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Resumo  

 

O cenário de retalho online representa novos desafios, mas também uma oportunidade para as 

empresas aproveitarem as informações adicionais fornecidas e melhorarem as suas políticas de 

inventário. A diferença entre o momento em que uma encomenda é recebida e o momento em 

que o cliente deseja que ela seja entregue fornece um intervalo de tempo que permite 

flexibilidade adicional para o retalhista. 

Este trabalho é baseado em teses anteriores, onde a política de inventário (𝑠, 𝑄) tem em conta 

explicitamente o intervalo de tempo entre o momento de encomenda e o momento de entrega. 

Neste trabalho, classificámos a procura em diferentes tipos de acordo com a política de 

inventário com revisão contínua e com revisão periódica, e encontrámos as expressões que 

caracterizam cada tipo de procura.  

Apresentámos uma política de inventário (𝑠, 𝑄) que usa explicitamente a janela de tempo para 

minimizar os custos de encomenda, posse e de stockout. Considerando a flexibilidade 

proporcionada pelo intervalo de tempo entre o momento de encomenda e o momento de entrega, 

encontrámos expressões para os parâmetros ótimos da política. Considerámos que as chegadas 

das encomendas assim como o intervalo de tempo entre o momento de encomenda e o momento 

de entrega são estocásticos e explorámos diferentes distribuições de probabilidade. A política 

ótima é obtida considerando os cenários de uma ou múltiplas encomendas em trânsito. 

Os testes realizados mostram que, quando comparada com a política ótima (𝑠, 𝑄) do retalho 

tradicional, a nossa política oferece poupanças que, em média, variam entre 11.91% e 28.50% 

ao usar nível de serviço α e entre 11.91% e 28.36% ao usar nível de serviço β.  

Apresentámos também uma política de inventário (𝑅, 𝑠, 𝑆) que usa explicitamente o intervalo 

de tempo e que tenta obter um determinado nível de serviço 𝛽 e um determinado tempo entre 

reabastecimentos considerando cenários de uma ou múltiplas encomendas em trânsito. 

Considerámos que as chegadas das encomendas assim como o intervalo de tempo entre o 

momento de encomenda e o momento de entrega são estocásticos e explorámos diferentes 

distribuições de probabilidade. 

Os testes realizados mostram que, quando comparada com a política (𝑅, 𝑠, 𝑆) do retalho 

tradicional, a nossa política oferece reduções no nível médio do inventário físico que, em média, 

variam entre 38.31% e 68.32%. 
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Abstract 

 

The online retail setting represents new challenges, but also an opportunity for companies to 

take advantage of the additional available information and improve their inventory policies. 

The difference between the time an order is received and the time at which the customer wants 

it delivered provides an order window that allows additional flexibility for the retailer. 

This work is based in previous thesis, where the (𝑠, 𝑄) inventory policy explicitly accounts for 

the order window. In this work, we classify the demand in different types according to the 

inventory policy with continuous review and periodic review, and we find the expressions that 

characterize each type of demand.  

We present an (𝑠, 𝑄) inventory policy that explicitly accounts for the ordering window when 

minimizing ordering, holding and stockout costs. Considering the flexibility provided by the 

ordering window we find expressions for the optimal parameters of the policy. We consider 

that the order arrival as well as the ordering window are stochastic and we explore different 

probability distributions. The optimal policy is obtained considering both single and multiple 

on-order scenarios.   

Our experiments show that, when compared to the traditional retail (𝑠, 𝑄) optimal policy, our 

policy provides savings, that on average, range between 11.91% and 28.50% with α service 

level metrics and between 11.91% and 28.36% with β service level metrics.  

We also present an (𝑅, 𝑠, 𝑆) inventory policy that explicitly accounts for the ordering window 

and that tries to achieve a desired fill rate and time between replenishments considering both 

single and multiple on-order scenarios. We consider that the order arrival as well as the ordering 

window are stochastic and we explore different probability distributions.  

Our experiments show that, when compared to the traditional retail (𝑅, 𝑠, 𝑆) policy, our policy 

provides reductions in the average on-hand inventory that, on average, range between 38.31% 

and 68.32%. 
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 Introduction  

E-commerce is the sale or purchase of goods or services through electronic means, such as the 

Internet. According to Gunasekaran et al. (2002), e-commerce is the process of conducting 

business electronically among various entities in order to satisfy an organizational or individual 

objective. It includes all aspects of trading, including commercial market creation, ordering, 

supply chain management and the transfer of money. Many e-commerce initiatives have risen 

in a short period of time including online retailing (e-tailing) that is the focus of this work. 

With the increase of internet penetration in all regions of the globe, the e-commerce has risen 

considerably over the last years. From 2014 to 2015 the global e-commerce turnover growth 

was 19.9% with the Asian-Pacific region presenting the best result (Foundation 2016b).  

The European e-commerce turnover managed to increase 13.3% from 2014 to 2015, a number 

much higher than the 1.0% growth of general retail in Europe, so nearly all growth in retail 

comes from e-commerce (Foundation 2016a). 

In 2016, 57% of European Internet users shop online, but only 16% of Small and Medium 

Enterprises sell online and only 7.5% of those sell online across borders. In Portugal, 70% of 

the population uses the Internet and 35% shops online. Although European e-commerce 

turnover has been growing steadily over the years and it is expected that it will continue to 

grow, there are still many opportunities for improvement (Foundation 2016a). 

Globally, retailers in every sector are improving the ability of meeting customers’ expectations 

with improved supply chains and inventory management policies. To meet customers’ new 

expectations, online retail offers clear advantages in terms of choice, ease of search, shopping 

cross-category and even buying cross-border, however, most customers prefer to have both a 

physical and an online experience so they expect an omni-channel approach (Foundation 

2016a). This brings additional complexity for retailers as they need to manage their operations 

holistically. 

This work takes on B2C online retailing that, at present, seems still to be of lower volume than 

B2B, but this may change in the future (Gunasekaran et al. 2002). The motivation for this work 

arises from the grocery sector where it is common for customers not choosing to receive the 

products as soon as possible, which is rather different from other sectors in which the presence 

of the customer is not critical upon the delivery of goods. It’s known that the online retail in the 

grocery sector is small in comparison with other sectors, as it’s shown in the survey “Total 

Retail 2016” made by PwC, where 72% of the sample still preferred to make grocery purchases 

in store, while just 20% preferred to do it online (PwC 2016). According to the study “Online 

Shopping Customer Experience” made by UPS, specially for valuable or important purchases, 

an important shipping service for customers is the possibility to request a particular delivery 

window (UPS 2012). The option of choosing the delivery date is also appearing in other sectors, 

and a good example is the Dell’s online Intelligent Fulfillment initiative that allows the 

customer to choose a specific date for delivery (Gunasekaran et al. 2002). Grocery stores 

operate on very thin margins, so a good policy of inventory management is essential to be 

successful in the online grocery business. 
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In an omni-channel approach some retailers use dedicated warehouses (darkstores) completely 

dedicated to fulfill online demand for products with high turnover and low perishability, and 

support stores to fulfill other ones. The expanded operational capacity, the improved picking 

and delivery productivity, and the increased customer service levels leveraged by the higher 

stock availability are the direct advantages of this approach (Espinós 2015). 

This work considers a scenario where a customer places an order online and schedules a date 

for the delivery. The difference between the time the order is received and the time of delivery 

provides an order window that gives additional flexibility for the retailer and we try to explore 

an inventory policy that uses this feature to minimize the retailer’s expected costs due to 

ordering, holding and stockout costs. 

This policy implies that the company only commits to a customer if there is product available 

in the network to satisfy his order, which means that even if the retailer does not have enough 

on-hand stock he can commit to a customer order if he has in-transit orders that will arrive 

before the date of delivery. Stockout will then represent cases where the retailer cannot commit 

to a customer order. Notice that, in our setting, retailers commit uppon arrival of orders and 

they will be able to satisfy the customer request when the order is due, which is different from 

the usual concept of advance demand information (ADI) where orders are accepted but some 

may need to be backordered (or cancelled) when the order is due. ADI research motivation 

comes, specially, from the B2B setting, by motivating the members of the supply chain to share 

information among them. In this setting there exists a distinction on when the order is 

announced and when the order is due. Our motivation arises from the B2C, specifically from 

the grocery sector, where there is no such distinction. The retailer with ADI normally has 

information about announced orders and an estimated due-date but the customer may change 

his order and the due-date may change (see, for example, the work of Gayon et al. (2009) or the 

work of Benbitour and Sahin (2015)), but in our case we have firm orders from customers with 

a fixed due-date because a customer chooses the delivery date when he is available to receive 

the goods.  

The division of the demand according to its urgency is then essential to take advantage of the 

flexibility provided by the order window, but it also implies that the delivery date should be 

linked to product availability either by choosing the date previously, or with warnings that show 

when the product is available. Some grocery retailers already have delivery time windows for 

different zip codes with dynamic pricing policies (Asdemir et al. 2009). Here the same may be 

applied but linked to products availability. 

To the best of our knowledge, the previous work done by Espinós (2015) and Soler (2017) were 

the first time that such characteristic was incorporated in the e-commerce inventory 

management and we pretend to extend this line of research. This study is based in previous 

work done by Espinós (2015) and Soler (2017) where an (𝑠, 𝑄) inventory policy explicitly 

accounts for the ordering window and was explored in single on-order (SOO) and  multiple on-

order (MOO) scenarios. The policy considers that the customer demand as well as the customer 

order window are stochastic and the replenishments to the darkstore have a short and 

deterministic lead time. 

This study has three main objectives. Firstly, a characterization of types of demand that are 

related to the online retail considering a customer order window for different distributions of 

the order window is provided. Secondly, a revision and refinement of the policy for the (𝑠, 𝑄) 

continuous system is performed. Finally, a model for periodic review (𝑅, 𝑠, 𝑆) policy is 

developed and assessed. 

The remainder of the thesis is organized as follows: Chapter 2 presents a literature review on 

inventory management in online retail, presents a suggested optimal (𝑠, 𝑄) inventory 

management policy for the traditional retail and an approach to the traditional retail periodic 

review, reorder point, order-up-to level (𝑅, 𝑠, 𝑆) policy.  
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Chapter 3 reviews the previous work done by Espinós (2015) and Soler (2017).  

Chapter 4 presents the approach followed to develop the model for continuous review, which 

includes the division and classification of the demand types during the lead time and their 

characterization. We also explain the simulations done to validate the expressions obtained. The 

expressions for the optimal parameters of the policy are presented. Finally, numerical 

applications of the policy are presented by analyzing computational experiments in which the 

advantages of this policy in comparison to a traditional (𝑠, 𝑄) policy are assessed, both with α 

service level and β service level. 

Chapter 5 presents the approach followed to develop the model for periodic review, which 

includes a different classification of the demand types and their characterization. We also 

explain the simulations done to validate the expressions obtained. Then we present a numerical 

study to assess the advantages of this policy in comparison to a traditional (𝑅, 𝑠, 𝑆) policy. 

Finally, Chapter 6 summarizes the results/findings and contributions of this study, the 

limitations that we found and proposes several future research directions. 
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 Literature review 

The literature review will be divided in three main sections. First, we review three research 

streams: inventory management problems and suggested policies in single-echelon systems, 

demand classification in inventory management and advance demand information in the online 

retail context. Secondly, an approach for an optimal continuous review (𝑠, 𝑄) inventory policy 

for traditional retail is presented and explained. Finally, a traditional retail (𝑅, 𝑠, 𝑆) periodic 

review, reorder point, order-up-to level policy is presented and explained. 

2.1 Inventory management in online retail  

The growing of e-commerce has led to substantial several modifications in different fields. 

Modifications concerning supply chain management procedures represent one of the focal 

points of interest (Keskinocak and Tayur 2001). The first research stream related to our work 

is inventory management problems and suggested policies in single-echelon systems. A study 

done by Hovelaque et al. (2007) aims at examining whether inventory location and ordering 

policies can affect supply chain efficiency when both online and physical channels coexist. 

Their perspective is that the optimization of costs involves not only transport optimization, but 

also, on a larger scale, inventory policy and the management of product flows throughout the 

entire supply chain. They propose a model to study and compare the efficiency of three main 

organizational models identified by them and that are currently implemented: “store-picking”, 

“warehouse-picking” and “drop-shipping”. Their model for order policies is a traditional 

newsboy-based approach which takes the main features of the three types of organization into 

consideration. Hovelaque et al. (2007) present these organizational models in the following 

way: 

• “Store-picking” consists in satisfying an online order off the shelf in the closest shop to 

the customer’s home. All the decisions about inventory management are made by the 

retailer because he needs to place his own orders to the suppliers according to the 

expected demands from both online and traditional customers, so the supplier only 

receives one aggregated order. The customer places the order online and the information 

is sent to the store closest to his home, where the products are picked from the shelves 

and packaged to be delivered to the customer.  

• “Warehouse-picking” dedicates a warehouse reserved for online orders. The orders are 

prepared in these warehouses and shipped out to the customers. The need for a dedicated 

warehouse can lead to higher fixed costs and, because orders are centralized, the 

delivery times may be longer. In this organizational model, the supplier receives two 

types of orders: from traditional channel and from online channel. 

•  “Drop-shipping” is a model where the supplier receives the online orders from 

customers and manages, on its own, the stock and the orders delivery. The retailer 

receives the online order and sends it directly to the supplier who decides on the 

quantities to be manufactured. With this model, the responsibility for any over-stocking 

falls entirely on the supplier. 
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They conclude that a drop-shipping organizational model is always better for the retailer and, 

conversely, always less advantageous for the supplier because the entire risk burden of 

shortages and over-stocking falls on the supplier solely. 

Online retailing is growing fast and to remain competitive retailers are searching for ways to 

reduce the fulfillment costs. A robust inventory management policy that seeks to minimize the 

costs is critical. According to Xu et al. (2017), the literature on inventory policy of online 

retailing mainly considers two kinds of online retailers, pure-play online retailers and retailers 

operating in a multi-channel or dual-channel environment. For what concerns studies about the 

pure-play online retailers, they refer the studies of Chen et al. (2005) were they analyze the 

strategy of maintaining an online retailer's own inventory, the study of Allgor et al. (2004) 

extending the use of a traditional two-stage serial inventory system in a setting of online 

retailing and the studies of Xu (2005) and Acimovic (2012) where they try to minimize the 

transportation costs or lower outbound shipping costs by designing an inventory allocation 

policy in the first study or by designing a replenishment policy in the second study. 

In this work we consider a pure-play online retailer and an organizational model similar to the 

“Warehouse picking” as we consider a darkstore completely dedicated to fulfill online demand, 

so although the darkstore may arise from a retailer that already has physical stores, we do not 

consider them in this study. We classify our problem as a single-echelon inventory control 

problem because we focus on determining the appropriate level of inventory for an individual 

unit (the darkstore) within the supply chain network. Ekanayake et al. (2016) present a review 

of the recent literature and a comparison of single-echelon and multi-echelon systems. The 

results of their research suggest that single-echelon optimisation produces optimal average 

inventory and fill rate values for individual nodes, but non-optimal values for the entire supply 

chain network as a whole, and that multi-echelon systems provide the optimal inventory levels 

for the entire supply chain network altough some units compromise on their individual 

performance levels in the best interest of the entire network. 

In the online retail, there is a difference between when an order is requested and when that order 

is depleted from inventory to be delivered. This means that the retailer knows the demand before 

having to fulfill it, and this allows the retailer to adapt its actions according to the known future 

demand. This order window offers a lot of opportunities of research. 

The second research stream related to this work is demand classification in inventory 

management. Being able to take advantage of the flexibility provided by the order window is 

essential and, to do so, we divide the demand during the lead time in different classes allowing 

the policy to take advantage of this scenario. Some literature has similar approaches by 

classifying the demand in multiple classes. A good categorization of the existing literature about 

demand classification is given by Arslan et al. (2007). However, most of the existing literature 

is very different from this work as they classify the demand according to shipping costs, priority 

levels or channels of distribution. We classify the demand from online customers according to 

the time they placed an order and the time they want it to be delivered. Demand is classified 

only when an order is received and according to its order window. 

Acimovic (2012) states this time window can provide a significant benefit to the online retailer 

and presents 3 possibilities to take advantage of it: 

1) Calculate optimal future strategies: The retailer has time to make calculations that 

cannot be made in real time and that can help making better choices regarding inventory 

management. 

2) Wait for inventory it knows is in-transit to arrive: If inventory will arrive soon, the 

online retailer can delay the shipment until then. 

3) Move items between fulfillment centers: Use the time window to move orders to others 

fulfillment centers and ship them to customers from there by taking advantage of 

different transport costs. 
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This work studies the benefit associated with this time window based in the second possibility, 

as the policy we present considers inventory that is in-transit to commit to customers’ orders. 

The other stream of research that is related to this work is research about advance demand 

information (ADI). There are several papers that investigate the value of advance demand 

information and its interactions with inventories. Research in this stream can be classified based 

on the way the underlying supply system is modelled. Supply systems with endogenously 

determined lead times (production/inventory systems) behave differently than supply systems 

with exogenous lead times (pure inventory systems) (Karaesmen et al. 2004). According to this 

classification, this work can be classified as a pure inventory system research. 

In the literature about ADI there is a similar definition to our definition of order window, that 

is called “demand lead time”. A portfolio of customers with different demand lead times results 

in what is called ADI. This definition was first introduced by Hariharan and Zipkin (1995) in a 

study where they consider an inventory scenario where customers provide advance warning of 

their demands and they concluded that the effect of using ADI is equivalent to reducing the 

supply lead time and it can reduce safety stock levels and costs significantly when used 

effectively.  

ADI was widely studied since then and it can be classified in “Perfect ADI” and “Imperfect 

ADI”. Under “Perfect ADI”, the supplier receives reliable information about customer demand 

and consequently the orders due-date or quantity do not change over time. Under “Imperfect 

ADI”, the order information is uncertain and can change before the due-date of the order. 

Probably this is the most common scenario, as a customer initially gives information about a 

possible order but then may want to update the order. DeCroix and Mookerjee (1997) study the 

question of when it is optimal to acquire costly advance information about stochastic demand. 

They analyze a periodic review system where the supplier has the option to purchase ADI. They 

present the optimal information purchase policy and the value of dynamically purchasing ADI. 

Gallego and Özer (2001) explore the value of ADI by studying optimal replenishment policies 

for a single-stage periodic review (s,S) inventory system with ADI with and without fixed costs. 

They consider the case of “Perfect ADI” and their results show that ADI can provide important 

cost reductions. The same authors extend the model to the case of multi-stage systems (Gallego 

and Özer 2003). Tan et al. (2007) study the effect of “Imperfect ADI” in a multi-period scenario, 

and they show that the optimal ordering policy is a function of the amount of ADI obtained. 

They find that “Imperfect ADI” becomes most beneficial for lower levels of imperfectness of 

ADI and higher variability in demand. They also study the impact “Imperfect ADI” has in the 

ordering and rationing decisions, because it allows to make better decisions on when to start 

rejecting lower class demand (Tan et al. 2009). Benbitour and Sahin (2015) consider four types 

of ADI in a single-stage system, where the customer order quantity is a random variable that 

follows a normal distribution, to evaluate the impact of the “Imperfect ADI” on the performance 

of the system. They concluded the same as Tan et al. (2007): imperfectness of demand 

information reduces the benefits of ADI. They also found that imperfect due-dates deteriorate 

the system’s performance more than imperfect demand quantities. They believe this result is 

due to the phenomenon of “Cross demands”. A recent study about “Imperfect ADI” was done 

by Huang and Van Mieghem (2014) where they analyze how the recent clickstream tracking 

technology can be used to improve operational decisions and inventory management by 

estimating the converted demands in the future. 

From our point of view, the literature that is closer to our work are the papers from Hariharan 

and Zipkin (1995) and Gallego and Özer (2001). The first one by considering that customers 

provide advanced warnings of their demands and using that information to obtain an optimal 

policy, and the second because their approach is similar to the approach in this work as they 

divide demand in two parts: the observed part, referring to the known demands (observed before 

the current period and that will prevail in a future period) and the unobserved part (unknown 

demands that have not been observed yet).  
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This work is different from the work done by Hariharan and Zipkin (1995) because they don’t 

consider ordering costs in their policy which simplifies it, as they would order whenever they 

want without costs. The approach to the problem is quite different as their policy considers the 

demand in a period equal to the supply lead time reduced by the demand lead time, while we 

divide the demand in different types in order to establish the new policy. It is also different from 

the work done by Gallego and Özer (2001) because they aggregate the known demand from 

previous periods, while we divide the predicted demand of one product during the lead time in 

different types of demand, and they commit to all orders but may need to backorder some of 

them. We believe the novelty of our approach is that, in our policy, the retailer only commits 

to a customer if there is product available to satisfy his order (on-hand or in-transit) when the 

order is received. Thus, instead of allowing backorders, we have lost sales, which means that 

we will not commit to a customer order that arrives after another one but is to be delivered 

before the first one, if we already were not committed to the first customer. See Figure 1 for a 

better understanding. In this example, we will not commit to customer Y order if we already 

were not committed to customer X order. 

 

 

Figure 1 - Commitment uppon arrival (𝐶𝑂 - Customer order; 𝐶𝐷 – Delivery date, 𝑂𝑊 – Order window)  

Resuming, our concept of committing uppon arrival of an order is what distinguishes our work 

from the previous literature about ADI where orders are accepted but some may need to be 

backordered (or cancelled) when the order is due. As concluded by Benbitour and Sahin (2015), 

the imperfect due-dates deteriorate the system’s performance due to the phenomenon of “Cross 

demands” that are not allowed in our policy as we explained above. 

2.2 Traditional retail (𝒔, 𝑸) policy 

The policy we present in this section was proposed by Silver et al. (1998) to obtain the optimal 

(𝑠, 𝑄) values in the traditional retail context. The policy they present is interesting for faster-

moving items, α service level metrics and normally distributed demand during the lead time. In 

a continuous review system (𝑠, 𝑄) a replenishment action can be taken immediately after any 

demand transaction, however only after a replenishment lead time 𝐿, the order is available for 

satisfying customer demands. Therefore, an order should be placed when the available 

inventory is adequate to avoid a stockout over the replenishment lead time 𝐿. The inventory is 

continuously monitored and when it reaches a certain quantity s, called the reorder point, a 

replenishment of size 𝑄 is triggered. The policy they presented was built on the following 

assumptions: 
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1) The demand is stationary. 

2) All demand transactions are unit size. A replenishment of size 𝑄 is triggered when the 

inventory position reaches exactly 𝑠. 

3) Crossing of orders are not permitted, the lead time is assumed constant. 

4) The average level of backorders is negligibly small when compared to the average level 

of on-hand stock because the unit shortage costs are assumed to be very high. 

5) Forecast errors have a normal distribution with average zero and standard deviation 𝜎𝐿 

over a lead time 𝐿. 

6) In the iterative procedures, the value of 𝑄 is assumed to have been predetermined. 

7) The cost of the control system does not depend on the specific value of 𝑠 selected. 

