum of the squares (SRSS) of the response spectrum of the two horizontal ground motion 

components. To select the ground motions, the distribution of ASI versus PGA of the 

accelerograms was evaluated. A small number of ground motions display high intensities, and 

accelerograms with low intensities impose limited seismic damages on the bridges. Therefore, we 

found impractical and time consuming to use all of the selected 104 ground motions for the 

response history analyses. A reduced set of data of ground motions based on each seismic source 

due to different levels of ASI and PGA was compiled. A total of 40 unscaled ground motions (20 

recorded in reverse faults and 20 recorded in strike-slip sources) from Iran and other regions 

having similar faulting mechanisms and seismic potentiality were selected and shown in Table 3. 

Two horizontal orthogonal components are considered in the nonlinear response history analyses.  

 

 

6. Development of fragility curves 

 

Probabilistic methods are widely utilized to include structural uncertainties in the vulnerability 

assessment of bridges, based on live loading (O’Connor and Enevoldsen 2009) and seismic 

loading (Kim and Shinozuka 2004, Ramanathan et al. 2010). The expected seismic performance of 

a particular structure quantifies the potential for damage as a function of earthquake intensity (e.g., 

PGA). A probabilistic seismic performance analysis (PSPA), based on fragility curves, provides a 

framework to estimate the seismic behaviour and reliability of the structures (Ellingwood et al. 

2004, Razzaghi and Eshghi 2014). Fragility functions determine the probability that the demand 

on a particular structure will reach or exceed its capacity as function of an earthquake intensity 

measure. It can be expressed as follows: Fr=P[Sd≥Sc|IM]. where Fr is the fragility function, Sd is 

the structural demand, Sc is the structural capacity, and IM is the ground motion intensity. The 

structural demand was estimated by conducting nonlinear response history analyses.  
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Development of fragility curves for RC bridges subjected to reverse and strike-slip seismic sources 

The main objective of this study is to obtain fragility curves for two common bridge typologies 

in Iran with the presence of lap splices in columns, subjected to earthquakes from two seismic 

sources. The number of bridges that reach or exceed a specified damage limit state is determined 

by considering PGA and ASI as an intensity measures. The bridges are subjected to two 

orthogonal horizontal components of the ground motions. Since each bridge is analysed twice in 

both horizontal directions to obtain the maximum response (in the longitudinal and transverse 

directions), a total of 80 analyses are performed for each bridge. Based on the maximum ductility 

demand in columns, the damage limit state of the bridge is assessed due to Hwang et al. theory 

(Hwang et al. 2001, Mosleh et al. 2015). The ratio of the number of bridges that reaches or 

exceeds the specified damage limit state to the total number of sample bridges provides the 

probability of exceeding the corresponding limit state for a specific intensity. This process is 

performed for each ground motion and four damage limit states. Moreover, to reduce the 

jaggedness and to obtain smooth fragility curves for each bridge class, a mathematical expression 

is utilized. In recent studies, the cumulative lognormal probability distribution describes the 

probability of exceeding a certain damage limit state (FEMA 2003, Karim and Yamazaki 2003, 

Elnashai et al. 2004, Banerjee and Shinozuka 2007, Nielson and DesRoches 2007b). This study 

uses the lognormal distribution to obtain fragility curves as well. The exceedance probability 

values provide the median and dispersion values of the cumulative lognormal probability 

distribution function. The correlation between the fragility functions and probability points is 

presented by a coefficient of correlation (R2), which varies between 0 and 1. More reliable 

estimated fragility curves lead to R2
 values close to 1. Fragility functions of each bridge class for 

the intensity measures PGA and ASI are performed considering the existence of lap splices in 

columns and different types of superstructures. 

