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Abstract 

Wine is the final result of a long process of physical, chemical, and biological 

transformations, predetermined by several interrelated backgrounds. Monitoring the wine 

production chain is nowadays an indispensable tool to achieve high standard wines, 

simultaneously meeting consumers’ demands and legal requirements. Several methods 

have been developed over the time to analytically follow the winemaking processes in every 

stage of wine production. In the last decades, vibrational spectroscopic techniques (near-

infrared, mid-infrared and Raman spectroscopies), associated with chemometric methods, 

have been proposed as an alternative to the expensive, time-consuming, laborious, and 

destructive methods, traditionally used. Although the applicability of these vibrational 

techniques have been demonstrated on a wide range of applications, their potential has not 

been fully exhausted in the wine industry. Therefore, the main purpose of this thesis was to 

further explore the potential of vibrational spectroscopy and chemometrics, and to evaluate 

their combination for the development of new methodologies for wine characterization and 

classification. The thesis was conducted in order to cooperate with the wine industry sector, 

by expanding the applications of MIR spectroscopy (chapters 3 and 4), by introducing the 

potential of Raman spectroscopy for routine wine analysis (chapter 5), and by comparing 

the performance of the vibrational spectroscopic techniques for both characterization and 

classification purposes (chapter 5 and 6). 

In the Chapter 3, mid infrared (MIR) spectroscopy and partial least squares (PLS) 

regression, were combined for the development of novel analytical methods for chloride 

and sulfate determination in wines. The concentration of these parameters must comply 

with legal requirements, and is usually assessed by slow and complicated analytical 

procedures. MIR spectroscopy is currently used in many oenological laboratories for the 

routine analysis of wines. However, so far this technique did not cover the determination of 

chloride and sulfate in wines. Therefore, the aim of this chapter was to evaluate the 

suitability of MIR spectroscopy for the quantitative assessment of these parameters in wine 

samples. A careful selection of different types of wine was performed to produce different 

matrices and ensure the robustness of the methods. The resulting calibration models 

yielded enough accuracy to allow the quantitative determination of sulfate (R2
P,sulfate = 0.98 

and RMSEPsulfate = 0.11 g/L), and the semi-quantitative prediction of  chloride (R2
P,chloride = 

0.83 and RMSEPchloride = 0.18 g/L) in wines. 

The suitability of MIR spectroscopy, as a fast and easy methodology, for the early detection 

of some of the most common off-odors in wines, was explored in the Chapter 4. PLS 

regression models were built for the simultaneous measurement of isoamyl alcohol, 

isobutanol, 1-hexanol, butyric acid, isobutyric acid, decanoic acid, ethyl acetate, furfural and 
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acetoin. The precision and accuracy of developed models (R2
P>0.91 and range error 

ratio>10.1), proved the ability of the proposed methodology for the quantification of the 

aforementioned compounds.  

Raman spectroscopy has been much less explored within the wine industry than near 

infrared (NIR) or mid infrared (MIR) spectroscopy (whose potential has already been proved 

by several studies that revealed their ability for the determination of several wine 

parameters with high levels of precision and accuracy). In Chapter 5, the ability of Raman 

spectroscopy for routine wine analysis was evaluated and compared to NIR and MIR 

spectroscopy. Several models were developed aiming at the quantitative assessment of 

alcoholic strength, density, total acidity, volatile acidity, total sugars and pH in white wines. 

For this purpose, partial least squares (PLS) regression was employed, enabling the 

correlation between reference results and spectral information obtained by NIR, MIR and 

Raman spectroscopy. Results revealed the superior performance of MIR spectroscopy for 

alcoholic strength (R2
P=0.99, RMSEP=0.081%vol.), total acidity (R2

P=0.99, RMSEP=0.10 

g/L), volatile acidity (R2
P=0.88, RMSEP=0.042 g/L), total sugars (R2

P=0.97, RMSEP=0.66 

g/L) and density (R2
P=0.99, RMSEP=2.9 x 10-4 g/mL). For the pH determination, Raman 

based models provided slightly better results (R2
P=0.90, RMSEP=0.035). 

The classification ability of vibrational spectroscopic techniques was also contemplated in 

this thesis. Classification methods are valuable tools in the wine industry, since they may 

provide a direct measurement of authenticity. The use of NIR, MIR and Raman 

spectroscopy for tracing the origin of wine samples, has been reported with different levels 

of success. Wine origin tracing was explored in Chapter 6 where the performance of the 

vibrational spectroscopy techniques, as well as their joint use, was evaluated in terms of 

the potential for geographic origin classification. NIR, MIR and Raman spectra of wine 

samples belonging to four Portuguese wine regions (Vinhos Verdes, Lisboa, Açores and 

Távora-Varosa) were analysed by partial least squares discriminant analysis (PLS-DA). 

Results revealed the better suitability of MIR spectroscopy (87.7% of correct predictions) 

over NIR (60.4%) and Raman (60.8%). The joint use of spectral sets did not improve the 

predictive ability of the models. The development of a multiblock partial least squares (MB-

PLS) model demonstrated the superiority of MIR spectroscopy for the classification of wines 

according to its origin. Simultaneously, this method revealed that Raman information is 

clearly more powerful than NIR, for this objective.  

 

Keywords: Wine; MIR spectroscopy; NIR spectroscopy; Raman spectroscopy; 

chemometrics.  
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Resumo  

O vinho é o resultado final de um longo processo de transformações físicas, químicas e 

biológicas, predeterminadas por vários fatores interrelacionados. A monitorização do 

processo de produção do vinho é atualmente uma ferramenta indispensável para a 

obtenção de vinhos de elevada qualidade, respondendo simultaneamente às exigências 

dos consumidores e aos requisitos legais. Vários métodos foram desenvolvidos ao longo 

do tempo para seguir analiticamente o processo de vinificação em todas as suas etapas. 

Nas últimas décadas, a associação entre técnicas espectroscópicas vibracionais 

(espectroscopias de infravermelho médio, infravermelho próximo e Raman) e ferramentas 

quimiométricas, tem sido proposta como uma alternativa aos métodos de análise lentos, 

caros, laboriosos e destrutivos, tradicionalmente usados. Embora a capacidade destas 

técnicas vibracionais já tenha sido amplamente reportada através de inúmeras aplicações, 

o seu potencial ainda não está completamente esgotado na indústria vitivinícola. O principal 

objetivo dos trabalhos descritos nesta tese consistiu em explorar o potencial da 

espectroscopia vibracional e da quimiometrica, e utilizar essa conjugação no 

desenvolvimento de novos métodos de caracterização e classificação de vinhos. A tese foi 

conduzida com o objetivo de cooperar com o setor vitivinícola: ampliando as aplicações da 

espectroscopia de infravermelho médio (capítulos 3 e 4), introduzindo o potencial da 

espectroscopia de Raman para análises de rotina de vinhos (capítulo 5) e comparando o 

desempenho das técnicas espectroscópicas vibracionais na caracterização e classificação 

de vinhos (capítulos 5 e 6). 

No primeiro trabalho (descrito no Capítulo 3), a espectroscopia de infravermelho médio 

com transformada de Fourier foi combinada com a regressão por mínimos quadrados 

parciais, para o desenvolvimento de um novo método analítico, capaz de determinar a 

concentração dos iões cloreto e sulfato em vinhos. A concentração destes parâmetros deve 

obedecer a requisitos legais, e é normalmente determinada através de processos analíticos 

complicados e morosos. A espectroscopia de infravermelho médio é correntemente 

utilizada em muitos laboratórios enológicos. No entanto, até ao momento esta técnica não 

foi aplicada na determinação dos iões cloreto e sulfato em vinhos. Consequentemente, este 

capítulo teve como objetivo avaliar o desempenho da espectroscopia de infravermelho 

médio na determinação quantitativa destes parâmetros em vinhos. De modo a assegurar 

a robustez dos métodos, as amostras foram cuidadosamente selecionadas de forma a 

incluir diferentes tipos de vinhos. A análise dos modelos de calibração obtidos, revelou a 

sua capacidade para a determinação quantitativa de sulfato (R2
P,sulfato = 0.98 and 

RMSEPsulfato = 0.11 g/L), e para a determinação semi-quantitativa de cloreto (R2
P,cloreto = 

0.83 and RMSEPcloreto = 0.18 g/L) em vinhos. 
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O Capítulo 4 foi dedicado à deteção antecipada de compostos responsáveis por maus 

odores em vinhos através da espectroscopia de infravermelho médio. Esta técnica 

espectroscópica, associada à regressão por mínimos quadrados parciais, foi usada para a 

determinação simultânea de álcool isoamílico, isobutanol, 1-hexanol, ácido butírico, ácido 

isobutírico, ácido decanóico, acetato de etilo, furfural e acetoína. A precisão dos modelos 

desenvolvidos, comprovaram a capacidade da metodologia proposta para a quantificação 

dos compostos mencionados (R2
P >0.91 e RER >10.1). 

A espectroscopia de Raman tem sido muito menos explorada na indústria do vinho do que 

a espectroscopia de infravermelho. No Capítulo 5 foram desenvolvidos modelos baseados 

na espectroscopia de Raman para a análise de parâmetros de rotina em vinhos, e 

comparados com modelos baseados na espectroscopia de infravermelho próximo e médio. 

Os resultados obtidos através de métodos analíticos de referência (para o teor alcoólico, 

densidade, acidez total, acidez volátil, pH e açúcares totais) foram correlacionados com as 

informações espectrais através da regressão por mínimos quadrados parciais. A avaliação 

dos modelos revelou a superioridade da espectroscopia de infravermelho médio para a 

determinação do teor alcoólico (R2
P=0.99, RMSEP=0.081%vol.), acidez total (R2

P =0.99, 

RMSEP=0.10 g/L), acidez volátil (R2
P =0.88, RMSEP=0.042 g/L), açúcares totais (R2

P 

=0.97, RMSEP=0.66 g/L) e densidade (R2
P =0.99, RMSEP=2.9 x 10-4 g/mL). No entanto, o 

melhor modelo de calibração obtido para a determinação do pH foi obtido utilizando a 

espectroscopia de Raman (R2
P =0.90, RMSEP=0.035).  

A capacidade de classificação das técnicas espectroscópicas vibracionais foi também 

contemplada nesta tese. Os métodos de classificação são instrumentos valiosos na 

indústria vitivinícola, uma vez que podem proporcionar uma medição direta da 

autenticidade. O uso da espectroscopia de infravermelho próximo, infravermelho médio e 

Raman, para a classificação de vinhos de acordo com a sua origem, tem sido relatado com 

diferentes níveis de sucesso. Este tipo de classificação foi explorado no Capítulo 6, 

permitindo a avaliação do desempenho das três técnicas espectroscópicas vibracionais, e 

do seu uso combinado, quando aplicadas na classificação de vinhos provenientes de 

quatro regiões vitivinícolas portuguesas (Vinhos Verdes, Lisboa, Açores e Távora-Varosa). 

Os espectros destas amostras, obtidos através das três técnicas vibracionais, foram 

submetidos à análise discriminante por mínimos quadrados parciais, cujos resultados 

revelaram o melhor desempenho da espectroscopia de infravermelho médio (87,7% de 

previsões corretas) em relação às espectroscopias de infravermelho próximo (60,4%) e 

Raman (60,8%). A utilização conjunta dos dados espectrais não melhorou a capacidade 

de previsão dos modelos. Foi aplicada aos dados uma regressão por mínimos quadrados 

parciais combinada com uma estratégia multi-bloco que permitiu combinar os três blocos 
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de dados, e demonstrou a maior contribuição da espectroscopia de infravermelho médio 

para a classificação de vinhos de acordo com sua origem geográfica. Simultaneamente, 

este método revelou que a informação obtida por espectroscopia de Raman é claramente 

mais poderosa do que a obtida por infravermelho próximo, neste tipo de classificação. 

 

Palavras –chave: Vinho; espectroscopia de infravermelho médio; espectroscopia de 

infravermelho próximo; espectroscopia de Raman; quimiometria. 
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Aims and scope 

It is well recognized the impact of the wine industry worldwide. The influence it has on 

cultural, economic and health issues persists over the time, and has motivated the search 

for more quantity with better quality. Science plays a crucial role in the advancements of 

this industry, by developing analytical tools capable of assisting winemaking decisions, and 

consequently facilitating the control of the desired quantity and quality. Vibrational 

spectroscopy represents a new step towards the fast, automated, real time, and in-situ 

monitoring of quality throughout the winemaking procedure. Despite the many studies, 

reporting the applications of vibrational spectroscopy in the wine industry, there are still 

many gaps that need to be filled in order to ensure the proper use of vibrational 

spectroscopic techniques and to extract their maximum potential.  

Hence, this thesis was conducted in order to cooperate with the wine industry sector by: 

i) expanding the applications of MIR spectroscopy (chapters 3 and 4); 

ii) exploring the potential of Raman spectroscopy (chapter 5) and 

iii) exposing the performance of the vibrational spectroscopic techniques in wine 

characterization and classification (chapter 5 and 6). 

In many oenological laboratories, MIR spectroscopy is already used in routine wine 

analyses. Its ability to simultaneously analyse various parameters, from a small amount of 

sample with high levels of accuracy, is intensely recognized. However, this technique still 

does not cover all wine industry demands. There are several quality indicators that still rely 

on slow and complicated analytical procedures. Chapters 3 and 4 have been developed to 

address some of these lacks. In chapter 3, it is proposed the application of MIR 

spectroscopy for the analysis of chloride and sulfate in wines. These compounds may be 

important indicators of fraudulent practices and their presence in wines must comply with 

legal requirements. In chapter 4, the versatility of MIR spectroscopy is suggested for the 

prevention of wine faults. At high concentrations, compounds like isoamyl alcohol, 

isobutanol, 1-hexanol, butyric acid, isobutyric acid, decanoic acid, ethyl acetate, furfural and 

acetoin, are responsible for unpleasant odors in wines. Therefore, the main goal in this 

chapter, was to develop MIR based calibration models, suitable for the early detection of 

these compounds in wines.  

Raman spectroscopy is still in its infancy, in what concerns its application in the wine 

industry. Only recently, has this technique been suggested as a valuable tool for wine 

analysis. In chapter 5 it is discussed the suitability of Raman spectroscopy for routine wine 

analysis. This technique was proposed for the assessment of the alcoholic strength, density, 

total acidity, volatile acidity, total sugars, and pH, (usually considered important indicators 

of wine quality standards). Additionally, the performance of Raman spectroscopy was 
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compared to the one obtained by NIR and MIR spectroscopy, in order to establish the most 

suitable technique among the three.  

Chapter 6 discusses the performance of vibrational techniques with regard to their 

classification ability. Wines present unique features, inherently associated with their origin. 

Geographical classification systems are currently established in order to preserve the 

individuality and originality of wines, whose characteristics are inextricably linked to a 

particular region. Attesting the origin and authenticity of wines, is an intricate procedure, 

relying on complicated analysis of wine compositional profile or on the dubious character of 

sensory analysis. Vibrational spectroscopy is, therefore, a valuable solution for attesting 

wine authenticity. In chapter 6, NIR, MIR and Raman spectroscopy are employed for wine 

classification according to geographic origin. The main aim of this chapter was to compare 

the classification ability of the three techniques, and to develop better predictive models by 

merging the generated spectral data. 
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Structure 

This thesis is organized in seven main chapters: 

 

Chapter 1. Introduction 

Provides a simple theoretical background about vibrational spectroscopy, redirected to its 

application within the wine industry. The state of the art is carefully exposed, demonstrating 

the extensive application of NIR, MIR and Raman spectroscopy in a wide assortment of 

subjects throughout the wine production chain: from the soil to the bottle. The limitations 

associated to this technique are also considered in this chapter.  

The following publications were prepared under the scope of this revision: 

 Teixeira dos Santos CA, Páscoa RN, Lopo M, Lopes JA. Applications of Portable 

Near-infrared Spectrometers. Encyclopedia of Analytical Chemistry: John Wiley & 

Sons, Ltd; 2015. p. 1-27. 

 dos Santos CAT, Lopo M, Pascoa R, Lopes JA. A Review on the Applications of 

Portable Near-Infrared Spectrometers in the Agro-Food Industry. Appl Spectrosc. 

2013;67(11):1215-33 

 Teixeira dos Santos CA, Páscoa RN, Lopes JA. Applications of FTIR Spectroscopy 

in the Wine Industry. In: Moore E, editor. Fourier Transform Infrared Spectroscopy 

(FTIR): Methods, Analysis and Research Insights. New York: Nova Science 

Publishers, Inc.; 2017. p. 79-119. 

 dos Santos CAT, Páscoa RN, Lopes JA. A review on the application of vibrational 

spectroscopy in the wine industry: from soil to bottle. TRAC-Trend Anal Chem. 

2017;88:100-18 

 

Chapter 2. Chemometric methods  

Provides a general overview of the chemometric methods used throughout the work. 

 

Chapter 3-6 Progress beyond the state of the art  

These chapters describe the pioneering research carried out under the scope of the thesis. 

The obtained results, are condensed in four original manuscripts (one of which is already 

published): 

 Chapter 3 - dos Santos CAT, Páscoa RN, Porto PA, Cerdeira AL, Lopes JA. 

Application of Fourier-transform infrared spectroscopy for the determination of 

chloride and sulfate in wines. LWT - Food Sci Techno. 2016;67:181-6. 
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 Chapter 4 – Application of Fourier-transform infrared spectroscopy for the 

assessment of wine spoilage indicators: a feasibility study. (Submitted for 

publication) 

 Chapter 5 – Raman spectroscopy for wine analyses: a comparison with near and 

mid infrared spectroscopy. (Submitted for publication) 

 Chapter 6 - Merging vibrational spectroscopic data for wine classification according 

to the geographic origin. (Submitted for publication) 

 

Chapter 7 Concluding remarks and future perspectives 

Presents the main conclusions, as well as the perspectives that emerged throughout the 

development of this thesis.   

 

 



 
 

 

 

 

 

 

 

 

 

 

 

CHAPTER 1 - Vibrational spectroscopy in the wine industry 

 

 

 

 

“A bottle of wine contains more philosophy than all the books in the world.”  

– Louis Pasteur 

 

CHAPTER 1 

VIBRATIONAL SPECTROSCOPY IN THE 

WINE INDUSTRY 
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1.1. Wine  

Wine is probably the most complex alcoholic beverage in the world. Its attributes were 

recognized thousands of years ago, and have been related to religious and historical 

events, social and economic factors, as well as medicinal and cultural issues. Enjoyed by 

its sensorial attributes or appreciated by its antiseptic properties, inspiring gods and poets 

or defying scientists, wine has probably triggered more research than any other beverage 

or food in the world [1]. However, thousands of years of existence were still not enough to 

ensure the complete knowledge of its composition, properties and behaviour. This so 

appreciated beverage is the final result of a long process of physical, chemical and 

biological transformations. Its organoleptic properties are defined by the combination of 

several hundreds of chemical compounds, and are the main indicators of its character and 

quality. Every step involved in the wine production has major contributions in its final 

sensory characteristics. Therefore, the whole process is commonly monitored, as a tool to 

achieve high standard wines, simultaneously meeting consumers’ demands and legal 

requirements. Several analytical methods have been developed and reported over the time, 

to support winemaking decisions during all stages of wine production (from the soil to the 

bottle). In addition, the International Organisation of Vine and Wine (OIV) established a list 

of analytical methods and procedures for wine and must analysis, aiming its standardisation 

for scientific, legal and practical interests [2]. Although recognized by the international 

community as robust and precise, most of these reported methodologies are slow, 

expensive, time-consuming, laborious, destructive and toxic waste generators, limiting their 

application to a restricted number of parameters and making them inappropriate to fulfil all 

the winemaking industry demands. In the last decades, additional interest has been devoted 

to the development of new methodologies capable of overcoming the described limitations, 

simultaneously assuring a high level of robustness and precision. Vibrational spectroscopy 

emerged as a possible solution, and has been successfully applied for a wide range of 

purposes within the wine industry, enhancing its ability to analytically follow all the 

winemaking process, from the soil to the bottle. 

 

1.2. Vibrational spectroscopy 

In the last decades, vibrational spectroscopy based methodologies have been widely 

recognized by the several advantages they offer. These non-destructive and environmental 

friendly techniques, enable the estimation of several properties from a single measurement 

in a short period of time (few seconds), requiring minimal or no sample preparation. 

Additionally, constant developments in instrumentation, mathematics and computational 

areas, as well as progresses in chemometric analyses, expanded the versatility of 
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vibrational techniques, enabling in-situ and on-line analysis of several types of samples. All 

these features aroused an increasing interest in the development and application of such 

techniques for research and routine analysis in the agro-food sector [3], as a solution to the 

laborious, expensive, destructive, and time-consuming analytical procedures, classically 

employed. Vibrational spectroscopy is a general term used to describe two analytical 

techniques: infrared (which includes near, mid, and far) and Raman spectroscopy. Although 

these techniques are very different in several aspects, their basic physical principle is the 

same: they generate unique and specific spectra for each sample as a consequence of 

molecular vibrations [4]. The vibrational modes of a molecule (i.e. the number of ways that 

the atoms in a molecule can vibrate) result from transitions between quantized vibrational 

energy states. Several factors determine the specificity of those transitions, (such as the 

shape of the molecules, the mass of the constituent atoms, the inter-atomic distances, the 

stiffness of the bonds, and the periods of vibrational coupling), resulting in spectral signals 

with specific position and intensity, unique for the functional group in which the motion is 

centred [5]. Thus, the observation of spectral features in a certain region of the spectrum 

indicates the presence of a specific functional group.  Nevertheless, the frequency of 

vibration of a determined functional group, varies from one molecule to another, depending 

on its physical state, crystalline structure, configuration, and conformation, meaning that 

each molecule has slightly different vibrational modes. Thus the vibrational spectrum of a 

given molecule is unique and can be used to identify the concerning molecule and not only 

the functional group itself [4, 5].  

Three main vibrational spectroscopic techniques have been highlighted in the wine industry: 

near infrared (NIR), mid infrared (MIR), and Raman spectroscopies.  

 

1.2.1. Mid infrared spectroscopy  

MIR spectroscopy relies on the interpretation of the vibrational behaviour of molecules, 

when these are exposed to the electromagnetic radiation lying in the spectral range 

between 4000 and 400 cm-1. When MIR light interacts with a molecule, the radiation at 

defined frequencies (matching characteristic vibrations of particular functional groups), is 

absorbed whereas the remaining will be transmitted or reflected . Therefore the biochemical 

components of a sample determine the amount and frequency of absorbed, transmitted or 

reflected light, which can be used to infer the chemical composition of the concerning 

sample [6]. The vibrations under consideration in MIR are mostly fundamentals (from the 

ground vibrational state to the first excited vibrational state. However, the interaction of IR 

radiation with a vibrating molecule is only possible if its intrinsic dipole moment changes 

with the molecular vibration, making MIR spectroscopy especially sensitive to polar 
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functionalities [5]. The MIR spectrum is typically divided in two distinct regions: the 

functional group region (from 4000 to 1500 cm-1) and fingerprint region (from 1500 to 500 

cm-1). Most of the relevant information that is used to interpret MIR spectra is extracted from 

the functional group region, since it includes signals that are representative of functional 

groups such as C─H, N─H, O─H, and S─H stretching (4000 -2500 cm-1), triple bond (2500-

2000 cm-1), and double bond (2000-1500 cm-1) signals. Absorptions in the fingerprint region 

are mainly caused by bending and skeletal vibrations, ensuring different and unique 

absorption patterns for each compound in this region [3, 5, 7].  

 

 

Figure 1.1: A typical MIR spectrum of wine. 

 

Currently, it is possible to assign several bands to the main compounds (and/or their 

corresponding functional groups) present in wine. The typical MIR spectrum of wine (Figure 

1.1) is mainly dominated by strong water and ethanol absorption bands. The C─O stretching 

of primary alcohols (mainly from ethanol) is probably the main responsible for the intense 

bands located around 1045 and 1083 cm-1, while the C─H stretching of ethanol explains 

the absorption signals in the region 2960 - 2850 cm-1 [8, 9]. A negative absorption band is 

commonly observed between 1700 and 1500 cm-1, due to the automatic subtraction of the 

blank, when background measurements are made against water [8, 9]. The C═O stretching 

for aldehydes, carboxylic acids and esters, has been related to the spectral signal contained 

between 1760 and 1700 cm-1 [8-10]. The complex bands observed from 1420 to 1320 cm-

1, have been described as a consequence of the combination of O─H deformation and C─O 

stretching vibrations (from both alcohols and carboxylic acids) [8, 11, 12]. The absorption 

band found between 2431 and 2276 cm-1 has been related to the presence of carbon 
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dioxide [9]. The spectral region beyond 3000 cm-1 reproduces the O─H stretching vibrations 

through intense overlapped absorption bands. The strong presence of compounds 

containing the hydroxi group (mainly water and ethanol), leads to signal saturation in this 

region. As a consequence, this section of the spectra is not considered during wine analysis 

[13-16]. The same happens with the MIR region under 900 cm-1. In this spectral range the 

saturation problems are caused by the C─H deformation and C─C skeletal vibrations [17]. 

 

1.2.2. Near infrared spectroscopy 

NIR spectroscopy involves radiation with energy higher than in MIR, lying in the region 

between 14000 and 4000 cm-1 of the electromagnetic spectrum. Molecules absorb NIR 

radiation at frequencies corresponding to overtones and combination bands. Overtones 

correspond to transitions from ground vibrational state to the second (first overtone), third 

(second overtone), or higher excited vibrational states, while combination bands result from 

combinations of different vibrations of the molecule under consideration. Although many 

overtones and combination bands absorb in the MIR region, the first and second overtones 

of C─H, O─H, and N─H stretching vibrations are found above 4000 cm-1 (in the NIR region) 

[3-5]. These spectral features are usually much weaker than the fundamental modes from 

which they are derived, resulting in a spectrum characterized by few, broad and strongly 

overlapped absorption bands. Furthermore, as the NIR bands are derived from just a few 

functional groups, NIR spectra is more difficult to interpret than MIR spectra [4].  

 

 

Figure 1.2: A typical NIR spectrum of wine. 
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The typical NIR spectra of wine (Figure1.2) is characterized by two main absorption bands 

associated with the dominant presence of water and ethanol. One of the bands appears 

near 5260 cm-1, and represents a combination of the fundamental O─H stretching and 

deformation vibrations. The other one usually occurs around 6900 cm-1 and represents the 

O─H stretching first overtone [18-21]. The second overtone of the O─H stretching also 

causes the appearance of a relatively intense band around 10310 cm-1 [21]. The small 

bands located near 5920 cm-1 and 5710 cm-1 are commonly attributed to the first overtones 

of CH3 CH2 and CH groups (caused by the C─H stretching, mainly occurring in ethanol and 

sugars) [22, 23].  

 

1.2.3. Raman spectroscopy 

In contrast to the two other techniques, Raman spectroscopy involves a scattering process. 

In Raman spectroscopy, the sample is illuminated with a monochromatic beam of radiation 

(typically from some type of laser) whose frequency may vary from the visible to the NIR 

region. The incident light interacts with molecules causing their excitation to a virtual energy 

state above the vibrational energy levels. From the excited energy level, most molecules 

return to the ground vibrational state (through the emission of a photon of the same 

wavelength as that of the incident photon), causing an elastic scattering known as Rayleigh 

scattering. As the state of the molecule remains unchanged, the Rayleigh scattering does 

not contain information in terms of molecular vibrations and the signal is useless for the 

purpose of molecular characterization. However, a small fraction of the incident photons 

drop to the first excited vibrational state, causing an inelastic scattering process known as 

Stokes Raman scattering. In this process, the emitted photon has lower frequency than the 

incident one, and corresponds to the energy of the fundamental transitions (that can be 

observed as an MIR absorption band). If the molecules are already in an excited vibrational 

state, they may undergo Rayleigh scattering (if they return to their starting vibrational state) 

or anti-Stokes scattering in the case they drop to the ground vibrational state. According to 

the Maxwell-Boltzmann law, only a small portion of the molecules will occupy an excited 

vibrational energy state at room temperature. Therefore, the Raman Stokes scattering 

bands are more intense than bands resulting from anti-Stoke scattering, and are the ones 

used for practical Raman spectroscopy [5]. The intensity of bands in the Raman spectrum 

is determined by the polarizability change occurring during the vibration, and unlike IR 

spectroscopy it is not limited to the detection of polar bonds. Therefore, the two techniques 

are commonly considered as complementary techniques, since many bands that are weak 

in the IR spectrum are among the strongest bands in the Raman spectrum [5, 24] 
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Figure 1.3: A typical Raman spectrum of wine. 

 

Despite the potential of Raman spectroscopy, only a few reports can be found in the 

literature concerning the use of this technique for the analysis of wines or other beverages 

[24]. The Raman spectra of wine is characterized by several well defined bands, less 

intense than the ones observed in the NIR and MIR spectra (Figure 1.3). A broad band near 

450 cm-1, is assigned to the C─C─O bending mode (commonly related to the vibration of 

glucose rings) [25-27]. The strong band located around 880 cm-1 reproduces the C─C 

stretching vibration, mainly due to ethanol molecules [25-28]. The two consecutive bands 

around 1050 and 1080 cm-1 are usually assigned to the C─O stretching and CH3 rocking 

modes (both attributed to ethanol) [25, 29, 30]. The spectral features near 1300 and 1450 

cm-1 have been previously described as a consequence of the C─O─H and CH2 bending 

modes, respectively [25, 27, 28]. The strong broad bands situated around 1640 and 3200 

cm-1, correspond to the O─H stretching vibration of water [28]. The C─H stretching 

vibrations (from ─CH2 and ─CH3 groups) of ethanol have been pointed out as the main 

responsible for the appearance of three consecutive bands near 2885, 2935, and 2980 cm-

1 [27, 28]. Although a very intense band appears around 70 cm-1, no information was found 

correlating it with any specific compound. 

 

1.2.4. The role of chemometrics 

Although vibrational spectroscopy is considered a fingerprinting technique, capable of 

providing valuable information about several properties of a sample, that information is often 

hidden in complex spectra, characterized by weak and overlapping signals. Besides the 
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sample nature, other sources of variability contribute to the complexity of a spectrum, such 

as: sample heterogeneities, instrumental noise, scattering and environmental effects. 

Therefore, to extract useful information, (whether for quantitative or qualitative purposes) it 

is necessary to use proper chemometric procedures. Principal component analysis (PCA) 

and partial least squares (PLS) regression are the most commonly used multivariate 

analytical techniques. During the development of calibration models, pre-processing tools 

are usually applied to enhance spectral features and remove unwanted sources of variation. 

Furthermore, the structure of the sample set is usually inspected using PCA, in order to 

detect eventual outliers. After the calibration process is concluded, the accuracy and 

robustness of the model should be tested with an independent sample set (validation set) 

[6]. The predictive ability of multivariate models is usually assessed by calculating the 

uncertainty of their estimations. The approach currently adopted for this purpose is the 

determination of the root mean square error of prediction (RMSEP) and/or the standard 

error of prediction (SEP) (indicators of the accuracy and precision of the predictions, 

respectively).  

Further details about these procedures are described in Chapter 2.  

 

1.3. Application of vibrational spectroscopy in the wine industry 

Over the past two decades, vibrational spectroscopic techniques, mainly near and mid 

infrared spectroscopy, have proved their potential in the wine industry. Hundreds of studies 

were published, covering all the production chain and answering a wide range of 

purposes.The following sections are devoted to the diversified application of vibrational 

spectroscopy in the wine industry: from the soil to the bottle. 

