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Abstract 

Earthquake losses registered worldwide over the last century have triggered crippling 

effects on the economic and social systems of wealthy and undeveloped countries alike. In the 

face of ever increasing impacts, earthquake loss modelling is essential for the prediction, 

prevention and mitigation of the adverse effect of future seismic events. Given the complex nature 

of the process, it is utopian to seek for absolute certainty when gathering the required resources. 

As an inherent property of any analytical process, uncertainty must not be ‘removed’ from the 

equation. One must seek to improve our knowledge to the extent imposed by practical limitations. 

However, a seismic risk assessment can only be meaningful if fully coupled with its 

accompanying analysis of uncertainty, be that aleatory or knowledge-based. 

In the context of seismic risk, several questions remain entirely unanswered or lack a deeper 

understanding. Therefore, in the present work, important issues related with the treatment of 

uncertainty in portfolio loss estimation are addressed, focusing on the building exposure and 

vulnerability counterparts. With regard to building exposure, an innovative algorithm is proposed, 

providing an automated tool for the development of exposure datasets of industrial buildings in 

Europe, based on open-access data and Volunteered Geographic Information (VGI). With respect 

to building fragility and vulnerability, on the other hand, the present work sheds light on several 

problems and limitations in current practice, focusing on the impact that (commonly assumed) 

hazard disaggregation approximations have on various risk metrics. Building on the latter 

findings, the appropriate treatment of structural capacity and seismic demand variability is further 

addressed. More specifically, questions regarding the treatment of such sources of uncertainty are 

studied from a statistical significance point of view, providing novel and robust approaches to the 

problems of hazard-compatible ground motion selection, estimation of building response 

variability, and representation of uncertainty and (spatial) correlation of damage exceedance 

probabilities. This contribution is subsequently extended to the definition of building 

vulnerability, whereby innovative conditional fragility functions and the resulting vulnerability 

model are proposed and included in a novel loss assessment framework. The proposed 

methodology allows a robust evaluation of the impact of variability and spatial correlation of 

building vulnerability, highlighting important limitations of state-of-the-art methods.  

The combined contribution of the aforementioned efforts results in the final undertaking of 

this work, which consists of the development of a methodology that is able to adequately 

propagate the epistemic uncertainty of hazard modelling into the corresponding risk results. The 

latter ensures a robust and statistically meaningful representation of aleatory (and epistemic) 

variability in structural response and damage exceedance probability, as well as the explicit 

modelling of the (hazard-consistent) spatial correlation of building losses. 
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Resumo 

 

Perdas devidas à acção sísmica registadas a nível global durante o último século têm 

provocado efeitos devastadores no tecido económico e social de diversos países, mais ou menos 

desenvolvidos. Perante este impacto, a modelação analítica de perdas sísmica torna-se uma 

ferramenta essencial para a previsão, prevenção e mitigação do efeito adverso de futuros eventos 

sísmicos. Dada a incerteza associada a este processo, é utópico pretender obter resultados com 

absoluta certeza. Como parte inerente de qualquer estudo analítico, a incerteza não deve ser 

‘removida’ da equação. O objectivo reside na melhoria do conhecimento associado às diferentes 

variáveis envolvidas, na medida imposta por limitações de ordem práctica. No entanto, a robustez 

de um estudo de risco sísmico é garantida apenas quando este é devidamente acompanhado de 

uma análise das várias incertezas, sejam estas de ordem epistémica ou aleatória.  

No âmbito do risco sísmico, várias questões continuam inteiramente sem resposta ou 

necessitam de um estudo mais aprofundado. Deste modo, vários problemas relacionados com o 

tratamento da incerteza são abordados neste trabalho, com especial enfase nas components de 

avaliação do património exposto e sua vulnerabilidade sísmica. No que respeita ao primeiro, é 

desenvolvido um inovador algoritmo automático para a caracterização da localização espacial de 

edifícios industriais na Europa, com base em fontes públicos de informação geo-referenciada. No 

que diz respeito à fragilidade de edifícios, o presente trabalho centra-se em diversas limitações 

identificadas na literatura, focando-se no impacto que aproximações generalizadamente 

assumidas durante o precesso de desagregação de perigosidade sísmica têm em diferentes 

medidas de risco. Com base nestes resultados, o tratamento da variabilidade na resposta estrutural 

e acção sísmica é subsequentemente abordado. Mais concretamente, as referidas fontes de 

incerteza são estudadas do ponto de vista estatístico, conduzindo a propostas alternativas e 

robustas com vista à análise de problemas de: selecção de accelerogramas naturais compatíveis 

com a perigosidade local,  estimativa da variabilidade na resposta estrutural, e representação da 

incerteza e correlação espacial entre probabilidades de excedencia de dano. Esta contribuíção é 

ainda extendida à definição de vulnerabilidade, meio pelo qual as propostas funções de fragilidade 

condicionais são integradas num nova metodologia para a estimativa de perdas. Esta metodologia 

permite efectuar a avaliação probabilística do impacto da variabilidade e correlação espacial da 

vulnerabilidade de uma forma robusta, evidenciando limitações importantes no estado da arte. 

A conjugação dos esforços acima mencionados resulta no estudo final deste trabalho, que 

consiste no desenvolvimento de uma metodologia que é capaz de, de forma consistente, ter em 

conta a incerteza epistemica desde a avaliação de perigosidade até ao cálculo de perdas. É assim 

possível uma representação da incerteza aleatória (e epistemica) na resposta estrutural e 

probabilidade de dano, bem como a modelação adequada da correlação espacial de dano sísmico. 
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Chapter 1 INTRODUCTION 

1.1 Earthquake risk 

Seismic action is paramount among natural hazards impacting civil infrastructure 

and human activity all over the globe (Ellingwood & Kinali, 2009). Major earthquakes 

have been responsible for a death toll of over 60,000 people per year in the last decades, 

as well as economic losses that can reach a great fraction of a country’s welfare (Silva, 

2013). In Europe, countries such as Romania, Greece, Turkey and Italy, in particular, 

have experienced substantial material destruction and loss of life in the past 50 years, 

despite significant advances in building construction and design standards.  

In the United States, the Northridge earthquake of 1994 is perhaps the most 

important in a series of events registered in California over the past 30 years. It will long 

be remembered for the unprecedented losses incurred as a result of a moderate-size event, 

which amount to as much as 40 billion USD, excluding indirect effects (Eguchi, et al., 

1998). This makes the Northridge earthquake identically severe to the Kobe event that 

occurred exactly one year after, in Japan, adding to the reality that developed countries 

are equally exposed to high earthquake risks. In this context, the Great East Japan 

Earthquake and tsunami (2011) sent a clear message to countries and regions believed to 

be prepared to cope with seismic hazard. In fact, the year of 2011 was the most expensive 

year ever registered, far exceeding the 2005 economic losses, which held the previous 

record mainly due to the effects of hurricane Katrina. From the overall cost of 380 billion 

USD, the earthquake disasters in Japan and New Zealand alone accounted for 60% of this 

value (Silva, 2013). 
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1.2 Earthquake loss modelling and uncertainties 

Earthquake losses have a crippling effect on the economy of affected countries, 

either by the legal liability of governments to cover the full costs of rebuilding, and/or by 

the financial burden imposed upon private companies and individuals. In the face of this 

problem, earthquake loss modelling serves as the foundation to risk prediction and 

prevention, as a way to mitigate the adverse impacts of future events. A particularly 

relevant example is the creation of the Turkish Catastrophe Insurance Pool (TCIP), after 

the enormous financial burden imposed by the 1999 Kocaeli and Duzce earthquakes, due 

to the country’s statuary obligation in covering the costs of reconstruction. By means of 

this initiative, the creation of an earthquake loss model allowed a large part of the 

financial risk to be transferred to the world’s reinsurance markets, further enabling the 

evaluation of catastrophe risk impacts in the Turkish economy (Bommer, et al., 2002). 

Earthquake loss modelling also serves as the base to many other seismic risk 

mitigation actions. These may include prioritization of zones within a country where the 

structural seismic vulnerability of the building stock should be improved, planning of 

post-disaster emergency response, or definition of mandatory seismic-proof construction 

practices (Silva, 2013). However, the required resources, datasets and tools seldom exist 

in a way that is compatible with a comprehensive assessment of seismic risk. Despite of 

great advances made in the last decades in the areas of: probabilistic seismic hazard 

assessment (e.g. Abrahamson (2006), Bommer & Abrahamson (2006)), evaluation of 

building vulnerability (e.g. Calvi et. al. (2006)), and collection of information regarding 

elements exposed to hazard (e.g. Dell’Acqua et. al. (2013)), several limitations still exist 

in the way that uncertainties in each of these aspects can consistently be taken into 

account. In the presence of uncertainties, risk to civil infrastructure from earthquakes 

cannot be eliminated, but must be managed in the public interest by the entities involved 

in its evaluation (Ellingwood & Kinali, 2009). Therefore, any meaningful seismic risk or 

safety assessment must be fully-coupled with its accompanying analysis of uncertainty, 

be that aleatory or knowledge-based (i.e. epistemic). 

Structural reliability concepts and probabilistic risk analysis tools (e.g. Silva et. al. 

(2014)) provide an essential framework to model uncertainties associated with earthquake 

prediction, exposure definition, and infrastructure response. In addition to the continued 

improvement in the characterization of random and epistemic uncertainties in seismic 

hazard, recent years have seen a major swing in emphasis towards the explicit inclusion 
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of uncertainties in the performance assessment of single buildings (Bradley, 2013). These 

have been mainly related with the treatment of sources of uncertainty such as the (hazard-

consistent) record-to-record variability and/or the random nature of geometric and 

structural parameters (e.g. Jalayer et. al. (2010)), in the evaluation of the seismic response. 

However, in the context of portfolio risk assessment, several important questions remain 

entirely unanswered or lack a deepest understanding. 

The main focus of this thesis consists of the treatment of random and epistemic 

uncertainties in the hazard-consistent evaluation of building fragility, vulnerability and 

risk assessments. Matters of statistical significance and spatial correlation of damage and 

loss are investigated in the context of the probabilistic loss estimation of building 

portfolios. As a result, innovative methodologies for the treatment of uncertainties are 

proposed, demonstrating its increased accuracy and robustness when compared with 

state-of-the-art risk assessment frameworks.  

1.3 Objectives and thesis organization 

With the aim of addressing several important issues related with the treatment of 

uncertainties in the earthquake loss modelling of building portfolios, the present thesis is 

divided into seven chapters. The first and present one consists of an introductory 

presentation of the various subjects addressed in this thesis, Chapter 7 discusses the main 

conclusions and possible future developments, and the remaining five chapters can further 

be grouped into two main subjects: building exposure and vulnerability. With regard to 

the former, Chapter 2 deals with current limitations in the development of exposure 

datasets of buildings of industrial use, at the European scale, whereas Chapter 3 to 

Chapter 6 are concerned with the treatment of random and epistemic uncertainty in the 

development of fragility and vulnerability models for loss estimation of building 

portfolios. More specifically, Chapter 3 presents the study of the impact of simplifications 

generally accepted as state-of-the-art by researchers and practitioners, in the context of 

seismic hazard disaggregation and record selection for fragility analysis and earthquake 

loss estimation, Chapter 4 consists of the evaluation of several sources of uncertainty in 

the process of analytically deriving fragility functions for the loss estimation of building 

portfolios, Chapter 5 addresses the modelling of spatial correlation of vulnerability 

uncertainty in portfolio risk analysis, and Chapter 6 deals with the study of the impact of 

epistemic uncertainty in the development of hazard-consistent fragility models and 
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corresponding risk estimates. The contents of each chapter are subsequently described in 

further detail. 

The second chapter presents the recent developments in Volunteered Geographic 

Information (VGI), such as the OpenStreetMap initiative, highlighting the potential of 

these datasets as supplementary or alternative sources of spatially-based building 

information. Its increase in usefulness is particularly evidenced when combined with 

additional Open-Access data such as the CORINE initiative, which provides the geo-

referenced distribution of non-residential areas in Europe. In this context, this chapter 

presents the development of an algorithm that, based on open-access information, 

provides an automated tool for the development of exposure datasets of industrial 

buildings in Europe, at the 30 arc-second resolution. 

The third chapter of this thesis sheds light on several problems and limitations in 

current practice of hazard-consistent ground-motion selection and fragility analysis, 

focusing on the impact that (commonly assumed) approximations in disaggregation 

outputs have on the distinct risk metrics, as opposed to an exact solution. These issues are 

investigated for several building typologies, seismicity models and ground motion 

prediction equations (GMPE), and appropriate guidelines are provided to researchers and 

practitioners. 

In the fourth chapter, it is demonstrated that several questions exist regarding the 

appropriate treatment of structural capacity and seismic demand variability, from a 

statistical significance perspective, in the context of the fragility evaluation of building 

portfolios. As a result, matters such as: the minimum number of ground-motion records 

necessary for a statistically meaningful evaluation of structural response, the statistical 

significance of analytically determined damage exceedance probabilities, and the 

statistically meaningful representation of uncertainty and correlation in the estimation of 

intensity-dependent damage exceedance probabilities are addressed. 

In the fifth chapter, the concepts developed in Chapter 4 are extended to the 

definition of building Vulnerability, whereby vulnerability functions are characterized by 

hazard-consistent distributions of damage ratio (i.e. ratio between cost to repair and total 

value of the building) per level of primary seismic intensity parameter. The latter is further 

included in a loss assessment framework, in which the impact of variability and spatial 
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correlation of damage ratio in the probabilistic evaluation of seismic loss is accounted 

for, using several building portfolios as test-bed cases. The proposed methodology is 

evaluated in comparison with current state-of-the-art methods of vulnerability and loss 

calculation, highlighting the discrepancies that can arise in loss estimates when the 

variability and spatial distribution of damage ratio are not appropriately taken into 

account. 

The sixth chapter consists of the application of the results and methodologies 

developed in Chapter 3, Chapter 4 and Chapter 5, with the aim of developing a statistically 

significant framework that allows the hazard-consistent propagation of uncertainty from 

fragility to loss estimates. In this study, several independent hazard modelling options are 

considered, in order to infer the repercussion from using fragility functions that are 

consistent with each hazard modelling approach, on the appraised risk metrics. In light of 

the appraised results, a methodology for the fragility assessment of building portfolios is 

presented, in which the epistemic uncertainty of the hazard model can be adequately 

propagated into the fragility results.  

Finally, Chapter 7 summarizes the main conclusions of the present work, providing 

a description of future developments that, in light of the presented findings, are envisaged 

in order to improve the results and methodologies addressed herein.  
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Chapter 2 USING OPEN-ACCESS DATA IN THE 

DEVELOPMENT OF EXPOSURE DATASETS OF 

INDUSTRIAL BUILDINGS 

This chapter is based on the following reference: 

Sousa, L.; Silva, V.; Bazzurro, P (2017) Using open-access data in the development of exposure 

datasets of industrial buildings for earthquake risk modelling. Earthquake Spectra, 33(1): 

63-84. doi:  10.1193/020316EQS027M 

Summary 

Recent developments in Volunteered Geographic Information (VGI), such as the 

OpenStreetMap (OSM) initiative, highlight the potential of these datasets as supplementary or 

alternative sources of spatially-based building information. Its increase in usefulness is 

particularly evident when combined with additional Open-Access data such as the CORINE 

initiative, which provides the geo-referenced distribution of non-residential areas in Europe. 

However, the systematic application of VGI in the development of exposure models for 

catastrophe risk assessment has been the subject of limited research. This chapter describes an 

algorithm that, based on open-access information, provides an automated tool for the development 

of exposure datasets of industrial buildings in Europe, at the 30 arc-second resolution. Its practical 

application shows that results obtained at national and regional scales are in excellent agreement 

with data collected from cadastral agencies in Denmark, Italy and Portugal, which highlights the 

potential of the algorithm when real building information is scarce or non-existent. 

2.1 Introduction 

Earthquake impacts in buildings of industrial use have been particularly relevant in 

recent events, highlighting the importance of a detailed modelling of direct and indirect 

losses resulting from this type of structures. 

The widespread damage to welded steel moment resisting frame systems that 

happened in different types of buildings including industrial facilities, was one of the 
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major overall lessons of the Northridge earthquake (Youssef, Bonowitz, & Gross, 1995) 

that occurred in 1994 in Southern California. In this event, damage occurred in new as 

well as old buildings, despite the fact that most damaged structures were constructed 

according to modern codes and standards of practice. In the case of the Kocaeli 

earthquake, which hit north-western Turkey in 1999, extensive damage to industrial 

buildings has been reported in a region where approximately forty percent of heavy 

industry in Turkey was concentrated (Sezen & Whittaker, 2004). The widespread damage 

to industrial facilities had a substantial impact on the economy of the region in terms of 

direct losses resulting from structural and non-structural damage, and from indirect losses 

stemming from business interruption, loss of utilities and loss of transportation 

infrastructure. The relevance of these findings is extremely important considering that 

many of the inspected structures were designed in accordance with U.S. and European 

standards, providing valuable indications as to the likely performance of industrial 

facilities in other seismically active regions of the world. 

In Europe, evidence of satisfactory earthquake response goes hand in hand with 

reports of collapse of precast buildings, which is the most commonly structural typology 

used in industrial buildings (Bournas, Negro, & Taucer, 2014). In Italy, specifically, a 

seismic sequence struck the region of Emilia Romagna in 2012, with two main events on 

May 20th and May 29th, with local magnitude of 5.9 and 5.8, respectively. These 

earthquakes caused approximately three quarters of the precast concrete industrial 

buildings designed with non-seismic provisions in the affected area to suffer significant 

damage, with one quarter of the total presenting partial or total collapse of the roof. The 

severe damage that affected these buildings has been probably the most controversial 

issue raised by these events, given the high level of exposure in terms of human life, 

building contents, and the importance of the continuity of production processes in the 

socio-economic activity of the region. 

In the context of risk assessment, characteristics such as occupancy type, geometry 

and material properties are essential to describe the uniqueness of each individual 

building or building class. However, the quantification of building stock, and the 

definition of its spatial distribution and structural characteristics are resource intensive 

and strenuous problems to tackle (Dell’Acqua, Gamba, & Jaiswal, 2013).  

Due to the several practical challenges, the engineering and loss modelling 

community often rely on aggregated statistical data on building stock as the input to the 

loss estimation procedure. Of course, the various census datasets, collected by national 
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statistical offices, are an important source of building inventory, providing rigorous and 

detailed information unlike any other dataset at a national scale. However, because 

statistical offices do not usually allow public users to access data at the building level, 

and independent field surveys are impractical for relatively large regions, the building 

datasets used for the purposes of exposure modelling are usually coarse in their spatial 

resolution.  

Unfortunately, be it parish, municipality, regional or national level, the use of 

aggregated portfolios can introduce significant errors in risk assessment procedures due 

to the unbalanced spatial distribution of the building stock with respect to the considered 

hazard (Bazzurro & Park (2007) and Silva et. al. (2015b)). Thus, disaggregating an 

exposure dataset at a finer resolution but still compatible with available computational 

resources is of utmost importance. A suitable level of disaggregation is not self-evident 

and is also peril dependent. For example, losses estimated for natural events such as 

earthquakes are still sensitive to the level of detail of the location of the exposed assets 

(e.g., due to local site effects) but less so than events with narrower and more irregular 

footprints, such as hailstorms or floods (Chen, et al., 2004). 

In the context of earthquake loss estimation, several sources of proxy data are 

routinely used in the regional disaggregation of coarse exposure datasets. Population 

density is arguably the more readily available and easy to apply, as demonstrated by Silva 

et. al. (2015b) in the disaggregation of the Portuguese building stock at parish level based 

on the population distribution on a 30 arc sec grid. This is a reasonable and well-

established approach in the case of residential and public buildings, for which there is an 

obvious correlation between population density and built-up area. However, this approach 

is generally not robust for commercial and industrial buildings, which, because of their 

use, are usually located outside residential areas. 

In the case of industrial buildings, not only census data or other type of cadastral 

information are extremely difficult to obtain at any level of regional aggregation, but also 

spatial disaggregation methods typically applied in residential building portfolios are not 

suitable. As a result, alternative approaches need to be explored, particularly with respect 

to sources of spatial-based building data. In this chapter, attention is given to open-access 

datasets and Volunteered Geographic Information, including the information provided by 

the CORINE and OpenStreetMap initiatives in an automated tool for the development of 

exposure datasets of industrial buildings. 
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2.2 Objective and area of interest 

In this study we describe a methodology that, based on open-access datasets and 

Volunteered Geographic Information, allows users to automatically develop geo-

referenced exposure datasets of industrial buildings in the region of interest. Given the 

nature of the OSM information, which provides distinct degrees of completeness (Hecht, 

Kunze, & Hahmann, 2013) in different locations, particular focus is given to the 

development of methods that are able to identify and overcome possible data shortage, in 

a statistically meaningful way.  

Following a detailed presentation of the datasets, the methodology proposed herein 

is validated by comparing exposure models derived for Denmark, Italy and Portugal (at 

different regional scales) with real data independently collected from mapping and 

cadastral agencies in those countries. In order to demonstrate the algorithm capabilities, 

exposure datasets are additionally derived for the 36 European countries: Albania, 

Austria, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Cyprus, Czech Republic, 

Denmark, Estonia, Finland, France, Germany, Hungary, Iceland, Ireland, Italy, Latvia, 

Lithuania, Luxembourg, Malta, Macedonia, Montenegro, Netherlands, Norway, Poland, 

Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and 

United Kingdom. Results are computed with a spatial resolution of 30 arc-seconds, and 

further aggregated at the first administrative level in each country, for visual clarity. These 

databases were utilized to underpin the earthquake loss estimation models developed for 

Europe by RED and ERN (www.redpavia.com). 

2.3 Input data 

2.3.1 CORINE 

The IMAGE 2000 & CORINE Land Cover project (EEA-ETC/TE, 2002) was 

launched in 1994 by the European Environmental Agency (EAA) and the Joint Research 

Centre (JRC) of the European Commission. Its main objective was to provide an up-to-

date land cover database, as well as information regarding general land cover changes in 

Europe between 1990 and 2000 (Steenmans & Perdigao, 2001). 

These datasets were derived from satellite imagery and other ancillary data such as 

aerial photos, digital elevation datasets and hydrology models. As a result, CORINE 

classifies the European territory into 44 classes at a spatial detail comparable to that of a 

http://www.redpavia.com/
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paper map on a scale of 1:100,000. Amongst the total set of identified land cover classes, 

the industrial and commercial units are of interest for this research, as further presented 

in detail. According to the CORINE technical guide (Bossard, Feranec, & Otahel, 2000), 

these units correspond to areas mainly occupied by industrial activities of transformation 

and manufacturing, trade, financial activities and services. For the sake of synthesis, these 

mixed activity areas are referred herein as non-residential areas, and their location is 

shown in Figure 2.1. 

2.3.2 OpenStreetMap (OSM) 

OpenStreetMap (OSM) is a collaborative project founded in 2004 in the University 

College London, with the aim of creating a free geographic database of the entire world 

(Ramm, Topf, & Chilton, 2010). Its launch marked a new approach to gathering geodata, 

made possible by the increasing proliferation of GPS devices amongst private users and 

by the availability of web-based mapping services. In the case of exposure datasets for 

earthquake loss assessment specifically for industrial buildings, several georeferenced 

features provided by OSM are of interest. Available information regarding building 

footprints and location, building height and land use areas are of evident and increasing 

usefulness, especially when combined with additional open-access sources such as the 

CORINE initiative (Bossard, Feranec, & Otahel, 2000). 

 

Figure 2.1 – Georeferenced database of non-residential areas (black) provided by the CORINE 

Land Cover project (CORINE, 2006) for 36 European countries. 

Because many sources of geographic data, even those publicly available, are 

provided with restrictions to their use, OSM’s data are distributed under the “Creative 
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Commons Attribute-ShareAlike 2.0 license”, which allows freedom of use by the public 

(Girres & Touya, 2010). 

OSM is probably the most popular and successful VGI initiative, as supported by 

recent investigations on its completeness and quality. As demonstrated by Haklay (2010) 

and by Neis et al. (2012), urban areas in Central Europe have already been partially 

mapped with an impressive level of detail, and OSM is well ahead of only mapping the 

street network. A plethora of spatial data such as roads, buildings, land use areas or points 

of interest exist in the project’s database (OSM Statistics , 2015), emphasizing the 

potential of its use in the development of catastrophe exposure models in Europe. 

However, as further highlighted in this chapter, information regarding building height, 

type of material and age of construction is not provided in a large number of cases. 

Moreover, each building footprint might enclose several structures, which carries an 

important limitation when the actual number of assets is of interest. 

In this study, data concerning building location and footprint, height, area and land 

use are used as input for the proposed algorithm, and issues related to the aforementioned 

data completeness are addressed in their systematic application.  

For the sake of illustration, Figure 2.2 presents the industrial land use areas 

provided by the OSM for the aforementioned 36 European countries, as of October 2015. 

 

Figure 2.2 – Industrial land use areas provided by the OSM database (blue) for 36 European 

countries, as of October 2015. 
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2.4 Methodology and algorithm 

The general methodology and the corresponding algorithm developed in this 

research study are schematically presented in Figure 2.3. Starting from the envelope of 

non-residential areas containing undifferentiated industrial and commercial units 

(CORINE), the algorithm identifies areas containing only industrial (not commercial) 

assets via the Area Calculator. The identification is based on the input from OSM, which 

includes differentiated industrial and commercial areas (see Figure 2.4). Note that in this 

framework we use OSM information only when complete (i.e., whenever it accurately 

reflects the reality of the industrial built inventory). Issues concerning data completeness 

are addressed later in this study. 

The various identified polygons containing industrial assets (Figure 2.4b) are 

further used to determine the footprints of all the industrial buildings inside, as provided 

by the OSM datasets (Figure 2.5). It shall be mentioned that, in some rare cases, a 

footprint may include more than one structure, a caveat that should be kept in mind in 

those rare applications when a precise building count is of interest. However, this is not 

relevant in the present situation, where only the total footprint area matters.  

 

Figure 2.3 – Schematic representation of the main algorithm workflow 
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The outcome of this process is the total industrial built area in a given region, 

obtained by inferring the number of floors of each building from the total height 

associated to the corresponding footprint (extracted from OSM). The final database is 

assembled by the Spatial Aggregation Calculator, in which the total area of all the 

industrial buildings determined as a function of building’s footprint and height are 

aggregated in a grid of 30 arc sec spacing, such as the one depicted in Figure 2.5b.  

a) 

 

b) 

 

Figure 2.4 – Schematic representation of the operations performed by the Area Calculator for an 

example area:  a) Inputs: CORINE non-residential area (white) and OSM commercial area (grey), 

and b) Industrial area output. 

a) 

 

b) 

 

Figure 2.5 – Schematic representation of the operations performed by the Building Exposure 

Calculator for an example area: a) Inputs, and b) Building-by-building output. 

2.4.1 Data completeness 

In order to overcome potential lack of data in a statistically robust way, particular 

attention is given to the level of completeness of the datasets. Assuming that a satisfactory 

level of coverage is provided by CORINE (i.e., all the non-residential areas in Europe are 

mapped), an “ideal” model would identify both building footprint and height of all the 

industrial buildings inside the CORINE polygons using OSM as input. 

However, such a level of completeness cannot realistically be expected everywhere. 

At the time of this writing, some areas do have missing data as demonstrated by recent 
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investigations by Haklay (2010) who reports the level of completeness of the OSM 

datasets in Europe. Thus, in “data-incomplete” regions for which information provided 

by OSM is not exhaustive, the “actual” industrial built area in each of the CORINE 

polygons is estimated using statistical techniques. This is done here according to the 

optimization algorithm described in Figure 2.6. 

Based on the CORINE polygons in which OSM data is complete, reference 

probabilistic joint distributions 𝑓(𝑥, 𝑦) – are empirically derived for: x = building height, 

and y = ratio between surface of industrial building footprints and total area of the 

corresponding CORINE polygon. It is possible that the height, x, of the industrial 

buildings is statistically dependent on the density of the built area within a polygon, which 

is expressed by y. It is assumed, however, that x|y is independent on the area of the 

CORINE polygon. As a result, the reference 𝑓(𝑥, 𝑦) distribution is used to jointly sample 

the values of these random variables x and y in the CORINE polygons with incomplete 

OSM data. This process is shown in Figure 2.6.  

  

Figure 2.6 – Schematic representation of the completeness algorithm workflow 
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Of course, the robustness of the reference 𝑓(𝑥, 𝑦) distribution used to simulate y 

and x|y for the polygons with incomplete data depends on the fraction of polygons within 

a certain region that have complete data. This fraction in turn depends on the geo-

referenced boundaries enclosing regions of OSM data completeness, which are defined 

by the user as input to the procedure shown in Figure 2.6. In this study, these regions have 

been manually identified based on the comparison of building footprints and land use 

with respect to the information retrieved from publicly available sources. In other words, 

building footprints and corresponding type of use, obtained from OSM, have been 

compared against cadastral information and satellite imagery (e.g. the Flashearth datasets 

(2015)), in order to define the limits of the regions in which OSM information can be 

considered to be in agreement with the real built environment and, therefore, complete. 

If the number of CORINE polygons enclosed in the specified boundaries of OSM 

completeness is not sufficient to ensure that 𝑓(𝑥, 𝑦) reflects the actual distribution of x,y 

in the country of interest, the final results might not adequately reflect the real building 

distribution. However, how does the user know if the reference 𝑓(𝑥, 𝑦) distribution is 

robust enough? To answer this question an empirical exercise has been devised, to 

estimate the minimum fraction of polygons with complete data that is necessary to 

achieve a statistically acceptable estimate of the reference 𝑓(𝑥, 𝑦) distribution. This 

exercise is based on the 442 CORINE polygons with complete OSM data located in the 

region of Emilia Romagna (Italy), which comprises 353 municipalities. This set of 442 

polygons, which represent all the industrial areas in the region, can be used to compute 

the “reference” 𝑓(𝑥, 𝑦) distribution. Then, it is possible to randomly select many sets, S, 

of increasing number of municipalities (Figure 2.7a) and for each set S, only the CORINE 

polygons inside the selected municipality boundaries are used to derive 𝑓(𝑥, 𝑦)𝑆. This 

allows a statistical comparison between 𝑓(𝑥, 𝑦) and 𝑓(𝑥, 𝑦)𝑆. However, because 𝑓(𝑥, 𝑦)𝑆 

and 𝑓(𝑥, 𝑦) computed in this way are not independent - i.e., 𝑓(𝑥, 𝑦)𝑆 includes 

observations that exist in 𝑓(𝑥, 𝑦) as well -, particular care has been employed in the 

procedure of statistical comparison between samples. As a result, a randomly selected set 

of 265 out of the 353 boundaries (approximately 75%) is herein considered to be a 

reasonable approximation to the “reference” 𝑓(𝑥, 𝑦) distribution, and the CORINE 

polygons from sets of 1 to the total of remaining municipalities (353-265=88) are used to 

empirically derive 𝑓(𝑥, 𝑦)𝑆. This way, samples do not share similar observations, and the 
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bivariate extension of the non-parametric, two-sample Kolmogorov-Smirnov (B-KS) test 

(Justel, Pena, & Zamar, 1997) has been used for comparing 𝑓(𝑥, 𝑦)𝑆 and 𝑓(𝑥, 𝑦). 