The notation used was: 

𝐴 Ordering cost, in €/replenishment 

𝐵1 Stockout cost, in €/stockout 

𝐷 Demand per year, in units/year 

𝑘 Safety factor 

𝐿 Replenishment lead time in years 

𝑃𝑢≥(𝑘) Probability that a unit normal (mean 0, standard derivation 1) variable takes on 

a value of 𝑘 or higher 

𝑄 Order quantity, in units 

𝑟 Inventory carrying charge, in €/€/year 

𝑠 Reorder point, in units 

𝑆𝑆 Safety stock, in units 

𝑣 Unit variable cost, in €/unit 

�̂�𝐿 Forecast demand over a replenishment lead time, in units 

𝜎𝐿  Standard deviation of errors of forecast over a replenishment lead time, in units 

 

In this policy, the reorder point is calculated according to equation (2.1) rounded to the nearest 

integer: 

 𝑠 = �̂�𝐿 +  𝑘𝜎𝐿 (2.1) 

The expected total relevant costs (ETRC) of the policy is the sum of ordering costs (OC), 

holding costs (HC) and stockout costs (SC) and is expressed in equation (2.2): 

 𝐸𝑇𝑅𝐶(𝑠, 𝑄) = 𝑂𝐶 +  𝐻𝐶 + 𝑆𝐶 = 𝐴
𝐷

𝑄
 + [

𝑄

2
+ ∫ (𝑠 −

𝑠

0

𝑥0)𝑓𝑥(𝑥0)𝑑𝑥0] 𝑣𝑟 + 𝐵1
𝐷

𝑄
∫ 𝑓𝑥(𝑥0)𝑑𝑥0

∞

𝑠
  

(2.2) 

The expression for the total cost approximated for the case where the lead time demand follows 

a normal distribution is: 

 
𝐸𝑇𝑅𝐶 (𝑘, 𝑄) = 𝐴

𝐷

𝑄
+ [

𝑄

2
+ 𝑘𝜎𝐿] 𝑣𝑟 + 𝐵1

𝐷

𝑄
𝑝𝑢≥(𝑘) (2.3) 
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To find the values of 𝑘 and 𝑄 that minimize the total cost, the partial derivates are set equal to 

zero and the results are: 

 
𝛿𝐸𝑇𝑅𝐶 (𝑘, 𝑄)

𝛿𝑘
= 0 → 𝑘 = √2 𝑙𝑛 (

𝐷𝐵1

√2𝜋𝑄𝑣𝑟𝜎𝐿

) (2.4) 

 
𝛿𝐸𝑇𝑅𝐶 (𝑘, 𝑄)

𝛿𝑄
= 0 → 𝑄 = 𝐸𝑂𝑄 √1 +

𝐵1

𝐴
Pu≥(𝑘) 

(2.5) 

Where: 

 

𝐸𝑂𝑄 =  √
2𝐴𝐷

𝑣𝑟
 

(2.6) 

The calculation of the parameters 𝑘 and 𝑄 depend on each other so, for the simultaneous 

determination of 𝑘 and 𝑄, an iterative procedure is suggested by Silver et al. (1998). They 

suggest starting with 𝑄 = 𝐸𝑂𝑄 (this value is the quantity that minimizes the sum OC+HC), 

then using this value in equation (2.4) to find the corresponding 𝑘 and finally use 𝑘 in equation 

(2.5) to find a new 𝑄 and so forth. This procedure is repeated until the values of 𝑘 and 𝑄 do not 

change significantly and because of the convex nature of the functions involved, convergence 

to the optimal pair (k and 𝑄) is ensured. 

2.3 Traditional retail (𝑹, 𝒔, 𝑺) policy 

In a (𝑅, 𝑆) system an order of variable size is placed every review interval (𝑅) to raise the 

inventory level to the order-up-to level (𝑆).  According to Silver et al. (1998), a situation/policy 

where a periodic review system (𝑅, 𝑆) is used is equivalent to the (𝑠, 𝑄) system if the following 

transformations are made: 

 

Table 1 - Transformations for equivalency between (𝑠, 𝑄) and (𝑅, 𝑆) policies 

(𝒔, 𝑸) (𝑹, 𝑺) 

𝒔 𝑆 

𝑸 𝐷𝑅 

𝑳 𝑅 + 𝐿 

 

When using this type of systems two additional assumptions were made by Silver et al. (1998): 

1) A replenishment order is placed every review, hence there is a negligible chance of no 

demand between reviews. 

2) The value of 𝑅 is assumed to be predetermined. 

A more complex system is the periodic review, reorder point, order-up-to level policy (𝑅, 𝑠, 𝑆) 

where the inventory is examined every 𝑅 units of time and, if the inventory position is at or 

below the reorder point 𝑠, then a replenishment, that raises it to the order-up-to-level 𝑆, is 

placed. The work done by Silver et al. (2009) allows us to think of this systems in terms of a 

continuous review system with “effective” lead time 𝐿 + 𝜏 (see Figure 2), where the random 

variable 𝜏 is the time between the instant when the inventory position drops to the reorder point 

and the next review. 
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Figure 2 - Periodic review, reorder point, order-up-to level system (Silver et al. 2009) 

The assumptions made by Silver et al. (2009) in their work are: 

1) Every 𝑅 units of time the inventory position is reviewed. 𝑅 is prespecified and not 

controllable. 

2) The replenishment lead time 𝐿, from when a replenishment is triggered until it is 

available in stock, is constant. 

3) Demands in disjoint intervals of time are independent, stationary, and normally 

distributed variables. 

4) In a stockout situation, there is complete backordering of any demand. 

5) The service measure used is the fill rate, the fraction of demand to be satisfied from 

stock. 

6) Instead of explicitly incorporating setup and carrying costs, a target average time 

between consecutive replenishments is specified. 

For convenience, they use 𝑅 = 1, which means that the review interval is redefined as unit time 

(UT). Some additional notation was used (time variables are defined in units of 𝑅): 

𝑃2 Desired value of the fill rate 

𝑛 Desired average number of review intervals between consecutive replenishments 

(integer) 

𝑆 Order-up-to level, in units 

𝜇 Average demand in a unit time interval, in units 

𝜎 Standard deviation of demand in a unit time interval, in units 

𝐶𝑉 
𝜎

𝜇
 is the coefficient of variation of demand in a unit time interval 

𝜏 Random variable representing the time from when the inventory position hits 𝑠 

until the next review instant 

𝑓𝜏(𝜏0) Probability density function of 𝜏 

𝑋 Total demand in 𝐿 + 𝜏, in units 

𝜎𝑋 Standard deviation of 𝑋, in units 
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Silver et al. (2009) present an approach in which they model this system as a continuous review, 

reorder point system. In their approach the “effective” lead time 𝐿 + 𝜏 is a random variable with 

mean E[𝐿 + 𝜏] and variance Var[𝜏]. 

They obtain the density function of 𝜏, equation (2.7). Because it is not possible to analytically 

develop expressions for the moments of 𝜏, they present expressions to obtain E[𝜏] and Var[𝜏] 

for values of CV between 0.1 and 0.5 and values of n between 2 and 6 (Table 2 and Table 3). 

 
𝑓𝜏(𝜏0) =

𝑚

𝐶𝑉√2𝜋
∑

1

√(𝑖 − 𝜏0)3
exp [−

(𝑚 + 𝜏0 − 𝑖)2

2(𝐶𝑉)2(𝑖 − 𝜏0)
]   0 < 𝜏0 < 1

∞

𝑖=1

 (2.7) 

Where:  

 
𝑚 =

𝑆 − 𝑠

𝜇
 (2.8) 

 

Table 2 - Fractional polynomial approximations of E[𝜏] as a function of CV for selected values of 𝑛 (Silver et al. 

2009) 

n Approximation (note 𝐂 ≡ 𝐂𝐕) 

2 0.53608 +  0.44271 (
1

𝐶
− 3.333) + 1.7634 (

1

√𝐶
− 1.826) + 1.0508(

𝑙𝑛(𝐶)

√𝐶
+ 2.198) 

3 0.51211 +  1.8625(𝐶 − 0.3)  − 1.143(𝐶2 − 0.09) + 3.1367 (𝐶2 𝑙𝑛(𝐶) + 0.1084) 

4 0.50325 + 2.1455(√𝐶 − 0.5477) − 0.65943(√𝐶 𝑙𝑛(𝐶) + 0.6594) + 0.50973(√𝐶 𝑙𝑛(𝐶)2 − 0.794) 

5 0.50079 − 0.13438(
1

𝐶
− 3.333) − 0.39946 (

1

√𝐶
− 1.826) − 0.28188(

𝑙𝑛(𝐶)

√𝐶
+ 2.198) 

6 0.50004 − 0.00237(
1

𝐶2
 11.11) − 0.03307 (

1

𝐶
− 3.333) − 0.02296(

𝑙𝑛(𝐶)

𝐶
+ 4.013) 

 

Table 3 - Fractional polynomial approximations of Var[𝜏] as a function of CV for selected values of 𝑛 (Silver et 

al. 2009) 

n Approximation (note 𝐂 ≡ 𝐂𝐕) 

2 0.07401 + 0.5338(𝐶 − 0.3) − 0.58217(𝐶2 − 0.09) 

3 0.08283 + 0.36794 (√𝐶 − 0.5477) − 0.35809(√𝐶 𝑙𝑛(𝐶) + 0.6594) 

4 0.08387 − 0.12888(
1

√𝐶
− 1.826) − 0.10939(𝑙𝑛(𝐶) + 1.204) 

5 0.08371 + 0.01876 (
1

𝐶
− 3.333) + 0.00887(

𝑙𝑛(𝐶)

𝐶
+ 4.013) 

6 0.08352 − 0.00078(
1

𝐶2
− 11.11) + 0.00503 (

1

𝐶
− 3.333) 
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The procedure they presented for calculating the reorder point and the order-up-to level is: 

1) Obtain E[𝜏] and Var[𝜏] from Table 2 and Table 3 

2) Calculate the mean and variance of 𝑋 

 
𝐸[𝑋] = (𝐸[𝜏] + 𝐿)𝜇 (2.9) 

 𝑉𝑎𝑟[𝑋] = (𝐸[𝜏] + 𝐿)𝜎2 + 𝜇2𝑉𝑎𝑟[𝜏] (2.10) 

3) Calculate the target allowed (average) units short per replenishment cycle (AUSPRC) 

 
𝐴𝑈𝑆𝑃𝑅𝐶 = (1 − 𝑃2)𝐸[𝑄]  (2.11) 

4) Choose 𝑘 to satisfy 

 

𝐺𝑢(𝑘) =
(1 − 𝑃2)𝐸[𝑄]

𝜎𝑋
=

(1 − 𝑃2)𝑛𝜇

𝜎𝑋
 (2.12) 

5) Calculate the reorder point 

 
𝑠 = 𝐸[𝑋] +  𝑘𝜎𝑋 (2.13) 

6) Calculate the order-up-to level 

 
𝑆 = 𝑠 + 𝑛𝜇 − 𝐸[𝜏]𝜇 (2.14) 

They use this procedure for given values of CV, 𝜇, n, 𝐿 and 𝑃2. We will adapt this approach to 

the online retail scenario. 
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 Review of the previous work 

This chapter presents a brief review of the work done by Espinós (2015) and Soler (2017) that 

precedes the work done in this thesis. First, the division of demand proposed by Espinós (2015) 

is presented and reviewed. Then the policy is presented for the SOO scenario and for the MOO 

scenario, and the findings made by these authors are explained. 

3.1 Demand context in online retail for a continuous (𝒔, 𝑸) review policy  

In online retail the demand during the lead time is more complex than in traditional retail so, in 

the previous work (Espinós 2015), the demand during the lead time was divided in three types 

taking in account four moments: 

• The time at which the customer places the order (CO);  

• The time at which the customer wants the delivery (CD); 

• The time at which the retailer orders a replenishment (O); 

• The time at which the order arrives (A). 

Figure 3 helps to understand how to classify the demand. The time between the replenishment 

and the order arrival is represented by 𝐿 and it’s the supplier’s lead time, during which 

customers’ orders arrive. The order window is defined as the time between the customer order 

(CO) and the delivery time (CD), that is, 𝑂𝑊 = 𝐶𝐷 − 𝐶𝑂.  

 

 

Figure 3 - Demand classification in a (𝑠, 𝑄) policy. Adapted from (Espinós 2015) 

For simplicity, O will be set equal to 0 (the count of time starts when a replenishment is made) 

and A equal to 𝐿. When a customer places an order during the lead time (0 < 𝐶𝑂 < 𝐿) and 

establishes the time when the order must be received, the demand originated can be classified 

as follows: 
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• 𝒅𝟏 - Demand of type 1: 𝐶𝑂 + 𝑂𝑊 < 𝐿 and 𝑂𝑊 < 𝐿 

The delivery takes place before the end of the lead time, which means that the retailer can 

only fulfill the order with the stock on-hand (similar to the traditional retail scenario).  

• 𝒅𝟐 - Demand of type 2: 𝐶𝑂 + 𝑂𝑊 ≥ 𝐿 and 𝑂𝑊 < 𝐿 

The delivery takes place after the end of the lead time, which means that the retailer can 

wait for the stock in-transit to fulfill it. Demand of type 2 gives the retailer the opportunity 

to satisfy orders with in-transit inventory and use the on-hand inventory to satisfy the 

demand of type 1. 

• 𝒅𝟑 - Demand of type 3: 𝑂𝑊 ≥ 𝐿 

The order window is big enough such that a new replenishment can be ordered and received 

by the retailer before the delivery time set by the customer. This means that if demand of 

type 3 triggers a new replenishment by dropping the inventory position below (or equal to) 

the reorder level, then the order would be received before the delivery time. Demand of type 

3 will never originate a stockout because we assume infinite inventory at the supplier. This 

demand is similar to the case where the supply lead time is lower than the demand lead time 

in the study of Hariharan and Zipkin (1995) and in which they say this case would represent 

perfect customer service. Another approach to deal with this type of demand is given by 

Karaesmen et al. (2002). They propose to delay the replenishment, so in our case the 

replenishment would be delayed by 𝑂𝑊 − 𝐿 units of time (we wait that 𝑑3 becomes 𝑑2). 

3.2 Continuous (𝒔, 𝑸) policy for online retail 

This section presents the (𝑠, 𝑄) policy for the online retail based on the demand context 

explained in 3.1 and in the methodology used in the traditional retail policy presented in 2.2. 

To obtain an adapted policy for the online retail scenario, Espinós (2015)  ignored demand of 

type 3 because, like explained before, we would have unlimited inventory to fulfill these orders 

and it allowed to simplify the study. The study of the probability of stockout was focused on 

demand of type 1 and demand of type 2 by looking at the (𝑠, 𝑄) system as a two-bin system. 

When the inventory position drops to 𝑠 and a replenishment is ordered, the first bin contains a 

stock quantity of 𝑠, which is the stock on-hand, and the second bin contains the quantity of 𝑄, 

which is the stock on-order. Demand of type 1 will be fulfilled from the first bin, while demand 

of type 2 will be fulfilled from the second bin and from the first bin if necessary. 

A stockout will occur if demand of type 1 is not fulfilled because the first bin is out of stock or 

if demand of type 2 is greater than 𝑄, and part of that demand would need to be fulfilled from 

the on-hand stock (the first bin). 

With this approach Espinós (2015) defined the probability of stockout (𝑃𝑠) as: 

 𝑃𝑠 = 𝑃(𝑑1 > 𝑠 ∩ 𝑑2 ≤ 𝑄) + 𝑃(𝑑1 + 𝑑2 > 𝑠 + 𝑄 ∩ 𝑑2 > 𝑄)
= 𝑃(𝑑1 + 𝑚𝑎𝑥 (0; 𝑑2 − 𝑄) > 𝑠) 

(3.1) 

Where 𝑠 can take two values depending on how the stockout could occur, if due only to 𝑑1 (case 

A) or to both 𝑑1 and 𝑑2 (case B), which lead to equation (3.2).  

 𝑠 = 𝑚𝑎𝑥(𝜇1 + 𝑘𝜎1; 𝜇1 + 𝜇2 + 𝑘𝜎𝐿 − 𝑄) = 𝑚𝑎𝑥 (𝑠𝐴; 𝑠𝐵) (3.2) 

In order to be conservative, 𝑠 should be high enough such that in both cases (A) and (B), a 

certain service level is assured, so the higher value of 𝑠 is chosen. 

The expression for the ETRC was also modified into equation (3.3) and is also dependent on 

each case. 
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𝐸𝑇𝑅𝐶 (𝑘, 𝑄) = 𝐴

𝐷

𝑄
+ [

𝑄

2
+ max(𝑘𝜎1; 𝜇2 − 𝑄 + 𝑘𝜎𝐿)] 𝑣𝑟 + 𝐵1

𝐷

𝑄
𝑃𝑠 (3.3) 

With the expression for the total cost defined, the optimal pair (𝑠, 𝑄) that minimizes the costs 

can be figured out with the approach explained in 2.2 through iterations until the values of 𝑘 

and 𝑄 do not change significantly. 

The following work done by Soler (2017) expanded the policy, originally proposed for SOO 

scenario, to the MOO scenario and made some modifications to the policy in order to make it 

suitable for the MOO scenario. The modifications were related to the expressions for the reorder 

point 𝑠, the probability of stockout and the ETRC. 

The modification to the probability of stockout and the reorder point was the introduction of a 

new variable OO (equation (3.4) - the quantity on-order/in-transit) that replaced 𝑄 in equations 

(3.1) and (3.2) resulting in equations (3.5) and (3.6). 

 𝑂𝑂 = 𝑚𝑎𝑥 (𝑄; 𝜇𝐿) (3.4) 

 𝑃𝑠 = 𝑃(𝑑1 + 𝑚𝑎𝑥 (0; 𝑑2 − 𝑂𝑂) > 𝑠) (3.5) 

 𝑠 = 𝑚𝑎𝑥(𝜇1 + 𝑘𝜎1;  𝜇1 + 𝜇2 + 𝑘𝜎𝐿 − 𝑂𝑂) (3.6) 

Soler (2017) stated that case B is unlikely to happen because it would imply that 𝜎2 ≫ σ1 so 

that 𝜎𝐿 could be very large compared to 𝜎1 to make 𝑠𝐵 > 𝑠𝐴. This would only happen if the 

demand’s coefficient of variance is greater than one. The new expression proposed for the 

reorder point was: 

 𝑠 = 𝜇1 + 𝑘𝜎1 (3.7) 

The expression for the ETRC was also modified into equation (3.8). 

 
𝐸𝑇𝑅𝐶 (𝑘, 𝑄) = 𝐴

𝐷

𝑄
+ [

𝑄

2
+ 𝑘𝜎1] 𝑣𝑟 + 𝐵1

𝐷

𝑄
𝑃𝑠 (3.8) 

In this work, we will extend this line of research by making the characterization of each type of 

demand and by refining the policy, in which respects to the reorder point and stockout 

probability, because, as Soler (2017) stated, these were aspects that were subject to 

improvement in future work. We will also extend the policy to deal with β service level. 
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 Model development for continuous review 

This chapter will provide the characterization of the demand in online retail and a revised (𝑠, 𝑄) 

policy for online retail based in the work done by Espinós (2015) and in the traditional retail 

approach presented in 2.2. The demand during the lead time was divided in different types in 

previous work (Espinós 2015) in a continuous review policy setting. However, no information 

is given about the characterization of such demand types. We aim to fill this gap. Numerical 

applications are also presented in this chapter. 

4.1 Demand characterization 

This section presents the approach followed to characterize the demand and the simulations 

done to validate the results obtained. 

4.1.1 Main assumptions and notation 

For the characterization of demand during the lead time we made the following assumptions: 

1) We consider that the time between orders is exponentially distributed and demand  

follows a Poisson distribution with constant rate. This means that demand arrivals 

constitute a Poisson process. 

2) The lead time (𝐿) is constant. 

3) All demand transactions are of unit size. 

4) For the order window (OW) we consider three cases: the order window follows a 

uniform distribution, a normal distribution, or an exponential distribution. 

5) The customer order time (CO) has a uniform distribution between 0 and 𝐿. 

6) The different types of demand are independent, OW and CO are also independent. 

Assumption 6) is reasonable because it’s common that customers have independent demands 

and we classify/segment them according to the time between the placement of theirs orders and 

the time when they want the orders delivered, so the different demand types will remain 

independent. Gallego and Özer (2001) make a similar assumption in their work when they 

divide the demand, and they also explain that it would be difficult to keep a manageable state 

space otherwise. Concerning the OW and the CO, their independence is natural as different 

customers ordering in the same moment have different needs for the time when they want the 

order delivered. 
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For the characterization of demand during the lead time we use the following notation: 

𝜆𝐶𝑂  Average demand per unit time 

𝐿 Lead time 

𝜇1 Average of demand of type 1 during the lead time 

𝜇2 Average of demand of type 2 during the lead time 

𝜇3 Average of demand of type 3 during the lead time 

𝜇𝐿 Average of total demand during the lead time  

𝜎1 Standard deviation of demand of type 1 during the lead time 

𝜎2 Standard deviation of demand of type 2 during the lead time 

𝜎3 Standard deviation of demand of type 3 during the lead time 

𝜎𝐿 Standard deviation of total demand during the lead time 

4.1.2 Analytical approach 

The total demand during the lead time is easy to obtain because the demand follows a Poisson 

distribution and lead time is constant. If X is the total demand during the lead time, the expected 

value is 𝐸[𝑋] = 𝐸[𝐷]𝐸[𝐿] and the variance is 𝑉𝑎𝑟[𝑋] =  𝑉𝑎𝑟[𝐷]𝐸[𝐿] + 𝐸[𝐷]2𝑉𝑎𝑟[𝐿] where 

D is the average demand per unit time and 𝐿 is the lead time. According to our notation:  

 𝜇𝐿 = 𝜆𝐶𝑂𝐿  (4.1) 

 𝜎𝐿 = √(𝜆𝐶𝑂𝐿)  =  √𝜇𝐿  
(4.2) 

 𝑑𝐿 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝐿) (4.3) 

To determine the parameters for the three different types of demand, we followed the approach 

known as “thinning” a Poisson Process. This happens when we are interested in counting 

various special types of the events being counted. The events being counted correspond to the 

total demand and the different types of demand are the special types. According to Ross (1996) 

if 𝑁𝑖(𝑡) represents the number of events of type i that occur by time t, then 𝑁𝑖(𝑡) are Poisson 

independent random variables with mean given by 𝜆×𝑡×𝑃𝑖(𝑡), where 𝑃𝑖(𝑡) is the probability 

that an event occurring at time t is of type i. (Here we consider a constant rate for the demand, 

however if the demand were not constant then we simply had to substitute 𝜆 for 𝜆(𝑡)). 

Sigman (2007) calls this property by Partitioning Theorems for Poisson processes and random 

variables: 

• Partitioning a Poisson random variable: If 𝑋~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝛼) and if each object of X is, 

independently, type 1 with probability 𝑝 or type 2 with probability 𝑞 = 1 −  𝑝, then 

𝑋1~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑝𝛼), 𝑋2 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑞𝛼) and they are independent. 

