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Resumo

Sistemas electrónicos de votação ainda não conseguiram impor-se como alternativa à tradicional
eleição por papel, quer em eleições privadas quer em eleições oficiais. Ainda assim, nos últimos
anos, o trabalho científico na área produziu ferramentas e soluções que tornam estes sistemas
mais fiáveis, confiáveis e verificáveis. Esta evolução foi acompanhada com o desenvolvimento de
soluções comerciais pela indústria.

Uma solução desenvolvida em Portugal e utilizada em eleições particulares é um sistema de
votação pela Internet chamado Certvote, desenvolvido pela Multicert - uma grande companhia
portuguesa na área da segurança digital. A Multicert abordou a Universidade do Porto com o
desejo de ver o seu sistema analisado em termos de como se posiciona no estado da arte em
segurança de sistemas, criptografia e em geral no campo da votação electrónica.

Este trabalho propõe-se a estudar o estado da arte para determinar que propriedades são esper-
adas de sistemas de votação electrónica e que ferramentas criptográficas tipicamente são utilizadas
para alcançar essas propriedades. Procedemos depois para uma descrição e análise do sistema
Certvote, determinando como se relaciona com as propriedades definidas. Na procura duma refer-
ência, analisou-se também um sistema chamado Helios, sistema de votação bem estudado com
propriedades de verificabilidade extremo a extremo.

Por fim procedemos à sugestão e desenvolvimento de algumas alterações ao sistema Certvote,
mostrando que essas alterações permitem ao sistema mimetizar muitas das propriedades de Helios,
colocando-se assim num patamar superior em termos de propriedades de segurança.
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Abstract

Electronic voting systems have yet to break through as alternatives to traditional paper voting,
both in private as in official elections. Still in the last years scientific research in this field has
produced tools and solutions that make these systems more reliable, trustworthy and verifiable.
This evolution went side-by-side with the development of commercial solutions by the industry.

One solution that is developed in Portugal and has been deployed for private use is an internet
voting system called Certvote, by Multicert - a major Portuguese company in the field of digital
security. Multicert approached the University of Porto with the wish to have its system analyzed
in terms of how it positions itself with the state of the art in system security, cryptography and the
general field of electronic voting.

This work aims at studying the state of the art to determine what properties are expected
from electronic voting systems and what cryptographic tools are generally used to achieve said
properties. We then proceed to describe and analyze Certvote, determining how it relates to the
defined properties. In order to have a reference, we also analyzed Helios, a well-studied end-to-end
verifiable voting system.

Finally we proceed to suggest and develop improvements to Certvote, while showing how
these improvements allow Certvote to mimic a lot of the properties of Helios, enhancing its secu-
rity properties.
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“That to secure these rights, Governments are instituted among Men, deriving their just powers
from the consent of the governed”

Declaration of Independence
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Chapter 1

Introduction

1.1 Context

Voting is the fundamental act in Democracies but also in a lot of organizations. Most people will

probably cast their first vote at school, when electing a class representative. Schoolmates will

stand as candidates and papers will be filled with names to be folded and counted by the teacher

who most probably keeps track of the votes on the blackboard while counting.

This of course is but the first moment one has to cast a ballot - later maybe a student union has

to be elected and in university students will help to elect the Dean. Reaching voting age finally

opens the gates to the "big thing": voting for Members of Parliament, the Mayor or the President

makes us fell part of our community.

We expect elections to be run in a way that results are honest, meaning the ballot we placed

in the urn will be counted and added to the total after polls close. We also expect the vote to be

kept private so even in the days of Social Media and Real-Time Streaming from mobile phones

we know that it is up to us to speak about our choice or to keep it undisclosed as it is our right.

On the other hand, of course, if votes are private and urns impenetrable to the peering eye then

we need to trust the system and polling staff that our vote indeed is counted. Privacy goes in hand

with opaqueness: a hidden vote is hidden and we cannot trace it later, when results are announced.

What may strike us as odd, is that in the age of touchscreens and 24/7 Internet connectivity

we still are voting with the good old paper ballot. Electronic voting systems have been discussed

often enough and in organizations they are used, in Portugal, for over ten years now1 but usage

remains low and since a pilot project in 2004/20052 on a national scale, no steps have been taken

towards implementing an electronic voting system for official elections.

One of the system providers that participated in the pilot project was Multicert, a Portuguese

company that operates in the field of digital security. Notably, Multicert operates the digital cer-

tificates on the Portuguese ID-cards and is a root certificate authority. In addition to that they also

1http://tek.sapo.pt/noticias/internet/artigo/bancarios_aderem_a_sistema_de_voto_
electronico_para_eleicoes_do_sindicato-878515tek.html, accessed January 2017

2http://www.umic.pt/index.php?option=com_content&task=view&id=3047&Itemid=418, ac-
cessed January 2017

1

http://tek.sapo.pt/noticias/internet/artigo/bancarios_aderem_a_sistema_de_voto_electronico_para_eleicoes_do_sindicato-878515tek.html
http://tek.sapo.pt/noticias/internet/artigo/bancarios_aderem_a_sistema_de_voto_electronico_para_eleicoes_do_sindicato-878515tek.html
http://www.umic.pt/index.php?option=com_content&task=view&id=3047&Itemid=418
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develop Certvote, an electronic voting solution, which was used in the Portuguese pilot project.

Ten years passed since that project, Multicert approached the University of Porto in order to

obtain an academic view of their implementation namely to understand how it fits itself in he

State of the Art of research in the field of electronic voting. While not necessarily aiming at the

participation in official elections, that future possibility was put on the table. Appropriately, news

made public on the last days of this work mentioned the intention of the Portuguese government

to work out an electronic voting scheme for Portuguese citizens living abroad3.

In an age where election hacking is making headlines4 such an analysis is an interesting chal-

lenge.

We will try to define what properties an electronic voting system must show, as per the sci-

entific literature. Our goal will be to see how these properties can be achieved and then analyze

Certvote from an academic point of view and try to fit it into that set of properties. Furthermore

we will suggest changes that enable Certvote to fulfill more of those properties while developing

a JAVA proof of concept for one of those changes.

We will not want to make a point for or against the use of electronic voting in official elections,

though. That is a discussion that goes far beyond the cryptographic properties and workings of

a particular electronic voting system although these will surely be an essential point in such a

discussion. Works like the present one may pave some of the way in that discussion.

1.2 Goals

Our main goals, defined initially when this work started, were the following:

1. Investigation of the state of the art for electronic voting systems in the scientific literature;

2. Detailed characterization of Certvote with the aid of Multicert’s development team;

3. Comparison of Certvote and relevant alternative solutions both in terms of specific scenarios

it should work under and of security requirements or trust models it offers;

4. Proposition of changes to improve Certvote according to the obtained results.

1.3 Methodology

The work that originated this text, was roughly done between the start of September 2016 and the

end of January 2017. While the in-house contact with Multicert was essential, we started to read

about cryptographic voting before first contacting with the development team of Certvote. Our

reasoning was to try to see how generally the issue of e-voting is approached in academic works

before looking at the solution we wanted to analyze.

3http://observador.pt/2017/01/24/governo-esta-a-trabalhar-em-solucoes-concretas-para-voto-eletronico-para-emigrantes/,
accessed January 2017

4The US presidential elections 2016 happened right in the middle of our work

http://observador.pt/2017/01/24/governo-esta-a-trabalhar-em-solucoes-concretas-para-voto-eletronico-para-emigrantes/
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After a first look at the State of the Art (SOTA) we were able to do a kick-off with the people

at Multicert, where we presented our rough SOTA findings also laying out a set of properties for

electronic voting systems. This presentation is included as Appendix A and enabled everyone

with whom we were working with to be on the same page as of requirements, properties and

usual approaches when developing an electronic voting protocol. We then started to meet with

designated people at Multicert, at their office in Porto, to learn about the working of Certvote. We

focused on the cryptographic and security properties, which were to be centrepiece of our work,

while leaving aside issues like usability or protection against denial-of-service attacks. These, of

course, are also essential for a real-time voting system that wishes to serve a broad population

but are outside the scope of our work. Some of the information presented by the developers at

Multicert can be found in the Appendixes.

With that information we went back into research to try and position Certvote in the framework

of properties we defined. The analysis of Helios - an end-to-end verifiable i-voting system - helped

to find out how systems that are deployed in the real world solve issues like the need for privacy

and the possibility to verify if voting systems are actually encrypting votes correctly. The workings

of Helios then inspired us when searching for improvements for Certvote. We wanted to keep our

suggestions in a way that allowed them to be deployed inside the present system without major

changes.

Our suggestions lead to improvements that allow Certvote to need less trust to be considered

safe, as important steps in the handling of the votes can be made verifiable.

In the end we were also able to program a Java application that proved the concept of vote

auditing.

1.4 Structure

Besides this Introduction, the following chapters comprise an analysis on the 2 "State Of The Art"

where we will look at what properties can define an electronic voting system and what crypto-

graphic primitives can be used to pursue said properties. In chapter 3 "Certvote" we will present

Certvote, describing its operation, and analyzing it vis-a-vis the properties defined before.

Chapter 4 "Helios" will present an internet voting system called Helios that is well researched

into by the scientific cryptographic community and we will want to understand how it imple-

ments cryptographic schemes to achieve a correct, private and verifiable voting system. This

analysis takes us into chapter 5 "Suggestions on Certvote Development" where we will reana-

lyze Certvote with the learnings from Helios in our mind so we can make suggestions on how to

improve Certvote to achieve a better fulfillment of the properties under consideration.
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Chapter 2

State Of The Art

In this chapter we review what the scientific literature has produced in the field of electronic voting,

focusing on solutions that work over the Internet.

2.1 Introduction

The idea to unite cryptographic tools and voting is probably as old as cryptography. In fact the

very act of folding a paper, to hide its contents, and deposit it in an urn to be revealed only at a

given time is in a way reminiscent of several applications of cryptography. It is thus only natural

that with the advent of modern cryptography, electronic and digital tools have been developed that

found their way into electronic voting protocols. This indeed happens for at least 35 years.

In 1981 David Chaum [2] proposed what essentially would later evolve into mix-nets, pro-

tocols we will describe later. Although his main aim was to provide secure anonymous commu-

nication channels, one projected use Chaum foresaw was in «[e]lections in which any interested

party can verify that the ballots have been properly counted». These, he postulated, «are possible

if anonymously mailed ballots are signed with pseudonyms from a roster of registered voters» -

his key contribution at the time (he would go on doing many more) being the anonymous mailing

protocol. The first version of Helios, in 2008 [3], in fact used mix-nets as part of the obfuscation

between vote and voter.

In 1992 and building on, amongst others, David Chaum’s work, Fujioka et.al. came up with

a voting protocol (commonly referred to as FOO for the initials its authors) that was built on a

complete notion on how to define a secure voting system[4]. This definition stills reads remarkably

well:

«Completeness: All valid votes are counted correctly.

Soundness: The dishonest voter cannot disrupt the voting.

Privacy: All votes must be secret

Unreusability: No voter can vote twice.

Eligibility: No one who isn’t allowed to vote can vote.

5



6 State Of The Art

Fairness: Nothing must affect the voting. [(e.g., preliminary results are leaked)]

Verifiability: No one can falsify the result of the voting»

More recent works [5, 6, 7] have also named the desired characteristics of an e-voting system

and have taken it up to present the main cryptographic tools used by such systems as well as listing

systems that have been introduced in the literature or actually used in real-world applications.

We will start to look at what these characteristics may be and will then follow Bernhard and

Warinshi [5] and introduce Blinded Signatures, Mix-nets, Homomorphic Encryption, Threshold

Encryption as well as ElGamal encryption, which is a cryptographic system that has several prop-

erties that can be used to accomplish an electronic voting protocol - as we will then see in Chapter

4.

2.2 Voting

Looking back at the definitions given by [4], we could start to note that they are quite universal -

they apply both to paper and electronic voting. When discussing voting systems, what differs is

how a system tries to guarantee each of these definitions. Paper and electronic systems go different

paths and of course, since 1992, a lot has been written on the subject of how to deal with electronic

elections.

Looking for less academic and more institutional ways to characterize how proper elections

should look like, we find that the Council of Europe has produced a detailed recommendation1

on the issue of e-voting. De Vries and Bokslag in their paper "Evaluating e-voting: theory and

practice" [6] refer to it to produce the following requirements for a democratic e-voting solution:

«Universal suffrage: all human beings have the right to vote and to stand for election,

subject to certain conditions such as age and nationality.

Equal suffrage: each voter has the same number of votes.

Free suffrage: the voter has the right to form and to express his or her opinion in a

free manner, without any coercion or undue influence.

Secret suffrage: the voter has the right to vote secretly as an individual, and the state

has the duty to protect that right.

Direct suffrage: the ballots cast by the voters directly determine the person(s) elected.»

These principles are reminiscent of article 21 of the Universal Declaration of Human Rights:

«The will of the people shall be the basis of the authority of government; this will shall be ex-

pressed in periodic and genuine elections which shall be by universal and equal suffrage and shall

be held by secret vote or by equivalent free voting procedures»2, and are "translated" by De Vries

and Bokslag into the following systemic requirements:
1Recommendation Rec(2004)11 adopted by the Committee of Ministers of the Council of Europe on 30 September

2004
2http://www.un.org/en/universal-declaration-human-rights/, November 2016

http://www.un.org/en/universal-declaration-human-rights/
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«Transparency/Integrity. To make sure that the general public, as well as other key

stakeholders in the electoral process, have confidence in the e-voting solution.

Ballot secrecy/privacy. To protect the secrecy of the vote at all stages of the voting

process.

Uniqueness. To ensure that every vote cast is counted and that each vote is counted

only once.

Voter eligibility. To ensure that only persons with the right to vote are able to cast a

vote.

Verifiability/auditing. Ideally, the voter can check if his vote is counted in the end

result. If not, independent auditors should be able to check the integrity of the election

result.

Accessibility. To guarantee accessibility to as many voters as possible, especially

with regard to persons with disabilities.

Vote freedom/coercion resistance. To maintain the voters right to form and to ex-

press his or her opinion in a free manner, without any coercion or undue influence.

Availability. To ensure that the voting solution is available to the voter during the

election.»