Loosely speaking, the null hypothesis that 𝑓(𝑥, 𝑦)𝑆 and 𝑓(𝑥, 𝑦) are two samples 

from the same parent distribution is tested by checking that the largest discrepancy 

between the two cumulative distributions is not too extreme. The so-called p-values 

computed in this B-KS test represent the probabilities that the largest discrepancy could 

indeed be observed if the two cumulative distributions were sampled from the same parent 

one. Therefore, if the p-value is small, we can conclude that the two distributions do not 

share the same parent distributions and are indeed different. On the other hand, in practice 

if the p-value is large, we could conclude that 𝑓(𝑥, 𝑦)𝑆 is a good approximation of 𝑓(𝑥, 𝑦). 

Conventionally, if the p-values are smaller than a reference value α, say, 10%, then it can 

be assumed that the largest discrepancy is not generated by the vagaries of the sample but 

that the two distributions are indeed statistically significantly different.  

The p-values obtained by simulating 88 sets of 1 to 88 municipalities are plotted as 

a function of the fraction of polygons with complete data in Figure 2.7b, As illustrated, 

whenever at least 20% of all the CORINE polygons are enclosed in the boundaries of the 

selected set of municipalities, the p-values are larger than our reference acceptance value 

of 10% and in those cases we can consider that the corresponding 𝑓(𝑥, 𝑦)𝑆 is an 

acceptable approximation of the “reference” 𝑓(𝑥, 𝑦).  

a) 

 

b) 

 

Figure 2.7 – a) Region of Emilia Romagna, Italy (grey), and one simulated set S of 22 administrative 

boundaries, (blue) randomly selected from the total of 353 municipalities, b) p-values of the B-KS 

test as a function of the fraction of polygons with complete data  

Of course, fully acknowledging the limitations inherent in a single test, it is herein 

considered as a “rule of thumb” that when at least 20% of the total number of CORINE 

polygons in any region of Europe are enclosed in the selected “data-complete” 

boundaries, then the empirically derived 𝑓(𝑥, 𝑦)𝑆 is acceptable for the purposes of 
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developing an industrial building inventory. It should be noted, however, that this is only 

valid if the selection of data-completeness boundaries is done randomly within the 

assessed country or region (Figure 2.7a), in order to avoid bias in the corresponding 

statistics.  

The final stage of the correction process (Figure 2.6) consists of disaggregating the 

total built areas computed for each “data-incomplete” CORINE polygon in a grid of 30 

arc sec. To do so, the areas of industrial activity in each CORINE polygon are distributed 

proportionally to the spatial density of constructed impervious surfaces (ISA, 2010). The 

dataset of ISA values, defined in a grid of 30 arc sec resolution, provides ratios that, for 

each grid cell, reflect the proportion of the cell area that is occupied by impervious 

surfaces resulting from man-made constructions such as buildings and roads. This way, 

within a given CORINE polygon, the computed area of industrial buildings is distributed 

amongst the centroids of the ISA cells enclosed by the CORINE boundary, proportionally 

to the corresponding ISA values. 

2.5 Validation 

For the purpose of validation, the methodology and assumptions presented above 

are applied to three distinct regions of Europe – Denmark, Portugal and Emilia Romagna 

(Italy) – for which cadastral information (referred herein as “real” data) is available at 

different resolutions. In the cases of Denmark and Portugal, total built areas have been 

collected for 98 municipalities and 18 districts, respectively, as presented in Figure 2.8a 

and Figure 2.8b. Instead, the data about industrial buildings in Emilia Romagna were 

available at the building level in a geo-referenced environment and were later aggregated 

according to the administrative boundaries of the 353 municipalities for the purpose of 

this test, as shown in Figure 2.8c. 

The results of the proposed algorithm have been aggregated in the same spatial 

resolution as the available information, in order to provide the means for a direct 

comparison. The industrial building areas for 98 municipalities in Denmark inferred by 

our methodology (Figure 2.9) show a remarkable agreement with the “real” areas 

depicted in the same figure. In order to further assess this relationship, particularly the 

potential bias of predictions with respect to “real” values, the scatter of results is presented 

in Figure 2.10a, as a function of the corresponding collected data. 
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a) 

 

b) 

 

c) 

 

Figure 2.8 – a) Total industrial built area in Denmark (98 municipalities), as obtained from 

Statistics Denmark (2015), b) Industrial built area of 18 districts in Portugal, according to 

PRISE (2013-2015) and Araújo et. al. (2015), and c) industrial built area in Emilia Romagna, 

Italy (353 municipalities), as obtained from Geoportale Emilia Romagna (2015). 

 
Figure 2.9 – Bar chart comparing “real” (blue) and predicted values (grey) of total built area of 

industrial buildings, for 98 municipalities in Denmark 

Figure 2.10b shows that our methodology, in this specific case, tends to over-

predict the total built area when the values are lower than 100*103 m2. The agreement 

improves significantly for industrial areas with larger built areas. The reasons for this bias 

for low-built area cases, which appears is this case only, is not known and is not a defect 

of the proposed methodology, as will made clear by the following two examples. 
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a) 

 

b) 

 

Figure 2.10 – a) Inferred versus “real” values of industrial building built areas for 98 municipalities 

in Denmark, and b) corresponding ratio between predicted and  “real” and values. 

In the application to Portugal, results have been aggregated at the district level, as 

depicted in Figure 2.11. Again, the agreement between inferred and “real” data is very 

good and, in this case, for all values of built areas, large and small (Figure 2.12a and 

Figure 2.12b). 

 

Figure 2.11 – Bar chart comparing real (blue) and predicted values (grey) of total built area of 

industrial buildings, for 18 districts in Portugal 

a) 

 

b) 

 

Figure 2.12 – a) Inferred versus “real” values of industrial building built areas for 18 districts in 

Portugal, and b) corresponding ratio between predicted and  “real” and values. 

A similar unbiased outcome has been reached for the third and last example that 

deals with Emilia Romagna. Figure 2.13 presents the aggregated results at the province 
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level, whereas Figure 2.14 illustrates the relationship between estimates in 353 

municipalities. Again, in this case as well there is no obvious indication that the 

methodology provides biased low estimates for low-value built areas especially when 

looking at the municipality results shown in Figure 2.13a and Figure 2.13b. 

 

Figure 2.13 – Bar chart comparing “real” (blue) and predicted values (grey) of total built area of 

industrial buildings, for 10 provinces in the region of Emilia Romagna, Italy 

a) 

 

b) 

 

Figure 2.14 – a) Inferred versus “real” values of industrial building built areas, for 353 

municipalities in the region of Emilia Romagna, Italy, and b) corresponding ratio between 

predicted and  “real” and values. 

2.6 Application and results 

An exposure model for 36 countries in Europe has been created, reflecting the total 

built area of industrial buildings in an evenly spaced grid at 30 arc sec. The average 

building density in the region has been estimated to range from 500 𝑚
2

𝑘𝑚2⁄  or less in 

countries such as Austria, Croatia, Finland, Sweden and Turkey, to values of 1000 to 1500 

𝑚2

𝑘𝑚2⁄  in France, Germany, Denmark, Italy, Czech Republic, Hungary, Poland, 

Portugal, Romania, Switzerland and the United Kingdom. Overall maximums of 

approximately 5000 and 7000 𝑚
2

𝑘𝑚2⁄  are found in Belgium and the Netherlands, 

respectively. These indicators represent the ratio between total area of industrial buildings 
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in a given country and the area of its territory. Figure 2.15 illustrates the aggregation of 

results at the first administrative level in each country, for visual clarity. 

The loss estimation of the building portfolios is beyond the scope of this research, 

in which we did not tackle the issue of vulnerability to ground shaking of buildings with 

different characteristics in the various countries. However, we qualitatively evaluated the 

level of risk in Europe through the assessment of what is herein referred as “exposure at 

risk”. To this aim, the probabilistic seismic hazard results provided by the SHARE project 

(Giardini, 2013) have been employed in order to determine the proportion of industrial 

areas subjected to ground motion intensities with different mean return periods of 

exceedance. 

Since structural properties are expected to be significantly heterogeneous and, 

therefore, enclose a wide range of dynamic behaviour, ground motion intensity is herein 

characterized in terms of peak ground acceleration (PGA). Figure 2.16, shows the mean 

hazard map for PGA values an exceedance probability of 10% in 50 years, or, conversely, 

a 475-year mean return period (MRP). This threshold has been selected because it is 

relevant to engineering practice, since most standards define such MRP as the basis for 

selecting design seismic actions. 

 

Figure 2.15 – Exposure dataset of industrial building areas (m2) developed for 36 countries in 

Europe, aggregated at the first administrative level (m2). 
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Figure 2.17 summarizes the hazard shown on Figure 2.16 by differentiating 

territories subjected to low, medium and high seismicity that are associated here to 

threshold values of 0.05g, 0.15g, and 0.30g, respectively, for the aforementioned MRP. 

These contours are plotted on top of the industrial exposure data shown in Figure 2.15. 

 

Figure 2.16 – European hazard map of peak ground acceleration (PGA) with 10% exceedance 

probability in 50 years (in units of g), adapted from SHARE (2015) 

 

Figure 2.17 – Illustration of industrial “exposure at risk” in Europe. The solid contour lines 

enclose regions where PGA values of 0.05g (green), 0.15g (orange), and 0.30g (red), 

respectively, are expected to be exceeded with 10% probability in 50 years. 

The majority of highly industrialized regions in Germany, France, Poland, the 

Netherlands and the United Kingdom is subjected to low seismic hazard characterized by 

PGA lower than 0.05g at the 475 year MRP level. Italy, on the other hand, which 
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possesses one of the largest building portfolios, is characterized by medium to high 

seismic hazard and, therefore, has the highest fraction of industrial “exposure at risk”. 

Additional critical regions are those of Romania and part of Turkey, as determined by the 

conjunction of high seismic hazard and exposure.  

As a summary of “exposure at risk”, Table 2.1 shows the aggregated area of 

industrial assets in the metropolitan boundaries of 36 European capitals along with the 

corresponding mean level of PGA with 10% probability of exceedance in 50 years. 

Table 2.1– Total area of exposed assets in 36 European capitals, and corresponding hazard level 

defined by the peak ground acceleration (PGA) with 10% exceedance probability in 50 years 

Country Capital Industrial area (103 m2) PGA  (g) 

Albania Tirana 402.9 0.21 

Austria Vienna 9407.0 0.11 

Belgium Brussels 33491.3 0.06 

Bosnia and 

Herzegovina 
Sarajevo 1299.2 0.13 

Bulgaria Sofia 5635.0 0.28 

Croatia Zagreb 2567.0 0.24 

Cyprus Nicosia 1602.3 0.26 

Czech Republic Prague 5111.0 0.01 

Denmark  Copenhagen 9344.2 0.02 

Estonia Tallinn 4023.9 0.02 

Finland Helsinki 11654.6 0.01 

France Paris 50762.6 0.01 

Germany Berlin 10606.7 0.01 

Hungary Budapest 10198.6 0.08 

Iceland Reykjavik 1697.9 0.46 

Ireland Dublin 7286.3 0.01 

Italy Rome 6121.8 0.24 

Latvia Riga 6236.5 0.03 

Lithuania Vilnius 3066.9 0.01 

Luxembourg Luxembourg 643.7 0.03 

Malta Valetta 3232.0 0.06 

Macedonia Skopje 1809.4 0.26 

Montenegro Podgorica 402.7 0.01 

Netherlands Amsterdam 7398.7 0.02 

Norway Oslo 5705.2 0.02 

Poland Warsaw 11196.9 0.02 

Portugal Lisbon 4331.3 0.24 

Romania Bucharest 11286.4 0.25 

Serbia Belgrade 3870.5 0.11 
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Table 2.1 (continued) 

Country Capital Industrial area (103 m2) PGA  (g) 

Slovakia Bratislava 3166.7 0.01 

Slovenia Ljubljana 2972.3 0.25 

Spain Madrid 10974.6 0.01 

Sweden Stockholm 9828.4 0.01 

Switzerland Bern 1185.4 0.02 

Turkey Istanbul 21147.1 0.42 

United Kingdom London 24999.0 0.01 

The results presented in Table 2.1 allow the identification of the European areas in 

which particular attention should be devoted during vulnerability and loss assessment 

studies. In addition, Figure 2.18 and Figure 2.19 rank the top 10 medium and high 

seismicity countries based on the total industrial areas subjected to different ground 

motion intensities at the 475-year hazard level.  The former figure shows the ranking in 

absolute values of total areas exposed while the latter shows the ranking by area exposed 

normalized by the total area of industrial buildings in each country. 

 

Figure 2.18 – Total area of industrial assets exposed to PGA of 0.15g (grey) and 0.30g (black) 

or higher with a mean return period of 475 years. Graph include only the top 10 countries 

 

Figure 2.19 – Same as in Figure 2.18 but normalized by the total area of industrial buildings in 

each country. 
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2.7 Limitations and caveats 

The proposed procedure delivers a dataset of industrial buildings with no 

differentiation of building typology and associated replacement cost. For loss estimation 

purposes, however, the final output of this procedure needs to be further refined by 

differentiating buildings in terms of construction material, lateral load resisting system, 

and unit replacement cost. This additional step is not tackled here. The focus of this 

research is to provide users with a methodology that is able to provide accurate estimates 

of industrial building exposure, as determined by the geo-referenced distribution of 

construction areas. While not sufficient for the purposes of earthquake loss estimation, 

the definition of a reliable geo-referenced building exposure is arguably the most time 

consuming and challenging task in the process of building a full exposure model that also 

includes the differentiation in building classes and related replacement costs. Building 

characteristics and constructions costs can be inferred from several open-access sources 

such as census data and information provided by various statistical offices. Hence, the 

presented algorithm and methodology are intended to provide the means to overcome 

significant technical difficulties in a process where lack of reliable data is widely 

acknowledged by practitioners.  

2.8 Final remarks 

This chapter presented a methodology for the development of exposure datasets of 

industrial buildings, using Volunteered Geographic Information (VGI) and Open-Access 

data as the main sources of information. This framework was implemented in an 

algorithm that provides an automated tool for the development of such models at the 30 

arc sec resolution, providing the means to overcome the potential lack of input data in a 

statistically meaningful way. In its development, data completeness was assessed through 

an optimization process that uses spatial statistics in order to complement the necessary 

inputs, in regions where such data does not adequate reflect the real building environment. 

This procedure was validated using exogenously provided data on industrial 

buildings in three distinct regions in Europe - Denmark, Portugal and Emilia Romagna, 

Italy. More precisely, the validation entailed a comparison of the exposure estimates 

obtained with this procedure with cadastral information collected at different resolutions. 

The findings of this exercise demonstrated the excellent agreement between real and 

inferred exposed areas. 
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In order to demonstrate its capabilities, the presented framework was used to 

develop exposure models of industrial buildings in 36 European countries, at the 30 arc 

sec resolution. The spatial distribution of industrial building area in Europe was then 

coupled with the probabilistic seismic hazard results provided by the SHARE initiative 

(Giardini, 2013) in order to present a qualitative estimate of industrial “exposure at risk”. 

As a measure of this indicator, areas of industrial assets in the metropolitan boundaries of 

36 European capitals have been determined, and further compared with the corresponding 

mean level of PGA for a 475-year mean return period of exceedance. Turkey and Italy 

are the two countries with the largest number of industrial assets located in medium and 

high seismicity areas. 
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Chapter 3 HAZARD DISAGGREGATION AND RECORD 

SELECTION FOR FRAGILITY ANALYSIS AND 

EARTHQUAKE LOSS ESTIMATION 

This chapter is based on the following reference: 

Sousa, L.; Marques, M.; Silva, V.; Varum, H. (2017) Hazard disaggregation and record selection 

for fragility analysis and earthquake loss estimation. Earthquake Spectra, 33(2): 529-549. 

doi: 10.1193/062016EQS101M 

Summary 

Economic losses and collapse probability are critical measures for evaluating the safety of 

existing buildings. In this context, the study presented in this chapter sheds light on several 

problems and limitations in current practice of hazard-consistent ground-motion selection and 

fragility analysis, focusing on the impact that (commonly assumed) approximations in 

disaggregation outputs have on the aforementioned risk metrics, as opposed to an exact solution. 

These issues are investigated for several building classes, seismicity models and ground motion 

prediction equations (GMPE), for a site in the city of Lisbon (Portugal). It is observed that only 

an exact (i.e. rupture-by-rupture) disaggregation can lead to satisfactory results in terms of 

accuracy, when limit state criteria are not structure-specific. On the other hand, an approximate 

method is proposed, which still leads to statistically valid results regardless of the chosen 

structural class, seismicity model or GMPE. 

3.1 Introduction 

Earthquake-induced collapse and economic losses are critical measures for 

evaluating the safety of existing buildings, as well as assessing the effectiveness of risk 

reduction schemes (Liel, 2008). As a result, such metrics must be as accurate as possible, 

appropriately reflecting the various sources of uncertainty associated with the evaluation 

of seismic risk. Otherwise, biased, unreliable or inadequate results may be achieved, 

resulting in ill-informed decisions. 
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With respect to seismic fragility and vulnerability, the largest source of uncertainty 

lies in the characterization of the input earthquake ground motion (Liel, Haselton, 

Deierlein, & Baker, 2009). Given a particular level of seismic intensity, these 

uncertainties are associated with several ground motion attributes that influence the 

designated ‘record-to-record’ variability. Therefore, in this study we focus on the 

appropriate treatment of record-to-record variability in the context of fragility and 

vulnerability evaluation. In particular, we investigate what is the impact on earthquake 

loss estimations, when different degrees of accuracy are considered in the hazard-

compatible ground motion selection for non-linear response history analysis.  

In the context of performance-based engineering, the selection of natural (or 

synthetic) ground motion records provides the link between the seismology and the 

earthquake engineering counterparts. In other words, an appropriate record selection shall 

be consistent with the seismic hazard at the site at which the engineered system of interest 

is located. A rigorous approach requires both the determination of a ‘target’ to compare 

the appropriateness of different ground motions, as well as an objective method for the 

selection, simulation and/or modification of ground motions to ‘match’ this ‘target’ 

(Bradley, 2010a). 

Despite the consensus on the differences between the uniform hazard spectrum 

(UHS) resulting from probabilistic seismic hazard analysis (PSHA) and individual 

earthquake scenarios, the UHS is still widely used as the basis for record selection and 

scaling. However, given the limitations associated with the UHS (e.g. Baker (2011), NIST 

(2011)), several methodologies have recently been proposed in the literature, providing 

alternatives that allow the direct link between ground motion properties and PSHA. 

Amongst many studies, the conditional spectrum (CS), initially proposed by Baker & 

Cornell (2006b) and further developed by Jayaram, Lin, & Baker (2011), provides the 

mean and variance of spectral ordinates conditioned on the occurrence of a specific value 

of a single spectral acceleration, as determined by PSHA. This method has its 

fundamental basis in the assumption that spectral accelerations follow a multivariate 

lognormal distribution. As hypothesized by Bradley (2010a), this is not restricted to 

spectral accelerations, and can be extended to any arbitrary vector of ground motion 

intensity measures of interest (IM). As a result, the proposed general conditional intensity 

measure approach (GCIM) establishes that, for a given earthquake rupture (or scenario) 

discretized in the source model used in PSHA, a conditional vector IM has also a 

multivariate lognormal distribution. \ 
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According to the GCIM approach, considered in this research, an exact estimation 

of the ‘target’ distributions of several intensity measures used for record selection and 

scaling shall be obtained as the contribution of all the possible (independent) ruptures 

influencing the hazard at a given site. As such, the contribution of each rupture 

conditioned on a particular level (of a given intensity measure) can be defined by seismic 

hazard disaggregation (Bazzurro & Cornell, 1999). Because this “rupture-by-rupture” 

disaggregation is computationally demanding, it is not available as a standard output of 

most PSHA tools. Therefore, the simplification commonly used consists in grouping 

individual ruptures into ‘rupture scenarios’ usually defined by a pair of causal magnitude 

(M) / distance (R). This approach is adopted in virtually all hazard disaggregation 

platforms. However, the impact of considering the hazard contribution of ‘rupture 

scenarios’ (e.g. M/R intervals) in the computation of ‘targets’ for record selection (e.g. 

Lin et. al. (2013)), as opposite to an exact ‘rupture-by-rupture’ disaggregation, has been 

subject of limited scrutiny. More specifically, the level of error introduced by considering 

this approach instead of a more robust ‘rupture-by-rupture’ disaggregation is still not 

clear. 

In this research, the fragility, vulnerability and loss assessment of 9 distinct 

structural typologies is performed, using sets of ground motion records selected according 

to the GCIM approach. Target distributions are computed based on rupture contributions 

determined by seismic hazard disaggregation for Lisbon, Portugal, and several degrees of 

approximation are used, ranging from: a) the exact consideration of all the possible 

ruptures contributing to hazard, to b) a commonly used approach in which more coarse 

rupture scenarios are grouped into magnitude / distance bins. With respect to the latter, 

different M / R intervals are considered, in order to determine the level of error introduced 

by different approximations, as well as possible suitable levels of approximation 

recommended to be used by the research and practitioner communities. Furthermore, in 

this framework, distinct source models and ground motion prediction equations (GMPE) 

are considered, in order to assess how sensible the probabilistic loss estimation results are 

to the aforementioned approximations, when different GMPEs and seismicity models are 

used. 
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3.2 Numerical models 

The numerical models considered herein correspond to the most typical class of 

buildings constructed in Portugal at different time periods: reinforced concrete (RC) 

structures with masonry infills. Drawing upon the study by Silva et al. (2015c), in which 

material and geometrical properties of Portuguese building classes were characterized, 

statistical distributions of such properties have been used to create synthetic sets of 100 

structures per building class, from which the numerical model corresponding to the 

median capacity has been selected, for each class. To account for the evolution of seismic 

design and its effect on seismic response, three different classes have been defined: pre-

code, mid-code, and post-code. The first refers to buildings constructed before 1958 (i.e. 

previous to the publication of the first simplified seismic design code), mid-code 

buildings have been designed between 1958 and 1983 with a more rigorous code, and the 

last category includes structures built after 1983, time at which the modern seismic 

regulations were enforced in Portugal. In addition, three building heights per code class 

have been considered (2, 5 and 8 floors), leading to a total of 9 different building classes 

(Table 3.1). 

Table 3.1– Considered building classes and corresponding fundamental periods of vibration 

Acronym Code class Number of floors Mean period (sec.) 

PC-2 Pre-code 2 0.260 

PC-5 Pre-code 5 0.450 

PC-8 Pre-code 8 0.700 

MC-2 Mid-code 2 0.312 

MC-5 Mid-code 5 0.683 

MC-8 Mid-code 8 0.705 

C-2 Post-code 2 0.316 

C-5 Post-code 5 0.521 

C-8 Post-code 8 0.615 

Dynamic properties are characterized by the mean fundamental periods of vibration 

obtained from random generation of 100 structures with varying geometrical and material 

properties. These have been found to range from 0.260 to 0.705 seconds, as presented in 

Table 3.1. The percentage of reinforcement in the beams and columns is calculated 

following the applicable code regulations and practices for ultimate and serviceability 

limit states, in accordance with the sampled geometrical and material characteristics.  
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To maintain the computational effort at a reasonable level, each structure is 

modelled as a single infilled moment frame with three bays. As schematically presented 

in Figure 3.1, for the case of 5 story buildings, each frame was modelled in a 2D 

environment using the open-source software OpenSees (McKenna, Fenves, Scott, & 

Jeremic, 2000), with force-based distributed plasticity beam-column elements.  

For the sake of synthesis, readers are referred to the aforementioned work by Silva 

et al. (2015c) for details on the numerical considerations adopted with regards to the cross 

section discretization and integration points of the elements, the material constitutive 

relationships, P-delta effects, the infill panel modelling approach, and applicable design 

provisions. 

 

Figure 3.1 – Schematic view of the five-story RC frame model: front (left), side (centre) and 

isometric view (right) without infills, adapted from Silva et. al. (2014). 

3.3 Methodology 

The methodology implemented in this research consists of: a) seismic hazard and 

disaggregation for the site of interest – Lisbon, Portugal, b) record selection following the 

GCIM framework, compatible with the disaggregation results appraised in a), c) non-

linear response history analysis (NLRHA) for the 9 building models (one per building 

class) subjected to each set of records selected in b), d) fragility assessment for each 

building class and set of ground motion records resulting from distinct discretization 

methods used in disaggregation, and e) seismic vulnerability and probabilistic loss 

estimation for each fragility model defined in d). The final stage of the assessment 

includes an evaluation of fragility functions obtained for each level of discretization used 
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in seismic hazard disaggregation, for each structural typology, as well as the probabilistic 

comparison between the corresponding losses. 

3.3.1 Description of the probabilistic seismic hazard analysis models 

In order to account for the epistemic uncertainty associated with the definition of 

the seismicity in the area of interest, PSHA is performed based on four distinct source 

models. The first (referred herein as VF-model) has been obtained from the study of 

Vilanova & Fonseca (2007), in which the Portuguese seismic catalogue has been 

reviewed in order to define  a new seismic zonation, whilst the remaining three have been 

developed within the FP7 SHARE project – a collaborative program supported by the 

European Commission, in which a community-based seismic hazard model for the Euro-

Mediterranean region has been developed (Woessner, et al., 2015). The latter includes an 

area source model (AS-model) based on the definition of areal sources for which 

earthquake activity is defined individually, a kernel-smoothed zonation-free stochastic 

earthquake rate model (Hiemer, et al., 2014) that considers seismicity and accumulated 

fault moment (SEIFA-model), and a fault source/background seismicity model (FSBG-

model), based on the identification of large seismogenic sources using tectonic and 

geophysical evidence (Haller & Basili, 2011). 

For consistency with the aforementioned studies, hazard and disaggregation 

calculations have been performed using the ground motion prediction equations (GMPE) 

of Akkar & Bommer (2010) and Chiou & Youngs (2008), separately, for each source 

model. These equations correspond to GMPEs to which the experts involved in the 

SHARE initiative attribute higher degree of confidence for application in the two tectonic 

environments applicable to Portugal: Active Shallow and Stable Continental Crust 

(Delavaud, et al., 2012). 

It is acknowledged that the consideration of only two ground motion prediction 

equations is not sufficient to capture the effect of epistemic uncertainty in this region. 

However, the present objectives are: a) to verify the impact of different attenuation 

relationships and corresponding set of rupture defining parameters in the computation of 

hazard-consistent fragility, for a given seismicity model, and b) assess the influence of 

different seismicity models on the hazard-consistent fragility, when considering GMPEs 

with different degrees of detail in the definition of rupture properties (Table 3.2). 
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Table 3.2– List of rupture parameters in Akkar & Bommer (2010) and Chiou & Youngs (2008). 

Rrup is the closest distance to the rupture surface, Rx is the shortest horizontal distance to a line 

defined by extending the fault trace to infinity in both directions, and Rjb is the Joyner-Boore 

distance. 

GMPE – acronym Mw 
Rake / fault 

mechanism 

Rupture 

Depth 

Dip 

angle 
Rrup Rx Rjb 

Hanging / 

foot wall  

Akkar & Bommer 

(2010) – AB10 
Yes Yes Yes Yes Yes Yes Yes Yes 

Chiou & Youngs (2008) 

– CY08 
Yes Yes - - - - Yes - 

3.3.2 Seismic hazard disaggregation 

Probabilistic seismic hazard analysis and disaggregation were performed using the 

OpenQuake-engine (Pagani, et al., 2014), in accordance with the theoretical background 

established by McGuire (2004) and Bazzurro & Cornell (1999), respectively. As a result, 

hazard disaggregation has been performed for the following rupture discretization 

approaches: 

1. Rupture-by-rupture, i.e. the contribution of all the independent ruptures 

generated by the earthquake rupture forecast (ERF) is computed, as illustrated 

in Figure 3.2; 

2. Scenario ruptures, i.e. the ruptures generated by the ERF are classified and 

grouped according to magnitude (M) / distance bins, assuming Joyner-Boore 

(Rjb) as the distance measure: 

a. Magnitude interval (ΔMw) = 0.2 / Distance interval (ΔRjb) = 2 km; 

b. ΔMw = 0.4 / ΔRjb =  4 km; 

c. ΔMw =  0.6 / ΔRjb = 8 km; 

d. ΔMw =  0.8 / ΔRjb = 12 km; 

e. ΔMw =  1.0 / ΔRjb =  20 km. 

With respect to methods 2a to 2e, one should note that evaluating the relative 

influence of increasing the interval of magnitude or distance individually is not the 

objective of this study. Differently, one is interested in determining the impact of using 

disaggregation methods with increasing approximation levels. As a result, the considered 

increase in magnitude intervals is proportional to that of distance.  

In addition, the parameters necessary for the application of the GMPEs cannot 

directly be obtained when methods 2a to 2e are used, because various ruptures are 
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identified in each M / Rjb bin. Therefore, for each bin, the considered M and Rjb pair 

corresponds to the average values in the bin interval, whereas the remaining parameters 

(see Table 3.2) have been inferred from the rupture with higher disaggregation 

contribution to hazard. The OpenQuake-engine does not provide the contributions on a 

rupture-by-rupture basis. Instead, these are classified and grouped, as presented in 2). 

However, given the open-source nature of this tool, it was possible to produce the 

necessary intermediate results for the computation of 𝑃𝑟𝑢𝑝𝑖|𝐼𝑀𝑗=𝑖𝑚𝑗
- the probability that 

the rupture properties are those of a particular rupi, given that a ground motion (𝐼𝑀𝑗) has 

occurred, with an intensity of imj, as defined in Equations 3.1 and 3.2: 

𝑃𝑟𝑢𝑝𝑖|𝐼𝑀𝑗≥𝑖𝑚𝑗
=

𝑙𝑛[1−𝑃𝐼𝑀𝑗≥𝑖𝑚𝑗|𝑟𝑢𝑝𝑖
]

𝑙𝑛[∏ (𝑃𝐼𝑀𝑗≥𝑖𝑚𝑗|𝑟𝑢𝑝𝑖

𝐼
𝑖=1 )]

                                     ( 3.1 ) 

𝑃𝑟𝑢𝑝𝑖|𝐼𝑀𝑗≥𝑖𝑚𝑗
≅

1

𝑣𝐼𝑀𝑗≥𝑖𝑚𝑗 − 𝑣𝐼𝑀𝑗≥𝑖𝑚𝑗+∆𝑖𝑚𝑗
∗ 

*[𝑃𝑟𝑢𝑝𝑖|𝐼𝑀𝑗≥𝑖𝑚𝑗
. 𝑣𝐼𝑀𝑗≥𝑖𝑚𝑗 − 𝑃𝑟𝑢𝑝𝑖|𝐼𝑀𝑗≥𝑖𝑚𝑗+∆𝑖𝑚𝑗

. 𝑣𝐼𝑀𝑗≥𝑖𝑚𝑗+∆𝑖𝑚𝑗]             ( 3.2 ) 

Where I is the total number of ruptures in the ERF, 𝑣𝐼𝑀≥𝑖𝑚 is the annual rate of 

exceedance of a ground motion with an intensity level of imj, and ∆𝑖𝑚𝑗 is a small 

increment of IMj, relative to imj. As highlighted by Bradley (2010a), Equation 3.2 

becomes exact in the limit as ∆𝑖𝑚𝑗 → 0. 

