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Preface 

 

The aims of this PhD project were to identify and quantify the risk factors associated with 

Salmonella spp. in the Portuguese swine sector; and to develop a simulation model of the 

disease in order to evaluate the cost-benefit of control measures for Salmonella spp. at 

farm level. Note that in Portugal, no surveillance programme for Salmonella in pigs is 

currently in place.  

This PhD project was funded by the Institute for Science and Technology (Fundação para 

a Ciência e a Tecnologia – FCT), Portugal. The data for the risk factors analysis was 

provided by the Portuguese Veterinary Authorities (Direcção Geral de Alimentação e 

Veterinária). In addition, the data for the transmission parameters estimation manuscript 

was provided by Danish Agriculture & Food Council, in Denmark. Other organizations 

have also contributed by allowing us to use their data and these are listed in the Materials 

and Methods section. 

As a PhD student I was registered and worked at the Department of Population Studies 

within the Institute of Biomedical Sciences Abel Salazar (ICBAS – University of Porto) in 

Portugal. From October to December of 2011 (three months) I visited the College of 

Engineering, Mathematics and Physical Sciences, of the University of Exeter, under the 

supervision of Prof. Trevor Bailey. 

The thesis is divided in four chapters: Chapter 1 – Introduction; Chapter 2 – Material and 

Methods used in the various studies; Chapter 3 – Results, where the different manuscripts 

(published/submitted/drafted) are presented; and Chapter 4 – Discussion and Conclusion, 

which links the different studies and provides a final conclusion. 

Manuscript 4 is currently under review by a scientific journal.  

Manuscript 5 has not been yet submitted to any scientific journal due its dependency on 

the results from Manuscript 4. 

I hope you enjoy reading the thesis! 
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SUMMARY 

 

Salmonellosis is one of the major causes of food-borne disease in the world. The EU 

Regulation (EU Regulation No 2160/2003) requires its Member States (MS) to implement 

control measures in order to reduce the prevalence in food production species, including 

pigs. To set the reduction target each MS carried out baseline surveys to estimate the 

Salmonella spp. prevalence in some food production animals. In pigs, a baseline study at 

abattoir level (collection of lymph nodes of pigs slaughtered) and another at herd level 

(collection of pen faecal samples of breeding pigs) were performed. During these cross-

sectional studies, information regarding herd management practices and potential risk 

factors linked to Salmonella was collected. Data from these baseline studies in Portugal 

was used in this thesis for a risk factor analysis where some risk factors were highlighted 

to be linked with increased risk at abattoir or at farm level. The study at abattoir level 

identified the following risk factors: abattoir region and sample collection time. Region of 

the herd, size of the herd (in terms of sows), management of breeding boars, source of 

semen, rodents control, number of animals per pen, breeding sector room, and source of 

feed were identified as influential risk factors in the herd level study.  

Salmonella serotypes were divided in two groups: serotype Typhimurium and S. 

Typhimurium-like strains with the antigenic formula: 1,4,[5],12:i:-., and other serotypes. A 

categorical risk factor model was implemented to assess whether the risk factors were the 

same between the groups of serotypes. For the breeding pigs dataset, the group 

“Typhimurium” was associated with the stock density (number of breeding pigs and 

number of pigs per pen), the characteristics of the pig (age of breeding sows), and the 

source of semen. On the other hand, the group “other serotypes” was associated with 

region of the herd, source of semen, control of rodents, breeding sector room and source 

of feed. The risk factors for group Typhimurium suggest a contagious pattern and the risk 

factors for other serotypes appear to be related to environmental factors. 

Each European MS should ideally implement control programmes to reduce the 

prevalence of Salmonella spp.. However in practice, the control of this agent in the swine 

sector has proved to be difficult and expensive at farm level, so the evaluation of the 

efficiency of control strategies for this agent has become an important and stringent issue. 

With this aim in mind we developed a stochastic model which simulates the agent spread 

inside a farrow-to-finish herd which can be used to test control measures in terms of cost-

benefit. Some preparatory work was performed to estimate the transmission parameters 

to be used in the simulation model using data from a published longitudinal study which 

followed S. Typhimurium infected cohorts. Our model allowed for sensitivity and specificity 

of the tests used in the longitudinal study to be included, as well as for unobserved cohort 
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effects and time-dependent effects. The simulation model tried to mimic what is 

happening in a herd, in terms of management practice and was linked with an infection 

model which simulates the infections states for each sow/pig. The parameters which most 

influenced the infection state of sows at farrowing/suckling were: the transmission rate 

from susceptible (S) to infectious (I), from I to carrier (R), and from R to S; when applied to 

the sow-compartment. On the other hand, the parameters which most influenced the 

infection state of pigs for slaughter (fattening pigs) were: the transmission rate from S to I 

and the transmission rate from I to R, when applied to the pig-compartment; the 

transmission rate from R to S applied to sows at gestation and the piglets’ protective 

factor. Several control measures can be recommended to influence these parameters in 

an attempt to control the proportion of infectious animals. The simulation model potentially 

allows quantification of cost-benefit control measures if linked to an economic model. The 

simulation model is flexible enough to introduce changes in the parameter distributions or 

values if future research and legislation so require. At the same time the model can be 

adapted to different types of production (e.g. breeding units, finisher units) as it was built 

in a compartmental way. 
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SUMÁRIO 

 
A salmonelose é uma das doenças de origem alimentar mais frequente no mundo. A 

legislação europeia (Regulamento EU No 2160/2003) impõe aos Estados Membros (EM) 

a implementação de medidas de controlo com o objectivo de reduzir a prevalência de 

Salmonella spp. em espécies animais produtoras de alimentos para consumo humano, 

incluindo os suínos. De modo a definir uma meta de redução para este agente, cada EM 

levou a cabo estudos de base para estimar a prevalência da Salmonella spp. em animais 

de produção. Nos suínos os estudos base de prevalência foram efectuados nos 

matadouros (recolha de linfonódulos de porcos abatidos) e a nível das explorações com 

animais de reprodução (recolha de amostras compostas de fezes de animais 

reprodutores). Estes estudos transversais também recolheram informação relacionada 

com o maneio na exploração e com potenciais factores de risco para este agente que 

foram utlizados neste trabalho. Os factores de risco encontrados no estudo dos 

matadouros foram a região do matadouro e a hora de recolha das amostras. No estudo 

efectuado a nível das explorações com animais de reprodução, os factores de risco 

encontrados foram os seguintes: região da exploração, tamanho da exploração (número 

de porcas reprodutoras), maneio dos varrascos, origem do sémen, controlo de roedores, 

número de animais por parque, fase da produção de animais reprodutores, e a origem do 

alimento. Posteriormente os serotipos foram divididos em dois grupos: serotipo 

Typhimurium e seu semelhante com a fórmula antigénica: 1,4,[5],12:i:-., e outros 

serotipos. Para estimar se os factores de risco eram iguais entre estes dois grupos, foi 

efectuada uma análise logística categórica. Nesta análise, para os porcos reprodutores, o 

grupo “Tyhimurium” foi associado com o aumento da densidade de animais (número de 

animais reprodutores e número de animais por parque), a idade das porcas reprodutoras 

e a origem do sémen. O grupo “outros serotipos” foi associado com a região da 

exploração, a origem do sémen, o controlo de roedores, a fase da produção de animais 

reprodutores, e a origem do alimento. Estes resultados indicam que o grupo 

“Typhimurium” está associado a um padrão contagioso, e o grupo “outros serotipos” está 

associado a factores ambientais.  

Cada EM deve implementar o seu programa de controlo para redução da prevalência 

deste agente. Contudo, na prática, o controlo de Salmonella em suínos tem sido de 

implementação difícil e com custos excessivos a nível do sector primário. Sendo assim, é 

importante avaliar a eficácia e adequabilidade das medidas de controlo existentes. Com 

este objectivo foi desenvolvido um modelo estocástico que simula a dinâmica da infecção 

por S. Typhimurium numa exploração em ciclo fechado e que pode ser utlizado para 

testar o custo-benefício das medidas de controlo. Para tal foi preciso estimar parâmetros 
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de transmissão da infecção. Com esse objectivo foram utilizados os dados de um estudo 

que seguiu grupos de animais infectados com S. Typhimurium ao longo do tempo. Os 

resultados foram ajustados para a sensibilidade e especificidade dos testes de 

diagnóstico utlizados, para o efeito de grupo e para o efeito de dependência de alguns 

parâmetros com o tempo. O modelo de simulação desenvolvido tem em consideração o 

maneio dos animais e ao mesmo tempo a dinâmica de infecção para cada animal. Os 

parâmetros que influenciaram mais o estado de infecção das porcas reprodutoras na 

maternidade foram os parâmetros de transmissão de susceptíveis para infecciosos, de 

infecciosos para portadores, e de portadores para susceptíveis, caso sejam alterados em 

todas as fases reprodutivas (cobrição, gestação e maternidade). Por outro lado os 

parâmetros que influenciaram mais o estado de infecção nos porcos de engorda foram os 

parâmetros de transmissão de susceptíveis para infecciosos e de infecciosos para 

portadores, caso sejam alterados em todas as fases de produção (maternidade, recria e 

engorda); o parâmetro de transmissão de portadores para susceptíveis caso seja alterado 

a nível da gestação; e o factor de protecção imunitário dos leitões na maternidade. Várias 

medidas de controlo, que influenciam estes parâmetros, podem ser aplicada para diminuir 

a proporção de animais infectados. O modelo de simulação pode ser utilizado para 

estimar os custos-benefícios de medidas de controlo se acoplado a um modelo 

económico. Este modelo de simulação é flexível o suficiente para introduzir mudanças 

nos parâmetros e suas distribuições se assim for necessário. Também pode ser adaptado 

a diferentes tipos de explorações (ex. unidades de engorda, unidades de reprodução) 

uma vez que foi construído em compartimentos. 
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1.1 Relevance of the study 

 

Salmonellosis is one of the major causes of food-borne disease in the world. In 2010 

99,020 human cases of salmonellosis were reported in the European Union (EU) [1]. In 

other regions this number might be similar but probably underestimated, as many cases 

are not reported. Beyond the human implication of this disease, Salmonella spp. is an 

important pathogen for animal production worldwide, although for the pig sector it is 

mainly a cause of subclinical disease. Additionally, the emergence of strains resistant to 

antibiotics is a problem to animal and human health. The contribution of pork products to 

the total burden of human salmonellosis cases varies between countries but it is 

estimated to be around 10% [2]. An EU Regulation (EU Regulation No 2160/2003) 

imposes on the Member States (MS) the implementation of control measures to reduce 

the prevalence in food production species including pigs. To set the reduction target each 

MS carried out baseline surveys to estimate the Salmonella spp. prevalence in some food 

production animals. The objective of the surveys was to obtain comparable data for all MS 

through harmonized sampling and testing schemes. In pigs a baseline study was done at 

abattoir level (collection of lymph nodes from slaughtered pigs) and another at herd level 

(collection of pen faecal samples from breeding pigs). These cross-sectional studies also 

collected information regarding herd management practices and potential risk factors 

linked to this agent. After setting the reduction target each MS will be responsible for 

establishing an effective national control programme adjusted for the country-specific 

characteristics, such as the risk factors, the disease prevalence and the financial 

implications for stakeholders. 

The data generated by the baseline surveys was expected to enable the identification and 

quantification of potential risk factors. These factors could then be used in the 

development of programmes and procedures that reduce Salmonella spp. shedding in pig 

herds economically and effectively. All this information should be available before 

Salmonella reduction programmes are implemented at herd level, to enable farmers to 

make informed choices, enhance public health and avoid unnecessary costs [3]. 

The control of Salmonella in primary production has been enforced by food safety 

systems as the major source of human cases is food-borne. The need for global 

cooperation in the control of Salmonella was underlined by World Health Organization 

(WHO), as Salmonella infection threatens the live animal, feed and food trade. Therefore, 

Salmonella control is a challenge for the veterinary services, for producers, and the food 

industry as they aim to produce safe food. The whole food chain (from farm to fork) should 

implement control measures against this food-borne pathogen [4]. In practice, the control 

of this agent in the swine sector has proved to be difficult and expensive at farm level [5]. 
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Consequently the evaluation of the efficiency of control strategies for this agent has 

become an important and stringent issue, as stated in recent reports [6]. 

 

1.2. Salmonella – the agent: literature review 

 

1.2.1 Characterization 

 

The genus of Salmonella was first identified in 1885 by Theobald Smith and Daniel 

Salmon. They isolated Salmonella Choleraesuis from the pig bowel and identified the 

agent responsible for enterocolitis in pigs [7]. The bacteria Salmonella belongs to the 

family Enterobacteriaceae. It is a genus with more than 2579 serovars that is highly 

adapted to animal and human hosts. It is a motile Gram-negative bacteria, facultative 

anaerobic, non-spore forming, rod-shaped (2-4 x 0.5 µm), and non-capsulated with 

fimbriae and flagela. The genus Salmonella consists of two species, Salmonella enterica 

and Salmonella bongori. The Salmonella enterica is divided in six subspecies: S. enterica 

subspp. enterica, S. enterica subspp. salamae, S. enterica subspp. arizonae, S. enterica 

subspp. diarizonae, S. enterica subspp. houtenae, and S. enterica subspp. indica. These 

species and subspecies can be distinguished on the basis of differential characteristics 

using biochemical tests and lisogenization, which have been supported by DNA-DNA 

hybridization studies and serological tests [8-10]. Each subspecies is divided into 

serotypes/serovars, which are determined according to their antigenic structure, which is 

composed of three principal antigens [8-10]: somatic antigens, flagellate antigens, and 

capsular antigens. The agglutination characteristics of antigens are used to differentiate 

more than 2579 different serotypes of Salmonella, according to Kauffmann-White scheme 

[10].  

Salmonella enterica includes more than 99% of the identified serotypes of which 59% 

belongs to subspecies enterica. This subspecies includes the main clinical relevant 

serotypes [10]. 

The way serovars are classified has evolved with time. In practice, for S. enterica subspp. 

enterica, the subspecies name (subspp. enterica) does not need to be indicated as only 

serovars of this subspecies bear a name. Serovars of other subspecies of S. enterica and 

those of S. bongori are designated only by their antigenic formula [10]. Serovars that are 

frequently isolated in human or veterinary medicine have historically been given names 

denoting the syndrome (e.g. S. Typhi), host-specificity (e.g., S. Choleraesuis) or the 

geographical origin of the first isolation of the new serovar (e.g., S. Dublin) [4]. 
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Salmonellae cause disease in both humans and animals. The serovar S. Typhi and most 

S. Paratyphi strains, which cause serious systemic infections in humans, are specific 

human pathogens. These pathogens have no animal reservoir [4]. 

 

1.2.2 Pathogenesis and virulence 

 

Salmonellae are typically acquired through consumption of contaminated food or water. 

After passage through the stomach, the bacteria colonize the intestine, interacting with 

and translocating across the intestinal epithelium via three routes: (i) active invasion of 

enterocytes; (ii) invasion into specialized epithelial cells called M cells; and (iii) through 

dendritic cells that intercalate epithelial cells by extending protrusions into the gut lumen. 

Interaction of Salmonellae with the epithelium and the underlying resident immune cells, 

leads to the production of proinflammatory cytokines and chemokine, which subsequently 

recruit and activate other immune cells such as neutrophils, macrophages, dendritic cells, 

and T/B cells [11].  

After consumption the bacteria is frequently exposed to low pH in the stomach, bile 

antimicrobial effect, decreasing oxygen supply, normal gut flora and metabolites, intestinal 

peristalsis, and cationic antimicrobial peptides present on the surface of epithelial cells. 

These encounters with stressful environments induce the expression of a number of 

genes whose products are essential for Salmonella to invade the intestinal epithelium and 

infect the host [4].  

 

1.2.3 Infection by Salmonella spp. in humans 

 

All Salmonella serovars are considered potentially pathogenic to humans, some more 

virulent than others. Human Salmonella infection can lead to two clinical conditions: 

enteric fever (typhoid and paratyphoid) and enterocolitis by non-typhoid bacteria [12]. 

Non-typhoid salmonellosis is considered a zoonosis. Human non-typhoid salmonellosis is 

characterized by a local enterocolitis. The incubation period varies between 5 hours and 7 

days, and the clinical symptoms begin 12 to 36 hours after the infection. A shorter 

incubation period is associated with a major infectious dose or an increased susceptibility 

to the pathogen. The clinical symptoms include diarrhoea, nausea, abdominal pain, 

moderate fever and chills. The diarrhoea ranges from mild to severe with severe 

dehydration. Vomiting, prostration, anorexia and headaches can also occur. The 

symptoms last for 2 to 7 days. Sometimes systemic infections occur in the young, the 

elderly and the immunocompromised. Death is rare. Some people became carriers and 

some still shed Salmonella spp. after 3 months. Non-typhoid salmonellosis can cause 
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chronic diseases, such as reactive arthritis, and neurologic and neuromuscular diseases 

[8, 12]. Around 7% to 66% of humans are subclinical carriers [4].  

 

Epidemiology of human cases 

 

In 2010 around 99,020 confirmed cases of human salmonellosis in the EU were reported. 

The EU incidence was around 21.5 cases for 100,000 people, a decrease compared to 

the previous year (Table 1). The serovars more frequently isolated were Salmonella 

Enteritidis and Salmonella Typhimurium in 2009-2010 (Table 2) (EFSA 2012). 

 

Table 1: Reported cases of non-typhoid salmonellosis in humans (report type, number of cases, 

confirmed cases in the EU)[1] 

Country 

2010 2009 2008 2007 2006 

Report 
type 

Cases 
Confirmed 

cases 

Confirmed 
cases/ 

100.000 
Confirmed cases 

Austria C 2179 2179 26.0 2775 2310 3375 4787 

Belgium C 3169 3169 29.2 3113 3831 3973 3693 

Bulgaria A 1217 1153 15.2 1247 1516 1136 - 

Cyprus C 137 136 16.9 134 169 158 99 

Czech Republic C 8456 8209 78.1 10480 10707 17655 24186 

Denmark  C 1608 1608 29.1 2130 3669 1662 1662 

Estonia C 414 381 28.4 261 647 430 453 

Finland C 2422 2422 45.3 2329 3126 2737 2574 

France C 7184 7184 11.1 7153 7186 5510 6008 

Germany C 25306 24833 30.4 31395 42909 55400 52575 

Greece C 300 299 2.6 403 1039 706 825 

Hungary C 6246 5953 59.4 5873 6637 6578 9389 

Ireland C 356 349 7.8 335 447 440 420 

Italy C 2730 2730 4.5 4156 3232 4499 5164 

Latvia C 951 881 39.2 795 1229 619 781 

Lithuania C 1962 1962 58.9 2063 3308 2270 3479 

Luxemburg C 211 211 42.0 162 202 163 308 

Malta C 160 160 38.7 124 161 85 63 

Netherlands C 1447 1447 13.6 1205 1627 1245 1667 

Poland A 9732 9257 24.3 8521 9149 11155 12502 

Portugal C 207 205 1.9 220 332 482 387 

Romania C 1291 1285 6.0 1105 624 620 - 

Slovakia C 5171 4942 91.1 4182 6849 8367 8242 

Slovenia C 363 363 17.7 616 1033 1346 1519 

Spain C 4420 4420 38.4 4304 3833 3658 5117 

Sweden C 3612 3612 38.7 3054 4185 3930 4056 

United Kingdom C 9670 9670 15.6 10479 11511 13802 14055 

Total EU  100921 99020 21.5 108614 131468 152001 164011 

Iceland C 34 34 11.0 35 134 93 116 

Liechtenstein C - - - - 0 1 14 

Norway C 1370 1370 25.7 1235 1941 1649 1813 

Switzerland C 1179 1179 15.1 1323 2051 1802 1798 

A: aggregated data report; C: case-based report 
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Table 2: Reported cases of non-typhoid salmonellosis in humans by serovar (10 most common)[1] 
10 serovars most commonly isolated 

2010 2009 

Serovar N % Serovar N % 

Enteritidis 43,563 45.0 Enteritidis 53,382 52.3 

Typhimurium 21,671 22.4 Typhimurium 23,759 23.3 

Infantis 1,776 1.8 Infantis 1,616 1.6 

Typhimurium, monophasic 
1,4,[5],12:i:- 

1,407 1.5 
Newport 

760 0.7 

Newport 831 0.9 Virchow 736 0.7 

Kentucky 780 0.8 Derby 671 0.7 

Virchow 685 0.7 Hadar 507 0.5 

Derby 665 0.7 Kentucky 460 0.5 

Mbandaka 470 0.5 Saintpaul 452 0.4 

Agona 444 0.5 Bovismorficans 433 0.4 

Outros 24,453 25.3 Outros 19,225 18.8 

Total 96,745 100 Total 102,001 100 

 

This incidence data (Table 1 and Table 2) can lead us to consider what foods are 

associated with the transmission of the infection. Furthermore what is the attributed risk 

for pork meat and pork products? 

Fosse and colleagues [13] study has quantified the consumer risk concerning different 

pathogenic agents in Europe (data from the old 15 MS). In this study the human incidence 

for Salmonella enterica was quantified to be 51,537 cases per 100,000 habitants/year, 

with an attributed risk of 6.6% for pork meat (which results in an incidence rate of 3,374 

cases of salmonellosis per 100,000 habitants/year due to pork meat). Beyond that, 

Salmonella was the agent which demonstrated higher risk values than other pathogens 

(like Yersinia enterocolitica, Listeria monocytogenes and Camplylobacter spp.). 

Danish studies showed that the majority of the human cases are due to eggs (47.1% of 

cases, 95% confidence interval (CI): 43.3-50.8) and pork products (9% of cases, 95% CI: 

7.8-10.4) [14]. 

In Netherlands, in 2006, the outbreaks of human salmonellosis cases were attributed to 

broiler meat (12%), eggs (33%), pork meat (18%, 477 cases) and beef meat (12%). The 

remaining outbreaks (25%) were of unknown origin [15]. 

Salmonella is additionally spread between countries by humans as a result of food-borne 

infections acquired abroad. The overall importance of this route of transmission may 

reflect the prevalence of Salmonella contamination on food (including food of animal 

origin) in a particular country. In low-prevalence countries, such as Finland, Norway and 

Sweden, more than 80% of human cases of salmonellosis are considered to be acquired 

abroad [4].  
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Antimicrobial resistance 

Antimicrobial resistance is a daunting public health threat impacting both on human and 

animal health and it is a cause for concern wherever antimicrobial agents are in use (in 

hospitals, in the community, on farms, etc.). The use of antimicrobial agents in food 

animals results in antimicrobial resistance among pathogenic and commensal bacteria in 

these animals, and the resistant bacteria (or the resistant genetic determinants) may then 

be transmitted to humans through the food supply or by direct contact with animals. 

Antimicrobial resistance is emerging and spreading among some food-borne bacteria. 

Campylobacter and Salmonella are two examples of food-borne pathogens in which 

increasing resistance, particularly to fluoroquinolones and third generation 

cephalosporins, is a concern. Multidrug resistance is also a worrying possibility, 

particularly among Salmonella. Multidrug-resistant S. Typhimurium type 104 (DT104) and 

multidrug-resistant S. Newport have both caused recent food-borne outbreaks [16-18]. 

Pathogenic bacteria are not the only concern when considering antimicrobial resistance in 

bacteria with food animal reservoirs. Commensal bacteria are a less obvious threat, but 

can also be transferred from animals to humans through the food supply or through direct 

contact. These bacteria may carry transferable genetic determinants of resistance and 

serve as a reservoir of resistance genes for pathogenic bacteria.  

In Europe, a study done between 2000 and 2004, in 134,310 non-typhoidal Salmonella 

human isolates, showed an increase in the overall resistance from 57% to 66%. In 

contrast there was a decline (18% to 15%) in the proportion of isolates showing multidrug-

resistance (resistance to four or more antimicrobials). Salmonella Enteritidis resistance to 

nalidixic acid increased from 10% to 26% (probably related to the consumption of 

contaminated eggs). For S. Typhimurium, although the overall occurrence of resistance 

has been relatively unchanged over the 5-year period, there has been an overall decline 

in the occurrence of resistance to chloramphenicol and tetracyclines mainly by the overall 

reduction in the occurrence of the multi-resistant phage type (DT) 104 [19]. 

Several studies done in Salmonella isolates from animal sources showed a global 

increase in resistance [20-22]. In the USA the resistance was higher for sulphametazole 

(53%) and tetracyclines (60%) in Salmonella Agona pig isolates [20]. In Germany, 

between 2000 and 2002, 11,911 strains of Salmonella in animals, feed, food and 

environmental samples were isolated and typed. All were tested for their resistance to 17 

antimicrobial drugs. Around 63% of the isolates showed some resistance and 40% were 

multi-resistant (resistant to more than one antimicrobial). The isolates of Salmonella 

Typhimurium DT104 in pigs and cattle and their resulting food products, were multi-

resistant in 98% to 94% of the times respectively [23]. In Spain, in 290 Salmonella isolates 

from faeces of apparently healthy finishing pigs and 192 Salmonella isolates from faeces 



9 

 

of finishing pigs with diarrhoea, 90.3% resistance was detected in healthy animals and 

95.3% in ill animals. Resistance was common in isolates of serogoup B of serovar 

Typhimurium and its monophasic variant 5,12:i:-. In 50% of the isolates multi-resistance 

was detected (defined in this study as resistance to more than 4 antimicrobials) [24]. 

When antimicrobial resistance data from herds that usually use antibiotics is compared, to 

data from herds that do not usually use them, it is common to see an increase of 

antimicrobial resistance linked to the antibiotics consumption [25, 26]. 

 

1.2.4 Salmonella spp infections in animals 

 

As in humans, animals infected by Salmonella may or may not develop disease. Serovars 

that cause disease in a specific animal species are: Salmonella Abortus ovis (sheep), 

Salmonella Choleraesuis (pigs), Salmonella Gallinarum (poultry), Salmonella Abortus equi 

(horses), and Salmonella Dublin (cattle) [4]. These serovars cause disease in the species 

to which they are adapted and are considered less pathogenic to people. However, when 

humans become infected with the abovementioned serovars, they might cause severe 

septicaemia. These host adapted serovars primarily cause abortions or severe 

gastroenteritis in their animal host. [4]. 

A group of more frequently isolated serovars, such as S. Typhimurium, S. Enteritidis, S. 

Hadar and S. Infantis (among others), affect both humans and animals. In food production 

animals, these serovars may cause clinical disease (septicaemia, acute enteritis or 

chronic enteritis) or subclinical disease. In the subclinical form of the disease, the animal 

may either have a latent infection or become a temporary or persistent carrier [4]. For 

most of the food production animal species, Salmonellae usually establish a clinically 

inapparent infection of variable duration, with consequences in terms of public health. 

However, under various stress conditions, serovars that are usually non-pathogenic may 

also cause disease in food animal species [4]. 

The farm prevalence, depending on animal species and region, may vary from 0% to 90% 

[4]. 

 

Salmonella infection in pigs 

Transmission of Salmonella between pigs is thought to occur mainly via the faecal–oral 

route. Depending on the inoculation dose, infection of pigs with Salmonella Typhimurium 

may result in clinical signs and faecal excretion of high numbers of bacteria [27]. Some 

studies show that the upper respiratory tract and lungs may be a portal of entry as well, 

and in recent reports, the airborne transmission of Salmonella Typhimurium in weaned 

pigs over short distances was found, but may be serotype dependent [28, 29]. The 
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palatine tonsils are often heavily infected in pigs and should be considered as a potential 

source of Salmonella contamination during slaughter. Following ingestion, Salmonella 

must survive the low pH of the stomach. When the pigs are fed a coarsely ground meal, 

this will result in slow emptying of the stomach and consequently a longer time in the 

acidic environment, reducing the number of surviving bacteria [30]. Bacteria that survive 

passage through the stomach travel to the small intestine, where they encounter other 

antibacterial factors including bile salts, lysozyme and defensins. Even though Salmonella 

Typhimurium can be highly resistant against the direct antibacterial effects of bile salts, 

these salts repress the invasion of Salmonella in epithelial cells [31]. Following adhesion, 

Salmonella invades the intestinal epithelium. Infection of pigs with Salmonella 

Typhimurium may result in long-term asymptomatic carriage of these bacteria. Since this 

carrier state in pigs is difficult to detect in live animals, either by bacteriological or 

serological methods [32], these pigs can bias monitoring programmes. Stress-induced 

excretion of Salmonella Typhimurium by carrier pigs transported to the slaughterhouse 

may cause contamination of transport and holding pens, resulting in pre-slaughter 

transmission of Salmonella to non-infected pigs [33, 34]. Various bacterial (Mycoplasma 

hyopneumoniae, Actinobacillus pleuropneumoniae) and viral infections (porcine 

reproductive and respiratory syndrome virus (PRRSV), Aujeszky’s disease virus) can 

induce immunodeficiency in pigs. These infections may lead to an easier colonization by 

Salmonella, increased shedding or even higher mortality rates in pigs [35].  

 

Prevalence of Salmonella spp. in pigs 

 

The prevalence of this agent varies between countries due to the diagnostic tests and 

sampling strategies used. After EU Regulation 2160/2003, the EU decided to carry out 

baseline surveys to estimate the Salmonella spp. prevalence in some food production 

animals. The objective of the surveys was to obtain comparable data for all MS through 

harmonized sampling and testing schemes. In pigs the baseline studies were done at 

abattoir level (collection of lymph nodes from slaughtered pigs) and at herd level 

(collection of pen faecal samples from breeding pigs). The results of these studies showed 

that the prevalence and the serotype profile varies between countries (Tables 3, 4, and 5). 

The serovars most isolated in slaughtered pigs in Europe and in Portugal are S. 

Typhimurium, S. Derby and S. Rissen [36].  In breeding and production holdings S. 

Typhimurium and S. Derby continue to be the most isolated serovars in EU. However in 

Portugal, S. Rissen and S. London are more predominant than S. Derby [37].   
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Table 3: Baseline study (EU Regulation 2160/2003) in lymph nodes of pigs slaughtered in EU and 
Norway between 2006-2007 showing the prevalence of different serotypes [36] 

Country N 
Salmonella spp. S. Typhimurium S. Derby Other serovar 

 % (95% CI)  % (95% CI) % (95% CI) % (95% CI) 

Austria 617 2.0 (1.1-3.6) 0.7 (0.2-2) 0.3 (0.1-1.1) 1.1 (0.5-2.3) 

Belgium 601 13.9 (9.8-19.3) 7.8 (5.3-11.5) 1.3 (0.4-3.6) 4.9 (3.0-7.9) 

Bulgaria 176 16.7 (8.1-31.4) 1.8 (0.6-4.9) 4.9 (1.3-16.4) 10.1 (4.9-19.7) 

Cyprus 359 12.4 (10.1-15.2) 1.0 (0.8-1.3) 0 11.5 (9.1-14.5) 

Czech Republic 654 5.8 (3.8-8.9) 1.6 (0.8-3.3) 1.4 (0.5-4.1) 2.7 (1.6-4.5) 

Denmark 998 7.7 (5.5-10.7) 4.5 (3.4-5.9) 1.3 (0.8-2.2) 2.0 (1.4-3.0) 

Estonia 420 4.7 (2.3-9.4) 1.1 (0.6-2.1) 0 3.8 (1.7-8.3) 

Finland 419 0 0 0 0 

France 1163 18.1 (16-20.5) 7.1 (5.4-9.5) 6.5 (5.6-7.4) 4.5 (3.2-6.3) 

Germany 2567 10.9 (8.8-13.5) 6.1 (4.7-7.8) 1.2 (0.8-1.8) 4.3 (3.4-5.5) 

Greece 345 24.8 (18-33.2) 3.4 (1.6-7.1) 3.8 (1.6-8.8) 17.2 (11.7-24.6) 

Hungary 658 9.3 (5.3-15.8) 2.9 (1.4-5.9) 1.5 (0.4-5.2) 4.7 (2.9-7.6) 

Ireland 422 16.1 (15.6-16.7) 9.1 (9-9.2) 2.4 (2.3-2.5) 3.6 (2.0-6.4) 

Italy 709 16.5 (14.1-19.1) 1.6 (0.9-2.6) 5.4 (3.8-7.7) 9.6 (7.7-12.1) 

Latvia 392 5.6 (3.3-9.1) 0.3 (0.1-2) 1.9 (0.6-6) 3.4 (1.7-6.6) 

Lithuania 461 1.8 (0.8-3.9) 1.3 (0.5-3.8) 0 0.5 (0.2-1.5) 

Luxembourg 313 22.4 (12.7-36.4) 16.1 (8.8-27.6) 1.5 (0.7-2.8) 4.0 (1.6-9.6) 

Poland 1176 5.1 (3.7-6.9) 1.4 (0.8-2.5) 0.1 (0-0.2) 3.5 (2.5-4.9) 

Portugal 658 23.4 (19.4-28) 8.4 (6.1-11.5) 2.5 (1.3-4.7) 12.1 (10.3-14.2) 

Slovakia 385 4.8 (2.6-8.9) 0.8 (0.3-2.1) 1.1 (0.4-2.7) 3.6 (1.8-6.8) 

Slovenia 431 6.2 (4.2-9.1) 0.7 (0.2-2) 0.6 (0.1-2.6) 5.1 (3.4-7.5) 

Spain 2619 29.0 (24.9-33.5) 10.6 (8.6-13.1) 2.8 (1.8-4.3) 16.1 (13.5-19.1) 

Sweden 394 1.3 (1.2-1.5) 1.2 (0.5-2.7) 0 0.5 (0.3-0.5) 

 Netherlands 1087 8.5 (7.3-9.8) 4.9 (4.7-5) 1.3 (0.8-2.1) 2.1 (1.4-3.2) 

United Kingdom  639 21.2 (17.8-25) 13.8 (11.9-15.8) 4.8 (3.6-6.3) 3.8 (2.5-5.5) 

EU 18663 10.3 (9.2-11.5) 4.7 (4.1-5.3) 2.1 (1.8-2.6) 5.0 (4.4-5.7) 

Norway 408 0.3 (0.04-1.6) 0.3 (0.04-1.6) 0 0 

 

Table 4: Baseline study (EU Regulation 2160/2003) in breeding pigs in EU and Norway showing 
the prevalence of positive breeding holdings [37] 

Country N 
Salmonella spp. S. Typhimurium S. Derby Other serovar 

% (95% CI) % (95% CI) % (95% CI) % (95% CI) 

Austria 79 6.3 (3.2-13.2) 3.8 (1.8-10.0) 1.3 (0.4-6.0) 1.3 (0.4-6.0) 

Belgium 16 18.8 (7.3-45.1) 12.5 (4.2-37.8) 6.3 (1.4-29.7) 6.3 (1.4-29.7) 

Bulgaria 47 2.1 (1.6-8.2) 0 (0.0-4.9) 0 (0.0-4.9) 2.1 (1.6-8.2) 

Cyprus 4 50.0 (15.0-85.0) 0 (0.0-60.4) 25.0 (1.3-78.1) 25.0 (1.3-78.1) 

Czech Republic 106 10.4 (7.2-15.9) 3.8 (2.1-7.7) 0.9 (0.5-4.1) 5.7 (3.6-10.3) 

Denmark 95 41.1 (34.4-48.9) 15.8 (11.3-22.6) 12.6 (9.1-18.8) 17.9 (13.4-24.7) 

Estonia 6 0 (0.0-14.3) 0 (0.0-14.3) 0 (0.0-14.3) 0 (0.0-14.3) 

Finland 50 0 (0.0-6.1) 0 (0.0-6.1) 0 (0.0-6.1) 0 (0.0-6.1) 

France 157 50.3 (44.2-57.1) 7.0 (4.5-11.4) 25.5 (20.5-31.7) 26.8 (21.8-33.2) 

Germany 46 28.3 (18.4-42.6) 8.7 (3.9-20.3) 10.9 (5.3-22.9) 6.5 (2.6-17.4) 

Hungary 40 30.0 (17.1-46.7) 10.0 (3.3-24.6) 7.5 (1.9-21.5) 15.0 (6.2-30.5) 

Ireland 40 52.5 (51.2-53.7) 17.5 (17.1-19.5) 20.0 (19.5-22.0) 17.5 (17.1-19.5) 

Italy 43 51.2 (39.2-65.1) 7.0 (2.7-17.7) 16.3 (9.1-29.0) 16.3 (9.1-29.0) 

Latvia 5 20.0 (14.3-42.9) 0 (0.0-28.6) 20.0 (14.3-42.9) 20.0 (14.3-42.9) 

Lithuania 10 0 (0.0-9.1) 0 (0.0-9.1) 0 (0.0-9.1) 0 (0.0-9.1) 

Luxembourg 3 33.3 (1.8-87.5) 0 (0.0-69.0) 0 (0.0-69.0) 33.3 (1.8-87.5) 

Netherland 109 57.8 (50.0-66.2) 13.8 (9.3-20.9) 18.3 (12.9-26.1) 38.5 (31.3-47.2) 

Poland 144 6.9 (3.9-12.3) 2.8 (1.1-6.9) 1.4 (0.4-4.9) 3.5 (1.6-7.9) 

Portugal 33 45.5 (38.5-53.8) 9.1 (7.7-17.9) 9.1 (7.7-17.9) 33.3 (28.2-43.6) 

Slovakia 96 11.5 (9.0-16.4) 2.1 (1.5-5.2) 3.1 (2.2-6.7) 6.3 (4.5-10.4) 

Slovenia 27 0 (0.0-9.1) 0 (0.0-9.1) 0 (0.0-9.1) 0 (0.0-9.1) 

Spain 150 64.0 (57.8-70.4) 14.0 (10.4-19.5) 10.0 (7.0-14.9) 53.3 (47.2-60.0) 

Sweden 57 1.8 (1.3-6.3) 1.8 (1.3-6.3) 0 (0.0-3.8) 0 (0.0-3.8) 

United Kingdom  67 52.2 (44.6-61.5) 19.4 (13.8-27.7) 14.9 (10.0-23.1) 29.9 (23.1-39.2) 

EU 1377 28.7 (26.3-31.0) 7.8 (6.1-9.5) 8.9 (7.4-10.5) 15.9 (14.2-17.6) 

Norway 108 0 (0.0-2.2) 0 (0.0-2.2) 0 (0.0-2.2) 0 (0.0-2.2) 

Switzerland 71 15.5 (12.6-20.7) 4.2 (3.4-8.0) 1.4 (1.1-4.6) 8.5 (6.6-13.8) 
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Table 5: Baseline study (EU Regulation 2160/2003) in breeding pigs in EU and Norway showing the 

prevalence of positive production holdings [37] 

Country N 
Salmonella spp. S. Typhimurium S. Derby Other serovar 

% (95% CI) % (95% CI) % (95% CI) % (95% CI) 

Austria 173 5.8 (3.2-10.3) 0 (0.0-2.1) 0.6 (0.1-3.2) 5.2 (2.8-9.6) 

Belgium 209 36.4 (30.5-43.1) 11.0 (7.6-15.9) 10.0 (6.8-14.8) 21.5 (16.7-27.6) 

Bulgaria 25 0 (0.0-13.5) 0 (0.0-13.5) 0 (0.0-13.5) 0 (0.0-13.5) 

Cyprus 60 18.3 (13.8-26.4) 0 (0.0-4.6) 8.3 (5.7-14.9) 8.3 (5.7-14.9) 

Czech Republic 161 15.5 (10.9-21.9) 2.5 (1.0-6.1) 3.7 (1.8-7.8) 11.2 (7.4-17.0) 

Denmark 198 41.4 (35.2-48.4) 12.6 (8.9-17.9) 14.6 (10.6-20.2) 18.7 (14.1-24.7) 

Estonia 28 3.6 (0.2-20.2) 0 (0.0-15.0) 0 (0.0-15.0) 0 (0.0-15.0) 

Finland 157 0 (0.0-2.1) 0 (0.0-2.1) 0 (0.0-2.1) 0 (0.0-2.1) 

France 186 38.7 (32.3-46.0) 3.2 (1.5-6.9) 20.4 (15.4-26.9) 19.9 (14.9-26.3) 

Germany 155 20.6 (15.2-27.8) 3.2 (1.4-7.3) 8.4 (5.0-13.9) 9.0 (5.5-14.7) 

Hungary 141 27.7 (22.1-34.6) 1.4 (0.6-4.5) 12.8 (8.9-18.6) 14.2 (10.1-20.2) 

Ireland 149 47.7 (42.3-53.8) 17.4 (13.8-22.6) 13.4 (10.2-18.4) 26.2 (21.6-32.1) 

Italy 171 43.9 (36.9-51.5) 5.8 (3.3-10.4) 12.3 (8.3-18.1) 11.7 (7.8-17.4) 

Latvia 28 28.6 (20.5-41.0) 0 (0.0-7.7) 3.6 (2.6-12.8) 25.0 (17.9-38.5) 

Lithuania 72 8.3 (7.1-12.9) 0 (0.0-2.4) 0 (0.0-2.4) 8.3 (7.1-12-9) 

Luxembourg 41 22.0 (11.1-38.0) 2.4 (0.1-14.4) 17.1 (7.7-32.6) 7.3 (1.9-21.0) 

Netherland 212 55.7 (49.4-62.2) 8.0 (5.2-12.4) 17.0 (12.8-22.5) 42.5 (36.4-49.2) 

Poland 178 9.6 (6.1-14.8) 1.7 (0.6-4.8) 2.8 (1.2-6.4) 5.1 (2.7-9.4) 

Portugal 134 43.3 (35.6-52.0) 13.4 (8.8-20.3) 5.2 (2.6-10.4) 29.9 (23.0-38.2) 

Slovakia 96 18.8 (12.6-27.7) 3.1 (1.2-8.7) 4.2 (1.8-10.1) 13.5 (8.3-21.8) 

Slovenia 87 10.3 (5.7-18.7) 0 (0.0-4.1) 1.1 (0.3-6.2) 10.3 (5.7-18.7) 

Spain 209 53.1 (46.6-60.0) 12.4 (8.7-17.7) 6.7 (4.1-10.9) 42.6 (36.3-49.5) 

Sweden 150 0 (0.0-2.4) 0 (0.0-2.4) 0 (0.0-2.4) 0 (0.0-2.4) 

United Kingdom  191 44.0 (37.8-50.9) 9.9 (6.7-14.8) 11.0 (7.5-16.0) 31.9 (26.3-38.7) 

EU 3050 33.3 (30.9-35.7) 6.6 (5.3-7.9) 9.0 (7.6-10.5) 21.6 (19.5-23.6) 

Norway 143 0 (0.0-2.5) 0 (0.0-2.5) 0 (0.0-2.5) 0 (0.0-2.5) 

Switzerland 154 11.7 (7.9-17.3) 1.9 (0.7-5.2) 1.9 (0.7-5.2) 7.8 (4.9-12.8) 

 

1.2.5 Diagnostic methods 

 

The two main diagnostic methods for the detection of Salmonella spp. infection are the 

detection of the immune response to the agent or detection of the agent itself. 

 

1.2.5.1 Detection of the immune response 

 

The detection of the immune response to the agent (serological methods), is mainly done 

using ELISA tests. These tests detect antibodies against Salmonella, and are used in most of 

the monitoring/surveillance programmes. They are quick and cheap. However they evaluate if 

the pig was exposed to the agent and not if the pig is shedding the agent [38]. Even a recent 

infection could test negative if there was not yet seroconversion [39]. A correlation between 

serology and shedding of Salmonella has been demonstrated in experimental studies [40] and 

field studies [41] conducted in the countries that developed these tests. All existing ELISAs are 

based on antigens of lipopolysaccharides (LPS). These are part of the cellular wall of many 

bacteria but are specific for each type of bacteria. In the case of Salmonella the LPS is very 

specific for each serovar, and in most of the ELISA tests, several antigens specific for different 
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serovars are included. Therefore it is advisable to do a microbiological survey before 

developing and using a ELISA test to monitor the infection to be sure that the serovars present 

in that country will be detected by the test [39]. 

For all these reasons the serological tests should be interpreted with some caution, taking into 

consideration the following factors: 

a) The type of antigens that the test could detect. 

b) Cut-off value – optical density (OD) cut-off value will influence the sensitivity and 

specificity of the test.  

c) Status of the infection – there is a time lapse of 2 weeks (experimental infections) to 2 

months (field conditions) between the peak of bacteriological shedding and the 

serological conversion.  

d) Serovar – the immune response variation between serovars.  

e) Passive immunity – in field conditions the piglets ingest their mother’s colostrum, which 

could transmit passive immunity to the piglets if the mother is seropositive. The 

maternal antibodies remain for 8 to 10 weeks. Therefore, ELISA tests should only be 

used in piglets more than 10 weeks old.   

f) Seroconversion failure – some individuals are not able to develop an immunological 

reaction to infection and do not seroconvert even after being infected by serovars that 

usually induce a serological response. Part of the explanation may be due to genetic 

resistance in some pigs [42, 43]. 

g) Specificity – the specificity of the ELISA test to Salmonella is considered high. However 

it is not recommended to use ELISA tests in low prevalence areas [39]. 