We should notice these, too, apply equally to paper and electronic voting, in fact the article we

have just quoted proceeds to check how paper voting fulfills these requirements. Notably absent,

though, when compared with Fujioka et.al., is the notion of Fairness, understood as immunity

against preliminary leakage of results. Apart from that, the notions of Availability, Coercion

Resistance, Accessibility and Transparency are new and should not be considered minor, but we

will want to take a closer look at what Privacy and Verifiability mean.

Ali and Murray[7] gave some attention to these two properties, and expanded them both.

According to them, a private system should never reveal how the voter casts his vote (Ballot
Secrecy), should never give the voter any evidence of how he voted (Receipt-Freeness3) and

should allow the voter to vote according to his choices even in presence of a coercer (Coercion-
Resistance).

In terms of Verifiability they distinguish between Individual Verifiability and Universal Ver-

ifiability. The first property means «a voter can verify that her vote is included in the set of all

cast votes», the second one that «an observer can verify that the tally has been correctly computed

from the set of all cast votes».

Finally if a system is to be end-to-end verifiable, then, still according to Ali and Murray, it

must also present the possibility to verify that:

• A vote was Cast-as-intended, meaning «the voter can verify the voting system correctly

marked her candidate choice on the ballot.»
3Systems giving out receipts that allow to deduce the contents of the vote enable coercers to demand proof from

a coerced voter. This should never be possible.
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• A vote was Recorded-as-cast: «the voter can verify that her vote was correctly recorded by

the voting system».

• A vote was Tallied-as-recorded: «the voter can verify that her vote was counted as recorded».

As they note, if a voter can verify his vote was cast-as-intended and recorded-as-cast then

the system offers individual verifiability. If it is further possible for an observer (or a voter, for

that matter) to verify the votes were tallied-as-recorded, then system is also universally verifiable.

And these now, we may add, are properties that are only achievable with electronic voting proto-

cols. While in paper voting, cast-as-intended verifiability is given by default (because voters know

for sure what their folded ballot contains) recorded-as-cast and tallied-as-cast guarantees are not

achievable. A voter must trust the people who handle the urn and the ones who count, to believe

his vote was recorded and counted as cast. This is thus a major difference between paper and

electronic voting and the trust each of these systems imply.

We will try to sum up the essential properties an electronic voting system should present as

follows:

• Correctness

– Completeness - all votes are counted.

– Soundness - bad behaviour does not corrupt the process.

• Eligibility - only those allowed to vote can vote.

• Fairness - results are secret until the polls close.

• Privacy - the vote is secret, no receipt is given out linking a voter to how he voted and voters

are generally free from coercion.

• Verifiability - voters (Individual Verifiability) and observers (Universal Verifiability) can

verify, to a certain degree, the completeness of the result, ideally end-to-end.

• Uniqueness - every voter only votes once and every vote is only counted once.

Definition 2.1: Essential e-voting properties

We will not focus on Usability, Accessibility and Transparency in this work, as our goal is to

discuss voting systems from a cryptographic point-of-view. They are referred for completeness

sake and should generally not be forgotten when discussing voting systems.

This definition leaves us ready to take a look at how paper voting works and how it fits into the

framework of properties we just presented.

2.2.1 Paper Voting

Paper voting in Portugal works roughly in the following way:
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• There is a national voter register. Every voter has a voter’s number he is assigned to at

age 174 and which may change with residency. This voting number is in turn assigned to a

polling station when the citizen turns 18. Information on his number and polling station can

be obtained for example via SMS or the Internet before or during voting day5.

• On election day the voter gets to his polling station and presents his ID card and voter’s

number. This will enable polling staff - appointed by the candidates in every election6 - to

confirm the voter is registered at that location and has not yet voted. He receives the ballot

paper(s), uses a voting cabin and deposits a folded ballot paper in an urn whereupon his

citizen-card is returned.

• Early vote under certain circumstances7 is allowed as well as postal voting for citizens

registered abroad8. Proxy vote, e.g., someone voting in the name of someone else, is not

allowed.

• When polls close every urn is counted by the staff attending to it, results are centrally col-

lected and published.

Now we can take a look at this voting scheme from the perspective of Definition 2.1. This may

strike as odd, as we wrote Definition 2.1 up as electronic voting properties, but if we want to

evaluate the differences between paper voting and electronic voting then it can be useful to see

how paper voting manages to achieve properties we are looking for in electronic voting systems.

• Correctness

– Completeness - Implies trust in the voting officials

– Soundness - Short of stealing an urn, soundness seems guaranteed. Namely, manipu-

lating a ballot paper should yield the vote null without more trouble for the tallying.

• Eligibility - Implies trust in voting officials. Corrupt officials could theoretically let an

unauthorized person vote, marking an authorized person who never showed as present in-

stead.

• Fairness - Seems guaranteed unless corrupt officials open an urn before time and publicize

results.

• Privacy - Guaranteed if everything is normal at the polling station - a hidden camera would

be a problem for ballot secrecy, though. Coercion can happen if voting postally or if a

coercer can demand that a voter takes a picture of his vote.

4http://www.cne.pt/faq2/95/3
5http://www.cne.pt/faq2/108/3
6http://www.cne.pt/faq2/104/3
7http://www.cne.pt/faq2/106/3
8http://www.cne.pt/faq2/113/3

http://www.cne.pt/faq2/95/3
http://www.cne.pt/faq2/108/3
http://www.cne.pt/faq2/104/3
http://www.cne.pt/faq2/106/3
http://www.cne.pt/faq2/113/3
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• Verifiability - recounts can happen after the election, but corrupt officials could manipulate

votes in the urn - usually representatives of different candidates will handle a given urn,

though.

• Uniqueness - Copies of official ballot papers may be smuggled in by voters and cast as

regular votes, in small amounts.

This analysis is consistent with De Vries and Bokslag [6] although they ignore the possibility of

coercion in a traditional voting setting with a closed urn. To us it seems that with the ubiqui-

tousness of small cameras (incorporated in mobile phones, for instance), a coercer can nowadays

expect to get a picture of a filled ballot paper. This significantly raises the possibility of coercion

in paper voting to levels that were not feasible just a few years ago.

In general we can say that if voting officials work honestly then paper voting, as defined, is safe

and trustworthy. Namely Correctness is, in this case, guaranteed. As voting officials are appointed

by parties with conflicting aims, there is low probability of collusion.

Privacy in the election booth may be breached if (hidden) cameras are installed but such an occur-

rence is unheard of. Equally coercion may indeed happen as we have already referred to.

2.2.2 Electronic Voting

Our work is about Certvote, a software that sets up elections so that voters can vote from their

homes. So we will not be speaking about voting machines or about presential voting at a polling

station or anything similar. We want to focus on voting solutions that can be used from any place,

ideally from any internet-connected computer, via a web browser or a dedicated application. This

in fact means we will be concentrate on Internet voting, or i-voting, which is a subgroup of the

electronic voting systems that exist. For now, rather than describe a given i-voting system we will

look at the cryptographic primitives upon which most of the i-voting systems in the literature are

built on and will try to show what kind of issues they try to tackle. Throughout this work we may

use the terms electronic voting (e-voting) and internet voting (i-voting) interchangeably, while

referring to voting over the Internet.

2.3 Primitives

As stated before we will follow Bernhard and Warinshi [5] in their approach and for now we as-

sume digital signatures and public-key cryptography are well-known and need no further detailing

before being introduced in section 2.5.

2.3.1 On Structure and Notation

In this section, we will consider some hypothetical election schemes to clarify why we are con-

sidering the primitives that are discussed. Each presented election setting will present obvious

problems with respect to the properties in 2.1,which the primitives we discuss can solve.
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As for the notation, we will consider that when using an encryption key ke and an encryption

algorithm to encrypt a message m, we will obtain a ciphertext c. Using the key kd and c with a

corresponding decryption algorithm we will obtain the original message m.

This is symbolized as follows:

Encrypt(ke,m) = c (2.1)

Decrypt(kd ,c) = m (2.2)

Note that sometimes ke and kd might be the same key.

When we speak of a ballot in this section, we are considering it consists of a digital list of identi-

fiers each associated to a different ciphertext. Each identifier represents a candidate or a question

on the ballot, and the ciphertext represents the box in front of the candidate/question, as on a paper

ballot. The voting system should encrypt a ’1’ or ’0’, respectively, if the voter chooses to tick or

not to tick a box. The counting can then be achieved by adding all the ’1’s and ’0’s the voters

encrypted, thus giving the total tally for each candidate/question on the ballot.

So a ballot B is defined as:

B = [(id1,option1), ...,(idi,optioni), ...,(idn,optionn)]; optioni ∈ 0,1 (2.3)

Definition 2.2: Ballot

An encrypted ballot, eB, looks as follows:

eB(key,B) =Encrypt(key,B)

=[(id1,Encrypt[key,option1]), ...,

(idi,Encrypt[key,optioni]), ...,(idn,Encrypt[key,optionn])]; optioni ∈ 0,1

(2.4)

Definition 2.3: Encrypted Ballot

As Bernhard and Warinshi noted[5], such a ballot format is not possible for all kinds of elections:

write-in candidates, for instance, are not possible9. But it will be sufficiently flexible for us to

work with. The sub-section on Mix-nets presents a solution that can work with any kind of ballot

format. We will assume that in election schemes, ballot syntax is public.

9Nor are they allowed in Portuguese official elections
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2.3.2 Blinded Signatures

If we start by trying to create a simple election protocol, then a simple one could work the follow-

ing way: have a voter construct his ballot and send it to an authority that holds the vote register to

have it signed. Then, take the signed vote and have it sent to a counting system using an anony-

mous channel. As the signature guarantees the voter is entitled to vote, if we presume the register

is honest and additionally does not sign a vote twice for the same voter, the counting authority can

add the vote to the roster and count it whenever it is supposed, without knowing who the voter is

in particular as he used an anonymous channel.

One flaw with such a system is that the voter register signs a vote in the clear and thus privacy is

in fact not guaranteed as we are merely shifting trust from one authority to another. It would be

useful to have a way to sign a message without knowing its contents - this is where blind signatures

come into play.

A blind signature scheme allows a voter to blind his vote before sending it to a voting authority,

sending a blinded vote instead - the blinded vote looks like a random string and does not allow an

attacker to guess the content of the vote. The authority can sign this blinded vote and send blind

signature and blind vote back to the voter. He then can extract his original vote and a signature on

this vote and send it to the counter who gets an authenticated vote.

To be secure, such a scheme must work in a way that no one can forge a signature that was not

blind signed and it must not allow an attacker to learn the contents of the message when seeing

the blinded message. For our work we will not need to detail any further how Blinded Signatures

work. We can refer to Bernhard and Warinshi[5] for a detailed description and to see how to use

RSA for this to build such a scheme.

Let it finally be clear that the issue of revealing the contents of the vote is but one problem with

our simple electronic voting protocol. For instance, without giving up privacy, a voter never could

be sure that his vote was indeed counted.

2.3.3 Homomorphic Encryption

What would make an electronic election verifiable to some degree, is if voters would see their

votes published after they sent them in. Of course doing this with plaintext votes would sacrifice

privacy and is not an option. But if the counting authority publishes a public key, every voter could

encrypt his vote with this key, and send in a ciphertext (and a blind signature on the ciphertext,

for authentication). The authority could then publish the ciphertext and everyone could check if

their vote was effectively recorded-as-cast - and without the secret key no one could know more

about the votes until the authority decrypts and starts counting. This still has problems, though. A

dishonest authority might never publish the results if she dislikes them. Also, decrypting individual

votes is time consuming.

Ideally we would never need that any authority decrypts individual votes. This guarantees privacy

even if authorities can’t be trusted, is computationally faster and precludes the need to trust anyone
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with secret keys. And indeed, using homomorphic encryption, it is possible to build a voting

system where no vote is individually decrypted.

Homomorphic Encryption schemes allow us to perform operations on ciphertexts that result in a

new ciphertext which, when decrypted, corresponds to the result of another operation performed

on the original plaintexts.

Quoting Bernhard and Warinshi[5]10:

An asymmetric encryption scheme E = (KeyGen;Encrypt;Decrypt) is homomorphic

if there are these additional operations:

-An operation + on the message space.

-An algorithm Add that takes a public key pk and two ciphertexts c1,c2 and outputs

another ciphertext s.

The correctness condition is that for any messages m1,m2 the following returns d =

m1 +m2:

(pk,sk)← KeyGen();

c1← Encrypt(pk,m1);

c2← Encrypt(pk,m2);

c← Add(pk,c1,c2);

d← Decrypt(sk,c);

This means with the proper encryption scheme and ballot formatting we can construct a voting

system that uses the homomorphic property to tally the votes by performing an operation on all

the encrypted votes. The result should be a new ciphertext that corresponds to the sum of all

individual messages: If the ballot is constructed in such a way that only ’0’ or ’1’ is encrypted for

every candidate (or question in a yes/no referendum), the final sum would give us the total number

of votes for each option. Thus, with only one decryption we could tally a result for a large number

of votes without decrypting the votes individually.

We will later see how ElGamal allows just that and we will also address how it is possible to avoid

that a dishonest voter encrypts a ’2’,e.g., to gain more votes for a candidate in the final sum. But

right now we still face, at least, one problem: with homomorphic encryption a secret key still

exists and is held by an authority that could decrypt individual votes. This could mean one could

learn or leak early results, harming the fairness of the election, and possibly link individual votes

to voters, breaking privacy.

2.3.4 Threshold Encryption

As we just saw, we still face one problem if we want to construct a voting protocol using cryp-

tographic tools: when using public-key cryptography, leaving the secret key in the hands of one
10It is their Definition 13
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authority allows this authority to leak results early (breaking fairness) or to decrypt individual

votes (harming privacy). What we thus need is to take this power away from a single authority.

An encryption scheme that allows threshold encryption will have authorities generate n public and

secret key shares. The public key shares, pki, can then be combined into a public key, pk that will

be used to encrypt messages as in a regular public-key environment.

To decrypt, each holder of a secret key share ski uses it to produce a decryption share, di. k shares

are then needed to produce a plaintext out of the ciphertext.

We have just described a so called "k-out-of-n threshold scheme". It requires that at least k au-

thorities out of n join to decrypt a vote - or indeed the homomorphic sum of votes. A secret key

is never generated so unless you have k dishonest authorities no individual vote can ever be de-

crypted and there is no way you can leak results before the proper time as k− 1 shares should

provide no information.

