
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Autotuning Parallel Application in
Heterogeneous Systems

João Alberto Trigo de Bordalo Morais

DISSERTATION

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Jorge Manuel Gomes Barbosa

June 27, 2017

c© João Bordalo, 2017

Autotuning Parallel Application in Heterogeneous
Systems

João Alberto Trigo de Bordalo Morais

Mestrado Integrado em Engenharia Informática e Computação

June 27, 2017

Abstract

Nowadays computational platforms have been evolving to the high computational power direction,
however it requires a lot of energy to achieve such high performance with single but powerful
processing unit. To manage this energy cost and keep with high performance, computers are built
under the assumption of heterogeneous systems, in other words, computers that have different
kind of processing units with different functions, such as CPU, GPU, Xeon Phi and FPGA. So,
developers should take advantage of parallel activity and scheduling tasks by using the various
parts of the heterogeneous systems.

Now the problem is how to efficiently achieve the highest performance possible when run-
ning software applications by taking the most advantage of such heterogeneous systems without
jeopardizing the application performance and its results. Overall, the problem consists in the co-
existence work of multicore specs, its parallelism and its shared cache problems; CPU parallelism
and scheduling tasks; performance.

For this problem’s solution is expected to find patterns and variables that helps tuning ap-
plication with the best performance main goal in mind. Detecting these patterns and variables
that improve applications, by making them parallelized, helps in the progression of how to make
automatic paralleled code, since nowadays making parallel code requires a lot of effort and time.

This kind of solution requires some validation process and metrics to make sure that it is doing
its work and with proper results. To do so, the idea of the process’ validation is going to be about
comparing the behaviour of three different codes: a version of a serialized code; a version of the
same code but with an expert manually paralleling it; and a version of the serialized code but
«automatically» parallelized by a tool called Kremlin. The metric that was used to compare these
three code versions is execution time in different experience environment.

The application of this work will help developing better automatic tools to make parallel code,
which means in a long term, developers will be less burdened about creating parallel code, conse-
quently, saving them time.

i

ii

Resumo

Atualmente as plataformas computacionais têm vindo a evoluir na direção do elevado poder com-
putacional. No entanto, estas requerem uma quantidade enorme de energia para atingir elevado de-
sempenho individualmente. De modo a gerir este custo energético e manter a elevada performance,
os computadores são construídos sobre a assunção de sistemas heterogéneos, isto é, computadores
compostos por diferentes tipos de unidades de processamentos com diferentes funcionalidades,
como por exemplo, CPU,GPU, Xeon Phi e FPGA. É neste sentido que os programadores devem
tirar proveito de atividade paralela e escalonamento de tarefas recorrendo às várias partes que
compõem o sistema heterogéneo.

O problema incide sobre como atingir de forma eficiente o maior desempenho possível quando
se corre uma aplicação de software, tirando o maior proveito dos sistemas heterogéneos sem prej-
udicar o resultado e o desempenho da aplicação.

Para solucionar este problema é esperado encontrar padrões e variáveis que ajudem a afinar
aplicações com o principal objetivo de atingir a melhor performance em mente. Detetar estes
padrões e variáveis que melhoram aplicações, colocando-as paralelas, ajuda no avanço de como
fazer código paraelelo automaticamente, uma vez que nos dias de hoje fazer código paralelo requer
muito tempo e esforço.

Este tipo de solução requer um processo de validação e métricas para assegurar que se está a
fazer o trabalho corretamente e com resultados aceitáveis. Para tal, a ideia da validação do pro-
cesso consiste em comparar o comportamento de três diferentes códigos: uma versão sequencial
de um código; a versão deste mesmo código mas paralelizada por um perito; e a versão do código
sequencial mas paralelizado «automaticamente» por uma ferramenenta denominada de Kremlin.
A métrica que foi utilizada para comparar estas três versões de código é o tempo de execução em
diferentes ambientes.

A aplicação deste trabalho irá ajudar a desenvolver melhores ferramentas para fazer código
paralelo automático, siginificando que, a longo prazo, programadores estarão menos sobrecar-
regados a criarem código paralelo o que, consequentemente, poupará tempo.

iii

iv

Acknowledgements

This dissertation is a milestone in my academic career. I have been fortunate learn theories and
concepts which would have been impossible if I had not extensively carried out the needed re-
search. I am grateful to a number of people who have guided and supported me throughout the
research process and provided assistance for my venture, both technically and emotionally.

I would like to divide these acknowledgements in two parts: firstly, I would like to mention
those who helped me, directly or indirectly, in terms of technical assistance and knowledge, ex-
pertise, advices and guidance during the development of this dissertation. And the other part is
related to those who guided me and made never give up and maintaining focused until the end.

Beginning with the first part, and the most important person during the development of my dis-
sertation, my supervisor, Pofessor Jorge Barbosa, who guided me in selecting the final theme for
this research. My advisor was there throughout my preparation of the proposal and the conceptu-
alization of its structure. I would not have been able to do the research and achieve learning in the
same manner without his help and support. His recommendations and instructions have enabled
me to assemble and finish the dissertation effectively. Additionally, He, also, gave me the oppor-
tunity to collaborate in Antarex project, an European project that «proposes a holistic approach
capable of controlling all the decision layers in order to implement a self-adaptive application
optimized for energy efficiency.»

I would also like to thank all the people from the laboratory where I performed my experiences
and collaborated in Antarex’s project, such as Professor João cardoso, João Bispo, Hamid Arab-
nejad, Tiago Carvalho, Luís Reis, Nuno Paulino, Ricardo Nobre and Pedro Pinto. They made my
integration in this project much easier and helped me the best way they could and at time I asked.

A special thanks to Kremlin team, in the name of Saturnino Garcia, always ready to answer
my questions and requests related to the Kremlin software.

For the second part, I would like to thank again my supervisor, Professor Jorge Barbosa, who
accompanied me until the end of this process and did not allow me to give up, even in the most
frustrating and dire moments.

I would also like to thank all my instructors and teachers, from the beginning of my education
until the end of this phase, who throughout my educational career have supported and encouraged
me to believe in my abilities. They have directed me through various situations, allowing me to
reach this accomplishment.

Along side with my instructors and teacher, I would like to mention my friends from my year’s
course: João Pereira, Henrique Ferrolho, João Soares, Maria Marques, José Paulo, Leonardo
Faria, Pedro Castro, Rita Ferreira, Jorge Teixeira, Maria Miranda, José Cardoso, Sofia Reis, Pe-
dro França, Gabriel Souto, David Azevedo, Pedro Faria, Vitor Teixeira and João Almeida, Sara
Reis, who accompained me through this five years in university and without them it would be a lot
harder. The lessons learned, good and bad moments are a part of me, like this dissertation.

I would also like to specially thank more friends from my course, such as Simão Felgueiras,
Francisca Paupério, Vitor Esteves, João Leal, Daniel Nunes, Cristiano Seabra, Gonçalo Moreno,

v

Filipe Reis, Eduarda Cunha, Daniela João, Carolina Azevedo, Mariana Silva, João Carvalho, Cata-
rina Correia, Sofia Silva, António Ramadas, Sérgio Domingues, Tiago Frutado, Diogo Vaz, Gus-
tavo Silva, João Almeida, Beatriz Baldaia, Daniel Machado and João Monteiro, who, in some way,
helped, guided, given me advices and lived with me during these five years in university.

I would like to mention my friends from my birth place and elementary school who now-
a-days I still make contact: Rik Rodrigues, Hugo Fernandes, Simão Teixiera, Rita Pinto, Rita
Franco, Maria Silva, Catarina Cadilha, Sara Carvalho, Daniela Peixoto, Tiago Cunha, João Novo,
Francisca Painhas, Ana Teixeira, Windy Noro and Guilherme Polónia, who still mean a lot to me
and are always present when I need.

A special thanks to Rui Castro and Nino Rocha who were always so comprehensive, supportive
and helpful every time i needed.

Finally, my mother, Maria Bordalo Morais, my father, Alberto Morais, my brothers, André
and Pedro Bordalo Morais, and my grandfather, Humberto Bordalo Xavier, I would like to thank
them for all the support, advices and help during all times, specially during the development of
this dissertation.

In the end, to all that had supported and helped me along the course of this dissertation by
giving encouragement and providing the moral and emotional support I needed to complete my
thesis. To them, I am eternally grateful.

João Bordalo

vi

“Katsumoto: You believe a man can change his destiny?
Nathan Algren: l think a man does what he can until his destiny is revealed to him.”

In movie: THE LAST SAMURAI

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation and Goal . 1
1.3 Statement of the Problem . 2
1.4 Purpose of the Work . 2
1.5 Significance of the Work . 2
1.6 Research Hypothesis . 3
1.7 Research Questions . 3
1.8 Dissertation’s Structure . 3

2 Achieving the Highest Processing Power 5
2.1 Introduction . 5
2.2 Through Computers’ Heterogeneous Components 5

2.2.1 OpenCL . 6
2.2.2 StarPU . 6
2.2.3 Twin Peaks . 7

2.3 Through Code Parallelization . 7
2.3.1 OpenMP . 8
2.3.2 Kremlin . 8
2.3.3 Kismet . 8
2.3.4 Atune-IL . 9

2.4 Overview . 10

3 Matrix Multiplication 11
3.1 Introduction . 11
3.2 Classic Algorithm . 11
3.3 In Line Algorithm . 12
3.4 Overview . 14

4 Methodology 15
4.1 Introduction . 15
4.2 Research Method . 16

4.2.1 Kremlin’s usage . 17
4.2.2 Kremlin’s application in specific code samples 17
4.2.3 Code parallelization with Kremlin’s data 18
4.2.4 Manually Code parallelization . 18
4.2.5 Results analysis . 19

4.3 Data collection from conducted experiences . 19

ix

CONTENTS

4.3.1 Kremlin’s indications reports . 19
4.3.2 Execution times for the code variations 20

4.4 Data analysis method . 21
4.5 Data validation . 21

5 Results and Discussion 23
5.1 Introduction . 23
5.2 Kremlin’s reports . 24
5.3 Comparison between Original, Manual and Kremlin 24

5.3.1 The Three groups individually analysed 25
5.3.2 Measuring the performance’s impact using code parallelization 28
5.3.3 Comparison between Manual and Kremlin groups 30

6 Conclusion 37
6.1 Using Kremlin for code parallelization . 38
6.2 Automatic Parallelization is viable . 38
6.3 Future work . 38

References 39

7 Appendices 41
7.1 Developed code . 41

7.1.1 Original Matrix Multiplication (Mult) 41
7.1.2 Original Matrix Multiplication By line (MutLine) 42
7.1.3 Manual Matrix Multiplication (Mult) 43
7.1.4 Manual Matrix Multiplication By line (MultLine) 44
7.1.5 Kremlin Matrix Multiplication (Mult) 45
7.1.6 Kremlin Matrix Multiplication By line (MultLine) 46
7.1.7 Sequential program compiled and profiled by Kremlin 47

7.2 Kremlin’s Reports . 51
7.2.1 Kremlin report for Matrix Multiplication, Mult version 51
7.2.2 Kremlin report for Matrix Multiplication, MultLine version 51

x

List of Figures

2.1 The OpenCL platform model and the OpenCL memory model 6

3.1 Matrix multiplication between matrix A(4x2) and B(2x3), representative matrices. 12
3.2 Handmade draft about Matrix multiplication in line between matrix A(4x2) and

B(2x3), representative matrices. 13

4.1 Methodology work flow . 16

5.1 Graphic that represents the evolution of execution time with the matrix size in-
crease in both Mult and MultLine sequential implementations 25

5.2 Graphic that represents the evolution of execution time with the matrix size in-
crease in function of the number of threads. Version of the manual code paral-
lelization for Mult algorithm . 26

5.3 Graphic that represents the evolution of execution time with the matrix size in-
crease in function of the number of threads. Version of the manual code paral-
lelization for MultLine algorithm . 26

5.4 Graphic that represents the evolution of time reduced with the matrix size in func-
tion of the number of threads. Versions of Mult and MultLine manual implemen-
tations. 27

5.5 Graphic that represents the evolution of execution time with the matrix size in-
crease in function of the number of threads. Version of the Kremlin code paral-
lelization for Mult algorithm . 28

5.6 Dispersion plot that represents the evolution of execution time with the matrix size
increase in function of the number of threads. Version of the Kremlin paralleliza-
tion code for Multline algorithm . 29

5.7 Graphic that represents the evolution of time reduced with the matrix size in func-
tion of the number of threads. Versions of Mult and MultLine Kremlin’s imple-
mentations. 30

5.8 Graphic that represents the evolution of execution time with the matrix size in
function of Manual and Original. 31

5.9 Graphic that represents the evolution of execution time with the matrix size in
function of Kremlin and Original groups implementations. 32

5.10 Graphic that represents the evolution of time reduced with the matrix size in func-
tion of Manual and Kremlin groups implementations. 33

5.11 Graphic that represents the evolution of execution time ratio with the matrix size
in function of the number of threads, for the Mult algorithm 33

5.12 Graphic that represents the evolution of execution time ratio with the matrix size
in function of the number of threads, for the MultLine algorithm. 34

xi

LIST OF FIGURES

5.13 Graphic that represents the evolution of execution time ratio with the number of
threads in function of matrix size, for the Mult algorithm. 34

5.14 Graphic that represents the evolution of execution time ratio with the number of
threads in function of matrix size, for the MultLine algorithm. 35

5.15 Graphic that represents the evolution of execution time ratio with the matrix size
in for 8 threads being used, using Mult and MultLine algorithms. 35

xii

List of Tables

5.1 Kremlin’s report values for the matrix multiplication block 24
5.2 Interval of values for Mult (left table) and MultLine (right table) 31

xiii

LIST OF TABLES

xiv

Abbreviations

CPU Central Processing Unit
GPU Graphic Processing Unit
FPGA Field-Programmable Gate Array
OpenCL Open Computing Language
CHC Cooperative Heterogeneous Computing
OpenMP Open Multi-Processing
OS Operative System
WWW World Wide Web

xv

Chapter 1

Introduction

1.1 Context

Previously, computer systems were built to maximize their processing power in compactness and

individuality because programs were developed with a sequential approach. With the advance

in microchips’ technology, computers increased their processing capacity per volume, however

some issues arose, such as high energy cost, high temperature and low equipment durability. To

solve these issues some measures needed to take place in order to make computers systems more

reliable, durable, efficient, and powerful.