 

1.3.1. Grapes’ growth and maturation 

1.3.1.1. Soils   

Soils represent the first support for the healthy development of the vineyard and the 

consequent achievement of top quality grapes. Thus, it is considered of great importance 

to determine and control its characteristic properties and subsequent cultivation practices. 

Cozzolino et al. (2013) explored the potential of NIR spectroscopy as a tool toward 

sustainable vineyard management, by applying this technique in-situ for the assessment of 

soil chemical composition. Results showed the possibility to measure soil chemical 

properties directly in the vineyard (SECV values around 14% of the reference ranges) 

(Table 1.1), proving the suitability of portable NIR spectroscopy for the rapid and low cost 

monitoring of soil fertility [31]. Furthermore, this monitoring approach also revealed to be an 

excellent tool for the support of a vineyard's micro-zoning process [32]. 
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1.3.1.2. Grapevine leaves and other tissues 

The monitoring of grapevine physiology is an important tool to assure its balanced growth, 

and is usually assessed through the analysis of the grapevine tissues. NIR spectroscopy 

was applied on grapevine leaves and stems, directly in the field, demonstrating its ability for 

a fast and reasonable assessment of grapevine water potential, as a response to irrigation 

practices [33]. Although the results obtained for the Shiraz variety were good (R2 around 

0.85, both in leaves and stems), further studies should be performed including more 

grapevine varieties and an independent test set, in order to attest the versatility and 

predictive ability of this technique. Other parameters were investigated from the NIR spectra 

of leaves [34] (Table 1.1). Grapevine varietal classification was performed by in-field leaf 

spectroscopy, allowing a fast and effective discrimination of twenty grapevine varieties (87% 

of correct predictions) [35]. NIR hyperspectral imaging of leaves combined with PLS 

regression, was also successful in the classification of 3 different grapevine varieties 

(Tempranillo, Grenache and Cabernet Sauvignon) [36]. Although the percentage of correct 

predictions for all the grapevine varieties was high (around 93%), it would be interesting to 

increase the number of grapevine varieties. Ciraolo et al. (2012) used a NIR multispectral 

camera in the vineyard crop as an attempt to map the evapotranspiration, demonstrating 

the feasibility of the proposed technique for agro-hydrological and precision farming 

purposes [37]. The grapevine varieties included in these works and the leaf surface in which 

the spectra was collected, were pointed out as the major causes of variability among the 

results [38]. MIR spectroscopy was employed in the analysis of grapevine petioles, roots 

and wood samples. Results demonstrated the ability of this technique for the quantitative 

determination of several inorganic ions in grapevine petioles [39], and for the rapid 

monitoring of nitrogen and starch content in roots and wood samples (R2>0.95) [40]. 

 

1.3.1.3. Grapes 

The compositional profile of grapes has been widely explored by vibrational spectroscopy 

in what concerns quality and maturation parameters. The first applications of vibrational 

spectroscopy in grape analyses were extracted from the spectra of homogenized grape 

samples and grape juices or musts. The determination of compositional parameters and 

maturity indicators, such as: total soluble solids (TSS), anthocyanins, minerals (Fe, Mn, Ca, 

Mg, K, P), dry matter, condensed tannins, reducing sugars, electric conductivity, pH, and 

glycosylated aroma compounds was attempted by both NIR or MIR spectroscopy 

techniques [8, 38, 41-46]. Overall, results suggest that NIR spectroscopy is a promising 

technique for predicting reducing sugar content and total soluble solids in grape 

homogenates [47, 48]. Nevertheless the determination of other parameters seemed to be 
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strongly influenced by the sample presentation mode [48]. MIR spectroscopy displayed an 

excellent performance in the construction of calibration models for the assessment of pH, 

total soluble solids and ammonia concentration in commercial grape juice (Table 1.1) [49]. 

Some NIR applications were not so successful when considering the determination of low 

concentration compounds. Indeed, poor results were obtained from the measurement of 

glycosylated aroma compounds (terpenes, phenols, C6 alcohols and norisoprenoids), 

independently of the sample presentation mode (grape juice or homogenized grapes). The 

sensitivity of NIR spectroscopy makes this technique inappropriate for the measurement of 

low concentration components in complex matrices such as wine [50]. The same problem 

occurred in the assessment of anthocyanins through MIR spectroscopy, revealing the 

unsuitability of this technique for its determination in red grape musts [51]. 

The analysis of grape juice, also allowed the classification of grapes, according to their 

variety and the irrigation practices to which they were exposed [52]. To increase the 

robustness and precision of the calibrations, some researchers evaluated the effects of 

microwaving and freezing grape homogenates, the speed and time of homogenization, and 

the type of homogenizer [38, 41].  

Technological advances in the vibrational spectroscopy area enabled the scanning of 

samples in other presentation modes, such as intact grape berries and whole grape 

bunches, both in the laboratory and in-field. The prediction of TSS, pH, total acidity and 

anthocyanins in fresh berries, by NIR spectroscopy, was reported as a tool for ripening 

control and even for the differentiation of soil management practices by understanding its 

influence on grapevine growth and berry quality [53]. Good results were obtained for the 

measurement of pH, total acidity and anthocyanins content. Nevertheless, it is worth 

mentioning that only two grape varieties were included in the calibration models, and their 

predictive ability was not tested with independent sample sets. Several other parameters 

were estimated through the application of NIR spectroscopy in grapes directly in the 

vineyard, whether for the assessment of chemical composition or physical properties [41]. 

Good results were achieved using a portable NIR-AOTF instrument for the monitoring of 

ripening evolution in whole grape berries. However, regression models were constructed 

based on reference data obtained from MIR spectroscopy (instead of the recommended 

analytical methodologies) [54]. A Vis/NIR device was tested for the prediction of ripening 

parameters in both red and white grape samples. The results obtained are encouraging (R2 

around 0.75 for TSS, titratable acidity, potential alcoholic degree and extractable 

anthocyanins), considering the difficulties that arouse from the use of these tools directly in 

the field [55]. Whole grape bunches were analysed using a portable NIR spectrometer, 

aiming at the development of accurate and robust models for the prediction of internal 
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quality parameters during on-vine ripening and on arrival at the winery. The determination 

of reducing sugars and soluble solids content yielded the best results (R2 higher than 0.94). 

Other sample presentation modes, (like individual berries and must), were investigated, 

revealing some variability among the results (mainly for pH and potassium content) [48]. 

After optimizing the process, the authors concluded that NIR spectroscopy is a well suited 

technology for the non-destructive evaluation of chemical changes (related to sugar content 

and acidity) occurring during the ripening process [56].  

NIR hyperspectral imaging systems also seemed to provide valuable information for the 

assessment of quality and maturity indicators in intact grapes. Recently, this technique has 

been applied for the fast and inexpensive screening of anthocyanins, °Brix, pH and sugar 

content. Results were very promising, mainly the ones obtained for the determination of 

anthocyanin content (R2=0.95) [57]. Furthermore, those applications worked as a starting 

point for the development of frameworks, suitable for the sorting of berries according to their 

maturity stages [57-59]. 

It is important to note, that for the development of the above mentioned calibrations, several 

external factors were simultaneously considered and incorporated. Special attention was 

given to the variety, year, and geographic origin of the included sample sets. Additionally, 

the spatial orientation of the samples and its presentation mode, the instrument availability 

and cost, the desired level of accuracy, the spectral range selection, and the application of 

mathematical treatments, were also subject of discussion [38, 41].  

The vibrational scanning of grape seeds and skins was also performed aiming several 

purposes. NIR and MIR spectra of intact grape seeds were used to predict the extractable 

content of phenolic compounds, enabling the monitoring of seed phenolic maturity (R2
P 

around 0.98 for total phenolics and condensed tannins). However, only two red grape 

varieties were included [60, 61]. 

The extension of these spectra to the ultraviolet and visible regions, allowed the 

discrimination of grape seeds from different grape varieties. NIR spectroscopy revealed as 

well considerable potential for the determination of different sensory parameters (sourness, 

astringency, tannic intensity, dryness, hardness, visual colour and olfactory intensity, and 

type of aroma) in grape seeds and skins, supporting decisions concerning the optimal 

harvest time. The best results were obtained for the prediction of hardness and colour in 

grape seeds [62]. Additionally, NIR spectroscopy was successfully applied to winemaking 

residues (grape pomace), to estimate total phenolics content and total antioxidant capacity 

(R2 higher than 0.95), representing a non-destructive and eco-friendly technique to foster 

added value of grape pomace residues [63]. 
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NIR hyperspectral imaging has also been explored in the characterization of grape seeds, 

skins and stems. This technique proved to be a reliable methodology for the prediction of 

maturity stages and for the classification of grapes according to variety or type of soil (100% 

of correct predictions when using the entire spectrum) [64]. Results revealed the suitability 

of this technique for the quantitative measurement of anthocyanins [65], and some phenolic 

compounds (proanthocyanidins, catechin, epicatechin, low molecular weight flavanols and 

procyanidin B1) [66]. 

Spectral acquisitions of seed extracts in the mid infrared region were used for the evaluation 

of the degree of polymerization of procyanidins. The calibration model developed, yielded 

an R2 of 0.91 and an RMSEP of 2.58 (which corresponds to 29% of the reference range) 

[67]. Therefore, additional studies are needed in order to improve the accuracy of these 

models. 

 

1.3.1.4. Grape diseases 

Grape diseases are probably the main concern of winemakers and producers, since 

contaminated grapes contribute negatively to the sensorial attributes of the wine. Therefore, 

the early detection of diseases is crucial to properly correct the problem and assure the 

healthy growth of grape bunches. 

NIR spectroscopy was applied in Chardonnay grape homogenates, contaminated with 

powdery mildew, revealing the potential of this technique to classify several degrees of the 

infection in grapes [68]. It would be interesting to extend the applicability of this technique, 

by including other grape varieties in the construction of the calibration models. Grape mash 

samples, of naturally infected grapes, were screened by NIR spectroscopy for the 

quantification of several parameters, including ergosterol, which is an indicator of rotness 

in grapes. Results revealed RMSEP values of 4.05 mg/kg (corresponding to 8.2% of the 

reference range), proving the suitability of this technique for industrial process integration 

by allowing on-line measurements in real time [69]. MIR spectroscopy was applied in grape 

juice for the determination of gluconic acid (R2=0.98) and glycerol (R2=0.96), commonly 

used as chemical markers of grape infection. Results pointed out the possibility of using this 

procedure as an alternative to the conventional visual inspection of Botrytized grapes. 

However, further research including selected sample sets was suggested, as Botrytis 

infection can depend on the grape variety [70]. NIR and MIR spectroscopy, were combined 

for the quantification of Botrytis bunch rot in white wine grapes. The best results were 

obtained when using the NIR spectra comprised between 1260 and 1370 nm. To increase 

the accuracy of the model, additional calibrations (including samples with lower amounts of 

Botrytis), should be developed [71].  
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1.3.2.  The winemaking process 

1.3.2.1. Fermentation 

Wine fermentation represents a crucial step in the development of wine sensorial attributes. 

The fast and reliable character of vibrational spectroscopy, simultaneously capable of real 

time and on-line measurements, made this technique suitable for the monitoring of this 

winemaking step. 

Infrared spectroscopy, both in the near and mid infrared regions, has been applied in the 

fermentation process control. Several quality indicators (glucose, fructose, ethanol, 

glycerol, phenolic compounds, anthocyanins, volumic mass and acetic acid, among others) 

(Table 1.2) were successfully determined through these vibrational techniques. 

Measurements were carried out in large-scale batches, micro-fermentation trials, and even 

in model solutions [72-77]. Changes in the wine matrix, occurring during the fermentation 

process, represent the main limitation for the development of proper calibration models, 

making them unsuitable to be extended to the overall wine fermentations.  

Micro-fermentation trials were used by some researchers to predict compositional changes 

during alcoholic fermentation of red wines, using NIR and MIR spectroscopy. Both 

techniques originated correlation coefficients higher than 0.90 for ethanol, glycerol, fructose, 

glucose, total phenolics, total anthocyanins, and total flavonoids, demonstrating their ability 

for on-line measurements [78]. NIR spectroscopy was combined with the ultraviolet and 

visible spectral regions for the determination of total polyphenol index and colour intensity 

during red wine alcoholic fermentation over two vintages and using two grapes varieties 

(Cabernet Sauvignon and Shiraz). Results were strongly influenced by the year and variety 

of samples (Table 1.2), enhancing the specificity of these parameters. Therefore proper 

calibration models should be developed in accordance with such external factors [20, 79]. 

Other instruments and techniques, such as FT-MIR-ATR, Vis-NIR spectroscopy and Raman 

spectroscopy, were still applied in the monitoring of the chemical evolution during the 

fermentation time course. The works using FT-MIR-ATR and Vis-NIR spectroscopy showed 

that there is a correlation between fermentation changes and spectral features over the 

time, highlighting the potential of these techniques to monitor the fermentation process on-

line and at real-time [80, 81].  

Regarding the work using Raman spectroscopy, excellent results were obtained for sugar, 

ethanol and glycerol contents, with prediction errors of 0.22 g/L, 0.03 % (v/v) and 0.2 % 

(v/v) respectively. Hence, this study revealed the suitability of Raman spectroscopy for the 

real time monitoring of multiple components in wine fermentation. As this work considered 

only two micro-fermentation trials, further research should be carried out, to support these 

results and highlight the potential of this technique [28]. New methods were also studied 
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and reported, as an attempt to maintain the online robustness of multivariate calibrations 

against unknown influence factors (whether, chemical, physical or environmental). The 

development of those methods was based on spectral adjustments whenever disturbances 

were detected [82]. 

Malolactic fermentations were also evaluated by infrared spectroscopy, in near and mid 

regions, to detect the beginning of this fermentative stage in a model wine. Absorption 

bands were related to molecular modifications occurring during the L-malic acid 

transformation, allowing the discrimination of samples according to its fermentative stage. 

The results of this preliminary approach lead to the conclusion that this technique could be 

used to support the conventional chemical and microbiological analysis to detect the start 

of malolactic fermentation and the autolysis of lactic acid bacteria [83].  

 

1.3.2.2. Yeast characterization and classification 

Yeasts are the precursors of the fermentation process and consequently responsible for its 

products and by-products. Therefore, researchers found useful the application of vibrational 

spectroscopy and chemometrics to the characterization and classification of wine yeasts 

[73, 74, 84]. 

In fact, both NIR and MIR spectroscopic techniques, were investigated as potential tools to 

discriminate and identify different yeast strains with particular metabolic profiles, and to 

assess their physiological state (Table 1.2) [68]. FT-MIR micro-spectroscopy was applied 

for the study of yeast cells’ (Saccharomyces cerevisiae) autolysis, working as an accurate 

tool to detect major biochemical changes associated with the autolytic process [85]. 

Additional research was carried out, demonstrating the ability of this technique for the 

efficient selection of yeast strains based on their autolytic capacity [86]. NIR spectroscopy 

was combined with the visible region of the electromagnetic spectrum, to discriminate 

different Saccharomyces cerevisiae yeast strains, coming from a collection data bank. By 

correlating spectral features with metabolic profiles, it was possible to differentiate and 

classify similar yeast strains [87]. Similar results were obtained from the application of MIR 

spectroscopy, which allowed the identification of Saccharomyces cerevisiae and 

Saccharomyces bayanus, at the strain level, through a single measurement [88]. The 

fermentation profiles of Saccharomyces cerevisiae strains were also evaluated by MIR 

spectroscopy, through the quantification of volatile acidity, ethanol, reducing sugar and 

glycerol, in fermenting juices and synthetic musts [89]. 

Raman spectroscopy was also applied for the identification and strain discrimination of wine 

spoilage yeasts: Saccharomyces cerevisiae, Zygosaccharomyces bailii and Brettanomyces 

bruxellensis. This work achieved an overall accuracy of 82% of correct predictions [90].  
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1.3.3. The compositional profile of wine 

1.3.3.1. Quality and safety indicators 

After the end of fermentation, wine is still submitted to several procedures. The assessment 

of wine composition is essential to support decisions related to those winemaking practices. 

Furthermore, it simultaneously enables the meeting of legal requirements and consumers´ 

satisfaction. Vibrational spectroscopy has been widely developed and employed in the 

analysis of wine samples. Nowadays, it is possible to find NIR and MIR based analytical 

instruments, implemented as routine methodologies in certified wine laboratories [41, 91-

93].  

Ethanol has been the most studied parameter, however, the use of vibrational spectroscopy 

was extended to the measurement of many other wine properties, (commonly included in 

routine wine analysis) such as: volatile acidity, total acidity, reducing sugars, glycerol, pH, 

sulfur dioxide and organic acids, among others (Table 1.3) [10, 13-16, 94-103]. A 

comparative study was developed in order to evaluate the performances of NIR and MIR 

spectroscopy, as well as their joint use, in the measurement of the alcoholic degree, volumic 

mass, total acidity, glycerol, total polyphenol index, lactic acid and free sulfur dioxide in 

wine. Overall, both NIR and MIR spectroscopy originated good results, with similar levels 

of accuracy (Table 1.3). The alcoholic degree was the best predicted parameter, while poor 

calibrations were obtained for the assessment of free sulfur dioxide. Only the determination 

of glycerol was considerably favoured by the combination of the two techniques [104]. 

The sharp and specific absorption bands present in the MIR spectra of wine, made this 

technique very attractive, allowing the assignment of specific bands to the corresponding 

compositional parameters of wines. 

Total antioxidant capacity was determined by MIR spectroscopy in red wines. The prediction 

errors obtained from the PLS regression, were acceptable when compared with the ones 

obtained from the reference method [105, 106]. The feasibility of infrared spectroscopy was 

investigated for the prediction of haze formation in white wines. Results revealed the better 

performance of short-wavelength NIR (SW-NIR) over FT-NIR and FT-MIR techniques in the 

assessment of colloidal stability [107]. The effect of barrel aging was investigated by NIR 

spectroscopy. The authors reported its ability to determinate oak volatile compounds in 

barrel aged red wines, simultaneously considering the storage time and oak barrel types 

[108]. The results obtained were good (R2 around 0.8) when considering wines with 18 

years. However, the prediction errors obtained, are above the sensory threshold values 

reported for these compounds, making these calibrations inappropriate.  

Several other enological parameters and properties (Table 1.3) were subject of research 

works. The samples selected for these works were usually represented by sets of wines 
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from different types, varieties and origins, aiming to develop robust calibrations and prove 

the ability of these vibrational techniques for this type of analysis, in a wide diversity of 

samples [41, 72, 73, 84]. 

The strong water absorbance signals in the IR spectra, lead to the development of some 

studies reporting the use of dry extracts as samples. The analysis of this type of samples 

was proposed for the measurement of polysaccharides and polymeric mannose contents, 

for the determination of geographic origin, and for the assessment of total phenols and 

sugar concentrations in fortified wines [41, 109-112]. Nevertheless, the quantification of the 

main families of polysaccharides was complicated by their low concentration and the strong 

collinearity between them [109]. The partial least squares (PLS) regression, developed for 

the quantification of polymeric mannose, displayed poor results (RMSECV= 36.2% of the 

reference range values used for calibration), which have been considerably improved by 

the application of orthogonal signal correction (OSC) (RMSECV= 11.4 %) [110]. Moreover, 

it is important to note that, the use of this type of samples requires laborious and time-

consuming extraction steps, preventing its application in-situ. 

Raman spectroscopy was combined with multivariate analytical techniques for the 

determination of ethanol in wines. Results demonstrated the excellent performance of the 

proposed method (r=0.99), for the quantitative measurement of ethanol in commercial wine 

samples [113]. Raman spectroscopy was also employed in the measurement of phenolic 

compounds in red wines. Promising results were obtained for the quantification of 

polyphenols, anthocyanins and tannins (R2 higher than 0.82) [114]. Although Raman 

spectroscopy is still in its beginning (concerning its application in the wine industry), the 

results obtained suggest the potential use of this technique for further applications. 

Investigations in this field also concerned the selection of appropriate spectral regions, the 

management of spectroscopic interferences, and the effects of pre-processing methods and 

temperature, in the determination of wine parameters [11, 115-119]. The knowledge 

obtained from these works had great contribution in the improvement of calibration 

techniques. 

 

1.3.3.2. Sensory analysis 

Sensory properties of wines may proceed from different stages and sources during the 

winemaking process. Grapes, yeasts’ metabolism, winemaking practices, storage and 

aging conditions are primarily responsible for the wine sensory character. The evaluation of 

these properties is usually performed by experienced winemakers, wine competition judges 

or wine tasting panellists. However, the subjective character of this type of analysis has 

triggered efforts in order to develop instrumental methodologies, capable of estimate wine 
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sensory attributes. The application of vibrational spectroscopy to this field, found a major 

limitation: the concentrations of the compounds responsible for flavour and odour in wine 

are often present in concentrations under the detection limit of these instruments [7, 74, 84, 

120]. Consequently, several researchers focused on the interpretation of spectral data, 

looking for its correlation with compounds affecting wine sensory properties [7, 72]. Thus, 

NIR and MIR spectroscopic methods were proposed to indirectly explain variations in 

sensory attributes, simultaneously working as screening tools for determination of quality 

levels.  

Some sensory-linked characteristics of wine were assessed by Vis-NIR spectroscopy, 

which proved its ability in the prediction of wine quality, according to commercial rankings 

and sensory scores, previously assigned [7, 41, 72, 121].  

MIR spectroscopy was applied in the evaluation of wine samples’ bitterness, (by relating 

spectral information with bitterness intensity), previously assigned by a trained sensory 

panel. The same procedure was applied using a FT-MIR based electronic tongue, for the 

determination of tannin amount in red wines (r=0.92) [122] and gelatin index (R2=0.89 and 

R2=0.87 for rose and red wines respectively), [123] according to the gustative mouthfeel 

sensation. NIR spectroscopy was tested in the prediction of volatile aroma compounds and 

sensory descriptors from different aroma categories, in two Australian white wine varieties 

(Chardonnay and Riesling) [124, 125]. Good calibration models were obtained for the 

prediction of monoterpene alcohols (R2=0.90). Although the predictive ability of the models 

has been tested by cross-validation techniques, it would be interesting to evaluate those 

models with independent data sets [125]. The models developed for the prediction of aroma 

descriptors, presented poor results (with correlation coefficients comprised between 0.12 

and 0.78), suggesting that further work needs to be carried out, in order to improve its 

usefulness [124].  

 

1.3.3.3. Geographic origin 

The geographic origin of wines, may strongly determine its characteristics and properties. 

Consequently, the appellation of origin emerged as a geographical indication, used to 

designate wines with specific qualities or characteristics that are essentially due to the 

geographical environment in which it is produced. Infrared spectroscopy seemed to be a 

valuable tool in the classification of wine samples, according to its country or appellation of 

origin, and to discriminate wines made from different grape varieties (Table 1.3). Scientific 

researches have been published, highlighting NIR spectroscopy as a powerful tool for the 

traceability of wine geographic origin and variety, in several countries around the world [126, 

127]. MIR spectroscopy was also applied to Gamay wine extracts from three different 
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origins, allowing the correct classification of 71%, 90% and 97% of samples from for Gaillac, 

Beaujolais and Touraine regions, respectively. Moreover, a proper analysis of the main 

spectral regions used for the models’ development, revealed the importance of phenolic 

compounds in the discrimination of samples, according to its geographic origin and 

production year [128]. 

 

1.3.3.4. Authentication  

Vibrational spectroscopy also found potential application for the authentication and fraud 

detection of wines. Throughout the years, the evolution of wine adulteration forms, triggered 

the search for accurate techniques, capable of routine inspections of wine quality and 

authenticity. Some of the works concerning these purposes were already described in the 

previous section (section 3.3.3). In fact, establishing real origins, both in terms of variety or 

geographic region, is a way of ensuring wine authenticity. 

The combination of spectroscopic and chemometric analysis, was reported as a useful tool 

to establish the authenticity and uniqueness of wines from protected designations of origin 

[129]. 

The adulteration of red wines by the addition of industrial grade glycerol was assessed by 

combining single bounce micro ATR-MIR with multivariate data analysis. This technique 

was able to predict the presence of industrial glycerol with an accuracy level ranging 

between 94 and 98%. Suitable models were also developed for the quantitative analysis, 

yielding low predictive errors (SEP values below 2.25 % w/w) within the studied 

concentration range [130]. However, it should be mentioned that these models were 

developed using fortified samples and the errors obtained are higher than the glycerol 

values commonly found in wines.  

Different wine aging conditions were evaluated using MIR and NIR spectral data, allowing 

the discrimination of wines aged in oak barrels, in stainless steel tanks, and in steel tanks 

with addition of oak chips. The recognition accuracy of the proposed techniques, varied 

between 86% and 98% according to the discriminant method and vibrational technique 

used. Nevertheless, best results were obtained by merging NIR and MIR spectral data 

[131]. The joint use of these techniques, was also applied in the distinction of red and white 

wines, resulting from malolactic fermentations carried out with different strains of 

Oenococcus oeni. Correct classifications, ranging between 67% and 100% (depending on 

the strain), showed that IR spectroscopy can be used as a rapid and effective screening 

tool [132].  

FT-MIR spectroscopy demonstrated high potential to check wine integrity during 

transportation, by comparing the spectra obtained in the dispatch and receival places [9].  
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NIR spectroscopy enabled the discrimination of wine samples containing anthocyanins from 

black rice, with minimum sample preparation. Nonetheless, the results obtained were not 

the expected ones (70% of correct predictions). The authors justified these results with the 

matrix effect and low sensitivity of NIR technique [23]. The mid infrared spectra of a model 

wine were combined with sensory analysis, to attempt its classification according to the 

origin of added tannins (grape seed or grape skin tannins). The level of accuracy varied 

according to the chemometric method employed [133]. Additionally, the same technique 

allowed the identification of spoiled wines, discriminating them from samples of fresh wine. 

Once again, the classification power of the models depended on the chemometric technique 

used [134].  Raman spectroscopy was recently used for the detection of six illegal 

sweeteners in commercial liquor and wine. The results showed the high repeatability and 

sensitivity of the proposed method, simultaneously enhancing its fast, simple and cost-

effective character [135]. The suitability of vibrational spectroscopy and chemometric 

methods for the assessment of wine authenticity, was extensively demonstrated. However, 

some authors suggest that its reliability needs to be further improved [72, 73, 136].  

 

1.3.3.5. In bottle measurements 

The possibility of determining wine chemical composition directly from the bottle represents 

an ideal methodology for the wine industry. Vibrational spectroscopy could provide fast, 

non-destructive and non-invasive measurements, capable of detecting compositional 

changes and unwanted problems in bottled wine, before it reaches the market. NIR 

spectroscopy was proposed for this type of measurements. Although calibration models 

developed for the estimation of alcohol content (SECV=0.48%), total sulfur (SECV=4.01 

mg/L), free sulfur (SECV=28.6 mg/L) and pH (SECV=0.15) have showed low accuracy, they 

were considered acceptable for screening purposes [137]. 

 

1.3.4. Other wine related measurements 

Throughout the wine making process, it is possible to find several materials that may have 

a strong influence in the wine quality. Vibrational spectroscopy was extended to the analysis 

of such materials and it is possible to find a number of works related to cork and oak 

analysis. A fiber optic probe in the Vis-NIR range was used for the screening of cork planks 

and cork stoppers, aiming to identify their geographical origins (Portugal, Morocco and 

Spain). Results demonstrated the potential of Vis-NIR spectroscopy to accurately predict 

the origins of cork samples from the world’s most representative cork producing areas (90% 

of correct predictions) [138]. The same technique was explored to estimate chemical, 

physical and mechanical properties of cork stoppers. Natural untreated cork stoppers were 



 

21 
 

analysed for the assessment of waxes, low and high-molecular-weight polyphenols, total 

polyphenols, extractives, suberin, insoluble lignin, density, compression force, extraction 

force, diametrical recovery and moisture content. However, poor calibrations were obtained, 

except for the moisture content (R2=0.85) [139]. 

The determination of 2,4,6-trichloroanisols (TCA) in cork planks was also tested using MIR-

ATR spectroscopy. The absence of this compound suggested the possible acceptance of 

cork planks for cork stoppers production. The TCA was artificially added to cork samples 

and the results indicated that this technology could work as a screening technique. 

However, no references are given about the amount of TCA added to each sample and so, 

additional studies are needed [140]. Additionally, this technique was applied for the 

characterization of paraffin and silicone-based surface treatments of cork stoppers. The 

authors reported a total of 92% of correct predictions [141]. NIR spectroscopic applications 

included as well oak analysis. The use of NIR reflectance spectroscopy was reported for 

the identification of oak shavings origin (correct classification rates of 83 and 87 % were 

obtained for samples sourced from USA and France respectively). Additionally, NIR spectra 

provided useful information about the toasted treatment of the oak used for wine aging (100 

% of correct classifications) [142]. 
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Table 1.1: Main applications of vibrational spectroscopy to soil, grapevine leaves and other tissues, and grape samples (both intact and 
homogenized). 