 

6.1 Lap splice 

 

Hwang et al. (Hwang et al. 2001) proposed different damage limit states in columns to obtain 

fragility curves for critical bridge components. The presence of lap splices has a significant effect 

on the fragility curves, making the bridge more vulnerable to seismic effects. Hence, the placement 

of lap splices in critical locations of ductile elements is not permitted (FHWA 2006, AASHTO 

2012, Caltrans 2013). However, old bridges may have lap splices near the column base that 

influence the damage limit states. Table 4 presents the relationship among four curvature demands 

(φ1, φy, φ2, φ4) and displacement ductilities. The curvature for an extensive limit state depends on 

the presence of column lap splices. θp2
 is the plastic hinge rotation of a column with lap splices for 

a strain equal to 0.002 (εc=0.002). If the plastic hinge rotation is larger than this value (θp2), the 

column core starts to disintegrate and bending failure happens. θp4 is the plastic hinge rotation 

related to εc=0.004 for columns without lap splices (Hwang et al. 2001). The fragility curves for 

two classes of bridges based on columns with and without lap slices were calculated. 

Fig. 6 presents the fragility curves of the CC-S and CC-C bridges with and without lap splices, 

subjected to both groups of ground motions. These figures confirm that lap splices in longitudinal 

reinforcements should not be used in critical locations of ductile elements (FHWA 2006, 

AASHTO 2012, Caltrans 2013). This figure displays extensive (LS3) and collapse (LS4) limit 

states because lap splices are only relevant in these cases. These results are relevant because the 

analyses correspond to real bridges. As an example of the influence of the lap splice and seismic 

source on the probability of reaching the limit states, Fig. 6(a) shows that, for PGA=0.5 g, the 

probabilities of reaching or exceeding LS3 subjected to the reverse fault records are 79 and 60%, 
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Table 4 Different levels of pier damage in function of the presence of lap splice, CC-C (8m) 
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Fig. 6 Fragility curves for different damage limit states (PGA) in function of the presence or not of lap splice 

in columns for two groups of classification, (a): CC-S-LS3&LS4-reverse fault, (b): CC-S-LS3&LS4-strike-

slip fault, (c): CC-C-LS3&LS4-reverse fault, (d): CC-C-LS3&LS4-strike-slip fault 

 

 

respectively. However, these values for LS4 decrease from 25 to 2%. In contrast, Fig. 6(b) 

indicates that the probabilities of reaching or exceeding LS3 are 70 and 58%, and for LS4 are 16 

and 1% respectively. Fig. 6 also shows that seismic records from reverse faults make the bridges 

more vulnerable than the structures subjected to seismic records of strike-slips. It should be noted 

that the probability of reaching a specific limit state in CC-C bridges is higher than that probability 

in CC-S bridges. At low values of PGA, the differences between the graphs are large, but by 

increasing the PGA, the differences are reduced. This reflects that bridges with lap splice have 

more dispersed data. The different dispersion values approach both curves for high PGA values 

(LS3 and LS4) and eventually they can cross each other (LS3). The dispersion of data in LS4 limit 

state is not high enough to lead the graphs cross each other. 

 

6.2 Effect of intensity measures on fragility curves 

 

Table 5 shows the parameters of the lognormal density function used to obtain the fragility 

curves. The parameters depend on the seismic source and damage limit state. Median and  
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Table 5 Fragility curve parameters of the bridge classes 

CC-S in terms of PGA(g) 

 Slight (LS1) Moderate (LS2) Extensive (LS3) Collapse (LS4) 

Faults Median Disp. R2 Median Disp. R2 Median Disp. R2 Median Disp. R2 

Reverse -1.41 0.44 0.66 -1.18 0.45 0.69 -0.80 0.28 0.72 -0.16 0.25 0.68 

Strike-slip -1.19 0.62 0.53 -0.97 0.50 0.53 -0.71 0.35 0.69 -0.16 0.20 0.71 

CC-S in terms of ASI (g*s) 

 Slight (LS1) Moderate (LS2) Extensive (LS3) Collapse (LS4) 

Faults Median Disp. R2 Median Disp. R2 Median Disp. R2 Median Disp. R2 

Reverse -0.76 0.40 0.83 -0.40 0.35 0.76 -0.16 0.43 0.76 0.76 0.21 0.66 

Strike-slip -0.64 0.40 0.72 -0.25 0.25 0.66 -0.03 0.32 0.51 0.8 0.2 0.62 

CC-C in terms of PGA(g) 