One of the more frequently used serological tests is the mixed ELISA (Danish mixed ELISA - 

DME). The DME was developed for the first time in Denmark based on the local antigens 

distribution for Salmonella, focussing on the serovars that are important for food safety in that 

country [40]. Since its development, it has been used in meat juice (drip fluid released from 

meat after freezing and thawing) and blood in several countries. The DME uses a combination 

of LPS of Salmonella Cholerasuis, and Typhimurium [40]. Other laboratories, with the aim of 

increasing their test sensitivity, developed indirect ELISAs based on the DME, using the same 

antigens or adding antigens for different serovars of Salmonella which are more prevalent in 

the country or region where the test is going to be used [44, 45]. Some companies sell several 

ELISA tests for swine, such as the kit Salmotype® (Salmotype Labordiagnostik, Leipzig, 

Germany) and the IDEXX (Herdchek Salmonella, IDEXX Laboratories, Schiphol-Rijk, Noord-

Holland, Netherlands). These two tests when compared to faecal culture, show a sensitivity of 

65% and specificity of 84% for a 25% OD cut-off for Salmotype, and a sensitivity of 59% and a 

specificity of 69% for a 9% OD cut-off for IDEXX [38]. 
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The ELISA tests are considered useful tools for the detection of herds that are usually infected 

by Salmonella, but they do not provide definitive information about the infectious state of the 

animal (or group) at slaughter for instance [46, 47]. 

 

1.2.5.2 Detection of the agent 

 

Culture 

 

Culture of the agent is used to provide a good characterization of the different serovars 

present, to evaluate the extent of antimicrobial resistance, and to identify sources of infection 

in outbreaks with different foods [39]. 

Culture of the bacteria can be carried out using animal faeces, tissues or food. The results of 

the faecal culture will depend if the animal is shedding or not, which affects the test sensitivity. 

Culture allows the isolation and identification of the agent. Therefore, it is considered the 

perfect test in terms of specificity (no false positive results). However it is expensive, time-

consuming and lacks sensitivity. The false negative results vary from 10 to 80%. Faecal 

culture is also prone to sampling errors if at the collection time the animal is not yet shedding 

[48-50]. However if used repeatedly at herd level (e.g. control programmes), this increases 

herd sensitivity. In these cases consecutive herd negative faecal cultures at one month 

intervals, indicate with some confidence that the herd is free from Salmonella [39]. 

Several studies have compared the microbiological techniques for isolation of Salmonella from 

different sources, including faecal samples. The diagnosis of subclinical shedding of 

Salmonella needs specialized culture methods with several steps of selective pre-enrichment. 

Compared to faeces, lymph nodes and meat have a lower level of competitive flora, and 

Salmonella will, even when present in low numbers, be more easily isolated from such 

materials. [39].  

Standard methods for the isolation of Salmonella, e.g. ISO 6579, have been developed and 

evaluated in relation to the analysis of food and feed. As the matrix has considerable influence 

on the performance of the method (for example due to levels of competitive flora), methods 

developed for analysis of food cannot be assumed to be appropriate for analysis of other 

materials (e.g. faeces). In recent years, efforts have been made to develop and evaluate a 

standard bacteriologic method for the isolation of Salmonella from samples from primary 

animal production. These studies have resulted in the addition of an annex to the established 

ISO-method [39]. 

Comparison between immunologic and culture methods 

Both methods have some advantages and disadvantages. The most important are: the 

bacteriological results express the actual infection status of the animal, including transmission 
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or recent contamination; it allows isolation of the agent, which enables further characterisation 

(e.g. serovar and antimicrobial resistance profiles). However, the analytical procedure is 

laborious and may lack sensitivity when compared to immunological methods. The 

immunological methods indicate previous exposure and infection from the host to the 

infectious agent expressed by the presence of detectable specific antibodies against 

Salmonella. Among the advantages, ELISA methods can identify carriers but does not 

differentiate them from previously infected animals which have already cleared the infection. It 

detects only those serogroups included in the test and therefore newly emerging serovars may 

not be detected. The method can be automated, and it is less laborious [39].  

 

Molecular methods 

 

There are several molecular methods that can be used to detect Salmonella and also to 

quantify the resistance profile. The main methods are the following: 

- PCR (polymerase chain reaction) is based on the amplification of the specific DNA 

sequence of interest within a few hours. There are different types of PCR, such as 

multiplex PCR and real-time PCR [51-55]. 

- DNA-DNA hybridization (Southern blot). This method is suitable for identifying DNA 

sequences in bacterial food-borne pathogens [52]. 

- DNA fingerprinting, also referred to as genotyping. Genotyping methods are commonly 

based on identification of restriction fragments, e.g., by pulsed field gel electrophoresis 

(PFGE); by amplified fragment length polymorphism (AFLP) or repetitive sequence 

PCR (Rep-PCR); or DNA sequence, by multilocus sequence typing (MLST) [56, 57], 

variable number tandem repeat (VNTR) [58] and single-strand conformation 

polymorphism (SSCP) [59].  The PFGE has been used for subtyping human 

Salmonella isolates [52].  

The described molecular diagnostic and subtyping methods have the potential to play a pivotal 

role in the epidemiological identification of food-borne pathogens at individual or population 

levels and to make the information exchange between human outbreaks of Salmonella and its 

source at herd level [56-58]. 
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1.3 - Risk factors for Salmonella spp. pre-harvest and harvest level 

 

Risk factors are variables that are associated with an increase of a disease/outcome. The 

factor and the disease/outcome can be causally associated either directly or indirectly.  

 

1.3.1 Farm risk factors 

There are several known risk factors for this agent which can be divided into categories: 

 a) humans as vectors [60, 61], biosecurity measures (like washing hands, changing clothes 

and boots before entering the herd, and others) when applied to the workers and visitants are 

associated with a decrease in the infection risk [35, 61-63];  

b) floor type, certain floors decrease the contact between faecal material and the pigs which 

can reduce the faecal-oral transmission between pigs [64, 65];  

c) contamination of buildings (Salmonella has the ability to survive 6 years  in the environment, 

therefore disinfection and hygiene of buildings are very important to reduce contamination) 

[66, 67];  

d) animal management (the all-in-all-out systems are frequently suggested for controlling 

Salmonella but there is no evidence that they are always associated with a decrease in the 

risk) [66, 68, 69];  

e) transmission between sows and piglets [70];  

f) vectors like insects, rodents, birds, and domestic and wild animals [65, 71, 72];  

g) feed contamination (although the serovars isolated in feed are not the ones most often 

isolated from pig herds and pork meat) [73];  

h) feed structure and components (dry, pellet, fermented) [66, 69, 74, 75];  

i) acidification of feed with organic acids [65];  

j) season of the year and environmental temperature (improper ventilation and stress due to 

high temperatures can explain the association between temperature and Salmonella 

prevalence);  

k) animal density (increases the transmission between animals and decreases the immunity 

because of the stress) [61]; and  

l) herd sanitary status (to PPRSV and parasitosis) [35, 63, 67, 76].  

 

Table 6 summarizes several known risk factors associated with Salmonella spp. in pigs. 
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Table 6: Risk/Protection factors for Salmonella spp. infection, adapted from [77] 

Risk factor 
OR 

* 90% CI 
** 95% CI 

Reference 

Biosecurity 
measures 
and 
equipment 

Cleaning 
measures and 
‘empty and 
clean’ period 

Frequency of sow manure removal in 
farrowing pens during the lactation period 
lower than once a day 

2.9 (1.2-6.7)* 
[63] 

 

Hygiene and 
clothes 

Lack of emptying pits below slatted floors 
after removal of previous sow batches 

2.6 (1.1-6.4)* 
[63] 
[78] 

Poor herd hygiene 39.7 – model [73] 

High pressure washing and disinfection of 
the pens 

0.7 (0.5-0.99)** [67] 

0.9 (0.84-
0.96)** 

[66] 

Residual Salmonella contamination of the 
pen before loading of the following batch  

3.1 (1.4-7.1)* [63] 

1.9 (1.2-2.9)** - 
HR 

[35] 

Duration of ‘empty and clean’ period lower 
than 6 days in farrowing pen 

3.1 (1.7-5.5)* [63] 

Duration of ‘empty and clean’ period lower 
than 7 days in post-weaning pens 

3.2 (1.3-8.2)* [78] 

Duration of ‘empty and clean’ period lower 
than 3 days in fattening pen 

2.0 (1.1-3.5)* [63] 

Detection of Salmonella on boots or 
environmental samples and/or lack of 
boot-dip at the entrance of the facilities 

NA [62, 79, 80] 

Increased washing and disinfection 
frequency with cold water between batches  

1.4 (1.03-
1.99)** 

[75] 

Lack of hand hygiene before tending to pigs; 
lack of toilet 

4.4 (1.6-11.6)** [81] 

11.1 (1.8-70.2)* [61] 

Use of specific clothes before entering 
buildings 

0.5 (0.3-0.9)** - 
HR 

[35] 

Infection 
through people 
or equipment 

More than two humans present at a finisher 
site daily 

4.8 (1.4-17.1)* [61] 

Sharing equipment NA [60] 

Floors 

Partially slatted floor versus fully slatted 8.9 (5.0-15.9)* [64] 

Solid floors/straw on floors versus slatted 
floor 

1.5 (1.4-1.6)* [65] 

Biosecurity 

Closed herds 

0.19 (0.05-
0.66)** 

[75] 

0.92 (0.87-
0.97)** 

[66] 

Herd closed to exterior  
0.4 (0.2-0.8)** - 

HR 
[35] 

Snout contact between pens 

1,7 (1,01-2,9)** [69] 

1.7 (1.1-2.8)** - 
model 

[82] 

No use of boot-dip 1.2 (1.1-1.3)** [66] 

Intercurrent 
diseases / 
Herds 
sanitary 
status 

“Specific pathogens free herds” 0.7 (0.5-0.8)** [83] 

Infections by Lawsonia Intracelularis 3.2 (1.4-7.2)* [63] 

Infection by PRRSV (Porcine Reproductive and Respiratory 
Syndrome Virus) 

3.0 (1.3-6.7)* [63] 

1.6 (1.1-2.5)** - 
HR 

[35] 

Diarrhoea in growing pigs NA [84] 

Infection by PRCV (Porcine Respiratory Coronavirus) 6.9 (2.2-21.6)* [78, 85] 

Liver infestations by Ascaris suum with high level (>16%) of liver 

condemnation at slaughterhouse during meat inspection 
2.1 (1.1-4.2)** [67] 

Legend: HR – hazard ratio, OR – odds ratio, CI – confidence interval, NA – value not available
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Table 6: Risk/Protection factors for Salmonella spp. infection, adapted from [77] (cont.) 

Risk factor 
OR 

* 90% CI 
** 95% CI 

Reference 

Feed and 
watering 

Feed contamination 1.6 - model [73] 

Feed 
acidification or 
fermented 
liquid feed 

Use of dry or liquid feed in 
comparison with fermented liquid feed 

5.0 (2.0-10.0)** [67] 

Adding organic acids decreases 
prevalence  

NA [86, 87] 

0.7 (0.6-0.8)** [65] 

Probiotics 
Use of probiotics decreases intestinal 
adhesion to Salmonella  

NA [88] 

Feed source Commercial feed 1.8 (1.6-2.0)** [83] 

Dry feed Dry feed versus wet feed 

3.2 (1.4-7.1)* [63] 

4.9 (1.9-12.7)* [3] 

4.1 (1.4-12.2)* [68] 

1.5 (1.3-1.8)** [83] 

Pelleted feed 

Pelleted ration vs. wet or dry non-
pelleted ration 

12.5 (2.2-
100.0)** 

[74] 

1.7 (1.1-2.8)** [69] 

Pellet ration vs. wet feed 

10 (1.4-100.0)** [74] 

10.3 (1.7-61.6)** [75] 

2.4 (1.5-4.0)** [69] 

1.4 (1.4-1.5)** [66] 

Do not give colostrum to piglets 2.6 (1.2-6.3)** [69] 

Feeder design 
Use of automated fermented feed 

0.09 (0.005-
0.4)** 

[89] 

Mixture of pellet feed with water  4.1 (1.4-11.8)** [89] 

Water 

Adding chlorate to water has a 
beneficial effect in reducing faecal 
concentration of Salmonella 

NA [86] 

Bowl drinkers are associated with 
higher prevalence than nipple drinkers 

8.0 (3.4-19.0)* [3] 

Herd 
management 

Sow infection 

The infection of sows at gestation/ 
maternity or contaminated 
environmental is associated with an 
increased seroprevalence on piglets 

1.2 (1.1-1.4)* [70] 

Introduction of sows/growers in a herd NA [90, 91] 

Herd size 
More than 100 animals in fattening 1.1 (1.0-1.2)** [75] 

Less than 800 animals in the herd 1.5 (1.1-1.9)** [67] 

Herd type 
Fattening vs. piglet production 

38.2 (1.6 – 
927.8)* 

[92] 

Fattening vs. post weaning 4.2 (2.1-8.3)** [81] 

Stocking 
density 

Space allowance less than to 0.75m
2 

per pig 
4.5 (1.3-15.7)* [61] 

Other breeding 
and contacts 
with 
domestic 
species or wild 
animals 

Contact with rodents NA 
[71] 
[72] 
[79] 

Contact with birds NA [72] 

Poultry breeding on the farm 1.2 (1.1-1.3)* [65] 

Other domestic species at the site or 
indirect contacts with other herds 

NA 
[72] 
[60] 

4.7 (1.2-18.0)* [61] 

Controlling insects 
0.4 (0.3-0.6)** - 

model 
[82] 

Pig source 
Recruitment of pigs from more than 3 
different supplier herds 

3.3 (1.6-6.8)** [69] 

Mixing batches 

Continuous production of pigs 
compared to all-in/all-out 

3.7 (1.9-7.1)** [69] 

1.4 (1.3-1.5)** [66] 

3.9 (1.4-10.5)* [68] 

Mixing piglets at post weaning 
(increases the social stress) 

NA [93] 

Mixing batches during the fattening 
period 

1.5 (1.4-1.6)* [65] 

Legend: HR – hazard ratio, OR – odds ratio, CI – confidence interval, NA – value not available
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Table 6: Risk/Protection factors for Salmonella spp. infection, adapted from [77] (cont.) 

Risk factor 
OR 

* 90% CI 
** 95% CI 

Reference 

Herd 
management 

Antibiotic 

Combination of chlortetracycline, 
procaine penicillin and 
sulphamethazine supplemented 
ration versus approved growth 
promoter or probiotic 

4.1 (1.8-9.2)** [74] 

Using chlortetracycline as growth 
promoter during the fattening 
period 

6.9 (2.8-17.1)** [94] 

Preventive antibiotic treatment 
during fattening enhances 
serological prevalence 

2.4 (1.7-3.4)** - 
HR 

[35] 

1.5 (1.4-1.7)* [65] 

5.6 – model [73] 

Using tylosine as growth promoter 
at the end of the fattening period 

1.6 (1.1-2.3)** [67] 

Legend: HR – hazard ratio, OR – odds ratio, CI – confidence interval, NA – value not available 

 

1.3.2 Risk factors on transport, lairage and slaughter associated with meat 

contamination 

 

When shipping the pigs to slaughter, the stress due to transport increases the 

transmission of the infection between animals from the same herd and from different 

herds [73]. In lairage the cross contamination happens again, allowing infected pigs to 

shed the agent in great quantities to the environment [95, 96]. Therefore the majority of 

slaughterhouses have highly contaminated environments which allow cross 

contamination between batches [97, 98]. The implementation of a Hazard Analysis 

Critical Control Points (HACCP) plan allows a reduction or elimination of the 

contamination in slaughter. Some of the known risk factors in transport, lairage and 

slaughter are shown in Table 7. 

A research study [99] followed 60 animals/carcasses along the slaughter process. 

Reductions in the bacteria number in the scalding, singeing, and dehairing steps 

(reduction of 4.5 log10 cfu/m2) were observed. The final washing increased the bacteria 

numbers in 3.6 to 3.8 log10 cfu/m2, while chilling increased the counts in 4.5 to 4.7 log10 

cfu/m2. The prevalence of Salmonella in carcasses was 31% after bleeding, 1% after 

scalding, 7% after dehairing, 0% after singeing and polishing and 7% after evisceration 

[100]. 
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Table 7: Transport, lairage and slaughter process risk factors. 

Risk factor 
OR 

* 90% CI 
** 95% CI 

Reference 

Transport 

Pig Salmonella positive sanitary status 
before loading 

4.0 – model [73] 

Poor hygiene 1.1 – model [73] 

Stress during transport 1.9 - model [73] 

Lairage 

Time in lairage 

3-6h vs. <3h 3.3 (1.1-9.9)* [95] 

>6h vs. <3h 13.1 (4.7-36.1)* [95] 

>12h vs.<12h 2.83 (1.33-6.01)** [101] 

Hygiene Contaminated pens NA [96] 

Use of water spray 
on pigs 

When 
environmental 
temperature is high 

6.96 (3.24-14.95)** [98] 

Slaughter 
process 

Polishing 3.74 (1.43-9.78)** [97] 

Scalding and evisceration 3.63 (1.66-7.96)** [97] 

Steam scalding 0.18 (0.05 – 0.69)** [98] 

Time between slaughter and scalding 
(increased) 

1.43 (0.88-2.34)** [98] 

Routine evisceration vs. careful 
evisceration 

11.8 (2.3-113.3)** [102] 

Washing and 
disinfection of 
splitting machine 

3 times/day 0.13 (0.017-0.97)** [98] 

Chilling of carcass 2 days vs. 1 day 0.19 (0.045-0.813)* [103] 

Season Summer vs. Autumn 11.9 (1.1-125.5)** [97] 

Slaughter 
duration 

Along the slaughter 
process 
contamination 
increases 

Comparison 
between the end 
and the beginning 
of the slaughter 
process 

3.97 (2.51-6.27)** [97] 

Legend: OR – odds ratio, CI – confidence interval, NA – value not available 

  

1.4 – Surveillance systems and control measures for Salmonella spp. in 

swine 

 

1.4.1 Control/Prevention 

 

In 1980, the World Health Organization (WHO) had already formulated three lines of 

defence against Salmonella, which still comprise valid strategic approaches to risk 

mitigation: 

a) the first approach focuses on controlling Salmonella in the food-producing animal 

(pre-harvest control), 

b) the second approach involves improving hygiene during the slaughter and further 

processing of the meat (harvest control), 

c) the third approach targets the food final preparation by educating the food industry 

and consumers about good hygiene practices (post-harvest control). 

Successful prevention of food-borne salmonellosis originating from animal production 

must involve all three lines of defence. Pre-harvest control of Salmonella at the farm 



21 

 

level has long been considered an important part of pathogen reduction schemes, 

because traditional meat inspection cannot control Salmonella-contaminated carcasses 

[4]. 

The focus of this revision is on pre-harvest although some risk mitigation options at 

harvest are also suggested. 

 

1.4.1.1 Pre-harvest control 

The World Organisation for Animal Health (OIE) concluded that Salmonella control 

programmes should follow the same general rules that have been successfully applied 

to other infectious diseases. It is fundamental that monitoring/surveillance programmes 

should be established to identify Salmonella-infected herds and animals and that 

efforts are made to find and control the sources of infection and prevent further spread. 

The ultimate objective is to produce Salmonella-free animals [4]. It should also be 

emphasised that Salmonella is a pathogen and not a ubiquitous bacteria or a normal 

inhabitant of the intestinal flora of domestic animals, as has sometimes been claimed 

previously [39]. 

 

Serovars to be controlled 

Since any serovar, including those that infect animals or colonise their intestine, is a 

potential hazard to human health, measures to prevent food-borne salmonellosis must 

be directed at all serovars of Salmonella. However, a Salmonella reduction strategy 

which is limited to a few selected serovars should also have a preventive effect on 

most other serovars since most of the time the same control measures are applicable 

for any serovar. If such a strategy is implemented, a supporting surveillance 

programme will also be needed to detect the prevalence of zoonotic serovars and 

prevent their build-up in the production chain. If no interventions are made at this early 

stage, these serovars could later spread widely, perhaps reaching epidemic 

proportions [4, 39]. 

 

Live animals as source of infection 

Salmonella-infected food-producing animals excrete Salmonella bacteria in large 

numbers, sometimes intermittently during their entire productive life [4]. During the 

acute phase of the disease, pigs will shed up to 106 - 107 Salmonella bacteria per gram 

of faeces and the disease-producing dose is of a magnitude of 108 to 1011 bacteria [39]. 

Excreted bacteria infect neighbouring animals on the farm and contamination of the 

environment takes place, with infections being transmitted to rodents and other wild 

fauna. When moved, the Salmonella-infected animals are effective at introducing the 
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infection into their new holdings. Therefore they must be at least subject to isolation 

(quarantine) as the stress linked to transport may reactivate shedding in carriers [4, 

39]. In the absence of ‘guaranteed Salmonella-free replacement animals’, other 

methods must be used to limit the risk of introducing Salmonella with incoming animals. 

In general, animals should be introduced only from herds of the same or a higher 

health status [4]. An important measure to control the disease is to identify infected 

animals. Animals found to be infected may be temporarily raised under isolation and 

controlled conditions but all infected animals must be sent to slaughter [39].  

 

Diagnosis and monitoring methods 

A control programme also needs a supporting monitoring programme. Monitoring using 

bacteriological methods is needed to obtain a true picture of Salmonella status. 

Serological methods can be recommended, especially in medium- and high-prevalence 

countries, since they are cheap, fast and suitable for large-scale use, but their 

limitations should also be considered (e.g. they do not detect emerging serovars) [4]. 

 

Hygiene and husbandry 

Optimal hygiene and management routines are of major importance in aiding animals 

to withstand exposure to Salmonella, and to minimise the possible subsequent spread 

of the agent on the farm. Improvements in hygiene and management are also effective 

against other infectious agents [4, 39]. 

Raising livestock in separate groups, without mixing animals from different sources and 

ages, has proved to be an effective health measure. The ‘all-in, all-out’ system, with 

careful cleaning and disinfection between batches, has long been essential in broiler 

production, and is now also routine in Salmonella control programmes for beef and 

swine production (this involves entirely emptying the pen of animals and cleaning it 

before any new ones are introduced, so that infection cannot be passed on to incoming 

livestock) [4, 39]. 

The occurrence of diseases like Brachyspira hyodysenteriae, Aujeszky's disease and 

Porcine Reproductive and Respiratory Syndrome (PRRS) are stressing factors that 

increase the susceptibility of swine to Salmonella exposure, and their control thus also 

contributes to the prevention or control of Salmonella infection in exposed herds [39]. 

Biosecurity prevents animals like rodents, birds, foxes, cats, dogs as well as other farm 

animals (that can be contaminated and infected with Salmonella and spread the agent) 

from coming into the herd, and pigs should be kept separate from other species of farm 

animals. Biosecurity also prevents visitors and equipment from becoming a source of 

infection [39].  
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The importance of hygienic management of animal effluents, including manure, is 

evident, especially when considering intensive production [39]. The temperature, 

storage time and interaction between these, influence the decrease of Salmonella in 

the slurry [104]. 

Husbandry systems where pigs are outdoor (pasture, free range etc.) are at an 

increased risk of becoming infected with Salmonella. Control under these 

circumstances will be very difficult as a result of the continuous exposure [39]. 

 

Feed 

The control of Salmonella contamination of feed is essential and is an integrated part of 

the pre-harvest control of Salmonella. Good Manufacturing Practices (GMP) and 

HACCP guidelines are available for feed manufacturers. In all countries there is most 

likely a constant but varying risk for animals to be exposed to Salmonella through their 

feed. The documentation of the significance of this risk can be difficult to establish in 

countries with a relatively high prevalence of Salmonella without in-depth 

epidemiological studies. Under such circumstances it can be difficult to exclude 

sources other than feed as the source of infection. In countries with low prevalence of 

Salmonella, feed is considered as a major source of Salmonella infections in swine, in 

particular because of the great potential for spreading to a large number of farms [39, 

105]. 

Some measures for the control of Salmonella in feed include the following basic 

elements [39, 106]: 

a) monitor the raw materials which are used in feed; 

b) use heat treatment: 80ºC for 30 to 45 seconds is enough. It is also important to 

prevent recontamination after heat treatment, in the cooling, transport or 

storage of the feed; 

c) zero tolerance HACCP systems to Salmonella contamination; 

d) relevant action has to be taken immediately in case of finding of Salmonella in 

the feed mill. The development of an efficient procedure for cleaning and 

disinfection can ensure that Salmonella is eliminated. 

 

Feed composition 

Fermenting feed or fermented feed components (fermented liquid feed) used as a wet 

feeding system were found to have a Salmonella reducing effect, although the 

temperature of the feed must be taken in consideration [107]. Adding organic acid (e.g. 

formic, acetic or lactic acid) to feed can also have a Salmonella reducing effect [39, 

108]. In some studies the beneficial relationship was not proven [109]. 
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Water 

Adding acid to drinking water also showed beneficial results [39] in the reduction of 

Salmonella seroprevalence [110]. The acids most commonly used are lactic and formic 

acid, but the concentration required and the final water pH needs further research.  

 

Antimicrobials 

The use of antimicrobials to prevent suffering and economic losses in individual 

animals and herds can be justified but should always be combined with other 

Salmonella reduction actions. Antibiotics have sometimes also been used to prevent 

shedding of Salmonella, but the use of antibiotics in pigs with enterocolitis has not been 

found to reduce the prevalence, magnitude or duration of Salmonella shedding by sick 

or recovered animals. Preventive treatment of carrier pigs with enrofloxacin was not 

able to eliminate the infection. The use of antimicrobials for therapy or growth 

promoting also disrupt the gut flora which often increase the susceptibility of pigs to 

Salmonella infection. The use of antibiotics may thus act as a trigger for the spread of a 

Salmonella infection within a herd which would not have occurred if the animals were 

untreated. Also, the use of antimicrobials for Salmonella control in pigs should be 

discouraged due to public health risks associated with development, selection and 

spread of antimicrobial resistance  [39, 111]. 

 

Vaccines 

Vaccines for the control of Salmonella infections are in use all over the world, mainly 

evolving inactivated vaccines [112-115]. In recent years increasing numbers of live 

vaccines have been developed [112, 116]. Experience has shown that Salmonella 

vaccines, in association with other measures related to improvement of veterinary 

hygiene and good management, can perform outstandingly in the control of 

salmonellosis. Vaccination could thus very well play an important role in the 

intervention of Salmonella in high prevalence herds. Vaccination at an early stage of 

life (after weaning) would not interfere with serological detection of antibodies against 

Salmonella for monitoring purposes at the end of the finishing period [39]. A special 

serological test has been developed to distinguish between vaccinated and naturally 

infected animals [116]. A disadvantage of such vaccines is that they are serovar 

specific (mainly S. Typhimurium) and offer probably only limited cross protection to 

infection with Salmonella from the same serogroup and provide limited protection 

against infection with Salmonella belonging to other serogroups  [39]. Vaccination 

alone cannot eliminate Salmonella spp. from a herd, and whether vaccination is a 

suitable option in a control programme or not, depends on the aim of the control 
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programme (reduction or eradication), the prevalence of Salmonella, the serovars 

involved, the detection methods used and the cost-benefit [39, 112]. 

 

Competitive exclusion 

Competitive exclusion comprises excluding enteric pathogens from the alimentary tract 

by preferentially colonizing it with commensal or beneficial bacteria indigenous to a 

particular animal species. The use of competitive exclusion is a valuable part of 

Salmonella control in poultry. Positive results from the use of competitive exclusion are 

also reported from pigs [117, 118]. To maximize effectiveness, competitive exclusion 

should be administered before a potential exposure to Salmonella spp.. Wider studies 

are needed to fully quantify the effects of competitive exclusion in preventing 

Salmonella infections in pigs [39]. 

 

Summary of the current strategies for intervention at pre-harvest level 

The main points are [39]: 

a) Outsourced feed – based in GMP and HACCP at the supplier; 

b) Hygiene and management routines – all-in/all-out systems with cleaning and 

disinfection between batches, supply of clean drinking water, fly and rodent 

control, no access of pets and birds, visitor hygiene as part of biosecurity, and 

no close contact to other production animals. Housing strategies such as slatted 

floors, pen separations, pig flow through the herd, feeding troughs and drinking 

bowls, feeding systems (wet or dry feed, pelleted or meal feed), herd 

biosecurity, introduction of new animals, outdoor access, and multiple site 

production systems; 

c) Feed interventions – acidification of feed and water, fermented liquid feeds; 

d) Depopulation and Salmonella-free replacement animals – only acceptable in 

low prevalence regions; 

e) Serovars to be the subject of focus – any serovars could potentially infect 

humans, so all of them should be considered in a control programme; 

f) Monitoring – the use of bacteriological methods is required in order to obtain a 

true picture of the Salmonella status. Serological methods are applicable 

especially in medium and high prevalence MS as they are fast and suitable for 

large scale usage at a low cost, but they require to be supplemented by a 

strategic use of bacteriological methods. 

g)  Breeding production – pigs are generally most susceptible to Salmonella 

exposure during the growing period when the circulation of pathogenic agents 

usually is most pronounced. This is a critical point to be considered and has to 
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involve also the Salmonella status of the breeding animals and piglets earlier in 

the production chain. However, piglets delivered from units where the 

Salmonella prevalence is successfully reduced will readily be infected and 

colonized following transfer to the finishing herds, if mixed with pigs from herds 

of a lower Salmonella status or by residual infection in the finishing herds. An 

intervention for Salmonella control focused only on piglet production, breeding 

and grower herds can therefore not be recommended; 

h) Finisher production – the main exposure of the human population is the 

consequence of Salmonella presence in finishing pigs. Therefore it is 

reasonable to focus the interventions initially on finishing pigs because this 

would have a more direct influence on the subsequent steps of the food chain 

(harvest and post-harvest level) and on public health. Experience shows that an 

emphasis on control measures in the finisher phase leads to a larger and more 

rapid reduction in Salmonella prevalence in pigs and pork, than only emphasis 

on the sow/breeding level. 

 

1.4.1.2 Control at harvest level  

After being exposed to the agent a pig can be infected in 2 to 3 hours [27], which is 

compatible with the time spent in transport and in lairage. This means, that pigs could 

be infected before slaughter and quickly start shedding the agent. 

Salmonella contamination at slaughter is mainly because of faecal contamination, 

direct or indirect, between live pigs or carcasses. If Salmonella carriers are entering the 

slaughterhouse the possibility of transmission to consumers will always exist. Although 

live animals can be infected at herd, transport and lairage, the carcasses can only be 

contaminated with Salmonella during the slaughter process, due to cross 

contamination by equipment and workers, mainly because of equipment failure or poor 

hygiene procedures [119]. 

 

Summary of mitigation options for transport and lairage 

Some of the possible measures are [39]: 

 Cleaning and disinfection of trucks; 

 Avoiding mixing batches of pigs from different herds in the same truck; 

 Optimizing the transport logistics to reduce the transport duration; 

 Promoting transport under less stressful conditions and in accordance with the 

welfare rules; 

 To limit the duration of the lairage in accordance with welfare needs and meat 

quality considerations; 
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 To limit the environmental contamination by avoiding faecal accumulation: 

improving cleaning and disinfection protocols or the adaptation of floor structure 

to promote faecal elimination.  

 

Slaughter 

Slaughter pigs carrying Salmonella are known to be a considerable risk for the 

contamination of the ultimate meat and meat products [120, 121]. Within groups of 

slaughter pigs, there is a strong correlation between the proportion of animals carrying 

Salmonella in the faeces and the proportion of contaminated carcasses [122]. Pigs with 

Salmonella spp. in their faeces are 3 to 4 times more likely to give rise to a positive 

carcass than non-carrier animals [39]. 

In a EU study [123] the extent of cross-contamination in the slaughterhouse was 

estimated by first investigating pigs slaughtered from one or more Salmonella positive 

herds and then investigating pigs from one or more Salmonella negative herds. By 

sampling the carcasses at several points during the slaughter process, the 

contamination of the carcasses from the negative herds, when measured, provided 

information on the degree of cross-contamination brought about by manual handling 

and processing. The results showed that not all pigs from the Salmonella negative 

herds remained Salmonella-negative during and after slaughter. The source of 

contamination may have been the lairage, since it was possible for faecal matter to 

pass between the pens holding the positive and the negative pigs. Another source of 

contamination of the carcasses was considered to be the slaughter equipment, 

especially the carcass splitter. Carcasses of pigs may be cross contaminated from 

either Salmonella-positive pigs slaughtered previously on the same day, or from 

contaminated slaughter equipment. Such equipment can also be contaminated from 

Salmonella positive pigs slaughtered on the same day, but the results strongly 

suggested, that residual and/or persistent contamination of the equipment is also an 

important source. 

Some authors [121] considered that contamination of 30% of positive carcasses arose 

from cross-contamination from other infected pigs, and that up to 70% by cross 

contamination from the carrier animals themselves [120]. These figures will, however, 

vary depending on the Salmonella prevalence in different batches of slaughtered pigs 

[39].  

 

Summary of mitigation options at harvest level 

Hygiene of slaughtering – The most important mitigation option is to ensure that 

slaughter and carcass dressing are performed in an efficient manner to ensure that 
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faecal contamination of the carcass and offal is not a common event. In addition, 

specified actions are required to be taken when visible faecal contamination is seen. 

Guidelines for hygienic slaughter are available at both national and international level. 

These comprise recommendations on the hygienic design of establishments and 

facilities including their equipment, process control systems including GHP as well as 

HACCP based systems and codes of personal hygiene. Finally, regular monitoring and 

auditing of all phases of the hygiene programmes, for slaughter and carcass dressing 

including microbiological testing, allows the means of ensuring effective control of 

carcass and offal contamination with Salmonella during this phase [39]. 

Cooling – The fast cooling of carcasses to 7ºC can stop the multiplication of bacteria, 

but this cooling must be done in a way that meat quality is preserved [39]. 

Logistic slaughtering – Separate slaughtering of Salmonella-negative herds or 

slaughtering negative herds before positive herds has a positive impact on the 

incidence and extent of Salmonella contamination of pig carcasses in the 

slaughterhouse. Better results can be obtained if batches from different herds are also 

separated during transport, lairage and, later, carcass cooling [124]. The most efficient 

means of achieving separation is by slaughtering Salmonella-negative herds in 

different slaughterhouses than Salmonella-positive herds. 

Modifications of the slaughter line operations – Possible modifications of technical 

aspects of individual operations of pig slaughter line should be aimed at improving 

microbial status of pork carcasses.  

These would include the following [39]: 

 replacing submersion-scalding with spray-scalding would be beneficial; 

 reducing contamination that occurs in dehairing machines; 

 avoiding the polishing step, or inverting the singeing-polishing order, or 

repeating the singeing step, could prevent recontamination in polishing; 

 a careful evisceration, avoiding quick and unhygienic manipulations, the speed 

at such points could be slowed down through “branching” the line so to achieve 

multiple evisceration stations; 

 inclusion of a final carcass decontamination step, alone or in combination, e.g. 

a post-evisceration hot wash could reduce the microbial load on final carcasses. 

Decontamination treatments – The reason for considering meat decontamination is the 

fact that certain levels of microbial contamination of fresh meat surface (i.e. carcasses) 

inadvertently but regularly occur during the slaughter and dressing of animals. 

Presently and under commercial conditions, this risk cannot be fully eliminated solely 

by process hygiene means, no matter how carefully the various procedures are carried 

out [125]. However the disadvantages of meat decontamination are the 
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disproportionate reliance on the decontamination step and consequent reduction of the 

process hygiene; limited reduction rates achievable enabling positive selection for 

surviving resistant strains; stress-mediated increase of virulence of the surviving 

strains; subsequent enhanced growth of surviving pathogens due to elimination of 

background meat microflora, environmental pressure of the treatment chemicals, 

occupational health aspects, cost-benefit variability, labelling and potential consumer 

reactions [39]. Consequently, current legislation does not allow for carcass 

decontamination treatments apart from using water. 

The treatments can be divided into following [39]: 

 Heat treatments – temperatures of 80 to 85ºC of carcasses, either by hot water 

or steam can be used. The total microbial reductions under differing conditions 

and different meat species vary, and normally are within a 2.5-3.7 logs range for 

vegetative forms of the main food-borne pathogens; 

 Irradiation treatments – doses of 1-3 kGy are used for non-carcass meats in 

some non-EU countries. Generally, the microbial reduction rates achieved are 

within a 2-3 logs range for vegetative forms of the main food-borne pathogens 

(e.g. Salmonella), but not with viruses or microbial toxin [126]; 

 Chemical treatments – a range of low-molecule organic acids (e.g. lactic, acetic, 

citric, fumaric) are used commercially for meat decontamination in some 

countries. Generally, the microbial reductions achieved are within a 2-3 logs 

range for vegetative forms of the main food-borne pathogens (e.g. Salmonella, 

L. monocytogenes). Other chemicals used for pig meat decontamination include 

chlorine and trisodium phosphate and, generally, the microbial reductions of 

vegetative forms of main food-borne pathogens (e.g. Salmonella, E. coli O157) 

achieved are 1-1.5 logs [127]; 

 Other treatments – high voltage pulsed field, high pressure, etc. but not yet 

applied to carcasses. 

 

Microbiological monitoring of carcasses and surfaces 

The different aims of monitoring are monitoring/surveillance of pathogens in pigs on-

farm via testing of resulting carcasses at abattoir; monitoring/surveillance of pathogens 

in foods via carcass testing at abattoir; microbiological carcass testing in the context of 

HACCP verification i.e. for the process hygiene assessment purpose HACCP and for 

the evaluation of the microbiological criteria, that includes Salmonella in pork carcass, 

defined in the European Regulation (EC) N.º 2073/2005 [39, 100, 125]. 

The testing methods vary from carcass surface testing (using destructive or non-

destructive methods) to testing meat juice. 
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1.4.2 Surveillance and monitoring systems  

 

During the last 15 years animal disease has been a problem for meat trade worldwide, 

as for example avian influenza and foot and mouth disease. The disturbance in trade 

caused by animal disease affects the consumption patterns of meat, changes the 

prices, and imposes high costs to the animal industry worldwide. The prohibition of 

importation from infected zones, combined with rigorous inspections and testing at 

borders, has reduced income in recent years [155]. For example, EU experienced 

classic swine fever, where the affected countries were not major exporters worldwide. 

However some disease outbreaks such as foot and mouth disease in swine in China 

affected the global trade. These isolated outbreaks of animal diseases do not seem to 

cause great losses in trade at long term, because the reduction in production by one 

exporter country is compensated by another exporter country [155]. However the costs 

associated with animal diseases can be quite high, e.g. foot and mouth disease in UK 

in 2001 cost $9,204million, and avian influenza (serotype H7N7) in Netherlands in 2003 

cost €150million [155]. Therefore animal disease can cause great economic losses due 

to outbreaks or endemic disease which pose barriers to trade. 

Several countries have been implementing monitoring and surveillance systems to 

Salmonella in pigs. The sampling protocol varies with the country prevalence. Here are 

some examples:  

 

1.4.2.1 Countries with low prevalence (e.g. Sweden and Norway) 

Sweden began controlling Salmonella around 1950 after an epidemic which affected 

more than 9000 people and caused 90 deaths [39].  The objective of the control is to 

ensure that all animal products for human consumption are free from Salmonella. 

Therefore all the critical points of the production chain are monitored to ensure that no 

Salmonella contamination occurs. Any finding of Salmonella, irrespective of serovar, in 

animals, humans, feed and food is compulsorily notifiable, independent of reasons for 

sampling. All primary isolates are sero and phage typed and primary isolates from 

animals are tested for antibiotic resistance. All sanitary slaughtered animals are tested 

for Salmonella. When Salmonella is isolated, actions are taken to eliminate the bacteria 

(e.g., herds subjected to restrictions which include animal movement ban except for 

sanitary slaughter). Salmonella carriers are eventually slaughtered or destroyed 

followed by careful cleaning and disinfection. Restrictions are lifted following two 

negative samplings of the whole herd. Up and down stream epidemiological tracing is 

undertaken and followed up by similar actions. According to an EU approved scheme 

additional monitoring for Salmonella has been done on a statistical basis since 1995. 
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Annually, approximately 6,000 pigs at slaughter (five ileocaecal/intestinal lymph nodes 

per animal), and approximately 6,000 carcasses (swabbing of 1,400cm2) are analysed 

for the presence of Salmonella. For elite breeding and multiplier herds 59 faecal 

samples are tested annually. For sow herds pooled samples are tested twice a year. 

For herds affiliated to a voluntary quality assurance programme (covers 60-65% of all 

slaughtered pigs) 10 faecal samples are collected annually. In accordance with the 

Swedish animal feed legislation feed must be Salmonella negative. Several of the early 

guidelines on how to control Salmonella, were developed as industry recommendations 

in collaboration with government experts. The HACCP approach has been employed in 

the control of feed mills, with critical control points being monitored weekly [39]. 

The Norwegian Salmonella surveillance and control programme (NSSCP) was 

launched in 1995 and has been approved by the EU (EFTA Surveillance Authority 

Decision No. 68/95/COL of 19 June 1995) as the background for accepting testing 

meat, meat products or live animals for Salmonella before it is allowed to enter Norway 

from EU member countries [128]. The programme covers activities directed towards 

both live animals (cattle, pig and poultry) and meat (cattle, pig, sheep and poultry) and 

is similar to the Swedish and Finnish Salmonella control programmes. The pig part of 

NSSCP was designed to provide reliable documentation of the prevalence of 

Salmonella in pork production and to detect any increased occurrence of infections with 

Salmonella among food production pigs in Norway. The program includes systematic 

sampling in the breeding herds and random sampling of carcasses at the abattoirs in 

order to identify infected carcasses originating from breeding herds, integrating herds 

and herds with finishing pigs. The sample size has been calculated so that a 

prevalence of 5% in any breeding herd and 0.1% in the total population can be 

detected, assuming a diagnostic test sensitivity of 100%. Herds with positive carcasses 

are subject to animal trade and slaughter restrictions and samples are collected 

approximately every second month until the herd is proven to be free twice. All the 

breeding herds are sampled (pooled samples of floor faecal material) once a year by 

taking samples from a representative number (if having more than a total of 20 pens) or 

all pens (if having below 20). All herds are surveyed by examining ileo-caecal lymph 

node samples from randomly chosen pig carcasses during slaughter. About 3,000 

carcasses (approximately one per every 500 sows or finishing pig slaughtered) are 

sampled at the abattoirs every year. From each positive herd 59 individual samples (10 

g of faeces collected from the rectum of different animals in the pen or from the pen 

floor) and pooled samples (10g faeces, 5–8 times) from all the pens with piglets and 

finishing pigs (to herds with more than 59 sows and boars) or up to 59 individual 
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samples and pooled samples from all the pens (to herds with less or 59 sows and 

boars) are tested [128]. 

 

1.4.2.2 Countries with medium or high prevalence (Denmark, United Kingdom) 

Denmark has had a control and surveillance programme for Salmonella in pigs since 

the beginning of the 90s (1993) [129]. The programme is based on routine testing and 

classification of finishing herds and then pigs are slaughtered according to their risk 

classification status. The feed is also monitored including commercial feed and raw 

materials to be incorporated in feed. Pigs from breeding and multiplying herds are 

tested monthly by serologic testing of blood samples. If a specific cut-off level is 

reached, bacteriologic confirmatory testing is carried out. Fattening herds are 

monitored continuously by serologic testing of meat juice. The meat samples are 

collected at the slaughter line, and the sample size and frequency of sampling are 

determined by the size of the herd. Approximately 700,000 slaughter pigs are currently 

tested each year. Herds sending less than 200 pigs to slaughter each year are not 

tested, leaving 1.6% of the slaughter pigs outside the monitoring scheme. The herds 

are categorized in three levels based on the proportion of seropositive meat juice 

samples during the last three months. Producers in level 2 and 3 are encouraged to 

seek advice on how to reduce Salmonella in the herd (e.g., feeding, hygiene, and 

management). Furthermore, there are payment penalties from the slaughterhouse to 

these levels. Pigs from herds in levels 1 and 2 are slaughtered traditionally without any 

special precautions. Pigs from level 3 herds can only be slaughtered in special 

slaughterhouses under special hygienic precautions. Carcasses from level 3 herds are 

tested for Salmonella after slaughter, and if the level of contamination exceeds a 

certain threshold all carcasses from the particular herd have to undergo heat treatment 

or other risk-reducing process. All slaughterhouses carry out routine bacteriologic 

testing of carcasses according to a sampling plan, which ensures that testing is random 

and representative of the national swine production (>30,000 samples/year). 