 
Figure 3.2 – Rupture-by-rupture disaggregation (method 1), using the ERF generated for the 

FSBG-model, and Sa(T1)=0.5g. Ruptures are grouped with ΔMw = 0.2 ΔRjb =5 km, for visual 

clarity. 
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3.3.3 Hazard consistent record selection 

The Generalized Conditional Intensity Measure (GCIM) approach is adopted herein 

for the purpose of record selection, as it allows the predictability (Kramer & Mitchell, 

2006) of all the intensity measures verified to influence the seismic response of the 

assessed structures. Readers are referred to the work of Bradley (2010a) for a detailed 

description of the theoretical background of the methodology. In brief, the fundamental 

basis of the GCIM is that any set of ground motion parameters can be assumed to follow 

a multivariate lognormal distribution, and the conditional distribution given a) a rupture 

scenario, and b) the occurrence of a specific value of IMj, has a univariate lognormal 

distribution. 

Upon definition of the ground motion prediction equation of interest and the 

correlation between the considered intensity measures, the conditional distribution of a 

certain intensity measure (IMi) given a level imj of a second intensity parameter (IMj) is 

given by: 

𝑓𝐼𝑀𝑖|𝐼𝑀𝑗=𝑖𝑚𝑗
= ∑ 𝑓𝐼𝑀𝑖|𝑟𝑢𝑝𝑖,𝐼𝑀𝑗=𝑖𝑚𝑗

𝐼
𝑖=1 . 𝑃𝑟𝑢𝑝𝑖|𝐼𝑀𝑗=𝑖𝑚𝑗

                     ( 3.3 ) 

Where 𝑓𝐼𝑀𝑖|𝐼𝑀𝑗=𝑖𝑚𝑗
 is the probability density function (pdf) of IMi given IMj=imj, 

𝑓𝐼𝑀𝑖|𝑟𝑢𝑝𝑖,𝐼𝑀𝑗=𝑖𝑚𝑗
 is the pdf of IMi given IMj=imj and Rup=rupi, and 𝑃𝑟𝑢𝑝𝑖|𝐼𝑀𝑗=𝑖𝑚𝑗

 is 

obtained from disaggregation (methods 1 and 2a to 2e). 

It shall be noted that, building on the mathematical formulation presented in 

Appendix E of the study by Baker and Cornell (2005), any of the methods 2a to 2e could 

potentially be used with little discrepancies in both mean and variance of 𝑓𝐼𝑀𝑖|𝐼𝑀𝑗=𝑖𝑚𝑗
 (with 

respect to the exact method 1), provided that certain corrections are performed. More 

specifically, Equation 3.3, which accounts for the contribution of all the ruptures in the 

ERF, is equivalent to Equation 3.4, which simplifies Equation 3.3 by determining 

𝑓𝐼𝑀𝑖|𝐼𝑀𝑗=𝑖𝑚𝑗
 as the weighted contribution of each disaggregation bin: 

𝑓𝐼𝑀𝑖|𝐼𝑀𝑗=𝑖𝑚𝑗
= ∑ 𝑓𝐼𝑀𝑖|𝑏𝑖𝑛𝑘,𝐼𝑀𝑗=𝑖𝑚𝑗

𝐾
𝑘=1 . 𝑃𝑏𝑖𝑛𝑘|𝐼𝑀𝑗=𝑖𝑚𝑗

                       ( 3.4 ) 

Where K is the total number of disaggregation bins, and 𝑓𝐼𝑀𝑖|𝑏𝑖𝑛𝑘,𝐼𝑀𝑗=𝑖𝑚𝑗
 and 

𝑃𝑏𝑖𝑛𝑘|𝐼𝑀𝑗=𝑖𝑚𝑗
 are determined as follows: 
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𝑓𝐼𝑀𝑖|𝑏𝑖𝑛𝑘,𝐼𝑀𝑗=𝑖𝑚𝑗
= ∑ 𝑓𝐼𝑀𝑖|𝑟𝑢𝑝𝑗,𝐼𝑀𝑗=𝑖𝑚𝑗

𝐽𝑘
𝑗=1 . 𝑃𝑟𝑢𝑝𝑗|𝐼𝑀𝑗=𝑖𝑚𝑗

                    ( 3.5 ) 

𝑃𝑏𝑖𝑛𝑘|𝐼𝑀𝑗=𝑖𝑚𝑗
= ∑ 𝑃𝑟𝑢𝑝𝑗|𝐼𝑀𝑗=𝑖𝑚𝑗

𝐽𝑘
𝑗=1                                     ( 3.6 ) 

and Jk is the number of individual ruptures identified and grouped in bin k.  

Knowing that both 𝑓𝐼𝑀𝑖|𝑏𝑖𝑛𝑘,𝐼𝑀𝑗=𝑖𝑚𝑗
 and 𝑓𝐼𝑀𝑖|𝑟𝑢𝑝𝑗,𝐼𝑀𝑗=𝑖𝑚𝑗

 are lognormal probabilistic 

functions (Ang & Tang, 2007), a satisfactory approximation to the conditional mean and 

variance of 𝑓𝐼𝑀𝑖|𝑏𝑖𝑛𝑘,𝐼𝑀𝑗=𝑖𝑚𝑗
 can be obtained by the First-Order, Second Moment 

(Melchers, 1999) method, as follows: 

𝜇𝑓𝐼𝑀𝑖|𝑏𝑖𝑛𝑘,𝐼𝑀𝑗=𝑖𝑚𝑗
= 𝜇𝑓𝐼𝑀𝑖|�̅̅̅�,𝑅𝑗𝑏

̅̅ ̅̅ ̅̅ +𝜎𝑓𝐼𝑀𝑖|�̅̅̅�,𝑅𝑗𝑏
̅̅ ̅̅ ̅̅

. 𝜌𝑙𝑛𝐼𝑀𝑖,𝑙𝑛𝐼𝑀𝑗. 𝜀 ̅              ( 3.7 ) 

𝜎𝑓𝐼𝑀𝑖|𝑏𝑖𝑛𝑘,𝐼𝑀𝑗=𝑖𝑚𝑗
= 𝜎𝑓𝐼𝑀𝑖|�̅̅̅�,𝑅𝑗𝑏

̅̅ ̅̅ ̅̅ √1 − 𝜌𝑙𝑛𝐼𝑀𝑖,𝑙𝑛𝐼𝑀𝑗
2                        ( 3.8 ) 

Where �̅�,𝑅𝑗𝑏
̅̅ ̅̅ ,𝜀 ̅are the weighted mean of M, Rjb, ε (weights are the  disaggregation 

probabilities of the Jk ruptures identified in the bin of interest – 𝑃𝑟𝑢𝑝𝑗|𝐼𝑀𝑗=𝑖𝑚𝑗
), and 

𝜇𝑓𝐼𝑀𝑖|�̅̅̅�,𝑅𝑗𝑏
̅̅ ̅̅ ̅̅

 , 𝜎𝑓𝐼𝑀𝑖|�̅̅̅�,𝑅𝑗𝑏
̅̅ ̅̅ ̅̅

 are the mean and variance of 𝑓𝐼𝑀𝑖, respectively, evaluated at �̅�, 

𝑅𝑗𝑏
̅̅ ̅̅ .  

Despite the possible advantages of this correction to methods 2a to 2e, a “rupture-

by-rupture” disaggregation (method 1) would still have to be performed in order to 

identify each rupture probability (𝑃𝑟𝑢𝑝𝑗|𝐼𝑀𝑗=𝑖𝑚𝑗
), therefore defeating the purpose of an 

approximate solution. For this reason, this approach was not addressed in this work. 

Differently, the present objective is to determine whether and at which degree of 

discretization an approximate approach such as 2a to 2e is able to provide accurate results 

in terms of fragility, vulnerability and loss, when compared with an exact solution 

(method 1). 

3.3.4 ‘Targets’ for record selection 

The vector of intensity measures considered in this research (i.e. IM) includes 

intensity parameters (i.e. IMi) of peak ground acceleration (PGA), Housner intensity (HI) 

and spectral ordinates within the range of periods of 0.05 to 3.0 seconds, conditioned on 

the spectral acceleration (IMj) at the mean fundamental period of vibration of each class 

– Sa(T1), as further (thoroughly) justified in Chapter 4 (section 4.3.3). In the referred 
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section, the issue of predictability has been foreseen in the definition of IM, and matters 

of efficiency (Shome & Cornell, 1999), sufficiency (Luco, 2002) and scaling robustness 

(Tothong & Luco, 2007) have been verified when analysing similar structural models. As 

recommended in Chapter 4 (section 4.4.2.1), a number of 60 ground motion records have 

been selected and scaled per level of Sa(T1), with the latter ranging from 0.1g to 1.0g, 

with intervals of 0.1g. 

The probabilistic distribution of the selected IM vector conditioned on a given level 

of Sa(T1) is designated henceforth as 𝑓𝐼𝑀|𝑆𝑎(𝑇1)=𝑎
, being determined according to the 

hazard-consistent probabilistic distribution of each IMi given Sa(T1)=a,  as established 

in Equation 3.3, and the correlation models enunciated in section 4.3.3 (Table 4.1). For 

details regarding the database of natural ground motion records, readers are also referred 

to Chapter 4, where an explanation of all the issues addressed above is presented in detail. 

For the sake of illustration, the ‘target’ probabilistic distributions of HI and spectral 

ordinates of periods ranging between 0.1 and 3.0 seconds are presented in Figure 3.3. In 

this figure, 5-story (mid-code) structures are considered, and probabilistic distributions 

computed according to methods 1 and 2a to 2e are illustrated, in order to highlight the 

differences between hazard-consistent record-selection ‘targets’ when different rupture 

discretization options are considered in hazard disaggregation.  

As illustrated in Figure 3.3, in which the FSBG-model and CY08 GMPE have been 

used, significant differences are verified between the mean of exact and approximate 

solutions, with discrepancies increasing proportionally to the increase of the 

discretization interval. In other words, the accuracy of predictions decreases from method 

2a to 2e, with respect to method 1. In terms of variance, this discrepancy is reflected in 

the increase of uncertainty from method 2a to 2e, as verified in Figure 3.3b (i.e. loosely 

speaking, it is possible to visually confirm that the standard deviation of curve 2a is lower 

than that of 2e because curve 2a is ‘more vertical’ than 2a). For the sake of synthesis, only 

a particular set of results are presented in Figure 3.3. However, similar differences in 

accuracy have been verified for each source model and GMPE investigated, for all the 

structures and levels of Sa(T1).  



40 Chapter 3 

 

a) 

 

b) 

 

Figure 3.3 – a) Target spectral ordinates of periods ranging between 0.1 and 3.0 seconds (solid 

lines correspond to the mean and dashed lines represent 16 and 84 percentiles, i.e. mean +/- 1 

standard deviation), and b) target cumulative probabilistic distribution functions of HI. In both 

cases, the results from disaggregation methods 1 and 2a to 2e (FSBG-model, CY08) are 

illustrated, considering a mid-code structure of 5 floors, for a conditional Sa(T1)=0.5g. 

A possible way to assess how differences in ‘targets’ for ground motion selection 

propagate to discrepancies in fragility and loss results is to evaluate what is the degree of 

‘similarity’ between distributions of IMs in the resulting record sets. ‘Similarity’ is 

obviously a qualitative concept; therefore, in order to quantitatively compare conditional 

‘target’ distributions of IMs obtained from method 1 and 2a to 2e, a statistical approach 

was implemented. In this methodology, record sets selected based on approximate ‘target’ 

distributions (from 2a to 2e) were individually compared with those obtained using 

method 1. For a given level of Sa(T1) and building class (and a certain combination of 

source model/GMPE), one is able to evaluate what is the empirical distribution of each 

IMi (see section 3.3.3), for each set of records selected using methods 1 and 2a to 2e. 

Therefore, the null hypothesis that a given approximate empirical distribution follows the 

same underlying normal distribution as the corresponding exact one (method 1) can be 

assessed using the two-sample Kolmogorov-Smirnov (KS) test (Ang & Tang, 2007).   

Loosely speaking, the so-called p-values computed in this KS test represent the 

probabilities that the largest discrepancy between two samples could indeed be observed 

if the two respective cumulative distributions were sampled from the same parent one. In 

practice, if the p-value is large, we cannot reject the null hypothesis, concluding that the 

evaluated approximate distribution is a good approximation to the exact one (method 1). 

Conversely, if the p-values are smaller than a reference value α, say, 10%, it can be 

assumed that the two distributions are statistically significantly different. For illustration, 

the p-values resulting from comparing the empirical distributions of Sa(T=0.05 – 3.0 sec.) 

conditioned on Sa(0.624 sec.)=0.5g (MC-5) are presented in Figure 3.4, using the FSBG 
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source model. For each T, the empirical distribution of Sa(T) obtained when records are 

selected for ‘targets’ computed using methods 2a to 2e are individually compared with 

those resulting from ground motions selected with the exact ‘targets’ (method 1).  

a) 

 

b) 

 

Figure 3.4 – a) p-values obtained with the KS test, when comparing empirical distributions of 

Sa(T=0.05 to 3.0 sec.) derived from records selected with approximate target distributions 

(methods 2a to 2e), as opposed to those obtained with the exact method 1. Conditioning 

Sa(T1)=0.5g (MC-5), FSBG source model and AB10 GMPE. b) same as a) but with CY08 

GMPE. 

As illustrated, the corresponding p-values are presented for each approximate 

method (from 2a to 2e), for each T. Based on these results, one is able to recognize that 

the p-values generally decrease from method 2a to 2e. In fact, these are lower than α for 

methods 2b, 2c, 2d and 2e, at least at one T instance, which implies that only in the case 

of method 2a the approximation is statistically significant. 

Although an extensive set of intensity measures has been considered for record 

selection (with that set including the IMs for which higher correlation with response 

quantities has been observed in Chapter 4 in the analysis of similar structural models), 

the non-linear response of structures is a complex phenomenon that is influenced by 

ground motion properties that may not comprehensively be represented by the set of IMs 

considered herein. Therefore, the results presented in Figure 3.4, despite providing a 

valuable insight, care for appropriate validation through NLRHA and corresponding 

fragility and loss estimates, subsequently presented. 

As in the case of Figure 3.3, only a particular set of results are presented in 

Figure 3.4, for the sake of synthesis. Nonetheless, similar results have been attained for 

each combination of source model/GMPE investigated (as well as all structures and levels 

of Sa(T1)). More specifically, the assessed null hypothesis is systematically rejected for 

methods 2b, 2c, 2d and 2e, whereas method 2a tend to lead to ‘target’ distributions that 
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can be considered statistically identical to those referring to the exact method 1, at the 

10% significance level. 

3.4 Fragility and loss assessment 

As discussed by Silva et. al. (2015c), the use of local criteria (e.g. local plastic hinge 

rotation) to define limit states when generating fragility curves for a population of 

buildings may not be appropriate. Hence, in the study herein, structural response will be 

evaluated based on the maximum inter-story drift (ISD) and global drift (GD), 

considering four damage states: Slight Damage (SD), Moderate Damage (MD), Extensive 

Damage (ED) and Collapse (Col). In this context, GD corresponds to the maximum roof 

drift ratio, computed as the fraction between maximum roof displacement and building 

height. 

Global Drift limits are determined according to the evaluation of capacity of each 

frame through a displacement-based adaptive pushover (Antoniou & Pinho, 2004). 

Similarly to what has been considered by other authors (e.g. Erberik (2007)), 

displacement thresholds at each limit state are defined for each sampled frame without 

masonry infills (bare frame) according to the following assumptions: 

- Slight damage: global drift at 50% of maximum base shear capacity; 

- Moderate damage: global drift when 75% of maximum base shear capacity is 

achieved; 

- Extensive damage: global drift at maximum base shear capacity; 

- Collapse: global drift when 20% decrease of the base shear capacity is verified, or 

75% of the ultimate global drift attained, whichever is achieved first. In this 

framework, ultimate capacity is considered to be achieved once lack of numerical 

convergence is verified, provided that maximum shear strength has been achieved 

prior to numerical instability. With respect to numerical simulation assumptions, 

readers are referred to the work of Silva et. al. (2015c). 

The influence of infill panels, which translates to a significant decrease of 

displacement capacity, is accounted for by applying the reduction factors proposed by 

Bal et. al. (2010) for each aforementioned limit state. 

For what concerns ISD, a fixed set of values per limit state are defined based on the 

evaluation of global damage with increasing inter-story drift from 25 dynamic tests 

performed in real reinforced concrete moment resisting frames by Rossetto & Elnashai 
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(2003). In order to adapt the six damage states proposed by the latter Authors with the 

one being considered in this study, light/slight damage and partial collapse/collapse 

damage states have been merged, as follows: 

- Slight damage: 0.08% maximum inter-story drift; 

- Moderate damage: 0.30% maximum inter-story drift; 

- Extensive damage: 1.15% maximum inter-story drift; 

- Collapse: 2.80% or higher maximum inter-story drift. 

3.4.1 Fragility comparison 

For the purpose of fragility assessment, lognormal cumulative distribution 

functions have been fitted to the scatter of exceedance probabilities obtained for all the 

combinations of source model / GMPE. Based on the visual inspection of Figure 3.5 and 

Figure 3.6, is possible to conclude that, within each combination of source model / 

GMPE, the differences between approximate methods and method 1 tend to increase 

proportionally to the decrease of accuracy of the approximation (i.e. method 2a tends to 

lead to fragility curves that are ‘closer’ to the those obtained with method 1, whereas 

method 2e is the one for which the differences with respect to method 1 are higher). 

However, these differences are not consistent across combinations of source model / 

GMPE, and are in fact exacerbated in the cases of AS and SEIFA source models.  

 
Figure 3.5 – Fragility functions obtained with records selected based on methods 1 and 2a to 2e, 

for all the combinations of GMPE / source model. Limit state of Collapse using the ISD criteria, 

C-5 building class. 
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Figure 3.6 – Fragility functions obtained with records selected based on methods 1 and 2a to 2e, 

for all the combinations of GMPE / source model. Limit state of Collapse (GD criteria), C-5 

structural typology. 

The degrees of discrepancy between approximate methods and method 1 verified 

in the case of AS and SEIFA models (versus those of FSBG and VF models) can be 

explained by the rupture-by-rupture disaggregation results obtained for each source 

model, as exemplified  in Figure 3.7 for the case of methods 1 and 2c. In this figure, the 

C-5 building and Sa(T1)=0.5g are selected for the sake of illustration. However, it has 

been verified that the trends exhibited here are common for all the structural classes and 

GMPEs used. 

More specifically, it has been verified that exact disaggregation probabilities 

(method 1) obtained with source models AS and SEIFA are generally significantly more 

clustered in a limited range of small magnitudes and distances, whereas in the case of 

FSBG and VF, disaggregation contributions tend to be more homogeneous across the 

entire range of M and Rjb. For this reason, aggregating hazard contribution probabilities 

into more coarse M/Rjb intervals (as illustrated in Figure 3.7 for method 2c), does not 

result in significant changes when FSBG and VF models are considered (i.e. the 

distribution of probabilities remains fairly homogeneous across the overall range of M 

and Rjb). In the case of AS and SEIFA models, on the other hand, one can verify that the 

“spike” registered for low magnitudes and distances is much more pronounced in the case 

of method 2c than in method 1. For this reason, as the discretization intervals increase 

(from methods 2a to 2e), the differences in disaggregation results increase more 

significantly when considering AS and SEIFA models. As a result, discrepancies between 
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approximate and exact fragilities are also more significant in the case of AS and SEIFA 

models. 

 

 

Figure 3.7 – Disaggregation results for methods 1 and 2c, considering AB10 GMPE and the ERF generated for the 

AS, FSBG, SEIFA and VF models, for Sa(T1)=0.5g (C-5). Ruptures in the exact method 1 are grouped with ΔMw = 

0.1 / ΔRjb =1 km, for visual clarity, and, in practice, contribution probabilities of method 2c result from aggregation 

of those of method 1 into coarser M, Rjb intervals. 

In addition, one might argue that non-negligible differences are also obtained 

between exact fragilities (method 1) across different combinations of source model / 

GMPE. This can can be explained by the fact that the used intensity measure is not 

sufficient. In other words, because Sa(T1) cannot comprehensively reflect all the ground 

motion properties influencing the seismic response of the assessed structures, fragility 

results are dependent on the ground motion properties of the selected set of records. 

Therefore, because different combinations of source model / GMPE provide different 

‘targets’ for selection (even for method 1), the exact fragilities are in fact distinct across 

combinations of source model / GMPE. 

Given the wide range of seismic hazard modelling options evaluated, it would not 

be practical to present the comparison presented in Figure 3.5 and Figure 3.6 for all the 

investigated building classes (and damage states). For this reason, only the results 

corresponding to the Collapse limit state of post-code 5-story building (C-5) are 

illustrated. Nonetheless, it shall be noted that these are in fact representative of the results 

obtained for all the remaining structural typologies. 
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In this section, the comparison between fragilities is done visually, since a statistical 

comparison between different parametric curves would inevitably imply that all the 

assessed functions are different at any significance level. As a practical example, one 

might think of the KS test for comparison between two data samples. If one were to 

randomly simulate an extremely large number of values of Sa(T1) and obtain the 

corresponding damage exceedance probabilities from two particular fragility functions, 

one would be able to test the null hypothesis of the samples arising from the same 

distribution by comparing the corresponding cumulative distributions (CDF) of 

exceedance probabilities. However, for an infinitely large number of sampled values, it 

follows from the theoretical outline of the KS method (Ang & Tang, 2007) that the 

maximum allowable difference between CDFs in order not to reject the null hypothesis 

would tend to zero. In this situation, all the differences between CDFs would be higher 

than the limit (zero), inevitably rejecting the null hypothesis of the samples being drawn 

from the same distribution, for any two fragility curves.  

The example above is outlined in order to demonstrate that such comparison would 

not provide any meaningful insight on the impact of the differences visually identified in 

Figure 3.5 and Figure 3.6. For this reason, the evaluation of the influence of those 

differences is performed herein by investigating what is the impact on the corresponding 

loss estimates. 

3.4.2 Vulnerability and loss estimation 

In this section, vulnerability functions are drawn from the fragility curves presented 

above, using the consequence model adopted by Silva et. al. (2015c) in the evaluation of 

vulnerability of similar structural typologies as those studied herein. As a result, 

deterministic damage ratios (ratio between cost to repair and total building value) of 0.1, 

0.3, 0.6 and 1.0 are adopted for damage states SD, MD, ED and Col., respectively. 

Although not presented for the sake of synthesis, fragility functions for limit states other 

than Collapse present similar scatter as those presented in Figure 3.5 and Figure 3.6. This 

is confirmed in Figure 3.8, where a sample of vulnerability results is shown. As 

illustrated, similar relative differences between curves obtained with methods 1 and 2a to 

2e are observed for the selected cases, which are representative of all the results. 

a) b) 
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Figure 3.8 – a) Vulnerability functions obtained with records selected based on methods 1 and 2a to 2e, for 

AS/AB10 (left) and SEIFA/AB10 (right), combinations. ISD criteria and C-5 structural typology, b) same as 

a), considering GD criteria.

In order to account for the propagation of uncertainty from fragility to vulnerability, 

the variability of damage ratios, for a specific level of Sa(T1), is directly associated with 

the uncertainty in fragility regression. More specifically, 200 fragility functions are fitted 

to equal number of synthetic datasets randomly generated by bootstrap sampling with 

replacement (Wasserman, 2004) from the original sets of intensity-specific probabilities.  

Because the bootstrapping is consistent across limit states (i.e. for a given 

simulation, the indexes of the probabilities sampled for SD are the same ones used to 

build the corresponding samples of MD, ED and Col. probabilities), it is possible to 

compute a distinct vulnerability function for each bootstrapped fragility (Figure 3.9). As 

a result, loss exceedance curves are also computed for each of the bootstrapped 

vulnerability functions, for each method (1 and 2a to 2e), structural model and 

combination of source model/GMPE. 

In this framework, the uncertainty in vulnerability is related with the uncertainty in 

fragility regression, which is further propagated into the estimation of loss exceedance 

probabilities. In other words, for a given building class and combination of source 

model/GMPE, one obtains 200 distinct loss exceedance curves, in accordance with the 

200 bootstrapped vulnerability functions.  

For the purpose of comparing loss estimates obtained from approximate methods 

(2a to 2e) with those of method 1, average annual loss (AAL) values are computed for 

each of the bootstrapped loss exceedance curves. As a result, 200 independent AAL 

values are obtained for each disaggregation method, making it possible to compute 200 

normalized differences between a) AAL obtained with an approximate method (2a to 2e), 

and b) AAL computed for method 1 (for each structural class and combination of source 

model/GMPE).  
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a) 

 

b) 

 
Figure 3.9 – a) Uncertainty in the vulnerability model obtained from bootstrapping with 

replacement from the original sets of damage exceedance probabilities. Structural typology of 

C-5, methods 2a and 2e, AS/AB10 combination, and ISD criteria, b) same as a), considering 

GD criteria. 

Using the sets of 200 AAL values, one could use statistical tests to compare 

distributions of (200) AAL values obtained with approximate and exact methods. 

However, because these results are obtained via bootstrap sampling, using statistical tests 

would not be a sound approach. More specifically, because the rejection of the null 

hypothesis (of the samples being drawn from the same distribution) is dependent on the 

sample size, it is possible to manipulate the number of bootstrap samples in order to reject 

or not the null hypothesis. Therefore, instead of comparing distributions of AAL from a 

statistical point of view, one is interested in computing the probability that the difference 

between approximate and exact AAL values is higher than a limit of interest. This is 

furthermore understood as a more informative exercise, since simply comparing the 

distributions would not render a qualitative measure of the resulting error. 

In the present case, the Author has decided that, based on subjective judgement, an 

error of 10% is an adequate compromise between computational efficiency and accuracy 

of results, i.e. one considers an approximate method to be satisfactory if the resulting error 

is lower than 10%. Therefore, the suitability of each approximate method is herein 

evaluated as the probability of the attained error being higher than 10%, as shown in 

Figure 3.10 and Figure 3.11.



 

 

Figure 3.10 – Probability of ‘Error’ being higher than 10%, where ‘Error’ is the absolute (normalized) 

difference between: a) AAL obtained from methods 2a to 2e, and b) AAL computed using method 1. 

Inter-story Drift Criteria. 

 

Figure 3.11 – Probability of ‘Error’ being higher than 10%, where ‘Error’ is the absolute (normalized) 

difference between a) AAL obtained from methods 2a to 2e, and b) AAL computed using method 1. 

Global Drift Criteria.

As illustrated, the probabilities of obtaining errors higher than 10% (herein simply 

referred as ‘error probabilities’) generally increase proportionally with the decrease in 

accuracy of the approximation (i.e., from method 2a to 2e), irrespectively of the 

combination of source model/GMPE and structural class (more specifically, in 

approximately 80% of the assessed building class / source model / GMPE combinations). 

Moreover, it was verified that such probabilities are significantly higher when ISD criteria 

are used to derive the fragility models (Figure 3.10), in comparison with the cases where 

GD criteria are considered (Figure 3.11). In the case of GD, limit state thresholds are 
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dependent on the properties of the sampled building, whereas in the case of ISD the 

specified limits are common to all the sampled structures in a class. As a result, despite 

the fact that response parameters are obtained for the same sampled building in each class, 

there is a higher uncertainty introduced when limits are not building-specific, leading to 

increased probability of obtaining an error higher than 10%, in the case of ISD criteria.  

Considering method 2a as the one for which an approximate approach generally 

imparts lower errors, Figure 3.12 presents the corresponding ‘error probabilities’, for all 

the combinations of source model / GMPE, and structural classes. As in Figure 3.10 and 

Figure 3.11, the differences between results of ISD and GD criteria are evident. However, 

it is also possible to conclude that, despite the differences registered in fragility functions 

obtained for AS and SEIFA models (as opposed to FSBG and VF models – see section 

3.4.1), method 2a leads to error probabilities that do not exhibit a particular trend across 

source models (irrespectively of the GMPE and structural model). 

 
Figure 3.12 – Probability of ‘Error’ being higher than 10% obtained with method 2a, for all 

the combinations of source model / GMPE, structural classes, and limit state criteria. For clarity, 

horizontal lines correspond to the mean errors of all the structural classes, for each of the 

different source models. 

This can be explained by the fact that, despite errors in fragility for a less accurate 

method (say, method 2e) are significantly higher in the case of AS and SEIFA models, 

method 2a provides the same level of approximation irrespectively of the source model. 

More specifically, when GD criteria are used, an average ‘error probability’ of 

approximately 20% is obtained, whereas average values of 50% are obtained for ISD. 
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These results indicate that, for the range of structural classes and source model / GMPE 

combinations assessed, all the approximate disaggregation methods are inadequate when 

limit state criteria are not building-specific. On the other hand, when limit state thresholds 

are building-specific, method 2a seems to constitute a valid approximation, given the low 

value (20%) of probability of attaining errors higher than 10%. 

3.4.3 Collapse risk assessment 

In this section, risk estimates are further evaluated in the context of the collapse risk 

assessment of the buildings under scrutiny. For this purpose, the average annual 

probability of collapse has been determined and compared with limits prescribed by 

different authors and seismic design regulations. More specifically, the present objective 

is to evaluate the differences in ‘safety tagging’ one would obtain by considering an 

approximate method, with respect to the exact probability of collapse. In this context, 

‘safety tagging’ is understood as the process of classifying a building’s seismic safety, 

when comparing the appraised annual probability of collapse with the selected acceptable 

limits. 