 Slight (LS1) Moderate (LS2) Extensive (LS3) Collapse (LS4) 

Faults Median Disp. R2 Median Disp. R2 Median Disp. R2 Median Disp. R2 

Reverse -1.52 0.52 0.43 -1.25 0.43 0.51 -0.92 0.32 0.86 -0.28 0.40 0.83 

Strike-slip -1.27 0.55 0.59 -1.11 0.55 0.59 -0.75 0.35 0.68 -0.23 0.33 0.85 

CC-C in terms of ASI (g*s) 

 Slight (LS1) Moderate (LS2) Extensive (LS3) Collapse (LS4) 

Faults Median Disp. R2 Median Disp. R2 Median Disp. R2 Median Disp. R2 

Reverse -0.46 0.34 0.96 -0.37 0.33 0.92 -0.13 0.33 0.86 0.82 0.30 0.66 

6Strike-slip -0.41 0.41 0.64 -0.27 0.45 0.73 -0.03 0.40 0.37 0.84 0.33 0.66 

 
 

dispersion values of the cumulative lognormal probability distribution function were calculated by 

utilizing the least-squares technique. The coefficient R2 is also displayed to show the correlation 

between the exceedance probability points and the fragility curves. Table 5 shows that ASI 

intensity measure has higher coefficient of determination than PGA for LS1 and LS2 limit states. 

For example, CC-C bridges subjected to reverse fault records have R2 coefficients of 0.96 and 0.92 

when using the ASI intensity measure for the slight and moderate limit states, respectively. 

However, these values are 0.43 and 0.51 when using PGA as the intensity measure. Fragility 

curves computed with the ASI intensity measure have a better correlation with exceedance 

probability points than the fragility curves developed by using PGA for the first two limit states. 
 

6.3 Comparison of seismic performance of integral and simply supported superstructure 
types 

 

Fig. 7 shows the fragility curves for the two bridge classes subjected to reverse and strike-slip 

fault records using PGA and ASI as intensity measures. CC-S bridges are less vulnerable than CC-

C bridge models. This outcome is consistent with the bridge responses observed by previous 

researchers (Pan et al. 2010, Choine et al. 2015). The probability of exceeding extensive damage 

in an integral bridge is 80% for reverse fault records with PGA=0.5 g, whereas it is 70% in a 

simply supported bridge. One reason is that bearings reduce the transfer of inertial forces to the 

substructure (Frosch et al. 2009). The fundamental periods range from 0.36 to 0.73 s in CC-C  
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Fig. 7 Fragility curves for in terms of PGA and ASI subjected to reverse and strike-slip faults 

 

 

bridge models and from 0.99 to 1.38 in CC-S bridge models. The fundamental periods of CC-S 

bridges locate the structures in a zone with smaller acceleration demands than those demands of 

the CC-C bridges. 

The fragility curves show that both bridge classes are more vulnerable to reverse fault records. 

The probability of exceeding slight damage for PGA=0.5 g in CC-S bridges is 79% for strike-slip 

faults and 95% for reverse faults (Fig. 8(a)). The same behaviour is observed in other damage limit 

states, such as the moderate and extensive states, with increases of 71% to 86% and 52% to 65% 

for both seismic sources. Fig. 8(b) shows that the probability of exceeding slight damage for 

PGA=0.5 g in CC-C bridges increases from 85% to 95% for strike-slip and reverse faults, 

respectively. The same trend is observed for the moderate and extensive limit states, with increases  

 

 

  
(a) (b) 

Fig. 8 Fragility curves of the bridges subjected to reverse and strike-slip fault for different damage limit 

states in terms of PGA for (a): CC-S and (b): CC-C bridge classification 
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from 78% to 90% and from 55% to 75%. The probability of reaching the collapse limit state is 

about 5% for both seismic sources. It is also notable that the probability of reaching the slight 

damage state in both bridge models subjected to reverse fault records is 95%; conversely, the 

probabilities of reaching this damage state in the CC-S and CC-C bridges are 79 and 85%, 

respectively. Similar results were found for the moderate damage state. In general, the bridges 

subjected to the reverse fault records displayed larger demands than the bridges subjected to the 

strike-slip fault accelerograms. The fragility curves also show that concrete bridges present a low 

probability to reach collapse damage limit state for PGAs less than 0.4 g. This outcome is 

consistent with the bridge responses observed during past Iranian earthquakes that occurred in 

Manjil and Bam (Astaneh-Asl 1994, Zahrai and Heidarzadeh 2007, Manafpour 2008). 