Slaughterhouses that exceed a certain threshold level for Salmonella in the routine 

monitoring are obliged to investigate and reduce the contamination problem to an 

acceptable level [130, 131]. 

The British Zoonosis Action Plan Salmonella Programme (ZAP) was an industry-owned 

initiative that began in June 2002. In January 2003 ZAP was extended to producers in 

Northern Ireland [132]. Muscle samples were collected by Meat and Livestock 

Commission staff from 3 pigs for every Pig Movement Order received at the abattoir, 

with the objective that at least 15 samples were collected every 3 months. Samples 

were linked to their herd of origin via the recorded slap mark. An indirect 
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lipopolysaccharide (LPS) mix-Salmonella meat-juice Enzyme-Linked Immunosorbent 

Assay (MJE) was conducted by a commercial laboratory. Results from individual 

samples and the positive and negative controls were converted to a Sample to Positive 

Ratio (S/P Ratio) which was interpreted as negative if it was less than or equal to 0.25 

and positive if it was greater than 0.25. From July 2003, all herds where at least 15 

samples had been reported in the preceding 3 months were assigned a ZAP level 

according to the MJE results and expected to act as follows: ZAP level 3 – 85% 

prevalence; an action plan should have been developed and implemented to reduce to 

ZAP level 1 within 11 months; ZAP level 2 – 65% to 85% prevalence; an action plan 

should have been developed and implemented to reduce to ZAP level 1 within 17 

months; ZAP level 1 – less than 65% prevalence; no action required. To been able to 

achieve a ZAP level 1 status it was necessary to have MJE prevalence below 65% in a 

three month period [39, 132].  ZAP introduced new criteria for allocation of ZAP scores 

in June 2006. ZAP was replaced by a new scheme – the Zoonosis National Control 

Plan (ZNCP) for Salmonella in pigs – in April 2008 [132]. The changes were: collection 

on average of four meat juice samples per herd monthly, and no herd categorization. 

The herds with less than 10% seroprevalence in the last one year were recognized as 

the ones with best practices. There was also the guideline to have an action plan 

against Salmonella, independent of the prevalence, which should have been revised 

annually to show improvements [132]. The ZNCP changed on 1st of July 2012, stopping 

the meat juice testing and replacing it with an on-farm risk-assessment tool 

(http://www.bpex-zncp.org.uk/zncp11/about/news.eb). 

 

1.5. Economic analysis of salmonellosis costs 

 

1.5.1 Cost analysis of human cases to society 

 

The food-borne Salmonella infections are responsible for substantial economic losses. 

The infections can be potentially fatal in old aged and immunocompromised people. 

However in the majority of cases people fail to go to the doctor, so their infection is not 

reported. The high proportion of unreported cases makes it difficult to estimate the true 

incidence of the disease, which increases the range of the cost estimations [133]. The 

costs associated with the disease are the medical care (visiting a general physician, 

visiting a hospital, required hospitalization, premature death, medications), productivity 

loss (loss of work days due to own disease or attending family care), and others 

(diapers, money spend with physician, etc.). In USA the cost was estimated (based in 
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two different methods of estimation) between $464 and $2329 million per year [133]. In 

the United Kingdom (UK) for 23,000 cases that occurred in 1988 the cost was 

estimated in £18.1 million (this value included the cost of outbreak research, 

treatments, productivity loss and costs for the families affected) [134].  The UK global 

estimation for an average cost per case of Salmonella spp. was £131.79, with a total 

cost per year of £46.4 million [135]. In Netherlands the costs were estimated at €8.8 

million per year (costs taking in consideration the disease incidence, general practice 

(GP) consultations, specialists’ consultations, hospitalisation, drugs, rehabilitation, 

other medical services, patients travel costs, costs for additional diapers, informal care 

and co-payments by patients, production loss due to temporary absence from work, 

permanent or long-term disability and premature mortality). The concept of Disability 

Adjusted Life Year (DALY), was used to evaluate the disease burden [136]. In a 

European study, using data from 2003 to 2005,  the DALY was estimated for several 

disease, including Salmonella, in a range of countries  [137]. In Portugal a DALY of 

46.8 was estimated. The highest results were for Germany (4248.7 DALY), Czech 

Republic (1946.7 DALY), UK (1163.9 DALY) and Poland (1142 DALY). In these 

countries the disease incidence is higher than for the rest of EU. 

 

1.5.2 Cost-benefit analysis of controlling Salmonella in swine production 

 

Some studies analysed the costs of different control options and their efficiency. In a 

Dutch study [138] the results show that the combination of articulated interventions 

both at pre-harvest and harvest allowed a better reduction on the prevalence of 

contaminated carcasses. However, the cost-benefit was reduced if all herds and 

abattoirs implemented the intervention practices to reduce Salmonella. The gross cost 

per slaughtered pig at pre-harvest and harvest was €2.99 and €1.47, respectively. 

Another study in Denmark considered four methods to reduce prevalence, and 

analysed the cost-benefit of controlling Salmonella in pig production, the benefit of 

reduction of human incidence and subsequent reduction in human costs using that 

methods [139]. The methods considered were: hot water decontamination of all pigs 

slaughtered (reduces the Salmonella contaminated carcasses prevalence in 2 log 

units, when applied hot water at 80ºC for 14 to 16 seconds); sanitary slaughter of pigs 

from herds with high levels of Salmonella (in the Danish case from level 2 and 3); use 

of home-mixed feed in herds with slaughter pigs; and use of acidified feed for slaughter 

pigs. Only hot-water decontamination was socio-economically profitable. Hot-water 

decontamination had a net present value over 15 years of €3.5 million (Table 8). 
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Table 8: Results of a cost–benefit analysis of four different national strategies against 

Salmonella in Danish pork [139] 

Mean values of discounted 
net benefits (€ million) for the 
time period 2005–2020 

Hot-water 
decontamination 

Sanitary 
slaughter 

Home-mixed 
feed 

Acidified 
feed 

Consumers 45.7 3.5 4.3 6.4 

National Authorities 7.5 0.6 0.7 1.0 

Subtotal 53.2 4.1 5.0 7.4 

Farmers 0 0 -265.8 -90.5 

Abattoirs -49.7 -47.7 -1.5 3.2 

Subtotal pig sector -49.7 -47.7 -267.3 -87.3 

Total net present value 3.5 -43.6 -262.3 -79.9 

 

As an example, the estimated costs of control and monitoring Salmonella in pigs in 

Denmark, in 2007, was around €3.5 million (Danish Agriculture and Food Council, data 

not published).  

An EU study, requested by the DG SANCO concerning the cost and benefits of setting 

a target for the reduction of Salmonella in slaughter pigs [6], estimated €90 million 

annual human health losses due to Salmonella in pigs. For minimizing the risks to 

humans and to reduce the economic impact of the disease to society they estimated 

the cost benefit of several possible pre-harvest interventions. They incorporated in their 

analysis the cost of interventions in feed, breeding pig and replacement stock, farm 

level, transport, abattoir, monitoring and a support unit. They developed a deterministic 

model and based on the known impacts of the interventions on pre-slaughter 

Salmonella prevalence in pigs, four scenarios were developed and placed into the 

model to determine their costs. The scenarios varied from: small scale interventions of 

a support and monitoring unit relying on the existing structures of the pig industry and 

public sector; to a targeted selection of interventions prioritized on the basis of the 

Quantitative Microbiological Risk Assessment of Salmonella in Slaughter and Breeder 

Pigs [105]; and finally a wholesale level of interventions. The costs varied from €287 

million for the smallest set of interventions up to €1,458 million for a most 

comprehensive programme [6].  

The model was used to perform a cost-benefit analysis on four intervention scenarios:  

1. An establishment of a support unit and some increased sampling (surveillance)  

2. Scenario 1 plus improvement of:  

a. feed practices at feed mill and farm-level  

b. farm-level biosecurity  

3. Scenario 1 plus targeted interventions according to country Salmonella levels  

a. High prevalence – countries with slaughter pig prevalences above the EU 

average:  
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i) Clean replacement pigs  

b. Low prevalence – countries with slaughter pig prevalences below the EU 

average:  

i) Feed control measures  

4. Scenario 3 plus all transport and abattoir measures.  

For scenario 2 and scenario 4, it was assumed they would achieve a reduction in 

Salmonella of 50% and 90% in slaughter pigs, respectively. The costs per scenario 

were estimated (discounted cost). Then, a benefit-cost ratio (BCR) was estimated for 

each scenario using the benefits to human health (reduction of the number of human 

cases and consequently the costs associated) or the benefits to human health and pig 

production (reduction of human and pig cases; the benefit of having a Salmonella free 

pig was taken to be €1.55 per pig). The results are shown in Table 9. 

 

Table 9: Summary of cost-benefit analysis of the four scenarios [6] 

Scenario Description 

Discounted 

cost (€ 

million) 

BCR 

Human 

Health 

BCR 

Human 

Health and 

pig 

production 

Cost per 

slaughter 

pig (€) 

1 

Establish support unit and increased 

sampling (varying rate of reduction 

of human health losses) 

287 0.44 0.66 0.11 

1+ 

Scenario 1 (but constant rate of 

reduction in human health costs and 

increase in pig productivity of 6%) 

287 0.66 1.07 0.11 

2 
Scenario 1 plus feed practices and 

farm-level biosecurity 
1089 0.17 0.28 0.43 

3 

Scenario 1 plus targeted MS 

interventions, based on high and low 

prevalence 

752 0.38 0.61 0.29 

4 
Scenario 3 plus transport and 

abattoir measures 
1458 0.31 0.50 0.57 

Legend: benefit-cost ratio (BCR) 

 

The authors cautioned about the lack of precise data but concluded that the most 

economically preferable approach would be a gradual introduction of Salmonella 

control measures starting with the establishment of surveillance measures [6].  

 

1.6. Infection Models 

 

Infection models are simplified representations of the reality with the aim of simulating 

the dynamic of a disease, making possible the evaluation of the disease evolution in 

populations and the effect of control measures. The models can be of three types: 
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deterministic, stochastic or a mixture of the two. Deterministic models use point-values 

as inputs and therefore the outputs are also point values with an associated confidence 

interval. Stochastic models, however, incorporate uncertainty and/or variability into the 

model. Variability represents the true heterogeneity in a population, e.g. the weight of 

an individual pig will vary between pigs in one cohort and the fact that the same value 

cannot be assign to the weight of all the pigs in that cohort is not due to incomplete 

knowledge; it is inherent to the population. Uncertainty, on the other hand, reflects our 

lack of knowledge about the exact value of a parameter. For example, the inactivation 

of Salmonella when subjected to high temperatures may be modelled by an 

exponential decay, dependent on the time of exposure and on an inactivation 

parameter. It is hard to assign only one value to this inactivation parameter because 

several uncontrolled factors bring in heterogeneity upon the matrix where the 

parameter is being measured: therefore it cannot be quantified with precision. In a 

stochastic model variability and uncertainty can be modelled using statistical probability 

distributions, instead of fixed parameter values. Incorporating distributions into the 

model results in a distribution for the model output; hence providing more information 

compared to the deterministic approach [105]. A mixture of the two models is quite 

common as a way of incorporating variability/uncertainly in the model, and, at the same 

time, decreasing the computation time.  

Salmonella spp. control was considered necessary by the European food-safety policy 

makers under the EC Regulation 2160/2003. In practice, however, the control of this 

agent has proved to be difficult and expensive at the farm level [5]. Consequently the 

evaluation of the efficiency of control strategies for this agent has become an important 

and stringent issue, as stated in recent reports [6]. Modelling the dynamics of 

Salmonella spp. in pigs can become useful when assessing alternative control 

strategies. 

Susceptible – Infectious – Resistant (SIR) models are attractive tools to help in 

assessing the disease dynamics. The SIR model describes the dynamic of different 

states of individuals in the population in terms of a system of ordinary differential 

equations. The variables in the system are given by the three compartments: 

susceptible (S), infectious (I) and resistant/carrier (R). The mathematical models 

provide a description of the movement in and out of the three compartments, and the 

transitions between compartments are governed by transmission rates. If modelling is 

to be helpful in infectious disease control, it is crucial to have the best possible estimate 

of these rates.  

Some infection models for Salmonella in pigs have been already described in the 

literature, simulating the food chain or part of the food chain. Table 10 shows some 
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models found in the literature. To construct such models a high number of parameters 

are needed, such as production parameters, infection parameters, risk factors and 

disease prevalence which are difficult to obtain. Therefore it is frequently necessary to 

call upon expert opinion to estimate the parameter value. This is not the ideal option to 

improve the quality and credibility of the model, but frequently it is a way of overcoming 

the lack of data to estimate parameters. 

The infection models found in the literature (Table 10) were used to simulate the 

dynamics of the infection and test possible control measures in terms of Salmonella 

prevalence reduction. They were also used for cost-benefit analysis for different control 

measures.  

 

Table 10: Infection models for Salmonella spp. infection in pigs found in the literature. 

Reference Model type 
Which part of the food 

chain simulates 
Time unit Software used 

[140] 
Discrete 

stochastic 
Maternity to Fattening 1 week Scilab 4.0 

[141] Stochastic 
Entrance of replacement 

gilts to slaughter 
Reproductive 

cycle 
Not stated 

[142] 
Discrete 

stochastic 
Growing to Slaughter 1 day Delphi5 

[143] Stochastic Growing to Fattening 1 day 
Risk4.5, Microsoft Excel, 

VBA 

[144] Stochastic All food chain Not stated Risk software 

[145] Stochastic 
Growing to Fattening 
(duration of 113 days) 

1 day 
Python programming 
language v.2.5.1, R 

[105] 
Discrete 

stochastic 
Farm(piglets) to 

consumption 
1 day 

Matlab R2008b (© 
Mathworks Ltd, USA) 

 

Some of the infection models simulate the entire food chain [105, 144], others only a 

part of the food chain: some simulate mainly the herd [140, 143, 145] others simulate 

from herd to slaughter [141, 142]. All of them were built with the idea of testing control 

measures and some [105, 140] have incorporated a production model link to an 

infection model to try to simulate what happens at farm level, to increase the accuracy 

of their results and at the same time simulate control measures linked to production 

aspects. The complexity of the mathematical models varies from simple [145], with 

median estimates as transmission parameters, to complex [105], with distributions for 

the transmission parameters (some of them even with distributions for some 

parameters of their distribution). For the majority of the simulation studies published 

[140-143, 145] the transmission rates were estimates based on the best fit to 

Salmonella spp. prevalence in the country or expert opinion, due to the lack of 

longitudinal infection studies that allow the estimation of these parameters using 

experimental or field data.  
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Following cohorts of animals in order to determine the dynamics of Salmonella spp. in 

susceptible populations is a very expensive procedure. Therefore few longitudinal 

studies [146-149] regarding the dynamic of infection with Salmonella spp. have been 

published in the last few years. One of the explanations for few studies being available 

is that in most cases Salmonella causes subclinical infection with no apparent 

symptoms of disease in pigs, which makes it difficult to assess the infection status of 

individual pigs in an infected population without testing each animal several times. 

Another explanation is the difficulty in obtaining accurate estimates for the transmission 

parameters, which stems from the fact that the currently available bacteriological and 

serological tests used to assign the infection status are imperfect, bringing uncertainty 

when trying to classify each animal. An additional source of uncertainty comes from the 

fact that pigs, once infected, shed the agent intermittently and for different periods. 

 

1.7. European Union policy for Salmonella spp. management 

 

Several legal documents were produced with the aim of controlling this agent in EU pig 

productions systems. One of the most important is the Regulation (EC) No 2160/2003 

of the European Parliament and of the Council of 17 November 2003 on the control of 

Salmonella and other specified food-borne zoonotic agents, which establish a schedule 

to control Salmonella spp. in the poultry and pig industry. The legal initiative includes 

the baseline studies to harmonize the prevalence of Salmonella spp. between MS and 

also a timeline to put reduction targets on those species, including breeding and 

finishing pigs. To help finance the baseline studies in pigs, the Commission Decision of 

29 September 2006 and the Commission Decision of 20 December 2009 refer to the 

financial contribution from the Community towards a baseline survey on the prevalence 

of a) Salmonella in slaughter pigs and b) Salmonella spp. and Methicillin-resistant 

Staphylococcus aureus in herds of breeding pigs, respectively, to be carried out in the 

MS. In the near future a mandatory target reduction could be enforced in the EU 

regarding the Salmonella prevalence in pigs. 

 

1.8. Overview of the pig sector in Portugal 

 

1.8.1. The livestock and pig sector 

World livestock production is a sector where the global demands are still increasing. 

Although a great part of this increase occurs in developing countries, it has a great 

influence in the industrialized world due to the global economy. Production in 

industrialized countries is forced by the competition in the global trade, which 
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decreases food prices and thus producers profit leading to a change to more intensive 

production systems. However the intensive production is not favoured by consumers in 

developed countries due to environmental, welfare and food safety issues. The 

changes to organic production and to a more specialised production are transforming 

animal production [150].  

 

1.8.1.1 World and in Portugal 

The major swine producers are the following countries (2011 data): Republic of China 

(49.5 million tons), EU (22.5 million tons), United States (USA) (10.3 million tons), and 

Brazil (3.2 million tons). The major pork meat exporters are USA (2.2 million tons), EU 

(2.0 million tons), Canada (1.1 million tons) and Brazil (582,000 tons) [151]. The 

Republic of China produces mainly for self-consumption changing the pattern between 

producers and exporters. 

Portugal has a deficit in terms of pork meat trade [152], as it produce around 66.5% of 

the pork meat that is consumed (Table 11). This situation could be regarded as an 

opportunity by the Portuguese pork meat industry as they have potential for growth in 

the internal market. 

 

Table 11: Pork meat market in Portugal (units in 1000tons)[153] 

 2001 2002 2003 2004 2005
 

2006 2007 2008 2009 2010 

Pig population 
(1000heads) 

2 389 2 344 2 249 2 348 2 344 2 295 2 374 2 340 2 325 2 145 

Internal production 282 288 296 283 295 291 318 332 318 331 

Import (Live animals) 65 72 66 65 65 81 75 86 90 83 

Export (Live animals) 4 4 7 8 7 6 7 14 12 6 

Net production 343 356 355 340 353 366 386 404 396 408 

Import (pork meat) 122 124 122 123 120 138 157 150 161 125 

Export (pork meat) 17 17 17 22 26 30 41 55 51 45 

Consumption 447 454 459 445 448 467 492 504 508 498 

Capitation 
(Kg/person/year) 

43.4 43.8 44.0 42.4 42.4 44.1 46.4 47.4 47.8 46.8 

Self-providing (%) 63.1 63.4 64.5 63.6 65.8 62.3 64.6 65.9 62.6 66.5 

 

Pork meat has a high import volume, representing 42% of the total meat imported in 

the country. Spain is the main source, with 99.8% and 96.6% of live animals and pork 

meat imported, respectively [152]. 

Pork meat is the most consumed meat in the country: consumption comprises 41% 

pork, 31% poultry, 18% beef, 5% offal, 2% lamb and goat and 3% other meat [152]. 

In 2010, poultry production was the leading national livestock production with a weight 

of 39.3%, followed by pork production (38%) and beef production (10.9%) [152] (Table 

12 and 13). 
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Table 12: Number of animals in Portugal (unit 1000heads)[153] 

Type of production 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

Beef Cattle 1 404 1 395 1 389 1 443 1 441 1 407 1 442 1 439 1 391 1 375 

Dairy Cattle 338 341 328 338 324 307 306 301 289 275 

Swine 2 389 2 344 2 249 2 348 2 344 2 295 2 374 2 340 2 325 2 145 

Sheep  3 459 3 457 3 356 3 541 3 583 3 549 3 356 3 145 2 906 2 512 

Goats 561 538 502 547 551 547 509 496 487 444 

 

Table 13: Livestock production in Portugal (unit tons)[153] 

Type of meat 2004 2005 2006 2007 2008 2009 2010 

Beef 119 259 119 020 106 087 91 742 108 540 102 995 93 159 

Lamb 21 994 21 990 23 356 24 235 21 503 17 895 18 279 

Goat 1 574 1 363 1 563 1 733 1 495 1 551 1 517 

Pork 340 279 352 998 365 869 385 864 404 153 395 970 407 808 

Meat 221 181 229 449 237 815 250 812 262 700 257 380 265 076 

Lard 119 098 123 549 128 054 135 052 141 453 138 590 142 732 

Poultry 289 737 294 369 287 812 315 823 324 815 333 483 338 639 

Broilers 215 711 215 925 209 549 230 839  239 077 251 546 253 091 

Turkey 38 682 41 444 42 025 44 604 42 535 40 222 41 719 

Eggs 131 683 118 148 119 119 121 592 123 515 124 184 131 123 

For incubation 17 992 18 167 18 008 20 050 20 503 22 130 22 528 

 

1.8.1.2 Type of production 

Pig production in the industrialised countries is mainly intensive. The concentration of 

pigs in certain geographical areas leads to environmental questions, concerning the 

waste management and pollution of soils and water sources, and unpleasant smells. 

Welfare issues also are important in industrialized countries which have been 

increasing the legal requirements for animal keeping and management supported in 

legislation in Europe and North America. 

Pig production is divided into breeding, maternity, post-weaning and finishing phases. 

These phases can occur in the same herd (farrowing-to-finish herds), or be divided into 

different specialised herds (breeding herds, piglet production, weaner to finishers, 

finishers). The approach of specialised herds is adopted more as the herds increase 

their size.  

In intensive production biosecurity and health management are the major priorities. 

Most of the intensive herds have a high sanitary status, barriers and restricted access. 

However, controlling diseases is difficult in areas with high population density, and 

when disease appears it is difficult to control it without using methods such as partial or 

total depopulation or by use of vaccines. In the past the use of antibiotics in animals 

feed with a prophylactic or growth promoter goal has been common. However this has 

been forbidden by EU legislation since 2006 [154]. 

In the future, EU pig production may tend to outdoor units, to fulfil welfare and 

environmental legislation (Council Directive 2008/120/EC and Council Directive 

2008/1/CE). Part of this legislation is already in place in the EU.  
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1.8.2 Characterisation of the pork food chain in Portugal 

Pig herds in Portugal are mainly herds of low dimension (few animals per herd); 

although the majority of the total number of animals belongs to big herds (Table 14).  

 

Table 14: Type of swine herds in 2005 (FPAS, unpublished) 

Number of animals per herd  Herds (1000)  Total number of animals (1000) 

1-2 66.8 110.2 

3-9 20.5 89.1 

10-19 5.7 60.4 

20-49 2.7 59.8 

50-99 1.0 53.7 

100-199 0.7 84.7 

200-399 0.5 115.2 

400-999 0.6 279.6 

1000 or more 0.7 1491.5 

Total 99.2 2344.1 

 

The majority of the pork meat produced comes from piglets (Centre Region) and 

finishing pigs (Lisbon and Tagus Valley Region) (Table 15 and 16). 

 

Table 15: Distribution of the number of pigs per region in 2010 (1,000 animals) [153] 

Regions Total <20Kg 
20-

50Kg 

Finishing pigs (kg) 
Boars Sows 

Total 50-80 80-110 ≥110 

North 79 18 17 33 17 11 11 1 10 

Centre 427 149 93 117 72 42 42 2 65 

Lisbon 853 268 198 288 169 112 112 2 97 

Alentejo 476 127 111 177 83 77 77 2 58 

Algarve 24 10 4 6 3 2 2 - 4 

Madeira 42 11 10 16 12 3 3 - 5 

Azores 17 5 5 5 2 2 2 - 2 

 

Table 16: Distribution of the number of industrial herds (raising pigs for commercial purpose) by 

region in Portugal in 2009 (DGAV, unpublished) 

Regions 
Commercial herds 

N % 

North 42 3 

Centre 276 20 

Lisbon and Tagus Valley 727 54 

Alentejo 281 21 

Algarve 27 2 

Total 1353 100 

 

Most of the herds are concentrated in Lisbon and Tagus Valley region followed by the 

Centre and Alentejo Region (Table 16) which corresponds also to the greatest number 
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of animals (Table 15). In terms of the number of pig abattoirs, the majority exist in the 

north region of the country, followed by Lisbon and Tagus Valley region (Table 17). 

However in terms of slaughter volume, the Lisbon and Tagus Valley Region slaughter 

more pigs followed by the North Region (Table 17). Even so the North Region 

slaughter more pigs than the number that are raised in that region. Therefore a high 

proportion of the pigs slaughtered travel from other regions of the country or from Spain 

(the major exporter for the national market) to be slaughtered in the north of the 

country. This has some health implications as it increases the time travelling to 

slaughter, which causes stress to the pigs and can promote shedding of Salmonella 

from carriers. In Portugal 5,965,601 pigs were slaughtered in 2010 [153]. 

 

Table 17: Number of abattoirs and volume of slaughter per region (between October 2010 and 

August 2011) [155]. 

Region 

Abattoirs where pigs are 

slaughtered 

Average weekly slaughter 

volume (pigs) 

N % N % 

North 31 47.7 32697 36 

Centre 12 18.5 8890 9.8 

Lisbon and Tagus Valley 20 30.7 47016 51.7 

Alentejo 2 3.1 2277 2.5 

Total 65 100 90880 100 

 

The Centre Region has a high number of slaughterhouses dedicated to the slaughter of 

weaned pigs (Table 18) which are commonly used in that region for traditional dishes. 

 

Table 18: Distribution of abattoirs that slaughter piglets per region (between October 2010 and 

August 2011) [155]. 

Region 

Abattoirs where piglets are 

slaughtered 

N % 

North 1 2.5 

Centre 30 75 

Lisbon and Tagus Valley 9 22.5 

Total 40 100 

 

The regional distribution of cutting and processing plants and registered butchers is 

concentrated in the North, Centre and Lisbon and Tagus Valley Region, where the 

majority of the Portuguese population lives (Table 19).  
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Table 19: Distribution of cutting plants, minced meat and meat preparations plants, and 

butchers per region in 2009 (DGAV unpublished). 

Regions 

Cutting 

plants 

Minced meat 

and meat 

preparations 

plants 

Meat 

products 

plants 

Butchers 

N % N % N % N % 

North 45 23.8 14 14.1 160 21.4 2930 41 

Centre 54 28.6 26 26.3 240 32 1681 24 

Lisbon and Tagus Valley 59 31.2 48 48.5 134 17.9 1716 24 

Alentejo 23 12.2. 6 6.1 115 15.3 431 6 

Algarve 5 2.6 4 4 14 1.9 262 4 

Azores 0 0 0 0 86 11.5 68 1 

Madeira 3 1.6 1 1 0 0 43 1 

Total 189 100 99 100 749 100 7131 100 

 

1.9. Objectives of the PhD research 

 

The importance of Salmonella as a zoonosis leaded the EU to impose future control 

programmes in the swine industry, mainly at herd level.  

The main drivers to the development of this work were the lack of applied knowledge 

about the Salmonella situation in Portugal at herd level, regarding risk factors and cost-

effective control measures. These factors and the fragile Portuguese economic 

situation, of which the pig sector is not excluded, allied with the experience from other 

European countries which shows how hard the control and eradication of this agent is 

at the level of pig production chain, also motivated this work.  

The aim of this PhD is to improve the epidemiologic knowledge of Salmonella spp. 

disease dynamics in pig farms in Portugal, and to contribute to a better use of the 

available cost-effective control measures at farm level, taking into consideration the 

prevalence of the agent, the risk factors associated with Salmonella spp. and the 

Portuguese production system. 

 

The overall aim has two objectives: 

 

Objective 1: Risk characterisation at farm and abattoir level, which contributes to a 

better knowledge of the risk factors linked to the Portuguese production system. 

 

Objective 2: Development of a simulation model that describes the Portuguese 

production system linked to the dynamics of Salmonella at farm level which in the 

future might allow the Portuguese Veterinary Authority or others to test different control 

measures in terms of efficiency for reducing the prevalence of disease.  
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This chapter describes the data, the statistical and mathematical methods used for 

Objective 1 and 2 that resulted in several manuscripts which compose the results 

section. For each objective of the PhD, the materials and methods are described. 

 

2.1 Risk factors analyses for the farm and abattoir studies (Objective 1) 

 

Salmonella has been reported as a frequent cause of food-borne disease in the 

European Union (EU) as described in Chapter 1. The EU Regulation (EU Regulation 

No 2160/2003) imposes to the Member States (MS) implementation of a control 

programme to reduce the prevalence in food production species including pigs. To set 

the reduction target each MS carried out baseline surveys to estimate the Salmonella 

spp. prevalence in some food production animals. The objective of the surveys was to 

obtain comparable data for all MS through harmonized sampling and testing schemes. 

In pigs the baseline study was done at abattoir level (collection of lymph nodes of pigs 

slaughtered) - Baseline Survey on Salmonella Prevalence in Slaughter Pigs [36], and at 

herd level (collection of pen faecal samples of breeding pigs) - Baseline Survey on the 

Prevalence of Salmonella in Breeding Pigs [37]. These cross-sectional studies also 

collected information regarding herd management practices and potential risk factors 

linked to this agent. The data used in this Objective was the EU Baselines studies in 

Portugal. 

 

2.1.1 Slaughter Pigs risk factors study 

A study to the data of Baseline Survey on Salmonella Prevalence in Slaughter Pigs in 

Portugal was done. The aims of the study were: 1) to search for potential risk factors 

for the presence of Salmonella sp. in the lymph nodes of pigs slaughtered in this 

country, and 2) to identify differences in the risk profile between groups of serotypes.  

The sampling frame, the diagnostic testing methods, as well as the collection and 

reporting of data, and the timelines of the Baseline Survey in Slaughter Pigs were 

specified in the Commission Decision 2006/668/EC, Annex I.  The sampling frame was 

the list of the slaughterhouses which together accounted for 80% of the pigs 

slaughtered within the Member State. The samples in Portugal were collected between 

January and September 2007. The sampling size was estimated by the Portuguese 

Veterinary Authorities (PVA) based in the Commission Decision 2006/668/EC. The 

minimum sample size for Portugal, according to this scheme, was 600 pigs, and an 

additional 10% was taken into account for non-response. The number of pigs sampled 

was stratified by slaughterhouse and was proportional to the slaughterhouse capacity. 

The sampling days for each slaughterhouse were selected at random. Each sample 
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was formed mainly by an aggregate of ileocaecal and sometimes jejunal lymph nodes 

to ensure that it had at least 15 grams of lymph nodes. The collection of the lymph 

nodes was done in an aseptic way to avoid external contamination. The lymph node 

samples were sent to the laboratory for microbiological detection of Salmonella 

according to the procedure defined by Annex D of ISO 6579. Each Salmonella isolate 

was serotyped in the National Reference Laboratory for Salmonella according to 

Kaulfmann-White scheme. 

Along with the sample collection, information concerning the pig and the 

slaughterhouse was also collected using a structured questionnaire, to assess their 

potential influence in the presence of Salmonella. The variables collected were: 

transport of pigs from different herds to the slaughterhouse (yes or no); carcass 

approval for human consumption (total versus partial); detection of lesions in the lymph 

nodes (yes or no); sample collection time; month of the sample collection; time from the 

animal’s arrival in the slaughterhouse until it was killed; weight of the carcass; weight of 

the lymph node sample; region of the slaughterhouse and annual capacity of the 

slaughterhouse. Questions about hygiene at lairage and slaughter were not collected. 

As the data followed a multilevel structure, lymph nodes samples (first level) nested 

within slaughterhouses (second level), a two level hierarchical model was used. 

To look for associations between the explanatory variables and the outcome variable 

for slaughtered pigs, a binomial Bayesian hierarchical model was used. Afterwards this 

analysis was refined to investigate if there were different associations for different 

serotypes. Because of the low number of cases per serotype, individual analysis of 

each Salmonella serotype was not feasible. Therefore the outcome variable was the 

isolation of Salmonella in each sample which was classified in three categories: i) no 

Salmonella, ii) serotype Typhimurium and S. Typhimurium-like strains with the 

antigenic formula: 1,4,5,12:i:-, and iii) other serotypes. 

To model such an outcome variable, a categorical (Bayesian) hierarchical model was 

used. Monte Carlo Markov Chain (MCMC) estimation method was used and was 

implemented in the freely available software WinBUGS (BUGS project, http://www.mrc-

bsu.cam.ac.uk/bugs/winbugs/). The materials and methods are explained in detail in 

Results Chapter - Manuscript 1: “Risk factors for Salmonella sp. in pig lymph nodes in 

Portuguese abattoirs”. 

 

2.1.2 Breeding Pigs risk factors study 

Two studies to the data of the Prevalence of Salmonella in Breeding Pigs on Portugal 

were done. The first study aim was to identify risk factors for the presence of 

Salmonella in herds with breeding pigs. The second study aim was to search for 
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potential risk factors for shedding from two different groups of Salmonella serotypes 

using pen faecal samples from herds with breeding pig representative of Portuguese 

reality. The two groups were Salmonella Typhimurium including S. Typhimurium-like 

strains with the antigenic formula: 1,4,5,12:i:-, and other serotypes. 

The sampling frame, the diagnostic testing methods, the sample collection procedures 

and the timelines of the baseline study for Salmonella in Breeding Pigs were as 

specified in the Commission Decision 2008/55/EC. The target population was the 

holdings constituting at least 80% of the breeding pig population in the MS. In Portugal, 

the sampling frame was organized by the PVA. These holdings were stratified by the 

Regions of the National Veterinary Services structure. The sampling frame consisted of 

4522 herds, with 204,584 breeding pigs and 1,827,533 pigs in total. The herd inclusion 

criteria for entering the sampling frame were: to have at least 50 breeding pigs, either 

for breeding or production purposes. The pig population included in the sampling frame 

represented 87% of the total registered pig population in Portugal in 2007.The sample 

size was calculated using the sampling criteria specified in the Commission Decision 

2008/55/EC Annex I - expected herd prevalence of 50%, desired confidence level of 

95%, accuracy of 7.5% and then a finite population correction factor was applied, with 

an increase of 10% for each group (breeding and production holdings) in case of non-

response. A sample of 174 swine herds was randomly selected using probability 

proportional to the number of herds among the regions in Portugal. For each herd, only 

the pens with breeding pigs over six months of age were randomly selected. The 

breeding pigs that had been recently introduced into the herd and were in quarantine 

were not included in the survey. In each selected herd, faecal samples from 10 pens 

were taken representing a 95% probability of detecting at least one positive sample if 

the true prevalence of infected pigs in the population was 10% [21]. The number of 

pens sampled per breeding room in each herd was allocated proportionally according 

to the number of breeding pigs in the different stages of production. The age categories 

in the sampling were not predetermined. The specification was that at least 10 

individual breeding pigs should be included in each pooled pen faecal sample 

otherwise no sample was collected.  

The samples were collected between November 2008 and January 2009 by the herd 

veterinarian. The faecal samples were sent to the laboratory for microbiological 

detection of Salmonella according to the procedure defined by Annex D of ISO 6579. 

Each Salmonella isolate was serotyped in the National Reference Laboratory for 

Salmonella according to the Kaulfmann-White scheme.  

Information about herd management and potential risk factors (at herd and pen level) 

was collected using a questionnaire along with the collection of the faecal samples. At 
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pen level: the type of housing (which sector it belonged, whether the animals in the pen 

had access to outside, whether it was an individual pen or a group pen); number of 

animals that contributed to the sample; whether diarrhoea was detected in the last 

three months; age (gilts, sows or mixture) and sex (females, males or mixture) of the 

pigs in the pen; production phase; floor type; whether sanitary gap (cleaning, 

disinfection and down time between batches) was applied before new breeding pigs 

enter the pen; feed type; source of the feed; use of organic acids or others (probiotics); 

use of antibiotics; and the approach used to collect the pooled sample (swab or 

individual pinches). At herd level: region of the country; production type (breeding or 

production holdings; intensive versus extensive; farrow-to-finish, farrow-to-weaners, 

farrow-to-growers holdings); number of breeding pigs; number of finishing pigs present; 

replacement management of breeding pigs (sows and boars); source of semen; and 

biosecurity measures (clothes for exclusive use in the herd, footbath, and control of 

pests). 

As the data followed a multilevel structure, i.e. pen faecal samples (first level) nested 

within swine herds (second level), a two level hierarchical model was used. 

To look for associations between the explanatory variables and the outcome variable 

for the breeding pigs a multilevel logistic regression model was fitted using the 

framework of generalized linear mixed model (GLMM) methods, implemented using the 

glmmPQL function of package MASS [156] of (free software) R (CRAN project, www. 

R-project.org). The materials and methods are explained in detail in Results Chapter - 

Manuscript 2: “Risk factors for Salmonella spp. in Portuguese breeding pigs using a 

multilevel analysis” 

Afterwards this analysis was refined to investigate whether there were different 

associations for different serotypes. Because of the low number of cases per serotype, 

individual analysis of each Salmonella serotype was not feasible. Therefore the 

outcome variable was the isolation of Salmonella in each sample which was classified 

in three categories: i) no Salmonella, ii) serotype Typhimurium and S. Typhimurium-like 

strains with the antigenic formula: 1,4,5,12:i:-, and iii) other serotypes. 

 For this a Bayesian hierarchical categorical model was used. Monte Carlo Markov 

Chain (MCMC) was used for estimation and this was implemented in the freely 

available software WinBUGS (BUGS project, http://www.mrc-

bsu.cam.ac.uk/bugs/winbugs/). The materials and methods are explained in detail in 

Results Chapter - Manuscript 3: “Assessing risk profiles for Salmonella serotypes in 

breeding pig operations in Portugal using a Bayesian hierarchical model”. 

 

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/
http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/
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2.2 Production and infection model (Objective 2) 

 

For achieving the aim of Objective 2, two studies were conducted and the results were 

organised in two manuscripts. The first manuscript describes the work done to 

estimates the transmission parameters for Salmonella Typhimurium and the second 

uses these estimates in a simulation model. The data and methods are described 

separately for each one of the studies.  

Due to the lack of funding and time to perform a longitudinal study to estimate the 

transmission parameters for Salmonella spp. which were needed for the simulation 

model, it was decided to use the available data from a published study to estimate 

these parameters. 

 

2.2.1 Transmission parameters estimation 

 

Study herds, sampling, bacteriology and ELISA test 

The data used was previously described by Kranker et al (2003)[146] and originated 

from three Danish pig herds known to be infected with Salmonella Typhimurium, but 

with different levels of infection density. The herds had moderate to high levels of S. 

Typhimurium infection.  This implied that the within-herd prevalence was 40% or higher 

based on meat-juice samples collected over 3 months, evaluated by use of a cut-off of 

20 optical density percentage (OD%). Two of the farms, with 650 and 440 sows, 

respectively, were two-site operations. The remaining farm was a three-site operation 

with 300 sows. The three herds were self-supplying. In each herd, 10 litters were 

randomly selected, and in each litter, the ears of six randomly selected piglets were 

tagged. To account for variations in Salmonella shedding over time, litters from each 

herd were divided into two groups of five litters, which were raised at approximately 

one month intervals. Thus, on each farm there were two cohorts consisting of 30 pigs 

each, yielding a total of 180 piglets at the start of the study. All ear-tagged pigs from a 

given cohort were supposed to be raised together for the entire observation period. The 

animals were followed longitudinally [146]. The animals were first tested at the age of 4 

weeks and thereafter at 3 to 4 week intervals until the age of slaughter. At each testing 

occasion, sera and faeces from the animals were collected and tested for the presence 

of Salmonella spp. (at the age of 4 weeks only faeces were collected, because 

persistence of maternal antibodies could give a false positive result). An animal was 

considered serologically positive wherever the serological test revealed a result of 

OD% >20, and bacteriological positive if Salmonella was isolated from the faeces. The 

serological test used at this cut-off value is considered to have a sensitivity of 68% and 
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to be 100% specific [44]. The bacteriological test is considered to be 100% specific and 

the sensitivity ranges from 30 to 55% [157]. These test characteristics were 

incorporated into the statistical model. 

 

 Infection status of the pigs 

The infection status of each pig was determined for every sampling period by both 

faecal shedding and by serology. Each animal was categorized as susceptible (S), 

infectious (I) or carrier (R). In the absence of reasonable sensitivity of the 

bacteriological culture method, serology offered an alternative and complementary way 

to assign the infection status of a pig.  

Pigs were attributed status S when there was no presence of bacteria in the faecal 

samples and the OD% was below 20 OD%. Status I was assigned from the date when 

a pig was found bacteriologic-positive as well as over the next 4 weeks, assuming that 

a pig would shed Salmonella spp. within an average of 4 weeks. This average period 

was assumed from the data of the shedding period duration from experimental studies 

[40, 158]. Additionally, pigs were assigned to status I based on seroconversion. The 

beginning of the infectious period was set to 2 weeks prior to the recorded date of 

seroconversion [148, 158] and the duration was set to 4 weeks [40, 158]. Therefore for 

pig classification the information of both tests in parallel was used. Status I was 

followed by status R along the study, and the pigs could return to status I if they were 

found culture positive later on during the study period. We assumed that no pigs would 

return to the susceptible status after being infected because of the relative short life 

span of the finisher pigs. 

Given that in the beginning of the follow-up piglets could only be tested by the use of 

bacteriology (which has low sensitivity), some piglets could have been erroneously 

classified as susceptible, whereas they could have been infected by the sow. 

Therefore, we began the analysis in each cohort at the time infected animals were 

found. 

 

Transition between susceptible to infectious  

To estimate the transmission rate parameter from susceptible to infectious (β) we 

considered a Binomial SIR-model for the transmission of Salmonella spp. between 

pigs. We assumed homogeneous mixing of pigs in each cohort, i.e. all pigs could come 

into contact with each other. At the beginning of the study, pigs were considered to be 

either in the S or I status depending on the test results. The following model (Binomial 

distribution with finite population size) was used in the estimation of β for each time 

interval: 
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1

~ ( , )

cloglog( ) log( ) log( ) log( )

jt jt jt

jt jt jt jt

C Binomial S p

p I N r   
  

Where:  

- Cjt denotes the number of new infectious animals in the cohort (j) at the end of the 

time interval (t), 

- β is the transmission rate parameter for the transition between susceptible to 

infectious,  

- Sjt is the number of susceptible animals in the cohort (j) at the beginning of the time 

interval (t),  

- Ijt is the number of infectious animals in the cohort (j) at the beginning of the time 

interval (t),  

- Njt is the total number of animals in the cohort (j) at the beginning of the time interval 

(t), and 

- r1jt is the cohort time-dependent random effect, 

- pjt is the probability of a susceptible animal that becomes infectious in the cohort (j) 

and time interval (t). 

 

The number of infectious pigs (I) was corrected taking into consideration the sensitivity 

of both tests used together in parallel. As the specificity was considered 100% in both 

tests, the parallel specificity was 1.  In the correction, we simulated the number of 

infectious pigs that the tests were not able to detect (false negative pigs). When there 

was no infectious pig present at the beginning of a time interval, the rate was set equal 

to the baseline rate β plus the random effect. The infectious animals not detected 

(Inob) were simulated by sampling from the following Binomial distribution and 

assuming independence between the tests: 

Inobjt ~ Binomial(Njt, pND) 

pND =  (1-SenC)*(1-SenE)                                                                                                          

 

Where: 

- SeC is the sensitivity distribution of microbiological culture, 

- SeE is the sensitivity distribution of the ELISA test, 

- pND is the probability of not detecting infectious animals, 

- Inobjt are the infectious animals not detected, and 

- Njt is the number of animals tested. 

The infectious animals were added to the non-detected infectious animals to obtain (I). 
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Transition between infectious (I) to carrier (R)  

This transition was modelled assuming a Binomial distribution: 

2

~ ( , )

cloglog( ) log( )

j j j

j j

Rnew Binomial I pr

pr r 
                                                                                                                          

Where: 

- Rnewj is the number of carrier animals which result from the transition between 

infectious and carrier in the cohort (j), 

- Ij is the number of infectious animals at the start of the time step in the cohort (j), 

- prj is the probability of transition between infectious to carrier in the cohort (j) 

-α is the transmission rate parameter for the transition from infectious to carrier state, 

and 

- r2j is the cohort random effect. 

 

Transition between carrier to infectious 

A Poisson distribution was used to model the transition between R to I as the transition 

only happened three times in the entire study (in two cohorts). As this is a very rare 

event the Poisson distribution is appropriate as it approximates the Binomial 

distribution in the case where the probability of the event is very small. The transition 

was modelled as follows: 

2

2 3

~ ( )

log( ) log( ) log( )

j j

j j j

Inew Poisson

R r



   
                                                                                                                  

Where: 

- Inewj is the number of new infectious animals which result from this transition in the 

cohort (j), 

- π2j is the mean number of carrier animals which became infectious in the cohort (j), 

- Rj is the number of carrier animals at the start of the time step in the cohort (j), 

-ν is the transmission rate parameter for the transition from carrier to infectious state, 

and 

- r3j is the cohort random effect. 

When there was no resistant pig present, the baseline rate ν plus the random effect 

was used. 