For a more formal definition we will again turn to Bernhard and Warinshi[5]11:

A (k,n) threshold encryption scheme consists of a key generation protocol KeyGen

for n authorities and four algorithms

(CombineKey,Encrypt,DecryptShare,Combine)

The key generation protocol results in all participants obtaining a public key share pki

and a secret key share ski. The key combination algorithm takes a list of n public key

shares and returns a public key pk←CombineKey(pk1, ..., pkn) or the special symbol

⊥ to indicate invalid shares. The encryption algorithm works just like non-threshold

encryption: c← Encrypt(pk,m). The decryption share algorithm takes a secret key

share ski and a ciphertext c and outputs a decryption share di←DecryptShare(ski,c).

The recombination algorithm takes a ciphertext c, a set D = {di}i∈I of at least k

decryption shares and outputs either a message m or the symbol⊥ to indicate failure.

The correctness condition is that for any message m and any set I of at least k author-

ities, the following yields d = m:

((pk1, ..., pkn);(sk1, ...,skn))← KeyGen();

pk← CombineKey(pk1, ..., pkn);c← Encrypt(pk,m);

for i ∈ I : di← DecryptShare(ski,c);d← Combine(c,{di}i∈I);

2.3.5 Mix-nets

If we want to have an election scheme that can encrypt any type of vote (like write-in votes, for

instance, and not just ’yes/no’ or ’1/0’ ballots) and still is verifiable, we will not be able to use the

homomorphic property to help us count the vote. What will be of use are mix-nets. They were,

11Definition 19 in their paper



2.3 Primitives 15

as stated before, first proposed by Chaum [2] for use in anonymous communication or indeed in

voting protocols.

Mix-nets allow us to hide the relationship between a given ciphertext and the originator of the

underlying message. What they essentially do is mix the order of a given list of ciphertexts while

performing an operation on the ciphertexts themselves, in one of two ways[8]:

«In Chaumian mix-nets, each input ciphertext is calculated by encrypting the plaintext

consecutively under the keys of the mixes starting with that of the last mix. During the

mixing operation, each mix "peels off" a layer of encryption by decrypting its input

values with the last mix peeling off the last layer and outputting the original plaintexts.

(...) In homomorphic mix-nets, each input ciphertext is a homomorphic encryption

of the plaintext. During the mixing operation, each mix simply re-randomizes each

encryption, resulting in a new ciphertext corresponding to the same plaintext. Even-

tually, the output tuple of the last mix need to be decrypted to retrieve the original

plaintexts»

Let us consider homomorphic mix-nets - so, mix-nets that work with reencrypting a message -

as they can be accomplished with ElGamal(section 2.4 presents in detail how), and were used in

previous versions of Helios, the protocol we want to analyze later.

We could idealize a voting system that would have voters produce their encrypted ballot ballot

with the aid of a public-key (that was made available by an authority beforehand) and send it to

the tallying authority. After making sure that voter was enlisted, the ciphertext could be published

on a board alongside a voter-ID to guarantee the vote was recorded-as-cast. Authentication would

not be needed if anyone could confirm that the said ID corresponded to a voter who was entitled

to vote.

At the proper time all voter IDs can be separated from the encrypted votes, and the ciphertexts can

be put through a mix-net that reencrypts the encrypted votes with the same public key producing

new ciphertexts (unrelated to the original one) for each encrypted ballot, while mixing their order.

As one authority would then still be able to relate the output of the mix to its input, various mixes

could be devised, each reencrypting. If at least one authority works honestly in not divulging the

mix, the system guarantees privacy.

These new ciphertexts could then be decrypted with the secret key that corresponds to the public

election key - they would not be traceable to the original ciphertexts sent in by the voters - and the

votes could be counted in a straightforward way.

But, one may ask, if trust cannot be guaranteed for all authorities and mix-nets eliminate the

relationship between the ciphertext that is decrypted in the end and the one that was sent in by the

voter, then how can one guarantee that an authority is not simply changing ciphertexts at will, to

falsify the end result?

This and other problems we have so far overlooked will be addressed next.
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2.3.6 Zero-Knowledge Proofs

There still are unsolved issues if we were to build an electoral system with the primitives we have

considered so far. One was just put forward at the end of the previous sub-section. But is not the

only one.

When using homomorphic ciphers to tally a vote one must keep in mind that a dishonest voter

could encrypt a ’2’, instead of a ’1’, thus gaining two votes for the candidate of his choice. A

dishonest or confused voter could also check multiple choices in an election where only one option

is allowed. If ballots were to be individually decrypted, such misformatted ballots would be spoilt

and not counted, but we are making a point of not decrypting individual ballots as that can be a

security feature to guarantee privacy.

Also, when using threshold encryption a dishonest authority could publish a wrong public key

share, or later when creating their decryption share a dishonest authority, interested in disrupting

the result, could produce a fake share - it is a random-looking number, after all - and the final

decryption of the homomorphic sum would not be possible, without giving away who is to blame.

Any obligation that authorities make their secret keys known is violating the purpose of using

threshold encryption in the first place.

What will help us here are yet another cryptographic “tools that allow you to prove that you have

done a certain operation correctly, without revealing more than that fact”[5].

In an election setting, zero-knowledge proofs could be used for the following reasons[9]:

1. Trustees12 are required to prove that they know the [secret] key that matches the

public key they are publishing;

2. Trustees are required to prove that they honestly contribute to the tally of the

elections;

3. Voters are required to prove the validity of the ballot they submit.

This significantly lowers the margin for errors or dishonesty from the authorities. If such proofs

are provided, everyone can check that

1. Every authority holds the secret key that matches the secret key they published13.

2. Every authority published a decryption share that is well computed from the homomorphic

sum.

3. Every ballot is consistent with the rules of the election for a proper ballot.

We will sketch how these can work in an ElGamal environment in subsection 2.4.5.
12What we have been calling authorities
13This also is important because, in an ElGamal environment, a dishonest authority could, if it waits long enough,

compute a public/secret key pair and publish his public key share as the division of this public key by the product of
the shares of the other authorities. As Pereira[9] described, this would allow it to decrypt any vote individually. The
authority would not know a secret key corresponding to the share he published, though.
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2.4 ElGamal

ElGamal is a well-known public-key (or asymmetric) encryption system that offers homomorphic

and threshold properties. We will show in this section how ElGamal works and demonstrate those

properties. That will allow us to proceed to analyze Helios, a voting system built upon ElGamal.

2.4.1 The Basics

ElGamal was proposed by Taher Elgamal14 in 1984[10]. As a public-key encryption system it

uses a public key, pk, to encrypt a message and a secret key, sk, to decrypt. This means pk can

be freely published by the holder of the corresponding sk. Anyone wishing to send a message can

use pk to encrypt it and will not be able to decrypt it only by knowing the public key.

Rather than relying on permutation and substitution like systems before it, public-key cryptog-

raphy works with mathematical functions to encrypt/decrypt messages[11]. One function, or

algorithm, will take a key and encrypt the message and another function will be used with the

corresponding secret key to decrypt. It is immediately obvious that knowledge of the public key

cannot lead to knowledge of the secret key or of an encrypted message - even with knowledge of

the algorithm used.

To keep notation consistent with Bernhard and Warinshi[5], we will follow their definition15 of

ElGamal:

Given (p,q,g), pick sk as a random element of Zq and compute pk = gsk, mod p.

Encrypt(pk,m): Pick r at random from Zq and set c = g∗ r(mod p); d = m∗ pkr(mod

p). Return (c,d).

Decrypt(sk,(c,d)): Compute m = d/csk (mod p)

This works in a so called (p,q,g) group, the multiplicative cyclic subgroup of Z∗p (Zp without

’0’) with order q generated by g with p prime and q = (p− 1)/2 also prime. In this group,

multiplication modulo p is well defined and the cryptosystem is safe if discrete logarithms are

difficult to find - it is believed they are.

Helios is an election scheme built on ElGamal using a ballot that, for a normal election16, presents

the voter with the options and so he can a box by the option (or options, in case multiple choice

is allowed) he favours. The system then encrypts a ’one’ for a ticked option and a ’zero’ for an

unticked one.

14The author’s name has no capital ’G’.
15Their Definition 15
16Where the voter is presented with as many candidates as are running and picks one
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2.4.2 Homomorphism

Remember how ElGamal encrypts/decrypts in a (p,q,g) environment:

Encrypt(pk,m) = (gr,m · pkr) = (c,d); [pk = gsk]

Decrypt(sk,(c,d)) = d/csk = m;

Now let us see what happens if we have to different ciphertexts (c,d) and (c′,d′) and multiply

them:

(c,d)(c′,d′) = (grgr′ ,m · pkr ·m′ · pkr′)

Now if we decrypt the product of the ciphertexts:

Decrypt(sk,(c,d)(c′,d′)) = (m · pkr ·m′ · pkr′)/(gr·sk ·gr′·sk)

= m ·m′

What we see here, then, is that by multiplying two different ElGamal ciphertexts, the result will

be the encryption of the product of the original messages. This is a homomorphic property, but

not a very useful one to build a voting system. What we would want is the sum of the original

messages, so that the product of the ciphertexts, constructed as ’0’ or ’1’ to correspond to a mark

on a ballot paper, would yield the sum of the votes. What we may notice, though, is that if we

encrypt gm instead of m, we will obtain a way to extract the sum of different messages m, m′, etc,

rather than their products:

Encrypt(pk,gm) = (c,d) = (gr,gm · pkr); [pk = gsk]

Now we will multiply two different ciphertexts and decrypt the resulting product:

(c,d)(c′,d′) = (gr ·gr′ ,gm · pkr ·gm′ · pkr′)

Decrypt(sk,(c,d)(c′,d′)) = (gm · pkr ·gm′ · pkr′)/(gr·sk ·gr′·sk)

= gm ·gm′

= gm+m′

To get m+m′ out of this result is of course the same as solving the Discrete Logarithm Problem,

which means it is very hard. For exponents in the range of the number of voters we can expect

in a typical election, though, is should not be a big problem to try all possible natural exponents

of g, for instance, to find the corresponding result and thus to extract the number "hidden" in the

exponent.
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2.4.3 Threshold Encryption

ElGamal also allows for key distribution in such a way that if the authorities do not cooperate to

decrypt (and we will only want to decrypt the homomorphic sum of the votes) a ciphertext, no

decryption is possible.

N-out-of-N threshold is pretty straightforward: Let all authorities generate an ElGamal keypair

(pki,ski) in an agreed upon (g, p,q) group and share their public key share, pki, so that the univer-

sal public key, pk, can be computed as the product of all pki.

Now, to encrypt anyone can now use pk:

Encrypt(pk,m) = (gr,m · pkr) = (c,d); pk =
N

∏
i=1

pki

To decrypt, every authority i uses its personal secret key share ski which has been kept secret,

obtaining a decryption share di.

DecryptShare(ski,(c,d)) = cski = di;

The original message can the be extracted by diving the d part of the ciphertext tuple by the product

of the decryption shares.

m = d/
N

∏
i=1

di

= d/
N

∏
i=1

cski = d/c∑
N
i=1 ski = d/csk,

which is the definition of decryption in ElGamal. This holds because:

pk =
N

∏
i=1

pki =
N

∏
i=1

gski = g∑
N
i=1 ski = gsk

2.4.4 Mix-nets

ElGamal has a straight way to implement homomorphic mix-nets as described in section2.3.5,

which are the protocol in which each mix reencrypts the ciphertexts.

Lets take a ciphertext composed by the tuple

(c,d)

Using the definition of ElGamal we know that

(c,d) = (gr,m · pkr)

where m is the message that was encrypted. Now if we use the same public key, pk, to re-encrypt
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that ciphertext using randomness r′ we will obtain ciphertext (c′,d′) like so:

Encrypt(pk,(c,d)) = (c ·gr′ ,d · pkr′) = (gr ·gr′ ,m · pkr · pkr′) = (c′,d′); [pk = gsk]

This corresponds to the original message m being encrypted with randomness r+ r′:

(gr ·gr′ ,m · pkr · pkr′) = (gr+r′ ,m · pkr+r′)

and can thus be decrypted with the secret key sk that corresponds to the public key used to encrypt

and re-encrypt, pk.

So to construct a mix-net based on ElGamal, whoever runs a mix has simply to re-encrypt the

ciphertext given as an input, and give as an output the re-encrypted ciphertexts in a different

order: this way no ciphertext from the output can be traced to a ciphertext of the input and even

ciphertexts that were originally published on a board are now irrelatable to a specific origin. This

may be done several times by different authorities so that no one has to fear that someone can

associate an output to an input - whoever is in charge of the mix may well be able to do so. As

long as the same public key is used, in the end the final ciphertexts will be decryptable with the

secret key or by doing threshold decryption.

This leaves space for dishonest mixers to substitute ciphertexts, though. In fact as ciphertexts are

indistinguishable from random strings, no one can tell if an output ciphertext is a re-encryption or

a totally different encrypted message, or indeed simply a random string from the ciphertext space.

In order to avoid the need for trust here, zero-knowledge proofs can be used.

2.4.5 Zero-Knowledge Proofs

We will present three Zero-Knowledge Proofs that can be used with ElGamal to prove certain

statements.

2.4.5.1 Schnorr Protocol

Suppose, in an ElGamal environment with parameters (p,q,g), we want to prove to someone that

we hold sk that corresponds to a public pk. One protocol to do so, between a prover and a verifier,

works like this:

1. The prover picks another key pair (pk′,sk′) and shows pk′

2. The verifier chooses a random value c ∈ (0, ...,n−1),n≤ q and computes pk′′ = pk′ ∗ pkc

3. The prover can now compute and present sk′′ because pk′′ = pk′ ∗ pkc⇔ gsk′′ = gsk′+sk∗c and

only knowledge of sk (the original challenge) allows computation of sk′′.

Definition 2.4: Schnorr Protocol
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This kind of interactive proof holds the form of an interactive Σ -protocol and one can immediately

see it is not practical (being interactive) in a real-life application where, furthermore, such a proof

only convinces one verifier: If Alice and Bob run the protocol, Charlie cannot be sure they did not

collude and had Bob pick a sk′′, with corresponding pk′′ = gsk′′ , then computing pk′ = pk′′/pkc

and shared these values beforehand with Alice. Alice and Bob could still run the protocol, and

Alice could produce sk′′ in the end without knowing the sk that corresponds to the pk she made

public in the beginning.