 

 

7. Conclusions 
 

This study offers a comparison between the expected seismic performance of two common 

bridge classes in Iran based on PGA and ASI as intensity measures. The procedure obtains 

fragility curves based on 3-D analytical bridge models, a suite of ground motion records from 

reverse and strike faults, and full nonlinear response history analyses. Comparisons are also drawn 

between the seismic fragilities as function of the two seismic sources, using as a performance 

parameter the displacement ductility of the piers and damage limit states. The seismic performance 

of RC bridges is investigated, considering the continuity between substructure and superstructure 

and the presence of lap splices in columns. Results are important because this study considered 

existing bridges to obtain fragility curves that can be used to assess the potential losses resulting 

from earthquakes, retrofit prioritization strategies, and post-earthquake inspection decisions. 

The results show that CC-S bridges perform consistently better than CC-C structures. However, 

RC columns of the integral bridges are more vulnerable to seismic damage than simply supported 

bridges. This is understandable considering that monolithic bridges transfer more demands from 

deck to columns when the bridge is seismically loaded. Another reason is related to the frequency 

content of the seismic records and the fundamental period of CC-C bridges, which ranges from 

0.36 to 0.73 s, whereas the periods of CC-S bridges vary between 0.99 and 1.38 s. This study 

concentrates in damage limit states of pier columns, if superstructure unseating, collision between 

adjacent decks, abutments or other limit states had been considered, CC-S bridges could have been 

presented additional fragility curves. 

It is also remarkable that bridges response is sensitive to the origin of the seismic ground 

motions. Bridges subjected to the reverse fault records displayed larger demands than bridges 

subjected to strike-slip fault accelerograms. The fragility curves showed that both bridge classes 

are more vulnerable to reverse fault records due to selected records. 

Between the investigated ground motion intensity measures (ASI and PGA), ASI appeared to 

have a better correlation with the seismic damage sustained by bridge components for lower 

PGAs. Therefore, the fragility curves generated based on ASI was found to be more realistic in 

low damage states when estimating the damage limit states of the bridges. 

The bridges with lap splices clearly exhibited higher seismic vulnerability than the bridge 

models without lap splices. The presence of lap splices had a significant effect on the fragility 

curves, making the columns more vulnerable to seismic effects. Old bridges with lap splices 

exhibited high seismic vulnerability. These structures must be carefully evaluated as candidates to 

be retrofitted to reduce the failure probability in future seismic events. The analyses of existing 
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bridges showed that more damage implies more influence of the lap splices. The presence of lap 

splices increases, from 60% to 79%, the probability of reaching or exceeding LS3 limit state for 

reverse fault records and PGA=0.5 g. However, the change is more important for LS4; in this case, 

the models with lap splices increase the probability of reaching or exceeding the limit state from 

2% to 25%. 

The developed fragility curves can be the basis of loss estimation models as well as the 

framework of retrofit prioritization strategies for bridges. The study shows that the bridges 

subjected to earthquakes originated on reverse faults are more vulnerable than the structures 

excited by strike-slip earthquakes. If the seismic hazard assessment of a region shows that a family 

of vulnerable bridges is located in a site where the seismic hazard is mainly governed by one of the 

seismic sources, the interventions should prioritize the structures affected by the reverse fault 

movements. However, if the bridges are located in the seismic zones with important contributions 

of both types of seismic sources, the interventions must be hierarchized by considering the 

bridges’ vulnerability, among other variables. The results of this study are limited to typical short- 

and medium-length RC bridges with failure mechanism governed by pier damages by preventing 

and retarding any possibility of bridge collapse related to other bridge components. This study 

determined numerically the dynamic properties of the bridges, experimental vibration 

measurements could improve the calibration of the finite element models. 
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