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Abstract 

 Several statistical studies [1] demonstrate the increasing number of new cases of cancer 

worldwide and despite recent advances in diagnostic and therapeutic methods the mortality 

rate has no tendency to decrease. Regardless of the enormous investments made in the area of 

oncology, the obtained results do not correspond to current expectations and needs. In this 

way, it is imperative to break with the traditional approach to the problem and seek alternative 

solutions. 

 The appearance of tumor masses is associated with the occurrence of gene mutations in the 

DNA that is contained in the chromosomes. These alterations in the genetic sequence can 

induce modifications in chromosomes structure and consequently on their mechanical 

properties. We can be find these microstructures within the nucleus of all the cells that form 

the body of the living organism. Nowadays, it is quite easy to observe and study chromosomes 

with light, fluorescence or even electron microscopy and their shape and geometry can be 

obtained without difficulty. 

 The objective of this work is to analyze in silico the biomechanical behavior of human 

chromosomes at the microscale level and to understand how they react to static and dynamic 

requests. Thus, the development of new mechanical techniques capable of stimulating the 

decay of these microscopic structures is proposed, which may be very useful for the 

development of diagnostic and/or even treatment methods. 

 In order to simulate the biomechanical behavior of the chromosomes, the Finite Element 

Method (FEM) was used as well as meshless methods. Chromosomes were treated as a linear 

isotropic elastic material in all performed simulations and their mechanical properties were 

obtained from the literature. 

 In this work, an elasto-static and free vibration study is carried out, which aims to validate 

the applicability of this type of methodology to microscopic structures using two-dimensional 

(2D) and three-dimensional (3D) artificial models of a chromosome. Later, a study of free 

vibrations of 2D and 3D models of three different human chromosomes was carried out. 

 The results show that it is possible to identify chromosomes through their natural vibration 

modes and, on the other hand, that the meshless methods, when compared to the Finite 

Element Method (FEM), allow the production of more precise and smooth variable fields.
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Resumo 

 Vários estudos estatísticos [1] demonstram o crescente número de novos casos de cancro em 

todo o mundo e, apesar dos recentes avanços dos métodos de diagnóstico e terapêutica, a taxa 

de mortalidade não tem tendência para diminuir. Apesar dos enormes investimentos que têm 

sido realizados na área da oncologia, os resultados obtidos não correspondem às expectativas 

e às necessidades atuais. Desta forma é imperativo romper com a abordagem tradicional ao 

problema e procurar soluções alternativas. 

 O aparecimento de massas tumorais está associado à ocorrência de mutações génicas no ADN 

que está contido nos cromossomas. Estas alterações na sequência genética podem induzir 

alterações estruturais dos cromossomas e consequentemente também das suas propriedades 

mecânicas. Estas microestruturas podem ser encontradas dentro do núcleo de todas as células 

que formam o corpo do organismo vivo. Hoje, é possível observar e estudar facilmente os 

cromossomas com microscopia de luz, fluorescência ou mesmo através de microscopia 

eletrónica e a sua forma e geometria pode ser obtida sem dificuldade. 

 Este trabalho tem como objetivo analisar in silico o comportamento biomecânico de 

cromossomos humanos ao nível da sua microescala, permitindo compreender como estes 

reagem a solicitações estáticas e dinâmicas. Assim, propõem-se o desenvolvimento de novas 

técnicas mecânicas capazes de estimular o decaimento dessas estruturas microscópicas, o que 

poderá ser muito útil para o desenvolvimento de métodos de diagnóstico e/ou mesmo de 

tratamento. 

 Para simular o comportamento biomecânico dos cromossomas, utilizou-se o Método dos 

Elementos Finitos (FEM), bem como métodos sem malha. Os cromossomas foram tratados como 

um material elástico linear isotrópico em todas as simulações realizadas e as suas propriedades 

mecânicas foram baseadas na literatura. 

 Neste trabalho, é realizado um estudo elasto-estático e também de vibrações livres, com o 

objetivo de validar a aplicabilidade deste tipo de metodologia a estruturas microscópicas 

utilizando modelos artificiais bidimensionais (2D) e tridimensionais (3D) de um cromossoma. 

Posteriormente, foi realizado um estudo das vibrações livres dos modelos 2D e 3D de três 

cromossomas humanos diferentes. 

 Os resultados mostram que é possível identificar cromossomas através dos seus modos de 

vibração natural e, por outro lado, que os métodos sem malha, quando comparados com o 

Método de Elementos Finitos (FEM), permitem a produção de campos de variáveis mais precisos 

e mais suaves. 
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“The time to take counsel of your fears is before you make an important battle decision. 

That’s the time to listen to every fear you can imagine! 

When you have collected all the facts and fears and made your decision, 

turn off all your fears and go ahead!” 

 

George S. Patton 

WWII Soldier 

(1885-1945) 
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Chapter 1  

Introduction 

 Results from GLOBOCAN [1] show that in 2012 there were more than 14 million new cases of 

cancer diagnosed worldwide (excluding non-melanoma skin cancer) and over 8 million deaths 

from cancer. These estimates correspond to age-standardized incidence and mortality rates of 

182 and 102 per 100 000, respectively [1], [2]. 

 The progression of normal cells to malignancy and the primary events in the transformation 

process that leads to cancer emergence are generally thought to be genetic and irreversible. 

The main causes are attributed to mutations in cellular oncogenes associated with phenotypic 

changes and specific properties acquisition [3]. These include immortalization (i.e. the 

acquisition of an infinite lifespan), which makes them achieve a proliferative advantage over 

the surrounding cells. The arising tumor overtakes the host tissue and, in some cases, becomes 

invasive and metastatic. 

 However there is also evidence for the involvement of epigenetic events in cancer 

development [3]. For example, when cells are subjected to X-irradiation [4], [5] or to 

carcinogenic chemicals [6], cells become heritably altered such that their progeny have an 

increased probability of transformation compared to non-affected cells [3]. 

 The current treatment lines for most cancer cases reside in chemotherapy, radiotherapy and 

surgery [7]. Despite the efforts in the search for new drugs, therapeutic and diagnosing 

procedures [8], the survival rate of cancer patients has not significantly changed in the last 

three decades [9]. This is a disease with a high degree of mortality and that can leave survivors 

with many sequels and requiring constant follow-up. 

 Singh and collaborators  presented evidences [10] indicating that such modifications in 

normal DNA sequences can induce inappropriate regulation of chromatin structure. A large 

number of sequence-specific transcription factors regulate gene expression through their 

ability to remodel chromatin structure, other DNA sequences are directly used for structural 

proteins binding and others mediate remodeling indirectly [10]. The consequent chromosomal 

rearrangements may sterically interfere with binding of transcription factors [10], stepping in 

all cellular metabolism. Most of the implications of gene mutation on chromosome structure 

and stability were discovered upon closer investigation of some diseases [11], [12] and 

syndromes [13]. 



 

2  Introduction 

 

 From the knowledge of dynamics and quantum mechanics, all bodies, even in rest, vibrate 

in a specific and unique way. The mode and frequency of natural vibration of bodies is closely 

dependent on their shape and mechanical properties. Although two objects appear to be 

identical, there are distinct microstructural defects that determine distinct vibrational 

signatures. In this way, and like all bodies, it is also possible to characterize and perform an 

analysis of chromosomes free vibrations (free vibrations occur when a system vibrates in the 

absence of any externally applied forces [14]). 

 Recognizing the global scenario of cancer disease evolution, with the well-known 

consequences above described, it is imperative to find alternative approaches to these 

problems. Thus, it is proposed the hypothesis that based on an analysis of free vibrations it is 

possible to distinguish normal chromosomes from chromosomes that have experienced some 

degree of mutation. If the hypothesis is proved, it will allow to develop new methods of 

diagnosis and/or even treatment based on this assumption. 

1.1 - Motivation 

 Experimental studies are surrounded by many limitations that we must keep in mind, for 

example, the whole process from the discovery of a new therapeutic chemical formula to its 

clinical use is very time consuming, expensive, difficult and often with results beyond 

expectations [15], [16]. In contrast, mathematical models seems to be a promising link between 

conceptual models and experimental testing. Indeed mathematical modelling has proven to be 

a powerful tool to formalize the conceptual model and simulate proposed experiments in silico. 

 By weighing the advantages and limitations of these models and simulations, the numerous 

possibilities they can offer prevail. Moreover, in fact, it is the promising results, and in many 

cases already proven, that allied to its plasticity of applicability and to the already identified 

needs that fuels the motivation for this work. 

1.2 - Objectives 

 The main objective of this project is to simulate the static and dynamic behavior of human 

chromosomes at the microscale level. 

 Therefore, to accomplish this goal, several secondary objectives were stipulated, such as: 

 Understand the influence of DNA packing and DNA mutations in chromosome 

mechanical properties; 

 Construction of a simplified 2D and 3D models to simulate human chromosomes; 

 Validate the mechanical model through a static analysis, using different numerical 

methods; 

 Perform dynamic (free vibrations) analysis and perform a convergence test; 

 Construct 2D and 3D models of different human chromosomes and execute a dynamic 

analysis using different numerical methods; 

 Compare analysis of different chromosomes’ results; 

 Draw comparisons between FEM and the meshless methods used. 



 

1.3 - Document Structure  3 

 

 

1.3 - Document Structure 

 The dissertation was organized in several chapters, starting with Chapter 1, in which the 

theme in study and the main objectives of the work are presented. Chapter 2 starts with a 

brief historical perspective description followed by an explanation of chromosomes 

organizational structure and its main mechanical properties experimentally obtained by some 

authors. Chapter 3 focus on the different numerical methods that can be used to perform 

computational mechanical simulations, describing briefly their formulation, followed by, in 

Chapter 4, an introduction of basic notions of solid mechanics. Then, in Chapter 5 the 

techniques to obtain the biomechanical models are discussed. In Chapter 6 is presented the 

performed preliminary convergence studies: it was studied the influence of the number of 

nodes discretizing the problem and it was also tested if defining the 2D models with layers with 

different thicknesses would approximate to 3D model results. In Chapter 7, is presented the 

free vibrations study of three different human chromosomes. It was performed a bi-dimensional 

and tridimensional analysis.  At the end, in Chapter 8 the main achievements of the work are 

presented along with the planning of future work. 
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Chapter 2  

Chromosomes 

 The beginning of cell biology can be dated back to 1665 and attributed do Robert Hooke who 

named the observed multiple tiny pores in very thin slices of bottle cork as “cells” [17]. Since 

then its real structure and function has been studied being the whole course of science full of 

advances and retreats to the present day. It is important to note that all achievements in 

science are closely dependent and related to the evolution of technology and both occur 

simultaneously and are interdependent. The discovery of the cell was only possible because in 

the end of XVI century a Dutch spectacle maker Zacharias Jansen began to test lenses and with 

his father help they built the first compound microscope [18]. The three principles of cellular 

theory [19] were only completed in the XIX century by Rudolf Virchow and it took about 100 

years more for James Watson and Francis Crick to suggest what is now accepted as the first 

correct model of the double-helix structure [20] of DNA, they are also responsible for the 

central dogma of molecular biology [21]. 

 DNA is a macromolecule that contains the genetic information needed to the growth, 

development, function and reproduction of all known living organisms and many viruses [22], 

[23]. The information stored in DNA is arranged in hereditary units, now known as genes. They 

control identifiable traits of an organism. In the last few decades the scientific community has 

invested heavily to study, to understand and even to manipulate genes (for example bacterial 

gene modifications to create vaccines [24]), hoping to solve many of the humanity problems 

(diseases, food, aesthetics, etc.). The genome of an organism comprises its entire complement 

of DNA. 

 As the microscopes evolved (light based microscopes were improving and electron and 

fluorescent microscopes appear) and became widely available accompanied by the appearance 

of other techniques [25], biologists were able to examine the internal structure of a wide 

variety of cells. It became apparent from these studies that there were two basic classes of 

cells: prokaryotic and eukaryotic; distinguished by their size and the types of internal 

structures, or organelles, they contain [23]. Within eukaryotic cells, the kind of cell that 

composes the human body, DNA is organized into long structures called chromosomes. With the 

exception of eggs and sperm, every normal human cell has 46 chromosomes [26]. Half of these, 

and thus half of the genes, can be traced back to the mother and the other half, to the father. 

The DNA in a single human cell, which measures about 2 meters in total length, must be 

contained within cells with diameters of less than 10 µ𝑚, what can be translated in a 
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compaction ratio higher than 105 [22], fact that leads to the conclusion that the packing of 

DNA is crucial to cell architecture. 

 

Figure 2.1 - Model for the packing of chromatin and the chromosome scaffold in metaphase 
chromosomes [22]. 
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 During interphase, when cells are not dividing, the genetic material exists as a nucleoprotein 

complex called chromatin, which is dispersed in the nucleus. Its general structure has been 

found to be remarkably similar in the cells of all eukaryotes, including fungi, plants, and 

animals. 

2.1 - Anatomical Overview 

 The DNA molecule is disposed like a wire around a coil being the core constituted by two 

copies of four different types of proteins called histones forming a nucleosome. X-ray 

crystallography has shown that the octameric histone core is a roughly disk-shaped molecule 

made of interlocking histone subunits [22]. This association of DNA with proteins can be 

considered as the first level of compaction. In its turn, nucleosomes are thought to be packed 

into an irregular spiral or solenoid arrangement, with approximately six nucleosomes per turn. 

Condensed chromatin may be quite dynamic, with regions occasionally partially unfolding and 

then refolding into a solenoid structure. 

 The chromatin in chromosomal regions that are not being transcribed (special info transfer 

from DNA into RNA mentioned in the central dogma of molecular biology [21]) exists 

predominantly in the condensed, 30 𝑛𝑚 fiber form and in higher-order folded structures whose 

detailed conformation is not currently totally understood. Despite the need to accommodate 

all the DNA inside the cell, the primary functions of mitotic chromosome condensation in 

eukaryotic cells are to reduce chromosome arm lengths so that they avoid truncation during 

cell division and to facilitate proper separation and segregation of sister chromatids [27]. 

 Several authors have tried different methods [28]–[31] to prove this model for the 

organization/compactness of chromatin, illustrated in Figure 2.1, that culminates in the 

characteristic “X” shape, the chromosome. This “X” shape is maintained by a highly complex 

multi-protein structure called centromere that binds the two chromosome arms (also known as 

sister chromatids). For example, Houchmandzadeh and Dimitrov took a mechanical analysis 

point of view [32] to perform elasticity measurements. They were able to make several 

conclusions on inner structure of chromosomes and on its mechanical properties. 

2.1.1 - The Structure of DNA 

 The basic building block of DNA is the nucleotide (Figure 2.2 a), a five-carbon sugar 

deoxyribose to which one phosphate is esterified at the 5' position of the sugar ring and one 

nitrogenous base is attached at the 1' site [23]. The nitrogenous bases present in a nucleic acid 

can be of two different types: pyrimidines - thymine (T) and cytosine (C) - which contain a 

single ring, and purines - guanine (G) and adenine (A) - which contain two rings (Figure 2.2 b). 

The nucleotides are covalently linked to one another to form a linear polymer with a backbone 

composed of alternating sugar and phosphate groups joined by 3'-5'-phosphodiester bonds 

(Figure 2.2 b). 

 A base composition analysis of a DNA sample (described in [33]) allowed to refute the tetra-

nucleotide theory [34] that argued that each of the four bases would be present as 25% of the 

total number. Chargaff found that the ratios of the four component bases were quite variable 

from one type of organism to another, often being very different from the 1: 1: 1: 1 ratio. The 

number of purines always equaled the number of pyrimidines, more specifically, the number 

of adenines always equaled the number of thymines, and the number of guanines always 
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equaled the number of cytosines. The DNA base composition can be transcribed in the following 

rules: 

 

(a) Chemical structure of a DNA nucleotide 
containing the base adenosine 
(deoxyadenosine 5'-monophosphate) − 
demarcated by dashed line. 

 

(b) The chemical structure of a small segment of 
a single DNA strand showing all four 
nucleotides. 

Figure 2.2 - DNA chemical structure. [23] 

 

 [𝐴] = [𝑇], [𝐺] = [𝐶], [𝐴] + [𝑇] = [𝐺] + [𝐶]. (2.1) 

 

 Using X-ray diffraction data (obtained by Rosalind Franklin [35], [36] and Maurice Wilkins 

[37] at King’s College London) and models of the four types of nucleotides, Watson and Crick 

proposed a structure of DNA [20] that included the following aspects, mentioned in [23] (Figure 

2.3): 

1. The molecule is composed of two chains of nucleotides. 

 

2. The two chains spiral around each other to form a pair of right-handed helices and each 

strand follows a clockwise path. 

 

3. The two chains comprising one double helix are antiparallel. Thus, if one chain is 

aligned in the 5′ → 3′ direction, its partner must be aligned in the  3′ → 5′ direction. 

 

4. The – 𝑠𝑢𝑔𝑎𝑟– 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒– 𝑠𝑢𝑔𝑎𝑟– 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒– backbone of each strand is located on the 

outside of the molecule with the two sets of bases projecting toward the center. 

 

5. The bases occupy planes that are approximately perpendicular to the long axis of the 

molecule and are, therefore, stacked one on top of another like a pile of plates. 

Hydrophobic interactions and van der Waals forces between the stacked planar bases 
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provide stability for the entire DNA molecule. Together, the helical turns and planar 

base pairs cause the molecule to resemble a spiral staircase. 

 

Figure 2.3 - Schematic representation of the DNA double helix. [23] 

6. The two strands are held together by hydrogen bonds between each associated pair of 

bases. Individual hydrogen bonds are weak and easily broken so the DNA strands can 

become separated during various activities, but the strengths of hydrogen bonds are 

additive, and the large numbers of hydrogen bonds holding the strands together make 

the double helix a stable structure. 

 

7. A pyrimidine in one chain is always paired with a purine in the other chain. This 

arrangement produces a molecule that is 2 𝑛𝑚 wide along its entire length. 

 

8. Structural restrictions on the configurations of the bases suggested that adenine was 

the only purine structurally capable of bonding to thymine and that guanine was the 

only purine capable of bonding to cytosine. Therefore, the only possible pairs were 𝐴 −

𝑇 and 𝐺 − 𝐶. Because an 𝐴 − 𝑇 and 𝐺 − 𝐶 base pair had the same geometry, there were 

no restrictions on the sequence of bases; a DNA molecule could have any one of an 

unlimited variety of nucleotide sequences. 

 

9. The spaces between adjacent turns of the helix form two grooves of different width − 

a wider major groove and a more narrow minor groove − that spiral around the outer 

surface of the double helix. Proteins that bind to DNA often contain domains that fit 

into these grooves. In many cases, a protein bound in a groove is able to read the 

sequence of nucleotides along the DNA without having to separate the strands. 

 

10. The double helix makes one complete turn every 10 residues (3.4 𝑛𝑚). 

 

11. Because an 𝐴 on one strand is always bonded to a 𝑇 on the other strand, and a 𝐺 is 

always bonded to a 𝐶, the nucleotide sequences of the two strands are always fixed 
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relative to one another. Because of this relationship, the two chains of the double helix 

are said to be complementary to one another. For example, 𝐴 is complementary to 𝑇, 

5′ − 𝐴𝐺𝐶 − 3′ is complementary to 3′ − 𝑇𝐶𝐺 − 5′, and one entire chain is 

complementary to the other. Complementarity is of overriding importance in nearly all 

the activities and mechanisms in which nucleic acids are involved. 

2.1.2 - Human Karyotype 

 The rapid growth of knowledge of human chromosomes in several laboratories, following 

advances in technical methods, has given rise to several systems by which the chromosomes 

were named. This has led to confusion in the literature and so to the need for resolving the 

differences. Consequently, a small study group was convened to attempt the formulation of a 

common system of nomenclature. Dr. Theodore T. Puck [38] arranged the meeting to be held 

at Denver in 1960 and it was agreed that the principles to be observed by the system should be 

simplicity and freedom [39]. 

 The cytologists present in the conference agreed that the autosomes should be serially 

numbered, 1 to 22, as nearly as possible in descending order of length [39]. The sex 

chromosomes should continue to be referred to as X and Y, rather than by a number. 

 It was generally agreed that the 22 autosomes can be classified into seven groups [39], 

distinction between which can readily be made. Within these groups further identification of 

individual chromosomes can in many cases be made relatively easily. Within some groups, 

especially the group of chromosomes numbered 6-12, including also the X-chromosome, the 

distinctions between the chromosomes were more difficult to make by the available criteria at 

the time. However, lesser difficulties were encountered in separating chromosomes 6 and the 

X from the remainder of this group. 

 

 

Figure 2.4 – Human karyotype drawn from chromosomes’ average measurement values. [39] 

 

 Figure 2.4 presents a diagram of a set of chromosomes drawn from average measurement 

values performed by T. Puck during his experiments and in Table 2.1 are described some of the 

chromosomes’ characteristics belonging to each one of the seven groups. 
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Table 2.1 - Conspectus of human mitotic chromosome. [26], [39] 

Groups Description 

1-3 

Large chromosomes with approximately median centromeres. The three 

chromosomes are readily distinguished from each other by size and 

centromere position. 

4-5 
Large chromosomes with sub-median centromeres. The two chromosomes are 

difficult to distinguish, but chromosome 4 is slightly longer. 

6-12 + X 

Medium-sized chromosomes with sub-median centromeres. The X-chromo- 

some resembles the longer chromosomes in this group, especially chromo- 

some 6, from which it is difficult to distinguish. This large group is the one 

which presents major difficulty in identification of individual chromosomes 

13-15 

Medium-sized chromosomes with nearly terminal centromeres (acrocentric 

chromosomes). Chromosome 13 has a prominent satellite on the short arm. 

Chromosome 14 has a small satellite on the short arm. No satellite has been 

detected on chromosome 15. 