Therefore a transformation of this scheme is made in order to make it both non-interactive and

universal:

The Fiat-Shamir transformation of a Σ-protocol is the protocol in which Bob’s

choice of a challenge c is replaced by Alice computing the challenge as c := H(y,b)

where y is the value of which she is proving a preimage [the original pk] and b is her

"commitment", the message that she would send to Bob immediately before getting

his challenge. H is a cryptographic hash17 function with range {0,1, ...,(n−1)} [5]

So in ElGamal, to prove that someone in fact holds the secret key to match its advertised public

key, a Schnorr proof of knowledge is produced - with the Fiat-Shamir modification to avoid the

need for interactiveness. A proof that one holds sk to a corresponding sk, then, is called π and

consists of (y,b,c,d). It can be checked by confirming that H(y,b) returns c and that pk = b+c∗y.

2.4.5.2 Chaum-Pedersen

Chaum-Pedersen proofs can be used to proof that a decryption share in Threshold ElGamal was

correctly produced. This means that in presence of the value a from an ElGamal ciphertext (a,b),

and a public key share pki the value d corresponds to aski with ski your secret key share.

The protocol can be described as follows:

1. Inputs: ciphertext (a,b), public key share pki, secret key share ski.

2. Pick a random r from Zq. Compute (u,v) := (ar(mod p),gr (mod p)

3. Compute a challenge as c := H(pki,a,b,u,v)

4. Let s := r+ c∗ ski (mod q)

5. Compute the decryption factor d := a∗ ski (mod p)

6. Reveal d and the proof π := ((u,v),s).[5]

Definition 2.5: Chaum Pedersen protocol

To verify, recompute that the hash yield c, such as c := H(pki,a,b,u,v) and check if as = u ∗
dc(mod p) and gs = v∗ (pki)

c (mod p).

17We will elaborate on these in section 2.5.1
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2.4.5.3 Disjunctive Chaum Pedersen

To prove that a ciphertext encrypts a value in a given range or one of two possible values (e.g.

either ‘0’ or ‘1’), disjunctive Chaum Pedersen proofs can be used. In Helios they are used to proof

an encrypted ballot contains either a ‘0’ or a ‘1’ and if proof is needed than in a list of options only

one (or another condition) 1 is present, then a so called overally proof is submitted too. We will

not elaborate on how to produce theses proofs and refer to [5] for that effect.

2.5 Other Primitives

As we will see further on, the primitives we looked at so far, are not enough for the analysis in

our work. We will thus take a look at other systems that are not necessarily found in the literature

as specifically used in voting systems, but rather find a general usage in all kinds of cryptographic

protocols. As we will see, Certvote makes use of them.

2.5.1 Cryptographic Hash functions

A hash function H takes an input m of arbitrary length, and produces a fixed-size output h.

h = H(m) (2.5)

Fundamentally we want H(m) to be “an algorithm for which it is computationally infeasible (be-

cause no attack is significantly more efficient than brute force) to find either (a) a data object that

maps to a pre-specified hash result (the one-way property) or (b) two data objects that map to the

same hash result (the collision-free property).”[11]

Hash functions are used, as we will see in 2.5.3, in the construction of signature schemes, and we

will also use suggest hash functions to guarantee ballot data has not been tampered with, when

describing changes to Certvote.

2.5.2 RSA

Like ElGamal, RSA can be used to build an asymmetric encryption scheme - which means a

scheme that uses one key to encrypt messages and a different one to decrypt ciphertext. In the

particular case of RSA based schemes, both keys can be used to encrypt a message, which the

other will decrypt - this property enables RSA to be used for signing messages, as we will see in

2.5.3.

On itself, RSA is a trapdoor permutation believed to be one-way: the secret key enables one to

invert said permutation, but knowledge of the public key does only allow the regular permutation.

To turn this permutation into an encryption scheme one usually uses random padding that will

add randomness to plaintext, after which the permutation is used on the padded plaintext with
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the public key, to encrypt. Decryption is achieved by using the secret key with the permutation,

followed by unpadding to obtain the plaintext.

RSA was first publicly proposed by Ron Rivest, Adi Shamir, and Len Adleman in 1978 and is “the

most widely accepted and implemented general-purpose approach to public-key encryption”[11].

Following [5], for a padded message block M and a ciphertext block C, we have:

C = Memod n

M =Cdmod n = (Me)dmod n = Medmod n

where n = p∗q is the size of the block18, p and q are prime, pk = {e,n} and sk = {d,n}. It is out

of the scope of this work to show how d and e must be related for these expressions to hold but the

essential requirements are the following[11]:

1. It is possible to find values of e, d, n such that Med mod n = M for all M < n.

2. It is relatively easy to calculate Me mod n and Cd mod n for all values of M < n.

3. It is infeasible to determine d given e and n.

2.5.2.1 OAEP

One padding scheme used with RSA to build an encryption scheme is OAEP (Optimal Asymmetric

Encryption Padding), which was defined by the RSA Laboratories in 2002 [12]. It makes use,

internally, of a hash function and a mask generation function that parameterize OAEP. With proper

choosing of these two functions RSA-OAEP is safe against chosen-ciphertext attacks[12].

2.5.3 RSA signatures

The idea behind digital signatures in general is to enable the author of a message to prove his

authorship. By signing a message using his secret key, he creates a signature - usually of a fixed

length - that can be verified with anyone with access to the signer’s public key. Given a public key,

pk and a secret key, sk, we can define, for a message, m, two functions as follows:

sign(sk,m) = σ (2.6)

veri f y(σ ,m, pk) = b, b ∈ 0,1 (2.7)

If a given signature, σ , is valid for a message m and public key pk, then b = 1, else veri f y will

return b = 0.

To simplify we will write σm
sk to signify a signature σ for the message m calculated with sk.

18Which means binary blocks will be of i bits with 2i < n < 2i+1
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We will define, for the scope of this work, a signature function that returns the original message

and the appended signature, like this:

sig(sk,m) = (m,σm
sk) (2.8)

Definition 2.6: Signature

Following[11] we can describe a signature using RSA: for this one needs to use a hash function to

create a fixed-size output for a message of any size. The hash is then encrypted with RSA using

the signer’s sk. Message and signature are then sent to the destination. The recipient - or anyone,

for that matter - can then generate a hash for the message himself and decrypt the RSA encryption

of the signature using the sender’s pk - comparing the hash he computed and the one he decrypted,

he can verify the signature if they are equal. As the sender’s sk is only known to the sender, no

one else could have produced that signature.

2.5.4 AES

Contrary to ElGamal and to RSA, AES (Advanced Encryption Standard) allows the construction

of a symmetric cipher scheme, with only one key to encrypt and decrypt. The only key is to be

kept secret, hence called secret key (sk), and has somehow to be distributed before the exchange

of secret messages is to take place.

AES on itself is a pseudorandom permutation (or a symmetric key block cipher algorithm) over

blocks of 128-bits. It was chosen (when used with modes of operation as we will see right away)

as encryption standard by the National Institute of Standards and Technology (NIST) in 2001[13]

after being introduced as ’Rijndael’ by two Belgian cryptographers, Joan Daemen and Vincent

Rijmen, in the AES selection procedure. As “the structure of AES and most symmetric ciphers is

quite complex and cannot be explained as easily as many other cryptographic algorithms”[11], we

will refer the reader to the definition in [13] and to the analysis in [11] if a complete description

and study is needed. Let it here be said that AES works over blocks of 128 bits, with a key

size of 128, 192 or 256 bits. One will speak of AES-128, AES-192 or AES-256, depending on

the key size. The function operates several rounds of “byte substitution, permutation, arithmetic

operations over a finite field, and XOR with a key”[11] on the message.

2.5.4.1 Cipher Block Chaining mode

To turn block ciphers like AES into encryption scheme, modes of operation are necessary. They

allow the encryption of messages larger than the block size, while ideally randomizing the output.

NIST recommends “five confidentiality modes of operation for use with an underlying symmetric

key block cipher algorithm: Electronic Codebook (ECB), Cipher Block Chaining (CBC), Cipher

Feedback (CFB), Output Feedback (OFB), and Counter (CTR). Used with an underlying block ci-

pher algorithm that is approved in a Federal Information Processing Standard (FIPS), these modes

can provide cryptographic protection for sensitive, but unclassified, computer data”[1].
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Figure 2.1: CBC-mode (from [1], p.10).

CBC mode, as shown in figure 2.1 works by “combining (“chaining”) (...) the plaintext blocks

with the previous ciphertext blocks. The CBC mode requires an IV [Initialization Vector] to

combine with the first plaintext block. The IV need not be secret, but it must be unpredictable”[1].

AES-CBC produces messages that are safe from chosen-ciphertext attacks.

2.5.5 Shamir Secret Sharing

Rather than using threshold encryption to force collective decryption, it sometimes can be useful

to share a secret - like a password, for instance - in a way that it only can be recovered when a

certain number of people join with their secret shares. Again we can speak of a k-out-of-n share if

any k parts of a secret divided in n are enough to reconstruct it.

In 1979, Adi Shamir[14] proposed a system that works built on the notion that given k different

points (xi,yi) on the (x,y) plane “there is one and only one polynomial q(x) of degree k−1 such

that q(xi) = yi”. For a secret D, represented as a number, one can then generate a random poly-

nomial of the type q(x) = a0 +a1x+ ...ak−1xk−1 where a0 equals D, k is the number of shares we

wish to distribute and the pairs [Di,q(i)] represent those shares. Thus, with access to k−1 shares

no information on D is gained and any k shares (k points of q(x)) allow to reconstruct q(x) and

find D = q(0) if modular arithmetic is used, modulo a prime number p.
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2.5.6 Hybrid Encryption

Public key cryptosystems are usually much less efficient than asymmetric ones. For that reason

one can devise an asymmetric scheme for arbitrary messages that couples a symmetric cipher

for arbitrary sizes messages (e.g. AES-CBC) and an asymmetric cipher for small messages (e.g.

RSA-OAEP).

2.6 HSM

HSM (Hardware Security Modules) are dedicated pieces of hardware that store cryptographic

keys and process cryptographic operations. Certvote uses a HSM located in Casa da Moeda,

the portuguese mint. As per Annex D, Casa da Moeda offers high a security environment for

sensible dat or operations. This includes separation from the Internet (LAN access only), sealed

cableworks, restricted to data access on a logical level, exaustive loggin, contingency plans to

ensure operation when natural, equipment, or human failure occurs, high-security instalations and

traceability of every access and movement.

We will consider in this work that the HSM used in Certvote is tamper-proof and always works as

configured.

2.7 Conclusion

In this chapter we have defined what essential properties an electronic voting system must present

(Definition 2.1). We have taken a look on how paper-based elections work in Portugal, and how

such elections fit into the properties we defined beforehand.

We then proceeded to describe the cryptographic characteristics that are referred in literature as

useful when building electronic voting schemes, and we described ElGamal, a system that allows

the access to said characteristics. We also introduced other schemes that will be important when

analyzing Certvote, in the next section, or when introducing improvements in section 5.3.
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Certvote

Having defined the necessary tools, we will now take a look at the i-voting solution of Multicert,

called Certvote.

3.1 Introduction

Certvote1 is a voting solution produced by Multicert, a Portuguese company. Certvote exists for

well over a decade now and took part in the Portuguese trials for electronic voting in 2004 and

2005. It has been analyzed by [15] but as we will see it has radically changed since then, being

nowadays an internet voting system rather than one based on voting machines.

As an i-voting solution it has been served to private customers with success for the time of its

existing.

3.2 Security Requirements

On their website, Multicert advertises the following properties2 of the product.

CertVote Warranties

CONFIDENTIALITY OF THE VOTE CertVote ensures that the vote is secret and

only the elements of the election commission can access the results after authentica-

tion.

VOTING INTEGRITY There can be no change in the content of the vote without this

being detected.

ANONYMITY GUARANTEED Using cryptographic methods and hardware, your

voters anonymity is guaranteed - it is not possible to trace the vote back to the voter.

These are essentially our properties of Privacy and Correctness from our Definition 2.1.

1https://certvote.com/
2http://certvote.com/#warranties
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3.3 Description3

Certvote works with a voting commission (VC) that has n elements VCi. The system can be

configured so that k out of n elements have to work together to decrypt the final votes and thus

tally the result. Key elements of the system are:

• the n VCi members of the commission,

• the mClient web app that said members work with,

• the Promoter server that validates voters,

• the Hardware Security Module (HSM) that stores the election’s secret key and decrypts

the symmetric keys used to encrypt individual votes,

• the ’Sistema de Mediação de Voto’4 (SMV)module that stores encrypted votes, and

• the mBallot web app that voters log into to vote

• a VOTE which consists of an encrypted ballot (which signifies the voter’s choices) and an

encrypted key, all signed with the voter’s signing key (as formalized in Definition 3.3.4.3).

Voter listings, the dates and further parameters of the election as well as the credentials for voter

and VC elements are expected to be setup previously. We will assume all communication between

computers is secure but not anonymous.

3.3.1 Setup Phase

To setup an election, all n elements of the Voting Commission will join at a computer to use their

previously obtained credentials to login to the mClient web app. mClient will check the credentials

with the Promoter server.

After all elements have successfully logged on, mClient will communicate this to the Promoter and

an election setup can start. The Promoter will ask the HSM server to create a user for a random

password generated by the Promoter. HSM will return the User Certificate for that user to the

Promoter - this doubles as username for that user. The Promoter then generates a random alias for

that election and asks the HSM to create a RSA 2048 keypair for that election. HSM will return

the public key, pkencrypt
HSM . The password for the user on the HSM and the election alias are then

broken up into n parts with a Shamir Secret-Sharing algorithm to allow reconstruction with any k

parts. The n parts are relayed back to the mClient app. There every member, VCi, can download

its part of the secret to keep to himself until the end of the election - after testing everything is

consistent so far, that is. For that purpose the system then undergoes an audit phase.

To audit the process so far, the parties should now upload their secret share back to the mClient.

It will then be sent to the Promoter that will reconstruct the secret using all n parts, obtaining

3This section is built on interviews with members of the development team at Multicert
4Vote Mediation System
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the HSM user password and the election alias - the Promoter kept the User Certificate in the first

place. It will then ask the HSM to encrypt a random string for that user and election, which will

prompt the HSM to return a ciphertext. The Promoter will send that ciphertext back to the HSM,

asking it to decrypt. If the HSM returns the original string the Promoter will consider the RSA

encryption/decryption on the HSM is working properly and that the secret shares can enable proper

access to the HSM. The VC members will receive an OK via mClient that everything is working

as expected.