• Partitioning a Poisson process (PP): If 𝜓~ 𝑃𝑃(𝜆) and if each arrival of 𝜓 is, 

independently, type 1 with probability p or type 2 with probability 𝑞 = 1 − 𝑝 then, the 

two resulting processes are themselves Poisson and independent: 

𝜓1 ~𝑃𝑃(𝑝𝜆), 𝜓2 ~𝑃𝑃(𝑞𝜆). 

The above generalizes to 𝑘 ≥ 2 types (type i with probability 𝑃𝑖) yielding independent Poisson 

processes with rates 𝜆𝑖  =  𝑃𝑖×𝜆, i ∈ [1, 2, ..., k] (Sigman 2007). 

When we divided the demand in three types (section 3.1), we set bounds on the values that the 

order window (OW) and the customer order (CO) can take for each type of demand. We use 

those bounds to calculate the probability of an order being of each one of the demand types. 

See Figure 4 for a better understanding. According to the division done in section 3.1, an order 
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is demand of type 1 if  𝐶𝑂 + 𝑂𝑊 < 𝐿 and 𝑂𝑊 < 𝐿, which according to Figure 4, is the region 

below the line 𝐶𝑂 = 𝐿 − 𝑂𝑊. The same method is applied to demand of type 2 and type 3. 

This representation makes it easier to identify the limits of integration for the expressions that 

allowed us to obtain the probabilities. 

  

Figure 4 - 2D representation of the division of demand in a (𝑠, 𝑄) policy 

Following the previous explanation, we obtain the expressions: 

 𝑃(𝑑1)  =  𝑃(𝐶𝑂 + 𝑂𝑊 < 𝐿 ∩  𝑂𝑊 < 𝐿) (4.4) 

 𝑃(𝑑2) = 𝑃(𝐶𝑂 + 𝑂𝑊 ≥ 𝐿 ∩  𝑂𝑊 < 𝐿) (4.5) 

 𝑃(𝑑3) = 𝑃(𝑂𝑊 ≥ 𝐿) (4.6) 

Once we obtain the probabilities, we know how the total demand is distributed among the three 

types of demand, so the average of each type of demand can be calculated as 𝜇x =  𝑃(𝑑𝑥)𝜇L. 

The expressions for 𝑑1 and 𝑑2 led to the calculation of a double integral (equations (4.7) and 

(4.8)). The expression for 𝑑3 led to the calculation of a simple integral (equation (4.9)). 

 
𝑃(𝑑1) = ∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊

𝐿−𝑂𝑊

0

𝐿

0

 (4.7) 

 
𝑃(𝑑2) = ∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊

𝐿

𝐿−𝑂𝑊

𝐿

0

 (4.8) 

 
𝑃(𝑑3) = ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑑𝑂𝑊

∞

𝐿

 (4.9) 

Where: 

 
𝑓𝐶𝑂(𝐶𝑂) = {

1

𝐿
 𝑓𝑜𝑟 𝐶𝑂 ∈ [0; 𝐿] 

0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (4.10) 
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The expressions for the probabilities change accordingly to the distribution assumed for the 

OW. Through equations (4.12) to (4.32) the results are presented for uniform, exponential and 

normal distributions. We will present the formulas for the average of each type of demand. The 

standard deviation can be obtained by equation (4.11).  

 𝜎𝑥 = √𝜇𝑥. (4.11) 

 

a) OW ~Uniform[a;b] 

 

𝑓𝑂𝑊(𝑂𝑊) = {
1

𝑏 − 𝑎
 𝑓𝑜𝑟 𝑂𝑊 ∈ [𝑎; 𝑏] 

0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (4.12) 

 

In this case we need to divide the results in two scenarios, because the limits for the integral of 

the OW are limited by the values of a and b. 

• 𝑏 > 𝐿 and 𝑎 < 𝐿 (If 𝑎 > 𝐿, everything is 𝑑3) 

 

𝑃(𝑑1) = ∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊

𝐿−𝑂𝑊

0

𝐿

𝑎

 (4.13) 

 
𝑃(𝑑2) = ∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊

𝐿

𝐿−𝑂𝑊

𝐿

𝑎

 (4.14) 

 
𝑃(𝑑3) = ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑑𝑂𝑊

𝑏

𝐿

 (4.15) 

 

 𝜇1 = [
(𝑎 −  𝐿)2

2𝐿(𝑏 −  𝑎)
] 𝜆𝑐𝑜𝐿 (4.16) 

 𝜇2 = [
𝐿2 − 𝑎2

2𝐿(𝑏 − 𝑎)
] 𝜆𝑐𝑜𝐿 (4.17) 

 𝜇3 = [
𝑏 −  𝐿

𝑏 −  𝑎
] 𝜆𝑐𝑜𝐿 (4.18) 

• 𝑏 ≤  𝐿 

 

𝑃(𝑑1) = ∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊

𝐿−𝑂𝑊

0

𝑏

𝑎

 (4.19) 

 
𝑃(𝑑2) = ∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊

𝐿

𝐿−𝑂𝑊

𝑏

𝑎

 (4.20) 

 𝑃(𝑑3) = 0 (4.21) 

 

 𝜇1 = [1 −
𝑎 + 𝑏

2𝐿
] 𝜆𝐶𝑂𝐿 (4.22) 

 𝜇2 = [
𝑎 + 𝑏

2𝐿
] 𝜆𝐶𝑂𝐿 (4.23) 

 𝜇3 = 0 (4.24) 
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b) OW ~Exponential(𝜆𝑂𝑊) 

 

 

𝑓𝑂𝑊(𝑂𝑊) = {
 𝜆𝑂𝑊𝑒−𝜆𝑂𝑊𝑂𝑊 𝑓𝑜𝑟 𝑂𝑊 ≥ 0  

0           𝑓𝑜𝑟 𝑂𝑊 < 0
 

 

(4.25) 

 

Using expressions (4.7) through (4.9), the results obtained are: 

 𝜇1 = [
𝑒−𝜆𝑂𝑊𝐿 − 1

𝜆𝑂𝑊𝐿 
+ 1] 𝜆𝐶𝑂𝐿  (4.26) 

 𝜇2 = [
1 − 𝑒−𝜆𝑂𝑊𝐿(𝜆𝑂𝑊𝐿 + 1)

𝜆𝑂𝑊𝐿 
] 𝜆𝐶𝑂𝐿 (4.27) 

 𝜇3 = [𝑒−𝜆𝑂𝑊𝐿]𝜆𝐶𝑂𝐿 (4.28) 

 

c) OW ~Normal(𝜇𝑂𝑊 , 𝜎𝑂𝑊) 

 

 

𝑓𝑂𝑊(𝑂𝑊) =
1

√2𝜋(𝜎𝑜𝑤)2 
𝑒

−
(𝑂𝑊−𝜇𝑜𝑤)2

2(𝜎𝑜𝑤)2  (4.29) 

 

Note that the OW must take positive values, so values used for 𝜇𝑂𝑊 and 𝜎𝑂𝑊 should be chosen 

wisely.  

Using expressions (4.7) through (4.9), the results obtained are: 

µ1 = ([√(
𝜋

2
) (𝐿 − 𝜇𝑂𝑊) (𝑒𝑟𝑓 (

𝐿 − 𝜇𝑂𝑊

√2𝜎𝑂𝑊

) + 𝑒𝑟𝑓 (
𝜇𝑂𝑊

√2𝜎𝑂𝑊

))

+ 𝜎𝑂𝑊  (𝑒
−

(𝐿 − 𝜇𝑂𝑊)2

2 𝜎𝑂𝑊
2

− 𝑒
−

𝜇𝑂𝑊
2

2 𝜎𝑂𝑊
2

)]
1

𝐿√2𝜋  
) 𝜆𝐶𝑂𝐿 

(4.30) 

𝜇2 = ([√(
𝜋

2
) (𝜇𝑂𝑊) (𝑒𝑟𝑓 (

𝐿 − 𝜇𝑂𝑊

√2𝜎𝑂𝑊

) + 𝑒𝑟𝑓 (
𝜇𝑂𝑊

√2𝜎𝑂𝑊

))

+ 𝜎𝑂𝑊  (−𝑒
−

(𝐿 − 𝜇𝑂𝑊)2

2 𝜎𝑂𝑊
2

+ 𝑒
−

𝜇𝑂𝑊
2

2 𝜎𝑂𝑊
2

)]
1

𝐿√2𝜋  
) 𝜆𝐶𝑂𝐿  

(4.31) 

𝜇3 =
1

2
(𝑒𝑟𝑓𝑐 (

𝐿 − 𝜇𝑂𝑊

√2𝜎𝑂𝑊

)) 𝜆𝐶𝑂𝐿 (4.32) 

The expressions obtained here are the expressions that allow to obtain the values of the 

parameters of the types of demand during the lead time. Notice, however, that the probability 

of an order being of a specific type of demand changes with time, which is obvious by looking 

at Figure 4. Because the parameters of interest for the policy are the average and the standard 

deviation during the lead time we presented a method to obtain them directly, however another 

approach is presented in Annex A where the time is taken into consideration and a more detailed 

analysis is presented. 
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According to Silver et al. (1998), if the demand during the lead time is higher than 10 units and 

the ratio 
𝜎𝑥

𝜇𝑥
 is lower than 0.5, then the normal distribution is probably a good approximation for 

the demand. This means that if the average of demand is higher than 10 units the Poisson 

distributed demand with average 𝜇𝑥 can be approximated by a normal distribution with average 

𝜇𝑥  and standard deviation √𝜇𝑥, thus in the policy presented in this work we assume that demand 

during the lead time follows a normal distribution (as in the previous work done by Espinós 

(2015) and also in the work of Soler (2017)). This assumption is relatively usual in the literature 

and it is also referred by Hariharan and Zipkin (1995) in their study. 

4.2 Validation of results through simulation 

In order to validate the results obtained in the analytical approach presented in 4.1.2, we built a 

simulator that returns the percentage of each type of demand, its average and standard deviation 

and the coefficient of correlation between each type of demand. The inputs in this simulator are 

the OW distribution parameters, the average demand per unit time (𝜆𝐶𝑂) and the lead time (L).  

4.2.1 Simulation design 

We simulate 2000 orders with the time between orders following an exponential distribution 

with mean 
1

𝜆𝐶𝑂  
 and then the simulator counts the total number of orders and the number of 

orders that are from each type of demand during the lead time. Since we assume that 

transactions are unit size, the demand in units is equal to the number of orders.   

The simulator uses 10000 iterations and was performed for 100 different combinations of inputs 

for each one of the 3 possibilities of the OW distribution.  

Table 4 - Possible input values considered for the lead time and for demand per unit time 

Demand and lead time 

𝑳 1, 2, 3, 4, 5, 6, 7, 10, 20  𝑈𝑇 

𝝀𝑪𝑶 1

3
,
1

2
,
2

3
, 1,

5

3
,
10

3
,
20

3
, 10, 25, 50, 100, 250, 500, 1000   𝑈𝑛𝑖𝑡𝑠

𝑈𝑇
 

 

Table 5 - Possible input values considered for the order window parameters with uniform distribution 

OW Uniform 

𝒂 0, 
1

5
𝐿,  

1

4
𝐿,  

1

3
𝐿, 

2

5
𝐿, 

1

2
𝐿, 

3

5
𝐿, 

2

3
𝐿, 

3

4
𝐿, 

4

5
𝐿, 𝐿 𝑈𝑇 

𝒃  
1

4
𝐿,  

1

3
𝐿, 

1

2
𝐿, 

2

3
𝐿, 

3

4
𝐿, 𝐿, 

5

4
𝐿, 

4

3
𝐿, 

3

2
𝐿, 

7

4
𝐿, 2𝐿 𝑈𝑇 

 

Table 6 - Possible input values considered for the order window parameters with exponential distribution 

OW Exponential 

𝝀𝑶𝑾 1

20
,

1

10
,
1

5
,
1

4
,
1

3
,
2

3
,
1

2
, 1,

4

3
,
3

2
, 2,

5

2
, 

ln(2)

𝐿
, 

ln(4)

𝐿
, 

ln(
4

3
)

𝐿
 

1

𝑈𝑇
 



On using customer order time windows to optimize online retail inventory management 

22 

Table 7 - Possible input values considered for the order window with normal distribution 

OW Normal 

𝝁𝑶𝑾  
1

5
𝐿,  

1

4
𝐿,  

1

3
𝐿, 

1

2
𝐿, 

2

3
𝐿, 

3

4
𝐿, 

4

5
𝐿, 𝐿, 

5

4
𝐿, 

4

3
𝐿, 

3

2
𝐿, 2𝐿 𝑈𝑇 

𝝈𝑶𝑾   
1

50
𝜇𝑂𝑊, 

1

20
𝜇𝑂𝑊, 

1

10
𝜇𝑂𝑊, 

1

5
𝜇𝑂𝑊, 

3

10
𝜇𝑂𝑊, 

4

10
𝜇𝑂𝑊, 

5

10
𝜇𝑂𝑊 𝑈𝑇 

 

The values for the 100 combinations used in the simulations were chosen randomly from the 

values in  Table 4, Table 5, Table 6 and Table 7 without allowing repeated combinations to 

ensure that all possible scenarios were tested. 

4.2.2 Results 

This sub-section is dedicated to illustrating the validation of the expressions obtained in the 

analytical approach by comparison with the simulated results. Table 8 provides the mean 

absolute percentage error (MAPE) between the simulated results and the results obtained using 

the expressions in 4.1.2. 

Table 8 - Validation results for continuous review 

Error (%) 

OW 𝜇1 𝜇2 𝜇3 𝜇𝐿 𝜎1 𝜎2 𝜎3 𝜎𝐿 

Uniform 0.27% 0.18% 0.10% 0.13% 0.53% 0.49% 0.26% 0.42% 

Exponential 0.22% 0.30% 1.88% 0.15% 0.45% 0.51% 1.21% 0.50% 

Normal 3.63% 0.86% 2.54% 0.10% 1.96% 0.88% 1.27% 0.40% 

It has been possible to verify the analytical approach with the simulation done. The average 

percentage of error between the experimental and the analytical values is very small, except for 

the values for the demand of type 1 when the OW has a normal distribution and the values for 

the demand of type 3 when the OW has a normal distribution or an exponential distribution. 

Concerning the errors for the demand of type 3, they are due to very low values of demand 

where they have decimal values (both the demand obtained in the simulation and by the 

expressions have values of order 10-2 or lower, when the probability of being demand of type 3 

is close to zero and the total demand has low values). Concerning the error for the demand of 

type 1 when the OW has a normal distribution, it is due to the simulations were the ratio 
𝜎𝑜𝑤

𝜇𝑜𝑤
 for 

the OW distribution parameters is high enough to generate negative values for the OW. The 

maximum ratio used was 0.5, and because the OW follows a normal distribution there is the 

probability of 2.275% to generate negative values for the OW. 

With the simulation done we also verified the independence between the types of demand, as 

the coefficients of correlation between them are very small and negligible, which verified 

assumption 6) as a reasonable one. The histograms obtained by using the results of the iterations 

also allowed to verify that for values of the average demand approximately higher than 10 for 

each one of the types of demand, they can be approximated by a normal distribution. 
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4.3 Revised continuous (𝒔, 𝑸) policy for online retail 

This section introduces the findings and modifications made to the policy presented in the 

previous work done by Espinós (2015) and Soler (2017) and the respective validations. Then 

the revised policy is presented.  

4.3.1 Modifications to the policy presented in the previous work 

In the online retail scenario, the difference between the time an order is received and the time 

when it will be delivered provides an order window that the retailer can use to make better 

decisions concerning the inventory management. Our inventory policy tries to explore this 

feature. 

In previous work, it was assumed that demand of type 2 could have an impact on the reorder 

point and in the probability of stockout. In this thesis, we prove that demand of type 2 has no 

such impact and we present the following preposition. 

PREPOSITION 1. The probability of stockout (𝑃𝑠) and the reorder level 𝑠 are defined by: 

 𝑃𝑠 =  𝑃(𝑑1 > 𝑠 ) (4.33) 

 𝑠 = 𝜇1 + 𝑘𝜎1 (4.34) 

PROOF: 

In order to validate this reorder point consider the following scenario, represented in Figure 5. 

An order of size 𝑄 (𝑄1) is triggered at moment 𝑡 = 0 when the inventory position reaches 𝑠 and 

it will arrive after 𝐿. After the replenishment the inventory position is 𝑠 + 𝑄. A new order (𝑄2) 

would be placed when the inventory position drops from 𝑠 + 𝑄 to 𝑠 and it would arrive after 𝐿. 
That is between two replenishments the demand is 𝑄, because we are reviewing the inventory 

continuously. The proof is built around this scenario where we have two cycles. We study the 

probability of stockout when there are two cycles (𝑃𝑠
′), to see if demand other than demand of 

type 1 has impact on the probability of stockout. Then we compare it with the probability of 

stockout of a single cycle and we extend the conclusion to the situations where there are more 

cycles. 

 

Figure 5 - Scenario representation 

The probability of stockout in the scenario with two cycles is given by equation (4.35). The 

numerator represents the situation where we have a stockout in the first cycle due to 𝑑1, or a 

stockout in the second cycle due to 𝑑1
′  and the demand that happened between the 

replenishments. The denominator is equal to the number of cycles. 

 
𝑃𝑠

′ =
𝑃(𝑑1 > 𝑠 ∪ 𝑑1

′ + 𝑄 > 𝑠 + 𝑄)

2
=

𝑃(𝑑1 > 𝑠 ∪ 𝑑1
′ > 𝑠 )

2

=
𝑃1 + 𝑃1 − 𝑃(𝑑1 > 𝑠 ∩ 𝑑1

′ > 𝑠 )

2
  

(4.35) 
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Then we compare this probability with the probability of stockout when there is a single cycle: 

 
𝑃𝑠

′ ?  𝑃(𝑑1 > 𝑠 )  (=) 𝑃1 −
𝑃(𝑑1 > 𝑠 ∩ 𝑑1

′ > 𝑠 )

2
? 𝑃1 (=)  

  
(=) − 

𝑃(𝑑1 > 𝑠 ∩ 𝑑1
′ > 𝑠 )

2
 ?  0   

Where ? is a mathematical operator that we are trying to find. 

Because a probability is always greater than or equal to zero, then ? is ≤ and 𝑃𝑠
′  ≤  𝑃(𝑑1 > 𝑠 ). 

Therefore, when we have two cycles the probability of stockout is lower or equal than in a 

single cycle. In order to be conservative, we define the probability of stockout by the equality 

and we extend this proof to scenarios where there are more cycles. From the probability of 

stockout, it follows that the reorder point is 𝑠 = 𝜇1 + 𝑘𝜎1. 

This proof suits the SOO scenario represented in Figure 5 where there is no overlap between 

cycles. Thus, cycles are independent and 
𝑃(𝑑1>𝑠 ∩ 𝑑1

′ >𝑠 )

2
 would be 

(𝑃1)2 

2
. This proof also suits the 

MOO scenario, in which there is overlap between cycles. Consequently, there is dependency 

between cycles but the probability 
𝑃(𝑑1>𝑠 ∩ 𝑑1

′ >𝑠 )

2
 is still greater than or equal to zero. 

4.3.2 Total cost in the continuous (𝒔, 𝑸) policy with 𝜶 service level metrics 

The new expressions for the reorder point and probability of stockout imply that the total cost 

formula has to be adapted. In the next expressions we use 𝑃𝑢1≥(𝑘) instead of 𝑃𝑠. 

The expression for the ETRC with the new modifications is : 

 
𝐸𝑇𝑅𝐶 (𝑘, 𝑄) = 𝐴

𝐷

𝑄
+ [

𝑄

2
+ 𝑘𝜎1] 𝑣𝑟 + 𝐵1

𝐷

𝑄
𝑃𝑢1≥(𝑘) (4.36) 

For each one of the different OW studied in this thesis the expressions for the total costs are 

presented next: 

a) OW ~Uniform[a;b] 

• 𝑏 > 𝐿 and 𝑎 < 𝐿 

 

 

𝐸𝑇𝑅𝐶 (𝑘, 𝑄) = 𝐴
𝐷

𝑄
+ [

𝑄

2
+ 𝑘√[

(𝑎 −  𝐿)2

2 𝐿(𝑏 −  𝑎)
] 𝜆𝑐𝑜𝐿]𝑣𝑟 + 𝐵1

𝐷

𝑄
𝑃𝑢1≥(𝑘) (4.37) 

• 𝑏 < 𝐿 

 

𝐸𝑇𝑅𝐶 (𝑘, 𝑄) = 𝐴
𝐷

𝑄
+ [

𝑄

2
+ 𝑘√[1 −

𝑎 + 𝑏

2𝐿
] 𝜆𝐶𝑂𝐿] 𝑣𝑟 + 𝐵1

𝐷

𝑄
𝑃𝑢1≥(𝑘) (4.38) 

 

b) OW ~Exponential(𝜆𝑂𝑊) 

 

 

𝐸𝑇𝑅𝐶 (𝑘, 𝑄) = 𝐴
𝐷

𝑄
+ [

𝑄

2
+ 𝑘√[

𝑒−𝜆𝑂𝑊𝐿 − 1

𝜆𝑂𝑊𝐿 
+ 1] 𝜆𝐶𝑂𝐿 ] 𝑣𝑟

+ 𝐵1

𝐷

𝑄
𝑃𝑢1≥(𝑘) 

(4.39) 
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c) OW ~Normal(𝜇𝑂𝑊, 𝜎𝑂𝑊) 

 

𝐸𝑇𝑅𝐶 (𝑘, 𝑄) = 𝐴
𝐷

𝑄
+ 𝑍 + 𝐵1

𝐷

𝑄
𝑃𝑢1≥(𝑘)    (4.40) 

𝑍 =

[
 
 
 
𝑄

2
+ 𝑘√([√(

𝜋

2
) (𝐿 −  𝜇𝑂𝑊) (𝑒𝑟𝑓 (

𝐿 − 𝜇𝑂𝑊

√2𝜎𝑂𝑊

) + 𝑒𝑟𝑓 (
𝜇𝑂𝑊

√2𝜎𝑂𝑊

)) +  𝜎 (𝑒
−

(𝐿 − 𝜇𝑂𝑊)2

2 𝜎𝑂𝑊
2

− 𝑒
−

𝜇𝑂𝑊
2

2 𝜎𝑂𝑊
2

)]
1

𝐿√2𝜋  
) 𝜆𝐶𝑂𝐿 

]
 
 
 

𝑣𝑟 

With the expressions for the total cost defined, we can find the optimal pair (𝑠, 𝑄) that 

minimizes the costs with the approach explained in 2.2. First obtain the partial derivatives 

(equations (4.41) and (4.42)) and then through iterations until the values of 𝑘 and 𝑄 do not 

change significantly. In these expressions 𝑃𝑢1≥(𝑘) can be easily obtained in an Excel 

spreadsheet, however, if needed, an alternative is  
1

2
𝑒𝑟𝑓𝑐 (

𝑘

√2
). Details about the derivations 

and the Excel functions are presented in Annex B. 