16-18 
Rather short chromosomes with approximately median (in chromosome 16) or 

sub-median centromeres 

19-20 Short chromosomes with approximately median centromeres. 

21-22 + Y 
Very short, acrocentric chromosomes. Chromosome 21 has a Satellite on its 

short arm. The Y-chromosome is similar to these chromosomes. 

  

 

Figure 2.5 - Types of chromosome-attachments and their results during the somatic mitoses. The 

spindle-fiber attachments indicated by fine lines [40]. 
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In the morphologic identification of chromosomes, the location of the centromere is the most 

useful landmark, and one which is characterized by great constancy [41]. In Figure 2.5, the 

four locations of median, sub-median, sub-terminal and terminal are represented, and, in 

addition, “lateral”, which corresponds to the modern term “diffuse centromere”. 

 The location of the centromere is important since it characterizes in part the manner in 

which the achromatic spindle binds to the chromosome [40] and how both somatic mitosis and 

meiosis will evolve. In addition, to partially describe how these biological processes will take 

place, the fact that the centromere may have different locations (along with the different sizes 

of the arms) leads to a specific characterization of each chromosome. 

2.2 - Mechanical Properties 

 Sun and her collaborators performed biophysical experiments [42] on single mitotic 

chromosomes from human cells, where they combined micromanipulation [43], nano-Newton-

scale force measurements and biochemical treatments to study chromosome connectivity and 

topology. The obtained results were in accordance with previous experiments on amphibian 

chromosomes [31], [32], [44]–[47] and support the chromatin network model of mitotic 

chromosome structure. A typical newt chromosome is roughly 2 𝜇𝑚 thick and 20 𝜇𝑚 long [42]; 

the largest human chromosome is about 10 𝜇𝑚 long and only a little more than 1 𝜇𝑚 thick [42]. 

Despite being much smaller, it is possible to do micromanipulation of individual human 

chromosomes using micron-size glass pipettes. 

 These investigators found that the force required to double the length of a human 

chromosome is broadly distributed, with an average of 290 ± 40 𝑝𝑁 [42]. After taking into 

account the variation in the thickness of the chromosomes, they found the Young modulus to 

be more narrowly distributed around an average of 400 ± 20 𝑃𝑎 [42]. Figure 2.6 a) shows images 

collected during the stretching experiment and Figure 2.6 b) shows that indeed the measured 

doubling forces rise approximately linearly with the square of measured cross-sectional radius 

of each chromosome. 

 

 

(a) Images of a human chromosome during a 
stretching experiment. Bar is 𝟓 𝝁𝒎. 

 

(b) Plot of force constant versus cross-sectional area 
from a series of 22 human chromosome-stretching 
experiments. 

Figure 2.6 - Human chromosome stretching experiment and Young modulus calculation. [42] 
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 Measurements of the force produced by the mitotic spindle in anaphase [48] allowed to 

estimated that 7 × 10−10 𝑁 is the maximum force produced by the spindle per chromosome. 

 The Poisson coefficient of human metaphase chromosomes seems not to be described in 

literature, however it was experimentally obtained for newt lung cells. Since the chemical and 

structural constitution of the chromosomes is universal to all living eukaryotes, we can assume 

the proximity of this mechanical property and consider 𝜈 =  0.069 ± 0.005 [46], [49]. 

 The cellular interior can be described as a homogeneous linear viscoelastic medium [50]–[52] 

and the cytoplasm of practically all living cells, from bacteria to mammals, is a highly crowded 

and structured fluid in which up to 40% of the total mass is contributed by dissolved 

macromolecules [52], [53]. The total macromolecular concentration (proteins, lipids, nucleic 

acids, and sugars) can be as high as 400 𝑚𝑔/𝑐𝑚3 [52] and cytoplasm has a density of 1.03 𝑔/𝑐𝑚3 

[22]. In the nucleus, crowding is further enhanced by the hierarchically organized chromatin 

and chromosomes have in average a density of 1.7 𝑔/𝑐𝑚3 [23]. 
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Chapter 3  

Numerical Methods 

 Many phenomena in nature such as fluid flow, heat conduction, electromagnetic fields or 

either stress in mechanical structures can be described by mathematical laws and modulated 

using partial differential equations. Nevertheless, in general, none of these equations can be 

solved symbolically or analytically due to its complexity: this events may involve domains of 

one, two or more dimensions, nonlinear effects and complex geometries. Moreover, it is also 

required to take into account the loading systems and boundary conditions. In this context, 

numerical methods [54] appear as the possible tool used to obtain approximate solutions for 

these problems [55]. 

 Thanks to the advancement of high-speed digital computers, the cost-effectiveness of 

numerical procedures has been greatly enhanced, and these methods have become very 

accurate and reliable [56], versatile and a powerful tool to be used to solve almost all the 

complex problems in engineering practice [57]. Indeed, a large number of practical engineering 

problems would not be solved today without the use of these methods that have been widely 

used, not only for providing new solutions to the problems of academic interest by researchers 

and scientists, but also for making designs of specific engineering problems. 

 This chapter begins with a very brief introduction about the FEM, followed by a more detailed 

analysis of two meshless methods, namely the RPIM and the NNRPIM, reporting some of the 

most important concepts of these two numerical methods. 

3.1 - FEM 

 The Finite Element Method is a well-known and widely used numerical method [58], [59]. 

FEM approach consists of dividing the domain of the problem into a finite number of pieces 

called elements and for each one of them the field function is interpolated by simple functions, 

the shape functions [54], [60], [61]. FEM is then characterized by the discretization of the 

domain into several subdomains, called finite elements [56], forming a computational mesh as 

illustrated in Figure 3.1. These elements can be irregular and possess different properties 

enabling the discretization of structures with mixed properties [56]. The solution for the global 

system is obtained assembling the results for each element. 

 Its various applications include the analysis of structures for industry purposes [62] but also 

for biomechanical studies [63], supporting and providing new advances with applicability in 
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health field. The FEM was already used to evaluate the influence of the implant design and 

material on the stress distribution in the surrounding bone tissue [64]–[66] but also in the 

biomechanical study of childbirth and its consequences for the parturient soft tissues [67]. 

 The major advantage of the FEM is the discretization procedure. However, this method is 

not free of limitations. The main one is related with the mesh based-interpolation [68], [69]. 

In fact, in various studies, such as the simulation of crack propagation, the creation of an 

appropriate mesh is very difficult because the mesh should adapt itself during the simulation 

process [70]. 

 Special attention has to be given to the quality of the mesh (number, type and shape of 

elements), because low quality meshes lead to high values of error. Additionally, in order to 

impose accurately the natural and essential boundary conditions, it is necessary to identify the 

nodal location of distributed loads, as well as, the nodal position and nature of 

support/boundary conditions by fixing certain nodal degrees-of-freedom [57]. Being a classical 

mesh-based method, FEM is not suitable to treat problems with discontinuities that do not align 

with element edges [69]. 

 It is clear that the finite element solution will solve only the selected mathematical model 

and that all assumptions in this model will be reflected in the predicted response [59]. We 

cannot expect any more information in the prediction of physical phenomena than the 

information contained in the mathematical model. Hence, the choice of an appropriate 

mathematical model is crucial and completely determines the insight into the actual physical 

problem that we can obtain by the analysis. 

 

 

(a)  

 

(b)  

Figure 3.1 - Example of a mesh discretized for the FEM: (a) original, and (b) obtained mesh after 
discretization. 

3.2 - Meshless Methods 

 Intending to overcome some drawbacks and limitations of the FEM, other numerical methods 

were created and offered as solid options. Meshless methods [69], [71], [72] arose as a possible 

alternative and have been under improvement [68]. In this case, the nodes can be arbitrary 

distributed, once the field functions are approximated within an influence-domain rather than 

an element [71], [73], [74]. In opposition to the no-overlap rule between elements in the FEM, 

in meshless methods the influence-domains may and must overlap each other. A meshless 
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method comprehends three different phases: the shape function construction, the formulation 

and the integration [74]. 

 These methods present several advantages. The most relevant are the ability to provide 

more accurate approximations than FEM for structures with complex geometries, such is the 

case of biological studies, and the capacity to deal with large deformation problems [68]. 

 These kind of methods can be classified in two categories regarding its formulation. The first 

one is the strong formulation in which the partial differential equations describing the 

phenomenon are used directly to obtain the solution [74]. One of the first methods created in 

this category was the SPH, it was initially used for modeling astrophysical phenomena but after 

several improvements its applications extended to various engineering studies, such as fluid 

flow analysis [75]. A parallel path on the development of meshless methods was initiated in 

the nineteen's decade using this time a weak form solution. In weak formulation, each 

differential equation has a residual weight to be minimized. The residual is not given by the 

exact solution of the differential but by an approximated function affected by a test function 

[74]. The first method using this formulation was the DEM [76]. This method was extended by 

Belytschko originating one of the most well-known methods, the EFGM [77]. 

 The Meshless Methods described above are similar to FEM in the fact that they only allow 

approximate solutions, and in spite of the successful applications of these type of meshless 

methods in computational mechanics, some problems remained unsolved. One of the main 

problems is that the essential boundary conditions cannot be imposed directly, a consequence 

of the lack of the Kronecker delta property on the shape functions [68], [74]. Due to this fact, 

several interpolant meshless methods were developed, such as PIM [70], the RPIM [78], [79], 

NNFEM [80] and the NEM [81], [82]. Later, the combination between the NEM and the RPIM 

originated the NNRPIM [74], [83]. 

3.2.1 - Meshless Generic Procedure 

 The only information required to start the process is the spatial location of each node 

discretizing the problem domain. It should be noted that this nodal distribution do not form a 

mesh, since it is not required any kind of previous information about the relation between each 

node in order to construct the approximation or interpolation functions of the unknown variable 

field function [74]. In Figure 3.2, it is possible to observe an illustration of this process using 

either a regular or irregular nodal set. 

 The use of different kinds of nodal distributions will have a direct effect on the outcome of 

the numerical analysis. An irregular mesh can often present a lower accuracy on its general 

results, but it can also enhance results on locations with predictable stress concentrations [84] 

by having a higher nodal density on those locations. In order to enhance results on these 

locations, without compromising the accuracy throughout the problem’s domain, the best 

approach is usually to use a regular mesh and to insert extra nodes on those spots. 

 After the discretization, nodal connectivity can be imposed using either influence-domains 

or Voronoï diagrams. Then, the construction of a background integration mesh is needed. As in 

FEM, it is common to use Gaussian integration meshes fitted to the problem domain. However 

there are other techniques, such as the use of the nodal integration, by means of the Voronoï 

diagrams in order to obtain the integration weight on each node [74]. The following step is the 

establishment of the equation system, which can be formulated using approximation or 

interpolation functions. The interpolation functions possess an important property - the 
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Kronecker delta property - meaning that the obtained function passes through all scattered 

points in an influence domain. This property is an important advantage, since it allows the use 

of the same simple techniques used in FEM to impose the essential boundary conditions. 

 Thus, after a brief analysis of the generic procedure of meshless methods, it is possible to 

conclude that a meshless method requires the presence and combination of three basic parts: 

nodal connectivity, numerical integration scheme and shape functions. These three concepts 

will be analyzed and, since RPIM and NNRPIM differ in respect to both nodal connectivity and 

numerical integration scheme, the following sections will explain with detail these differences. 

 

 

(a)  

 

(b)  

 

(c)  

Figure 3.2 - Nodal discretization of the problem domain: (a) Solid domain; (b) Regular nodal 
discretization; (c) Irregular nodal discretization. [74] 

3.2.2 - Nodal Connectivity 

3.2.2.1 - RPIM 

 The RPIM uses the Galerkin weak form formulation to obtain the discrete equation system. 

The shape functions are constructed using a polynomial basis and a RBF. In RPIM, the nodal 

connectivity is obtained by the overlap of the influence domain of each node. Influence-

domains are found by searching enough nodes inside a certain area or volume, and can have a 

fixed or a variable size. Many meshless methods [70], [85], [86] use fixed size influence-

domains, but RPIM uses a fixed number of neighbor nodes instead. 

 Regarding fixed size influence-domains, in Figure 3.3, it is presented an example of two 

types of fixed size domains, a rectangular (Figure 3.3 a) and a circular (Figure 3.3 b). By 

analyzing these figures, it is possible to note that influence-domains with different shapes and 

sizes originate a different nodal connectivity. Also, depending on the initial nodal spatial 

distribution, the obtained influence-domains can be unbalanced, not containing an 

approximately constant number of nodes. All of these factors can affect the final solution of 

the problem and cause loss of accuracy in the numerical analysis. 
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 Therefore, to overcome these limitations, RPIM uses variable size influence-domains, with 

constant number of nodes inside the domain. Thus, performing a radial search and using the 

interest point 𝑥𝐼 as center, the 𝑛 closest nodes are found. In Figure 3.3 c), this process is 

illustrated, culminating in a constant nodal connectivity that avoids the numerical problems 

previously identified. 

 

 
(a)  

 

(b)  

 

(c)  

Figure 3.3 - Examples of different types of influence-domains: (a) fixed rectangular shaped influence-
domain, (b) fixed circular shaped influence-domain and (c) flexible circular shaped influence-domain. 
[74] 

3.2.2.2 - NNRPIM 

 The NNRPIM is an advanced discretization meshless technique combining the natural 

neighbor geometric concept with the RPI [87]. 

 Nodal connectivity is obtained using the natural neighbor concept with the partition of the 

discretized domain into a set of Voronoï cells [88]. To each one of these cells is associated one 

and only one node  [87]. Considering a problem domain 𝛀 ⊂ ℝ𝑑, bounded by a physical boundary 

𝚪 ∈ 𝛀, discretized in several randomly distributed nodes 𝜨 = {𝑛0, 𝑛1, … , 𝑛𝑁} ∈ ℝ
2 with the 

following coordinates:  𝜲 = {𝒙0, 𝒙1, … , 𝒙𝑁} ∈ 𝛀, the Veronoï cell is defined by 

 

 𝑉𝑖 ≔ {𝒙𝐼 ∈ 𝛀 ⊂ ℝ
𝑑 ∶  ‖𝒙𝐼 − 𝒙𝑖‖ < ‖𝒙𝐼 − 𝒙𝑗‖,   ∨ 𝑖 ≠ 𝑗} (3.1) 

 

being 𝒙𝐼 an interest point of the domain and ‖ ⋅ ‖ the Euclidian metric norm [74]. Thus, the 

Voronoï cell 𝑉𝑖 is the geometric place where all points in the interior 𝑉𝑖 are closer to the node  

𝑛𝑖 than to any other node [74]. The assemblage of the Voronoï cells define the Voronoï diagram. 

Thus, the Voronoï diagram of 𝚴 is the partition of the domain defined by 𝛀 into sub regions 𝑉𝑖, 

closed and convex, as can be seen in Figure 3.4 a). 

 To respond to the disadvantages of the approach shown in Sect. 3.2.2.1 -  and described in 

Figure 3.3 a), the influence-cell concept was developed [83] and is used by NNRPIM. We can 

distinguish two types of influence-cells: the "first degree influence-cell", Figure 3.4 a), and the 



 

20  Numerical Methods 

 

"second degree influence-cell", Figure 3.4 b). To establish them, a point of interest, 𝒙𝐼, starts 

by searching for its neighbor nodes following the Natural Neighbor Voronoï construction, 

considering only its first natural neighbors the first degree influence-cell is obtained. Then, 

based again on the Voronoï diagram, the natural neighbors of the first natural neighbors of 𝒙𝐼 

are added to the influence-cell constituting the second degree influence-cell. 

 

(a)  

 

(b)  

 

(c)  

Figure 3.4 - (a) First degree influence-cell. (b) Second degree influence-cell. (c) Representation of the 
sub-cells forming the Voronoï cell and schematic representation of 𝟒 × 𝟒 integration points inside a 
sub-cell. [87] 

3.2.3 - Numerical Integration 

3.2.3.1 - RPIM 

 Following the definition of nodal connectivity, the next step would be the numerical 

integration. For the integration of the differential equations the RPIM uses the Gauss-Legendre 

integration scheme being need, as it was stated above, a background integration mesh. For this 

integration mesh it can be used either the cells created to connect the nodes that discretized 

the problem’s domain (resulting in either quadrilateral or triangular cells), or a regular mesh 

larger than the domain and whose integration points located outside the domain must be 

eliminated from the computation. On Figure 3.5 it is possible to see the use of triangular cells 

in a) and the use of the larger regular mesh in b). 

 Inside of each cell of the background integration mesh, being it triangular or quadrilateral, 

it is possible to distribute integration points as seen in Figure 3.5 a) and b). On Table 3.1 and 

Table 3.2 are displayed the locations and weights of the isoparametric integration points for 

quadrilateral and triangular cells respectively. 

 After the integration points have been distributed in the isoparametric shape, the Cartesian 

coordinates of the integration points are obtained using the following isoparametric 

interpolation functions: 

 𝑥 =∑𝑁𝑖(𝜉, 𝜂) ∙ 𝑥𝑖

𝑚

𝑖=1

 (3.2) 

 

 𝑦 =∑𝑁𝑖(𝜉, 𝜂) ∙ 𝑦𝑖

𝑚

𝑖=1

 (3.3) 
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where 𝑚 is the number of nodes that define the element and 𝑥𝑖 and 𝑦𝑖 are the cartesian 

coordinates of the cells nodes. In Figure 3.6 can be seen a representation of this 

transformation. 

 

(a)  

 

(b) 

● Node 

 Integration Point 

Figure 3.5 - a) Triangular "cell" background mesh with 1 integration point. b) Quadrilateral grid 
background mesh with 4 integration points. [84] 

(a) 

 

(b)

 
 

Figure 3.6 - a) Transformation of the initial quadrilateral cell into an isoparametric square shape and 
application of the 2 × 2 quadrature point rule followed by the return to the initial quadrilateral shape. 
b) Transformation of the initial triangular cell into an isoparametric triangular shape and application 
of the 3-point quadrature point rule followed by the return to the initial triangular shape. 
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Table 3.1 - Integration points coordinates 
and weights for quadrilateral "cells". 

Points 𝝃 𝜼 Weight 

a 0 0 4 

a −
1

√3
 −

1

√3
 1 

b +
1

√3
 −

1

√3
 1 

c −
1

√3
 +

1

√3
 1 

d +
1

√3
 +

1

√3
 1 

a −√
3

5
 −√

3

5
 

25

81
 

b 0 −√
3

5
 

40

81
 

c +√
3

5
 −√

3

5
 

25

81
 

d −√
3

5
 0 

40

81
 

e 0 0 
64

81
 

f +√
3

5
 0 

40

81
 

g −√
3

5
 +√

3

5
 

25

81
 

h 0 +√
3

5
 

40

81
 

i +√
3

5
 +√

3

5
 

25

81
 

 

Table 3.2 - Integration points coordinates 
and weights for triangular "cells". 

Points 𝝃 𝜼 Weight 

a 
1

3
 

1

3
 

1

2
 

a 
1

6
 

1

6
 

1

6
 

b 
2

3
 

1

6
 

1

6
 

c 
1

6
 

2

3
 

1

6
 

a 
1

3
 

1

3
 −

27

96
 

b 
1

5
 

1

5
 

25

96
 

c 
3

5
 

1

5
 

25

96
 

d 
1

5
 

3

5
 

25

96
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The Nodal shape functions (𝑁𝑖) are define for quadrilaterals as: 

 

𝑁1(𝜉, 𝜂) =
1

4
(1 − 𝜉)(1 − 𝜂); 

𝑁2(𝜉, 𝜂) =
1

4
(1 − 𝜉)(1 + 𝜂); 

𝑁1
3
(𝜉, 𝜂) =

1

4
(1 + 𝜉)(1 + 𝜂); 

𝑁4(𝜉, 𝜂) =
1

4
(1 + 𝜉)(1 − 𝜂); 

(3.4) 
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and for triangles as: 

 

𝑁1(𝜉, 𝜂) = 1 − 𝜉 − 𝜂; 

𝑁2(𝜉, 𝜂) = 𝜂; 

𝑁1(𝜉, 𝜂) = 𝜉. 

(3.5) 

 The integration weight of the integration point is obtained by multiplying the isoparametric 

weight of the correspondent point with the Jacobian matrix determinant of the respective cell, 

as described in Equation (3.6). 

 [𝑱] =

(

 
 

𝜕𝑥

𝜕𝜉

𝜕𝑥

𝜕𝜂
𝜕𝑦

𝜕𝜉

𝜕𝑦

𝜕𝜂)

 
 

 (3.6) 

 The differential equation integration is finally done using, 

 ∫ ∫ 𝑓(𝐗)𝑑𝑥𝑑𝑦 =∑∑𝜔𝑖𝜔𝑗𝑓(𝐗)

𝑛

𝑗=1

𝑚

𝑖=1

1

−1

1

−1

 (3.7) 

where 𝜔𝑖 and  𝜔𝑗 is the weight in each direction of the integration point 𝐗.  

 This integration method can be extrapolated for three dimensional problems using for this 

tetrahedral solids instead. 

3.2.3.2 - NNRPIM 

 Since the NNRPIM uses the Galerkin weak form, a background integration mesh is necessary. 

In this method, the integration mesh is obtained using directly and exclusively the nodal 

distribution, namely the previously constructed Voronoï diagram [83]. Using the Delaunay 

triangulation, the area of each Voronoï cell is subdivided in several sub-areas. Thus, each area 

of the Voronoï cell of node 𝒙𝑗, 𝐴
𝑉𝑗, is divided into 𝑘 sub-areas 𝐴

𝑖

𝑉𝑗
, in which 𝐴

𝑖

𝑉𝑗
= ∑ 𝐴

𝑖

𝑉𝑗𝑘
𝑖=1 , as 

can be seen in Figure 3.4 c). Then, following the Gauss–Legendre quadrature rule, it is possible 

to distribute integration points inside each subarea 𝐴
𝑖

𝑉𝑗
. In Figure 3.4 c), it is exemplified a 4 ×

4 distribution. By repeating the mentioned procedure for the 𝑁 Voronoï cells from the Voronoï 

diagram, the background integration mesh discretizing the problem domain is obtained. 