Sample 
presentation 

mode 
Application 

Spectroscopic  
method 

Range Mean SD 
Correlation/ 

determination 
coefficients 

Error Reference 

Soil Electric conductivity (ds/m) NIR 0.02-0.27 0.13 0.08 R2=0.84 SECV=0.03 [31] 

Organic carbon (%) 0.86-3.93 2.21 0.73 R2=0.81 SECV=0.42 

pH 5.9-9.0 7.66 1.08 R2=0.83 SECV=0.44 

Phosphorus (%) 6-212 60.4 53.02 R2=0.69 SECV=24.6 

Potassium (mg/kg) 210-890 432.4 158.8 R2=0.70 SECV=109.2 

Sulfur (mg/kg) 3.4-26.7 9.32 4.5 R2=0.92 SECV=2.19 

Total nitrogen (%) 0.06-0.35 0.17 0.06 R2=0.74 SECV=0.03 

Soil Leaf water potential (MPa) NIR N/A N/A N/A R2
CV=0.88 RMSECV=0.15 (9%) [34] 

Non-photochemical 
quenching of chlorophyll 
fluorescence 

N/A N/A N/A R2
CV=0.81 RMSECV=0.55 (15%) 

Stomatal conductance (mol 
H2O/m2/s) 

N/A N/A N/A R2
CV=0.85 RMSECV=0.03 (12%) 

Grapevine 
leaves 

Classification of grapevine 
varieties 

NIR 
44.8<Correct classifications<91.6 

[35]a) 

Grapevine 
petioles 

Nitrogen (% DW) MIR 0.52-2.29 0.95 0.35 R2=0.945 SEP=0.081 [39] 

Phosphorous (% DW) 0.06-0.80 0.37 0.21 R2=0.915 SEP=0.056 

Potassium (% DW) 0.75-5.10 3.08 0.89 R2=0.951 SEP=0.310 

Magnesium (% DW) 0.25-1.79 0.70 0.36 R2=0.961 SEP=0.092 

Calcium (% DW) 0.87-4.40 1.85 0.80 R2=0.940 SEP=0.233 

Sulfur (% DW) 0.06-0.35 0.16 0.05 R2=0.849 SEP=0.024 

Iron (mg/kg) 14-101 33 14 R2=0.750 SEP=11 

Manganese (mg/kg) 22-1800 196 243 R2=0.743 SEP=220 

Boron (mg/kg) 32-198 69 33 R2=0.630 SEP=25 

Copper (mg/kg) 3-133 20 21 R2=0.612 SEP=24 

Zinc (mg/kg) 15-153 72 34 R2=0.835 SEP=16 

Sodium (mg/kg) 79-6800 1115 1436 R2=0.773 SEP=803 

Grapevine 
roots and Nitrogen content (% DW) 

MIR 
0.10-2.39 0.52 0.70 R2=0.95 1.43<RMSEP<1.56 

[40] a) 
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wood 
samples 

Starch content (% DW) 0.34-47.85 11.05 8.06 0.97<R2<0.98 0.07<RMSEP<0.08 

Grape 
homogenates 

Fe (mg/kg) NIR 2.04-13.31 4.74 2.19 R2=0.60 SECV=1.49 [42] 

Mn (mg/kg) 0.27-6.53 1.16 0.94 R2=0.71 SECV=0.41 

Ca (mg/kg) 145.60-580.0 324.57 91.55 R2=0.75 SECV=60.89 

Mg (mg/kg) 97.59-210.0 139.63 25.71 R2=0.84 SECV=12.93 

K (mg/kg) 1570-3600 2592 446.43 R2=0.78 SECV=285.34 

P (mg/kg) 155.23-520.0 299.86 67.28 R2=0.70 SECV=40.19 

S (mg/kg) 84.36-280.0 143.51 34.06 R2=0.88 SECV=14.45 

Electric conductivity (mS) 157.0-230.0 190.0 15.6 R2=0.87 SECV=7.66 

Grape 
homogenates 

Dry matter (% w/w) NIR 23.7-38.6 30.3 2.9 R=0.90 SEP=1.34 [43] 

Condensed tannins (mg/g 
Epicatechin Equivalents) 

2.8-9.72 5.9 1.53 R=0.82 SEP=0.89 

Grape 
berries 

Classification according to 
origin 

MIR 
88% of correct classification 

[44] 

Grape 
berries 

Total soluble solids (°Brix) NIR 18.70-32.40 25.34 2.98 r2=0.93 RMSECV=0.89 [45] 

Water loss (%) 1.67-44.62 20.72 11.46 r2=0.92 RMSECV=2.16 

Grape 
berries 

Soluble solids content 
(°Brix) 

NIR 
N/A 27.8 2.7 0.52<R2<0.62 1.46<RMSEP<1.64 

[46] 

Firmness N/A 25.2 6.8 0.49<R2<0.56 3.79<RMSEP<4.15 

Grape 
extracts 

Total phenolic compounds 
(mg of gallic acid/kg) 

MIR 
1005-2140 1626 363 0.930<R2< 0.951 

4.3%<RMSEP<5.4% 
 

[8]b) 

Total anthocyanins(mg of 
malvidin-3-glucoside/kg) 

348-1316 810 258 0.927<R2<0.959 
4.9%<RMSEP<6.5% 

 

Condensed tannins (mg of 
(þ)-catechin/kg) 

984-3351 2298 595 0.900<R2<0.937 5.8%<RMSEP<8.0% 

Grape 
homogenates 

Reducing sugar content 
(g/L) 

NIR 
0.56-289.49 136.08 89.53 R2=0.98 SECV=13.62 

[47] 

Grape 
bunches, 

berries and 
must 

Soluble solids content 
(⁰Brix) 

NIR 
15.30-58.60 24.66 8.00 0.86< r2<0.91 1.41<SECV<2.29 

[48]b) 

Reducing sugar content 
(g/L) 

126.50-
586.40 

246.80 79.58 0.73<r2<0.93 13.10<SECV<26.39 

pH 2.90-4.60 3.58 0.34 0.49<r2<0.69 0.19<SECV<0.24 

Titratable acidity (g/L 
tartaric acid) 

0.20-11.70 4.55 1.43 0.18<r2<0.45 1.16<SECV<1.29 
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Table 1.1 (Continued) 

Sample 
presentation 

mode 
Application 

Spectroscopic  
method 

Range Mean SD 
Correlation/ 

determination 
coefficients 

Error Reference 

 Tartaric acid (g/L tartaric 
acid) 

 
4.90-15.50 7.39 1.62 0.01<r2<0.49 1.20<SECV<1.39 

 

Malic acid (g/L malic acid) 0.10-7.20 0.85 1.04 0.21<r2<0.49 0.68<SECV<0.85 
Commercial 
grape juice 

Total soluble solids (⁰Brix) MIR N/A 20.83 1.68 R2=0.98 SECV=0.20 [49] 

pH N/A 3.11 0.23 R2=0.86 SECV=0.07 

Total phenolics (AU) N/A 9.8 1.80 R2=0.53 SECV=1.01 

Ammonia (mg/L) N/A 34.3 30.5 R2=0.92 SECV=14.8 

Free amino nitrogen (mg/L) N/A 71.2 59.1 R2=0.79 SECV=28.3 

Yeast assimilable nitrogen 
(mg/L) 

N/A 99.4 76.9 R2=0.80 SECV=36.9 

Grape 
homogenates 

and juice 

C6 alcohols NIR  [50] 

1-Hexanol (g/L) 16.31-290.77 85.83 42.87 
R2=0.5230 (GH) 
R2=0.5156  (GJ) 

SECV= 30.6 (GH) 
SECV=27.4  (GJ) 

(Z)-3-Hexen-1-ol (g/L) 4.19-85.92 24.63 12.36 
R2=0.2151 (GH) 
R2= 0.4683 (GJ) 

SECV=9.8  (GH) 
SECV=9.6  (GJ) 

(Z)-2-Hexen-1-ol (g/L) 1.84-124.94 12.99 14.38 
R2=0.2402 (GH) 
R2=0.2668 (GJ) 

SECV=5.5 (GH) 
SECV=5.0 (GJ) 

Terpenes   

trans-Linalool oxide 

(furanoid) (g/L) 
0.63-37.14 18.17 8.22 

R2=0.4653 (GH) 
R2=0.7089 (GJ) 

SECV=7.9 (GH) 
SECV=7.3 (GJ) 

cis-Linalool oxide (furanoid) 

(g/L) 
7.65-548.00 33.08 53.87 

R2=0.6695 (GH) 
R2=0.5342 (GJ) 

SECV=9.9 (GH) 
SECV=9.4 (GJ) 

trans-Linalool oxide 

(pyranoid) (g/L) 
7.38-102.49 32.97 16.95 R2=0.4476 (GH) SECV=16.4 (GH) 

cis-Linalool oxide 

(pyranoid) (g/L) 
20.22-191.25 65.23 29.16 

R2=0.4622 (GH) 
R2=0.5105 (GJ) 

SECV=28 (GH) 
SECV=25 (GJ) 

α-Terpineol (g/L) 0-36.17 13.59 7.69 
R2=0.2990 (GH) 
R2=0.4973 (GJ) 

SECV=7.68 (GH) 
SECV=7.3 (GJ) 

Nerol (g/L) 0-50.81 20.78 11.36 
R2=0.6017 (GH) 
R2=0.5147 (GJ) 

SECV=10.2 (GH) 
SECV=10.9 (GJ) 
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Geraniol (g/L) 0-117.96 23.66 18.03 
R2=0.4147 (GH) 
R2=0.6061 (GJ) 

SECV=13.5 (GH) 
SECV=14.6 (GJ) 

Ho-diol I (trans-3,7-
dimethyl-1,5-octadiene-3,7-

diol) (g/L) 

4.14-87.98 19.27 14.96 
R2=0.5450 (GH) 
R2=0.3819 (GJ) 

SECV=13.7 (GH) 
SECV=12.8 (GJ) 

Linalool (g/L) 0-59.74 6.59 10.04 
R2=0.5655 (GH) 
R2=0.5269 (GJ) 

SECV=6.8 (GH) 
SECV=7.4 (GJ) 

p-Menten-7,8-diol (g/L) 0-250.36 32.20 40.20 
R2=0.3430 (GH) 
R2=0.4357 (GJ) 

SECV=26.2 (GH) 
SECV=24.4 (GJ) 

Phenols  

Benzyl alcohol (g/L) 
138.23-
531.07 

275.16 92.62 
R2=0.4127 (GH) 
R2=0.4858 (GJ) 

SECV=87.6 (GH) 
SECV=88.1 (GJ) 

β-Phenylethanol (g/L) 88.52-469.00 236.77 86.57 
R2=0.2918 (GH) 
R2=0.2057 (GJ) 

SECV=87.9 (GH) 
SECV=85.6 (GJ) 

4-Vinylguaiacol (g/L) 7.88-216.78 56.17 38.56 R2=0.1991 (GH) SECV=31.1 (GH) 

o-Cresol (g/L) 0-26.24 3.19 3.68 R2=0.5487 (GJ) SECV=3.4 (GJ) 

p-Cresol (g/L) 0-16.40 3.49 3.50 R2=0.3680 (GJ) SECV=3.3 (GJ) 

Guaiacol (g/L) 0-130.23 5.76 13.57 
R2=0.2787 (GH) 
R2=0.4126 (GJ) 

SECV=4.6 (GH) 
SECV=4.5 (GJ) 

2,6-Dimethoxyphenol 

(g/L) 
0-32.81 4.15 6.21 

R2=0.4097 (GH) 
R2=0.3946 (GJ) 

SECV=5.3 (GH) 
SECV=5.5 (GJ) 

Zingerone (g/L) 7.10-402.38 78.08 70.19 
R2=0.6605 (GH) 
R2=0.4853 (GJ) 

SECV=45.2 (GH) 
SECV=54 (GJ) 

Ethyl-β-(4-hydroxy-3-
methoxy-phenyl)- 

propionate (g/L) 

11.90-453.59 77.91 78.73 R2=0.3573 (GJ) SECV=69.6 (GJ) 

Methyl salicylate (g/L) 0-63.69 3.97 10.46 
R2=0.2153 (GH) 
R2=0.6103 (GJ) 

SECV=3.2 (GH) 
SECV=2.9 (GJ) 

Norisoprenoids  

3-Hydroxy-β-damascenone 

(g/L) 
6.45-275.40 93.52 66.58 

R2=0.6590 (GH) 
R2=0.6549 (GJ) 

SECV=56.4 (GH) 
SECV=58.1 (GJ) 

3-Oxo-α-ionol + 4-oxo-β-

ionol (g/L) 

52.32-
1707.65 

294.26 282.27 
R2=0.6609 (GH) 
R2=0.5981 (GJ) 

SECV=184 (GH) 
SECV=125.6 (GJ) 

4-Oxo-7,8-dihydroxy-β-

ionol (g/L) 
16.59-626.76 129.85 131.01 

R2=0.6545 (GH) 
R2=0.6644 (GJ) 

SECV=96.2 (GH) 
SECV=102.7 (GJ) 
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Table 1.1 (Continued) 

Sample 
presentation 

mode 
Application 

Spectroscopic  
method 

Range Mean SD 
Correlation/ 

determination 
coefficients 

Error Reference 

 3-Oxo-7,8-dihydroxy-α-

ionol (g/L) 

 
21.38-772.91 166.56 154.92 

R2=0.4818 (GH) 
R2=0.6239 (GJ) 

SECV=121.9 (GH) 
SECV=188 (GJ) 

 

Vomifoliol (g/L) 0-637.64 128.41 155.97 
R2=0.7175 (GH) 
R2=0.6938 (GJ) 

SECV=117 (GH) 
SECV=144.7 (GJ) 

3,4 Dihydro-3-oxoactinidol I 

(g/L) 
1.38-52.96 13.17 10.27 

R2=0.6432 (GH) 
R2=0.6033 (GJ) 

SECV=8.2 (GH) 
SECV=8 (GJ) 

3,4-Dihydro-3-oxoactinidol 

II (g/L) 
3.67-82.48 20.42 15.63 

R2=0.6187 (GH) 
R2=0.4928 (GJ) 

SECV=11.8 (GH) 
SECV=13.1 (GJ) 

3,4-Dihydro-3-oxoactinidol 

III (g/L) 
3.83-196.35 30.06 27.29 

R2=0.5606 (GH) 
R2=0.5932 (GJ) 

SECV=21.0 (GH) 
SECV=18.9 (GJ) 

Grape juice Delphinidin-3- O-glucoside 
(mg/L) 

MIR 
1.15-73.49 32.24 12.85 R2 = 0.52 SEC = 9.32 

[51] 

Cyanidin-3- O-glucoside 
(mg/L) 

2.20-25.18 9.14 4.28 R2 = 0.58 SEC = 3.07 

Petunidin-3- O-glucoside 
(mg/L) 

4.45-58.71 27.90 9.15 R2 = 0.56 SEC = 6.27 

Peonidin-3- O-glucoside 
(mg/L) 

6.35-38.34 19.68 6.28 R2 = 0.58 SEC = 4.37 

Malvidin-3- O-glucoside 
(mg/L) 

58.78-202.76 107.31 27.03 R2 = 0.66 SEC = 16.40 

Petunidin-3- O-(6- O-
acetyl)-glucoside (mg/L) 

0.16-2.83 1.17 0.54 R2 = 0.63 SEC = 0.24 

Peonidin-3- O-(6- O-
acetyl)-glucoside (mg/L) 

0.14-2.56 0.55 0.23 R2 = 0.57 SEC = 0.12 

Malvidin-3- O-(6- O-acetyl)-
glucoside (mg/L) 

2.70-15.61 6.95 2.27 R2 = 0.54 SEC = 1.60 

Malvidin-3- O-(6- O-
caffeoyl)-glucoside (mg/L) 

0.14-2.63 0.67 0.35 R2 = 0.57 SEC = 0.20 

Petunidin-3- O-(6- O-p-
coumaroyl)-glucoside 
(mg/L) 

0.46-5.43 2.52 0.99 R2 = 0.46 SEC = 0.72 
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Peonidin-3- O-(6- O-p-
coumaroyl)-glucoside 
(mg/L) 

0.41-4.33 1.81 0.80 R2 = 0.48 SEC = 0.55 

Malvidin-3- O-(6- O-p-
coumaroyl)-glucoside 
(mg/L) 

2.64-23.58 11.70 4.31 R2 = 0.55 SEC = 3.02 

Intact grape 
bunches and 

berries 

°Brix NIR 14.99-24.85 22.34 1.77 R2=0.89 SECV=0.80 [54] 

°Babo 12.48-21.29 18.96 1.75 R2=0.89 SECV=0.80 

Total sugars (g/L) 
146.60-
258.06 

227.19 18.91 R2=0.87 SECV=9.32 

Glucose (g/L) 71.42-126.34 111.15 9.46 R2=0.86 SECV=4.91 
Fructose (g/L) 73.89-138.10 120.26 11.53 R2=0.90 SECV=5.11 

Density (g/mL) 1.066-1.113 1.101 0.08 R2=0.89 SECV=0.003 

Titratable acidity (g/L) 4.94-9.11 6.11 0.72 R2=0.79 SECV=0.45 

Tartaric acid (g/L) 4.58-11.65 9.42 1.68 R2=0.92 SECV=0.64 

pH  2.93-3.44 3.32 0.09 R2=0.85 SECV=0.04 

Malic acid (g/L) 0.73-2.33 1.44 0.27 R2=0.60 SECV=0.22 

Gluconic acid (g/L) 0.01-0.35 0.16 0.10 R2=0.62 SECV=0.08 

Assimilable nitrogen (mg/L) 59-237 122.97 32.64 R2=0.69 SECV=23.52 

Anthocyanins (mg/L) 39-347 166.40 70.38 R2=0.77 SECV=44.56 

Total phenols (mg/L) 324-972 596.29 123.93 R2=0.62 SECV=98.27 

Grape 
berries 

Total soluble solids (°Brix) NIR 10.9-27.2 22.7 3.0 R2=0.74 RMSECV=1.1 [55] 

Titratable acidity (g/L 
tartaric acid) 

3.6-18.3 6.4 2.2 R2=0.70 RMSECV=0.89 

pH 2.7-3.8 3.4 0.2 R2=0.66 RMSECV=0.10 

Weight of 200 berries (g) 164.4-426.8 274.2 48.0 R2=0.63 RMSECV=25.8 

Potential alcoholic degree 
(% vol) 

5.1-15.3 12.4 1.9 R2=0.75 RMSECV=0.72 

Sugar/acidity ratio 4.8-65.4 36.8 12.9 R2=0.58 RMSECV=7.1 

Total anthocyanins (mg/L) 185.5-2107.0 1127.1 364.0 R2=0.59 RMSECV=193.1 

Extractable anthocyanins 
(mg/L) 

133.0-899.5 540.7 159.2 R2=0.74 RMSECV=76.6 

Tannins (mg/kg) 605.0-4744.0 1712.5 667.0 R2=0.50 RMSECV=361.2 

Total soluble solids (°Brix) 10.9-27.2 22.7 3.0 R2=0.74 RMSECV=1.1 
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Table 1.1 (Continued) 

Sample 
presentation 

mode 
Application 

Spectroscopic  
method 

Range Mean SD 
Correlation/ 

determination 
coefficients 

Error Reference 

 Titratable acidity (g/L 
tartaric acid) 

 
3.6-18.3 6.4 2.2 R2=0.70 RMSECV=0.89 

 

Grape 
bunches 

Soluble solids content 
(°Brix) 

NIR 
10.60-58.60 20.49 5.84 0.96<R2<0.97 0.96<SECV<1.00 

[56]b) 

Reducing sugars (g/L) 81.50-586.40 198.39 64.95 0.94<R2<0.96 13.63<SECV<15.36 

pH 2.48-4.60 3.35 0.34 0.65<R2<0.91 0.12<SECV<0.21 

Titratable acidity (g/L 
tartaric acid) 

0.20-20.50 6.72 3.52 0.86<R2<0.89 1.07<SECV<1.11 

Tartaric acid (g/L tartaric 
acid) 

4.90-18.60 9.48 2.80 0.74<R2<0.81 1.18<SECV<1.28 

Malic acid (g/L) 0.10-14.50 2.33 2.32 0.82<R2<0.87 0.74<SECV<0.81 

K (mg/L) 
841.00-
2737.00 

1692.28 401.12 0.42<R2<0.65 242.26<SECV<258.94 

Grape 
berries 

Total anthocyanins 
(mg/grape) 

NIR 
0-5.37 N/A 0.96 N/A SECV=0.78 

[59] 

Non-acylated anthocyanins 
(mg/grape) 

0-4.63 N/A 0.85 N/A SECV=0.70 

Grape seed 
extracts 

Total phenolics (mg gallic 
acid/g dried weight) 

MIR 
117.6-169.3 N/A N/A R2=0.97 RMSEP=6.49 

[61] 

Condensed tannins (mg 
catechin/g dried weight) 
(Methylcellulose assay) 

37.5-183.3 N/A N/A R2=0.99 RMSEP=10.13 

Condensed tannins (mg 
catechin/g dried weight) 
(BSA assay) 

37.0-83.0 N/A N/A R2=0.99 RMSEP=3.97 

Grape seeds Astringency NIR 1.83-3.73 2.59 0.47 N/A SEP=0.245 [62] 

Colour  1.00-3.09 2.17 0.47 N/A SEP=0.242 

Hardness  1.50-3.82 2.89 0.65 N/A SEP=0.224 

Tannic intensity 2.00-3.50 2.68 0.45 N/A SEP=0.320 

Grape skins Sourness  1.10-3.00 1.97 0.55 N/A SEP=0.200 

Astringency  1.00-1.83 1.33 0.25 N/A SEP=0.239 
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Dryness  1.00-2.73 1.54 0.52 N/A SEP=0.170 

Hardness  1.00-1.91 1.46 0.28 N/A SEP=0.303 

Tannic intensity 1.00-2.18 1.44 0.34 N/A SEP=0.155 

Aroma intensity 1.00-4.40 2.83 0.76 N/A SEP=0.338 

Type of aroma  1.50-3.00 2.26 0.38 N/A SEP=0.391 

Seeds, skins 
and stems 

Catechin (mg/100g dry 
mass) 

NIR 
11.33-104.11 53.86 N/A R2=0.80 RMSECV=14.00 

[66] 

Epicatechin (mg/100g dry 
mass) 

3.90-66.56 23.17 N/A R2=0.96 RMSECV=4.72 

Proanthocyanidin B1 
(mg/100g dry mass) 

13.89-130.88 48.81 N/A R2=0.65 RMSECV=20.53 

Proanthocyanidin B2 
(mg/100g dry mass) 

3.80-15.10 8.99 N/A R2=0.75 RMSECV=1.86 

Proanthocyanidin B3 
(mg/100g dry mass) 

8.51-32.40 16.83 N/A R2=0.50 RMSECV=3.43 

Proanthocyanidin B4 
(mg/100g dry mass) 

6.69-24.05 12.94 N/A R2=0.63 RMSECV=3.01 

Proanthocyanidin trimer 1 
(mg/100g dry mass) 

2.72-23.95 11.16 N/A R2=0.65 RMSECV=3.12 

Proanthocyanidin trimer 2 
(mg/100g dry mass) 

2.72-58.60 22.39 N/A R2=0.86 RMSECV=7.68 

Proanthocyanidin tetramer 
1 (mg/100g dry mass) 

13.73-84.01 36.71 N/A R2=0.65 RMSECV=11.62 

Proanthocyanidin tetramer 
2 (mg/100g dry mass) 

5.14-17.30 10.57 N/A R2=0.53 RMSECV=2.66 

Proanthcyanidin B2-3-O-
gallate (mg/100g dry mass) 

8.59-63.99 31.76 N/A R2=0.89 RMSECV=6.29 

Galloyl proanthocyanidin 
(mg/100g dry mass) 

3.91-42.73 13.59 N/A R2=0.58 RMSECV=7.27 

Total flavanols (mg/100g 
dry mass) 

109.55-
498.63 

285.05 N/A R2=0.78 RMSECV=66.63 

Gallic acid (mg/100g dry 
mass) 

2.57-37.32 15.27 N/A R2=0.75 RMSECV=5.58 

Protocatechuic acid 
(mg/100g dry mass) 

0.58-19.59 4.91 N/A R2=0.82 RMSECV=2.70 

Caffeic acid 0.74-4.19 2.27 N/A R2=0.92 RMSECV=0.36 
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Table 1.1 (Continued) 

Sample 
presentation 

mode 
Application 

Spectroscopic  
method 

Range Mean SD 
Correlation/ 

determination 
coefficients 

Error Reference 

 Caftaric acid  0.85-25.91 6.76 N/A R2=0.91 RMSECV=2.56  

cis-Coutaric acid 0.54-2.77 1.31 N/A R2=0.95 RMSECV=0.19 

 trans-Coutaric acid  0.49-1.39 0.82 N/A R2=0.83 RMSECV=0.15  

Total phenolic acids 13.57-98.93 41.46 N/A R2=0.87 RMSECV=9.61 

Quercetin 3-O-rutinoside 0.33-9.62 3.18 N/A R2=0.63 RMSECV=1.82 

Quercetin 3-O-glucuronide 0.86-26.90 9.66 N/A R2=0.81 RMSECV=4.36 

Quercetin 3-O-glucoside 0.93-29.15 12.64 N/A R2=0.64 RMSECV=5.95 

Quercetin pentoside 1.26-1.39 1.28 N/A R2=0.15 RMSECV=0.04 

Kaempferol 3-O-
galactoside 

1.35-3.78 2.18 N/A R2=0.98 RMSECV=0.11 

Kaempferol 3-O-
glucuronide 

1.31-2.10 1.76 N/A R2=0.93 RMSECV=0.07 

Kaempferol 3-O-glucoside 2.02-11.62 5.26 N/A R2=0.98 RMSECV=0.41 

Quercetin 1.45-2.84 1.92 N/A R2=0.72 RMSECV=0.19 

Kaempferol 1.34-1.64 1.50 N/A R2=0.97 RMSECV=0.02 

Total flavonols 3.73-83.65 30.83 N/A R2=0.70 RMSECV=14.27 
Grape seed 

extracts 
Estimation of the average 
degree of polymerization 
(DPn) of the procyanidins 
(%) 

MIR 

N/A N/A N/A R2 = 0.91 RMSEP = 2.58 

[67] 

Grape mash 
Relative density 

NIR 1.0462-
1.1643 

1.0871 0.0184 R2=0.891 RMSECV=0.0061 
[69] 

Fructose (g/kg) 40.89-126.70 81.18 16.00 R2=0.783 RMSECV=7.45 

Glucose (g/kg) 45.80-111.95 76.49 13.82 R2=0.711 RMSECV=7.44 

Glycerol (g/kg) 0.01-15.17 1.79 2.50 R2=0.774 RMSECV=1.19 

Gluconic acid (g/kg) 0.03-19.92 2.23 2.86 R2=0.343 RMSECV=2.32 

Ethanol (g/kg) 0.06-7.32 1.20 1.34 R2=0.612 RMSECV=0.84 

Acetic acid (g/kg) 
Non 

detectable -
14.89 

1.01 2.26 R2=0.602 RMSECV=1.43 

Titratable acidity (g/kg) 4.36-29.45 9.17 3.68 R2=0.349 RMSECV=2.97 
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pH 2.88-4.08 3.48 0.25 R2=0.308 RMSECV=0.21 

Tartaric acid (g/kg) 4.83-11.51 6.72 0.98 R2=0.210 RMSECV=0.87 

Malic acid (g/kg) 1.16-9.57 3.52 1.64 R2=0.586 RMSECV=1.06 

Laccase activity (units/mL) 
Non 

detectable -
75.12 

5.32 12.87 R2=0.200 RMSECV=11.51 

Ergosterol (mg/kg) 0.07-49.24 8.20 9.82 R2=0.841 RMSECV=3.91 

Handpicked 
and 

mechanically 
harvested 

grapes 

Grape infection 
MIR 

N/A N/A N/A 0.100<R2 <0.777 N/A <RMSEP<0.39% 
[70]c) 

Gluconic acid (g/L) N/A N/A N/A 0.670<R2 <0.979 15%<RMSEP<31% 

Glycerol (g/L) N/A N/A N/A 0.840<R2 <0.959 11%<RMSEP<19% 

AU (arbitrary units); DW (dry weight); GH (homogenized grapes); GJ (grape juice); N/A (information not available); PLS (partial least squares); RMSECV (root 

mean square error of cross-validation); RMSEP (root mean square error of prediction); SD (standard deviation); SEC (standard error of calibration); SECV 

(standard error of cross-validation); SEP (standard error of prediction); SVR (support vector regression).  

a) Results vary according to the number of varieties included and/or chemometric techniques employed; 

b) Results vary according to the sample presentation mode (bunch berry or must), mathematical treatment and/or spectral range selected; 

c) Results vary according to the sample picking mode (hand-picked from vineyard or mechanically sampled from truck);
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Table1.2: Main applications of vibrational spectroscopy to fermenting juice and yeast. 

Sample 
presentation 

mode 
Application 

Spectroscopic 
method 

Range Mean SD 
Correlation/ 

determination 
coefficients 

Error Reference 

Fermenting 
juice 

Glucose (g/L) MIR 0-125 N/A N/A r2=0.994 SECV=3.4 [75] 

Fructose (g/L) 0-133 N/A N/A r2=0.994 SECV=4.9 

Alcoholic degree [% (v/v)] 0-15.4 N/A N/A r2=0.990 SECV=1.1 

Glycerol (g/L) 0-11 N/A N/A r2=0.988 SECV=0.66 

Malic acid (g/L) 0-4.57 N/A N/A r2=0.985 SECV=0.32 

Tartaric acid (g/L) 0-2.62 N/A N/A r2=0.987 SECV=0.24 

Succinic acid (g/L) 0-10.97 N/A N/A r2=0.982 SECV=0.67 

Citric acid (g/L) 0-0.85 N/A N/A r2=0.985 SECV=0.08 

Lactic acid (g/L) 0-1.03 N/A N/A r2=0.989 SECV=0.12 

Acetic acid (g/L) 0-2.3 N/A N/A r2=0.988 SECV=0.18 

Volumic mass (g/L) NIR 986.00-1108.00 1035.21 36.02 r=0.99 SECV=4.22 [76] 

Reducing sugars (g/L) 0.91-264.70 97.58 79.23 r=0.99 SECV=10.44 

Synthetic 
must 

Glycerol (g/L) MIR N/A N/A N/A r2=0.99 SECV=1.60 [77] 

Succinic acid (g/L) N/A N/A N/A r2=0.99 SECV=0.60 

Acetic acid (g/L) N/A N/A N/A r2=0.99 SECV=0.51 

Fermenting 
juice 

Glycerol (g/L) N/A N/A N/A r2=0.83 SECV=7.3 

Succinic acid (g/L) N/A N/A N/A r2=0.99 SECV=0.000290 

Acetic acid (g/L) N/A N/A N/A r2=0.99 SECV=0.00260 

Ethyl octanoate (mg/L) NIR N/A N/A N/A r=0.99 RMSECV=1.32 [78] 

Ethyl decanoate (mg/L) N/A N/A N/A r=0.99 RMSECV=5.19 

Ethyl 2-phenylacetate (mg/L) N/A N/A N/A r=0.99 RMSECV=2.04 

Diethyl succinate (mg/L) N/A N/A N/A r=0.99 RMSECV=0.44 

Diethyl glutarate (mg/L) N/A N/A N/A r=0.97 RMSECV=229 

2-Phenylethyl acetate (mg/L) N/A N/A N/A r=0.93 RMSECV=27.5 

2-Phenylethanol (mg/L) N/A N/A N/A r=0.96 RMSECV=224 

Hexanoic acid (mg/L) MIR N/A N/A N/A r=0.99 RMSECV=1.95 

Octanoic acid (mg/L) N/A N/A N/A r=0.99 RMSECV=1.85 

Ethanol (g/L) N/A N/A N/A r=0.99 RMSECV=2.13 

Glycerol (g/L) N/A N/A N/A r=0.99 RMSECV=0.42 

Total phenolics (mg/L) N/A N/A N/A r=0.97 RMSECV=245 
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Total anthocyanins (mg/L) N/A N/A N/A r=0.91 RMSECV=32.2 

Total flavonoids (mg/L) N/A N/A N/A r=0.96 RMSECV=228 

Total polyphenol index NIR 9.31-73.20 40.55 15.55 0.21<r2<0.98 2.29<SECV<14.91 [79]a) 

Colour intensity 1.28-15.96 8.22 2.84 0.56<r2<0.98 1.88<SECV<0.43 

Volumic mass (g/L) 992.00-1095.00 1026.80 38.58 0.31<r2<0.94 8.71<SECV<30.20 

Malvidin-3-glucoside (M3G) 
(mg/L) 

NIR 13.9-427 183 99.5 N/A 17.5<SECV<31.5 [20]b) 

Pigmented polymers, as M3G 
(mg/L) 

4-103 21.4 18.5 N/A 3.2<SECV<26.8 

Tannins, as catechin hydrate 
(mg/L) 

12.3-991 319 275 N/A 49.1<SECV<131.2 

Sugar (g/L) Raman N/A N/A 3.90 R2=0.995 RMSEP=0.22 [28] 

Ethanol (% v/v) N/A N/A 1.03 R2=0.9999 RMSEP=0.03 

Glycerol (% v/v) N/A N/A 0.12 R2=0.98 RMSEP=0.2 

Volatile acidity (g/L) MIR N/A N/A N/A N/A SEP = 0.07 [89] 

Ethanol (% v/v) N/A N/A N/A N/A SEP = 0.32 

Reducing sugar (g/l) N/A N/A N/A N/A SEP = 0.56 

Glycerol (g/L) 3.43-20.65 12.77 5.86 N/A SEP = 0.38 

Synthetic 
must 

Volatile acidity (g/L) N/A N/A N/A N/A SEP = 0.08 

Ethanol (% v/v) N/A N/A N/A N/A SEP = 0.31 

Reducing sugar (g/l) N/A N/A N/A N/A SEP = 0.39 

Glycerol (g/L) 4.12-9.87 6.16 2.57 N/A SEP = 0.32 

N/A (information not available); RMSECV (root mean square error of cross-validation); RMSEP (root mean square error of prediction); SD (standard 

deviation); SEC (standard error of calibration); SECV (standard error of cross-validation); SEP (standard error of prediction). 

a) Results vary according to the mathematical treatment and/or spectral range selected. 

b) Results vary according to the year and variety of the sample 
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Table1.3: Main applications of vibrational spectroscopy to wine samples. 