 
𝛿𝐸𝑇𝑅𝐶 (𝑘, 𝑄)

𝛿𝑘
= 0 → 𝑘 =  √2 𝑙𝑛 (

𝐷𝐵1

√2𝜋𝑄𝑣𝑟𝜎1

) (4.41) 

 
𝛿𝐸𝑇𝑅𝐶 (𝑘, 𝑄)

𝛿𝑄
= 0 → 𝑄 = 𝐸𝑂𝑄 √1 +

𝐵1

𝐴
𝑃𝑢1≥(𝑘) 

(4.42) 

Instead of using this procedure, if the retailer is interested in a certain α service level then 𝑘 can 

be obtained from equation (4.43) and then use a predetermined 𝑄 to calculate the ETRC or 

calculate the 𝑄 that minimizes ETRC and the respective total cost.  

 
𝛼 = 1 − 𝑃𝑠 = 1 − 𝑃𝑢1≥(𝑘) = 1 −

1

2
𝑒𝑟𝑓𝑐 (

𝑘

√2
) (4.43) 

When using a predetermined 𝑄, the EOQ is a common practice (Silver et al. 1998). It is also 

the value used to start the iterative procedure. 

4.3.3 Total cost in the continuous (𝒔, 𝑸) policy with 𝜷 service level metrics 

As suggested by Espinós (2015) and by Soler (2017) a possible extension for this work is to 

use a different service level measure. Here we present the derivation of the total cost with β 
service level for normal distributed demand.  

To define a policy with β service level and normal distributed demand, additional notation and 

definitions are needed: 

𝐵2 Fractional charge per unit short 

𝐺𝑢(𝑘) ∫ (𝑢0 − 𝑘)
1

√2𝜋

∞

𝑘
𝑒

(−
𝑢0

2

2
)
 𝑑𝑢0, is the loss function used to calculate the 

expected shortage per replenishment cycle (ESPRC) 

ESPRC Equal to 𝜎 𝐺𝑢(𝑘) 

According to Silver et al. (1998), in a continuous policy for the traditional retail, the total cost 

with β service level and normal distributed demand is given by: 

 
𝐸𝑇𝑅𝐶 (𝑘, 𝑄) = 𝐴

𝐷

𝑄
+ [

𝑄

2
+ 𝑘𝜎𝐿] 𝑣𝑟 +

𝐵2𝑣𝜎𝐿𝐺𝑢(𝑘)𝐷

𝑄
 (4.44) 
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To adapt equation (4.44) for the online retail, we need to replace the standard deviation of the 

total demand by the standard deviation of demand of type 1 and change the variable in the 

𝐺𝑢(𝑘) function. 

 
𝐸𝑇𝑅𝐶 (𝑘, 𝑄) = 𝐴

𝐷

𝑄
+ [

𝑄

2
+ 𝑘𝜎1] 𝑣𝑟 +

𝐵2𝑣𝜎1𝐺𝑢1
(𝑘)𝐷

𝑄
 (4.45) 

The expressions for each one of the different OW studied in this thesis can be obtained by 

replacing 𝜎1 for the corresponding value obtained in 4.1.2. 

With the expressions for the total cost defined, we use the same approach used in the α service 

level to find the optimal pair (𝑠, 𝑄) that minimizes the costs with the iterative procedure. First 

obtain the partial derivatives (equations (4.46) and (4.47)) and then through iterations until the 

values of 𝑘 and 𝑄 do not change significantly. In these expressions 𝐺𝑢1
(𝑘) can be easily 

obtained in an Excel spreadsheet, however, if needed, an alternative is (
𝑒

−
𝑘2

2

√2𝜋
−

1

2
𝑘 𝑒𝑟𝑓𝑐 (

𝑘

√2
)). 

Details about the derivations and the Excel functions are presented in Annex B. 

 𝛿𝐸𝑇𝑅𝐶 (𝑘, 𝑄)

𝛿𝑘
= 0 → 𝑃𝑢1≥ 

(𝑘) =
𝑟𝑄

𝐷𝐵2
 (4.46) 

 
𝛿𝐸𝑇𝑅𝐶 (𝑘, 𝑄)

𝛿𝑄
= 0 → 𝑄 = 𝐸𝑂𝑄 √1 +

𝐵2𝜎1𝑣

𝐴
𝐺𝑢1

(𝑘)   
(4.47) 

Instead of using this procedure, if the retailer is interested in a certain β service level then 𝑘 can 

be obtained from equation (4.48) and then use a predetermined 𝑄 to calculate the ETRC or 

calculate the 𝑄 that minimizes ETRC and the respective total cost.  

 

𝐺𝑢1
(𝑘) =

𝑄

𝜎1
(
1 − 𝛽

𝛽
) (=) 

(

 
𝑒−

𝑘2

2

√2𝜋
−

1

2
𝑘 𝑒𝑟𝑓𝑐 (

𝑘

√2
)

)

 =
𝑄

𝜎1
(
1 − 𝛽

𝛽
) (4.48) 

When using a predetermined 𝑄 and the β service level, the recommendation of Silver et al. 

(1998) adapted for the online retail scenario is: 

 

𝑄 =
1

𝛽
√

2𝐴𝐷

𝑟𝑣
+ 𝜎1

2 (4.49) 

 

If 𝜎1 is large relative to 𝑄, a more accurate formula should be used instead of (4.48). The 

formula adapted from Silver et al. (1998) to the online retail scenario is: 

 
𝐺𝑢1

(𝑘) − 𝐺𝑢1
(𝑘 +

𝑄

𝜎1
) =

𝑄

𝜎1
(
1 − 𝛽

𝛽
) (=)  (4.50) 

 

(=)(
𝑒−

𝑘2

2

√2𝜋
−

1

2
𝑘 𝑒𝑟𝑓𝑐 (

𝑘

√2
)) −

(

  
 𝑒−

(𝑘+
𝑄
𝜎1

)
2
 

2

√2𝜋
−

1

2
(𝑘 +

𝑄

𝜎1

) 𝑒𝑟𝑓𝑐 (
𝑘 +

𝑄
𝜎1

√2
)

)

  
 

 

=
𝑄

𝜎1

(
1 − 𝛽

𝛽
) 
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4.4 Numerical study 

In this section, a numerical study is presented so that conclusions can be taken from the results 

obtained. The objective of this section is to assess how the online policy compares to the 

traditional policy and how it behaves with different parameters. We evaluate the optimal values 

of the traditional retail policy into the online policy and compare the results to assess the 

benefits for the retailer of using the adapted policy. 

4.4.1 Continuous (𝒔, 𝑸) policy with 𝜶 service level metrics 

For each combination of parameters, different variations have been tested, each of these 

possible combinations will be a scenario. 

We have generated different coefficients of variance (CV): 

 
CV =

𝜎𝐿

𝜇𝐿
=

√𝜇𝐿

𝜇𝐿
 (𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑑𝑒𝑚𝑎𝑛𝑑) (4.51) 

Because we are assuming that demand follows a Poisson distribution and then we approximate 

to the normal distribution, the maximum CV used was 0.2 because higher values for the CV 

would require low values of demand and the approximation to the normal distribution may not 

be appropriate in those scenarios. Thus, we generated CV’s ranging from 0.05 to 0.2. 

We also generate different proportions of demand of type 1 over the total demand during the 

lead time. To generate the different proportions a uniform order window was used: 

• OW~[0, 0.5𝐿] – 75% 𝑑1 

• OW~[0, 𝐿] – 50% 𝑑1 

• OW~[0.5𝐿, 𝐿] – 25% 𝑑1 

The values for 𝑑1(𝜇1, 𝜎1) to be used in the total cost function, equation (4.36), and in the iterative 

procedure, equations (4.41) and (4.42), are obtained through the formulas in 4.1.2. To compare 

the online policy (OR) to the traditional policy (TR) when using a specified cost per stockout 

occasion (B1) the following input data was used: 

𝐴 30 €/replenishment 

𝐵1 60 €/stockout 

𝐷 3000 units/year 

𝑟 0.24 €/€/year 

𝑣 12 €/unit 

To obtain the pretended CV’s using this data, we needed to use different values for the lead 

time. In Table 9 we present examples of the values needed to simulate the intended CV’s. 

Table 9 - Values of the lead time to obtain the intended demand and respective CV 

CV 0.05 0.1 0.2 

µL 400 100 25 

𝑳 ≈ 49 days ≈ 13 days ≈ 4 days 

Firstly, we compare the cost reduction from using the online policy with optimal pairs (𝑠, 𝑄) 

obtained from the iterative procedure. Secondly, we compare the cost reduction from using the 

new policy when the retailer is limited by the supplier to a certain order quantity. Then, we 

study the impact of different order windows in the cost reduction obtained using the optimal 
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pair (𝑠, 𝑄) correspondent to each order window used. Finally, we assess how the cost reduction 

from using the new policy varies with the values of the fixed costs of the policy. 

Figure 6 illustrates the cost reduction that results from using the new policy with α service level 

for the online retail. For each scenario, the optimal values of the pair (𝑠, 𝑄) were obtained 

through the iterative procedure, for both the traditional and the online policy, and the costs 

associated with those pairs were compared. Numerical results are presented in Annex C.  

  

Figure 6 - Policies comparison with 𝛼 service level with optimal pairs (𝑠, 𝑄) for different percentages of 𝑑1 

The results obtained show that, the lower the percentage of demand of type 1 is, the higher the 

savings from using the new policy proposed for the online retail are. When the percentage of 

demand of type 1 is 75% of the total demand, most of the demand during the lead time is of 

type 1, which is the most similar scenario to the traditional retail and that is why the savings are 

lower. 

Concerning to the results in respect to CV, the percentage of savings lowers for higher CV’s.  

For higher CV’s the average and the standard deviation of the total demand are closer to each 

other. Due to this fact, the average of demand of type 1 and its standard deviation are closer to 

the average and standard deviation of the total demand and that explains why the savings are 

lower.  

Notice that the difference between the averages and the standard deviations of demand of type 

1 and the total demand is lower for higher CV’s and for higher percentages of demand of type 

1, which explains the lower savings and the lower values of the total cost. 

We also tested the policies in a situation where the retailer cannot choose the order quantity 

because the supplier imposes it. Figure 7 shows the percentage of savings for different possible 

orders quantity 𝑄 imposed by the supplier. Demand of type 1 is 25% or 75% of the total demand 

and CV varies between 0.05 and 0.2. In general, for the same order quantity, lower CV’s and 

lower percentages of demand of type 1 provide higher percentages of savings due to greater 

differences between the averages and standard deviations of demand of type 1 and the total 

demand. For the same percentage of demand of type 1, first the savings increase with the order 

quantity but above a certain quantity, the percentage of savings starts to decrease. This is 

because the difference between the stockout costs (lower in the traditional policy due to the 

higher safety factor) increases with 𝑄 and the difference between the holding costs decreases. 

Numerical results for three specific order quantities are available in Annex C. 
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Figure 7 - Policies comparison with 𝛼 service level for different values of the order quantity, different CV’s and 

for different percentages of 𝑑1 

The contribution of different order windows is also studied. We tested different scenarios were 

the CV varies between 0.05 and 0.2. The policies are compared when the order window has the 

same mean but different parameters or distributions. The values tested for the mean of the order 

window were: 0.25𝐿, 0.5𝐿 and 0.75𝐿. Some of the results obtained in the experiments are 

presented in Figure 8 through Figure 10. Numerical results are presented in Annex C. 

 

Figure 8 - Policies comparison with 𝛼 service level for different order windows with mean 0.25𝐿 
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Figure 9 - Policies comparison with 𝛼 service level for different order windows with mean 0.5𝐿 

 

Figure 10 - Policies comparison with 𝛼 service level for different order windows with mean 0.75𝐿 
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percentages of savings due to differences in the parameters. For normal distributed order 

windows, lower ratios 𝐶𝑉OW =
𝜎𝑂𝑊

𝜇𝑂𝑊
 provide higher percentages of savings when the mean value 

is higher, because the probability of appearance of demand of type 2 and type 3 is higher. For 

the same reason, with uniform distributed order windows, higher values of the mean and lower 

differences between the lower and upper bounds (lower variances) provide higher percentages 

of savings. Concerning the CV’s of the demand, higher values provide lower percentages of 

savings.  

Finally, we assessed how the cost reduction from using the new policy varies with the values 

of the fixed costs of the policy. Experiments were made with different values of the costs A 

(ordering cost), H = vr (holding cost), and B1 (stockout cost) and different percentages of 

demand of type 1 for the scenario with CV = 0.1. We assess how varying the values of the costs 

affects the percentage of savings obtained by implementing the policy adapted for the online 

retail for the optimal values (𝑠, 𝑄). In all the experiments, the percentage of demand of type 1 

varies between 1% and 100% however, for percentages below 10%, the results need to be 

analyzed taking into account that the approximation to the normal distribution may not be a 

good approximation. 

The experiments realized allowed to take some conclusions. By analyzing Figure 11, lower 

values of A combined with lower values of the percentage of demand of type 1 provide higher 

percentages of savings. Lower values of A correspond to lower values of the EOQ, lower values 

of the optimal 𝑄 and higher safety factors 𝑘 which is lower in the online policy. Savings are 

due to the fact that the difference between the holding costs is higher than the difference 

between the stockout costs, and that is why the savings are higher for lower values of A. 

 

 

 

Figure 11 - Policies comparison with 𝛼 service level for different percentages of 𝑑1 and different values of 𝐴 

From Figure 12, higher values of B1 combined with lower values of the percentage of demand 

of type 1 provide higher percentage of savings. For the same percentage of demand of type 1, 

because the optimal safety factor 𝑘 increases and the optimal order quantity 𝑄 decreases for 

higher values of B1, the savings increase slightly with B1. Increasing differences between the 

holding costs and decreasing differences between the stockout costs are the reason for the higher 

percentages of savings. 
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Figure 12 - Policies comparison with 𝛼 service level for different percentages of 𝑑1 and different values of 𝐵1 

Analyzing Figure 13, higher values of H combined with lower values of the percentage of 

demand of type 1 provide higher percentages of savings. Savings increase for higher values of 

H and for lower values of the percentage of demand of type 1 because the increasing differences 

between the holding costs of both policies are higher than the increasing differences in the 

stockout costs. Higher safety factors related to the traditional policy originate lower stockout 

costs but much higher holding costs. This fact leads to higher savings for the online policy and, 

although the total cost also increases with higher values of H, the increase in the difference is 

enough to increase the percentage of savings. 

  

Figure 13 - Policies comparison with 𝛼 service level for different percentages of 𝑑1 and different values of 𝐻 
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compare the online policy (OR) to the traditional policy (TR) when using a specified fractional 

charge per unit short (B2) the following input data was used: 

𝐴 30 €/replenishment 

𝐵2 0.25 

𝐷 3000 units/year 

𝑟 0.24 €/€/year 

𝑣 12 €/unit 

Figure 14 illustrates the cost reduction that provides the use of the new policy with β service 

level for the online retail. For each scenario, the optimal values of the pair (𝑠, 𝑄) were obtained 

through the iterative procedure, for both the traditional and the online policy, and the costs 

associated with those pairs were compared. Numerical results are presented in Annex C. 

The conclusions we can take from the results are similar to the α service level setting: lower 

percentages of demand of type 1 are related to higher savings from using the new policy 

proposed for the online retail.  

Concerning the results in respect to CV, the percentage of savings lowers for higher CV’s. This 

was also observed in the α service level scenario and the explanation is the same. 

 

Figure 14 - Policies comparison with 𝛽 service level with optimal pairs (𝑠, 𝑄) for different percentages of 𝑑1 

In a situation where the retailer cannot choose the order quantity, Figure 15 shows the 
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of type 1 is 25% or 75% of the total demand and CV varies between 0.05 and 0.2.  
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percentages of demand of type 1 provide higher percentages of savings. Numerical results for 

three specific order quantities are available in Annex C. 
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Figure 15 - Policies comparison with 𝛽 service level for different values of the order quantity, different CV’s and 

for different percentages of 𝑑1 

The contribution of different order windows was also studied with the same procedure 

explained in 4.4.1 for the α service level policy. The values used for the CV’s and for the mean 

of the order windows are the same. Some of the results obtained in the experiments are present 

in  Figure 16 through Figure 18. Numerical results are presented in Annex C. 

 

Figure 16 - Policies comparison with 𝛽 service level for different order windows with mean 0.25𝐿 
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Figure 17 - Policies comparison with 𝛽 service level for different order windows with mean 0.5𝐿 

 

Figure 18 - Policies comparison with 𝛽 service level for different order windows with mean 0.75𝐿 
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To assess how the variation of the fixed costs affects the cost reduction from using the new 

policy for optimal values (𝑠, 𝑄), we realized experiments with different values of the costs A 

(ordering cost), v (variable unit cost), r (inventory carrying charge), B2 (fractional charge per 

unit short) and different percentages of demand of type 1 for the scenario with CV = 0.1. The 

costs v and r were studied separately because, with β service level, the cost v affects the stockout 

cost while in the α service level scenario that does not happen. In all the experiments, the 

percentage of demand of type 1 varies between 1% and 100% however, for percentages below 

10%, the results need to be analyzed taking into account that the approximation to the normal 

distribution may not be a good approximation. 

The experiments realized allowed to take some conclusions. Analyzing Figure 19 lower values 

of A with lower values of the percentage of demand of type 1 provide higher percentage of 

savings. Lower values of A originate lower values of the optimal order quantity 𝑄 and higher 

values of the safety factor 𝑘, which implies a lower 𝐺𝑢(𝑘). Consequently, there are higher 

differences in the holding costs and lower differences in the stockout costs for low values of A. 

Therefore, higher percentages of savings are obtained. 

From Figure 20, higher values of B2 with lower values of the percentage of demand of type 1 

provide higher percentages of savings. For the same percentage of demand of type 1, savings 

are due to increasing differences between holding costs and decreasing differences between 

stockout costs. These variations are due to higher optimal safety factors 𝑘 and lower order 

quantities 𝑄 for higher values of B2, which justifies the slightly increase in savings. 

 
 

Figure 19 - Policies comparison with 𝛽 service level for different percentages of 𝑑1 and different values of 𝐴 

  

Figure 20 - Policies comparison with 𝛽 service level for different percentages of 𝑑1 and different values of 𝐵2  
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Analyzing Figure 21, higher values of r combined with lower values of the percentage of 

demand of type 1 provide higher percentages of savings. This observation is explained by the 

fact that, for the same percentage of demand of type 1, the increasing differences between the 

holding costs are higher than the increasing differences between the stockout costs for 

increasing values of r. For the same r, lower percentages of demand of type 1 provide higher 

values of the safety factor 𝑘 and lower order quantities 𝑄, which result in higher percentages of 

savings. 

   

Figure 21 - Policies comparison with 𝛽 service level for different percentages of 𝑑1 and different values of 𝑟  

Looking at Figure 22, higher values of v with lower values of the percentage of demand of type 

1 provide higher percentages of savings. Higher values of v generate increasing differences 

between the holding costs that are higher than the increasing differences between the stockout 

costs, for the same percentage of demand of type 1. Also, for the same v, there are higher savings 

for lower percentages of demand of type 1 and the explanation is similar to the explanation for 

the r costs. 

 

    

Figure 22 - Policies comparison with 𝛽 service level for different percentages of 𝑑1 and different values of 𝑣  
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 Model development for periodic review 

This chapter will provide the characterization of the demand in online retail for a (𝑅, 𝑠, 𝑆) system 

and an online retail policy based in the traditional retail approach presented in 2.3. The demand 

during the protection period is divided in different types in a periodic review policy setting. 

Numerical applications are also presented in this chapter. 

5.1 Demand context in online retail for a periodic (𝑹, 𝒔, 𝑺) review policy 

In a periodic review, reorder point, order-up-to-level system (𝑅, 𝑠, 𝑆), according to the work 

done by Silver et al. (2009), the key time period over which protection is required is of duration 

𝐿 + 𝜏, where τ is a random variable. The demand during the “effective” lead time (protection 

period) was divided in four types taking in account five moments: 

• The time at which the customer places the order (CO);  

• The time at which the customer wants the delivery (CD); 

• The time between reviews - review interval (R1); 

• The time at which the order arrives (A); 

• The time at which the inventory drops to the reorder point (O). 

Figure 23 helps to understand how to classify the demand. The time between the replenishment 

and the order arrival is represented by 𝐿 and it’s the supplier’s lead time. Inventory is examined 

every 𝑅 units of time and 𝜏 is the time between the instant when the inventory position drops 

to the reorder point and the next review. The order window is defined as the time between the 

customer order (CO) and the delivery time (CD), that is, 𝑂𝑊 = 𝐶𝐷 − 𝐶𝑂. 

 

Figure 23 - Demand classification in a (𝑅, 𝑠, 𝑆) policy 



On using customer order time windows to optimize online retail inventory management 

39 

For simplicity, O will be set equal to 0 (the count of time starts when the inventory hits the 

reorder point) and A equal to 𝐿 + 𝜏. When a customer places an order during the protection 

period (0 < 𝐶𝑂 < 𝐿 + 𝜏) and establishes the time when the order must be received, the demand 

originated can be classified as follows: 

• 𝒅𝟏 - Demand of type 1: 0 < 𝐶𝑂 <  𝐿 + 𝜏 and 0 < 𝐶𝑂 + 𝑂𝑊 < 𝐿 + 𝜏 

The delivery takes place before the end of the protection period, which means that the 

retailer can only fulfill the order with the stock on-hand (similar to the traditional retail 

scenario). 

• 𝒅𝟐 - Demand of type 2: 𝜏 ≤ 𝐶𝑂 <  𝐿 + 𝜏 and 𝐿 + 𝜏 ≤ 𝐶𝑂 + 𝑂𝑊 <  𝐿 + 𝜏 + 𝑅  

The customer order takes place after the review time (during the lead time) and the delivery 

takes place after the end of the protection period but before the next replenishment (made 

in R2) arrives, which means that the retailer can wait for the stock in-transit (of the 

replenishment made in R1) to fulfill it. Demand of type 2 gives the retailer the opportunity 

to satisfy orders with in-transit inventory and use the on-hand inventory to satisfy the 

demand of type 1 (similar to demand of type 2 in a (𝑠, 𝑄) policy).  

• 𝒅𝟑 - Demand of type 3: 0 < 𝐶𝑂 <  𝜏 and 𝐿 + 𝜏 ≤ 𝐶𝑂 + 𝑂𝑊 <  𝐿 + 𝜏 + 𝑅  

The customer order takes place before the review time and the delivery takes place after 

the end of the protection period but before the next replenishment (made in R2) arrives, 

which means the order window is big enough such that a new replenishment can be ordered 

and received by the retailer before the delivery time set by the customer. Demand of type 

3 will never originate a stockout because we assume infinite inventory at the supplier 

(similar to demand of type 3 in a (𝑠, 𝑄) policy). 

• 𝒅𝟒 - Demand of type 4: 0 < 𝐶𝑂 <  𝐿 + 𝜏 and 𝐶𝑂 + 𝑂𝑊 ≥  𝐿 + 𝜏 + 𝑅  

This type of demand is similar to the demand of type 3, but it was considered separately to 

facilitate calculations. The delivery takes place after the next replenishment (made in R2) 

arrives. A new replenishment can be ordered and received by the retailer before the 

delivery time set by the customer. Demand of type 4 will never originate a stockout because 

there is infinite inventory to fulfill this type of orders. 