As presented in the study by Silva et. al. (2015a), in which the collapse probability 

of several building typologies has been assessed in order to determine the so-called ‘risk-

targeted’ hazard maps for Europe, ASCE (2010) establishes an acceptable risk of 1% in 

50 years (approximately 2.0x10-4 annually) for the territory of the United States. On the 

other hand, Douglas et al. (2013) has adopted a value of 1.0x10-5 annually as a reasonable 

limit, following the literature review of several studies in which the annual probability of 

collapse of a number of structures designed according to modern regulations in France 

was determined. Given the significant difference between the two proposals, both values 

(2.0x10-4 and 1.0x10-5) are considered herein for completeness, as boundary limits. For 

illustration, Figure 3.13 presents the average annual probability of collapse for the mid-

code and post-code buildings (for methods 1 to 2e), as well as the selected limits, for the 

AS / AB10 combination. 

In this figure, it is possible to verify that, for both limits of acceptable risk, method 

2a leads to similar “safety tagging” as that obtained with the exact method 1, for both ISD 

and GD criteria. For the sake of synthesis, the results of pre-code structures are not 

illustrated, since the corresponding collapse probability values are systematically higher 
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than 2.0x10-4, for all the methods (1 to 2e). In addition, only the AS / AB10 combination 

is illustrated; however, similar results (in terms of difference in “safety tagging” between 

exact and approximate methods) were verified for the remaining source models /GMPE. 

 

Figure 3.13 – Average annual collapse probability (mid-code and post-code buildings) 

computed using methods 1 and 2a to 2e, for the AS/AB10 combination. 

3.5 Final remarks 

In this chapter, hazard-consistent ground motion selection and fragility assessment 

were performed for 9 building classes representing existing structures in Portugal. Target 

distributions for record selection were computed based on rupture contributions 

determined by seismic hazard disaggregation for Lisbon, Portugal, and several degrees of 

accuracy are used, ranging from: 1) the consideration of all the possible ruptures 

contributing to hazard, to 2) a more coarse approach in which rupture scenarios are 

grouped into magnitude (M) / distance (Rjb) bins. 

In order to account for the epistemic uncertainty associated with the definition of 

seismicity in the area of interest, PSHA was performed based on four distinct source 

models and two different GMPEs, with the objective of: a) verifying the impact of 

different attenuation relationships and corresponding set of rupture defining parameters 

in the computation of hazard-consistent fragility, for a given seismicity model, and b) 

assess the influence of different seismicity modelling approaches on the hazard-consistent 

fragility, when considering GMPEs with different degrees of detail in the definition of 

rupture properties.  

Based on the corresponding risk results evaluated in terms of AAL, it was verified 

that only an exact disaggregation method (i.e. contribution of all the possible independent 
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ruptures) guarantees a satisfactory outcome in terms of accuracy, when limit state criteria 

are not building-specific, irrespectively of the source model/GMPE combination used. 

On the other hand, when limit state thresholds are building-specific, an approximate 

method in which magnitude/distance bins are defined with ΔM / ΔRjb equal to 0.2 / 2km 

(designated here as method 2a) systematically leads to a valid approximation (for the 

structures, source models, GMPEs, and site investigated herein). However, when the risk 

metric investigated is the annual probability of collapse, method 2a tends to provide 

appropriate results, irrespectively of building class, source model, GMPE and limit state 

definition criteria. In this case, the base of comparison between exact and approximate 

results was a pre-determined level of acceptable risk, defined as a maximum allowable 

annual collapse probability. 

This study demonstrated the possible advantages and limitations of considering 

approximate solutions to the problem of hazard-compatible record selection and 

subsequent analytical fragility and loss assessments. Therefore, within the wide range of 

structural properties, response parameters, seismological source modelling options, and 

ground motion prediction equations assessed, the main contribution of this study lies on 

the robust proposal of suitable levels of approximation recommended to be used by the 

research and practitioner communities. 
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Chapter 4 ON THE TREATMENT OF UNCERTAINTIES 

IN THE DEVELOPMENT OF FRAGILITY FUNCTIONS 

FOR EARTHQUAKE LOSS ESTIMATION OF BUILDING 

PORTFOLIOS 

This chapter is based on the following reference: 

Sousa, L.; Silva, V.; Marques, M.; Crowley, H. (2016). On the treatment of uncertainties in the 

development of fragility functions for earthquake loss estimation of building portfolios. 

Earthquake Engineering and Structural Dynamics, 45: 1955–1976. doi: 

10.1002/eqe.2734. 

Summary 

State-of-the-art methods for the assessment of building fragility consider the structural 

capacity and seismic demand variability in the estimation of the probability of exceeding different 

damage states. However, questions remain regarding the appropriate treatment of such sources of 

uncertainty from a statistical significance perspective. In this study, material, geometrical and 

mechanical properties of a number of building classes are simulated by means of a Monte Carlo 

sampling process in which the statistical distribution of the aforementioned parameters is taken 

into consideration. Building on the findings of Chapter 3, record selection is performed in 

accordance with (exact) hazard-consistent distributions of a comprehensive set of intensity 

measures, and issues related with sufficiency, efficiency, predictability and scaling robustness are 

addressed. Based on the appraised minimum number of ground motion records required to 

achieve statistically meaningful estimates of response variability conditioned on different levels 

of seismic intensity, the concept of conditional fragility functions is presented. These functions 

translate the probability of exceeding a set of damage states as a function of a secondary sufficient 

intensity measure, when records are selected and scaled for a particular level of primary seismic 

intensity parameter. It is demonstrated that this process allows a hazard-consistent and statistically 

meaningful representation of uncertainty and correlation in the estimation of intensity-dependent 

damage exceedance probabilities. 
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4.1 Introduction 

The various sources of aleatory variability (and the correlation of their residuals) 

associated with ground-motion and structural response predictions cannot be neglected in 

loss assessment procedures, as demonstrated by several authors (e.g. Bommer & Crowley 

(2006), Bazzurro & Luco (2005), Weatherill et. al. (2015)). Hence, the purpose of this 

study is to investigate the appropriate treatment of material, geometrical and record-to-

record variability in the derivation of fragility models for the earthquake loss estimation 

of building portfolios. In this context, one of the many challenges that arises when using 

analytical approaches to predict structural response is the choice of seismic intensity 

measure and ground motion input to apply in numerical simulations. A number of key 

ground-motion characteristics such as frequency content and spectral shape (e.g. Baker 

& Cornell (2006b)), peak ground motion (e.g. Bradley et. al. (2009b)), and duration (e.g. 

Iervolino et. al. (2006)) have been demonstrated to significantly influence predictions of 

the response of nonlinear systems, which typically renders record-to-record variability 

the main source of aleatory (i.e. random) variability (Shome & Cornell, 1999).  

As stated by Bradley et. al. (2009b), intensity measures (IMs) shall ideally embody 

features of: efficiency, which is the ability of the intensity measure to predict the structural 

response with a small standard deviation, for a given set of records and statistical level of 

confidence (Shome & Cornell, 1999), sufficiency, which guarantees independence of 

response from parameters other than the intensity measure value of interest (Luco, 2002), 

predictability, which relates to the feasibility to estimate the measure from a ground 

motion prediction equation (Kramer & Mitchell, 2006), and scaling robustness (Tothong 

& Luco, 2007), which seeks to determine if the distribution of engineering demand 

parameters (EDPs) obtained using scaled ground motions is biased compared with that 

obtained using unscaled records. However, it is acknowledged in many applications (e.g. 

Bradley et. al. (2009b), (Luco & Cornell, 2007))  that none of the commonly used 

intensity measures (IMs) are sufficient with respect to the distribution of ground motion 

characteristics – namely, magnitude (M), distance (R), and epsilon (ε) – expected at a 

given site, as determined by probabilistic seismic hazard analysis (PSHA) (Cornell, 1968). 

Thus, it is clear that the response from nonlinear analysis will be dependent on the suite 

of selected records, as demonstrated by Haselton et. al. (2011), who assessed the influence 

of epsilon in the collapse fragility of a large number of structures.  
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 As evidenced by Haselton et. al. (2012) a robust mechanism to determine structural 

response variability for a particular level of seismic action shall be based on a record-

selection procedure that incorporates the prediction of both mean and variance of the 

considered intensity defining parameters. To this end, the Generalized Conditional 

Intensity Measure (GCIM) approach (Bradley, 2010a)] is employed in the selection of 

natural ground-motion records that are primarily scaled to match increasing levels of 

spectral ordinates at the mean fundamental period of vibration of the classes of interest - 

Sa(T1). According to the latter, conditional distributions of a relevant set of IMs are 

determined by taking into account all the rupture scenarios that influence the seismic 

hazard at the site of interest – Lisbon, Portugal – by means of the relative contribution of 

magnitude, distance and ground motion prediction models obtained from disaggregation 

(Bazzurro & Cornell, 1999), as formulated in Lin et. al. (2013). 

In this study, thousands of nonlinear dynamic analyses were performed within a 

probabilistic methodology, developed by Silva et. al. (2015c), wherein hundreds of 

reinforced concrete frame models (with distributed plasticity) are simulated in a 2D 

environment. Through Monte Carlo simulation, the variability in the geometrical and 

material properties of typical two, five and eight-story pre-code reinforced concrete 

buildings in mainland Portugal is taken into account. As a result, the minimum number 

of ground-motion records necessary to achieve robust predictions of response variability 

is appraised, in order to achieve hazard-consistent and statistically meaningful 

distributions of structural response, conditioned on different levels of seismic intensity - 

Sa(T1). In this framework, matters of efficiency, sufficiency, predictability and scaling 

robustness are taken into account. Nonlinear response analysis of 100 structural models 

is performed for each selected ground-motion record, and damage exceedance 

probabilities are determined for each record, at each level of Sa(T1). The importance of 

computing “record-specific” probabilities is highlighted in the context of the loss 

estimation of building portfolios, which is strongly influenced by the spatial correlation 

of ground motion intensity parameters. To this end, it is demonstrated that the verified 

variability of “record-specific” probabilities is conditional on each level of Sa(T1), and 

dependent on intensity measures other than Sa(T1). Thus, these probabilities can be 

expressed as a function of a conditional intensity measure (𝐼𝑀𝑖|𝑆𝑎(𝑇1)), which establishes 

the proposed concept of conditional fragility function. 
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4.2 Numerical Models 

The approach used herein is similar to that presented in Chapter 3 (section 3.2), 

with the main difference being the generation of 100 assets per building class, rather than 

simply considering the structure that corresponds to the median capacity. More 

specifically, drawing upon the study by Silva et. al. (2015c), the numerical models 

considered herein represent typical buildings constructed before 1958, the year when the 

first seismic design provisions were enforced, and are thus defined as pre-code.  

In this section, dynamic properties are characterized by the mean fundamental 

periods of vibration of the random generation of 100 assets with varying geometrical and 

material statistical distributions. These have been found to be 0.26, 0.45 and 0.70 seconds, 

for the two, five and eight story buildings, respectively. The percentage of reinforcement 

in the beams and columns is calculated following the pre-code regulations and practices 

corresponding to the ultimate and serviceability limit states, for each asset, in accordance 

with the sampled geometrical and material characteristics.  

When using a Monte Carlo approach to randomly generate portfolios of buildings, 

it is important to ensure that convergence in the results is achieved. Accordingly, as 

demonstrated in a study by Silva et. al. (2014), in which a similar sampling framework 

was implemented, the use of one hundred assets is necessary to guarantee the statistical 

significance of the generated distribution of structural capacity. To maintain the 

computational effort at a reasonable level, each structure is modelled as a single infilled 

moment frame with three bays. As schematically presented in Figure 4.1 for the case of 

5 story buildings, each frame was modelled in a 2D environment using the open-source 

software OpenSees (McKenna, Fenves, Scott, & Jeremic, 2000), with force-based 

distributed plasticity beam-column elements.  

  

Figure 4.1 – Schematic view of the five-story RC frame model: front (left), side (centre) and 

isometric view (right) without infills, adapted from Silva et. al. (2014). 
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For the sake of synthesis herein, readers are referred to the aforementioned work by 

Silva et. al. (2015c) for details of the numerical considerations adopted with regards to 

the cross section discretization and integration points of the elements, the material 

constitutive relationships, P-delta effects, and the infill panel modelling approach. 

4.3 Record selection methodology 

In the analytical assessment of building fragility, the record-to-record variability 

should be robustly modelled given its significant influence on the estimated distribution 

of structural response (Lin, Haselton, & Baker, 2013). Amongst the available ground 

motion selection procedures, the Conditional Spectrum (CS), initially proposed by Baker 

(2011) and further developed by Jayaram et. al. (2011), provides a mechanism for 

estimating both the target mean and variance of spectral ordinates that a set of selected 

records should match, thus adequately accounting for the record-to-record variability. 

However, a limitation of the latter approach is that only the characteristics of ground 

motion represented in terms of spectral ordinates are considered. Thus, the Generalized 

Conditional Intensity Measure (GCIM) approach proposed by Bradley (2010a) is adopted 

herein for record selection, as it allows all the intensity measures identified as necessary 

to ensure that efficiency, sufficiency, scaling robustness and predictability are accounted 

for. A brief summary of the theoretical concepts behind the GCIM is provided below, and 

its application in the present study is presented further in the following sections. 

The fundamental basis of the conditional response spectrum is that spectral 

accelerations at multiple vibration periods can be assumed to have a multivariate 

lognormal distribution, and the conditional distribution of spectral acceleration ordinates, 

for a single earthquake scenario, given the occurrence of a specific value of the spectral 

acceleration at some period, has a univariate lognormal distribution (Jayaram & Baker, 

2008). In the GCIM, this concept is extended to any ground motion parameter of interest. 

In other words, the distribution of any IMi given an earthquake scenario, or rupture Rup 

(IMi|Rup), conditioned on the occurrence of a particular level of another intensity 

parameter (IMj), 𝑓𝐼𝑀𝑖|𝑅𝑢𝑝,𝐼𝑀𝑗(𝑖𝑚𝑖|𝑟𝑢𝑝𝑘, 𝑖𝑚𝑗), can be assumed to have a lognormal 

distribution.  

Upon the definition of appropriate Ground Motion Prediction Equations (GMPE) 

and correlation models between different intensity measures (IMi), the conditional 
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distribution of each IMi given IMj = imj is obtained via the total probability theorem as 

follows: 

𝑓(𝐼𝑀𝑖|𝐼𝑀𝑗=𝑖𝑚𝑗
) = ∑ 𝑓𝐼𝑀𝑖|𝑅𝑢𝑝,𝐼𝑀𝑗(𝑖𝑚𝑖|𝑟𝑢𝑝𝑛, 𝑖𝑚𝑗)𝑃𝑅𝑢𝑝|𝐼𝑀𝑗(𝑟𝑢𝑝𝑛|𝑖𝑚𝑗)

𝑁𝑅𝑢𝑝

𝑛=1    ( 4.1 ) 

Where 𝑓𝐼𝑀𝑖|𝐼𝑀𝑗(𝑖𝑚𝑖|𝑖𝑚𝑗) is the probability density function (pdf) of IMi given 

IMj=imj, 𝑓𝐼𝑀𝑖|𝑅𝑢𝑝,𝐼𝑀𝑗(𝑖𝑚𝑖|𝑟𝑢𝑝𝑛, 𝑖𝑚𝑗) is the pdf of IMi given IMj=imj and Rup=rupn, and 

𝑃𝑅𝑢𝑝|𝐼𝑀𝑗(𝑟𝑢𝑝𝑛|𝑖𝑚𝑗) is the contribution weight of Rup=rupn, determined from seismic 

hazard disaggregation. From the assumption that the vector of all the considered IMi 

(herein referred as IM) is characterized by a multivariate lognormal distribution, it follows 

that for each IMi, the function 𝑓𝐼𝑀𝑖|𝑅𝑢𝑝,𝐼𝑀𝑗(𝑖𝑚𝑖|𝑟𝑢𝑝𝑛, 𝑖𝑚𝑗) has a univariate lognormal 

distribution, which can be defined by its conditional mean and standard deviation 

parameters: 

𝜇𝑙𝑛𝐼𝑀𝑖|𝑅𝑢𝑝,𝐼𝑀𝑗
(𝑟𝑢𝑝𝑛, 𝑖𝑚𝑗) = 𝜇𝑙𝑛𝐼𝑀𝑖|𝑅𝑢𝑝(𝑟𝑢𝑝𝑛) + 

+ 𝜎𝑙𝑛𝐼𝑀𝑖|𝑅𝑢𝑝(𝑟𝑢𝑝𝑛)𝜌𝑙𝑛𝐼𝑀𝑖,𝑙𝑛𝐼𝑀𝑗
𝜀𝑙𝑛𝐼𝑀𝑗

                                    ( 4.2 ) 

     𝜎𝑙𝑛𝐼𝑀𝑖|𝑅𝑢𝑝,𝐼𝑀𝑗
(𝑟𝑢𝑝𝑛, 𝑖𝑚𝑗) = 𝜎𝑙𝑛𝐼𝑀𝑖|𝑅𝑢𝑝(𝑟𝑢𝑝𝑛)√1 − 𝜌𝑙𝑛𝐼𝑀𝑖,𝑙𝑛𝐼𝑀𝑗

2             ( 4.3 ) 

Which are determined as a function of 𝜀𝑙𝑛𝐼𝑀𝑗
, the number of standard deviations, 

𝜎𝑙𝑛𝐼𝑀𝑗|𝑅𝑢𝑝(𝑟𝑢𝑝𝑛), by which the logarithm of IMj=imj differs from the mean prediction of 

a particular GMPE, 𝜇𝑙𝑛𝐼𝑀𝑗|𝑅𝑢𝑝(𝑟𝑢𝑝𝑛), for a given rupture scenario, Rup=rupn: 

𝜀𝑙𝑛𝐼𝑀𝑗 =
𝑙𝑛𝐼𝑀𝑗−𝜇𝑙𝑛𝐼𝑀𝑗|𝑅𝑢𝑝(𝑟𝑢𝑝𝑛)

𝜎𝑙𝑛𝐼𝑀𝑗|𝑅𝑢𝑝(𝑟𝑢𝑝𝑛)
                                          ( 4.4 ) 

Accordingly, 𝜌𝑙𝑛𝐼𝑀𝑖,𝑙𝑛𝐼𝑀𝑗
corresponds to the correlation of residuals between 

different intensity parameters, presented in detail in section 4.3.3. 

4.3.1 Probabilistic seismic hazard and disaggregation 

A number of seismic hazard models exist for Portugal (e.g. Vilanova & Fonseca 

(2007), Sousa & Campos Costa (2009)), but only one of these has been selected herein 

for the purposes of demonstrating the methodology to link nonlinear response analysis 

with PSHA. The seismological source model has been taken from the study by Vilanova 

and Fonseca (2007), whilst the selection of the GMPEs was performed based on the 



 

Chapter 4 61 

   

findings of Vilanova et. al. (2007), in which regional ground motion data from moderate 

magnitude earthquakes was used to verify the performance of different GMPEs in the 

Iberian region. Subsequently, the models developed by Atkinson & Boore (2006) and 

Akkar & Bommer (2010) are considered herein, with 0.70 and 0.30 logic tree weights, 

respectively, as further discussed in Silva et. al. (2015b). 

Typically, causal earthquake magnitude, source-to-site distance and fault properties 

are considered in the definition of scenarios that contribute to the hazard in a given site, 

and are established by disaggregation of the PSHA (Bazzurro & Cornell, 1999). However, 

following the developments made by Lin et. al. (2013) to the Conditional Spectrum 

framework, seismic hazard disaggregation should not be limited to Magnitude (M) and 

Distance (R), but also consider the influence of different GMPEs, in order to ensure the 

consistency between the target distributions of all considered intensity measures, IMi, and 

the variability of ground motion properties expected at the site of interest (Lisbon, Lat. = 

38.373, Lon. = –9.143). Thus, 𝑓(𝐼𝑀𝑖|𝐼𝑀𝑗=𝑖𝑚𝑗
)  is estimated for each conditioning 

intensity level (see section 4.3.3) according to the contribution of all NRup scenarios and 

set of GMPEs considered, as described below: 

𝑓 (𝐼𝑀𝑖|𝐼𝑀𝑗=𝑖𝑚𝑗
) = 

∑ ∑ 𝑓𝐼𝑀𝑖|𝑅𝑢𝑝,𝐼𝑀𝑗
(𝑖𝑚𝑖|𝑟𝑢𝑝𝑛, 𝑖𝑚𝑗, 𝐺𝑀𝑃𝐸𝑚)𝑃𝑅𝑢𝑝,𝐺𝑀𝑃𝐸𝑚|𝐼𝑀𝑗(𝑟𝑢𝑝𝑛, 𝐺𝑀𝑃𝐸𝑚|𝑖𝑚𝑗)

𝑁𝑅𝑢𝑝

𝑛=1
𝑁𝐺𝑀𝑃𝐸
𝑚=1  ( 4.5 ) 

The OpenQuake-engine (Monelli et. al. (2012), Silva et. al. (2014)) which has been 

used herein for the probabilistic seismic hazard analysis based on rock site conditions (i.e. 

shear wave velocity in the top 30 m of the soil of 760 m/s) does not currently address 3D 

disaggregation on M, R and GMPE (Lin, Harmsen, Baker, & Luco, 2013); however, due 

to its open-source nature, it was possible to produce the necessary intermediate results for 

the computation of 𝑃𝑅𝑢𝑝,𝐺𝑀𝑃𝐸𝑚|𝐼𝑀𝑗
(𝑟𝑢𝑝𝑛 , 𝐺𝑀𝑃𝐸𝑚|𝑖𝑚𝑗), as demonstrated below: 

      𝑃𝑅𝑢𝑝,𝐺𝑀𝑃𝐸𝑚|𝐼𝑀𝑗
(𝑟𝑢𝑝𝑛, 𝐺𝑀𝑃𝐸𝑚|𝑖𝑚𝑗) =

𝑣(𝐼𝑀𝑗, 𝑅𝑢𝑝|𝐺𝑀𝑃𝐸𝑚).𝑃(𝐺𝑀𝑃𝐸𝑚)

𝑣(𝐼𝑀𝑗)
         ( 4.6 ) 

Where 𝑃(𝐺𝑀𝑃𝐸𝑚) stands for the logic-tree weight assigned to 𝐺𝑀𝑃𝐸𝑚, 

𝑣(𝐼𝑀𝑗, 𝑅𝑢𝑝|𝐺𝑀𝑃𝐸𝑚) is the rate corresponding to the conditional probability of IMj=imj, 

using 𝐺𝑀𝑃𝐸𝑚, assuming a Poissonian process, and 𝑣(𝐼𝑀𝑗) is the rate of occurrence of 

IMj=imj, computed from the corresponding rate of exceedance, as proposed by Bradley 

(2010a). 
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4.3.2 Record database 

Only three seismic events with significant ground motion were ever recorded in 

Portugal. For this reason, in order to create a sufficiently large database of candidate 

records for selection, accelerograms from other regions in the world with similar 

geological and tectonic characteristics were gathered (e.g. Spain, France, Switzerland, 

and East United States). The properties of stable continent and active shallow crustal 

regions, as well as the corresponding faults influencing the seismic hazard were respected 

to the maximum extent, based on the information provided by Vilanova & Fonseca (2007) 

and Sousa & Campos Costa (2009). 

The horizontal orthogonal components of 911 non-pulse ground motions were 

selected from PEER (2015) and ESMD (2015) databases, with 815 and 96 records from 

each, respectively. The large number of selected records from the PEER database could 

give rise to concern as to the influence they may have on the results presented herein. 

However, the underlying assumption of the record selection procedure employed herein 

is that the influence that the selected suites of natural ground motion records have on the 

nonlinear response of structures is only a function of the expected distribution of seismic 

intensity parameters to which they are matched (see section 4.3.3).  

4.3.3 Selected intensity measures 

As demonstrated in a study by Sousa et. al. (2014), in which efficiency of an 

extensive set of IMs has been evaluated in the context of fragility estimation, there are a 

number of intensity measures related to duration and number of cycles that do not provide 

statistically meaningful correlation with the structural response of the building classes 

considered herein. On the other hand, the intensity measure types that incorporate velocity 

and spectral shape characteristics systematically provide increased correlations with 

damage exceedance probabilities. Theoretically, any intensity parameter can be 

considered in the GCIM selection approach (Bradley, 2012a). However, the latter 

assumption hinges on a number of constraints that, in practice, currently limit the number 

of IMi that can be considered: 

a) Predictability must be ensured, based on the availability of GMPEs for 

predicting marginal mean and standard deviation of the logarithm of each IMi; 

b) It must be possible to determine the correlation between each intensity 

parameter considered. 
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The applicability of the selected GMPEs to the specific case of mainland Portugal 

renders spectral acceleration at a range of periods an obvious initial choice for the target 

IMi. Thus, in order to ensure that target distributions computed for IMi other than spectral 

ordinates are consistent with the ground motion properties to be expected at the site of 

interest, preference is given to IMi for which marginal median and logarithmic standard 

deviation can directly be determined or indirectly be inferred from the same GMPEs. 

Therefore, the vector of intensity measures considered (i.e. IM) includes intensity 

parameters (i.e. IMi) of peak ground acceleration (PGA), peak ground velocity (PGV), 

acceleration spectrum intensity (ASI) (Von Thun, Roehm, Scott, & Wilson, 1988), 

Housner intensity (HI) (Housner, 1952) and spectral ordinates within the range of 0.05 to 

3.0 seconds, conditioned on the spectral acceleration (IMj) at the mean fundamental 

period of vibration of each class (Sa(T1)). Thus, the probabilistic distribution of the 

selected IM vector conditioned on a given level of Sa(T1) is designated henceforth as 

𝑓(𝐼𝑀|𝑆𝑎(𝑇1)=𝑎), being determined according to the hazard-consistent probabilistic 

distribution of each IMi, given Sa(T1)=a -  𝑓(𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎)  - as established in Equation 

4.5, and the correlation models summarized in Table 4.1. 

For each conditional M, R and GMPE, median predictions of PGA and PGV, along 

with the associated logarithmic standard deviations, can directly be obtained from the 

aforementioned GMPEs. As for the case of ASI and HI, since both intensity measures 

result from integrating spectral quantities in the period domain (acceleration and pseudo-

velocity, respectively), target distributions can be computed based on the statistical 

parameters provided for the distribution of spectral ordinates, as demonstrated by Bradley 

(2010c) and Bradley et. al. (2009a).  

Table 4.1– Correlation models considered for application of the GCIM methodology 

 SA(Ti) PGA PGV ASI HI 

SA(Ti) Baker & 

Jayaram (2008) 

Baker 

(2007a) 

Bradley 

(2012b) 

Bradley (2011) Bradley (2011)  

PGA - - Bradley 

(2012b) 

Bradley (2011) Bradley (2011)  

PGV - - - Bradley 

(2012b) 

Bradley (2012b) 

ASI - - - - Bradley (2011) 
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4.3.4 Record selection for 2D analysis 

When analysing a 3D structure, as recommended in the literature (e.g. Haselton et. 

al. (2009), Jayaram & Baker (2010)), records shall be selected and scaled based on the 

geometric mean of both orthogonal components for a particular level of conditioning IMj, 

in order to ensure the consistency with the definition of IMj used for fragility assessment: 

the geometric mean of the interested intensity measure (IMGM) in the present study (as in 

virtually all the cases in the literature). In the case of 3D models, if near-source ground 

motions are not of interest, a given pair of horizontal components can be randomly applied 

with respect to the building’s orthogonal directions, as demonstrated by Huang et. al. 

(2009). The latter leads to the inherent conclusion that, when IMGM is considered for 

selection and scaling, a particular direction of the idealized 3D system will be actually 

subjected to arbitrary component ground motion: IMARB. Consequently, a 2D model of a 

3D structure shall be analysed according to record sets that reflect the variability of 

records in a given direction - IMARB - for each intensity level, rather than that of IMGM, 

which is smaller. 

In the present case, in order to enhance the number of candidates available for 

record selection, advantage has been taken from the fact that the structures are modelled 

as 2D frames. Within this framework, each orthogonal component from a given record is 

considered individually, in practice duplicating the size of the database. However, in order 

to achieve consistency between the definition of the conditioning IMj (i.e. Sa(T1)) in the 

various stages of record selection, nonlinear analysis and fragility assessment, the target 

distributions of each IMi are computed for the arbitrary component ground motion 

(IMARB) rather than the geometric mean of the orthogonal components (IMGM). In practice, 

this is achieved by correcting the marginal standard deviations provided by the selected 

GMPEs, 𝜎𝑙𝑛𝐼𝑀𝑖|𝑅𝑢𝑝(𝑟𝑢𝑝𝑛)𝐺𝑀, which are for the geometric mean, according to the 

proposal of Baker & Cornell (2006c). Arbitrary ground motion variability of a given IMi 

is thus estimated based on the knowledge of the correlation between residuals (epsilon) 

in each orthogonal direction, 𝜌𝑙𝑛𝐼𝑀𝑖𝑋,𝑙𝑛𝐼𝑀𝑖𝑌
, as follows: 

𝜎2
𝑙𝑛𝐼𝑀𝑖|𝑅𝑢𝑝(𝑟𝑢𝑝𝑛)𝐴𝑅𝐵 = 2

𝜎2
𝑙𝑛𝐼𝑀𝑖|𝑅𝑢𝑝(𝑟𝑢𝑝𝑘)𝐺𝑀

1+𝜌𝑙𝑛𝐼𝑀𝑖𝑋
,𝑙𝑛𝐼𝑀𝑖𝑌

                       ( 4.7 ) 

Empirically derived equations for 𝜌𝑙𝑛𝐼𝑀𝑖𝑋,𝑙𝑛𝐼𝑀𝑖𝑌
 are available for spectral ordinates 

(e.g. Baker & Cornell (2006a), which has been adopted in this study); however, that is 



 

Chapter 4 65 

   

not the case for PGA and PGV, to the Author’s knowledge. In that case, by examining 

the ratio between standard deviations provided for single component and geometric mean 

given by a GMPE that provides both (Campbell & Bozorgnia (2008) has been selected 

herein), it is possible to back-calculate the implied arbitrary component correlation 

coefficient, according to the previously presented equation. 

Three key assumptions of the methodology presented in this section are: 

a) The correlation models, 𝜌𝑙𝑛𝐼𝑀𝑖𝑋,𝑙𝑛𝐼𝑀𝑖𝑌
 and 𝜌𝑙𝑛𝐼𝑀𝑖,𝑙𝑛𝐼𝑀𝑗

, are applicable to the 

correlation of the residuals from the adopted GMPEs; 

b) The relationship between arbitrary and geometric mean variability for PGA 

and PGV (Campbell & Bozorgnia, NGA ground motion model for the 

geometric mean horizontal component of PGA, PGV, PGD and 5% damped 

linear elastic response spectra for periods ranging from 0.01 to 10s, 2008) 

is consistent with the seismicity of the site of interest; 

c) The adaptation of the process to derive target distributions of each IMi for 

arbitrary ground motion is valid, which assumes that the correlation between 

residuals of two distinct IMs, 𝜌𝑙𝑛𝐼𝑀𝑖,𝑙𝑛𝐼𝑀𝑗
,  is equally applicable to arbitrary 

components with the same orientation.  