3.3.2 Voting Phase

When election time arrives, another webapp, mBallot, will be made available through web

browsers on the internet. Voters can here present themselves with credentials they have obtained

beforehand. After clicking "login" a RSA512 keypair will be locally generated and used to sign

the credentials sent to the Promoter: the Promoter will get the user/password pair and the public

RSA512 key (pksign
voter) just generated, signed with the secret RSA512 key (sksign

voter) that the local

computer of the voter will keep. If the signature checks out and the user/password pair too, and if

there is a valid election for that user underway, the mBallot will receive an authentication TOKEN

alongside an ’OK’ message that the voting can proceed.

The TOKEN consists of: authentication date, voter category, voter RSA512 public signing key

pksign
voter, voter pseudonym5, voting ballots which that given voter can access and election ID, all

signed with a secret signing key, pksign
promoter, of the Promoter6. The signature scheme used by the

Promoter is RSA-PSS with RSA2048 and SHA-1.

After the OK from the Promoter, the voter can ask for his ballots, with mBallot confirming in the

TOKEN which ones he has access to. mBallot then sends the ballots and the election’s public key

(pkencrypt
HSM ) to the voter’s computer. The voter can now proceed to select his options on the ballot(s)

and generate an AES-CBC 192 symmetrical key, skencrypt
voter (key which he will use to encrypt his

options), and further encrypt the same key with the pkencrypt
HSM of the election using a RSA-OAEP

scheme. He will sign this VOTE with sksign
voter and send it to mBallot. mBallot sends this VOTE

with the TOKEN to the SMV, and the SMV:

• validates the signature on the TOKEN

• validates the signature on the VOTE

• validates if all ballots have been submitted

• validates with the Promoter if the Token is still valid7

• saves the votes (stripped of their signature) in his database if all checks out

5The pseudonym was generated with the voter list and is only know to the Promoter
6One might think of this TOKEN as a certificate by the Promoter validating the signature of the voter like a Certifi-

cate Authority would
7A voter may have logged in and voted on another session



30 Certvote

• discards the TOKEN.

An ’OK’ message will be sent back to the mBallot and back from here to the voter.

At the defined time, voting closes and no more votes are accepted.

3.3.3 Tallying Phase

k VC members log in to the mClient app from one computer. mClient validates the logins with the

Promoter and acknowledges success/unsuccess.

The members then upload their part of the secret, which the mClient app sends to the Promoter

who starts by checking all voting options in the database have zero votes, and then reconstructs

the secret. A line of threads is set up, each of which:

• asks the SMV for votes, that are sent back8 by the SMV to the thread on the Promoter - this

is done by the order the votes entered the SMV.

• The thread then proceeds to send the encrypted AES key to the HSM, receiving in turn a

decrypted skencrypt
voter .

• The SMV then decrypts the ballot with the key he just got. This goes on for as long as there

are encrypted votes on the SMV

Finally the Promoter can write the final tally and make it public. The Promoter keeps no logs as

to what it decrypted.

3.3.4 Stripped Down Description

It may be useful to look at Certvote from a more abstract point of view. We will for this, define

some new primitives.

3.3.4.1 Token Request

During the tallying phase, mBallot generates a pair of RSA512 keys to use to sign the VOTE it

sends to the SMV, who works as an urn. But as SMV does not hold the login details of the voters,

the voter has to ask the Promoter to certify his public key. We may see this in this way:

Token Request is a primitive that takes as input a public signature key, a voter username and the

corresponding password. It is signed9 by the voter with the secret key that corresponds to pksign
voter,

called sksign
voter and sent from mBallot to the Promoter. We symbolize "Token Request" as:

T R = sign(sksign
voter, [(pksign

voter),username, password)]) (3.1)

Definition 3.1: Token Request

8A VOTE consisting of a ballot encrypted with an AES-CBC key, and that key encrypted with the RSA 2048 public
key of the election

9Recall Definition 2.6
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3.3.4.2 TOKEN

On getting a token request as defined in Definition 3.1, the Promoter will check if the signature on

the request corresponds to the enclosed pksign
voter, if username and password are correct as stored in a

previously established database and if an election is running for that user. He will then answer with

a TOKEN containing the public key of that voter, the pseudonym of that voter and metadata on the

election and the voter. This TOKEN is signed with the Promoter’s secret signing key, sksign
promoter.

A TOKEN, then, is defined as:

TOKEN = sign(sksign
promoter, [pksign

voter, pseudonym,metadata]) (3.2)

Definition 3.2: TOKEN

3.3.4.3 Vote Construction

Upon receiving the TOKEN from the Promoter, mBallot will proceed to construct a VOTE. A

VOTE consists of an encrypted ballot, signed with the secret signing key of the voter. Remember

Definition 2.3 for an encrypted ballot, eB:

eB(key,B) =Encrypt(key,B)

=[(id1,Encrypt[key,option1]), ...,

(idi,Encrypt[key,optioni]), ...,(idn,Encrypt[key,optionn])]; optioni ∈ 0,1

As we saw, Certvote sends the key that encrypted the ballot alongside with the encrypted ballot.

So let us define encrypted key, eKey, as:

eKey = Encrypt(pkencrypt
HSM ,skencrypt

voter ) (3.3)

Definition 3.3: Encrypted Key

Now we can define a vote as:

VOT E = sign(sksign
voter, [eB,eKey]) (3.4)

Definition 3.4: VOTE

So a VOTE is a signed tuple, consisting of an encrypted ballot and the encrypted (with the elec-

tion’s public key) key to that ballot.
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Figure 3.1: A stripped down view of Certvote.

3.3.4.4 Stripped Down Diagram

Figure 3.1 shows an abstract view of how Certvote handles a vote from the moment a user logs

in until the vote is counted, showing how the different system components interact. It simplifies

the workings of Certvote without changing the overall transit of sensible information the and

encryption/decryption processes. We assume that all verifications (credentials, signatures) are ok,

so a valid voter is interacting with a working system.

3.4 Analysis

We will now take a close look on how these workings place Certvote in respect to our findings.

3.4.1 Primitives

To guarantee privacy, Certvote has the votes of every user encrypted with a 192bit AES key

(skencrypt
voter ) in CBC mode. Said key is then encrypted with the election’s RSA 2048 bit public key,

pkencrypt
HSM with OAEP-SHA-1 and MFG1. skencrypt

voter is only to be decrypted after the polls close,
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and subsequently it can be used to decrypt the vote itself. It is essential then that AES-CBC and

RSA-OAEP are well suited to guarantee privacy and we should notice that we need not only short-

term protection during the time the election is running (although this is important and assures

fairness as defined in Definition 2.1) but individual votes are expected to remain secret well after

the election ends, ideally forever. In the worst case scenario in which the communication between

voter and the system is opened to eavesdropping or the encrypted votes are somehow else accessed,

the encryption of the votes should still hold.

We refer to [16] to help us with the characterization of the primitives and schemes used in Certvote

in terms of security. Essentially this document characterizes a cryptographic system as either

legacy or as suited for new (or future) use. Legacy systems may be in use at the moment, and are

still suited in that case, but should be phased out in the near future in benefit of more long-term

solutions. A system that is not even appropriate for legacy use in the terms defined by the paper,

should be «replaced as a matter of urgency».

Following the reasoning used in [16], we will first look at the scheme used and then at the under-

lying primitive.

3.4.1.1 AES-CBC 128

CBC - Cipher Block Chaining is a well-known mode of operation for Block Ciphers. If the

underlying block cipher is secure - AES in our case - then it is IND-CPA secure. This is of

course enormously important in an environment where Plaintexts - Ballots - may be formatted in

a publicly known way. The mode is not IND-CCA secure, though, but as noted in [5], “[f]or the

purposes of building ballot private voting schemes, non-malleability is sufficient”.

We note that AES-CBC is malleable.

IND-CPA security: Indistinguishability under Chosen Plaintext Attacks presumes an “attacker

may chose any two messages, send them to the security game 10 and get an encryption of one of

them back; a scheme is called IND-CPA secure if she cannot tell which message the security game

chose to encrypt.”[5]

IND-CCA security: Indistinguishability under Chosen Ciphertext Attacks makes the same as-

sumptions as the IND-CPA game, while also allowing the attacker to submit ciphertexts to be

decrypted - except for the ones he is trying to make a statement about.

Definition 3.5: IND-CPA and IND-CCA

Looking at AES as a primitive, [16] classifies 128 bits, and hence the 192 bits Certvote uses, as fit

for future use, but recommends 256 bits for long term use.

3.4.1.2 RSA encryption

RSA does not rely on a mode of operation to form a scheme but does require on a padding mode.

This is important to avoid that the deterministic property of the plain RSA algorithm allows chosen

ciphertext attacks. Certvote uses OAEP with SHA-1 and MGF1.
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[16] cites OAEP as safe for future use, SHA-1, however, should be updated. SHA-1 is only

recommended for legacy use, but [16] stresses that it «(probably)» does not offer the 80 bit security

they consider minimum for legacy applications. They explicitly «propose removing SHA-1 from

applications as soon as possible».

As for RSA itself, [16] cites 1024 bits as the minimum for legacy only, but encourages 3072 for

near term future and 15360 bits for long term future use.

3.4.1.3 RSA signature

The signature that the Promoter uses to sign the TOKEN, and thus is essential to authenticate a

voter with the SMV is RSA-2048 with SHA-1.

RSA-2048, as seen just before in 3.4.1.2, is enough for legacy use but 3072 or even 15360 bits

are recommended for future use, near term or long term, respectively. The update from SHA-1 we

just noted when looking at OEAP also applies here.

3.4.2 Protocol

3.4.2.1 Trust Assumptions

Referring to Figure 3.1 we can sketch what assumptions we have to make to trust the system in

terms of its security requirements (3.2) - which came down to what we defined as correctness and

privacy.

To break Privacy, a vote will have to be decrypted by an entity that also holds the TOKEN, which

allows to cross a vote with the identity of its voter. Privacy will be guaranteed:

• if mBallot11 does not leak information on the vote OR

• if SMV and HSM do not collude to decrypt ballots, as the SMV has eB and TOKEN, and

HSM holds skencrypt
HSM .

To break Correctness one could have the following scenarios:

• mBallot encrypts an invalid or different vote than the voter intended OR

• SMV registers a different ciphertext than he got from a voter

• Promoter counts ’wrong’ in the tallying phase either sending wrong eKey to the HSM or

altogether ignoring the inputs from HSM or simply altering the votes at the adding phase.

So to guarantee Privacy we would have to be sure that mBallot does not leak votes and that the

HSM does not collude with the SMV do decrypt ballots and publish the associated TOKEN.

As for Correctness, if we could assume the HSM is tamper proof and if voters could be sure there

vote is well built by mBallot and well registered on the SMV, we could guarantee Correctness only

needing trust in the HSM.
11Publishing its code will make this less of an issue.
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3.4.2.2 Verifiability

While Privacy and Correctness are advertised as "the" properties of Certvote, we must not forget

the other properties of definition 2.1.

We can easily observe that the system does not offer any taste of verifiability, as defined in 2.

Votes cannot be verified as cast-as-intended or recorded-as-cast, by individual voters, nor can they

be verified as tallied-as-recorded by anyone. This adds up to a system that is neither individually

nor universally verifiable.

While this does not mean the system is unsafe, per se, verifiability is an essential property in

modern e-voting/i-voting systems: it helps to build trust and does a great deal to detect corruptions

of the various system components - making them very hard if not impossible to go unnoticed.

So in the case of Certvote one cannot, in fact, rule out that a client-side attack is able to corrupt the

encrypted vote in order to spoil it or even to cast a different vote than intended. Even if the voter

could see the ciphertext after encrypting his vote, it is indistinguishable from a random string so

a voter could never be sure what is encrypted. And allowing the voter to see ciphertext and the

corresponding symmetric/private key is bad on principle: It corresponds to giving out receipts

which paves the way to easy coercion.

But even if a voter could be sure his vote is correctly encrypted, he could not be sure it reached

the ’urn’ (on the SMV, in this system) uncorrupted, or that the ’urn’ records it correctly without

(intended or not) manipulation.

And last but not least, even a correctly recorded vote can be discarded, changed or otherwise

tampered with in a malicious or corrupted tallying process.

With verifiability features, then, Certvote could offer guarantees to the integrity of the results. This

would mean users or observers would not need to trust the workings of the different components

- as well as the honesty of its operators and programmers - to have faith in the result.

We will show later that if Verifiability features can be implemented (and we will argue they can

and show so), if the HSM can be trusted and if authorities do not collude to decrypt votes before

an election closes, the system can fulfill the properties of definition 2.1 in a level comparable to

the State of the Art in e-voting systems.

3.5 Conclusion

After describing and analyzing Certvote we can now summarize how it stands in terms of our

definition 2.1:

• Correctness

– Completeness - Trust in the workings of the system is needed.

– Soundness - As votes are decrypted individually, bad voter behaviour does not affect

the tallying - wrong votes are simply discarded.

• Eligibility - Implies trust in the system.



36 Certvote

• Fairness - If the system works correctly, unless k authorities collude, there is no way to leak

results.

• Privacy - Votes are protected by RSA 2048 while communicated and if the system works

correctly, individual votes are not published. A corrupted computer the voter is on could

leak votes, though. If Promoter and SMV collude, individual ciphertexts may be exposed.

• Verifiability - No kind verifiability is present.

• Uniqueness - Implies trust in the system.

Apart from these properties what we want to note now is that Certvote does not, while still being a

well-behaving voting system, use any of the primitives we described in section 2.3 as being usually

referred in scientific literature on electronic voting systems.

Therefore we will now take a look at a system that builds exactly on those primitives, to see how

it works, what properties it offers, and what we can learn from it in order to potentially improve

Certvote.



Chapter 4

Helios

Having described Certvote we will now take a look another real-life i-voting system called Helios,

the self-entitled «first web-based, open-audit voting system»[3].