Recently, the computing industry has moved away from exponential scaling of clock frequency

toward chip multiprocessors in order to better manage trade-offs among performance, energy effi-

ciency, and reliability [DMV+08]

Combining different computer processing components, such as CPU, GPU Xeon Phi and

FPGA, in a single computer system removed some heavy burden in the main processing core,

making the computer system with better performance and reliable. However some concerns arose:

how to properly use these components without jeopardizing the computer system and application

performance. Some processing components can handle specific jobs better then others and com-

bined the computer can achieve a whole new performance level; for instance, the use of a GPU

together with a CPU to accelerate deep learning algorithm, analytics, and engineering applica-

tions [Gro], however this kind of utility is not yet well optimized and its utility is only recently

emerging.

1.2 Motivation and Goal

My motivation for this thesis is to advance a little further on the field of the automatic code paral-

lelization and replace the manual parallelization labour because it requires a lot of time and effort

to achieve significant performance.

1

Introduction

1.3 Statement of the Problem

In the filed of achieving the highest possible performance in applications, it could be divided

in four levels: hardware components level; transition between hardware and software level, the

operative system level; the software level, related to the programming language; and the user level,

applications / programs and algorithms that it uses. The problem this dissertation approaches is

related to the software level and the transition between hardware and software level.

Parallelizing code requires getting in touch with the programming language properties, soft-

ware level, and using threads to make code parallel, transition level between hardware and soft-

ware, since the threads handling is done by the operative system. The real problem is parallelizing

code requires a lot of effort, time and knowledge because, firstly, to apply parallelism, the target

application must be analysed in order to find if it is possible to be parallelized. To do this, and

if the applications uses complexed algorithms that requires expertise in other fields, such as bio-

logic, mathematics, physics, it requires time to understand the algorithm and, then, if it has blocks

that can be parallelized. Secondly, if the target programming language is suited to implement

such application in order to take advantage of the parallelism. And, finally, how the parallelism is

achievable without jeopardizing applications result and performance.

In conclusion, it requires a lot of time, effort and knowledge to achieve notable impacts in

applications’ performance, since it is made manually.

1.4 Purpose of the Work

Applying parallel methods requires a lot of knowledge and effort because there is to many factors

and variables to take into account and this is done manually.

The purpose of this dissertation is to find patterns and what variables make the code paral-

lelizable and find what exists in the state of the art, and their performance impact, that helps in

achieving one step closer to the automatic parallelization.

1.5 Significance of the Work

Making parallel code increases applications performance and, if making code parallel was a pos-

sible future, that would increase applications performance and, as well, increase developers per-

formance in building applications and solutions efficiently because it would spare time and effort.

With this dissertation it is hopped that attaining automatic ways to parallelize code is achiev-

able and prove that code being parallelized automatically is viable and trustworthy in terms of

performance, results and speed.

2

Introduction

1.6 Research Hypothesis

This dissertations intends to state that, in first place, parallelizing code is worth using and achieves

great results in terms of performance. Secondly, automatically parallelizing code is possible and

thirdly, has almost, if not, the same results as doing it manually. Additionally, this work intends, as

well, to state that Kremlin tool is an excellent starting point to make parallel code automatically.

1.7 Research Questions

The aim of this research is to find and answer for the following questions:

• Is it possible to achieve high performance level in applications in an automatic way?

• If so, how can it be achievable? Can it totally replace an expert?

• Since exists tools, like Kremlin, which help to, automatically, parallelize code, how accept-

able are their results?

• How this specific tool can help in getting one step closer to automatic code parallelization?

• In which way can Kremlin be better than an expert?

1.8 Dissertation’s Structure

This dissertation is divided in the following chapters:

1. Introduction 1

This addresses the overall context of my dissertation, motivation and goal of the developed

work, what is the problem, the purpose of the work, the impact that this work will have, the

hypothesis that this research wants to prove, the questions behind the research and how this

dissertation is structured.

2. Achieving the Highest Processing Power 2

This chapter is the state of the art of my thesis’ scope and establishes the information,

knowledge and work developed so far. In this chapter there are three sections. The first

section is related to the context of the state of the art in the filed. The other two sections are

two different but complementary approaches which help and describe the state of the art.

3. Matrix Multiplication 3

Still related to this dissertation state of the art, in this chapter it is presented an overview

about the current state of the art for matrix multiplications, more specifically, two possible

algorithms, their pseudo code, advantages and disadvantages. So, this chapter is divided in

three sections: Matrix multiplication overview, Matrix multiplication generic algorithm and

Matrix multiplication by line algorithm.

3

Introduction

4. Methodology 4

The Methodology chapter explains how the work will unfold, starting with the followed

steps, executes experiences and what data was obtained and how this data will be analysed

and validated. So, this chapter is divided in four sections: Research method, Data collection

from conducted experiences, Data analysis method and Data validation.

5. Results and Discussion 5

In this chapter is explained, in detail, the results obtained from all conducted experiences

and the meaning and conclusions drawn from each one, the relation between them and the

overall impact. So, this chapter is divided in two parts: firstly the analysis made from

Kremlin’s report and the comparison between Original code, Manual parallized code by an

expert and Kremlin’s indications to parallize code using the data from Kremlin’s report.

6. Conclusion 6

To sum up the work and reinforce the arguments, the Conclusion’s chapter is divided in

two sections: General conclusions and Future work. In General Conclusions section, is

described the conclusion of each experiment and the overall conclusion for the experiences

and the relation with the research hypothesis and the answer for the questions made. In the

Future work section is presented what could be the next step and what can be done with the

developed work made in this dissertation.

7. Appendices 7

The last chapter of this dissertation, Appendices, presents, in two sections, the code devel-

oped for the conducted experiences and, for the second section, the information provided

from Kremlin’s report.

4

Chapter 2

Achieving the Highest Processing Power

The introduction describes a brief overview about each content of each chapter this report is made

up with. This chapter will focus on the state of the art in how to achieve the highest processing

power. Related work and already known technologies are the main point in this chapter.

2.1 Introduction

Following the context introduced in the previous chapter, the idea of having different process-

ing components in a computer system doesn’t improve the applications performance on its own.

This is where the developers’ work is crucial to take advantages of such different systems. The

developers’ work is to schedule the application’s tasks to the different components so that these

components can work simultaneously, avoiding overheads caused by their parallel activity, access-

ing memory at the wrong moment, memory conflicts, task dependency, wrong application’s results

compared with the sequential application. [LRG12]

As mentioned previously, trying to create parallelized code can arise many problems and must

be handled so the applications don’t lose their functionalities. In order to do so, it requires a lot of

time and effort to make it correctly parallelized. So trying to make code parallelization automatic

is the next step in the direction of taking the most advantage of heterogeneous systems which,

consequently, improves applications performance.

This chapter is divided in two parts: one part will focus in the system’s heterogeneity, how

they can be used in favor of enhancing performance; and the main point of the other part is taking

advantage of parallel activity by transforming sequential code into parallelized code.

2.2 Through Computers’ Heterogeneous Components

Technologies and frameworks in this field have been developed in order to manipulate and control

efficiently the different processing components. The main goal of this technologies is to optimize

5

Achieving the Highest Processing Power

Figure 2.1: The OpenCL platform model and the OpenCL memory model

application parallelization; application memory management; application workload; application

scheduling queue and application kernel dimension.

An interesting fact is that the following software/frameworks that will be present are built, as

its bases, under OpenCL programing language due to the fact that this language’s use is targeted

to heterogeneous parallel programing with CPUs and GPUs.

2.2.1 OpenCL

OpenCL is a programming language for heterogeneous parallel programing targeted to CPUs,

GPUs and other processors [She15]. In a small brief, this language is designed to take advantage of

different types of processors and facilitates heterogeneous computing integration in applications’

code. The user programs in a virtual platform and the source code that has been developed there

is compatible for any system that supports OpenCL. Additionally, OpenCL allows users to control

the applications’ tunning parallelism through its hardware abstraction. In figure 2.1 there is an idea

of the OpenCL plataform model and memory model for a better understanding of this hardware

abstractions that was previously mentioned.

A OpenCL’s program has two parts: the compute kernels that are executed; and the program

that will be run in the system. The program creates a set of commands and puts them in a queue

for each device, additionally, to manage the execution of each kernels, additional commands are

queued. When the computation is finished, the result data, from the previous kernels activity,

returns back to the host’s memory.

2.2.2 StarPU

StartPU is a software tool with the purpose for programmers to use the computing power available

in CPUs and GPUs, wihtout needing to care about if their programs are adapted to a specific

machine and its processing components [ATNW11]. In fact, StartPU is a runtime support library

that schedules taks, provided by applications, on heterogeneous environments, such as CPUs and

GPUs. Additionally, it comes with programming language support, in the form of extensions

6

Achieving the Highest Processing Power

to languages of the C family (C Extensions), as well as an OpenCL front-end (SOCL OpenCL

Extensions).

Programs submit computational tasks, with CPU and/or GPU implementations, and StarPU

schedules these tasks and associated data transfers on available CPUs and GPUs. The data that

a task manipulates are automatically transferred among accelerators and the main memory, so

that programmers are freed from the scheduling issues and technical details associated with these

transfers.

StarPU takes particular care of scheduling tasks efficiently, using well-known algorithms from

the literature. In addition, it allows scheduling experts, such as compiler or computational library

developers, to implement custom scheduling policies in a portable fashion.

2.2.3 Twin Peaks

"Software platform that enables applications originally targeted for GPUs to be executed effi-

ciently on multicore CPUs" [GMH+10]. This is a small definition of Twin Peaks. The aim of this

software is, firstly, to program applications using an API written in OpenCL; secondly, to compile

the applications code to, for instance, add syntatic and semantic checks to make sure that the ker-

nels meet the OpenCL requirements; and execute applications in the heterogeneous environment

using CPUs and GPUs.

2.3 Through Code Parallelization

Great advances have been made in the code parallelization, since there are many ways to do so.

However, currently this kind of practice is mostly done by programmers and it requires a lot of

effort, time and knowledge. It requires knowledge in the best practices related to what should

and can’t be parallelized, good knowledge on the code: its functionalities and its correct outputs

because without these knowledges the chances to parallelize code correctly would be low since it

is important to know if, firstly, is possible to parallelize and if, secondly, the parallelization doesn’t

jeopardize the programs results, outcomes and performance; to sum up, it requires time and effort

to get a deep understanding of the code and to try if the code is correctly parallelized. [Jeo12]

Since this practice is very costly, although grants great results at performance levels, this

field has been developing ways to have results less costly, mostly in effort and time-consuming.

These developments created tools to help programmers develop parallelized code, using OpenMP

directives, or software tools which recommend possible parallelized regions and its theoretical

speed up gain, such as Kremlin, or even a way to estimate how much can a program be parallelized,

such as Kismet software. [GJ12]

The following software tools or instrument languages that will be presented have, as its base

support, OpenMP directives to help in parallelizing code, or at least, to measure performance,

excluding the first one, OpenMP itself, and the last one, ATuner-IL.