 Previous research works on the NNRPIM show that one integration point per sub-area 𝐴
𝑖

𝑉𝑗
 is 

sufficient to integrate accurately the integro-differential equations [83], [87]. 

3.2.4 - Interpolation Functions 

 Considering the RPIM and the NNRPIM, the interpolation functions for both methods possess 

the Kronecker delta property, satisfying the following condition: 

 𝜑𝑖(𝒙𝑗) = 𝛿𝑖𝑗, (3.8) 
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where 𝛿𝑖𝑗 is the Kronecker delta,  𝛿𝑖𝑗 = 1 if  𝑖 = 𝑗 and 𝛿𝑖𝑗 = 0 if 𝑖 ≠ 𝑗. This property simplifies 

greatly the process of imposition of the essential boundary conditions, because it allows to 

apply them directly in the stiffness matrix. 

 The interpolation functions for both methods are determined using the RPI technique [78], 

which requires the combination of a polynomial basis with a RBF. Therefore, considering the 

function 𝑢(𝒙𝐼) defined in the domain 𝛀 ⊂ ℝ2, the value of function 𝑢(𝒙𝐼)  at the point of 

interest 𝒙𝐼 is defined by: 

 𝑢(𝒙𝐼) =∑𝑅𝑖(𝒙𝐼) ∙ 𝑎𝑖(𝒙𝐼) +

𝑛

𝑖=1

∑𝑝𝑗(𝒙𝐼) ∙ 𝑏𝑖(𝒙𝐼)

𝑚

𝑗=1

= 𝑹𝑇(𝒙𝐼) ∙ 𝒂(𝒙𝐼) + 𝒑
𝑇 ∙ 𝒃(𝒙𝐼) (3.9) 

where  𝑅𝑖(𝒙𝐼) is the RBF, 𝑝𝑗(𝒙𝐼) is the polynomial basis function and 𝑎𝑖(𝒙𝐼) and 𝑏𝑖(𝒙𝐼) are non-

constant coefficients of 𝑅𝑖(𝒙𝐼) and 𝑝𝑗(𝒙𝐼), respectively [87]. The variable defined on the RBF 

is the distance 𝑟𝐼𝑖 between the relevant node 𝒙𝐼 and the neighbour node 𝒙𝑖, given by 𝑟𝐼𝑖 =

‖𝒙𝑖 − 𝒙𝐼‖. The most frequently used globally supported RBFs are the multi-quadrics (MQ) 

functions [89], 𝑅𝑖(𝒙𝐼) = R(𝑟𝐼𝑖) = (𝑟𝐼𝑖
2 + 𝑐2)𝑝, in which shape parameter 𝑐 takes a value close to 

zero, 𝑐 ≅ 0, and 𝑝 close to one, 𝑝 ≅ 1 [83], [90]. These parameters need to be determined and 

optimized in order to obtain accurate results. Regarding the Equation (3.9), it is still needed 

to obtain the non-constant coefficients 𝑎 and 𝑏. The polynomial basis functions used have the 

following monomial term as 

 𝒑𝑇(𝒙𝐼) = [1, 𝑥, 𝑦, 𝑥
2, 𝑥𝑦, 𝑦2, … ]. (3.10) 

 Considering Equation (3.9) for each node inside the influence-cell domain and including an 

extra equation, ∑ 𝑝𝑗(𝒙𝐼)𝑎𝑖 = 0
𝑛
𝑖=1 , in order to guarantee a unique solution [91], a system of 

equations is obtained: 

 [
R 𝑝

𝑝𝑇 0
] {
𝑎
𝑏
} = {

𝑢𝑆
0
}. (3.11) 

 Through this system of equations, and being the vector of the nodal function values for the 

nodes on the influence-cell defined by: 𝒖𝑆 = {𝑢1, 𝑢2, … , 𝑢𝑛}
𝑇 these coefficients are determined 

(Eq. (3.12)). 

 {
𝒂
𝒃
} = [

𝑹 𝒑

𝒑𝑇 𝟎
]
−1

{
𝒖𝑆
0
} ⇒ {

𝒂
𝒃
} = 𝑀−1 {

𝒖𝑆
0
} (3.12) 

 Recalling that a certain field variable value for an interest point 𝒙𝐼 is interpolated using the 

shape function values obtained at the nodes inside the support domain of 𝒙𝐼, it is now possible 

to define the interpolation function, by substituting in Equation (3.9) the result from Eq. (3.12). 

The interpolation function Φ(𝒙𝐼) = {𝜑1(𝒙𝐼), 𝜑2(𝒙𝐼), … , 𝜑𝑛(𝒙𝐼)} for an interest point 𝒙𝐼 is then 

defined by 

 𝑢(𝒙𝐼) = {𝑹
𝑇(𝒙𝐼), 𝒑

𝑇(𝒙𝐼)}𝑴
−1 {

𝒖𝑆
𝟎
} = Φ(𝒙𝐼) {

𝒖𝑆
𝟎
}. (3.13) 

 In order to compute the partial derivatives of the interpolated field function, it is necessary 

to obtain the respective RPI shape functions partial derivatives. For a 2D problem the partial 

derivatives of 𝜙(𝒙𝐼) are defined as: 
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Φ,𝑥(𝒙𝐼) = {𝑹
𝑇(𝒙𝐼), 𝒑

𝑇(𝒙𝐼)},𝑥𝑴
−1; 

Φ,𝑦(𝒙𝐼) = {𝑹
𝑇(𝒙𝐼), 𝒑

𝑇(𝒙𝐼)},𝑦𝑴
−1. 

(3.14) 

 The first order partial derivative of the RBF vector with respect to the same 2D problem is 

defined as: 

 𝑹(𝒙𝐼),𝑥 = {𝑅1(𝒙𝐼),𝑥 𝑅2(𝒙𝐼),𝑥… 𝑅𝑛(𝒙𝐼),𝑥}
𝑇
= {
𝜕𝑅1(𝒙𝐼)

𝜕𝑥
 
𝜕𝑅2(𝒙𝐼)

𝜕𝑥
… 
𝜕𝑅𝑛(𝒙𝐼)

𝜕𝑥
}

𝑇

 (3.15) 

 

 𝑹(𝒙𝐼),𝑦 = {𝑅1(𝒙𝐼),𝑦 𝑅2(𝒙𝐼),𝑦 … 𝑅𝑛(𝒙𝐼),𝑦}
𝑇
= {
𝜕𝑅1(𝒙𝐼)

𝜕𝑦
 
𝜕𝑅2(𝒙𝐼)

𝜕𝑦
… 
𝜕𝑅𝑛(𝒙𝐼)

𝜕𝑦
}

𝑇

 (3.16) 

being the partial derivatives of the MQ-RBF obtained with 

 
𝜕𝑅1(𝒙𝐼)

𝜕𝑥
= −2𝑝(𝑟𝑖𝐼

2 + 𝑐2)𝑝−1(𝑥𝑖 − 𝑥𝐼) (3.17) 

 

 
𝜕𝑅1(𝒙𝐼)

𝜕𝑦
= −2𝑝(𝑟𝑖𝐼

2 + 𝑐2)𝑝−1(𝑦𝑖 − 𝑦𝐼). (3.18) 

 

 It is possible to extend these formulations to a 3D problem by considering the third dimension 

(𝑧𝑧 axis). 
 

 



 

26 



 

27 

Chapter 4  

Solid mechanics 

 In this chapter the mechanical fundamentals behind the numerical applications presented in 

this work are developed. Firstly, it is present a brief exposition of the continuum formulation 

where are shown the solid kinematics and constitutive equations. Following, it is presented the 

used weak form and the consequent generated discrete system. 

 The continuum mechanics is the foundation of the nonlinear numerical analysis. It is known 

that solids and structures subjected to loads or forces become stressed. These stresses lead to 

strains, which can be interpreted as deformations or relative displacements [74]. 

 The concepts of strain and stress are introduced, followed by an explanation of the 

equilibrium and the used constitutive equations. In this work, only isotropic and linear elastic 

materials are considered. In solid elastic materials, the deformation in the solid caused by 

loading disappears fully with the unloading. For isotropic materials, the material properties do 

not change with the direction. 

4.1 - Fundamentals 

 The study of Solid Mechanics is mainly devoted on the relationships between stress and strain 

and strain and displacements, for a given solid and boundary conditions (external forces and 

displacements constrains) [92]. So, when analyzing a deformation, the consequent change in 

the body configuration is defined by the stress and the strain terms. This way, the virtual work 

can be expressed as an integral over the known body volume. It is important to guarantee that 

both strain tensor and stress tensor are referred to the same deformed state. For simplicity 

sake, only the 2D deformation theories are here presented, nevertheless, it is possible to find 

in the literature extensive descriptions concerning the 3D deformation theory [74]. To 

represent the stresses of the current configuration, the symmetric Cauchy stress tensor, 𝚲, can 

be defined as: 

 𝚲 = [
𝜎𝑥𝑥 𝜎𝑥𝑦
𝜎𝑦𝑥 𝜎𝑦𝑦

]. (4.1) 

 This work, uses the Voigt notation, expressing tensors in column vectors. Therefore, stress 

tensor 𝚲 is reduced to the stress vector 𝝈, 
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 𝝈 = {𝜎𝑥𝑥  𝜎𝑦𝑦 𝜎𝑥𝑦}
𝑇
 (4.2) 

and the strain tensor can be reduced to the strain vector 𝜺, 

 𝜺 = {휀𝑥𝑥 휀𝑦𝑦 휀𝑥𝑦}
𝑇
. (4.3) 

 Solids can show different behaviors, depending on the solid material. Isotropic materials can 

be fully described by only two independent material properties, the Young modulus, 𝐸, and 

the Poisson ratio, 𝜈. Thus, the relation between stress and strain in the solid domain is given 

by the constitutive equation, known as Hooke's Law: 

 𝝈 = 𝒄𝜺 (4.4) 

in which, 𝒄 is the constitutive matrix, given by 𝒄 = 𝒔−1, being the matrix 𝒔 the compliance 

elasticity matrix. For a general orthotropic material case and considering a plane stress 

formulation, the matrix 𝒔 is given by 

 𝒔𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑒𝑠𝑠 =

[
 
 
 
 
 
 
1

𝐸11
−
𝑣21
𝐸22

0

−
𝑣12
𝐸11

1

𝐸22
0

0 0
1

𝐺12]
 
 
 
 
 
 

 (4.5) 

while, when considering a plane strain formulation, matrix 𝑠 is given by: 

 𝒔𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑎𝑖𝑛 =

[
 
 
 
 
 
 
1 − 𝑣31𝑣13

𝐸11
−
𝑣12 + 𝑣31𝑣23

𝐸22
0

−
𝑣12 + 𝑣32𝑣13

𝐸11

1 − 𝑣32𝑣23
𝐸22

0

0 0
1

𝐺12]
 
 
 
 
 
 

, (4.6) 

being 𝐸𝑖𝑗 the elasticity modulus, 𝑣𝑖𝑗 the material Poisson coefficient and 𝐺𝑖𝑗 the distortion 

modulus in material direction 𝑖 and 𝑗. 

 Obtaining the constitutive matrix 𝒄, it is possible to align it with a new material referential 

𝑂𝑥′𝑦′ defined by the versors 𝑖 = {𝑖′𝑥 , 𝑖′𝑦} and 𝑗 = {𝑗′
𝑥
, 𝑗′𝑦}, using the following expression: 

 𝒄′ = 𝑻𝑇𝒄 𝑻 (4.7) 

being 𝑻 the transformation matrix given by 

 𝑻 = [
cos2 𝛼 sin2 𝛼 − sin 2𝛼
sin2 𝛼 cos2 𝛼 sin 2𝛼

sin 𝛼 ∙ cos 𝛼 − sin 𝛼 ∙ cos 𝛼 cos2 𝛼 ∙ sin2 𝛼

] (4.8) 

where the angle 𝛼 is the angle between the original material axis 𝑂𝑥 and the new material axis 

𝑂𝑥′ ∶ 𝛼 = cos−1(𝑖, 𝑖′). 

 Now, considering the displacement field given by 𝒖 = {𝑢, 𝑣}, strain components are 

expressed as 



 

4.2 - Weak Form  29 

 

 

 

ℇ𝑥𝑥 =
𝜕𝑢

𝜕𝑥
 

ℇ𝑦𝑦 =
𝜕𝑣

𝜕𝑦
 

ℇ𝑥𝑦 =
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
 

(4.9) 

 Thus, the strain vector can be defined by the combination of a differential operator and the 

displacement field, 𝒖, 

 𝜺 = 𝑳𝒖 (4.10) 

where 𝑳 is given by 

 𝑳 =

[
 
 
 
 
𝜕

𝜕𝑥
0

𝜕

𝜕𝑦

0
𝜕

𝜕𝑦

𝜕

𝜕𝑥]
 
 
 
 
𝑇

. (4.11) 

4.2 - Weak Form 

 The strong form system equations are the partial differential system equations governing the 

studied physic phenomenon. Using this formulation, it is possible to obtain a numerical solution 

very close with the analytical solution. However this is usually an extremely difficult task in 

complex practical engineering problems. 

 On the other hand, formulations based on weak forms give a discretized system of equations 

but with a weaker consistency on the adopted approximation (or interpolation) functions. This 

formulation is able to produce stable algebraic system equations and more accurate results 

[74]. 

4.2.1 - Galerkin Weak Form 

 In this work, the discrete equation system is obtained using the Galerkin weak form, which 

is a variational method based on energy minimization. 

 So, considering a body described by the domain 𝛀 ⊂ ℝ2 and bounded by Γ, where Γ ∈ 𝛀 ∶

Γ𝑢 ∪ Γ𝑡 = Γ ∧ Γ𝑢 ∩ Γ𝑡 = ∅, being Γ𝑢 the essential boundary and Γ𝑡 the natural boundary, the 

equilibrium equations governing the linear elastostatic problem are defined as 

 ∇𝚲 + 𝒃 = 0 (4.12) 

in which ∇ is the nabla operator, 𝒃 the body force per unit volume and 𝚲 the Cauchy stress 

tensor, as defined previously. The natural boundary respect the condition 𝚲𝒏 = �̅� on Γ𝑡, being 

𝑛 the unit outward normal to the boundary of domain 𝛀 and �̅� the traction on the natural 

boundary Γ𝑡. The essential boundary condition is 𝒖 = �̅�  on Γ𝑢, in which �̅� is the prescribed 

displacement on the essential boundary Γ𝑢. 
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 According to the Galerkin Weak form, the real solution is the one that minimizes the 

Lagrangian functional, 𝐿, given by 

 𝐿 = 𝑇 − 𝑈 +𝑊𝑓 (4.13) 

being 𝑇 the kinetic energy, 𝑈 is the strain energy and 𝑊𝑓 is the work produced by the external 

forces. The kinetic energy is defined by 

 𝑇 =
1

2
∫𝜌�̇�𝑇�̇� 𝑑𝛺
 

Ω

 (4.14) 

where the solid volume is defined by 𝛀, �̇� is the displacement first derivative with respect to 

time and 𝜌 is the solid mass density. The strain energy, for elastic materials, is defined as 

 𝑈 =
1

2
∫𝜺𝑇𝝈 𝑑𝛺
 

Ω

 (4.15) 

being 𝜺 the strain vector and 𝝈 the stress vector. The work produced by the external forces 

can be expressed as 

 𝑊𝑓 = ∫𝒖
𝑇𝒃 𝑑𝛺

 

Ω

+∫ 𝒖𝑇 �̅� 𝑑Γ
 

Γ𝑡

 (4.16) 

in which 𝒖 represents the displacement, 𝒃 the body forces and Γ𝑡 the traction boundary where 

the external forces �̅� are applied. Therefore the Galerkin weak form can be represented as 

 𝐿 =
1

2
∫𝜌�̇�𝑇�̇� 𝑑𝛺
 

Ω

−
1

2
∫𝜺𝑇𝝈 𝑑𝛺
 

Ω

+∫𝒖𝑇𝒃 𝑑𝛺
 

Ω

+∫ 𝒖𝑇 �̅� 𝑑Γ
 

Γ𝑡

 (4.17) 

and then minimized, 

 𝛿∫ [
1

2
∫𝜌�̇�𝑇�̇� 𝑑𝛺
 

Ω

−
1

2
∫𝜺𝑇𝝈 𝑑𝛺
 

Ω

+∫𝒖𝑇𝒃 𝑑𝛺
 

Ω

+∫ 𝒖𝑇 �̅� 𝑑Γ
 

Γ𝑡

]  𝑑𝑡 = 0
𝑡2

𝑡1

. (4.18) 

 Moving the variation operator 𝛿 inside the integrals, 

 ∫ [
1

2
∫𝛿(𝜌�̇�𝑇𝒖)̇ 𝑑𝛺
 

Ω

−
1

2
∫𝛿(𝜺𝑇𝝈) 𝑑𝛺
 

Ω

+∫𝛿𝒖𝑇𝒃 𝑑𝛺
 

Ω

+∫ 𝛿𝒖𝑇 �̅� 𝑑Γ
 

Γ𝑡

]  𝑑𝑡 = 0.
𝑡2

𝑡1

 (4.19) 

 The integrand function in the second integral term can be written as 

 𝛿(𝜺𝑇𝝈) = 𝛿𝜺𝑇𝝈 + 𝜺𝑇𝛿𝝈 (4.20) 

in which 𝜺𝑇𝛿𝝈 = (𝜺𝑇𝛿𝝈)𝑇 = 𝛿𝝈𝑇𝜺. Using the constitutive Eq. (3.4) and the symmetric property 

of the material matrix, 𝒄𝑇 = 𝒄, it is possible to write 

 𝛿𝝈𝑇𝜺 = 𝛿(𝒄𝜺)𝑇𝜺 = 𝛿𝜺𝑇𝒄𝑇𝜺 = 𝛿𝜺𝑇𝒄𝜺 = 𝛿𝜺𝑇𝝈. (4.21) 

 Consequently, Eq. (4.20) becomes 

 (𝜺𝑇𝝈) = 2𝛿𝜺𝑇𝝈. (4.22) 
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 Retaking Eq. (4.19), it can be expressed as 

 −𝜌∫(𝛿𝜌�̇�𝑇𝒖)̇ 𝑑𝛺
 

Ω

−∫𝛿𝜺𝑇𝝈 𝑑𝛺
 

Ω

+∫𝛿𝒖𝑇𝒃 𝑑𝛺
 

Ω

+∫ 𝛿𝒖𝑇 �̅� 𝑑Γ
 

Γ𝑡

= 0. (4.23) 

 Considering the stress-strain relation, 𝝈 = 𝒄𝜺, and the strain-displacement relation, 𝜺 = 𝑳𝒖, 

Eq. (4.23) can be rearranged into the following expression: 

 ∫(𝛿𝑳𝒖)𝑇𝒄(𝑳𝒖) 𝑑𝛺
 

Ω

−∫𝛿𝒖𝑇𝒃 𝑑𝛺
 

Ω

−∫ 𝛿𝒖𝑇 �̅� 𝑑Γ 

 

Γ𝑡

+∫𝜌(𝛿𝒖𝑇�̈�) 𝑑Ω
 

Ω

= 0, (4.24) 

which is the generic Galerkin weak form written in terms of displacement, very useful in solid 

mechanical problems. In static problems the fourth term of Eq. (4.24) disappears. 

4.3 - Discrete Equation System 

 According to the principle of virtual work used in meshless methods, the discrete equations 

are obtained using meshless shape functions as trial and test functions. Thus, recalling Eq. 

(3.13), the virtual displacements, or the test functions, can be defined as 

 𝛿𝑢(𝒙𝐼) = 𝛿𝒖𝐼 = 𝑰 {
Φ𝐼
Φ𝐼
} 𝛿𝒖𝑠 = [

𝜑1(𝒙𝐼) 0 ⋯
0 𝜑1(𝒙𝐼) …

   
𝜑𝑛(𝒙𝐼) 0
0 𝜑𝑛(𝒙𝐼)

]

{
 
 

 
 
𝛿𝑢1
𝛿𝑣1
⋮
𝛿𝑢𝑛
𝛿𝑣𝑛}

 
 

 
 

= 𝑯𝐼𝛿𝒖𝑠 (4.25) 

being 𝑰 a 2 × 2 identity matrix and }, 𝒖𝐼 = {𝑢𝐼 , 𝑣𝐼}, having two degrees of freedom, since it is 

being considered a 2D problem. 