4.1 Introduction

Since first presented in 2008 Helios has been updated to version 31. The main reasons to focus

on this specific system in our work, are that Helios is well-documented and reviewed, it has been

used in real-world elections and that it focuses on verifiability, which is a key property that can

distinguish electronic voting systems from traditional paper voting.

The current, 3rd, version of Helios is well characterized in Bernhard and Warinshi[5], De Vries

and Bokslag[6] and Pereira [9]. Surprisingly it is not very well characterized by the developers,

apart from the verification specs on their website2. For the setup and workings we will thus keep

to the description in the quoted papers, but not before we take a look on what Helios claims to

offer.

4.2 The Claim

Helios wants to be «open-audit», by which Ben Adida means two properties: «ballot casting as-

surance, where each voter gains personal assurance that their vote was correctly captured, and

universal verifiability, where any observer can verify that all captured votes were properly tal-

lied»[emphasis in original][3]. These two properties are essentially Individual and Universal Veri-

fiability, which we have compounded into the Verifiability property in Definition 2.1. Verifiability

is indeed the central claim of the system:

Helios is deliberately simpler than most complete cryptographic voting protocols in

order to focus on the central property of public auditability: any group can outsource

1Helios official website, accessed November 2016
2See footnote 1
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its election to Helios, yet, even if Helios is fully corrupt, the integrity of the election

can be verified.

What Adida stresses very strongly is that online or postal voting is inherently open to coercion as

attackers can be "looking over the voter’s shoulder". He therefore concludes Helios, working over

the web - allowing people to vote with their web browser from anywhere - should only be used

for low-coercion elections «student government, local clubs, online groups such as open-source

software communities, and others» - not because it is unsafe in itself, but because voting via the

world wide web is inherently open to coercion.

4.3 Description

We present a top-level description of a Helios election.

4.3.1 Setup Phase

Authorities agree on the (g, p,q) parameters for the ElGamal environment they will use in an

election. Each authority generates an ElGamal keypair, with a Schnorr proof. Someone, e.g., one

of the authorities, combines the public key shares, pki to generate the global public key pk. The

global key and the parameters are published on the website for the election.

Furthermore, decisions have to be made about the voters: if anyone can vote or if there are voting

lists (that can be uploaded into Helios as csv lists) and how the voters’ identities are handled.

After all the setup is done, an election fingerprint is generated. “This fingerprint is not simply

served from the Helios server, but actually recomputed by the BPS as a function of all election

parameters: election URL, ballot encryption keys, questions, answer rules, . . . This feature

provides a safety measure for the voter and could also help detect a malicious Helios server or

vote invitation when an independent BPS is used.”[9] and the parameters are frozen.

4.3.2 Voting Phase

With a frozen election, voters can start to vote. (Let us consider a simple election with a list

of candidates where every voter chooses one option only. But the election could be setup with

multiple questions and allowing multiple answers per questions.) A voter will use the Ballot

Preparation System (BPS) page to construct a ballot3 with his vote.

When the voter has answered all questions the election allows, he can review his options while the

system has already encrypted the vote and created and presented a ballot tracker number - a hash

of the ciphertext[6]. If the voter wishes to proceed to submit the vote it can, but the system also

allows one to audit the vote. This step helps to guarantee that the vote is cast-as-intended. What

the BPS does in this case is present the voter with all the information used in the construction of

the encrypted ballot and its tracker, including the randomness used in the encryption process. The

3But as implied just before «Helios has an open API, which means that anyone (voter, candidate, activist, . . . )
could program a ballot preparation system (BPS) that can be used to submit ballots in any election»[9]



4.4 Analysis 39

voter can now use Helios’ ballot verifier or any other independent tool to verify that the information

the BPS used in fact renders a hash as presented beforehand. As the request to audit is only made

after the vote was encrypted and the hash was presented as a commitment to the encryption, an

audit can help to weed out corrupted systems - it is never known what encryption will be audited.

In internet voting this is highly critical as the voters are using their day-to-day computers to cast

the votes, so integrity of these machines cannot be guaranteed.

Audited ballots are then spoilt by the BPS - to preserve privacy, as letting the voter know the

randomness used in creating an encrypted ballot would be the same as giving-out receipts with the

plaintext vote - by the system and the voter will be presented with a new commitment hash the

voter can audit again or post.

Only after the voter decided to post does the BPS need again to connect to the internet. In fact,

until this point, the BPS has no knowledge whose vote it is preparing, allowing also observers

to test an audit ballots at any time from any working device and avoiding attacks on the BPS of

specific voters or voting groups. The user could indeed disconnect his machine after his browser

loaded the BPS with the election parameters and would only now need to reconnect to the internet.

The BPS will then authenticate on the election server and the ciphertext will be sent-in - alongside

with a cryptographic proof that the ballot is well-formatted, without giving away the contents

of the vote. The ciphertext and proof are then published on the bulletin board4 of the election,

thus guaranteeing the vote was recorded-as-cast. For convenience the previously displayed ballot

tracker will in fact be displayed, with the whole information accessible next to it.

4.3.3 Tallying Phase

When the election ends, after voting time finished, the election server can compute an encrypted

sum of all the votes5 thanks to the homomorphic property of the ElGamal cryptographic system

used to encrypt single votes. Each authority now has to use its secret key share to produce a de-

cryption share and a proof of correctness of said share. This can be done using Helios software or

any other tool constructed for the purpose. Authorities can download the encrypted sum, compute

the share offline without sharing their private key share in any way, and upload the decryption

share. Once all shares are available, Helios - or, again: anyone else - can decrypt the sum and end

results are public. All secret keys can, and probably should, at this point be destroyed as they have

no further legitimate use.

4.4 Analysis

We have noted before, Helios is well-studied and analyzed in scientific literature, namely in [5],

[9], [8] or [6] and building on these analyses we can straight away take a look at how Helios looks

in terms of our Definition2.1.

4The board is public and requires no authentication so that it cannot be manipulated according to who is accessing
it.

5And indeed so can any observer as all needed information is public.
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Helios guarantees all votes are counted and even lets voters and observers verify it, as we will see

in a moment, so Completeness seems guaranteed. Also, by using proofs for correct keys, correct

decryptions and correct ballot construction, the system provides protection against bad behaviour,

thus guarantees Soundness.

Eligibility will be verifiable if no voter aliases are used on the PBB, but public and well-known

voting IDs: in this case, and as votes are made public on the board, anyone can verify only le-

gitimate voters were allowed to vote. If anonymous IDs are used, these will need to be shared

between the board and the authentication server: the board only accepts votes from IDs it knows

are legitimate, so eligibility can only be broken if board and authenticator collude.

Counts of the vote cannot be leaked unless all authorities misbehave, so an election is expected to

be fair. The same goes for decrypting individual votes: privacy is guaranteed unless all authorities

collude but the server could leak identified ciphertexts. Depending on how voter IDs are handled

on the board, votes could be linked to voter in the future, if decryption of individual votes becomes

possible by breaking the encryption. In terms of coercion-resistance, the authors of Helios concede

it is low in internet voting.

Verifiability is the key selling point of Helios. Indeed in guarantees votes are cast-as-intended, via

individual audits, recorded-as-cast, via a public board, and tallied-as-recorded, via homomor-

phism. This means the system is end-to-end verifiable, universally and individually verifiable.

Uniqueness seems trivial to assure, as a given ID will only have one vote on the board.

This quick analysis is consistent with de Vries and Bokslag[6].

4.5 Attacks

Nevertheless, known attacks and exploits on Helios have been described.

We should refer at this point that attacks directed against corrupting or manipulating the ballot

as well as producing a corrupt count should be detected by the properties that lead to end-to-end

verifiability in this system, making it much harder to attack these systems. Systems without, for

instance, cast-as-intended verifiability could be compromised so that the application that builds

a ballot simply encrypts a totally different vote than the voter intended. This is not expected to

happen in Helios, as we saw before.

4.5.1 Clash Attacks

An attack called Clash Attack has been described by Küsters et.al.[17] Their reasoning is that if one

can compromise the randomization used in the creation of encrypted ballots, one can essentially

give the same receipt to different voters if they vote equally.

Each voter will then see his vote on the PBB not knowing other voters will be looking at the same

receipt taking it for their vote. New false votes can then be inserted for each repeated receipt, to

the liking of the attacker.

If votes are published with the identity of the voter next to it, such attacks will be detected by

finding the same receipt for different voters.
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If pseudo-anonymous identifiers are used for voters, this attack only works if the creation of these

aliases also can be compromised: if the same alias can be given to two different voters and the

PBB is only made public after polls close, the same receipt can be given out twice and again votes

can be substituted. This only works if the users with the same ID vote equally - which can be

predictable in some cases like well-known party members in a national election, for example.

4.5.1.1 Clash Attacks in Helios

In Helios, the attacker would have to corrupt a PBS and control the generation of random numbers

so that different voters would generate the same ciphertext when encrypting an identical ballot.

This could be done by transforming the generation of random numbers for each ballot into a

deterministic sequence. This way every ballot would get the same "random" number after the

same number of audits. And some given vote with three audits, for example, would show the same

ciphertext as the same vote with three audits from a different voter.

If Helios is used with voters’ names or other public IDs, clash attacks are not possible: each voter

will see his name on the PBB next to the receipt. Repeated receipts on the board are a sign of

tampering, thus being detected. But if Helios is being operated with anonymous aliases then one

can succeed if the creation of such aliases is also corrupted: different voters can be given the same

alias when aliases are being distributed, and so different voters will appear with the same alias and

receipt on the PBB - oblivious to each other if votes are published all together after polls closed.

If Helios is used with a PBB without any voter ID, or with voter’s IDs detached on another not-

relatable list, then the attack is straightforward: only corrupting the PBS is needed.

Küsters et.al.[17] offer solutions (“Countermeasures”) that can be worked into to the protocol to

avoid such attacks.

4.5.2 Kleptographic Attacks

In [8] we find the description of a type of attack that can target any encryption scheme which

makes use of a random bits in addition to the actual input. Rather than aiming at changing results,

as the just described Clash Attack, this so-called Kleptographic Attack targets privacy and tries to

pass information through the ciphertext without being detected. Here the randomness would be

manipulated to violate privacy. “For example, in one naive approach, the parity of [the ciphertext]

could indicate a vote for republican or democrat.”[18]. An attacker checking for the ciphertext in

a public board could then gain information on the contents of the vote which could be even more

telling if more complex approaches were used.

4.5.2.1 Kleptographic Attacks in Helios

Like in the Clash Attack, to target the randomness used in the encryption of the ballot, an attacker

would have to compromise the BPS to influence the creation of ciphertexts. Rather than actually

controlling the random data used, if one were only looking to control the parity of the ciphertext

as described before the system would only need to generate successive genuine ciphertexts until
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it found one that fits the parity the attacker wishes. [8] notes there is no complete solution to this

problem.

4.5.3 Ballot Stuffing

If an election system can insert votes that were not cast by actual voters, one speaks of ballot

stuffing[19].

4.5.3.1 Ballot Stuffing in Helios

As all information to create a Helios ballot is public, it would be trivial for a corrupted PBB to

create votes that were not cast in the first place, thus impersonating absentee voters. If real names

are used on the PBB a potential voter who never actually voted could detect his name on the board

and complain. "Helios with Credentials" - Helios-C - has been proposed as a variant[19], in which

a Registering Authority is introduced, that provides every voter with a key-pair for signing their

votes. The public credentials are then published. If every voter has to use its private key to sign

the vote, then a dishonest PBB cannot stuff ballots for lack of a private voter key - assuming the

Registering Authority is not colluding - with which to sign.

4.5.4 Cryptographic problems in Helios

Bernhard et.al.[20] have shown that the way the Fiat-Shamir transformation is used in Helios does

not offer enough guarantees when constructing proofs for valid ballots, allowing the encryption of

an arbitrary number of votes.

They argue that two variants of the transformation exist:“Both variants start with the prover mak-

ing a commitment. The strong variant then hashes both the commitment and the statement to

be proved, whereas the weak variant hashes only the commitment. This minor change yields

dramatically different security guarantees: in situations where malicious provers can select their

statements adaptively, the weak Fiat-Shamir transformation yields unsound/unextractable proofs.”

Helios should be used only with the strong variant, which is not the case as of version 3[5].

4.5.5 Other issues

Not really a proper attack but rather an inherent characteristic of using a PBB is that in the future

votes could eventually be decrypted if the cryptographic tool used for encryption (in this case

ElGamal) is broken in the future. We have noted this in section 4.4 and it means that measures to

obfuscate the relation between the voters true identity and the one on the PBB should be taken.

This will probably take a toll on universal verifiability.

4.5.5.1 Coercion-Resistance and Vote Selling

As noted before and by the developers of Helios themselves, i-voting systems cannot protect

against coercion. Attackers can demand to "look over the shoulder" of voters to ensure a vote
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is made in a given way. Helios does offer the possibility of a voter voting multiple times - with

only the last vote counting, of course - so one can come back after being free from coercion. But

as changes in the vote will show on the PBB this is only a small protection.

It should be noted, however, that this indeed is much less a difference to traditional paper voting in

an urn than it used to be. Nowadays a coercer who has the same power we considered to coerce in

an i-voting environment can, in a traditional election, easily demand that a coerced voter presents

a picture of a filled ballot as proof he voted in the demanded way. This seemed less-likely a few

years ago but, nowadays with cameras present all-but everywhere (like a cellphone) seems much

more possible - and thus coercion-resistance in paper voting must also be considered to be lower

that maybe traditionally expected.

What is made easier in i-voting systems compared to paper voting is the scalability of coercion

attacks and even of vote selling. In traditional voting an attacker still needs a coerced voter to go

to a polling station and to deliver personally a vote into an urn. Over the web this is much easier as

the attacker only needs the credentials of the voter, being able to produce the vote by himself then.

It seems to us this is easier to do on a larger scale than with paper vote. On the other hand this

seems also to hold for postal vote that, as seen in section 2.2.1, is allowed in Portugal under certain

circumstances and no issue of this kind is known. What would minimize this issue if voters would

need not only a login/password pair (or some other digital credential) to authenticate, but also a

physical token The portuguese ID-card comes into mind as it holds official digital certificates for

the card holder. It is reasonable to assume that a coercer would find it more difficult to get the

physical ID-card compared to just a login/password pair.

