A systematic review on infliximab and adalimumab drug monitoring: levels, clinical outcomes and assays

Ana Filipa da Silva Ferreira

Uma revisão sistemática sobre monitorização terapêutica do infliximab e adalimumab: níveis, resultados clínicos e ensaios
Ana Filipa da Silva Ferreira
Uma revisão sistemática sobre monitorização terapêutica do infliximab e adalimumab: níveis, resultados clínicos e ensaios
A systematic review on infliximab and adalimumab drug monitoring: levels, clinical outcomes and assays

Mestrado Integrado em Medicina
Área: Farmacologia
Tipologia: Monografia

Trabalho efetuado sob a Orientação de:
Professor Doutor Fernando Magro

Trabalho organizado de acordo com as normas da revista:
Inflammatory Bowel Diseases

março, 2017
Eu, Ana Filipa da Silva Ferreira, abaixo assinado, nº mecanográfico 201104870, estudante do 6º ano do Ciclo de Estudos Integrado em Medicina, na Faculdade de Medicina da Universidade do Porto, declaro ter atuado com absoluta integridade na elaboração deste projeto de opção.

Neste sentido, confermo que **NÃO** incorri em plágio (ato pelo qual um indivíduo, mesmo por omissão, assume a autoria de um determinado trabalho intelectual, ou partes dele). Mais declaro que todas as frases que retirei de trabalhos anteriores pertencentes a outros autores, foram referenciadas, ou redigidas com novas palavras, tendo colocado, neste caso, a citação da fonte bibliográfica.

Faculdade de Medicina da Universidade do Porto, **11/03/2013**

Assinatura conforme cartão de identificação:

[Assinatura]

Ana Filipa da Silva Ferreira
Projecto de Opção do 6º ano – DECLARAÇÃO DE REPRODUÇÃO

NOME
Ana Filipa da Silva Ferreira

NÚMERO DE ESTUDANTE **DATA DE CONCLUSÃO**
201104870 22/03/2017

DESIGNAÇÃO DA ÁREA DO PROJECTO
Farmacologia

TÍTULO DISSERTAÇÃO/MONOGRAFIA (riscar o que não interessa)
A Systematic Review on Infliximab and Adalimumab Drug Monitoring: Levels, Clinical Outcomes and Assays

ORIENTADOR
Professor Doutor Fernando Magro

COORIENTADOR (se aplicável)

ASSINALE APENAS UMA DAS OPÇÕES:

- [x] É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTE TRABALHO APENAS PARA EFEITOS DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO INTERESSADO, QUE A TAL SE COMPROMETE.
- [] É AUTORIZADA A REPRODUÇÃO PARCIAL DESTE TRABALHO (INDICAR, CASO TAL SEJA NECESSÁRIO, Nº MÁXIMO DE PÁGINAS, ILUSTRACOES, GRÁFICOS, ETC.) APENAS PARA EFEITOS DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO INTERESSADO, QUE A TAL SE COMPROMETE.
- [] DE ACORDO COM A LEGISLAÇÃO EM VIGOR, (INDICAR, CASO TAL SEJA NECESSÁRIO, Nº MÁXIMO DE PÁGINAS, ILUSTRACOES, GRÁFICOS, ETC.) NÃO É PERMITIDA A REPRODUÇÃO DE QUALQUER PARTE DESTE TRABALHO.

Faculdade de Medicina da Universidade do Porto, **11/03/2017**

Assinatura conforme cartão de identificação: **Ana Filipa da Silva Ferreira**
A Systematic Review on Infliximab and Adalimumab Drug Monitoring: Levels, Clinical Outcomes and Assays

Filipa Silva-Ferreira, MD,∗† Joana Afonso, MSc,∗† Pedro Pinto-Lopes, MD,‡ and Fernando Magro, MD, PhD∗†§ on behalf of GEDII (Portuguese IBD Study Group)

Background: Immunogenicity to therapeutic proteins has been linked to loss of response by a large percentage of patients taking anti–tumor necrosis factor-alpha agents. Drug monitoring can be extremely useful, allowing physicians to adjust the therapeutic scheme individually. This article aims to systematically review the published data with respect to cutoff levels of infliximab (IFX) and adalimumab (ADA) and relate them to the methodology adopted for quantification of IFX and ADA levels and clinical outcomes.

Methods: The PubMed database was searched to identify studies focusing on the association between IFX or ADA cutoff levels and clinical outcomes in patients with inflammatory bowel disease.

Results: Of the 1654 articles initially selected by queries, 20 were included. A receiver operating characteristic curve analysis was performed to identify cutoff levels of IFX or ADA that correlated with a clinical outcome, but only 6 studies performed the same analysis for antidrug antibody levels. Cutoff levels were different between studies. The methodology chosen for level quantifications, clinical outcomes, and sample size and characteristics were also different. Nevertheless, measurement of drug levels should be performed during maintenance, and with loss of response, with persistent high levels of C-reactive protein, and when mucosal lesions are still present. In these scenarios, drug and antidrug levels were correlated with clinical outcomes.

Conclusions: Concerning drug levels monitoring any methodology is adequate. With respect to antidrug antibody levels, it will be necessary to define a gold standard method or to establish different cutoff levels for different methodologies.

(Inflamm Bowel Dis 2016:0:1–13)

Key Words: anti–infliximab antibodies, clinical outcomes, infliximab trough levels, therapeutic drug monitoring

Infliximab (IFX) and adalimumab (ADA) are antitumor necrosis factor-alpha (TNFαz) adalimumab agents that have changed the clinical course of many autoimmune diseases such as inflammatory bowel disease (IBD), psoriasis, and rheumatoid arthritis. These agents have been successfully used in the past decades to treat patients with IBD, even in those who were refractory to conventional therapy.1–5 Introduction of these agents to the drug market allowed physicians to aim for more than clinical remission, as these new drugs were proven to induce endoscopic remission and mucosa healing in patients with either Crohn’s disease (CD) or ulcerative colitis (UC).6–8 Despite this, up to 70% of patients lose responsiveness over time.9 Many mechanisms may be involved in the loss of response, but immunogenicity to the antibody itself is so far the best studied.10 The presence of antibodies to IFX (ATIs) in patients’ serum was associated with a 3-fold higher risk of loss of response than in patients who did not have ATIs in their serum.9 Although ADA is a fully human monoclonal antibody drug, immunogenicity to this drug has already been described and a negative correlation between the presence of antibodies to ADA (ATA) and ADA trough levels (TLs) was demonstrated.11 However, the influence of ADA levels in clinical and endoscopic remission is not well established yet.

When patients lose response to anti–TNFα agents, their physicians have roughly 4 options: (1) dose escalation, (2) addition of an immunomodulator, (3) change to another class of drugs, or (4) change to another anti–TNF agent.12–17 Currently, physicians have to empirically decide since measurement of drug and antidrug antibody levels is not yet used in daily practice. Many authors have highlighted the importance of knowing drug and antidrug antibody levels to better adjust the therapeutic scheme.
Nonetheless, most authors emphasize the need to find a valid assay, especially to measure antidrug antibodies and to set cutoff levels to help in decision-making. The aim of this article was to systematically review the published data with respect to IFX and ADA levels, the methodology applied, and the relationship with clinical outcomes.

MATERIALS AND METHODS

A systematic review focusing on the association between IFX, ADA TL, ATIs, ATAs, and clinical outcomes in patients with IBD was performed.

Search Strategy

A literature search was performed, through July 2015, using the PubMed database with the following keywords and Medical Subject Headings (MeSH) terms: “(adalimumab[All fields]) OR (infliximab[All fields])” AND “(inflammatory bowel disease [MeSH Terms]) OR (inflammatory bowel diseases[MeSH Terms])” OR (rohn’s disease[MeSH Terms]) OR (colitis, ulcerative[MeSH Terms]) OR (crohn disease[MeSH Terms]) AND “(clinical response) OR [clinical remission] OR [disease activity] OR [clinical outcomes]”. Considering this is a hot topic, we decided, on December 2015, to perform an additional literature search on abstracts presented on 3 reference congresses. The European Crohn’s and Colitis Organisation (ECCO) Website was searched for all published abstracts related to this topic, using the terms “infliximab ifx” and “adalimumab ada”; The United European Gastroenterology Week (UEGW) Website was searched for abstracts from the last United European Gastroenterology week in Barcelona; The Digestive Disease Week (DDW) Website was searched for abstracts from the past 5 years, using the terms “infliximab levels” and “adalimumab levels” in title, abstract, or keywords.