As demonstrated by Baker & Jayaram (2008), empirical evidence suggests that the 

hypothesis outlined in c) can be applied for the case of spectral ordinates. However, 

further research is necessary to identify whether it is valid for IMs other than spectral 

acceleration. In addition, an appropriate validation exercise will also be required in the 

future for what concerns points a) and b). 

4.4 Fragility assessment framework 

As discussed in Chapter 3 (section 3.4), the use of local criteria to define limit states 

when generating fragility curves for a population of buildings may not be appropriate. 

Hence, in the study herein, structural response will similarly be evaluated based on the 

maximum inter-story drift (ISD) and global drift (GD), considering four damage states: 

Slight Damage (SD), Moderate Damage (MD), Extensive Damage (ED) and Collapse 

(Col). For the sake of consistency, the limit state criteria established in section 3.4 are 

considered herein, as further presented, for completeness. 
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4.4.1 Limit state criteria 

GD limits are determined according to the evaluation of capacity of each frame 

through a displacement-based adaptive pushover (Antoniou & Pinho, 2004). Similarly to 

what has been considered by other authors (e.g. Erberik (2007)), displacement thresholds 

at each limit state are defined for each sampled frame without masonry infills (bare frame) 

according to the following assumptions: 

- Slight damage: global drift at 50% of maximum base shear capacity; 

- Moderate damage: global drift when 75% of maximum base shear capacity is 

achieved; 

- Extensive damage: global drift at maximum base shear capacity; 

- Collapse: global drift when 20% decrease of the base shear capacity is verified, or 

75% of the ultimate global drift attained, whichever is achieved first. In this 

framework, ultimate capacity is considered to be achieved once lack of numerical 

convergence is verified, provided that maximum shear strength has been achieved 

prior to numerical instability. With respect to numerical simulation assumptions, 

readers are referred to the work of Silva et. al. (2015c). 

The influence of infill panels, which translates to a significant decrease of 

displacement capacity, is accounted for by applying the reduction factors proposed by 

Bal et. al. (2010) for each aforementioned limit state. 

For what concerns ISD, a fixed set of values per limit state are defined based on the 

evaluation of global damage with increasing inter-story drift from 25 dynamic tests 

performed in real reinforced concrete moment resisting frames by Rossetto & Elnashai 

(2003). In order to adapt the six damage states proposed by the latter Authors with the 

one being considered in this study, light/slight damage and partial collapse/collapse 

damage states have been merged, as follows: 

- Slight damage: 0.08% maximum inter-story drift; 

- Moderate damage: 0.30% maximum inter-story drift; 

- Extensive damage: 1.15% maximum inter-story drift; 

- Collapse: 2.80% or higher maximum inter-story drift. 

4.4.2 Uncertainty in structural response 

The treatment of uncertainty is one of the key aspects of the proposed framework. 

More specifically, an attempt is made to determine the influence of all the addressed 
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sources of variability – namely, material, geometrical and seismic input – on the resulting 

distribution of damage exceedance probabilities. It must be possible to achieve reasonable 

confidence in the estimated response variability, in a statistically meaningful manner, in 

order to appropriately determine the probability of exceeding each damage state, for each 

level of seismic intensity. 

As schematically summarized in Figure 4.2, the distribution of ISD and GD is 

determined for different levels of Sa(T1) through nonlinear response history analysis 

(NLRHA) of a number of frames (NF) subjected to a set of NR ground-motion records.  

 

Figure 4.2 – Evaluation of building response distribution – methodology flowchart. 

In this framework, variability in structural capacity, taken into account through the 

sampling of NF = 100 frames, has been addressed through a probabilistic approach 

towards the modelling of material, geometrical and mechanical properties, as described 

in section 4.2. However, since records are selected and scaled based on target distributions 

of a set of IMi (section 4.3.3) that have distinct impacts on the spatial distribution of 

seismic demand (e.g. Bradley et. al. (2009b)), the number of ground motions required to 

achieve reasonable confidence in the estimated response variability is not known a priori 

(NIST, 2011). It is recognized in the literature that a large number (greater than thirty) is 

necessary for the aforementioned purposes (e.g. Haselton et. al. (2012), Lin et. al. (2013)); 

nonetheless, an accurate estimate is highly dependent on the parameters used to 

characterize response, as well as the structural properties itself. This matter is addressed 
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in the following section 4.4.2.1, as presented in Figure 4.2 whereas the bias potentially 

induced by record scaling in the probabilistic distribution of response parameters is 

verified in section 4.4.2.2. 

4.4.2.1 Response variability and record selection – minimum 

number of records 

A total of 150 records, selected according to the GCIM methodology to match target 

distributions of IM – 𝑓(𝐼𝑀|𝑆𝑎(𝑇1)=𝑎) - is hereby assumed as a sufficiently large sample to 

provide an accurate evaluation of inter-story drift (ISD) and global drift (GD) 

distributions at each level of Sa(T1) in each sampled frame.  

The minimum number of records necessary to achieve identical distributions within 

a given statistical significance level can thus be determined by comparing the latter with 

responses resulting from record sets of increasing size, selected to match the same target 

IM. Accordingly, the following methodology is devised, for the purposes of determining 

a minimum number of records necessary for nonlinear response analysis of 100 

synthetically generated structures:  

1. Distributions of ISD and GD resulting from nonlinear dynamic analysis of each 

of the 100 simulated frames (for 2, 5 and 8 story classes), are determined, using a 

set of 150 records for each level of Sa(T1); 

2. A similar exercise is repeated for samples of 10 to 140 records (with steps of 10 

records). These sets are selected to match the empirical distribution of IM derived 

from the reference set of 150 records, which ensures statistical consistency 

between distributions of IM amongst record samples, as determined by 

Kolmogorov-Smirnov (KS) goodness-of-fit tests within a 10 % significance level; 

3. Empirical probabilistic distributions of ISD and GD obtained in step 2 are 

individually compared with the reference computed in step 1, for conditioning 

levels of Sa(T1) ranging from 0.1g to 1.0g (with 0.1g intervals). 

The assumption that the logarithm of the response variables follows a normal 

distribution is further evaluated in section 4.4.2.3. Moreover, it is assumed that 

convergence on the mean prediction is achieved prior to convergence on the variance. 

Therefore, step 3 is performed using the Brown–Forsythe (BF) test (Morton & Forsythe, 

1974), according to which the hypothesis that two sets of data have equal variance is 

assessed at the 5% significance level. Figure 4.3 illustrates the BF test statistic (p-value) 
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when comparing variances appraised in step 2 against the reference distributions 

computed in step 1.  

 

Figure 4.3 – BF test statistic (p-value) for 100 synthetic 5 story frames, records selected and 

scaled to a level of  Sa(T1)=1.0g. P-values higher than 0.05 indicate that the null hypothesis of 

equal variance cannot be rejected at 5 % significance, for GD (left) and ISD (right). 

This test is preferred over other inference tools such as the F-test for equality of 

variances (Ang & Tang, 2007), which is highly sensitive to departures from normality. 

As illustrated in Figure 4.3, a value of 60 records is considered to provide an adequate 

compromise between computational effort and statistical significance of results in terms 

of variance in distribution of Global Drift and Inter-story Drift. Although only the results 

pertaining to 5 story frames and Sa(T1) equal to 1.0g are presented, the same conclusion 

is attained for samples of two and eight story frames, at all considered levels of 

conditioning seismic intensity parameter, Sa(T1).  

4.4.2.2 Response variability and record selection – scaling 

robustness 

According to the results of the previous section, sets of 60 records initially scaled 

in order to match the considered level of Sa(T1) are selected for the purposes of nonlinear 

response analysis of 2, 5 and 8 story frames. Conditional target distributions of IM 

(defined in section 4.3.3) given Sa(T1)=a (in which a ranges from 0.1g to 1.0g, with 

intervals of 0.1g) are computed according to the GCIM methodology introduced in 

section 4.3, according to which limits on record scaling are not imposed. In order to do 

so, the algorithm provided by Bradley (2015) has been modified in order to include the 

contribution of all the ruptures scenarios influencing the seismic hazard at the interested 

site, determined by 3D disaggregation on M, R, GMPE (illustrated in Figure 4.4, with 

respect to conditional Sa(T1)=0.5g, for 2 and 5 story frames).  
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Figure 4.4 – Contribution to hazard determined by disaggregation on M, R, GMPE . For each M, 

R pair, lower and upper “bars” illustrate the contribution of Atkinson & Boore (2006) and 

Akkar & Bommer (2010) GMPEs, respectively. Conditional Sa(T1)=0.5g, for 2 story (left) and 

5 story frames (right). 

For the sake of synthesis, Figure 4.5 provides examples of target and empirical 

distributions of PGA and spectral ordinates (0.05 to 3.0 sec.) resulting from selection, 

conditioned on Sa(T1)=0.5g, for the case of 5 story frames (T1=0.45 sec.). 

One of the main advantages of the applied record selection procedure is the 

possibility to inherently account for the influence of M, R and epsilon on the ground 

motion properties expected at the site. Thus, matters of sufficiency with respect to 

explanatory variables other than the considered IMi are envisaged through evaluation of 

structural response dependence on scaling factor (i.e. scaling robustness). The bias 

potentially induced by record scaling in the distribution of response parameters 

conditioned on a particular level of seismic intensity can be examined when linear least-

square regression is applied to the logarithm of the variables (Baker, 2007b), i.e. GD and 

ISD vs. scaling factor (SF), for each sampled frame. 

   
Figure 4.5 – Target and empirical probabilistic distributions of PGA (left), target 50th, 16th and 

84th percentile spectral ordinates between 0.05 sec and 3.0 sec, and selected ground motions 

(right). Conditioning Sa(T1)=0.5g, for 5 story frames (provided by selection algorithm, adapted 

from Bradley (2015)). 
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Assuming that the logarithms of GD and ISD are normally distributed, as later 

verified, the F-test (Ang & Tang, 2007) is used to determine the statistical significance of 

the “slope” obtained from regression analysis of the response of each sampled frame to 

the total set of 60 records. The null hypothesis that the predicted regression slope is zero 

is thus tested versus the alternative of being at least as large as the one obtained from 

regression. As a result, p-values (inferred from the F-test) lower than 1% are hereby 

considered to indicate statistical significance of the observed slopes, i.e. dependence of 

structural response on scaling factors. As depicted in Figure 4.6, where p-values 

corresponding to the regressions performed for each of the simulated frames are 

illustrated (as well as the 16% percentiles out of the total sample of 100 assets), although 

limits on SF have not been imposed, the distributions of response parameters do not show 

statistically significant dependence on the latter. 

 
Figure 4.6 – Assessment of scaling robustness of the employed record selection methodology 

for demand parameters of Global Drift (left) and Inter-story Drift (right). 

4.4.2.3 Response variability and record selection – distribution of 

EDPs given intensity 

Existing studies have demonstrated that distributions of several demand parameters 

conditioned on different intensity levels can be assumed to follow a lognormal 

distribution (e.g. Shome & Cornell (1999)); however, a similar exercise is performed 

herein, in order to validate the assumption made in sections 4.4.2.1 and 4.4.2.2. The 

maximum likelihood method is applied to fit lognormal probability density functions to 

distributions of ISD and GD conditioned on all levels of Sa(T1), for 2, 5 and 8 story 

frames. Based on the latter, KS goodness-of-fit tests are performed in order to assess 

whether the null hypothesis that the logarithm of the response variables follow a normal 
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distribution is rejected at a 5% significance level. Since nonlinear response analyses were 

performed using 60 ground motion records applied to the 100 simulated frames, it is 

possible to determine “record-specific” distributions of ISD and GD.   

As depicted in Figure 4.7, in which the statistical results for the three building 

classes are presented, only a residual sample of the results - below the 5% percentile - 

fails to confirm the assumption of normal distribution of response parameters, at the 

statistical significance level of interest. However, the latter can be explained by the 

finding that as structures with more significant ductility capacity approach severe stages 

of damage, small increments in ground motion intensity produce very large deformations. 

In extreme cases, the latter are considered to be outliers to the sample’s underlying 

probability function, and a procedure developed by Grubbs (1969) has been used to 

identify observations whose deviation can be considered as undesired mechanisms or 

errors. 

 
Figure 4.7 – P-value of the KS test obtained for each ground motion record, 2 story (left), 5 

story (middle) and 8 story (right) classes. P-value higher than 0.05 indicate that the null 

hypothesis that the sample follows a normal distribution cannot be rejected at a 5 % significance 

level, for GD and ISD. 

 
Figure 4.8 – P-value of the KS test obtained for each synthetically generated frame, 2 story 

(left), 5 story (middle) and 8 story (right) classes. P-value higher than 0.05 indicate that the null 

hypothesis that the sample follows a normal distribution cannot be rejected at a 5 % significance 

level, for GD and ISD. 

Nonetheless, cases where such observations cannot be rejected, within a given 

statistical significance level, lead to departures from the assumed distribution, as 
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illustrated in Figure 4.8 by the decrease in p-values, for higher levels of Sa(T1), where 

“frame-specific” distributions of ISD and GD are evaluated based on the response attained 

in the analysis of each record. 

4.4.3 Uncertainty in damage exceedance probability 

Fragility Functions typically describe the uncertainty in the capacity of a structural 

system when subjected to sets of ground motions representing increasing values of 

seismic demand. In the present framework, as schematically presented in Figure 4.9, 

building fragility is characterised through probabilistic distributions of damage 

exceedance probabilities referring to damage states of SD, MD, ED and Collapse (Col), 

for each level of Sa(T1). The latter distributions, presented in section 4.4.4, are thus 

evaluated by means of the computation of record-specific exceedance probabilities based 

on ISD and GD criteria, according to the methodology presented in sections 4.4.3.1 and 

4.4.3.2. 

 

Figure 4.9 – Evaluation of uncertainty and correlation in damage exceedance probabilities – 

methodology flowchart. 

Matters of correlation between the aforementioned probabilistic distributions are 

furthermore addressed in the present framework, whereby the concept of conditional 

fragility function is introduced. The latter reflects the probability of exceedance of 
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different damage states as a function of a conditional intensity measure, IMi, when records 

are selected and scaled for a particular level of Sa(T1). It allows a hazard-consistent 

treatment of record-to-record variability in the evaluation of fragility, while, as presented 

in 4.4.5, establishing the means by which different aspects of damage correlation in 

spatially distributed building portfolios are evaluated. 

4.4.3.1 Record specific probabilities of exceedance – ISD criteria 

As depicted in Figure 4.10, record-specific probabilities of exceedance based on 

ISD criteria are evaluated upon the verified assumption that distributions of structural 

response follow a lognormal probabilistic function, as follows: 

𝑃𝑙𝑠𝑖|𝑟𝑒𝑐𝑗,𝑆𝑎(𝑇1)=𝑎
= 1 − 𝐹𝑟𝑒𝑐𝑗,𝑆𝑎(𝑇1)=𝑎(𝐿𝑠𝑖)                       ( 4.8 ) 

Where 𝑃𝑙𝑠𝑖|𝑟𝑒𝑐𝑗,𝑆𝑎(𝑇1)=𝑎
 is the probability of exceeding the limit state lsi for record 

recj and Sa(T1)=a, and 𝐹𝑟𝑒𝑐𝑗,𝑆𝑎(𝑇1)=𝑎(𝐿𝑠𝑖) is the probability that ISD is equal or lower 

than the response limit lsi (given recj and Sa(T1)=a).  

 

Figure 4.10 – Record-specific distributions of EDP and corresponding probabilities of 

exceedance of ED, determined according to ISD criteria for 8-story frames. Records selected 

and scaled for Sa(T1)=1.0g. 

Equation 4.8 reflects a view according to which the probability of exceedance of a 

given limit state is determined based on the underlying probabilistic distribution of EDP 

(Figure 4.10). An alternative approach is based on a frequentist interpretation of 

probability (Ross, 2009), i.e. the probability of exceeding a certain limit state equals the 

ratio between number of exceedances and the total number of performed analysis. Despite 

being used in several studies (e.g. Dumova-Jovanoska (2000), Rossetto & Elnashai 

(2005)), a frequentist interpretation imparts a significant shortcoming, since the fractions 

of exceedance are dependent on the total number of performed analyses. On the other 

hand, when representing reality via statistically significant idealizations of (lognormal) 
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random variables, it is possible to overcome sample size limitations and reach results that 

fully reflect the underlying probabilistic distribution of the assessed structural response 

parameter (Equation 4.8). In other words, the minimum number of analysis (100 per 

record) ensures that the null hypothesis that a “record-specific” distribution of response 

follows a given lognormal probabilistic distribution cannot be rejected (see Figure 4.7). 

Therefore, if one would have analyzed 101 frames per record (or any number higher than 

100, for that matter), that would have changed the fraction of exceedances, but would not 

(in theory) affect the exceedance probabilities appraised based on the underlying 

theoretical probabilistic distribution. 

Figure 4.11 illustrates the absolute error attained when evaluating record-specific 

probabilities of SD, MD, ED and Collapse computed as the ratio between number of 

exceedances and total number of analysed frames (one hundred) for each ground motion 

input, for all the conditional levels of Sa(T1). For comparison purposes, the latter results 

are plotted as a function of the result obtained through Equation 4.8.  

 

Figure 4.11 – Absolute Error attained when evaluating 600 record-specific probabilities of 

exceedance (60 ground motions times 10 levels of Sa(T1)) computed as the ratio between 

number of exceedances and total number of analysis, as a function of the result obtained through 

Equation 4.8. Response criteria of ISD, for 2 (left), 5 (middle) and 8 story buildings (right). 

As evidently demonstrated, significant errors (as substantial as 1000%) can arise 

from a frequentist interpretation of probabilities, with a near exponential trend that 

increases as the specified limit state approaches the right hand tale of the ISD distribution, 

i.e. higher errors are verified for smaller levels of probability. 

4.4.3.2 Record specific probabilities of exceedance – GD criteria 

The case of GD criteria offers a more challenging exercise. Unlike the ISD criteria, 

where damage state thresholds are similar for all the structures, GD criteria are specific 

to each sampled frame (see section 4.4.1). Therefore, even though the distribution of GD 

can be approximated by a lognormal distribution (section 4.4.2.3), Equation 4.8 cannot 
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be applied herein. In this case, probabilities of exceedance can be perceived as the number 

of successes in a sequence of independent experiments that yield success with identical 

probability. The latter is the theoretical background of the discrete binomial distribution, 

according to which the probability of the number of exceedances (X) in a total number of 

analyses (N) being equal to a given value k (i.e. P(X=k)) is given by the following 

equation: 

𝑃(𝑋 = 𝑘) =
𝑁!

𝑘!(𝑁−𝑘)!
(𝑃𝑙𝑠𝑖|𝑟𝑒𝑐𝑗,𝑆𝑎(𝑇1)=𝑎

)𝑘 (1 − 𝑃𝑙𝑠𝑖|𝑟𝑒𝑐𝑗,𝑆𝑎(𝑇1)=𝑎
)𝑁−𝑘      ( 4.9 ) 

Where 𝑃𝑙𝑠𝑖|𝑟𝑒𝑐𝑗,𝑆𝑎(𝑇1)=𝑎
, further referred in this section as pi for simplicity, is the 

probability that the record recj with Sa(T1)=a will cause the exceedance of limit state lsi. 

Assuming that the value of pi is exactly equal to the fraction of exceedances in a 

sample of 100 frames would be a misleading frequentist interpretation of the 

phenomenon, according to which additional observations do not influence the appraised 

statistics. In fact, unless an extremely large number of analyses are performed in order to 

ensure the statistical significance of pi, then the latter is simply one estimate of its “true” 

value.  

A way to overcome the aforementioned limitation when a fixed number of frames 

(i.e. N=100) are analysed for each record is described subsequently. Based on the 

assumption that P(X=k) follows a discrete binomial distribution with parameters pi and 

N=100, one can determine an empirical discrete distribution of P(X=k). To do so, 10000 

sets of 100 GD values are generated by means of a bootstrap simulation (Wasserman, 

2004) where each dataset is obtained by sampling with replacement from the original 

group of 100 frame-specific GD values obtained from NLRHA. As a result, for each 

record and level of Sa(T1), P(X=k) for different k values is equal to the number of 

bootstrapped sets in which X is equal to k, divided by 10000. Therefore, P(X=k) can be 

approximated by a parametric binomial model with N=100, in which the fitted pi is a 

statistically significant estimate of 𝑃𝑙𝑠𝑖|𝑟𝑒𝑐𝑗,𝑆𝑎(𝑇1)=𝑎
. 

Similarly to what has been demonstrated in section 4.4.3.1, the absolute error 

attained when evaluating 600 record-specific probabilities of exceedance computed as the 

ratio between the number of exceedances and total number of analyses is illustrated in 

Figure 4.12, as a function of the value of 𝑃𝑙𝑠𝑖|𝑟𝑒𝑐𝑗,𝑆𝑎(𝑇1)=𝑎
 estimated through the 

methodology presented in this section.  
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Figure 4.12 – Absolute Error attained when evaluating 600 record-specific probabilities of 

exceedance computed as the ratio between number of exceedances and total number of analysis, 

as a function of the result obtained through the methodology presented in this section. Response 

criteria of GD, for 2 (left), 5 (middle) and 8 story buildings (right). 

4.4.3.3 Summary and conclusions from 4.4.3.1 and 4.4.3.2. 

Although a similar trend is verified in Figure 4.11 and Figure 4.12, the maximum 

error registered in the case of GD criteria – 10% - is significantly lower when compared 

with that resulting from ISD criteria, which can be explained by the nature of the limit 

state definition criteria. In the case of GD, limit states are frame-specific and therefore 

dependent on the structural capacity of each sampled building, whereas in the case of ISD 

the specified limits are similar for all the frames and not directly related with its structural 

capacity. Thus, despite the fact that ISD and GD distributions are estimated for the same 

sets of frames, there is a higher standard error associated with each record-specific 

probability of exceedance computed based on ISD criteria, when the latter is evaluated as 

the fraction of exceedances in 100 frames. 

The previous sections demonstrate that even in the case where the number of 

analyses is sufficient to guarantee a statistically significant distribution of response 

(section 4.2), non-negligible errors are attained if the estimation of probabilities is 

performed as a fraction of exceedances over the total number of sampled frames. 

Moreover, given the defined number of sampled buildings, these errors are significantly 

higher when constant (ISD) limits are used, as opposite to the case where the damage 

thresholds are derived for each frame. 

Although an appropriate study of the impact of such discrepancies on loss estimates 

is submitted to further research, its possible implications cannot be ignored. As widely 

acknowledged (e.g. Baker (2015)), it is more important to adequately quantify the lower 

range of probabilities of exceedance, because ground motions with low values of intensity 

occur much more frequently and thus influence loss estimates more significantly than the 
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higher probabilities of exceedance, usually associated with less frequent high levels of 

intensity. 

4.4.4 Uncertainty in record-specific probabilities of exceedance 

As briefly presented in 4.4.3, the present framework foresees the characterization 

of building fragility through probabilistic distributions of damage exceedance probability, 

denoted as 𝑓[𝑃𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
]. In order to do so, 60 record-specific probabilities of 

exceedance of SD, MD, ED and Col. are estimated according to ISD and GD criteria for 

Sa(T1)=0.1g to 1.0g, as illustrated in Figure 4.13 for 5-story buildings.  

 
Figure 4.13 –  Record-specific probabilities of exceedance of SD, MD, ED and Col, as a 

function of GD (upper) and ISD criteria (lower), for 5-story buildings. 

As presented in Figure 4.14, the aforementioned probabilities are considered as 

realizations of random variables, based on which it is possible to determine the associated 

empirical density function, for each level of Sa(T1) and damage state. Accordingly, the 

approximation of a parametric function is evaluated through Kolmogorov-Smirnov (KS) 

goodness-of-fit tests (Ang & Tang, 2007) tests used to assess the null hypothesis that the 

underlying distributions follow a Beta probabilistic model (Ross, 2009). 

A visual inspection of the fit between theoretical and empirical distributions 

illustrated in Figure 4.14 highlights the capability of the considered model to take into 

account variations of probability density in the interval ]0.0, 1.0[ across different levels 

of Sa(T1). The aforementioned null hypothesis is thus verified according to KS tests 

performed on empirical and theoretical cumulative distribution functions, and cannot be 

rejected at a 10% significance level. 
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Figure 4.14 – Empirical probability density - 𝑓[𝑃𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎

] - of damage exceedance 

probability of Extensive Damage and corresponding fitted Beta models, damage criteria of ISD 

for 5-story frames. 

However, it should be highlighted that whenever the Beta model is used for the 

purposes of earthquake loss estimation, appropriate attention should be given to the fact 

that exceedance probability values of 0.0 and 1.0 cannot be sampled from the latter. For 

the sake of synthesis, only the results pertaining to 5-story frames and damage state of 

Extensive Damage evaluated in terms of GD criteria are illustrated in Figure 4.14.  

Nonetheless, similar findings regarding the applicability of the selected theoretical model 

were attained for all structural classes and damage states.  

4.4.4.1 Why determine record-specific probabilities of 

exceedance? 

In the context of performance-based engineering, it is widely accepted that, in order 

to appropriately provide a link between seismic hazard and structural response, an 

“optimal” intensity measure - Sa(T1) in the present case - must embody features of 

efficiency (Shome & Cornell, 1999), sufficiency (2002), predictability (Kramer & 

Mitchell, 2006) and scaling robustness (Tothong & Luco, 2007). Moreover, provided that 

sufficiency, predictability and scaling robustness requirements are met, as demonstrated 

in sections 4.3 and 4.4, efficiency matters are related with the number of analyses 

necessary for the estimation of a satisfactory approximation to the “true” value of 

exceedance probability within a specified standard error limit, designated herein as 

�̃�𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
. 
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In the present case, the minimum number of sampled frames and ground motion 

records required for a statistically significant characterization of structural response have 

been determined. However, distributions of EDP and corresponding damage exceedance 

probabilities are estimated for each ground motion record in each level of Sa(T1). One 

might argue that this is an unnecessary step, because �̃�𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
  can simply be obtained 

from the distribution of 6000 EDP values (60 ground motion records x 100 frames) for 

each level of Sa(T1), as illustrated in Figure 4.15, in which �̃�𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
is plotted against 

the results previously presented in Figure 4.13. 

 
Figure 4.15 – Record-specific probabilities of exceedance of SD, MD, ED and Col, as a function 

of GD (upper) and ISD criteria (lower), and corresponding �̃�𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
 (illustrated by the black 

squares), for 5-story buildings. 

However, it is argued by the Author that considering �̃�𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
rather than 

𝑓[𝑃𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
] leads to a misrepresentation of the impact of record-to-record variability 

in the appraised damage exceedance probabilities and, consequently, in the results of 

seismic loss estimation. 

In order to demonstrate the aforementioned statement, a simple example is 

presented: the building damage of 2, 5 and 8-story buildings is associated simply with the 

Collapse damage state, with a corresponding damage ratio, DR, (ratio between the 

attained loss and the total replacement value of the asset) of 1.0. Strictly speaking, for the 

purpose of this exercise, the distribution of probabilities of collapse conditioned on 

Sa(T1)=0.5g (𝑓[𝑃𝐶𝑜𝑙.|𝑆𝑎(𝑇1)=0.5𝑔 ]) is equal to the distribution of damage ratios 

conditional on Sa(T1)=0.5g. Thus, when considering a hypothetical portfolio of 100 

buildings of the same structural class located at 100 different sites subjected to the same 
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value of Sa(T1) (0.5g for the purposes of this exercise), the mean (μDR) and variance (σ2
DR) 

of the final distribution of aggregated DR can be computed according to Equation 4.10 

and Equation 4.11, respectively: 

𝜇𝐷𝑅 = ∑ 𝜇𝑓[𝑃𝐶𝑜𝑙.|𝑆𝑎(𝑇1)=0.5𝑔]
100
𝑘=1                             ( 4.10 ) 

𝜎2
𝐷𝑅 = ∑ ∑ 𝜌𝑚,𝑛. 𝜎2

𝑓[𝑃𝐶𝑜𝑙.|𝑆𝑎(𝑇1)=0.5𝑔]
100
𝑛=1

100
𝑚=1                    ( 4.11 ) 

Where 𝜇𝑓[𝑃𝐶𝑜𝑙.|𝑆𝑎(𝑇1)=0.5𝑔] and 𝜎2
𝑓[𝑃𝐶𝑜𝑙.|𝑆𝑎(𝑇1)=0.5𝑔] are respectively the mean and 

variance of 𝑓[𝑃𝐶𝑜𝑙.|𝑆𝑎(𝑇1)=0.5𝑔 ], which is considered similar in all the k locations, and 

𝜌𝑚,𝑛 is the spatial correlation coefficient between “record-specific” probabilities at two 

m,n locations. 

The characterization of 𝜌𝑚,𝑛 is further addressed in section 4.4.5. Nevertheless, it 

is clear from Equation 4.11 that it plays a very significant role in the loss estimation of 

spatially distributed portfolios, as evidenced in Figure 4.16, where the empirical 

distribution of aggregated loss computed through numerical simulation of the Beta 

approximation to 𝑓[𝑃𝐶𝑜𝑙.|𝑆𝑎(𝑇1)=0.5𝑔 ] at each site is illustrated for two extreme cases of 

zero and full spatial correlation. 

4.4.5 Correlation between damage exceedance probability 

The previous sections highlight the importance of characterizing building fragility 

through probabilistic distributions of damage exceedance probability per level of Sa(T1). 

However, two important questions shall be addressed: 

a) Is there a physical meaning underlying the assumption of spatial correlation 

between 𝑓[𝑃𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
] (i.e. between “record-specific” damage exceedance 

probabilities) at different sites? 

b) How can such correlation be adequately taken into account, in a hazard-consistent 

manner? 

Regarding a) and b) above, two important aspects shall be evidenced. Firstly, the 

damage exceedance probability distributions presented in this framework arise from the 

computation of “record-specific” probabilities of exceedance for each level of Sa(T1). In 

this context, it is verified that the scatter depicted in Figure 4.13 for each level of Sa(T1) 

is the result of record-to-record variability. In other words, for a given level of Sa(T1), the 

variability in “record-specific” probabilities relates to the variation of a secondary 
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(conditional) intensity measure – 𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎, which can be different for different levels 

of Sa(T1).  

a)  
Figure 4.16 – Empirical probabilistic distributions of aggregated loss computed for a 

hypothetical portfolio of 100 spatially distributed buildings subjected to Sa(T1)=0.5g, with zero 

and full correlation between 𝑓[𝑃𝐶𝑜𝑙.|𝑆𝑎(𝑇1)=0.5𝑔 ] at each of the 100 sites. Limit state criteria of 

GD (left). Beta approximation to 𝑓[𝑃𝐶𝑜𝑙.|𝑆𝑎(𝑇1)=0.5𝑔 ] (right). Although not presented for the 

sake of visual clarity, the means of distributions with full and zero correlation are equal, as 

determined by Equation 4.10, whereas the variability changes proportionally to 𝜌𝑚,𝑛 (Equation 

4.11). 