Application 
Spectroscopic  

method 
Range Mean SD 

Correlation/ 
determination 
coefficients 

Error Reference 

Minerals 

Ca (mg/L) NIR 
 

24.0-107.0 59.13 15.08 R2=0.90 SEP=11.9 [94] 

Mg (mg/L) 69.0-210.0 121.56 28.91 R2=0.71 SEP=18.29 

Na (mg/L) 4.6-117.0 41.3 24.2 R2=0.55 SEP=9.88 

K (mg/L) 300.0-1360.1 874.43 248.5 R2=0.81 SEP=152.0 

P (mg/L) 87.0-500.0 207.6 65.9 R2=0.40 SEP=39.5 

S (mg/L) 82.0-260.1 160.6 38.9 R2=0.78 SEP=27.5 

Fe (mg/L) 0.19-4.0 1.64 0.85 R2=0.72 SEP=0.55 

Mn (mg/L) 0.50-3.5 1.63 0.68 N/A SEP=0.58 

B (mg/L)  1.8-11.1 6.59 2.5 N/A SEP=1.65 

Alcoholic degree (%, v/v) NIR 9.58-15.15 12.4 1.24 r2=0.978 SEP=0.24 [95] 

Volumic mass (kg/L) 989.5-999.3 992.9 2.1 r2=0.917 SEP=0.54 

Total acidity (meq/L) 3.55-8.72 5.42 0.92 r2=0.812 SEP=0.48 

pH  3.26-4.04 3.65 0.15 r2=0.819 SEP=0.07 

Volatile acidity (g/L)  0.14-0.87 0.42 0.15 r2=0.345 SEP=0.14 

Glycerol (g/L) 1.95-12.38 6.29 2.47 r2=0.845 SEP=0.72 

Total polyphenol index 5.0-131.0 35.3 25.4 r2=0.919 SEP=6.70 

Reducing sugars (g/L) 0.65-9.78 2.19 1.24 r2=0.712 SEP=0.33 

Lactic acid (g/L) 0.06-5.32 1.36 1.10 r2=0.814 SEP=0.41 

Malic acid (g/L) 0.03-1.83 0.77 0.49 r2=0.441 SEP=0.36 

Tartaric acid (g/L) 1.54-4.64 2.59 0.44 r2=0.428 SEP=0.39 

Gluconic acid (g/L) 0.06-1.80 0.63 0.48 r2=0.498 SEP=0.38 

Colour (only red wines) 3.80-21.40 10.59 3.77 r2=0.705 SEP=1.83 

Tonality (only red wines) 0.440-0.950 0.627 0.120 r2=0.729 SEP=0.06 

Total sulphur dioxide (mg/L) 16.0-149.0 59.9 35.4 r2=0.569 SEP=23.5 

Free sulphur dioxide (mg/L) 8.0-24.0 16.45 4.7 N/A - 

Carbohydrates (KMW) NIR 13.1-19.8 N/A N/A R2=0.99 SEP=0.11 [96] 

Total acid (g/L) 5.0-11.0 N/A N/A R2=0.85 SEP=0.61 

Tartaric acid (g/L) 3.1-6.7 N/A N/A R2=0.87 SEP=0.54 

Malic acid (g/L) 2.9-7.0 N/A N/A R2=0.80 SEP=0.55 

pH  3.09-3.74 N/A N/A R2=0.89 SEP=0.06 
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trans-Resveratrol  NIR 0.37-11.05 4.01 2.23 N/A 0.21<RMSECV<0.54 [97]a) 

Quercetin  0.00-1.50 0.42 0.33 N/A 0.40<RMSECV<0.61 

Catechin  62.43-1152.82 560.12 237.90 N/A 0.14<RMSECV<0.66 

Malvin  7.32-284.23 97.13 71.63 N/A 0.24<RMSECV<0.55 

Epicatechin  46.89-293.07 136.66 65.18 N/A 0.27<RMSECV<0.73 

Oenin  281.31-1531.18 876.70 359.95 N/A 0.62<RMSECV<0.88 

Syringic acid  25.71-197.55 98.13 39.76 N/A 0.36<RMSECV<0.66 

Alcohol [% (v/v)] MIR 
 

7.4-14.0 N/A N/A R2 = 0.9819 RMSEP = 0.16 [14] 

Alcohol (g/L) 58.7-110.7 N/A N/A R2 = 0.9753 RMSEP = 1.4 

Relative density (20/20) 0.9908-1.0940 N/A N/A R2 = 0.9992 RMSEP = 0.00038 

Extract (g/L) 19.8-238.1 N/A N/A R2 = 0.9987 RMSEP = 0.99 

Sugar-free extract (g/L) 14.7-55.6 N/A N/A R2 = 0.8590 RMSEP = 1.4 

Conductivity (S/cm) 1150-3230 N/A N/A R2 = 0.9478 RMSEP = 96 

Glycerol (g/L) 5.20-27.80 N/A N/A R2 = 0.9831 RMSEP = 0.47 

Total phenol (mg/L) 134-2260 N/A N/A R2 = 0.9594 RMSEP = 126 

TEAC (mmol/L) 2.5-30.9 N/A N/A R2 = 0.9204 RMSEP = 1.7 

Fructose (g/L) 0.0-165.7 N/A N/A R2 = 0.9983 RMSEP = 1.1 

Glucose (g/L) 0.2-63.5 N/A N/A R2 = 0.9957 RMSEP = 0.7 

Sugar before inversion (g/L) 1.5-220.8 N/A N/A R2 = 0.9978 RMSEP = 1.7 

Sugar after inversion (g/L) 1.5-234.7 N/A N/A R2 = 0.9983 RMSEP = 1.3 

Total acid (g/L) 3.72-14.10 N/A N/A R2 = 0.9734 RMSEP = 0.25 

pH 2.49-3.99 N/A N/A R2 = 0.8344 RMSEP = 0.12 

Volatile acid (g/L) 0.14-1.41 N/A N/A R2 = 0.7680 RMSEP = 0.09 

Tartaric acid (g/L) 0.8-3.3 N/A N/A R2 = 0.4228 RMSEP = 0.47 

Malic acid (g/L) 0.0-6.6 N/A N/A R2 = 0.8110 RMSEP = 0.63 

Citric acid (g/L) 0.0-2.3 N/A N/A R2 = 0.4875 RMSEP = 0.26 

Total SO2 (mg/L) (Tanner–Brunner) 32-588 N/A N/A R2 = 0.7029 RMSEP = 41 

Total SO2
 (mg/L) (Automated photometry) 7-415 N/A N/A R2 = 0.8431 RMSEP = 33 

Free SO2 (mg/L) 0-58 N/A N/A R2 = 0.1196 RMSEP = 12 

Total phenol (mg/L) MIR N/A N/A N/A R2 = 0.95 RMSEP = 312.43 [98] 

Anthocyanin (mg/L) N/A N/A N/A R2 = 0.90 RMSEP = 8.39 

Brix (%) N/A N/A N/A R2 = 0.88 RMSEP = 0.39 

Titratable acidity (g/L) N/A N/A N/A R2 = 0.73 RMSEP = 0.32 

pH N/A N/A N/A R2 = 0.89 RMSEP = 0.09 

Colour intensity N/A N/A N/A R2 = 0.92 RMSEP = 1.63 
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Table 1.3 (Continued) 

Application 
Spectroscopic  

method 
Range Mean SD 

Correlation/ 
determination 
coefficients 

Error Reference 

Tint  N/A N/A N/A R2 = 0.54 RMSEP = 1.41  

Yellow % N/A N/A N/A R2 = 0.73 RMSEP = 0.10 

Red %  N/A N/A N/A R2 = 0.67 RMSEP = 0.09  

Blue% N/A N/A N/A R2 = 0.84 RMSEP = 0.02 

Total acidity (g/L) MIR N/A N/A N/A N/A RMSEP = 1.12 [99] 

Volatile acidity (g/L) N/A N/A N/A N/A RMSEP = 0.020 

Alcohol [% (v/v)] MIR 10.1-16.0 13.5 1.1 R2 = 0.96 SECV = 0.21 [100] 

Specific gravity 0.98-1.0 0.99 0.003 R2 = 0.90 SECV = 0.0001 

pH 3.01-3.7 3.47 0.16 R2 = 0.94 SECV = 0.04 

Titratable acidity (g/L) 4.5-8.2 5.8 0.58 R2 = 0.96 SECV = 0.28 

Glucose plus fructose (g/L) 0.23-27.9 3.87 4.5 R2 = 0.86 SECV = 1.4 

Volatile acidity (g/L) 0.13-0.85 0.4 0.14 R2 = 0.85 SECV = 0.05 

Glycerol (g/L) (dry wines) MIR 4.74-14.00 8.71 N/A r=0.96 SEP=0.40 [13] 

Glycerol (g/L) (sweet wines) 4.74-14.00 8.71 N/A N/A SECV=0.65 

Tartaric acid (g/L) MIR 0.3-3.97 N/A N/A R2 = 0.90 SEP = 0.15 [10] 

Malic acid (g/L) 0.2-4.0 N/A N/A R2 = 0.95 SEP = 0.19 

Lactic acid (g/L) 0.2-3.23 N/A N/A R2 = 0.94 SEP = 0.20 

Succinic acid (g/L) 0.20-2.0 N/A N/A R2 = 0.94 SEP = 0.13 

Citric acid (g/L) 0.19-2.09 N/A N/A R2 = 0.95 SEP = 0.04 

Acetic acid (g/L) 0.07-3.58 N/A N/A R2 = 0.92 SEP = 0.035 

Total phenolic content (mg GAE/L) MIR N/A 1090 409 r = 0.763 RMSECV = 265 [15] 

Total flavonoid content (mg CE/L) N/A 227 123 r = 0.811 RMSECV = 72 

DPPH inhibition (%) N/A 72 11 r = 0.606 RMSECV = 9 

FRAP (mg TEAC/L) N/A 2957 1141 r = 0.619 RMSECV = 929 

Delphinidin-3-glucoside (mg/L) MIR 0.5-53.8 16.8 N/A R2 = 0.90 SEC = 4.2 [101] 

Cyanidin-3-glucoside (mg/L) 0.1-4.5 1.5 N/A R2 = 0.87 SEC = 0.4 

Petunidin-3-glucoside (mg/L) 0.4-57.2 18.5 N/A R2 = 0.91 SEC = 4.4 

Peonidin-3-glucoside (mg/L) 0.1-19.9 5.1 N/A R2 = 0.85 SEC = 1.7 

Malvidin-3-glucoside (mg/L) 1.6-234.5 76.2 N/A R2 = 0.92 SEC = 17.9 

Petunidin-3-(6-O-acetyl)-glucoside (mg/L) 0.1-3.3 1.0 N/A R2 = 0.87 SEC = 0.3 
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Peonidin-3-(6-O-acetyl)-glucoside (mg/L) 0.1-2.5 0.5 N/A R2 = 0.64 SEC = 0.2 

Malvidin-3-(6-O-acetyl)-glucoside (mg/L) 0.1-20.5 4.0 N/A R2 = 0.81 SEC = 1.5 

Malvidin-3-(6-O-caffeoyl)-glucoside (mg/L) 0.1-2.9 0.6 N/A R2 = 0.80 SEC = 0.3 

Petunidin-3-(6-O-p-coumaroyl)-glucoside 
(mg/L) 

0.1-7.0 2.0 N/A R2 = 0.90 SEC = 0.6 

Peonidin-3-(6-O-p-coumaroyl)-glucoside 
(mg/L) 

0.1-4.2 1.2 N/A R2 = 0.87 SEC = 0.4 

Malvidin-3-(6-O-p-coumaroyl)-glucoside 
(mg/L) 

0.1-28.4 8.8 N/A R2 = 0.92 SEC = 2.1 

∑Anthocyanins non-acylated (mg/L) 2.7-359.8 118.1 N/A R2 = 0.93 SEC = 25.7 

∑Anthocyanins acetylated (mg/L) 0.2-26.3 5.5 N/A R2 = 0.84 SEC = 1.9 

∑Anthocyanins coumaroylated (mg/L) 0.7-38.2 12.1 N/A R2 = 0.92 SEC = 2.9 

Delphinidin-3-glucoside (mg/L) MIR N/A 15.51 10.37 r2 = 0.834 SEC = 4.27 [102] 

Cyanidin-3-glucoside (mg/L) N/A 1.58 1.79 r2 = 0.768 SEC = 0.34 

Petunidin-3-glucoside (mg/L) N/A 17.70 9.53 r2 = 0.834 SEC = 4.81 

Peonidin-3-glucoside (mg/L) N/A 18.94 24.79 r2 = 0.931 SEC = 7.41 

Malvidin-3-glucoside (mg/L) N/A 128.09 59.38 r2 = 0.816 SEC = 19.72 

Delphinidin-3-glucoside-acetate (mg/L) N/A 1.96 1.18 r2 = 0.844 SEC = 0.37 

Cyanidin-3-glucoside-acetate (mg/L) N/A 1.01 0.95 r2 = 0.903 SEC = 0.30 

Petunidin-3-glucoside-acetate (mg/L) N/A 1.56 1.15 r2 = 0.725 SEC = 0.51 

Peonidin-3-glucoside-acetate (mg/L) N/A 2.61 2.34 r2 = 0.865 SEC = 0.75 

Malvidin-3-glucoside-acetate and 
delphinidin-3-glucoside-p-coumarate 
(mg/L) 

N/A 21.78 21.21 r2 = 0.834 SEC = 4.98 

Total acetates (mg/L) N/A 29.09 19.91 r2 = 0.863 SEC = 6.89 

Cyanidin-3-glucoside-p-coumarate (mg/L) N/A 1.39 1.01 r2 = 0.840 SEC = 0.39 

Petunidin-3-glucoside-p-coumarate (mg/L) N/A 0.75 0.55 r2 = 0.812 SEC = 0.15 

Peonidin-3-glucoside-p-coumarate (mg/L) N/A 3.81 4.53 r2 = 0.860 SEC = 1.44 

Malvidin-3-glucoside-p-coumarate (mg/L) N/A 14.83 7.57 r2 = 0.706 SEC = 3.26 

Total p-coumarates (mg/L) N/A 20.44 10.63 r2 = 0.805 SEC = 4.29 

Total anthocyanins (mg/L) N/A 222.13 96.51 r2 = 0.929 SEC = 23.79 

Total wine color (AU 520 nm) MIR 1.85-12.1 5.07 1.95 R2 = 0.82 RMSEP = 0.9 [103] 

Total anthocyanins (AU 520 nm) 0.77-8.48 3.00 1.50 R2 = 0.83 RMSEP = 0.7 

Polymeric pigments (AU 520 nm) 0.43-4.42 2.07 0.84 R2 = 0.66 RMSEP = 0.6 

Copigmentation index (AU 520 nm) 0.00-2.49 0.66 0.58 R2 = 0.59 RMSEP = 0.4 
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Table 1.3 (Continued) 

Application 
Spectroscopic  

method 
Range Mean SD 

Correlation/ 
determination 
coefficients 

Error Reference 

Tannins (mg/L) (Protein precipitation 
assay used as reference method) 

MIR 
85-900 397 189 r = 0.981 RMSEP = 53.7 

[16] 

Tannins (mg/L) (Phloroglucinolysis used 
as reference method) 

117-514 312 81 r = 0.995 RMSEP = 29.9 

Mean Degree of Polymerization (mDP) 
(Phloroglucinolysis used as reference 
method) 

 
2.2-6.3 3.90 0.91 r = 0.958 RMSEP = 0.405 

 

Alcoholic degree (% v/v)  NIR 

9.58–15.15 12.14 1.24 

R2=0.978 SEP=0.24 [104] 

MIR R2=0.961 SEP=0.29 

NIR + MIR R2=0.953 SEP=0.35 

Volumic mass (kg/L)  NIR 

989.5–999.3 992.9 2.1 

R2=0.917 SEP=0.54 

MIR R2=0.912 SEP=0.60 

NIR + MIR R2=0.901 SEP=0.63 

Total acidity (meq/L)  NIR 

3.55–8.72 5.42 0.92 

R2=0.812 SEP=0.48 

MIR R2=0.795 SEP=0.54 

NIR + MIR R2=0.814 SEP=0.49 

Glycerol (g/L)  NIR 

1.95–12.38 6.29 2.47 

R2=0.845 SEP=0.72 

MIR R2=0.813 SEP=0.68 

NIR + MIR R2=0.926 SEP=0.57 

Total polyphenol index   NIR 

5.0–131.0 35.3 25.4 

R2=0.919 SEP=6.70 

MIR R2=0.892 SEP=7.13 

NIR + MIR R2=0.890 SEP=7.24 

Lactic acid (g/L)  NIR 

0.06–5.32 1.36 1.10 

R2=0.814 SEP=0.41 

MIR R2=0.790 SEP=0.55 

NIR + MIR R2=0.811 SEP=0.52 

Free sulphur dioxide (mg/L)  NIR 

8.0–24.0 16.45 4.7 

R2=0.569 SEP=23.5 

MIR R2=0.520 SEP=27.0 

NIR + MIR R2=0.670 SEP=22.7 

Total antioxidante capacity (mmol Fe2+/L) 
(FRAP assay) 

MIR 
N/A 36.9 9.5 r = 0.85 RMSECV = 4.7 

[105] 

Total phenolic compounds (mg/L GAE) MIR N/A N/A N/A 0.09<R<0.94 16.7<RMSEP<59.1 [106]b) 
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Total antioxidante activity (mmol/L AAE) N/A N/A N/A 0.80<R<0.93 0.4<RMSEP<0.6 

Haze prediction based on ethanol stability 
test (NTU) 

Short NIR 

20.3-140 

N/A N/A R2=0.80 RMSEP=10.12 [107] 

NIR N/A N/A R2=0.22 RMSEP=35.12 

MIR N/A N/A R2=0.31 RMSEP=30.22 

2,4,6-Trichloroanisole (TCA) (ng/L) NIR 0.00-546.61 5.37 36.47 N/A SEP=18.42 [108] 

2,3,4,6-Tetrachloroanisole (TeCA) (ng/L) 0.00-774.15 7.16 52.22 N/A SEP=27.17 

2,3,4,5,6-Pentachloroanisole (PCA) (ng/L) 0.00-454.33 2.55 24.87 N/A SEP=11.66 

2,4,6-Trichlorophenol (TCP) (ng/L) 0.00-521.22 5.07 41.78 N/A SEP=16.34 

2,4,6-Tribromoanisole (TBA) (ng/L) 0.00-847.35 5.87 56.62 N/A SEP=29.81 

Mannose (%) MIR N/A N/A N/A 0.763<R2 < 0.975 11.4<RMSECV<36.2 [110]c) 

Classification of wines according to 
geographical origin 

MIR 
97% correctly classified samples 

[112] 

Polyphenols (mg/L) Raman N/A N/A N/A R2=0.829 RMSEP=5.55 [114] 

Anthocyanins (mg/L) N/A N/A N/A R2=0.844 RMSEP=38.5 

Tannins (mg/L) N/A N/A N/A R2=0.895 RMSEP=5.65 

SPP (AU520 nm) MIR 0.01-0.99 N/A N/A R2 = 0.977 RMSECV = 0.043 [115] 

LPP (AU520 nm) 0.-0.87 N/A N/A R2 = 0.955 RMSECV = 0.056 

Copigmentation (AU520 nm) 0.14-1.98 N/A N/A R2 = 0.989 RMSECV = 0.060 

Total anthocyanin (AU520 nm) 0-3.37 N/A N/A R2 = 0.988 RMSECV = 0.105 

Total color (AU520 nm) 0.03-10.61 N/A N/A R2 = 0.990 RMSECV = 0.319 

Tannin (mg/L) 0-1.655 N/A N/A R2 = 0.979 RMSECV = 63 

Alcohol (% ) NIR 12.49-14.15 13.29 0.52 N/A 0.059<SECV<0.30 [117] 

pH 3.43-3.63 3.50 0.10 N/A 0.013<SECV<0.08 

Titratable acidity (g/L) 6.04-7.78 6.84 0.58 N/A 0.071<SECV<0.24 

Glucose plus fructose (g/L) 0.2-4.6 1.34 1.64 N/A 0.18<SECV<2.58 

Tannins (CE/L) MIR 92-1060 456 181 r = 0.94 RMSEP = 69 [118] 

Classification according to type of wine  MIR 10% <Classification error < 20% [119]c) 

Classification according to grape variety  Classification error = 9% 

Classification according to aging process Classification error = 5% 

Classification according to procedence  Classification error = 22% 

Ethyl octanoate (mg/L) NIR 0.74-6.26 2.42 0.83 R2=0.9931 SEP=0.07 [120] 

Ethyl decanoate (mg/L) 0.10-2.93 0.95 0.39 R2=0.9911 SEP=0.04 

Ethyl 2-phenylacetate (mg/L) 0.01-0.16 0.04 0.03 R2=0.9927 SEP=0.002 

Diethyl succinate (mg/L) 7.75-63.98 22.36 7.16 R2=0.9886 SEP=0.80 

Diethyl glutarate (mg/L) 0.03-0.27 0.11 0.05 R2=0.9955 SEP=0.003 
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Table 1.3 (Continued) 

Application  
Spectroscopic  

method 
Range Mean SD 

Correlation/ 
determination 
coefficients 

Error 

2-Phenylethyl acetate (mg/L)  0.07-0.94 0.27 0.15 R2=0.9905 SEP=0.02  

2-Phenylethanol (mg/L) 35.48-248.16 92.90 38.29 R2=0.9896 SEP=4.08 

Hexanoic acid (mg/L) 0.10-12.78 3.69 1.62 R2=0.9919 SEP=0.15 

Octanoic acid (mg/L) 1.79-22.07 6.92 2.69 R2=0.99 SEP=0.28 

Sensory attributes Developed  MS-eNose N/A N/A N/A R=0.78 RMSECV=0.82 [121] 

  Vis-NIR N/A N/A N/A R=0.89 RMSECV=0.71  

MS-eNose + 
Vis-NIR 

N/A N/A N/A R=0.91 RMSECV=0.66 

Floral  MS-eNose N/A N/A N/A R=0.71 RMSECV=0.85 

Vis-NIR N/A N/A N/A R=0.71 RMSECV=0.85 

MS-eNose + 
Vis-NIR 

N/A N/A N/A R=0.73 RMSECV=0.84 

Tropical  MS-eNose N/A N/A N/A R=0.56 RMSECV=0.67 

Vis-NIR N/A N/A N/A R=0.61 RMSECV=0.65 

MS-eNose + 
Vis-NIR 

N/A N/A N/A R=0.66 RMSECV=0.64 

Green  MS-eNose N/A N/A N/A R=0.30 RMSECV=1.03 

Vis-NIR N/A N/A N/A R=0.38 RMSECV=0.99 

MS-eNose + 
Vis-NIR 

N/A N/A N/A R=0.45 RMSECV=0.98 

Sensory attributes  Estery  NIR 
1.1-4.8 2.6 0.86 

R=0.64 SEP=0.55 [122] 

Vis-NIR R=0.67 SEP=0.61 

Lemon  NIR 
0.6-3.2 1.6 0.67 

R=0.50 SEP=0.48 

Vis-NIR R=0.71 SEP=0.40 

Passion fruit  NIR 
0.1-5.2 1.7 1.06 

R=0.45 SEP=0.98 

Vis-NIR R=0.58 SEP=1.01 

Honey  NIR 
0.4-4.3 1.6 1.02 

R=0.70 SEP=0.58 

Vis-NIR R=0.78 SEP=0.50 

Sweetness  NIR 
1.0-2.2 1.6 0.32 

R=0.60 SEP=0.29 

Vis-NIR R=0.60 SEP=0.30 

Overall flavour  NIR 4.0-5.8 4.6 0.39 R=0.12 SEP=0.44 
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Vis-NIR R=0.77 SEP=0.30 

Fatty acid esters (g/L) NIR 2103-4483 3284 584 R2=0.74 SECV=314 [125] 

Monoterpene alcohols (g/L) 0.01-246 61.3 63 R2=0.90 SECV=21 

Short chain fatty acids (g/L) 14780-24900 19420 2235 R2=0.80 SECV=1658 

Classification of 
samples from 
designation of 
origin Rías Baixas 
according to its 
sub region  

Condado UV/VIS/NIR 93.33% <Correct classification< 100% [127]c) 

VIS/NIR 93.33% <Correct classification< 100% 

NIR 93.33% <Correct classification< 100% 

Rosal UV/VIS/NIR 50% <Correct classification< 87.5% 

VIS/NIR 12.5% <Correct classification< 100% 

NIR 0% <Correct classification< 95.83% 

Salnés UV/VIS/NIR 0% <Correct classification< 90% 

VIS/NIR 10% <Correct classification< 96.67% 

NIR 0% <Correct classification< 96.67% 

Ribeira do Ulla UV/VIS/NIR 60% <Correct classification< 73.33% 

VIS/NIR 40% <Correct classification< 46.67% 

NIR 0% <Correct classification< 46.67% 

Total classification UV/VIS/NIR 55.83% <Correct classification< 86.04% 

VIS/NIR 40.63% <Correct classification< 82.29% 

NIR 25.00% <Correct classification< 84.79% 

Classifications, according to the year MIR 92% of the test correctly classified samples [128] 

Classification of Commandaria MIR 87.1% <Correct recognition < 100% [129]c) 

Classification of commercial 
Commandaria 

0% <Correct recognition < 71.4% 

Classification of other sweet wines 74.1% <Correct recognition < 96.2% 

Classification of wine samples  
adulterated with industrial 
grade glycerol  

MIR 
93% <Classification accuracy = 100% 

[130]c) 

Classification of wine according  
To tannin origin (grape seeds or  
grape skins) 

MIR 
60% < correctly classified samples <97% 

[133]c) 

Discrimination of spoiled wines  
from fresh samples 

MIR 
94%< Recognition rate = 100% 

[134]c) 
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Table 1.3 (Continued) 

AAE (ascorbic acid equivalents); CE (Catechin equivalents); DPPH (1,1-diphenyl-2-picrylhydrazyl); FRAP (ferric reducing antioxidant power); GAE (gallic acid 

equivalents); KMW (Klosterneuburger Mostwaage); LPP (large polymeric pigments); MS-eNose (mass spectrometry based electronic nose); N/A (information 

not available); NFM (natural fermenting must); PLS (partial least squares); RMSECV (root mean square error of cross-validation); RMSEP (root mean square 

error of prediction); SPP (small polymeric pigments); SD (standard deviation); SEC (standard error of calibration); SECV (standard error of cross-validation); 

SEP (standard error of prediction); SM (synthetic must);  TEAC (Trolox equivalent antioxidative capacity). 

a) Results vary according to mathematical treatment and geographic origin; 

b) Results vary according to the wine type (red, white or rose); 

c) Results vary according to the chemometric techniques employed  

 

 

Application  
Spectroscopic  

method 
Range Mean SD 

Correlation/ 
determination 
coefficients 

Error 

Ethanol (% v/v) (Bottled wine)  
 

9.1-15.3 13.23 0.85 N/A SECV=0.48 [137] 

Free SO2 (mg/L) (Bottled wine) 5.0-47.0 22.78 8.75 N/A SECV=4.01 

Total SO2 (mg/L) (Bottled wine) 0.0-248.0 9.18 47.4 N/A SECV=28.6 

pH (Bottled wine) 2.9-3.8 3.4 0.18 N/A SECV=0.15 
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1.4. Critical aspects and limitations of vibrational spectroscopy 

The advantages of vibrational spectroscopic techniques have been enhanced in a large 

amount of publications. Their fast, automated, cost-effective, non-destructive and 

environmental-friendly character, capable of simultaneously provide a high level of 

reproducibility and accuracy, has found numerous applications in several fields.  

NIR, MIR and Raman spectroscopies have their own individual strengths and drawbacks. 

MIR spectroscopy is apparently more suitable for wine analysis, since organic functional 

groups have characteristic and well defined absorption bands in this spectral region, 

consequently enabling its identification and characterization. However, most compounds 

strongly absorb in this region, forcing the use of sample holders with extremely short 

effective pathlength. In NIR spectroscopy, the sample holders do not need to fulfil this 

demand, (the combination of low molar absorptivity and high pathlength enable the 

measurement of larger sample volumes). Nevertheless, calibration procedures for 

quantitative determinations are more complex and laborious, since they are extracted from 

weak overtones and combination bands.  

Raman spectroscopy offers a main advantage over NIR and MIR techniques in what 

concerns wine analysis: as water is a weak scatterer, aqueous solutions can be analysed 

without or with minimal interference from water. However, the laser source may cause the 

fluorescence of some compounds, consequently affecting the signal-to-noise ratio and 

reducing the sensitivity of this technique. Additionally, the sample heating caused by intense 

laser radiation can destroy the sample and conceal the resulting spectrum [3].  

Different equipment’s have been developed for infrared (IR) and Raman measurements, 

aiming to reduce its limitations and/or increase its applicability, sensitivity and robustness. 

Infrared spectrometers currently available, whether benchtop or portable devices, are 

equipped with different wavelength selectors (such as diffraction grating, Fourier transform 

(FT), and acousto-optical tunable filter (AOTF)), and different sampling techniques (such as 

KBr pellet or attenuated total reflectance (ATR)).  For Raman spectroscopy, it may also be 

found a variety of instruments, mostly relying on resonance, surface-enhanced and 

microscopy methods. Both IR and Raman techniques can be used for hyperspectral 

imaging [4, 5]. 

For the proper development of robust calibration models, every step involved in the process 

should be rationally analysed. Instrument specifications (such as wavelength scanning 

range, wavelength data point interval, noise, stability and measurement type) should be 

considered before measurements. Nonetheless, in most situations the instrument selection 

is done according to its availability. 
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The sample presentation mode should be taken into account due to the effects it may have 

on the resulting spectra. Some authors reported differences among the spectra of grape 

berries, grape bunches, and leaves’ surface according to its presentation mode or spatial 

orientation. However, this effect is commonly neglected during calibrations’ development. 

Additionally, vibrational techniques are still not suitable for the assessment of some sample 

presentation modes, as happens with bottled wine. 