Eligibility Criteria

The inclusion criteria were: (1) articles studying the association between IFX or ADA cutoff levels and clinical outcomes in patients with IBD and (2) articles written in English.

We excluded studies that (1) were systematic reviews, (2) used another anti-TNF-α agent rather than IFX or ADA, (3) enrolled patients with other diseases rather than IBD (psoriasis, rheumatoid arthritis), (4) only assessed the relationship between IFX or ADA TL and clinical outcomes but did not perform a receiver operating characteristic (ROC) curve analysis, or (5) did not present the specificity and sensitivity values of the ROC curve analysis. This last criterion was defined so that we could infer the accuracy of the cutoff value (i.e., a cutoff value with a sensitivity and/or specificity of 50% would be no better at identifying true positives than flipping a coin). It was not applied to abstracts found on ECCO, UEGW, or DDW databases.

Study Selection and Data Collection Process

Studies were screened and selected by 2 reviewers. First, all titles and abstracts were read and the inclusion and exclusion criteria were applied. Second, the articles considered for inclusion after selection by title/abstract reading were read fully and the inclusion and exclusion criteria were applied again. The data collected from each study were: the type of study and location, number of patients enrolled, and the type of IBD, definitions of clinical outcomes, antidrug antibodies incidence, type of assay used to measure IFX/ADA and ATIs/ATAs serum levels, and the results from the ROC curve analysis (cutoff levels and specificity and sensitivity values), except for the studies obtained in ECCO, UEGW, or DDW databases. In these studies, we have only had access to the abstract. A quality assessment was performed using a qualitative classification of the risk of bias. We used a 4-item classification based on the Meta-analysis of Observational Studies in Epidemiology checklist. The items were chosen based on the factors that can incorporate bias, i.e., inclusion and exclusion criteria, justification of the cohort (eligibility criteria, sources and methods of selecting participants, and the methods used to describe follow-up), the type of disease (if they pointed out whether the patients included had CD or UC), and the assay used to measure drug and antidrug antibody levels (Fig. 1).

RESULTS

Search and Study Selection

A total of 1237 articles were identified with our query (Fig. 2). Of these, 1160 were excluded by title and/or abstract alone, mainly because they did not study the association between IFX or ADA TL and clinical outcomes. Therefore, 77 articles were considered for full text analysis and after that 13 were included in our systematic review (Fig. 2). Two additional articles were included after searching those related to the 13 articles selected by query. From the search on ECCO, UEGW, and DDW abstract databases, 417 abstracts were found but only 5 were included, according to the inclusion criteria previously defined (Fig. 3).

Description of Studies

Of the 20 studies included, all but one were conducted in adult patients. One study only involved patients with UC, 11 studies usually encompassed patients with CD and 7 studies pertained to patients with either UC or CD. Of the 19 studies involved IFX maintenance therapy, 6,8,22,24,28,30–35,37 (Table 1), whereas the other 4 involved ADA maintenance therapy (Table 2). One study encompassed patients from both regimens, IFX and ADA maintenance therapy. Seven studies did not report information about the incidence of ATIs, and only 6 performed an ROC curve analysis to find a cutoff value for ATP or ATA levels.

In 6 studies, the clinical outcome was “clinical remission” usually assessed by the Harvey-Bradshaw Index-Mayo score or C-reactive protein (CRP) levels. In 4 studies, the outcome was “loss of response,” defined as an initial good clinical response to IFX induction treatment followed by a loss of clinical response to IFX during maintenance treatment.
leading to discontinuation of the drug. For Adedokun et al., the endpoint was the “clinical response” defined as a decrease from the baseline in the total Mayo score of ≥3 points and at least 30%, and a decrease in the subscore for rectal bleeding of ≥1 or an absolute subscore for rectal bleeding of 0 or 1. For Levesque et al., there were 2 endpoints which were an “increase in CD activity index ≥70” and an “increase in CRP ≥5 mg/L.” Imaeđa et al. defined 2 endpoints for IFX, including “mucosa healing,” meaning an endoscopic score of 0 or 1, and “CRP ≤0.3 mg/L,” whereas for ADA, they only used “CRP ≤0.3 mg/L.” Four more studies defined “mucosa healing” as the endpoint of interest. Cornillie et al. defined clinical outcome as a “sustained response at week 54,” which was expressed as clinical remission based on the relevant disease activity index at week 54, in the absence of any dose intensification during IFX maintenance therapy. Paul et al. also defined 2 endpoints: “loss of response” and “absence of clinical remission.” Vande Casteele et al. described 3 endpoints which were “ATI formation,” “IFX discontinuation,” and “unsuccessful intervention.” The intervention (change in therapy) was considered successful if, at the second infusion after the intervention, the symptoms had disappeared and CRP, if elevated before the intervention, had

<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria</th>
<th>Justification cohort</th>
<th>Type of IBD</th>
<th>Assay used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echarri et al. 2015</td>
<td></td>
<td>?</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Roblin et al. 2015</td>
<td></td>
<td>?</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ungar et al. 2015</td>
<td></td>
<td>?</td>
<td>+</td>
<td>?</td>
</tr>
<tr>
<td>Adedokun et al. 2014</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cornillie et al. 2014</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Levesque et al. 2014</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Marits et al. 2014</td>
<td></td>
<td>?</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Papamichail et al. 2015</td>
<td></td>
<td>?</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Singh et al. 2014</td>
<td></td>
<td>?</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tang et al. 2014</td>
<td></td>
<td>?</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Vande Casteele et al. 2014</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Bortlik et al. 2013</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Imaeđa et al. 2014</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Paul et al. 2013</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Vande Casteele et al. 2013</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Steenholt et al. 2011</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Zittan et al. 2016</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mazor et al. 2014</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Roblin et al. 2014</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Imaeđa et al. 2013</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

FIGURE 1. Summary of risk of bias.

FIGURE 2. Data collection process.

FIGURE 3. Data collection process.
TABLE 1. IFX Trough Levels and Antidrug Antibodies Cutoff, Methodology and Clinical Outcomes