When assigning the record-specific values of each  𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎 to the 

corresponding record-specific probabilities, the more efficient IMi can be selected as the 

one for which the correlation with damage exceedance probabilities of SD, MD, ED and 

Col is higher. Furthermore, it is demonstrated in Figure 4.17 that, for such 𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎, 

regression analysis can be performed in order to fit a cumulative lognormal function to 

the scatter of IMi-dependent damage exceedance probabilities.  

 
Figure 4.17 – Record-specific probabilities of exceedance of ED, as a function of GD criteria, 

and corresponding conditional fragility functions for the cases of Sa(T1)=0.5g, 0.8g and 1.0g, 

for 5-story buildings 
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Given its conditional nature, such curves are hereby designated as Conditional 

Fragility Functions, providing a parametric relationship between 𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎 and 

damage exceedance probabilities when records are selected and scaled for Sa(T1)=a. 

For the sake of illustration, Figure 4.18 presents the set of conditional IMi for which 

the correlation with damage exceedance probabilities is higher, for each level of Sa(T1). 

As demonstrated, different conditional IMi (and, therefore, different conditional fragility 

functions) are selected for each level of Sa(T1), which highlights the conditional nature of 

the proposed fragility model. 

 
Figure 4.18 – Most efficient conditional IMi for each structural class and level of Sa(T1). For 

each level of Sa(T1), the correspondent IMi (which is also a spectral ordinate) is represented by 

the corresponding period of vibration. Fragility assessment in terms of GD (left) and ISD 

criteria (right). 

It has been established that 𝑓[𝑃𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
] can be depicted as a function of a 

secondary intensity measure conditioned on Sa(T1)=a, i.e. 𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎 (Figure 4.17). 

Thus, the second important aspect to be highlighted is the fact that, if the spatial 

correlation between 𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎 at different sites subjected to identical Sa(T1)=a can be 

determined, then 𝜌𝑚,𝑛 (the spatial correlation between “record-specific” probabilities) has 

in fact a physical meaning. Since, as established by the conditional fragility functions, 

𝑓[𝑃𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
] is a function of 𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎, then “record-specific” damage exceedance 

probabilities can be assumed as random variables whose uncertainty relates to the record-

to-record variability expressed by 𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎. As a result, the spatial correlation 

between damage exceedance probabilities at different sites subjected to Sa(T1)=a is a 

function of the correlation between the values of 𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎 at those same sites. In this 

context, the appropriate definition of the correlation between values of 𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎 at 

different sites subjected to Sa(T1)=a and the impact of its consideration in a loss 

estimation procedure is addressed in Chapter 5.  
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4.5 Final remarks 

This chapter presents a framework according to which multiple ground motion 

intensity measures are included in the characterization of building fragility through 

probabilistic distributions of damage exceedance probability for each level of Sa(T1). 

Variability of structural capacity and seismic demand have been considered in an 

analytical exercise where statistically significant distributions of response have been 

determined. Moreover, it is demonstrated that even in the case where the number of 

performed analyses are sufficient to ensure statistically significant distributions of 

structural response, non-negligible errors can be attained in estimation of damage 

exceedance probabilities if such computation is not performed in a statistically consistent 

manner. These errors have furthermore been verified to be dependent on the way the 

definition of response limit states is performed. 

The relevance of the presented novel approach has been demonstrated within the 

context of loss estimation of building portfolios, where the spatial correlation of ground 

motion residuals plays a significant role. To this end, the importance of the introduced 

conditional fragility functions is illustrated by demonstrating its capability of consistently 

take into account record-to-record variability in the evaluation of fragility, while 

establishing the means by which spatial correlation between damage exceedance 

probability distributions can be taken into account. 

 

 

 

 

 

 

 

 



 

Chapter 5 MODELLING SPATIAL CORRELATION OF 

DAMAGE RATIO RESIDUALS IN PORTFOLIO RISK 

ASSESSMENT 

This chapter is based on the following reference: 

Sousa, L.; Silva, V.; Marques, M.; Crowley, H. (2017). On the treatment of uncertainty in seismic 

vulnerability and portfolio risk assessment. Earthquake Engineering and Structural 

Dynamics (in press)  

Summary 

In the previous chapter, building fragility is represented in terms of intensity-specific 

distributions of damage exceedance probability of various damage states. The contribution of the 

latter has been demonstrated in the context of loss estimation of building portfolios, where it is 

shown that the proposed concept of conditional fragility functions provides the link between 

seismic intensity and the uncertainty in damage exceedance probabilities. In the present study, 

this methodology is extended to the definition of building vulnerability, whereby vulnerability 

functions are characterized by hazard-consistent distributions of damage ratio per level of primary 

seismic intensity parameter – Sa(T1). The latter is further included in a loss assessment 

framework, in which the impact of variability and spatial correlation of damage ratio in the 

probabilistic evaluation of seismic loss is accounted for, using test-bed portfolios of two, five and 

eight-story pre-code reinforced concrete buildings located in the district of Lisbon, Portugal. This 

methodology is evaluated in comparison with current state-of-the-art methods of vulnerability 

and loss calculation, highlighting the discrepancies that can arise in loss estimates when the 

variability and spatial distribution of damage ratio, influenced by ground motion properties other 

than the considered primary intensity measure, are not taken into account. 

5.1 Introduction 

In the context of earthquake risk modelling, state-of-the-art open-source software 

such as the OpenQuake-engine (Silva, Crowley, Pagani, Monelli, & Pinho, 2014) 
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provides a set of calculators capable of computing economic loss for a spatially 

distributed collection of assets by considering the probability of all possible events that 

might occur within a region over a certain time span. In the latter framework, vulnerability 

functions are described by a discrete list of intensity measure levels and corresponding 

mean loss ratio, as well as uncertainty, which is typically modelled using lognormal or 

beta distributions (Silva, Crowley, Pagani, Monelli, & Pinho, 2014). 

In the process of risk computations, several studies have demonstrated the 

importance of accounting for spatial cross-correlation of ground motion residuals in the 

evaluation of portfolio losses (e.g. Park et. al. (2007), Weatherill et. al. (2015), Silva 

(2016)). However, when the correlation of uncertainty in vulnerability is incorporated in 

loss estimation procedures (e.g. Silva et. al. (2014)), it is done such that when sampling 

the uncertainty in the vulnerability of two assets with the same building class, the 

residuals are assumed to be either uncorrelated of perfectly correlated. Furthermore, as 

demonstrated by Bradley (2010b) and Silva et. al. (2013) in the context of component and 

building fragility, respectively, the propagation of uncertainty from fragility to 

vulnerability is related to the scatter of results to which a parametric (usually lognormal) 

fragility curve is fitted. However, although sound from a statistical point of view, the 

assumption of lognormal or beta distributions to model vulnerability uncertainty has in 

fact no evident physical meaning when analytical methodologies are used to derive 

fragility and vulnerability functions. 

As highlighted by Taylor (2015), intensity and associated damage ratio (i.e. ratio 

between attained loss and replacement value of an asset) must in fact be jointly sampled 

in a way such that the underlying correlation reflects the physical phenomenon 

influencing the spatial variability (and correlation) of building response. Moreover, the 

importance of considering loss distributions with complete statistics as opposed to 

convenient but unrealistic simplifications such as the aforementioned beta or lognormal 

models is stressed by the author (Taylor, 2015). In this context, the research presented 

herein builds on the results presented in Chapter 4, extending that methodology to the 

derivation of vulnerability functions that reflect a non-parametric (site-specific) 

histogram of damage ratios per level of primary intensity measure - Sa(T1). This 

framework provides the link between vulnerability uncertainty and seismic hazard, such 

that when sampling the uncertainty in the vulnerability of two assets with the same 

building class and level of Sa(T1), the correlation of its residuals is physically explained 

by the spatial distribution (and correlation) of ground motion properties other than Sa(T1). 
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The aforementioned methodology is based on the concept of conditional fragility 

functions, presented in Chapter 4, which is validated in herein. Based on the latter, matters 

of uncertainty and correlation between damage state probabilities (i.e. probability of 

being exactly in a given damage state) are foreseen in the computation of vulnerability 

functions. As a result, a novel probabilistic loss assessment framework is presented, 

featuring the simulation of spatially correlated random fields of a set of intensity measures 

(IMi) conditioned on various levels of Sa(T1). The latter enables the explicit consideration 

of spatial correlation of residuals when sampling the uncertainty in the vulnerability of 

different building portfolios, demonstrated herein in the loss assessment of the building 

classes assessed in Chapter 4, i.e. two, five and eight-story pre-code reinforced concrete 

buildings located in the district of Lisbon, Portugal. 

5.2 Conditional fragility functions: validation 

As presented in the previous chapter, conditional fragility functions provide a 

(cumulative lognormal) parametric relationship between: a) record-specific probabilities 

of exceeding a certain limit state, and b) the corresponding record-specific values of a 

sufficient IMi, when records are selected and scaled for a particular level of Sa(T1). For a 

given structural class and level of Sa(T1), 60 ground motion records are selected and 

nonlinear response history analyses (NLRHA) are performed for a set of 100 numerical 

models that represent the variability in structural capacity (i.e. 60*100 analyses are 

carried out per level of Sa(T1)). As a result, damage exceedance probabilities are 

evaluated for each record (denoted as ‘record-specific’ probabilities), based on the 

distribution of 100 values of maximum global drift (GD) and inter-story drift (ISD).  

The Generalized Conditional Intensity Measure (GCIM) approach (Bradley, 2010a) 

is used in the selection of sets of 60 natural ground-motion records, whereby the resulting 

variability is consistent with the conditional probabilistic distribution of various intensity 

measures (IMi), conditioned on Sa(T1) being equal to a given value a. In this case, the 

considered vector of distinct IMi is referred as IM, and readers are referred to the 

aforementioned Chapter 4 for details regarding: (i) considered set of IMi, (ii) definition 

of the number of structural models and ground-motion records used per level of Sa(T1), 

(iii) computation of record-specific exceedance probabilities, and (iv) adopted limit states 

and associated definition criteria. 
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5.2.1 Conditional fragility functions: sufficiency of 𝑰𝑴𝒊|𝑺𝒂(𝑻𝟏)=𝒂 

According to Chapter 4, one can assume that, in some form, 𝑓[𝑃𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
] (i.e. 

the probabilistic distribution of record-specific probabilities of exceeding limit state lsi 

given Sa(T1)=a) is a function of 𝐼𝑀|𝑆𝑎(𝑇1)=𝑎, the vector of ground motion intensity 

measures considered in the process of record selection for Sa(T1)=a, as mathematically 

formulated in the following Equation: 

𝑓[𝑃𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
] = ∫ 𝐹 [𝑙𝑠𝑖|𝐼𝑀,𝑆𝑎(𝑇1)=𝑎

]
𝐼𝑀

. 𝑓(𝐼𝑀|𝑆𝑎(𝑇1)=𝑎). 𝑑𝐼𝑀        ( 5.1 ) 

Where 𝐹 [𝑙𝑠𝑖|𝐼𝑀,𝑆𝑎(𝑇1)=𝑎
] represents the structural capacity, as the probability of 

exceeding limit state lsi given IM and Sa(T1)=a, 𝑓(𝐼𝑀|𝑆𝑎(𝑇1)=𝑎) is the probability density 

function of IM given Sa(T1)=a, and IM is an intermediate variable that allows the problem 

of explicitly determining 𝑓[𝑃𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
] to be tackled through the separate evaluation of 

𝐹 [𝑙𝑠𝑖|𝐼𝑀,𝑆𝑎(𝑇1)=𝑎
] and 𝑓(𝐼𝑀|𝑆𝑎(𝑇1)=𝑎). 

Determining 𝐹 [𝑙𝑠𝑖|𝐼𝑀,𝑆𝑎(𝑇1)=𝑎
] is clearly a very challenging task, due to the 

significant number of ground motion properties considered in the vector of intensity 

measures given Sa(T1)=a, i.e. 𝐼𝑀|𝑆𝑎(𝑇1)=𝑎. Thus, the simplification introduced in the 

previous chapter is the assumption that a single IMi – the more efficient (Shome & 

Cornell, 1999) - is sufficient to account for all the explanatory variables in 𝐼𝑀|𝑆𝑎(𝑇1)=𝑎. 

In other words, it is proposed that 𝑓[𝑃𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
] can be assumed as a function of 

𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎, rather than 𝐼𝑀|𝑆𝑎(𝑇1)=𝑎: 

𝑓[𝑃𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
] = ∫ 𝐹 [𝑙𝑠𝑖|𝐼𝑀𝑖,𝑆𝑎(𝑇1)=𝑎

]
𝐼𝑀𝑖

. 𝑓 (𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎
) . 𝑑𝐼𝑀𝑖      ( 5.2 ) 

In which 𝐹 [𝑙𝑠𝑖|𝐼𝑀𝑖,𝑆𝑎(𝑇1)=𝑎
] is the conditional fragility function that translates the 

probability of exceeding a limit state lsi, as a function of IMi, when records are selected 

and scaled for Sa(T1)=a. 

In the commonly accepted formulation, sufficiency is considered as the 

independence of structural response from parameters other than the intensity measure of 

interest (Luco, 2002), namely, magnitude (M), distance (R) and epsilon (ε). However, the 

influence of M, R and ε on 𝐼𝑀|𝑆𝑎(𝑇1)=𝑎 (and, therefore, on 𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎
) has been taken 

into account in the process of record selection used in 4.3. Therefore, sufficiency is hereby 
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considered as the suitability of IMi to, as an intermediate variable, ensure the 

compatibility between the results appraised through Equation 5.1 and those obtained via 

Equation 5.2, as described below. 

According to 4.4.4, Equation 5.1 is numerically solved by determining 60 record-

specific damage exceedance probabilities for a given limit state, lsi. and level of Sa(T1). 

In other words, one starts by selecting 60 ground motion records that comply with the 

theoretical distribution of 𝐼𝑀|𝑆𝑎(𝑇1)=𝑎, i.e. the obtained record set represents 60 

realizations of 𝑓(𝐼𝑀|𝑆𝑎(𝑇1)=𝑎). As a result, NLRHA is performed for each realization (i.e. 

each record), and 𝑓[𝑃𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
] is defined by the corresponding set of 60 record-

specific damage exceedance probabilities. In the case of Equation 5.2, since both 

 𝐹 [𝑙𝑠𝑖|𝐼𝑀𝑖,𝑆𝑎(𝑇1)=𝑎
] and 𝑓 (𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎

) are known, a numerical method can be applied 

to find a numerical solution. If one samples a significantly large number of IMi values 

from 𝑓 (𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎
), it is possible to obtain 𝑓 [𝑃𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎

] from the set of damage 

exceedance probabilities evaluated on 𝐹 [𝑙𝑠𝑖|𝐼𝑀𝑖,𝑆𝑎(𝑇1)=𝑎
] for each sampled value of IMi. 

Furthermore, as exemplified in Figure 5.1, 𝐹 [𝑙𝑠𝑖|𝐼𝑀𝑖,𝑆𝑎(𝑇1)=𝑎
] is a random variable whose 

regression uncertainty is herein determined by means of a bootstrap sampling method 

with replacement (Wasserman, 2004), using 200 synthetic datasets randomly generated 

from the original sets of 60 record-specific damage exceedance probabilities. 

 
Figure 5.1 – Regression uncertainty of 𝐹[𝐶𝑜𝑙𝑙𝑎𝑝𝑠𝑒|𝐼𝑀𝑖,𝑆𝑎(𝑇1)=0.5𝑔], the Conditional Fragility 

Function of Collapse for 5-story frames, given Sa(T1)=0.5g and damage criteria of GD. For the 

considered level of Sa(T1), the most efficient IMi is the spectral acceleration at a period of 

vibration of 1.89 sec. 

More specifically, since a distinct conditional fragility function is fitted to each 

synthetically generated set, 200 damage exceedance probabilities are determined for each 

simulated value of IMi. Therefore, for a sample of 2000 values of IMi obtained through 
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Monte Carlo sampling based on 𝑓 (𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎
), 𝑓 [𝑃𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎

] determined through 

Equation 2 corresponds to the histogram of 2000 x 200 damage exceedance probabilities 

of the limit state and seismic intensity value of interest. 

The Kolmogorov-Smirnov (KS) goodness-of-fit test (Ang & Tang, 2007) 

performed when comparing: a) distributions of damage exccedance probability attained 

with the methodology associated with Equation 5.1 - hereby referred as “exact”, and b) 

corresponding distributions obtained with Equation 5.2 - further mentioned as 

“simulated”,  are illustrated in Figure 5.2.  

Only the results pertaining to the limit state of Collapse and of Sa(T1) ranging from 

0.7g to 1.0g are illustrated in Figure 5.2 (for 5 story frames), for simplicity. However, as 

presented in Figure 5.3, the null hypothesis that distributions of damage exceedance 

probability obtained from Equations 5.1 and 5.2 arise from the same underlying 

probabilistic distribution cannot be rejected at a 10% significance level, for all limit states 

and levels of Sa(T1) considered: 0.1g to 1.0g (with 0.1g intervals). 

 
Figure 5.2 – Graphical illustration of the KS test performed when comparing distributions of 

collapse probability attained through Equation 5.1 (“exact”) and Equation 5.2 (simulated) 

according to Global Drift criteria for 5 story frames and levels of Sa(T1) ranging from 0.7g to 

1.0g. 

Within the adopted statistical significance level, the various IMi selected for each 

level of Sa(T1) (illustrated from 0.1 to 1.0g in Figure 4.18) are sufficient to account for all 

the IMi influencing the nonlinear response and inherent damage exceedance probabilities 

of the assessed structures, conditioned on the presented range of Sa(T1). Consequently, it 

is herein assumed that Equation 5.2 provides a statistically significant approximation to 

Equation 5.1, demonstrating the validity of the proposed conditional fragility curves, 

which are a function of a single IMi. 
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Figure 5.3 – Ratio between KS test statistics and critical value (Dcrit) when comparing 

distributions of exceedance probability determined based on Equation 1 and Equation 2. Ratios 

inferior to 1.0 indicate that the null hypothesis that the samples follow identical distributions 

cannot be rejected at a 10 % significance level, in terms of ISD (left) and GD (right). 

5.3 From fragility to vulnerability: conditional fragility 

functions and loss estimation 

In this section, it is demonstrated how the conditional fragility functions validated 

in the previous section are incorporated in a loss estimation framework. As further 

presented, this methodology allows for the representation of vulnerability functions 

through non-parametric (site-specific) probabilistic distributions of damage ratio per 

level of primary intensity measure - Sa(T1), as well as incorporating the spatial correlation 

of damage ratio residuals in the loss estimation of building portfolios. In this context, the 

damage states of Slight Damage (SD), Moderate Damage (MD), Extensive Damage (ED) 

and Collapse (Col) defined in terms of ISD and GD criteria are herein considered, as 

defined in section 4.4.1. 

5.3.1 Probabilistic loss assessment methodology 

The risk to earthquake action of a given portfolio of buildings is commonly 

described through a loss exceedance curve that specifies the frequency, usually expressed 

annually, with which specific values of loss will be exceeded. When using a single 

Ground Motion Prediction Equation (GMPE), this annual frequency, or rate, can be 

computed based on the application of the total probability theorem, as follows: 

  𝛾(𝐿 > 𝑙)𝐺𝑀𝑃𝐸𝑚
= ∑ 𝑃(𝐿 > 𝑙|𝑅𝑢𝑝𝑛,𝐺𝑀𝑃𝐸𝑚

). 𝛾𝑛
𝑁
𝑛=1                 ( 5.3 ) 

Where 𝛾(𝐿 > 𝑙)𝐺𝑀𝑃𝐸𝑚
 is the annual rate of exceedance of loss l determined when 

using GMPEm, 𝑃(𝐿 > 𝑙|𝑅𝑢𝑝𝑛,𝐺𝑀𝑃𝐸𝑚
) is the probability that loss L exceeds a specific value 
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l given the seismic event, or rupture, Rupn , using GMPEm, 𝛾𝑛 is the annual rate of 

occurence of Rupn, and N is the number of different (assumed independent) possible 

earthquake ruptures determined by an earthquake rupture forecast (ERF) (Pagani, et al., 

2014). In the present case, the seismological model developed by Vilanova & Fonseca 

(2007) has been used for the purposes of building the ERF, as described in Chapter 4. 

The probability of exceedance of loss l given the occurrence of a Rupn is an 

uncertain variable, expressed by the following equation: 

 𝑃(𝐿 > 𝑙|𝑅𝑢𝑝𝑛,𝐺𝑀𝑃𝐸𝑚
) = ∫ 𝑃(𝐿 > 𝑙|𝐼). 𝑓(𝐼|𝑅𝑢𝑝𝑛,𝐺𝑀𝑃𝐸𝑚

). 𝑑𝐼
𝐼

           ( 5.4 ) 

In which I represents the spatial distribution of seismic intensity – Sa(T1) in the 

present case - across the portfolio of interest, 𝑓(𝐼|𝑅𝑢𝑝𝑛,𝐺𝑀𝑃𝐸𝑚
) is the probability density 

function of I determined by GMPEm, conditioned on 𝑅𝑢𝑝𝑛, and 𝑃(𝐿 > 𝑙|𝐼) is the 

probability of exceedance of loss l given the spatial distribution of seismic intensity I. 

Equation 5.4 considers the fact that, given a 𝑅𝑢𝑝𝑛, the distribution of intensity 

across a spatially distributed portfolio of assets is uncertain. Generally, it is not practical 

to solve the aforementioned equation in its closed form. Thus, given an earthquake 

rupture, the characterization of 𝑓(𝐼|𝑅𝑢𝑝𝑛,𝐺𝑀𝑃𝐸𝑚
) in the dI domain is herein performed 

through the generation of a number of ground motion fields (Pagani, et al., 2014) of Sa(T1) 

that incorporates different simulations of spatially correlated ground shaking values at the 

location of the collection of assets.  

Several studies have addressed the issue of generating spatially correlated ground 

motion fields of spectral ordinates (e.g. Weatherill et. al. (2015), Silva (2016)) and such 

matter will not be herein addressed in detail. However, provided that a number of random 

fields J is large enough to adequately reflect 𝑓(𝐼|𝑅𝑢𝑝𝑛,𝐺𝑀𝑃𝐸𝑚
), then Equation 5.4 is 

numerically solved as presented in Equation 5.5: 

𝑃(𝐿 > 𝑙|𝑅𝑢𝑝𝑛,𝐺𝑀𝑃𝐸𝑚
) = ∑ 𝑃 (𝐿 > 𝑙|𝑅𝑢𝑝𝑛,𝐺𝑀𝐹𝑗,𝐺𝑀𝑃𝐸𝑚

)𝐽
𝑗=1 .

1

𝐽
          ( 5.5 ) 

Where 𝑃(𝐿 > 𝑙|𝑅𝑢𝑝𝑛,𝐺𝑀𝐹,𝐺𝑀𝑃𝐸𝑚
) is the deterministic value of probability of 

exceedance of loss l given the ground motion field j generated for the 𝑅𝑢𝑝𝑛 and 1/J is 

one equiprobable realization of 𝑓(𝐼|𝑅𝑢𝑝𝑛,𝐺𝑀𝑃𝐸𝑚
)𝑑𝐼. 

Equation 5.5 embodies what is commonly referred as a model mixture (Surajit & 

Lindsay, 2005) (i.e. sum of probability densities), according to which, if one considers 
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𝑃 (𝐿 > 𝑙|𝑅𝑢𝑝𝑛,𝐺𝑀𝐹𝑗,𝐺𝑀𝑃𝐸𝑚
) as the mean of a normal random variable with zero variance, 

the probability density function of 𝑃(𝐿 > 𝑙|𝑅𝑢𝑝𝑛,𝐺𝑀𝑃𝐸𝑚
) is completely defined by a 

Gaussian mixture (GM) model parameterized by: 

𝜇𝐺𝑀
𝑃(𝐿>𝑙|𝑅𝑢𝑝𝑛,𝐺𝑀𝑃𝐸𝑚) = {𝑃 (𝐿 > 𝑙|𝑅𝑢𝑝𝑛,𝐺𝑀𝐹𝑗,𝐺𝑀𝑃𝐸𝑚

)} ;  𝑗 = 1… 𝐽               ( 5.6 ) 

𝜔𝐺𝑀
𝑃(𝐿>𝑙|𝑅𝑢𝑝𝑛,𝐺𝑀𝑃𝐸𝑚) = {

1

𝐽
} ;  𝑗 = 1… 𝐽                                   ( 5.7 ) 

In which 𝜇𝐺𝑀
𝑃(𝐿>𝑙|𝑅𝑢𝑝𝑛,𝐺𝑀𝑃𝐸𝑚) and 𝜔𝐺𝑀

𝑃(𝐿>𝑙|𝑅𝑢𝑝𝑛,𝐺𝑀𝑃𝐸𝑚) are respectively the 

mixture mean and weight vectors from all component densities. 

Equation 5.3 is thus a weighted sum of (assumed) independent random variables, 

based on which its mean and variance are established by the following Equations 5.8 and 

5.9.  

𝜇𝛾(𝐿>𝑙)𝐺𝑀𝑃𝐸𝑚
= ∑ 𝛾𝑛

𝑁
𝑛=1 . 𝜇𝑃(𝐿>𝑙|𝑅𝑢𝑝𝑛,𝐺𝑀𝑃𝐸𝑚)                              ( 5.8 ) 

𝜎2
𝛾(𝐿>𝑙)𝐺𝑀𝑃𝐸𝑚

= ∑ 𝛾𝑛
2𝑁

𝑛=1 . 𝜎2

𝑃(𝐿>𝑙|𝑅𝑢𝑝𝑛,𝐺𝑀𝑃𝐸𝑚)
                           ( 5.9 ) 

Where 𝜇𝑃(𝐿>𝑙|𝑅𝑢𝑝𝑛,𝐺𝑀𝑃𝐸𝑚) and 𝜎2
𝑃(𝐿>𝑙|𝑅𝑢𝑝𝑛,𝐺𝑀𝑃𝐸𝑚) are the mean and variance of 

𝑃(𝐿 > 𝑙|𝑅𝑢𝑝𝑛,𝐺𝑀𝑃𝐸𝑚
), respectively. 

Despite the fact that 𝜇𝑃(𝐿>𝑙|𝑅𝑢𝑝𝑛,𝐺𝑀𝑃𝐸𝑚) and 𝜎2
𝑃(𝐿>𝑙|𝑅𝑢𝑝𝑛,𝐺𝑀𝑃𝐸𝑚) can explicitly be 

determined, the body of the probabilistic distribution of 𝛾(𝐿 > 𝑙)𝐺𝑀𝑃𝐸𝑚
is not known a 

priori. Therefore, its probability density is herein empirically established through the 

numerical simulation of a sufficiently large number, R, of realizations (denoted as 

𝛾𝑟(𝐿 > 𝑙)𝐺𝑀𝑃𝐸𝑚
), with 𝑟 = 1…𝑅 = 2000), as follows: 

𝛾𝑟(𝐿 > 𝑙)𝐺𝑀𝑃𝐸𝑚
= ∑ 𝑃𝑟(𝐿 > 𝑙|𝑅𝑢𝑝𝑛,𝐺𝑀𝑃𝐸𝑚

)𝑁
𝑛=1 . 𝛾𝑛                  ( 5.10 ) 

In which 𝑃𝑟(𝐿 > 𝑙|𝑅𝑢𝑝𝑛,𝐺𝑀𝑃𝐸𝑚
) are (uncorrelated) random realizations of 

𝑃(𝐿 > 𝑙|𝑅𝑢𝑝𝑛,𝐺𝑀𝑃𝐸𝑚
) from each of the N corresponding distributions. 

5.3.1.1 Epistemic uncertainty and loss estimation results 

A logic tree approach is used in this study in order to consider the epistemic 

uncertainty associated with the choice of GMPEs to use in conjunction with the 
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aforementioned seismological model, and, as presented in Chapter 4, the models 

developed by Atkinson & Boore (2006) and Akkar & Bommer (2010) are considered, 

with 0.70 and 0.30 logic tree weights, respectively. 

A fundamental issue in deciding how to treat the epistemic uncertainty in hazard 

analysis is the interpretation of what the weights on the logic tree branches represent 

(Abrahamson & Bommer, 2005). As stated by Vick (2002), one interpretation favours the 

assumption that the weights are frequency-based probabilities of the alternative models 

being correct, whereas the alternative view is one according to which logic tree branches 

represent our relative confidence in the alternative models. As established in  Chapter 4, 

the distributions of a given IMi conditioned on Sa(T1)=a used as target for record 

selection take into account the contribution of all the scenarios defined by 3D 

disaggregation on Magnitude, Distance and GMPE, which implies a frequency-based 

interpretation of logic tree weights assigned to different GMPEs. Therefore, the 

probabilistic distribution of loss exceedance rate determined by the contribution of all the 

considered GMPEs is herein determined by the following equation: 

𝛾(𝐿 > 𝑙) = ∑  𝛾(𝐿 > 𝑙)𝐺𝑀𝑃𝐸𝑚
. 𝑃(𝐺𝑀𝑃𝐸𝑚) 

𝑁𝐺𝑀𝑃𝐸
𝑚=1                    ( 5.11 ) 

Where 𝑃(𝐺𝑀𝑃𝐸𝑚) is the logic tree weight assigned to GMPEm, and NGMPE is the 

total number of GMPEs considered.  

Similarly to Equation 5.5, Equation 5.11 represents the weighted sum of probability 

densities. However, since the distribution of 𝛾(𝐿 > 𝑙)𝐺𝑀𝑃𝐸𝑚
 is defined numerically, the 

probabilistic density function of 𝜇𝛾(𝐿>𝑙) is herein computed through the simulation of 

NGMPE sets of 𝑄𝑚 realizations of 𝛾𝑟(𝐿 > 𝑙)𝐺𝑀𝑃𝐸𝑚
, in which 𝑄𝑚 =

𝑃(𝐺𝑀𝑃𝐸𝑚)

𝑚𝑖𝑛{𝑃(𝐺𝑀𝑃𝐸𝑚)}
× 𝑅 and 

𝑚𝑖𝑛{𝑃(𝐺𝑀𝑃𝐸𝑚)} is the minimum of the logic tree weights assigned to each of the 

considered GMPEm. 

As highlighted by Abrahamson & Bommer (2005), if one considers that logic tree 

weights are, on the other hand, measures of the relative merit of each GMPE, then the 

mean value of 𝛾(𝐿 > 𝑙) as defined in Equation 5.11 does not correspond to the expected 

value in its strict statistical sense. The Author acknowledges the importance of this matter; 

however, such discussion is considered beyond the scope of this study.  
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5.3.2 Conditional fragility functions and computation of 𝑷(𝑳 >

𝒍|𝑹𝒖𝒑𝒏,𝑮𝑴𝑭𝒋,𝑮𝑴𝑷𝑬𝒎
) 

According to Equations 5.6 and 5.7, 𝛾(𝐿 > 𝑙)𝐺𝑀𝑃𝐸𝑚
is defined by the contribution 

of all J ground motion fields of Sa(T1) generated for each of the N ruptures in the ERF. 