Other factors, such as grape variety and origin as well as the harvest season, must be 

considered in order to increase samples’ representativeness, consequently ensuring robust 

calibrations. Sampling conditions should also be contemplated when dealing with 

vibrational spectroscopy, due to its sensitivity to temperature and moisture. A high number 

of samples need to be included to obtain a robust calibration model. Furthermore, most 

reports do not consider the error of the reference methods, nor the validation of the models 

with independent data sets. Overoptimistic results are commonly reported, with no 

reference to spectral interpretation, loadings, coefficients of regression and correlation 

among variables [38]. Common drawbacks associated with infrared spectroscopy are 

particularly enhanced when applied to wine samples. The presence of water and ethanol, 

which dominate the infrared region, interferes with the determination of other minor 

compounds. Additionally, the complexity of the wine matrix (containing hundreds of 

chemical compounds), and the chemical similarity between wine major compounds 

(resulting in similar infrared absorption features), further complicate the extraction of useful 

information. 

Other limitations may be associated with vibrational spectroscopic techniques: the relatively 

high cost of commercially available instruments (preventing many producers to adopt this 

equipment for process control), the low sensitivity of these techniques for the measurement 

of minor compounds, the requirement of intensive calibration procedures, and the 

dependence on specific scientific knowledge to carry out this task [24, 72-74, 84].  

 

1.5. Conclusions and future trends 

In the last decades, the application of vibrational spectroscopy in the wine industry has 

considerably increased. Numerous studies reported the successful use of NIR, MIR and 

Raman spectroscopies in a wide range of purposes: supporting vineyard management 

practices, assuring a healthy growth of vineyard and grapes, assessing grape maturity 

stages, monitoring wine fermentations, measuring wine quality parameters and sensory 

attributes, and determining wine origin and authenticity. Although the use of Raman 

spectroscopy, in the wine industry, is considerably lower than that of NIR and MIR 

spectroscopies, the number of publications concerning this technique, has been increasing 
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in the last few years. The results achieved revealed the potential of this underexplored 

technique, and suggest its suitability for further demands of the wine industry. 

The successful results and the continuous improvements in hardware and software designs, 

suggest that in the near future, vibrational techniques may answer effectively to any demand 

of wine production chain (directly in-situ and at real-time), being implemented as routine 

methods for monitoring and process control. 

Wine is a very complex matrix, triggering several types of research around the world. 

Consequently, the potential of vibrational spectroscopy has not been fully exhausted in this 

area.  

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 2 - Chemometric methods 
 

 

 

 

 

“Wine cheers the sad, revives the old, inspires the young, makes weariness forget his toil.”  

– Lord Byron 

CHAPTER 2 

CHEMOMETRIC METHODS 
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2.1. Chemometrics 

Spectroscopic instruments provide a huge amount of analytical information (variables) for 

a large number of samples (objects), in short periods of time. The resulting multivariate data 

matrices require the use of chemometric tools (mathematical and statistic procedures) in 

order to effectively extract the maximum useful information and allow its proper 

interpretation [143].  

The application of chemometric methods for the analysis of vibrational data is commonly 

divided into two main procedures:  

i) Pre-processing – application of mathematical pre-treatments to facilitate the 

search for useful information and decrease the influence of side information 

contained in the spectra.  

ii) Multivariate calibration and/or classification – development of calibration models 

for quantitative analysis (through the use of regression methods capable of 

linking the spectral data to quantifiable properties of the samples) and/or 

classification of samples according to their spectral features [8]. 

 

2.2. Pre-processing  

Vibrational spectroscopy is often affected by undesired effects that further increase the 

complexity of its resulting spectra. Scattering effects (due to sample heterogeneities), 

environmental conditions (for example temperature and moisture fluctuations) and 

instrumental noise are the main sources of unwanted variability during spectroscopic 

measurements. To attenuate or even remove those inconvenient effects, spectra are pre-

processed through the use of different mathematical treatments (which may be employed 

individually or in combination depending on the intended purpose). The application of pre-

processing techniques aims to reduce unwanted variability in the data in order to enhance 

the spectral features directly related with the properties of interest [144]. The selection of 

the most suitable pre-processing techniques is not always easy. Applying the wrong type 

could mean the removal of valuable information. 

The most widely used pre-processing techniques in the NIR, MIR and Raman spectra of 

wines can be divided into two different categories: scattering correction methods and 

spectral derivatives. 

 

2.2.1. Scatter corrections  

The scatter correction techniques are designed to reduce the variability due to scatter 

effects caused by sample heterogeneities. Two main techniques are usually considered: 
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multiplicative scatter correction (MSC) and standard normal variate (SNV). Additionally, 

both techniques also adjust for baseline shifts between samples [144]. 

 

2.2.1.1. Multiplicative scatter correction  

Multiplicative scatter correction (MSC) was developed to remove, either multiplicative and 

additive artifacts or imperfections from the data matrix prior to data modelling [144]. 

This process comprises two steps: the estimation of the correction coefficients (for 

multiplicative and additive contributions) and the correction of the recorded spectrum. The 

MSC model for each individual spectrum is therefore expressed as: 

𝑥𝑖𝑘 = 𝑎𝑖 + 𝑏𝑖�̅�𝑘+𝑒𝑖𝑘      (Equation 2.1) 

Where 𝒊 is the sample number and 𝒌 is the wavelength number. The constant 𝒂𝒊 represents 

the additive effect while 𝒃𝒊 represents the multiplicative effect for sample 𝒊.  �̅�𝒌 is the 

average over samples at the kth wavelength: 

    �̅�𝑘 =
1

𝑁
∙ ∑ 𝑥𝑖𝑘

𝑁
𝑖=1     (Equation 2.2) 

The error 𝒆𝒊𝒌 represents all other effects in the spectrum that cannot be modified by an 

additive and/or multiplicative constant. The constants 𝒂𝒊 and 𝒃𝒊 are determined by least 

squares and are used in the MSC transform (which subtracts �̂�𝒊 from 𝒙𝒊𝒌 and divides the 

result by �̂�𝒊): 

 

𝑥𝑖𝑘
∗ =

(𝑥𝑖𝑘−�̂�𝑖)

�̂�𝑖
     (Equation 2.3) 

Where �̂�𝒊 and �̂�𝒊 are the least squares estimates of the additive and multiplicative effect 

coefficients, respectively. 

By removing the additive and multiplicative scatter effects, most of the variations among 

spectra are also eliminated. MSC is indicated for the cases where the scatter effects are 

the dominating source of variability. Otherwise, MSC transform will be too dependent on 

chemical information and may remove some of it [144, 145].  

MSC can be performed only on the spectral region(s) more affected by light dispersion 

(instead of all spectrum).In addition to the removal of scattering effects, MSC also reduces 

the number of components needed in regression models, and may improve linearity [145]. 

 

2.2.1.2. Standard normal variate  

The standard normal variate method also aims to remove scatter effects. Nevertheless, this 

method standardizes each spectrum using only the data from the spectrum (instead of using 
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the mean spectrum of the spectral set, like happens with MSC). In this situation equation 

2.3 becomes: 

𝑥𝑖𝑘
∗ =

(𝑥𝑖𝑘−𝑚𝑖)

𝑠𝑖
    (Equation 2.4) 

Where 𝒙𝒊𝒌 is the spectral measurement at the kth wavelength for the ith sample (as in 

MSC), 𝒎𝒊 is the mean of the 𝒌 spectral measurements for sample 𝒊, and 𝒔𝒊 is the standard 

deviation of the same 𝒌 measurements. 

Therefore, after SNV transformation, each spectrum in centred on zero, varying roughly 

from −2 to+2, on the vertical scale. The selection between the two techniques (MSC or 

SNV) is usually dependent on the users’ preference or software availability [145, 146]. 

 

2.2.2. Spectral derivatives  

Derivatives are commonly employed in the pre-treatment of vibrational spectra aiming to 

remove additive and multiplicative effects related with base line differences. Taking the first 

derivative spectrum removes an additive baseline (by calculating the slope at each point of 

the original spectrum). The second derivative spectrum is the slope of the first derivative 

and besides the baseline it also removes the linear trend [144, 145].However, the measured 

spectrum is not a continuous curve but a series of measurements at equally-spaced discrete 

points. For such data, the easiest way to calculate derivatives is to use differences between 

the values at the adjacent points. Therefore, the first derivative is calculated using the 

differences between adjacent points of the original spectrum and the second derivative is 

performed calculating the differences between the adjacent points of the first derivative. 

Although this is the simplest approach, considering the difference between values 

decreases the signal-to-noise ratio. To overcome this situation, it is necessary to 

incorporate some kind of smoothing in the calculation. This may be performed by basing 

the previously described derivatives on the calculation of the averages over several points. 

Savitzky and Golay (1964) introduced an approach that allows the calculation of the 

derivatives associated with a smoothing function. The Savitzky-Golay (SG) algorithm, 

defines a narrow window centred on the point of interest and performs a low-order 

polynomial fit on those data points, using least-squares. This procedure is applied to all 

points of the spectra moving the defined window from one point to the next one. Besides 

the order of the derivative (first or second), two other parameters should be defined when 

performing a SG derivative: the window size and the order of the polynomial fit. The window 

size determines the number of points used in the smoothing. The choice of the window size 

requires a careful balance between the reduction of the noise (better with large windows) 

and distortion of the curve, (if the window is too wide). Hence, the selection of the window 
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size depends on the spectral features of the data being used. It is usually suggested to start 

with three points size window (the smallest possible) and increasing its size until the noise 

is not visible. The order of the polynomial fit should also be selected in accordance with the 

spectral characteristics. A second order polynomial is commonly the most used. However 

a third order can also be employed (and it is more flexible), it needs a wider window to 

achieve the same amount of noise reduction [145]. 

The use of derivatives changes the form of the original spectrum, which is probably its main 

disadvantage. Although in second derivatives, the peaks appear in similar locations to the 

ones in the original spectrum (with opposite sign), it usually presents more features than 

the original, further increasing its complexity and making difficult its interpretation [145]. 

 

2.3. Multivariate calibration and classification 

Multivariate data analysis is defined as the application of mathematical or statistical 

methods to chemical data, considering multiple variables simultaneously. It is, therefore, 

the most suitable tool for the proper treatment of the multivariate matrices generated by 

spectroscopic measurements. The application of multivariate analysis, can mathematically 

describe the covariance (degree of association) between variables, or find a mathematical 

function (regression model) to calculate the values of the dependent variables from values 

of measured (independent) variables [147-150].  

After defining the problem as clearly as possible, the next step for a proper multivariate 

analysis should be the sample selection. Besides the number of samples, it is also important 

to take into account the representativeness and the variability included in the sample set, in 

order to improve the predictive ability of the multivariate models.  

As soon as samples are selected, spectral measurements and reference analysis should 

be done. The multivariate matrices generated by the spectroscopic measurements are rich 

sources of information and represent a situation where several predictor variables used in 

combination can give dramatically better results than any of the individual predictors used 

alone. Furthermore, this type of spectral data usually presents a selectivity problem: they 

are characterized by overlapped bands/signals and it is not usually possible to use 

absorbance at a single wavelength to predict any property of a sample. It is, therefore, 

advantageous to combine information from several, or even all, spectral variables, which is 

commonly performed through the application of multivariate techniques. Due to a number 

of problems, namely collinearity (the number of available samples is often smaller than the 

number of variables, leading to exact linear relationship, so called exact multicollinearity, 

among the variables in the data matrix) and the presence of outliers, sophisticated 

approaches of these techniques are usually to be preferred. 
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Data compression based methodologies use all the information contained in spectral data, 

compressing the information into a reduced number variables, and thus avoiding the 

collinearity, variable selection and outlier detection problems [145]. 

There are currently several mathematical alternatives to reduce the number of variables. 

Principal component analysis (PCA) and partial least squares (PLS) regression are among 

the most commonly employed multivariate data analysis techniques based on data 

compression, and will be addressed in the following sections [147, 151, 152]. 

 

2.3.1. Principal component analysis 

Principal component analysis (PCA) is an exploratory technique commonly used to reveal 

hidden patterns in complex data. This multivariate technique is a method of data 

compression (or data reduction), since it reduces a set of possibly correlated variables into 

a new set of noncorrelated variables, called principal components (PCs). PCs are linear 

combinations of the original variables defined by weight vectors of unit length and 

orthogonal to each other. The first PC captures as much variability as possible (it is 

computed to represent the maximum variance amongst all the linear combinations). The 

second PC accounts for as much of the remaining variance as possible, and the same 

happens with all the successive PCs. Thus, PCA describes the main variability of 

multivariate data through a modest number of variables (PCs), eliminating the redundant 

information and variability due to noise. 

Briefly, the mathematical procedure of PCA can be described through a set of main steps. 

Let’s consider a spectral matrix X, composed by m rows (number of spectra) and n columns 

(variables corresponding to the number of wavelengths at which measurements were 

taken). After mean-centring the data (each variable is corrected for its average, so that it 

has average equal to zero), it is determined the covariance matrix (covariance among each 

pair of variables) and its corresponding eigenvectors and eigenvalues. If the original data 

matrix is auto-scaled (each variable is adjusted to have an average equal to zero and unit 

variance by dividing each column by its standard deviation) instead of mean-centred, it is 

obtained the correlation matrix instead of the covariance matrix. Eigenvectors then become 

the weight vectors for the construction of PCs and the eigenvalues are indicators of the 

amount of variance captured in each PC. Eigenvectors are then ordered according to the 

decreasing order of eigenvalues, such that the first PC is the one explaining the highest 

amount of variability. 

The selection of the appropriate number of PCs depends on the purpose of the analysis. 

For exploratory studies, there is no quantitatively well-defined purpose, thus the number of 

PCs is not necessarily fixed, since the interest is looking at the main variation among 
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variables, which is by definition well provided by the first PCs [153]. If PCA is used for the 

detection of outliers, it is important to establish the proper number of components to use. 

The outlier detection will be further discussed later in this chapter [153]. 

PCA is usually described in matrix notation as: 

𝑿 = 𝑻𝑷𝑻 + 𝑬     (Equation 2.5) 

Where X is the original data matrix, T is the scores matrix and P is the loadings matrix. 

Matrix E contains the residuals and represents the noise or irrelevant variability in X. The 

scores T are the linear combinations of the original variables (PCs). The loadings P are 

estimated by regressing X onto T, and the residual matrix E is calculated by subtracting the 

estimates of TPT from X [145]. The composition of PCs may be attributed to both scores 

and loadings, since these are closely related. Nevertheless, scores represent the PCs’ 

composition obtained from samples, while loadings describe the information obtained from 

variables [153].  

Geometrically, PCA may be described as a rearrangement of axes, representing the 

samples through a new system of coordinates, lower in number than the original one. Under 

this point of view, the main goal of PCA is to find the directions that better explain the 

maximum variability among samples, and use them as new coordinate axes. The 

dimensionality of the space previously defined by n variables is reduced, maintaining the 

relevant information. The orthogonality imposed between each successive PC enables its 

use as coordinates. The construction of new axes is defined by the loadings (cosines of the 

angles formed between the new axes and the original ones), while the scores represent the 

coordinates of samples, according to the new axes. Scores are commonly represented 

through scatter plots, whose axes are defined by the first PCs. This representation, enables 

the easier visualization of grouping features and the consequent classification and/or outlier 

detection. 

 

2.3.2. Partial least squares regression 

Partial least squares (PLS) regression is a multivariate statistical technique used to develop 

regression models for the quantitative analysis of unknown samples. 

PLS discards irrelevant and unstable information, using only the most relevant part of data 

variability for regression purposes. This process is performed by finding a few linear 

combinations (PLS components or latent variables) of the original prediction variables (like 

in PCA) and use them in the regression equation [145, 154, 155]. This data compression 

technique solves the multicollinearity problem, leading to more stable regression equations 

and consequent predictions. 
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Let the data matrices, used as input to PLS regression, be denoted by X (the matrix of 

spectral data) and y (a vector containing known information, usually obtained by reference 

analysis), both assumed to be mean-centred. The model structure for the PLS-1 algorithm 

(where only one output is considered) is commonly represented by the following equations. 

𝑿 = 𝑻𝑷𝑻 + 𝑬     (Equation 2.6) 

𝒚 = 𝑻𝒒 + 𝒇     (Equation 2.7) 

The matrix T (scores matrix) is composed by a set of columns considered as underlying or 

latent variables. These variables are linear combinations of the original variables in X, and 

are therefore responsible for systematic variation in X and y. Matrix P and vector q are 

known as loadings and describe the relations between variables from matrix T and the 

original data matrix X and vector y, respectively. Both P and q loadings are estimated by 

regressing X and y onto the final PLS scores matrix T. Matrix E and vector f are called 

residuals and represent the noise or other irrelevant variability in X and y, respectively. 

PLS regression is performed by maximizing the covariance between y and all possible 

linear combinations of X. The process is carried out through the construction of PLS 

components of unit length and orthogonal to each other, (often called loading weight vectors 

and denoted by w). Let the direction of the first PLS component be denoted by w1. The 

scores along this axis are computed as:  

𝒕𝟏 = 𝑿𝒘𝟏     (Equation 2.8) 

Where t1 is the first latent variable of the scores matrix T. The loading vector p1 is then 

obtained by regressing all variables in X onto t1. The regression coefficient q1 is obtained 

similarly, by regressing y onto t1. The direction of the second PLS component is orthogonal 

to the first one and is only calculated after the subtraction of the first one (i.e. after 

subtracting t1p1 from X and t1q1 from y). The process (known as deflation) is repeated until 

the desired number of components is extracted. The regression coefficient vector used in 

linear PLS prediction may be computed according to the following equation: 

𝒃 = 𝑾(𝑷𝑻𝑾)−𝟏𝒒     (Equation 2.9) 

Where W is the matrix composed by the loading weights. The PLS predictions (�̂�) are 

therefore calculated as: 

�̂� = 𝑿𝒃     (Equation 2.10) 

 

2.3.2.2. Partial least squares – discriminant analysis 

Partial least squares – discriminant analysis (PLS-DA), is a chemometric technique used to 

optimize separation between different groups of samples, which is accomplished by linking 

two data matrices X (spectral data set) and y (groups or class membership). This technique, 
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also known as PLS-2, is an extension of the PLS regression (PLS-1), capable of handling 

multiple dependent categorical variables [151, 156, 157]. 

PLS-DA maximizes the covariance between variables from X and y-classes of highly 

multidimensional data, to find a linear subspace of explanatory variables. Thus, the 

prediction of the y is based on a reduced number of PLS components (LVs) that span the 

subspace onto which the X variables are projected. The resulting statistical parameters, 

such as loading weights, variable importance on projection, and regression coefficients, can 

be used to identify the most important variables [157-159]. Additionally, this technique 

enables the easy interpretation of complex data sets through low-dimensional scores plot. 

Despite the successfully reported applications, PLS-DA carries out some limitations mainly 

associated with the identification and selection of a small number of LVS and consequent 

overoptimistic solutions [157, 160]. 

Overall, the PLS-DA procedure is the same of PLS regression. The main difference is that 

PLS enables the quantitative analysis of samples, while PLS-DA is used for sample 

classification. 

 

2.3.2.3. Multiblock partial least squares  

Multiblock partial least squares (MB-PLS) is an extension of the PLS method, that enables 

the development of PLS calibration models considering simultaneously different data blocks 

(i.e. sets of predictor variables). This is achieved by the development of super levels, 

containing the information of scores from each individual block.  The PLS Equations 2.6 

and 2.7 are normally applied, however, in the MB-PLS the matrix T is a super scores matrix 

(obtained by computing the block scores). The super scores matrix enables the tracking of 

each individual block during analysis, and reveals each one’s contribution (or importance) 

in the calibration equation [161, 162].  

The MB-PLS predictions �̂� are calculated according to the method described for PLS 

(Equation 2.10), after merging the data blocks into a single matrix X. (Usually, these data 

blocks have the same dimension in what refers the number of objects, although they can 

differ in the number of variables).  

The deflation process in this situation, may be performed using the block scores or the super 

scores. It is recommended to follow the super scores deflation approach in MB-PLS. The 

block scores leads to inferior predictions, since some of the X information may be lost during 

the deflation step [163, 164]. 

It is important to analyse the variance of each block individually, prior to MB-PLS calibration. 

If one block has a much higher variance than the others, it will dominate the results. Hence, 
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it is necessary to give each block equal weight, which may be achieved through 

normalization procedures [165]. 

 

2.3.2.4. Evaluation of PLS models' performance (figures-of-merit) 

After the development of a calibration equation it is necessary to determine its ability to 

predict unknown y-values. It is particularly important to decide about the suitability of the 

proposed calibration model, and the inherent number of components (or latent variables) 

that should be used.  

 

 Root mean square error of calibration  

The root mean square error of calibration (RMSEC) is an empirical estimate of the 

calibration error, defined by: 

𝑹𝑴𝑺𝑬𝑪 = √
∑ (�̂�𝒊−𝒚𝒊)𝟐𝑵

𝒊=𝟏

(𝑵−𝑨−𝟏)
    (Equation 2.11) 

Where 𝒚𝒊represents the measurement results obtained for sample i, �̂�𝒊 is the result 

predicted by the model for that sample, N is the number of samples and A corresponds to 

the number of latent variables used for calibration.  

This error estimate does not take into account the regression coefficients, which may lead 

to over-optimistic estimations of the predictive ability. Essentially, RMSEC is an estimate of 

the model error, rather than a prediction error. Other approaches have been suggested as 

more reliable for estimating the predictive ability of the regression models, based on 

validation techniques, such as cross- validation, and external validation tests. 

 

 Root mean square error of cross-validation 

Cross-validation technique uses the calibration data set for calibration and validation 

purposes. Samples are consecutively excluded from the calibration set. The calibration 

process is performed on the remaining samples, while the excluded ones are used to test 

the model. The process is repeated until all the samples have been used for testing the 

calibration model. Different methods may be employed for the data split, like contiguous 

blocks, random subsets, venetian blinds, and leave-one-out cross-validation. The last one, 

also called full cross-validation, is one of the most commonly used. Through this technique, 

each sample is individually excluded from the calibration set and posteriorly used to test the 

model. The performance of the calibration model is evaluated through the root mean square 

error of cross-validation (RMSECV), as defined by the following equation: 

𝑹𝑴𝑺𝑬𝑪𝑽 = √∑ (�̂�𝑪𝑽,𝒊−𝒚𝒊)𝟐𝑵
𝒊=𝟏

𝑵
    (Equation 2.12) 
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Here �̂�𝑪𝑽,𝒊 is the estimated value for  𝒚𝒊 obtained by excluding sample i from the calibration 

equation. It is important to note that RMSECV is not an estimate of an actual prediction 

error, since it is not obtained from computed regression coefficients. It is rather an estimate 

of the average prediction error of calibration equations based on N-1 samples. 

Nevertheless, cross-validation is a useful tool for the selection of an appropriate number of 

latent variables, as will be discussed later in this chapter. 

 

 Root mean square error of prediction  

To ensure a truly objective evaluation of the calibration models, it is necessary to test these 

models with independent data sets (not used for model calibration). It is common practice 

to perform a prediction test by splitting the data set into two subsets: one for calibration and 

the other for testing procedures. Usually 70% of the original sample set is used for 

calibration and the remaining 30% are used for testing the developed calibration model. The 

prediction ability of the models is now evaluated through the root mean square error of 

prediction (RMSEP), defined as: 

𝑹𝑴𝑺𝑬𝑷 = √
∑ (�̂�𝒊−𝒚𝒊)𝟐𝑵𝑷

𝒊=𝟏

𝑵𝑷
     (Equation 2.13) 

The number of samples, included in the test set, is here represented by NP. The predicted 

and measured reference values obtained for the test set correspond to �̂�𝒊 and 𝒚𝒊, 

respectively.  

The plot of 𝒚 versus �̂� is commonly used for a rapid evaluation of the calibration model. 

Observations falling close to a 45° straight line are indicative of good calibration models. 

Furthermore, it can also be used to detect the least squares effect, identifying regions with 

different levels of accuracy, responsible for underestimation or overestimation problems. 

Although the predictive ability of multivariate models is usually assessed by calculating the 

RMSEP, it is important to note that, this rather standard procedure, has serious 

weaknesses. It does not effectively include the errors associated with reference methods. 

Its calculation is based on mathematical models, which does not account for the 

propagation of errors associated with the reference measurements (assuming that these 

are sufficiently negligible when compared with the true prediction uncertainty, which is not 

always true). Thus, the resulting RMSEP value is a constant measure, generalized for all 

the predictions, rather than a specific uncertainty for each individual prediction, 

consequently yielding unrealistic prediction intervals [7]. Despite the abovementioned 

limitations, the RMSEP calculations are still the most common way to assess the uncertainty 

of regression models. 
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 Coefficient of determination  

The coefficient of determination (R2) provides a useful interpretation for the squared 

correlation between 𝒚 and �̂�. It is a measure of the proportion of variance in 𝒚𝒔 that is 

explained by the fitted line. Although the coefficient of determination is commonly used in 

the evaluation of calibration models, it should be noted that this parameter only measures 

the degree of linear relationship between two measurements, over a studied range. Care 

should be taken, in order to avoid an over interpretation of its values. The dimensionless R2 

values range from 0 to 1, (with 1 meaning that all values fall perfectly on the regression 

line). 

 

 Range Error Ratio 

The range error ratio (RER) is a dimensionless parameter, commonly determined as an 

indicator of the predictive ability of a calibration model. It is obtained by dividing the range 

of 𝒚 measurements by RMSEP, as follows: 

𝑹𝑬𝑹 =
𝒚𝒎𝒂𝒙−𝒚𝒎𝒊𝒏

𝑹𝑴𝑺𝑬𝑷
     (Equation 2.14) 

RER is used to test the practical utility of the prediction models. It is a method of 

standardizing the RMSEP by relating it to the range of the reference data.  

Williams and Norris (2001) proposed a classification for calibration equations according to 

their RER and R2 values (Table 2.1). RER values of less than six indicate very poor 

classification and are not recommended for any application; RER values between 7 and 20 

classify the model as poor to fair and indicate that the model could be used in a screening 

application; and RER values between 21 and 30 indicate a good classification suggesting 

that the model would be suitable for a role in a quality control application [166]. Thus, each 

calibration should be individually evaluated according to the accuracy required in field 

conditions. 

 

Table 2.1: Guidelines for the interpretation of R2 and RER, according to Williams and Norris 

(2001) [166]. 

R2 RER Interpretation and utility of the calibration model 

Up to 0.25 Up to 6 Very poor, not usable 

0.26-0.49 

0.50-0.64 
7-12 

Poor correlation 

OK for rough screening applications 

0.66-0.81 13-20 Fair, OK for screening applications 

0.83-0.90 21-30 Good, use with caution 

0.92-0.96 31-40 Very good, use with most applications 

0.98 and above 41 and above Excellent, use with any application 
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Sometimes, in addition to RER, it is estimated the RMSEP in percentage, aiming to compare 

the suitability of a calibration model for the measurement of different y-parameters. RMSEP 

(%) is calculated as: 

𝑹𝑴𝑺𝑬𝑷(%) =
𝑹𝑴𝑺𝑬𝑷

𝒚𝒎𝒂𝒙−𝒚𝒎𝒊𝒏
𝟏𝟎𝟎    (Equation 2.15) 

 

 Limit of detection 

The determination of limit of detection (LOD) in multivariate calibrations is an intricate issue. 

Several methods have been proposed for its calculation, based on different approaches 

(net analyte signal, confidence intervals for concentration, error propagation, non-

parametric test, and univariate transformation) [167]. A reasonable estimation of this 

parameter can be done by assuming that the prediction uncertainties are approximately 

constant. Hence, LOD value may be calculated as three times the RMSEP value, as 

described in the following equation: 

𝑳𝑶𝑫 = 𝟑𝑹𝑴𝑺𝑬𝑷    (Equation 2.16)  

 

 Selectivity and Sensitivity 

To complete the evaluation of the calibration model, it is important to calculate figures-of-

merit such as limit of detection, sensitivity, and selectivity. To estimate these parameters in 

multivariate analytical systems, it is usually employed the net analyte signal (NAS) theory. 

NAS can be mathematically defined as the vector orthogonal to the space spanned by the 

interferences. Let’s represent the NAS vector of the ith sample as ri*. The sensitivity vector 

s*, can be calculated as: 

𝒔∗ =
𝒓𝒊

∗

�̂�𝒊
     (Equation 2.17) 

Where to �̂�𝒊 is the value of any y-parameter, predicted by the PLS model, using a previously 

defined number of LVs. The sensitivity vector is the same for all samples, even when the 

measured parameters are affected by systematic and/or random errors [168]. Sensitivity 

(SEN) is, therefore, defined as the NAS vector generated by an analyte of unit 

concentration, and can be seen as the slope of the calibration curve [169]. Consequently, it 

may be defined as the norm of NAS: 

𝑺𝑬𝑵 = ‖𝒔∗‖   (Equation 2.18) 

Under a practical point of view, the sensitivity characterizes the extent of signal variation, 

as a function of the analyte concentration.  

Selectivity is also an important figure-of-merit, commonly used to characterize the 

calibration curve. It is defined as the part of measured signal unique to the analyte of 
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interest. The calculation of selectivity (SEL) is also based on the NAS theory, and may be 

expressed as the ratio between the norm of r* (NAS vector), and the norm of spectra r: 

𝑺𝑬𝑳 =
‖𝒓∗‖

‖𝒓‖
    (Equation 2.19) 

Different selectivity values are obtained for each sample. In order to easily characterize the 

calibration model, it is usual to calculate the average of SEL over all samples and display 

that unique value as percentage. 

 

2.3.2.5. Selection of latent variables 

The selection of the appropriate number of PLS latent variables (LVs) is an essential step 

in the development of robust PLS calibration models. If too many LVs are used, there is the 

risk of including too much of the redundancy present in the variables. The calibration 

equation will be, therefore, too data dependent leading to overfitting solutions and 

consequently poor prediction results. Using too few components results in underfitting 

problems, meaning that the model in not large enough to capture the important variability in 

the data. Hence it is necessary to determine the predictive significance of each LV, before 

its exclusion or inclusion in the calibration model. Cross-validation is a valuable tool for the 

determination of the model structure. Plotting RMSECV values against the number of LVs 

illustrates the behavior of the predictive ability of the model, as LVs are added. When using 

this type of plot, it is common to search for the smallest value of RMSECV. However, if 

increasing the number of LVs does not significantly reduce the cross-validation errors, in 

this situation the lowest possible number of LVs should be selected.  

 

2.3.3. Outlier detection 

When an observation differs from the remaining data set for some reason, it may be pointed 

out as an outlier. Several reasons may explain the anomalous behaviour of such 

observations, as an adulterated sample, an instrumental problem, or errors caused by 

failures in reference methods. An outlier is not necessarily an erroneous observation, it is 

rather an observation that is different from the rest of the population, and that may strongly 

influence the calibration models. 

Detecting and defining an outlier within a multivariate data matrix, may be a difficult process. 

The PCA model may provide useful information in this field, mainly through the analysis of 

scores and residuals’ matrices. Although looking at scores plot, enables the rapid and easy 

visualization of anomalous samples, it only allows its visualization for a few principal 

components at a time. Additionally, it is important to look at how important the component 

is, before deciding on what to do with an anomalous sample. The Hotelling’s T2 test is an 

extension of the t-test that can be applied to the scores of a PCA model for the detection of 
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outliers. This technique enables the determination of 95 % confidence limits, assuming that 

the scores are normally distributed. Consequently, the samples whose scores fall outside 

the 95% confidence interval may be considered outliers.  