5.2 Demand characterization 

This section presents the approach followed to characterize the demand and the simulations 

done to validate the results obtained. 

5.2.1 Main assumptions and notation 

For the characterization of demand during the “effective” lead time we made the following 

assumptions: 

1) We consider that the time between orders is exponentially distributed and demand in a 

unit time follows a Poisson distribution with constant rate. 

2) The review interval (R) is constant. 

3) The lead time (𝐿) is constant.  

4) The time between the instant when the inventory position drops to the reorder point and 

the next review (τ) has a uniform distribution between 0 and R. The customer order time 

(CO) has a uniform distribution between 0 and 𝐿 + 𝜏.  

5) All demand transactions are of unit size. 
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6) For the order window (OW) we consider two cases: the order window follows a uniform 

distribution or an exponential distribution. 

7) The different types of demand are independent, OW and CO are also independent. 

Although the density function of 𝜏 proposed by Silver et al. (2009) is given by equation (2.7), 

we made assumption 4) to facilitate our approach. Silver et al. (2009) state that the original 

distribution of 𝜏 tends to uniformity as both n and CV increase. They also made a similar 

assumption when they make some adjustments to the estimates of E[𝜏] and Var[𝜏] and consider 

the uniform distribution as the unmodified (original) distribution of 𝜏. 

For the characterization of demand during the “effective” lead time we use the following 

notation: 

𝜆𝐶𝑂  Average demand per unit time 

𝐿 Lead time 

𝑅 Review interval 

𝜏 Time between the instant when the inventory position drops to the reorder 

point and the next review 

𝜇1 Average of demand of type 1 during the “effective” lead time 

𝜇2 Average of demand of type 2 during the “effective” lead time 

𝜇3 Average of demand of type 3 during the “effective” lead time 

𝜇4 Average of demand of type 4 during the “effective” lead time 

𝜇𝐿 Average of total demand during the “effective” lead time  

𝜎1 Standard deviation of demand of type 1 during the “effective” lead time 

𝜎2 Standard deviation of demand of type 2 during the “effective” lead time 

𝜎3 Standard deviation of demand of type 3 during the “effective” lead time 

𝜎4 Standard deviation of demand of type 4 during the “effective” lead time 

𝜎𝐿 Standard deviation of total demand during the “effective” lead time 

5.2.2 Analytical approach  

The approach followed in this section is similar to the explained in 4.1.2. 

The total demand during the “effective” lead time is easily obtainable. If 𝑋 is the total demand 

during the “effective” lead time, the expected value is 𝐸[𝑋] = 𝐸[𝐷]𝐸[𝐿 + 𝜏] and the variance 

is 𝑉𝑎𝑟[𝑋] =  𝑉𝑎𝑟[𝐷]𝐸[𝐿 + 𝜏] + 𝐸[𝐷]2𝑉𝑎𝑟[𝐿 + 𝜏] where D is the average demand per unit 

time and 𝐿 + 𝜏 is the “effective” lead time. According to our notation:  

 
𝜇𝐿 = 𝜆𝐶𝑂(𝐸[𝐿 + 𝜏]) = 𝜆𝐶𝑂 (𝐿 +

𝑅

2
) (5.1) 

 

𝜎𝐿 = √𝜆𝐶𝑂  (𝐿 +
𝑅

2
) + 𝜆𝐶𝑂

2
𝑅2

12
  (5.2) 

We use the bounds on the values that the order window (OW) and the customer order (CO) can 

take for each type of demand (section 5.1), to calculate the probability of an order being of each 

one of the demand types. See Figure 24 for a better understanding. According to the division 

done in section 5.1, an order is demand of type 1 if  0 < 𝐶𝑂 <  𝐿 + 𝜏  and 0 < 𝐶𝑂 + 𝑂𝑊 <
𝐿 + 𝜏 , which according to Figure 24 is the region below the line 𝐶𝑂 = 𝐿 + 𝜏 − 𝑂𝑊. The same 
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method is applied to demand of type 2, type 3 and type 4. This representation makes it easier 

to identify the limits of integration for the expressions that allowed us to obtain the probabilities. 

Following the previous explanation, we obtain the expressions: 

 𝑃(𝑑1)  =  𝑃( 0 < 𝐶𝑂 <  𝐿 + 𝜏 ∩  0 < 𝐶𝑂 + 𝑂𝑊 < 𝐿 + 𝜏) (5.3) 

 𝑃(𝑑2) = 𝑃(𝜏 < 𝐶𝑂 <  𝐿 + 𝜏 ∩  𝐿 + 𝜏 ≤ 𝐶𝑂 + 𝑂𝑊 <  𝐿 + 𝜏 + 𝑅 ) (5.4) 

 𝑃(𝑑3) = 𝑃(0 < 𝐶𝑂 < 𝜏 ∩  𝐿 + 𝜏 ≤ 𝐶𝑂 + 𝑂𝑊 <  𝐿 + 𝜏 + 𝑅)  (5.5) 

 𝑃(𝑑4) = 𝑃(0 < 𝐶𝑂 <  𝐿 + 𝜏 ∩  𝐶𝑂 + 𝑂𝑊 ≥  𝐿 + 𝜏 + 𝑅) (5.6) 

 

 

Figure 24 - 2D representation of the division of demand in a (𝑅, 𝑠, 𝑆) policy 

Once we obtain the probabilities, we know how the total demand is distributed among the four 

types of demand, so the average of each type of demand can be calculated as 𝜇𝑥 = 𝑃(𝑑𝑥)𝜇𝐿. 

The previous expressions led to the calculation of triple integrals (equation (5.7) through (5.11)) 

for each type of the demand. Details about the approach to obtain these expressions are 

presented in Annex D. 

 
𝑃(𝑑1) = ∫ [∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊 

𝐿+𝜏−𝑂𝑊

0

𝐿+𝜏

0

]
𝑅

0

𝑓𝜏𝑤(𝜏)𝑑𝜏 (5.7) 

 𝑃(𝑑2) 𝑖𝑓 𝐿 ≥ 𝑅  

𝑃(𝑑2) = ∫ [∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊

𝐿+𝜏

𝐿+𝜏−𝑂𝑊

𝑅

0

] 𝑓𝜏𝑤(𝜏)𝑑𝜏

𝑅

0

+ 

(5.8)  
∫ [∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊

𝐿+𝜏+𝑅−𝑂𝑊

𝐿+𝜏−𝑂𝑊

𝐿

𝑅

]
𝑅

0

𝑓𝜏𝑤(𝜏)𝑑𝜏 + 

 
∫ [∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊

𝐿+𝜏+𝑅−𝑂𝑊

𝜏

𝐿+𝑅

𝐿

]
𝑅

0

𝑓𝜏𝑤(𝜏)𝑑𝜏 
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 𝑃(𝑑2) 𝑖𝑓 𝐿 < 𝑅  

𝑃(𝑑2) = ∫ [∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊

𝐿+𝜏

𝐿+𝜏−𝑂𝑊

𝐿

0

] 𝑓𝜏𝑤(𝜏)𝑑𝜏

𝑅

0

+ 

(5.9)  
∫ [∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊

𝐿+𝜏

𝜏

𝑅

𝐿

]
𝑅

0

𝑓𝜏𝑤(𝜏)𝑑𝜏 + 

 
∫ [∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊

𝐿+𝜏+𝑅−𝑂𝑊

𝜏

𝐿+𝑅

𝑅

] 𝑓𝜏𝑤(𝜏)𝑑𝜏

𝑅

0

 

 
𝑃(𝑑3) = ∫ [∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊

𝜏

𝐿+𝜏−𝑂𝑊

𝐿+𝜏

𝐿

]
𝑅

0

𝑓𝜏𝑤(𝜏)𝑑𝜏 + 

(5.10) 
 

∫ [∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊

𝜏

0

𝐿+𝑅

𝐿+𝜏

]
𝑅

0

𝑓𝜏𝑤(𝜏)𝑑𝜏 + 

 
∫ [∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊

𝐿+𝜏+𝑅−𝑂𝑊

0

𝐿+𝑅+𝜏

𝐿+𝑅

]
𝑅

0

𝑓𝜏𝑤(𝜏)𝑑𝜏 

 
𝑃(𝑑4) = ∫ [∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊

𝐿+𝜏

𝐿+𝜏+𝑅−𝑂𝑊

𝐿+𝜏+𝑅

𝑅

]
𝑅

0

𝑓𝜏𝑤(𝜏)𝑑𝜏 

(5.11) 

 
+∫ [∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊

𝐿+𝜏

0

∞

𝐿+𝜏+𝑅

] 𝑓𝜏𝑤(𝜏)𝑑𝜏

𝑅

0

 

Where: 

 
𝑓𝐶𝑂(𝐶𝑂) = {

1

𝐿 + 𝜏
 𝑓𝑜𝑟 𝐶𝑂 ∈ [0; 𝐿 + 𝜏] 

0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (5.12) 

 

𝑓𝜏𝑤(𝜏) = {

𝐿 + 𝜏

(𝐿 +
𝑅
2)𝑅

 𝑓𝑜𝑟 𝜏 ∈ [0; 𝑅] 

0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (5.13) 

 

The expressions for the probabilities change accordingly to the distribution assumed for the 

OW. Through equations (5.15) to (5.39) the results are presented for uniform and exponential 

distributions. 

a) OW ~Uniform[a;b] 

 

𝑓𝑂𝑊(𝑂𝑊) = {
1

𝑏 − 𝑎
 𝑓𝑜𝑟 𝑂𝑊 ∈ [𝑎; 𝑏] 

0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (5.14) 

 

In this case we need to divide the results in various scenarios, because the limits for the integral 

of the OW are limited by the values of a and b. Trying to minimize the expressions we use the 

auxiliary notation presented in Annex D. 
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Demand of type 1: 

• 𝑏 ≤ 𝐿 

 

𝑃(𝑑1) = ∫ [∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊

𝐿+𝜏−𝑂𝑊

0

𝑏

𝑎

] 𝑓𝜏𝑤(𝜏)𝑑𝜏

𝑅

0

 

  

(5.15) 

 
𝜇1 = [−

𝑎 + 𝑏 − 2𝐿 − 𝑅

2𝐿 + 𝑅
](𝜆𝐶𝑂 (𝐿 +

𝑅

2
)) (5.16) 

 

 

• 𝑏 > 𝐿 

 
𝑃(𝑑1) = ∫ [∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊

𝐿+𝜏−𝑂𝑊

0

𝐿+𝜏

𝑎

] 𝑓𝜏𝑤(𝜏)𝑑𝜏

𝑋

𝑌

+ ∫ [∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊

𝐿+𝜏−𝑂𝑊

0

𝑏

𝑎

]
𝑅

𝑋

𝑓𝜏𝑤(𝜏)𝑑𝜏 

 

  (5.17) 

𝜇1 = [
3(𝑎 − 𝑏)(𝑎 + 𝑏 − 2𝐿 − 𝑅 − 𝑋)(𝑅 − 𝑋) + (−𝑎 + 𝐿 + 𝑋)3 + (𝑎 − 𝐿 − 𝑌)3

3(−𝑎 + 𝑏)𝑅(2𝐿 + 𝑅)
]

× (𝜆𝐶𝑂 (𝐿 +
𝑅

2
))  

  (5.18) 

Demand of type 2: 

• 𝐿 ≥ 𝑅 

 

𝑃(𝑑2) = ∫ [∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊

𝐿+𝜏

𝐿+𝜏−𝑂𝑊

𝑁

𝑂

] 𝑓𝜏𝑤(𝜏)𝑑𝜏

𝑅

0

+  

(5.19) 
 

∫ [∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊 
𝐿+𝜏+𝑅−𝑂𝑊

𝐿+𝜏−𝑂𝑊

𝐽

𝐷

] 𝑓𝜏𝑤(𝜏)𝑑𝜏 +
𝑅

0

 

 
∫ [∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊

𝐿+𝜏+𝑅−𝑂𝑊

𝜏

𝐻

𝐶

] 𝑓𝜏𝑤(𝜏)𝑑𝜏

𝑅

0

 

𝜇2 = [
−𝐶2 + 𝐻2 − 𝑁2 + 𝑂2 + 2𝐷𝑅 − 2𝐽𝑅 + 2𝐶(𝐿 + 𝑅) − 2𝐻(𝐿 + 𝑅)

(𝑎 − 𝑏)(2𝐿 + 𝑅)
]

×(𝜆𝐶𝑂 (𝐿 +
𝑅

2
)) 

(5.20) 

• 𝐿 < 𝑅 

 

𝑃(𝑑2) = ∫ [∫ ∫ 𝑓
𝑂𝑊

(𝑂𝑊)𝑓
𝐶𝑂

(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊

𝐿+𝜏

𝐿+𝜏−𝑂𝑊

𝑁

𝑂

] 𝑓
𝜏𝑤

(𝜏)𝑑𝜏

𝑅

0

+ 

(5.21) 
 

∫ [∫ ∫ 𝑓
𝑂𝑊

(𝑂𝑊)𝑓
𝐶𝑂

(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊  
𝐿+𝜏

𝜏

𝑄

𝐸

] 𝑓
𝜏𝑤

(𝜏)𝑑𝜏

𝑅

0

+ 

 
∫ [∫ ∫ 𝑓

𝑂𝑊
(𝑂𝑊)𝑓

𝐶𝑂
(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊

𝐿+𝜏+𝑅−𝑂𝑊

𝜏

𝐼

𝐹

] 𝑓
𝜏𝑤

(𝜏)𝑑𝜏

𝑅

0
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𝜇2 = [

−𝐵2 − 𝐹2 + 𝐺2 + I2 + 2E𝐿 − 2I𝐿 − 2𝐿𝑄 − 2I𝑅 + 2𝐹(𝐿 + 𝑅)

(𝑎 − 𝑏)(2𝐿 + 𝑅)
]

×(𝜆𝐶𝑂 (𝐿 +
𝑅

2
)) 

(5.22) 

Demand of type 3: 

• 𝑏 > 𝐿 

 

𝑃(𝑑3) = ∫ [∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊 
𝜏

𝐿+𝜏−𝑂𝑊

𝑏

𝑇

]
𝑌

0

𝑓𝜏𝑤(𝜏)𝑑𝜏 + 

(5.23) 

 
∫ [∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊

𝜏

𝐿+𝜏−𝑂𝑊

𝐿+𝜏

𝑇

]
𝑋

𝑌

𝑓𝜏𝑤(𝜏)𝑑𝜏 

𝜇3 = [
−3𝑅𝑇2 + 3𝑏2(𝑅 − 𝑋) + 𝑋3 + 6𝑏𝐿(−𝑅 + 𝑋)

3(𝑎 − 𝑏)𝑅(2𝐿 + 𝑅)

+ 
6𝐿𝑇(𝑅 − 𝑌) − 3𝐿2(𝑋 − 𝑌) + 3𝑇2𝑌 − 𝑌3

3(𝑎 − 𝑏)𝑅(2𝐿 + 𝑅)
 ] (𝜆𝐶𝑂 (𝐿 +

𝑅

2
)) 

(5.24) 

• 𝑎 < 𝐿 + 𝑅 

 

𝑃(𝑑3) = ∫ [∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊

𝜏

0

𝑊

𝑎

] 𝑓𝜏𝑤(𝜏)𝑑𝜏

𝑌

0

+ 

(5.25) 

 
∫ [∫ ∫ 𝑓

𝑂𝑊
(𝑂𝑊)𝑓

𝐶𝑂
(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊 

𝜏

0

𝑊

𝐿+𝜏

]
𝑋

𝑌

𝑓
𝜏𝑤

(𝜏)𝑑𝜏 

 
𝜇3 = [

−3𝑊𝑋2 + 2𝑋3 + 3𝑎𝑌2 − 2𝑌3 + 3𝐿(𝑋2 − 𝑌2)

3(𝑎 − 𝑏)𝑅(2𝐿 + 𝑅)
 ] (𝜆𝐶𝑂 (𝐿 +

𝑅

2
)) (5.26) 

• 𝑏 > 𝐿 + 𝑅 

 

𝑃(𝑑3) = ∫ [∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊

𝐿+𝜏+𝑅−𝑂𝑊

0

𝐿+𝑅+𝜏

𝑀

]
𝐾

𝑍

𝑓𝜏𝑤(𝜏)𝑑𝜏 + 

(5.27) 

 
∫ [∫ ∫ 𝑓

𝑂𝑊
(𝑂𝑊)𝑓

𝐶𝑂
(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊  

𝐿+𝜏+𝑅−𝑂𝑊

0

𝑏

𝑀

]
𝑅

𝐾

𝑓
𝜏𝑤

(𝜏)𝑑𝜏 

𝜇3 = [
(𝐾 + 𝐿 − 𝑀 + 𝑅)3 − (𝐿 − 𝑀 + 𝑅 + 𝑍)3

3(𝑎 − 𝑏)𝑅(2𝐿 + 𝑅)

−
(𝑏 − 𝑀)(𝑏 − 𝐾 − 2𝐿 + 𝑀 − 3𝑅)(𝐾 − 𝑅)

(𝑎 − 𝑏)𝑅(2𝐿 + 𝑅)
 ] (𝜆𝐶𝑂 (𝐿 +

𝑅

2
)) 

(5.28) 

Demand of type 4: 

• 𝑎 < 𝑅 and 𝑅 < 𝑏 < 𝐿 + 𝑅 + 𝜏 

 

𝑃(𝑑4) = ∫ [∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊

𝐿+𝜏

𝐿+𝜏+𝑅−𝑂𝑊

𝐿+𝑅+𝜏

𝑅

] 𝑓𝜏𝑤(𝜏)𝑑𝜏

𝐾

0

+ 

(5.29) 

 
∫ [∫ ∫ 𝑓

𝑂𝑊
(𝑂𝑊)𝑓

𝐶𝑂
(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊

𝐿+𝜏

𝐿+𝜏+𝑅−𝑂𝑊

𝑏

𝑅

] 𝑓
𝜏𝑤

(𝜏)𝑑𝜏

𝑅

𝐾

 

 

𝜇4 = [
−𝐿3 + (𝐾 + 𝐿)3

3(𝑎 − 𝑏)𝑅(2𝐿 + 𝑅)
+

(𝑏 − 𝑅)2(−𝐾 + 𝑅)

2(−𝑎 + 𝑏) (𝐿 +
𝑅
2)𝑅

 ] (𝜆𝐶𝑂 (𝐿 +
𝑅

2
)) (5.30) 
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• 𝑎 ≥ 𝑅 and 𝑅 < 𝑏 < 𝐿 + 𝑅 + 𝜏 

 

𝑃(𝑑4) = ∫ [∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊

𝐿+𝜏

𝐿+𝜏+𝑅−𝑂𝑊

𝐿+𝑅+𝜏

𝑎

] 𝑓𝜏𝑤(𝜏)𝑑𝜏

𝐾

𝑃

+ 

(5.31) 

 
∫ [∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊 

𝐿+𝜏

𝐿+𝜏+𝑅−𝑂𝑊

𝑏

𝑎

]
𝑅

𝐾

𝑓𝜏𝑤(𝜏)𝑑𝜏 

 

𝜇4 = [−
(𝐾 − 𝑃)(𝐾2 + 3𝐿2 + 3𝐿𝑃 + 𝑃2 + 𝐾(3𝐿 + 𝑃) − 3(𝑎 − 𝑅)2)

3(𝑎 − 𝑏)𝑅(2𝐿 + 𝑅)

−
(𝑎 − 𝑏)(𝑎 + 𝑏 − 2𝑅)(−𝐾 + 𝑅)

2(−𝑎 + 𝑏) (𝐿 +
𝑅
2
)𝑅

 ] (𝜆𝐶𝑂 (𝐿 +
𝑅

2
)) 

(5.32) 

 

• 𝑏 ≥ 𝐿 + 𝑅 + 𝜏 

 

𝑃(𝑑4) = ∫ [∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊

𝐿+𝜏

0

𝑏

𝑎
] 𝑓𝜏𝑤(𝜏)𝑑𝜏

𝑃

0
+ 

(5.33) 

 
∫ [∫ ∫ 𝑓

𝑂𝑊
(𝑂𝑊)𝑓

𝐶𝑂
(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊 

𝐿+𝜏

0

𝑏

𝐿+𝑅+𝜏

]
𝐾

𝑃

𝑓
𝜏𝑤

(𝜏)𝑑𝜏 

𝜇4

= [
𝐿𝑃

(𝐿 +
𝑅
2)𝑅

+
𝑃2

2(𝐿 +
𝑅
2)𝑅

+
(𝐾 − 𝑃)(−3𝑏(𝐾 + 2𝐿 + 𝑃)

3(𝑎 − 𝑏)𝑅(2𝐿 + 𝑅)

+
2(𝐾2 + 3𝐿2 + 3𝐿𝑃 + 𝑃2 + 𝐾(3𝐿 + 𝑃)) + 3(𝐾 + 2𝐿 + 𝑃)𝑅)

3(𝑎 − 𝑏)𝑅(2𝐿 + 𝑅)
] (𝜆𝐶𝑂 (𝐿 +

𝑅

2
)) 

(5.34) 

b) OW ~Exponential(𝜆𝑂𝑊) 

 

𝑓𝑂𝑊(𝑂𝑊) = {
 λOW𝑒−λOW𝑂𝑊 𝑓𝑜𝑟 𝑂𝑊 ≥ 0  

0           𝑓𝑜𝑟 𝑂𝑊 < 0
 

 

(5.35) 

 

Using expressions (5.7) through (5.11), the results obtained are: 

 

 

𝜇1 =

[
 
 
 
 2 (

𝑒−𝜆𝑂𝑊(𝐿+𝑅)(−1 + 𝑒𝜆𝑂𝑊𝑅)

𝜆𝑂𝑊
2 −

𝑅
𝜆𝑂𝑊

+ 𝐿𝑅 +
𝑅2

2 )

𝑅(2𝐿 + 𝑅)

]
 
 
 
 

(𝜆𝐶𝑂 (𝐿 +
𝑅

2
)) (5.36) 

 
𝜇2 = [

2𝑒−𝜆𝑂𝑊(𝐿+𝑅)(−1 + 𝑒𝜆𝑂𝑊𝐿)(−1 + 𝑒𝜆𝑂𝑊𝑅)

𝜆𝑂𝑊(2𝐿 + 𝑅)
 ] (𝜆𝐶𝑂 (𝐿 +

𝑅

2
)) (5.37) 

 

𝜇3 = [
2𝑒−𝜆𝑂𝑊(𝐿+2𝑅)(−1 + 𝑒𝜆𝑂𝑊𝑅) (1 + 𝑒𝜆𝑂𝑊𝑅(−1 + 𝜆𝑂𝑊𝑅))

𝜆𝑂𝑊
2  

 𝑅(2𝐿 + 𝑅)
]

×(𝜆𝐶𝑂 (𝐿 +
𝑅

2
)) 

(5.38) 

 
𝜇4 = [

2𝑒−𝜆𝑂𝑊(𝐿+2𝑅)(1 − 𝑒𝜆𝑂𝑊𝑅 + 𝑒𝜆𝑂𝑊(𝐿+𝑅)𝜆𝑂𝑊𝑅)

𝜆𝑂𝑊
2 𝑅(2𝐿 + 𝑅)

] (𝜆𝐶𝑂 (𝐿 +
𝑅

2
)) (5.39) 
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Concerning the standard deviation of each type of demand, we couldn’t get an expression. This 

should be studied in a future work.  