7

Achieving the Highest Processing Power

2.3.1 OpenMP

OpenMP was designed to be a flexible standard, easily implemented across different platforms.

The main objectives are: control structure, data environment synchronization, and a runtime li-

brary.

In terms of how it really does its job, OpenMP was designed to exploit certain characteris-

tics of shared-memory architectures. The ability to directly access memory throughout the sys-

tem, combined with fast shared memory locks, makes shared-memory architectures best suited

for supporting OpenMP. In practice, OpenMP is a set of compiler directives and callable runtime

library routines that extend Fortran (and separately, C and C++) to express shared-memory paral-

lelism. [DM98]. To be more precise, OpenMP provides standard environment variables to follow

up the runtime library functions to simplify the start-up scripts for portable applications. This

helps application developers who, in addition to creating portable applications, need a portable

runtime environment. OpenMP has been designed to be extensible and evolve with user require-

ments. The OpenMP Architecture Review Board was created to provide long-term support and

enhancements of the OpenMP specifications.

2.3.2 Kremlin

The true purpose of Kremlin lies in asking the following question: "What parts of this program

should I spent time parallelizing?" [GJb]. So, in overall, Kremlin profiles a serial program and

tells the programmer not only what regions should be parallelized, but also the order in which

they should be parallelized to maximize the return on their effort. Giving a non parallelized code,

Kremlin guides the programmer how to achieve better performance in its program through par-

allelization by presenting a list of code regions that could be parallelized. This list contains a

plan that will minimize the number of regions that must be parallelized to maximize the programs

performance, through parallelization.

At the core of the Kremlin system is a heavyweight analysis of a sequential program’s exe-

cution that is used to create predictions about the structure of a hypothetical, optimized parallel

implementation of the program. These predictions incorporate both optimism and pessimism to

create results that are surprisingly accurate. [GJLT11]

Overall, Kremlin is an automatic tool that, given a serial version of a program, will make

recommendations to the user as to what regions (e.g. loops or functions) of the program to follow

first. [GJ12]

2.3.3 Kismet

Opposed to Kremlin, Kismet helps mitigate the risk of parallel software engineering by answering

the question, "What is the best performance I can expect if I parallelize this program?" [GJb].

Kismet profiles serial programs and reports the upper bound on parallel speedup based on the

program’s inherent parallelism and the system it will be running on.

8

Achieving the Highest Processing Power

Kismet performs dynamic program analysis on an unmodified serial version of a program

to determine the amount of parallelism available in each region(e.g. loop and function) of the

program. Kismet then incorporates system constrains to calculate an approximate upper bound on

the program’s attainable parallel speedup. [JGLT11]

In order to estimate the parallel performance of a serial program, Kismet uses a parallel ex-

ecution time model. Kismet’s parallel execution time model is based on the major components

that affect parallel performance, including the amount of parallelism available, the serial execu-

tion time of the program, parallelization platform overheads, synchronization and memory system

effects which contribute in some cases to super-linear speedups.

2.3.4 Atune-IL

Atune-IL is a general instrument language that helps finding the best values to tune parallel appli-

cations. It is based on a language-independent #pragma annotations that are inserted into the code

of an existing parallel application [SPT09].

Atune-IL is based on the assumption that programmers want to change the values of a variable

between subsequent tuning runs in order to observe the relative performance impact. The Atune-IL

purpose is to help automating this process by allowing programmers manually defining the tuning

variables.

Firstly, in order to define those variables, and everything else, all Atune-IL statements must be

preceded by the #pragma atune prefix. Defining variables is not the only thing that Atune-IL can

do. This is what Atune-IL can define:

• Defining Numeric Parameters

Considering that the tuning variable is the number of threads, numThreads, to let the auto-

tuner vary this variable, the programmer adds a #pragma annotation after the variable, fol-

lowed by SETVAR numThreads to mark it as tunable. Using TYPE int, the domain of trial

values is constrained to integers. The value range is defined by VALUES 2-16 STEP 2,

implying that numThreads will be set to the values 2,4,. . . ,16.

• Defining Architectural Variants

A powerful feature of Atune-IL is that the TYPE of values in a SETVAR statement need not

be numeric. Assuming that this program implements a sorting routine in a generic way, we

can go to the point where the employed sorting algorithm is first instantiated and insert an

annotation with TYPE generic; this allows us to include host language code for the creation

of each algorithm instance. While the auto-tuner just sees two options that can be tried out

in different tuning runs, it will actually try out two architectural variants of the program.

• Additional Support for the Optimization

The SETVAR keyword has additional options that were not mentioned yet. A value in

the specified interval may be defined as the START value that is tried out first. This is

9

Achieving the Highest Processing Power

useful when a variable that controls the number of threads should be tried out first with the

number of available hardware threads. A WEIGHT number may quantify the importance

of the annotated variable for the overall optimization, and the SCALE nominal or SCALE

ordinal keyword may inform Atune that this variable has nominal or ordinal scale. With this

information, the optimizer may treat such variables in a different way

2.4 Overview

As mentioned before, the previously presented software tools, for both cases (using computers’

heterogeneous components and using code parallelization) have their base support even being a

programming language, for OpenCL, or a set of compile directives, for OpenMP, excluding Atune-

IL. Those software tools have improved applications performance somehow, which is already an

advance. However, looking as a software that can do all the parallelization job on its own, with the

minimum programmer’s input, in other words, that can do it almost automatically, none of them

can make it. The only software tool that is close to that automation is Kremlin because it gives

what a developer should do in their code in order to increase its efficiency and performance.

Both approaches, using computers’ heterogeneous components and using code parallelization,

have the role to answer the state of the art premise: "achieving the highest processing power".

10

Chapter 3

Matrix Multiplication

This chapter is about matrix multiplication algorithms. Two possible versions for the same prob-

lem are presented in the following sections. The last sections of this chapter is a recap of both

algorithms.

3.1 Introduction

In the state of the art regarding matrix multiplication, there is an abundance in algorithms try-

ing to optimize these computational operations [GG08] [YZ05], since it is used in, for instance,

GPUs [FSH04].

Two different algorithm versions for the same problem are presented because they are going

to be used as mean to prove that, firstly, parallel code increases performance in a huge scale, and,

secondly, parallel code made in an automatic way can have similar results as the same code being

manually parallelized by an expert.

The first algorithm is the general and classic approach of the problem. The second algorithm is

an enhanced version of the same algorithm but with a new perspective: applying an optimization

on how the data is accessed, by doing a switch on the order of how the loop is done [KW03].

3.2 Classic Algorithm

The classic version of this algorithm [FSH04], computes the multiplication of two matrix with the

same dimension as it follows:

Ci j =
n

∑
k=1

aikbk j = ai1b1 j + ...+ai(n)b(n) j (3.1)

Where:

Ci j Resulting matrix from matrix multiplication between A and B;

11

Matrix Multiplication

n Matrix size nxn;

aik Element from line i and column k belonging to Matrix A;

bk j Element from line k and column j belonging to matrix B.

This algorithm multiplies the first line of matrix A for each column of matrix B, as it is pre-

sented in Figure 3.1

Figure 3.1: Matrix multiplication between matrix A(4x2) and B(2x3), representative matrices.

So, the pseudo code used to implement the classic algorithm, see in Appendices section 7.1, is

the following:

.1 f o r (i=1; i<=n ; i++) {

.2 f o r (j=1; j<=n ; j++) {

.3 sum = 0 ;

.4 f o r (k=1; k<=n ; k++) {

.5 sum += A [i] [k] ∗ B [k] [j] ;

.6 }

.7 C [i] [j] = sum ;

.8 }

.9 }

3.3 In Line Algorithm

This algorithm version calculates matrix multiplication the same way as the classic algorithm:

Ci j =
n

∑
k=1

aikbk j = ai1b1 j + ...+ai(n)b(n) j (3.2)

Where:

12

Matrix Multiplication

Ci j Resulting matrix from matrix multiplication between A and B;

n - Matrix size nxn;

aik Element from line i and column k belonging to Matrix A;

bk j Element from line k and column j belonging to matrix B.

However, the order of the computation is slightly different: This algorithm multiplies an ele-

ment form matrix A for the correspondent line of matrix B, as it is suggested in 3.2:

Figure 3.2: Handmade draft about Matrix multiplication in line between matrix A(4x2) and
B(2x3), representative matrices.

So, the pseudo code used to implement the matrix multiplication by line algorithm, see in

Appendices section 7.2, is the following:

.1 f o r (i=1; i<=n ; i++) {

.2 f o r (k=1; k<=n ; k++) {

.3 f o r (j=1; j<=n ; j++) {

.4 C [i] [j]+= A [i] [k] ∗ B [k] [j] ;

.5 }

.6 }

.7 }

In the end, this algorithm, firstly, fills, for each element of a line in matrix C, with the multipli-

cation of first element of the same line of Matrix C in Matrix A with the element of Matrix B that

is in the same line of the elements’ column of matrix A; then, it sums the current value in matrix C

with the multiplication of the next element in line of matrix A with the with the element of Matrix

B that is in the same line of the elements’ column of matrix A, until the all elements in the Matrix

A line are all multiplied.

13

Matrix Multiplication

3.4 Overview

In terms of code implementation, the biggest difference in these two algorithms is in the permu-

tation between the second and third inner for loop, which, consequently, has an huge impact in

performance [LRW91].

This slight alteration in the classic algorithm makes matrix multiplication in line much faster.

The way and order of the operations are made for this algorithm is what makes this algorithm

better: the order the calculation made takes advantage of what is preloaded in cache memory. By

doing though, it reduces the number of times a cache miss happens, which, consequently, reduces

the number of times information is replaced in cache memory, reducing the number of times

memory cache is written, therefore, reducing the waiting time until cache memory has the required

information, reducing the overall application time, which improves application performance.

However, the matrix multiplication in line algorithm is best suited for long matrix sizes, for

instance, if the matrices fit in cache memory, this algorithm, that reduces the number of cache

memory swaps, makes almost no differences in overall performance.

14

Chapter 4

Methodology

4.1 Introduction

According to the state of the art presented in chapter two, there are many means to, in some kind of

automatic way, improve an applications performance. During my research, my focus was to find

ways to automatically enhance the execution time in applications and programs. For this propose,

Kremlin had a crucial impact in other to understand the viability of automatically parallelize code.

To study the utility and impact of automatic tools, the matrix multiplication algorithm will be

used as a reference to make the performance comparison between original algorithm, an expert

manually parallelizing the original algorithm and using the Kremlin’s indications to parallelize the

original algorithm.

To increase the credibility of this experiment, two similar algorithms for the matrix multipli-

cation were used. As mentioned and explained in the chapter two, there is the traditional way of

multiplying square matrices, naming as a quick reference Mult algorithm, see in the appendix’s

list 7.1 this algorithm implementation, written in C++ programming language; and the optimized

algorithm that multiplies each element from the first matrix with the correspondent line of this ma-

trix element but for the second matrix, naming this algorithm as MultLine, see in the appendix’s

list 7.2 this algorithm implementation, written in C++ programming language. These algorithms

differs from one another in the variables preparation and the order of the loops, which differs how

the memory is accessed. The MultLine algorithm is an optimized version for matrix multiplication

because it takes advantages of what is preloaded in cache and starts pre-calculating the interme-

diate values that will lead to the final and correct result of the multiplication, which means that

won’t be needed to load unnecessary values to cache memory and/or will need afterwards.

Several experiments were conducted to understand the influence of Kremlin’s indications ver-

sus code being manually parallelized by an expert. The data’s length, in this case, the matrix size;

the number of threads used and if the code was parallelized were the used metrics to evaluate the

results, based on a comparison of the execution time.

15

Methodology

In this chapter it is explained the methodology and the steps followed to report in the Results

and Discussion chapter the results and conclusions obtained from the performed experiences. This

chapter also includes detailed information of the acquired data from the conducted experiences,

as in, how it is obtained and its meaning; also includes the methods that were used to analyse the

obtained data and the reason behind those methods; and, in the end, how the data was validated in

order to verify its correctness, accuracy and reliability.

4.2 Research Method

Figure 4.1: Methodology work flow

In Figure 4.1 is outlined the steps that were followed to study the impact of the code being

automaticaly parallelized. This methodology has five states. Firstly and using simple applications,

an evaluation was made for Kremlin’s tool in order to understand how to use this software tool

and evaluate the results that it can achieve, for instance, if it has similar results comparing with an

expert parallelizing manually the same code. After this, Kremlin will be applied to a set of codes

with specific characteristics.