The analysis of residuals may also contribute for the detection of outliers and its eventual 

exclusion from the sample matrix. For that purpose it is common to use the sum of the 

squared residuals (often called Q- statistics) of each sample, to look for samples that are 

not well described by the PCA model. The plot of Q against T2 is known as the influence 

plot, and it is a valuable tool to simultaneously analyse the contribution of scores and 

residuals in the anomalous behaviour of any sample. As both Q and T2 are influenced by 

the number of principal components included in the models, this number should be well 

defined before the outlier analysis. 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3 - Determination of chloride and sulfate in wines by MIR spectroscopy 

 

 

“Age is just a number. It’s totally irrelevant unless, of course, you happen to be a bottle of 

wine.”  

– Joan Collins

CHAPTER 3 

DETERMINATION OF CHLORIDE AND SULFATE 

IN WINES BY MIR SPECTROSCOPY 
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3.1. Introduction  

The quality of a wine can be achieved by a perfect balance of its analytical properties and 

consequent organoleptic characteristics. Therefore, from the grape constitution to the 

vinification process, results a particular combination of components that will determine the 

wine character [99]. Mainly composed by water, ethanol and sugars, wine also presents 

several other chemical elements [170]. Among them are chloride and sulfate anions, which 

are as well, important indicators in the quality assessment of wine, and like other 

parameters, their concentration must obey to legal requirements. Chloride anion is naturally 

present in wines, and its concentration is related to its geographical origin and 

corresponding geological and climatic conditions. The frequently low chloride concentration 

in wines increases when they come from vineyards located near the coast. Moreover, high 

levels of chloride may also point out some fraudulent practices of filtration, stabilization 

[171], clarification and organoleptic correction of wines [172]. 

The sulfate anion (SO4
2-) is also part of the natural composition of wine, but several factors 

influence its concentration, like the soil composition were vines grow, the phytotreatments 

to which they were exposed and enological treatments. High levels of sulfate may increase 

wine astringency and protein haze formation, but it may also be an indicator of the addition 

of certain compounds like copper sulfate, ammonium sulfate and sulfuric acid, aiming the 

improvement of wine quality, but in some cases considered as fraudulent practices [173, 

174]. 

Aiming to guarantee consumers’ satisfaction as well as their health protection, several 

analytical procedures were developed for the assessment of wine safety and quality, in all 

stages of its production, (covering also the determination of chloride and sulfate anions in 

wine samples) [173, 175, 176]. However, over the time has emerged the need to develop 

faster, automated and cost effective procedures, keeping at the same time a high level of 

reproducibility, and accuracy. MIR spectroscopy combined with intensive calibration 

procedures appears as a possible solution complying with these requirements. Despite the 

large number of studies already performed, and even their implementation for routine 

analysis, the potential of MIR spectroscopy has not been fully exhausted. Therefore the aim 

of this work was to evaluate MIR suitability in the determination of chloride and sulfate 

concentrations in wine.  

 

3.2. Materials and methods  

3.2.1. Data set  

A total of 45 different wine matrices were provided by the “Vinhos Verdes” Wine Comission 

in Portugal, to be the basis of the produced samples and experimental design [177]. Aiming 
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at the representativeness of a wide diversity of wines and to increase the method’s 

robustness, samples were selected to include several types (white, red, rosé, sparkling), 

and varieties of young wines (2012 and 2013 harvest) from different wineries, located in 

different Portuguese wine regions (Douro, Dão, Vinhos Verdes).  

The low concentration and variability of the parameters, increases the difficulty of 

calibrations’ development. Consequently, for chloride and sulfate determination, it was 

necessary to expand the original concentration ranges. For this purpose, the 45 

representative wine matrices were divided in two sets of 20 and 25 samples and submitted 

to controlled fortifications of chloride and sulfate respectively. For each wine matrix, five 

concentration levels were selected and tested in order to respect the detection limits of the 

reference methodology and the maximum values allowed by law. From the experimental 

plan design, sets of 100 and 125 samples for chloride and sulfate parameters respectively, 

were produced. These sets encompass enough variability for the proper construction of 

predictive models and were simultaneously wide enough to include the limits established 

by legal regulations (1g/L and  2 g/L for chloride and sulfate respectively) [178].  

The preparation of highly concentrated standard solutions of sodium chloride (Sigma-

Aldrich, St. Louis MO, USA) and potassium sulfate (Sigma-Aldrich, St. Louis MO, USA), 

ensured a minimal addition of these solutions to the original samples, thus keeping the 

original matrix effects unchanged. 

Despite commercial wines were used and sample pre-treatments were considered 

unnecessary, to avoid the possible presence of particles and to remove CO2, all samples 

were filtered and degassed prior to measurements. 

 

3.2.2. Reference analyses  

The analytical reference results, used for sulfate and chloride calibrations, were obtained 

according to internal methodologies, based on segmented flow analyses and 

spectrophotometric detection with uncertainties of 15% and 17% respectively. The 

determination of sulfate is based in a colorimetric reaction, in which the colour intensity is 

directly proportional to the increase in the analyte.  After dilution in a solution of barium 

chloride, the sulfate ions present in the sample, react with the barium leading to the 

formation of barium sulfate precipitate. The excess of barium resulting from the reaction is 

dialyzed together with the colouring reagent. The colour decrease is measured on a UV/Vis 

spectrophotometer at 630 nm. Chloride determination is also based on a colorimetric 

reaction. However, in this case, the sample is diluted in a solution of mercury thiocyanate, 

which leads to the formation of mercury chloride and to the release of the thiocyanate ion. 

In the presence of the ferric ion, the thiocyanate forms a red complex, whose colour intensity 
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is measured on a UV/Vis spectrophotometer at 490 nm. The number of samples and 

measurements, as well as some details are summarised in Table 3.1. 

 

Table 3.1: Summary of the samples produced in this work for developing the MIR 

spectroscopic methodology for quantification of sulfate and chloride in wines. 

Parameter  Sulfate (g/L) Chloride (g/L) 

Reference method Continuous flow analyses and spectrophotometric detection 

Number of samples 125a) 100a) 

Range  0.34 - 2.91 0.194 - 1.779 

Mean  1.49 0.86 

Standard deviation 0.69 0.43 

a) These samples resulted from the fortification of 25 and 20 original wine matrices, for 

sulfate and chloride respectively. 

 

3.2.3. MIR analyses  

MIR spectral acquisition was performed on previously filtered and degassed samples, using 

a Multispec IRTF UV/Visible (CETIM, France) spectrometer and an Avatar 370 (Thermo 

Nicolet Corporation, Madison, Wisconsin, USA) detector equipped with a Bacchus 

Acquisition / Quantification (CETIM, France) software. 

Measurements were carried out in absorbance mode from 3050 to 1000 cm-1, with a 

spectral resolution of 16 cm-1, being each spectra the average result of 22 scans. 

Spectra were collected through the use of a CaF2 cuvette, with an optical pathlength of 0.1 

mm. Sampling was conducted with an auto-sampler, using about 10 mL of sample for a 

double measurement, including preflushing of the system, at 25ºC (adjusted by a Peltier 

system). Background measurements were taken against distilled water before every 

session of measurements. In order to avoid errors, due to chemical modifications, minimal 

periods of time elapsed between reference analyses and MIR spectra acquisition. 

 

3.2.4. Data processing  

Spectra were collected between 3050 and 1000 cm-1 (Figure 3.1). Its visual analysis 

prompts for exclusion of the region between 1700 and 1570 cm-1 due to signal saturation. 

In fact, other authors reported similar spectral behaviours nearly the above referred regions, 

due to strong water and ethanol absorptions [10, 98, 99, 179].  

The resulting spectra (comprised between 1570-1000 and 3050-1700 cm-1), was therefore 

subdivided into four spectral regions in agreement with the peaks and/or weak bands 

according to their disposition along the spectral wavelength. The four regions, as well as all 
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their possible combinations, were evaluated for the construction of multivariate regression 

models. Several spectral pre-processing methods (SNV, MSC, and Savitzky-Golay first and 

second order derivatives) were tested, whether individually or combined,  to process raw 

spectra aiming at removing unwanted spectral variations caused by baseline drifts, light 

scattering effects and temperature variations. However, models seemed to work better 

without any spectral pre-processing. 

Principal Component Analysis (PCA) was applied to the mean-centred MIR spectra, in order 

to detect eventual anomalous spectral behaviour. Results showed the absence of sample 

grouping (indicating that no wine matrix effect is visible) consequently ensuring the diversity 

of the selected samples. Identification of outliers was attempted with the Q residuals and 

Hotelling’s T2 statistics, but no sample was found to be atypical [145]. 

 

 

 

Figure 3.1: Raw MIR spectra of wine samples. 

 

3.2.5. Multivariate data analysis 

Calibration models were developed for each of the proposed parameters, aiming at their 

quantitative determination in wine. The calibration equations were based on the application 

of Partial Least Squares (PLS) regression, whose foundation is based on the correlation of 
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spectral data with the corresponding concentration values obtained by reference methods. 

The PLS-1 algorithm was used [180].  

Models predictive ability was tested with independent sample sets. Each set of samples 

was randomly divided in two subsets: a calibration set (composed by 70% of the original 

sample set) and an independent test set (composed by the remaining 30%). This division 

was made randomly but ensuring that all types of wine matrices were included in both 

calibration and test sets, consequently avoiding unbalanced wine matrices in both sets. The 

calibration set was composed by 70 and 87 samples while the test set included 30 and 38 

samples for chloride and sulfate models, respectively.  For each model, the selection of the 

optimal number of latent variables (LV) was established, using the leave-one-out cross-

validation method (based only on the calibration set) [181]. The independent set was 

projected onto the developed models yielding the prediction set results. 

The calibration models’ accuracy was evaluated using the root mean square error of cross 

validation (RMSECV). After models’ optimisation the test sets were projected and the root 

mean square error of prediction (RMSEP) and coefficient of determination of prediction 

(R2
P) were obtained [98].  The figures-of-merit such as limit of detection (LOD), sensitivity 

(SEN) and selectivity (SEL) were calculated for modeled parameters according to the net 

analyte signal (NAS) theory [169, 182]. The dimensionless parameter range error ratio 

(RER) was applied as a tool for evaluating the predictive ability of the PLS models.  

All calculations were carried out using Matlab version 8.3 (MathWorks, Natick, MA, USA).  

 

3.3. Results and discussion 

3.3.1. Calibration procedures and statistics  

As previously referred, spectra were divided in four spectral regions (as shown in Figure 

3.1): region 1 (1120-1000 cm-1), region 2 (1570-1120 cm-1), region 3 (2800-1700 cm-1), and 

region 4 (3050-2800 cm-1).  

The PLS models’ optimisation (spectral regions and number of LVs) was performed 

considering exclusively the calibration dataset and the root mean square error of cross-

validation (leave-one-out) (RMSECV) as a measure of model performance.  This procedure 

enabled the identification of the best regions and pre-processing techniques and the 

consequent selection of the best models’ performances for each parameter.  Great part of 

the spectral region was considered for the calibration of both chloride and sulfate 

parameters. Best performances were achieved when no pre-processing technique was 

applied, after mean-centring the spectral data. 
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Table 3.2: Summary of the properties of the MIR spectroscopy based PLS regression 

models for the quantification of sulfate and chloride in wines. 

Regression model statistics Sulfate (g/L) Chloride (g/L) 

Calibration 

Spectral region (cm-1) 
1000-1570, 

1700-2800 

1120-1570, 

1700-3050 

RMSEC 0.34 0.18 

RMSECV 0.38 0.26 

LVs 6 9 

Prediction  

RMSEP 0.11 0.18 

R2
P 0.98 0.83 

RER 22.3 7.9 

Figures of merit 

Selectivity (%) 13.5 1.9 

Sensitivitya 0.035 0.0065 

LOD 0.33 0.53 

a) Sensitivity values are expressed as spectral units/concentration units; LOD (limit of 

detection); LVs (latent variables); RER (range error ratio); RMSEC (root mean square error 

of calibration); RMSECV (root mean square error of cross validation); RMSEP (root mean 

square error of prediction); R2
P (coefficient of determination of prediction). 

 

Models’ accuracy were then tested in terms of coefficient of determination (R2
P) and 

prediction errors (RMSEP) using the independent test sets.The accuracy of the predicting 

models was classified according to the criteria proposed by Williams and Norris (2001), who 

consider as good predictions those with RER values higher than 21 and R2 higher than 0.83 

(see Table 2.1) [166]. According to this criteria, the model developed for the sulfate 

parameter, combining the regions 1, 2 and 3, (R2
P = 0.98, RMSEP=0.11 g/L, and 

RER=22.3), may be considered very good in what concerns its predictive ability, making it 

remarkably capable of quantitative determinations of sulfate in wines.  For the chloride 

parameter, the model developed considering regions 2, 3 and 4, presented the best 

performance (R2
P = 0.83, RMSEP=0.18 g/L, RER=7.9). These results show the suitability 

of the model for screening purposes or semi-quantitative determinations of this parameter 

in wines. This may provide a valuable solution when the goal is to determine if the parameter 

is under the limits established by law. The PLS regression models for both parameters are 

represented in Figure 3.2. 
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Figure 3.2: Comparison of experimentally determined sulfate and chloride with MIR 

spectroscopy based PLS regression models for cross-validation (●) and prediction (■) sets. 

 

The ability of the newly developed techniques here proposed, may be accessed through 

the estimation of the figures-of-merit: selectivity, sensitivity and limit of detection (Table 3.2). 

Selectivity describes the part of the measured signal unique to the analyte of interest for 

each sample. The average over all samples was determined to enable a global 

interpretation of its meaning [182]. For the sulfate parameter, 13.5% of the original spectral 

signal was captured by NAS vector and used in its model development, while for chloride 

only 1.9% of the signal was used. It is important to note that both sulfate and chloride models 

include great part of the spectral region as well as a high number of latent variables (6 and 

9 respectively), which may explain the low selectivity of the technique for these parameters. 

Sensitivity defines the extent of signal variation as a function of a compound’s 

concentration. Estimations of the sensitivity can be compared when the same analyte or 

property is being estimated by different models. In this case, two different properties are 

being estimated and therefore the comparison between sensitivities does not provide a 

useful interpretation. The limit of detection values obtained for both models, enhance the 

suitability of the proposed method. Either for chloride (LOD = 0.53 g/L) and sulfate (LOD = 

0.33 g/L) models those values are lower than the correspondent legal limits established for 

these compounds in wines (1g/L and 2 g/L respectively). 

 

3.3.2.  Spectral interpretation  

The presence of chloride ion in wines is usually determined as the concentration of sodium 

chloride. However, in aqueous solutions, salts are completely ionized originating 

monoatomic species that do not absorb in the infrared region. Consequently, spectroscopic 

measurements of chloride in wines can only be achieved indirectly, by measuring the 
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influence it may cause in the absorptions of other matrix’ compounds. As an attempt to 

understand which functional groups were affected by the presence of chloride, allowing its 

indirect determination through MIR spectroscopy, the regression coefficients were plotted 

(Figure 3.3), showing high contributions in the regions near 1130 cm-1, 1280 cm-1, 1570 cm-

1, 1700 cm-1, 2340 cm-1 and around 3000 cm-1. This observation seemed to indicate an 

influence of the chloride anion in the hydrogen bonds, consequently affecting the C-O 

stretching modes of alcohols, amines and carboxylic acids observed between 1570 and 

1000 cm-1 [11]. The vibrational behaviour of the C═O group from the carboxylic acids, also 

seemed to be affected by the presence of chloride, explaining the high contribution 

observed around the 1700 cm-1 The O-H stretching (from water and ethanol), and the C-H 

stretching modes observed in the region around 3000 cm-1, were also apparently disturbed 

by the chloride anion.  

The sulfate ions exist in wine as a resonance hybrid, responding to infrared radiation at 

1150-1060 cm-1, due to the S-O and S=O absorption bands [11, 183]. Therefore, unlike 

chloride, the sulfate ion can be measured directly. By plotting the regression coefficients it 

was possible to confirm the high contribution of the regions containing the S-O and S=O 

absorption bands in the construction of the model (Figure 3.3).  

 

 

 

Figure 3.3: Regression coefficients for the developed MIR spectroscopy based PLS 

regressions for chloride and sulfate in wines. 

 

3.4. Conclusion  

PLS based calibration models were proposed for determination of chloride and sulfate in 

wines. Results revealed that the MIR spectroscopy based method for sulfate determination 

yielded a R2
P=0.98 and LOD of 0.33 g/L (testing set), pointing out the suitability of this 

technique for the quantitative measurement of sulfate concentration in wines. The statistical 
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results obtained for MIR spectroscopy based method for chloride determination, proved the 

ability of the model (R2
P=0.83) to ensure semi-quantitative determinations in wine. 

Therefore, these calibrations emerge as a rapid, easy and low-cost solutions to support or 

even replace the commonly employed reference analysis. 

The power of combining MIR spectroscopy with chemometric techniques for determination 

of control wine parameters was once again demonstrated in this work. Besides the ability 

to provide quantitative chemical information, the MIR spectroscopy technique is also multi-

parametric meaning that multiple compounds can be estimated from a single measurement.  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4 - Determination of wine spoilage indicators by MIR spectroscopy 

 

 

 

 

“The discovery of a wine is of greater moment than the discovery of a constellation. The 

universe is too full of stars.” 

– Benjamin Franklin

CHAPTER 4 

DETERMINATION OF WINE SPOILAGE 

INDICATORS BY MIR SPECTROSCOPY 
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4.1.  Introduction  

Wine is one of the most complex alcoholic beverages. Several hundreds of chemical 

compounds define its character and quality. Chemical and organoleptic analyses are 

usually performed to assess wine quality. Within these analyses, wine aroma seems to be 

the most used and explored quality indicator. In fact, wine aroma is the result of a complex 

blend of volatile molecules with their origin in the most diverse and interrelated 

backgrounds: grape variety and associated terroir, microbiological pathways followed 

during alcoholic and malolactic fermentations, vinification process and ageing/storage 

conditions [184-186]. Therefore, besides the assessment of wine quality, the volatile 

composition of wine may also provide useful information in the characterization of wines 

and in the optimization of viticultural and winemaking practices. 

In the last years, several studies reported an extensive number of volatile compounds 

present in wine aroma, such as alcohols, acids, esters, phenols, aldehydes, thiols, 

monoterpenes and ketones among others [185, 187]. Their contribution to the wine aroma 

is determined by their concentration and perception threshold. Thus, only some of them are 

considered as impact odorants [185, 187, 188].  

At high concentrations, compounds like higher alcohols, volatile fatty acids, ethyl acetate, 

acetoin and furfural are related to unpleasant sensorial characteristics in wines. These 

odorants (commonly assigned as off-odors), are usually produced by yeasts or bacteria due 

to unfavorable conditions during alcoholic and malolactic fermentations. Thus, it is crucial 

to measure and control these aromas before they reach their odor thresholds in wine.  

Higher alcohols are usually associated to the fruity character of wines. However, at high 

concentrations isoamyl and isobutyl alcohols introduce strong and pungent odors, while 1-

hexanol imparts an herbaceous scent, overlapping the global aroma of wine. Volatile fatty 

acids, namely butyric, isobutyric and decanoic acids, at concentrations above their odor 

threshold are related to fatty, cheesy and sweaty aromas in wine. They could also present 

fermentation inhibitory effects to some extent. Ethyl acetate is usually pointed out as the 

most significant ester in wines, which is mainly due to its off-odor generally described as 

glue or acetone-like. Acetoin (among the ketones) is considered to have flavor significance 

in wine. Its presence in high concentration, contributes to the global aroma of wine by adding 

a buttery smell. Furfural is an aldehyde whose presence in wine may add toasty, almond 

and caramel-like tones, contributing to the baked character of wines [186, 189-192]. 

Thus, it is important to develop an analytical method capable of determine all these 

compounds, whether individually or simultaneously, in wines. The reference procedures 

used for their determination, usually require extraction techniques (such as liquid-liquid 

extraction, simultaneous distillation/extraction, dynamic and static headspace sampling 
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methods and solid phase micro extraction), followed by slow, expensive and complicated 

analytical procedures (gas chromatography coupled to flame ionization detector, gas 

chromatography coupled to mass spectrometry and capillary gas chromatography) [193]. 

Additionally, the sensorial analysis commonly employed in these situations, are dependent 

on a highly trained panel of sensory assessors, which can also be time-consuming and 

expensive. In the worst scenario, the above mentioned compounds are only detected when 

their presence in wine represents already a defect. 

 Therefore, the aim of this work is to develop a fast and easy method (combining MIR 

spectroscopy and chemometrics) capable of measuring some of the most common off-

odors (Table 4.1) usually related with wine defects. The lower sensitivity of the MIR 

technique triggered the selection of compounds with higher odor threshold values. 

Consequently, isoamyl alcohol, isobutanol, 1-hexanol, butyric acid, isobutyric acid, 

decanoic acid, ethyl acetate, acetoin and furfural were chosen. To the best of our knowledge 

this is the first time such methods are developed for the quantitative determination of these 

compounds in wine through the use of MIR spectroscopy.  

 

Table 4.1: List of the compounds under investigation, responsible for some of the most 

common off-odors in wine. Chemical formula and associated odor description [194-196]. 

Compound Chemical formula Odor description 

Isoamyl alcohol C5H12O Cheese, burnt alcohol 

Isobutanol C4H10O Fusel, alcohol, nail polish, oily, bitter, Green 

1-Hexanol C6H14O Herbaceous, green, grass 

Butyric acid C4H8O2 Rancid, cheese, sweat 

Isobutyric acid C4H8O2 Fatty, rancid, butter, cheese 

Decanoic acid C10H20O2 Fatty, rancid 

Ethyl acetate C4H8O2 Fruity, solvent, balsamic 

Acetoin C4H8O2 Buttery cream, flowery, wet 

Furfural C5H4O2 Pungent 

 

4.2.  Materials and methods  

4.2.1. Samples’ preparation 

A young red wine from the Spanish DO La Rioja, was selected for the development of this 

study. The wine, from the 2013 harvest, was kindly donated by Bodegas Riojanas winery 

(in the north of Spain), where all the vinification process was developed and carried on. The 

sample was taken directly from the cellar (in June 2015) and stored at 14ºC until analysis.  
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It was our purpose to evaluate the suitability of MIR spectroscopy to determine the 

compounds under investigation: isoamyl alcohol, isobutanol, 1-hexanol, butyric acid, 

isobutyric acid, decanoic acid, ethyl acetate, acetoin and furfural in wine. As a first approach, 

a single wine sample was considered to avoid possible interferences related with the wine 

compositional matrix. The sensory analyzes of this wine sample was performed in Bodegas 

Riojanas winery and no faults were detected.  

For the proper development of calibration models, each parameter’s concentration was 

increased by submitting wine to controlled additions (spiking). Standard solutions of isoamyl 

alcohol, isobutanol, 1-hexanol, butyric acid, isobutyric acid, decanoic acid and furfural (all 

supplied by Sigma-Aldrich), ethyl acetate (supplied by Scharlau) and acetoin (supplied by 

Fluka) were prepared in methanol (supplied by Sigma-Aldrich). The high concentrations of 

these solutions ensured minimal additions, avoiding significant changes in the original 

matrix. Previous calculations assured that added volumes always represented less than 5% 

of the whole sample volume.   

Wine was centrifuged at 11000 rotations per minute, during 10 minutes at a temperature 

set at 10⁰C (Eppendorf centrifuge 5403 – N.Y., U.S.A.), prior to additions (spiking) and 

respective MIR measurements. To ensure the reliability of this procedure, every single 

volume of standard solution added to the sample was weighted.  

The concentration intervals selected for each compound’s calibration, were based on their 

odor threshold values. Sensory thresholds are commonly determined by adding known 

concentrations of the pure compound to a model solution (usually mixtures of water, 

ethanol, glycerin and tartaric acid). The resulting solutions are evaluated by trained 

panelists through the triangle test. Odor threshold values established by Guth (1997) or 

Ferreira (2000) are listed in Table 4.2 for each compound [197, 198]. 

As a first approach, and having in mind the relatively low sensitivity of MIR instruments, 

concentration limits were established between one fifth of the odor threshold value and 200 

mg/L for each compound. A total of 125 assays were executed. However, a first calibration 

attempt of the resulting data, revealed the unsuitability of the selected interval for the 

calibration of eight over the nine compounds. With the exception of isobutyric acid, for all 

the other compounds it was necessary to expand the concentrations’ interval. Therefore, 

new experimental designs were executed and upper concentration levels were 

reestablished as 250 mg/L (for ethyl acetate and furfural), 300 mg/L (for butyric acid) and 

500 mg/L (for isoamyl alcohol, isobutanol, 1-hexanol, decanoic acid and acetoin), which 

resulted in the addition of 98 new measurements/samples for each compound. The 

concentration ranges used for each parameter calibration as well as the respective odor 

threshold and number of samples is described in Table 4.2. 
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Table 4.2: Description of the samples produced in this work including concentration range, 

number of produced samples, and odor threshold (according to Guth 1997, and/or Ferreira 

2000, [197, 198]).   

Compound 
Concentration range 

(mg/L) 

Odor threshold 

(mg/L) 

Number of 

samples 

Isoamyl alcohol 4.08 – 516.09 30 223 

Isobutanol 5.28 – 522.42 40 223 

1-hexanol 1.09 – 524.88 8 223 

Butyric acid 0.92 – 294.35 10 223 

Isobutyric acid 28.59 – 179.91 200 125 

Decanoic acid 0.97 – 511.57 15 223 

Ethyl acetate 0.96 – 221.53 7.5 223 

Acetoin 22.68 – 529.33 150 223 

Furfural 1.95 – 234.71 14.1 223 

 

4.2.2. MIR analyses 

MIR spectral acquisition was performed using an ABB MB3000 (Québec, Canada) 

spectrometer, equipped with Horizon MB (version 3.2.5.2) software. Measurements were 

the result of 32 scans, carried out in absorbance mode from 4000 to 300 cm-1, with a spectral 

resolution of 2 cm-1. Sampling was conducted through a continuous flow system, in which 

a peristaltic pump (Gilson Minipuls – France) pushed continuously the sample to a CaF2 

cell with an optical pathlength of 0.025 mm. 10 mL of sample kept in a temperature 

controlled room (25ºC) ensured a triple measurement and the preflushing of the system. 

Background measurements were taken against air, before every set of 10 measurements. 

 

4.2.3. Data processing  

A detailed exploratory analysis is frequently required when working with MIR spectra in 

order to locate spectral regions encompassing the variation capable of providing useful 

results for each specific demand. A simple visual analysis of MIR spectra led to the 

exclusion of the regions earlier than 3050 cm-1 and beyond 950 cm-1. The remaining spectral 

section was subdivided into five spectral regions in agreement with the disposition of its 

peaks and/or bands (Figure 4.1). The five regions individually, as well as all their possible 

combinations (a total of 31 possibilities) were considered in the development of each 

compound’s calibration with the objective of ensuring an exhaustive investigation of the 

whole spectral range. Undesirable spectral variations generated by temperature variations, 

light scattering effects and baseline drifts may limit the proper use of the spectral data. 
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Therefore, pre-processing techniques capable of reducing these undesirable effects were 

employed. Raw spectra were treated with SNV and Savitzky-Golay first and second order 

derivative (both individually and in combination).  

 

Figure 4.1: MIR raw spectra of all wine samples used in this work. 

 

4.2.4. Multivariate data analysis 

Before using the spectra, it was necessary to ensure their validity. For this purpose, a 

principal component analysis (PCA) model was performed to identify possible outliers, 

simultaneously ensuring the robustness of the future models. This model was developed 

for the spectral regions between 1580-1201 cm-1 and 3050-2601 cm-1, considering 

Savitszky-Golay first derivative spectra. The resulting PCA model encompassed three 

principal components that accounted for 95.6% of the total variance in the considered 

regions. From the analysis of the PCA model residuals Q (sum of squared residuals) and 

Hotelling’s T2 (weighted sum of squared scores) statistics, two samples were considered 

outliers. The samples identified as outliers were excluded from the sample sets. 

Calibration models were built based on partial least squares (PLS) regression (using the 

PLS-1 algorithm [180], by regressing processed spectral data against the corresponding 

concentration values (obtained through controlled additions). Chemometric models were 

developed in Matlab version 8.3 (MathWorks, Natick, MA, USA).  
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After developing the calibration models for each compound, it was crucial to evaluate the 

models and determine their predictive ability through RMSEC [98].  

The calibration models were cross-validated by the leave-one-out technique and 

consequently evaluated through RMSECV. This step, allowed the selection of the optimal 

number of PLS factors (LVs), committed to the lowest value of RMSECV [181]. Finally the 

previous models were tested with independent data sets, representing 30% of the global 

sets randomly selected. After projecting the test sets onto the models, they were once again 

evaluated by calculating the RMSEP, (as well as its percentage).  

The evaluation of the models was also assessed through the estimation of R2
P, RER, and 

LOD parameters.  

Before application of PCA and PLS all datasets were subjected to mean-centring. All 

calculations were carried out using Matlab version 8.3 (MathWorks, Natick, MA, USA). 

 

4.3. Results and discussion  

4.3.1. Calibration procedure and statistics  

As explained earlier, spectra were divided into five spectral regions assigned as: region 1 

(1200 to 950 cm-1), region 2 (1580 to 1201 cm-1), region 3 (1800 to 1581 cm-1), region 4 

(2600 to 1801 cm-1) and region 5 (3050 to 2601 cm-1) (Figure 4.1). All these five regions 

were pre-processed and submitted to PLS regression, whether individually or in 

combination, originating several calibration models for each compound. The resulting 

models were evaluated in terms of the coefficient of determination (R2) and associated 

predictive errors, enabling the identification of the best regions and pre-processing 

techniques for each specific compound. Regions 2 and 5 seemed to contain the most 

contributive and valuable information for the calibration of the nine parameters here 

proposed. The Savitzky-Golay first derivative was the most useful pre-processing 

technique. After the models optimization, the test sets were projected. The statistical results 

for all PLS calibration models are listed in Table 4.3.  

The criteria defined by Williams and Norris (2001), proposes that an R2 greater than 0.90 

indicates “very good” regression models capable of quantitative determinations [166]. 

According to this criteria, all developed models (especially the ones for ethyl acetate (R2
P = 

0.98), furfural (R2
P = 0.97), acetoin (R2

P = 0.96) and 1-hexanol (R2
P = 0.96)) are remarkably 

capable of quantitative predictions. It is also worth noting that all the predictive errors 

(RMSEP %) represent less than 10 % of the respective concentration ranges.  

A comparison between experimental values of compounds’ concentrations and 

corresponding PLS models’ predictions is given in Figure 4.2.
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Table 4.3: Summary of the developed PLS models’ statistics. 