5.3 Validation of results through simulation 

In order to validate the results obtained in the analytical approach presented in 5.2.2, we 

modified the simulator used for continuous review to deal with the periodic review system. The 

simulator returns the percentage of each type of demand, its average and standard deviation and 

the coefficient of correlation between each type of demand. The inputs in this simulator are the 

OW distribution parameters, the average demand per unit time (𝜆𝐶𝑂), the lead time (𝐿) and the 

review interval (𝑅). 

5.3.1 Simulation design 

The simulator explained in 4.2.1 was modified to be used for the new classification of demand 

in the (𝑅, 𝑠, 𝑆) policy. The procedure is the same: we simulate 2000 orders with the time between 

orders following an exponential distribution with mean 
1

𝜆𝐶𝑂
  and then the simulator counts the 

total number of orders and the number of orders that are from each type of demand during the 

“effective” lead time.   

The simulator uses 10000 iterations and was performed for 50 different combinations of inputs 

for each one of the 2 possibilities of the OW distribution. 

Table 10 - Possible input values considered for the review interval 

Review interval 

𝑹 1, 2, 3, 4, 5, 6, 7, 8, 9  𝑈𝑇 

The values for the 50 combinations used in the simulations were chosen randomly from the 

values in  Table 4, Table 5, Table 6 and Table 10 without allowing repeated combinations to 

ensure that all possible scenarios were tested. 

5.3.2 Results 

Here the expressions obtained in the analytical approach are validated by comparison with the 

simulated results. Table 11 provides the mean absolute percentage error (MAPE) between the 

simulated results and the results obtained using the expressions obtained in 5.2.2. 

Table 11 – Validation results for periodic review 

Error (%) 

OW 𝜇1 𝜇2 𝜇3 𝜇4 𝜇𝐿 𝜎𝐿 

Uniform 0.62% 0.14% 0.39% 0.08% 0.20% 0.39% 

Exponential 0.29% 0.32% 0.90% 1.37% 0.18% 0.44% 

It has been possible to verify the analytical approach with the simulation done. The average 

percentage of error between the experimental and the analytical values is very small, except for 

the values for the demand of type 3 and 4 when the OW has an exponential distribution. These 

errors are due to very low values of demand where they have decimal values (both the demand 

obtained in the simulation and by the expressions have values of order 10-2 or lower when the 

probability of being demand of type 3 or type 4 is close to zero and the total demand has low 

values). 
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With the simulation done we could not verify assumption 7) because the types of demand seem 

to be dependent, as the coefficients of correlation between demand of type 1, 3 and 4 are not 

negligible. This dependence may be because the probability of these 3 types of demand are 

dependent on the value of 𝜏 (see the difference in the limits of integration of the probabilities 

in 5.2.2). 

Here we present an approximation for the standard deviation of demand of type 1, in order to 

use it in a numerical study. 

 

𝜎1 = 𝐶√𝜆𝐶𝑂 (𝐿 +
𝑅

2
)𝑃(𝑑1) + 𝜆𝐶𝑂

2  
𝑅2

12
 𝑃(𝑑1) 

(5.40) 

Where: 

• 𝐶 = 1.17 if OW~Uniform 

• 𝐶 = 1.04 if OW~Exponential 

This approximation was obtained by multiplying the variance of the total demand by the 

probability of type 1 and a constant. The value for the constant was obtained by searching for 

the value that minimizes the MAPE between the simulated standard deviations of demand of 

type 1 and the values obtained with this formula. When the OW follows a uniform distribution 

we only used the instances where the lower bound of the uniform distribution is 0, since for 

positive values the ratio of 𝑑1 starts to change considerably. The errors of using this 

approximation are 3.2% for the uniform OW and 6.7% for the exponential OW. An extension 

of the expression for positive lower bounds of the uniform distribution would be a good 

direction for future work. 

In the numerical study we assume the demand in the protection period follows a normal 

distribution, an assumption also made by Silver et al. (2009) in their work. In Annex E we 

present an assessment of these assumptions. 

5.4 Numerical study 

In this section, a numerical study is presented so that conclusions can be taken from the results 

obtained. The objective of this section is to assess how the online policy compares to the 

traditional policy and how it behaves with different parameters. We evaluate the values of the 

traditional retail policy into the online policy and compare the results to assess the benefits for 

the retailer of using the adapted policy.  

5.4.1 Methodology 

In this policy, instead of explicitly incorporating costs, we specify the average time between 

consecutive replenishments and a fill rate, so the comparison of policies will not be done by 

measuring the costs reduction. Instead we will measure the reduction in the average on-hand 

inventory obtained by using the adapted policy. We also study the impact of different order 

windows in the reduction in the average on-hand inventory, 

Because we assume the demand per unit time follows a Poisson distribution in our analytical 

approach and because Table 2 and Table 3  can only be used for CV’s (for the demand per unit 

time) between 0.1 and 0.5 , in the experiments done we used CV’s that range from CV = 0.1 

(𝜇 = 100) and CV = 0.25 (𝜇 = 16).  

The experiments done show the reduction in the average OH inventory for different percentages 

of demand of type 1, for different values of the fill rate, for different values of the average time 

between consecutive replenishments and for different order windows. In all the experiments 𝐿 

is equal to 4 and 𝑅 is equal to 1. 
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The approach presented in 2.3 is used to calculate 𝑠 and 𝑆 for the traditional retail. Then we 

adapted the approach and used it to calculate 𝑠 and 𝑆 for the online policy using equations (5.41) 

through (5.46):  

1) Obtain E[𝜏] and Var[𝜏] from Table 2 and Table 3 

2) Calculate the mean and variance of 𝑑1 

 
𝐸[𝑑1] =  𝜇1 = (𝐸[𝜏] + 𝐿)𝜇𝑃(𝑑1) (5.41) 

 𝑉𝑎𝑟[𝑑1] = 𝜎1
2 = 𝑚𝑖𝑛[((𝐸[𝜏] + 𝐿)𝜎2𝑃(𝑑1) + 𝜇2𝑉𝑎𝑟[𝜏] 𝑃(𝑑1)) 𝐶

2;  𝜎𝐿
2] (5.42) 

3) Calculate the target allowed (average) units short per replenishment cycle (AUSPRC) 

 
𝐴𝑈𝑆𝑃𝑅𝐶 = (1 − 𝛽)𝐸[𝑄]  (5.43) 

4) Choose 𝑘 to satisfy 

 

𝐺𝑢1
(𝑘) =

(1 − 𝛽)𝐸[𝑄]

𝜎1
=

(1 − 𝛽)𝑛𝜇

𝜎1
 (5.44) 

5) Calculate the reorder point 

 
𝑠 = 𝜇1 +  𝑘𝜎1 (5.45) 

6) Calculate the order-up-to level 

 
𝑆 = 𝑠 + 𝑛𝜇 − 𝐸[𝜏]𝜇 (5.46) 

 

5.4.2 Comparison of policies 

In this sub-section we present and discuss the results obtained in the experiments done, where 

the traditional policy was compared with the online policy. We made experiments separately 

for exponential distributed OW and for uniform distributed OW because the standard deviation 

of demand of type 1 is calculated differently. 

In the experiments done for different values of n the fill rate used is 95% and the values for the 

CV are 0.1 or 0.2. Analyzing Figure 25 and Figure 26, lower values of n combined with lower 

percentages of demand of type 1 provide higher percentages of reductions in the average OH 

inventory. Lower values of n originate lower values of 𝐸[𝑄], and consequently lower values of 

𝐺𝑢(𝑘). Lower values of 𝐺𝑢(𝑘) are related to higher values of the safety factor. Because the 

difference between the safety factor of both policies is higher for lower values of n, the 

percentage of reduction is higher. Numerical results are presented in Annex F. 

In the experiments done for different values of 𝛽 the average time between consecutive 

replenishments is 4 and the values for the CV are 0.1 or 0.2. Analyzing Figure 27 and Figure 

28, lower values of 𝛽 combined with lower percentages of demand of type 1 provide higher 

percentages of reductions in the average OH inventory. Lower values of 𝛽 are related to lower 

values of safety stock to meet the desired fill rate and because the difference between the safety 

factor of both policies is higher for lower values of 𝛽, the percentage of reduction is higher. 

Numerical results are presented in Annex F. 

The difference between the averages and the standard deviations of demand of type 1 and the 

total demand is lower for higher CV’s which explains why lower CV’s originate higher 

percentages of reductions. 
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Figure 25 - Policies comparison for different percentages of 𝑑1, different CV’s and with different values of 𝑛 

when the 𝑂𝑊 follows a uniform distribution 

 

 

Figure 26 - Policies comparison for different percentages of 𝑑1, different CV’s and with different values of 𝑛 

when the 𝑂𝑊 follows an exponential distribution 
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Figure 27 - Policies comparison for different percentages of 𝑑1, different CV’s and with different values of 𝛽 

when the 𝑂𝑊 follows a uniform distribution 

 

 

Figure 28 - Policies comparison for different percentages of 𝑑1, different CV’s and with different values of 𝛽 

when the 𝑂𝑊 follows an exponential distribution 
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The contribution of different order windows is also studied. We tested different scenarios where 

the CV varies between 0.1 and 0.25. The policies are compared when the order window has the 

same mean but different parameters or distributions. The values tested for the mean of the order 

window were: 0.25𝐸[𝐿 + 𝜏], 0.5𝐸[𝐿 + 𝜏] and 0.75𝐸[𝐿 + 𝜏]. In these experiments, the fill rate 

is 95% and the average time between consecutive replenishments is 4. Some of the results 

obtained in the experiments are presented in Figure 29 through Figure 31. Numerical results are 

presented in Annex F. 

 

Figure 29 - Policies comparison for different order windows with mean 0.25𝐸[𝐿 + 𝜏] 

 

 

Figure 30 - Policies comparison for different order windows with mean 0.5𝐸[𝐿 + 𝜏] 

30.00%

32.00%

34.00%

36.00%

38.00%

40.00%

0.1 0.15 0.2 0.25

R
ed

u
ct

io
n

 in
 t

h
e 

av
er

ag
e 

O
H

 in
ve

n
to

ry
 (

%
)

CV

Uniform (0;0.5E(L+t)) Uniform (0.1E(L+t);0.4E(L+t))

Uniform (0.2E(L+t);0.3E(L+t)) Exponential (1/0.25E(L+t))

50.00%

52.00%

54.00%

56.00%

58.00%

60.00%

0.1 0.15 0.2 0.25

R
ed

u
ct

io
n

 in
 t

h
e 

av
er

ag
e 

O
H

 in
ve

n
to

ry
 (

%
)

CV

Uniform (0;E(L+t)) Uniform (0.25E(L+t);0.75E(L+t))

Uniform (0.2E(L+t);0.8E(L+t)) Exponential (1/0.5E(L+t))



On using customer order time windows to optimize online retail inventory management 

52 

 

Figure 31 - Policies comparison for different order windows with mean 0.75𝐸[𝐿 + 𝜏] 

For order windows with the same mean, an exponential order window provides lower 

percentages of reduction in the average OH inventory than uniform distributed order windows, 

except in the scenario with mean 0.25𝐸[𝐿 + 𝜏]. The exception is due to the higher differences 

in the calculation of the standard deviation between uniform and exponential order windows, 

when the percentage of demand of type 1 is higher, which corresponds to order windows with 

lower means. For other scenarios, an exponential distribution provides lower percentages of 

reduction because its mean is higher than the median.  

Even order windows with the same distribution, can present different percentages of reductions 

due to differences in the parameters. For uniform distributed order windows, higher values of 

the mean and lower differences between the lower and upper bounds (lower variances), provide 

higher percentages of reduction. Concerning the CV’s of the demand per unit time, higher 

values provide lower percentages of reduction.  
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 Conclusions and future work 

Retailers have been expanding business with the use of online channels, and have generated the 

online retailing industry. In every sector retailers are improving the ability of meeting 

customers’ expectations with improved supply chains and inventory management policies. This 

work addresses a critical aspect related to the grocery sector where it is common for customers 

to choose a specific date of delivery because the presence of the customer is critical upon the 

delivery of goods. The time window provided by these orders provides additional flexibility 

and an opportunity for retailers to make better inventory management decisions.   

We introduce the concept of commitment upon arrival, where we consider that retailers will 

only commit if there is available stock (on-hand and on-order, subtracted by already committed 

stock). This approach is what distinguishes our work from the existing ADI papers. ADI 

research motivation comes, specially, from the B2B setting, by motivating the members of the 

supply chain to share information among them. In this setting there exists a distinction on when 

the order is announced and when the order is due. Our motivation arises from the B2C, 

specifically from the grocery sector, where there is no such distinction. In the ADI research it 

is assumed that retailers commit to every customer orders irrespective of their product 

availability, and only afterwards decide which orders to fulfill. This is a very important aspect 

for customers, they would not like to get their orders cancelled or delayed when the delivery 

date is due. Our approach does not allow that to happen.   

Our (𝑠, 𝑄) adapted policy for continuous review uses the order window to classify the demand 

in different types, which allows the retailer to take advantage of the flexibility provided by the 

order window. Our experiments show that, when compared to the traditional retail (𝑠, 𝑄) 

optimal policy, our policy provides savings that, on average, range between 11.91% and 28.50% 

with α service level metrics and between 11.91% and 28.36% with β service level metrics. The 

results were obtained for values in which the percentage of total demand that can use the in-

transit stock to satisfy orders varies between 25% and 75% and for a given set of costs. 

The influence of the order window and the costs on the savings was tested and our experiments 

show that the values for savings presented above can change significantly if the given costs are 

changed or when the order window changes. 

Our experiments show that exponential distributed order windows provide lower percentage of 

savings than normal or uniform distributed order windows. We also concluded that higher 

percentages of savings are obtained when the mean value of the order window is higher, because 

there is higher probability of an order being demand of type 2 or type 3. 

When the given costs are changed, we concluded that higher percentages of savings are 

obtained for lower values of A, higher values of B1 and higher values of H when using α service 

level metrics. For β service level metrics, higher percentages of savings are obtained for lower 

values of A, higher values of B2 and higher values of r and v. 
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If the supplier imposes the quantity that the retailer can order, then lower CV’s and lower 

percentages of demand of type 1 provide higher percentages of savings for both service level 

metrics. 

Our (𝑅, 𝑠, 𝑆) adapted policy uses the order window to classify the demand in different types, 

which allows the retailer to take advantage of the flexibility provided by the order window.  

Our experiments show that lower values of n combined with lower percentages of demand of 

type 1 provide higher percentages of reductions in the average on-hand inventory. We also 

concluded that lower values of 𝛽 combined with lower percentages of demand of type 1 provide 

higher percentages of reductions in the average on-hand inventory. 

When compared to the traditional (𝑅, 𝑠, 𝑆) policy, our policy provides reductions in the average 

on-hand inventory that, on average, range between 38.31% and 68.32%. The results were 

obtained for values in which the percentage of total demand that can use the in-transit stock to 

satisfy orders varies between 25% and 75%. 

Regarding the experiments with the (𝑅, 𝑠, 𝑆) adapted policy, the contribution of different order 

windows was tested. The observations are similar to the observations in the (𝑠, 𝑄) adapted 

policy. Different observations may appear for higher values of the percentage of demand of 

type 1, which are related to the expression used for the standard deviation of demand of type 1 

in the (𝑅, 𝑠, 𝑆) policy. 

When assessing the assumptions made for the (𝑅, 𝑠, 𝑆), for the same scenario, higher values of 

𝐿 provide lower errors for the fill rate which may suggest that for higher values of 𝐿 the real 

distribution of demand in the protection period comes closer to the normal distribution. The 

errors we obtained in the experiments, concerning the fill rate, range from 0.10% to 5.27% in 

the MOO scenario and from 0.59% to 9.47% in the SOO scenario.  

Recall that, although the parameters of other types of demand other than demand of type 1 are 

not needed in our policy, these types of demand are very important for the retailer because it 

tells the retailer if he can or cannot commit to an order using the in-transit inventory.  

There are several paths to continue and extend this line of research. Future work may include 

different distributions for the demand, variable lead time and non-stationary demand. This last 

extension is critical, since real data clearly indicates that demand significantly changes along 

the week, the month and the year. Indeed, the day of the week significantly impacts both the 

arrival of orders and the order window. 

One limitation of our approach was considering Poisson demand to characterize the different 

types of demand and then approximate it to normal distributed demand. Although this approach 

is relatively common in the literature related to inventory management, it limited the values of 

the coefficients of variance we could test. Another approach to characterize the demand may 

be another step for future work, and different distributions for the order window can also be 

tested. 
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ANNEX A: Another approach to obtain the parameters of demand 
during the lead time 

As the time goes by from 0 to 𝐿, it is obvious that for a certain distribution of the OW the 

probability of an order being of type 1 decreases and the probability of being type 2 increases. 

Here we follow the same approach presented in 4.1.2, but using Figure A1, in order to obtain 

the parameters depending on time. 

  

Figure A1 - 2D representation of the division of demand in a (𝑠, 𝑄) policy in t 

Now, the CO can take values between 𝑡 and 𝐿 so it follows a uniform between 𝑡 and 𝐿. 

 
𝑓𝐶𝑂(𝐶𝑂) = {

1

𝐿 − 𝑡
 𝑓𝑜𝑟 𝐶𝑂 ∈ [𝑡; 𝐿] 

0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (1) 

Multiplying the probabilities by the rate we obtain the rate of each type of demand: 

 𝜆(𝑡) =  𝜆𝐶𝑂𝑃(𝑡)𝑑𝑥 (2) 

 

Then we can calculate the mean value of the demand through time t by: 

 
𝑚(𝑡) =  ∫ 𝜆(𝑠)𝑑𝑠

𝑡

0

 (3) 

The expressions for the probabilities change accordingly to the distribution assumed for the 

OW. 

a) OW ~Uniform[a;b] 

 

 

𝑓𝑂𝑊(𝑂𝑊) = {
1

𝑏 − 𝑎
 𝑓𝑜𝑟 𝑂𝑊 ∈ [𝑎; 𝑏] 

0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (4) 
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In this case we need to divide the results: 

• 𝑏 < 𝐿 

I. If 0 < 𝑡 < 𝐿 − 𝑏 

 
𝑃(𝑡)𝑑1 = ∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂 (𝐶𝑂)𝑑𝐶𝑂 𝑑𝑂𝑊 = 1

𝐿

𝑡

𝑏

𝑎

 (5) 

 
𝑃(𝑡)𝑑2 = ∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂 (𝐶𝑂)𝑑𝐶𝑂 𝑑𝑂𝑊 = 0

𝐿

𝑡

𝐿−𝑡

𝐿−𝑡

 (6) 

 𝑃(𝑡)𝑑3 = 0 (7) 

 
𝜇1 → 𝑚(𝑡) = ∫ 𝜆(𝑠)𝑑𝑠

𝑡

0

= 𝜆𝐶𝑂𝑡 (8) 

 𝜇2 → 𝑚(𝑡) = 0 (9) 

 𝜇3 → 𝑚(𝑡) = 0 (10) 

II. If 𝐿 − 𝑏 < 𝑡 < 𝐿 − 𝑎 

 
𝑃(𝑡)𝑑1 = ∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂 (𝐶𝑂)𝑑𝐶𝑂 𝑑𝑂𝑊 =

𝐿 − 𝑡 − 𝑎

𝑏 − 𝑎

𝐿

𝑡

𝐿−𝑡

𝑎

 (11) 

 
𝑃(𝑡)𝑑2 = ∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂  (𝐶𝑂)𝑑𝐶𝑂 𝑑𝑂𝑊 =

𝑏 − 𝐿 + 𝑡

𝑏 − 𝑎

𝐿

𝑡

𝑏

𝐿−𝑡

 (12) 

 𝑃(𝑡)𝑑3 = 0 (13) 

 
𝜇1 → 𝑚(𝑡) =  (8) + ∫ 𝜆(𝑠)𝑑𝑠

𝑡

𝐿−𝑏

= (8) + 
(𝑏 − 𝐿 + 𝑡)(2𝑎 − 𝑏 − 𝐿 + 𝑡)

2(𝑎 − 𝑏)
𝜆𝐶𝑂 

(14) 

 
𝜇2 → 𝑚(𝑡) = ∫ 𝜆(𝑠)𝑑𝑠

𝑡

𝐿−𝑏

=
(𝑏 − 𝐿 + 𝑡)2

(𝑏 − 𝑎)
 𝜆𝐶𝑂 (15) 

 𝜇3 → 𝑚(𝑡) = 0 (16) 

III. If 𝐿 − 𝑎 < 𝑡 < 𝐿 

 
𝑃(𝑡)𝑑1 = ∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂 (𝐶𝑂)𝑑𝐶𝑂 𝑑𝑂𝑊 = 0

𝐿

𝑡

𝐿−𝑡

𝐿−𝑡

 (17) 

 
𝑃(𝑡)𝑑2 = ∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂 (𝐶𝑂)𝑑𝐶𝑂 𝑑𝑂𝑊 = 1

𝐿

𝑡

𝑏

𝐿−𝑡

 (18) 

 𝑃(𝑡)𝑑3 = 0 (19) 

 𝜇1 → 𝑚(𝑡) =  (14) (20) 

 
𝜇2 → 𝑚(𝑡) =  (15) + ∫ 𝜆(𝑠)𝑑𝑠

𝑡

𝐿−𝑎

= (15) + (𝑡 − 𝐿 + 𝑎)𝜆𝐶𝑂 (21) 

 𝜇3 → 𝑚(𝑡) = 0 (22) 
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• 𝑏 > 𝐿 𝑎𝑛𝑑 𝑎 < 𝐿 

I. If 0 < 𝑡 < 𝐿 − 𝑎 

 

𝑃(𝑡)𝑑1 = ∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂 (𝐶𝑂)𝑑𝐶𝑂 𝑑𝑂𝑊 =
𝐿 − 𝑡 − 𝑎

𝑏 − 𝑎

𝐿

𝑡

𝐿−𝑡

𝑎

 (23) 

 
𝑃(𝑡)𝑑2 = ∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂 (𝐶𝑂)𝑑𝐶𝑂 𝑑𝑂𝑊 =

𝑡

𝑏 − 𝑎

𝐿

𝑡

𝐿

𝐿−𝑡

 (24) 

 
𝑃(𝑡)𝑑3 = ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑑𝑂𝑊

𝑏

𝐿

=
𝑏 − 𝐿

𝑏 − 𝑎
 (25) 

 
𝜇1 → 𝑚(𝑡) = ∫ 𝜆(𝑠)𝑑𝑠

𝑡

0

=
𝑡(2𝑎 − 2𝐿 + 𝑡)