4.6 Conclusion

As we showed in this chapter, Helios presents itself as an end-to-end verifiable internet voting

system, which lives up to its claims. Is relies on a lot of the cryptographic tools we presented in

chapter 2 and allows voters to check if their vote is properly handled all along the way: when they

cast it, when it is registered by the system and when it is counted. This will help make people trust

the system while allowing for malfunctions or tampering to be detected easily. What at this point

might be asked is if we could provide analogous sens of trust in a system like Certvote that does

not make use of the cryptographic tools that make verifiability possible out of the box. We will try

to do so in the next chapter.
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Chapter 5

Suggestions on Certvote Development

With our analysis of Certvote in mind and taking into account what we have found in the literature

we can now proceed to suggest changes to Certvote that will work in the existing protocol and will

improve the characteristics in the terms defined in 2.1.

5.1 Second Analysis

When comparing Helios and Certvote, we can again see that Helios offers verifiability features

that will allow to confirm an election result is honest even if Helios itself is not honest. In fact,

Adida in [3] used the phrase “Trust no one for integrity, trust Helios for privacy”: One has to trust

Helios not to disclose the identity of voters, but even a dishonest Helios server cannot fake a result

- at least if one is willing to ignore the problems presented in section 4.5. If the authorities behave

honestly, then the contents of the vote is also never leaked.

Certvote must rely entirely on trust. If any of its components fails or is tampered with it cannot be

immediately detected by a voter. One should point out that this is not different from what happens

with traditional paper voting, which is also mainly built on trust. Voter identity might be leaked

by a corrupted Promoter in collusion with a corrupted SMV but if the HSM is tamper-proof, only

collusion of the authorities allows the leak of individual votes. In this respect Certvote is actually

stronger than Helios. Helios has the votes registered by the same server that confirms the login

credentials while Certvote separates these systems.

5.2 Changes on the Cryptographic Schemes in place

As for the strength of the encryption of the votes in Certvote’s protocol, we have seen that the

public-key scheme should be updated in the near future if it is to be considered safe for the future.

This of course will take a toll on the speed of the decryption and consequently on the speed of the

tallying, but contrary to privacy, speed is not a critical property - at least not in the context of this

work.
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So to reach what [16] calls security for "future use", one should update AES-192 to AES-256

and RSA-2048 to RSA-15360. This is impractical as key generation alone would take minutes

on personal computers, making the election process cumbersome. A compromise must be found

and as we will not suggest the publication of ciphertexts (as happens in Helios) it will probably be

enough to use RSA-3072 to guarantee privacy even if encrypted votes are leaked.

The signature scheme in place, built on RSA-512 should not need as much protection - after all

it does only need to hold for as long as the election is running - and so an update to RSA-1024 is

recommended.

Also for both the signature scheme and OAEP, SHA-1 should be updated to SHA-256, which is

considered safe for future use.

5.2.1 Malleability

As we noted in 3.4.1.1, ASE-CBC is malleable. This makes the system permeable to attacks

where, if ciphertexts are somehow leaked, a third party could reuse the ciphertext, change it, and

resubmit for instance to vote the same way or to vote the opposite way as the leaked voter.

In Helios, malleability of ElGamal (IND-CPA secure) is overcome by using Zero-Knowledge

Proofs. Repeated proofs will be rejected by the system thus invalidating that ciphertexts were

submitted as different, malleated, and already previously submitted ciphertexts. For use with

AES, though, Zero-Knowledge Proofs can be quite complex.

As such, for Certvote we suggest turning the encryption of the ballots into an authenticated cipher.

For this, a second 256bit key will be generated by the voter to apply an HMAC-SHA256 on

eB. eB+HMAC would then be encrypted together with pkHSMencrypt . This would make any

attack based on reproduction of ciphertexts impossible, in the event ciphertexts are leaked by

guaranteeing, like in Helios, the non-malleability of the ciphers used.

5.3 Changes in the System

Before proceeding towards verifiability just a note on the way Certvote has the SMV send the

(eB,eKey) tuples to the Promoter during tallying phase 3.3.3. As indicated, this happens in the

order the votes reached the SMV and it should not be. As the Promoter knows in which order it

gave away TOKENs, a correlation of this with the order it receives the votes from the SMV could

allow an attacker with control only over the Promoter to correlate vote with voter identity.

5.3.1 Implementing Verifiability

End-to-end verifiability is a noted advantage of electronic voting systems when compared to paper

vote. Certvote would benefit from introducing verifiability features as they would obviate the need

to trust local and remote computers for several aspects of the voting process, contrary to the actual

system.
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5.3.1.1 Cast-as-Intended

Cast-as-intended verifiability can be achieved in what looks an easily implemented way for the

current system. Inspired by Helios, Certvote could implement a vote auditing feature for the voter

to check independently if his vote is being properly encrypted. We sketch a suggestion:

• After receiving the ballots the voter chooses his options, the local machine then encrypts the

vote with a locally generated AES-CBC 192 bit symmetric key, skencrypt
voter .

• The system next encrypts skencrypt
voter with pkencrypt

HSM , using RSA-3072 with OAEP and SHA-3

and MFG1. It presents the voter with a receipt as a commitment.

• At this point a voter can cast his vote. But he should also be able to ask his local application

to reveal skencrypt
voter as well as the randomness used in OAEP.

• With the knowledge of this information any voter could then proceed to recreate the commit-

ment (the construction of which had been be made public) re-encrypt a ballot (ballot syntax

should be public anyway) and to compare it with the information the application presented

in the first place.

• A voter could follow this procedure for as long as he feels the need to using whatever tools

possible. Every iteration would improve the trust in the ballot encryption scheme.

• The commitment of the ballot that is actually cast should be kept as a receipt, as we will see

when discussing recorder-as-cast verifiability.

An implementation on these or similar terms severely reduces the need to trust local machines to

produce proper votes. If malware targets a random one percent of voter’s machines, then such an

attack is probably detected if one hundred different voters audit their votes. In section 5.3.1.4 we

will make a point that vote preparation and auditing should happen before authenticating.

As a proof of concept, we have programmed a little app in JAVA that produces an encrypted ballot

and commits with a hash (defined in Definition 5.1), and then lets it be audited by publishing the

relevant information (Figure 5.1). The corresponding audit app takes that information and the

voting options, and reproduces the hash (Figure 5.2). A voter or an observer can compare both

values and if they trust the audit app (which obviously should be located on another computer

altogether), then they can trust their ballot construction system. Here pkencrypt
HSM is hardcoded, in a

real-life environment it would either be pulled from an election server or the user could input it by

hand.

If ‖ represents concatenation, then we define receipt/commitment as:

receipt = H(Encrypt(pkdecrypt
HSM ,skencrypt

voter )‖eB(key,B)) (5.1)

Definition 5.1: Vote Receipt

Where H() is a safe hash function like SHA-3 (deemed secure for that purpose [16]).
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Figure 5.1: Ballot construction

Figure 5.2: Auditing ballot

5.3.1.2 Recorded-as-Cast

After the ballot is cast and sent to the SMV, the voter needs an assurance it was also recorded in a

proper way. To achieve this we again use Helios as an inspiration, to suggest that receipts should

be published in a PBB of some sort1.

To prevent clash attacks, described in 4.5.1, it is not enough to publish receipts without connection

to user-IDs (either public IDs or pseudo-anonymous ones). It is reasonable to assume that some

election rules will prohibit the publishing of public IDs (like name or Citizen ID-number) next to a

vote receipt on a PBB, so we will suggest using pseudo-anonymous IDs. Certvote already uses an

internal pseudonym when communicating (it is part of the TOKEN and not known to the SMV).

If this could be made public to the voter when sending his vote, it could be the identifying part of

the receipt.

So to avoid that a receipt gives away information of the vote, and to avoid clash attacks, the way to

implement a PBB in Certvote would be to publish the receipt defined in 5.1 next to the pseudonym

of the voter. Presenting a hash publicly does not leak information of the underlying hashed string -

even if AES is broken or keys somehow. After polls are closed it will be impossible to reconstruct

a ciphertext from its hash value.

A possible PBB, then, would work like this:

• The voter is presented with a commitment when building his ballot. After casting a ballot

he should keep this for as a receipt verification purposes. Alternatively it could also be sent

my e-mail or SMS, for instance, if the voter wishes. In any case, a digital signature should

be provided, either on the website or via electronic message, so that a dishonest voter cannot

later claim he was given a receipt that is not published. A digital signature gives the voter a

guarantee that the receipt is genuine and avoids disputes afterwards.

• Certvote operates a publicly accessible website where it publishes a receipt for each vote it

registered. Note that if this website is not public but requires authentication, verifiability is

1Let us remind here that these receipts can never give away the contents of the vote. This now becomes even more
necessary if they are made public.
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not strongly granted as the PBB could be generated differently to different users, defeating

its purpose. A choice can be made as if it should work in real-time or only publish votes

after polls have closed.

• Voters can then use their receipt to check whether the system has recorded their vote the

same way it left the local computer. On the PBB the voter can search for the pseudonym

only he will know, and then check if the hash corresponds to the one he was presented by

mBallot.

• This opens the door to a type of coercion where a coercer demands a voter to go and vote.

While no information on the contents of the vote can be gained, a coerced voter can be made

to share a receipt with a third party who can then look for it on the PBB, particularly as the

receipt is signed by the system. Such a trade-off is impossible to avoid.

5.3.1.3 Tallied-as-Recorded

To guarantee votes are tallied-as-recorded, Helios uses the homomorphic property to create a

ciphertext that corresponds to the sum of all encrypted votes. This is not possible with AES

encrypted votes.

We have to rely on the workings of the Promoter during the tallying phase. What could be offered

as a verifiability feature, though, is the possibility to do recounts by a third party2.

After results are computed and announced the state of the information is as follows:

• SMV holds the encrypted ballots and the encrypted keys.

• HSM holds the secret key that can decrypt the voters’ keys.

At this stage it should not be hard to allow an auditor to present an application - either an open-

code one, written by Multicert, or even one written by a third party and audited by Multicert -

that proceeds to take the authorities’ secret shares as inputs connecting subsequently to the HSM

(in presence of the VC members and their secret shares) and the Promoter and redoes the tallying

phase.

5.3.1.4 Final thoughts on verifiability

One further thing that would definitely increase trust in a system like Certvote would be the pos-

sibility to create encrypted ballots before authenticating as a valid voter. This would allow for

external observers - who may or may not be voters - and any legitimate voter to audit the ballot

preparation phase without the system knowing who it is dealing with. A party, an NGO or an

2In the Security Requirements for the Norwegian e-voting pilot process it is specifically noted that “the confirma-
tion that the vote is correctly counted [may be] obtained in a controlled environment” and may “require a judicial pro-
cess” https://www.regjeringen.no/globalassets/upload/krd/kampanjer/valgportal/e-valg/
anskaffelse/ssa_u_appendix2b_requirements_table.xls, accessed January 2017

https://www.regjeringen.no/globalassets/upload/krd/kampanjer/valgportal/e-valg/anskaffelse/ssa_u_appendix2b_requirements_table.xls
https://www.regjeringen.no/globalassets/upload/krd/kampanjer/valgportal/e-valg/anskaffelse/ssa_u_appendix2b_requirements_table.xls
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election observer could be creating and auditing ballots all the while the polls are open, thus en-

suring the quality of mBallot and the code running on the voters machines. Also, a voter who does

not feel comfortable with the system can ask for assistance and demonstration without sharing

credentials or voting accidentally.

This would not need a great change in the current system, requiring only that a user could connect

to mBallot and demand ballots for a given election and voter category. It would then, locally,

generate the AES keys for encrypting ballots and construct the encrypted ballot with the voter’s

options. The system could then let a user proceed without authenticating to the audit phase.

Only when a voter felt confident to proceed to cast a ballot would the system demand authenti-

cation and then proceeding with the steps referred in 3.3.2 that had not been completed yet. This

would also allow for all relevant cryptographic operations to happen offline: a voter should be able

to download ballots and the elections public key from the system and unplug his computer from

the Internet. Then he could create a ballot with his choices, create his AES key, encrypt the ballot,

encrypt the symmetric key and only then reconnect to login and submit a the encrypted ballot and

the encrypted key.

Attacks that target particular users or user groups are made impossible and external auditing is

also made easier.

Finally we could devise a setup in which Certvote exists with an API that allows anyone to build

a Ballot Preparation System and to use it to login and send ballots. This way political parties

or other interest groups could provide people who trust them with an own interface to create

encrypted ballots. Of course depending on how to implement this could again open the door for

targeted attacks.

5.4 Improved Certvote

Now we can describe an updated version of Certvote’s voting phase and tallying phase, with all

changes in place (Figure 5.33).

5.4.1 Voting Phase

As in the present version, mBallot is made available through web browsers, and any potential

voter - but also non-voters such as observers - can access it and request to vote in an election. The

election’s public key pkencrypt
HSM is public, so is ballot syntax.

mBallot sends the requested ballots and the election’s public key to the voter’s computer. The

voter can now proceed to select his options on the ballot(s) and

• generate an AES-CBC 192 symmetrical key, skencrypt
voter (key which he will use to encrypt his

options),

• generate a 256 key, skHMAC
voter and use it to generate an HMAC on the AES-CBC 192 cipher-

text,
3Note the figure does not include vote auditing, as a vote that enters the system does not get to be audited.
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Figure 5.3: Improved Certvote.
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• encrypt both secret keys with the pkencrypt
HSM of the election using the RSA-OAEP scheme.

A hash of the VOTE (as per Definition 3.4 updated with the HMAC) may serve as commitment

and is presented to the voter.

5.4.1.1 Auditing Phase

At this point one may feel the wish to audit its vote, which the system allows. In this case the

ballot plaintext is shown, so is the AES key used to encrypt it, the HMAC key and the relevant IVs

(the RSA key is public already) and the randomness used in OAEP.

With this information, a voter can re-encrypt his ballot and reconstruct the hash to check whether

the commitment was truthful. This renders the AES key useless and vote building must restart or

else a coercer could demand this information a confirm a vote of the user on the public board.

The voter can repeat the auditing of his vote as often as he wishes.

5.4.1.2 Vote Casting

When ready to cast, he will have to login with his credentials, and should keep the commitment

as a receipt as well as the Certvote’s signature on that receipt. Before logging in, mBallot should

destroy skencrypt
voter .