 Calibration Prediction 

Compound 
Spectral region 

(cm-1) 

RMSEC 

(mg/L) 

RMSECV 

(mg/L) 
LVs 

RMSEP 

(mg/L) 

RMSEP 

(%) 
R2

P RER 
LOD  

(mg/L) 

Isoamyl alcohol 1580 – 1201 48.37 50.57 3 40.35 7.9 0.92 12.2 121.1 

Isobutanol 3050 – 2601 37.30 45.44 6 34.05 6.6 0.95 14.7 102.2 

1-hexanol 3050 – 2601 35.76 46.03 9 31.61 6.0 0.96 16.2 94.8 

Butyric acid 1580 – 1201 23.30 30.95 7 28.90 9.8 0.91 10.1 86.7 

Isobutyric acid 1580 – 1201 12.85 16.69 6 12.30 8.1 0.95 12.2 36.9 

Decanoic acid 1580 – 1201 49.60 52.92 4 35.78 7.0 0.94 13.8 107.4 

Ethyl acetate 1580 – 1201 10.03 14.04 7 10.42 4.7 0.98 20.5 31.3 

Acetoin 1580 – 1201 25.58 37.36 8 30.91 6.1 0.96 16.4 92.7 

Furfural 1580 – 1201 15.92 18.80 6 12.11 5.2 0.97 19.0 36.3 

LOD (limit of detection); LVs (latent variables); RER (range error ratio); RMSEC (root mean square error of calibration); RMSECV (root mean 

square error of cross validation); RMSEP (root mean square error of prediction); R2
P (coefficient of determination of prediction). 
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Figure 4.2: PLS regression models for cross-validation (●) and test sets (□) for isoamyl alcohol, isobutanol, 1-hexanol, butyric acid, isobutyric 

acid, decanoic acid, ethyl acetate, furfural and acetoin. 
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4.3.2. Models’ interpretation 

The mid infrared spectrum of wine is mainly dominated by intense water and ethanol 

absorption bands. These absorption bands represented one of the major limitations in what 

concerned the determination of higher alcohols. Additionally, the chemical similarity 

between wine constituents resulted in similar absorption features, limiting the determination 

of the minor compounds. The overlapped absorptions, typical of the MIR spectra of wine, 

prevent its direct interpretation and the observed peaks or bands cannot be assigned to 

individual compounds. Therefore, the plot of the regression coefficients vector, represented 

in Figure 4.3, worked as an alternative to support the selection of the most contributive 

regions for each compound.   

The calibration of higher alcohols was accomplished in two different spectral regions. 

Isobutanol and 1-hexanol were calibrated in the region 5 (3050-2601 cm-1), while for isoamyl 

alcohol better results were achieved in region 2 (1580-1201 cm-1). The regression 

coefficients suggest that spectroscopic variations in region 5 are probably due to the CH2 

symmetric and asymmetric stretching (reported at 2935-2840 cm-1 and 2990-2900 cm-1, 

respectively), while for isoamyl alcohol the variations on region 2 may be correlated to 

─CH2, C─C─H and H─C─O deformation vibrations [17]. Region 2 also seemed to contain 

the most valuable information in what concerned the calibration of the volatile fatty acids 

(Figure 4.3). Indeed, the C─O stretching and the O─H deformation vibrations, reported by 

Regmi (2012)  around 1321-1210 cm-1 and 1420-1320 cm-1 respectively, seemed to 

represent the major contributions for the successful calibrations of butyric acid, isobutyric 

acid and decanoic acid [10].  

The best calibration models for furfural, acetoin and ethyl acetate were also obtained when 

region 2 was considered.  For the ester ethyl acetate, main contributions are observed 

around 1200-1350 cm-1 and 1400-1365 cm-1. In fact, the CH3 symmetric and asymmetric 

deformations, as well as the CO─O stretching, have been reported for acetates near 1375 

cm-1, 1430 cm-1 and 1265-1205 cm-1, respectively. The carbonyl and hydroxyl groups 

present in the acetoin compound, makes it very similar with the major constituents of wine. 

However, spectral variations around 1400-1330 cm-1 were enough to produce the 

calibration model with a RER of 16.4. This variations may be associated to the C─C 

stretching vibration reported at 1325-1115 cm-1 for aliphatic ketones [17]. Furfural is a furan 

derivative aldehyde with high spectroscopic variations around 1500-1350 cm-1. These 

variations may be associated either to the C═C stretching in the furan ring (1400-1390 cm-

1) or to the in-plane C─H rocking vibration of the aldehyde functional group (1450-1325 cm-

1) [17]. 
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Figure 4.3: Regression coefficients’ vectors for all PLS-1 models. 
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4.3.3. Methods’ evaluation  

It was of our concern to obtain PLS models with a LOD lower than the odor threshold value 

for each compound. This procedure was especially well succeeded for isobutyric acid (LOD 

= 36.91 mg/L, RMSEP = 12.30 mg/L) and acetoin (LOD = 92.74 mg/L, RMSEP = 30.91 

mg/L) whose LOD and predictive errors are lower than the respective odor threshold values. 

It should be noted, that the calibration model proposed for isobutyric acid was developed 

for a concentration range (29.59 – 179.91 mg/L) below its odor threshold value (200 mg/L). 

For all other six compounds, the limits of detection are higher than the respective odor 

threshold values. However, we should have in mind that these sensorial detection limits 

were established using model solutions. The perception of these compounds in wines would 

be far more difficult to assess, due to the complexity of their matrix. Consequently, the odor 

threshold values in wines are much higher than the ones obtained for model solutions. 

Under this point of view, the obtained LOD values may be considered suitable for the wine 

industry purposes.  

 

4.4. Conclusions  

Nine PLS based calibration models were proposed for the determination of off-odors in 

wines from MIR spectra. Results revealed good regression properties (RP
2 > 0.91 and RER 

> 10.1) for isoamyl alcohol, isobutanol, 1-hexanol, butyric acid, isobutyric acid, decanoic 

acid, ethyl acetate, acetoin and furfural. The LOD values obtained for isobutyric acid and 

acetoin, enhance the ability of this technique for the (early) detection of these compounds, 

with acceptably low errors of prediction before they become wine defects. Special attention 

should be given to isobutyric acid whose calibration was performed in a range of 

concentrations below its odor threshold value (in model solutions). For the remaining seven 

compounds, the suitability of this technique was compromised by high LOD versus low odor 

threshold limits. However, as already mentioned, the complexity of wine matrix makes the 

sensory perception of these compounds more difficult, increasing their odor threshold 

values. To attest the robustness of the proposed models, further studies should be 

performed including a wide number and diversity of wine samples, and establishing the 

sensory thresholds of these compounds for those samples. 
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CHAPTER 5 - Raman spectroscopy for wine analysis: a comparison with NIR and 

MIR spectroscopy 

 

 

 

 

 

 

 

“Give me wine to wash me clean of the weather-stains of cares.” 

– Ralph Waldo Emerson

CHAPTER 5 

RAMAN SPECTROSCOPY FOR WINE ANALYSIS: 

A COMPARISON WITH NIR AND MIR 

SPECTROSCOPY 
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5.1. Introduction  

Wine has been triggering thousands of studies throughout the years. The complexity of its 

physical, chemical and biological attributes made it so appreciated and intriguing. Like any 

food, it should meet quality and safety standards in accordance with legal requirements and 

consumer’s expectations. Several parameters are routinely measured as the main 

indicators of wine attributes (e.g. alcoholic strength, density, total and volatile acidity, total 

sugars and pH) [199].  

In the last decades, infrared spectroscopy (both in the near and mid infrared regions) has 

been widely employed in the wine industry, covering a large number of requirements [38]. 

The ability of mid infrared techniques (MIR) for wine analysis is currently well established 

for the determination of alcoholic strength, density, total and volatile acidity, total sugars 

and pH [12, 14, 98-100, 104, 179, 200]. Near infrared (NIR) spectroscopy was also 

successfully employed in the determination of some of these routine parameters [95, 96, 

104, 117]. Nevertheless, Raman spectroscopy is still in its infancy regarding its application 

in wine analysis.  Only recently, has its potential been considered for the determination of 

ethanol and sugars, suggesting the suitability of this technique for wine measurements [28, 

113, 201, 202]. 

Near and mid infrared spectroscopy have their own individual strengths and drawbacks. 

MIR spectroscopy is apparently more suitable for wine analysis, since organic functional 

groups have characteristic and well defined absorption bands in this spectral region, 

consequently enabling its identification and characterization. However, most compounds 

strongly absorb in this region, forcing the use of sample holders with extremely short 

effective pathlength. In NIR spectroscopy, the sample holders do not need to fulfil this 

demand. Nevertheless, calibration procedures for quantitative determinations are more 

complex and laborious, since they are extracted from weak overtones and combination 

bands. Raman spectroscopy has been described as well suited for aqueous solutions, and 

this is probably its major advantage over IR techniques for wine analysis [203].  

The main purpose of this work is to prove the ability of Raman spectroscopy for routine wine 

analysis, by developing calibration models for the determination of alcoholic strength, 

density, total and volatile acidity, total sugars and pH. It is, to the best of our knowledge, the 

first time Raman spectroscopy is proposed for the determination of total acidity, volatile 

acidity, density and pH in wines. Additionally, near and mid infrared spectroscopy were also 

evaluated and their performances were compared to the one obtained by Raman 

spectroscopy, aiming to determine which of the three techniques is the most suitable for 

routine wine analysis. 

 



 

92 
 

5.2. Material and methods  

5.2.1. Sample set  

The wine samples considered for the development of this study were kindly donated by the 

Vinhos Verdes Wine Comission (CVRVV - Comissão de Viticultura da Região dos Vinhos 

Verdes), in Portugal [177]. A total of 114 white wines of several varieties and belonging to 

different Portuguese wine regions were selected to compose the sample set. The selection 

was performed aiming to include a wide diversity of wines, encompassing a wide range of 

the studied parameters. Samples were filtered and degassed before any measurement. 

 

5.2.2. Analytical determinations 

For each wine sample the studied quality indicators (alcoholic strength, density, total acidity, 

volatile acidity, pH and total sugars) were analytically determined according to the 

Compendium of International Methods of Wine and Must Analysis, published by 

the International Organisation of Vine and Wine (OIV) [2].  Alcoholic strength was 

determined by distillation followed by densimetry. Total sugars (here representing glucose 

plus fructose) were measured through an enzymatic method combined with 

spectrophotometry. Relative density was determined by densimetry, total acidity by 

potentiometric titration, volatile acidity by distillation followed by titrimetry and pH by 

potentiometry. The uncertainties associated to the described methods are presented as 

expanded uncertainties (using the coverage factor k = 2, to give a level of confidence of 

approximately 95%), being calculated on the basis of interlaboratory test results (depicting 

random and systematic errors). The statistics for the measured parameters are described 

in Table 5.1. 

 

Table 5.1: Statistics for the chemical parameters of wine samples.  

Parameter Range Mean Standard 

deviation 

Expanded 

uncertainty (%) 

Alcoholic strength (% vol.) 8.9-14.0 12.2 1.2 0,91 

Total sugars (g/L) 0.0-16.5 3.6 4.1 7,5 

Total acidity (g/L) 4.5-8.7 6.5 0.80 3 

Volatile acidity (g/L) 0.12-0.60 0.35 0.087 5 

pH 2.90-3.62 3.26 0.119 2 

Density (g/mL) 0.9883-0.9995 0.9913 0.002365 0,02 
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5.2.3. Spectroscopic measurements 

5.2.3.1. Raman spectroscopy 

Raman spectral measurements were carried out using a Bruker MultiRAM Fourier transform 

spectrometer (Bremen, Germany), equipped with a Ge detector cooled by a liquid nitrogen 

tank, and with a 1064 nm laser source. The OPUS software package provided by Bruker 

Optics (Bremen. Germany) was used for spectral acquisition. Sampling was performed 

through a continuous flow system, employing a flow cell with an optical pathlength of 5 mm. 

Triple measurements were performed for each sample, with the laser power set to 1000 

mW, covering the wavelength range from 3500 to 50 cm-1 at a spectral resolution of 8 cm-1, 

over a five minute period (corresponding to an average of 310 scans). 

 

5.2.3.2. MIR spectroscopy  

Mid infrared spectra were acquired using a Multispec IRTF UV/Visible spectrometer 

(CETIM, France), coupled with an Avatar 370 detector (Thermo Nicolet Corporation, 

Madison, Wisconsin, USA) and recorded through the Bacchus Acquisition/ Quantification 

software (CETIM, France). The spectra of filtered and degassed samples were the result of 

22 scans measured in the absorbance mode from 3010 to 950 cm-1, with a spectral 

resolution of 16 cm-1. Triple measurements were performed in a CaF2 cuvette with an optical 

pathlength of 0.1 mm. Sampling was made at 25 ⁰C, through an auto-sampler module 

equipped with a Peltier system. Background measurements were taken against distilled 

water before every session of measurements.  

 

5.2.3.3. NIR spectroscopy  

Near infrared (NIR) spectral acquisition was performed using a NIRSystems 5000 

spectrophotometer, equipped with a Vision 2.22 software (Foss NIRSystems, Silver Spring, 

Maryland, USA). Measurements resulted from 32 scans carried out in the absorbance mode 

from 1100 to 2498 nm (9091 – 4003 cm-1) with 2 nm intervals over the wavelength range. 

Sampling was carried out in a liquid analyser module through a continuous flow system 

including a flow cell with 2 mm optical pathlength. To assure the reproducibility of the 

spectra, three replicates were performed for each sample, and temperature was carefully 

controlled and maintained at approximately 28 ⁰C. Background was taken automatically 

before each measurement. 

 

5.2.4. Data processing  

The complexity of the wine matrix prevents the direct correlation between any individual 

wine component and specific absorption bands, for both IR and Raman spectroscopies. 
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Therefore, the obtained spectra were explored in detail to find the spectral regions 

containing useful information for the proper calibration of each specific parameter. A visual 

inspection of the NIR and MIR spectra lead to the exclusion of spectral regions affected by 

low signal/noise ratio and signal saturation problems, which are mainly due to the strong 

water and ethanol absorptions [10, 99, 204]. Therefore, the spectral regions from 4309 to 

4003 cm-1 and 5434 to 4546 cm-1 were not considered for NIR calibration purposes, and the 

one comprised between 1700 and 1500 cm-1 was excluded from the MIR spectra. As 

Raman spectroscopy is not affected by the presence of water, no saturation problems were 

visualized, thus the whole spectrum was considered for the development of calibration 

models.  

After calculating each average spectrum (resulting from each set of three replicates), a 

principal component analysis (PCA) was performed for NIR, MIR, and Raman spectra, in 

order to detect and identify eventual outliers. In the PCA model developed for Raman 

spectra, three principal components captured 97.73 % of the total variance. According to Q 

residuals and Hotelling’s T2 statistics, two samples were considered outliers and removed 

from the sample set. Two principal components accounted for 98.05 % of the total variance 

captured from NIR spectra. Q residuals and Hotelling’s T2 statistics enabled the exclusion 

of two outliers. For MIR spectra, 95.11 % of the total variance was explained by two principal 

components and two samples were eliminated in accordance with the Q residuals and 

Hotelling’s T2 statistics.  

After the exclusion of the six samples considered as outliers, the resulting sample set 

(composed by 108 samples for NIR, MIR and Raman measurements) was randomly divided 

in two subsets: a calibration set and a test set. Therefore, 70% of the samples were used 

in the construction of the calibration models, and the remaining 30% were employed for 

testing the model’s performance. 

Aiming to find the spectral region more suitable for the calibration of each parameter, NIR, 

MIR and Raman spectra were divided in four spectral regions, as represented in Figure 5.1. 

For each spectroscopic technique, the four individual regions, as well as all their possible 

combinations (a total of 15 possibilities), were considered for calibration procedures. 

Unwanted spectral variations, were corrected by applying pre-processing techniques. 

Savitzky-Golay first and second order derivatives, and SNV were tested (whether 

individually or combined), in each of the three spectral sets (NIR, MIR and Raman). The 

pre-processing techniques and spectral regions that originated the models with the lowest 

cross-validation errors are described in Table 5.2 for each parameter and for each 

spectroscopic technique.   
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Figure 5.1: Raw spectra of wine samples obtained by a) Raman, b) MIR and c) NIR 

spectroscopy, and correspondent wavelength division.  
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5.2.5. Multivariate data analysis 

The correlation between spectral data and the results obtained by reference analysis was 

performed through the application of PLS regression, using the PLS-1 algorithm [180]. The 

number of latent variables (LVs) was evaluated by cross-validation (leave-one-out), and 

through the minimization of the RMSECV. This procedure was carried out through a 

commitment between the RMSECV and the number of latent variables. Finally, these 

models were tested by projecting the test set. The RMSEP and the coefficient of 

determination of prediction (R2
P) were subsequently determined, being considered the best 

indicators of the model’s predictive ability. Additionally, the range error ratio (RER) was also 

estimated. This dimensionless parameter enabled an easier and direct comparison of NIR, 

MIR and Raman performances. The performance of the three proposed techniques was 

also evaluated for each parameter through the estimation of figures-of-merit such as limit 

of detection (LOD), sensitivity (SEN) and selectivity (SEL). LOD was defined as three times 

the RMSEP. SEN and SEL were calculated using the net analyte signal (NAS) theory [169, 

182]. 

All calculations were carried out using Matlab version 8.3 (MathWorks, Natick, MA, USA) 

and the PLS Toolbox version 5.5.1 (Eigenvector Research, Inc., WA, USA). 

 

5.3. Results and discussion 

5.3.1. Spectral analyses 

As previously referred, several spectral regions (Figure 5.1) and pre-processing techniques 

were combined and tested, resulting in the development of 90 calibration models for each 

compositional parameter and technique (NIR, MIR and Raman). The evaluation of these 

models was performed through the estimation of RMSECV, which enabled the identification 

of the best spectral regions and pre-processing techniques (Tables 5.2, 5.3, and 5.4).  

 

5.3.1.1. Raman spectroscopy  

For Raman spectroscopy based models, better calibrations were achieved in the regions 

3501-2803 and 1796-57 cm-1, and apparently these are the ones containing more 

information. Combining these regions, originated the best calibration models for alcoholic 

strength. Different vibrational modes, related to the ─CH2 and ─CH3 groups of ethanol, have 

already been reported, such as C─H stretching vibrations (originating bands around 2885, 

2934 and 2980 cm-1) and  H─C─H bending modes (responsible for the band near 1455 cm-

1) [27, 28]. The bands at 1087 and 1048 cm-1 (mainly caused by the C─O stretching, and 

─CH3 rocking vibrations) have also been associated with the presence of  ethanol [27, 28]. 

However, the most characteristic band of ethanol is usually assigned to the C─C stretching 
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vibration that may be observed around 880 cm-1. Plotting the regression coefficients is the 

best way to understand which variables had major contributions in the model’s construction. 

In Figure 5.2a), it is possible to observe that and C─H (2885, 2934, and 2980 cm-1) and 

C─C (880cm-1) stretching vibrations of ethanol are probably the main responsible for its 

proper calibration.  

For the calibration of total sugars, the information contained in the region between 850 and 

57 cm-1 was enough to provide the best models. In this region it is possible to find strongest 

bands commonly related to the presence of sugars (C─C─O vibrations of glucose rings). 

Previous studies reported the presence of these bands around 451cm-1 and 520 cm-1, when 

considering the Raman spectra of rice wine [26, 27]. In fact, the plot of regression 

coefficients represented in Figure 5.2b), shows the major contribution of the variables 

located near the abovementioned regions. 

Density, pH, total acidity and volatile acidity Raman spectroscopy based models were best 

calibrated by including spectral information from the region between 1796 and 57 cm-1. The 

regression coefficients’ plot of the Figure 5.2f), enhances the weight of the variables 

previously related to glucose and ethanol, for the calibration of density. In this region, 

besides the bands related to sugars and ethanol, are also located variations associated to 

carboxylic acids [17]. The regression coefficients obtained for the total acidity model (Fig 

3c)), show higher contributions of the variables around 1735 cm-1, probably caused by the 

C═O stretching of carboxylic acids (Fig. 3c)), [17]. The analysis of regression coefficients 

also supported the selection of the proper variables for the calibration of volatile acidity and 

pH (Fig. 3 d) and e)). Variables around 895 cm-1, seemed to be the most contributing for 

the calibration of volatile acidity. Referring to the pH calibration, the whole region (between 

57 and 1796 cm-1) seemed to contribute evenly for the calibration of this parameter. 

Nevertheless, it is possible to highlight the slightly larger contribution of the regions around 

1415 and 1730 cm-1. No clear reasons were found to explain the better contribution of these 

regions in the calibration of volatile acidity and pH.  Further studies should be carried out in 

order to clarify those contributions. 
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Figure 5.2: Raman spectroscopy regression coefficients, for the developed PLS models of a) alcoholic strength; b) total sugars; c) total acidity; 

d) volatile acidity; e) pH and f) density, based on Raman spectroscopy. 
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Figure 5.3: Raman spectroscopy PLS regression models for cross-validation (■) and test 

sets ( ) for a) alcoholic strength; b) total sugars; c) total acidity; d) volatile acidity; e) pH and 

f) density.  
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Figure 5.3 (continued): Raman spectroscopy PLS regression models for cross-validation 

(■) and test sets ( ) for a) alcoholic strength; b) total sugars; c) total acidity; d) volatile 

acidity; e) pH and f) density.  
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5.3.1.2. MIR spectroscopy 

For the alcoholic strength and total sugars the best calibration models were obtained in the 

region between 1215 and 950 cm-1 of the MIR spectra. In fact, intense bands related to the 

C─O stretching of ethanol have been previously reported in this region [8, 10, 205, 206]. 

Total acidity achieved its best calibration model in the region of 2800 to 1700 cm-1. The 

C═O stretching of carboxylic acids (observed between 1740 and 1700 cm-1), has already 

been referred as the most relevant vibrational band for the calibration of this parameter [10, 

12]. The region comprised between 1500 and 1216 cm-1, was selected as the most suitable 

for the measurement of volatile acidity, density and pH. The similarity of volatile acidity 

(measured as acetic acid) with other organic acids present in wine (due to C═O, C─O and 

O─H, typical absorption bands from carboxylic acids) complicates the calibration of this 

parameter. Previous studies, considered the band at 1385 cm-1 as the most important for 

the calibration of volatile acidity [12]. Relative density includes all the compositional 

parameters of wine, but it mainly represents the compounds present in higher 

concentrations (such as water, ethanol, sugars, and organic acids). Therefore, it is not 

surprising that good calibration models were obtained in the whole spectral range. However, 

the model obtained for the region between 1500 and 1216 cm-1 presented slightly better 

results and was selected as the most suitable. This region is affected by spectroscopic 

variations related to differences in sugars, ethanol and organic acids’ contents [9, 14, 100], 

being probably the main reason for the better calibration of density and pH in this region. 

 

5.3.1.3. NIR spectroscopy  

The assignment of certain absorption bands to specific functional groups is more difficult in 

NIR spectroscopy, since its spectrum is composed by combination bands and overtones.  

The regions 9091-7692 and 6023-5435 cm-1 provided the best models for the calibration of 

total and volatile acidity, total sugars, pH and density. The CH, CH2 and CH3 first and second 

overtones reported in these regions, may be associated with these calibrations [207]. 

Alcoholic strength was best calibrated in the region between 7691 and 6024 cm-1, probably 

due to O─H first overtone that occurs in this region [207].  

 

5.3.2. PLS models’ development 

A total of 18 PLS models (one for each parameter and technique) were selected as the 

most suitable for the determination of alcoholic strength, density, total acidity, volatile 

acidity, pH and total sugars, through NIR, MIR and Raman spectroscopy. The established 

calibration models were then tested with independent test sets and their performance was 

evaluated through R2
P, RMSEP and RER (Tables 5.2, 5.3, and 5.4).
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Table 5.2: Summary of the developed PLS models for Raman spectroscopy.  

 
Alcoholic 

strength (% vol.) 

Total sugars 

(g/L) 

Total acidity 

(g/L) 

Volatile acidity 

(g/L) 
pH 

Density 

(g/mL) 

Spectral region (cm-1) 
3501-2803; 

1796-57 
847-57 1796-57 1796-851 1796-57 1796-57 

Pre-processing  None None None None None None 

RMSEC 0.263 0.710 0.216 0.0476 0.0378 0.000410 

RMSECV 0.304 0.912 0.330 0.0934 0.0581 0.000507 

LVs 4 5 7 7 7 5 

RMSEP 0.255 0.845 0.320 0.0746 0.0354 0.000529 

RMSEP (%) 5.01 5.12 7.62 15.6 4.92 4.72 

R2
P 0.956 0.967 0.901 0.592 0.902 0.964 

RER 20.0 19.5 13.1 6.43 20.3 21.2 

LOD 0.766 2.53 0.960 0.224 0.106 0.00159 

SENa) 0.00268 0.000356 0.000916 0.00309 0.00506 1.45 

SEL (%) 22.6 10.3 3.28 1.68 2.53 11.7 

a) Sensitivity values are expressed as spectral units/concentration units; LOD (limit of detection); LVs (latent variables); RER (range error ratio); 

RMSEC (root mean square error of calibration); RMSECV (root mean square error of cross validation); RMSEP (root mean square error of 

prediction); R2
P (coefficient of determination of prediction); SEL (selectivity); SEN (sensitivity). 
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Table 5.3: Summary of the developed PLS models for MIR spectroscopy.  

 
Alcoholic 

strength (% vol.) 

Total sugars 

(g/L) 

Total acidity 

(g/L) 

Volatile acidity 

(g/L) 
pH 

Density 

(g/mL) 

Spectral region (cm-1) 1215-950 1215-950 2800-1700 1500-1216 1500-1216 1500-1216 

Pre-processing  None None None None None None 

RMSEC  0.069 0.684 0.0964 0.0234 0.0295 0.000228 

RMSECV 0.0862 0.817 0.107 0.0326 0.0331 0.000288 

LVs 5 4 4 10 4 5 

RMSEP 0.0809 0.661 0.101 0.0422 0.0446 0.000289 

RMSEP (%) 1.59 4.01 2.42 8.78 6.20 2.58 

R2
P 0.997 0.974 0.985 0.879 0.915 0.989 

RER 63.1 24.9 41.4 11.4 16.1 38.8 

LOD  0.243 1.98 0.304 0.126 0.134 0.000866 

SENa) 0.0274 0.00760 0.0201 0.00842 0.0544 3.00 

SEL (%) 20.2 16.72 21.6 1.65 11.8 11.6 

a) Sensitivity values are expressed as spectral units/concentration units; LOD (limit of detection); LVs (latent variables); RER (range error ratio); 

RMSEC (root mean square error of calibration); RMSECV (root mean square error of cross validation); RMSEP (root mean square error of 

prediction); R2
P (coefficient of determination of prediction); SEL (selectivity); SEN (sensitivity). 
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Table 5.4: Summary of the developed PLS models for NIR spectroscopy.  

 
Alcoholic 

strength (% vol.) 

Total sugars 

(g/L) 

Total acidity 

(g/L) 

Volatile acidity 

(g/L) 
pH 

Density 

(g/mL) 

Spectral region (cm-1) 7692-6024 
9091-7692; 

6023-5435 

9091-7692; 

6023-5435 

9091-7692; 

6023-5435 

9091-7692; 

6023-5435 
9091-7692 

Pre-processing  None SG 1st None SNV +SG 2nd  None None 

RMSEC 0.309 1.18 0.293 0.0554 0.0431 0.000437 

RMSECV 0.332 1.38 0.389 0.0773 0.0814 0.000102 

LVs 3 4 7 5 8 7 

RMSEP 0.201 1.41 0.440 0.0714 0.0942 0.000426 

RMSEP (%) 3.94 8.57 10.5 14.9 13.1 3.81 

R2
P 0.949 0.908 0.819 0.534 0.743 0.967 

RER 25.4 11.7 9.54 6.72 7.64 26.3 

LOD 0.603 4.24 1.32 0.214 0.283 0.00128 

SENa) 0.0250 0.0000152 0.000184 0.0340 0.000824 0.0317 

SEL (%) 18.3 4.45 0.591 2.78 0.330 1.61 

a) Sensitivity values are expressed as spectral units/concentration units; LOD (limit of detection); LVs (latent variables); RER (range error ratio); 

RMSEC (root mean square error of calibration); RMSECV (root mean square error of cross validation); RMSEP (root mean square error of 

prediction); R2
P (coefficient of determination of prediction); SEL (selectivity); SEN (sensitivity); SG 1st (Savitzky-Golay first derivative); SG 2nd  

(Savitzky-Golay second derivative); SNV (standard normal variate). 
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Raman spectroscopy is here proposed for the first time for the determination of total acidity, 

volatile acidity, density and pH in wines. Considering the lower intensity of its absorption 

bands, (when compared to NIR or MIR spectroscopy), good results were achieved for all 

parameters except for volatile acidity. Following the criteria proposed by Williams and Norris 

(2001), very good results were obtained for alcoholic strength, sugars, and density (R2
P > 

0.95). This observation was supported by the range error ratios (RER > 20.00), and 

predictive errors (RMSEP < 7.62%). Poor models were obtained for volatile acidity, leading 

to the conclusion that this method is not suitable for the quantitative prediction of this 

parameter in wine. The PLS regression models developed using Raman spectroscopy are 

represented in Figure 5.3.  

Overall, the uncertainties associated with the reference methods (Table 5.1), are lower than 

the prediction errors (RMSEP %) obtained by PLS calibrations (Tables 5.2, 5.3, and 5.4). 

However, the predictive errors resulting from MIR based PLS models developed for total 

acidity and total sugars (RMSEP = 2.42 and 4.01%, respectively) are lower than the 

uncertainties associated with the respective reference methods (3% and 7.5%). The same 

happens with the Raman based PLS model developed for total sugars. The RMSEP % 

value obtained for this parameter (RMSEP = 5.12%) is lower than the uncertainty of the 

reference method (7.5%).  

MIR spectroscopy originated good predictive models for all the compositional parameters. 

This technique proved to be remarkably suitable for the quantitative determination of total 

acidity, total sugars, alcoholic strength and density (R2
P > 0.97, RMSEP < 4.01% and RER 

> 24.95). The worst predictive results were obtained for volatile acidity and pH. 

Nevertheless, in both situations the predictive errors (RMSEP) are lower than 10% of the 

reference range, and the coefficients of determination close to 0.90. Overall, results 

demonstrate the accuracy of this vibrational technique, pointing out its excellent 

performance for wine analysis.  

As expected, the calibration procedures involving NIR spectra were complicated by the 

strong water absorption features and by the weak overtones and combination bands. 

Consequently, the performance of NIR spectroscopy was lower than the one obtained by 

MIR. Still, this technique demonstrated high ability for the quantitative assessment of 

alcoholic strength and density (R2
P > 0.95, RMSEP<3.94% and RER>25.39), as well as for 

the determination of total sugars (R2
P = 0.91, RMSEP = 8.57% and RER = 11.67). Results 

pointed out the unsuitability of NIR spectroscopy for the measurement of total acidity, 

volatile acidity and pH (R2
P < 0.74, RMSEP > 10.48% and RER < 9.54). 

The three spectroscopic techniques employed in this work originated better results for the 

alcoholic strength, total sugars and density calibrations, as it may be observed through the 
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plot of RER values represented in Figure 5.4. In fact, these parameters refer to compounds 

present in higher concentrations in wines. Consequently, the major contributions of those 

compounds to the spectral information favors the correlation between reference and 

spectral data. Volatile acidity (measured as acetic acid concentration) was the parameter 

with the poorest results achieved, by the three techniques. Its relatively low concentration 

in wines and its chemical similarity with other major compounds make this parameter very 

difficult to correlate with the spectral data. 

Although the models obtained from MIR spectroscopy presented better results for all the 

studied parameters, Raman spectroscopy provided surprisingly good results. The RMSEP 

values achieved for total acidity, total sugars and pH models through Raman spectroscopy, 

are considerably lower than the ones obtained by NIR spectroscopy. Moreover, it must be 

noted that the Raman spectroscopy based model developed for pH determination provided 

the lowest prediction error, even when compared to MIR spectroscopy (RMSEP = 0.0354, 

0.0446 and 0.0942 for Raman, MIR and NIR spectroscopy, respectively). 