2(𝑎 − 𝑏)
𝜆𝐶𝑂 (26) 

 
𝜇2 → 𝑚(𝑡) = ∫ 𝜆(𝑠)𝑑𝑠

𝑡

0

=
𝑡2

2(𝑏 − 𝑎)
𝜆𝐶𝑂 (27) 

 
𝜇3 → 𝑚(𝑡) = ∫ 𝜆(𝑠)𝑑𝑠

𝑡

0

=
𝑏 − 𝐿

𝑏 − 𝑎
 𝑡 𝜆𝐶𝑂 (28) 

II. If 𝐿 − 𝑎 < 𝑡 < 𝐿 

 

𝑃(𝑡)𝑑1  =  ∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂 (𝐶𝑂)𝑑𝐶𝑂 𝑑𝑂𝑊 = 0
𝐿

𝑡

𝐿−𝑡

𝑎

 (29) 

 
𝑃(𝑡)𝑑2 = ∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂  (𝐶𝑂)𝑑𝐶𝑂 𝑑𝑂𝑊 =

𝐿 − 𝑎

𝑏 − 𝑎

𝐿

𝑡

𝐿

𝑎

 (30) 

 
𝑃(𝑡)𝑑3 = ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑑𝑂𝑊

𝑏

𝐿

=
𝑏 − 𝐿

𝑏 − 𝑎
 (31) 

 𝜇1 → 𝑚(𝑡) =  (26) (32) 

 
𝜇2 → 𝑚(𝑡) = (27) + ∫ 𝜆(𝑠)𝑑𝑠

𝑡

𝐿−𝑎

= (27) +
(𝐿 − 𝑎)(𝑎 − 𝐿 + 𝑡)

(𝑏 − 𝑎)
𝜆𝐶𝑂 (33) 

 
𝜇3 → 𝑚(𝑡) = (28) + ∫ 𝜆(𝑠)𝑑𝑠

𝑡

𝐿−𝑎

= (28) +
𝑏 − 𝐿

𝑏 − 𝑎
(𝑡 − 𝐿 + 𝑎)𝜆𝐶𝑂 (34) 

 

b) OW ~Exponential(𝜆𝑂𝑊) 

 

 

𝑓𝑂𝑊(𝑂𝑊) = {
 𝜆𝑂𝑊𝑒−𝜆𝑂𝑊𝑡  𝑓𝑜𝑟 𝑂𝑊 ≥ 0  

0           𝑓𝑜𝑟 𝑂𝑊 < 0
 (35) 

The results obtained are: 

 
𝑃(𝑡)𝑑1  =  ∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂 (𝐶𝑂)𝑑𝐶𝑂 𝑑𝑂𝑊 = 1 − 𝑒𝜆𝑂𝑊(𝑡−𝐿)

𝐿

𝑡

𝐿−𝑡

0

 (36) 

 
𝑃(𝑡)𝑑2 = ∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂 (𝐶𝑂)𝑑𝐶𝑂 𝑑𝑂𝑊 = 𝑒−𝜆𝑂𝑊𝐿(𝑒𝜆𝑂𝑊𝑡 − 1)

𝐿

𝑡

𝐿

𝐿−𝑡

 (37) 

 
𝑃(𝑡)𝑑3 = ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑑𝑂𝑊

∞

𝐿

= 𝑒−𝜆𝑂𝑊𝐿 (38) 
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𝜇1 → 𝑚(𝑡) = ∫ 𝜆(𝑠)𝑑𝑠 =

𝑡

0

 (𝑡 −
𝑒−𝜆𝑂𝑊𝐿(𝑒𝑡 𝜆𝑂𝑊 − 1)

𝜆𝑂𝑊
) 𝜆𝐶𝑂 (39) 

 
𝜇2 → 𝑚(𝑡) = ∫ 𝜆(𝑠)𝑑𝑠

𝑡

0

= (
𝑒−𝜆𝑂𝑊𝐿(𝑒𝑡 𝜆𝑂𝑊 − 1 − 𝑡 𝜆𝑂𝑊)

𝜆𝑂𝑊
) 𝜆𝐶𝑂 (40) 

 
𝜇3 → 𝑚(𝑡) = ∫ 𝜆(𝑠)𝑑𝑠

𝑡

0

= (𝑡 𝑒−𝜆𝑂𝑊𝐿)𝜆𝐶𝑂 (41) 

 

c) OW ~Normal(𝜇𝑂𝑊, 𝜎𝑂𝑊) 

 

 

𝑓𝑂𝑊(𝑂𝑊) =
1

√2𝜋(σow)2 
𝑒

−
(𝑂𝑊−μow)2

2(σow)2  (42) 

The results obtained are: 

 

𝑃(𝑡)𝑑1  =  ∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂 (𝐶𝑂)𝑑𝐶𝑂 𝑑𝑂𝑊

𝐿

𝑡

𝐿−𝑡

0

=
1

2
(erf (

𝐿 − 𝑡 − 𝜇𝑂𝑊

√2𝜎𝑂𝑊

) − erf (
−𝜇𝑂𝑊

√2𝜎𝑂𝑊

)) 

(43) 

 
𝑃(𝑡)𝑑2 = ∫ ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂 (𝐶𝑂)𝑑𝐶𝑂 𝑑𝑂𝑊

𝐿

𝑡

𝐿

𝐿−𝑡

=
1

2
(erf (

𝐿 − 𝜇𝑂𝑊

√2𝜎𝑂𝑊

) − erf (
𝐿 − 𝑡 − 𝜇𝑂𝑊

√2𝜎𝑂𝑊

)) 

(44) 

 
𝑃(𝑡)𝑑3 = ∫ 𝑓𝑂𝑊(𝑂𝑊)𝑑𝑂𝑊

∞

𝐿

=
1

2
(erfc (

𝐿 − 𝜇𝑂𝑊

√2𝜎𝑂𝑊

)) (45) 

 
𝜇1 → 𝑚(𝑡) = ∫ 𝜆(𝑠)𝑑𝑠

𝑡

0

= 
1

2
((𝑒

−
(𝐿−𝜇𝑂𝑊)2

2𝜎𝑂𝑊
2

− 𝑒
−

(−𝐿+𝑡+𝜇𝑂𝑊)2

2𝜎𝑂𝑊
2

)√
2

𝜋
𝜎𝑂𝑊

+ 𝑡 erf (
𝜇𝑂𝑊

√2𝜎𝑂𝑊

) + (−𝐿 + 𝜇𝑂𝑊) erf (
−𝐿 + 𝜇𝑂𝑊

√2𝜎𝑂𝑊

)

− (−𝐿 + 𝑡 + 𝜇𝑂𝑊) erf (
−𝐿 + 𝑡 + 𝜇𝑂𝑊

√2𝜎𝑂𝑊

))𝜆𝐶𝑂 

(46) 
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𝜇2 → 𝑚(𝑡) = ∫ 𝜆(𝑠)𝑑𝑠

𝑡

0

=
1

2
((−𝑒

−
(𝐿−𝜇𝑂𝑊)2

2𝜎𝑂𝑊
2

+ 𝑒
−

(−𝐿+𝑡+𝜇𝑂𝑊)2

2𝜎𝑂𝑊
2

)√
2

𝜋
𝜎𝑂𝑊

+ 𝑡 erf (
𝐿 − 𝜇𝑂𝑊

√2𝜎𝑂𝑊

) + (𝐿 − 𝑢) erf (
−𝐿 + 𝜇𝑂𝑊

√2𝜎𝑂𝑊

)

+ (−𝐿 + 𝑡 + 𝜇𝑂𝑊) erf (
−𝐿 + 𝑡 + 𝜇𝑂𝑊

√2𝜎𝑂𝑊

))𝜆𝐶𝑂 

(47) 

 
𝜇3 → 𝑚(𝑡) = ∫ 𝜆(𝑠)𝑑𝑠

𝑡

0

=
1

2
 𝑡 erfc (

𝐿 − 𝜇𝑂𝑊

√2𝜎𝑂𝑊

) 𝜆𝐶𝑂 (48) 

These results confirm the results obtained in the direct approach, by calculating the mean values 

at 𝑡 = 𝐿 and obtaining the same expressions. The advantage of using this approach instead of 

the direct approach is that we obtain 𝜆(𝑡) of each type of demand, and consequently we know 

how each type of demand changes with time: dx~Poisson(𝜆𝑥(𝑡)). Although the total demand 

has constant rate, the different types of demand have variable rates that this approach allows to 

obtain. Figure A2 and Figure A3 are two examples of the variation of the demand rate if OW 

follows a uniform distribution. In all Figures, the lead time and the order windows are in 𝑈𝑇 

and the demand rate in 
𝑢𝑛𝑖𝑡𝑠

𝑈𝑇
. 

 

Figure A2 – Demand rate 𝜆(𝑡) of each type of demand for a uniform OW~[0;6], 𝐿 = 6 and 𝜆𝐶𝑂 = 10 
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Figure A3 – Demand rate 𝜆(𝑡) of each type of demand for a uniform OW~[3;6], 𝐿 = 5 and 𝜆𝐶𝑂 = 10 

Figure A4 and Figure A5 are two examples of the variation of the demand rate if OW follows 

an exponential distribution. 

 

Figure A4 - Demand rate 𝜆(𝑡) of each type of demand for an exponential OW~[𝜆 = 0.5], 𝐿 = 4 and 𝜆𝐶𝑂 = 20 

 

Figure A5 - Demand rate 𝜆(𝑡) of each type of demand for an exponential OW~[𝜆 = 0.1], 𝐿 = 10 and 𝜆𝐶𝑂 = 30 

Figure A6 and Figure A7 are two examples of the variation of the demand rate if OW follows 

a normal distribution. 
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Figure A6 - Demand rate λ(t) of each type of demand for a normal OW~[2;0.3], 𝐿 = 3 and 𝜆𝐶𝑂 = 50 

 

Figure A7 - Demand rate 𝜆(𝑡) of each type of demand for a normal OW~[12.5;4], 𝐿 = 10 and 𝜆𝐶𝑂 = 10 

As expected, during the lead time, the demand rate of 𝑑1 decreases with time and the demand 

rate of 𝑑2 increases with time because for the same parameters of the OW, as we get closer to 

the end of the lead time, higher is the probability that the customer delivery date is after the lead 

time. The demand rate of 𝑑3 is constant with time because it only depends on the OW.  
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ANNEX B: Derivations for the iterative procedure 

Here we present in more detail the derivations and considerations made to obtain the 

expressions used in the iterative procedure. 

I. α service level 

The expression for the ETRC is: 

 
𝐸𝑇𝑅𝐶 (𝑘, 𝑄) = 𝐴

𝐷

𝑄
+ [

𝑄

2
+ 𝑘𝜎1] 𝑣𝑟 + 𝐵1

𝐷

𝑄
𝑃𝑢1≥(𝑘) (1) 

A necessary condition (unless we are at a boundary) for the minimization of a function of two 

variables is that the partial derivative with respect to each variable be set to zero. 

Partial derivative with respect to 𝑘: 

 𝛿𝐸𝑇𝑅𝐶 (𝑘, 𝑄)

𝛿𝑘
= 0 (=) 𝜎1𝑣𝑟 − 𝐵1

𝐷

𝑄
𝑓𝑢1

(𝑘) = 0 (=)  

 

 (=) 𝑘 = √2 𝑙𝑛 (
𝐷𝐵1

√2𝜋𝑄𝑣𝑟𝜎1

) 
(2) 

 
𝐼𝑓 

𝐷𝐵1

√2𝜋𝑄𝑣𝑟𝜎1

< 1 𝑠𝑒𝑡 𝑘 𝑎𝑡 𝑖𝑡𝑠 𝑙𝑜𝑤𝑒𝑠𝑡 𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 

We assume the lowest allowable value is 𝑘 = 0 

 

To obtain the result in equation (2), the following facts were used (Silver et al. 1998): 

 
1)  𝑓𝑢(𝑘) =

1

√2𝜋
𝑒−

𝑘2

2    

 
2)  

𝑑𝑃𝑢≥(𝑘) 

𝑑𝑘
= − 𝑓𝑢(𝑘)  

Partial derivative with respect to 𝑄: 

 𝛿𝐸𝑇𝑅𝐶 (𝑘, 𝑄)

𝛿𝑄
= 0 (=) −

𝐴𝐷

𝑄2
+

1

2
𝑣𝑟 −

𝐵1𝐷𝑃𝑢1≥(𝑘)

𝑄2
 = 0 (=)  

 

 (=) 𝑄 = 𝐸𝑂𝑄 √1 +
𝐵1

𝐴
𝑃𝑢1≥(𝑘) 

(3) 

Where:  

 

𝐸𝑂𝑄 =  √
2𝐴𝐷

𝑣𝑟
 

 

Using Excel functions (listed in upper case): 

 𝑃𝑢≥(𝑘) =  1 − 𝑁𝑂𝑅𝑀. 𝑆. 𝐷𝐼𝑆𝑇(𝑘, 𝑇𝑅𝑈𝐸)  

If we are interested in a certain service level, equation (4.43) can be modified to obtain 𝑘: 

 𝑘 =  𝑁𝑂𝑅𝑀. 𝑆. 𝐼𝑁𝑉(𝛼)  
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II. β service level 

The expression for the ETRC is: 

 
𝐸𝑇𝑅𝐶 (𝑘, 𝑄) = 𝐴

𝐷

𝑄
+ [

𝑄

2
+ 𝑘𝜎1] 𝑣𝑟 +

𝐵2𝑣𝜎1𝐺𝑢1
(𝑘)𝐷

𝑄
 (4) 

A necessary condition (unless we are at a boundary) for the minimization of a function of two 

variables is that the partial derivative with respect to each variable be set to zero. 

Partial derivative with respect to 𝑘: 

 𝛿𝐸𝑇𝑅𝐶 (𝑘, 𝑄)

𝛿𝑘
= 0 (=) 𝜎1𝑣𝑟 −

𝐵2𝐷𝑣𝜎1

𝑄
𝑃𝑢1≥(𝑘) = 0 (=)  

 
 (=) 𝑃𝑢≥(𝑘) =

𝑟𝑄

𝐵2𝐷
  (5) 

To obtain the result in equation (5), the following fact was used (Silver et al. 1998): 

 
3)  

𝑑𝐺𝑢(𝑘) 

𝑑𝑘
= − 𝑃𝑢≥(𝑘)  

Partial derivative with respect to 𝑄: 

 𝛿𝐸𝑇𝑅𝐶 (𝑘, 𝑄)

𝛿𝑄
= 0 (=) −

𝐴𝐷

𝑄2
+

1

2
𝑣𝑟 −

𝐵2𝐷𝑣𝜎1𝐺𝑢1
(𝑘)

𝑄2
 = 0 (=)  

 

 (=) 𝑄 = 𝐸𝑂𝑄 √1 +
𝐵2𝜎1𝑣

𝐴
𝐺𝑢1

(𝑘)   
(6) 

Where:  

 

𝐸𝑂𝑄 =  √
2𝐴𝐷

𝑣𝑟
 

 

Using Excel functions (listed in upper case): 

Equation (5) used in the iterative procedure can be modified to obtain 𝑘: 

 
 𝑘 =  𝑁𝑂𝑅𝑀. 𝑆. 𝐼𝑁𝑉 (1 −

𝑟𝑄

𝐷𝐵2
) 

 

 
𝐼𝑓 

𝑟𝑄

𝐷𝐵2
> 1 𝑠𝑒𝑡 𝑘 𝑎𝑠 𝑖𝑡𝑠 𝑙𝑜𝑤𝑒𝑠𝑡 𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒   

If we are interested in a certain service level, equation (4.48) can be modified to obtain 𝑘: 

 
𝑓𝑢1

(𝑘) − 𝑘𝑃𝑢1≥(𝑘) =  
𝑄

𝜎1
(
1 − 𝛽

𝛽
) (=)  

 (=)𝑁𝑂𝑅𝑀. 𝑆. 𝐷𝐼𝑆𝑇(𝑘, 𝐹𝐴𝐿𝑆𝐸) − 𝑘(1 − 𝑁𝑂𝑅𝑀. 𝑆. 𝐷𝐼𝑆𝑇(𝑘, 𝑇𝑅𝑈𝐸))

=
𝑄

𝜎1
(
1 − 𝛽

𝛽
) 

Using the SOLVER in Excel we can obtain 𝑘. 

 

To obtain this expression, the following fact was used (Silver et al. 1998): 

 4)  𝐺𝑢1
(𝑘) = 𝑓𝑢1

(𝑘) − 𝑘𝑃𝑢1≥(𝑘)   
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ANNEX C:  Additional results obtained in the experiments for the 
(𝒔,𝑸) policy 

I. Experiments with α service level 

Here we present additional results obtained in the experiments that are not in the main body of 

the thesis. Table C1 shows the cost reduction that provides the use of the new policy with α 

service level for the online retail. For each scenario, the optimal values of the pair (𝑠, 𝑄) are 

presented and the costs compared (OR - online retail policy, TR - traditional retail policy). 

Table C1 - Policies comparison with α service level with optimal pairs (𝑠, 𝑄) 

 

 

Numerical results for the cost reduction from using the new policy when the retailer is limited 

by the supplier to a certain order quantity 𝑄 are presented, for three values of 𝑄, in Table C2.  

Table C2 - Policies comparison with 𝛼 service level for different values of the order quantity, different CV’s and 

percentages of 𝑑1 

Savings (%) 

CV 
𝑸 = 100 𝑸 = 250 𝑸 = 400 

75%𝒅𝟏 50% 𝒅𝟏 25%𝒅𝟏 75%𝒅𝟏 50%𝒅𝟏 25%𝒅𝟏 75%𝒅𝟏 50%𝒅𝟏 25%𝒅𝟏 

0.05 19.39% 33.89% 44.68% 24.82% 41.55% 52.98% 22.99% 39.18% 50.42% 

0.075 10.01% 19.38% 27.54% 13.23% 25.00% 34.64% 11.99% 23.03% 32.18% 

0.1 6.04% 12.36% 18.31% 8.07% 16.33% 23.79% 7.22% 14.83% 21.75% 

0.15 2.89% 6.30% 9.78% 3.87% 8.48% 13.05% 3.41% 7.57% 11.72% 

0.2 1.70% 3.87% 6.17% 2.28% 5.23% 8.32% 1.98% 4.63% 7.39% 

OR TR OR TR OR TR Average

s 333 436 95 122 30 38

Q 258 260 254 255 252 252

OC 348.8 346.2 354.3 352.9 357.1 357.1

HC 464.0 766.1 420.7 502.6 394.1 418.3

SC 22.2 0.0 9.7 0.0 4.4 0.0

TC 835.1 1112.2 784.8 855.5 755.6 775.5
% savings 11.91%

s 228 436 67 122 22 38

Q 257 260 253 255 252 252

OC 350.2 346.2 355.7 352.9 357.1 357.1

HC 450.1 1054.1 411.1 574.6 389.2 436.3

SC 17.3 0.0 7.7 0.0 3.5 0.0

TC 817.6 1400.2 774.5 927.5 749.8 793.5
% savings 21.20%

s 122 436 38 122 14 38

Q 255 260 252 255 251 252

OC 352.9 346.2 357.1 352.9 358.6 357.1

HC 428.8 1342.1 398.1 646.6 381.0 454.3

SC 11.5 0.0 5.2 0.0 2.4 0.0

TC 793.2 1688.2 760.4 999.5 741.9 811.5
% savings 28.50%

CV

25%

53.02% 23.92% 8.57%

0.05 0.1 0.2

50%

41.61% 16.49% 5.50%

P
er

ce
n

ta
ge

 o
f 

D
em

an
d

 o
f 

ty
p

e 
1 

75%

24.92% 8.26% 2.56%
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The contribution of different order windows in the savings was also studied. Policies were 

compared when the order window has the same mean but different parameters or distributions. 

Numerical results are presented in Table C3 through Table C5. 

Table C3 – Policies comparison with 𝛼 service level for different order windows with mean 0.25𝐿 

Savings (%) 

CV 

OW 

U[0;0.5𝐿] U[0.1𝐿;0.4𝐿] U[0.2𝐿;0.3𝐿] Exp(
1

0.25𝐿
) N(0.25𝐿,0.025𝐿) N(0.25𝐿,0.075𝐿) 

0.05 24.92% 24.92% 24.92% 24.54% 24.92% 24.96% 

0.1 8.26% 8.26% 8.26% 8.10% 8.26% 8.28% 

0.15 3.90% 3.90% 3.90% 3.81% 3.90% 3.91% 

0.2 2.56% 2.56% 2.56% 2.50% 2.56% 2.56% 

 

Table C4 - Policies comparison with 𝛼 service level for different order windows with mean 0.5𝐿 

Savings (%) 

CV 

OW 

U[0;𝐿] U[0.25𝐿;0.75𝐿] U[0.2𝐿;0.8𝐿] Exp(
1

0.5𝐿
) N(0.5𝐿,0.05𝐿) N(0.5𝐿,0.15𝐿) 

0.05 41.61% 41.61% 41.61% 37.77% 41.61% 41.63% 

0.1 16.49% 16.49% 16.49% 14.37% 16.49% 16.51% 

0.15 8.50% 8.50% 8.50% 7.27% 8.50% 8.51% 

0.2 5.50% 5.50% 5.50% 4.70% 5.50% 5.51% 

 

Table C5 - Policies comparison with 𝛼 service level for different order windows with mean 0.75𝐿 

Savings (%) 

CV 

OW 

U[0;1.5𝐿] U[0.25𝐿;1.25𝐿] U[0.5𝐿;𝐿] Exp(
1

0.75𝐿
) N(0.75𝐿,0.075𝐿) N(0.75𝐿,0.225𝐿) 

0.05 49.60% 51.77% 53.02% 44.31% 53.02% 52.44% 

0.1 21.50% 23.02% 23.92% 18.10% 23.92% 23.50% 

0.15 11.53% 12.49% 13.07% 9.45% 13.07% 12.80% 

0.2 7.52% 8.17% 8.57% 6.12% 8.57% 8.38% 

 

II. Experiments with β service level 

Here we present additional results obtained in the experiments that are not in the main body of 

the thesis. Table C6 shows the cost reduction that provides the use of the new policy with β 

service level for the online retail. For each scenario, the optimal values of the pair (𝑠, 𝑄) are 

presented and the costs compared. 
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Table C6 – Policies comparison with β service level with optimal pairs (𝑠, 𝑄) 

 

 

Numerical results for the cost reduction from using the new policy when the retailer is limited 

by the supplier to a certain order quantity 𝑄 are presented, for three values of 𝑄, in Table C7. 