 

Cohort random effects 
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Random cohort effects rj were incorporated into each transition step. For the transition 

between infectious to carrier and from carrier to infectious rj was modelled as: 

2~ (0, ), 2,3kj kr Normal k 
                                                                                                                         

Where:  

- subscript j denotes cohorts per time interval and 

- σ2 is the variance of the unobserved cohorts effects. 

 

The cohort random effects were different for each transition under the assumption that 

the unobserved cohort factors affected each transition in a different way. 

For the transition between susceptible to infectious, the cohort random effects were 

assumed time-dependent and were modelled as: 

2

1 , 1 1

2

1 , 1 , 1 1

~ (0, )

~ ( , )

j t

j t j t

r Normal

r Normal r







                                                                                                                               

where the cohort random effect (r1jt) for time t  depends on the previous cohort random 

effect at time (t-1). With this cohort time-dependent random effect we capture the 

dependent structure of the spreading of infection within cohorts where the velocity of 

infection is dependent of the number of susceptible and infectious animals in the 

previous time step. For the transition from I to R we did not consider a cohort time-

dependent random effect because this transition just depends on the shedding duration 

for Salmonella which was assumed that does not vary with time. The transition from R 

to I was so rare (just happened three times in the study) that we did not have adequate 

data to use a cohort time-dependent random effect. 

 

Model settings  

The time interval of our present study was chosen to be 2 weeks, which approximates 

the interval between different testing times. Since there was no previous information for 

informing prior distributions of log(β), log(α) and log(ν), we used Normal distributions 

with zero mean and a variance of 100, which reflected prior ignorance while avoiding 

the use of improper distributions [159]. For the sensitivity of both serological and 

bacteriological tests a Beta distribution was used. Previous information about the 

sensitivity of both tests [44, 157] was utilised to inform those Beta distributions: a mean 

of 0.49 for faecal culture and a mean of 0.68 for Danish mix ELISA were used, so we 

specified SeC~Beta(48.5,50.5) and SeE~Beta (58.5, 27.5). Specificity was assumed to 
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be 100% in both tests. The precision of the Normal distribution of random effects was 

modelled with a Gamma (0.5, 0.005) distribution.  

The final model was implemented in WinBUGS [160] and this was run long enough 

(100,000 iterations) with sufficient burn-in (5,000 iterations) to ensure convergence to 

the posterior distribution of the parameters [161]. Convergence was assessed by visual 

means (inspection of time-series plots) but also more formally using the Raftery and 

Lewis diagnostic, and the Gelman-Rubin R-hat diagnostic which should be sufficiently 

close to 1 if convergence was achieved [162, 163]. The chains were thinned by only 

collecting 1 in 10 consecutive samples and this eliminated autocorrelation in posterior 

samples (the R package “coda” [164] was used). Two MCMC chains were run with 

dispersed initial values, which is good practice to ensure convergence and mixing.  

Mixing in the chains was assessed by comparing the Markov Chain (MC) error with the 

standard deviation, for each parameter. Ideally the MC error for each parameter should 

be less than 5% of the standard deviation [165] for good mixing.  

 

Calculations of the basic reproduction ratio (R0) 

Subsequently, R0 was estimated by use of the following formula [166]: 

0R 



                                                                                                                                                     

Where: 

- α is the transition parameter from I to R, and  

- β is the transition parameter from S to I.  

Results Chapter - Manuscript 4: “Transmission parameters estimated for Salmonella 

Typhimurium in swine using susceptible-infectious-resistant models and a Bayesian 

approach” - shows the results of this work and describes with more detail the methods 

used. 

 

2.2.2 Production and infection model 

 

The aim of this study was to construct a production and infection model that simulates 

the spread of Salmonella within a farrow-to-finish herd. 

 

Description of the production part of the model 

The model simulates a farrowing-to-finish herd in which batch farrowing was applied to 

sows, leading to batch management of pigs. This type of management is usual in 

countries like France and Portugal. In these herds the complete life cycle of sows is 
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considered, from recruitment until culling/dying, and similarly for pigs, from birth till 

slaughter. The duration of the sow reproduction cycle depends of the weaning time of 

the piglets and this was fixed at 4 weeks (28 days). The pig growth period was fixed at 

26 weeks (average age at slaughter in Portugal). The modelling unit was the batch (for 

both sows and pigs). This unit is useful because it simulates the interaction within sows 

and pigs which is important for infectious diseases, such as Salmonella, which are 

transmitted by close-contact between animals and by the batch environment, e.g. 

floors, feed, water, etc., so the exposure within batch is effectively uniform. 

In the model, batches of sows were groups of sows (the same number per batch) that 

were mated at the same time. One week interval between two successive batch mating 

was assumed. The average Portuguese farrow-to-finish herd has approximately 264 

sows. Therefore using the one week batch system during the year there were 22 

batches entering mating (taking into account that each sow would have 2.5 litters per 

year) with 12 sows per batch. The model comprises two compartments: the 

reproductive phase (sow-compartment) and the pig growth (pig-compartment). The 

reproduction cycle was divided in three stages (mating period, gestation period and 

farrowing/suckling period) corresponding to the occupation of three different types of 

rooms. Each batch of sows was composed of gilts and sows although we did not 

differentiate between them in the model. Each batch of pigs was composed by the 

litters from the batch of sows. The pig growth was divided in three stages (sucking 

period, post-weaning period and fattening period) corresponding to the occupation of 

three different types of rooms. All animals simultaneously left the room they occupied 

except for those sows which aborted at gestation.  

This production model describes the evolution of the number of animals within each 

batch, the time step was one week. The model has a stochastic element in the sense 

that it simulates the variability associated with biological processes such as mortality, 

culling, insemination failure, abortion and litter size. The model output is expressed in 

terms of probability distributions which in turn express: 1) the aforementioned 

variability, 2) the propagated uncertainty from having to estimate transmission 

parameters, and 3) the natural variability or randomness inherent in the behaviour of 

the disease (specifically, the binomial distribution was used to generate the number of 

animals in each production process).  

The duration of the reproductive and growing stage, and therefore the duration in each 

room were kept fixed. The maximum capacity in each room was fixed for the maximum 

expected size of each batch and the pen capacity varied between batches depending 

on the number of animals per batch. Figure 1 shows a scheme of the production 

model. 
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Figure 1: Scheme of the production model 

 

Legend: pmort is the mortality probability (M – mating, G – gestation, F – farrowing, mat – 

piglets, PW – post-weaning, Fa - fattening), pins is the probability of success by the artificial 

insemination, pcull is the culling probability (different for each room), pabort is the probability of 

abortion 
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Reproduction cycle of the sows 

The sow-compartment comprises three stages of the reproduction cycle, which take 

place in three different rooms: 

- The mating room where the sows remain from weaning until pregnancy testing 

(6 weeks); 

- The gestation room where the sows remain almost until the end of pregnancy 

(10 weeks); 

- The farrowing room, in which the sows are placed 1 week before farrowing and 

stay until the weaning of the piglets (5 weeks). 

During the reproductive cycle, the sows were subject to the following processes: 

mortality, artificial insemination success, abortion, culling and gilt recruitment. The 

probability of mortality was “applied” at each time step and was constant in time. 

However, it varied between the stages of reproduction reflecting the variability that 

exists between the different stages. Each week the sows from a new batch entered the 

mating room and were inseminated. Individual pens were used at mating. At the end of 

the sixth week of mating, the artificial insemination success rate was used, to simulate 

pregnancy numbers. To represent the variability that exists between batches, the 

artificial insemination success rate was separately generated for each batch from a 

Weibull distribution. The square root of the simulated value for each batch corresponds 

to the probability of the artificial insemination success that was used to generate the 

number of sows that get pregnant and were moved to the next stage (gestation). The 

sows that failed to get pregnant were then either culled or moved to the following batch 

that has entered the mating room and be re-inseminated. The culling rate was different 

for mating, gestation and farrowing.  In the gestation room the sows remained together 

in pens with a maximum of 4 sows per pen. Abortion could occur throughout the 

gestation period and the probability of abortion was kept constant for each week. After 

abortion, the sows were culled or moved to a following batch where they were going to 

be re-inseminated. In the farrowing room the sows were placed in individual pens 

(maternities). After weaning, some sows were voluntarily culled to allow renovation of 

the herd and the ones not culled entered in a new batch that was going to be re-

inseminated in the mating room. To compensate for the mortality and culling in each 

batch, new gilts were introduced to ensure that the number of sows per batch was 

always 12. 

Each batch of sows gave birth to a batch of pigs. The average litter size for each sow 

was drawn from a normal distribution of mean 10.45 and standard deviation of 0.87.  
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For mating the equations were: 

1

1

~ ( ,(1 ))
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 For gestation the equations were: 

1~ ( ,(1 ))

~ ( ,(1 ))
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For farrowing (sows) the equations were: 

1~ ( ,(1 ))

~ ( ,(1 )),   is the last week on farrowing room.

t t F

t i F
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






 

Where pmort is the mortality probability (different for each room), pins is the probability 

of success by the artificial insemination, pcull is the culling probability (different for each 

room), pabort is the probability of abortion, alive refers to the alive animals, preg refers 

to the pregnant sows, return refers to the sows that enter a new batch for mating (due 

to failure to get pregnant, abortion or after farrowing). 

 

Pig Growth 

The pig-compartment comprises three different stages, which take place in three 

different rooms:  

- farrowing/maternity room (where they stay for 4 weeks until weaning),  

- post-weaning room (where they stay 8 weeks), and  

- fattening room (where they stay 14 weeks). 

The mortality probability was different between rooms. The number of pigs that had 

died in each time step was simulated using a binomial distribution. 

The maximum number of pigs per pen varies between rooms. In the farrowing room the 

number of piglets per pen was made similar taking in consideration the litters’ size to 

simulate the mixing of piglets that occurs in the farms with the aim of improving the 

quality of the batch (to develop the milk production of gilts and also to allow piglets to 

have access to functional teats). In the post-weaning room the maximum number of 

pigs per pen was 20 (with a maximum number of 6 post-weaning pens per batch) and 

for fattening pens this value was reduced to 15 (with a maximum number of 12 

fattening pens per batch). This means that the pigs were allocated to the pens in a way 
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that does not exceed that maximum number. These numbers were used taking into 

consideration the average Portuguese pen size per room, taken from an unpublished 

survey results [167]. 

For maternity (piglets) the equations were: 

1

~ (10.45,0.87),  number of sows per batch

~ ( ,(1 ))

j

t t mat

Npiglets Normal j

Pigalive Binomial Pigalive pmort




 

For post-weaning (PW) and fattening (FA) the equations were: 

1~ ( ,(1 ))t t PWPWalive Binomial PWalive pmort 
 

1~ ( ,(1 ))t t FAFAalive Binomial FAalive pmort 
 

Where Npiglets refers to the born alive piglets per sow (this is drawn for each sow in 

each batch), pmort is the mortality probability (different for each room), and alive is the 

number of animals alive in each room at each time step. 

The values of the production parameters are shown in more detail in Results Chapter - 

Manuscript 5: “Simulation model for Salmonella Typhimurium on a farrow-to-finish 

herd”. 

 

Infection model specification 

The infection model was based on a Susceptible-Infectious-Resistant/Carrier model for 

Salmonella Typhimurium. Direct transmission between the pigs in a batch was 

assumed but also indirect transmission via contaminated floor, rodents, etc. 

The transition steps considered between the states are shown in Figure 2.  

For the sows, as they have a longer life span, it was assumed that they could 

experience all the states and transitions shown in Figure 2. For pigs, due to their short 

life span, it was assumed that they could not experience the transition from carrier to 

susceptible. 

The mathematical model for these transitions and the transmission parameters used in 

this simulation model were described and estimated in Manuscript 4 (“Transmission 

parameters estimated for Salmonella Typhimurium in swine using susceptible-

infectious-resistant models and a Bayesian approach”). The estimates were obtained 

using field data from a longitudinal study which followed infected cohorts [146], and 

were adjusted to the time step of one week (the time step in the field data was two 

weeks). 
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Figure 2: SIR model and its transition between states 

 

Legend: S – susceptible, I – Infectious, R – resistant/carrier, β – transmission parameter for the 

transition from S to I, α – transmission parameter for the transition from I to R, δ – transmission 

parameter for the transition from R to I, θ – transmission parameters for the transition between 

R to S. 

 

The binomial distribution was used to simulate the transition between susceptible and 

infectious state and from infectious to carrier state. For the transition between carrier 

state and infectious, and carrier state and susceptible, Poisson distributions were used. 

The transition between susceptible and infectious varied with time by parameterising it 

using a time-dependent cohort random effect. This random effect was used to capture 

the temporal structure of the spreading of infection within cohorts where the velocity of 

infection is dependent on the number of susceptible and infectious animals in the 

previous time step. 

The equations used in the infection model were the following: 
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Where Inf is the number of susceptible animals that became infectious, S is the number 

of susceptible animals at the beginning of each time interval, p is the probability of 

transition between susceptible to infectious, β is the transmission parameter between 

susceptible and infectious, I is the number of infectious animals at the beginning of the 

time interval, N is the total number of animals at the beginning of the time interval, rjt is 

the cohort (j)-time (t) dependent random effects, Rnew is the number of animals that 

became carriers in each time step, pr is the probability for the transition between 

infectious and carriers, α is the transmission parameter from infectious to carriers, Inew 

is the number of carriers that became infectious in each time step, π1 is the average 

number of carriers that became infectious, ν is the transmission parameter between 

carrier to infectious, R is the number of carrier animals at the beginning of each time 

interval, Snew is the number of carrier animals that became susceptible (this step in 

the model only happens for sows), π2 is the average number of carriers that became 

susceptible, θ is the transmission parameter between carrier to susceptible, and σ2
k is 

the variance of the random effects. 

So for each time step and for each pen, the number of sows in each state would be: 
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While for the pigs it would be: 
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At the maternity stage, since the litter is in contact with the sow (mother), the sow 

health state was considered for the litter disease dynamics, but a protective factor (pf) 

for decreasing the transmission rate was taken into consideration due to the sow’s milk 

protective antibodies. This protective factor was included in the model while the piglets 

were at the maternity stage for each batch. The study of Beloeil et al. (2003) [148] 

estimated the complete loss of maternal immunity between 61 and less than 80 days. 

We have assumed 70 days (10 weeks) to calculate the protective factor.  

The transmission rate from carrier to susceptible was calculated, taking into 

consideration that pigs need around 68 days to clear S. Typhimurium from their organs 

after being infected ([40, 145] and another 42 days to lose the protective immunity 

against Salmonella [40, 145]: a total of 110 days – 15.7 weeks - to return to susceptible 
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state again. This value was used to calculate the transmission parameter between 

carrier and susceptible (1/15.7). 

 

Data used 

The transmission parameters used in this simulation model were the ones estimated in 

Manuscript 4 and have already been described. 

For the production model, data from different sources was used: unpublished surveys, 

expert opinion and data collected from a commercial software company about breeding 

pigs. 

The unpublished survey contained information from the region of Lisbon and Tagus 

Valley, which is the Portuguese Region with a high concentration of herds and pigs. 

The herds chosen to be sampled were randomly selected and the aim of the survey 

was to evaluate the biosecurity measures implemented at herd level and to associated 

them with Salmonella presence [167]. They have collected information regarding 

mortality, number of pigs per pen and number of animals per herd that were used in 

this simulation model.  

Data collected from 200 commercial herds spread all over Portugal (2004 to 2006) was 

also made available to the authors by a software company. This data was used to 

estimate the average litter size, the piglet mortality, the duration of weaning, the 

number of breeding pigs per herd, and the insemination rate used in the simulation 

model. For the litter size and insemination rate data, the selected distribution was 

chosen from several known distributions (e.g. normal, lognormal, Weibull) using the 

lower maximum likelihood as criterion for chosen the ones with best fit. For the litter 

size the normal distribution was chosen and in the simulation model rounding was used 

to convert to integer value. For the insemination rate, the squared root of a Weibull 

distribution was chosen to simulate the probability of being pregnant at mating. 

Expert opinion was used when no other source of information could be used to 

estimate values for the remaining parameters.  

 

Model settings 

The model was built and implemented in R (CRAN project, www. R-project.org). To 

ensure convergence of the final results (i.e. reduce sampling uncertainty) a long run 

(500,000 iterations) was conducted. Before running the model it was necessary to 

allocate an initial state to the sows/gilts, at mating in the first batch. The allocation was 

50% of susceptible, 25% of infectious and 25% of carriers.  

For each model run at the end of each room the following results were saved to be 

analysed: the proportion of sows alive in each room, the proportion of sows pregnant at 
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the end of mating and gestation rooms, and the proportion of sows/pigs in the infection 

states. 

The proportion was selected in preference to the number (counts) because the total 

number of animals per room varied as function of the mortality and litter size (for pigs) 

making comparison between runs less straightforward. The proportions on the other 

hand can be directly compared. 

The distributions of the results were tabled for the sows and plotted for the pigs. In the 

plots we have used the median as the central tendency measure because, unlike the 

mean, it is less affected by extreme values.  

The validity of the model was assessed by comparing the predicted results from the 

model with observed (epidemiological) results in the population of interest: the 

Portuguese pig population. The results from the EU Baseline Survey on Salmonella 

Prevalence in Slaughter Pigs [36] and the EU Baseline Survey on the Prevalence of 

Salmonella in Breeding Pigs [37] were used as observed epidemiological results. The 

comparison was done by relating the magnitude of the predicted and observed value, 

and qualitatively assessing the degree of agreement/disagreement, as suggested by 

other authors [105, 145].  

 

Sensitivity analysis  

In the sensitivity analysis of the model, all the production parameters and infection 

parameters were perturbed, i.e. increased and decreased by 50%, and the results were 

compared with results from the unperturbed parameters. For the piglets’ protective 

factor (pf) we ran several extra simulations (an increase of 250%, 500%, 750% and 

1000% of the value, corresponding to the values of 0.25, 0.50, 0.75 and 1, 

respectively) due to the original value of the parameter being low. The lower the pf 

value is, the higher the protection against infection (e.g. a pf value of 0.25 means that 

the transmission parameter in piglets from susceptible to infectious will be reduced to 

25% of it value, and in this way translating into a protective effect of 75%). For the 

infection state of replacement gilts, several combinations were tried. These 

combinations allowed to test the effect of high and low proportions for each infection 

state, considered more plausible by the authors.   

For the transmission parameters from S to I (β), from I to R (α), from R to I (δ) and from 

R to S (θ) extra simulations were run to test the simultaneous effects of increasing or 

decreasing each parameter in different rooms. When the perturbation is applied to all 

the sows’ rooms, we used the suffix “sows” (i.e. β sows, α sows, δ sows and θ sows). 

When the perturbation occurs in the maternity for sows and piglets at the same time 

(only for β parameter), we used the suffix “maternity” (β maternity).  When the 
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perturbation is applied to all the pigs’ rooms, we used “pigs” as a suffix (i.e. β pigs, α 

pigs, and δ pigs).   

The perturbed and original parameters were compared by looking at the percentage 

change in their means – relative effect (RE): 

  
. .

.

perturbed original

original

Mean prop Mean prop
RE

Mean prop


  

If RE is positive/negative the change in the parameter has increased/decreased the 

results (i.e. the means of the proportions). However if RE is equal to zero, the 

parameter change has no effect. The greater the magnitude of RE is, the greater the 

influence of the particular parameter. 

To test if these REs were statistically significant it was used the fact that the results are 

in the form of samples from the distributions of the output, e.g. samples from the 

distribution of the proportion of sows pregnant at the end of mating. This is a direct 

consequence of the fact that the models used to estimate the transition parameters 

were Bayesian. Samples from the posterior distributions of the estimated transmission 

parameters from the Bayesian model were used in the simulated model to propagate 

the estimation uncertainty to the output from the simulated model, rather than ignoring 

it. Ultimately, it can be considered the output from the simulation model as samples 

from posterior distributions, e.g. 500,000 samples from the posterior distribution of the 

proportion of sows pregnant at the end of mating. It was the means of these 

distributions that were compared. 

Therefore for each output of interest (e.g. proportion of sows pregnant at the end of 

mating) it was simulated a random sample from their posterior distribution. For 

instance, sample 1000 values from the posterior distribution of the proportion of sows 

pregnant at the end of mating, which means to randomly sampling 1000 values with 

replacement from the 500,000 samples of the output. If this procedure is done many 

times, e.g. 10,000 times, and calculated the mean each time, the final result is a 

sample of 10,000 values for the distribution of the mean. As the interest was to 

compare means from the original and perturbed parameter output, the differences in 

the mean samples was taken to obtain a sample from the distribution of the difference. 

e.g. suppose μ1i and μ2i for i=1,…,10,000 were samples from two means distributions, 

then Di = μ1i - μ2i was a sample from the distribution of their difference and it was tested 

whether zero was a likely value from this distribution. More formally, if zero was not 

included in the 95% credible interval of DI, it can be argued that the value of the two 

means was significantly different. 
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The EU legislation (Council Directive 2008/120/EC of 18 December 2008 laying down 

minimum standards for the protection of pigs) banned the use of sow stalls starting in 

January 2013, which means that the individual pens have to be adapted (the pen size 

has to be increased). The model was changed to ensure that this welfare legislation 

could be met if sows were housed in groups at mating. We opted to change the pen 

used in the mating rooms the same as in gestation rooms (i.e. four pens per batch). 

This change was also included in the sensitivity analysis. 

Sensitivity analysis was also used as a way of evaluating the uncertainty linked with 

some parameters, as for instance the piglet’s protective factor and the infection state of 

replacement gilts. 

Considering the results statistical significant, for each outcome the parameters which 

influenced it most (more than 5%), were plotted in a modified spider plot, where the 

percentage of change in the parameter was the x axis and the percentage of change in 

the outcome was the y axis.  

When a variation from -50% to +50% is applied to the model the outcome varies 

changing positively or negatively as the parameter increases. The range of the change 

in the outcome due to the parameter change (from -50% to 50%) was tabled for the 

transmission parameters and piglets’ protective factor in two separated tables, one for 

sows one for pigs. The criterion followed for the inclusion of each parameter in the 

table was to have at least a 5% variation either positive or negative. In the table a 

positive number means positive effect on the outcome when a variation from -50% to 

+50% is applied to the model (the outcome increases with the increase of the 

parameter); and a negative number means a negative effect on the outcome when a 

variation increment from -50% to +50% is applied to the model (the outcome decreases 

with the increase of the parameter).  

 

Results Chapter - Manuscript 5: “Simulation model for Salmonella Typhimurium 

infection on a farrow-to-finish pig herd” - describes the Materials and Methods in more 

detail and shows the results of this work. 
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INTRODUCTION

Salmonella is one of the major causes of food borne 
disease in the world. Pork products are related with some 
of the human cases. Because of the health impact of this 
agent the industrialized countries are engaged in controlling 
this agent. For that the European Union (EU) approved 
legislation (EU Regulation No 2160/2003) that imposed a 
reduction on the prevalence of this agent in food production 
animals, such as pigs. To set the target of this reduction 
for each country, at EU level, it was decided to carry out 
baseline surveys to estimate the prevalence of Salmonella 
sp. in some food production animals. The objective of the 
surveys was to obtain comparable data for all Member States 
through harmonized sampling schemes. In this context, 

a baseline survey in pigs at the slaughterhouse was done. 
Slaughterhouses are an important control stage for this agent 
as in some cases when there is a poor hygiene at lairage and 
during the slaughter process the initial contamination of the 
infected pigs can be disseminated through the slaughterline. 
The risk factors known at this stage are: poor hygiene and 
stress during the transport [3], hygiene and time at lairage 
[2, 13], hygiene of slaughter equipment and of the slaughter 
process [4, 7, 11], season [11] and duration of the slaughter 
[11]. This dataset refer to the Baseline Survey on Salmonella 
Prevalence in Slaughter Pigs in Portugal. The aims of the study 
were: 1) to search for potential risk factors for the presence 
of Salmonella sp. in the lymph nodes of pigs slaughtered in 
this country, and 2) to identify differences in the risk profile 
between groups of serotypes.

SUMMARY

Salmonella is one of the major causes of food borne disease in the European 
Union (EU). Some of the human cases are related to pork products. An EU 
baseline survey to assess the Salmonella pork prevalence was performed. 
Mesenteric lymph nodes were cultured and Salmonella sp. isolates were 
serotyped. Data concerning the animal and the slaughterhouse was also 
collected. The aim of the present study was to search for potential risk factors 
to the presence of Salmonella sp. in pigs lymph nodes in Portugal and to 
search for differences in the risk profile between groups of serotypes. The 
data was analysed using a Bayesian approach to incorporate the hierarchical 
structure of the data (samples nested in slaughterhouses). Two models were 
analysed: a binomial (presence/absence of Salmonella sp.) and categorical 
model (absence of Salmonella sp., serotype Typhimurium or serotype 
1,4,[5],12:i:-, other serotypes). A total number of 659 samples were tested, 
belonging to 36 slaughterhouses. Around 23.7% of the samples were positive 
for Salmonella sp.. In the binomial model a significant association was found 
for region of the slaughterhouse - Lisbon and Tagus Valley Region with 
lower risk compared to the Centre Region (OR=0.36). In the categorical 
model a significant association for category Typhimurium or 1,4,[5],12:i:- 
was found for the variable hour when the sample was taken – afternoon with 
lower risk compared to morning (OR=0.20). The association found for the 
slaughterhouse region should be a matter of furthers studies to evaluate the 
hygiene practices in the slaughterhouses of that region.

Keywords: Salmonella, lymph nodes, risk associations

RESUME

Facteurs de risque de Salmonella sp. dans les ganglions lymphatiques de 
porc dans les abattoirs portugais

La salmonelle est une des principales causes de maladies d’origine 
alimentaire dans l’Union Européenne. Certains cas sont liés à des produits 
du porc. Une enquête a été faite pour évaluer la prévalence de Salmonella 
chez le porc au Portugal. Les ganglions lymphatiques des carcasses ont été 
cultivés et si Salmonella était présent, cela était sérotypée. Alors, des données 
concernant l’animal et l’abattoir étaient également recueillis. L’objectif 
de cette étude était de rechercher des facteurs de risque  pour la présence 
de Salmonella ganglions lymphatiques des carcasses. Ces données ont été 
analysées en utilisant un modèle linéaire généralisé mixte pour prendre en 
incorporer la structure hiérarchique des données. Deux modèles ont été 
réalisés: un modèle binomial (présence/absence de Salmonella sp.) et un 
modèle catégorique (absence de Salmonella sp, sérotype Typhimurium ou 
sérotype 1,4,[5],12:i:-, autres sérotypes). Un total de 659 échantillons ont été 
testés, ceux-ci provenant de 36 abattoirs. La prévalence de Salmonella sp. 
est de 23.7%. Un risque significatif a été trouvé pour la région des abattoirs 
- Lisbonne et  dans la Vallée du Tage (OR = 0,38) avec moins de risque par 
rapport à la région du Centre. Dans le cas du modèle catégorique, les résultats 
significatifs furent obtenus uniquement pour la catégorie Typhimurium ou 
1,4,[5],12:i:- pour la variable le temps de collecte d’échantillons - l’après-
midi avec moins de risque que le matin (OR=0.20). Les résultats obtenus 
devraient initier de prochaines études sur les conditions d’hygiène dans les 
abattoirs des régions les plus fortement touchées.

Mots-clés: Salmonella, ganglions lymphatiques, les 
associations des risques

Risk factors for Salmonella sp. in pig lymph 
nodes in Portuguese abattoirs
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MATERIAL AND METHODS

Sampling frame and sample collection

The objectives, the sampling frame, the diagnostic testing 
methods, as well as the collection and reporting of data, and 
the timelines of the Baseline Survey in Slaughter Pigs were 
specified in the Commission Decision 2006/668/EC, Annex 
I.  The sampling frame was the list of the slaughterhouses that 
together accounted for 80% of the pigs slaughtered within 
the Member State. The samples in Portugal were collected 
between January and September 2007. The sampling size was 
estimated by the Portuguese Veterinary Authorities (PVA) 
based in the Commission Decision 2006/668/EC, which took 
in consideration an estimated prevalence of 50%, considered 
an infinite population, a significance level of α=0.05 and 
4% precision error. The minimum sample size for Portugal, 
according to this scheme, was 600 pigs, and an extra of 
10% was taken to account for non-response. The number 
of pigs to sample was stratified by slaughterhouse and was 
proportional to slaughterhouse capacity. The sampling days 
for each slaughterhouse were selected at random. Written 
procedures were given to the local veterinary services to 
assure that sampling fulfilled the guidelines recommended 
by the Decision. Each sample was formed mainly by an 
aggregate of ileocaecal and sometimes jejunal lymph nodes 
to assure that it had at least 15 grams of lymph nodes. The 
collection of the lymph nodes was done in an aseptic way 
to avoid external contamination. The lymph node samples 
were sent to the laboratory for microbiological detection of 
Salmonella according to the procedure defined by Annex D 
of ISO 6579. Each Salmonella isolate was serotyped in the 
National Reference Laboratory for Salmonella according to 
Kaulfmann-White scheme.

Data collection

Along with the sample collection, information concerning 
the pig and the slaughterhouse was also collected, to assess 
their potential influence to the presence of Salmonella. The 
variables collected were: transport of pigs from different 
herds to the slaughterhouse (yes or no); carcass approval for 
human consumption (totally versus partially); detection of 
lesions in the lymph nodes (yes or no); sample collection 
time; month the sample was collected; time since the animal 
arrived the slaughterhouse until it was killed; weight of the 
carcass; weight of the lymph node sample; region of the 
slaughterhouse and annual capacity of the slaughterhouse. 
Questions about hygiene at lairage and slaughter were not 
collected.

Data analysis

Some quantitative variables were aggregated into 
categories, such as annual capacity of the slaughterhouse 
(less than 30.000 pigs slaughtered/year, between 30.000 and 
100.000 pigs, and more than 100.000), sample collection time 

(8:01a.m to 12a.m, 12:01a.m. to 8p.m., and 8:01p.m to 8a.m), 
and time between arrival to slaughterhouse till slaughter 
of the animal (less than 12h, 12h to 24h, more than 24h). 
Descriptive statistics were calculated for the continuous 
variables that were not categorized. Other categorical 
variables were aggregated in few categories such as month 
when the sample was collected (January till March, April to 
June, and July till September).

 The data has a “natural” multilevel structure; pigs which 
provide the lymph node samples (first level) were nested 
in slaughterhouses (second level). The data was analysed 
using a Bayesian hierarchical model. Monte Carlo Markov 
Chain (MCMC) was used for estimation and implemented 
in WinBUGS software (BUGS project, http://www.mrc-bsu.
cam.ac.uk/bugs/winbugs/), open source software. 

The analysis consisted of two models with two different 
outcome variables: 1) a binomial model for the presence/
absence of Salmonella sp.; 2) a categorical model for different 
groups of Salmonella serotypes. In this second model, 
besides the reference category “no Salmonella”, the positive 
samples for Salmonella were divided in two groups: i) 
serotype Typhimurium or serotype 1,4,[5],12:i:-, ii) other 
Salmonella serotypes. These groups were formed because 
of the relevance of serotype Typhimurium to human cases 
[9]. Serotype 1,4,[5],12:i:- was added to Typhimurium 
group because they share similar characteristics in terms 
of genetic similarity, virulence and antimicrobial resistance 
[1]. The different serotypes were not analysed individually 
because of the low number of cases per serotype (Table 1). 
This approach intended to identify and explore differences 
in risk factors between the categories of serotypes and the 
“no Salmonella” category. In the binomial model a logit link 
function was used. In the categorical model it was used a logit 
conditional link function. The random effects were assessed 
for the slaughterhouse level. As not all slaughterhouses in 
the country were sampled having in the model a random 
slaughterhouse effect allows inferring information from the 
sample to all slaughterhouses population. The probability for 
each category of the categorical outcome is modelled using 
the same explanatory variables but different slope parameters 
to assess whether these variables affect each category in 
a different way.  A preliminary univariable analysis to 
investigate the variables to be included in the multivariable 
model was performed. The variables with a P<0.30 were 
considered to enter into the multivariable model. A α=0.05 
was considered in the final model.

The model was implemented in WinBUGS and it ran long 
enough with sufficient burn-in to ensure convergence to the 
posterior distribution of the parameters. Convergence was 
assessed by visual means (inspection of time-series plots) but 
also more formally using the Raftery and Lewis diagnostic, 
and the Gelman-Rubin R-hat diagnostic [10, 12]. R-hat 
should be arbitrarily close to 1 for convergence. The chains 
were thinned by only collecting 1 in 10 consecutive samples 
and this eliminated autocorrelation in posterior samples 
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(using the R-CODA package [5], in R). Mixing in the chains 
was assessed by comparing the MC (Markov Chain) error 
with the standard deviation, for each parameter. Ideally, the 
MC error should be less than 5% of the standard deviations 
for good mixing [6] and this was true for all parameters here. 
The presence of confounding was investigated by analyzing 
the correlation matrix of the joint posterior distribution for 
all model parameters but especially the slope parameters.

Priors for fixed effects were expressed as a normal 
distribution with zero mean and 102 variance. For random 
effects the prior was expressed as a normal distribution with 
mean zero and τ variance. The τ variance was expressed as a 
gamma distribution (0.5,0.05). As the median is not affected 
by the asymmetry of the distributions we used it as central 
tendency measure. The posterior median results were then 
converted to odds ratio (OR) to easy interpretation and also 
the 95% OR posterior credible interval (CrI) was calculated. 

RESULTS

A total number of 659 samples from 36 slaughterhouses 
were tested. Salmonella sp. was isolated from 156 samples 
(23.7% of prevalence). Table 1 shows the results for each 
serotype. Most of the positive samples were identified as 
Salmonella Typhimurium followed by Salmonella Rissen.

After grouping the serotypes for the categorical model, 
the group serotype Typhimurium or serotype 1,4,[5],12:i:- 
had 74 samples (47.4% of the positive samples) and the group 
other serotypes had 82 samples (52.6% of positive samples).

The descriptive analysis of categorical variables is shown 
in Table 2. The dataset presented some missing cases as 
reported in Table 2. Table 3 shows the descriptive statistic 
for the continuous variables. It is not evident any difference 

between the groups of serotypes and the group with no 
Salmonella. 

Results of the binomial analysis of the data (no 
Salmonella versus Salmonella presence) are shown in Table 
4. A significant association with the presence of Salmonella 
was found for the region of the slaughterhouse: Lisbon and 
Tagus Valley Region with lower risk (OR=0.38) compared 
with the Centre Region, adjusted for the month of sample 
collection, sample collection time and annual capacity of the 
slaughterhouse.

For the categorical model the following variables 
were selected to enter in the multivariable model, based 
in the results of the univariable analyses: region of the 
slaughterhouse, slaughterhouse annual slaughter volume, 
month when the sample was collected, and sample collection 
time.  For the final multivariable mode two variables were 
selected to enter: region of the slaughterhouse and sample 
collection time. Table 5 shows the final adjusted model results. 
In this model a significant association with the presence of 
serotype Typhimurium or serotype 1,4,[5],12:i:- (compared 
to “no Salmonella”) was found for sample collection time: 
collecting the sample at afternoon had a lower risk (OR=0.2) 
compared to morning, and adjusted for the region of the 
herd. This result has a wide 95% credible interval (0.03-0.77). 

DISCUSSION

The detection of Salmonella sp. in the lymph nodes of 
slaughter pigs is an indicator of the infection status of pigs to 
Salmonella sp.. To define a reduction target for this agent and 
consequently a control programme it is important to have 
information concerning the country prevalence and risk 
factors present, hence justifying the present study.

Serotype Number of samples typed Percentage of samples typed
S. Typhimurium

S.Rissen
S. 1,4,[5],12:i:-

S.Derby
S. Enteritidis

S.Give
S.Newport
S.Anatum
S.Agona

S.Bovismorbificans
S.Gaminara

S.Havana
S.Mbandaka

S.Ohio
S.Eboko

S.Panama
S.Infantis

Total

57
22
17
17
9
7
7
6
5
2
1
1
1
1
1
1
1

156

36.5
14.1
10.9
10.9
5.8
4.5
4.5
3.8
3.2
1.3

0.64
0.64
0.64
0.64
0.64
0.64
0.64
100

Table I: Number and percentage of samples typed for each serotype
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To improve the randomization and consistency of the 
samples collected the national authorities organized a 
training session for all the involved parties in the baseline 
study, before the beginning of the study. Also this data was 
validated by EFSA [8].

In this study we used hierarchical models that are 
naturally handled in the Bayesian framework because of 
the conditional independence assumed between each level 
in the hierarchy (lymph node samples in the first level and 
slaughterhouses in the second level). In conjunction with 
WinBUGS, freely available software, the methodology 

Variables

Samples positive to Salmonella sp.

Negative 
samples

Samples positive 
to S. Typhimurium 

or serotype 
1,4,[5],12:i:-

Samples 
positive to other 

serotypes

Total positive

Transport of pigs from different herds to
the slaughterhouse

No 58 67 125 392
Yes 16 14 30 104

Missing cases 1 1 2 8
Lesions in the lymph nodes

No 64 69 133 434
Yes 11 12 23 70

Missing cases 1 1
Partial rejection of the carcass

No 74 82 156 500
Yes 1 1 4

Hours since the animal arrived the 
slaughterhouse and was killed

< 12h 14 23 37 119
12-24h 52 50 102 320

>24h 8 9 17 61
Missing cases 1 1 4

Month when the sample was collected (2007)
January to March 19 25 44 136

April to June 21 23 44 199
July to September 35 34 69 169

Sample collection time
8:01a.m. to 12a.m. 61 68 129 397

12:01 to 8p.m. 2 6 8 42
8:01p.m. to 8a.m. 12 8 20 65

Region of the slaughterhouse
Centre 12 12 24 45
North 23 23 26 166

Alentejo 2 2 4 11
Lisbon and Tagus Valley 38 45 83 282

Slaughterhouse annual slaughter volume 
< 30 000 carcass 2 2 4 24

30 000 – 100 000 29 39 68 219
> 100 000 44 41 85 261

Table II: Descriptive of explanatory variables concerning positive samples to Salmonella (S. Typhiumurium or serotype 1,4,[5],12:i:- versus other serotypes) 
and negative samples.

Variable Presence of Salmonella Mean Minimum Percentile 
25 Median Percentile 

75 Maximum

Carcass weight 
(Kg)

No
All samples positive

Typhimurium or 1,4,[5],12:i:-
Other serotype

80.5
80.8
78.6
82.9

57.6
57
57
64

74.2
74

73.4
75

80
79.1
77.5
80.3

85
84.9
82

87.1

167.7
169.6
108.3
169.6

Lymph nodes 
sample weight 

(g)

No
All samples positive

Typhimurium or 1,4,[5],12:i:-
Other serotype

17
17

17.4
16.7

15
14
14
15

15
15

15.1
15

16
16

16.4
15.7

18
18
18
18

32.1
28.4
28.4
22.6

Table III: Descriptive measures of continuous variables for Salmonella presence by groups of serotypes
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presented in the paper provides a general modelling tool which 
allows to incorporate expert knowledge in the specification of 
the priors or to restrict the priors taking into account the lack 
of information in the response variable. 

The results of the Baseline Survey to Salmonella in Slaughter 
Pigs in Portugal showed a high prevalence of Salmonella sp. 
(23.7%) in the country. The authors decided to do two different 
models (a binomial and categorical model) to explore and 
identify differences in risk factors for the infection of carcass 
between Salmonella serotypes. Control programmes will be 
implemented to control all serotypes of Salmonella sp., but it 
is possible to have different risk profiles. The knowledge of 
differences in risk may help to improve the economics and 
efficiency of the control programmes. As the data has a relative 
small number of samples was not possible to perform an analysis 
for each one of the serotype found. Then it was decided to 

create three major groups: no Salmonella sp. (reference group), 
serotype Typhimurium or serotype 1,4,[5],12:i:-, and other 
serotypes. In the binomial model the possible risk association 
found was region of the slaughterhouse: Centre Region had a 
higher risk (OR=2.6) of presence of Salmonella sp. than in the 
Lisbon and Tagus Valley Region, when adjusted for the others 
variables in the model. This result should be a matter of further 
studies to evaluate if this association is due to slaughterhouse 
management practices, as is suggested by other studies [4,7,11], 
or due to infected herds.

In the categorical model the variable found to be significant 
at the multivariable model was the sample collection time 
(afternoon compared to morning) for the category of serotype 
Typhimurium or serotype 1,4,[5],12:i:- as a protective 
association, although it had a wide credible interval. A possible 
cause for this wide credible interval is that we have a relative 

Variable
Univariable Multivariable adjusted model

Posterior 
median

Posterior 
SD

Posterior 
median

Posterior 
SD OR (95%CrI)

Transport of pigs from different 
herds to the slaughterhouse

No 0.0
Yes <-0.01 0.25

Days in transport -0.31 0.34
Carcass weight
Lesions in the lymph nodes

No 0.0
Yes -0.20 0.33

Partial rejection of the carcass
No 0.0
Yes -0.44 1.22

Hours since the animal arrive the 
slaughterhouse and is killed

< 12h 0.0
12-24h 0.12 0.24

>24h -0.03 0.36
Month when the sample was 
collected* (in 2007)

January to March 0.0 0.0 1.00
April to June -0.36 0.25 -0.37 0.25 0.69 (0.42-1.12)

July to September 0.23 0.24 0.22 0.24 1.24 (0.77-1.99)
Sample collection time*

8:01 a.m. to 12a.m. 0.0 0.0 1.00
12:01 to 8p.m. -0.57 0.41 -0.60 0.43 0.55 (0.22-1.22)

8:01p.m. to 8a.m. 0.02 0.34 -0.27 0.37 0.76 (0.36-1.54)
Region of the slaughterhouse*

Centre 0.0 0,0 1.00
North -0.53 0.41 -0.72 0.42 0.48 (0.22-1.13)

Alentejo -0.31 0.82 -0.77 0.83 0.46 (0.09-2.21)
Lisbon and Tagus Valley -0.63 0.40 -1.01 0.41 0.36 (0.16-0.80)

Slaughterhouse annual slaughter 
volume*

< 30 000 carcass 0.0 0.0 1.00
30 000 – 100 000 0.56 0.64 0.79 0.68 2.04 (0.66-9.64)

> 100 000 0.67 0.66 0.98 0.71 2.67 (0.76-12.34)

* variables that were selected to enter in the final multivariable mode

Table IV: Binomial multilevel model univariable and multivariable results showing posterior median, posterior standard deviation (SD), odds ratio (OR) 
and 95% credible interval (CrI).
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small number of samples, although it is considered a 
protective factor. A biological explanation for this association 
could be that the animals slaughtered in the afternoon have 
spent less time at all in the lairage because they enter the 
slaughterhouse early morning to be culled in that same 
day . Because the transmission of this type of Salmonella is 
strongly associated to transmission between live animals, the 
reduction in the contact between pig from different origins 
at the lairage could play an important role in explaining this 
finding. This data are representative of Portuguese slaughter 
pigs and contribute with valuable information for assessing 
risk factors. However the data collected did not evaluate the 
hygiene of the transport and lairage, known risk factors in 
various studies which could enlighten the slaughterhouse 
risk factors in this country. 