<table>
<thead>
<tr>
<th>Authors</th>
<th>Study Design</th>
<th>Population</th>
<th>Regimen</th>
<th>Country</th>
<th>Time Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echarri et al28</td>
<td>—</td>
<td>36 Adults with CD</td>
<td>IFX</td>
<td>Spain</td>
<td>W0, W6, W14, W30</td>
</tr>
<tr>
<td>Roblin et al32</td>
<td>Prospective cohort</td>
<td>119 Adults with CD</td>
<td>IFX</td>
<td>France</td>
<td>Trough level</td>
</tr>
<tr>
<td>Ungar et al38</td>
<td>Retrospective cross-sectional</td>
<td>78 Adults with IBD</td>
<td>IFX</td>
<td>Israel</td>
<td>No data</td>
</tr>
<tr>
<td>Adedokun et al, 201425</td>
<td>Observational (post-hoc ACT1-2)</td>
<td>454 Adults with UC</td>
<td>IFX; induction regimen followed by maintenance therapy</td>
<td>globally</td>
<td>W8, W30, W54</td>
</tr>
<tr>
<td>Cornillie et al27</td>
<td>Observational (analyses of ACCENT I)</td>
<td>573 Adults with CD</td>
<td>IFX; induction regimen followed by maintenance therapy</td>
<td>North America, Europe, Israel</td>
<td>W14</td>
</tr>
<tr>
<td>Levesque et al30</td>
<td>Prospective cohort</td>
<td>327 Adults with CD</td>
<td>IFX; maintenance therapy</td>
<td>Canada</td>
<td>W8</td>
</tr>
<tr>
<td>Marits et al8</td>
<td>Retrospective</td>
<td>63 Adults with CD, 15 adults with UC, 1 adult with U-IBD</td>
<td>IFX</td>
<td>Sweden</td>
<td>Just before next infusion</td>
</tr>
<tr>
<td>Papamichail et al, 201531</td>
<td>Retrospective</td>
<td>101 adults with CD</td>
<td>IFX; induction regimen followed by maintenance therapy</td>
<td>Belgium</td>
<td>W 0, 2, 6, 14</td>
</tr>
<tr>
<td>Singh et al24</td>
<td>Prospective cohort</td>
<td>58 pediatric patients (<21 years) with CD and UC</td>
<td>IFX</td>
<td>USA</td>
<td>W14</td>
</tr>
<tr>
<td>Tang et al33</td>
<td>No</td>
<td>15 adults with CD</td>
<td>IFX</td>
<td>China</td>
<td>No data</td>
</tr>
<tr>
<td>Vande Casteel et al22</td>
<td>Observational</td>
<td>483 adults with CD</td>
<td>IFX; maintenance therapy</td>
<td>Belgium Canada</td>
<td>No data</td>
</tr>
<tr>
<td>Bortlik et al26</td>
<td>Retrospective</td>
<td>84 adults with CD</td>
<td>IFX</td>
<td>Czech Republic</td>
<td>W14–22</td>
</tr>
<tr>
<td>Imaeda et al, 20146</td>
<td>Prospective cohort</td>
<td>65 adults with CD</td>
<td>IFX; maintenance therapy</td>
<td>Japan</td>
<td>Just before next infusion</td>
</tr>
<tr>
<td>Paul et al37</td>
<td>Prospective cohort</td>
<td>103 adults with IBD</td>
<td>IFX; maintenance therapy</td>
<td>France</td>
<td>Just before next infusion</td>
</tr>
<tr>
<td>Vande Casteel et al134</td>
<td>Retrospective</td>
<td>64 adults with CD, 26 adults with UC</td>
<td>IFX</td>
<td>Belgium</td>
<td>Just before next infusion</td>
</tr>
<tr>
<td>Steenholdt et al35</td>
<td>Retrospective</td>
<td>85 adults with CD, 21 adults with UC</td>
<td>IFX</td>
<td>Denmark</td>
<td>Just before next infusion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Drug Antidrug antibodies Method</th>
<th>Cutoff, μg/mL Spec/Sens, %</th>
<th>Endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echarri et al28</td>
<td>ELISA</td>
<td>>3 (w6) No Spec/Sens, %</td>
<td>Good response and sustained remission</td>
</tr>
<tr>
<td>Roblin et al32</td>
<td>ELISA (commercial kit, Theradiag)</td>
<td><2 No Spec/Sens, %</td>
<td>Loss of response</td>
</tr>
<tr>
<td>Ungar et al38</td>
<td>No</td>
<td>>5 85/— Spec/Sens, %</td>
<td>Mucosa healing</td>
</tr>
<tr>
<td>Authors</td>
<td>Method</td>
<td>Cutoff, μg/mL</td>
<td>Spec/Sens, %</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Adedokun et al, 2014</td>
<td>Classic ELISA</td>
<td>>41 (w8)</td>
<td>62/63 (w8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>3.7 (w30)</td>
<td>71/65 (w30)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>1.7 (w54)</td>
<td>64/89 (w54)</td>
</tr>
<tr>
<td>Cornillie et al</td>
<td>Classic ELISA</td>
<td>≥3.5</td>
<td>78/64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levesque et al</td>
<td>HMSA (commercial kit)</td>
<td>≤2.8–4.6 (a)</td>
<td>68/61 (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≤2.7–2.8 (b)</td>
<td>74/64 (b)</td>
</tr>
<tr>
<td>Marits et al</td>
<td>Classic ELISA</td>
<td>>4.1 (CD)</td>
<td>44/87</td>
</tr>
<tr>
<td>Papamichail et al, 2015</td>
<td>ELISA</td>
<td>>22.5 (w2)</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>12.8 (w6)</td>
<td></td>
</tr>
<tr>
<td>Singh et al</td>
<td>Classic ELISA and HMSA</td>
<td>≥5</td>
<td>85/50</td>
</tr>
<tr>
<td></td>
<td>(Prometheus Laboratories)</td>
<td>≥7</td>
<td>100/33</td>
</tr>
<tr>
<td></td>
<td>HMSA (commercial kit)</td>
<td>>4.87</td>
<td>77/88</td>
</tr>
<tr>
<td>Tang et al</td>
<td>No</td>
<td>>2.79</td>
<td>77.6/52.5</td>
</tr>
<tr>
<td>Vande Casteele et al</td>
<td>HMSA (commercial kit)</td>
<td>>4.87</td>
<td>77/88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>2.79</td>
<td>77.6/52.5</td>
</tr>
<tr>
<td>Bortlik et al</td>
<td>Classic ELISA (Q-INFLIXI,</td>
<td><3</td>
<td>62/70</td>
</tr>
<tr>
<td></td>
<td>Matriks Biotek)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imaeda et al, 2014</td>
<td>Classic ELISA</td>
<td>>4 (a)</td>
<td>70/71 (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>0.6 (b)</td>
<td>62/73 (b)</td>
</tr>
<tr>
<td>Paul et al</td>
<td>ELISA (commercial kit,</td>
<td><2 (a)</td>
<td>82.3/76</td>
</tr>
<tr>
<td></td>
<td>Theradiag)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: CD - CD activity index, CRP - C-reactive protein, CDAI - Crohn's disease activity index.
decreased by >50% than the value at the time of loss of clinical response. Quality assessment was limited in those cases to which we only had access to the abstract.28,31–33 Taking into consideration the other studies, all but 4 had suitable inclusion and exclusion criteria,8,24,29,36 and all papers indicated the type of IBD and the assay used to measured drug and antidrug antibody levels.

Assays Used to Measure Drug and Antidrug Antibody Levels

One aspect that should be taken into consideration when analyzing drug TL and antidrug antibody levels is the assay used to measure them. All but 3 of the included works measured IFX or ADA TL using classic enzyme-linked immunosorbent assay (ELISA).6,8,11,24–29,31,32,34,36ZA Zittan et al,23 Levesque et al,30 and Vande Casteele et al22 used a homogeneous mobility shift assay (HMSA), whereas Steenholdt et al35 used a fluid-phase radioimmunoassay (fluid-phase RIA). Singh et al24 tested 2 methodologies, the classic ELISA and HMSA.

Regarding antidrug antibody measurements, 7 studies used bridging ELISA, either via home-made assays or commercial kits.25–28,32,36,37 Mazor et al11 applied an adaptation of the anti-human lambda chain-based ELISA. In 2 studies by Imaeda et al, ATI6 and ATA29 levels were also measured with ELISA, but samples were previously treated with acid in order to dissociate immune complexes. Other methods were used, namely HMSA,23 fluid-phase RIA,35 and inhibition ELISA. Singh et al24 tested 2 methodologies, bridging ELISA and HMSA. Figure 4 displays all methodologies used.

Infliximab Levels

By Week of Measurement

Of the 16 IFX studies, 7 specified the time point measurements24–27,30. One measured drug levels at week 2,31 2 at week 6,28,31 2 at week 8,25,30 3 at week 14,24,26,27 1 at week 22,26 and 125 also measured IFX levels at weeks 30 and 54. Others only indicated that measurements were made before each infusion, thus representing drug TL.

In Papamichaiel et al,31 2 cutoff levels were proposed (Table 1), both correlating with short-term mucosa healing, but after multiple logistic regression analysis, only IFX levels >12.8 μg/mL at week 6 were retained as an independent factor to predict short-term mucosa healing (OR: 3.6, P = 0.004). Echarri et al25 presented a largely different cutoff level for the same time point. They suggest that IFX levels >3 μg/mL at week 6 had a positive-predictive value for “good response and sustained remission” of >90%. Adedokun et al25 showed that IFX levels >41 μg/mL at week 8 correlated with clinical response with a specificity of 62% and a sensitivity of 63% (Table 1). The median serum IFX concentration was significantly higher at week 8 in patients with clinical response or mucosal healing during induction than those not achieving these endpoints. Levesque et al30 found a different cutoff: a mean IFX trough concentration <3 μg/mL at week 8 was
TABLE 2. ADA Trough Levels and Antidrug Antibodies Cutoff, Methodology and Clinical Outcomes