Table C7 - Policies comparison with 𝛽 service level for different values of the order quantity, different CV’s and 

percentages of 𝑑1 

Savings (%) 

CV 
𝑸 = 100 𝑸 = 250 𝑸 = 400 

75%𝒅𝟏 50% 𝒅𝟏 25%𝒅𝟏 75%𝒅𝟏 50%𝒅𝟏 25%𝒅𝟏 75%𝒅𝟏 50%𝒅𝟏 25%𝒅𝟏 

0.05 19.66% 34.25% 44.97% 25.37% 42.21% 53.54% 23.55% 39.85% 50.99% 

0.075 10.02% 19.42% 27.49% 13.32% 25.19% 34.74% 12.05% 23.19% 32.25% 

0.1 5.93% 12.22% 18.05% 7.94% 16.21% 23.52% 7.06% 14.67% 21.45% 

0.15 2.72% 6.04% 9.36% 3.61% 8.11% 12.47% 3.12% 7.17% 11.11% 

0.2 1.54% 3.60% 5.74% 1.99% 4.81% 7.66% 1.68% 4.18% 6.72% 

 

The contribution of different order windows in the savings was also studied. Policies were 

compared when the order window has the same mean but different parameters or distributions. 

Numerical results are presented in Table C8 through Table C10.  

 

 

OR TR OR TR OR TR Average

s 325 428 88 114 25 33

Q 259 260 254 255 252 253

OC 347.5 346.2 354.3 352.9 357.1 355.7

HC 442.2 743.0 400.6 479.5 380.3 405.4

SC 22.7 0.0 11.3 0.0 5.7 0.0

TC 812.3 1089.2 766.3 832.5 743.2 761.1
% savings 11.91%

s 220 428 60 114 18 33

Q 257 260 254 255 252 253

OC 350.2 346.2 354.3 352.9 357.1 355.7

HC 426.7 1031.0 394.2 551.5 377.2 423.4

SC 18.5 0.0 9.2 0.0 4.6 0.0

TC 795.5 1377.2 757.8 904.5 738.9 779.1
% savings 21.21%

s 114 428 33 114 10 33

Q 255 260 253 255 252 253

OC 352.9 346.2 355.7 352.9 357.1 355.7

HC 407.4 1319.0 384.5 623.5 373.0 441.4

SC 13.1 0.0 6.5 0.0 3.3 0.0

TC 773.4 1665.2 746.7 976.5 733.4 797.1
% savings 28.36%

50%

42.24% 16.22% 5.16%

P
er

ce
n

ta
ge

 o
f 

D
em

an
d

 o
f 

ty
p

e 
1

75%

25.42% 7.95% 2.36%

CV

25%

53.55% 23.53% 7.99%

0.05 0.1 0.2
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Table C8 - Policies comparison with 𝛽 service level for different order windows with mean 0.25𝐿 

Savings (%) 

CV 

OW 

U[0;0.5𝐿] U[0.1𝐿;0.4𝐿] U[0.2𝐿;0.3𝐿] Exp(
1

0.25𝐿
) N(0.25𝐿,0.025𝐿) N(0.25𝐿,0.075𝐿) 

0.05 25.42% 25.42% 25.42% 25.03% 25.42% 25.45% 

0.1 7.95% 7.95% 7.95% 7.79% 7.95% 7.97% 

0.15 3.69% 3.69% 3.69% 3.60% 3.69% 3.70% 

0.2 2.36% 2.36% 2.36% 2.31% 2.36% 2.36% 

 

Table C9 - Policies comparison with 𝛽 service level for different order windows with mean 0.5𝐿 

Savings (%) 

CV 

OW 

U[0;𝐿] U[0.25𝐿;0.75𝐿] U[0.2𝐿;0.8𝐿] Exp(
1

0.5𝐿
) N(0.5𝐿,0.05𝐿) N(0.5𝐿,0.15𝐿) 

0.05 42.24% 42.24% 42.24% 38.40% 42.24% 42.26% 

0.1 16.22% 16.22% 16.22% 14.09% 16.22% 16.23% 

0.15 8.18% 8.18% 8.18% 6.99% 8.18% 8.19% 

0.2 5.16% 5.16% 5.16% 4.40% 5.16% 5.16% 

 

Table C10 - Policies comparison with 𝛽 service level for different order windows with mean 0.75𝐿 

Savings (%) 

CV 

OW 

U[0;1.5𝐿] U[0.25𝐿;1.25𝐿] U[0.5𝐿;𝐿] Exp(
1

0.75𝐿
) N(0.75𝐿,0.075𝐿) N(0.75𝐿,0.225𝐿) 

0.05 50.19% 52.33% 53.55% 44.94% 53.55% 52.99% 

0.1 21.17% 22.65% 23.53% 17.81% 23.53% 23.12% 

0.15 11.09% 11.99% 12.54% 9.10% 12.54% 12.28% 

0.2 7.03% 7.63% 7.99% 5.74% 7.99% 7.82% 
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ANNEX D:  Expression derivation for demand characterization in the 
(𝑹, 𝒔, 𝑺) policy and auxiliary notation 

Here we present the approach followed to obtain the expressions needed to the characterization 

of demand. 

The ratio between a certain type of demand and the total demand for a given value of 𝜏 is given 

by: 

 
∫∫𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊 (1) 

The limits of integration change accordingly to the type of demand we are calculating. 

This ratio should be weighted because higher values of 𝜏 are related to higher values of total 

demand, so: 

 
∫[∫∫𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊  ]

(𝐿 + 𝜏)𝜇

∫(𝐿 + 𝜏)𝜇 𝑓𝜏(𝜏)𝑑𝜏

𝑓𝜏(𝜏)𝑑𝜏 (2) 

Where: 

 (𝐿 + 𝜏)𝜇

∫(𝐿 + 𝜏)𝜇 𝑓𝜏(𝜏)𝑑𝜏

𝑓(𝜏)𝜏𝑑𝜏 = 
(𝐿 + 𝜏)

𝐿 ∫  𝑓𝜏(𝜏)𝑑𝜏 + ∫ 𝜏 𝑓𝜏(𝜏)𝑑𝜏

𝑓𝜏(𝜏)𝑑𝜏 = 

(3) 

 
=

(𝐿 + 𝜏)

𝐿 + 𝐸[𝜏]
𝑓𝜏(𝜏)𝑑𝜏 

Because we assume 𝜏 follows a uniform distribution: 

 
𝑓𝜏𝑤(𝜏) =

(𝐿 + 𝜏)

𝐿 + 𝐸[𝜏]
𝑓𝜏(𝜏) =

(𝐿 + 𝜏)

(𝐿 +
𝑅
2)𝑅

 (4) 

Equation (2) becomes: 

 
∫[∫∫𝑓𝑂𝑊(𝑂𝑊)𝑓𝐶𝑂(𝐶𝑂)𝑑𝐶𝑂𝑑𝑂𝑊  ] 𝑓𝜏𝑤(𝜏)𝑑𝜏 (5) 

 

Equation (5) is the expression we use to obtain the probability of each type of demand. 

The auxiliary notation, used to minimize the length of the expressions obtained, is presented in 

Table D1. 
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Table D1 – Auxiliary variables used to characterize the demand in the (𝑅, 𝑠, 𝑆) policy for uniform OW 

𝐵 = 𝑚𝑖𝑛(𝑏; 𝐿) 

𝐶 = 𝑚𝑖𝑛(𝐿 + 𝑅; 𝑇) 

𝐷 = 𝑚𝑖𝑛(𝐿;𝑚𝑎𝑥(𝑎; 𝑅)) 

𝐸 = 𝑚𝑖𝑛(𝑅; 𝑇) 

𝐹 = 𝑚𝑖𝑛(𝐿 + 𝑅;𝑚𝑎𝑥(𝑎; 𝑅)) 

𝐺 = 𝑚𝑖𝑛(𝑎; 𝐿) 

𝐻 = 𝑚𝑖𝑛(𝐿 + 𝑅;𝑚𝑎𝑥(𝑏; 𝐿)) 

𝐼 = 𝑚𝑖𝑛(𝐿 + 𝑅; 𝑚𝑎𝑥(𝑏; 𝑅)) 

𝐽 = 𝑚𝑖𝑛(𝐿;𝑚𝑎𝑥(𝑏; 𝑅)) 

𝐾 = 𝑚𝑖𝑛 (𝑚𝑎𝑥(𝑏 − (𝐿 + 𝑅); 0); 𝑅) 

𝑀 = 𝑚𝑎𝑥(𝐿 + 𝑅; 𝑎) 

𝑁 = 𝑚𝑖𝑛(𝑅; 𝑏) 

𝑂 = 𝑚𝑖𝑛(𝑎; 𝑅) 

𝑃 = 𝑚𝑎𝑥(𝑎 − (𝐿 + 𝑅); 0) 

𝑄 = 𝑚𝑖𝑛(𝑅;𝑚𝑎𝑥(𝑏; 𝐿)) 

𝑇 = 𝑚𝑎𝑥(𝑎; 𝐿) 

𝑊 = 𝑚𝑖𝑛(𝐿; 𝑏) 

𝑋 = 𝑚𝑖𝑛(𝑚𝑎𝑥(𝑏 − 𝐿; 0); 𝑅) 

𝑌 = 𝑚𝑖𝑛(𝑚𝑎𝑥(𝑎 − 𝐿; 0); 𝑅) 

𝑍 = 𝑚𝑖𝑛(𝑃; 𝑅) 
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ANNEX E: Assessment of the assumptions made in the (𝑹, 𝒔, 𝑺) policy 

The objective of this Annex is to evaluate the assumptions regarding the distribution for demand 

in the protection period and the expression for the standard deviation of demand of type 1. With 

the author permission, we made some modifications to the simulator developed by Zein (2017) 

that replicates what would happen in actual application of a (𝑅, 𝑠, 𝑆) system for online retail. 

Then we compare the results obtained in the simulation with the expected results and take some 

conclusions. 

I. Simulation design 

Here we describe briefly the simulator used. A thorough explanation of the simulator is beyond 

the scope of this thesis. The simulator developed in the on-going work of Zein (2017) is used 

to simulate the behavior of customer orders in the online retail and how a (𝑅, 𝑠, 𝑆) policy deals 

with the inventory management in this type of systems. The simulator is based in the approach 

presented by Silver et al. (2009), summarized in 2.3, adapted for the online retail scenario. 

In the simulation, the inputs are the CV, the desired value of the fill rate (𝛽 in our notation) and 

the desired number of review intervals between replenishments (n). Then the approach 

presented in 2.3 is adapted and used to calculate 𝑠 and 𝑆: 

1) Obtain E[𝜏] and Var[𝜏] from Table 2 and Table 3 

2) Calculate the mean and variance of 𝑑1 

 
𝐸[𝑑1] =  𝜇1 = (𝐸[𝜏] + 𝐿)𝜇𝑃(𝑑1) (1) 

 𝑉𝑎𝑟[𝑑1] = 𝜎1
2 = 𝑚𝑖𝑛[((𝐸[𝜏] + 𝐿)𝜎2𝑃(𝑑1) + 𝜇2𝑉𝑎𝑟[𝜏] 𝑃(𝑑1)) 𝐶

2;  𝜎𝐿
2] (2) 

 

3) Calculate the target allowed (average) units short per replenishment cycle (AUSPRC) 

 
𝐴𝑈𝑆𝑃𝑅𝐶 = (1 − 𝛽)𝐸[𝑄]  (3) 

4) Choose 𝑘 to satisfy 

 

𝐺𝑢1
(𝑘) =

(1 − 𝛽)𝐸[𝑄]

𝜎1
=

(1 − 𝛽)𝑛𝜇

𝜎1
 (4) 

5) Calculate the reorder point 

 
𝑠 = 𝜇1 +  𝑘𝜎1 (5) 

6) Calculate the order-up-to level 

 
𝑆 = 𝑠 + 𝑛𝜇 − 𝐸[𝜏]𝜇 (6) 

For a given scenario, the values of the parameters (𝑅, 𝑠, 𝑆) are obtained and, the simulation is 

instantiated 4000 times (4000 orders) to be able to compute the fill rate and the average time 

between replenishments. This procedure is repeated 100 times and the average fill rate and 

average time between replenishments are calculated. These values are compared to the desired 

values given as inputs to the simulator. 

This simulator was originally developed for fixed OW and the time between orders was fixed 

in each of the 100 iterations and generated by a normal distribution. We modify the simulator 

to deal with exponential distributed time between orders and to deal with OW following an 

exponential or uniform distribution. 
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The values used as inputs are presented in Table E1. We used CV = 0.1 and 𝜇 = 100 because 

we assume the demand per unit time follows a Poisson distribution in our analytical approach. 

The experiments were made for 25%, 50% and 75% of demand of type 1 and 𝑅 = 1. 

Table E1 - Inputs used in the simulation 

Scenario SOO MOO 

n 2 4 2 4 

𝑳 1 2 3 6 

𝝁 100 100 100 100 

CV 0.1 0.1 0.1 0.1 

𝜷 0.95 0.95 0.95 0.95 

II. Results  

Here we present and discuss the simulated results. Table E2 and Table E3 present the mean 

absolute percentage error (MAPE) between the simulated results and the expected results (input 

values) if the OW follows a uniform distribution. Table E4 and Table E5 present the results if 

the OW follows an exponential distribution. 

 

Table E2 - Simulation results with uniform 𝑂𝑊 and MOO scenario 

% 𝒅𝟏 𝑳 
Expected results Simulated results Error (%) 

n 𝛽 n 𝛽 n 𝛽 

25 % 6 4 0.95 4.334 0.949 8.36% 0.10% 

25 % 3 2 0.95 2.299 0.943 14.96% 0.69% 

50 % 6 4 0.95 4.099 0.976 2.47% 2.77% 

50 % 3 2 0.95 2.059 0.977 2.93% 2.92% 

75 % 6 4 0.95 4.031 0.979 0.78% 3.04% 

75 % 3 2 0.95 2.001 0.987 0.04% 3.88% 

 

Table E3 - Simulation results with uniform 𝑂𝑊 and SOO scenario 

% 𝒅𝟏 𝑳 
Expected results Simulated results Error (%) 

n 𝛽 n 𝛽 n 𝛽 

25 % 2 4 0.95 4.188 0.929 4.69% 2.24% 

25 % 1 2 0.95 2.067 0.930 3.37% 2.16% 

50 % 2 4 0.95 4.163 0.956 4.09% 0.65% 

50 % 1 2 0.95 2.067 0.962 3.37% 1.30% 

75 % 2 4 0.95 4.026 0.967 0.66% 1.78% 

75 % 1 2 0.95 2.007 0.984 0.34% 3.61% 
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Table E4 - Simulation results with exponential 𝑂𝑊 and MOO scenario 

% 𝒅𝟏 𝑳 
Expected results Simulated results Error (%) 

n 𝛽 n 𝛽 n 𝛽 

25 % 6 4 0.95 4.324 0.922 8.09% 2.97% 

25 % 3 2 0.95 2.301 0.900 15.06% 5.27% 

50 % 6 4 0.95 4.118 0.965 2.96% 1.57% 

50 % 3 2 0.95 2.058 0.967 2.92% 1.84% 

75 % 6 4 0.95 4.026 0.977 0.65% 2.83% 

75 % 3 2 0.95 1.991 0.986 0.44% 3.81% 

 

Table E5 - Simulation results with exponential 𝑂𝑊 and SOO scenario 

% 𝒅𝟏 𝑳 
Expected results Simulated results Error (%) 

n 𝛽 n 𝛽 n 𝛽 

25 % 2 4 0.95 4.259 0.880 6.47% 7.42% 

25 % 1 2 0.95 2.102 0.860 5.09% 9.47% 

50 % 2 4 0.95 4.201 0.941 5.03% 0.99% 

50 % 1 2 0.95 2.079 0.956 3.97% 0.59% 

75 % 2 4 0.95 4.050 0.960 1.24% 1.04% 

75 % 1 2 0.95 1.989 0.979 0.55% 3.10% 

 

We believe there are three reasons for the inaccuracy of the simulated results. The first one is 

the assumption that demand follows a normal distribution in the protection period. This 

assumption seems to produce worst results for lower percentages of demand of type 1 and an 

exponential distributed OW. Looking at the results, we observe that for the same scenario, 

generally higher values of 𝐿 provide lower errors for the fill rate which may suggest that for 

higher values of 𝐿 the real distribution of demand comes closer to the normal distribution. 

Regarding the errors related to the average time between replenishments, they are not so critical, 

because even if the average is equal to the desired value, there would still be occasions where 

the time between replenishments would differ, so the time between replenishments cannot be 

assured to be constant. 

We believe the second reason for the inaccuracy of the results is the approximation used for the 

standard deviation of demand of type 1, which should be improved in future work. 

The third reason is related to numerical errors that happen in the simulator, and that, on our 

experiments, are more often for lower percentages of demand of type 1. 
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ANNEX F:  Additional results obtained in the experiments for the 
(𝑹, 𝒔, 𝑺) policy 

Here we present additional results obtained in the experiments that are not in the main body of 

the thesis. Table F1 and Table F2 present the percentages of reduction in the average on-hand 

inventory from using the adapted policy for different percentages of demand of type 1, different 

CV’s and different values of n. Table F3 and Table F4 present the percentages of reduction in 

the average on-hand inventory from using the adapted policy for different percentages of 

demand of type 1, different CV’s and different values of 𝛽. 

Table F1 - Policies comparison for different percentages of 𝑑1, different CV’s and with different values of 𝑛 

when the 𝑂𝑊 follows a uniform distribution 

Reduction in the average OH inventory (%) 

n 
CV = 0.1 CV = 0.2 

25%𝒅𝟏 50% 𝒅𝟏 75%𝒅𝟏 25%𝒅𝟏 50%𝒅𝟏 75%𝒅𝟏 

2 78.78% 70.31% 53.08% 77.88% 67.37% 48.19% 

3 71.51% 62.01% 44.25% 71.14% 60.45% 41.33% 

4 65.38% 55.34% 37.79% 65.44% 54.49% 36.07% 

5 60.20% 50.00% 32.96% 60.40% 49.41% 31.83% 

6 55.80% 45.51% 29.17% 56.02% 45.31% 28.46% 

%𝒅𝟏 25% 50% 75% 

Average 66.25% 56.02% 38.31% 

 

Table F2 - Policies comparison for different percentages of 𝑑1, different CV’s and with different values of 𝑛 

when the 𝑂𝑊 follows an exponential distribution 

Reduction in the average OH inventory (%) 

n 
CV = 0.1 CV = 0.2 

25%𝒅𝟏 50% 𝒅𝟏 75%𝒅𝟏 25%𝒅𝟏 50%𝒅𝟏 75%𝒅𝟏 

2 78.97% 70.78% 53.98% 78.31% 68.62% 50.24% 

3 71.61% 62.35% 44.74% 71.63% 61.38% 43.19% 

4 65.46% 55.57% 38.20% 65.73% 55.19% 37.23% 

5 60.24% 50.13% 33.25% 60.68% 50.11% 32.87% 

6 55.81% 45.62% 29.53% 56.17% 45.70% 29.18% 

%𝒅𝟏 25% 50% 75% 

Average 66.46% 56.55% 39.24% 
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Table F3 - Policies comparison for different percentages of 𝑑1, different CV’s and with different values of 𝛽 

when the 𝑂𝑊 follows a uniform distribution 

Reduction in the average OH inventory (%) 

𝜷 
CV = 0.1 CV = 0.2 

25%𝒅𝟏 50% 𝒅𝟏 75%𝒅𝟏 25%𝒅𝟏 50%𝒅𝟏 75%𝒅𝟏 

0.8 73.78% 65.21% 48.42% 73.95% 65.28% 48.13% 

0.85 70.70% 61.71% 44.49% 70.89% 61.55% 44.04% 

0.9 67.93% 58.49% 41.11% 68.11% 58.24% 40.16% 

0.95 65.38% 55.34% 37.79% 65.44% 54.49% 36.07% 

0.99 63.09% 51.99% 33.93% 62.50% 50.23% 31.09% 

%𝒅𝟏 25% 50% 75% 

Average 68.18% 58.25% 40.52% 

 

Table F4 - Policies comparison for different percentages of 𝑑1, different CV’s and with different values of 𝛽 

when the 𝑂𝑊 follows an exponential distribution 

Reduction in the average OH inventory (%) 

𝜷 
CV = 0.1 CV = 0.2 

25%𝒅𝟏 50% 𝒅𝟏 75%𝒅𝟏 25%𝒅𝟏 50%𝒅𝟏 75%𝒅𝟏 

0.8 73.77% 65.22% 48.41% 73.90% 65.35% 48.37% 

0.85 70.72% 61.67% 44.63% 70.95% 61.87% 44.43% 

0.9 67.94% 58.53% 41.38% 68.28% 58.62% 40.93% 

0.95 65.46% 55.57% 38.20% 65.73% 55.19% 37.23% 

0.99 63.41% 52.78% 35.05% 63.08% 51.50% 33.13% 

%𝒅𝟏 25% 50% 75% 

Average 68.32% 58.63% 41.18% 

 

The contribution of different order windows in the reductions in the average OH inventory was 

also studied. Policies were compared when the order window has the same mean but different 

parameters or distributions. Numerical results are presented in Table F5 through Table F7. 

Table F5 - Policies comparison for different order windows with mean 0.25𝐸[𝐿 + 𝜏] 

Reduction in the average OH inventory (%) 

CV 

OW 

U[0;0.5𝐸[𝐿 + 𝜏]] 
U[0.1𝐸[𝐿 + 𝜏]; 
0.4𝐸[𝐿 + 𝜏]] 

U[0.2𝐸[𝐿 + 𝜏]; 
0.3𝐸[𝐿 + 𝜏]] 

Exp(
1

0.25𝐸[𝐿+𝜏]
) 

0.1 37.82% 37.82% 37.82% 37.78% 

0.15 37.19% 37.19% 37.19% 37.48% 

0.2 36.34% 36.34% 36.34% 36.86% 

0.25 35.26% 35.26% 35.26% 36.49% 
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Table F6 - Policies comparison for different order windows with mean 0.5𝐸[𝐿 + 𝜏] 

Reduction in the average OH inventory (%) 

CV 

OW 

U[0;𝐸[𝐿 + 𝜏]] 
U[0.25𝐸[𝐿 + 𝜏]; 
0.75𝐸[𝐿 + 𝜏]] 

U[0.2𝐸[𝐿 + 𝜏]; 
0.8𝐸[𝐿 + 𝜏]] 

Exp(
1

0.5𝐸[𝐿+𝜏]
) 

0.1 55.31% 55.36% 55.36% 51.89% 

0.15 55.14% 55.19% 55.19% 51.77% 

0.2 54.57% 54.62% 54.62% 51.40% 

0.25 53.94% 53.99% 53.99% 51.00% 

 

Table F7 - Policies comparison for different order windows with mean 0.75𝐸[𝐿 + 𝜏] 

Reduction in the average OH inventory (%) 

CV 

OW 

U[0;1.5𝐸[𝐿 + 𝜏]] 
U[0.25𝐸[𝐿 + 𝜏]; 
1.25𝐸[𝐿 + 𝜏]] 

U[0.5𝐸[𝐿 + 𝜏]; 𝐸[𝐿 +
𝜏]] 

Exp(
1

0.75𝐸[𝐿+𝜏]
) 

0.1 62.54% 64.34% 65.34% 58.09% 

0.15 62.53% 64.47% 65.57% 58.10% 

0.2 62.34% 64.32% 65.46% 57.83% 

0.25 62.06% 64.10% 65.33% 57.64% 

 