Before applying Kremlin, I manually parallelized the same sample of code in order to evaluate

the results and, afterwards, compare with the Kremlin’s output. Since these states (the experiences

with Kremlin and the Manual code parallelization) required several attempts, there were transitions

between these states.

Finally, in the last state, after several attempts and tuning exercises applied to both code cases

(Manual and Kremlin), data was collected from this experience to evaluate and validate its cor-

rectness in order to conclude how helpful can automatic parallelization be.

To sum up, this methodology has three main stages: learn and evaluate Kremlin’s uses and

results; finding the tuning parameter through several attempts using Kremlin’s outputs and man-

ually parallelize the application’s code; and, in the end, compare and analyse the results in every

16

Methodology

attempt to take conclusions;

4.2.1 Kremlin’s usage

Firstly, and according to all tools/frameworks mentioned in the second chapter, Achieving the

Highest Processing Power, in the Using Code Parallelization section 2.3, Kremlin was chosen

because it presented the best results, easy usage and accessibility comparing to the others 2.3.2.

Kremlin is a tool that indicates, for a sequential program, which block can be parallelised and

some metrics theoretical calculated, such as, overall speedup; self parallelism for each block; the

ideal time reduced for each block, in percentage; the actual time reduced for each block, in per-

centage; and the block coverage, in percentage. The way this tool was used is as it follows: first,

an object file, *.o extension, is required from the compilation of a sequential code. Afterwards, it

is time to use the Kremlin’s compiler with the generated object file so that it can profile the appli-

cation. In order to do so, Kremlin’s compiler runs the program as it is supposed to work. Now that

the profiling is done, Kremlin generates the indications that should be followed to parallelize the

provided sequential code. It also includes the blocks that can be parallelized and the impact of this

theoretical parallelization with the calculations done during the profiling. Since this parallelization

report is done, the developer has to interpret it, confront with the code and apply.

The Kremlin’s usage seems easy, linear and fast forward, however it has some limitations

that I experienced during the learning of Kremlin’s capabilities: Kremlin’s requires a specific

environment mentioned in the Kremlin’s repository [GJa]. It requires several software, libraries,

compilers installations and a modern Unix operative system as its bases, such as MAC OS, RHEL

7 or other Linux distribution compatible with the software specification required. Additionally,

when installing the Kremlin’s tool, some minor fixes are required in order to successfully install.

From the experiences that I have been through, Kremlin has another limitation: it can not

compile and profile all kind of programs: it can only profile programs that use C/C++ as its pro-

gramming language; programs that take advantage of data structures from the Standard Library,

such as, stack, list, priority queue, queue, list, hash table, map, multimap, heap, and rest, since

it doesn’t recognize these structures; another Kremlin’s limitations is its capability of compiling

programs that have a deep function call level greater that seven. By deep function call level I

mean the depth a function has starting from the main() function until it is called, like a functions

call tree. For instance: in a program there is the main() function, a first level, that calls a foo1()

function, and this function calls a foo2(), that this calls a foo3() function, and so on. In this case,

the depth of foo3() function is four. Another small issue that Kremlin’s tool has is the definition

of the iterator variable used in the for’s loops must be defined outside of the loop, as it is in C

programming language.

4.2.2 Kremlin’s application in specific code samples

After all the experiments made in the previous state and as mentioned in the introduction of this

chapter, the matrix multiplication algorithm was used to see the potentialities of Kremlin’s com-

17

Methodology

piler to profile and identify the regions that can be parallelized. So, Kremlin was used in two,

relatively similar in terms of code structure, matrix multiplication codes. The reason behind the

choice was because these two versions of the algorithm are really close to one another, which

means that the testing environment is similar to one another, consequently, the results should be

similar.

4.2.3 Code parallelization with Kremlin’s data

Kremlin’s tool just points the regions/blocks where the program can be parallelized. In both code

samples there are various numbers of inner for loops, for the Mult code there are three inner for

loops, which one of them has a degree of three and the rest a degree of two; and for the MultLine

code there are four inner for loops, which one of them has a degree of three and the rest a degree

of two as well. At this time, after reading the report provided by Kremlin’s tool, the developer

must locate the loops, then, for each loop found, parallelized it, if it should be though, and in case

of inner for loops, what loop should be parallelized using the OpenMP pragma directives.

In my case, I followed all the instructions provided by Kremlin, located all the for loops blocks

indicated by kremlin’s tool and applied the OpenMP pragma directives.

Following the two reports, 7.8 7.9, and looking at the code’s structure for both codes, it

can be divided in 2 bigger parts: the for loops used for matrices initialization and the for loop

for the matrix multiplication. With this information, understating the code and using an expert

knowledge, the code parallelization was done.

4.2.4 Manually Code parallelization

In order to not be manipulated by the Kremlin’s indications, the both codes were previously man-

ually parallelized, this way it was guaranteed that the expert parallelization wasn’t bias nor influ-

enced.

For this parallelization, as mentioned before, it requires knowledge in, firstly, matrix multipli-

cation algorithm; code understanding; best practice in what can and can not be parallelized, taking

into account the overhead that could occur; and understand the thread behaviour in order to make

it do the proper job without jeopardizing the programs outputs and/or performance.

Analysing the code, only the for loop for with the actual multiplications was parallelized

and applied the OpenMP pragma directives to the innermost for loop. In this case, each code

has a slight difference because for Mult code each value of the result matrix must be calculated

individually, so each thread is responsible for it and must treat that value as a private variable that

isn’t shared by the other threads. In the opposite, and since the MultLine code calculates the values

by adding the multiplication to the respective matrix’s cell, each thread does not need to have their

own private variable.

18

Methodology

The bigger part of the code responsible for the matrices initialization wasn’t parallelized, un-

like in Kremlin’s case, because that big part doesn’t increase applications performance if paral-

lelized, at most, could increase in a small percentage execution time if a large matrix size was

used.

4.2.5 Results analysis

To obtain the final execution time of each implementation (Original Matrix Multiplication 7.1,

Original Matrix Multiplication by line 7.2, Manual Matrix Multiplication by an expert 7.3, Man-

ual Matrix Multiplication by line by an expert 7.4, Kremlin Matrix Multiplication 7.5 and Krem-

lin Matrix Multiplication by line 7.6), these six implementations suffered many modifications and

tweaks since this process is a try-error until it is found the believed best parallelization. It is hardly

possible to parallelize a whole program at the first try.

After compiling all these implementations and registering all the execution time for different

matrix sizes and number of threads (not applied to the Original codes), this data was organized so

it could be used to compare results and conclude about the performed experiences.

4.3 Data collection from conducted experiences

From all the developed work, the obtained data can be divided in two moments: Kremlin’s indica-

tions reports and the execution times for the six code variations.

4.3.1 Kremlin’s indications reports

For the Mult 7.8 and MultLine 7.9 codes were generated a report done by Kremlin. This report

displays for each parallelizable block:

Time reduced percentage of time reduced if parallelization is implemented;

Ideal Time reduced percentage of ideal time reduced if parallelization is implemented;

Coverage percentage of sequential execution time in a block;

Self Parallelism amount of parallelism in a block;

Parallelism type classification of the parallelizable block;

Loop location block lines range of the parallelizable block;

Function location function name of the parallelizable block, mentioning the line where the func-

tion is defined;

File location file name of the parallelizable block, mentioning the line where the function is

called;

19

Methodology

The guidelines given by the report must be followed by the order it is suggested because

the first detected block has the biggest impact in programs performance and should be parallelized

first. The Coverage and Self Parallelism are metrics that indicates the speedup of the block, which,

consequently, interferes with the time reduced. This block speedup must be equal or less then the

overall program speedup, based on Amdahl’s law, and can be calculated as it follows [?]:

speedup ≤ 1

(1−Coverage)− Coverage
Sel f Paralelism

(4.1)

Where:

speedup - applications improvement performance when parallel;

Coverage - percentage of sequential execution time in a block;

Self Paralelism - amount of parallelism in a block;

Formula 4.1 determinates the speedup for a specific block through calculated Coverage and

Self Paralelism to find the impact of this block compared to the overall application speedup. It

also states that the parallel block speedup is less or equal than application’s speedup.

4.3.2 Execution times for the code variations

After running the six implementations, the results can be divided in three major groups and each

group has got the respective implementations of the Mult and MultLine algorithms. Each group

has its own experimental environment, with their own variables and their own meaning according

to the given context.

4.3.2.1 Original code

The Original code only variant is the matrix size. This group is a reference group to compare the

results of the others groups and to quantify the impact of the others groups. The results of this

group are the execution times running both matrix multiplications algorithm versions.

4.3.2.2 Manual code parallelization

The Manual code parallelization by an expert has as variables the matrix size and number of

threads used for each run. This group’s results are the execution times for both matrix multiplica-

tion algorithm versions. These results were used to confront with the following group in order to

evaluate the improvement that a guided parallelizations, using Kremlin, can for an application.

4.3.2.3 Kremlin’s code parallelization

Like the previous group, Kremlin’s code parallelization indications use the same variables and pro-

vide the same type of the results. However, this group is responsible to define if it is advantageous

to use software tools to help with code parallelization, in an automatic way.

20

Methodology

4.4 Data analysis method

Analysing data is a very important stage because it is necessary to have correct conclusions. From

the experiments made a lot of data has been generated and without a proper organization it is hard

to understand the meaning, therefore, hard to take good conclusions from its analysis. There are

three groups of code and in each group two different algorithms implementation. In order to make

a correct analysis from the execution times for each situation and comparing with the others cases,

the collected results were stored in tables along with the experimental related variables. Addition-

ally, calculations were required, such as, difference between executed times between groups and

algorithm implementation; ratio between these executed times; the percentage of the increase/de-

crease for these executed times; and the impact in the execution time that the others two groups

have comparing with the Original code group. After these data manipulation, the best way to

analyse all this generated and calculated data is by a dispersion plot. Using a dispersion plot,

it transforms data into information visually understandable and easier to conclude because these

plots display the variation of results according to the experimental environment variables.

4.5 Data validation

A considerable amount of data was generated and, more importantly, it is important that this data

is scientific correct, or at least there is an explanation. In order to keep its fidelity, it is crucial to

validate each and every piece of data. The first measure is to have a critical position every time

by questioning if the obtained values make sense when compared with theoretical, or expected

or referenced value. In this current case, for instance, the Original group implementation is the

reference, which means if the other groups have a lower execution time, or the data has some

defect caused by some hardware component, or the implementation isn’t good enough, or any

other reason that can justify the data invalidation.

Criticism can not be the only measure because it could be luck and the gathered data happened

to be correct. It is important consistency. To do so, the tests must be performed several times under

the same circumstances and with a plausible and considerable amount of values to find patterns.

For this particular case it is used a matrix size large enough, [1000,2000,3000,4000], and a wide

range for the number of threads, [1,2,3,4,5,6,7,8]. For instance, if the matrix size was small, such

as one hundred, the execution time would be so low and with so much error accumulated since the

CPU executed fast enough that it couldn’t count the time with precision.

Finally, to make reasonable comparisons and analogies between results, the experience envi-

ronments must have some connection in its variables or environment. Without a connection, the

data has no meaning, therefore, it turns impossible to take conclusions. In the performed expe-

riences, it was used the same algorithm, Matrix Multiplication, with small modifications in the

implementations but with the same structure. Additionally, the environment variables were the

same: number of threads and matrix size.

21

Methodology

22

Chapter 5

Results and Discussion

5.1 Introduction

Generally, the first objective a developer has when building software is making it work. After

some experience and good practices, the development becomes faster, elegant and with concerns

about its performance. When dealing with performance issues, there is a lot of measures to pay

attention from the lowest hardware level to the highest software level. Nowadays performance is

as much important as the creating software, because it makes the applications running faster, with

less cost, and, in the end, more revenue. However it is really hard for a single person masters

performance as a whole because there are too many variables, conditions, aspects, and realities

making humanly impossible mastering everything.

The approach to achieve high performance level is to have handful of expertises in each con-

crete area: from hardware level to user level. Even so, mastering specific fields in the performance

level, it is hard, takes time, lots of effort and most of the times impossible to achieve the perfect

performance. Since achieving high level of performance is so important and requires a lot of effort

to try to achieve it, then, first of all, is it possible to achieve high performance level in applications

in an automatic way? If so, how can it be achievable? Can it totally replace an expert?

Focusing these question to the field of code parallelization, more will rise, not necessarily re-

lated to this specific field: since exists tools, like Kremlin, which help to, automatically, parallelize

code, how acceptable are their results? How this specific tool can help in getting one step closer

to automatic code parallelization? In which way can Kremlin be better than an expert?