<table>
<thead>
<tr>
<th>Authors</th>
<th>Study Design</th>
<th>Population</th>
<th>Regimen</th>
<th>Country</th>
<th>Time point</th>
<th>Method</th>
<th>Cutoff, µg/mL</th>
<th>Spec/Sens, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zittan et al, 2016<sup>23</sup></td>
<td>Observational</td>
<td>60 Adults with CD</td>
<td>ADA</td>
<td>Canada</td>
<td>—</td>
<td>HMSA (commercial kit, Prometheus Laboratories)</td>
<td>8.14</td>
<td>76.0/91.4</td>
</tr>
<tr>
<td>Ungar et al<sup>38</sup></td>
<td>Retrospective, cross-sectional</td>
<td>67 Adults with IBD</td>
<td>ADA</td>
<td>Israel</td>
<td>—</td>
<td>—</td>
<td>>7.1</td>
<td>85/—</td>
</tr>
<tr>
<td>Mazor et al<sup>11</sup></td>
<td>Observational, cross-sectional</td>
<td>71 Adults with CD</td>
<td>ADA</td>
<td>Israel</td>
<td>Just before next infusion</td>
<td>Classic ELISA</td>
<td>>5.85 (a)</td>
<td>70.6/68</td>
</tr>
<tr>
<td>Roblin et al<sup>36</sup></td>
<td>Observational cross-sectional</td>
<td>40 Adults with IBD</td>
<td>ADA; maintenance therapy</td>
<td>France</td>
<td>W22</td>
<td>ELISA (commercial kit, Theradiag)</td>
<td><4.9 (a)</td>
<td>85/66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>4.85 (b)</td>
<td>67/81</td>
</tr>
<tr>
<td>Imaeda et al, 2014<sup>29</sup></td>
<td>Prospective cohort</td>
<td>40 Adults with CD</td>
<td>ADA; maintenance therapy</td>
<td>Japan</td>
<td>Just before next infusion</td>
<td>Classic ELISA</td>
<td>>5.9</td>
<td>92/67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Method</th>
<th>Incidence, n (%)</th>
<th>Cutoff</th>
<th>Spec/Sens, %</th>
<th>Endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zittan et al, 2016<sup>23</sup></td>
<td>HMSA (commercial kit, Prometheus Laboratories)</td>
<td>No (30.9)<sup>a</sup></td>
<td>—</td>
<td>—</td>
<td>Mucosa healing</td>
</tr>
<tr>
<td>Ungar et al<sup>38</sup></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Mucosa healing</td>
</tr>
<tr>
<td>Mazor et al<sup>11</sup></td>
<td>(adapted) Antihuman lambda chain-based ELISA</td>
<td>No (30.5 samples)<sup>b</sup></td>
<td>≥ 3 µg/mL (b)</td>
<td>98/20.6</td>
<td>(a) Remission; (b) Active disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No (12.7 samples)<sup>c</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roblin et al<sup>36</sup></td>
<td>Bridging ELISA (commercial kit)</td>
<td>9 (22.5)</td>
<td>No</td>
<td></td>
<td>(a) Absence of mucosa healing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(b) Clinical remission</td>
</tr>
<tr>
<td>Imaeda et al, 2014<sup>29</sup></td>
<td>ELISA (+acid dissociation)</td>
<td>35 (23)</td>
<td>No</td>
<td></td>
<td>CRP ≥ 0.3 mg/dL</td>
</tr>
</tbody>
</table>

^aCutoff for ATA positivity >1 U/mL.
^bCutoff for ATA positivity >1.5 µg/mL-eq.
^cCutoff for ATA positivity >3 µg/mL-eq.
significantly associated with a ≈70-point increase in the mean total CD activity index score between infusions (P < 0.001).

In measurements performed at weeks 14 and/or 22, cutoff values varied from <3 to ≥7 µg/mL (Table 1). Patients with TL >3 µg/mL at weeks 14 and/or 22 had an approximately 66% lower likelihood to lose their response to IFX than those with subtherapeutic levels.26 These findings are similar to data from the post-hoc analysis of the ACCENT I trial (A Crohn’s Disease Clinical Trial Evaluating Infliximab in a New Long-term Treatment Regimen),27 which found that an IFX level >3.5 µg/mL at week 14 was a good predictor of sustained response at week 54. Patients with sustained response to scheduled maintenance IFX at 5 mg/kg had higher median IFX TL than those who lost response during the 54 weeks follow-up (4.0 versus 1.9 µg/mL, P = 0.0331). Adedokun et al25 also measured IFX levels at weeks 30 and 54 and the levels, related with clinical response, were 3.7 and 1.7 µg/mL, respectively (Table 1). They suggested that more weight should be given to the threshold estimate at week 30 (3.7 µg/mL) because it was most representative of the steady-state trough concentration for both Active Ulcerative Colitis studies. Therefore, patients with IFX TL >3.7 µg/mL at week 30 are more than twice as likely to have clinical response than patients with IFX TL <3.7 µg/mL.

Mucosa Healing

Imaeda et al6 showed that IFX TL >4 µg/mL was a good predictor of mucosa healing (Table 1). The authors also showed that the deterioration of the endoscopic findings was significantly associated with lower IFX TL. Two abstracts reported similar cutoff levels.33,38 In both of them, IFX levels were significantly higher in the mucosal healing group than in patients with active disease (4.3 versus 1.7 µg/mL, P = 0.000218).

Loss of Response

Steenholdt et al15 showed that IFX TL <0.5 in CD and <0.8 in UC were good predictors of loss of response. IFX TL were significantly higher in both patients with CD and patients with UC who had maintained response to IFX compared with those who had lost response (median 2.8 µg/mL versus median 0 µg/mL, for CD; and 3.8 µg/mL versus 0 µg/mL for UC). Higher levels were identified by Bortlik et al26 (<3 µg/mL) and Roblin et al32 (<2 µg/mL).

Biomarkers

Imaeda et al6 showed that IFX levels >0.6 µg/mL could predict normalized CRP levels (<3 mg/dL) with good sensitivity and specificity (Table 1). C-reactive protein levels were significantly higher in the nonmucosal healing group than in the mucosal healing group (0.09 versus 1.32 mg/dL). Levesque et al10 showed that IFX concentrations <2.7 to 2.8 µg/mL predicted serum CRP levels >5 mg/L. Therefore, they suggested that a mean IFX trough concentration <3 µg/mL at week 8 was significantly associated with a higher probability for serum CRP concentrations >5 mg/L at that time point. In a study by Vande Casteele et al,22 an IFX TL >2.79 µg/mL was considered to be a good predictor of CRP <5 mg/L, meaning that patients with IFX levels <2.79 µg/mL in a “current” sample were at higher risk of not achieving remission, defined as CRP <5 mg/L.

Adalimumab Levels

ADA information is sparse. Imaeda et al29 evaluated 40 adults with CD and performed an ROC curve analysis to identify threshold levels of ADA that could predict normalized CRP levels (i.e., CRP ≤3 mg/dL). ADA levels >5.9 µg/mL predicted normalized CRP with high specificity (Table 2). Mazor et al11 and
Roblin et al. conducted cross-sectional studies in patients taking ADA maintenance therapy; Mazor et al. enrolled patients with CD and Roblin et al. enrolled patients with CD or UC. In the study by Mazor et al., ADA TL > 5.85 μg/mL predicted remission with a specificity and sensitivity of 70.6% and 68.0%, respectively. Roblin et al. showed that ADA serum concentrations < 4.9 μg/mL predicted an absence of mucosa healing. The median ADA TL was significantly higher in cases of mucosa healing (6.5 versus 4.2 μg/mL in those without mucosa healing; P < 0.005). Moreover, serum levels higher than 4.85 μg/mL predicted clinical remission, defined as CD activity index < 150 points or total Mayo score < 3 (Table 2). Higher ADA TL were found in the work by Zittan et al. (14.7 μg/mL in the mucosa healing group, versus 3.4 μg/mL in the non-MH group, P = 6.25 × 10⁻⁵). Furthermore, Zittan et al. suggested that ADA TL < 8.14 μg/mL predicted MH with high sensitivity (Table 2). In the work by Ungar et al., ADA levels > 7.1 μg/mL identified patients with mucosa healing with 85% specificity. He also found that the association between higher levels of ADA and increased rate of mucosa healing reached a plateau at 12 μg/mL.

Incidence of ATIs and ATAs

Antidrug antibodies are described as the main cause of loss of response to biologic drugs over time. However, the incidence of antidrug antibodies varies significantly between studies. Taking into consideration those included in this systematic review, the ATI incidence varied from 9% to 63.5% (Table 1). In Bortlik et al., 15% of the patients considered with ATIs were transient, meaning that patients presented with ATIs in their serum which at some point disappeared. The same was reported by Vande Casteele et al., where 15 of the 53 patients considered with ATIs were transient (Table 1). Vande Casteele et al. reported an ATI incidence of 23.7%, and the authors were able to distinguish 4 groups of patients based on ATI and IFX status (Table 1). Paul et al. also performed an ROC curve analysis using “loss of response” as the target clinical outcome. The authors suggested that ATI levels > 200 ng/mL, assessed by the ELISA assay, predicted loss of response with a high specificity but with a low sensitivity (Table 1). A combined analysis was also performed on patients with CD with IFX levels < 2 μg/mL and ATI levels < 200 ng/mL. The ATIs predicted clinical remission with a high specificity and sensitivity (Table 1); patients with UC showed higher specificity (100%) but lower sensitivity (70%). The same analysis using “mucosa healing” as the clinical outcome was also supplied (Table 1). An ROC curve analysis for a threshold > 9.1 U/mL at the time of loss of response predicted an “unsuccessful intervention” with a specificity of 82% and a sensitivity of 65%. Therefore, patients having ATI TL > 9.1 U/mL at the time of loss of response had a likelihood ratio of 3.6 for an unsuccessful intervention. It was also reported that patients with ATI levels < 3.15 U/mL had a higher probability of being in remission.