CONCLUSION

These results show an association between the region of the 
slaughterhouse and the lymph node Salmonella sp. positivity, 
which could be explained by different management practices 
in the slaughterhouses. As this study did not evaluate hygiene 
measures and management practices at each slaughterhouse 
it is necessary to perform such studies to enlighten these 
results. Also the results show a protective association for 
sample collection time for the group Typhimurium. The 
statistical methodology used in the study proved to be useful 
when we have small dataset and a multilevel structure of 
data, and it could be used in similar studies.
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a  b  s  t  r  a  c  t

Salmonella  is the  second  most  frequent  cause  of  foodborne  illness  in the European  Union
(EU), so  EU  enforced  legislation  to achieve  a reduction  in  Salmonella  prevalence  in the swine
sector. To set  the  reduction  target  each  country  carried  out  a  baseline  survey  to estimate
Salmonella  prevalence.  The  aim  of  our study  was  to  identify  risk  factors  for the  presence
of Salmonella  in breeding  pigs  based  on  the data  of  the  Baseline  Study  for Salmonella  in
Breeding  Pigs  in  Portugal.  In total, 1670  pen  fecal  samples  from  167  herds  were  tested  by
culture  and  170  samples  tested  positive.  Along  with  the  collection  of  the  samples  a survey
was applied  to  collect  information  about  the  herd  management  and  potential  risk  factors.
Multilevel analysis  was  applied  to the  data  using  generalized  linear  mixed  models  and  a
logit link  function.  The  outcome  variable  was  the  presence/absence  of Salmonella  in the pen
fecal samples.  The  first level  was  assigned  to the  pen  fecal  samples  and  the second  level
to the herds.  The  results  showed  significant  associations  between  Salmonella  occurrence
and  the  factors  (p  <  0.05):  maternity  pens  versus  mating  pens  (OR  =  0.39,  95%CI:  0.24–0.63),
feed  from  external  or mixed  source  versus  home  source  (OR  =  2.81,  95%CI:  1.19–6.61),  more
than 10  animals  per  pen  versus  10 animals  per  pen  (OR  = 2.02,  95%CI:  1.19–3.43),  North
Region  versus  Alentejo  Region  (OR  =  3.86,  95%CI:  1.08–13.75),  rodents  control  (OR  = 0.23,
95%CI:  0.090–0.59),  more  than  90%  of boars  homebred  or no  boars  versus  more  than  90%  of
boars from  an  external  source  (OR  = 0.54,  95%CI:  0.3–0.97),  semen  from  another  herd  versus

semen  from  insemination  centers  (OR  =  4.47,  95%CI:  1.38–14.43)  and herds  with  a  size  of
170  or more  sows  (OR  =  1.82,  95%CI:  1.04–3.19).  This  study  offers  very  relevant  information
for  both  the  Portuguese  veterinary  authorities  and  the  pig  farmers  currently  developing
control  programmes  for Salmonella.  This  is  the  first  study  providing  evidence  for semen

s risk  fa
and  boars  source  a

. Introduction
Salmonella has been reported as the second most fre-
uent cause of foodborne illness in the European Union
EU)  in the past ten years (EFSA, 2010). The contribution
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ctors  for Salmonella  in  breeding  pigs.
© 2012 Elsevier B.V. All rights reserved.

of pork products to the total burden of human salmonel-
losis cases varies between countries but it is estimated to
be  around 10% (Pires et al., 2010). The EU Regulation (EU
Regulation No 2160/2003) imposes to the Member States
(MS)  implementation of a control programme to reduce
the  prevalence in food production species including pigs.
To  set the reduction target each MS  carried out baseline

surveys to estimate the Salmonella spp. prevalence in some
food  production animals. The objective of the surveys was
to  obtain comparable data for all MS  through harmonized
sampling and testing schemes. In pigs the baseline study

83

dx.doi.org/10.1016/j.prevetmed.2012.07.013
http://www.sciencedirect.com/science/journal/01675877
http://www.elsevier.com/locate/prevetmed
mailto:cgomes@icbas.up.pt
mailto:carlasofiagomes@gmail.com
dx.doi.org/10.1016/j.prevetmed.2012.07.013


 Veterin
160 C.  Correia-Gomes et al. / Preventive

was done at abattoir level (collection of lymph nodes of pigs
slaughtered) and at herd level (collection of pen fecal sam-
ples  of breeding pigs). These cross-sectional studies also
collected information regarding herd management prac-
tices  and potential risk factors linked to this agent. After
the  specification of the reduction target each MS  will have
the  responsibility to establish an effective national control
programme adjusted for the country-specific characteris-
tics, such as the risk factors, the disease prevalence and the
financial  implications for stakeholders.

It was expected that the baseline surveys supplied
enough data to enable the identification and quantifica-
tion of potential risk factors to be used in the development
of programmes and procedures that reduces Salmonella
shedding in pig herds economically and effectively. It
is  important that this information is available before
Salmonella reduction programmes are implemented at
the  herd level to enable farmers to make informed
choices, enhance public health and avoid unnecessary costs
(Bahnson  et al., 2006).

Some  of the known risk factors already identified were
linked to: (1) biosecurity measures (Baptista et al., 2010)
such  as potential biological vectors (as rodents) (Letellier
et  al., 1999; Meerburg and Kijlstra, 2007; Skov et al., 2008),
hygiene of hands, equipment and facilities (Lo Fo Wong
et  al., 2004), purchase of animals from different suppli-
ers  (Lo Fo Wong et al., 2004), (2) herd management, such
as  herd size (Poljak et al., 2008), batch production system
(Funk and Gebreyes, 2004), housing – type of floor (partial
slatted floor) (Nollet et al., 2004; Rossel et al., 2006), type
of  pen separations (Lo Fo Wong et al., 2004), (3) feeding
practices such as dry feed (Bahnson et al., 2006), purchase
of  feed (Benschop et al., 2008), adding organic acids to
feed  (Funk and Gebreyes, 2004), (4) the use of antibiotics
(Beloeil et al., 2007; Funk et al., 2007), parasite infestations
(van der Wolf et al., 2001; Beloeil et al., 2004), and health
status of the herd (Funk and Gebreyes, 2004) among others
(Fosse  et al., 2009).

The  data used in the present study were collected as
part  of the Baseline Survey on the Prevalence of Salmonella
in  Breeding Pigs in Portugal. The aim of the study was to
identify  risk factors for the presence of Salmonella in herds
with  breeding pigs.

2.  Materials and methods

2.1.  Sampling and samples collection and analysis

The data used in this study were transferred to the
authors by the Portuguese Veterinary Authorities (PVA)
and  they are derived from the baseline study for Salmonella
in  Breeding Pigs in Portugal. This study was carried out
by  the PVA in the context of the Commission Decision
2008/55/EC. The authors were not involved in the base-
line  study and the data collection methodology described
below is of the entire responsibility of the PVA.
The sampling frame, the diagnostic testing methods, the
sample  collection procedures and the timelines of the base-
line  study for Salmonella in Breeding Pigs were specified in
the  Commission Decision 2008/55/EC.
ary Medicine 108 (2013) 159– 166

The target population was the holdings constituting at
least  80% of the breeding pig population in the MS.

In  Portugal, the sampling frame was  organized by the
PVA.  These holdings were stratified by the Regions of the
National Veterinary Services structure. There are currently
five  regions NUT II based in the Continental Portugal. In
the  sampling frame there were 4522 herds with a total of
1,827,533 pigs, of which 204,584 were breeding pigs. In
each  region, herds with 50 or more breeding pigs were
included. The sampling frame used in this study con-
tained 87% of the total number of pigs reported in 2007 in
Portugal.  The required sample size was estimated based on
an  expected prevalence of 50%, a desired confidence level
of  95%, an accuracy of 7.5%, then applied a finite popu-
lation correction factor, with an increase of 10% for each
group  (breeding and production holdings), to account for
non-response, as specified by the Commission Decision
2008/55/EC Annex I. The sample size used by PVA was
174  swine herds. The choice of the herds to sample was
random and proportional to the region, to take in consid-
eration the difference in the number of herds in each region.
The  samples were collected between November 2008 and
January  2009 by the herd veterinarian. Pooled fecal sam-
ples  from 10 pens were collected in each herd. The pens
were  proportionally allocated to represent the number of
breeding  pigs in the different stages of production. The
collection and composition of each pool was  performed
following the guidelines outlined in the Commission Deci-
sion  2008/55/EC. At least 10 individual breeding pigs had to
contribute  to one fecal pool. This procedure was estimated
to  provide 95% certainty of detecting at least one positive
sample in a herd, if the true prevalence of infected pigs
in  the population was  10% (Anonymous, 2007). Before the
sample  collection the PVA conducted clarification meet-
ings  with all herd veterinarians involved in the study. The
fecal  samples were sent to the laboratory for microbio-
logical detection of Salmonella according to the procedure
defined by Annex D of ISO 6579. Each Salmonella iso-
late was  serotyped in the National Reference Laboratory
for Salmonella according to Kaulfmann-White scheme. The
sensitivity  of this culture method is around 80% and the
specificity is 100% (Hoorfar and Mortensen, 2000; Arnold
et  al., 2005).

2.2.  Data collection

Information about herd management and potential risk
factors  was collected using a questionnaire along with the
collection of the fecal samples.

At  herd level, the variables of the following theme cate-
gories were included: identification of the region of origin,
the  categorization of the holding production type (three
variables), quantity and types of animals present (five vari-
ables),  biosecurity measures and animal purchasing policy
(eight  variables). For detailed description of these variables
see  Table 1.

At  pen level, the variables intended to characterise the

type  of housing (two variables), the number and type of
animals  in the pen (four variables), the clinical heath of
pen  (two variables); the floor type, the type of sanitary
measures adopted in the holding before new breeding pigs
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Table 1
Herd  variables distribution and univariable analyses to Salmonella spp. using data from the Baseline Survey on the Prevalence of Salmonella in Breeding
Pigs  in Portugal.

Variables Herds with ≥1 positive pen sample Herds with no positive pen sample Univariable analyses

OR estimate p-Value

System type
Outdoor 1 2 –
Indoor 64 75 2.72 0.41
Missing cases 11 14

Herd  type
Selection and multiplication unit 15 18 –
Production unit 61 72 0.87 0.68

Region of the herd
Alentejo  11 14 –
Centre 17 15 1.63 0.31
Lisbon and Tagus Valley 42 58 0.96 0.93
North 6 4 2.72 0.11

Production type
Farrow-to-weaners 12 7 –
Farrow-to-growers 10 17 0.40 0.20
Farrow-to-finish 39 49 0.58 0.27
Missing cases 15 18

Number  of boars
<3  31 45 –
≥3 45 46 1.80 0.03

Number of sows
<170  33 50 –
≥170 43 41 1.53 0.13

Number of gilts
<22 32 46 –
≥22 44 45 1.45 0.18

Total number of breeding pigs
<203 33 50 –
≥203 43 41 1.53 0.13

Number of finishers pigs/herd
<100  8 19 –
≥100 67 71 1.98 0.09
Missing cases 1 1

Management of breeding sows
More than 90% purchased 25 28 –
>90% homebred 38 54 0.83 0.55
10–90% homebred 13 9 1.62 0.27

Management of breeding boars
More than 90% purchased 42 28 –
Without boars or >90% homebred 26 53 0.40 <0.01
10–90% purchased or homebred 8 10 0.77 0.55

Source of replacement pigs
All homebred 23 41 –
Others sources 52 50 1.56 0.13
Missing cases 1 0

Source  of semen
Insemination centre − CI 18 34 –
Own boar + CI 40 43 2.09 0.02
Boar from another herd 14 11 5.28 <0.01
Missing cases 4 3

Good herd replacement policy
Yes 60 60 –
No 16 31 1.76 0.08

Rodents control
No  9 17 –
Yes 67 74 0.49 0.08

Control of birds
No  20 15 –
Yes 56 76 1.45 0.27

Use  of foot bath
No  22 31 –
Yes 54 60 0.77 0.38

Clothes for exclusive use in the herd
Yes 74 85 –
No 2 6 0.35 0.18

Good biosecurity measures
Yes  34 40 –
No 42 51 0.86 0.60
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Table 2
Pen  variable distribution to Salmonella spp. and univariable analyses in pen fecal samples using data from the Baseline Survey on the Prevalence of Salmonella
in  Breeding Pigs in Portugal.

Variable Positive pen samples Negative pen samples Univariable analyses

OR estimate p-Value

Number of animals per pen
=10 128 1284 –
>10 42 216 2.60 <0.01

The  pen has direct access to outside
No 122 1146 –
Yes 48 354 1.48 0.15

Individual pen
No  29 306 –
Yes 139 1194 1.05 0.80
Missing cases 2 0

Diarrhoea  in the last 3 months
No  163 1445 –
Yes 3 33 1.44 0.57
Missing cases 4 22

Age  of the breeding sows
Only  gilts or mixed age 111 874 –
Without gilts 59 626 0.73 0.11

Sex of the breeding pigs
Only  sows 158 1430 –
Boars or/and sows 12 70 2.13 0.04

Breeding sector room
Mating  31 219 –
Gestation 88 789 0.79 0.20
Mixture of animals of different sectors 15 58 1.68 0.22
Maternity 29 390 0.43 <0.01
Replacement breeders 7 44 0.83 0.64

Floor
Fully slatted 14 137 –
Others 146 1353 0.96 0.89

Sanitary gap before new breeders in the pen
No 107 874 –
Yes 63 626 1.77 <0.01

Feed
Dry  pellet 34 229 –
Dry non pellet 133 1230 0.87 0.72
Wet  3 41 0.32 0.23

Source of feed
Exclusively own  16 199 –
Purchased + mixture 154 1301 1.52 0.33

Potential Salmonella control substances added to water
No  149 1291 –
Yes 21 209 1.08 0.84

Use of antibiotics in the last 4 weeks in breeders
No 148 1229 –
Yes 22 271 0.50 0.01
Approach used to collect the pooled sample
Individual pinches 158 

Swab 12 

entered the pen were also characterized along with feeding
management policy (three variables). The method used to
collect  the fecal samples, swab or individual pinches, was
also  recorded in the questionnaire. For detailed description
of  these variables see Table 2.

2.3. Statistical analysis

To  perform the present study the authors created a
database. After entering the data in the database, the
variables and their categories were recoded or aggre-

gated to fewer categories as necessary to avoid sparse
data problems, and two new binary variables were cre-
ated:  Good herd replacement policy and Good biosecurity
measures.
1379 –
121 0.49 0.03

The  variable “Good herd replacement policy” groups
the questions about management and source of replace-
ment breeding pigs; it was coded as ‘Yes’ if more than 90%
of  the breeding sows and boars were homebred or with-
out  boars, and if the semen did not come from another
herd, and as ‘No’ otherwise. The variable “Good biose-
curity measures” groups the questions about biosecurity
measures was coded as ‘Yes’ for herds which controlled
rodents and birds access to barns, had a foot bath and had
clothes  exclusively for use in the herd, and as ‘No’ other-
wise. Tables 1 and 2 summarise the variables.
For continuous variables basic description statistics
including mean, median and percentiles were derived
(Table 3). These results were used to give information on
how  to categorise the continuous variables.
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Table 3
Descriptive measures of continuous variables for the presence of Salmonella spp in pen fecal samples using data from the Baseline Survey on the Prevalence
of  Salmonella in Breeding Pigs in Portugal.

Variable Presence of Salmonella Mean Minimum Percentile 25 Median Percentile 75 Maximum

Number of boars Yes 4.4 0 2 3 5 28
No 3.5 0 2 3 4 18

Number of sows Yes 245.2 8 100 200 325 1077
No 210.9 35 90 136 250 1074

Number of gilts Yes 35.6 0 15 25.5 40 187
No 32.7 0 10 21 38 300

Number of reproductive pigs Yes  285.2 43 130 224.5 370 1186
.2 41
.8 10
.5 10
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No 248
Number of animals in the pen Yes  12

No 11

To identify the risk factors for the presence of Salmonella
n breeding pigs, the response variable was the presence of
almonella  in each fecal sample and it was classified as posi-
ive  when Salmonella was detected and negative otherwise.
s  the data follow a multilevel structure, pen fecal samples

first  level) nested within swine herds (second level), a two
evel  hierarchical logistic regression model was fitted using
he  framework of generalized linear mixed model (GLMM)

ethods implemented in the glmmPQL procedure of pack-
ge  MASS (Venables and Ripley, 2002) of R free software
CRAN project, www.R-project.org). The fixed effects were
stimated by a second order penalized quasi-likelihood
PQL) using the Breslow and Clayton’s algorithm (Breslow
nd  Clayton, 1993). The algorithm iterates between a series
f  iterated weighted least squares iterations to update the
xed  effects and a single Fisher scoring iteration to update
he  standard deviation of the random effects.

The data were modeled in the following way:

 =
{

0 (no Salmonella)
1  (Salmonella)

here Y is the response variable.

r(Y) = pih, i = 1, ..., 1670 and h = 1, ..., 167

he  generic model used:

og it(pih) = a  + ˇkherd variablesh + ˇkpen variableshi

+ ˇkherd variablesh ∗ herd variablesh

+ ˇkpen variableshi ∗ pen variableshi

+ ˇkherd variablesh ∗ pen variableshi + bh

When modeling dichotomous data the lowest-level
esidual variance is not in the model equation because it
s  part of the specification of the error distribution (Hox,
002;  Goldstein, 2011). The second level random effect is
iven  by bh ∼ N(0, �2) where �2 is the variance of the ran-
om effects at herd level.

The logit link function was used to model the probabil-
ty of occurrence of Salmonella. The random effects are in
he  form of a random intercept and this allows for the fact

hat  the observations are nested in herds. Treating the herd
ffect  as random, also allows for the fact that the number
f  herds (167) is a sample of all existing herds and not the
hole  population.
 103 182 293 1214
 10 10 10 90
 10 10 10 130

2.4.  Univariable analyses

Candidate  variables for the multivariable model were
screened with univariable analysis. A relaxed significance
level of  ̨ = 0.15 was used to select variables to enter in the
multivariable model.

As  the variables were all categorised, association
between the independent variables were tested using a
chi-square test. The existence of significant associations
between the independent variables was tested before
adding them into the final multivariable model. It was
expected the existence of association between variables
like “Good herd replacement” or “Good biosecurity mea-
sures”  and the variables that were used to create them.
When association between variables was  present, it was
allowed  to enter in the multivariable model just one
variable at each time. The selection between which can-
didate  variable would be included into the final model was
decided  by testing both variables and selecting the one
presenting the smallest p-value.

2.5. Multivariable analysis

Stepwise  procedures were used to select the statistically
significant variables to enter/remove in the final multivari-
able  model. At each step, the independent variable not in
the  model that had the smallest p-value was  entered, and
variables already in the model were removed if their p-
value  became larger than the significance level of  ̨ = 0.05.
The  model was  terminated when no more variables were
eligible for inclusion or removal.

Two-way interaction between variables of the same
level (herd or pen) and also cross-level interactions were
analysed. Interactions between variables with biological
meaning (e.g. source of semen and management of breed-
ing  boars, number of sows and number of animals per pen)
were  manually tested at both levels and retained if the
p  < 0.05. Confounding was assessed through the examina-
tion of the changes in the magnitude of the coefficients
and looking at their biological significance and the regres-
sion  coefficients were converted to odds ratio (OR) and
the  respectively 95% OR confidence interval (CI) were esti-

mated.  The relevance of the herd random effects was  tested
by  looking at the variance estimate; the interpretation
was that when this estimate it is close to zero it gives an
indication that the herd effect does not contribute to the
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dispersion of the outcome variable and a simpler model
(without random effects) could be chosen (Twisk, 2006).

3.  Results

A  total of 1670 fecal pen samples (level 1) belonging to
167  herds (level 2), that responded to the questionnaire,
were tested. Among the samples tested 170 from 76 herds
were  positive to Salmonella. Salmonella Typhimurium,
followed by Salmonella Rissen were the most frequent
serotypes found in the positive samples.

In the 167 herds there were 33 breeding holdings
(45.45% had at least one sample positive to Salmonella, CI:
37.9–53.1%) and 134 productions holdings (45.45% had at
least  one sample positive to Salmonella, CI: 28.5–62.4%).

Tables 1 and 2 describe the different variables taking
into consideration the presence of Salmonella in the pen
fecal  samples. Table 3 shows the descriptive statistics of
the  herd and pen continuous variables.

There was information missing in 15% of the herds for
the  variables system type and production type nevertheless
these variables at univariable analyses did not meet the
criterion to enter in the multivariable model.

The results of the univariable analyses are shown in
Tables 1 and 2. The variables region of the herd, num-
ber of boars, number of sows, total number of breeding
pigs, number of finishers pigs/herd, management of breed-
ing  boars, source of replacement pigs, source of semen,
good herd replacement policy, rodents control, number of
animals  per pen, pens with access to outside, age of breed-
ing  sows, sex of the breeding pigs, breeding sector room,
sanitary gap before new breeders in the pen, source of
feed,  use of antibiotics in the last 4 weeks in breeders and
approach used to collect the pooled sample were selected
to  enter the multivariable model. Although the variable
source of feed had a p value higher than 0.15 in the uni-
variable analysis, it was forced to enter in the multivariable
model, because this variable has been described as a risk
factor  in several previous studies (Lo Fo Wong et al., 2004;
Benschop et al., 2008). To avoid collinearity problems, the
variables  number of sows and number of boars rather than
total  number of breeding pigs, and the variables manage-
ment of breeding boars and source of semen rather than
Good  herd replacement policy were selected to enter the
multivariable model. No significant association was found
between the remaining variables. In the final multivari-
able model just the variables with p < 0.05 were selected
to  remain (Table 4). The OR for each variable is adjusted
for the remaining variables in the model. There was not
any  significant interaction between the variables that were
kept  in the final multivariable model.

The significant results were: (1) region of the herd: sam-
ples  from herds in the North Region had higher odds of
being  positive to Salmonella than samples from herds in
the  Alentejo Region; (2) rodents control: samples from
herds  with rodents control showed lower odds of being
positive; (3) number of sows: herds with 170 and more

sows  presented higher odds of being infected; (4) source of
semen:  use of semen from another herd was a risk factor;
(5)  management of breeding boars: herds without boars
or  with 90% homebred boars showed lower odds of being
ary Medicine 108 (2013) 159– 166

positive; (6) breeding sector room: samples collected by
the  PVA at the maternity pens had lower odds of being
positive than samples from mating pens; (7) source of feed:
the  samples where the source of feed was not exclusively
from own  herd had higher odds of being positive; and (8)
number  of animals per pen: having more than 10 animals
in  the pen showed higher odds of being positive. The vari-
ance  of the random effect (�2) at herd level was estimated
to be 1.5 which given the small standard error associated
was  interpreted as the variance being different from zero
(Table  4).

4.  Discussion

In this study a representative sample of the herds with
breeding pigs in Portugal was  used. The herds sampled
were obtained using a sampling frame assembled by the
PVA.  The sample was representative of the country and
took  into consideration the different number of herds per
region.  The herds were randomly allocated to the study. The
risk  factors were assessed using data from a questionnaire
filled by the herd veterinarian which were also responsi-
ble for the collection of the feces samples. The majority
of the questions were closed; only a few were semi-open
or open, such as the type and source of feed, soil type, the
use  of antimicrobial substances added to water or feed, and
which  antibiotic was  used in breeders in the last four weeks
before  sample collection. To minimize the bias that could
be  introduced by having different people collecting the
data,  clarification meetings coordinated by the PVA were
entertained with the herds veterinarians before the sample
collection took place and the questionnaire had clear filling
out  instructions attached. Our judgment is that the validity
of  the data is quite robust given the care taken in the col-
lection of the information and in the Salmonella isolation
procedure.

Sampling the pen as a unit allows overcoming the prob-
lem  of individual low sensitivity of the fecal culture, partly
due  to the intermittent shedding that infected pigs show.
After  the study conducted by Arnold and Cook (2009) it
was  demonstrated that the use of pooled fecal samples
collected according to guidelines outlined in Commission
Decision 2008/55/EC increases the likelihood of detect-
ing  pens where there is at least one pig infected with
Salmonella. Therefore the overall sensitivity and ability
to  detect infected pens was increased in this study. As
the  specificity is 100% we  are sure about the presence of
Salmonella in positive samples.

Concerning  the statistical data analysis it was decided
to use a multilevel model because of the “natural” structure
of  data: the pen fecal samples (level 1) were nested in herds
(level  2). Using this model the data structure is taken into
consideration and the relationship of all variables, mea-
sured  at herd or pen level is preserved and accounted for.
This  model also increases the power of the analysis and
at  the same time evaluates the variability associated with
herd.  The random effects are applied to models when is

believed that the variance at group level is higher than
zero. The variance (�2) of the random effect at herd level
(bh) was estimated to be 1.5, which means that a relatively
large variability in the data was due to herd effect and the
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Table 4
Final  multivariable model for the presence of Salmonella spp in pen fecal samples using the data from the Baseline Survey on the Prevalence of Salmonella
in  Breeding Pigs in Portugal (in bold p < 0.05).

Variable Multivariable analysis

OR

Estimate 95% CI p-Value

Herd variables
Region of the herd

Alentejo  1.00
Centre 1.97 0.75–5.22 0.17
Lisbon and Tagus Valley 1.40 0.61–3.20 0.43
North 3.86 1.08–13.75 0.04
Number of sows
<170  1.00
≥170 1.82 1.04–3.19 0.04

Management  of breeding boars
More than 90% purchased 1.00
Without boars or > 90% homebred 0.54 0.30–0.97 0.04
10–90% purchased or homebred 0.93 0.38–2.30 0.88

Source of semen
Insemination centre − CI 1.00
Own boar + CI 1.84 0.97–3.46 0.06
Boar from another herd 4.47 1.38–14.43 0.01

Rodents control
No  1.00
Yes 0.23 0.09–0.59 < 0.01

Sample variables
Number of animals per pen

=10 1.00
≥10 2.02 1.19–3.43 < 0.01

Breeding sector room
Mating  1.00
Gestation 0.78 0.53–1.15 0.21
Mixture of animals of different sectors 1.55 0.62–3.89 0.35
Maternity 0.39 0.24–0.63 < 0.01
Replacement breeders 0.81 0.26–1.81 0.61

Source of feed
Exclusively own  1.00
Not exclusively own 2.81 1.19–6.61 0.02

Random effectsa Variance Standard deviation
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At  herd level 1.50 

R: odds ratio, CI: confidence interval for odds ratio.
a Variance at pen fecal level constrained to be 1 (binomial variance).

se of multilevel model was an adequate choice. The mul-
ilevel  methodology provides a solid approach and could
e  considered when the data follows a multilevel structure
o  allow the incorporation of group effect.

In the final multivariable model several significant risk
ssociations were found. The pens where the feed was
urchased had a higher risk of being Salmonella positive,
imilar to what has been found in another study (Benschop
t  al., 2008). Feed is a source of potential transmission of
almonella and this hazard should be controlled by feed
roducers. The role of rodents in the transmission of this
gent  was also highlighted in other studies (Meerburg and
ijlstra,  2007; Skov et al., 2008). A protective association for

he  herds that control rodents was also found in this study.
odents are biological vectors of Salmonella and if not con-
rolled  could play an important role in the transmission
f the agent within herds and between nearby herds. The

umber  of sows in a herd is a measure of the size of the
erd  and in this study herds with 170 and more sows had
igher  risk of being positive. This type of association was
lready  found in the literature for finishers herds (Poljak
0.75

et  al., 2008) and it is mainly associated with practices of
mixture of pigs which happens commonly in big herds. The
mating  pens had a higher risk when compared to maternity
pens. This result is similar to the result found in a longitu-
dinal study (Nollet et al., 2005) where it was detected more
sows  shedding Salmonella at mating than in the other sec-
tors,  and it was  justified by the hormonal changes in the
sow  at mating which contribute to a higher shedding of
the  bacteria. The results concerning the region (North with
higher  risk than the South) was surprising and need fur-
ther  investigation with spatial analysis to see if factors not
collected  in this study may  influence this result. The use of
semen  from another herd was a risk factor when compared
to  the use of semen from insemination centres, where the
quality  and safety of semen is controlled and tested. This
association was not previously found in literature probably
because in the majority of the countries the semen comes

from  insemination centres. This risk factor highlights the
need  to change this practice in Portugal. The management
of breeding boars (used either for heat detection and or
for  breeding purposes) was  also a risk factor and using
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homebred boars was safer than using purchased boars. This
could be explained because only 20% of the herds with more
than  90% purchased boars used semen from insemination
centres, while in the herds without boars or with more than
90%  homebred around 48% used semen from insemination
centres. The fact that semen and boars are controlled prac-
tices  in many countries preclude the assessment of these
variables as risk factors when statistical analyses are car-
ried  out using datasets from these countries. However it is
important  to keep in mind that controlling these sources is
of  high importance in every system to effectively prevent
Salmonella new infection of the herd.

So far in Portugal only a few studies about herd risk fac-
tors  have been done (Baptista et al., 2010), therefore our
results  are pertinent and useful. Furthermore as the pig
sector  in Portugal has a similar structure to those in France,
Ireland and Italy among other countries (VLA-DTU-RIVM,
2010) these results may  contribute to the knowledge of risk
factors  in these countries.

5.  Conclusion

The risks highlighted in this study are epidemiologically
and biologically consistent and they are representative of
the  breeding pigs system currently used in Portugal. It is
noticeable the identification of risks associated with semen
and  boars purchasing: this reinforces that attention should
be  paid to these factors when conceiving herd biosecurity
programmes; also noticeable and important is the fact that
these  risk factors have not been highlighted before. Our
findings are of high relevance to the Portuguese Veterinary
Authorities and also to pig farmers which are currently fac-
ing  the lack of country adapted information to elaborate the
control  programmes for Salmonella. To achieve prevalence
reduction, control programmes have to be implemented
and the measures of the future control programmes should
be  cost-effective and adapted to country features. In this
context  this study gives valuable information to be incorpo-
rated  in the near future control programme for Salmonella
in  breeding pigs in Portugal.
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Abstract

Background: The EU Regulation No 2160/2003 imposes a reduction in the prevalence of Salmonella in pigs. The
efficiency of control programmes for Salmonella in pigs, reported among the EU Member States, varies and
definitive eradication seems very difficult. Control measures currently recommended for Salmonella are not
serotype-specific. Is it possible that the risk factors for different Salmonella serotypes are different? The aim of this
study was to investigate potential risk factors for two groups of Salmonella sp serotypes using pen faecal samples
from breeding pig holdings representative of the Portuguese pig sector.

Methods: The data used come from the Baseline Survey for the Prevalence of Salmonella in breeding pigs in
Portugal. A total of 1670 pen faecal samples from 167 herds were tested, and 170 samples were positive for
Salmonella. The presence of Salmonella in each sample (outcome variable) was classified in three categories: i) no
Salmonella, ii) Salmonella Typhimurium or S. Typhimurium-like strains with the antigenic formula: 1,4,5,12:i:-, , and iii)
other serotypes. Along with the sample collection, a questionnaire concerning herd management and potential risk
factors was utilised. The data have a “natural” hierarchical structure so a categorical multilevel analysis of the dataset
was carried out using a Bayesian hierarchical model. The model was estimated using Markov Chain Monte Carlo
methods, implemented in the software WinBUGS.

Results: The significant associations found (when compared to category “no Salmonella”), for category “serotype
Typhimurium or S. Typhimurium-like strains with the antigenic formula: 1,4,5,12:i:-” were: age of breeding sows, size
of the herd, number of pigs/pen and source of semen. For the category “other serotypes” the significant
associations found were: control of rodents, region of the country, source of semen, breeding sector room and
source of feed.

Conclusions: The risk factors significantly associated with Salmonella shedding from the category “serotype
Typhimurium or serotype 1,4,5,12:i:-“ were more related to animal factors, whereas those associated with “other
serotypes” were more related to environmental factors. Our findings suggest that different control measures could
be used to control different Salmonella serotypes in breeding pigs.
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Background
Salmonella has been one of the major causes of food-
borne disease in the European Union (EU) in the past
years [1]. A considerable proportion of human cases are
related to pork products [2]. The EU approved legisla-
tion (EU Regulation No 2160/2003) imposes a reduction
on the prevalence of this agent in food production ani-
mals, such as pigs. To set the target for this reduction
per country, baseline surveys were carried out in the EU
to estimate the prevalence of Salmonella sp. in some
food production animals. The objective of the surveys
was to obtain comparable data for all Member States
(MS) through a harmonized approach. These studies
showed that the prevalence of Salmonella in holdings
with breeding pigs was 31.8% (28.7% for breeding hold-
ings and 33.3% for production holdings) [3] and also that
there are different profiles in terms of serotype preva-
lence among different countries. In Portugal for in-
stance, 9.1% of the breeding holdings were positive to
Salmonella Typhimurium and 33.3% were positive to
other serotypes than Typhimurium and Derby, while in
Ireland these numbers were 17.5% for both cases [3].
Another important issue is that control programmes
already being carried out in several MS have different
efficiencies and so far, none seems to be able to reduce
the level of Salmonella sp. to reach an eradication stage
[4]. Control programmes should target all serotypes of
Salmonella sp., since all of them have the potential to be
pathogenic for humans. To improve the efficiency of
control programmes, potential differences in serotypes
prevalence which allows for differences in risk factors
between serotypes should be taken in consideration.
Some of the known risk factors in the literature are
linked to: 1) biosecurity measures [5] especially those
aimed at potential biological vectors (rodents) [6-8],
hand, equipment and facility hygiene [9] and also pur-
chase of animals from different suppliers [9]; 2) herd
management - such as herd size [10], batch production
system [11], housing - type of floor (partial slatted floor)
[12,13] and type of pen [9]; 3) feeding practices such as
dry feed [14], source of feed [15] and adding organic
acids to feed [11]; 4) health disorders such as use of anti-
biotics [16,17], parasite infestations [18,19], and health
status of the herd [11] among others. However, none of
the aforementioned studies have taken into consider-
ation whether risk factors differ between serotypes. To
the best of our knowledge only one study compared the
differences between risk factors for Salmonella serotypes
with or without antimicrobial resistance [20]. The data
for this paper were collected by the Portuguese Veterin-
ary Authority (PVA) when the Baseline Survey on the
Prevalence of Salmonella in breeding pigs was con-
ducted in Portugal. The aim was to search for potential
risk factors for shedding from two different groups of
Salmonella serotypes using pen faecal samples from
herds with breeding pig representative of Portuguese
reality. The two groups were Salmonella Typhimurium
including S. Typhimurium-like strains with the antigenic
formula: 1,4,5,12:i:-, and other serotypes.

Methods
Herd selection
The objectives, the sampling frame, the diagnostic test-
ing methods as well as the collection and reporting of
data, and the timelines of the Baseline Survey on the
Prevalence of Salmonella in breeding pigs were specified
in the Commission Decision 2008/55/EC. The target
population are holdings that constitute at least 80% of
the breeding pig population in the Member State.
The sample size was calculated by the PVA and con-

sidered the number of swine herds existing in April of
2007, stratified by Region. The sampling frame consisted
of 4522 herds, with 204,584 breeding pigs and 1,827,533
pigs in total. The herd inclusion criteria for entering the
sampling frame were: to have at least 50 breeding pigs,
either for breeding or production purposes. The pig
population included in the sampling frame represented
87% of the total registered pig population in Portugal in
2007.The sample size was calculated using the sampling
criteria specified in the Commission Decision 2008/55/
EC Annex I - expected herd prevalence of 50%, desired
confidence level of 95%, accuracy of 7.5% and then apply
a finite population correction factor, with an increase of
10% for each group (breeding and production holdings)
in case of non-response. A sample of 174 swine herds
was randomly selected using probability proportional to
the number of herds among the regions in Portugal.

Pen selection
In each herd only the pens with breeding pigs over six
months of age were randomly selected. The breeding
pigs that have been recently introduced into the herd
and were in quarantine were not included in the survey.
In each selected herd, faecal samples from 10 pens were
taken representing a 95% probability of detecting at least
one positive sample if the true prevalence of infected
pigs in the population was 10% [21]. The number of
pens sampled per breeding room in each herd was allo-
cated proportionally according to the number of breed-
ing pigs in the different stages of production. The age
categories in the sampling were not predetermined. The
specification was that at least 10 individual breeding pigs
should be included in each pooled pen faecal sample
otherwise no sample was collected.

Faecal samples collection
The faecal samples were collected and pooled together
by the herd veterinary assistant and then sent to
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laboratory for detection of Salmonella. The material
consisted of freshly voided faeces. Each pooled sample
should weigh at least 25g and two approaches were
employed to collect these pooled faeces samples: 1)
where there was an accumulation of mixed faeces within
an area of a pen or yard, a large swab was used to pass
through the faecal mass, ensuring that at least 25g of
Table 1 Herd variables assessed by the questionnaire and dis
outcome variable

Number of pen samples by the
categories of the outcome
variable

1 2 3

HERD VARIABLES

Type of system

Open air 29 0 1

Intensive 1242 38 110

Missing observations 229 8 13

Type of herd

Selection and Multiplication Unit 292 8 30

Production Unit 1208 38 94

Region of the herd

Alentejo 229 8 13

Centre 278 8 34

Lisbon and Tagus Valley 914 27 59

North 79 3 18

Type of production

Farrow-to-weaners 164 5 21

Farrow-to-growers 250 7 13

Farrow-to-finish 794 26 60

Missing observations 292 8 30

Number of boars

<3 715 22 33

≥3 785 24 91

Number of sows

<170 759 16 55

≥170 741 30 69

Number of gilts

<22 713 20 47

≥22 787 26 77

Size of the herd (number of breeding pigs)

<203 759 16 55

≥203 741 30 69

Management of breeding boars

more than 90% external source 606 24 70

without boars or >90% home raised 735 15 40

10-90% external source or home raised 159 7 14

Legend: 1 (no Salmonella), 2 (serotype Typhimurium or serotype 1,4,5,12:i:-), 3 (othe
mixed material was collected; 2) where there was no
such accumulation (e.g. field, large yard, farrowing
house, pens or other accommodation with low numbers
of pigs per group) then individual pinches were selected
from individual fresh faecal masses or places with a
minimum of 10 individuals contributing to the final vol-
ume of at least 25g. The sites from which these pinches
tribution of the pen samples by the categories of the

Number of pen samples by the
categories of the outcome
variable

1 2 3

Management of breeding sows

more than 90% external source 835 17 68

>90% home raised 189 10 21

10-90% home raised 476 19 35

Control of rodents

No 1254 42 114

Yes 246 4 10

Source of semen

Insemination centre – IC 491 11 18

Own boar + IC 869 23 88

Boar from another herd 79 9 12

Missing observations 61 3 6

Source of replacement pigs

Just own herd 585 14 41

Others sources 906 31 83

Missing observations 9 1 0

Number of finishers pigs/herd

<100 263 3 14

≥100 1221 42 107

Missing observations 16 1 3

Control of birds

No 1192 34 94

Yes 308 12 30

Use of foot bath

No 1017 38 85

Yes 483 8 39

Clothes for exclusive use in the herd

Yes 1423 46 121

No 77 0 3

Herd replacement policy

Good 434 7 29

Bad 1066 39 95

Biosecurity measures

Yes 828 30 72

No 672 16 52

r serotypes).
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were collected were distributed in a representative man-
ner across the area concerned. In approach 1) at least 10
individual pigs contributed to each sample taken, other-
wise approach 2) was applied (Commission Decision
2008/55/EC).
Salmonella isolation
At the laboratory, the isolation of Salmonella was done
using the method described by Annex D of ISO 6579.
The Salmonella strains isolated in the positive pen faecal
samples were serotyped in the National Reference La-
boratory for Salmonella according to Kaulfmann-White
scheme. The sensitivity of cultured pooled faecal sam-
ples according to the described method varied around
80% and the specificity is 100% [22,23].
Table 2 Pen variables assessed by the questionnaire and dist
outcome variable

Number of pen samples
by the categories of the
outcome variable

1 2 3

PEN VARIABLES

The pen has direct access to outside Sanitary ga

No 1146 30 92

Yes 354 16 32

Individual pen Feed

No 1194 41 98

Yes 306 5 24

Missing observations 0 0 2

Diarrhoea in the last 3 months Floor

No 1445 45 118

Yes 33 1 2

Missing observations 22 0 4 Source of f

Age of the breeding sows

Only gilts or gilts and others 874 38 73

Without gilts 626 8 51 Potential S

Sex of the breeding pigs

Only females 1430 44 114

Males and females 70 2 10 Use of ant

Breeding sector

Mating room 210 10 21

Gestation room 789 26 62 Way how w

Mixture of room 58 1 14

Farrowing room 390 7 22

Replacement breeders 44 2 5

Legend:1 (no Salmonella), 2 (serotype Typhimurium or serotype 1,4,5,12:i:-), 3 (other
Data collection
A questionnaire was used to collect information about
the herd management and potential risk factors for Sal-
monella sp. shedding. This was filled by the herd veter-
inary who also collected the faecal samples (both tasks
were conducted the same day). The questionnaire was
designed by the PVA following the guidelines of Com-
mission Decision 2008/55/EC. To minimize the bias that
could be introduced by having different people collect-
ing the data, the following procedures were taken: the
majority of the questions were closed, the question-
naire had clear filling instructions attached and clarifi-
cation meetings were held between the PVA and the
field veterinarians before the sample collection took
place. All the variables in the questionnaire are shown
in Tables 1 and 2.
ribution of the pen samples by the categories of the

Number of pen samples
by the categories of the
outcome variable

1 2 3

p before breeders entering

No 626 19 44

Yes 874 27 80

Dry pellet 229 7 27

Dry non pellet 1230 36 97

Wet 41 3 0

Fully slatted 139 5 10

Others 1361 41 114

eed

Exclusively own 199 8 8

Bought + Mixture 1301 38 116

almonella control substances added to water

No 1291 38 111

Yes 209 8 13

ibiotics in the last 4 weeks in breeders

No 1229 45 103

Yes 271 1 21

as collected the sample

Compose sample 121 1 11

Swab 1379 45 113

Number of pigs in the pen

=10 1284 34 94

>10 216 12 30

serotypes).

96



Correia-Gomes et al. BMC Veterinary Research 2012, 8:226 Page 5 of 10
http://www.biomedcentral.com/1746-6148/8/226
Data analysis
From the information gathered in the questionnaires,
two new binary variables were created. The first variable
groups the questions regarding management of replacing
breeding pigs and their source, and was codified as Good
if more than 90% of the breeding sows and boars were
homebred (also included herds with no boars) and if the
semen was not from another herd otherwise it was codi-
fied as Bad. The second variable combines the questions
about biosecurity measures and was codified as Yes
when controls for rodents and birds were implemented,
and also if herds had provisions for foot bathing and
clothe changing before entering the herd and No other-
wise. The variables and their categories were recoded or
aggregated to fewer categories as necessary to avoid
sparse data problems as shown in Tables 1 and 2.
The continuous variables were transformed into cat-

egorical using the median values as the cut-off points
defining the categories. Their summary statistics are
shown in Table 3.
Because of the low number of cases per serotype

(Table 4), individual analysis of each Salmonella serotype
was prohibitive. Therefore the outcome variable was the
isolation of Salmonella in each sample and was classified
in three categories: i) no Salmonella, ii) serotype Typhi-
murium and S. Typhimurium-like strains with the anti-
genic formula: 1,4,5,12:i:-, and iii) other serotypes. For
the calculation of apparent herd prevalence, a herd was
considered positive if it had at least one positive pen fae-
cal sample. The percentage of positive Salmonella sp.
pen faecal samples was 27% Salmonella Typhimurium or
S. Typhimurium-like strains with the antigenic formula:
1,4,5,12:i:-, and 73% other serotypes.
The data have a “natural” multilevel structure: pen fae-

cal samples (first level) nested in herds (second level)
and were analysed using a Bayesian hierarchical model
with a categorical response variable (three categories).
Monte Carlo Markov Chain (MCMC) was used for esti-
mation and this was implemented in the freely available
software WinBUGS (BUGS project, http://www.mrc-bsu.
cam.ac.uk/bugs/winbugs/). Hierarchical models are nat-
urally handled in the Bayesian framework because of the
conditional independence assumed between each level
in the hierarchy. In conjunction with the open-source
Table 3 Distribution of the continuous variables (at herd and

Variable Mean Standard deviation

Number of boars 3.9 3.9

Number of sows 226.5 192.9

Number of gilts 34.0 38.3

Size of the herd (number of breeding pigs) 265.0 216.9

Number of pigs per pen* 11.6 8.0

* 258 pens had more that 10 pigs per pen.
software WinBUGS, this provides a general framework
for implementing hierarchical models in similar
applications.
Random effects were included at the herd level to ac-

count for the fact that the observations are ‘nested’ in
herds. Treating the herd effect as random, also allows
for the fact that the number of herds here (167) is a
sample of all existing herds. All prior distributions were
chosen to be as uninformative as possible. A more
detailed description of the model is given in Additional
file 1.
To decide which variables should be included in this

multivariable model, an exploratory analysis was per-
formed by fitting univariable models and considering as
candidates for the multivariable model, all variables sig-
nificant at the 0.15 significance level. Associations be-
tween the explanatory variables were tested using a chi-
square test and if a significant association (p < 0.05) was
found, only the variables with more biological justifica-
tion were allowed to enter the model.
The final multivariable model was built using a forward

selection process until all variables with a significant 95%
credible interval were included. The significance level
was set at 0.05.
The model ran long enough with sufficient burn-in

(5000 iterations) to ensure convergence to the posterior
distribution of the parameters. Convergence was assessed
by visual inspection of the means in time-series plots
but also more formally using the Raftery and Lewis, and
the Gelman-Rubin R-hat diagnostics [24,25]. R-hat should
be arbitrarily close to 1 for convergence. The chains were
thinned by only collecting 1 in 10 consecutive samples
and this eliminated autocorrelation in posterior samples
(using the CODA package [26] in R). Mixing in the
chains was assessed by comparing the MC (Markov
Chain) error with the standard deviation, for each param-
eter. Ideally, the MC error should be less than 5% of the
standard deviations for good mixing [27] and this was
true for all parameters here. Two MCMC chains ran with
dispersed initial values which is good practice to ensure
convergence and mixing. WinBUGS code for implement-
ing the model is given in Additional file 2.
The presence of confounding was investigated by ana-

lysing the correlation matrix of the joint posterior
pen level)

Minimum Percentile 25 Median Percentile 75 Maximum

0 2 3 4 28

8 98 170 300 1077

0 12 22 40 300

41 109 203 355 1214

10 10 10 10 130
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Table 4 Percentage of serotypes isolated in the study

Serotype Percentage of isolates (n) Percentage of herds that have at least one pen sample positive to
the serotype (n)

Breeding holdings Production holding All Holdings Breeding holdings Production holding All holdings

Typhimurium 15.8 (6) 25 (33) 23 (39) 13.6 (3) 25.6 (20) 13.2 (23)

Rissen 18.4 (7) 19.7 (26) 19 (35) 22.7 (5) 19.2 (15) 12.0 (20)

London 21 (8) 13.6 (18) 15 (26) 13.6 (3) 11.5 (9) 7.2 (12)

Derby 15.8 (6) 9.1 (12) 11 (18) 13.6 (3) 8.9 (7) 6.0 (10)

Give 13.1 (5) 5.3 (7) 7 (12) 9.1(2) 5.1 (4) 4.0 (6)

Brandenburg 0 (0) 6.1 (8) 5 (8) 0 (0) 2.6 (2) 1.8 (2)

1,3,19:-:- 2.6 (1) 4.5 (6) 4 (7) 4.5 (1) 6.4 (5) 3.6 (6)

1,4,5,12:i:- 5.3 (2) 3.8 (5) 4 (7) 9.1 (2) 3.8 (3) 3.0 (5)

Bovismorbificans 0 (0) 3 (4) 2 (4) 0 (0) 2.6 (2) 1.2 (2)

Gloucester 0 (0) 2.3 (3) 2 (3) 0 (0) 2.6 (2) 1.2 (2)

Muenchen 2.6 (1) 2.3 (3) 2 (4) 4.5 (1) 3.8 (3) 2.4 (4)

Anatum 0 (0) 1.5 (2) 1 (2) 0 (0) 2.6 (2) 1.2 (2)

Bredeney 0 (0) 0.8 (1) 1 (1) 0 (0) 1.3 (1) 0.6 (1)

Goldcoast 0 (0) 1.5 (2) 1 (2) 0 (0) 1.3 (1) 0.6 (1)

Livingstone 2.6 (1) 0 (0) 1 (1) 4.5 (1) 0 (0) 0.6 (1)

Mbandaka 2.6 (1) 0.8 (1) 1 (2) 4.5 (1) 1.3 (1) 1.2 (2)

Senftenberg 0 (0) 0.8 (1) 1 (1) 0 (0) 1.3 (1) 0.6 (1)
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distribution for all model parameters but especially the
slope parameters. Correlation values higher than 0.5
where takes to indicate significant correlation.
Posterior predictive simulation was used for model

checking as described by Gilks et al.[28]. This technique
is effectively testing whether the observed data are ex-
treme in relation to the predictive distribution (fitted
model). Model deviance was the measure adopted for
comparison. The technique involves the estimation of a
p-value which should not be extreme (close to 0 or 1)
for good model fit.