Therefore, its computation is based on 𝑃 (𝐿 > 𝑙|𝑅𝑢𝑝𝑛,𝐺𝑀𝐹𝑗,𝐺𝑀𝑃𝐸𝑚
) determined for each of 

the NxJ simulations, as illustrated in Figure 5.4. 

 In this exercise, the OpenQuake-engine’s hazard algorithms (Pagani, et al., 2014), 

openly available in its online repository (OpenQuake, 2016), are used for the purposes of 

implementing the aforementioned seismological model, the generation of the 

correspondent ERF and computation of ground motion fields of Sa(T1), using the spatial 

correlation model developed by Jayaram & Baker (2009). Furthermore, 𝑃 (𝐿 >

𝑙|𝑅𝑢𝑝𝑛,𝐺𝑀𝐹𝑗,𝐺𝑀𝑃𝐸𝑚
) is computed based on the generation of conditional ground motion 

fields of 𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎, as subsequently presented. 

5.3.2.1 Generation of ground-motion fields of 𝑰𝑴𝒊|𝑺𝒂(𝑻𝟏)=𝑨 

Given GMFj generated for Rupn with GMPEm, one can perceive A as the vector of 

simulated values of Sa(T1) across a number of locations (Lp) of a portfolio (Figure 5.4).  

 

Figure 5.4 – Ratio between Schematic representation of the event-based simulation of ground 

motion fields of Sa(T1). 

Thus, according to the mathematical formulation presented in Appendix 5.1 (based 

on the linear model of coregionalization (LMCR) proposed by Loth & Baker (2013)), it 

is shown that, for a given A, it is possible to obtain the mean and spatial covariance matrix 

of 𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝐴. It shall be highlighted that, as illustrated in Figure 4.18, different IMi are 

selected for different values of Sa(T1). However, for simplicity, a given IMi selected for 
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a particular level of Sa(T1) is further generically referred as 𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎
 (with i ranging 

from 1 to 𝑁∗), and 𝐼𝑀∗ is the vector that incorporates the set of 𝑁∗ efficient and sufficient 

IMi selected for the 𝑁∗levels of Sa(T1) of interest. In this context, the mean and spatial 

covariance matrix of 𝐼𝑀∗
|𝑆𝑎(𝑇1)=𝐴 are further denoted as 𝑢𝐼𝑀∗

|𝑆𝑎(𝑇1)=𝐴
 and Σ𝐼𝑀∗|𝑆𝑎(𝑇1)=𝐴

, 

respectively. 

Based on 𝑢𝐼𝑀∗
|𝑆𝑎(𝑇1)=𝐴

 and Σ𝐼𝑀∗|𝑆𝑎(𝑇1)=𝐴
 (see Equations A.5.6 and A.5.7 of 

Appendix 5.1), it is possible to generate S sets of 𝑁∗ spatially cross-correlated Gaussian 

random fields of 𝐼𝑀∗ conditioned on Sa(T1)=A, according to Equation 5.12: 

[
 
 
 
 
 
𝑌𝐼𝑀1|𝑆𝑎(𝑇1)=𝐴

⋮
𝑌𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝐴

⋮
𝑌𝐼𝑀𝑁∗|𝑆𝑎(𝑇1)=𝐴]

 
 
 
 
 

with size  

[
 
 
 
 
𝐿𝑝𝑥 1

⋮
𝐿𝑝𝑥 1

⋮
𝐿𝑝𝑥 1]

 
 
 
 

=  𝑢𝐼𝑀∗
|𝑆𝑎(𝑇1)=𝐴

+ 𝐿.

[
 
 
 
 
𝑍1

⋮
𝑍𝑖

⋮
𝑍𝑁∗]

 
 
 
 

        ( 5.12 ) 

Where L is the lower triangular matrix obtained from Cholesky factorization such 

that 𝐿. 𝐿𝑇 = Σ𝐼𝑀∗|𝑆𝑎(𝑇1)=𝐴
, as demonstrated by Oliver (2003), 𝑍1 to 𝑍𝑁∗ are vectors of 

independent standard Gaussian distributed random values (𝑧1, 𝑧2 … 𝑧𝐿𝑝
), and 𝑌𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝐴

 

is the spatial cross-correlated random field of 𝐼𝑀𝑖 conditioned on Sa(T1)=A. 

As schematically illustrated in Figure 5.5, it is assumed, for simplicity, that the 

values of Sa(T1) in A assume only two possible values x and y, for which 𝐼𝑀𝑥 and 𝐼𝑀𝑦, 

respectively, are the corresponding conditional intensity measures. As a result, 

𝑌𝐼𝑀𝑥|𝑆𝑎(𝑇1)=𝑥

1  defines the values of 𝐼𝑀𝑥|𝑆𝑎(𝑇1)=𝐴 when Sa(T1)=x, and 𝑌𝐼𝑀𝑦|𝑆𝑎(𝑇1)=𝑦

1  includes 

the values of 𝐼𝑀𝑦|𝑆𝑎(𝑇1)=𝐴 when Sa(T1)=y, for simulation S1. 

 

Figure 5.5 – Schematic illustration of the generation of S conditional spatially cross-correlated 

ground motion fields of 𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝐴
 for GMFj and Rupn. 
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From a generic point of view, any 𝑌𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎
 (of length LL< Lp) can be organized 

in the form of a matrix of S values of IMi (referred as imi) per location, as illustrated in 

Figure 5.6.  

 
Figure 5.6 – Schematic representation of simulation of spatially correlated values of 

𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎 for GMFj and Rupn, and corresponding damage exceedance matrix. 

This matrix establishes 𝑓 (𝐼𝑀𝑖|𝑅𝑢𝑝𝑛,𝐺𝑀𝐹𝑗,𝐺𝑀𝑃𝐸𝑚,𝑆𝑎(𝑇1)=𝑎
) at each site where 

Sa(T1)=a and, as a result, it follows from Equation 5.2 that 

𝑓 [𝑃𝑙𝑠𝑖|𝑅𝑢𝑝𝑛,𝐺𝑀𝐹𝑗,𝐺𝑀𝑃𝐸𝑚,𝑆𝑎(𝑇1)=𝑎
] at each site reflects the numerical application of the 

following Equation 5.13. 

𝑓 [𝑃𝑙𝑠𝑖|𝑅𝑢𝑝𝑛,𝐺𝑀𝐹𝑗,𝐺𝑀𝑃𝐸𝑚,𝑆𝑎(𝑇1)=𝑎
] = 

= ∫ 𝐹 [𝑙𝑠𝑖|𝐼𝑀𝑖,𝑆𝑎(𝑇1)=𝑎
]

𝐼𝑀𝑖
. 𝑓 (𝐼𝑀𝑖|𝑅𝑢𝑝𝑛,𝐺𝑀𝐹𝑗,𝐺𝑀𝑃𝐸𝑚,𝑆𝑎(𝑇1)=𝑎

)𝑑𝐼𝑀𝑖       ( 5.13 ) 

5.3.2.2 Damage state probabilities for Rupn and GMFk 

Because the bootstrapped 𝐹 [𝑙𝑠𝑖|𝐼𝑀𝑖,𝑆𝑎(𝑇1)=𝑎
] is an uncertain variable (see section 

5.2.1), the probability of being exactly in a damage state lsi given a certain value of IMi 

and Sa(T1)=a, herein referred as 𝑃 [𝑑𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎
], is also a random variable. More 

specifically, Equations 5.14 and 5.15 show that, for a given level of IMi and Sa(T1)=a, 

𝑃 [𝑑𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎
] is evaluated based on the damage exceedance probabilities of 

different damage states defined by the corresponding conditional fragility functions: 

𝑃 [𝑑𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎
] = 𝐹 [𝑙𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎

] − 𝐹 [𝑙𝑠𝑖+1|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎
]    ( 5.14 ) 
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              Or  𝑃 [𝑑𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎
] = 𝐹 [𝑙𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎

] , if dsi is Collapse  ( 5.15 ) 

Therefore, the mean and variance of 𝑃 [𝑑𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎
] is determined as 

according to Equation 5.16 and Equation 5.17. 

𝜇
 𝑃[𝑑𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎]

= 𝜇
 𝐹[𝑙𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎]

− 𝜇
 𝐹[𝑙𝑠𝑖+1|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎]

             ( 5.16 ) 

𝜎
 𝑃[𝑙𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎]

2 = 𝜎
 𝐹[𝑙𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎]

2 + 𝜎
 𝐹[𝑙𝑠𝑖+1|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎]

2 − 2 ×

 𝜌𝑙𝑠𝑖,𝑙𝑠𝑖+1|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎
× 𝜎

 𝐹[𝑙𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎]
× 𝜎

 𝐹[𝑙𝑠𝑖+1|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎]
                ( 5.17 ) 

Where 𝜇
 𝐹[𝑑𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎]

 and 𝜎
 𝐹[𝑑𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎]

2  correspond to the mean and 

variance of 𝐹 [𝑑𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎
], and  𝜌𝑙𝑠𝑖,𝑙𝑠𝑖+1|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎

× 𝜎
 𝐹[𝑙𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎]

×

𝜎
 𝐹[𝑙𝑠𝑖+1|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎]

 is the covariance between distributions of damage exceedance 

probability for damage states lsi and lsi+1 conditioned on IMi=imi and Sa(T1)=a 

(computed as a function of 𝜌
𝑙𝑠𝑖,𝑙𝑠𝑖+1|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎

: the correlation between regression 

uncertainty of 𝐹 [𝑙𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎
] and 𝐹 [𝑙𝑠𝑖+1|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎

]). 

As illustrated in Figure 5.7, the uncertainty in fragility regression for IMi=imi and 

Sa(T1)=a is determined through a bootstrap method that generates 200 conditional 

fragility curves for each limit state. Thus, as theoretically demonstrated by Bradley 

(2010b) and Silva et al. (2013) in similar fragility simulation exercises,  

𝐹 [𝑙𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎
] can be approximated by a normal distribution with parameters 

𝜇
 𝐹[𝑙𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎]

 and 𝜎
𝐹[𝑙𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎]

, as illustrated in Figure 5.7. Moreover, 

each bootstrap simulation is consistent across all damage states, i.e. the indices of the 

values that are drawn from the original dataset of SD exceedance probabilities are 

considered in order to constitute the corresponding bootstrap samples of ED, MD and 

Collapse probabilities for a given Sa(T1)=a. Therefore, 𝜌𝑙𝑠𝑖,𝑙𝑠𝑖+1|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎
 is 

determined as the sample correlation between 𝐹 [𝑙𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎
] and 

𝐹 [𝑙𝑠𝑖+1|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎
] obtained from the aforementioned consistently bootstrapped 

conditional fragility functions, as follows: 
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𝜌𝑙𝑠𝑖,𝑙𝑠𝑖+1|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎
=

 

∑ (𝐹𝑘[𝑙𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎]−𝜇
 𝐹[𝑙𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎]

)200
𝑘=1 .(𝐹𝑘[𝑙𝑠𝑖+1|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎]−𝜇

 𝐹[𝑙𝑠𝑖+1|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎]
)

√(𝐹𝑘[𝑙𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎]−𝜇
 𝐹[𝑙𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎]

)

2

.√(𝐹𝑘[𝑙𝑠𝑖+1|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎]−𝜇
 𝐹[𝑙𝑠𝑖+1|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎]

)

2
       

( 5.18 ) 

In which 𝐹𝑘 [𝑙𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎
] is the k bootstrapped conditional fragility function 

evaluated at IMi=imi, and 𝜇
 𝐹[𝑙𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎]

 is the mean of the 200 values of 

𝐹𝑘 [𝑙𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎
] evaluated at IMi=imi for Sa(T1)=a, represented in Figure 5.7. 

Because 𝐹 [𝑙𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎
] is a normal random variable, it follows from 

Equations 5.14 and 5.15 that 𝑃 [𝑑𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎
] is also a normal random variable 

with mean and variance determined according to Equations 5.16 and 5.17. Consequently, 

the probability of being exactly in damage state dsi for a given level of Sa(T1) (for GMFj 

of Rupn), designated 𝑓 [𝑃𝑑𝑠𝑖|𝑅𝑢𝑝𝑛,𝐺𝑀𝐹𝑗,𝐺𝑀𝑃𝐸𝑚,𝑆𝑎(𝑇1)=𝑎
], is an uncertain variable 

determined by the following mathematical formulation: 

𝑓 [𝑃𝑑𝑠𝑖|𝑅𝑢𝑝𝑛,𝐺𝑀𝐹𝑗,𝐺𝑀𝑃𝐸𝑚,𝑆𝑎(𝑇1)=𝑎
] =   

= ∫ 𝑃 [𝑑𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎
]

𝐼𝑀𝑖
. 𝑓 (𝐼𝑀𝑖|𝑅𝑢𝑝𝑛,𝐺𝑀𝐹𝑗,𝐺𝑀𝑃𝐸𝑚,𝑆𝑎(𝑇1)=𝑎

) . 𝑑𝐼𝑀𝑖         ( 5.19 ) 

 

Figure 5.7 – Illustration of probabilistic normal distribution of 𝐹 [𝑙𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=0.5𝑔] for two 

distinct levels of IMi: imi1 and imi2. Conditional Fragility Functions of 5-story frames given 

Sa(T1)=0.5g and damage criteria of GD. 
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Since, as illustrated in Figure 5.7, each simulation Si defines a given IMi=imi for 

each location, Equations 5.14 to 5.19 are herein solved through a numerical exercise 

schematically illustrated in Figure 5.8. 

 

Figure 5.8 – Schematic representation of the damage exceedance matrix resulting from the 

evaluation of 200 bootstrapped conditional fragility functions at each simulated value of IMi 

(designated as imi)  

As presented in Figure 5.8, the bootstrap method presented in the previous section 

allows one to compute 200 sets of four damage state probabilities that reflect 

𝜌𝑙𝑠𝑖,𝑙𝑠𝑖+1|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎
 and characterize 𝑃 [𝑑𝑠𝑖|𝐼𝑀𝑖=𝑖𝑚𝑖,𝑆𝑎(𝑇1)=𝑎

] for each Si, in each 

location. Therefore, the aforementioned procedure provides a 3D matrix of [S simulations 

of IMi x 200 bootstrap samples] x [4 damage states] x [LL locations], which defines the 

distribution of 𝑓 [𝑃𝑑𝑠𝑖|𝑅𝑢𝑝𝑛,𝐺𝑀𝐹𝑗,𝐺𝑀𝑃𝐸𝑚,𝑆𝑎(𝑇1)=𝑎
] (for damage states of SD, MD, ED and 

Col.) at all the locations in which Sa(T1)=a. 

5.3.2.3 Intensity-specific distributions of damage ratio and its 

spatial correlation 

Having defined 𝑓 [𝑃𝑑𝑠𝑖|𝑅𝑢𝑝𝑛,𝐺𝑀𝐹𝑗,𝐺𝑀𝑃𝐸𝑚,𝑆𝑎(𝑇1)=𝑎
] for each damage state and each 

location (Figure 5.8), an appropriate consequence (or damage-to-loss) function can be 

used in order to translate damage state probabilities into a correspondent damage ratio. 

As illustrated in Figure 5.9, each set of 4 damage state probabilities (damage states of SD, 
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MD, ED and Col) is referred as Si,k, which stands for the bootstrap k performed for the 

simulation Si. 

 
Figure 5.9 – Schematic Schematic representation of the damage matrix resulting from the 

application of a consequence model to the damage exceedance matrix schematically presented 

in Figure 5.8. 

The resulting damage ratio is herein referred as DRi,k, and, for each location, the 

set of S x 200 damage ratios defines 𝑓 [𝐷𝑅|𝑅𝑢𝑝𝑛,𝐺𝑀𝐹𝑗,𝐺𝑀𝑃𝐸𝑚,𝑆𝑎(𝑇1)=𝑎]), i.e. the distribution 

of damage ratio given Sa(T1)=a,  GMFj, and Rupn. As a result, the distributions 

𝑓 [𝐷𝑅|𝑅𝑢𝑝𝑛,𝐺𝑀𝐹𝑗,𝐺𝑀𝑃𝐸𝑚,𝑆𝑎(𝑇1)=𝑎] are fully consistent with 

𝑓 (𝐼𝑀𝑖|𝑅𝑢𝑝𝑛,𝐺𝑀𝐹𝑗,𝐺𝑀𝑃𝐸𝑚,𝑆𝑎(𝑇1)=𝑎
) at each location (Equation 5.19), and the spatial 

correlation between damage ratios at different sites (referred as “inter-location” 

correlation in Figure 5.9) is also taken into account, as the sample correlation between 

sets of DRi,k values at any two sites of interest. 

In this exercise, the consequence model considered by Silva et al. (2015c) in the 

derivation of a vulnerability model for reinforced concrete buildings in Portugal has been 

considered. This model provides median (damage ratio) values of 0.10, 0.30, 0.60 and 1.0 

for limit states of SD, MD, ED and Col., respectively, as well as associated uncertainty. 

However, for the purpose of this exercise, only median values have been adopted. 

5.3.2.4 Distribution of damage ratios and probability of 

exceedance of loss values 

The damage matrix presented in Figure 5.9 has dimensions of [S simulations of IMi 

x 200 bootstrap samples] x [LL locations], and can further be transformed into a vector of 

[S simulations of IMi x 200 bootstrap samples], as shown in Figure 5.10.  



102 Chapter 5 

 

 

Figure 5.10 – Schematic representation of computation of 𝑓 [𝐿𝑜𝑠𝑠|𝑅𝑢𝑝𝑛,𝐺𝑀𝐹𝑗,𝐺𝑀𝑃𝐸𝑚
] for a 

portfolio of buildings of a given Class, distributed across LL sites where Sa(T1)=a. 

Each element of the resulting vector reflects the sum of 𝐷𝑅𝑖,𝑘 ∗ 𝑅𝐶𝐿 across all the 

LL locations (∑ 𝐷𝑅𝑖,𝑘 × 𝑅𝐶𝐿𝐿𝐿
), where 𝐷𝑅𝑖,𝑘 is damage ratio obtained for Si,bootstrapk, 

and 𝑅𝐶𝐿 is the total replacement value (or cost) of the assets of the construction Class of 

interest (RC), at each location L. 

This exercise results in [S x 200] lossi,k values that represent the probabilistic 

distribution of loss given GMFj and Rupn, using GMPEm (i.e. 𝑓 [𝐿𝑜𝑠𝑠|𝑅𝑢𝑝𝑛,𝐺𝑀𝐹𝑗,𝐺𝑀𝑃𝐸𝑚 ]). 

Thus, 𝑃 (𝐿 > 𝑙|𝑅𝑢𝑝𝑛,𝐺𝑀𝐹𝑗,𝐺𝑀𝑃𝐸𝑚
) is obtained from 𝑓 [𝐿𝑜𝑠𝑠|𝑅𝑢𝑝𝑛,𝐺𝑀𝐹𝑗,𝐺𝑀𝑃𝐸𝑚 ], as the 

number of occurrences in which the observed loss, L, exceeds a certain value, l, divided 

by the length of the aforementioned vector (i.e. S x 200). 

For the sake of clarity, it shall be noted that, for a given GMFj, 

𝑓 [𝐿𝑜𝑠𝑠|𝑅𝑢𝑝𝑛,𝐺𝑀𝐹𝑗,𝐺𝑀𝑃𝐸𝑚 ] results from the aggregation of loss values from all the assets 

in all the locations of the spatial distribution of Sa(T1) (denoted as A, with length Lp). In 

fact, A can take any possible value of Sa(T1). However, for simplicity, the computation 

of 𝑓 [𝐿𝑜𝑠𝑠|𝑅𝑢𝑝𝑛,𝐺𝑀𝐹𝑗,𝐺𝑀𝑃𝐸𝑚 ] presented in this section and schematically exemplified in 

Figure 5.10 takes into account only the hypothetical LL sites where Sa(T1) is equal to a 

given value a. 
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5.3.3 Resulting vulnerability model 

As demonstrated in section 5.3.2.3 , 𝑓 [𝐷𝑅|𝑅𝑢𝑝𝑛,𝐺𝑀𝐹𝑗,𝐺𝑀𝑃𝐸𝑚,𝑆𝑎(𝑇1)=𝑎] is computed 

for each of the N x J simulations (for each site). Therefore, any site-specific 

𝑓[𝐷𝑅|𝐺𝑀𝑃𝐸𝑚 ,𝑆𝑎(𝑇1)=𝑎] at a given location can be obtained according to the following 

Equation: 

𝑓[𝐷𝑅|𝐺𝑀𝑃𝐸𝑚,𝑆𝑎(𝑇1)=𝑎] = 

= ∑ ∑ 𝑓 [𝐷𝑅|𝑅𝑢𝑝𝑛,𝐺𝑀𝐹𝑗,𝐺𝑀𝑃𝐸𝑚,𝑆𝑎(𝑇1)=𝑎]𝐽
𝑗=1

𝑁
𝑛=1 . 𝑃(𝑅𝑢𝑝𝑛, 𝐺𝑀𝐹𝑗|𝐺𝑀𝑃𝐸𝑚 ,𝑆𝑎(𝑇1)=𝑎)     ( 5.20 ) 

In which    𝑃(𝑅𝑢𝑝𝑛, 𝐺𝑀𝐹𝑗|𝐺𝑀𝑃𝐸𝑚,𝑆𝑎(𝑇1)=𝑎) is given by the following Equation 5.21: 

𝑃(𝑅𝑢𝑝𝑛, 𝐺𝑀𝐹𝑗|𝐺𝑀𝑃𝐸𝑚,𝑆𝑎(𝑇1)=𝑎) =
𝛾𝑛

𝛾𝑆𝑎(𝑇1)=𝑎
 
1

𝐽
                  ( 5.21 ) 

For illustration purposes, Figure 5.11 presents the Vulnerability model of two, five 

and eight-story buildings, for the site of Lisbon, Portugal (Latitude = 38.373, Longitude 

= –9.143), as defined by the numerical solution of Equation 5.20. In this case, N is defined 

in the aforementioned earthquake rupture forecast (ERF), J=S=2000, and GMPE is that 

of Atkinson & Boore (2006). 

 

 

 
Figure 5.11 – Schematic Vulnerability Model of 2, 5 and 8-story buildings characterized by 

intensity-specific distributions of damage ratio (for the site of Lisbon, Portugal), using the 

GMPE of Atkinson & Boore (2006). 
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It is evident in Figure 5.11 that the appraised distributions of damage exceedance 

probability differ significantly depending on the parameter used to characterize building 

response and corresponding limit states. As Sa(T1) increases, distributions obtained using 

GD criteria tend to depart from the ones corresponding to ISD, leading to empirical 

distributions that are skewed towards higher damage ratios. In other words, because limit 

states are defined differently in the case of GD and ISD criteria, it is verified that, for a 

given frame subjected to a certain ground motion record, GD tend to lead to overestimated 

damage exceedance probabilities, with respect to ISD. This trend is more evident for 

higher values of Sa(T1), and also more pronounced as the level of corresponding 

conditional IMi increases. 

5.4 Loss estimation exercise 

In this section, the loss estimation framework outlined in chapter 5.3 is separately 

applied to three different building portfolios, as described below. 

5.4.1 Test-bed building portfolios 

Using the data from the Portuguese Building Census survey of 2011 (INE, 2015), 

three building portfolios referring to two, five, and eight-story reinforced concrete pre-

code buildings in the district of Lisbon have been considered. The referred survey 

provides detailed estimation of number of buildings of each class on a parish-level 

resolution. However, the aggregation of the elements at a single location per parish can 

introduce a significant error for the larger regions with a very unbalanced spatial 

distribution of the building stock and seismic hazard, as the ground motion at the area 

centroid might be significantly different from that at the actual location of the assets 

(Silva, Crowley, Pinho, & Varum, 2015b). Thus, the GEOSTAT (2011) population 

distribution dataset, which provides the population count in a grid of 1 km2 resolution, 

has been used to distribute the number of buildings in each parish proportionally to the 

amount of population estimated at each grid cell, as illustrated in Figure 5.12. 

Similarly to what has been performed by Silva et al. (2015b), the information 

provided by the latter has been used to determine the economic value of each building 

class as the product of: a) the respective average number of dwellings per class (which is 

a function of the number of floors), b) the average area per dwelling determined for the 

interested region, in m2, and c) the average unit cost of replacement in EUR/m2. 
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Figure 5.12 – Total replacement value (EUR) of two (upper left), five (upper right) and eight-

story (bottom) reinforced concrete pre-code buildings located in the district of Lisbon, Portugal. 

Spatial resolution of 1km2. 

5.4.2 Fragility models and loss estimation assumptions 

State-of-the-art loss estimation frameworks allow the user to account for spatial 

correlation of ground motion residuals (e.g. Silva et al. (2014)) when simulating random 

fields of ground motion. However, even in such cases, several limitations are recognized 

with respect to the way uncertainty in the vulnerability is addressed when using 

analytically derived models:  

1. The correlation of uncertainty is usually incorporated such that when sampling 

the uncertainty in the vulnerability of two assets with the same building class, 

the correlation of its residuals does not reflect the physical phenomenon 

influencing the spatial variability (and correlation) of building response. 

Usually, boundary conditions inherent to zero and full spatial correlation are 

applied; 

2. The propagation of uncertainty from fragility to vulnerability is commonly 

related to the scatter to which a parametric (usually cumulative lognormal) 

curve is fitted to the intensity dependent damage exceedance probabilities (e.g. 

Bradley (2010b) and Silva et al. (2013)). Therefore, as highlighted by Taylor 

(2015) the resulting vulnerability models commonly feature convenient but 

unrealistic simplifications such as beta or lognormal probabilistic distributions 

to model uncertainty in intensity-dependent damage ratios, which in fact has no 

evident (or demonstrated to the Author’s knowledge) physical connection with 

reality. 

In order to overcome the aforementioned limitations, the present loss estimation 

exercise is performed based on the methodology presented in sections 5.3.1 and 5.3.2, 

according to which conditional fragility functions and conditional random fields of 
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𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎 are used when modelling uncertainty and spatial correlation of damage state 

probabilities and corresponding damage ratios (further designated as fragility model a)).  

A second fragility model (further referred as model b) is also considered. In this 

case, instead of representing fragility for a given level of Sa(T1) as a distribution of 

damage exceedance probabilities, a single value (denoted as �̃�𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
) is computed, 

as commonly considered in the literature. As a result, �̃�𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
 is obtained from the 

distribution of 6000 EDP values (60 ground motion records x 100 frames) for each level 

of Sa(T1), as presented in Chapter 4. The latter consists of a state-of-the art methodology 

(e.g. Bradley (2010b) , Silva et al. (2013)) in which the propagation of uncertainty from 

fragility to vulnerability for a specific Sa(T1)=a is performed through a bootstrap method 

where 200 (cumulative lognormal) fragility functions are fitted to equal number of 

synthetic datasets obtained by random sampling with replacement from the original set 

of �̃�𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
, as illustrated in Figure 5.13 (dashed black lines). 

In the case of model b, the simulation of conditional random fields of 𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎 

is not necessary, since �̃�𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
 is dependent only on values of Sa(T1) obtained in 

each GMFj. However, when sampling the exceedance probabilities of two assets with the 

same building class and level of Sa(T1) from such fragility model, there is no evident 

physical meaning in the correlation of its residuals (as opposed to the case of fragility 

model a). Therefore, the aforementioned commonly used boundary conditions are 

considered in the simulation of the uncertainty of damage exceedance probabilities given 

Sa(T1)=a, which, as demonstrated by Bradley (2010b) and Silva et al. (2013), can be 

assumed to follow a normal distribution: 

b.1 - Full spatial correlation of residuals; 

b.2 - Zero spatial correlation of residuals. 

For the purpose of loss estimation, the fragility models a and b have been extended 

to levels of Sa(T1) corresponding to an epsilon value (𝜀𝑚𝑎𝑥) selected in order to neglect 

ground motion values that correspond to (seismic intensity) probabilities of exceedance, 

POE (conditional on a given rupture), that are thought to be too low to matter in the 

computation of hazard. Thus, following the proposals of Strasser et al. (2008), a 

conditional POE of 10-5 and corresponding 𝜀𝑚𝑎𝑥 ≃ 4.0 are herein considered. 

Distributions of damage exceedance probability, corresponding conditional 

fragility functions and �̃�𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
 values are thus additionally determined with intervals 
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of 0.2g for levels of Sa(T1) higher than 1.0g, for each structural class, according to the 

methodology presented in Chapter 4. For the sake of illustration, Figure 5.13 presents the 

record-specific probabilities of exceedance of Extensive Damage for Sa(T1)=0.1g to 5.0g 

(5-story buildings) and corresponding conditional fragility curves for the specific cases 

of Sa(T1)=0.5g, 1.2g and 2.0g (i.e. fragility model a). For comparison purposes, the values 

of �̃�𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
 and associated uncertainty determined by 200 bootstrapped lognormal 

fragility curves (i.e. fragility model b) are also illustrated.  

 

 

Figure 5.13 – Record-specific probabilities of exceedance of ED, as a function of GD criteria, 

and corresponding conditional fragility functions for the cases of Sa(T1)=0.5g, 1.2g and 2.0g, as 

well as the values of �̃�𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
 (black squares) and associated uncertainty determined by 200 

bootstrapped lognormal fragility curves, for 5-story buildings. 

In addition, it shall be highlighted that J=S=2000 (see sections 5.3.1 and 5.3.2) 

have been verified to be a number of simulations sufficient for obtaining numerically 

accurate results.  

5.4.3 Discussion of results 

This section presents the results of the aforementioned loss estimation exercise, 

whereby annual loss exceedance curves are computed for the portfolios presented in 

section 5.4.1, using fragility models a and b, derived in terms of GD and ISD criteria. 

As illustrated in Figure 5.14, the loss estimation methodology introduced in this 

chapter– based on model a - systematically provides lower estimates of annual rate of 

exceedance for lower (i.e. more frequent) loss values, whereas the opposite trend is 

verified for higher aggregated losses, in comparison with model b. Despite the fact that 
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model b represents a state-of-the-art methodology of fragility and vulnerability 

assessment, it is the Author’s opinion that the disparities between the model a and b 

highlights the strengths (and further justifies the use) of the methodology presented in this 

chapter. 

 

Figure 5.14 – Loss exceedance curves of two, five and eight-story building portfolios, 

determined using fragility models a and b, derived based GD (upper) and ISD criteria (lower). 