In order to answer all previous questions, this chapter is divided in two main sections: the

first section is related to the Kremlin’s activity and how is it helpful. The second section is the

confrontation of all the gathered data to verify what is better and how can it contribute to the future

of automatic code parallelization.

23

Results and Discussion

5.2 Kremlin’s reports

When Kremlin compiles and profiles a sequential code, it provides a report with locations of the

blocks that can be parallelized. Additionally it gives some values that indicates the theoretical gain

if the parallelization is implemented.

For the Mult and MultLine algorithms, Kremlin gave these reports 7.8 7.9, respectively. Taking

into account that the manual code parallelization was done in the first place, the risk of being bias

is null and, additionally, helps to understand if Kremlin is reporting things correctly.

In this case, Kremlin detected the block code with the most impact on application perfor-

mance for both implementations (Mult and MultLine). Additionally, Kremlin’s report pointed the

locations of more blocks to be parallelized, however, the impact of these blocks being parallelised

might have a low impact on applications’ performance, also for both implementations. The impact

of the parallization made in the other block is analysed in the next section because a verdict can

be made after comparing the execution times of the Manual’s group against Kremlin’s group.

The justification behind these analysis is based on the time reduced, ideal time reduced, cov-

erage and self parallelism values and the block location, provided by the report, comparing with

the expected result and manual code parallelization by an expert, in both implementation.

Getting a close look in these reports, at the left side is Mult report values, 7.8, and on the right

side is MultLine report values, 7.9:

Table 5.1: Kremlin’s report values for the matrix multiplication block

Algorithm Mult
Time reduced 66.38%
Ideal time reduced 70.96%
Coverage 88.51%
Self parallelism 5.05

Algorithm MultLine
Time reduced 63.01%
Ideal time reduced 63.20%
Coverage 84.02%
Self parallelism 4.03

In both reports, the high percentage of the reduced time and time reduced means that paral-

lelizing these blocks the execution time of this block is, theoretically, reduced in between those

two values.

Taking a close look in the others blocks, their locations refers to the matrices initialization

and the values of timed reduced and ideal timed reduced are really low, around 3% in both imple-

mentations, which means that the improved performance is insignificant and might cause delay in

during de applications executions. However, this situations is confirmed in the next section.

5.3 Comparison between Original, Manual and Kremlin

The previous section has an important role because the reports credibility and correctness influ-

ences the results in this chapter, consequently, could lead to misguided and wrong conclusions.

Since the report gave correct feedback and it is well justified, the following values are valid.

24

Results and Discussion

To get a satisfying answer for the initial questions, it is necessary to, in first place, understand

the context of each experience and respective results; following the evolution and the comparison

is made between data. So, in a first instance, each group (Original, Manual, Kremlin) is going to

be analysed individually to establish the context and basis knowledge. Then, the second subsec-

tion will focus in measuring the impact of Manual and Kremlin group have to the Original group

to prove that these measures, in practical terms, have a huge impact improving applications per-

formance. After this knowledge also has been established, the results will prove if the Kremlin’s

guidelines make the code with better performance comparing to the expert’s results parallelizing

the code manually, and respond to the question if automaticly parallelizing code is a reliable and

good practice.

5.3.1 The Three groups individually analysed

As mentioned in the previous chapter, each group has its purpose based on the variables used

and results obtained. To understand the overall impact of these implementations, it is important

to firstly understand the experiences that were made in each group separately and analyse their

results, step by step.

5.3.1.1 Original

This group has the sequential code version of the Mult and MultLine algorithms. As mentioned

earlier, this group stablish the base reference for the execution time. From now on, all experiences

should have better performance, unless there is an explanation for the Original Group has better

results, in some particular cases.

Figure 5.1: Graphic that represents the evolution of execution time with the matrix size increase
in both Mult and MultLine sequential implementations

According to Figure 5.1, the MultLine algorithm has better results the higher the matrix size

is, as expected, since this algorithm takes advantage of the values preloaded in memory cache.

Another aspect noteworthy is the increase of the function variation, in both implementations,

as the matrix size increases. Specially for the Mult implementation. This is related to the memory

cache size. The smaller the size the higher will be the variation.

25

Results and Discussion

5.3.1.2 Manual

Manually parallelizing a code requires a lot of effort, time and know-how since the way it is

done requires the expert to understand the code, have practice in detecting potential parallelized

blocks of code, identify the best way to parallelize those blocks and test the work until it gives a

reasonable result. So, this group corresponds to this situation and, in theoretical perspective, has

the bests results.

Figure 5.2: Graphic that represents the evolution of execution time with the matrix size increase in
function of the number of threads. Version of the manual code parallelization for Mult algorithm

Figure 5.3: Graphic that represents the evolution of execution time with the matrix size increase
in function of the number of threads. Version of the manual code parallelization for MultLine
algorithm

Figure 5.2 and Figure 5.3 have similar behaviours including the fact that using eight threads

makes the application with the best performance because the executed time is inferior as long as

26

Results and Discussion

the matrix size increases.

Figure 5.4: Graphic that represents the evolution of time reduced with the matrix size in function
of the number of threads. Versions of Mult and MultLine manual implementations.

However, the difference between these two plots is the value of the execution time. This

difference can be analysed in Figure 5.4. Time reduced is a percentage of how much the MultLine

implementation reduces comparing to the Mult implementation.

It is a fact, observed in Figure 5.4, that increasing the matrix size, the time reduced tends to a

certain value which is different for each number of threads. These values is where ceiling where

MultLine algorithm can not be better than Mult algorithm for the same hardware components;

meaning the existence of a hardware limitation (processor power, memory ram and cache size)

since the increase of the matrix size will, proportionally, increase the number of loads, writes and

cache missed for both algorithms.

Another noteworthy fact is , for low values of matrix size, 1000 and 2000, and the higher

the number of threads being used, the time reduced is negative, meaning executed time for Mult

implementation is lower than MultLine implementations, concluding that Mult implementation is

better suited for low size data in case a high number of threads are being used. This is due to many

threads are being used simultaneously and they are trampling each other in order to complete their

task, which increases the overall overhead, and so the reason behind the time reduced negative

value.

5.3.1.3 Kremlin

This group is constituted by the result of the implementations indicated by Kremlin’s report. The

experiences conducted in this group and the respective obtained results will demonstrate if Kremlin

can actually bring acceptable results.

27

Results and Discussion

Figure 5.5: Graphic that represents the evolution of execution time with the matrix size increase in
function of the number of threads. Version of the Kremlin code parallelization for Mult algorithm

Figure 5.5 and Figure 5.6, as expected, have similar behaviour compared to manual group,

since the code samples from both groups have the same structure and the experimental environ-

ment is the same: same experimental variables(matrix size, number of threads, parallelized code)

and same result type (execution time).

Additionally, and for the same reason, Figure 5.7 also has the same behaviour as the manual

group and, therefore, the analysis is the same.

5.3.1.4 Overall review

Through the analysis of these three test groups, separately, and since these groups were tested

under the same circumstances, it is possible to conclude that using these versions of the matrix

multiplication algorithm do not jeopardize the results, since they have similar behaviours, more-

over, they increase assurance and credibility for the following up analysis and conclusions. It

is because of the similarity of behaviours that this comparison is valid and correct, even so the

performance is different, which was expected, as explained before.

5.3.2 Measuring the performance’s impact using code parallelization

The conducted analysis presented in previous section explains the characteristics of each group

and the plausible connection with each other. To quantify how beneficial can code parallelization

be, the next sub sections will prove its impact.

The first sub section compares how much better was the improvement for Manual group, using

the Original group as base. The second sub sections compares the same ways as the previous

sub sections but, instead using the Manual group, it will be the Kremlin group. Finally, overall

conclusions will be presented about both sub sections.

28

Results and Discussion

Figure 5.6: Dispersion plot that represents the evolution of execution time with the matrix size
increase in function of the number of threads. Version of the Kremlin parallelization code for
Multline algorithm

For this analysis, either Manual or Kremlin groups, the number of threads that will be used is

eight since, and for both groups, using eight threads gave the best performance results. This does

not mean that for the other number of threads the results were worst than the Original group, far

from that. The goal is achieving the highest performance, so the best results were picked.

5.3.2.1 Comparison between Manual and Original groups

In Figure 5.8 is presented a dispersion plot demonstrating that Manual group has an overwhelming

better performance and that performance increases with the matrix size to a certain point, explained

in 5.3.1.2. This includes both implementations.

With this plot. it is proved that using parallelization techniques in programs and applications

can achieve higher performances. In this particular case, it can be more than twice better for the

Mult case and almost twice for MultLine. These values are presented in 5.3.2.3.

5.3.2.2 Comparison between Kremlin and Original groups

Regarding the Kremlin experimental results, in Figure 5.9 is shown a dispersion plot revealing,

as expected, and like in the previous sub sub section, that Kremlin’s group surpassed the Original

group in terms of execution time, in both implementations.

Like in previous case, this plot proves that using Kremlin as an automatic tool to help identify-

ing parallelizable code blocks can enhance applications performance and is a good asset because

it can save time by indicating where it is possible to make a block parallel, instead of the developer

looking for them.

29

Results and Discussion

Figure 5.7: Graphic that represents the evolution of time reduced with the matrix size in function
of the number of threads. Versions of Mult and MultLine Kremlin’s implementations.

5.3.2.3 Overall comparison

If code parallelization would not bring any beneficial impact in programs and applications, ob-

viously, it would make no sense using it. Additionally, and for this specific case, if Kremlin’s

performance was worst, this tool would be useless to help in making parallel code automatically.

In Figure 5.10 is compared the time reduced for Manual and Kremlin groups comparatively to

Original Group. From this plot it is drawn that Mult algorithm takes greater advantages of code

parallelization, however MultLine has better execution times.

Quantifying such increase, for the Mult algorithm the time reduced can be around 67%, mean-

ing that the Mult implementation, for both groups, can be 67% faster, more than twice, compared

to the Original group, for the same algorithm. Regarding the MultLine algorithm, the time reduced

can be around 42%. The 25% difference of both implementations represents the impact of the dif-

ference on matrix multiplication algorithm versions. Meaning that MultLine algorithm makes a

huge difference on performance levels.

With these values measured in a quantifiable way, it can be said, with precision and accurately,

parallel code has an huge impact in terms of applications performance.

5.3.3 Comparison between Manual and Kremlin groups

Before starting the comparison between results obtained from running the parallelized code written

by an expert and running the parallelized code with Kremlin’s indication, the difference between

them is that in the Kremlin group, more specifically, in the matrix initializations blocks, they are

parallelized as well. These blocks were parallelized because Kremlin detected them, however the

theoretical impact for these parallelized bocks could be small, positively or negatively, or even

with no effect. Additional, in the expert perspective, they were not taken in consideration.

30

Results and Discussion

Figure 5.8: Graphic that represents the evolution of execution time with the matrix size in function
of Manual and Original.

Now that the three groups were characterized and the comparison between Manual and Krem-

lin with Original group to stablish viability in both solutions, taking a close look at all this infor-

mation and analysis, and looking at Figure 5.10, the lines in the plot overlap or are really closed

to one another in both algorithms. This observation confirms what is expected, however, they are

not exactly the same because small modifications were done to Kremlin’s group code.

In order to evaluate if there is really a difference in results, the following plots present the

execution time ratio between Manual and Kremlin’s group, for both implementations.

To correctly analyse Figures 5.11 and 5.12, it is important to visualize the range of the values:

Table 5.2: Interval of values for Mult (left table) and MultLine (right table)

Lower bound 0,966
Upper bound 1,049
Interval size 0,083

Lower bound 0,936
Upper bound 1,073
Interval size 0,137

Looking at the tabulated values, there are cases where Kremlin group had better performance

then the Manual group, since there are values less then 1. However, looking at the interval size,

for both cases, they are really small, meaning that the execution time for both groups is similar.

Confronting Figures 5.11 and 5.12, they seemed confusing, messed up, random, and that is

partial true because the execution time values from both groups are that close form one another

and a slight alteration makes, apparently, an huge impact. It is also partial false because there are

patterns in these plots: for each matrix size there is a concentration of lines, meaning that it is not

so random and the explanation is that both parallelizations have similar performances. However,

and again, the interval value is small.

Trying to look the data in a different angle and perspective to understand if there is any corre-

lation, pattern or relation, these Figures 5.13 and 5.14 are an unsuccessful experiment. The point

of these two figures is to understand the variation of execution time ratio with number of threads

31

Results and Discussion

Figure 5.9: Graphic that represents the evolution of execution time with the matrix size in function
of Kremlin and Original groups implementations.

in function of matrix size, however there is no relation for both cases. So, the number of threads

has no direct relation with the execution time ratio in function of the matrix size.