Results
A total 167 herds (33 breeding and 134 production hold-
ings) responded to the questionnaire and were tested: 76
herds were positive to Salmonella sp. (apparent preva-
lence of 45.5%, CI: 37.9% - 53.1%). Of these, 15 breeding
holdings (apparent prevalence of 45.5%, CI: 28.5% -
62.4%), and 61 production holdings (apparent prevalence
of 45.5%, CI: 37.1% - 53.9%) were positive to Salmonella
sp. Among the 1670 faecal samples collected, 170 were
positive (10.1%) and seventeen different serotypes were
found (Table 4). There was no simultaneous occurrence
of the two groups of serotypes in any of the positive
samples. Salmonella Typhimurium was found in 23% of
the positive isolates (15.8% in breeding and 25% in pro-
duction holdings), followed by Salmonella Rissen (19%)
(Table 4). The proportion of the different serotypes by
type of holding is detailed in Table 4. Considering the
distribution of serotypes groups through the herds, it
was observed that 13.8% of the herds had at least
one sample positive to serotype Typhimurium or S.
Typhimurium-like strains with the antigenic formula:
1,4,5,12:i:-, and 31.7% of the herds had at least one posi-
tive sample to other serotypes. A significant association
was found between number of sows and number of
breeding pigs and for this reason it was decided that
only the number of breeding pigs should enter the mul-
tivariable model.
Several management practices linked to herd and pen

were assessed (Tables 1 and 2). The variables - region of
the herd, size of the herd, source of semen, rodents con-
trol, number of pigs per pen, age of breeding sows,
breeding sector room, source of feed and use of antibio-
tics - were selected to enter the multivariable model.
Table 5 shows the final multivariable multilevel model
results. The results were converted to odds ratio (OR)
and the respective 95% credible intervals (OR CrI) were
calculated. The posterior median was used to estimate
point values of each OR, because unlike the mean, this
is less affected by asymmetric distributions. Posterior
distributions of all OR are highly asymmetric since they
are based on the exponentiation of posteriors of the
slope parameters. The convergence of MCMC calcula-
tions was considered acceptable with R-hat values of all
parameters being less than 1.001. Different starting
values did not affect the final results. None of the
between-parameter correlations was larger than 0.5 in
magnitude while the majority was less than 0.1 implying
no influential confounding in any of the variables.
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Table 5 Posterior results for the final multivariable categorical multilevel model for the risk factors (Salmonella
negative as reference group)

Variable Typhimurium or 1,4,5,12:i:- Other serotypes

Coefficient SD OR 95% OR CrI Coefficient SD OR 95% OR CrI

HERD

Region of the herd

Alentejo 0 1.0 0 1.0

Centre −1.3 1.5 0.28 0.01-4.30 1.5 0.7 4.57 1.33-17.57

Lisbon and Tagus Valley −0.5 1.1 0.62 0.07-5.05 0.9 0.6 2.56 0.86-8.36

North −0.1 1.7 0.88 0.03-24.31 2.6 0.8 12.9 2.97-64.33

Size of the herd: (number of breeding pigs)

<203 0 1.0 0 1.0

≥203 1.9 0.9 7.04 1.46-60.04 0.5 0.4 1.65 0.83-3.44

Source of semen

Insemination centre – IC 0 1.0 0 1.0

Own boar + IC 0.4 0.8 1.45 0.24-7.77 1.1 0.4 2.91 1.35-6.83

Boar from another herd 3.7 1.6 41.22 2.46-1392.7 1.4 0.8 4.18 0.94-19.30

Control of rodents

No 0 1.0 0 1.0

Yes −2.2 1.8 0.11 0.002- 1.85 −2.0 0.7 0.13 0.03-0.45

PEN

Number of pigs/pen

=10 0 1.0 0 1.0

>10 1.4 0.7 4.06 1.03-19.73 0.6 0.4 1.82 0.88-3.79

Age of the breeding sows

Only gilts or gilts and others 0 1.0 0 1.0

Without gilts −1.8 0.8 0.17 0.03-0.65 0.2 0.3 1.24 0.68-2.24

Breeding sector room

Mating 0 1.0 0 1.0

Gestation 0.1 0.5 1.11 0.44-3.10 −0.2 0.3 0.81 0.45-1.52

Mixture of animals of different sectors 0.2 1.7 1.17 0.03-24.80 0.8 0.7 2.14 0.54-7.78

Farrowing −1.0 0.6 0.36 0.10-1.22 −1.0 0.4 0.38 0.17-0.80

Replacement breeders −0.9 1.1 0.40 0.04-2.72 0.1 0.7 1.15 0.29-3.88

Source of feed

Exclusively own 0 1.0 0 1.0

Not exclusively own 0.5 1.1 1.63 0.18-17.62 2.0 0.7 7.29 2.25-29.46

Herd random effect variance 5.8 0.66 1.4 0.24

Legend: SD – standard deviation, OR – odds ratio, CrI – credible interval, in bold the significant OR for a 95%CrI.

Correia-Gomes et al. BMC Veterinary Research 2012, 8:226 Page 7 of 10
http://www.biomedcentral.com/1746-6148/8/226
Significance of the herd random effects is tested by look-
ing at whether the variance estimates (1/τ1, 1/τ2) are
non-zero. Estimates of 1/τ1 and 1/τ2 are arbitrarily away
from zero (5.8 and 1.4 respectively) and their standard
errors are relatively small, indicating that both estimates
are different from zero (see Table 5). The model fit was
reasonably accurate with a p-value of 0.21 which means
no significant differences between replicated and
observed data.
It can be seen from the analysis of Table 5 that there

are different risk profiles for the two Salmonella sero-
type categories when compared to category “no
Salmonella”. This is an important finding and suggests
that the risk factors may be different between the cat-
egories of serotypes defined in this study. For category
“Typhimurium or S. Typhimurium-like strains with the
antigenic formula: 1,4,5,12:i:- associations with signifi-
cant change in risk were: 1) size of the herd: herds with
203 and more breeding pigs are at higher risk of infec-
tion, 2) the source of semen: purchase of boars from
other herds increase the risk of infection, 3) number of
pigs per pen: pens with more than 10 animals per pen
have increased risk of infection, and 4) the age of the
sows: pens without gilts have a decreased risk of
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infection. For the category “other serotypes” the signifi-
cant risk associations were: 1) region of the herd: herds
in the Centre and North Region have a higher risk of in-
fection, 2) the source of semen: the use of own boar
increased the herds’ risk of infection, 3) control of
rodents had a significant effect in reducing the risk at
the herd level, 4) feed source: using feed from external
sources, i.e., not exclusively from the farm increased the
risk of infection, and 5) breeding sector: the farrowing
sector had a lower risk of infection than the mating
sector.

Discussion
This study investigated risk factors for Salmonella shed-
ding for two different groups of serotypes using pen fae-
cal samples from herds with breeding pigs adequately
representing the Portuguese pig industry.

The outcome variable
The different serotypes of Salmonella sp. were divided in
two groups because serotype Typhimurium is a serotype
with a recognized difficult control [29] and is also the
cause of many human cases of food-borne disease linked
to pork meat. Serotype Typhimurium-like strains with
the antigenic formula: 1,4,5,12:i:-was included in the
group of serotype Typhimurium because of the genetic
similarity, the similar virulence and the antimicrobial re-
sistance characteristics existing between the two sero-
types [30]. The use of composite samples increases the
overall sensitivity of detection of infected pens [31]
strengthening the confidence on the accuracy of our re-
sponse variable. The increased sensitivity of the use of
pooled faecal samples was shown by the analysis of the
Baseline Survey results [32] which demonstrated that
this pooled sampling process detected approximately
80% of the true Salmonella positive herds, and that with
10 pooled faecal samples it is possible to detect at least
one positive sample in a pig herd when the animal level
prevalence is at least 20%, with 95% certainty [31].

The model
It was anticipated that the hierarchical structure of the
data from our sample could influence the outcome
of the analysis. Therefore the statistical approach was
chosen to take into consideration the multilevel struc-
ture of data from our sample where the pen faecal sam-
ples (level 1) are nested in herds (level 2). Some
important remarks concerning the statistical approach
deserve to be highlighted: the model implemented here
showed a good fit, despite the fact there was little infor-
mation to update the prior distributions. The method-
ology proposed could offer a general modelling approach
to researchers who want to incorporate expert knowledge
in the specification of the priors or for those who wish to
restrict the priors accordingly to account for lack of infor-
mation in the response variable which was not the case in
this study. Lastly, both WinBUGS and R, are freely avail-
able software which is particularly appealing for the pur-
pose of presenting the methodology here as a general
modelling tool.

Risk factors for Salmonella Typhimurium and
Typhimurium-like strains with the antigenic formula:
1,4,5,12:i:- infection
It can be seen from the analysis of Table 5 that there are
different risk profiles for the two categories of Salmon-
ella, validating our initial hypothesis that the risk factors
could vary between the two categories of serotypes
studied.
In category “Typhimurium or 1,4,5,12:i:-” the size of

the herd (the number of breeding pigs being equal or
greater than 203) was considered a risk factor. A similar
association was found for Salmonella sp. in finishers
[10] and also in the breeding pigs [32]. A reason for this
is that in bigger herds, the risk of transmission is higher
given a higher number of “infectious” and “susceptible”
animals, offering increased chances of more effective
contacts per unit of time. The number of pigs per pen
was another risk factor, already reported for Salmonella
sp. in breeding pigs by Nollet in 2005 [32]. As in the
case of the size of the herd, the greater the number of
pigs in the pen, the easier the transmission of infection
between pigs, if there are infected pigs in that pen. Inter-
estingly, these two factors were not found significant
for “other serotypes” which suggests that “serotype
Typhimurium category” could be more associated with
transmission between animals than other categories. A
protective association, relating to pens without gilts
was found. A similar association was also found in the
European Union Baseline survey on breeding pigs for
maiden gilts [32]. One reason may be that older sows
have higher immunity status to Salmonella Typhimur-
ium and may be less susceptible to stress than younger
sows although they could be carriers (the test used was
pooled faecal culture so it could not detect carriers if
they are not shedding) [33]. The last significant risk fac-
tor found in this category of the outcome was the boar
from another herd which however, has a wide credible
interval. A combination of the high odds ratio with a
relatively small number of pen faecal samples in this
variable category indicates that this association should
be a matter of further study. Interestingly, for rodent
control, a strong protective effect was noticed towards
the Typhimurim group (noticeable by the OR = 0.11) al-
though not statistically significant. However, it is our
opinion that rodent control should not be disregarded
from the list of risk factors for S. Typhimurim.
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Risk factors for infection with other serotypes of
Salmonella
Concerning the category “other serotypes”, the region of
the herd was found relevant: samples from herds in the
North and Centre Region had higher odds of being posi-
tive than samples from herds in the Alentejo Region.
Possibilities to explain this finding are that herds in the
Centre and North regions are close together or share
common management factors. This variable needs
further studying to understand whether there are differ-
ences in management procedures that were not evalu-
ated by this questionnaire, as this variable did not
influence the results of the other variables when it
entered the model. Using semen from own boar is a risk
factor when compared to using semen from insemin-
ation centres only, where the animals are tested and if
Salmonella-positive culled. This association has not been
reported yet in the literature, probably because in the
majority of the countries the semen comes from insem-
ination centres. Pens where pigs feed is not exclusively
home produced were at higher risk: the risk is linked to
exotic serotypes such as the ones that are isolated in
commercial feed; similar association was also found in
other studies but for Salmonella sp. [15,32]. There is a
protective effect for farrowing pens when compared to
mating pens. This can be justified by the hormonal
changes in the sow at mating which is similar to the
results found in a longitudinal study for sows seven days
after weaning [33] where more Salmonella was detected
at mating than in the others sector of breeding sows. In
that study, this was attributed to hormonal changes that
takes place in the sows resulting in follicular growth,
ovulation and oestrus behaviour, and also to rise in adre-
nocorticotrope hormone due to stress. So it was con-
cluded that with stress sows are more susceptible to
infection and also carrier sows are more likely to start
shedding the pathogen [33]. The control of rodents was
considered a protective factor for the presence of “other
serotypes”: the role of rodents in the transmission of this
agent was also highlighted in other studies [6,8]. Since
rodents could lead to the dissemination of the agent in
the herd as a vector that transmits the infection between
closed sectors their role must not be underestimated in
a control programme. As already mentioned this variable
appears as a protective factor to the group Typhimurium
or 1,4,5,12:i:- although not statistically significant. This
intriguing finding does not compromise the hypothesis
of the importance from pig to pig transmission – direct
or indirect - in the case of Typhimurium.

Application in control
The results from this work should be taken into account
when implementing control and biosecurity programmes
to Salmonella sp., since they highlight the importance to
pre-define herd infection status regarding S. Typhimur-
ium, and of making a risk profile based on the manage-
ment practices in place before the adoption of control
measures. Control measures should be adapted to suite
the type of infection present bearing in mind that for
serotype Typhimurium the control of animal source risk
factors should be considered, whereas for the other sero-
types is it the environmental source risk control that is
important.

Conclusion
In Portugal, the prevalence of herds with breeding pigs
that had at least one sample positive to serotype Typhi-
murium or S. Typhimurium-like strains with the anti-
genic formula: 1,4,5,12:i: was 13.8% and for the other
serotypes 31.7%. A flexible and innovative statistical
modelling approach was successfully used here. This
provides a framework for similar studies of other dis-
eases as it is straightforward to implement and can
be easily generalized. The risk factors for serotype
Typhimurium suggest a contagious pattern and the risk
factors for other serotypes appeal to be related to envir-
onmental factors. The role of rodent control in serotype
Typhimurium needs further studies. This study provided
valuable information that can be incorporated in future
control programmes for Salmonella sp. in breeding pigs
in Portugal and other countries.
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Additional File 1 – Model framework 
 

Level 1- pen samples: 

 

where 

  khi

3

1

Pr Y = p  ;k = 1,2,3 for outcome variable;h = 1,…1670 for samples ; i = 1,…,167 for herds and

p 1

khi

khi

k



is the probability of occurrence for each category of the outcome variable Y. These 

probabilities are themselves modelled using explanatory variables and random effects: 

 khi k jk jk jk

jk jk ik

herd variables pen variables herd variables *herd variables

pen variables *pen variables herd variabl

logit p =  + β +

es *pen v

β +β

+β +β +bar 2   iables

ih h ih ih

h h ih h



 

where j is the number of explanatory variables. 

Note that with the use of random effects, the probabilities of Y=1, 2 or 3 are herd 

specific. 

The probability for each category of Y is modelled using the same explanatory variables 

but different slope parameters (βjk) to assess whether those variables affect each 

category in a different way.  The reference category is Y=1 (no Salmonella) and all the 

results from each of the categories Y=2 and 3 are compared to the reference category.  

Level 2 - herds: 

i1b2 = 0  

i2 1b2 ~ N(0,1 τ )  

i3 2b2 ~ N(0,1 τ )  where 1/τ1 and 1/τ2 are the variances for category “serotype 

Typhimurium or serotype 1,4,5,12:i:-” and “other serotypes” respectively. 
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The b2ik are the random effects allowing for the fact that the observations are 'nested' in 

herds (this reduces the effective number of model parameters by ‘pooling’ herd 

information, while retaining model flexibility). Treating the herd effect as random, also 

allows for the fact that the number of herds here (167) is a sample of all existing herds.  

The prior distributions for the model parameters: 

1 = 0  

k ~ N(0,100)  where k = 2,3 for the intercepts in each category of Ykhi. 

j1β = 0  where  j = 1,2,…,14 for the reference category of the explanatory variables. 

jkβ ~ N(0,100)  where  j = 1,2,…,14 and k =2,3. These are the fixed effects of the 

explanatory variables in the other two categories of the Ykhi. 

1τ ~ Gamma(0.5,0.001) , 

2τ ~ Gamma(0.5,0.001)  for the variance of the herd random effects. 

All prior distributions were chosen to be as uninformative as possible. For parameters 

with infinite support, Gaussian priors with large variance are conventionally used to 

express lack of information [34]. For variance parameters with strictly positive support, 

the inverse of the variance (precision) is given an uninformative gamma distribution 

implying that the variance is given an inverse gamma. The inverse gamma is the 

conjugate prior for a Gaussian random effect therefore it is a natural choice which aids 

computation. A Gamma(0.5,0.001) was chosen which has mean 500 and variance of 

500000, implying it is a very flat or uninformative prior distribution. 
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Additional File 2 – WinBUGS code 

 

Figure1. WinBUGS code for the categorical multilevel model 
 

Legend: H = number of cases, K = number of categories in the outcome variable = 3 (1-no 

Salmonella, 2 - serotype Typhimurium or serotype 4,5,12:i-, 3 - other serotypes), sero[h] = 

outcome variable, cod.herd[h] = number of the herd, α = intercept for each outcome result, β = 

fixed effects, b2 = random effects considering herd level, I = number of herds, Variables: rod = 

rodents control, sem2 = mixture of own boar semen and semen form insemination centres, sem3 

= semen of boar from another herd, reg2 = Centre region, reg3 = Lisbon and Tagus Valley 

region, reg4 = North region, herdsize = size of the herd: number of breeding pigs (equal or more 

than 203), feed = source of feed in the pen, sec2 = gestation pen, sec3 = mixture of animals of 

different sector in the pen, sec4 = farrowing pen, sec5 = replacement breeders pen, num = more 

than 10 animals per pen, age = age of the breeding sows in the pen, sig1 = standard deviation of 

category Typhimurium or 4,5,12:i-, sig2 = standard deviation of category other serotypes 
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WinBUGS model file for categorical multilevel model 

 

model{ 

   for(h in 1:H){ 

    for(k in 1:K){ 

#likelihood for categorical outcome 

      p[h,k]<-expecta[h,k]/sum(expecta[h,1:K]) 

      expecta[h,k]<-exp(eta[h,k]) 

      eta[h,k]<-α[1,k]+b2[cod.herd[h],k]+β[1,k]*rod[h]+β[2,k]*sem2[h]+β[3,k]*sem3[h]+β[4,k]*reg2[h]+ 

 β[5,k]*reg3[h]+β[6,k]*reg4[h]+β[7,k]*herdsize[h]+β[8,k]*feed[h]+β[9,k]*sec2[h]+ 

 β[10,k]*sec3[h]+ β[11,k]*sec4[h]+β[12,k]*sec5[h]+β[13,k]*num[h]+β[14,k]*age[h] 

     }    

     sero[h]~dcat(p[h,1:K]) 

   } 

#Priors for intercept 

for (j in 1:1){ 

α[j,1]<-0.0 

for(k in 2:K){ 

α[j,k]~dnorm(0,0.01)} 

} 

#Priors for random cohort effects 

tau1~dgamma(0.5,0.001) 

sig1<-1/sqrt(tau1) 

tau2~dgamma(0.5,0.001) 

sig2<-1/sqrt(tau2) 

 

for (i in 1:I){ 

b2[i,1]<-0.0 

b2[i,2]~dnorm(0,tau1) 

b2[i,3]~dnorm(0,tau2) 

} 

#Priors for fixed effects 

for(a in 1:14){ 

β[a,1]<-0.0 

for(k in 2:K){ 

β[a,k]~dnorm(0,0.01)} 

} 

} 
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 31 

Abstract 32 

Background 33 

Transmission models can help in understanding disease dynamics and can then be used to test 34 

the efficiency of control measures. The aim of this study was to formulate an appropriate 35 

stochastic Susceptible-Infectious-Resistant/Carrier (SIR) model for Salmonella Typhimurium 36 

in pigs and thus estimate the transmission parameters between states.  37 

Methods 38 

The transmission parameters were estimated using data from a longitudinal study of three 39 

Danish farrow-to-finish pig herds known to be infected. A Bayesian model framework was 40 

proposed, which comprised of Binomial components for the transition 1) from susceptible to 41 

infectious and 2) infectious to carrier; and a Poisson component for carrier to infectious. 42 

Cohort random effects were incorporated into these models to allow for unobserved cohort-43 

specific variables as well as unobserved sources of transmission, thus enabling a more 44 

realistic estimation of the transmission parameters. In the case of the transition from 45 

susceptible to infectious, a cohort time-varying random effect was used. The number of 46 

infectious pigs not detected by the parallel testing was treated as unknown, and the probability 47 

of non-detection was estimated using information about the sensitivity and specificity of the 48 

bacteriologic and serologic tests.  49 

Results 50 
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The estimate of the transmission rate 1) from susceptible to infectious was 0.33 [0.06, 1.52], 51 

2) from infectious to carrier was 0.18 [0.14, 0.23] and 3) from carrier to infectious was 0.01 52 

[0.0001, 0.04]. The estimate for the basic reproduction ration (R0) was 1.91 [0.78, 5.24]. The 53 

probability of non-detection was estimated to be 0.18 [0.12, 0.25]. 54 

Conclusions 55 

The proposed framework for stochastic SIR models was successfully implemented to estimate 56 

transmission rate parameters for Salmonella Typhimurium in swine field data. R0 was 1.91, 57 

implying that there was dissemination of the infection within pigs of the same cohort. There 58 

was significant temporal-cohort variability, especially in the susceptible to infectious stage. 59 

The model adequately fitted the data, allowing for both observed and unobserved (cohort 60 

effects, test sensitivity) sources of uncertainty, indicating reliable estimates of transmission 61 

parameters. 62 

 63 

Keywords: Salmonella Typhimurium; transmission parameters; Bayesian approach 64 

 65 

Background 66 

Salmonella Typhimurium is one of the major food-borne pathogens currently causing disease 67 

in humans [1] and it is often related with the consumption of pork products. Given its 68 

relevance to consumer food safety, Salmonella spp. control was considered necessary by the 69 

European food-safety policy makers under the EC Regulation 2160/2003. In the near future, it 70 

is possible that a mandatory target reduction will be put in place in the European Union, 71 

regarding the Salmonella prevalence for pigs. 72 

However, in practice, the control of this agent has proved to be difficult and expensive at the 73 

farm level [2]. Consequently, the evaluation of the efficiency of control strategies relating to 74 
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this agent has become an important issue, as stated in recent reports [3]. Modelling the 75 

dynamics of Salmonella Typhimurium in pigs is important in evaluating alternative control 76 

strategies. The basic reproduction ratio expresses the secondary number of cases that a 77 

primary case infects during the infectious period. If less than unity the disease is receding, but 78 

when higher than unity the disease is spreading. 79 

Susceptible – Infectious – Resistant (SIR) models are attractive tools that help in 80 

understanding the disease dynamics. The SIR model formulates the changes of individuals in 81 

the population between different disease states in terms of a system of ordinary differential 82 

equations (ODE), known as the Kermack-McKendrick ODE model [4]. The variables in the 83 

system are given by the three components: group of susceptible (S), group of infectious (I) 84 

and group of carriers (R). SIR models include a mathematical specification of the movement 85 

in and out of the three components. The key parameter in each of these mathematical 86 

specifications is the transition rate: from S to I (β), from I to R (α) and from R to I (ν). If such 87 

modelling is to be helpful in infectious disease control, it is critical to have the best possible 88 

estimates of these rates (β, α and ν), as all three of them are important in modelling the spread 89 

of the infection. Transmission data, generated under controlled conditions are necessary to 90 

estimate the transition rates as accurately as possible.  91 

In most cases Salmonella Typhimurium causes subclinical infection with no apparent 92 

symptoms of disease in swine which makes it difficult to assess the infection status of 93 

individual pigs in an infected population without testing each animal several times. One of the 94 

difficulties in obtaining accurate estimates for β in Salmonella Typhimurium studies stems 95 

from the fact that the currently available bacteriological and serological tests used to assign 96 

the infection status are imperfect, introducing uncertainty when trying to classify each animal. 97 

Yet another source of uncertainty comes from the fact that pigs, once infected, shed the agent 98 

intermittently. 99 
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In the literature, it is conventional to use generalised linear models (GLMs) to describe the 100 

counts of animals, e.g. from S to I using either Poisson [5-8] or Binomial models  [4, 9]. In 101 

fact, GLMs can be used to estimate all three transmission parameters although they lack 102 

flexibility, for instance to also capture the effect of sensitivity and specificity of the diagnostic 103 

test used. GLMs also lack the flexibility to allow for unobserved effects from variables not 104 

recorded in the data, but which influence the outcomes. The Bayesian framework proposed in 105 

this paper is flexible enough to incorporate such effects, but also quantifies the uncertainty 106 

due to imperfect diagnostic tests. 107 

To follow cohorts of animals in order to determine the dynamics of S. Typhimurium in 108 

susceptible populations it is a very expensive procedure, so only few of such studies exist. In 109 

this paper, we use data from a previous observational study designed and performed by 110 

Kranker et al [10]. 111 

A Bayesian modelling framework was proposed and used to estimate transmission parameters 112 

(transition rate from S to I, transition rate from I to R and transition rate from R to I) for 113 

Salmonella Typhimurium in pig herds, using the longitudinal data from Kranker et al [10]. 114 

The sensitivity and specificity of the tests used to classify the animals in the Kranker study 115 

were allowed for in the statistical model, which also incorporated random effects to allow for 116 

cohort heterogeneity. 117 

 118 

Methods 119 

Study herds, sampling, bacteriology and ELISA test 120 

The data used have been previously described by Kranker et al [10] and originate from three 121 

Danish pig herds known to be infected with Salmonella Typhimurium. The herds had 122 

moderate to high levels of Salmonella Typhimurium and therefore the within-herd prevalence 123 
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was 40% or higher based on meat-juice samples collected over three months, evaluated by use 124 

of a cut-off of 20 optical density percentage (OD%). Two of the farms, with 650 and 440 125 

sows, respectively, were two-site operations while the remaining farm was a three-site 126 

operation with 300 sows. The three herds were self-supplying. In each herd, 10 litters were 127 

randomly selected, and in each litter, the ears of six randomly selected piglets were tagged. To 128 

account for variations in Salmonella shedding over time, litters from each herd were divided 129 

into two groups of five litters that were raised at approximately one-month intervals. Thus, on 130 

each farm there were two cohorts consisting of 30 pigs each, yielding a total of 180 piglets at 131 

the start of the study. All ear-tagged pigs from a given cohort were supposed to be raised 132 

together for the entire observation period. The animals were followed longitudinally [10] and 133 

were first tested at the age of four weeks and thereafter at two to five week intervals until the 134 

age of slaughter (varied between cohorts but on average around 25 weeks). The testing 135 

occasions varied between cohorts (six to seven times). At each testing occasion, sera and 136 

faeces from the animals were collected and tested for the presence of Salmonella spp. (at the 137 

age of four weeks only faeces were collected, because maternal antibodies still present could 138 

give a false positive result). An animal was considered serologically positive, wherever the 139 

serological test revealed a result of OD% >20, and bacteriological positive if Salmonella was 140 

isolated from the faeces. The serological test used at this cut-off value is considered to have a 141 

sensitivity of 68% and to be 100% specific [11]. The bacteriological test is considered to be 142 

100% specific and the sensitivity is around 30 to 55% [12]. These test characteristics were 143 

incorporated in the statistical model. 144 

 145 

 Infection status of the pigs 146 

The testing time interval was different in each cohort, specifically it varied from two to five 147 

weeks. A homogenous data set was derived by inferring the infection status of each pig, every 148 
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two weeks. The time step of two weeks was chosen because on average it takes two weeks for 149 

an animal to test positive to serology after being infected. It was therefore assumed that an 150 

animal was infectious in the two weeks before being seropositive. The most likely infection 151 

status of each pig was determined for each time step (two weeks) based on both the faecal 152 

shedding and the serology of every sampling period. Each animal was categorized as 153 

susceptible (S), infectious (I) or carrier (R). A susceptible animal was considered to be an 154 

animal without the agent and susceptible to be infected. An infectious animal was considered 155 

to be an infected animal shedding the agent, meaning it could infect other animals. A carrier 156 

animal was considered to be an infected animal not shedding the agent and therefore not able 157 

to infect other animals. In the absence of reasonable sensitivity of the bacteriological culture 158 

method, serology offered an alternative and complementary way to assign the infection status 159 

of a pig.  160 

Pigs were attributed status S when there was no presence of bacteria in the faecal samples and 161 

the OD% was below 20. Status I was assigned from the date when a pig was found 162 

bacteriologic-positive until it stopped being bacteriologic-positive. Additionally, pigs were 163 

assigned to status I based on seroconversion. The beginning of the infectious period was set to 164 

two weeks prior to the recorded date of seroconversion [14, 15] and the duration was set to 165 

four weeks, assuming that a pig would shed Salmonella spp. within an average of four weeks. 166 

This average period was based on data regarding the shedding period duration, from 167 

experimental studies [13, 14]. So for pig classification, information was used from both tests 168 

in parallel. Finally, status I was followed by status R and the pigs could return to status I if 169 

they were found culture positive later on during the study period. It was assumed that no pig 170 

would return to the susceptible status after being infected, because of the relative short life 171 

span of finisher pigs (after infection it takes around 112 days to clear the agent from the 172 

organs [16], which is too long for post-weaned pigs). A particular example of how the 173 
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classification was performed: if a pig was shedding at a specific testing time, it was 174 

considered infectious up until a negative culture, after which it was considered as carrier. On 175 

the other hand if an animal was not positive to culture nor to the ELISA test, it was 176 

considered susceptible. However, if in the next testing occasion it was found positive to the 177 

ELISA test (in the presence of a negative culture), then it was considered infected and 178 

therefore branded as infectious for at least four weeks, beginning two weeks prior the testing 179 

time. 180 

Given that in the beginning of the follow-up piglets could only be tested by use of 181 

bacteriology (which has low sensitivity), some piglets infected by the sow could have been 182 

erroneously classified as susceptible. Therefore, the analysis in each cohort started at the time 183 

infected animals were first detected (by either serology or bacteriology). 184 

 185 

 Estimation of the transmission parameters 186 

Conventionally, transmission parameters of infectious disease, including Salmonella spp., in 187 

swine herds [16-22] are estimated using regression models, often based on data describing the 188 

prevalence of the country or region to which the particular study refers to. As suggested in 189 

some studies [5, 23, 24], stochastic SIR models were first applied here in the form of 190 

Generalised Linear Models (GLMs), in order to estimate the three transmission parameters. 191 

However, preliminary results (not reported here) suggested the presence of overdispersion in 192 

the GLMs, hinting towards unobserved sources of variation in the data such as cohort 193 

heterogeneity. Here a framework for stochastic SIR models is proposed which 1) extends the 194 

current GLM framework by including random effects, 2) is implemented using a Bayesian 195 

approach thus allowing incorporation of prior information (such as the sensitivity of 196 

Salmonella tests), 3) explicitly estimates the probability of not detecting infectious animals 197 

due to test sensitivity and 4) incorporates all sources of uncertainty/variation thus obtaining 198 
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more realistic estimates of transmission parameters. As suggested by some authors [5], the 199 

inclusion of random effects automatically accounts for overdispersion by inflating the 200 

variance of the response variables while at the same time allowing for cohort heterogeneity. 201 

Stochastic SIR models (and other variants such as SI or SIS models) are well-established in 202 

animal disease literature, for instance see [20-22] for recent examples, and also the book by 203 

Diekmann and Heesterbeek [4], chapter 1. The benefit in using stochastic SIR model is that 204 

transmission parameters can be estimated using statistical modelling, and here the 205 

conventional stochastic SIR models was extended by explicitly allowing for cohort variation 206 

and unobserved temporal effects. Below the three components of the stochastic SIR model are 207 

described in detail. 208 

1) Transition from susceptible to infectious  209 

It was assumed that pigs become infected by “infectious contacts” defined as: either contact 210 

with other infected animals, or contact with their environment (rodents, contaminated muck or 211 

feed). The rate at which a given animal has infectious contacts was assumed 1) to be constant 212 

in time and 2) proportional to the density of infectious animals [20], with a constant of 213 

proportionality β, i.e. the transmission rate parameter. In other words, the infectious contacts 214 

per animal happen randomly in time so that their occurrence can be described by a Poisson 215 

process. More precisely, the number of infectious contacts per animal, in a period Δt is 216 

Poisson distributed with mean λ=β(I/N)Δt, where I is  the number of infectious animals and N 217 

is the total number of animals, at the beginning of  Δt. As such, the probability of no 218 

infectious contacts per animal in Δt is exp(-β(I/N)Δt), implying that the probability of 219 

infection in Δt is p = 1- exp(-β(I/N)Δt). This in turn implies that the number of new cases C at 220 

the end of Δt is Binomial with parameters S and p so that the mean of C is S*p.  221 

Here, the current established methodology was extended to allow for the fact that 1) λ may 222 

vary in time due to exogenous factors and 2) λ may vary across cohorts due to unobserved 223 
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cohort effects. So, a random (scaling) effect exp(rjt) was included, for the j
th

 cohort at time t, 224 

to get λjt=β(I/N)exp(rjt)Δt as the mean number of  infectious contacts of a random animal, in 225 

herd j at time t. Note that Δt denotes the length of a time interval whereas t refers to actual 226 

time. On average, exp(rjt) was assumed to be equal to one, so that across all cohorts and time, 227 

the average transmission rate parameter is still β. By doing this, variations due to cohort or 228 

unknown temporal effects was explicitly modelled, which would otherwise contribute to the 229 

uncertainty in estimating β. 230 

Recall that all time intervals in the data are equal to two weeks so for clarity, Δt=1 was set so 231 

that one time step Δt corresponds to two weeks. This does not qualitatively affect the 232 

estimation of the transmission parameters. Because of the nature of the data, time t is now 233 

defined in discrete consecutive (biweekly) time steps. 234 

The model may be formulated as follows:  235 

Cjt ~ Binomial(Sjt, pjt) 236 

pjt = 1 – exp{ -β(Ijt-1/Njt-1)exp(r1jt) } 237 

cloglog(pjt) = log(β) + log(Ijt-1) - log(Njt-1)  + r1jt          (1) 238 

where:  239 

- Cjt denotes the number of new infectious animals in cohort (j) at the end of the time step (t), 240 

- Sjt-1 is the number of susceptible animals in cohort (j) at the end of the time step (t-1),  241 

- pjt is the probability of a susceptible animal in cohort (j) at the end of time step (t-1) 242 

becoming infectious by the end of time step (t), 243 

- cloglog is the complementary log-log transformation, 244 

- β is the transmission rate parameter for the transition from susceptible to infectious,  245 

- Ijt-1 is the number of infectious animals in cohort (j) at the end of the time step (t-1),  246 

- Njt-1 is the total number of animals in cohort (j) at the end of the time step (t-1), and 247 

- r1jt is a cohort time-dependent random effect (which is zero on average). 248 
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Note that, at the beginning of the study, pigs were considered to be either in the S or I status 249 

depending on the test results. When there was no infectious pig present at the end of the 250 

previous time step, i.e. Ijt-1 = 0, the probability of becoming infectious was modelled as: 251 

cloglog(pjt) = log(β) + r1jt. This is because even if there are no infectious pigs around, animals 252 

can still be infected (e.g., contaminated environment, feed, water, etc.). In this formulation, β 253 

is seen as the underlying rate of transition for a random pig in an average cohort with no 254 

infectious animals, while r1jt allows for unobserved cohort-time effects in the data e.g., 255 

anthropogenic influence, rodents etc. Note that homogeneous mixing of the pigs in each cohort (i.e. 256 

all pigs could come into contact with each other) was assumed, due to the small size of the cohorts.  257 

 258 

In using the number of infectious pigs Ijt, in each cohort at the end of time step t, it was 259 

necessary to account for the sensitivity of both the serological and bacteriological test. Since 260 

the specificity in both tests is considered to be 100%, the parallel specificity is 1. This implies 261 

that Ijt = Iobsjt + Inobjt, where Iobsjt is the observed value and Inobjt is the number of 262 

infectious animals not detected (false negative pigs). In other words, Iobsjt is a lower bound 263 

on the actual Ijt. The unobserved variable Inobjt may be incorporated (and thus estimated) in 264 

the stochastic model and here it was assumed that it has a Binomial distribution with 265 

parameters Njt and  pND  where pND is the probability of not detecting infectious animals. 266 

This probability, pND, is of course dependent on the sensitivity probabilities of each test, 267 

which were assumed to be independent. Inobjt was modelled as follows: 268 

Ijt = Iobsjt + Inobjt 269 

Inobjt ~ Binomial(Njt, pND) 270 

pND =  (1-SenC)*(1-SenE)            (2) 271 

where: 272 

- SenC is the sensitivity probability of microbiological culture, and 273 
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- SenE is the sensitivity probability of the ELISA test. 274 

Treating Inobjt as an unobserved random variable allows formal quantification of the 275 

uncertainty in the data due to test sensitivity and constitutes one of the novelties of the 276 

proposed model. The Bayesian framework (see section 5 later on) used to estimate the 277 

stochastic SIR model can easily incorporate the estimation of Inobjt given prior information on 278 

SenC and SenE.  279 

 280 

2) Transition from infectious (I) to resistant (R)  281 

The rate α at which a random infectious animal, in a given cohort, becomes carrier was 282 

assumed to be constant in time. As such, the length of time τ until an infectious animal 283 

becomes carrier can be modelled by an exponential distribution with rate parameter α. So, 284 

given that the animal is infectious at the start of time interval Δt, the probability pR of 285 

becoming carrier is pR = Pr(τ≤Δt) = 1-exp(-αΔt) since τ is exponentially distributed (recall 286 

that Δt=1 was set for conciseness). Like before, a random cohort effect r2j was added to allow 287 

for cohort heterogeneity in the data, to obtain pRj = 1-exp(-αexp(r2j)). The number of new 288 

carrier animals Rnewjt at the end of time step t, is thus Binomial with parameters Ijt and pRj. 289 

Note that a single parameter α was utilised, describing the rate at which a random infectious 290 

animal in an average cohort, becomes carrier. However, cohort variability (not all cohorts are 291 

average) was allowed for through r2j, which in turn reduces uncertainty in estimating α. The I 292 

to R transition was modelled as follows: 293 

Rnewjt ~ Binomial(Ijt, pRj) 294 

cloglog(pRj) = log(α) + r2j              (3) 295 

3) Transition from resistant  to infectious 296 

For this compartment of the model, the rate of infectious contacts ν in a random carrier animal 297 

was assumed to be constant in time where ν is the transmission rate parameter for the 298 

120



13 

 

transition from carrier to infectious. With similar arguments as in the S to I compartment, the 299 

number of infectious contacts per animal in time period Δt is Poisson distributed with mean 300 

νΔt. Since this transition was actually a rare event (only happened three times in the entire 301 

study), the Poisson distribution can be used, since it approximates the Binomial when its 302 

probability parameter is close to zero. So if in cohort j, there are Rjt-1 carrier animals at the 303 

end of the previous time step, the number of transitions R to I in time step t may be modelled 304 

as a Poisson variable with mean μjt =  νRjt-1exp(r3j) or more explicitly: 305 

Inewjt ~ Poisson(μjt) 306 

log(μjt) = log(ν) + log(Rjt-1) + r3j            (4) 307 

where: 308 

- Inewjt denotes the number of new infectious animals (that result from this transition) in 309 

cohort (j) at the end of the time step (t), 310 

- μjt is the mean number of carrier animals that become infectious in the cohort (j) during time 311 

step (t), 312 

- ν is the transmission rate parameter for the transition from carrier to infectious state,  313 

- Rjt-1 is the number of carrier animals at the end of the time step (t-1) in cohort (j), and 314 

- r3j is a cohort random effect that allows for cohort heterogeneity. 315 

Note that Rjt-1 = 0 is possible, in which case log(Rjt-1) = 0 was set. The argument for doing that 316 

is that the transmission rate parameter ν may be defined as the limit of μjt/Rjt-1as Rjt-1 goes to 317 

zero. As such, ignoring the random effect for a moment, μjt/Rjt-1 should tend to a constant (i.e. 318 

ν) as Rjt-1 goes to zero rather than infinity. Note that in our data, Rjt-1 = 0 happened on 20% of 319 

the occasions. In the hypothetical case that Rjt-1 = 0 for the majority of time steps and cohorts, 320 

then this component of the model (i.e. the transition R to I) becomes redundant as there will 321 

ultimately be almost no information with which to estimate the transition parameter. 322 

4) Cohort random effects 323 
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As indicated above, random cohort effects were incorporated into each transition step to allow 324 

for 1) cohort heterogeneity/variability in the data, 2) unobserved cohort-specific factors, 3) 325 

unobserved temporal effects in the S to I compartment. These effects were different for each 326 

transition under the assumption that any unobserved cohort factors affect each transition in a 327 

different way. For the transitions S to I and R to I, these random effects also allow for factors 328 

which affect the spreading of disease which are not dependent on the animals themselves (as 329 

for example contaminated environment, feed, water, etc.). 330 

For the transition S to I, the cohort random effects were assumed to be time-varying and auto-331 

correlated, and were modelled as: 332 

2

1 , 1 1

2

1 , 1 , 1 1

~ (0, )

~ ( , )

j t

j t j t

r Normal

r Normal r








                                                                                                          (5)

 333 

where the cohort random effect (r1jt) for time step t depends on the previous cohort random 334 

effect at time (t-1). With this cohort time-dependent random effect any unobserved dynamic 335 

behaviour in the spreading of the infection within cohorts was captured, such as the spread of 336 

the infection due to infected mice. 337 

For the transition I to R and R to I, the random effects were modelled as: 338 

2~ (0, ), 2,3kj kr Normal k                                                                                                       (6) 339 

where:  340 

- subscript j denotes cohorts and 341 

- σk
2
 is the variance of the unobserved cohorts effects. 342 

In a preliminary model building stage, a cohort time-dependent random effect, r2jt, for the 343 

transition I to R was considered, however the results showed no improvement to the model fit. 344 

The transition R to I was rare (only happened three times in the study) so there was 345 

insufficient data for using a cohort time-dependent random effect. 346 
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 347 