With regard to ADA, Mazor et al. suggested that a cutoff level ≥ 3 μg/mL, when using an adapted anti-human lambda chain-based ELISA assay, predicted active disease with high specificity but low sensitivity (Table 2). The authors showed a negative correlation between ADA drug levels and ATIs at levels and found that for patients with ATA levels ≥ 3 μg/mL-eq, the maximal ADA level was only 0.5 μg/mL.

DISCUSSION

The importance of measuring drug levels and antidrug antibody levels to adjust therapy is undisputable. The major hindrance to its implementation in daily clinical practice is the lack of a universally valid assay and the absence of a cutoff level clearly related with a clinical outcome. One cannot easily compare results from different studies, as they use distinct assays that have different limitations and lower limits of quantification.

Regarding the measurement of IFX levels, classic ELISA is the methodology most frequently used, but other methods are available, such as HMSA and fluid-phase RIA. Studies have compared performance of different methods to measure drug levels have concluded the same; there is a good qualitative correlation between different assays (e.g., IFX detection rates of 76% with ELISA and 82% with RIA). Furthermore, in some cases, there is a good quantitative correlation (e.g., ELISA and RIA, R² = 0.98, P = 0.001, ELISA and RIA, Pearson r = 0.91, P < 0.0001) but not a perfect agreement on drug concentrations (e.g., maximum difference of 1.41 μg/mL between ELISA and RIA), and this emphasizes the importance of...
establishing different cutoff levels according to the methodology used. The threshold levels assessed by ROC curve analysis were quite different between the studies. This can be due to (1) different methodology (even using the same principle, such as bridging ELISA, home-made ELISA, and commercial kits), (2) different study design and sample characteristics, and/or (3) different endpoints. This heterogeneity justifies the obstacle to perform a meta-analysis. A systematic review and meta-analysis was recently published on this topic and suggested a cutoff level of 2 μg/mL to predict remission (RR = 2.9, 95% confidence interval, 1.8–4.7, *P* < 0.001), but there was a high statistical heterogeneity (I² = 88%). However, TL were always associated with a better clinical endpoint: clinical remission, mucosa healing, normalized CRP, or loss of response. Our review emphasizes the importance of measuring drug levels during maintenance therapy as well as in cases of loss of response, cases with persistent high levels of CRP, and when mucosal lesions are still present. In the induction phase, the only study reported did not show any advantage of measuring IFX at 2 weeks because this corresponded to the loading period and it was not possible to differentiate responders from nonresponders. However, at weeks 8, 14, and 30, the different studies found significant differences between responders and nonresponders, and one of these time periods should be chosen by clinicians for strategic therapeutic decisions, namely increasing drug dose or addition of 1 immunomodulatory drug. Active Ulcerative Colitis Trial subanalysis suggested week 30 is ideal and argued that this time corresponds to the steady state of the drug. Two studies (TAILORIX and TAXIT) have concluded that in maintenance phase, concentration-based dose adjustment was not superior to dose adjustment based on symptoms alone. However, TAXIT trial also showed that patients in the “clinically based dosing” group had more flares during the course of treatment than those in the “concentration-based dosing” group.

Overall, there is evidence for determining drug levels in weeks 6, 14, 22, 30, and 54. During maintenance, therapeutic drug monitoring should be considered in case of loss of response, mucosal ulceration, and elevated biomarkers, such as CRP and fecal calprotectin (Fig. 5).

Figure 6 shows how therapeutic drug monitoring may be used to highlight factors influencing loss of response. Two branches are schematized: for patients with loss of response and high levels of drug (pink branch) and for patients with loss of response and low drug levels (green branch). Pharmacodynamic, pharmacokinetic, and immunogenicity factors may be identified and help clinicians to handle therapeutic decisions.

All methodologies available (ELISA, HMSA, fluid-phase RIA) seem qualitatively equivalent, so either one can be used to monitor drug levels. However, the clinician should take into consideration that there are disagreements on IFX concentration between assays, therefore for each patient, drug levels should be always measured with the same assay. Concerning antidrug antibody levels, the variability among methods is more significant. Enzyme-linked immunosorbent assay (ELISA) is the methodology most frequently used; however, not all ELISAs use the same principle. A bridging ELISA, or double antigen ELISA, uses the drug, in this case, IFX or ADA as the captured antigen and as the detection antibody. Consequently, this method is susceptible to several limitations, namely false-positive results, caused by rheumatoid factors or activated complement fragments that cross-bind the drug’s fragment crystallizable region. False-negative results are due to the assay’s inability to detect monovalent immunoglobulin G4 (IgG4) and antidrug antibodies in the presence of the drug. This method was used by 6 of the studies included in this systematic review. Since this assay has no sensitivity to detect antidrug antibodies in the presence of the drug, some of the studies did not measure antidrug antibodies if there were drug levels in the serum and considered those samples.

FIGURE 5. Time points for drug level determination.
as “ATI inconclusive.” Cornillie et al27 considered samples that had IFX levels >0.1 μg/mL as “ATI inconclusive,” whereas Bortlik et al26 only considered samples that had IFX levels >3 μg/mL as “ATI inconclusive.” Given that half of the patients in clinical trials had the drug in their serum, the use of a bridging ELISA for anti-IFX detection may lead to serious bias. This must be taken into consideration when one tries to draw conclusions about the therapeutic importance of ATIs using bridging methodology.35

We should also keep in mind that study populations and study designs were different. Some included only patients with CD or UC, whereas others comprised both types of patients; some were prospective cohorts while others were cross-sectional studies or post-hoc analyses of controlled trials. These differences can explain why the incidence of antidrug antibodies was so varied between them, even when using the same assay. For example, both studies from Cornillie et al27 and Paul et al37 used a bridging ELISA to measure antidrug antibodies but the incidence of ATI positivity was 9% and 32.8%, respectively. This could be explained by the fact that the first study was a post-hoc analysis of the ACCENT I trial that enrolled 573 adult patients with CD, whereas the second was a prospective cohort with 103 adults with CD or UC.

Kopylov et al46 developed a different ELISA method, anti-human lambda chain-based ELISA, to overcome the false-negative results associated with the presence of the drug. The authors took advantage of the fact that antidrug antibodies have a lambda light chain, whereas the drug has a kappa light chain, and they used an anti-lambda antibody as the detection antibody, ensuring that they were only measuring antidrug antibodies. Mazor et al11 adapted this method to measure antibodies to ADA. Those authors described an incidence for ATA positivity of 30.5%, which showed the sensitivity of anti-lambda chain ELISA and its low rate of drug interference. However, in serum with high levels of a drug, even anti-lambda chain ELISA is not able to completely overcome drug interference.47 Anti-lambda chain ELISA is also unable to detect anti-idiotypic antibodies, i.e., antibodies that recognize functional binding epitopes.47

One way of overcoming drug interference is to perform a prior acidic dissociation. Imaeda et al pretreated samples with
acid in both the IFX study and ADA study. In a previous work, the authors showed the ability of this new method to detect ATIs in samples containing detectable levels of IFX, which proved to be more accurate than the bridging ELISA. From a total of 58 samples, the methodology by Imaeda et al could detect an additional 14 positive samples, of which, by the bridging ELISA, 8 had been considered negative and 6 “inconclusive.”

Three studies used the HMSA to measure ATIs, an alternative assay to ELISA. The HMSA uses size exclusion high-performance liquid chromatography. Although HMSA requires expensive equipment, the authors of those studies state many advantages, including the ability to overcome many potential artifacts encountered in the solid-phase ELISA, the ability to detect high and low affinity antibodies (low affinity antibodies may not be detected by ELISA due to multiple washing steps), the detection of all immunoglobulin isotypes and all IgG subclasses (including IgG4), and the fact that it is not affected by substances present in serum. However, a different ATI incidence was reported by the 3 studies, which can be explained by differences in the study population and sample size (Table 1).