 Therefore, the virtual work of the first term of Eq. (4.24), 

 

∫(𝛿𝑳𝒖)𝑇𝒄(𝑳𝒖) 𝑑𝛺
 

Ω

= ∫(𝑳𝑯𝐼𝛿𝒖𝑠)
𝑇𝒄(𝑳𝑯𝐼𝒖𝑠) 𝑑𝛺

 

Ω

= ∫ 𝛿𝒖𝑠
𝑇𝑩𝐼

𝑇
𝒄𝑩𝐼𝒖𝑠 𝑑𝛺

 

Ω

= 𝛿𝒖𝑠
𝑇∫𝑩𝐼

𝑇𝒄𝑩𝐼 𝑑𝛺
 

Ω

𝒖𝑠 
(4.26) 

in which the deformability matrix 𝑩𝐼 for the 𝑛 nodes constituting the influence-cell of interest 

point 𝒙𝐼, can be defined as 

 𝑩𝐼 =

[
 
 
 
 
 
 
𝜕𝜑1(𝒙𝐼)

𝜕𝑥
0

0
𝜕𝜑1(𝒙𝐼)

𝜕𝑦

𝜕𝜑1(𝒙𝐼)

𝜕𝑦

𝜕𝜑1(𝒙𝐼)

𝜕𝑥

 

⋮
⋮
⋮
⋮
⋮
⋮
⋮

 

𝜕𝜑2(𝒙𝐼)

𝜕𝑥
0

0
𝜕𝜑2(𝒙𝐼)

𝜕𝑦

𝜕𝜑2(𝒙𝐼)

𝜕𝑦

𝜕𝜑2(𝒙𝐼)

𝜕𝑥

 

⋮
⋮
⋮
⋮
⋮
⋮
⋮

⋯ 

⋮
⋮
⋮
⋮
⋮
⋮
⋮

 

𝜕𝜑𝑛(𝒙𝐼)

𝜕𝑥
0

0
𝜕𝜑𝑛(𝒙𝐼)

𝜕𝑦

𝜕𝜑𝑛(𝒙𝐼)

𝜕𝑦

𝜕𝜑𝑛(𝒙𝐼)

𝜕𝑥 ]
 
 
 
 
 
 

. (4.27) 

 In an analogous way, remaining terms of Eq. (4.24) can be also simplified, obtaining the 

following: 

 ∫𝛿𝒖𝑇𝒃 𝑑𝛺
 

Ω

= ∫(𝑯𝐼𝛿𝒖𝑠)
𝑇𝒃 𝑑𝛺

 

Ω

= 𝛿𝒖𝑠
𝑇∫𝑯𝐼

𝑇𝒃 𝑑𝛺
 

Ω

; (4.28) 

 

 ∫ 𝛿𝒖𝑇 �̅� 𝑑Γ 

 

Γ𝑡

= ∫ (𝑯𝐼𝛿𝒖𝑠)
𝑇𝒃 𝑑𝛺

 

Γ𝑡

=  𝛿𝒖𝑠
𝑇∫ 𝑯𝐼

𝑇 �̅� 𝑑Γ 

 

Γ𝑡

; (4.29) 
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 ∫𝜌(𝛿𝒖𝑇�̈�) 𝑑Ω
 

Ω

= 𝛿𝒖𝒔
𝑇∫𝑯𝐼

𝑇𝜌𝑯𝐼
  𝑑Ω

 

Ω

 �̈�𝑠 (4.30) 

 Thus, Eq. (4.24) can become the following 

 

𝛿𝐿 =  𝛿𝒖𝑠
𝑇∫𝑩𝐼

𝑇𝒄𝑩𝐼 𝑑𝛺
 

Ω⏟        
𝑲

𝒖𝑠 − 𝛿𝒖𝑠
𝑇∫𝑯𝐼

𝑇𝒃 𝑑𝛺
 

Ω⏟      
𝒇𝑏

− 𝛿𝒖𝑠
𝑇∫ 𝑯𝐼

𝑇 �̅� 𝑑Γ 

 

Γ𝑡⏟      
+

𝒇𝑡

+ 𝛿𝒖𝑠
𝑇∫𝑯𝐼

𝑇𝜌𝑯𝐼
  𝑑Ω

 

Ω

 
⏟        

𝑴

�̈�𝑠 = 0 
(4.31) 

 The equilibrium equation is then obtained and defined as 

 𝑲𝒖 +𝑴�̈� = 𝒇𝑏 + 𝒇𝑡  , (4.32) 

being 𝑲, the stiffness matrix, 𝒖, the displacement field, 𝑴, the mass matrix, 𝒇𝑏, the body 

weight vector and 𝒇𝑡, the external forces vector. So, considering the vector 𝒇 = 𝒇𝑏 + 𝒇𝑡  as the 

sum vector of the forces applied, it is possible to, using Eq. (4.32), obtain the displacement 

field 𝒖. 

 Thenceforward, it is possible to determine numerous variable fields. The strain 𝜺(𝒙𝐼), in an 

interest point 𝒙𝐼 ∈ 𝛀 can be obtained using Eq. (4.10).Then, using the Hooke’s Law present in 

Eq. (4.4), the stress field, 𝝈(𝒙𝐼) can be also obtained. 

 Considering both the strain and the stress fields, the Strain Energy Density (SED) field for an 

interest point 𝒙𝐼 and a specific load case can be determined as 

 𝑼(𝒙𝐼) =
1

2
∫ 𝝈(𝒙𝐼)

𝑇
 

Ω𝐼

𝜺(𝒙𝐼) 𝑑Ω𝐼  . (4.33) 

 The principal stresses 𝝈(𝒙𝐼)
 for the interest point 𝒙𝐼 are obtained from the Cauchy stress 

tensor 𝚲(𝒙𝐼) using the expression 

 det ([
𝜎𝑥𝑥(𝒙𝐼) 𝜎𝑥𝑦(𝒙𝐼)

𝜎𝑥𝑦(𝒙𝐼) 𝜎𝑦𝑦(𝒙𝐼)
] − 𝜎(𝒙𝐼)𝑖 [

1 0
0 1

]) = 0 (4.34) 

and the principal directions 𝒏((𝒙𝐼)𝑖) = {𝑛𝑥((𝒙𝐼)𝑖), 𝑛𝑦((𝒙𝐼)𝑖)}
𝑇
 are obtained with 

  ([
𝜎𝑥𝑥(𝒙𝐼) 𝜎𝑥𝑦(𝒙𝐼)

𝜎𝑥𝑦(𝒙𝐼) 𝜎𝑦𝑦(𝒙𝐼)
] − 𝜎(𝒙𝐼)𝑖 [

1 0
0 1

]) {
𝑛𝑥(𝒙𝐼)𝑖
𝑛𝑦(𝒙𝐼)𝑖

} = 0 (4.35) 

 The three principal stresses obtained can be used to determine the von Mises effective stress 

for each interest point 𝒙𝐼 with the following expression 

 𝜎𝑒𝑞(𝒙𝐼) = √
1

2
((𝜎(𝒙𝐼)1 − 𝜎(𝒙𝐼)2)

2 + (𝜎(𝒙𝐼)2 − 𝜎(𝒙𝐼)3)
2 + (𝜎(𝒙𝐼)3 − 𝜎(𝒙𝐼)1)

2) . (4.36) 

 The von Mises equivalent effective strain can be obtain in similar way: 
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 휀𝑒𝑞 =
2

3
√
3(𝑒𝑥𝑥

2 + 𝑒𝑦𝑦
2 + 𝑒𝑧𝑧

2)

2
+
3(𝛾𝑥𝑦

2 + 𝛾𝑦𝑧
2 + 𝛾𝑧𝑥

2)

4
 . (4.37) 

With the deviatoric strains: 

 

𝑒𝑥𝑥 = +
2

3
휀𝑥𝑥 −

1

3
휀𝑦𝑦 −

1

3
휀𝑧𝑧 ; 

𝑒𝑦𝑦 = −
1

3
휀𝑥𝑥 +

2

3
휀𝑦𝑦 −

1

3
휀𝑧𝑧 ; 

𝑒𝑧𝑧 = −
1

3
휀𝑥𝑥 −

1

3
휀𝑦𝑦 +

2

3
휀𝑧𝑧 . 

(4.38) 

The engineering strains 𝛾 are defined as: 

 𝛾𝑖𝑗 = 2 × 휀𝑖𝑗  . (4.39) 

4.3.1 - Dynamic Equations 

 The equilibrium equations governing the linear dynamic response can be represented as in 

Eq. (4.32). The fundamental mathematical method used to solve Eq. (4.32) is the separation 

of variables. In order to change the equilibrium equations to the modal generalized 

displacements [59] was performed the following transformation: 

 𝒖(𝑡) = 𝚽 𝒙(𝑡) (4.40) 

where 𝚽 is a 𝑚 ×𝑚 square matrix containing 𝑚 spatial vectors independent of the time 

variable 𝑡, 𝒙(𝑡) is a time dependent vector and 𝑚 = 2𝑁 for the 2D case and 𝑚 = 3𝑁 for the 3D 

case, being 𝑁 the total number of nodes in the problem domain. From Eq. (4.40) also follows 

that �̇�(𝑡) = 𝚽�̇�(𝑡) and �̈�(𝑡) = 𝚽�̈�(𝑡) . The components of  𝒖(𝑡) are called generalized 

displacements. For which the solution can be presented in the form, 

 𝒖(𝑡) = 𝛟sin(𝜔(𝑡 − 𝑡0)) (4.41) 

Being 𝛟 the vector or order 𝑚, 𝑡 the time variable, the constant initial time is defined by 𝑡0 

and  𝜔 is the vibration frequency vector. Substituting Eq. (4.41) into (4.32) the generalized 

eigenproblem is obtain, from which 𝛟 and 𝜔 must be determined, 

 𝑲𝛟 = 𝜔𝟐𝑴𝛟 . (4.42) 

 Eq. (4.42) yields the m eigensolutions: 

 

[
 
 
 
𝑲𝛟1 = 𝜔1

𝟐𝑴𝛟1
𝑲𝛟2 = 𝜔2

𝟐𝑴𝛟2
⋮

𝑲𝛟𝑚 = 𝜔𝑚
𝟐𝑴𝛟𝑚

. (4.43) 
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 The vector 𝛟𝑖 is called the ith mode shape vector and  𝜔𝑖 is the corresponding frequency of 

vibration. Defining a matrix  𝚽 whose columns are the eigenvectors 𝛟𝑖, 

 𝚽 = [𝛟1 𝛟𝟐… 𝛟𝐦] (4.44) 

and a diagonal matrix 𝛀 which stores the eigenvalues  𝜔𝑖 , 

 𝛀 =

[
 
 
 
𝜔1

𝟐 0 … 0

0 𝜔2
𝟐 … 0

⋮ ⋮ ⋱ ⋮
0 0 … 𝜔𝑚

𝟐]
 
 
 

 ; (4.45) 

the 𝑚 solutions can be written as: 

 𝑲 𝚽 = 𝑴 𝚽 𝛀  . (4.46) 

 It is required that the space functions satisfy the following stiffness and mass orthogonality 

conditions: 

 𝚽𝑇  𝑲 𝚽 = 𝛀  (4.47) 

and 

 𝚽𝑇  𝑴 𝚽 = 𝑰 . (4.48) 

 After substituting Eq.  (4.40) and its time derivatives into Eq. (4.32) and pre-multiplying by 

𝚽𝑇, the equilibrium equation that corresponds to the modal generalized displacement is 

obtained: 

 �̈�(𝑡) + 𝛀 𝒙(𝑡) = 𝚽𝑇𝑭(𝑡). (4.49) 

 The initial conditions on 𝒙(𝑡) are obtained using Eq. (4.40) and considering the M-

orthonormality of 𝚽𝑇 at time 𝑡 = 0, 

 [
𝒙0 = 𝚽

𝑇  𝑴 𝒖0
�̇�0 = 𝚽

𝑇  𝑴 �̇�0
 . (4.50) 

 Equation (4.49) can be represented as m individual equations of the form 

 [
�̈�𝑖(𝑡) + 𝜔𝑖

𝟐𝑥𝑖(𝑡) = 𝑓𝑖(𝑡)

𝑓𝑖(𝑡) = 𝛟𝑖
𝑇𝑭(𝑡)

 (4.51) 

with the initial conditions: 

 [
𝑥𝑖
𝑡=0 = 𝛟𝑖

𝑇𝑴𝒖0
�̇�𝑖
𝑡=0 = 𝛟𝑖

𝑇𝑴�̇�0
 . (4.52) 

 For the complete response, the solution to all m equations in Eq. (4.51) must be calculated 

and then the nodal point displacement are obtained by superposition of the response in each 

mode: 
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 𝒖(𝑡) =∑𝛟𝑖  𝒙𝑖(𝑡)

𝑚

𝑖=1

 . (4.53) 

 Therefore the response analysis requires, first, the solution of the eigenvalues and 

eigenvectors of the problem, Eq. (4.42), then the solution of the decoupled equilibrium 

equations in Eq. (4.51) and, finally, the superposition of the response in each eigenvector as 

expressed in Eq. (4.53). 

4.3.2 - Results Parameterization 

 Knowing that tensile stress (σ) and strain (ε) are correlated by the Young modulus (E), 

 𝜎 = E 휀, (4.54) 

is possible to parameterize the results by a parameter 𝛼 and then : 

 𝜎 = 𝛼 E 휀. (4.55) 

This kind of parameterization is useful for example to obtain a “virtual” displacement or stress 

distribution field for each vibrational mode that is proportional to its vibration frequency.  

Thus, recalling Eq. (4.40) is possible to write: 

 𝒖𝒊(𝑡) = 𝜔𝑖  𝚽𝒊  𝒙𝒊(𝑡). (4.56) 

From Eq. (4.10) , the strain vector can be redefined as 

 𝜺𝒊 = 𝜔𝑖  𝑳 𝚽𝒊  𝒙𝒊(𝑡) (4.57) 

and for consequence,   

 𝝈𝒊 = 𝐜 𝜺𝒊 = 𝜔𝑖  𝒄 𝑳 𝚽𝒊  𝒙𝒊(𝑡). (4.58) 
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Chapter 5  

The Modelling Process 

 Finite element modelling generally involves four stages [93]. When first applied to 

biomechanics, it involved five stages. A first stage was necessary to develop special coding in 

order to address the specific computational problem. Better performing procedures are still 

under development, such as the isogeometric analysis concept [94], but nowadays many of the 

necessary features are already incorporated into the major program packages available on the 

market (e.g., ABAQUS, ANSYS, NASTRAN, MARC, ADINA, COMSOL, CASTEM, and LUSAS). 

However, many established research groups in the computational mechanics community have 

developed their own research codes for advanced problems that are not adequately covered 

by the above general purpose codes. Examples are the isogeometric analysis code [94], [95], 

COMES-GEO [96], Pandas [97], Swandyne [98] and FEMAS [99], which was used during this 

project and is addressed in Sec. 5.3 - . These allow advances in computational biomechanics 

to push even further. 

 The aforementioned first phase is now known as preprocessing and involves defining the 

mesh geometry, specifying the material property distributions, and designating the loading 

conditions. During the second phase, the computation of solution is carried out (this phase 

involves the choice of numerical algorithm and choice of convergence criteria). The third phase 

is generally known as postprocessing and it includes the extraction of meaningful parameters 

and variables of interest from the simulation. The last phase is represented by the validation 

procedure and the interpretation of the results. 

 Validation of the models entails that models should be verified and validated by means of 

combining computational and experimental protocols [93]. 

5.1 - Geometry 

 Regarding geometry, we should differentiate the case of 3D and 2D models. 2D models are 

generally adopted when the object of interest can be modeled considering approximately both 

geometrical and material symmetry about a single axis (axisymmetric simplification) [93], in 

the case of 2D plane stress simulations (e.g., influence of surrounding tissues on biomechanics 

of the aortic wall [100]). 2D simulation is also often used as a preliminary stage of development 
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of a 3D computational model. Otherwise, nowadays 3D models are the state of the art of FEA 

in biomechanics applications. 

 In order to define the model's geometry of living subjects organs, digital images are generally 

preferred as obtained by CT and MRI. The latter is favored as it represents an accurate and 

noninvasive method. MRI is used to develop subject-specific biomechanical models, either of 

normal or of pathologic subjects. 

 Obviously, subject-specific digitized images are always preferable for purposes of accuracy 

in the reconstruction of biological geometries. When possible, the finite element mesh can be 

coupled with the source geometry for simplifying result interpretation. Nowadays, several 

software packages have been developed for image segmentation purposes. Some can directly 

generate the mesh to run the finite element model simulation, some others may be used to 

segment tissue geometry automatically and to provide the surface STL format (which is a 

computer-aided design format) to be imported either into a mesh generator specific software 

or into the software for running the complete finite element simulation. The image 

segmentation procedure is one of the most time-consuming procedures within the finite 

element model analysis [93]. 

 Despite the many advantages of using images and segmentation procedures to obtain the 

model's geometry, in many problems it is impossible to use such methodology, either because 

of technical difficulties or impossibilities (for example by contraindications of medical imaging 

techniques), associated costs or even the absence of appropriate targeting segmentation 

methods. Therefore, there are alternative software that allow to build the geometric surface 

of the model based on drawing tools. The quality and approximation of the model to the real 

problem will be as better as the expertise and knowledge of these tools by the researcher but 

is also dependent on the flexibility and capabilities of the used software. It should be taken 

into consideration the choice of the most suitable program. Some of the available systems are: 

Solidworks, Onshape, Rhino3D, CATIA and Autodesk. 

 

 

(a)  

 

(b)  

 

(c)  

Figure 5.1 - Microscopic images of human metaphase chromosomes: (a) chromosome number 2 from 
normal lymphocytes observed by transmission electron microscopy (TEM) [101]; (b) G-banded human 
chromosome 10 by scanning electron microscopy (SEM), Bar = 0,5 𝜇𝑚 [102]; (c) Uncoated, G-banded 
human chromosome 12, viewed at 45° tilt in Cambridge S4-10 electron microscope, Bar = 0,5 𝜇𝑚 [102]. 

  

The obtaining of the geometry of a chromosome can be supported in microscopic images 

(Figure 5.1 presents the 3 images of human chromosomes, used as references to construct both 

2D and 3D models used in this work). However, there are no available solutions for the 
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automatic obtaining of its geometry, reason why in this work it will be used a mesh generator 

commercial code software. 

 To obtain the geometry of the chromosomes with reference to the images of Figure 5.1, 

there are two steps to the construction of the two-dimensional and three-dimensional models 

that is common to both. In the first place, it is necessary to mark a set of points that define 

the outer limits of the chromosome. In Figure 5.2 (a) the points that define chromosome 

number 2 (Figure 5.1 (a)) are shown. After defining the set of points is necessary to introduce 

a scaling transformation in order to obtain the points in real coordinates. The scaling factor 

(𝑠𝑓) (equal in all directions) is calculated using the scale mentioned in the original figure (𝑠𝑖) 

and the actual length of the scale bar (𝑙), therefore, it is given by: 𝑠𝑓 =
𝑠𝑖

𝑙
. 

 For a 2D model the following steps were performed: 

 Use of the defined points (Figure 5.2 (a)) to construct a closed spline that delimitates 

de chromosome and can describe a surface domain (Figure 5.2 (b)); 

 Definition of number of nodes along the curve or minimal distance between them; 

 Using the nodes in the boundary as a reference/pattern, the nodes that discretizes the 

total problem domain are defined and is possible to elaborate a mesh to be used by 

FEM (Figure 5.2 (c)).  

 

(a)  

 

(b)  

 

(c)  

Figure 5.2 - 2D models development process. 

 Obtaining a three-dimensional model from a two-dimensional figure requires more 

intermediate steps and the making of some assumptions. Thus, the chromosomes were 

considered similar to cylindrical tubular structures with inconstant radius along with its length. 

After obtain the curve that best describes the 2D geometry, the next steps are: 

 Draw circles in a perpendicular plane to the one where the boundary curve is so that 

it crosses opposite points belonging to the curve; These circles should preferably be 

equally spaced  describing the curvature of the chromosome; To draw each one of the 

circles it is necessary to define the plane to which it belongs to; In Figure 5.3 (a) it is 

possible to observe the boundary curve, the global axis system, 2 circumferences and 

the drawing plane of one of them; 

 By drawing the circumferences one by one, it is possible at the end to already visualize 

the final shape of the three-dimensional model as shown in the Figure 5.3 (b); 

 Using the circumferences the next step is to build a boundary surface that delimitates 

de tridimensional solid, Figure 5.3 (c); 
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 As occurred in 2D case, the discretization starts with defining the number of nodes 

along the curves that describes the surface; 

 The nodes along the curves are used as reference do define de nodes in all surface 

(Figure 5.3 (c)) and by its turn, the nodes inside are defined by correspondence with 

surface nodes; In Figure 5.3 (d) is presented one model of chromosome number 2 with 

some cross-sectional cuts to visualize interior nodes and it is also represented the mesh 

to be used for FEM simulation. 

 

(a)  

 

(b)  

 

(c)  

 

(d)  

Figure 5.3 - 3D models development process. 

5.2 - Mesh Definition 

 The next step after the construction of the object geometry is to convert the object into a 

mesh with a smooth surface/outlines that is as close as possible to the actual domain [93]. The 

accurate surface definition of an object depends heavily on the segmentation 

algorithm/methodology used, while the mesh quality influences the quality of the FEA. The 

spatial discretization should be of the right size, quality, and shape for obtaining an accurate 

solution [103]. For traditional engineering applications in which object boundaries may be 

described, analytically or piecewise analytically powerful mesh generating methods exist [104], 

[105]. 

 In order to generate the chromosome mesh it was used the same software used to create its 

geometry. This software allows to receive or export the information regarding its geometry in 

STL format. In 3D models it was necessary to use another software, the AUTODESK Meshmixer 

(freeware), in order to smooth the surface. The geometry hand-created had sharp edges on the 

poles and in chromosomes number 10 and 12, where is distinguishable the two chromatids, the 

region between them was not well defined. 

5.3 - Finite Element Meshless Method Analysis Software - FEMAS 

 FEMAS is a meshless computational framework developed at FEUP since 2014 by Prof. Jorge 

Belinha. It is an original code implemented in the commercial software MATLAB that uses the 

formulations presented in Chapter 3 and Chapter 4. Through a graphical user interface (GUI), 
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Figure 5.4, this software allows an easy construction of numerical models and their analysis 

using several different discretization techniques. 

 

 

Figure 5.4 - FEMAS Graphical User Interface. 

 

 In terms of numerical analysis, FEMAS allows the use of FEM, RPIM and NNRPIM and currently 

allows the following analysis: 

 Linear Static Linear-Elastic; 

 Non-Linear Elasto-Plastic; 

 Non-Linear Large Deformations; 

 Crack opening path; 

 Free Vibration; 

 Forced Vibration; 

 Buckling; 

 Static Fluid flow. 