So far, in this sub section, the analysis done is in a general view. This Figure 5.15 is about

execution time ratio in function of matrix size using eight threads. This specific case was chosen

because for both groups, using 8 threads had the best results, as previously mentioned and verified.

In the green line is established as a reference: the values above this line mean Kremlin performed

better than Manual, and the values above this line mean the opposite. Looking at those values,

there are more values under the line than above, meaning that Manual group performed slightly

better, for both implementations.

32

Results and Discussion

Figure 5.10: Graphic that represents the evolution of time reduced with the matrix size in function
of Manual and Kremlin groups implementations.

Figure 5.11: Graphic that represents the evolution of execution time ratio with the matrix size in
function of the number of threads, for the Mult algorithm .

33

Results and Discussion

Figure 5.12: Graphic that represents the evolution of execution time ratio with the matrix size in
function of the number of threads, for the MultLine algorithm.

Figure 5.13: Graphic that represents the evolution of execution time ratio with the number of
threads in function of matrix size, for the Mult algorithm.

34

Results and Discussion

Figure 5.14: Graphic that represents the evolution of execution time ratio with the number of
threads in function of matrix size, for the MultLine algorithm.

Figure 5.15: Graphic that represents the evolution of execution time ratio with the matrix size in
for 8 threads being used, using Mult and MultLine algorithms.

35

Results and Discussion

36

Chapter 6

Conclusion

Before verifying if parallel code made in an automatic way is a reality, first it is important to

verify if making code parallel is viable. And to prove that, the experiments in 5.3.2 shows that the

performance is far greater for the bigger the size of the input data, under the hardware components

capabilities. Since it was established the viability of making code parallel, it is now possible to

focus on the goal of this dissertation. So, the main goal of this dissertations is to find the viability

on making parallel code automatically. For that purpose, and mentioned in 2, it was necessary

to know what were the basis, common mind set, knowledge’s course, developments and future

thoughts on this field. Proving that it is viable, the next course of action is finding how can it

be made. One way to do it is using Kremlin’s help. Kremlin not only proved assistance but

also answered in one possible way to automatically make code parallel, for this case it is two

circumstances: firstly, locating possibility parallizable blocks, which most likely are for loops,

and, secondly, measuring the impact of these blocks imagining if they were parallelized.

However, and although Kremlin is a powerful tool to advice one of the most important jobs

when parallelizing code, location of parallelizable blocks, it isn’t perfect and has its own limita-

tions:

• Can’t use data structures from the Standard Library, such as, stack, list, priority queue,

queue, list, hash table, map, multimap, heap, etc.;

• Compiling programs that have a deep function call level greater that seven;

• Can’t detect for loops if the iterator variable used isn’t defined outside of the loop;

• When dealing with inner for loops, it just detects the block, instead of pointing which loop

should be parallelized.

During the conducted experience, when learning how to take the best profit from Kremlin and

when collecting data from the performed experiences mentioned in the previous chapter, those

where the problems found and the struggles that required to be overcomed.

37

Conclusion

For now, the location of a parallelizable block and the viability of this block being parallel in

terms of performance are the patterns found for doing code parallel. Another aspect found when

conducting the experiments is the number of threads used in function of the size of the data. For

a big size of data, the higher the number of threads used, the performance was better. However,

there is the limitations in hardware components, such as cache and RAM memory, the power of

the processor, including the number of threads it can use.

These were the main aspects detected during these experimented and in the following sections

it is justified the reasoning behind these choices.

6.1 Using Kremlin for code parallelization

In 5.2 it is analysed the information given by Kremlin’s report. Adding to this information the

analysis of the results made in 5.3, we can conclude Kremlin provided accurate and correct in-

formation. Even in the case of the parallelization of those matrix initialization blocks, Kremlin

detected a low impact in performance and, according to the results, it had almost no impact at all.

For future reference, Kremlin is a powerful tool to help experts in identifying potential paral-

lelizable blocks and measuring the quality of its performance in case being parallelized.

6.2 Automatic Parallelization is viable

From the conducted experiments in 5.3 and joining the information provided from Kremlin’s re-

port, it was proved and concluded that automatic parallelization is possible, viable, accurate and,

the main purpose, spares time and efforts for the developer side. Although it is still required exper-

tise to understand and evaluate the provided data, this is the first step in order to make automatic

code parallelization even better. The time I used to follow Kremlin’s instructions from the report

was really small compared to the one used to manually parallelized the same code. Even doing the

manual part first and using the knowledge from that time, it was still faster because I could skip

the phase of detecting parallelizable code and evaluation of its relevance.

6.3 Future work

For the future, this work could be used as an orientation for the next steps. Those steps could be

finding more patterns and variables; Using Kremlin information and number of threads according

to the input data size, making a profile for this application to find the best performance; and, for

the last stage, rewrite applications code with these informations coming form the profiler, so that

the application can have the best performance possible.

38

References

[ATNW11] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier.
Starpu: a unified platform for task scheduling on heterogeneous multicore archi-
tectures. Concurrency and Computation: Practice and Experience, 23(2):187–198,
2011.

[DM98] Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api for shared-
memory programming. IEEE computational science and engineering, 5(1):46–55,
1998.

[DMV+08] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan Carter,
Leonid Oliker, David Patterson, John Shalf, and Katherine Yelick. Stencil compu-
tation optimization and auto-tuning on state-of-the-art multicore architectures. In
Proceedings of the 2008 ACM/IEEE conference on Supercomputing, page 4. IEEE
Press, 2008.

[FSH04] Kayvon Fatahalian, Jeremy Sugerman, and Pat Hanrahan. Understanding the effi-
ciency of gpu algorithms for matrix-matrix multiplication. In Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, pages 133–
137. ACM, 2004.

[GG08] Kazushige Goto and Robert A Geijn. Anatomy of high-performance matrix multipli-
cation. ACM Transactions on Mathematical Software (TOMS), 34(3):12, 2008.

[GJa] Saturnino Garcia Jr. kremlin: like gprof but for parallelization.
https://bitbucket.org/elsaturnino/kremlin. Accessed: 2017-04-17.

[GJb] Saturnino Garcia Jr. Saturnino (sat) garcia. http://home.sandiego.edu/ sat/. Accessed:
2017-02-12.

[GJ12] Saturnino Garcia Jr. A practical oracle for sequential code parallelization. University
of California, San Diego, 2012.

[GJLT11] Saturnino Garcia, Donghwan Jeon, Christopher M Louie, and Michael Bedford Tay-
lor. Kremlin: Rethinking and rebooting gprof for the multicore age. In ACM SIG-
PLAN Notices, volume 46, pages 458–469. ACM, 2011.

[GMH+10] Jayanth Gummaraju, Laurent Morichetti, Michael Houston, Ben Sander, Benedict R
Gaster, and Bixia Zheng. Twin peaks: a software platform for heterogeneous com-
puting on general-purpose and graphics processors. In Proceedings of the 19th in-
ternational conference on Parallel architectures and compilation techniques, pages
205–216. ACM, 2010.

39

REFERENCES

[Gro] Nvidia Group. What is gpu-accelerated computing?
http://www.nvidia.com/object/what-is-gpu-computing.html. Accessed: 2017-02-09.

[Jeo12] Donghwan Jeon. Parallel speedup estimates for serial programs. 2012.

[JGLT11] Donghwan Jeon, Saturnino Garcia, Chris Louie, and Michael Bedford Taylor.
Kismet: parallel speedup estimates for serial programs. In ACM SIGPLAN Notices,
volume 46, pages 519–536. ACM, 2011.

[KW03] Markus Kowarschik and Christian Weiß. An overview of cache optimization tech-
niques and cache-aware numerical algorithms. Algorithms for Memory Hierarchies,
pages 213–232, 2003.

[LRG12] Changmin Lee, Won W Ro, and Jean-Luc Gaudiot. Cooperative heterogeneous com-
puting for parallel processing on cpu/gpu hybrids. In Interaction between Compilers
and Computer Architectures (INTERACT), 2012 16th Workshop on, pages 33–40.
IEEE, 2012.

[LRW91] Monica D Lam, Edward E Rothberg, and Michael E Wolf. The cache performance
and optimizations of blocked algorithms. In ACM SIGARCH Computer Architecture
News, volume 19, pages 63–74. ACM, 1991.

[She15] Jie Shen. Efficient high performance computing on heterogeneous platforms. 2015.

[SPT09] Christoph A Schaefer, Victor Pankratius, and Walter F Tichy. Atune-il: An instrumen-
tation language for auto-tuning parallel applications. In Euro-Par, volume 9, pages
9–20. Springer, 2009.

[YZ05] Raphael Yuster and Uri Zwick. Fast sparse matrix multiplication. ACM Transactions
on Algorithms (TALG), 1(1):2–13, 2005.

40

Chapter 7

Appendices

7.1 Developed code

7.1.1 Original Matrix Multiplication (Mult)

Listing 7.1: Matrix Multiplication original algorithm, written in C++
.1 d ou b l e OnMult (i n t m_ar , i n t m_br)
.2 {
.3 dou b l e Time1 , Time2 ;
.4 dou b l e temp ;
.5 i n t i , j , k ;
.6 dou b l e ∗pha , ∗phb , ∗phc ;
.7
.8 / / M a t r i x e s Memory a l l o c a t i o n
.9 pha = (d ou b l e ∗)malloc ((m_ar ∗ m_ar) ∗ s i z e o f (d ou b l e)) ;

.10 phb = (d ou b l e ∗)malloc ((m_ar ∗ m_ar) ∗ s i z e o f (d ou b l e)) ;

.11 phc = (d ou b l e ∗)malloc ((m_ar ∗ m_ar) ∗ s i z e o f (d ou b l e)) ;

.12

.13 / / S t a r t i n g c o u n t i n g t ime

.14 Time1 = omp_get_wtime () ;

.15

.16 / / Loading m a t r i x v a l u e s

.17 f o r (i=0; i<m_ar ; i++)

.18 f o r (j=0; j<m_ar ; j++)

.19 pha [i∗m_ar + j] = (do ub l e) 1 . 0 ;

.20

.21 f o r (i=0; i<m_br ; i++)

.22 f o r (j=0; j<m_br ; j++)

.23 phb [i∗m_br + j] = (do ub l e) (i+1) ;

.24

.25

.26 / / Ma t r i x M u l t i p l i c a t i o n

.27 f o r (i=0; i<m_ar ; i++)

.28 { f o r (j=0; j<m_br ; j++)

.29 { temp = 0 ;

.30 f o r (k=0; k<m_ar ; k++)

.31 {

.32 temp += pha [i∗m_ar+k] ∗ phb [k∗m_br+j] ;

41

Appendices

.33 }

.34 phc [i∗m_ar+j]=temp ;

.35 }

.36 }

.37

.38 / / S t o p i n g t ime

.39 Time2 = omp_get_wtime () ;

.40

.41 / / F r e e i n g memory used f o r m a t r i x e s

.42 free (pha) ;

.43 free (phb) ;

.44 free (phc) ;

.45

.46 r e t u r n Time2 − Time1 ;

.47 }

7.1.2 Original Matrix Multiplication By line (MutLine)

Listing 7.2: Matrix Multiplication by line original algorithm, written in C++
.1 d ou b l e OnMultLine (i n t m_ar , i n t m_br)
.2 {
.3 d ou b l e Time1 , Time2 ;
.4 d ou b l e temp ;
.5 i n t i , j , k ;
.6 d ou b l e ∗pha , ∗phb , ∗phc ;
.7
.8 / / M a t r i x e s Memory a l l o c a t i o n
.9 pha = (d ou b l e ∗)malloc ((m_ar ∗ m_ar) ∗ s i z e o f (d ou b l e)) ;

.10 phb = (d ou b l e ∗)malloc ((m_ar ∗ m_ar) ∗ s i z e o f (d ou b l e)) ;

.11 phc = (d ou b l e ∗)malloc ((m_ar ∗ m_ar) ∗ s i z e o f (d ou b l e)) ;

.12

.13 / / S t a r t i n g c o u n t i n g t ime

.14 Time1 = omp_get_wtime () ;

.15

.16 / / Loading m a t r i x v a l u e s

.17 f o r (i=0; i<m_ar ; i++)

.18 f o r (j=0; j<m_ar ; j++)

.19 pha [i∗m_ar + j] = (do ub l e) 1 . 0 ;

.20

.21 f o r (i=0; i<m_br ; i++)

.22 f o r (j=0; j<m_br ; j++)

.23 phb [i∗m_br + j] = (do ub l e) (i+1) ;