Another assay is able to bridge the gaps of the ELISA methodology. In fluid-phase radioimmunoassay (RIA), used by Steenholdt et al, a radio-labeled antibody to detect and quantify the amount of antidrug antibodies is applied. It has proved to be more sensitive than ELISA, as it is able to detect antidrug antibodies in the presence of the drug and IgG4 isotype. Moreover, fluid-phase RIA overcomes matrix effects encountered in solid-phase assays due to epitope masking via protein aggregation. The major limitation of RIA is the need for advanced laboratory facilities.

Therefore, the differences in methodology, study design, and sample size and characteristics may also explain why the 4 studies with IFX performed a ROC curve analysis in order to find a cutoff level of antidrug antibodies related with a clinical outcome found different threshold levels. It is also not easy to compare the thresholds between studies because they used different units (U/mL; μg/mL; ng/mL) and defined different endpoints. A serious limitation of all of the studies was the inability to show whether or not antidrug antibodies were neutralizing.

It is important to address whether or not antidrug antibodies are functional, because we know that antidrug antibody detection in serum does not always correlate with loss of clinical response. Moreover, sometimes the presence of antidrug antibodies may actually increase the half-life of the drug; if 1 or 2, but not more, antidrug antibodies bind to the drug, the complex will bind to Neonatal fragment crystallizable receptor and will escape elimination. A study comparing different methodologies (ELISA, EIA, RGA, RIA) to measure antidrug antibody levels has been published and concluded that the ability to detect anti-ATIs is comparable with respect to basic analytical properties. ELISA and RIA showed a good correlation (R² = 0.73, P = 0.03), but the agreement was not so good, with a mean titer difference of ~2400 (~5000 to 200), which can be partially explained by the inability of bridging ELISA to detect IgG4 antidrug antibodies. The authors suggest that clinicians should choose an assay where assessments take place in fluid phase and where all anti-IFX IgG isotypes are quantified.

CONCLUSION

Currently, there is no doubt that drug levels correlate with clinical and endoscopic outcomes, and this knowledge is the basis of drug monitoring. Nevertheless, it can only be widely used in clinical practice when there is a consensus on the thresholds of drug and antidrug antibody levels that correlate with a specific clinical outcome, including either clinical remission or loss of response. Concerning drug level monitoring, any methodology is adequate but the data published by now is insufficient to come up with a cutoff level. With respect to antidrug antibody levels, assays have significantly different sensitivity, therefore it will be necessary to define a gold standard method or to establish different cutoff levels for different methodologies.

REFERENCES

Inflammatory Bowel Diseases
Instructions for Authors

SCOPE

The focus of the journal Inflammatory Bowel Diseases® is to bring the most current information in the clinical and basic sciences to all physicians caring for patients with inflammatory bowel diseases, and to investigators performing research in inflammatory bowel diseases and related fields. The journal publishes peer-reviewed manuscripts and review articles in basic and clinical sciences, updates on clinical trials, reviews of the current literature, editorials, and other features.

ETHICAL/LEGAL CONSIDERATIONS

A submitted manuscript must be an original contribution not previously published (except as an abstract or preliminary report), must not be under consideration for publication elsewhere, and, if accepted, must not be published elsewhere in similar form, in any language, without the consent of the publisher. Each person listed as an author is expected to have participated in the study to a significant extent. Although the editors and referees make every effort to ensure the validity of published manuscripts, the final responsibility rests with the authors, not with the journal, its editors, or the publisher. All manuscripts must be submitted through the journal's online submission system at http://www.editorialmanager.com/ibd/.

Inflammatory Bowel Diseases utilizes the plagiarism software, CrossCheck. Manuscripts submitted to this journal may be screened for plagiarism against previously published works. Authors who have been found to be guilty of plagiarism after the appropriate institutional investigation will be banned from submitting to the journal for a defined period of time.

Patient Anonymity and Informed Consent - It is the author's responsibility to ensure that a patient's anonymity be carefully protected and to verify that any experimental investigation with human subjects reported in the manuscript was performed with informed consent and following all the guidelines for experimental investigation with human subjects required by the institution(s) with which all the authors are affiliated. Authors should mask patients' eyes and remove patients' names from figures unless they obtain written consent from the patients and submit written consent with the manuscript.

Human Studies - Human experimentation must conform to ethical standards, and be approved by the appropriate Institutional Review Board (IRB). A statement concerning IRB approval and consent procedures must appear at the beginning of the Methods section. Any systematic data gathering effort in patients or volunteers must be approved by an IRB or adhere to appropriate local/national regulations. The Editors of Inflammatory Bowel Diseases are concerned about appropriate IRB review and informed consent. Authors may be questioned about the details of consent forms or the consent process. On occasion, the Editor-in-Chief may request a copy of the approved IRB application from the author. Lack of appropriate consent or documentation may be grounds for rejection. Local IRB approval does not guarantee acceptability; the final decision will be made by the Editor-in-Chief.

Animal Studies - Experimental work on animals must conform to the guidelines laid out in the Guide for the Care and Use of Laboratory Animals, which is available from the National
Academy of Science; a text-only version is available at http://www.nap.edu/readingroom/books/labrats/. Adherence to all relevant regulations and/or approval of the appropriate institutional Animal Care Committee or governmental licensure of the investigator and/or laboratory must be obtained. A statement concerning such approval must be included at the beginning of the Methods section. The Editors of Inflammatory Bowel Diseases are concerned about appropriate animal care. On occasion, the Editor-in-Chief may request a copy of the approved Animal Care Committee application from the author. Local committee approval does not guarantee acceptability; the final decision will be made by the Editor-in-Chief.

Registration of Clinical Trials - All clinical trials that involve investigational drugs supported by a pharmaceutical firm or investigational devices supported by a device manufacturer must be registered at the time that a manuscript is submitted to Inflammatory Bowel Diseases for publication. The registry and registration number must be stated in the first paragraph of the Methods section of the manuscript.

Compliance with NIH and Other Research Funding Agency Accessibility Requirements - A number of research funding agencies now require or request authors to submit the post-print (the article after peer review and acceptance but not the final published article) to a repository that is accessible online by all without charge. As a service to our authors, LWW will identify to the National Library of Medicine (NLM) articles that require deposit and will transmit the post-print of an article based on research funded in whole or in part by the National Institutes of Health, Wellcome Trust, Howard Hughes Medical Institute, or other funding agencies to PubMed Central. The revised Copyright Transfer Agreement & Disclosure form provides the mechanism.

Copyright - All authors must complete and submit the journal's copyright transfer agreement, which includes a section on the disclosure of potential conflicts of interest based on the recommendations of the International Committee of Medical Journal Editors, "Uniform Requirements for Manuscripts Submitted to Biomedical Journals" (www.icmje.org/update.html).

A copy of the form is made available to the submitting author within the Editorial Manager submission process. Co-authors will automatically receive an Email with instructions on completing the form upon submission.

Conflicts of Interest - Authors must state all possible conflicts of interest in the manuscript, including financial, consultant, institutional and other relationships that might lead to bias or a conflict of interest. If there is no conflict of interest, this should also be explicitly stated as none declared. All sources of funding should be acknowledged in the manuscript. All relevant conflicts of interest and sources of funding should be included on the title page of the manuscript with the heading "Conflicts of Interest and Source of Funding".

For example: Conflicts of Interest and Source of Funding: A has received honoraria from Company Z. B is currently receiving a grant (#12345) from Organization Y, and is on the speaker's bureau for Organization X — the CME organizers for Company A. For the remaining authors none were declared.

In addition, each author must complete and submit the journal's copyright transfer agreement, which includes a section on the disclosure of potential conflicts of interest based on the recommendations of the International Committee of Medical Journal Editors, "Uniform
Requirements for Manuscripts Submitted to Biomedical Journals (www.icmje.org/update.html).

A copy of the form is made available to the submitting author within the Editorial Manager submission process. Co-authors will automatically receive an Email with instructions on completing the form upon submission.

Permissions - Authors must submit written permission from the copyright owner (usually the publisher) to use direct quotations, tables, or illustrations that have appeared in copyrighted form elsewhere, along with complete details about the source. Any permissions fees that might be required by the copyright owner are the responsibility of the authors requesting use of the borrowed material, and not the responsibility of the publisher.

PREPARATION OF MANUSCRIPT

Manuscripts that do not adhere to the following instructions will be returned to the corresponding author for technical revision before undergoing peer review. See specific guidelines for Letters to the Editor below. For questions on preparing manuscripts for submission, please contact Meghann Knowles at meghann@jjeditorial.com.