Although Raman spectroscopy may be considered as the less sensitive technique among 

the others, it offers the advantage of being less sensitive to the presence of water in wine 

samples. As strong water and ethanol absorption bands commonly dominate the IR spectra 

of wine, (complicating the determination of other compounds), Raman spectroscopy is a 

good alternative to avoid the interference of these wine major components. 

 

5.1.1. Methods’ evaluation 

The estimation of figures of merit such as limit of detection, sensitivity and selectivity, 

supported the evaluation and comparison of the three spectroscopic techniques evaluated 

in this work. The results obtained for these parameters are listed in Tables 5.2, 5.3, and 

5.4.The MIR based models presented the lowest limits of detection for all parameters, 

except for pH. As previously discussed, Raman based models seem to be the most 

indicated for accurate determinations of pH in wine. The sensitivity values indicate the 

extent of signal variation as a response to any change in a compound’s concentration. This 

means that high sensitivity values correspond to more sensitive techniques. MIR based 

models presented the highest values of sensitivity for almost all parameters. However, 

those values rely on the conditions of each models' development (particularly on the number 

of LV), consequently, direct comparisons between techniques should not be done. 

Selectivity, usually represents the amount of signal that is uniquely devoted to the modelling 

of a given parameter. Although selectivity values were determined for each wine sample 

individually, the values here presented are an average over all samples (displayed as 

percentage). The regions included between 1796 and 57 cm-1 were the ones selected for 
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the calibration of all the proposed parameters by Raman spectroscopy. Much of the signal 

contained in this range was used in the calibration of alcoholic strength (SEL = 22.6%). 

Total sugars and density models also used significant amounts of signal (around 10 and 

12%, respectively). The calibration of the remaining compounds received only between 1.7 

and 3.3% of the signal.  For MIR based models, total acidity received the major contribution 

of the signal (SEL = 22 %), being the only parameter calibrated in the region between 2800 

and 1700 cm-1. Similar amounts of signal were used for the development of density and pH 

models (SEL =11.6 and 11.8 respectively) in the region comprised between 1500 and 1216 

cm-1. Only 1.6% of the signal in this region was dedicated to the calibration of volatile acidity, 

enhancing the lower selectivity of this technique for the measurement of this parameter. 

Total sugars and alcoholic strength were modelled using 16.7 and 20.2 % of the signal 

included in the region 1215-950 cm-1, respectively. For NIR spectroscopy, alcoholic strength 

(the only parameter calibrated in the region 7691-6024 cm-1), received 18.3 % of the signal 

contained in this region. Small percentages of the signal contained in the regions 9091-

7692 and 6023-5435 cm-1 were used for the calibration of total and volatile acidity, total 

sugars, pH and density (SEL = 0.59, 2.8, 4.4, 0.33 and 1.6% respectively). 

 

 

Figure 5.4: Comparison of the range error ratio (RER) values obtained from NIR, MIR and 

Raman based calibration models for alcoholic strength, total sugars, total acidity, volatile 

acidity, pH and density. 
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5.2. Conclusions 

Raman spectroscopy based methodologies were here proposed for the first time for the 

quantitative determination of several parameters, usually considered indicators of wine 

quality. This technique originated good results for the quantitative assessment of alcoholic 

strength, total acidity, density, pH and total sugars, (with RMSEP values below 7.62 % and 

R2
P above 0.901 for all parameters). Poor models were obtained for the determination of 

volatile acidity, indicating that this method is not suitable for the quantitative prediction of 

this parameter in wine. The comparison of this newly proposed technique with NIR and MIR 

spectroscopy, demonstrated the best performance of MIR spectroscopy over NIR and 

Raman. Nevertheless, the Raman based model developed for pH showed the lowest 

prediction error (RMSEP = 0.0354, 0.0446 and 0.0942 for Raman, MIR and NIR 

spectroscopy, respectively), suggesting this technique as the most suitable for accurate 

predictions of this parameter in wines. 

Raman spectroscopy is still underexplored in the wine industry when compared with the 

other studied techniques. However, this work proved the suitability and potential of this 

technique to accurately determine several parameters in wine through a single 

measurement. 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

CHAPTER 6 - Merging vibrational spectroscopic data for wine classification 

acording to the geographic origin 

 

 

 

“There are thousands of wines that can take over our minds. Don't think all ecstasies are the 

same!” 

– Jalaluddin Rumi

CHAPTER 6 

MERGING VIBRATIONAL SPECTROSCOPIC 

DATA FOR WINE CLASSIFICATION ACCORDING 

TO THE GEOGRAPHIC ORIGIN 
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6.1. Introduction 

Wine is a complex mixture of hundreds of chemical compounds, present at several levels 

of concentrations. There are several factors responsible for the composition of this so 

appreciated beverage, namely: the geographical origin, the selection of grape varieties and 

harvesting timing, the fermentation process (inherently associated with the presence of 

specific yeasts and bacterial strains), storage and aging conditions, as well as the overall 

winemaking procedures [208]. Currently, most of these factors can be carefully controlled 

in order to increase or decrease the presence of certain chemical compounds, consequently 

reinforcing the organoleptic qualities of wine. Still, wines present unique characteristics that 

are essentially due to its geographical origin and its associated terroir. Geographical 

classification systems emerged as an indicator of wine authenticity, and are currently 

established in most wine producing countries [22]. The denomination of Origin (DO) is the 

classification form commonly used to identify wines whose individuality and originality are 

inextricably linked to a particular region. To benefit from this designation, the entire 

production process is regulated by strict guidelines imposed by official authorities. 

Moreover, to attest the origin and authenticity of wines, their compositional profile is usually 

evaluated through sensory and chemical analysis [209]. Several physicochemical 

parameters have been considered indicators of wines’ origin. These parameters, are mainly 

associated with the presence of phenolic compounds [210-212], amino acids and biogenic 

amines [210, 213], minerals and trace elements [214-217], and with the volatile composition 

of the wines [218-220]. High-performance liquid chromatography (HPLC), mass 

spectrometry (MS), gas-liquid chromatography (GLC), and atomic absorption spectroscopy 

(AAS), are the most commonly used techniques to assess wines’ geographical origin [209]. 

However, these methods have significant limitations: they are time-consuming, expensive 

and laborious. Thus, the possibility of being replaced by fast, non-destructive, easy 

operated and environmental friendly procedures is welcomed. Vibrational spectroscopic 

techniques, such as near infrared (NIR), mid infrared (MIR) and Raman spectroscopy, have 

been increasingly used over the last decades, since they enable the direct measurement of 

wine samples with minimum or no sample preparation [3].  

Indeed, in the last decades, vibrational spectroscopy and chemometrics have been applied 

for the classification of wines according to their geographical origins [221]. Several works 

were published, highlighting near infrared (NIR) and mid infrared (MIR) spectroscopy as 

powerful tools for the discrimination of wine samples from different geographical indications 

[112, 127, 128, 136, 209, 222-225]. Although the classification ability of Raman 

spectroscopy has been recently reported [226], the potential of this technique has not yet 

been deeply explored.  
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The aim of this study was to evaluate and compare the potential of vibrational spectroscopic 

techniques (NIR, MIR and Raman), used individually or in combination, for the classification 

of wines according to their geographic origin. Tests were performed on samples from four 

different Portuguese wine regions through the application of partial least squares 

discriminant analysis (PLS-DA).  

 

6.2. Material and methods  

6.2.1. Sample set  

A total of 97 white wine samples were kindly donated by the Vinhos Verdes Wine Comission 

(CVRVV - Comissão de Viticultura da Região dos Vinhos Verdes), located in the north of 

Portugal [227]. All samples come from the 2015 harvest and belong to four different 

Portuguese wine regions: 33 samples from Vinhos Verdes, 49 samples from Lisboa, 5 

samples from Távora-Varosa and 10 samples from Açores. All samples were filtered and 

degassed before spectroscopic measurements. 

The number of samples per group is not properly balanced.  The Távora-Varosa and Açores 

groups are considerably smaller than the other two groups, and are not sufficient to include 

adequate variability or to ensure the representativeness of the groups in question. However, 

the number of samples was inevitably limited by their availability. Therefore, the work was 

developed under a feasibility point of view. 

 

6.2.2. Spectroscopic measurements  

6.2.2.1. Raman spectroscopy 

Raman spectra were acquired using a Bruker MultiRAM Fourier transform spectrometer 

(Bremen, Germany), equipped with a Ge detector cooled by a liquid nitrogen tank, and 

controlled by the OPUS software package (Bruker Optics, Bremen, Germany). A laser 

source of 1064 nm power with 1000 mW was used. For each wine, three measurements 

were obtained using a spectral resolution of 8 cm-1, in the wavelength range from 3500 to 

50 cm-1. Each spectrum is the average of 310 scans (each measurement took 

approximately five minutes). Sampling was conducted through a continuous flow system, 

using a flow cell with 5 mm optical pathlength.  

 

6.2.2.2. NIR spectroscopy 

A NIRSystems 5000 spectrophotometer, controlled by the Vision 2.22 software (Foss 

NIRSystems, Silver Spring, Maryland, USA), was used for the acquisition of near infrared 

(NIR) data. Measurements were carried out in transmittance mode from 1100 to 2500 nm 

(9091 – 4000 cm-1), with 2 cm-1 intervals over the wavelength range, being each spectra the 
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average result of 32 scans. A liquid analyzer module, coupled to the spectrophotometer, 

and equipped with a 2 mm optical pathlength flow cell was used for sampling wines. 

Measurements were performed ensuring a continuous flow system of the sample system. 

The reproducibility of the spectral information was assured by triple measurements for each 

sample and by controlling the measurement temperature maintaining it to approximately 

28⁰C. Background measurements were taken, with the empty cell, automatically before 

each measurement.  

 

6.2.2.3. MIR spectroscopy  

Mid infrared spectral measurements were carried out using a Multispec IRTF UV/Visible 

spectrometer (CETIM, France), coupled with an Avatar 370 detector (Thermo Nicolet 

Corporation, Madison, Wisconsin, USA) controlled by the Bacchus Acquisition/ 

Quantification software (CETIM, France). Each spectrum was the average of 22 scans, 

collected in transmittance mode, from 3050 to 950 cm-1, with a spectral resolution of 16 cm-

1. An auto-sampler module, equipped with a Peltier system, ensured that sampling was 

conducted at 25 ⁰C. For each sample, three replicates were measured, using a CaF2 cuvette 

with an optical pathlength of 0.1 mm. Backgrounds were recorded against distilled water. 

 

Table 6.1: Division of the NIR, MIR and Raman spectra in spectral regions.  

 Spectral regions (cm-1) 

 Raman NIR MIR 

R1 303-57 9091-7704 3009-2800 

R2 847-307 7692-6031 2796-2152 

R3 1796-851 6024-5721 2148-1697 

R4 2799-1800 5714-5441 1500-1219 

R5 3501-2803 4550-4310 1215-953 

Excluded regions None 
5435-4554 

4307-4003 
1693-1504 

 

6.2.3. Data processing and multivariate data analysis 

The spectral data was analysed with Matlab version 8.3 (MathWorks, Natick, MA, USA) and 

with the PLS Toolbox version 5.5.1 (Eigenvector Research, Inc., WA, USA). 

The replicate measurements (taken with NIR, MIR, and Raman for each sample) were 

reduced to the average spectrum.  

Light scattering effects, baseline shifts, background noise and temperature oscillations are 

usually responsible for unwanted spectral variations [127]. Baseline correction and light 
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scattering effects were minimized applying Savitzky-Golay first and second order 

derivatives [228] and standard normal variate (SNV) normalization [229], both individually 

and in combination. The spectral sets were mean centered, before multivariate data 

analysis.  

To better explore the spectral features associated with each spectroscopic technique, the 

spectral ranges were divided into five spectral regions according to Table 6.1 (see Figure 

6.1). The five spectral regions, as well as all their possible combinations, were evaluated. 

The spectral areas affected by signal saturation problems (mainly caused by the high 

concentrations of water and ethanol) and low signal-to-noise ratio were not considered for 

classification purposes (Table 6.1). 

An exploratory analysis was performed through the application of principal component 

analysis (PCA) [145], aiming at the detection of possible outliers and clusters. The 

agglomeration of samples according to geographical origin has not been verified in any of 

the three sets of spectra (NIR, MIR and Raman). The exploratory analysis of NIR spectra 

included the spectral regions from 9091 to 5441 cm-1 and 4550 to 4310 cm-1, resulting in 

99.8% of the total variance captured by seven principal components (PC). Three samples 

were considered outliers according to the Q residuals and Hotteling’s T2 statistics. For MIR 

spectra, the PCA was applied in the spectral range from 3009 to 1697 cm-1 and 1500 to 953 

cm-1. In this situation, two principal components accounted for 95.7% of the total variance. 

According to Q residuals and Hotteling’s T2 statistics, three samples exhibited an abnormal 

behaviour and were pointed out as outliers. The PCA of the Raman spectra comprised the 

spectral range between 3501 and 57 cm-1, and three principal components explained 97.8% 

of the total variance. Q residuals and Hotteling’s T2 statistics lead to the exclusion of three 

samples.  

Classification models were based on PLS-DA, using the PLS-2 algorithm [156]. PLS-DA is 

a supervised classification method that aims to correlate the spectral data with a set of 

known responses (geographic origins) [230].For the development of PLS-DA models, 70% 

of the samples were used for calibration and the remaining 30% were used for testing the 

models. Although the division of the samples was made randomly, it was ensured that the 

proportion of samples from each class was evenly distributed among the calibration and 

test groups. 

An exhaustive evaluation of the five spectral regions, as well as all their possible 

combinations (31 different possibilities) was performed. Simultaneously, six possible 

combinations of the pre-processing techniques above mentioned were applied to each of 

the 31 spectral ranges. Therefore, for each set of spectra (NIR, MIR and Raman), 186 PLS-

DA classification models were developed and evaluated, enabling the optimization of the  
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Figure 6.1: Raw spectra of wine samples obtained by a) Raman, b) MIR and c) NIR 

spectroscopy, and corresponding division in spectral regions. 
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two parameters: variable selection and pre-processing conditions. PLS-DA results were 

expressed as confusion matrices, which display the percentage of correct predictions by 

comparing the real origins with the predicted ones.  For each developed model, the optimal 

number of latent variables (or PLS factors) was estimated by leave-one-out cross validation, 

considering only the calibration set [145]. 

The synergy between NIR, MIR and Raman spectroscopy was also investigated, aiming to 

verify if their joint use would generate models with higher predictive ability [104]. Multiblock 

partial least squares (MB-PLS) was employed, enabling the development of PLS models by 

considering simultaneously NIR, MIR, and Raman data blocks, and  revealing the 

importance of each individual block in the calibration equation [161]. Prior to MB-PLS 

analysis, data blocks were normalized to ensure that each one had the same weight in the 

calibration, independently of their number of variables. 57 samples (70% of the sample set) 

were used for calibration and the remaining 25 (30% of the sample set) were used to test 

the model. A leave-one-out cross-validation procedure indicated the optimal number of 

latent variables that should be used in calibration. After defining each Vinhos Verdes sample 

as 1 and each Lisboa sample as 0, an optimization procedure was developed to identify the 

best classification threshold (i.e. all predictions bellow that threshold belong to one class, 

and the predictions above that threshold belong to the other). The resulting calibration 

model was finally tested with the 25 samples from the prediction set.  

 

6.3. Results and discussion 

The collected spectra (Figure 6.1) are in accordance with typical patterns previously 

reported for NIR, MIR and Raman spectra of wines [101, 131, 226].  

The application of Raman spectroscopy in the wine industry is still in the beginning and 

therefore the interpretation of Raman spectra of wine has not yet been widely disclosed. 

Although the region R1 is composed by a very intense band, no information was found 

correlating it with any specific compound. The intense band near 880 cm-1 has been 

assigned to the C–C stretching vibration of ethanol [17, 28], and the weak ones observed 

in region R2 are probably due to the C–C–O vibrations of glucose rings [17]. The region R4 

lacks relevant information (represented by very weak bands), while the region R3 is the 

most information rich, composed by several well defined bands. The –CH2 bending, –CH3 

rocking and C–O stretching of ethanol seem to cause the bands around 1455, 1085 and 

1045 cm-1. In region R5 the bands around 2980, 2890 and 2935 cm-1 have been previously 

reported as the –CH2 and –CH3 stretching of ethanol [17, 28].  
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NIR spectra (Figure 6.1a) show a band around 6900 cm-1 (region R1) previously reported 

as the third overtone of OH and attributed to water absorption [18, 19, 231]; the small bands 

around 5900 (region R3) and 5600 cm-1 (region R4) are related to the first overtones of  

–CH3, –CH2 and –CH stretch in glucose, ethanol and water [22, 23]. The OH stretch 

overtones associated with sugars are probably responsible for the small bands around 4410 

and 4440 cm-1 located in region R5 [127, 209, 232]. The spectral information from 5435 to 

4554 cm-1 and 4307 to 4003 cm-1, was excluded from calibration procedures due to low 

signal-to-noise ratio. 

MIR spectra of wine is characterized by well-defined absorption bands (Figure 6.1b). In 

region R1, the bands around 2980, 2900 and 2935 cm-1 are originated from compounds 

with –OH groups such as water, ethanol and sugars [15, 100]. In region R2 it is possible to 

observe a small band around 2340 cm-1, probably due to the presence of carbon dioxide. 

The small band around 1730 cm-1 in region R3 is commonly attributed to the C═O stretching 

of carboxylic acids [10, 12]. In region R4 it is possible to find several weak bands near 1455, 

1415, 1385, 1330 and 1275 cm-1, which have been related to the absorption of groups 

present in organic acids and ethanol (O–H deformations, C–O stretching and –CH3 bending 

vibrations) [8-11]. The C–O stretching of ethanol, is the main responsible for the intense 

bands appearing at 1086 and 1045 cm-1 in region R5 [8, 10, 205, 206].  

 

6.3.1. Classification models 

A total of 248 PLS-DA classification models were developed and tested for each 

spectroscopic data (NIR, MIR and Raman). The results obtained (percentage of correct 

predictions for the test set) revealed the predictive ability of the models when these are 

tested with external sample sets. According to the results, the most informative variables 

(spectral ranges) were selected, and the most suitable pre-processing techniques were 

established for each vibrational technique. The optimized conditions, and respective 

predictive results, are represented in Table 6.2.  

The performance of MIR spectroscopy is remarkable when compared to that of NIR and 

Raman. MIR spectroscopic data allowed a total of 87.7% of correct predictions (6 latent 

variables) using the spectral information contained in the regions R1, R2 and R5 (3009-

2152 and 1215-953 cm-1). Raman spectra provided slightly better classifications than NIR 

spectroscopic data. The region R2 (847-307 cm-1) of the Raman spectra enabled 60.8% of 

correct predictions (5 latent variables), while the region R3 (6024-5721 cm-1) from the NIR 

spectra allowed 60.4% of correct classifications (6 latent variables).  

Phenolic compounds [210-212], amino acids and biogenic amines [210, 213], minerals and 

trace elements [214-217], and the volatile composition of the wines [218-220], have been 
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considered the indicators of wines’ origin. In fact, it has been previously linked the presence 

of phenolic compounds with spectral signals in the region from 1680 to 900 cm-1 of the MIR 

spectra [15], which matches the region R5 selected for the development of the MIR 

classification model. Nevertheless, the main spectral regions selected as the most suitable 

for the development of the classification models are apparently the ones caused by 

vibrations in ethanol and sugars.  

 

Table 6.2: PLS-DA models for the classification of wine samples according to geographic 

origin. The optimal number of latent variables was previously established by leave-one-out 

cross-validation. The percentage of correct predictions correspond to models tested with 

independent data sets. 

Classification of samples from: Açores, Lisboa, Távora-Varosa, and Vinhos Verdes 

Spectroscopic 

technique 

Spectral 

region 

Pre-processing 

technique 
LVs 

Correct predictions 

(%) 

Raman R2 SNV 5 60.8 

NIR R3 SNV 6 60.4 

MIR R1 + R2 + R5 SG 2nd + SNV 6 87.7 

Classification of samples from: Lisboa and Vinhos Verdes 

Raman R3 + R4 + R5 SNV + SG 1st 4 76.6 

NIR R3 + R4 SNV 5 78.0 

MIR R1 + R2 + R5 SG 2nd + SNV 5 91.1 

LVs (latent variables); SG 1st (Savitzky-Golay first derivative); SG 2nd (Savitzky-Golay 

second derivative); SNV (standard normal variate). 

 

The confusion matrices corresponding to the NIR, MIR and Raman PLS-DA models 

previously described, are summarized in Tables 6.3, 6.4, and 6.5. The sum of the diagonal 

elements of the confusion matrices correspond to the overall percentage of correct 

predictions. The percentage of each sample type in the global sample group can be 

obtained by adding the elements of each line. Through the analysis of the diagonal elements 

it is possible to conclude that the information provided by MIR spectroscopy is the most 

suitable for the classification of the four origins. The information obtained by Raman 

spectroscopy, did not provide a clear separation between wines from Vinhos Verdes and 

Lisboa. Additionally, most of the Távora-Varosa wines were misclassified (being predicted 

as Lisboa wines). Same evidence was found for NIR based models, which led to the poor 

classification of a great percentage of Lisboa samples (wrongly classified as being from 

Vinhos Verdes, Açores and Távora-Varosa regions).  
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Table 6.3: Confusion matrices of the best PLS-DA models developed for the discrimination 

of wine samples, using Raman spectra. 

Predicted wine 

origin (%) 

Real wine origin (%) 

Vinhos Verdes Lisboa Açores Távora-Varosa Sum  

Vinhos Verdes 18.2 11.9 2.5 1.9 1.9 

Lisboa 7.8 33.2 2.2 5.0 5.0 

Açores 0.2 2.7 7.4 0.0 0.0 

Távora-Varosa 1.4 3.4 0.0 2.0 2.0 

Sum  27.6 51.2 12.1 8.9 100 

 

Table 6.4: Confusion matrices of the best PLS-DA models developed for the discrimination 

of wine samples, using MIR spectra. 

Predicted wine 

origin (%) 

Real wine origin (%) 

Vinhos Verdes Lisboa Açores Távora-Varosa Sum  

Vinhos Verdes 29.8 3.5 1.1 0.1 34.5 

Lisboa 4.4 41.9 1.2 0.8 48.3 

Açores 0.0 0.3 10.0 0.0 10.3 

Távora-Varosa 0.0 0.8 0.0 6.1 6.9 

Sum  34.2 46.5 12.3 7.0 100 

 

Table 6.5: Confusion matrices of the best PLS-DA models developed for the discrimination 

of wine samples, using NIR spectra. 

Predicted wine 
origin (%) 

Real wine origin (%) 

Vinhos Verdes Lisboa Açores Távora-Varosa Sum 

Vinhos Verdes 26.0 4.7 1.2 2.6 34.5 

Lisboa 7.0 29.7 8.4 3.2 48.3 

Açores 1.9 6.4 1.2 0.8 10.3 

Távora-Varosa 0.8 2.5 0.1 3.6 7.0 

Sum 35.7 43.3 10.9 10.2 100 

 

To further explore the potential of Raman, NIR, and MIR PLS-DA based models, the number 

of sample classes was reduced. Thus, PLS-DA models were developed for the classification 

of wines from Lisboa and Vinhos Verdes. The optimized conditions (selected variables, pre-

processing techniques, and optimal number of latent variables), as well as the predictive 

ability of these models, are displayed in Table 2. The percentage of correct predictions 

increased significantly for NIR and Raman based models, when the number of classes was 
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reduced. Nevertheless, the better performance of MIR based models was strengthened, 

increasing the percentage of correct predictions to 91.1%.  

 

Table 6.6: PLS-DA models based on the combination of Raman, MIR, and NIR spectral 

data. The optimal number of latent variables was previously established by leave-one-out 

cross-validation. The percentage of correct predictions was obtained by testing the models 

with independent data sets. The pre-processing techniques and spectral regions selected 

for Raman, NIR, and MIR data sets are described in Table 6.2. 

Classification of samples from: Açores, Lisboa, Távora-Varosa, and Vinhos Verdes 

Spectroscopic techniques LVs Correct predictions (%) 

NIR + MIR 5 86.7 

NIR + Raman 5 58.6 

MIR + Raman 4 79.4 

NIR + MIR + Raman 6 81.2 

Classification of samples from: Lisboa and Vinhos Verdes 

NIR + MIR 4 89.6 

NIR + Raman 5 78.7 

MIR + Raman 4 89.3 

NIR + MIR + Raman 4 89.3 

LVs (latent variables); SG 1st (Savitzky-Golay first derivative); SG 2nd (Savitzky-Golay 

second derivative); SNV (standard normal variate). 

 

6.3.2. Joint use of NIR, MIR and Raman spectral information 

The joint use of NIR, MIR and Raman spectral information, lead to the development of the 

classification models described in Table 6.6. Once again, the models are divided in two 

groups: a group considering wines from four different regions and another considering only 

two wine regions. Combining the information does not seem to improve the models, since 

in both situations the models developed using exclusively MIR information (Table 6.2) 

provided better results than the ones obtained by data fusion (Table 6.6).  

Aiming to determine the contribution of each data block (NIR, MIR, and Raman) in the 

calibration models, a MB-PLS analysis was performed for the classification of Lisboa and 

Vinhos Verdes wine samples (Table 6.7). After defining each Vinhos Verdes sample as 1, 

and each Lisboa sample as 0, an optimization procedure established the predictions above 

0.59 as Vinhos Verdes samples, while predictions bellow that threshold were considered as 

Lisboa samples. This MB-PLS model enabled the correct classification of 87.5 % of the 

tested samples. The contribution (weight) of each data block in the latent variables included 
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in the model is graphically represented in Figure 6.2. A normalization procedure assured 

that the weight of the blocks in each latent variable is not dependent on their number of 

variables. Therefore, it is possible to admit that the information contained in the MIR data is 

clearly the most contributive in the construction of latent variables. The contribution of 

Raman data is surprisingly higher than the NIR data, (which is very reduced in some latent 

variables, according to the Figure 3). 

 

Table 6.7: Description of MB-PLS model developed for the classification of wine samples 

from Vinhos Verdes and Lisboa wine regions.  

MB-PLS calibration model 

Data blocks Raman NIR MIR 

Number of spectra 82 82 82 

Number of variables  141 45 292 

Latent variables 9 

Classification threshold 0.59 

Correct 

predictions  

Calibration 98.2% 

Cross-validation 92.7% 

Test 87.5% 

 

 

 

Figure 6.2: Weight of each data block (Raman, NIR, and MIR) in the latent variables 

included in the MB-PLS model.  



 

122 
 

6.4. Conclusions  

In this work, NIR, MIR and Raman spectroscopy were combined with PLS-DA and proposed 

as classification methodologies for the discrimination of wines from four Portuguese 

geographic origins. The suitability of MIR spectroscopy was demonstrated, allowing the 

correct prediction of 87.7% of the wines. NIR and Raman spectroscopy presented inferior 

responses (60.4% and 60.8% of correct predictions for NIR and Raman, respectively). After 

investigating the synergy between the three spectroscopic techniques, it was possible to 

conclude that the combination of these techniques was not superior to the single use of MIR 

spectroscopy. The development of a MB-PLS calibration model, considering simultaneously 

normalized NIR, MIR, and Raman data blocks, indicated the main contribution of MIR 

spectroscopic data in the construction of the model. Results also revealed that the Raman 

data block is considerably more informative than the NIR data in the classification of wines 

according to its origin. For the consolidation of robust calibration models, capable of 

discriminating wines from different locations, it will be necessary to include a larger number 

of samples, representatively identifying their origins. 

 



 
 

 

 

 

 

 

 

 

 

 

 

CHAPTER 7 – Concluding remarks and future perspectives 

 

 

 

 

“Wine improves with age. The older I get, the better I like it.” 

– Anonymous

CHAPTER 7 

CONCLUDING REMARKS AND FUTURE 

PERSPECTIVES 
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The advantages of vibrational spectroscopic techniques have been widely enhanced in the 

last decades. Their fast, automated, cost-effective, non-destructive and environmental-

friendly character, was welcomed by the wine industry. Numerous studies reported the 

successful use of NIR, MIR, and Raman spectroscopies for a wide range of purposes: 

supporting vineyard management practices, assuring a healthy growth of the vineyard and 

grapes, assessing grape maturity stages, monitoring wine fermentations, measuring wine 

quality parameters and sensory attributes, determining wine origin and establishing its 

authenticity.  

It was the aim of this project to further explore the potential of vibrational spectroscopy, and 

expand its suitability for wine analysis, cooperating with some of the wine industry demands. 

The advantages of vibrational spectroscopy are, so far, well known. However, it is important 

to mention that the implementation of this technique as a routine analytical method, requires 

a series of procedures that must be carefully performed. The sampling is the first of those 

procedures, requiring special attention. To achieve robust calibration models, it is necessary 

to include a high number of samples encompassing enough variability to properly describe 

the represented population. This is particularly difficult for wine samples. Wines are complex 

matrices, strongly dependent on cultivation practices, climatic conditions, winemaking 

procedures, fermentation conditions, as well as aging and storage processes. It is not 

surprising that there are so different wine classification systems, categorising wines 

according to its vintage year, colour, sugar concentration, grape variety, geographical origin, 

and aging processes, among others. In these circumstances, calibration models must be 

developed to specific wine categories, in order to reduce the weight of undesired sources 

of variability. Still, the calibration models should be frequently subjected to recalibration 

procedures.  

The selection of the appropriate vibrational spectroscopic technique, is also another 

important step that should be considered, prior to calibration development. NIR, MIR and 

Raman spectroscopy have their own individual strengths and drawbacks. MIR spectroscopy 

is apparently more suitable for wine analysis, since organic functional groups have 

characteristic and well defined absorption bands in this spectral region. However, as most 

compounds strongly absorb in this region, this technique requires the use of sample holders 

with extremely short effective pathlength. In NIR spectroscopy, the sample holders do not 

need to fulfil this demand, but the calibration procedures are strongly complicated by weak 

overtones and combination bands. Raman spectroscopy has only recently been suggested 

as a potential tool for wine analysis. In fact, it offers a main advantage over NIR and MIR 

techniques: it is not affected by water interferences. However, the laser source may cause 

the fluorescence of some compounds, or even destroy the sample, leading to concealed 
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spectra. The results described throughout this thesis, clearly demonstrate the suitability of 

MIR spectroscopy for wine measurements. This observation is particularly enhanced in 

chapters 5 and 6, where the performance of the three techniques is compared for both 

quantification and classification purposes. 

Two main limitations are still attributed to vibrational spectroscopic techniques: the relatively 

high cost of commercially available instruments, and the low sensitivity of these techniques 

for the measurement of minor compounds. However, continuous improvements in 

chemometrics and instrumentation promise to increase their applicability, sensitivity and 

robustness, consequently reducing these limitations.  

Through an overall perspective, it seems that the advantages of vibrational spectroscopy 

compensate for its limitations, and it is expected that in the near future, vibrational 

techniques may answer effectively to any demand of wine production chain (directly in-situ 

and at real-time), being implemented as routine methods for monitoring and process control 

in the wine industry. 

As overall conclusion, it can be highlighted that the work performed under the scope of this 

thesis confirmed the great versatility and analytical applicability arising from combining 

vibrational spectroscopy and chemometrics.  
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