.24

.25 f o r (i=0; i<m_ar ; i++)

.26 f o r (j=0; j<m_ar ; j++)

.27 phc [i∗m_ar + j] = (do ub l e) 0 . 0 ;

.28

.29

.30 / / M a t r i x M u l t i p l i c a t i o n

.31 f o r (i=0; i<m_ar ; i++)

.32 { f o r (k=0; k<m_ar ; k++)

.33 {

.34 f o r (j=0; j<m_br ; j++)

42

Appendices

.35 {

.36 phc [i∗m_ar+j] += pha [i∗m_ar+k] ∗ phb [k∗m_br+j] ;

.37 }

.38

.39 }

.40 }

.41

.42 / / S t o p i n g t ime

.43 Time2 = omp_get_wtime () ;

.44

.45 / / F r e e i n g memory used f o r m a t r i x e s

.46 free (pha) ;

.47 free (phb) ;

.48 free (phc) ;

.49

.50 r e t u r n Time2 − Time1 ; ;

.51 }

7.1.3 Manual Matrix Multiplication (Mult)

Listing 7.3: Matrix Multiplication manually parallelised using OpenMP library, written in C++
.1 d ou b l e OnMultThreading (i n t m_ar , i n t m_br , i n t x)
.2 {
.3 dou b l e Time1 , Time2 ;
.4 dou b l e temp ;
.5 i n t i , j , k ;
.6 dou b l e ∗pha , ∗phb , ∗phc ;
.7
.8 / / M a t r i x e s Memory a l l o c a t i o n
.9 pha = (d ou b l e ∗)malloc ((m_ar ∗ m_ar) ∗ s i z e o f (d ou b l e)) ;

.10 phb = (d ou b l e ∗)malloc ((m_ar ∗ m_ar) ∗ s i z e o f (d ou b l e)) ;

.11 phc = (d ou b l e ∗)malloc ((m_ar ∗ m_ar) ∗ s i z e o f (d ou b l e)) ;

.12

.13 / / S t a r t i n g c o u n t i n g t ime

.14 Time1 = omp_get_wtime () ;

.15

.16 / / Loading m a t r i x v a l u e s

.17 f o r (i=0; i<m_ar ; i++)

.18 f o r (j=0; j<m_ar ; j++)

.19 pha [i∗m_ar + j] = (do ub l e) 1 , 0 ;

.20

.21 f o r (i=0; i<m_br ; i++)

.22 f o r (j=0; j<m_br ; j++)

.23 phb [i∗m_br + j] = (do ub l e) (i+1) ;

.24

.25

.26 / / Ma t r i x M u l t i p l i c a t i o n

.27 f o r (i=0; i<m_ar ; i++)

.28 { f o r (j=0; j<m_br ; j++)

.29 { temp = 0 ;

.30 #pragma omp parallel f o r reduction (+ : temp) num_threads (x)

.31 f o r (k=0; k<m_ar ; k++)

.32 {

43

Appendices

.33 temp += pha [i∗m_ar+k] ∗ phb [k∗m_br+j] ;

.34 }

.35 phc [i∗m_ar+j]=temp ;

.36 }

.37 }

.38

.39 / / S t o p i n g t ime

.40 Time2 = omp_get_wtime () ;

.41

.42 / / F r e e i n g memory used f o r m a t r i x e s

.43 free (pha) ;

.44 free (phb) ;

.45 free (phc) ;

.46

.47 r e t u r n Time2 − Time1 ;

.48 }

7.1.4 Manual Matrix Multiplication By line (MultLine)

Listing 7.4: Matrix Multiplication by line manually parallelised using OpenMP library, written in

C++
.1 d ou b l e OnMultLineThreading (i n t m_ar , i n t m_br , i n t x)
.2 {
.3 d ou b l e Time1 , Time2 ;
.4 i n t i , j , k ;
.5 d ou b l e ∗pha , ∗phb , ∗phc ;
.6
.7 / / M a t r i x e s Memory a l l o c a t i o n
.8 pha = (d ou b l e ∗)malloc ((m_ar ∗ m_ar) ∗ s i z e o f (d ou b l e)) ;
.9 phb = (d ou b l e ∗)malloc ((m_ar ∗ m_ar) ∗ s i z e o f (d ou b l e)) ;

.10 phc = (d ou b l e ∗)malloc ((m_ar ∗ m_ar) ∗ s i z e o f (d ou b l e)) ;

.11

.12 / / S t a r t i n g c o u n t i n g t ime

.13 Time1 = omp_get_wtime () ;

.14

.15 / / Loading m a t r i x v a l u e s

.16 f o r (i=0; i<m_ar ; i++)

.17 f o r (j=0; j<m_ar ; j++)

.18 pha [i∗m_ar + j] = (do ub l e) 1 , 0 ;

.19

.20 f o r (i=0; i<m_br ; i++)

.21 f o r (j=0; j<m_br ; j++)

.22 phb [i∗m_br + j] = (do ub l e) (i+1) ;

.23

.24 f o r (i=0; i<m_ar ; i++)

.25 f o r (j=0; j<m_ar ; j++)

.26 phc [i∗m_ar + j] = (do ub l e) 0 , 0 ;

.27

.28

.29 / / M a t r i x M u l t i p l i c a t i o n

.30 f o r (i=0; i<m_ar ; i++)

.31 { f o r (k=0; k<m_ar ; k++)

44

Appendices

.32 {

.33 #pragma omp parallel f o r num_threads (x)

.34 f o r (j=0; j<m_br ; j++)

.35 {

.36 phc [i∗m_ar+j] += pha [i∗m_ar+k] ∗ phb [k∗m_br+j] ;

.37 }

.38

.39 }

.40 }

.41

.42 / / S t o p i n g t ime

.43 Time2 = omp_get_wtime () ;

.44

.45 / / F r e e i n g memory used f o r m a t r i x e s

.46 free (pha) ;

.47 free (phb) ;

.48 free (phc) ;

.49

.50 r e t u r n Time2 − Time1 ;

.51 }

7.1.5 Kremlin Matrix Multiplication (Mult)

Listing 7.5: Matrix Multiplication with Kremlin’s indications for parallelization, written in C++
.1 d ou b l e OnMultKremlin (i n t m_ar , i n t m_br , i n t x)
.2 {
.3 dou b l e Time1 , Time2 ;
.4 dou b l e temp ;
.5 i n t i , j , k ;
.6 dou b l e ∗pha , ∗phb , ∗phc ;
.7
.8 / / M a t r i x e s Memory a l l o c a t i o n
.9 pha = (d ou b l e ∗)malloc ((m_ar ∗ m_ar) ∗ s i z e o f (d ou b l e)) ;

.10 phb = (d ou b l e ∗)malloc ((m_ar ∗ m_ar) ∗ s i z e o f (d ou b l e)) ;

.11 phc = (d ou b l e ∗)malloc ((m_ar ∗ m_ar) ∗ s i z e o f (d ou b l e)) ;

.12

.13 / / S t a r t i n g c o u n t i n g t ime

.14 Time1 = omp_get_wtime () ;

.15

.16 / / Loading m a t r i x v a l u e s

.17 f o r (i=0; i<m_ar ; i++)

.18 #pragma omp parallel f o r num_threads (x)

.19 f o r (j=0; j<m_ar ; j++)

.20 pha [i∗m_ar + j] = (do ub l e) 1 , 0 ;

.21

.22 f o r (i=0; i<m_br ; i++)

.23 #pragma omp parallel f o r num_threads (x)

.24 f o r (j=0; j<m_br ; j++)

.25 phb [i∗m_br + j] = (do ub l e) (i+1) ;

.26

.27

.28 / / Ma t r i x M u l t i p l i c a t i o n

.29 f o r (i=0; i<m_ar ; i++)

45

Appendices

.30 { f o r (j=0; j<m_br ; j++)

.31 { temp = 0 ;

.32 #pragma omp parallel f o r reduction (+ : temp) num_threads (x)

.33 f o r (k=0; k<m_ar ; k++)

.34 {

.35 temp += pha [i∗m_ar+k] ∗ phb [k∗m_br+j] ;

.36 }

.37 phc [i∗m_ar+j]=temp ;

.38 }

.39 }

.40

.41 / / S t o p i n g t ime

.42 Time2 = omp_get_wtime () ;

.43

.44 / / F r e e i n g memory used f o r m a t r i x e s

.45 free (pha) ;

.46 free (phb) ;

.47 free (phc) ;

.48

.49 r e t u r n Time2 − Time1 ;

.50 }

7.1.6 Kremlin Matrix Multiplication By line (MultLine)

Listing 7.6: Matrix Multiplication by line with Kremlin’s indications for parallelization, written

in C++
.1 d ou b l e OnMultLineKremlin (i n t m_ar , i n t m_br , i n t x)
.2 {
.3 d ou b l e Time1 , Time2 ;
.4 i n t i , j , k ;
.5 d ou b l e ∗pha , ∗phb , ∗phc ;
.6
.7 / / M a t r i x e s Memory a l l o c a t i o n
.8 pha = (d ou b l e ∗)malloc ((m_ar ∗ m_ar) ∗ s i z e o f (d ou b l e)) ;
.9 phb = (d ou b l e ∗)malloc ((m_ar ∗ m_ar) ∗ s i z e o f (d ou b l e)) ;

.10 phc = (d ou b l e ∗)malloc ((m_ar ∗ m_ar) ∗ s i z e o f (d ou b l e)) ;

.11

.12 / / S t a r t i n g c o u n t i n g t ime

.13 Time1 = omp_get_wtime () ;

.14

.15 / / Loading m a t r i x v a l u e s

.16 f o r (i=0; i<m_ar ; i++)

.17 #pragma omp parallel f o r num_threads (x)

.18 f o r (j=0; j<m_ar ; j++)

.19 pha [i∗m_ar + j] = (do ub l e) 1 , 0 ;

.20

.21 f o r (i=0; i<m_br ; i++)

.22 #pragma omp parallel f o r num_threads (x)

.23 f o r (j=0; j<m_br ; j++)

.24 phb [i∗m_br + j] = (do ub l e) (i+1) ;

.25

.26 f o r (i=0; i<m_ar ; i++)

46

Appendices

.27 #pragma omp parallel f o r num_threads (x)

.28 f o r (j=0; j<m_ar ; j++)

.29 phc [i∗m_ar + j] = (do ub l e) 0 . 0 ;

.30

.31 / / Ma t r i x M u l t i p l i c a t i o n

.32 f o r (i=0; i<m_ar ; i++)

.33 { f o r (k=0; k<m_ar ; k++)

.34 {

.35 #pragma omp parallel f o r num_threads (x)

.36 f o r (j=0; j<m_br ; j++)

.37 {

.38 phc [i∗m_ar+j] += pha [i∗m_ar+k] ∗ phb [k∗m_br+j] ;

.39 }

.40

.41 }

.42 }

.43

.44 / / S t o p i n g t ime

.45 Time2 = omp_get_wtime () ;

.46

.47 / / F r e e i n g memory used f o r m a t r i x e s

.48 free (pha) ;

.49 free (phb) ;

.50 free (phc) ;

.51

.52 r e t u r n Time2 − Time1 ;

.53 }

7.1.7 Sequential program compiled and profiled by Kremlin

Listing 7.7: Program compiled and profiled by Kremlin with both Mult and MultLine algorithms,

written in C++
.1 / / # i n c l u d e <omp . h>
.2 # i n c l u d e < s t d i o . h>
.3 # i n c l u d e < i o s t r e a m >
.4 # i n c l u d e <iomanip >
.5 # i n c l u d e < t ime . h>
.6 # i n c l u d e < c s t d l i b >
.7 / / # i n c l u d e < p a p i . h>
.8 # i n c l u d e < f s t r e a m >
.9 # i n c l u d e <chrono >

.10

.11 u s i n g namespace std ;

.12

.13 # d e f i n e SYSTEMTIME c l o c k _ t

.14

.15 d ou b l e OnMult (i n t m_ar , i n t m_br)

.16 {

.17

.18 / / dou b l e Time1 , Time2 ;

.19

.20 c h a r st [1 0 0] ;

47

Appendices

.21 d ou b l e temp ;

.22 i n t i , j , k ;

.23

.24 d ou b l e ∗pha , ∗phb , ∗phc ;

.25

.26

.27

.28 pha = (d ou b l e ∗)malloc ((m_ar ∗ m_ar) ∗ s i z e o f (d ou b l e)) ;

.29 phb = (d ou b l e ∗)malloc ((m_ar ∗ m_ar) ∗ s i z e o f (d ou b l e)) ;