 This framework is capable of performing simulations with isotropic and anisotropic materials, 

as well as, making analysis both in 3D and 2D settings, using for this the classical tridimensional 

deformation theory and the plane stress and plane strain two-dimensional deformation theory, 

respectively. FEMAS allows for the autonomous construction of the numerical models, allowing 

the user to control the nodal discretization, material disposition and location of essential and 

boundary conditions. All these tasks can be performed directly in the software without the 

need to use any external CAD software. Nonetheless, meshes can also be created using other 

CAD software and imported into FEMAS. Moreover, FEMAS allows to present the displacement, 

stress and strain fields along with the solid domain using both figures and arrays, which permits 

further data analyses. 

 All the examples and simulations shown in this work were made using the aforementioned 

software and were used the parameters mentioned in Table 5.1 and Table 5.2 in all RPIM and 

NNRPIM analysis. 
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Table 5.1 - RPIM Parameters 

RPIM 

2D 3D 

Nodes in the influence-domain: 27 Nodes in the influence-domain: 27 

c = 1,42 c = 1,42 

p = 1,03 p = 1,03 

Polynomial Basis: Constant Polynomial Basis: Constant 

Integration points: 1 per triangle Integration points: 1 per tetrahedron 

 

 

Table 5.2 - NNRPIM Parameters 

NNRPIM 

2D 3D 

Influence-cell: Second Order Influence-cell: Second Order 

c = 0,0001 c = 0,0001 

p = 0,999 p = 0,999 

Polynomial Basis: Constant Polynomial Basis: Constant 

Integration points: 1 per sub-cell Integration points: 1 per sub-cell 
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Chapter 6  

Preliminary Studies 

 Before analyzing 2D and 3D models of human chromosomes, several preliminary studies were 

made. The first objective of these studies was to analyze the convergence of the RPIM and the 

NNRPIM when compared with FEM and to define the level of discretization needed in order to 

obtain the most accurate results. The second objective was to establish the mechanical 

properties for chromosomes from experimental data present in the literature (Sec. 2.2 - ) and 

afterwards validate the accuracy of our simulations of this material.  

 The evolution of the processing power of computers has allowed the growth of the three-

dimensional analysis and, therefore, more accurate analyses. However, there are still 

limitations, regarding the level of discretization, 3D analysis represent higher computational 

costs. In this way, 2D simulations continue to be useful. Thus, another objective is to try to 

understand if it is possible to improve 2D models and to approximate results. 

6.1 - Model 

 To carry out these preliminary tests and to meet the objectives outlined above, a model of 

an artificial chromosome was developed, with a simulated geometry but as close as possible to 

the dimensions of the human chromosome number 2. In Figure 6.1 a scheme of the dimensions 

of the two-dimensional model is presented. 

 

Figure 6.1 - Artificial chromosome 2D model dimentions. 
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 The mechanical properties described in Sec. 2.2 -  were obtained experimentally by strain-

stress tests and all simulations of this procedure follow the essential and boundary conditions 

described in Figure 6.2 (a). The total force ‖�⃗⃗� ‖ = 300 𝑝𝑁.  In addition, it is intended to perform 

a dynamic analysis and therefore it is also evaluated the first three modes of free vibrations. 

In this case, no forces are applied and, given the geometry of the problem, only the 

displacement, in all directions, of the most central point is restricted, as exemplified in Figure 

6.2 (b). This condition attempts to simulate the effect of the centromere. 

 In order to take a first step also in the simulation of the cell division, more concretely in the 

processes that occur at the level of the nucleus during the division of the chromosomes, a 

bending test was also performed applying the essential and natural boundary conditions 

identified in the Figure 6.2 (c). On this case, it is applied a total force ‖�⃗⃗� ‖ = 7 × 10−10 𝑁 to 

simulate the mitotic spindle force.  The applied force is localized in the central and thicker 

region in order to simulate a spindle-fiber attachment of median type (Figure 2.5). 

 For 3D cases it was used the same principles above described. 

 

 

(a)  

 
(b)  

 

(c)  

Figure 6.2 - Models for 2D preliminary studies: (a) stress-strain curve, (b) free vibrations and (c) 
bending simulations. 

6.2 - Nodal Discretization Convergence Study 

 One of the aspects that can most influence the results when using this type of methods is 

the number and location of the nodes that describe the problem. In this way, the problem was 

analyzed with 6 two-dimensional models with increasing number of nodes. In all cases was 

considered a constant thickness of 1,0 µ𝑚. It should be noted that in view of the processing 

requirements of the used software and the available hardware, no models with more than 2000 

nodes were developed. In all the analyses, the nodes location were coincident for both FEM 
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and meshless methods (the meshes are the same for both FEM and meshless formulations). The 

nodal distribution in each model can be seen in Figure 6.3 and it should be noticed that even 

with a simple geometry with two axes of symmetry, in most of the models, it was not obtained 

an equally symmetric nodal distribution. This fact may, from the outset, influence the results. 

 

 

(a) 99 

 

(b) 319 

 

(c) 487 

 

(d) 701 

 

(e) 1068 

 

(f) 1741 

Figure 6.3 - Models with increasing number of nodes for discretization convergence study. 

6.2.1 - Stress–strain experiment simulation 

 The Cauchy strain or engineering strain is expressed as the ratio of total deformation to the 

initial dimension of the material body in which the forces are being applied. The engineering 

normal strain of a material line element or fiber axially loaded is expressed as the change in 

length 𝛥𝐿 per unit of the original length 𝐿 of the line element or fibers. The normal strain is 

positive if the material fibers are stretched and negative if they are compressed. Thus: 

 𝑒 =
∆𝐿

𝐿
=
𝑙 − 𝐿

𝐿
 . (6.1) 

 Therefore, is calculated the Cauchy linear strain between two points located in the opposite 

extremities of the chromosome. As the artificial chromosome was loaded with 300 𝑝𝑁, 

corresponding to the doubling force, according to the literature, it is expected a 𝑒 ≈ 1 because 

is expected the final chromosome length to be twice the initial length. In Figure 6.4 is 

presented the linear Cauchy strain obtained for an increasing number of nodes that discretizes 

the problem domain and for the three numerical method tested. In all simulations, it was 

obtained results very approximated to the expected, nevertheless is possible to observe that 

the results tended to stabilize for more than 487 nodes and for 1068 and more nodes the 

differences between FEM and NNRPIM results are negligible. Although the RPIM results always 

remained a bit higher, the differences are not so considerable. 

 Attending on Table 6.1, Table 6.2 and Table 6.3, where are presented the color maps for 

displacement, von Mises effective stress and equivalent effective strain fields, it is observable 

that meshless methods always produced smother results comparatively with FEM. It is also 
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possible to observe from Table 6.2 and Table 6.3 that the narrower central zone of the 

chromosome, coinciding with the centromere, is the one that shows a higher stress 

concentration of tensions and experiences the higher displacement. The linear deformation of 

Cauchy was also evaluated in this region, shown in Figure 6.5, and the convergence is fast and 

for models with more than 701 nodes there is no significant fluctuation of results. 

 

Figure 6.4 - Total displacement variation with increasing number of nodes and per numerical method. 

  

 Is possible to obtain the local equivalent stress (𝜎𝑒𝑞) by 

 𝜎𝑒𝑞 =
‖𝐹 ‖

𝐴𝑒𝑞
 , (6.2) 

where ‖𝐹 ‖ is the total applied force intensity and 𝐴𝑒𝑞 is the cross-section area to be analyzed. 

Then, through Eq. (4.54), is possible to locally study the equivalent Young modulus using: 

 𝐸𝑒𝑞 =
𝜎𝑒𝑞

𝑒
 . (6.3) 

 

Figure 6.5 - Displacement in the neck region variation with increasing number of nodes and per 

numerical method. 
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 Considering this approach of the problem, in Figure 6.6 are presented  the results for the 

neck region and it was verified that in all the simulations, except for the RPIM, the equivalent 

Young modulus approximates the value defined in the literature (400 𝑃𝑎, see Sec. 2.2 - ) with 

a margin error lower than that indicated by the authors (20 𝑃𝑎, see Sec. 2.2 - ). 

 

 

Figure 6.6 - Equivalent Young modulus in the neck region variation with increasing number of nodes 
and per numerical method. 

 

By verifying all the data obtained we arrive at several conclusions:  

 It is possible to say that the results will be so much more exact and close between 

different methods as greater the level of discretization is, that is to say, the more 

nodes are used to define the problem under study; 

 However, from about 1068 nodes there is no great improvement / alteration of results 

and as the computational costs increase with the increase in the number of nodes, it 

is sufficient to use chromosome models with a number of nodes between 1100 and 

2000; 

 NNRPIM is the one that presents final results closer to those obtained using FEM even 

though the convergence process is not linear. 

 The obtained results are in accordance with what was expected and then is possible to 

conclude that the utilized numerical methods can be applied to the simulation and in 

silico study of these microstructures; 

 Observing again Table 6.2 and Table 6.3, it is verified the existence of four small areas 

where stresses accumulate and where higher deformations occur. These small regions 

match with the transitional sites between nodes where essential and boundary 

conditions are applied and those that remain unconstrained and unloaded. However, 

the accumulation of tensions and deformations is due to this abrupt breakdown of 

constraints, introducing artifacts in the results and leading to the loss of intelligence 

in the maps for the models with greater number of nodes. The fact that the nodes also 

are not uniformly distributed, in Figure 6.3 (d)-(f) is visible the concentration of nodes 

nearby these same mentioned regions, also introduce variation of results between the 

considered models. 
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Table 6.1 – Displacement (‖𝑢‖) field for elasto-static nodal discretization study. 

Nodes: 99 319 487 701 1068 1741 
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Table 6.2 – von Mises effective stress (𝜎𝑒𝑞) field for elasto-static nodal discretization study. 

Nodes: 99 319 487 701 1068 1741 
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Table 6.3 – Equivalent effective strain (휀𝑒𝑞) field for elasto-static nodal discretization study. 

Nodes: 99 319 487 701 1068 1741 
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6.2.2 - Free-Vibrations 

 Evaluating the convergence curves of the natural frequencies of vibration of the model under 

study, for a growing number of nodes, and for the first 3 modes of vibration, Figure 6.7 , Figure 

6.8 and Figure 6.9, show that these tend to stabilize for a number higher than 1068 nodes. The 

third mode, with higher frequency, is the last to converge (with higher number of nodes). 

 According to Sec. 4.3.2 - , Table 6.4, Table 6.7 and Table 6.10 show the parameterized 

displacement field obtained using FEM, RPIM and NNRPIM respectively. On these cases, the 

maximum parameterized displacement that can be found actual corresponds to the vibration 

frequency of the given mode.  In Table 6.5, Table 6.8 and Table 6.11 are presented the 

parameterized von Mises effective stress field of natural fibrational modes 1-3 usig FEM, RPIM 

and NNRPIM. And, for last, in Table 6.6, Table 6.9 and Table 6.12 are shown the parameterized 

equivalent effective strain using FEM, RPIM and NNRPIM, respectevely. 

 The obtained results using FEM for the model composed by 99 nodes were ignored because 

they were very different from the other, probably due to mesh incompatibilities. 

 

Figure 6.7 - 1st natural vibrational frequency evaluation with increasing number of nodes and per 
numerical method. 

 

Figure 6.8 - 2nd natural vibrational frequency evaluation with increasing number of nodes and per 
numerical method. 
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Figure 6.9 - 3rd natural vibrational frequency evaluation with increasing number of nodes and per 
numerical method. 
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Table 6.4 –  Parameterized displacement field of natural vibrational modes 1-3 usig FEM. 

Nodes: 99 319 487 701 1068 1741  
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Table 6.5 –  Parameterized von Mises effective stress field of natural vibrational modes 1-3 
usig FEM. 

Nodes: 99 319 487 701 1068 1741  
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Table 6.6 –  Parameterized  equivalent effective strain of natural vibrational modes 1-3 usig 

FEM. 

Nodes: 99 319 487 701 1068 1741  
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Min 

M
o
d
e
 2

 

- 

Max:160,0 

Min: 0,0 

 

Max:160,0 

Min: 0,0 

 

Max:160,0 

Min: 0,0 

 

Max:160,0 

Min: 0,0 

 

Max:160,0  

Min: 0,0 

Max 

 

Min 

M
o
d
e
 3

 

- 

 

Max:200,0  

Min: 0,0 

 

Max:230,0 

Min: 0,0 

 

Max:250,0 

Min: 0,0 

 

Max:220,0 

Min: 0,0 

 

Max:250,0  

Min: 0,0 

Max 

 

Min 
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Table 6.7 – Parameterized displacement field of natural vibrational modes 1-3 usig RPIM. 

Nodes: 99 319 487 701 1068 1741  

M
o
d
e
 1

 

 

Max:42,31 

Min: 0,00 

 

Max:41,49 

Min: 0,00 

 

Max:41,23 

Min: 0,00 

 

Max:41,28 

Min: 0,00 

 

Max:41,18 

Min: 0,00 

 

Max:41,10 

Min: 0,00 

𝑟𝑎𝑑

𝑠
 

Max 

 

Min 

Deformati-
on Scale: -0,02 0,02 -0,02 -0,02 0,02 -0,02 

M
o
d
e
 2

 

 

Max:22,76 

Min: 0,00 

 

Max:22,32 

Min: 0,00 

 

Max:22,26 

Min: 0,00 

 

Max:22,24 

Min: 0,00 

 

Max:22,14 

Min: 0,00 

 

Max:22,18 

Min: 0,00 

× 10 
𝑟𝑎𝑑

𝑠
 

Max 

 

Min 
Deformati-
on Scale: 0,002 0,002 0,002 0,002 -0,002 -0,002 

M
o
d
e
 3

 

 

Max:28,23 

Min: 0,00 

 

Max:27,20 

Min: 0,00 

 

Max:26,82 

Min: 0,00 

 

Max:26,86 

Min: 0,00 

 

Max:26,68 

Min: 0,00 

 

Max:26,35 

Min: 0,00 

× 10 
𝑟𝑎𝑑

𝑠
 

Max 

 

Min 
Deformati-
on Scale: -0,001 0,001 -0,001 -0,001 -0,001 0,001 
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Table 6.8 – Parameterized von Mises effective stress field of natural vibrational modes 1-3 
usig RPIM. 

Nodes: 99 319 487 701 1068 1741  

M
o
d
e
 1

 

 

Max: 3,00 

Min: 0,00 

 

Max: 3,00 

Min: 0,00 

 

Max: 3,00 

Min: 0,00 

 

Max: 3,00  

Min: 0,00 

 

Max: 3,00 

Min: 0,00 

 

Max: 3,00 

Min: 0,00 

× 10−9 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 

M
o
d
e
 2

 

 

Max: 6,50 

Min: 0,00 

 

Max: 7,00 

Min: 0,00 

 

Max: 7,00 

Min: 0,00 

 

Max: 7,50 

Min: 0,00 

 

Max: 7,50 

Min: 0,00 

 

Max: 7,50 

Min: 0,00 

× 10−8 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 

M
o
d
e
 3

 

 

Max: 9,50 

Min: 0,00 

 

Max:10,50 

Min: 0,00 

 

Max:11,00 

Min: 0,00 

 

Max:11,0 

Min: 0,00 

 

Max:12,0 

Min: 0,00 

 

Max:16,0 

Min: 0,00 

× 10−8 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 
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Table 6.9 – Parameterized equivalent effective strain of natural vibrational modes 1-3 usig 

RPIM. 

Nodes: 99 319 487 701 1068 1741  

M
o
d
e
 1

 

 

Max: 6,0 

Min: 0,0 

 

Max: 6,0 

Min: 0,0 

 

Max: 6,0 

Min: 0,0 

 

Max: 6,5 

Min: 0,0 

 

Max: 6,5 

Min: 0,0 

 

Max: 6,50  

Min: 0,0 

Max 

 

Min 

M
o
d
e
 2

 

 

Max:130,0 

Min: 0,0 

 

Max:140,0 

Min: 0,0 

 

Max:145,0 

Min: 0,0 

 

Max:150,0 

Min: 0,0 

 

Max:150,0 

Min: 0,0 

 

Max:160,0 

Min: 0,0 

Max 

 

Min 

M
o
d
e
 3

 

 

Max:180,0  

Min: 0,0 

 

Max:210,0  

Min: 0,0 

 

Max:220,0 

Min: 0,0 

 

Max:220,0 

Min: 0,0 

 

Max:220,0 

Min: 0,0 

 

Max:300,0 

Min: 0,0 

Max 

 

Min 
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Table 6.10 – Parameterized displacement field of natural vibrational modes 1-3 usig NNRPIM. 

Nodes: 99 319 487 701 1068 1741  

M
o
d
e
 1

 

 

Max:45,47 

Min: 0,00 

 

Max:41,64 

Min: 0,00 

 

Max:41,38 

Min: 0,00 

 

Max:40,35 

Min: 0,00 

 

Max:40,51 

Min: 0,00 

 

Max:40,80 

Min: 0,00 

𝑟𝑎𝑑

𝑠
 

Max 

 

Min 

Deformati-
on Scale: -0,02 -0,02 0,02 0,02 -0,02 0,02 

M
o
d
e
 2

 

 

Max:23,34 

Min: 0,00 

 

Max:22,40 

Min: 0,00 

 

Max:22,31 

Min: 0,00 

 

Max:22,05 

Min: 0,00 

 

Max:22,04 

Min: 0,00 

 

Max:22,15 

Min: 0,00 

× 10 
𝑟𝑎𝑑

𝑠
 

Max 

 

Min 
Deformati-
on Scale: -0,002 0,002 0,002 0,002 0,002 0,002 

M
o
d
e
 3

 

 

Max:28,86 

Min: 0,00 

 

Max:27,19 

Min: 0,00 

 

Max:26,95 

Min: 0,00 

 

Max:26,48 

Min: 0,00 

 

Max:26,41 

Min: 0,00 

 

Max:26,22 

Min: 0,00 

× 10 
𝑟𝑎𝑑

𝑠
 

Max 

 

Min 
Deformati-
on Scale: 0,001 -0,001 -0,001 0,001 -0,001 0,001 
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Table 6.11 – Parameterized von Mises effective stress field of natural vibrational modes 1-3 
usig NNRPIM. 

Nodes: 99 319 487 701 1068 1741  

M
o
d
e
 1

 

 

Max: 3,25 

Min: 0,00 

 

Max: 3,00 

Min: 0,00 

 

Max: 3,00 

Min: 0,00 

 

Max: 3,00  

Min: 0,00 

 

Max: 3,00  

Min: 0,00 

 

Max: 3,00 

Min: 0,00 

× 10−9 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 

M
o
d
e
 2

 

 

Max: 7,00 

Min: 0,00 

 

Max: 7,00 

Min: 0,00 

 

Max: 7,50  

Min: 0,00 

 

Max:7,00  

Min: 0,00 

 

Max: 7,00  

Min: 0,00 

 

Max: 8,00 

Min: 0,00 

× 10−8 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 

M
o
d
e
 3

 

 

Max: 10,0 

Min: 0,00 

 

Max:10,50 

Min: 0,00 

 

Max:11,00 

Min: 0,00 

 

Max:11,50 

Min: 0,00 

 

Max:12,50 

Min: 0,00 

 

Max:16,50 

Min: 0,00 

× 10−8 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 
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Table 6.12 – Parameterized equivalent effective strain of natural vibrational modes 1-3 usig 

NNRPIM. 

Nodes: 99 319 487 701 1068 1741  
M

o
d
e
 1

 

 

Max: 6,5 

Min: 0,0 

 

Max: 6,0 

Min: 0,0 

 

Max: 6,0 

Min: 0,0 

 

Max:6,5  

Min: 0,0 

 

Max: 6,5 

Min: 0,0 

 

Max: 6,5  

Min: 0,0 

Max 

 

Min 

M
o
d
e
 2

 

 

Max:140,0 

Min: 0,0 

 

Max:150,0 

Min: 0,0 

 

Max:150,0 

Min: 0,0 

 

Max:150,0 

Min: 0,0 

 

Max:145,0 

Min: 0,0 

 

Max:160,0 

Min: 0,0 

Max 

 

Min 

M
o
d
e
 3

 

 

Max:190,0 

Min: 0,0 

 

Max:210,0 

Min: 0,0 

 

Max:220,0 

Min: 0,0 

 

Max:220,0 

Min: 0,0 

 

Max:230,0 

Min: 0,0 

 

Max:300,0 

Min: 0,0 

Max 

 

Min 

 



 

62  Preliminary Studies 

 

6.2.3 - Bending Test 

 After testing how the number of nodes influences the response to loading situations and the 

natural vibrations, which revealed the preference for higher number of nodes discretizing the 

problem in both situations, it was conduced the bending test with the model with 1761 nodes. 

 

Table 6.13 - Bending test with 1761 nodes model 

 FEM RPIM NNRPIM  

‖𝐮‖ 

 

Max: 16,0 

Min: 0,0 

 

Max: 16,0 

Min: 0,0 

 

Max: 16,0 

Min: 0,0 

(𝜇𝑚) 

Max 

 

Min Deformation 
Scale: 0.02 

0.02 0.02 

𝛔𝐞𝐪 

 

Max: 5,5 

Min: 0,0 

 

Max: 4,0 

Min: 0,0 

 

Max: 4,0 

Min: 0,0 

× 10−9 
𝑁

𝜇𝑚2
 

Max 

 

Min 

𝛆𝐞𝐪 

 

Max: 16,0 

Min: 0,0 

 

Max: 8,5 

Min: 0,0 

 

Max: 9,0 

Min: 0,0 

Max 

 

Min 
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 Analyzing the distribution of the effective stresses and the effective strain, it is once again 

visible the introduction of artifacts by the imposition of the boundary conditions. It is possible 

to see the typical field of deformation during the median chromosome division, but it is not 

possible to take many mechanical inferences on this biological process. Further study would 

require a more detailed analysis of the sites and how the fibers of the achromatic spindle attach 

to the chromosome and the properties of the surrounding environment but also study what are 

the best boundary conditions to impose on the model in order to simulate this specific process. 