Title Page Include on the title page (a) complete manuscript title; (b) authors' full names, highest academic degrees, and affiliations; (c) name and address for correspondence, including fax number, telephone number, and e-mail address; and (d) sources of support that require acknowledgment.

The title page must also include disclosure of funding received for this work from any of the following organizations: National Institutes of Health (NIH); Wellcome Trust; Howard Hughes Medical Institute (HHMI); and other(s).

Structured Abstract and Key Words Limit the abstract to 250 words. It must be factual and comprehensive. Do not cite references in the abstract. Limit the use of abbreviations and acronyms, and avoid general statements (e.g., "the significance of the results is discussed"). It should be sectioned into Background, Methods, Results, and Conclusions. List three to five key words.

Text For full-length research articles, organize the manuscript in the following sequence: Abstract and Key Words, Introduction, Materials and Methods, Ethical Considerations, Results, Discussion, Acknowledgment, References, Tables, and Figure Legends. Original Research Articles: Authors are encouraged to submit articles in basic or clinical science. Review Articles of exceptional merit will also be accepted. Contributors should communicate with the Editors before submitting a review. Abbreviations must be defined at first mention in text and in each table and figure. If a brand name is cited, manufacturer and address (city and state/country) should be supplied. Acknowledge all forms of support, including pharmaceutical industry support, in an Acknowledgment paragraph.

Abbreviations For a list of standard abbreviations, consult the Council of Biology Editors Style Guide (available from the Council of Science Editors, 9650 Rockville Pike, Bethesda, MD 20814) or other standard sources. Write out the full term for each abbreviation at its first use unless it is a standard unit of measure.
References The authors are responsible for the accuracy of the references. Key the references (double-spaced) at the end of the manuscript. Cite the references in text in the order of appearance, including those references cited in tables and figure legends at the chronological citation of the tables and figures in text. Cite unpublished data, such as papers submitted but not yet accepted for publication, personal communications, in parentheses in the text. If there are more than three authors, only name the first three authors and then use et al. For abbreviations of journal names, refer to List of Journals Indexed in Index Medicus. This can be accessed at http://www.nlm.nih.gov/tsd/serials/lij.html.

Sample references are given below:

Journal Article

Book Chapter

Entire Book

Software

Online Journals

Database

World Wide Web

Figures Art should be created/scanned and saved and submitted as either a TIFF (tagged image file format), or an EPS (encapsulated postscript) file. Line art must have a resolution of at least 1200 dpi (dots per inch), and electronic photographs, radiographs, CT scans, and other scanned images must have a resolution of at least 300 dpi. If fonts are used in the artwork, they must be converted to paths or outlines or they must be embedded in the files. Color images must be created/scanned and saved and submitted as CMYK files. Please note that artwork generated from office suite programs such as Corel Draw and MS Word and artwork downloaded from the Internet (JPEG or GIF files) cannot be used. Cite figures consecutively in the manuscript, and number them in the order in which they are discussed.
Figure Legends Legends must be submitted for all figures. They should be brief and specific, and they should appear after the tables. Use scale markers in the image for electron micrographs, and indicate the type of stain used.

Color Figures At no cost to the author, the journal accepts for publication color figures that will enhance the article. Figures are also published online in color at no cost.

Steps for Submitting Artwork

2. Create, Scan and Save according to the "5 Steps to Creating Digital Artwork (pdf)".

3. Compare your final figure to the Target Digital-Imaging Results listed below.

4. Upload each figure to the journal's online submission system in conjunction with your manuscript text and tables.

Digital Artwork Guideline Checklist

Here are the basics to have in place before submitting your digital art to *Inflammatory Bowel Diseases*. Artwork saved as TIFF and EPS files. Do not save TIFFs as compressed files. PowerPoint files are also acceptable.

- Artwork created as the actual size (or slightly larger) it will appear in the journal. (To get an idea of the size images should be when they print, study a copy of the journal to which you wish to submit. Measure the artwork typically shown and scale your image to match.)
- Crop out any white or black space surrounding the image.
- Text and fonts in any figure are one of the acceptable fonts: Helvetica, Times Roman, Symbol, Mathematical PI, and European PI.
- Color images are created/scanned and saved and submitted as CMYK only. Do not submit any figures in RGB mode because RGB is the color mode used for screens/monitors and CMYK is the color mode used for print.
- Line art saved at a resolution of at least 1200 dpi.
- Images saved at a resolution of at least 300 dpi.
- Each figure saved as a separate file and saved separately from the accompanying text file.
- For multi-panel or composite figures only: Any figure with multiple parts should be sent as one file with each part labeled the way it is to appear in print.

Remember:

- Artwork generated from office suite programs such as CorelDRAW, MS Word, Excel, and artwork downloaded from the Internet (JPEG or GIF files) cannot be used because the quality is poor when printed.
- Cite figures consecutively in your manuscript.
• Number figures in the figure legend in the order in which they are discussed.
• Upload figures consecutively to the journal's online submission system and number figures consecutively in the Description box during upload.

Tables Create tables using the table creating and editing feature of your word processing software (e.g., Word). Do not use Excel or comparable spreadsheet programs. Do not submit tables as image files or images placed in Word documents, tables must be provided as editable text (Word files are preferred). Submit all tables as separate files. Cite tables consecutively in the text, and number them in that order. Key each on a separate sheet, and include the table title, appropriate column heads, and explanatory legends (including definitions of any abbreviations used). Do not imbed tables within the body of the manuscript. They should be self-explanatory and should supplement, rather than duplicate, the material in the text.

Supplemental Digital Content (SDC) Authors may submit supplementary materials via the journal's online submission system that enhance their article's text to be considered for online posting. SDC may include standard media such as text documents, graphs, audio, video, etc. On the Attach Files page of the submission process, please select Supplemental Audio, Video, or Data for your uploaded file as the Submission Item. If an article with SDC is accepted, our production staff will create a URL with the SDC file. The URL will be placed in the call-out within the article. SDC files are not copy-edited by LWW staff, they will be presented digitally as submitted. Please supply the SDC files as you would like them to appear in final publication (include legends in the same file as the images; make text double spaced or single spaced per your preference). For a list of all available file types and detailed instructions, please visit http://links.lww.com/A142.

SDC Call-outs Supplemental Digital Content must be cited consecutively in the text of the submitted manuscript. Citations should include the type of material submitted (Audio, Figure, Table, etc.), be clearly labeled as "Supplemental Digital Content," include the sequential list number, and provide a description of the supplemental content. All descriptive text should be included in the call-out as it will not appear elsewhere in the article.
Example: We performed many tests on the degrees of flexibility in the elbow (see Video, Supplemental Digital Content 1, which demonstrates elbow flexibility) and found our results inconclusive.

List of Supplemental Digital Content A listing of Supplemental Digital Content must be submitted at the end of the manuscript file. Include the SDC number and file type of the Supplemental Digital Content. This text will be removed by our production staff and not be published.

Example:
Supplemental Digital Content 1.wmv

SDC Files Requirements All acceptable file types are permissible up to 10 MBs. For audio or video files greater than 10 MBs, authors should first query the journal office for approval.
For a list of all available file types and detailed instructions, please visit http://links.lww.com/A142.

Style Follow American Medical Association Manual of Style (10th edition). Stedman's Medical Dictionary (27th edition) and Merriam Webster's Collegiate Dictionary (10th edition) should be used as standard references. Refer to drugs and therapeutic agents by their accepted
generic or chemical names, and do not abbreviate them. Use code numbers only when a
generic name is not yet available. In that case, supply the chemical name and a figure giving
the chemical structure of the drug. Capitalize the trade names of drugs and place them in
parentheses after the generic names. To comply with trademark law, include the name and
location (city and state in USA; city and country outside USA) of the manufacturer of any
drugs, supplies, or equipment mentioned in the manuscript. Use the metric system to
express units of measure and degrees Celsius to express temperatures, and use SI units
rather than conventional units.

Basic and Clinical IBD Review Articles Guidelines Basic and clinical IBD Review articles
should present recent advances in a relatively narrow topic that have been made in cutting
edge research.

The goal of the basic and clinical IBD review articles should be to present a complete
summary of important research areas that are now improving our understanding of Crohn's
disease and ulcerative colitis.