.30 phc = (d ou b l e ∗)malloc ((m_ar ∗ m_ar) ∗ s i z e o f (d ou b l e)) ;

.31

.32 f o r (i=0; i<m_ar ; i++)

.33 f o r (j=0; j<m_ar ; j++)

.34 pha [i∗m_ar + j] = (do ub l e) 1 . 0 ;

.35

.36

.37

.38 f o r (i=0; i<m_br ; i++)

.39 f o r (j=0; j<m_br ; j++)

.40 phb [i∗m_br + j] = (do ub l e) (i+1) ;

.41

.42

.43

.44 / / Time1 = omp_get_wtime () ;

.45 a u t o Time1 = std : : chrono : : high_resolution_clock : : now () ;

.46

.47 f o r (i=0; i<m_ar ; i++)

.48 { f o r (j=0; j<m_br ; j++)

.49 { temp = 0 ;

.50 f o r (k=0; k<m_ar ; k++)

.51 {

.52 temp += pha [i∗m_ar+k] ∗ phb [k∗m_br+j] ;

.53 }

.54 phc [i∗m_ar+j]=temp ;

.55 }

.56 }

.57

.58

.59 / / Time2 = omp_get_wtime () ;

.60 a u t o Time2 = std : : chrono : : high_resolution_clock : : now () ;

.61

.62 free (pha) ;

.63 free (phb) ;

.64 free (phc) ;

.65 a u t o time = Time2−Time1 ;

.66 r e t u r n (dou b l e) std : : chrono : : duration_cast<std : : chrono : : milliseconds>(time) . count () ;

.67

.68 }

.69

.70

.71 d ou b l e OnMultLine (i n t m_ar , i n t m_br)

.72 {

.73 / / d ou b l e Time1 , Time2 ;

.74

.75 c h a r st [1 0 0] ;

.76 d ou b l e temp ;

.77 i n t i , j , k ;

48

Appendices

.78

.79 d ou b l e ∗pha , ∗phb , ∗phc ;

.80

.81

.82

.83 pha = (d ou b l e ∗)malloc ((m_ar ∗ m_ar) ∗ s i z e o f (d ou b l e)) ;

.84 phb = (d ou b l e ∗)malloc ((m_ar ∗ m_ar) ∗ s i z e o f (d ou b l e)) ;

.85 phc = (d ou b l e ∗)malloc ((m_ar ∗ m_ar) ∗ s i z e o f (d ou b l e)) ;

.86

.87 f o r (i=0; i<m_ar ; i++)

.88 f o r (j=0; j<m_ar ; j++)

.89 pha [i∗m_ar + j] = (do ub l e) 1 . 0 ;

.90

.91

.92

.93 f o r (i=0; i<m_br ; i++)

.94 f o r (j=0; j<m_br ; j++)

.95 phb [i∗m_br + j] = (do ub l e) (i+1) ;

.96

.97 f o r (i=0; i<m_ar ; i++)

.98 f o r (j=0; j<m_ar ; j++)

.99 phc [i∗m_ar + j] = (do ub l e) 0 . 0 ;
.100
.101
.102
.103 / / Time1 = omp_get_wtime () ;
.104 a u t o Time1 = std : : chrono : : high_resolution_clock : : now () ;
.105
.106 f o r (i=0; i<m_ar ; i++)
.107 { f o r (k=0; k<m_ar ; k++)
.108 {
.109 f o r (j=0; j<m_br ; j++)
.110 {
.111 phc [i∗m_ar+j] += pha [i∗m_ar+k] ∗ phb [k∗m_br+j] ;
.112 }
.113
.114 }
.115 }
.116
.117
.118 / / Time2 = omp_get_wtime () ;
.119 a u t o Time2 = std : : chrono : : high_resolution_clock : : now () ;
.120
.121 free (pha) ;
.122 free (phb) ;
.123 free (phc) ;
.124 a u t o time = Time2−Time1 ;
.125 r e t u r n (dou b l e) std : : chrono : : duration_cast<std : : chrono : : milliseconds>(time) . count () ;
.126
.127 }
.128
.129 vo id OutputToFile (i n t lin , i n t col , i n t inc , i n t limit /∗ , c h a r ∗ f i l e n a m e ∗ /)
.130 {
.131 i n t i ;
.132 d ou b l e temp ;
.133 ofstream myfile ;
.134 myfile . open (/∗ f i l e n a m e ∗ / " m a t r i x M u l t R e s u l t . c sv ") ;

49

Appendices

.135 myfile << " i , A lgo r i tmo a , Algo r i tmo b \ n " ;

.136 f o r (i=lin ; i <= limit ; i=i+inc)

.137 {

.138 temp=OnMult (i , i) ;

.139 myfile << i << " , " << temp << " , " ;

.140 temp=OnMultLine (i , i) ;

.141 myfile << temp << " \ n " ;

.142 }

.143 myfile . close () ;

.144 }

.145

.146

.147

.148

.149 f l o a t produtoInterno (f l o a t ∗v1 , f l o a t ∗v2 , i n t col)

.150 {

.151 i n t i ;

.152 f l o a t soma = 0 . 0 ;

.153

.154 f o r (i=0; i<col ; i++)

.155 soma += v1 [i]∗v2 [i] ;

.156

.157 r e t u r n (soma) ;

.158

.159 }

.160

.161

.162 i n t main (i n t argc , c h a r ∗argv [])

.163 {

.164

.165 c h a r c ;

.166 i n t lin , col , nt=1 , inc , limit , x ;

.167 i n t op ;

.168 c h a r ∗ filename ;

.169 / / i n t E v e n t S e t = PAPI_NULL ;

.170 long long values [2] ;

.171 i n t ret ;

.172

.173 op=1;

.174 do {

.175 cout << endl ;

.176 cout << " 1 . M u l t i p l i c a t i o n " << endl ;

.177 cout << " 2 . Line M u l t i p l i c a t i o n " << endl ;

.178 cout << " 3 . o u t p u t T o F i l e " << endl ;

.179 cout << " 4 . m u l t i t h r e a d i n g on M u l t i p l i c a t i o n " << endl ;

.180 cout << " 5 . m u l t i t h r e a d i n g on L i n e M u l t i p l i c a t i o n " << endl ;

.181 cout << " S e l e c t i o n ? : " ;

.182

.183 cin >>op ;

.184 i f (op == 0)

.185 b r e a k ;

.186

.187 printf (" Dimens ions : l i n s c o l s ? ") ;

.188 cin >> lin >> col ;

.189

.190

.191 i f (op == 3)

50

Appendices

.192 {

.193 printf (" D imens iona l i n c r e m e n t : i n c ? ") ;

.194 cin >> inc ;

.195 printf (" L i m i t : l i m i t ? ") ;

.196 cin >> limit ;

.197

.198 }

.199

.200 s w i t c h (op) {

.201 c a s e 1 :

.202 cout << OnMult (lin , col) << endl ;

.203 b r e a k ;

.204 c a s e 2 :

.205 cout << OnMultLine (lin , col) <<endl ;

.206 b r e a k ;

.207 c a s e 3 :

.208 OutputToFile (lin , col , inc , limit /∗ , f i l e n a m e ∗ /) ;

.209 b r e a k ;

.210 }

.211

.212

.213

.214 } w h i l e (op != 0) ;

.215

.216 }

7.2 Kremlin’s Reports

7.2.1 Kremlin report for Matrix Multiplication, Mult version

Listing 7.8: Kremlin’s indication of the blocks that should be parallelised and theorical variables

that where calculated for Mult algorithm version
.1 [0] TimeRed (4) =66.38% , TimeRed (Ideal) =70.96% , Cov=88.51% , SelfP= 5 . 0 5 , DOALL

.2 LOOP matrixmul . cpp [148 − 1 8 1] : OnMult

.3 FUNC matrixmul . cpp [142 − 1 4 2] : OnMult called at file matrixmul . cpp , line 397

.4

.5 [1] TimeRed (4) =3.10% , TimeRed (Ideal) =3.37% , Cov=4.13% , SelfP= 5 . 4 4 , DOALL

.6 LOOP matrixmul . cpp [149 − 1 6 7] : OnMult

.7 FUNC matrixmul . cpp [142 − 1 4 2] : OnMult called at file matrixmul . cpp , line 397

.8

.9 [2] TimeRed (4) =3.10% , TimeRed (Ideal) =3.37% , Cov=4.13% , SelfP= 5 . 4 4 , DOALL

.10 LOOP matrixmul . cpp [149 − 1 6 1] : OnMult

.11 FUNC matrixmul . cpp [142 − 1 4 2] : OnMult called at file matrixmul . cpp , line 397

7.2.2 Kremlin report for Matrix Multiplication, MultLine version

51

Appendices

Listing 7.9: Kremlin’s indication of the blocks that should be parallelised and theorical variables

that where calculated for MultLine algorithm version
.1 .
.2 [0] TimeRed (4) =63.01% , TimeRed (Ideal) =63.20% , Cov=84.02% , SelfP= 4 . 0 3 , DOALL

.3 LOOP matrixmul . cpp [213 − 2 4 7] : OnMultLine

.4 FUNC matrixmul . cpp [207 − 2 0 7] : OnMultLine called at file matrixmul . cpp , line 400

.5

.6 [1] TimeRed (4) =2.86% , TimeRed (Ideal) =2.96% , Cov=3.81% , SelfP= 4 . 4 5 , DOALL

.7 LOOP matrixmul . cpp [213 − 2 3 5] : OnMultLine

.8 FUNC matrixmul . cpp [207 − 2 0 7] : OnMultLine called at file matrixmul . cpp , line 400

.9
.10 [2] TimeRed (4) =2.86% , TimeRed (Ideal) =2.96% , Cov=3.81% , SelfP= 4 . 4 5 , DOALL

.11 LOOP matrixmul . cpp [213 − 2 3 1] : OnMultLine

.12 FUNC matrixmul . cpp [207 − 2 0 7] : OnMultLine called at file matrixmul . cpp , line 400

.13

.14 [3] TimeRed (4) =2.86% , TimeRed (Ideal) =2.96% , Cov=3.81% , SelfP= 4 . 4 5 , DOALL

.15 LOOP matrixmul . cpp [213 − 2 2 5] : OnMultLine

.16 FUNC matrixmul . cpp [207 − 2 0 7] : OnMultLine called at file matrixmul . cpp , line 400

52

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation and Goal
	1.3 Statement of the Problem
	1.4 Purpose of the Work
	1.5 Significance of the Work
	1.6 Research Hypothesis
	1.7 Research Questions
	1.8 Dissertation's Structure

	2 Achieving the Highest Processing Power
	2.1 Introduction
	2.2 Through Computers' Heterogeneous Components
	2.2.1 OpenCL
	2.2.2 StarPU
	2.2.3 Twin Peaks

	2.3 Through Code Parallelization
	2.3.1 OpenMP
	2.3.2 Kremlin
	2.3.3 Kismet
	2.3.4 Atune-IL

	2.4 Overview

	3 Matrix Multiplication
	3.1 Introduction
	3.2 Classic Algorithm
	3.3 In Line Algorithm
	3.4 Overview

	4 Methodology
	4.1 Introduction
	4.2 Research Method
	4.2.1 Kremlin's usage
	4.2.2 Kremlin's application in specific code samples
	4.2.3 Code parallelization with Kremlin's data
	4.2.4 Manually Code parallelization
	4.2.5 Results analysis

	4.3 Data collection from conducted experiences
	4.3.1 Kremlin's indications reports
	4.3.2 Execution times for the code variations

	4.4 Data analysis method
	4.5 Data validation

	5 Results and Discussion
	5.1 Introduction
	5.2 Kremlin's reports
	5.3 Comparison between Original, Manual and Kremlin
	5.3.1 The Three groups individually analysed
	5.3.2 Measuring the performance's impact using code parallelization
	5.3.3 Comparison between Manual and Kremlin groups

	6 Conclusion
	6.1 Using Kremlin for code parallelization
	6.2 Automatic Parallelization is viable
	6.3 Future work

	References
	7 Appendices
	7.1 Developed code
	7.1.1 Original Matrix Multiplication (Mult)
	7.1.2 Original Matrix Multiplication By line (MutLine)
	7.1.3 Manual Matrix Multiplication (Mult)
	7.1.4 Manual Matrix Multiplication By line (MultLine)
	7.1.5 Kremlin Matrix Multiplication (Mult)
	7.1.6 Kremlin Matrix Multiplication By line (MultLine)
	7.1.7 Sequential program compiled and profiled by Kremlin

	7.2 Kremlin's Reports
	7.2.1 Kremlin report for Matrix Multiplication, Mult version
	7.2.2 Kremlin report for Matrix Multiplication, MultLine version