6.3 - 2D Shell-Like Convergence Study 

 As mentioned in the previous chapter, nowadays it is fashionable and preference is given to 

the use of three-dimensional models for a variety of reasons. The use of two-dimensional 

models is however still frequent and may prove to be advantageous. One of the concerns in 

their use is that they portray the 3D problem as reliably as possible and investigators have 

invested heavily in new techniques and comparative studies between the use of 2D and 3D 

models. One of the possible ways to try to approximate 2D models of chromosomes to three-

dimensional models is to define areas with different thicknesses instead of assigning a single 

one to the entire domain. Thus, in this work, it is attempted to define several layers to 

approximate the chromosome to a cylindrical structure. The thickness of the various layers was 

approximated by reference to the larger cross-sectional area. Table 6.14 shows a 

schematization of how models with different number of layers were defined. 

 From the previous section, it turned out that more than 1068 nodes and less than 2000 should 

be used to discretize the problem. For reasons of comparison, models with a number of nodes 

as close as possible to 1741 should be used, however, because the models constructed to carry 

out this study are composed of different numbers of layers (similar to a shell or an onion), 

sometimes there is a deviation from this number. In the last column of the Table 6.14  can be 

visualized the final model used for each case, as well as the number of nodes that compose the 

model. 

Table 6.14 – Schematization of the cross-sectional area at two different points and definition 

of the thickness of each layer that compose each model. 

Nº 

Layers 

Thickness 

(𝝁𝒎) 
Largest cross-section Smaller cross-section 

XY 

View 

1 e1 = 0,619 

 
Area error = 21,18% 

 
Area error = 31,36% 

1785 
nodes 
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2 
e1 = 0,948 

e2 = 0,474 

 

Area error = 9,52% 

 

Area error = 50,80% 
1825 
nodes 

3 

e1 = 0,979 

e2 = 0,857 

e3 = 0,498 

 

Area error = 0,90% 

 

Area error = 65,17% 
1719 
nodes 

5 

e1 = 0,992 

e2 = 0,952 

e3 = 0,863 

e4 = 0,708 

e5 = 0,392 

 

Area error = 0,51% 

 

Area error = 65,81% 
1695 
nodes 

7 

e1 = 0,996 

e2 = 0,976 

e3 = 0,933 

e4 = 0,864 

e5 = 0,764 

e6 = 0,614 

e7 = 0,334 
 

Area error = 0,31% 

 

Area error = 66,16% 
1621 
nodes 
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6.3.1 - Stress-strain experiment simulation 

 In Figure 6.10 is presented the Cauchy strain in the neck region, obtained for an increasing 

number of layers that discretizes the problem domain and for the three numerical methods 

tested. Figure 6.4 shows the equivalent Young modulus obtained from the displacement on this 

same region. 

 Table 6.15, Table 6.16 and Table 6.17 have the color maps for displacement, von Mises 

effective stress and equivalent effective strain fields, respectively. 

 The analysis of the convergence curves does not allow to clearly identify a tendency of 

convergence, so the use of a greater number of layers to describe the problem cannot be 

associated to a modeling closer to the exact one. In agreement with the study of convergence 

of the number of nodes, the zone of the chromosome that most influences in the test of traction 

is the thinner region - the neck. In this way, and at this moment without other studies, the 

two-dimensional model should privilege a greater approximation to the smaller area of cross-

section and by the Table 6.14, a single layer should be used. Another point that does not allow 

to establish comparisons and define the best methodology is the simplicity of the used models’ 

geometry. There are several important differences between the model geometry and the actual 

chromosomes structure and the most critical is the large and thin neck in the central portion 

of the model. This neck has a smooth transition to the arms extremities what does not happen 

in chromosomes and it was not considered the many groves along chromatid arms.  

 

 

Figure 6.10 - Total displacement variation with increasing number of layers and per numerical method. 

 

Figure 6.11 - Equivalent Young modulus variation with increasing number of layers and per numerical 
method. 
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Table 6.15 – Displacement (‖𝑢‖) field for elasto-static 2D shell-like convergence study. 

Nº 
Layers: 

1 2 3 5 7  

F
E
M

 

 

Max: 7,5 

Min: 0,0 

 

Max: 7,0 

Min: 0,0   

 

Max: 6,5 

Min: 0,0 

 

Max: 6,5 

Min: 0,0   

 

Max: 6,5 

Min: 0,0 

(µ𝑚) 

Max 

 

Min 

R
P
IM

 

 

Max: 8,0 

Min: 0,0 

 

Max: 7,5 

Min: 0,0 

 

Max: 7,0 

Min: 0,0 

 

Max: 7,0 

Min: 0,0 

 

Max: 7,2 

Min: 0,0 

(µ𝑚) 

Max 

 

Min 

N
N

R
P
IM

 

 

Max: 7,5 

Min: 0,0 

 

Max: 7,0 

Min: 0,0 

 

Max: 7,0 

Min: 0,0 

 

Max: 6,1 

Min: 0,0 

 

Max: 7,0 

Min: 0,0 

(µ𝑚) 

Max 

 

Min 
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Table 6.16 – von Mises effective stress (𝜎𝑒𝑞) field for elasto-static 2D shell-like convergence 

study. 

Nº 
Layers: 

1 2 3 5 7  
F
E
M

 

 

Max: 15,0 

Min: 3,0 

 

Max: 15,0 

Min: 3,0   

 

Max: 15,0 

Min: 3,0 

 

Max: 15,0 

Min: 3,0   

 

Max: 15,0 

Min: 3,0 

× 10−10 

𝑁/𝜇𝑚2 

Max 

 

Min 

R
P
IM

 

 

Max: 15,0 

Min: 3,5 

 

Max: 15,0 

Min: 3,5 

 

Max: 15,0 

Min: 3,5 

 

Max: 15,0 

Min: 3,5 

 

Max: 15,0 

Min: 3,5 

× 10−10 

𝑁/𝜇𝑚2 

Max 

 

Min 

N
N

R
P
IM

 

 

Max: 14,5 

Min: 3,0 

 

Max: 14,5 

Min: 3,0 

 

Max: 14,5 

Min: 3,0 

 

Max: 14,5 

Min: 3,0 

 

Max: 14,5 

Min: 3,0 

× 10−10 

𝑁/𝜇𝑚2 

Max 

 

Min 
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Table 6.17 – Equivalent effective strain (휀𝑒𝑞) field for elasto-static 2D shell-like convergence 

study. 

Nº 
Layers: 

1 2 3 5 7  

F
E
M

 

 

Max: 3,0 

Min: 0,0 

 

Max: 3,0 

Min: 0,0   

 

Max: 3,0 

Min: 0,0 

 

Max: 3,0 

Min: 0,0   

 

Max: 3,0 

Min: 0,0 

Max 

 

Min 

R
P
IM

 

 

Max: 2,9 

Min: 0,7 

 

Max: 2,9 

Min: 0,7 

 

Max: 2,9 

Min: 0,7 

 

Max: 2,9 

Min: 0,7 

 

Max: 2,9 

Min: 0,7 

Max 

 

Min 

N
N

R
P
IM

 

 

Max: 2,9 

Min: 0,7 

 

Max: 2,9 

Min: 0,7 

 

Max: 2,9 

Min: 0,7 

 

Max: 2,9 

Min: 0,7 

 

Max: 2,9 

Min: 0,7 

Max 

 

Min 
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6.3.2 - Free-Vibrations 

 The study of the influence of using different number of layers with different thicknesses on 

the first three natural vibration frequencies is presented in Figure 6.12, Figure 6.13 and Figure 

6.14. For a more exhaustive comparative study,  Table 6.18, Table 6.21 and Table 6.24 show 

the parameterized displacement field obtained using FEM, RPIM and NNRPIM respectively; In 

Table 6.19, Table 6.22 and Table 6.25Erro! A origem da referência não foi encontrada. are 

presented the parameterized von Mises effective stress field of natural fibrational modes 1-3 

usig FEM, RPIM and NNRPIM; And for last, in Table 6.20, Table 6.23 and Table 6.26  are shown 

the parameterized equivalent effective strain. 

 Unlike the stress-strain test, there seems to be a pattern of convergence at natural vibration 

frequencies. This convergence of results may however be due only to the fact that as more 

layers are used to describe the chromosome, the smaller the variations occurring at the level 

of the cross-sectional areas. This decrease in the variation of the cross-sectional area, the 

thickness of the chromosome, leads by itself to the convergence of the results and can not 

therefore be clearly associated with obtaining results that are closer to those that would be 

obtained in a three-dimensional simulation. At this point, it is not advantageous to use several 

layers for 2D problems also due to the greater effort that is necessary to employ in the 

construction of the models. 

 

Figure 6.12 - 1st natural vibrational frequency evaluation with increasing number of layers and per 
numerical method. 

 

Figure 6.13 - 2nd natural vibrational frequency evaluation with increasing number of layers and per 
numerical method. 
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Figure 6.14 - 3rd natural vibrational frequency evaluation with increasing number of layers and per 
numerical method. 
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Table 6.18 – Parameterized displacement field of natural vibrational modes 1-3 usig FEM: 
2D shell-like convergence study. 

Nº Layers: 1 2 3 5 7  
M

o
d
e
 1

 

 

Max: 41,41 

Min: 0,00 

 

Max: 38,47 

Min: 0,00 

 

Max: 38,89 

Min: 0,00 

 

Max: 38,87 

Min: 0,00 

 

Max: 38,15 

Min: 0,00 

𝑟𝑎𝑑

𝑠
 

Max 

 

Min 

Deformati-
on Scale: -0,02 0,02 0,02 0,02 0,02 

M
o
d
e
 2

 

 

Max: 22,29 

Min: 0,00 

 

Max: 20,94 

Min: 0,00 

 

Max: 22,16 

Min: 0,00 

 

Max: 21,19 

Min: 0,00 

 

Max: 20,96 

Min: 0,00 

× 10 
𝑟𝑎𝑑

𝑠
 

Max 

 

Min 
Deformati-
on Scale: -0,002 0,002 0,002 -0,002 0,002 

M
o
d
e
 3

 

 

Max: 26,97 

Min: 0,00 

 

Max: 26,32 

Min: 0,00 

 

Max: 26,53 

Min: 0,00 

 

Max: 26,54 

Min: 0,00 

 

Max: 26,36 

Min: 0,00 

× 10 
𝑟𝑎𝑑

𝑠
 

Max 

 

Min Deformati-
on Scale: 0,001 -0,001 0,001 0,001 0,001 
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Table 6.19 – Parameterized von Mises effective stress field of natural vibrational modes 1-3 
usig FEM: 2D shell-like convergence study. 

Nº Layers: 1 2 3 5 7  

M
o
d
e
 1

 

 

Max:3,50 

Min: 0,00 

 

Max: 3,00 

Min: 0,00 

 

Max: 3,00 

Min: 0,00 

 

Max: 3,25 

Min: 0,00 

 

Max: 3,00 

Min: 0,00 

× 10−9 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 

M
o
d
e
 2

 

 

Max: 8,00 

Min: 0,00 

 

Max: 7,00 

Min: 0,00 

 

Max: 7,50 

Min: 0,00 

 

Max:7,25 

Min: 0,00 

 

Max: 7,50 

Min: 0,00 

× 10−8 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 

M
o
d
e
 3

 

 

Max: 12,00 

Min: 0,00 

 

Max: 12,00 

Min: 0,00 

 

Max: 11,50 

Min: 0,00 

 

Max: 12,00 

Min: 0,00 

 

Max: 12,00 

Min: 0,00 

× 10−8 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 
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Table 6.20 – Parameterized equivalent effective strain field of natural vibrational modes 1-
3 usig FEM: 2D shell-like convergence study. 

Nº Layers: 1 2 3 5 7  
M

o
d
e
 1

 

 

Max: 7,0 

Min: 0,0 

 

Max: 6,5 

Min: 0,0 

 

Max: 6,5 

Min: 0,0 

 

Max: 6,5 

Min: 0,0 

 

Max: 6,0 

Min: 0,0 

Max 

 

Min 

M
o
d
e
 2

 

 

Max: 160,0 

Min: 0,0 

 

Max: 150,0 

Min: 0,0 

 

Max: 150,0 

Min: 0,0 

 

Max: 150,0 

Min: 0,0 

 

Max: 150,0 

Min: 0,0 

Max 

 

Min 

M
o
d
e
 3

 

 

Max: 230,0 

Min: 0,0 

 

Max: 230,0 

Min: 0,0 

 

Max: 230,0 

Min: 0,0 

 

Max: 250,0 

Min: 0,0 

 

Max: 240,0 

Min: 0,0 

Max 

 

Min 
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Table 6.21 – Parameterized displacement field of natural vibrational modes 1-3 usig RPIM: 
2D shell-like convergence study. 

Nº Layers: 1 2 3 5 7  

M
o
d
e
 1

 

 

Max: 41,15 

Min: 0,00 

 

Max: 41,16 

Min: 0,00 

 

Max: 38,14 

Min: 0,00 

 

Max: 40,95 

Min: 0,00 

 

Max: 36,78 

Min: 0,00 

𝑟𝑎𝑑

𝑠
 

Max 

 

Min 

Deformati-
on Scale: 0,02 -0,02 -0,02 0,02 -0,02 

M
o
d
e
 2

 

 

Max: 22,17 

Min: 0,00 

 

Max: 22,18 

Min: 0,00 

 

Max: 22,16 

Min: 0,00 

 

Max: 21,76 

Min: 0,00 

 

Max: 20,37 

Min: 0,00 

× 10 
𝑟𝑎𝑑

𝑠
 

Max 

 

Min 
Deformati-
on Scale: 0,002 -0,002 0,002 -0,002 -0,002 

M
o
d
e
 3

 

 

Max: 26,44 

Min: 0,00 

 

Max: 26,43 

Min: 0,00 

 

Max: 26,02 

Min: 0,00 

 

Max: 26,74 

Min: 0,00 

 

Max: 25,55 

Min: 0,00 

× 10 
𝑟𝑎𝑑

𝑠
 

Max 

 

Min Deformati-
on Scale: 0,001 0,001 -0,001 -0,001 -0,001 
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Table 6.22 – Parameterized von Mises effective stress field of natural vibrational modes 1-3 
usig RPIM: 2D shell-like convergence study. 

Nº Layers: 1 2 3 5 7  
M

o
d
e
 1

 

 

Max: 3,25 

Min: 0,00 

 

Max: 3,25 

Min: 0,00 

 

Max: 3,00 

Min: 0,00 

 

Max: 3,25 

Min: 0,00 

 

Max: 3,00 

Min: 0,00 

× 10−9 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 

M
o
d
e
 2

 

 

Max: 8,00 

Min: 0,00 

 

Max: 8,00 

Min: 0,00 

 

Max: 7,00 

Min: 0,00 

 

Max: 7,00 

Min: 0,00 

 

Max: 7,00 

Min: 0,00 

× 10−8 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 

M
o
d
e
 3

 

 

Max: 16,00 

Min: 0,00 

 

Max: 16,00 

Min: 0,00 

 

Max: 11,00 

Min: 0,00 

 

Max: 11,00 

Min: 0,00 

 

Max: 11,00 

Min: 0,00 

× 10−8 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 
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Table 6.23 – Parameterized equivalent effective strain field of natural vibrational modes 1-
3 usig RPIM: 2D shell-like convergence study. 

Nº Layers: 1 2 3 5 7  

M
o
d
e
 1

 

 

Max: 6,5 

Min: 0,0 

 

Max: 6,5 

Min: 0,0 

 

Max: 6,0 

Min: 0,0 

 

Max: 6,5 

Min: 0,0 

 

Max: 6,0 

Min: 0,0 

Max 

 

Min 

M
o
d
e
 2

 

 

Max: 160,0 

Min: 0,0 

 

Max: 160,0 

Min: 0,0 

 

Max: 145,0 

Min: 0,0 

 

Max: 140,0 

Min: 0,0 

 

Max: 140,0 

Min: 0,0 

Max 

 

Min 

M
o
d
e
 3

 

 

Max: 300,0 

Min: 0,0 

 

Max: 300,0 

Min: 0,0 

 

Max: 220,0 

Min: 0,0 

 

Max: 220,0 

Min: 0,0 

 

Max: 230,0 

Min: 0,0 

Max 

 

Min 
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Table 6.24 – Parameterized displacement field of natural vibrational modes 1-3 usig NNRPIM: 
2D shell-like convergence study. 

Nº Layers: 1 2 3 5 7  
M

o
d
e
 1

 

 

Max: 41,45 

Min: 0,00 

 

Max: 41,72 

Min: 0,00 

 

Max: 38,92 

Min: 0,00 

 

Max: 41,39 

Min: 0,00 

 

Max: 37,06 

Min: 0,00 

𝑟𝑎𝑑

𝑠
 

Max 

 

Min 

Deformati-
on Scale: 0,02 0,02 -0,02 0,02 0,02 

M
o
d
e
 2

 

 

Max: 22,15 

Min: 0,00 

 

Max: 22,19 

Min: 0,00 

 

Max: 22,16 

Min: 0,00 

 

Max: 21,80 

Min: 0,00 

 

Max: 20,27 

Min: 0,00 

× 10 
𝑟𝑎𝑑

𝑠
 

Max 

 

Min 
Deformati-
on Scale: 0,002 0,002 0,002 0,002 0,002 

M
o
d
e
 3

 

 

Max: 26,54 

Min: 0,00 

 

Max: 26,64 

Min: 0,00 

 

Max: 26,25 

Min: 0,00 

 

Max: 26,95 

Min: 0,00 

 

Max: 25,66 

Min: 0,00 

× 10 
𝑟𝑎𝑑

𝑠
 

Max 

 

Min Deformati-
on Scale: -0,001 0,001 0,001 0,001 0,001 
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Table 6.25 – Parameterized von Mises effective stress field of natural vibrational modes 1-3 
usig NNRPIM: 2D shell-like convergence study. 

Nº Layers: 1 2 3 5 7  

M
o
d
e
 1

 

 

Max: 3,25 

Min: 0,00 

 

Max: 3,00 

Min: 0,00 

 

Max: 3,00 

Min: 0,00 

 

Max: 3,25 

Min: 0,00 

 

Max: 3,00 

Min: 0,00 

× 10−9 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 

M
o
d
e
 2

 

 

Max: 8,00 

Min: 0,00 

 

Max: 8,00 

Min: 0,00 

 

Max: 7,00 

Min: 0,00 

 

Max: 7,00 

Min: 0,00 

 

Max: 7,00 

Min: 0,00 

× 10−8 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 

M
o
d
e
 3

 

 

Max: 16,0 

Min: 0,00 

 

Max: 16,00 

Min: 0,00 

 

Max: 10,00 

Min: 0,00 

 

Max: 10,50 

Min: 0,00 

 

Max: 11,00 

Min: 0,00 

× 10−8 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 
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Table 6.26 – Parameterized equivalent effective strain field of natural vibrational modes 1-
3 usig NNRPIM: 2D shell-like convergence study. 

Nº Layers: 1 2 3 5 7  
M

o
d
e
 1

 

 

Max: 6,5 

Min: 0,0 

 

Max: 6,0 

Min: 0,0 

 

Max: 6,0 

Min: 0,0 

 

Max: 6,5 

Min: 0,0 

 

Max: 5,5 

Min: 0,0 

Max 

 

Min 

M
o
d
e
 2

 

 

Max: 160,0 

Min: 0,0 

 

Max: 160,0 

Min: 0,0 

 

Max: 140,0 

Min: 0,0 

 

Max: 140,0 

Min: 0,0 

 

Max: 140,0 

Min: 0,0 

Max 

 

Min 

M
o
d
e
 3

 

 

Max: 300,0 

Min: 0,0 

 

Max: 300,0 

Min: 0,0 

 

Max: 210,0 

Min: 0,0 

 

Max: 200,0 

Min: 0,0 

 

Max: 220,0 

Min: 0,0 

Max 

 

Min 
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6.3.3 - Bending Test 

 Compared to the bending test performed in Sec. 6.2 - , since no significant advantage was 

found in using several layers with different thicknesses, the only change in this simulation is in 

the value used to define the thickness of the “artificial” chromosome. In Sec. 6.2 -  it was 

defined as being 1,0 µ𝑚 thick and in this case was used the mentioned in Table 6.14 for a single 

layer model. 

 Since the loads and properties of the material have been transversal to all simulations, using 

Eq. (6.2) and Eq. (4.54), it is possible to establish the following relations: 

 𝐴1𝜎1 = 𝐴2𝜎2 (6.4) 

and 

 𝐴1휀1 = 𝐴2휀2 (6.5) 

which are verified and allows to establish comparisons between 2D models with different 

thicknesses and also between 2D and 3D models. 

 As stated before, this type of simulation can elucidate us about chromosomes response to 

pulling forces when pulled by the fibers of the achromatic spindle (in cell division) with the 

cytoplasm opposition, but further studies on the interaction of the genetic material with the 

surrounding fluid with the very fibers exerting the tensile forces and the way chromatin 

interacts itself and divides. 

 In Table 6.27 are presented the displacement, von Mises effective strain and equivalent 

effective strain fields which were obtained using FEM and the meshless methods RPIM and 

NNRPIM. 
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Table 6.27 - Bending test with one layer model 

 FEM RPIM NNRPIM  

‖𝐮‖ 

 

Max: 26,0 

Min: 0,0 

 

Max: 26,0 

Min: 0,0 

 

Max: 26,0 

Min: 0,0 

(𝜇𝑚) 

Max 

 

Min Deformation 
Scale: 0.02 0.02 0.02 

𝛔𝐞𝐪 

 

Max: 9,0 

Min: 0,0 

 

Max: 6,0 

Min: 0,0 

 

Max: 7,0 

Min: 0,0 

× 10−9 
𝑁

𝜇𝑚2
 

Max 

 

Min 

𝛆𝐞𝐪 

 

Max: 18,0 

Min: 0,0 

 

Max: 12,0 

Min: 0,0 

 

Max: 15,0 

Min: 0,0 

Max 

 

Min 
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6.4 - 3D Model 

 The 3D model was constructed following the dimensions described in Figure 6.1 being 

constituted with 1268 nodes. The smaller cross-section area is 𝐴𝑒𝑞1 = 𝜋 × 0,3
2 ≈ 0,283 𝜇𝑚2 and 

the largest cross-section area is 𝐴𝑒𝑞2 = 𝜋 × 0,5
2 ≈ 0,785 𝜇𝑚2. It was performed a stress-strain 

assay, a free vibration study and also a bending test. It is then possible to compare with 2D 

models and conclude about the convergence between 2D and 3D models. 