The body of basic and clinical IBD Review articles should be no longer than 20 double spaced
pages (not including references, figures, and tables). There should be no more than 6 tables
and figures (combined). Supplemental figures and tables will be allowed online. If page limits
need to be increased, the authors may request permission from the Editors to increase the
length of the Review article. The number of references should be limited to 100. The Review
article should be focused on a single specific topic. All review articles will be peer-reviewed.

Future Directions and Methods for IBD Research Guidelines Original research articles
and review articles on future directions and methods for IBD research should discuss
important basic and clinical areas in which investigators should focus their efforts to provide
a deeper understanding of IBD research areas in which rapid advances and novel concepts
can be made. In addition, the Future Directions and Methods for IBD original research
articles and review articles should include a discussion of areas in which improved
methodologic tools have been identified and exactly how those methods should be
performed. Basic science directions and methods should be presented that will expand our
knowledge of areas that will allow novel insights to be made regarding the genetic,
immunologic, microbial and environmental interactions that are the basis of the pathogenesis
of Crohn’s disease and ulcerative colitis. Clinical directions and methods should be presented
that will allow investigators to make advances using cohort studies, multicenter registries,
risk stratifications, and treatment outcomes. The goal of the Future Directions and Methods
for clinical IBD original research articles and review articles should be to better understand
the challenging biological variables in IBD patients and to provide optimal evidence of novel
therapeutics that will more effectively treat, cure, and prevent Crohn's disease and ulcerative
colitis.

Original research articles, for the Future Directions and Methods for IBD research section,
should be written as described in the IBD Journal Instructions for original research articles.
Review articles, for the Future Directions and Methods for IBD research section, should be no
longer than 35 double spaced pages (including references and figure legends). There should
be no more than 6 tables and figures (combined). Supplemental figures and tables will be
allowed online. If page limits need to be increased, the authors may request permission from
the Editors to increase the length of their future directions and methods for IBD research
review article. The number of references should be limited to 100. The future directions and
methods for IBD research review article should be focused on a single specific topic.
Letters to the Editor Guidelines Letters in response to articles published in the journal are welcome and should be submitted via IBD's online submission system. All Letters should start with the phrase "To the Editors," and be written as a letter. Letters must be submitted the end of the following calendar month (e.g. by the end of July, for letters referring to articles in the June print issue) and be a maximum of 400 words, with no more than one figure or table and no more than 5 references. All LTEs will be published online-only.

Research letters and case-based discussions will no longer be accepted for submission effective November 1, 2012.

REVISIONS

When submitting a revision, please submit both a clean copy and marked copy of the manuscript. The marked copy should highlight all of the changes made the by authors after the original review. Authors can use the track changes feature of the Microsoft Word program to create a marked copy. Authors also should submit all tables and figures in separate files for production purposes.

AFTER ACCEPTANCE

Open access LWW’s hybrid open access option is offered to authors whose articles have been accepted for publication. With this choice, articles are made freely available online immediately upon publication. Authors may take advantage of the open access option at the point of acceptance to ensure that this choice has no influence on the peer review and acceptance process. These articles are subject to the journal's standard peer-review process and will be accepted or rejected based on their own merit.

Authors of accepted peer-reviewed articles have the choice to pay a fee to allow perpetual unrestricted online access to their published article to readers globally, immediately upon publication. The article processing charge for Inflammatory Bowel Diseases is $3,000. The article processing charge for authors funded by the Research Councils UK (RCUK) is $3,800. The publication fee is charged on acceptance of the article and should be paid within 30 days by credit card by the author, funding agency or institution. Payment must be received in full for the article to be published open access.

• Authors retain copyright Authors retain their copyright for all articles they opt to publish open access. Authors grant LWW a license to publish the article and identify itself as the original publisher.

• Creative Commons license Articles opting for open access will be freely available to read, download and share from the time of publication. Articles are published under the terms of the Creative Commons License Attribution-NonCommerical No Derivative 3.0 which allows readers to disseminate and reuse the article, as well as share and reuse of the scientific material. It does not permit commercial exploitation or the creation of derivative works without specific permission. To view a copy of this license visit: http://creativecommons.org/licenses/by-nc-nd/3.0.

• Compliance with NIH, RCUK, Wellcome Trust and other research funding agency accessibility requirements A number of research funding agencies now require or request authors to submit the post-print (the article after peer review and acceptance but not the final published article) to a repository that is accessible online
by all without charge. As a service to our authors, LWW identifies to the National Library of Medicine (NLM) articles that require deposit and transmits the post-print of an article based on research funded in whole or in part by the National Institutes of Health, Howard Hughes Medical Institute, or other funding agencies to PubMed Central. The revised Copyright Transfer Agreement provides the mechanism. LWW ensures that authors can fully comply with the public access requirements of major funding bodies worldwide. Additionally, all authors who choose the open access option will have their final published article deposited into PubMed Central. RCUK and Wellcome funded authors can choose to publish their paper as open access with the payment of an article process charge (gold route), or opt for their accepted manuscript to be deposited (green route) into PMC with an embargo. With both the gold and green open access options, the author will continue to sign the Copyright Transfer Agreement (CTA) as it provides the mechanism for LWW to ensure that the author is fully compliant with the requirements. After signature of the CTA, the author will then sign a License to Publish where they will then own the copyright. Those authors who wish to publish their article via the gold route will be able to publish under the terms of the Attribution 3.0 (CCBY) License. To view a copy of this license visit: http://creativecommons.org/licenses/by/2.0/. Those authors who wish to publish their article via the green route will be able to publish under the rights of the Attribution Non-commercial 3.0 (CCBY NC) license (http://creativecommons.org/licenses/by-nc/2.0/). It is the responsibility of the author to inform the Editorial Office and/or LWW that they have RCUK funding. LWW will not be held responsible for retroactive deposits to PMC if the author has not completed the proper forms.

FAQ for open access http://links.lww.com/LWW-ES/A48

Page Proofs and Corrections - Corresponding authors will receive an e-mail containing a link to the electronic page proofs to check the copyedited and typeset article before publication. The pages proofs are provided as portable document format (PDF) files which require Adobe Reader to be viewed and edited. Complete instructions will be provided with the e-mail for downloading the files and for returning the corrected pages electronically to the publisher. It is the author's responsibility to ensure that there are no errors in the proofs. Changes that have been made to conform to journal style should be allowed to stand if they do not alter the authors' meaning. Authors may be charged for alterations to the proofs beyond those required to correct errors or to answer queries. Proofs must be checked carefully and corrections returned within 24 to 48 hours of receipt, as requested in the communication accompanying the page proofs.

Reprints - The corresponding author will receive the reprint order form via e-mail while the article is in production. Reprint requests can be submitted any time before or after publication of the article. For orders submitted before the article is published, the reprints are normally shipped 6 to 8 weeks after publication of the issue in which the item appears. For any questions regarding reprints or publication fees, contact the Reprint Department by mail at Lippincott Williams & Wilkins, 351 West Camden Street, Baltimore, MD 21201; by phone at 1-800-341-2258; by fax at 410-528-4434; or by e-mail at: reprints@wolterskluwer.com.
Permissions - For permission and/or rights to use content for which the copyright holder is LWW or the society, please go to the journal's website and after clicking on the relevant article, click on the "Request Permissions" link under the "Article Tools" box that appears on the right side of the page. Alternatively, send an e-mail to customercare@copyright.com.

For Translation Rights & Licensing queries, contact Silvia Serra, Translations Rights, Licensing & Permissions Manager, Wolters Kluwer Health (Medical Research) Ltd, 250 Waterloo Road, London SE1 8RD, UK. Phone: +44 (0) 207 981 0600. E-mail: silvia.serra@wolterskluwer.com

For Special Projects and Reprints (U.S./Canada), contact Alan Moore, Director of Sales, Lippincott Williams & Wilkins, Two Commerce Square, 2001 Market Street, Philadelphia, PA 19103. Phone: 215-521-8638. E-mail: alan.moore@wolterskluwer.com

For Special Projects and Reprints (non-U.S./Canada), contact Silvia Serra, Translations Rights, Licensing & Permissions Manager, Wolters Kluwer Health (Medical Research) Ltd, 250 Waterloo Road, London SE1 8RD, UK. Phone: +44 (0) 207 981 0600. E-mail: silvia.serra@wolterskluwer.com
Agradecimentos

Ao meu orientador, Professor Doutor Fernando Magro, pela oportunidade de trabalhar com ele e pela disponibilidade ao longo de todo o trabalho.

À Eng. Joana Afonso, pelo apoio incansável e por todo o carinho.