At this point mBallot will generate a pair of RSA keys for signing the Token Request and, as in

the present version of Certvote, the Promoter will get the user/password pair of the voter and the

public RSA1024 key (pksign
voter) just generated, signed with the secret RSA1024 key (sksign

voter) that

the local computer of the voter will keep. If the signature checks out and the user/password pair

too, and if there is a valid election for that user underway, mBallot will receive the authentication

TOKEN alongside an ’OK’ message that the voting can proceed. The TOKEN is the same as in the

current system. The SMV signals mBallot that all is well and also shows the voter his pseudonym.

After this, the SMV should publish the hash of the ciphertext, used as a commitment before and

still a valid representation of the voter’s intention, alongside the pseudonym of the voter.

5.4.2 Tallying Phase

After polls close, tallying would continue as it does in the present system. A hash of all the

individual hashes on the PBB would serve as a commitment to the ciphertexts in the system.

A new feature would be the possibility to have an auditor recount the ballots.

Let us recall the relevant information for a recount:

• A list of ciphertexts stored on the SMV

• A secret Key on the HSM

• A public hash of all the hashes corresponding to stored votes, with a corresponding master

hash of all hashes.
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So an election independent election audit could work the following way:

• An auditor connects to the SMV in order to be able to ask for all encrypted ballots eBi.

• Authorities introduce their secret shares to enable login on the HSM.

• Auditor connects and logs on the HSM.

• The auditor proceeds as Certvote did, for counting, but keeping a hash of every ciphertext.

• The auditor hashes all individual hashes.

• Compare tally and final hash to the original results. If they are the same, the election result

was honest.

Note of course, that while recounting, the auditing algorithm has access to encrypted ballots, and

proceeds to decrypt them. Also, when hashing the ciphertexts, the connection of that ciphertext to

the information previously on the PBB becomes transparent. So if whoever is recounting cannot

be trusted for privacy, then the auditing algorithm should be audited itself to make sure it does not

leak information that can break privacy. The process can and should happen while disconnected

from public networks and all information should be destructed after the tally is (re-)completed.

5.5 Helios and Improved Certvote

What we finally want to look at is how Improved Certvote parallels Helios not only in terms of

the properties it offers, but also of the way it handles and protects sensible data, namely ballot

contents.

5.5.1 Setup Phase

Let us assume both systems determine the authorities, and their credentials, the vote listings, and

the voter’s credentials, as well as the questions and further pre-voting information in the same way.

Let us also assume the HSM on Improved Certvote is tamper-proof.

Both systems rely on a secret-share to divide the access to the final result and to the decryption of

individual votes. Helios does so by having each authority create an ElGamal keypair and construct

the public key from the individual public keys generated. In the case of Certvote we have the HSM

that generates an RSA keypair, and never shares the secret key skencrypt
HSM . Instead, the access to the

HSM, and thus to the possibility of decryption anything that the corresponding skencrypt
HSM , is shared

between the authorities using a Shamir Secret Share.

At the end of the Setup Phase, thus, both systems present a public key for an asymmetric encryp-

tion scheme, with no corresponding secret key accessible by any individual authority.
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5.5.2 Vote Phase

After voting is concluded, relevant information is stored as follows:

• In Helios: The PBB holds and publishes encrypted votes, alongside with voter alias, vote

tracker and corresponding vote proofs.

• In Improved Certvote:The SMV stores encrypted ballots, with corresponding encrypted

keys. Receipt and pseudonym for each encrypted ballot is made public.

The secret keys that, in both systems, enables decryption is not available unless authorities collude.

The threshold property of ElGamal guarantees this in Helios, so does the HSM in Certvote. In

both systems the votes that are stored were produced by verifiable methods. This means that if, in

either system, the voting phase was well conducted then at its end, the information available has

essentially the same degree of security.

In terms of privacy, if we consider the generation and distribution of alias in Helios and of

pseudonym in Improved Certvote both were managed with the same degree of security, then pri-

vacy is equally safe in both systems. But even knowledge of the real ID behind alias/pseudonym

does only inform a third party that a certain voter did cast a ballot (which amounts to the same

information available from observing a polling station in paper voting) as neither ciphertext and

proof (Helios) nor receipt (Improved Certvote) give out information about the contents of the vote.

5.5.3 Tallying Phase

When tallying is concluded, Helios offers the following information:

• The ciphertexts of all votes casted, and corresponding proofs of correctness.

• The homomorphic sum of said ciphertexts (although this can be reproduced at any time from

the individual ciphertexts) present as a final ciphertext of the sum of the individual ballots.

• The decryption shares of every authority, with a corresponding proof of correct decryption.

• The final ciphertext decryption (although this can be reproduced at any time in presence of

the final ciphertext and the decryption shares) that stands as the final result.

In Improved Certvote, the final information is not as public as this. We find:

• A public list of hashes with corresponding pseudonyms and a final hash of these hashes.

• A private list of encrypted ballots and corresponding encrypted keys on the SMV.

• skencrypt
HSM secure on the HSM.

• The final result as an output of the Promoter.
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It immediately becomes clear that the homomorphic and threshold properties of ElGamal in addi-

tion to the correct usage of ZKP allows for the result to be publicly (or universally) verifiable and

reproducible at any time after polls close, without revealing any information of individual votes -

as long as the ElGamal cipher used to encrypt individual votes cannot be broken and authorities

do not collude to compute a master secret key.

In Improved Certvote verifiability of the result cannot be done publicly as decryption of individual

votes would break privacy. This does not mean though, that it is not possible to verify the result.

We have described a recount using a third party that can be trusted for privacy or, if this trust

cannot be guaranteed, that operates in an audited environment that does not store nor communicate

individual decryptions.

5.5.4 Final thoughts on Improved Certvote

What this analysis shows is that under certain assumptions, Improved Certvote behaves a lot like

Helios, even though still working in the main constraints of regular Certvote, namely using its Hy-

brid Encryption scheme. But if the HSM can be trusted - and indeed HSMs are trusted for a great

lot of security systems all around us - then we can say that Certvote mimics Helios quite success-

fully. So if Helios satisfies security criteria of a given user, then Improved Certvote probably does

too. A full equivalency is only hindered because Improved Certvote does not allow tallied-as-cast

verifiability without relying on a third party for recount, so individual voters of observers cannot

perform this step individually.

One change to Certvote we have not suggested but which should be discussed for high-stakes

election would be the introduction of a two-factor authentication when requesting a TOKEN. One

could think, for instance, that apart from login/pasword, a user would need to use the security cer-

tificate from his ID-card to authenticate himself in the Promoter. This woul difficult vote selling,

as voter would be less-inclined to share their card compared to only sharing their login details, and

with proper logging on the Promoter side, would also make ballot stuffing impossible. The added

complexity of using the card and not having access to a card reader at home could disencourage

people from voting, though.

5.6 Conclusion

With these changes the system could improve from our analysis in Chapter 3 and offer the follow-

ing analysis for Improved Certvote:

• Correctness

– Completeness - The PBB together with a trusted recount guarantees all votes are

counted.

– Soundness - As votes are decrypted individually, bad voter behaviour does not affect

the tallying - wrong votes are simply discarded.
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• Eligibility - As in Helios, eligibility is guaranteed if registration of voters is done prop-

erly (so it is in paper voting): in this case the PBB guarantees only legitimate voters are

considered.

• Fairness - If the system works correctly, unless k authorities collude, there is no way to leak

results. If the HSM is inaccessible during voting (e.g. being disconnected), fairness is trivial

to guarantee as no access to the secret election key is possible - even with collusion.

• Privacy - Votes are protected by RSA 3072, individual votes are not published. A cor-

rupted computer on the voter side could leak votes, though. Building an encrypted ballot

while offline, before even authenticating, lowers that risk severely, if skencrypt
voter is destroyed

before connecting. If Promoter and SMV collude, individual ciphertexts may be exposed in

connection to the ID of the voter. In Helios this last leak is possible under the same fault

assumptions.

• Verifiability - Individual Verifiability is present. Tallied-as-recorded verifiability implies

trust in the external auditor.

• Uniqueness - PBB guarantees uniqueness.

We tried to show that Improved Certvote successfully mimics properties and trust assumptions of

Helios and that consequently an analysis of Helios may be mapped on Improved Certvote. This is

rather useful as Helios has been - and still is - analyzed by many parties that offered suggestions

on how to improve its workings.



Chapter 6

Conclusion and Future Developments

6.1 Goals

The main goal of our work was to analyze Certvote, to characterize it in respect to the state-of-

the-art solutions in cryptographic voting, and to suggest appropriate changes.

We have derived a set of properties from the literature and showed what cryptographic schemes

are typically used to implement a system that tries to fulfill those properties. After describing and

analyzing Certvote, we noted it takes a different cryptographic approach and was not designed to

offer verifiability. Thus we tried to understand how a different system, built on the schemes we

determined, works and implements the properties we obtained. For this purpose we chose Helios

which is densely discussed in scientific literature while also used in real-world elections.

With the analysis on Helios as a starting point we proceeded to a second view at Certvote while

indicating what changes could be implemented to achieve a better accomplishment of the defined

set of properties. In particular we showed how verifiability could be implemented - a proof of

concept for one particular solution was accomplished - and how the implementation of verifiability

could bring Certvote up to par with Helios in terms of trust in a final result.

A point can be made that with the proper implementation, an electronic voting system can offer

more assurances than paper voting, where verifiability is impossible.

6.2 Future Developments

Our suggestions in this work may be developed by Multicert and deployed into Certvote. In

general the development of electronic voting solutions should be made en par with the scientific

reasearch in the related fields. This has not only the effect of being on top of problems that might

be identified but it also fosters a contact between scientific community and real-world system that

seems crucial to the success of the latter.

Voting electronically can feel highly obscure to laymen (after all obfuscation is a key element of

cryptographic voting) and researchers can play a crucial role in educating about the risks but also

the guarantees an electronic system can provide. For instance the difference between a system as

57
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we analyzed in this text and one based one electronic machines, to give an example, exists on so

many levels it would take too long to elaborate. Yet this is probably not so obvious for the general

public. Scientists can make this gap smaller by providing informed evidence.

If electronic voting is ever to play a part in Democracy, and not only in low-stakes elections, then

electronic voting has not only to be safe in the terms we have defined, but it has to feel safe. It

turned out that is also what this paper is about.
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Presentation given at Multicert
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Homomorpic Cipers - for the geeks 1/2

Encrypt(pk , m) = (g r , m · pk r ) = (c , d); [pk = g sk ]

Decrypt(sk , (c , d)) = d/csk = m;

(c , d)(c �, d �) = (g rg r � , m · pk r · m� · pk r �)

Decrypt(sk , (c , d)(c �, d �)) = (m · pk r · m� · pk r �)/(g r ·sk · g r �·sk)

= m · m�
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Homomorpic Cipers - for the geeks 2/2

Encrypt(pk , gm) = (c , d) = (g r , gm · pk r ); [pk = g sk ]

(c , d)(c �, d �) = (g r · g r � , gm · pk r · gm� · pk r �)

Decrypt(sk , (c , d)(c �, d �)) = (gm · pk r · gm� · pk r �)/(g r ·sk · g r �·sk)

= gm · gm�

= gm+m� ← Discrete Logarithm Problem
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Threshold Cryptography

Thresholds for Geeks (N-out-of-N)

Encrypt(pk , m) = (g r , m · pk r ) = (c , d); pk =
N�

i=1

pki

DecryptShare(ski , (c , d)) = cski = di ;

m = d/
N�

i=1

di

= d/
N�

i=1

cski = d/c
�N

i=1 ski = d/csk

pk =
N�

i=1

g ski = g
�N

i=1 ski = g sk
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Threshold Cryptography

Dishonest Voter
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Zero-Knowledge Proofs

Zero-Knowledge Proofs

How to prove voter encrypts 0 or 1 and not, e.g., 2 to get an
advantage for one candidate?

How to be sure an authority holds her secret key?

How to trust the announced result is correct?

Zero-Knowledge Proofs4

4(Bernard and Warinschi, 2014)

39 / 54

Problem Statement Challenges Building Blocks One Example References

Helios

One Example

We present Helios v3 as described by (Bernard and Warinshi,
2014) and (de Vries and Bokslag, 2016) for a first-past-the-post
election. Authorities use n-out-of-n threshold keys, .
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Helios

Helios preparation

Each authority generates its ElGamal pki/ski pair, with Schnorr
proof of knowledge πi for the public key. One authority then
combines the universal public key and publishes it along with the
all pki and (p, q, g).
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Helios

Ballot preparation

The voter can then get the public key and check the correctness
of the Schnorr protocol as well as of the key combination. For each
candidate the voter will be presented a box labelled
correspondingly. In each the Ballot Preparation System will either
encrypt g0, for no, or g1 for yes using the public-key and some
randomness. Additionally a Fiat-Shamir proof proving it is either a
0 or a 1 is computed and added.
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Helios

Pre-Cast Auditing

The voter gets a hash of the ciphertext and can, wishing so,
proceed to audit the vote.

45 / 54

Problem Statement Challenges Building Blocks One Example References

Helios

”Voting” and counting

When the voter feels confortable he can send a ballot to the
counter (in Helios a webapp that tipically requires authentication)
where it is published along with the voter-ID. All steps before this
can be taken by anyone, namely non-voters. After closing the
authorities check all proofs and reject invalid ballots. They should
also reject ballots that are copies from earlier posted ballots.One
authority can now sum the ciphertexts for each candidate and post
that sum. Every authority produces a decryption share for each
sum-ciphertext and posts it along with a DCP proof.Finally the
tally can be completed by decrypting the sum and posting the
result.
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Helios

Helios’ verifiability

The voter can verify the ballot’s correctness by auditing as
much ballots as it takes to reach a certain probability. This
assumes either trust in a third party verification application or
a tech-savy user.

The voter can verify his ballot is on the board and hence will
be counted.

Anyone can verify the added ballots render the anounced
results.
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Helios

Issues with Helios

Coercion

Public Votes

Ballot Stuffing

Clash Attack5

5Küsters, Truderung and Vogt, 2012
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Appendix B

Certvote Product Brochure1

1Source: http://www.multicert.com/media/3785/multicert_prve_6.pdf, accessed November
2016
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Appendix C

Certvote Diagram1

1As provided by Multicert to the author
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Appendix D

Casa da Moeda Security1

1Source: https://www.incm.pt/portal/arquivo/matriz/200912.pdf, pages 8,9 - accessed January
2017
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