6.4.1 - Stress-strain 

 In Table 6.28 is presented the Cauchy strain in the neck region obtained for the tri-

dimensional model of an “artificial” chromosome using the three numerical methods tested.  

Table 6.28 - Displacement in neck region in 3D model 

FEM RPIM NNRPIM 

2,61 2,70 2,63 

 

 The obtained strains are similar between the different methods but much higher than those 

obtained previously for the bi-dimensional models. These differences are, however, expected 

and through the Eq. (6.5) it is possible to relate the results. Using the strain values obtained 

for the 3D model, the expected strains were calculated for each one of the previous cases, that 

is, for the model with higher nodal density in Sec. 6.2 -  and also for models with different 

number of layers, Sec. 6.3 - . These comparative studies are shown in Table 6.29 and Table 

6.30 respectively. 

 In most of the cases, the error between the predicted deformation and the measured is small 

and, therefore, the differences in results between the different models can be mostly 

attributed to the better or worse representation that is made of the thickness of the 

chromosome over its entire length. Since the results are directly affected by this characteristic 

and it is not possible to faithfully reproduce the problem in two dimensions, preference is given 

to the use of three-dimensional models. The extension of these conclusions to "real" 

chromosome models, however, needs to be confirmed given the restrictions and simplifications 

of the models used as mentioned above in Sec. 6.3.1 - . 

 In Table 6.31 are displayed the displacement, von Mises effective stress and equivalent 

effective strain fields for the stress-strain experiment for the 3D model. 

 

Table 6.29 - Comparative study of displacement in neck region between 3D model and 2D 

model with 1741 nodes model from Sec. 6.2.1 -  

𝑨𝒆𝒒𝟏 

µ𝒎𝟐 

Predicted based on 3D Measured Error % 

FEM RPIM NNRPIM FEM RPIM NNRPIM FEM RPIM NNRPIM 

0,600 1,23 1,27 1,24 1,22 1,33 1,24 0,6 4,8 0,1 

 



 

6.4 - 3D Model  83 

 

 

Table 6.30 - Comparative study of displacement in neck region between 3D model and 2D 

models from Sec. 6.2.1 -  

Nº 

Layers 

𝑨𝒆𝒒𝟏 

µ𝒎𝟐 

Predicted based on 3D Measured Error % 

FEM RPIM NNRPIM FEM RPIM NNRPIM FEM RPIM NNRPIM 

1 0,371 1,99 2,06 2,00 1,98 2,16 1,94 0,6 5,1 3,0 

2 0,426 1,73 1,79 1,74 1,73 1,79 1,60 0,2 0,1 8,0 

3 0,467 1,58 1,64 1,59 1,58 1,83 1,59 0,0 11,8 0,1 

5 0,469 1,58 1,63 1,58 1,56 1,59 1,40 0,7 2,5 11,4 

7 0,470 1,57 1,63 1,58 1,58 1,84 1,62 0,4 13,0 2,7 
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Table 6.31 – Stress-strain curve simulation using 3D “artificial” chromosome 

 FEM RPIM NNRPIM  

‖𝐮‖ 

 

Max: 9,0 

Min: 0,0 

 

Max: 10,0 

Min: 0,0 

 

Max: 9,0 

Min: 0,0 

(𝜇𝑚) 

Max 

 

Min 

𝛔𝐞𝐪 

 

Max: 11,0 

Min: 0,0 

 

Max: 13,0 

Min: 0,0 

 

Max: 13,0 

Min: 2,5 

× 10−10 
𝑁

𝜇𝑚2
 

Max 

 

Min 

𝛆𝐞𝐪 

 

Max: 2,2 

Min: 0,6 

 

Max: 3,5 

Min: 0,5 

 

Max: 3,5 

Min: 0,5 

Max 

 

Min 
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6.4.2 - Free-Vibrations 

Table 6.32 - 3D "artificial" chromosome natural vibration 
frequencies for modes 1-3 

 
Mode 1 Mode 2 Mode 3 

FEM 

32,36 192,86 250,12 

32,83 205,90 252,57 

- 220,15 - 

RPIM 

30,45 176,35 230,01 

30,91 194,10 232,17 

- 201,37 - 

NNRPIM 

30,36 169,64 228,07 

30,81 195,22 229,64 

- 199,55 - 

 

 The natural vibration frequencies for the first three modes are presented in Table 6.32. 

Since a three-dimensional model is now being evaluated, it is possible to find more than one 

natural vibration frequency corresponding to the same mode. For a same mode, the frequencies 

found must be close to each other and correspond to the fact that a body can vibrate in 

different directions and orientations but always has the same characteristic deformation field. 

For a more exhaustive comparative study,  Table 6.33, Table 6.36 and Table 6.39 show the 

parameterized displacement field obtained using FEM, RPIM and NNRPIM respectively; In Table 

6.34, Table 6.37 and Table 6.40 are presented the parameterized von Mises effective stress 

field of natural fibrational modes 1-3 usig FEM, RPIM and NNRPIM; And for last, in Table 6.35, 

Table 6.38 and Table 6.41 are shown the parameterized equivalent effective strain. 

 Considering all the studies of free vibrations performed it is verified that there is an inter-

model proximity between the vibration frequencies of each of the three modes. The variation 

of results with respect to the vibration modes is not significant and therefore, once already 

assured that this type of numerical methods is applicable to this type of microstructures it is 

safe to proceed to a more detailed study of the natural vibration modes of human 

chromosomes. 
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Table 6.33 – Parameterized displacement field of natural 
vibrational modes 1-3 usig FEM: 3D model 

M
o
d
e
 1

 

(d
e
fo

rm
a
ti

o
n
 s

c
a
le

: 
0
.0

2
) 

 

Max: 32,36 

Min: 0,00 

 

Max: 32,83 

Min: 0,00 

𝑟𝑎𝑑

𝑠
 

Max 

 

Min 

M
o
d
e
 2

 

(d
e
fo

rm
a
ti

o
n
 s

c
a
le

: 
0
.0

0
2
) 

 

Max: 192,86 

Min: 0,00 

 

Max: 205,90  

Min: 0,00 

 

Max: 220,15 

Min: 0,00 

𝑟𝑎𝑑

𝑠
 

Max 

 

Min 

M
o
d
e
 3

 

(d
e
fo

rm
a
ti

o
n
 s

c
a
le

: 
0
.0

0
2
) 

 

Max: 250,12 

Min: 0,00 

 

Max: 252,57 

Min: 0,00 

𝑟𝑎𝑑

𝑠
 

Max 

 

Min 
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Table 6.34 – Parameterized von Mises effective stress field of 
natural vibrational modes 1-3 usig FEM: 3D model 

M
o
d
e
 1

 

 

Max: 2,50 

Min: 0,00 

 

Max: 2,50 

Min: 0,00 

× 10−9 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 

M
o
d
e
 2

 

 

Max: 7,00 

Min: 0,00 

 

Max: 7,00 

Min: 0,00 

 

Max: 7,50 

Min: 0,00 

× 10−8 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 

 

M
o
d
e
 3

 

 

Max: 9,00 

Min: 0,00 

 

Max: 10,50 

Min: 0,00 

× 10−8 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 
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Table 6.35 – Parameterized equivalent effective strain field of 
natural vibrational modes 1-3 usig FEM: 3D model 

M
o
d
e
 1

 

 

Max: 5,5 

Min: 0,0 

 

Max: 5,0 

Min: 0,0 

Max 

 

Min 

M
o
d
e
 2

 

 

Max: 150,0  

Min: 0,0 

 

Max: 140,0   

Min: 0,0 

 

Max: 160,0 

Min: 0,0 

Max 

 

Min 

 

M
o
d
e
 3

 

 

Max: 180,0 

Min: 0,0 

 

Max: 210,0 

Min: 0,0 

Max 

 

Min 
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Table 6.36 – Parameterized displacement field of natural 
vibrational modes 1-3 usig RPIM: 3D model 

M
o
d
e
 1

 

(d
e
fo

rm
a
ti

o
n
 s

c
a
le

: 
0
.0

2
) 

 

Max: 30,45 

Min: 0,00 

 

Max:  

Min: 0,00 

𝑟𝑎𝑑

𝑠
 

Max 

 

Min 

M
o
d
e
 2

 

(d
e
fo

rm
a
ti

o
n
 s

c
a
le

: 
0
.0

0
2
) 

 

Max: 176,35 

Min: 0,00 

 

Max: 194,10 

Min: 0,00 

 

Max: 201,37 

Min: 0,00 

𝑟𝑎𝑑

𝑠
 

Max 

 

Min 

M
o
d
e
 3

 

(d
e
fo

rm
a
ti

o
n
 s

c
a
le

: 
0
.0

0
2
) 

 

Max: 230,01 

Min: 0,00 

 

Max: 232,17 

Min: 0,00 

𝑟𝑎𝑑

𝑠
 

Max 

 

Min 
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Table 6.37 – Parameterized von Mises effective stress field of 
natural vibrational modes 1-3 usig RPIM: 3D model 

M
o
d
e
 1

 

 

Max: 2,40 

Min: 0,00 

 

Max: 2,20 

Min: 0,00 

× 10−9 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 

M
o
d
e
 2

 

 

Max: 8,50 

Min: 0,00 

 

Max: 6,00 

Min: 0,00 

 

Max: 7,00 

Min: 0,00 

× 10−8 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 

 

M
o
d
e
 3

 

 

Max: 9,00 

Min: 0,00 

 

Max: 9,00 

Min: 0,00 

× 10−8 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 
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Table 6.38 – Parameterized equivalent effective strain field of 
natural vibrational modes 1-3 usig RPIM: 3D model 

M
o
d
e
 1

 

 

Max: 5,0 

Min: 0,0 

 

Max: 4,5 

Min: 0,0 

Max 

 

Min 

M
o
d
e
 2

 

 

Max: 160,0 

Min: 0,0 

 

Max: 140,0   

Min: 0,0 

 

Max: 140,0 

Min: 0,0 

Max 

 

Min 

 

M
o
d
e
 3

 

 

Max: 180,0 

Min: 0,0 

 

Max: 180,0 

Min: 0,0 

Max 

 

Min 
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Table 6.39 – Parameterized displacement field of natural 
vibrational modes 1-3 usig NNRPIM: 3D model 

M
o
d
e
 1

 

(d
e
fo

rm
a
ti

o
n
 s

c
a
le

: 
0
.0

2
) 

 

Max: 30,36 

Min: 0,00 

 

Max: 30,81 

Min: 0,00 

𝑟𝑎𝑑

𝑠
 

Max 

 

Min 

M
o
d
e
 2

 

(d
e
fo

rm
a
ti

o
n
 s

c
a
le

: 
0
.0

0
2
) 

 

Max: 169,64 

Min: 0,00 

 

Max: 195,22 

Min: 0,00 

 

Max: 199,55 

Min: 0,00 

𝑟𝑎𝑑

𝑠
 

Max 

 

Min 

M
o
d
e
 3

 

(d
e
fo

rm
a
ti

o
n
 s

c
a
le

: 
0
.0

0
2
) 

 

Max: 228,07 

Min: 0,00 

 

Max: 229,64  

Min: 0,00 

𝑟𝑎𝑑

𝑠
 

Max 

 

Min 
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Table 6.40 – Parameterized von Mises effective stress field of 
natural vibrational modes 1-3 usig NNRPIM: 3D model 

M
o
d
e
 1

 

 

Max: 2,40 

Min: 0,00 

 

Max: 2,40 

Min: 0,00 

× 10−9 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 

M
o
d
e
 2

 

 

Max: 11,00 

Min: 0,00 

 

Max: 7,00 

Min: 0,00 

 

Max: 7,00 

Min: 0,00 

× 10−8 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 

 

M
o
d
e
 3

 

 

Max: 9,50 

Min: 0,00 

 

Max: 9,50 

Min: 0,00 

× 10−8 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 
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Table 6.41 – Parameterized equivalent effective strain field of 
natural vibrational modes 1-3 usig NNRPIM: 3D model 

M
o
d
e
 1

 

 

Max: 5,0 

Min: 0,0 

 

Max: 5,0 

Min: 0,0 

Max 

 

Min 

M
o
d
e
 2

 

 

Max: 200,0 

Min: 0,0 

 

Max: 140,0    

Min: 0,0 

 

Max: 140,0 

Min: 0,0 

Max 

 

Min 

 

M
o
d
e
 3

 

 

Max: 190,0 

Min: 0,0 

 

Max: 190,0 

Min: 0,0 

Max 

 

Min 
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6.4.3 - Bending Test 

 In Table 6.42 are presented the displacement, von Mises effective strain and equivalent 

effective strain fields which were obtained using FEM and the meshless methods RPIM and 

NNRPIM for bending assay of the tridimensional model. 

 

Table 6.42 – 3D “artificial” chromosome bending test 

 FEM RPIM NNRPIM  

‖𝐮‖ 

 

Max: 12,0 

Min: 0,0 

 

Max: 13,0 

Min: 0,0 

 

Max: 12,5 

Min: 0,0 

(𝜇𝑚) 

Max 

 

Min 
Deformation 

Scale: 0.02 0.02 0.02 

𝛔𝐞𝐪 

 

Max: 7,0 

Min: 0,0 

 

Max: 6,5 

Min: 0,0 

 

Max: 6,0 

Min: 0,0 

× 10−9 
𝑁

𝜇𝑚2
 

Max 

 

Min 

𝛆𝐞𝐪 

 

Max: 13,0 

Min: 0,0 

 

Max: 12,0 

Min: 0,0 

 

Max: 11,0 

Min: 0,0 

Max 

 

Min 
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Chapter 7  

Human Chromosomes 

 After the convergence studies, two-dimensional and three-dimensional models of three 

different human chromosomes, chromosomes 2, 10 and 12, were constructed in order to 

evaluate their free vibration modes. The construction of the models was carried out in 

accordance with the principles set out in Sec. 5.1 -  and the nodal distribution of each of the 

models is described in Table 7.1. 

 In the Table 7.2 are synthesized all the results for all the chromosomes tested, for the 2D 

and 3D approaches using the different numerical methods. The parameterized displacement, 

von Mises effective stress and equivalent effective strain fields for 2D cases are presented from 

Table 7.3 to Table 7.11 and for 3D cases from Table 7.12 to Table 7.20. 

 Attending in Table 7.2 and comparing 2D and 3D approaches very similar values were 

obtained and the greatest difference of results was obtained for chromosome number 2 in the 

third mode of vibration. 

 Comparing the numerical methods used it is possible to conclude that (in percentage terms) 

the higher differences occur for the first mode of vibration, however, in terms of absolute 

difference, it increases to higher frequencies. The results are also closer between the meshless 

methods than each of them and the FEM. In spite of the variability of results between methods 

and the sometimes considerable difference between frequencies of the same vibration mode, 

it is possible to use the results of different methods to establish for the chromosome an 

approximate value for the first, second and third natural frequency. This analysis to define the 

frequency ranges of each of the modes and for each chromosome was performed using only the 

results for the three-dimensional models and can be found in Figure 7.1, where are also defined 

the mean values and respective standard deviations. 

 By organizing the results in this way, Figure 7.1, and without distinction of the numerical 

method used to obtain them, it is evident the greater dispersion of results for the third mode 

of vibration of chromosome 2 and also for mode 2 of chromosomes 10 and 12. Despite this 

dispersion and the frequency ranges, defined through this organization of the data, between 

different modes and chromosomes, it is still possible to identify characteristic traits of each of  

the chromosomes. Thus, it is possible to define narrower ranges of frequencies (specially the 

first natural frequency) and/or to select certain modes of vibration that only identify a 

particular chromosome. 
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Table 7.1 - 2D and 3D human chromosomes number 2, 10 and 12 models with nodal 

distribution. 

 Chromosome 2 Chromosome 10 Chromosome 12 

2D 

 

1202 nodes 
 

1938 nodes 

 

1659 nodes 

3D 

 

1595 nodes 

 

1821 nodes 

 

2093 nodes 

 

 

Table 7.2 - Natural frequencies of modes 1-3 for chromosomes number 2, 10 and 12 

   
 FEM (rad/s) RPIM (rad/s) NNRPIM (rad/s) 

   Mode1 Mode2 Mode3 Mode1 Mode2 Mode3 Mode1 Mode2 Mode3 

2
D

  

C
h
ro

m
o
so

m
e
s 

2 70,62 266,84 313,43 70,03 262,97 310,24 70,68 263,18 309,92 

10 105,37 221,74 449,98 103,71 215,16 431,53 103,81 212,67 426,25 

12 194,37 534,94 654,97 188,09 520,85 649,84 191,24 524,89 650,36 

3
D

  

2 
73,09 250,38 569,90 128,59 265,97 457,19 88,20 265,55 445,83 

83,08 259,12 583,65 135,05 272,15 476,79 100,21 272,26 474,54 

10 
62,72 152,38 426,59 54,32 137,22 389,42 55,56 137,20 394,28 

102,77 205,64 457,42 96,44 191,44 418,07 97,33 185,45 425,73 

12 
124,56 421,35 613,29 115,00 378,14 570,83 114,25 374,86 577,94 

159,76 496,22 619,25 137,80 457,48 592,27 126,49 450,76 597,52 
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 These results point out that it is possible to identify different chromosomes through the first 

natural vibration frequencies, however, more research is required. The identification of the 

modes of vibration has not always been easy and its visual distinction is sometimes difficult, 

and the variation of the frequencies that characterize each mode may have been greater 

because of this fact, which should be evaluated in greater depth. 

 

 

 
Figure 7.1 - Comparative study of the first 3 natural frequencies of chromosomes 3D models 
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Table 7.3 - Parameterized displacement field of natural vibrational modes 1-3 using FEM for 

3 different 2D human chromosome models. 

 Chromosome 2 Chromosome 10 Chromosome 12  

M
o
d
e
 1

 

 
Max: 70,62 
Min: 0,00 

Deformation 
scale: 0,02 

 
Max: 105,37 

Min: 0,00 
Deformation 
scale: 0,01 

 
Max: 185,39 

Min: 0,00 
Deformation 
scale: 0.01 

𝑟𝑎𝑑

𝑠
 

Max 

 

Min 

M
o
d
e
 2

 

 
Max: 266,84 

Min: 0,00 
Deformation 
scale: 0,003 

 
Max: 221,74 

Min: 0,00 
Deformation 
scale: 0,005 

 
Max: 534,94 

Min: 0,00 
Deformation 
scale: 0,01 

𝑟𝑎𝑑

𝑠
 

Max 

 

Min 

M
o
d
e
 3

 

 
Max: 313,43 

Min: 0,00 
Deformation 
scale: 0,002 

 
Max: 449,98 

Min: 0,00 
Deformation 
scale: 0,002 

 
Max: 654,97 

Min: 0,00 
Deformation 
scale: 0,001 

𝑟𝑎𝑑

𝑠
 

Max 

 

Min 
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Table 7.4 - Parameterized von Mises effective stress field of natural vibrational modes 1-3 

using FEM for 3 different 2D human chromosome models. 

 Chromosome 2 Chromosome 10 Chromosome 12  

M
o
d
e
 1

 

 
Max: 8,00  
Min: 0,00 

 
Max: 30,00 
Min: 0,00 

 
Max: 120,00 

Min: 0,00 

× 10−9 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 

M
o
d
e
 2

 

 
Max: 9,00 
Min: 0,00 

 
Max: 12,00 
Min: 0,00 

 
Max: 55,00 
Min: 0,00 

× 10−8 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 

 

M
o
d
e
 3

 

 
Max: 11,0 
Min: 0,00 

 
Max: 40,00 
Min: 0,00 

 
Max: 50,00 
Min: 0,00 

× 10−8 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 
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Table 7.5 - Parameterized equivalent effective strain field of natural vibrational modes 1-3 

using FEM for 3 different 2D human chromosome models. 

 Chromosome 2 Chromosome 10 Chromosome 12  

M
o
d
e
 1

 

 
Max: 16,00 
Min: 0,00 

 
Max: 60,00 
Min: 0,00 

 
Max: 220,00 

Min: 0,00 
 

Max 

 

Min 

M
o
d
e
 2

 

 
Max: 180,00 

Min: 0,00 

 
Max: 240,00 

Min: 0,00 
 

 
Max: 1000,00 

Min: 0,00 
 

Max 

 

Min 

 

M
o
d
e
 3

 

 
Max: 200,00 

Min: 0,00 
 

 
Max: 800,00 

Min: 0,00 
 

 
Max: 1100,00 

Min: 0,00 
 

Max 

 

Min 
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Table 7.6 - Parameterized displacement field of natural vibrational modes 1-3 using RPIM 

for 3 different 2D human chromosome models. 