5) Model implementation 348 

The overall SIR model described above was implemented in a Bayesian framework and fitted 349 

using Markov chain Monte Carlo (MCMC). In this framework, parameters are treated as 350 

random variables whose “prior” distribution expresses our uncertainty about their value 351 

before any data is observed. After data is obtained though, prior distributions (or simply 352 

priors), are combined with the data through Bayes theorem to produce the posterior 353 

distributions (or simply the posteriors) of each parameter. The posteriors express the 354 

uncertainty about model parameters after data is observed and all statistical inference is based 355 

solely on the posteriors. MCMC is a numerical technique which produces samples of values 356 

that eventually converge (after a certain “burn-in” number) to samples of values from the 357 

posterior (distribution) of each parameter.  358 

 359 

There was no historical information with which to inform the prior distributions of log(β), 360 

log(α) and log(ν), so Normal distributions with zero mean and a variance of 100, which 361 

reflected prior ignorance while avoiding the use of improper prior distributions, were used 362 

[25]. For the sensitivity probabilities of both serological and bacteriological tests, a Beta 363 

distribution was used as a prior. Previous information about the sensitivity of both tests [11, 364 

12] was used to inform those Beta distributions: a mean of 0.49 for faecal culture and a mean 365 

of 0.68 for Danish mix ELISA were assumed, so SenC~Beta(48.5, 50.5) and SenE~Beta 366 

(58.5, 27.5) were specified. These priors have means 0.49 and 0.68 respectively, and 367 

variances that match the range of possible values dictated by the findings of [11, 12].  368 

Specificity was assumed to be 100% in both tests. The precision (i.e. the inverse of the 369 

variance) of the Normal distribution for each random effect was given a Gamma (0.5, 0.005) 370 

prior distribution (large mean and very large variance to indicate prior ignorance).  371 
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The complete SIR model was implemented in the open-source statistical software WinBUGS 372 

[26]. 100,000 posterior samples were collected after a 5,000 sample burn-in to ensure 373 

convergence to the posterior distribution [27]. Two MCMC runs were performed, with 374 

dispersed initial values, to ensure convergence and mixing. The samples were thinned by only 375 

collecting one in 10 consecutive samples to eliminate autocorrelation in posterior samples (the 376 

R package “coda” [28] was used), so that in total we ended up with 20,000 samples. 377 

Convergence was assessed by inspection of trace-plots but also more formally using the 378 

Raftery and Lewis diagnostic, and the Gelman-Rubin R-hat diagnostic which should be 379 

sufficiently close to one if convergence was achieved [29, 30].  Mixing in the chains was 380 

assessed by comparing the Markov Chain (MC) error with the standard deviation, for each 381 

parameter. Ideally the MC error for each parameter should be less than 5% of the standard 382 

deviation [31] for good mixing.  383 

Posterior predictive simulation was used for model checking as described by Gilks et al.[25]. 384 

This technique is effectively testing whether the observed data are extreme in relation to the 385 

posterior predictive distribution of the observations (i.e., the fitted model). The deviance was 386 

the measure adopted for comparison. The technique involves the calculation of a “p-value” 387 

which should not be extreme (close to 0 or 1) for good model fit.  388 

 389 

6) Calculations of the basic reproduction ratio (R0) 390 

Samples from the posterior distribution of R0 were calculated from those of β and α by use of 391 

the following formula [5]: 392 

0R 



                                                                                                                                 (7)

 393 

where β is the transition rate from S to I, and α is the transition rate from I to R.  394 

 395 
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Results  396 

Transmission parameters 397 

Results, in terms of summary statistics from the posterior samples, are shown in Table 1. Note 398 

that the posterior samples are effectively samples from the posterior distribution of each 399 

model parameter and all inference is based on those samples. A point estimate, the standard 400 

error and the 95% credible interval for a parameter, are for instance calculated as the sample 401 

mean, the sample standard deviation and the sample 2.5% and 97.5% quantiles of the 402 

posterior samples for that parameter. 403 

The MCMC convergence was considered acceptable since the R-hat for all parameters 404 

(including random effects) was never above 1.001. The results of the model did not 405 

significantly differ when the parameters of the priors for the sensitivity tests were varied 406 

(increasing and decreasing them by 10%). 407 

The posterior distribution for transition rate α (I to R) was symmetric, but for the transition 408 

rate β (S to I) and ν (R to I), the posterior distributions were asymmetric (Fig 1, Fig 2 and Fig 409 

3). As such, the posterior median was chosen to best summarise the value of these parameters. 410 

The median for the transition rate β was 0.33, for α it was 0.18 while for ν it was 0.01 (Table 411 

1). The median of the variance of cohort random effects for the transitions I to R and R to I 412 

was close to zero, which implies that there was little significant variation between cohorts for 413 

these two transitions of the model. The median of the variance of cohort-time dependent 414 

random effect for the transition S to I was 2.6 (95% credible interval [0.80; 7.59]), meaning 415 

that the cohort random effect is significant for this transition (Fig 4). The overall model fit 416 

was satisfactory with a “p-value” of 0.24 implying no significant difference between posterior 417 

predictive simulations (predictions from the model) and observed data. 418 

 419 
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 Basic reproductive ratio (R0) 420 

Summary statistics of the posterior distribution of the R0 parameter are shown in Table 1. The 421 

posterior median of R0 was 1.91, with a 95% credible interval of 0.78 to 5.24. A density 422 

estimate of the posterior samples of R0, which effectively describes the spread of Salmonella 423 

spp. in these three Danish pig herds known to be infected with Salmonella, is shown in Fig 5. 424 

For moderate to high within herd Salmonella prevalence, this R0 distribution suggests that 425 

Salmonella Typhimurim can go from fading out scenarios to epidemic ones but most of the 426 

time the infection spread assumes an endemic form. 427 

 428 

Test sensitivity (pND) 429 

Recall that this modelling framework includes the estimation of the probability of failing to 430 

detect infectious animals, pND, using both the data but also prior information about the tests 431 

i.e. [11, 12]. Figure 6 shows a density estimate plot of the posterior distribution of pND. 432 

 433 

Summary and discussion 434 

In this paper field data was used from a study [10] conducted in three Danish pig herds which 435 

were known to be infected with Salmonella Typhimurium. That study was performed, 436 

amongst other things, to describe the time of onset and duration of Salmonella shedding and 437 

the patterns of bacterial transmission between individual pigs until slaughter. It is expensive 438 

to undertake such studies and this limits the number of studies available. The procedure 439 

followed to select the herds, the use of two tests to assess the pig status and the follow up of 440 

each cohort during the whole fattening period, indicated that this dataset is sufficiently 441 

reliable to be used in estimating the transmission parameter β but also R0 for Salmonella in 442 

finisher pigs. 443 
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In comparing the parameters to ones found in different studies (whether simulation- or 444 

observation-based studies) it is important to take into consideration that the time interval used 445 

in this study was two weeks whereas in past simulation studies it varies from one day [16, 18] 446 

to one week [19]. However, as the transmission parameters are rates, they can be easily 447 

transformed to relate to different time steps. Although the herds used in the Kranker study 448 

[10] had moderate to high levels of Salmonella Typhimurium prevalence, the median 449 

estimates of the transmission parameters from this study are lower than those found in 450 

previous simulation studies [16, 18]. The transition rate β from S to I is slightly higher when 451 

compared to the Lurette et al. study [19] although the other rates (α, ν) are lower than the 452 

equivalent parameters in that same study. So the use of this framework to these Danish herds 453 

resulted in estimates comparable to other similar studies (note that this approach could easily 454 

be used with data from other countries). Moreover, the prevalence of Salmonella in finishing 455 

pigs in Denmark is known to be the close to the average prevalence in the EU [32].  456 

To the best of our knowledge this is the first study of transmission rate parameters for 457 

Salmonella Typhimurium in swine that estimates the parameters using field data and a 458 

Bayesian probabilistic approach incorporating random effects.   459 

 460 

Bias of the study 461 

Correct classification of the infectious status of the individual pig is difficult for Salmonella 462 

Typhimurium infection, because the diagnostic tests currently used are imperfect [33-38]. 463 

Bacteriology lacks sensitivity given intermittent shedding of Salmonella by infected pigs, 464 

whereas using serology in individuals can be associated more with a past exposition to the 465 

agent than a current exposition, so it can lack specificity for detecting animals shedding. 466 

Positive serology also shows a delay between infection and expression, leading to some lack 467 

of sensitivity. When analysing the data, the lack of sensitivity was accounted by: 1) starting 468 
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the analysis when at least one infected pig per cohort was observed and 2) by using the 469 

probabilistic framework to predict the infectious animals that were not detected with these 470 

tests, from appropriately informed distributions based on the sensitivity of each test. 471 

 472 

For optimal estimation of transmission parameters, the time step between each sampling 473 

should preferably be as short as the average generation interval, spanning from the time when 474 

one animal becomes infectious to the time when a second animal becomes infectious because 475 

of the first animal. The time steps in this data (two weeks) are not ideal – preferably days or 476 

perhaps one week would be better [14]. However as previously discussed, the available data 477 

did not allow for such an option and it would be very costly to obtain new data. As data from 478 

a published study [10] was used, the time step was set to be an approximation of the different 479 

testing intervals within and between cohorts, given the limitations offered by the original set 480 

of data, and an approximation to the time of seroconversion [14, 15]. This approximation 481 

could have affected the estimation of parameters due to the big time interval between testing 482 

occasions. Nevertheless, comparison with the results published in other studies does not seem 483 

to support this hypothesis. Concerning the cohorts, it is clear from the Kranker study [10] that 484 

particular attention was paid to the selection of the herds, which were taken from a large 485 

population of Danish finishing herds with a well-known status for Salmonella. This gave us 486 

confidence regarding the generalization of our results, at least for infected herds.  487 

 488 

Transition parameters and R0 values 489 

Note that the stochastic SIR model presented here is of course only a discrete-time 490 

approximation to the real transmission dynamics, i.e. limited to bi-weekly intervals. In 491 

particular, when the number of susceptible animals is small and the infection intensity high, 492 

then the expected number of infectious animals will tend to be overestimated [5].  493 
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The estimate of the transition rate β (from S to I), is low compared with other infectious 494 

diseases (such as swine influenza) and reflects the fact that in most of the herds, Salmonella 495 

does not cause outbreaks but maintains a residual level of infection represented by infectious 496 

and carrier animals that enable the infection to persist in the herds. The credible interval for 497 

the transition parameter α (from I to R), matches the variability of shedding duration that is 498 

known from experimental and field studies [14, 39]. The transition rate estimate ν (from R to 499 

I)  is small and possibly dependent on stress events (the authors of the Kranker et al. study 500 

[10] describe that two cohorts in which animals began shedding in a second round had a 501 

slurry overflow which can be considered a stressful event). The variance of the cohort time-502 

dependent random effect was high and a possible explanation for that is the different 503 

management of cohorts which in turn induces high variability (between cohorts) in the 504 

transmission data. In future studies this should be taken into consideration as a way to 505 

minimize transmission of infection. 506 

For spread to occur, R0 should be above one. Looking at Fig 5 we can see that there is high 507 

probability that R0 >1, 94% specifically. The median R0 value was 1.91 indicating that 508 

Salmonella Typhimurium was spreading in most of the cohorts. The value is not high (third 509 

quartile of R0 is less than 3) implying it would not spread rapidly through the susceptible 510 

populations under management systems similar to the ones used in these herds. With lower 511 

probability, R0 is high enough to cause outbreaks, e.g. probability that R0 > 5 is 2.5%. 512 

The R0 95% Credible Interval (CrI) ranges from 0.78 to 5.24. The higher values reflect that 513 

animals infected with a high infectious dose have a longer shedding period [14] than the ones 514 

infected with low infectious dose, and so the former can cause an outbreak. This makes sense 515 

because Salmonella Typhimurium is an agent that primarily spreads via the faecal-oral route. 516 
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Few studies are available to aid in defining infectious animals, but the experimental and field 517 

studies conducted by some authors [13, 14] support the duration of infectiousness used in our 518 

study.  519 

Regarding control strategies, the authors suggest keeping the herd in a low prevalence 520 

endemic state, to prevent the development of infection and reduce the probability of long-time 521 

shedders, by use of proper feeding and management practices designed to decrease the 522 

environmental contamination of pens. 523 

A next step in our investigation will be to include the estimated transmission parameters (β, α, 524 

ν) in a stochastic simulation model developed by the authors to simulate the spreading of 525 

Salmonella Typhimurium in swine herds and thus test the effectiveness of different control 526 

strategies.  527 

Conclusions 528 

A Bayesian framework was proposed, in order to estimate Samonella Typhimurium 529 

transmission parameters, and this has been successfully implemented to data from Danish pig 530 

herds. The model extends current established methodology which utilises GLMs to implement 531 

stochastic SIR models. Random effects were added to 1) capture unobserved sources of 532 

variability due to pigs being divided in cohorts and 2) avoid the problem of overdispersion. 533 

Results in terms of posterior samples allow for direct probabilistic statements about model 534 

parameters, which may be also used in other analyses such as simulation models for testing 535 

management strategies.  536 

The issue of underestimating infectious pigs due to testing sensitivity was addressed by 537 

predicting the number of non-detected pigs, using 1) prior information about test sensitivity 538 

and 2) the observed data. In doing that, the probability of non-detection was treated as an 539 

unknown parameter which was estimated at the same time as the transmission parameters. 540 
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All model unknowns (transmission parameters, cohort random effects, non-detected pigs, 541 

probability of non-detection) were estimated simultaneously, implying that all possible 542 

sources of uncertainty were modelled, in turn giving more confidence about the estimates of 543 

the transmission parameters. 544 
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 674 

 675 

Figure captions 676 

Figure 1: Posterior distribution of β 677 

Legend: Plot of the posterior distribution for transmission parameter β, which describes the 678 

rate of spread of Salmonella Typhimurium from susceptible to infectious animals. Also, a 679 

boxplot of the posterior samples used to produce the plot where the thick line in the box 680 

reflects the median. 681 

Figure 2: Posterior distribution of α.  682 

Legend: Plot of the posterior distribution for transmission parameter α, which describes the 683 

rate of spread of Salmonella Typhimurium from infectious to resistant animals. Also, a 684 

boxplot of the posterior samples used to produce the plot where the thick line in the box 685 

reflects the median. 686 

Figure 3: Posterior distribution of ν 687 

Legend: Plot of the posterior distribution for transmission parameter ν, which describes the 688 

rate of spread of Salmonella Typhimurium from resistant to infectious animals. Also, a 689 

boxplot of the posterior samples used to produce the plot where the thick line in the box 690 

reflects the median. 691 

Figure 4: Posterior distribution of the β random effects for cohort two over time 692 
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Legend: Plot of the posterior distribution of the β random effects (time and cohort) for one 693 

cohort over time with the mean and 95% credible intervals. 694 

Figure 5: Posterior distribution of the basic reproduction ratio (R0).  695 

Legend: Plot of the posterior distribution for the basic reproduction ratio (R0). The vertical 696 

line shows the threshold value R0=1 where dissemination of the infection occurs. Also, a 697 

boxplot of the posterior samples used to produce the plot where the thick line in the box 698 

reflects the median. 699 

Figure 6: Posterior distribution of the probability of non-detection of infected animals 700 

(pND).  701 

Legend: Plot of the probability of non-detection of infected animals (pND) due to the test 702 

characteristics. Also, a boxplot of the posterior samples used to produce the plot where the 703 

thick line in the box reflects the median. 704 

 705 

 706 

Tables 707 
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Table 1:  Summary measures of the transmission parameters and random effects variances 708 

from the Salmonella transmission in pigs SIR model.  709 

Parameters Mean 

Standard 

deviation 

Quartiles 

Rhat 

2,5% 25% 50% 75% 97,5% 

β 0.44 0.49 0.06 0.20 0.33 0.52 1.52 1.0021 

α 0.18 0.02 0.14 0.17 0.18 0.20 0.23 1.0009 

ν 0.02 0.03 0.0001 0.006 0.01 0.02 0.04 1.0009 

σ
2

1 3.00 1.80 0.80 1.76 2.60 3.77 7.59 1.0011 

σ
2

2 0.02 0.04 0.002 0.005 0.01 0.02 0.096 1.0009 

σ
2

3 6.64 38.82 0.003 0.06 0.08 3.85 44.44 1.0010 

pND 0.18 0.03 0.12 0.16 0.18 0.20 0.25  

R0 2.20 1.25 0.78 1.46 1.91 2.56 5.24  

Legend: β – transition rate from susceptible to infectious, α – transition rate from infectious to 710 

carrier, ν – transition rate from carrier to infectious, σ2
1 – variance of the random effects for the 711 

transition from susceptible to infectious, σ
2

2- variance of the random effects for the transition from 712 

infectious to carrier, σ
2
3 - variance of the random effects for the transition from carrier to infectious, 713 

pND – probability of non-detection of infectious animals, R0 – basic reproduction ratio. 714 

 715 
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Abstract 

A stochastic model which simulates the dynamics of Salmonella Typhimurium in a 

farrow-to-finish farm in Portugal was developed and run. The model comprises two 

compartments with six different stages in total: three at the reproductive phase (sow-

compartment) and another three for pig growth (pig-compartment). Infection dynamics 

of Salmonella is modelled for each stage with four infection transition parameters (β, α, 

δ, θ) and thee health status: susceptible, infectious and carrier. The parameters which 

influence each infection state per room were identified and discussed.  

The ones that influence the infectious state most, at the end of the fattening stage, 

were: the transition rate from susceptible to infectious (β), and the piglets’ immunity 

protective factor. Several control measures were suggested, so the simulation model 

allows estimation of cost-benefit of such control measures, if coupled with an economic 

model. The simulation model is flexible enough to introduce changes in the parameter 

values and distributions if future research and changes in the legislation so require. 

The model can also be adapted to different types of production (e.g. breeding, farrow-

to-weaners, and finishers units) as it was built in a compartmental way. 

 

Introduction 

Salmonella spp. infection in swine in the majority of the infections does not evoke any 

clinical manifestation or just subclinical signs. Even so Salmonella spp. is one of the 

major causes of food-borne outbreaks in the world (the second cause in Europe)[1]. As 

such Salmonella spp. control was considered necessary by the European food-safety 

policy makers under the EC Regulation 2160/2003. In practice, however, the control of 
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this agent has proved to be difficult and expensive at farm level [2]. Consequently the 

evaluation of the efficiency of control strategies for this agent has become an important 

and stringent issue, as stated in recent reports [3].  

Modelling the dynamics of Salmonella spp. in pigs can be useful when assessing 

alternative control strategies. Susceptible – Infectious – Resistant (SIR) models are 

attractive tools to help in assessing the disease dynamics. The SIR model describes 

the dynamic of different states of individuals in the population in terms of a system of 

ordinary differential equations. The variables in the system are given by the three 

compartments: group of susceptible (S), group of infectious (I) and group of resistant 

(R). The mathematical models provide a description of the movement in and out of the 

three compartments, and the transitions between compartments are governed by rates. 

Infection models are simple representations of the reality with the aim of simulating the 

dynamic of a disease so we can evaluate the disease evolution and the effect of control 

measures. The simulation models can be of three types: deterministic, stochastic or a 

mixture of the two. Deterministic models use point-values as model inputs and 

therefore the models outputs are also point values with some confidence interval 

associated with it. Stochastic models, however, incorporate uncertainty and/or natural 

variability into a model. Variability represents true heterogeneity in a population, e.g. 

the weight of a pig will vary between pigs and the fact that we cannot assigned a fixed 

value to the weight of a batch of pigs has nothing to do with incomplete knowledge, it is 

inherent to the population. On the other hand, uncertainty reflects our lack of 

knowledge about the exact value of a parameter. For example, the inactivation of 

Salmonella when subjected to high temperatures may be modelled by an exponential 

decay, dependent on time and on an inactivation parameter. This inactivation 

parameter is hard to measure and therefore not known exactly. In a stochastic model 

variability and uncertainty can be incorporated using probability distributions, instead of 

fixed parameter values. Incorporating distributions into the model results in a 

distribution for the model output; hence providing more information compared to the 

deterministic approach [4]. A mixture of deterministic and stochastic models is a 

common way of incorporating variability/uncertainly in a simulation model, and at the 

same time, decreasing the computation time. The uncertainty of the models needs to 

be appraised. A method for evaluating the uncertainty is to run alternative scenarios of 

the model, where the uncertain parameters were changed to a minimum and a 

maximum value, respectively. The resulting probability of infection is compared with the 

baseline results and a relative effect can be quantified. In cases where a parameter 

has a distribution associated with it, the alternative scenario is run with differently 

parameterised probability distribution [4]. In the majority of the models found in the 
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literature the validation of the simulations models was done comparing the results of 

the model (e.g. final prevalence at the end of fattening) with the observed 

(epidemiological) results in the populations of interest [4-7]. 

The management procedures (e.g. such as voluntary culling, batch production, type of 

pen, etc.) which occur in a farm also affects the disease dynamic and should be 

incorporated in the simulation models to more accurately describe what happens in the 

farm. Salmonella spp. infections in pigs are not a clinical important disease and 

therefore will not be expected to increase sow and pig mortality. 

In the literature there are some infection models published for Samonella spp. in pigs 

which simulate the entire food chain [4, 8] or part of the food chain – mainly herd [5, 7, 

9] or herd to slaughter [10, 11]. To construct such models a high number of parameters 

is required (e.g. such as production parameters, infection parameters, risk factors and 

disease prevalence, etc.). When there is not data to estimate these parameters, it is 

typical to call upon expert opinion to provide estimates and/or information.  

The aims of this study were: a) to develop a stochastic model which incorporates a 

production model with an infection model (the production model simulates the 

management procedures of an average farrow-to-finish Portuguese pig farm, while the 

infection model simulates the Salmonella Typhimurium infection in the farm); and b) to 

identify the parameters which influence most the model results at different 

compartments and stages of life within these compartments. 

 

Materials and Methods 

 

Description of the simulation model – production steps 

The model simulates a farrowing-to-finish herd in which batch farrowing is applied to 

sows, leading to batch management of pigs. This type of management is usual in 

countries like France and Portugal. In these herds the complete life cycle of sows is 

considered, from recruitment until culling/dying, and similarly for pigs, from birth till 

slaughter. The duration of the sow reproduction cycle depends of the weaning time of 

the piglets and this was fixed at 4 weeks (28 days). The pig growth period was fixed at 

26 weeks (average age at slaughter in Portugal). The modelling unit was the batch (for 

both sows and pigs). This unit is useful because it simulates the interaction within sows 

and pigs which is important for infectious diseases, such as Salmonella, which are 

transmitted by close-contact between animals and by the batch environment, e.g. 

floors, feed, water, etc., so the exposure within batch is effectively uniform. 

In the model, batches of sows are groups of sows (the same number per batch) that 

are mated at the same time. One week interval between two successive batch mating 
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was assumed. The average Portuguese farrow-to-finish herd has approximately 264 

sows. Therefore using the one week batch system during the year there were 22 

batches entering mating (taking into account that each sow will have 2.5 litters per 

year) with 12 sows per batch. The reproduction cycle is divided in three stages (mating 

period, gestation period and farrowing/suckling period) corresponding to the occupation 

of three different types of rooms. Each batch of sows was composed of gilts and sows 

although we did not differentiate between them in the model. Each batch of pigs was 

composed by the litters from the batch of sows. The pig growth is divided in three 

stages (sucking period, post-weaning period and fattening period) corresponding to the 

occupation of three different types of rooms. All animals simultaneously leave the room 

they occupied except for the sows which abort at gestation.  

This production model describes the evolution of the number of animals within each 

batch and the time step is one week. The model has a stochastic element in the sense 

that it simulates the variability associated with biological processes such as mortality, 

culling, insemination failure, abortion and litter size. The model output is expressed in 

terms of probability distributions which in turn express: 1) the aforementioned 

variability, 2) the propagated uncertainty from having to estimate transmission 

parameters, and 3) the natural variability or randomness inherent in the behaviour of 

the disease (specifically, the binomial distribution was used to generate the number of 

animals in each production process).  

The duration of the reproductive and growing stage, and therefore the duration in each 

room were kept fixed. The maximum capacity in each room was fixed for the maximum 

expected size of each batch and the pen capacity varied between batches depending 

on the number of animals per batch. 

 

Reproduction cycle of the sows 

The sow-compartment comprises three stages of the reproduction cycle, which take 

place in three different rooms: 

- the mating room where the sows remain from weaning until pregnancy testing 

(6 weeks); 

- the gestation room where the sows remain almost until the end of pregnancy 

(10 weeks); 

- the farrowing room, in which the sows are placed 1 week before farrowing and 

stay until the weaning of the piglets (5 weeks). 

During the reproductive cycle, the sows are subject to the following processes: 

mortality, artificial insemination success, abortion, culling and gilt recruitment. The 

probability of mortality is “applied” at each time step and is constant in time. However, it 
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varies between the stages of reproduction reflecting the variability that exists between 

the different stages. Each week the sows from a new batch enter the mating room and 

are inseminated. Individual pens were used at mating. At the end of the sixth week of 

mating, the artificial insemination success rate is used, to simulate pregnancy numbers. 

To represent the variability that exists between batches, the artificial insemination 

success rate is separately generated for each batch from a Weibull distribution. We 

have used field data to fit the best distribution to artificial insemination success rate 

using maximum likelihood. The square root of the simulated value for each batch 

corresponds to the probability of the artificial insemination success that is used to 

generate the number of sows that get pregnant and are moved to the next stage 

(gestation). The sows that fail to get pregnant are then either culled or moved to the 

following batch that will enter the mating room and be re-inseminated. The culling rate 

is different for mating, gestation and farrowing.  In the gestation room the sows remain 

together in pens with a maximum of 4 sows per pen. Abortion can occur throughout the 

gestation period and the probability of abortion was kept constant for each week. After 

abortion, the sows are culled or moved to a following batch where they are going to be 

re-inseminated. In the farrowing room the sows are placed in individual pens 

(maternities). After weaning, some sows are voluntarily culled to allow renovation of the 

herd and the ones not culled enter in a new batch that is going to be re-inseminated in 

the mating room. To compensate for the mortality and culling in each batch, new gilts 

are introduced to ensure that the number of sows per batch is always 12. 

Each batch of sows gives birth to a batch of pigs. The average litter size for each sow 

is drawn from a normal distribution of mean 10.45 and standard deviation of 0.87. We 

have used field data to fit the best distribution for litter size using maximum likelihood. 

For mating the equations were: 

1

1

~ ( ,(1 ))

~ ( , )

~ ((1 ),(1 )),   is the last week on mating room.

t t M

t f t f

t f M

Malive Binomial Malive pmort

Mpreg Binomial Malive pins

Mreturn Binomial Mpreg pcull f



  





 

 

 For gestation the equations were: 

1~ ( ,(1 ))

~ ( ,(1 ))

~ ((1 ),(1 ))

t t G

t t

t t G

Galive Binomial Galive pmort

Gpreg Binomial Galive pabort

Greturn Binomial Gpreg pcull

 



 

  

For farrowing (sows) the equations were: 
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1~ ( ,(1 ))

~ ( ,(1 )),   is the last week on farrowing room.

t t F

t i F

Falive Binomial Falive pmort

Freturn Binomial Falive pcull i








 

Where pmort is the mortality probability (different for each room), pins is the probability 

of success by the artificial insemination, pcull is the culling probability (different for each 

room), pabort is the probability of abortion, alive refers to the animals that do not die, 

preg refers to the pregnant sows, return refers to the sows that enter a new batch for 

mating (due to failure to get pregnant, abortion or after farrowing). 

 

Pig Growth 

The pig-compartment comprises three different stages, which take place in three 

different rooms:  

- farrowing/maternity room (where they stay for 4 weeks until weaning),  

- post-weaning room (where they stay 8 weeks), and  

- fattening room (where they stay 14 weeks). 

The mortality probability is different between rooms. The number of pigs that had died 

in each time step is simulated using a binomial distribution. 

The maximum number of pigs per pen varies between rooms. In the farrowing room the 

number of piglets per pen is made similar taking in consideration the litters’ size to 

simulate the mixing of piglets that occurs in the farms with the aim of improving the 

quality of the batch (to develop the milk production of gilts and also to allow piglets to 

have access to functional teats). In the post-weaning room the maximum number of 

pigs per pen was 20 (with a maximum number of 6 post-weaning pens per batch) and 

for fattening pens this value was reduced to 15 (with a maximum number of 12 

fattening pens per batch). This means that the pigs were allocated to the pens in a way 

that does not exceed that maximum number. These numbers were used taking into 

consideration the average Portuguese pen size per room, taken from an unpublished 

survey results [12]. 

For maternity (piglets) the equations were: 

1

~ (10.45,0.87),  number of sows per batch

~ ( ,(1 ))

j

t t mat

Npiglets Normal j

Pigalive Binomial Pigalive pmort




 

For post-weaning (PW) and fattening (FA) the equations were: 

1~ ( ,(1 ))t t PWPWalive Binomial PWalive pmort   

1~ ( ,(1 ))t t FAFAalive Binomial FAalive pmort   
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Where Npiglets refers to the born alive piglets per sow (this is drawn for each sow in 

each batch), pmort is the mortality probability (different for each room), and alive is the 

number of animals alive in each room at each time step. 

The values and sources of the production parameters are shown in Table 1. 

 

Infection model specification 

The infection model was based on a Susceptible-Infectious-Resistant/Carrier model for 

Salmonella Typhimurium. Direct transmission between the pigs in a batch was 

assumed but also indirect transmission via contaminated floor, rodents, etc. 

The transition steps considered between the states are shown in Figure 1. For the 

sows, as they have a longer life span, it was assumed that they could experience all 

the states and transitions shown in Figure 1. For pigs, due to their short life span, it was 

assumed that they could not experience the transition from carrier to susceptible. The 

mathematical model for these transitions and the transmission parameters used in this 

simulation model were described and estimated in in Correia-Gomes et al (unpublished 

paper). The estimates were obtained using field data from a longitudinal study [13] 

which followed infected cohorts of pigs infected with S. Typhimurium. Although the time 

step in the field data was two weeks in the present model the time steps were adjusted 

to one week. 

 

Figure 1: SIR model and its transition between states 

 

Legend: S – susceptible, I – Infectious, R – resistant/carrier, β – transmission parameter for the transition 

between S to I, α – transmission parameter for the transition between I to R, δ – transmission parameter 

for the transition between R to I, θ – transmission parameter for the transition between R to S. 

 

149



8 
 

The binomial distribution was used to simulate the transition between susceptible and 

infectious state and from infectious to carrier state. For the transition between carrier 

state and infectious; and carrier state and susceptible, Poisson distributions were used. 

The transition between susceptible and infectious varied with time by parameterising it 

using a time-dependent cohort random effect. This random effect was used to capture 

the temporal structure of the spreading of infection within cohorts where the velocity of 

infection is dependent on the number of susceptible and infectious animals in the 

previous time step. 

The equations used in the infection model were the following: 

 

, , 1 ,

, , 1 , 1 1 ,

, , 1 ,

, 2

, 1 ,

1 , , 1 3

,

~ ( , )

cloglog( ) log( ) log( ) log( )

~ ( , )

cloglog( ) log( )

~ ( )

log( ) log( ) log( )

~

j t j t j t

j t j t j t j t

j t j t j t

j t j

j t j t

j t j t j

j t

Inf Binomial S p

p I N r

Rnew Binomial I pr

pr r

Inew Poisson

R r

Snew Pois







 



 





   

 

  

2 ,

2 , , 1

2

2

1 , 1 1

2

1 , , 1 1

( )

log( ) log( ) log( )

~ (0, ), 2,3

~ (0, )

~ ( , )

j t

j t j t

kj k

j t

j t j t

son

R

r Normal k

r Normal

r Normal r



 













 



 

Where Inf is the number of susceptible animals that became infectious, S is the number 

of susceptible animals at the beginning of each time interval, p is the probability of 

transition between susceptible to infectious, β is the transmission parameter between 

susceptible and infectious, I is the number of infectious animals at the beginning of the 

time interval, N is the total number of animals at the beginning of the time interval, rjt is 

the cohort (j)-time (t) dependent random effects, Rnew is the number of animals that 

became carriers in each time step, pr is the probability for the transition between 

infectious and carriers, α is the transmission parameter from infectious to carriers, Inew 

is the number of carriers that became infectious in each time step, π1 is the average 

number of carriers that became infectious, ν is the transmission parameter between 

carrier to infectious, R is the number of carrier animals at the beginning of each time 

interval, Snew is the number of carrier animals that became susceptible (this step in 

the model only happens for sows), π2 is the average number of carriers that became 

susceptible, θ is the transmission parameter between carrier to susceptible, and σ2
k is 

the variance of the random effects. 
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So for each time step and for each pen, the number of sows in each state would be:

, 1

, 1 , , ,

, , 1 , , ,

jt j t jt jt

jt j t j t j t j t

j t j t j t j t j t

S S Inf Snew

I I Inf Rnew Inew

R R Rnew Inew Snew







  

   

   

  

While for the pigs it would be: 

, 1

, 1 , , ,

, , 1 , ,

jt j t jt

jt j t j t j t j t

j t j t j t j t

S S Inf

I I Inf Rnew Inew

R R Rnew Inew







 

   

  

 

At the maternity stage since the litter is in contact with the sow (mother), the sow health 

state was allowed to affect the littler disease dynamics, however a protective factor (pf) 

for decreasing the transition rate was taken into consideration due to the sow’s milk 

protective antibodies, as suggested by other studies [5, 9]. This protective factor was 

included in the model while the piglets were at the maternity stage for each batch, 

changing the equation for the transition from susceptible to infectious for the following: 

, , 1 ,

, , 1 , 1 1 ,

~ ( , )

cloglog( ) log( ) log( ) log( ) log( )

j t j t j t

j t j t j t j t

Inf Binomial S p

p pf I N r



     

 

The study of Beloeil et al (2003) [14] estimated the complete loss of maternal immunity 

between 61 and less than 80 days. We have assumed 70 days to calculate the 

protective factor.  

The transition rate from carrier to susceptible was calculated, taking into consideration 

that pigs need around 68 days to clear S. Typhimurium from their organs after being 

infected ([9, 15] and another 42 days to lose the protective immunity against 

Salmonella [9, 15]: a total of 110 days – 15.7 weeks - to return to susceptible state 

again. This value was used to calculate the transmission parameter between carrier 

and susceptible (1/15.7). 

The production and infection parameters used in the model are shown in Table 1. 

 

Model settings and analysis of the results 

The model was built and implemented in R (CRAN project, www. R-project.org). To 

ensure convergence of the final results (i.e. reduce sampling uncertainty) a long run 

(500,000 iterations) was conducted. Before running the model it was necessary to 

allocate an initial state to the sows/gilts, at mating in the first batch. The allocation was 

50% of susceptible, 25% of infectious and 25% of carriers.  
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Table 1: Production and transmission parameters and their values 

Production Parameter Random/fixed Value Reference 

Average number of sows per herd Fixed 264 
a, b 

Median number 

of pig per pen 

Post-weaning Fixed 25 
a 

Fattening Fixed 17 
a 

Duration 

(weeks) 

Mating Fixed 6 
c 

Gestation Fixed 10 
c 

Farrowing - sows Fixed 5 
c 

Maternity - piglets Fixed 4 
b 

Post-weaning Fixed 8 
c 

Fattening Fixed 14 
c 

Mortality 

probability (per 

week) 

Mating Fixed 0.000833 
c 

Gestation Fixed 0.00357 
c 

Farrowing – sows Fixed 0.001786 
c 

Farrowing – piglets Fixed 0.0275 
b 

Post-Weaning Fixed 0.00375 
a 

Fattening Fixed 0.00357 
a 

Artificial insemination success 

probability – applied in the end of 

mating (pins) 

Squared root of a 

Weibull distribution 

10.31 (mean), 

0.77 (sd) 

b 

Abortion probability (per week) Fixed 0.0025 
c 

Culling 

probability 

After failing 

insemination 
Fixed 

0.017 at end of 

mating 
c 

After abortion Fixed 0.017/week 
c 

Voluntary culling Fixed 
0.333 at end of 

farrowing 
c 

Litter size 

Normal distribution 

(the final value was 

rounded) 

10.45 (mean), 

0.87 (sd) 
b 

Transmission parameter or transition 

rate from susceptible to infectious (β) 

Random (posterior 

distribution) 

0.34/week  

[0.17-0.66] 

d 

Transmission parameter or transition 

rate from infectious to carrier (α) 

Random (posterior 

distribution) 

0.27/week  

[0.24 – 0.30]  
d 

Transmission parameter or transition 

rate from carrier to infectious (δ) 

Random (posterior 

distribution) 

0.09/week  

[0.008 – 0.21] 

d 

Transmission parameter or transition 

rate from carrier to susceptible (θ) 
Fixed 0.06/week [9] 

Cohort time-dependent random effect 

(σ
2

β) 
Normal distribution 

0 (mean),  

1.29 (sd) 
d 

Piglets’ protective factor due to sows 

passive immunity (pf) 

Fixed  

(1/70 days) 
0.1/week  [14] 

Legend: sd – standard deviation 

a
 Baptista et al, unpublished results of a survey to 109 herds in Portugal in 2009 [12] 

b
 Production data of 200 Portuguese herds, collected by a software company from 2004 to 2006 

c
 Expert opinion 

d
 Correia-Gomes et al, unpublished (Manuscript 4) 

 

For each model run at the end of each room the following results were saved to be 

analysed: the proportion of sows alive in each room, the proportion of sows pregnant at 

the end of mating and gestation rooms, and the proportion of sows/pigs in the different 

infection states. 
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The use of proportions was adopted instead of the number of animals (counts) 

because the total number of animals per room varied as function of the mortality and 

litter size (for pigs) making comparison between runs less straightforward. The 

proportions on the other hand can be directly compared. 

The distributions of the results were tabled for the sows and plotted for the pigs. In the 

plots we have used the median as the central tendency measure because, unlike the 

mean, it is less affected by extreme values.  

The validity of the model was assessed by comparing the predicted results from the 

model with observed (epidemiological) results in the population of interest: the 

Portuguese pig population. The results from the EU Baseline Survey on Salmonella 

Prevalence in Slaughter Pigs [16] and the EU Baseline Survey on the Prevalence of 

Salmonella in Breeding Pigs [17] were used as observed epidemiological results. The 

comparison was done by relating the magnitude of the predicted and observed values, 

and qualitatively assessing the degree of agreement/disagreement, as suggested by 

other authors [4, 9].  

 

Sensitivity analysis  

To perform the sensitivity analysis of the model, all the production parameters and 

infection parameters were perturbed, i.e. increased and decreased by 50%, and the 

results were compared with results from the unperturbed parameters. For the piglets’ 

protective factor (pf) we ran several extra simulations (an increase of 250%, 500%, 

750% and 1000% of the value, corresponding to the values of 0.25, 0.50, 0.75 and 1, 

respectively) due to the original value of the parameter being low. The lower the pf 

value is, the higher the protection against infection (e.g. a pf value of 0.25 means that 

the transmission parameter in piglets from susceptible to infectious will be reduced to 

25% of it value, and in this way translating into a protective effect of 75%). For the 

infection state of replacement gilts, eleven combinations were tried (see Table 2) as it 

was not possible to execute all the possible combinations (1003) due to limitation of 

time. These combinations allowed to test the effect of high and low proportions for each 

infection state, considered more plausible by the authors.   

For the transmission parameters from S to I (β), from I to R (α), from R to I (δ) and from 

R to S (θ) extra simulations were run to test the simultaneous effects of increasing or 

decreasing each parameter in different rooms. When the perturbation is applied to all 

the sows’ rooms, we used the suffix “sows” (i.e. β sow, α sow, δ sow and θ sow). When 

the perturbation occurs in the maternity for sows and piglets at the same time (only for 

β parameter), we used the suffix “maternity” (β maternity).  When the perturbation is 

applied to all the pigs’ rooms, we used “pigs” as a suffix (i.e. β pigs, α pigs, and δ pigs).   

153



12 
 

Table 2: Combinations for the infection state of the replacement gilts 

Combination 

number 

Proportion of each infection state 

Susceptible Infectious Carriers 

1 1 0 0 

2 0.9 0.05 0.05 

3 0.8 0.2 0 

4 0.7 0.1 0.2 

5 0.5 0.5 0 

6 0.5 0.25 0.25 

7 0.3 0.25 0.45 

8 0.1 0.6 0.3 

9 0 0.8 0.2 

10 0.2 0.1 0.7 

11 0 0 1 

 

The perturbed and original parameters were compared by looking at the percentage 

change in their means – relative effect (RE): 

  
. .

.

perturbed original

original

Mean prop Mean prop
RE

Mean prop


  

If RE is positive/negative the change in the parameter has increased/decreased the 

results (i.e. the means of the proportions). However if RE is equal to zero, the 

parameter change has no effect. The greater the magnitude of RE is, the greater the 

influence of the particular parameter. 

To test if these REs were statistically significant it was used the fact that the results are 

in the form of samples from the distributions of the output, e.g. samples from the 

distribution of the proportion of sows pregnant at the end of mating. This is a direct 

consequence of the fact that the models used to estimate the transition parameters 

were Bayesian. Samples from the posterior distributions of the estimated transmission 

parameters from the Bayesian model were used in the simulated model to propagate 

the estimation uncertainty to the output from the simulated model, rather than ignoring 

it. Ultimately, it can be considered the output from the simulation model as samples 

from posterior distributions, e.g. 500,000 samples from the posterior distribution of the 

proportion of sows pregnant at the end of mating. It was the means of these 

distributions that were compared. 

Therefore for each output of interest (e.g. proportion of sows pregnant at the end of 

mating) it was simulated a random sample from their posterior distribution. For 

instance, sample 1000 values from the posterior distribution of the proportion of sows 

pregnant at the end of mating, which means to randomly sampling 1000 values with 

replacement from the 500,000 samples of the output. If this procedure is done many 
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times, e.g. 10,000 times, and calculated the mean each time, the final result is a 

sample of 10,000 values for the distribution of the mean. As the interest was to 

compare means from the original and perturbed parameter output, the differences in 

the mean samples was taken to obtain a sample from the distribution of the difference. 

e.g. suppose μ1i and μ2i for i=1,…,10,000 were samples from two means distributions, 

then Di = μ1i - μ2i was a sample from the distribution of their difference and it was tested 

whether zero was a likely value from this distribution. More formally, if zero was not 

included in the 95% credible interval of DI, it can be argued that the value of the two 

means was significantly different. 

The EU legislation (Council Directive 2008/120/EC of 18 December 2008 laying down 

minimum standards for the protection of pigs) banned the use of sow stalls starting in 

January 2013, which means that the individual pens have to be adapted (the pen size 

has to be increased). The model was changed to ensure that this welfare legislation 

could be met if sows were housed in groups at mating. We opted to change the pen 

used in the mating rooms the same as in gestation rooms (i.e. four pens per batch). 

This change was also included in the sensitivity analysis. 

Sensitivity analysis was also used as a way of evaluating the uncertainty linked with 

some parameters, as for instance the piglet’s protective factor and the infection state of 

replacement gilts. 

Considering the results statistical significant, for each outcome the parameters which 

influenced it more than 5%, were displayed in tables and plotted in a modified spider 

plot, where the percentage of change in the parameter was the x axis and the 

percentage of change in the outcome was the y axis.  

When a variation from -50% to +50% is applied to the model the outcome varies 

changing positively or negatively as the parameter increases. The range of the change 

in the outcome due to the parameter change (from -50% to 50%) was tabled for the 

transmission parameters and piglets’ protective factor in two separated tables, one for 

sows one for pigs. The criterion followed for the inclusion of each parameter in the 

table was to have at least a 5% variation either positive or negative. In the table a 

positive number means positive effect on the outcome when a variation from -50% to 

+50% is applied to the model (the outcome increases with the increase of the 

parameter); and a negative number means a negative effect on the outcome when a 

variation increment from -50% to +50% is applied to the model (the outcome decreases 

with the increase of the parameter).  
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Results 

 

Prevalence results 

The results of the model for the sow-compartment are shown in Table 3, showing that 

the majority of the sows were in the infectious and carrier states at farrowing which can 

be a risk for piglets in maternity. 

The results for the pig-compartment are shown in Figure 2. There was a clear increase 

on the prevalence of infectious and carrier pigs along time, while the number of 

susceptible pigs went down (Figure 2).  

The predicted prevalence results of the model for the infectious animals in the sow-

compartment (56.9% [16.7% - 100%] of sows infectious at the end of farrowing) was 

higher than the one in the pig-compartment (30.9%% [0.0% - 80%] of pigs infectious at 

the end of fattening). The same trend was observed in the Baseline Studies [16, 17] 

where the prevalence of Salmonella Typhimurium was higher for breeding animals 

(13.4% [8.8% – 20.3%] of holdings positive) than for pigs at slaughter (8.4% [6.1% - 

11.5%] pigs positive). The same trend was noticed for Salmonella spp. in those 

studies: 43.3% [35.6% – 52%] of positive holdings with breeding animals while 23.4% 

[19.4% - 28%] of positive slaughtered pigs. 