 Chromosome 2 Chromosome 10 Chromosome 12  

M
o
d
e
 1

 

 
Max: 70,03 
Min: 0,00 

Deformation 
scale: 0,02 

 
Max: 103,71 

Min: 0,00 
Deformation 
scale: 0,02 

 
Max: 188,09 

Min: 0,00 
Deformation 
scale: 0.01 

𝑟𝑎𝑑

𝑠
 

Max 

 

Min 

M
o
d
e
 2

 

 
Max: 262,97 

Min: 0,00 
Deformation 
scale: 0,003 

 
Max: 215,16 

Min: 0,00 
Deformation 
scale: 0,004 

 
Max: 520,85 

Min: 0,00 
Deformation 
scale: 0,002 

𝑟𝑎𝑑

𝑠
 

Max 

 

Min 

M
o
d
e
 3

 

 
Max: 310,24 

Min: 0,00 
Deformation 
scale: 0,002 

 
Max: 431,53 

Min: 0,00 
Deformation 
scale: 0,002 

 
Max: 649,84 

Min: 0,00 
Deformation 
scale: 0,001 

𝑟𝑎𝑑

𝑠
 

Max 

 

Min 
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Table 7.7 - Parameterized von Mises effective stress field of natural vibrational modes 1-3 

using RPIM for 3 different 2D human chromosome models. 

 Chromosome 2 Chromosome 10 Chromosome 12  

M
o
d
e
 1

 

 
Max: 7,00 
Min: 0,00 

 
Max: 22,00 
Min: 0,00 

 
Max: 110,00 

Min: 0,00 
 

× 10−9 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 

M
o
d
e
 2

 

 
Max: 9,00 
Min: 0,00 

 
Max: 14,00 
Min: 0,00 

 

 
Max: 60,00 
Min: 0,00 

 

× 10−8 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 

 

M
o
d
e
 3

 

 
Max: 12,00 
Min: 0,00 

 

 
Max: 45,00 
Min: 0,00 

 

 
Max: 60,00 
Min: 0,00 

 

× 10−8 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 
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Table 7.8 - Parameterized equivalent effective strain field of natural vibrational modes 1-3 

using RPIM for 3 different 2D human chromosome models. 

 Chromosome 2 Chromosome 10 Chromosome 12  
M

o
d
e
 1

 

 
Max: 15,00 
Min: 0,00 

 
Max: 50,00 
Min: 0,00 

 
Max: 200,00 

Min: 0,00 
 

Max 

 

Min 

M
o
d
e
 2

 

 
Max: 170,00 

Min: 0,00 

 
Max: 275,00 

Min: 0,00 
 

 
Max: 1100,00 

Min: 0,00 
 

Max 

 

Min 

 

M
o
d
e
 3

 

 
Max: 220,00 

Min: 0,00 
 

 
Max: 900,00 

Min: 0,00 
 

 
Max: 1400,00 

Min: 0,00 
 

Max 

 

Min 
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Table 7.9 - Parameterized displacement field of natural vibrational modes 1-3 using NNRPIM 

for 3 different 2D human chromosome models. 

 Chromosome 2 Chromosome 10 Chromosome 12  

M
o
d
e
 1

 

 
Max: 70,68 
Min: 0,00 

Deformation 
scale: 0,02 

 
Max: 103,81 

Min: 0,00 
Deformation 
scale: 0,01 

 
Max: 191,24 

Min: 0,00 
Deformation 
scale: 0.01 

𝑟𝑎𝑑

𝑠
 

Max 

 

Min 

M
o
d
e
 2

 

 
Max: 263,18 

Min: 0,00 
Deformation 
scale: 0,003 

 
Max: 212,67 

Min: 0,00 
Deformation 
scale: 0,003 

 
Max: 524,89 

Min: 0,00 
Deformation 
scale: 0,002 

𝑟𝑎𝑑

𝑠
 

Max 

 

Min 

M
o
d
e
 3

 

 
Max: 309,92 

Min: 0,00 
Deformation 
scale: 0,003 

 
Max: 426,25 

Min: 0,00 
Deformation 
scale: 0,002 

 
Max: 650,36 

Min: 0,00 
Deformation 
scale: 0,001 

𝑟𝑎𝑑

𝑠
 

Max 

 

Min 
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Table 7.10 - Parameterized von Mises effective stress field of natural vibrational modes 1-3 

using NNRPIM for 3 different 2D human chromosome models. 

 Chromosome 2 Chromosome 10 Chromosome 12  
M

o
d
e
 1

 

 
Max:  8,00 
Min: 0,00 

 
Max: 22,00 
Min: 0,00 

 
Max: 105,00 

Min: 0,00 
 

× 10−9 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 

M
o
d
e
 2

 

 
Max: 9,50 
Min: 0,00 

 
Max: 16,00 
Min: 0,00 

 

 
Max: 55,00 
Min: 0,00 

 

× 10−8 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 

 

M
o
d
e
 3

 

 
Max: 13,00 
Min: 0,00 

 

 
Max: 50,00 
Min: 0,00 

 

 
Max: 60,00 
Min: 0,00 

 

× 10−8 
𝑟𝑎𝑑 ∙  𝑁

𝑠 ∙ 𝜇𝑚2
 

Max 

 

Min 
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Table 7.11 - Parameterized equivalent effective strain field of natural vibrational modes 1-

3 using NNRPIM for 3 different 2D human chromosome models. 

 Chromosome 2 Chromosome 10 Chromosome 12  

M
o
d
e
 1

 

 
Max: 16,00 
Min: 0,00 

 
Max: 50,00 
Min: 0,00 

 
Max: 200,00 

Min: 0,00 
 

Max 

 

Min 

M
o
d
e
 2

 

 
Max: 180,00 

Min: 0,00 

 
Max: 300,00 

Min: 0,00 
 

 
Max: 1100,00 

Min: 0,00 
 

Max 

 

Min 

 

M
o
d
e
 3

 

 
Max: 230,00 

Min: 0,00 
 

 
Max: 900,00 

Min: 0,00 
 

 
Max: 1400,00 

Min: 0,00 
 

Max 

 

Min 
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Table 7.12 - Parameterized displacement field of natural vibrational modes 1-3 using FEM 
for 3 different 3D human chromosome models. 

 Mode 1 Mode 2 Mode 3 
C

h
ro

m
o
so

m
e
 2

 

 
Max: 73,09 Min: 0,00 

Deformation scale: 0,02 

 
Max: 250,38 Min: 0,00 

Deformation scale: 0,002 

 
Max: 569,90 Min: 0,00 

Deformation scale: 0,001 

 
Max: 83,08 Min: 0,00 

Deformation scale: 0,02 

 
Max: 259,12 Min: 0,00 

Deformation scale: 0,002 

 
Max: 583,65 Min: 0,00 

Deformation scale: 0,001 

C
h
ro

m
o
so

m
e
 1

0
  

Max: 62,72 Min: 0,00 
Deformation scale: 0,02 

 
Max: 152,38  Min: 0,00 

Deformation scale: 0,01 

 
Max: 426,59 Min: 0,00 

Deformation scale: 0,002 

 
Max: 102,77 Min: 0,00 

Deformation scale: 0,01 

 
Max: 205,64 Min: 0,00 

Deformation scale: 0,005 

 
Max: 457,42 Min: 0,00 

Deformation scale: 0,002 

C
h
ro

m
o
so

m
e
 1

2
 

 
Max: 124,56 Min: 0,00 

Deformation scale: 0,01 

 
Max: 421,35 Min: 0,00 

Deformation scale: 0,001 

 
Max: 613,29 Min: 0,00 

Deformation scale: 0,002 

 
Max: 159,76 Min: 0,00 

Deformation scale: 0,01 

 
Max: 496,22 Min: 0,00 

Deformation scale: 0,002 

 
Max: 619,25 Min: 0,00 

Deformation scale: 0,001 

 
𝑟𝑎𝑑

𝑠
     Min  Max 
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Table 7.13 - Parameterized von Mises effective stress field of natural vibrational modes 1-3 
using FEM for 3 different 3D human chromosome models. 

 Mode 1 Mode 2 Mode 3 

C
h
ro

m
o
so

m
e
 2

 

 
Max: 0,70  Min: 0,00 

 
Max: 7,00 Min: 0,00 

 
Max: 30,00 Min: 0,00 

 
Max: 0,90 Min: 0,00 

 
Max: 6,0 Min: 0,00 

 
Max: 30,00 Min: 0,00 

C
h
ro

m
o
so

m
e
 1

0
 

 
Max: 0,60 Min: 0,00 

 
Max: 2,50 Min: 0,00 

 
Max: 18,00 Min: 0,00 

 
Max: 2,40 Min: 0,00 

 
Max: 9,0 Min: 0,00 

 
Max: 25,00 Min: 0,00 

C
h
ro

m
o
so

m
e
 1

2
 

 
Max: 1,60 Min: 0,00 

 
Max: 22,00 Min: 0,00 

 
Max: 40,00 Min: 0,00 

 
Max: 5,00 Min: 0,00 

 
Max: 30,00 Min: 0,00 

 
Max: 45,00 Min: 0,00 

 × 10−8 
𝑟𝑎𝑑∙ 𝑁

𝑠∙𝜇𝑚2
     Min  Max 
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Table 7.14 - Parameterized equivalent effective strain field of natural vibrational modes 1-
3 using FEM for 3 different 3D human chromosome models. 

 Mode 1 Mode 2 Mode 3 
C

h
ro

m
o
so

m
e
 2

 

 
Max: 15,00 Min: 0,00 

 
Max: 140,00 Min: 0,00 

 
Max: 550,00 Min: 0,00 

 
Max: 18,00 Min: 0,00 

 
Max: 130,00 Min: 0,00 

 
Max: 600,00 Min: 0,00 

C
h
ro

m
o
so

m
e
 1

0
 

 
Max: 12,00 Min: 0,00 

 
Max: 45,00 Min:  0,00 

 
Max: 350,00 Min: 0,00 

 
Max: 50,00 Min: 0,00 

 
Max: 160,00 Min: 0,00 

 
Max: 600,00 Min: 0,00 

C
h
ro

m
o
so

m
e
 1

2
 

 
Max: 35,00 Min: 0,00 

 
Max: 450,00 Min: 0,00 

 
Max: 800,00 Min: 0,00 

 
Max: 90,00 Min: 0,00 

 
Max: 650,00 Min: 0,00 

 
Max: 900,00 Min: 0,00 

 Min  Max 
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Table 7.15 - Parameterized displacement field of natural vibrational modes 1-3 using RPIM 
for 3 different 3D human chromosome models. 

 Mode 1 Mode 2 Mode 3 

C
h
ro

m
o
so

m
e
 2

 

 
Max: 128,59 Min: 0,00 

Deformation scale: 0,01 

 
Max: 265,97 Min: 0,00 

Deformation scale: 0,002 

 
Max: 457,19 Min: 0,00 

Deformation scale: 0,002 

 
Max: 135,05 Min: 0,00 

Deformation scale: 0,01 

 
Max: 272,15 Min: 0,00 

Deformation scale: 0,002 

 
Max: 476,79 Min: 0,00 

Deformation scale: 0,002 

C
h
ro

m
o
so

m
e
 1

0
  

Max: 54,32 Min: 0,00 
Deformation scale: 0,02 

 
Max: 137,22 Min: 0,00 

Deformation scale: 0,01 

 
Max: 389,42 Min: 0,00 

Deformation scale: 0,002 

 
Max: 96,44 Min: 0,00 

Deformation scale: 0,02 

 
Max: 191,44 Min: 0,00 

Deformation scale: 0,005 

 
Max: 418,07 Min: 0,00 

Deformation scale: 0,002 

C
h
ro

m
o
so

m
e
 1

2
 

 
Max: 115,00 Min: 0,00 

Deformation scale: 0,01 

 
Max: 378,14 Min: 0,00 

Deformation scale: 0,002 

 
Max: 570,83 Min: 0,00 

Deformation scale: 0,002 

 
Max: 137,80 Min: 0,00 

Deformation scale: 0,02 

 
Max: 457,48 Min: 0,00 

Deformation scale: 0,002 

 
Max: 592,27 Min: 0,00 

Deformation scale: 0,001 

 
𝑟𝑎𝑑

𝑠
     Min  Max 
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Table 7.16 - Parameterized von Mises effective stress field of natural vibrational modes 1-3 
using RPIM for 3 different 3D human chromosome models. 

 Mode 1 Mode 2 Mode 3 
C

h
ro

m
o
so

m
e
 2

 

 
Max: 7,00  Min: 0,00 

 
Max: 7,00 Min: 0,00 

 
Max: 30,00 Min: 0,00 

 
Max: 7,00 Min: 0,00 

 
Max: 7,00 Min: 0,00 

 
Max: 22,00 Min: 0,00 

C
h
ro

m
o
so

m
e
 1

0
 

 
Max: 0,45 Min: 0,00 

 
Max: 2,50 Min:  0,00 

 
Max: 16,00 Min: 0,00 

 
Max: 1,80 Min: 0,00 

 
Max: 10,00 Min: 0,00 

 
Max: 20,00 Min: 0,00 

C
h
ro

m
o
so

m
e
 1

2
 

 
Max: 1,60 Min: 0,00 

 
Max: 20,00 Min: 0,00 

 
Max: 35,00 Min: 0,00 

 
Max: 8,00 Min: 0,00 

 
Max: 30,00 Min: 0,00 

 
Max: 40,00 Min: 0,00 

 × 10−8  
𝑟𝑎𝑑∙ 𝑁

𝑠∙𝜇𝑚2
     Min  Max 
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Table 7.17 - Parameterized equivalent effective strain field of natural vibrational modes 1-
3 using RPIM for 3 different 3D human chromosome models. 

 Mode 1 Mode 2 Mode 3 
C

h
ro

m
o
so

m
e
 2

 

 
Max: 140,00 Min: 0,00 

 
Max: 140,00 Min: 0,00 

 
Max: 550,00 Min: 0,00 

 
Max: 140,00 Min: 0,00 

 
Max: 140,00 Min: 0,00 

 
Max: 400,00 Min: 0,00 

C
h
ro

m
o
so

m
e
 1

0
 

 
Max: 10,0 Min: 0,00 

 
Max: 50,00 Min:  0,00 

 
Max: 300,00 Min: 0,00 

 
Max: 40,00 Min: 0,00 

 
Max: 180,00 Min: 0,00 

 
Max: 450,00 Min: 0,00 

C
h
ro

m
o
so

m
e
 1

2
 

 
Max: 35,00 Min: 0,00 

 
Max: 400,00 Min: 0,00 

 
Max: 700,00 Min: 0,00 

 
Max: 150,00 Min: 0,00 

 
Max: 600,00 Min: 0,00 

 
Max: 900,00 Min: 0,00 

 Min  Max 
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Table 7.18 - Parameterized displacement field of natural vibrational modes 1-3 using 
NNRPIM for 3 different 3D human chromosome models. 

 Mode 1 Mode 2 Mode 3 
C

h
ro

m
o
so

m
e
 2

 

 
Max: 88,20 Min: 0,00 

Deformation scale: 0,02 

 
Max: 265,55 Min: 0,00 

Deformation scale: 0,002 

 
Max: 445,83 Min: 0,00 

Deformation scale: 0,002 

 
Max: 100,21 Min: 0,00 

Deformation scale: 0,02 

 
Max: 272,26 Min: 0,00 

Deformation scale: 0,002 

 
Max: 474,54 Min: 0,00 

Deformation scale: 0,002 

C
h
ro

m
o
so

m
e
 1

0
  

Max: 55,56 Min: 0,00 
Deformation scale: 0,02 

 
Max: 137,20 Min: 0,00 

Deformation scale: 0,003 

 
Max: 394,28 Min: 0,00 

Deformation scale: 0,001 

 
Max: 97,33 Min: 0,00 

Deformation scale: 0,02 

 
Max: 185,45 Min: 0,00 

Deformation scale: 0,005 

 
Max: 425,73 Min: 0,00 

Deformation scale: 0,001 

C
h
ro

m
o
so

m
e
 1

2
 

 
Max: 114,25 Min: 0,00 

Deformation scale: 0,01 

 
Max: 374,86 Min: 0,00 

Deformation scale: 0,002 

 
Max: 577,94 Min: 0,00 

Deformation scale: 0,002 

 
Max: 126,49 Min: 0,00 

Deformation scale: 0,01 

 
Max: 450,76 Min: 0,00 

Deformation scale: 0,002 

 
Max: 597,52 Min: 0,00 

Deformation scale: 0,001 

 
𝑟𝑎𝑑

𝑠
     Min  Max 
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Table 7.19 - Parameterized von Mises effective stress field of natural vibrational modes 1-3 
using NNRPIM for 3 different 3D human chromosome models. 

 Mode 1 Mode 2 Mode 3 

C
h
ro

m
o
so

m
e
 2

 

 
Max: 2,75 Min: 0,00 

 
Max: 7,50 Min: 0,00 

 
Max: 30,00 Min: 0,00 

 
Max: 3,00 Min: 0,00 

 
Max: 7,50 Min: 0,00 

 
Max: 22,00 Min: 0,00 

C
h
ro

m
o
so

m
e
 1

0
 

 
Max: 0,45 Min: 0,00 

 
Max: 3,0 Min:  0,00 

 
Max: 18,00 Min: 0,00 

 
Max: 1,60 Min: 0,00 

 
Max: 10,00 Min: 0,00 

 
Max: 20,00 Min: 0,00 

C
h
ro

m
o
so

m
e
 1

2
 

 
Max: 1,80 Min: 0,00 

 
Max: 16,00 Min: 0,00 

 
Max: 30,00 Min: 0,00 

 
Max: 7,50 Min: 0,00 

 
Max: 30,00 Min: 0,00 

 
Max: 45,00 Min: 0,00 

 × 10−8  
𝑟𝑎𝑑∙ 𝑁

𝑠∙𝜇𝑚2
  Min  Max 
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Table 7.20 - Parameterized equivalent effective strain field of natural vibrational modes 1-
3 using NNRPIM for 3 different 3D human chromosome models. 

 Mode 1 Mode 2 Mode 3 

C
h
ro

m
o
so

m
e
 2

 

 
Max: 55,00 Min: 0,00 

 
Max: 160,00 Min: 0,00 

 
Max: 550,00 Min: 0,00 

 
Max: 55,00 Min: 0,00 

 
Max: 150,00 Min: 0,00 

 
Max: 400,00 Min: 0,00 

C
h
ro

m
o
so

m
e
 1

0
 

 
Max: 10,50 Min: 0,00 

 
Max: 55,00 Min:  0,00 

 
Max: 350,00 Min: 0,00 

 
Max: 35,00 Min: 0,00 

 
Max: 180,00 Min: 0,00 

 
Max: 500,00 Min: 0,00 

C
h
ro

m
o
so

m
e
 1

2
 

 
Max: 35,00 Min: 0,00 

 
Max: 325,00 Min: 0,00 

 
Max: 700,00 Min: 0,00 

 
Max: 140,00 Min: 0,00 

 
Max: 550,00 Min: 0,00 

 
Max: 1000,00 Min: 0,00 

 Min  Max 
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Chapter 8  

Conclusions and Future Work 

 One of the main challenges and desires that is part of the deepest instincts of the human 

species is the desire for increasingly larger lifetime. With the advances of modern society in 

terms of food, hygiene, medicines, etc., a lot has been achieved, however, it seems that with 

each new day and new conquer, new barriers are raised. Many of the health problems, such as 

cancer, are closely related to the basis of the code that regulates the organism, DNA. Very 

little is yet known about its structure and how its rediscovery can aid in the development of 

new therapies, such as the destruction of mutated chromosomes through their resonant 

frequencies. 

 The main objective of this thesis was to simulate the static and dynamic behavior of human 

chromosomes at the microscale level using meshless methods and with this, validate the 

mechanical model and conclude about the possibility of having natural frequencies and modes 

of vibration characteristic of each chromosome. Besides these two main objectives, it was also 

aimed to draw from this work further comparisons from FEM and the meshless methods used. 

 As it was reported in the previous chapter, this analysis was performed as intended, allowing 

to define ranges of frequencies and/or to select certain modes of vibration that only 

corresponds to a single chromosome,  meaning that it is possible to identify different 

chromosomes based on its natural vibrations. 

 The use of meshless methods also proved to be adequate, as it could be seen by significant 

and recurring overlay of results between this methods and the more widely used FEM. As 

problems in biomechanics often present a high degree of complexity, either by their geometry 

or phenomena involved, the reliability of the RPIM and NNRPIM (concluded from the present 

work), added to the facility that meshless methods show in modelling complex geometries, 

should make them a primary tool for the study of mechanobiologic problems in biomechanics. 

It was also possible to conclude that meshless methods converge faster than FEM and 

considering the same number of nodes, even though meshless methods require a higher 

computational time, the same solution can be achieved using fewer nodes than FEM, which 

means that the same accuracy in results can be obtained through a smaller mesh. 

 While this work reached all of the proposed objectives, it also had some limitations: 
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 The commercial software used to determine the location of the nodes, even on a simple 

geometry and with two symmetry axes, causes an irregular arrangement of the nodes, 

affecting the results immediately; 

 The hardware available limited the level of discretion that could be achieved, the 

numerical analysis had to be limited to around 2000 nodes; 

 It was not possible to conclude on the best description of the problem in 2D using 

several layers due to the simplifications made in the model and for that reason cannot 

be transcribed for the models of human chromosomes; 

 The reduced knowledge about the internal structure of the chromosomes, namely the 

centromere, and how the chromatin constituting the two arms relates, led us to 

consider a homogeneous material and to consider the frontier between the sister 

chromatids as a continuous material with equal properties; 

 The type and quality of the microscopy images used as reference for the construction 

of the models directly influence the final geometry. As well as the researcher's 

expertise in the manipulation of drawing tools and software since there is no adequate 

segmentation software; 

 In no case was considered the surrounding environment, the cytosol, that could have a 

great impact on the natural vibrations, as well as on the remaining tests. 

 In the future, it would be interesting to continue this work, by testing different approaches 

to the same problem, for instance: 

 A multi-scale analysis; 

 Consider non-linearity of materials and geometry; 

 To evaluate the influence of the surrounding environment on the modes and frequency 

of natural vibrations; 

 Study of a larger number of chromosomes; 

 Study chromosomes with gene mutations that determine structural/geometric defects; 

 Simulation of the division of chromosomes by daughter cells in the process of cell 

division. 
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