 

Table 3: Results for the infection state in each room for the sows 

Sow 

production 

stage 

Infection 

State 

Results in proportions 

Min 1
st
 Q Median Mean 3

rd
 Q Max SD 

Mating 

Susceptible 0.0 0.09 0.18 0.19 0.27 1.0 0.13 

Infectious 0.0 0.44 0.56 0.55 0.67 1.0 0.16 

Carriers 0.0 0.17 0.25 0.26 0.36 1.0 0.14 

Gestation 

Susceptible 0.0 0.10 0.20 0.23 0.33 1.0 0.16 

Infectious 0.0 0.38 0.50 0.51 0.64 1.0 0.19 

Carriers 0.0 0.17 0.25 0.26 0.36 1.0 0.14 

Farrowing 

Susceptible 0.0 0.0 0.14 0.16 0.25 1.0 0.16 

Infectious 0.0 0.43 0.57 0.57 0.71 1.0 0.21 

Carriers 0.0 0.14 0.25 0.27 0.40 1.0 0.19 
Legend: Min – minimum, 1

st
 Q – first quartile, 3

rd
 Q – third quartile, Max – maximum, SD – standard deviation 

 

Sensitivity analysis results 

The magnitude of the impact of the variation of individual infection parameters in the 

infection states of the sows and pigs were estimated and are shown in Table 4 and 5, 

respectively. 
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Figure 2 – Dynamic of the infection states in the pig-compartment 

 
Legend: piS – susceptible piglets at maternity, piI – infectious piglets at maternity, piR – carrier 

piglets at maternity, PWS – susceptible pigs at post-weaning, PWI – infectious pigs at post-

weaning, PWR – carrier pigs at post-weaning, FaS – susceptible pigs at fattening, FaI – 

infectious pigs at fattening, FaR – carrier pigs at fattening. 

 

Table 4: Magnitude of the impact of the variation of individual infection parameters in 

the sows’ infection states (only the ones ≥ 5% are shown). 

Changed 
parameter 

Results  by room and infection state 

Mating Gestation Farrowing 

S I R S I R S I R 

Mating β -28.1% 7.1% - -8.1% - - - - - 

α 11.2% -40.6% 23.9% 24.5% -26.7% - 13.7% - - 

δ - - - - - - - - - 

θ 36.8% 12.5% -28.4% - 11.1% -6.5% - - - 

Gestation β - - - -7.3% 5% - - - - 

α 6.1% - - 25.4% -75.6% 30.6% 22.8% -19.9% 8.2% 

δ - - - - 10.4% - - - - 

θ - 5.9% -5.1% 44.7% 14.3% -44.1% 6.6% 18.1% -23.2% 

Farrowin
g 

β - - - - - - -25.8% 9% - 

α 5.6% -6.8% - - - - 7.6% -30.9% 25.5% 

δ - - - - - - - - - 

θ - 5.2% -5.8% - - - 31.1% 10.1% -23.7% 

Sows β -31.1% 6.7% 7.3% -16.5% 8% 7.6% -43.9% 7.4% 8.6% 

α 26.4% -53.4% 40.8% 56.1% -113.2% 28.7% 46.1% -58.9% 33.9% 

δ - 5.4% - -7.2% 13.9% - - 6.9% - 

θ 38.4% 24.7% -41% 43.3% 29.8% -53.3% 45.8% 33.5% -52.3% 

Maternity β - - - - - - -23.4% 8.7% - 

Legend: β – transition rate parameter from susceptible to infectious, α – transition rate parameter from 

infectious to carrier, δ – transition rate parameter from carrier to infectious, θ – transition rate parameter 

from carrier to susceptible, S – susceptible, I – infectious, R – carrier. Interpretation: positive number - the 

results increased with the increase of the parameter value, negative number – the results decreased with 

the increase of the parameter value. 
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The sensitivity analysis plots (Figure 3 to 9) show which parameters are most influential 

on the outcomes. Modified spider plots were produced for each outcome and where 

each figure corresponds to a room. The influencing parameters presented in the plots 

were all statistically different from the original simulation.  

 

 

Figure 3 – Modified spider plots for the sows susceptible (MS), infectious (MI) and 

carriers (MR) at mating. 

 
Legend: far cul rate – culling rate at farrowing, β – transition rate parameter between 

susceptible and infectious, α – transition rate parameter between infectious and 

carriers, θ – transition rate parameter between carriers to susceptible, mating – mating 

room, sows – change in the parameters was done at mating, gestation and farrowing. 

 

The proportion of susceptible sows at mating was mostly influenced by the changes in 

transmission parameters from S to I (β) and from R to S (θ) at mating and in the sow-

compartment. On the other hand, the proportion of infectious sows at mating was 

mostly influenced by the transmission parameter from I to R (α) at mating and in the 
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sow-compartment. The proportion of carriers at mating was influenced by the 

transmission parameter from I to R (α) and from R to S (θ) in the sow-compartment 

(Figure 3 and Table 4). 

 

Figure 4 – Modified spider plots for the sows susceptible (GS), infectious (GI) and 

carriers (GR) at gestation. 

 
Legend: far cul rate – culling rate at farrowing, β – transition rate parameter between susceptible and 

infectious, α – transition rate parameter between infectious and carriers, θ – transition rate parameter 

between carriers to susceptible, mating – mating room, gestation – gestation room, sows – change in the 

parameters was done at mating, gestation and farrowing. 

 

The proportion of susceptible sows at gestation was mostly influenced by the transition 

rate from R to S (θ) at gestation and in the sow-compartment; and the transition rate 

from I to R (α) at sow-compartment. On the other hand, the proportion of infectious 

sows at gestation was mostly influenced by the transition rate from I to R (α) at 

gestation and in the sow-compartment. The proportion of carriers at mating was 
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influenced by the transition rate from R to S (θ) at gestation and in the sow-

compartment (Figure 4 and Table 4). 

 

Figure 5 – Modified spider plots for the sows susceptible (FS), infectious (FI) and 

carriers (FR) at maternity. 

 
Legend: β – transition rate parameter between susceptible and infectious, α – transition rate parameter 

between infectious and carriers, θ – transition rate parameter between carriers to susceptible, mating – 

mating room, gestation – gestation room, farrowing – farrowing room, maternity – change in the 

parameters for sows and piglets at the maternity, sows – change in the parameters was done at mating, 

gestation and farrowing for sows. 

 

The β farrowing and β maternity were equal in terms of effect for the farrowing 

outcomes, which was expected as the piglets do not influence the infection state of 

sows. The θ gestation and α farrowing had a similar effect on the proportion of sows 

susceptible at maternity. The α sows and the θ sows exhibited similar behaviour 

(Figure 5 – Parameters influencing FS). This means that for the proportion of 
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susceptible sows at the end of maternity the change in the transmission parameter 

from R to S (θ) at gestation has the same influence as the change at farrowing of the 

transmission parameter from I to R (α). A similar effect was apparent for the same two 

parameters (θ and α) when we consider changes in the sow-compartment. When the 

transition rate from S to I in the sow-compartment increased, the proportion of sows 

susceptible at maternity experienced a reduction. On the other hand, an increase of the 

transition rate from I to R and the transition rate from R to S, in the sow-compartment, 

increased the proportion of sows susceptible at maternity. 

The proportion of infectious sows at maternity was influenced by the α parameter 

(gestation, farrowing and sows), the δ sows and the θ gestation.  All the β parameters 

(β farrowing, β maternity and β sows) and θ farrowing affected the outcome in the 

same way (Figure 5 – Parameters influencing FI). 

Both β maternity and β sows include the same change as in the β farrowing. Therefore, 

as the results were the same between the three (β farrowing, β maternity and β sows), 

we can conclude that the change in transmission parameter from S to I (β) at farrowing 

was the one that influenced the proportion of infectious sows at farrowing.  

In general, when the transition rate from S to I and from R to S increased, the 

proportion of infectious sows at maternity also increased. An increase of the transition 

rate parameter from I to R, reduced the proportion of infectious sows at maternity. 

The proportion of carrier sows at maternity was influenced by the θ sows and α sows. 

The θ parameter at gestation and farrowing affected the outcome in the same way. The 

same happened to β sows and α gestation (Figure 5 - Parameters influencing FR).  

The increase in the transmission parameter from R to S at sow-compartment reduced 

the proportion of carrier sows at maternity. The increase at farrowing and in the sow-

compartment of the transmission parameter from I to R resulted in an increase in the 

proportion of carrier sows at maternity.  

The transition rate from R to S at gestation and farrowing influenced the proportion of 

carrier sows at maternity in the same way. Their 50% reduction increased the 

proportion of carrier sows at maternity. The same happened to the change in the sow-

compartment of the transmission parameter from S to I and the change at gestation of 

the transmission parameter from I to R, but in this case their increase, increased the 

proportion of carrier sows at maternity. 
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Table 5: Magnitude of the impact of the variation of individual infection parameters in 

the pigs’ infection states (only the ones ≥ 5% are shown). 

Changed 
parameter 

Results – infection state 

Piglets Post-weaning Fattening 

S I S I R S I R 

Gestation β - - - - - - - - 

α - -14.6% - -10.4% -13.9% 6% -8.7% -11.4% 

δ - - - - - - - - 

θ - 23.2% -6.1% 17.8% 23.7% -6% 14.8% 19.7% 

Farrowin
g 

β - - - - - - - - 

α - -9% - -7% -8.9% - -6% -7.5% 

δ - - - - - - - - 

θ - 7.9% - - 8% - 5% 5.4% 

Sows β - - - - - - - - 

α - -25.5% 6.2% -17.9% -23.6% 10.6% -15.2% -19.9% 

δ - - - - - - - - 

θ - 46.2% -9.8% 22.5% 37.2% -10.6% 23.3% 30.4% 

Maternity β -5% 42% -10.7% 31% 41.8% -17.8% 25.5% 34.3% 

Piglets β -5% 40.5% -10.3% 29.4% 40.5% -16.8% 24% 33% 

Post-
weaning 

β - - - 14.6% - -5.8% 8.5% 10% 

α - - - - 95% - - 27.2% 

δ - - - - - - - - 

Fattening β - - - - - - 6.3% - 

α - - - - - - -5.6% 54.4% 

δ - - - - - - - - 

Pigs β - 40.3% -14.6% 42.9% 39.6% -25.9% 37.8% 42.1% 

α - - - - 95.4% - -8.8% 92.6% 

δ - - - - - - - - 

Pf  44.2% -8.4% 34.3% 44.2% -15% 29.5% 37.7% 

Legend: β – transition rate parameter from susceptible to infectious, α – transition rate parameter from 

infectious to carrier, δ – transition rate parameter from carrier to infectious, θ – transition rate parameter 

from carrier to susceptible, S – susceptible, I – infectious, R – carrier. Interpretation: positive number - the 

results increased with the increase of the parameter value, negative number – the results decreased with 

the increase of the parameter value. 

 

The proportion of susceptible pigs at the maternity (piS) was only influenced in more 

than 5% by the piglets protective factor (pf) in extreme values, therefore a plot for this 

outcome was not shown. The influence of the pf parameter in this outcome is shown in 

Figure 9. 

The proportion of infectious piglets at maternity was influenced by the piglets’ 

protection factor (pf), the θ gestation and θ sows, the β maternity, β piglets and β pigs, 

and the α gestation, α farrowing and α sows.  The increase of the pf value, the β 

parameters and the θ parameters, increased the proportion of infectious piglets. While 

the increase of the α parameters decreased the proportion of infectious piglets. The pf 

and β had similar results (Figure 6 and Table 5). 
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Figure 6 – Modified spider plots for the infectious piglets (piI) at maternity. 

 
Legend: β – transition rate parameter between susceptible and infectious, α – transition rate parameter 

between infectious and carriers, θ – transition rate parameter between carriers to susceptible, gestation – 

gestation room, farrowing – farrowing room, piglets – piglets on maternity, maternity – change in the 

parameters for sows and piglets at the maternity, sows – change in the parameters was done at mating, 

gestation and farrowing for sows, pigs – change in the parameters for pigs at maternity, post-weaning and 

fattening, pf – piglets protective factor. 

 

The infection state of pigs at post-weaning was influenced by the β maternity, β piglets, 

β post-weaning and β pigs; the α gestation, α farrowing, α sows, α post-weaning and α 

pigs; the θ gestation and θ sows; and the pf parameter (Figure 7 and Table 5). The 

increase in the mentioned βs increased the number of infectious and carrier pigs at 

post-weaning, while it decreased the number of susceptible at post-weaning. The 

increase in the transition rate from I to R (α) in the sow-compartment decreased the 

proportion of carriers at post-weaning. However if the increase from I to R occurred in 

the pig-compartment there was an increase in the proportion of carriers at post-

weaning. The increase in the transition rate from R to S (θ) in the sow-compartment 

and pf parameter, decreased the proportion of susceptible at post-weaning while it 

increased the proportion of infectious and carriers at post-weaning. 
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Figure 7 – Modified spider plots for the susceptible (PWS), infectious (PWI) and carrier 

(PWR) pigs at post-weaning. 

 
Legend: β – transition rate parameter between susceptible and infectious, α – transition rate parameter 

between infectious and carriers, θ – transition rate parameter between carriers to susceptible, gestation – 

gestation room, farrowing – farrowing room, piglets – piglets on maternity, post-weaning – post-weaning 

room, maternity – change in the parameters for sows and piglets at the maternity, sows – change in the 

parameters was done at mating, gestation and farrowing for sows, pigs – change in the parameters for 

pigs at maternity, post-weaning and fattening, pf – piglets protective factor. 

 

The transition rate from S to I at post-weaning and the transition rate from R to S at 

gestation had the same results in terms of changes to the proportion of infectious pigs 

at post-weaning. Additionally, the pf parameter, the transition rate from S to I at 

maternity (sows and piglets) and piglets (only piglets), and the transition rate from R to 

S at the sow-compartment influenced in the same way the proportion of infectious and 

carrier pigs at post-weaning. These similar results for the β parameters (β maternity, β 

piglets and β pigs) suggest that the change in the transition rate from S to I in the 
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piglets at maternity was the major responsible for all the changes in the proportion of 

infectious and carriers at post-weaning due to the β parameters.  

For carrier pigs, the post-weaning and pig-compartment changes of the transition rate 

from I to R showed the same results, suggesting the change is due to the post-weaning 

only.  

 

Figure 8 – Modified spider plots for the pigs susceptible (FaS), infectious (FaI) and 

carriers (FaR) at fattening. 

 
Legend: β – transition rate parameter between susceptible and infectious, α – transition rate parameter 

between infectious and carriers, θ – transition rate parameter between carriers to susceptible, gestation – 

gestation room, piglets – piglets on maternity, post-weaning – post-weaning room, fattening – fattening 

room, maternity – change in the parameters for sows and piglets at the maternity, sows – change in the 

parameters was done at mating, gestation and farrowing for sows, pigs – change in the parameters for 

pigs at maternity, post-weaning and fattening, pf – piglets protective factor. 

 

The infection state of pigs at fattening (Figure 8 and Table 5) was influenced by the 

transition rate from S to I at maternity and the pig-compartment (mainly piglets at 
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maternity and pigs at post-weaning). The increase of the β parameters caused a 

decrease in the proportion of susceptible and an increase in the proportion of infectious 

and carriers. 

The transition rate from I to R (α) also influenced the infection status of the pigs at 

fattening. An increase on this parameter at the pig-compartment caused an increase of 

carrier pigs and a decrease in infectious pigs. On the other hand, an increase of α 

parameters at the sow-compartment caused a decrease in the proportion of carriers 

associated also with a decrease in the proportion of infectious pigs. 

The transition rate from R to S (θ) in the sow-compartment caused a decrease in the 

proportion of carrier pigs at fattening while increased the proportion of infectious at 

fattening. 

The piglets’ protective factor also influenced the infection state of the pigs at fattening. 

The transmission parameter from R to S at the sow-compartment produced the same 

change in the infectious pigs at fattening as the transmission parameter between S to I 

at maternity. For carrier pigs, changes of the transition rate from S to I at maternity, 

piglets and the pig-compartment, the pf parameter and the transmission parameter 

from R to S at the sow-compartment, caused similar changes in the proportion of 

carriers. 

The piglets’ protective factor influence was assessed not only by increasing and 

reducing the parameter in 50%, but also using higher percentages. The pf value in the 

model was assumed to be 0.1 (90% of protection). As the value was quite low, the 

values of 0.25 (75% of protection), 0.50 (50% of protection), 0.75 (25% of protection) 

and 1.0 (no protection) were used to evaluate its influence in the pig-compartment. The 

results (Figure 9 – left panel) show that the pf parameter, when assumed extreme 

values, influenced the pigs’ infection state by more than 50% for the infectious and 

carrier pigs at all the pig’s rooms. 

The infection state of the replacement gilts only influenced, by more than 5%, the sow-

compartment, therefore only the sows’ outcomes were used in the plot (Figure 9 – right 

panel). The results show that perturbations in this parameter have not resulted in major 

changes in the infection state of sows at farrowing, being more influential for the 

infection state of sows at mating. All the combinations produced an increase in the 

proportion of carrier sows at mating while decreasing the proportion of susceptible 

sows at mating, when compared to the combination where all the gilts were susceptible 

(combination number 1). 
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Figure 9 – Modified spider plots for the influence of the piglets’ protective factor (pf) and 

the infection state of replacement gilts (see Table 2 for the combinations values). 

 
Legend: MS – sows susceptible at mating, MI – sows infectious at mating, MR – sows carriers at mating, 

GS - sows susceptible at gestation, GI – sows infectious at gestation, GR – sows carriers at gestation, FS -

sows susceptible at farrowing, FI – sows infectious at farrowing, FR – sows carriers at farrowing, piS – 

piglets susceptible at maternity, piI – piglets infectious at maternity, PWS – pigs susceptible at post-

weaning, PWI – pigs infectious at post-weaning, PWR – pigs carriers at post-weaning, FaS – pigs 

susceptible at fattening, FaI – pigs infectious at fattening, FaR – pigs carriers at fattening, pf – piglets 

protective factor. 

 

The change to housing grouped sows at the mating room (in the same way as the 

gestation room) did not cause any major changes to the results. The highest 

percentage of change was for the proportion of susceptible sows at gestation room that 

increased by 3%. The pigs’ infection states were influenced by less than 1%. 

 

Discussion 

 

Validation of the model 

The predicted prevalence results of the model for the infectious animals in the sow-

compartment (56.9% [16.7% - 100%] of sows infectious at the end of farrowing) 

compared to the pig’s results (30.9% [0.0% - 80%] of pigs infectious at the end of 

fattening) show a decreasing trend from the sow-compartment to the pig-compartment. 

The same decreasing trend was observed in the Baseline Studies [16, 17] for 

Salmonella Typhimurium, where the prevalence was higher for breeding animals 

(13.4% [8.8% – 20.3%] of holdings positive) than for pigs at slaughter (8.4% [6.1% - 

11.5%] pigs positive); and for Salmonella spp., where the prevalence was also higher 
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for breeding animals (43.3% [35.6% – 52%] of holdings positive) than for pigs at 

slaughter (23.4% [19.4% - 28%] pigs positive). 

The prevalence figure for the breeding animals in the Baseline Study was at holding 

level which does not allow such a straightforward comparison with the pig at slaughter 

results. However the used of pooled pen samples allowed to detect, with 95% certainty, 

at least one positive sample in a pig herd when the animal level prevalence was at 

least 20% [18], and the within-holdings pen positive results in Portugal was around 

20% to 80% [19], which allow us to assume that the prevalence of sows infected was 

around 20% (detection threshold). This value is higher than the prevalence of S. 

Typhimurium in slaughter pigs. 

Note that the observed (epidemiological) data to which the estimated parameters are 

being compared includes uncertainty due to sampling error (statistical uncertainty), and 

imperfect test sensitivity and/or specificity. In addition, the samples whereupon the 

epidemiological data (representative sample of pigs at slaughter and of holdings with 

breeding pigs) are based do not match the units in which we worked within the model 

(sows and pigs from infected farms). Therefore, the comparison of predicted and 

observed values was done on a qualitative basis with focus on whether the model was 

predicting the same trends that were indicated by the observed data. Even so the 

proportion of infectious sows at maternity can be considered relatively high while the 

proportion of carrier sows seems low when compared to other simulation studies [5]. 

Reinforced by the evidence that are higher odds of sows at mating being shedding 

Salmonella when compared to maternity [20], even if this happen to other serotypes 

non Typhimurium like leads us to suggest that some assumptions made in the 

transmission parameters, which where estimated using data from growing pigs, are not 

suitable to be used in sows. Therefore care should be taken in the interpretation of the 

proportion of the infectious states at the sow compartment. 

 

Sensitivity analysis of the model 

The sensitivity analysis shows the influence on the results of the model due to changes 

in the parameters, and can also give us valuable information about the uncertainty of 

the assumptions made. 

The sensitivity analysis results section shows for each outcome (infection state per 

room) which parameters influenced them in more than 5% (differences of less than 5% 

were not considered for discussion even if statistical significant).  

The parameters which influenced most (higher than 30%) the sow-compartment were 

(Table 4): the transition rate from infectious to carrier (α), from carrier to susceptible (θ), 

and from susceptible to infectious (β). The β increase, reduced the proportion of 

168



27 
 

susceptible animals; the α increase, increased the proportion of infectious and carrier 

animals; and the θ increase, reduced the proportion of carrier while increased the 

proportion of susceptible and infectious. Therefore all the factors which influence the 

time as carrier (reduction of θ, increase of α) will help the reduction of infectious sows 

in infected farms.  

The parameters which influenced most (higher than 30%) the pig-compartment were 

(Table 5): the transition rate from infectious to carrier (α) in pigs and sows, from carrier 

to susceptible (θ) in sows, and from susceptible to infectious (β) in pigs; and the piglets’ 

protective factor (pf). The transition from carrier to infectious (δ), whether in pigs or 

sows, did not influence in a major extent the results. The β increase in pigs, reduced 

the proportion of susceptible animals while increased the proportion of infectious and 

carrier animals; the α increase in pigs, increased the proportion of carrier animals; the 

α increase in sows, reduced the proportion of infectious and carrier pigs while 

increased the proportion of susceptible; the θ increase in sows, reduced the proportion 

of susceptible pigs while increased the proportion of infectious and carrier pigs; and the 

pf parameter increase, increased the proportion of infectious and carrier pigs. The aim 

in the pig-compartment should be to reduce the number of infectious and carrier 

animals and this can be achieved by applying control measures which influence the 

infection of pigs (reduction of β) and piglets (reduction of pf), and increase the time as 

carrier for sows (reduction of θ and increase of α).  

The outcomes which are of great importance in terms of public health are the infection 

state for sows at maternity (which contributes to the piglets’ infection state) and pigs at 

fattening (which are going to be slaughtered and will contribute to human infections due 

to the consumption of pork meat). Therefore the parameters which influence them were 

analysed in more detail. 

 

Parameters that influence the infection of sows at maternity 

The infection state of sows at maternity room was influenced by several parameters. 

The proportion of susceptible sows increased 46.1% and 45.8% with the increase of 

the transition rate from I to R and from R to S when applied to the sow-compartment, 

respectively (Table 4). The parameter which influenced by a highest percentage the 

infectious sows at maternity was the transition rate from I to R when applied to the sow-

compartment. The decrease of 50% in this parameter increased the proportion of sows 

infectious around 40%, but a 50% parameter increase only reduced the proportion of 

sows infectious around 20% (Figure 5). The same amount of reduction was achieved 

when reducing by 50% the transmission parameter from R to S in the sow-

compartment. This makes sense, as increasing the R to S transition rate, increases the 
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number of susceptible sows that can be subjected to infection again. Regarding the 

carrier sows at maternity, increasing the R to S transition rate in the sow-compartment 

decreased the amount of carriers, while increased I to R transition rate, again in the 

sow-compartment, increased the amount of carriers. As only the infectious sows can 

infect the piglets it is desirable to reduce the proportion of infectious sows at farrowing. 

The results show that this can be done by promoting the increase of the transition rate 

from infectious to carrier. Although the majority of the control measures described in 

the literature are for pigs and not sows, we can assume that they will also applied to 

sows. Therefore, increasing the transition from I to R, can be done by promoting the 

use of organic acids in feed/water or fermented by products [21], which decreases the 

shedding duration. The super-shedders and long-shedders should also be reduced as 

they reduce the transition rate from I to R. Increasing the immune status of the farm to 

other disease known to interfere with immunity (e.g. PRRS, parasitosis, etc.) [22] will 

help decreasing the number of super-shedders or long-time shedders.  The increase of 

susceptible sows at maternity can be achieved by the reduction of the transition rate 

from S to I. Effective cleaning and disinfection procedures between batches [21, 23], 

change in feed strategy from pelleted feed to non-pelleted feed, fermented wet feed or 

partially non-heat-treated feed could help lower the exposure to Salmonella and 

increase the resistance to infection [21, 24]. The reduction of the number of animals 

per pen can also decrease the transmission of the infection [20]. The combination of 

several measures will be ideal for achieving the reduction wanted [21]. The use of 

“Salmonella-free” replacement stock has been advocated [21], but the results of the 

model show that, at least in infected farms, the relative effect of this measure is low to 

achieve a reduction in infectious sows at farrowing/maternity room. In farms infected 

with a low prevalence, the use of “Salmonella-free” replacement stock is an important 

control measure, especially if the farm is implementing measures of selective culling of 

infectious sows.  

The use of vaccines in sows can be advocated if vaccination will be able to reduce the 

rate of infection (providing persistent immunity during the life-span of sows), or, at 

least, to reduce the shedding duration, and in this way increase the time as carrier in 

sows (especially at maternity). 

 

Parameters that influence the infection of pigs at fattening 

The parameters which influenced most the infection state of pigs at fattening were: the 

transition rate from S to I (β) and the transition rate from I to R (α), when changes 

applied to the pig-compartment; the transition rate from R to S (θ) when changes 

applied to the sow-compartment, and the piglets’ protective factor (pf). The parameter 
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which influenced most the infectious pigs at fattening was the transition rate from S to I 

(β) when changed in the pig-compartment, where a reduction in 50% caused a 20% 

reduction of infectious pigs. A reduction by 50% of pf value caused also the same 20% 

of reduction of infection pigs. The increase by 50% of the transition rate from I to R (α) 

in all the sow and pig-compartment caused also a reduction in the infectious animals, 

although by less than 10%. The reduction by 50% in the sow-compartments of the 

transition rate from R to S, reduced by 15% the infectious pigs. This reduction was 

probably due to the reduction in infectious sows at maternity, which we have discussed 

previously. The parameter which influenced most the proportion of carrier pigs at 

fattening was the transition rate from I to R (α) in the pig-compartment, where an 

increase of 50% caused an increase of about 45% of carrier pigs. The increase of the 

transition rate from R to S in the sow-compartment, the pf increase and the increase in 

the transition rate from S to I in the pig-compartment also caused an increase in the 

number of carrier pigs. At the end of fattening the pigs are sent to the abattoir for 

slaughter. The transport to the abattoir and the lairage waiting time, are stressful 

events which potentially increase the transition rate from S to I and from R to I in 

infected pigs. Therefore the aim should be to reduce the proportion of infectious and 

carrier animals. This can be achieved by decreasing at the pig-compartment the 

transmission parameters from S to I, decreasing the piglets’ protective factor value and 

the transmission parameter from R to S at the sow-compartment. To reduce the 

transition rate parameter from S to I, several measures can be put in place like adding 

organic acids to the feed or water [21], change the type of feed to a wet feed or non-

pelleted feed [25-27], cleaning frequently the pen floor [22, 28-30], minimizing the 

mixture of litters at post-weaning and fattening [31, 32], and reducing stock density per 

pen [20, 29]. Control of rodents and other vectors is advocated [21], although it was not 

considered a significant risk factor for S. Typhimurium in one study [20]. The reduction 

of the pf value (which means increasing the piglets’ protective factor) can be achieved 

by allowing the correct consumption of colostrum by the piglets [33] and by the 

reduction of all the stressful events [32] or concomitant diseases  [34], which decrease 

the piglets’ immunity.  

The use of vaccines which enable to reduce the infection of pigs during their life-span 

will have a positive effect in the reduction of the infectious and carrier pigs at the end of 

fattening. The vaccine effect would be similar to have a pf effect upon the post-weaning 

and fattening stage.  

 

The results of the sensitivity analysis have also shown that the parameters which 

depended on expert opinion have not caused a major change in the results of the 
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simulation model. The most influencing parameters were the transition rates and the 

piglets’ protective factor. The transmission parameters were based in a field study 

which followed cohorts of pigs on infected farms [13]. The estimation of the values was 

performed in Correia-Gomes et al (unpublished). The details of the estimation are 

described there. These values were estimated for Salmonella Typhimurium infection in 

growing cohorts in Denmark. The cohorts followed belong to farrow-to-finish farms 

which were self-supplying and applied batch management [13]. We have no reason to 

assume that the same transition rates are not applicable to Portuguese infected 

cohorts. As there was not any study which estimates the transmission parameters for 

sows, or data available for estimating these parameters; we have assumed that the 

transmission parameters estimated for the pigs could be applied also to sows. This 

assumption, as discussed previously, may prove to be wrong and further research is 

needed to update these values. The value of the transition rate from R to S and the 

piglets’ protective factor were based on existing literature. The piglets’ protective factor 

was not specific for Salmonella Typhimurium. The sensitivity analysis shows that this 

parameter influences in a great extension the results (Table 5 and Figure 9), reflecting 

the uncertainty around this parameter. More research in the transition rate parameters 

for sows and pigs, and the piglets’ protective factor would be needed to improve the 

simulation model accuracy. 

 

Contribution of this model to Portuguese pig production 

In Portugal 13.4% of the production holdings with breeding animals (the majority 

farrow-to-finish farms) were considered to be positive to Salmonella Typhimurium [15]. 

If we consider also the strains similar to Salmonella Typhimurium and therefore with 

basis to assume similar behaviour, the value increases to 25.6% [20]. The infected 

holdings in Portugal have a higher number of animals per farm than the negative ones 

[20], and it can be assumed that they will contribute with a higher number of fattening 

pigs to slaughter and therefore with pork for human consumption. The simulation model 

can, then, be used to test control measures in terms of their cost-benefit, and the 

reduction of the prevalence in these farms will have an impact on human burden. 

 

Conclusion 

 

A stochastic model which simulates the dynamics of Salmonella Typhimurium in a 

farrow-to-finish farm was constructed. The parameters which influence each infection 

state per room were identified and the possible control measures for the fattening room 

were discussed. The simulation model potentially allows estimation of cost-benefit 
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control measures if coupled to an economic model. The simulation model is flexible 

enough to introduce changes in the parameter distributions or values if future research 

and legislation so require. At the same time the model can be adapted to different 

types of production (e.g. breeding units, finisher units) as it was built in a 

compartmental way. 
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The aim of the PhD was to improve the epidemiologic knowledge of Salmonella spp. 

disease dynamics in pig farms in Portugal, and therefore to contribute to a better use of 

the available cost-effective control measures at farm level, taking into consideration the 

prevalence of the agent, the risk factors associated with Salmonella spp. and the 

Portuguese production system. To achieve this, the work was divided into two 

objectives: Objective 1 - the improvement of the knowledge of the risk factors for 

Salmonella spp. in Portugal at farm and abattoir; and Objective 2 - the development of 

a simulation model that describes Salmonella Typhimurium dynamic in a pig farm. 

For fulfilling these Objectives several datasets made available to the authors were 

used. For Objective 1, the datasets of the Baselines studies on Salmonella prevalence 

at slaughter and at farms with breeding pigs in Portugal were made available by the 

Portuguese Veterinary Authorities. 

 

Risk Factors in Portugal 

The dataset of the Baseline Survey on Salmonella Prevalence in Slaughter Pigs in 

Portugal allowed testing for risk factors at abattoir level. In this survey some information 

was collected about the abattoir characteristics (e.g. slaughter volume, region), and no 

information about the pig’s farm of origin. Even so it was possible to assess some 

possible risk factors (Manuscript 1). The abattoir region and the sample collection time 

were considered as significant risk factors. The abattoir region could be associated with 

different abattoir management practices or with the herds that supply the abattoirs but 

this hypothesis could not be tested. The dataset was insufficient to give a response to 

such questions and more work should be done in the future to evaluate the risk factors 

at abattoir level. In the categorical model, a variable found to be significant was the 

sample collection hour (afternoon at lower risk when compared to morning) for the 

category of serotype Typhimurium or serotype 1,4,[5],12:i:-. A biological explanation for 

this association could be that the animals slaughtered in the afternoon have spent less 

time in the lairage because they enter the slaughterhouse early morning to be culled in 

the same day. Because the transmission of this type of Salmonella is strongly 

associated with transmission between live animals, the reduction at lairage, of the 

contact between pigs from different sources could play an important role in explaining 

this finding. 

In the majority of the positive lymph node samples the serotype Typhimurium was 

isolated, followed by serotype Rissen, Derby and S. Typhimurium-like strains.  

Likewise in the data of the prevalence of Salmonella at farms with breeding pigs 

(Baseline Survey on the Prevalence of Salmonella in Breeding Pigs in Portugal), the 

serotype Typhimurium was also the predominant serotype, followed by serotype 
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Rissen, London and Derby. This shows that the majority of the serotypes present at 

herd level are also present at abattoir level, suggesting that the farm of origin is a 

source of contamination. 

In the analyses of the breeding pig’s dataset, several management factors linked to 

herd and pen were evaluated. The Salmonella spp. risk factors found were: region of 

the herd, size of the herd (in terms of sows), management of breeding boars, source of 

semen, rodents control, number of animals per pen, breeding sector, and source of 

feed. Some of these risk factors had already been previously identified in other studies 

(e.g. size of the herd, rodents control, number of animals per pen, source of feed)[71, 

75, 168]. However it was the first time that the management of breeding boars and 

source of semen were identified as risk factors for Salmonella. This can be explained 

by the characteristics of Portuguese swine production, where a substantial proportion 

of the semen used does not come from insemination centres. Even so the identification 

of these risk factors contributes to the improvement of knowledge, and should be used 

in the elaboration of control programmes adapted to the Portuguese situation.  

The data from the Baseline Survey also shows that in Portugal 9.1% of the breeding 

holdings were positive to Salmonella Typhimurium and 33.3% were positive to other 

serotypes than Typhimurium and Derby. In the work reported in Manuscript 3 we 

answered the question if the risk factors for infection were the same for all serotypes of 

Salmonella. As the number of samples per serotype was low we could not analyse all 

of them separately. Therefore the different serotypes of Salmonella spp. were divided 

in two groups: serotype Typhimurium and S. Typhimurium-like strains with the 

antigenic formula: 1,4,[5],12:i:-., and other serotypes. These groups were formed 

because serotype Typhimurium is recognized as a serotype difficult to control [169] and 

is also the cause of many human cases of food-borne disease linked to pork meat. 

Serotype Typhimurium-like strains with the antigenic formula: 1,4,[5],12:i:-. were 

included in the group of serotype Typhimurium because of the genetic similarity, the 

similar virulence and the antimicrobial resistance characteristics existing between the 

two serotypes [170]. After the serotypes were grouped and analysed using a 

categorical model, it was found that the risk factors were different between the two 

groups of serotypes. The group “Typhimurium” was associated with the stock density 

(number of breeding pigs and number of pigs per pen), the characteristics of the pig 

(age of breeding sows), and the source of semen. On the other hand, the group “other 

serotypes” was associated with region of the herd, source of semen, control of rodents, 

breeding sector room and source of feed. The risk factors for serotype Typhimurium 

suggest a contagious pattern and the risk factors for other serotypes appeared to be 

related to environmental factors. 
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This valuable information can be incorporated in future control programmes for 

Salmonella spp. in breeding pigs in Portugal and other countries, and also highlight the 

areas where further studies should be done to explain the causality of some risk 

factors. 

 

Modelling the dynamics of infection 

To help policy makers, and the pig industry in general, in times of scarce resources, 

models are good approximations to the real transmission dynamics which allow the 

outcome of control measures to be tested, and gives an estimation of predicted 

prevalence for that outcome. An infection model that does not incorporate what is 

happening on a farm in terms of animal management could introduce bias in the final 

outcome. Among other events, the culling of infectious animals and the mixing of pigs 

from different litters could both interfere with transmission dynamics. For these reasons 

a production model linked to an infection model seemed sensible and more accurate. 

In Portugal a good published description of production parameters is lacking and 

companies do not share information between themselves or with external 

organizations. Therefore it was difficult to obtain production data, and as such, expert 

opinion was used to fill gaps in data/information. Even so, the production model reflects 

what is considered to occur in an average farrow-to-finish farm, which constitutes the 

dominant type of farms in Portugal. As the model was built in compartments for each of 

production phases, it can be easily adapted to different type of farms, such as breeding 

or finisher units. The model is flexible enough to accommodate changes in the various 

parameters values and distributions. For the infection part of the simulation model, 

estimates of the transmission parameters were required.  

We found in the literature a gap in the knowledge about the values attributable to the 

transmission parameters for Salmonella, as majority of the simulations studies 

published in the literature used point estimates or fitted estimates to a final prevalence 

as inputs for the transmission parameters [140, 142, 143, 145]. Therefore, the available 

Salmonella Typhimurium transmission studies in field conditions were used to estimate 

the transmission parameters for the model. Several authors were contacted but only 

one was willing to share their data. Manuscript 4 describes the work done. The results 

showed that the transition rate found between susceptible and infectious (β) can be 

considered low compared with other infectious diseases (such as swine influenza) and 

reflects that in most of the herds, Salmonella does not cause outbreaks but maintains a 

residual level of infection represented by infectious animals and carrier animals that 

enable the infection to persist in the herds. The credible interval for the transition 

between infectious to carriers (α) shows the variability of shedding duration which is 
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known from experimental and field studies. The transition rate between carrier and 

infectious was small - as shown by the results from our model - and highly dependent 

on stress events (the authors of the Kranker et al. study [146] describe that two cohorts 

had a slurry overflow which is a stressful event). The variance of the cohort time 

dependent random effect was high which means that the different management 

procedures for each cohort influences the transmission data and in future studies this 

should be taken into consideration. For the spread to occur, R0 should be above 1. In 

our study (Manuscript 4), the median R0 value was estimated to be 1.91 which 

indicates that Salmonella Typhimurium was spreading in most of the cohorts. The 

value was not high (third quartile is less than 3) implying it would not spread rapidly 

through the susceptible populations under management systems similar to the ones 

used in these herds. In less frequent situations, however, R0 was high enough to cause 

outbreaks.  

Although the transmission parameters were estimated based on pig’s growing cohorts, 

they were also applied to the sow-compartment in the simulation model, as it was 

assumed that they would behave in the same way for sows.  

The results of the simulation model for the infectious pigs at fattening show the 

dynamic of the pigs’ infection state over the time needed to raise a pig to slaughter, 

with an increase in the number of animals infected (infectious plus carriers).  

The validity of the model was assessed by comparing the predicted results from the 

model with observed (epidemiological) results in the population of interest. The 

Portuguese results from the EU Baseline Survey on Salmonella Prevalence in 

Slaughter Pigs [36] and the EU Baseline Survey on the Prevalence of Salmonella in 

Breeding Pigs [37] were used as observed epidemiological results. The comparison 

was done by relating the magnitude of the predicted and observed value, and 

qualitatively assessing the degree of agreement/disagreement.  

Our model predicted that in the sow-compartment the prevalence results for infectious 

sows at the end of farrowing stage would be 56.9% [16.7% - 100%]) whereas the 

infectious pig’s prevalence at the end of fattening would be 30.9% [0.0% - 80%], 

predicting a reduction of prevalence among those two compartments. The same 

decreasing in prevalence was observed in the Baseline Studies where the prevalence 

of Salmonella Typhimurium was higher for breeding animals of positive holdings 

(13.4% [8.8% – 20.3%])[37] than for pigs for positive herds at slaughter (8.4% [6.1% - 

11.5%])[36]. Even so the proportion of infectious sows at maternity can be considered 

relatively high while the proportion of carrier sows was considered low when compared 

to other simulation studies [140]. This lead us to suggest some assumptions about the 

transmission parameters, which where estimated using data from growing pigs, were 
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not suitable to be used in sows. Therefore care should be taken in the interpretation of 

the proportion of the infectious states at the sow compartment. 

The infection state of sows at maternity room was identified as a critical step because it 

plays a major role in transmitting the infection to the offspring. It was influenced by 

several parameters; Manuscript 5 describes them in detail. Since only the infectious 

sows can infect the piglets it is desirable to reduce the proportion of infectious sows at 

farrowing. The results show that this can be done by promoting the increase of the 

transition rate from infectious to carrier. Although the majority of the control measures 

described in the literature are for pigs not for sows, it can be argued that they will also 

be effective if applied to sows. Therefore, increasing the transition from infectious to 

carriers can be achieved by promoting the use of organic acids in feed/water or 

fermented by products [171], which decreases the shedding duration. The super-

shedders and long-shedders should also be reduced as they reduce the transition rate 

from infectious to carriers. To increase the farm immune status to other diseases, 

known to interfere with immunity (e.g. PRRS, parasitosis, etc.) [63], will help 

decreasing the number of super-shedders or long-time shedders.  The increase of 

susceptible sows at maternity can be achieved by the reduction of the transition rate 

from susceptible to infectious. As suggested by other authors the use of “Salmonella-

free” replacement stock [171], effective cleaning and disinfection procedures between 

batches [171], change in feed strategy from pelleted feed to non-pelleted feed, 

fermented wet feed or partially non-heat-treated feed [171] could help lower the 

exposure to Salmonella and increase the resistance to infection The reduction of the 

number of animals per pen, can also reduce the transmission of the infection [172]. In 

the model, the infection state of replacement gilts did not show a major influence in the 

infection state of sows at farrowing. Even so, recent reports [105] highlight the 

contribution of breeding animals to this infection in some countries such as Portugal. 

The parameters which most influence the infection state of pigs at fattening were: the 

transition rates from susceptible to infectious (β) and from infectious to carriers (α), 

when changes applied to the pig-compartment; the transition rate from carriers to 

susceptible (θ) when changes applied to the sow-compartment, and the piglets’ 

protective factor (pf). At the end of fattening the pigs are sent to the abattoir for 

slaughter. The transport to the abattoir and the lairage waiting time, are stressful 

events which potentially increase the transition rate from susceptible to infectious and 

from carrier to infectious (δ) in infected pigs. Therefore the aim should be to reduce the 

proportion of infectious and carrier animals. This can be achieved by reducing in the 

pig-compartment the transition rate β, reducing the piglets’ protective factor value and 

the transition rate θ in the sow-compartment. To reduce the transition rate β, several 
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measures can be put in place such as adding organic acids to the feed or water [171], 

change the type of feed to a wet feed or non-pelleted feed [68, 173], cleaning 

frequently the pen floor [63], minimizing the mixture of litters at post-weaning and 

fattening [65, 93], and reducing stock density per pen [172]. The reduction of the pf 

value (which means increasing the piglets’ protective factor) can be achieved by 

allowing the correct consumption of colostrum by the piglets [69], and by the reduction 

of all the stressful events [93] or concomitant diseases [84], which decrease the piglets’ 

immunity. 

The sensitivity analysis also showed that the parameters which depended on expert 

opinion have not caused a major change in the results of the simulation model. The 

most influential parameters were the transition rates and the piglets’ protective factor. 

Further research on the transition rate parameters for sows and pigs (especially sows 

as described above), and the piglets’ protective factor would be needed to improve the 

simulation model accuracy. 

In Portugal, 25.6% of the production holdings with breeding animals (the majority 

farrow-to-finish farms) were considered to be positive to S. Typhimurium and strains 

similar to S. Typhimurium [172].  The infected holdings in Portugal have a higher 

number of animals per farm than the negative ones [172] and it can be assumed that 

they will contribute with a higher number of fattening pigs to slaughter and therefore 

with pork for human consumption. The simulation model can, then, be used to test 

control measures in terms of their cost-benefit, and the reduction of the prevalence in 

these farms will have an impact on human burden. 

 

Conclusions 

The work done in the PhD is valuable and can be applied to the Portuguese reality and 

other similar to this one. The risk factor analyses identified several risk factors some of 

which were never identified before within the relevant literature. The results of 

categorical (two groups of serotypes) risk factor analysis could be useful in future 

control programmes to adapt them to the country and farm status for Salmonella spp. 

The simulation model potentially allows estimation of cost-benefit control measures if 

linked to an economic model. The model is flexible enough to accommodate changes 

in the type of farm, parameters, and infra-structure, if future research and legislation so 

require. Some key parameters (transition rate from susceptible to infectious and the 

piglets’ protective factor) have been identified by the model to influence, to a great 

extent, the infectious finishers, which are the target of the majority of the control 

programmes in place in other countries. This simulation model also explores the 
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dynamics of the infection in breeding animals and can be used to test control measures 

directed to this population. 
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