As illustrated in Figure 5.15, ∫ 𝑓 [𝑃𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
] 𝑑𝑝 

1.0

�̃�𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
(where p ranges from 

0 to 1.0) is lower than 0.5 for lower levels of Sa(T1), being higher than 0.5 for higher 

levels of Sa(T1). In other words, for lower levels of Sa(T1), which are associated with 

more frequent aggregated loss values, �̃�𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
 is higher than more than 50% of the 

conditional damage exceedance probabilities defined by 𝑓 [𝑃𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
], whereas the 

opposite trend is verified for higher levels of Sa(T1) (i.e �̃�𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
 is lower than more 

than 50% of conditional damage exceedance probabilities defined by 𝑓 [𝑃𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
]. 

As a result, �̃�𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
 systematically overestimates the conditional damage 

probabilities for lower and more frequent levels of Sa(T1), and vice-versa for higher 
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values of Sa(T1) (and loss). This is consistent with the results illustrated in Figure 5.14 

and highlights the misrepresentation of record-to-record variability associated with model 

b, and the strength of the proposed framework in that respect. 

In addition, it is verified that the variability of loss exceedance rates (depicted in 

Figure 5.14 by the 16% and 84% percentiles of 𝛾(𝐿 > 𝑙), only for the case of model a for 

the sake of visual clarity), increases with the size and area of spatial distribution of the 

building portfolio (see Figure 5.12). The latter is expected and consistent with the 

theoretical formulation of the variability of the sum of correlated random variables.

Figure 5.15 – Representation of ∫ 𝑓 [𝑃𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎] 𝑑𝑝 
1.0

�̃�𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
(area in blue, referred as 

‘cumulative probability’, for simplicity), and corresponding values of �̃�𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
 (black 

dashed lines). Damage state of ED and GD criteria, for 5-story frames. “Empirical” and “Fitted 

Beta” refer, respectively, to the empirical distribution 𝑓[𝑃𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
] and the corresponding 

fitted Beta model, as proposed in section 4.4.4. 

5.4.4 Final remarks 

The research efforts presented in this chapter are built upon the findings described 

in Chapter 4, extending the methodology to the derivation of vulnerability functions that 

reflect a non-parametric (site-specific) histogram of damage ratio per level of primary 

intensity measure - Sa(T1). This framework provides the link between vulnerability 

uncertainty and seismic hazard, such that when sampling the uncertainty in the 

vulnerability of two assets with the same building class and level of Sa(T1), the correlation 

of its residuals is physically explained by the spatial distribution (and correlation) of a 

conditional intensity measure, designated as IMi. 

Based on the aforementioned methodology, the simulation of conditional spatial 

cross-correlated random fields of 𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎 has been included in a novel loss 

estimation methodology. The latter allows the explicit modelling of spatial correlation of 

the aforementioned conditional non-parametric histograms of damage ratio, as 

determined by the spatial distribution of 𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎, providing a framework whereby 
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vulnerability uncertainty can appropriately be taken into account in the context of 

portfolio loss estimation. Furthermore, this framework uses conditional fragility functions 

introduced in Chapter 4, based on the verified sufficiency of 𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎, to provide 

vulnerability and loss estimations that are fully consistent with the hazard properties at 

each point of the interested portfolio. 

In addition, it has been demonstrated that the proposed loss assessment framework 

leads to results that differ with respect to state-of-the-art vulnerability assessment 

methods in a consistent manner across different building classes and damage state 

definition criteria. More specifically, it has been verified that state-of-the-art 

methodologies tend to overestimate the annual rate of exceedance of lower (i.e. more 

frequent) loss values, with respect to the framework presented in this work, whereas the 

opposite trend is verified for higher aggregated losses. The latter is shown to be related 

with the presented methodology’s more robust representation of the impact of record-to-

record variability in loss estimations, highlighting its strengths and contribution to the 

improvement of fragility, vulnerability and loss assessment of building portfolios. 

 

 

 

 

 

 



 

Appendix 5.1 – Derivation of 𝒖𝑰𝑴∗
|𝑺𝒂(𝑻𝟏)=𝑨

 and 𝚺𝑰𝑴∗|𝑺𝒂(𝑻𝟏)=𝑨
 

As presented in 5.3.2.1, a given IMi selected for a particular level of Sa(T1) is 

generically referred as 𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎
 (with i ranging from 1 to 𝑁∗), and 𝐼𝑀∗ is the vector 

that incorporates the set of 𝑁∗ efficient and sufficient IMi selected for the 𝑁∗levels of 

Sa(T1) of interest. In this context, the mean and spatial covariance matrix of 𝐼𝑀∗
|𝑆𝑎(𝑇1)=𝐴 

are designated 𝑢𝐼𝑀∗
|𝑆𝑎(𝑇1)=𝐴

 and Σ𝐼𝑀∗|𝑆𝑎(𝑇1)=𝐴
, respectively. 

If one considers Sa(T1) and IMi as the random vectors of corresponding intensity 

measures at a number of locations, Lp (in which Lp is the length of A), it follows that: 

𝑢 =

[
 
 
 
 
 
𝑢𝑆𝑎(𝑇1)

𝑢𝐼𝑀1

⋮
𝑢𝐼𝑀𝑖

⋮
𝑢𝐼𝑀𝑁∗ ]

 
 
 
 
 

 with size  

[
 
 
 
 
 
 
𝐿𝑝𝑥 1

𝐿𝑝𝑥 1

⋮
𝐿𝑝𝑥 1

⋮
𝐿𝑝𝑥 1]

 
 
 
 
 
 

                                        (A. 5.1) 

Σ =

[
 
 
 
 
 
 
Σ𝑆𝑎(𝑇1),𝑆𝑎(𝑇1)

Σ𝐼𝑀1𝑆𝑎(𝑇1)

⋮
Σ𝐼𝑀𝑖𝑆𝑎(𝑇1)

⋮
Σ𝐼𝑀𝑁∗ ,𝑆𝑎(𝑇1)

Σ𝑆𝑎(𝑇1),𝐼𝑀1

Σ𝐼𝑀1,𝐼𝑀1

⋮
Σ𝐼𝑀𝑖,𝐼𝑀1

⋮
Σ𝐼𝑀𝑁∗ ,𝐼𝑀1

⋯
⋯
⋮
⋯
⋮
⋯

Σ𝑆𝑎(𝑇1),𝐼𝑀𝑖

Σ𝐼𝑀1,𝐼𝑀𝑖

⋮
Σ𝐼𝑀𝑖,𝐼𝑀𝑖

⋮
Σ𝐼𝑀𝑁∗ ,𝐼𝑀𝑖

⋯
⋯
⋮
⋯
⋮
⋯

Σ𝑆𝑎(𝑇1),𝐼𝑀𝑁∗

Σ𝐼𝑀1,𝐼𝑀𝑁∗

⋮
Σ𝐼𝑀𝑖𝐼𝑀𝑁∗

⋮
Σ𝐼𝑀𝑁∗ ,𝐼𝑀𝑁∗ ]

 
 
 
 
 
 

  with 

size  [

Lpx Lp ⋯ Lpx Lp

⋮ ⋱ ⋮
Lpx Lp … Lpx Lp

]                                         (A. 5.2) 

In which 𝑢𝑆𝑎(𝑇1) and 𝑢𝐼𝑀𝑖
 are the vectors of mean predictions of Sa(T1) and IMi 

obtained by the selected Ground Motion Prediction Equation (GMPEm) for each of the Lp 

locations, for Rupn, and Σ𝑆𝑎(𝑇1),𝑆𝑎(𝑇1), Σ𝑆𝑎(𝑇1),𝐼𝑀𝑖
and Σ𝐼𝑀𝑖,𝐼𝑀𝑖

are respectively: the spatial 

auto-covariance matrix of Sa(T1), the spatial cross-covariance matrix of IMi and Sa(T1), 

and the spatial auto-covariance matrix of IMi.  

For the purpose of building the aforementioned spatial auto and cross-covariance 

matrixes, the spatial cross-correlation between fields of ground motion at different 

spectral periods is obtained via the linear model of coregionalization (LMCR) (see 
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5.3.2.1). More specifically, each element of the matrix Σ presented in Equation A.5.2, 

denoted herein as 𝐶𝑂𝑉𝐼𝑀1
𝑙𝑎 ,𝐼𝑀2

𝑙𝑏 , is determined as follows: 

𝐶𝑂𝑉𝐼𝑀1
𝑙𝑎 ,𝐼𝑀2

𝑙𝑏 = 𝜌𝐼𝑀1
𝑙𝑎 ,𝐼𝑀2

𝑙𝑏 . 𝜎𝐼𝑀1
𝑙𝑎 . 𝜎𝐼𝑀2

𝑙𝑏                       (A. 5.3) 

Where 𝜌𝐼𝑀1
𝑙𝑎 ,𝐼𝑀2

𝑙𝑏  is the spatial cross-correlation coefficient between IM1 at 

location la and IM2 at location lb, defined by the LMCR, 𝜎𝐼𝑀1
𝑙𝑎 and 𝜎𝐼𝑀2

𝑙𝑏 are the 

predictions of logarithmic standard deviation of IM1 at location la and IM2 in location lb, 

respectively, as determined by the selected GMPEm, for Rupn. In this context, IM1 and 

IM2 represent any two intensity measures of interest. 

It is possible to further partition 𝑢 and Σ, as follows: 

𝑢 = [
𝑢𝑆𝑎(𝑇1)

𝑢𝐼𝑀∗
] with size  [

𝐿𝑝𝑥 1

(𝑁∗𝑥𝐿𝑝)𝑥 1
]                                (A. 5.4) 

Σ = [
Σ𝑆𝑎(𝑇1),𝑆𝑎(𝑇1) Σ𝑆𝑎(𝑇1),𝐼𝑀∗

Σ𝐼𝑀∗,𝑆𝑎(𝑇1) Σ𝐼𝑀∗,𝐼𝑀∗
] with 

size  [
𝐿𝑝𝑥 𝐿𝑝 𝐿𝑝𝑥(𝑁∗𝑥𝐿𝑝)

(𝑁∗𝑥𝐿𝑝)𝑥 𝐿𝑝 (𝑁∗𝑥𝐿𝑝)𝑥(𝑁∗𝑥𝐿𝑝) 
]                           (A. 5.5) 

Where 𝑢𝑆𝑎(𝑇1) and 𝑢𝐼𝑀∗ are, respectively, the mean vectors of Sa(T1) and the 𝑁∗ 

conditional intensity measures considered at all the Lp locations, and Σ𝑆𝑎(𝑇1),𝑆𝑎(𝑇1), 

Σ𝐼𝑀∗,𝑆𝑎(𝑇1) and Σ𝐼𝑀∗,𝐼𝑀∗ are the partitions of the Σ matrix defined in accordance with the 

partition of the mean vector. Consequently, the mean vector and spatial cross-covariance 

matrix of 𝐼𝑀∗conditioned on A, in which A is the vector of simulated values of Sa(T1) in 

each of the Lp locations, for GMFj generated for Rupn, are determined as follows: 

 𝑢𝐼𝑀∗
|𝑆𝑎(𝑇1)=𝐴

= 𝑢𝐼𝑀∗+Σ𝐼𝑀∗,𝑆𝑎(𝑇1). Σ𝑆𝑎(𝑇1),𝑆𝑎(𝑇1)
−1(𝐴 − 𝑢𝑆𝑎(𝑇1))              (A. 5.6) 

Σ𝐼𝑀∗|𝑆𝑎(𝑇1)=𝐴
= Σ𝐼𝑀∗,𝐼𝑀∗ − Σ𝐼𝑀∗,𝑆𝑎(𝑇1). Σ𝑆𝑎(𝑇1),𝑆𝑎(𝑇1)

−1. Σ𝑆𝑎(𝑇1),𝐼𝑀∗            (A. 5.7) 

 

 

 

 



 

Chapter 6 SEISMIC HAZARD CONSISTENCY AND 

EPISTEMIC UNCERTAINTY IN FRAGILITY MODELLING 

AND PORTFOLIO LOSS ESTIMATION 

This chapter is based on the following reference: 

Sousa, L.; Marques, M.; Silva, V.; Weatherill, G. (2017). Seismic hazard consistency and 

epistemic uncertainty in fragility modelling and portfolio loss estimation. Earthquake 

Engineering and Structural Dynamics (under review)  

Summary 

State-of-the-art methodologies for the seismic risk assessment of building portfolios have 

benefitted from the continued improvement in the characterization of seismic hazard, especially 

with respect to the modelling of the associated epistemic uncertainties. Logic-trees have become 

a standard feature of probabilistic seismic hazard and risk assessments, reflecting distinct hazard 

modelling options. However, the development of fragility and loss models that are able to 

adequately reflect these uncertainties in a consistent way has been subject of limited scrutiny. In 

this research, the subject of ‘hazard-dependency’ of fragility is addressed, through a methodology 

that, for each logic-tree branch, incorporates: probabilistic seismic hazard analysis, hazard-

compatible record-selection, nonlinear response history analysis, and fragility assessment of three 

different building classes located at the sites of Lisbon and Faro (Portugal). Three distinct 

seismological models and twenty combinations of ground motion prediction equations are used, 

in order to evaluate if fragility functions are in fact dependent on the hazard properties assumed 

for each branch, when analytical methodologies are used to characterize both hazard and fragility 

components. Furthermore, the impact of considering a single fragility model common to all the 

branches, as opposite to a distinct ‘hazard-specific’ fragility per branch, is investigated in the 

context of a probabilistic loss estimation exercise. This leads to the proposal of an innovative 

fragility assessment / loss estimation framework which, based on the concept of conditional 

fragility functions presented in Chapter 4 and further developed in Chapter 5, is able to ensure the 

hazard-consistency of the fragility results of each logic-tree branch, while avoiding a time-

consuming analytical fragility assessment for the entire logic-tree. 
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6.1 Introduction 

A meaningful evaluation of the seismic risk of either single structures or building 

portfolios requires the consideration of various sources of uncertainty. The so-called 

aleatory uncertainty is due to randomness, while epistemic uncertainty is related to lack 

of knowledge of the process being observed (Bradley, 2009). In addition to the continual 

improvement in the characterization of seismic hazard (and its link with structural 

response), recent years have seen a major swing in emphasis towards the explicit 

inclusion of uncertainties in the performance assessment of structural systems (Bradley, 

2013). However, these have been mostly (if not entirely) related with the treatment of 

record-to-record variability, and/or the random nature of geometric and structural 

parameters (e.g. Jalayer et al. (2010), Liel et al. (2009)), in the evaluation of the seismic 

response of buildings. Epistemic uncertainty, on the other hand, has become a standard 

feature of probabilistic seismic hazard analysis (PSHA), where the goal is to determine 

the probability of exceeding a given level of a seismic intensity measure of interest 

(Bommer & Scherbaum, 2008). More specifically, logic-trees (Pagani, et al., 2014) are 

commonly used to represent distinct hazard modelling possibilities, leading to a set of 

alternative views of a process that has only one true but unknown result (Der Kiureghian 

& Ditlevsen, 2008).  

In recent studies, record-to-record variability has been addressed in a way that is 

consistent with the hazard expected at the site of interest. Methods such as the Conditional 

Spectrum (Baker (2011), Jayaram et al. (2011)) (CS) and the General Conditional 

Intensity Measure (GCIM) (Bradley, 2010a) allow record selection to reflect ground 

motion properties determined by the local hazard, providing a direct link between seismic 

hazard and building response. As a result, a seismic risk assessment framework should, 

in theory, include a fragility model that reflects these uncertainties in a coherent way. In 

other words, since structural response is dependent on the set of ground motions to which 

the building models are subjected (Bradley, Dhakal, Cubrinovski, & MacRae, 2009b) 

and, in turn, ground motion selection is dependent on hazard, then an analytical fragility 

model shall not only be structure-specific but also “hazard-specific”. In practice, this 

imparts that, in theory, when the epistemic uncertainty of the hazard model is quantified 

through a logic-tree approach, distinct record sets shall be selected for each branch 

(Pagani, et al., 2014) of the logic tree, leading to a distinct fragility function per branch. 
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The issues above are of theoretical nature and have been subjected to limited 

scrutiny by the scientific community. Therefore, in this research, the subject of “hazard-

specific” fragility is addressed in detail, through a methodology that incorporates: a) 

probabilistic seismic hazard analysis (PSHA) for the sites of Lisbon and Faro (Portugal), 

using a logic-tree approach that reflects distinct seismological and ground motion 

prediction modelling options, b) hazard-compatible record selection and nonlinear 

response history analysis (NLRHA) for each logic-tree branch and each site, and c) 

fragility analysis and comparison between fragility functions obtained for each assessed 

hazard branch, at each site. In this framework, the present study has the aim to assess if 

the epistemic uncertainty of the hazard model shall appropriately be propagated into the 

fragility analysis, when analytical methodologies are used to characterize both hazard and 

fragility components. More specifically, fragility functions obtained for each branch are 

compared using a statistical approach, in order to investigate whether the appraised 

differences corroborate the assumed “hazard-dependency” of fragility.  

In order to obtain a more meaningful comparison in the context of seismic risk, 

probabilistic loss estimation is further performed for 6 different building portfolios 

located in Lisbon and Faro. In this exercise, risk metrics are evaluated for each group of 

assets and assessed hazard branch, using two distinct fragility assessment approaches: a) 

a distinct model for each logic-tree branch, consistent with each distinct hazard model, 

and b) a state-of-the-art method in which only a single fragility model, common to all 

branches, is used. As further described in this chapter, the objective of this exercise is to 

verify the hypothesis of ‘hazard-dependency’ of fragility results, as well as evaluating 

what are the repercussions of using fragility functions that are consistent with the hazard 

modelling options of each branch, as opposite to a single fragility model. Finally, in light 

of the appraised results, a methodology for the fragility assessment of building portfolios 

is presented, in which the epistemic uncertainty of the hazard model can be adequately 

propagated into the fragility, vulnerability and loss results. This framework resorts to the 

concept of conditional fragility functions previously presented in Chapter 4, providing a 

tool that is able to provide “hazard-consistent” fragility and loss estimates, without the 

need for the time consuming and computationally demanding record selection / NLRHA 

for all the branches of the considered hazard logic-tree. 
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6.2 Fragility assessment methodology 

The analytical methodology implemented in this research, presented further in 

detail, consists of: a) PSHA for Lisbon and Faro, Portugal, using a logic-tree approach in 

which distinct combinations of seismological and ground motion prediction models are 

considered in each of the branches, b) record selection and NLRHA for each branch 

defined in a), for each site and structural class, and c) analysis and comparison between 

fragility functions derived using the NLRHA results obtained in b). 

6.2.1 Probabilistic seismic hazard modelling 

In order to perform the probabilistic seismic hazard assessment for the sites of 

Lisbon and Faro (Portugal), the recent developments of the SHARE initiative (Woessner, 

et al., 2015) have been considered. As a result, the epistemic uncertainty associated with 

the definition of seismicity at the sites of interest is defined by three distinct seismological 

models. The first, designated herein as AS-model, is based on the definition of areal 

sources for which earthquake activity is evaluated individually, the second relates to a 

kernel-smoothed zonation-free stochastic earthquake rate model (Hiemer, et al., 2014) 

that considers seismicity and accumulated fault moment (SEIFA-model), and the last 

results from the identification of large seismogenic sources using tectonic and 

geophysical evidence, incorporating a fault source / background seismicity model 

(FSBG-model) (Haller & Basili, 2011). For the sake of synthesis, further details of these 

models are not presented herein. For a more comprehensive definition of its properties, 

readers are referred to the work of Woessner et. al. (2015)  and references therein. 

For consistency with the above, epistemic uncertainty in ground motion prediction 

has also been foreseen via the implementation of a logic-tree approach. This way, 

according to the SHARE methodology, sets of possible GMPEs are defined for Active 

Shallow Crust (ASC), Stable Continental Crust (SCC), Shield (SH), Subduction (SUB) 

and Volcanic (VOL) tectonic region types (TRTs). In order to define the applicable sets 

of GMPEs, the TRT associated with each seismogenic source in each source model has 

been identified, within a maximum distance of 250 km. As illustrated in Figure 6.1 for 

the cases of AS and FSGB models, tectonic environments of Stable Continental Crust 

(Lisbon), and Stable Continental and Active Shallow Crust (Faro) are applicable. 

The final logic-tree structure is presented in Figure 6.2, in which all the possible 

combinations of source model / ground motion prediction equations are schematically 
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illustrated. In the case of Lisbon, a total of 15 branches (i.e. 3 source models * 5 SCC 

GMPEs) is applicable, whereas 60 combinations (i.e. 3 source models * 5 SCC GMPEs 

* 4 ASC GMPEs) exist for Faro, where both ASC and SCC seismic sources are relevant. 

 
Figure 6.1 – Tectonic region environment (TRT) associated with each of the sources of the AS-

model (left) and the FSBG-model (right). Stable Continental and Active Shallow sources are 

illustrated as: light and darker blue, respectively, for area sources, and light and darker red, 

respectively, for fault traces. Dashed circles represent the maximum distance of 250 km. 

For clarity herein, a given branch is further denoted by an acronym that includes 

references to the corresponding source model, SCC GMPE and ASC GMPE, by this 

order. As an example, “AS-AB10-CF08” corresponds to a combination in which the AS-

model is used, while the Akkar & Bommer (2010) and Cauzzi & Faccioli (2008) ground 

motion prediction equations are selected for SCC and ASC tectonic region environments, 

respectively. In the case of Lisbon, where only SCC applies, acronyms include a single 

GMPE instance, as in the following example: “AS-AB10”. 

 

Figure 6.2 – Illustration of the source model / GMPE logic tree adopted for the sites of Faro 

and Lisbon. Acronyms adopted for each source model / GMPE are presented adjacently. 
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It shall be noted that the objective of the Author is not to specifically address the 

evaluation of seismic hazard in Portugal, for which several notable studies (e.g. Vilanova 

& Fonseca (2007), Vilanova et al. (2007)) exist. The present objective is to adopt a model 

that, having been scrutinized by the scientific community, provides an adequate platform 

for the investigation of the subject of “hazard-consistent” fragility. With this respect, the 

SHARE proposal has been selected amongst all the alternative hazard models proposed 

for Portugal and/or Europe, as it is the one for which a wider and more comprehensive 

range of epistemic uncertainties is foreseen. 

6.2.2 Hazard-consistent record selection and disaggregation 

The Generalized Conditional Intensity Measure (GCIM) approach is adopted herein 

for the purpose of record selection, as it allows the predictability of all the intensity 

measures verified to influence the seismic response of the assessed structures. Readers 

are referred to the work of Bradley (2010a) for a detailed description of the theoretical 

background of the methodology. However, in brief, the fundamental basis of the GCIM 

is that any set of ground motion parameters can be assumed to follow a multivariate 

lognormal distribution, and the conditional distribution given a) a rupture scenario, and 

b) the occurrence of a specific value of an intensity measure parameter (IMj), has a 

univariate lognormal distribution. 

Upon definition of the ground motion prediction equation of interest and the 

correlation between the considered intensity measures, the conditional distribution of IMi 

given IMj=imj is obtained via the total probability theorem as: 

𝑓𝐼𝑀𝑖|𝐼𝑀𝑗=𝑖𝑚𝑗
= ∑ 𝑓𝐼𝑀𝑖|𝑟𝑢𝑝𝑖,𝐼𝑀𝑗=𝑖𝑚𝑗

𝐼
𝑖=1 . 𝑃𝑟𝑢𝑝𝑖|𝐼𝑀𝑗=𝑖𝑚𝑗

                    ( 6.1 ) 

Where I is the total number of ruptures in the earthquake rupture forecast (ERF) 

(Pagani, et al., 2014) 𝑓𝐼𝑀𝑖|𝐼𝑀𝑗=𝑖𝑚𝑗
 is the probability density function (pdf) of IMi given 

IMj=imj, 𝑓𝐼𝑀𝑖|𝑟𝑢𝑝𝑖,𝐼𝑀𝑗=𝑖𝑚𝑗
 is the pdf of IMi given IMj=imj and Rup=rupi, and 𝑃𝑟𝑢𝑝𝑖|𝐼𝑀𝑗=𝑖𝑚𝑗

 

is the contribution of rupi to the assessed level of seismic intensity (imj). 

Probabilistic seismic hazard analysis and disaggregation were developed in the 

OpenQuake engine (Pagani, et al., 2014), in accordance with the theoretical background 

established by McGuire (2004) and Bazzurro & Cornell (1999), respectively. In this 

framework, disaggregation analysis allows an investigation into the contribution of 

different earthquake ruptures to the probability of a certain ground motion level at the site 
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of interest. Given the large number of earthquake ruptures generated by the ERF for each 

source model, OpenQuake does not provide the contributions on a rupture-by-rupture 

basis. Instead, these are classified and grouped into magnitude (M) / distance (R) bins. 

However, given the open-source nature of the platform, it was possible to produce the 

necessary intermediate results for the computation of the contribution of a particular 

rupture (rupi) to the occurrence of a given ground motion intensity (IMj=imj). The latter 

is herein denoted as 𝑃𝑟𝑢𝑝𝑖|𝐼𝑀𝑗=𝑖𝑚𝑗

, and defined according to Equations 6.2 and 6.3: 

𝑃𝑟𝑢𝑝𝑖|𝐼𝑀𝑗≥𝑖𝑚𝑗

=

𝑙𝑛[1−𝑃𝐼𝑀𝑗≥𝑖𝑚𝑗|𝑟𝑢𝑝𝑖

]

𝑙𝑛[∏ (𝑃𝐼𝑀𝑗≥𝑖𝑚𝑗|𝑟𝑢𝑝𝑖

𝐼
𝑖=1 )]

                                ( 6.2 ) 

𝑃𝑟𝑢𝑝𝑖|𝐼𝑀𝑗=𝑖𝑚𝑗

≅
1

𝑣𝐼𝑀𝑗≥𝑖𝑚𝑗 − 𝑣𝐼𝑀𝑗≥𝑖𝑚𝑗+∆𝑖𝑚𝑗
∗ 

∗ [𝑃𝑟𝑢𝑝𝑖|𝐼𝑀𝑗≥𝑖𝑚𝑗

. 𝑣𝐼𝑀𝑗≥𝑖𝑚𝑗 − 𝑃𝑟𝑢𝑝𝑖|𝐼𝑀𝑗≥𝑖𝑚𝑗+∆𝑖𝑚𝑗
. 𝑣𝐼𝑀𝑗≥𝑖𝑚𝑗+∆𝑖𝑚𝑗]          ( 6.3 ) 

Where 𝑣𝐼𝑀𝑗≥𝑖𝑚𝑗 is the annual rate of exceedance of a ground motion with an 

intensity level of imj, and ∆𝑖𝑚𝑗 is a small increment of IMj, relative to imj. As highlighted 

by Bradley (2010a), Equation 6.3 becomes exact in the limit as ∆𝑖𝑚𝑗 → 0. For 

illustration, Figure 6.3 presents the rupture-by-rupture disaggregation results for the ERF 

of the AS, SEIFA and FSBG source models, considering peak ground acceleration (PGA) 

as the IMj, and the site of Lisbon. 

 

Figure 6.3 – Rupture-by-rupture disaggregation considering the ERF generated for the AS-

model (left), FSBG -model (middle) and SEIFA-model (right), for PGA=0.5g and site of Lisbon 

(SCC GMPE of AB10). For visual clarity, ruptures are grouped into M / R bins of 0.2 / 5 km 

intervals. 

6.2.3 Numerical models and record selection 

Reinforced concrete construction accounts for approximately 50% of the 

Portuguese building stock and hosts 60% of the national population. Within this building 
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class, at the time of the 2011 Census Survey, 49% of the buildings had not been designed 

to the most recent seismic code (Silva, Crowley, Pinho, Varum, & Sousa, 2015c). 

Therefore, numerical models considered in this study represent typical reinforced 

concrete (RC) buildings with masonry infills, constructed in Portugal before 1958. 

According to the regulations applicable during this construction epoch, structures are 

designed without any seismic design provisions, and are thus defined herein as pre-code. 

In agreement with the work of presented in Chapter 3, Chapter 4 and Chapter 5, 

statistical distributions of material and geometrical properties have been used to create 

synthetic portfolios of structures for different building typologies. According to Silva et 

al. (2015c), a number of 100 assets is necessary to guarantee the statistical significance 

of the generated distribution of structural capacity. For this reason, sets of 100 structures 

have been generated for classes of two, five and eight story buildings. In this case, 

dynamic properties are characterized by the mean fundamental periods of vibration 

extracted from the total sets of 100 assets. These have been found to be 0.26, 0.45 and 

0.70 seconds, for the two, five and eight story buildings, respectively.  

The percentage of reinforcement in the beams and columns is calculated following 

the pre-code regulations and practices corresponding to the ultimate and serviceability 

limit states, in accordance with the sampled geometrical and material characteristics. 

Moreover, to maintain the computational effort at a reasonable level, each structure is 

modelled as a single infilled moment frame with three bays. As schematically presented 

in Figure 6.4 for the case of 5 story buildings, each frame was modelled in a 2D 

environment using the open-source software OpenSees (McKenna, Fenves, Scott, & 

Jeremic, 2000), with force-based distributed plasticity beam-column elements.  

 

Figure 6.4 – Schematic representation of the five-story RC frame model: front (left), side 

(centre) and isometric view (right) with infills, adapted from Silva et al. (2015c) 

For the sake of synthesis herein, readers are referred to the aforementioned work by 

Silva et al. (2015c) for details of the numerical considerations adopted with regards to the 
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cross section discretization and integration points of the elements, material constitutive 

relationships, P-delta effects, and the infill panel modelling approach. 

6.2.3.1 ‘Targets’ for record selection 

The vector of intensity measures considered in the definition of ‘targets’ for ground 

motion selection (i.e. IM) includes intensity parameters (i.e. IMi) of peak ground 

acceleration (PGA), Housner intensity (HI) (Housner, 1952) and spectral ordinates within 

the range of 0.05 to 3.0 seconds, conditioned on IMj being the spectral acceleration at the 

mean fundamental period of vibration of each class - Sa(T1). This approach builds on the 

work presented in Chapter 4, where the issue of predictability has been foreseen in the 

definition of IM, and matters of efficiency, sufficiency and scaling robustness have been 

verified when analysing similar structural models as those used herein. As a result, a 

number of 60 ground motion records have been selected and scaled per level of Sa(T1) 

(for each site, logic tree branch and structural typology), with the latter ranging from 0.1g 

to 1.0g with intervals of 0.1g. 

The probabilistic distribution of the selected IM vector conditioned on a given level 

of Sa(T1) is designated henceforth as 𝑓𝐼𝑀|𝑆𝑎(𝑇1)=𝑎
, being determined according to the 

hazard-consistent probabilistic distribution of each IMi given Sa(T1)=a,  as established 

in Equation 6.1, and the correlation models presented in Table 4.1. For details regarding 

the database of natural ground motion records used, readers are referred to section 4.3.2. 

In order to illustrate the differences between ‘target’ distributions computed for 

different branches of the logic-tree, Figure 6.5 presents the comparison between 

probabilistic distributions of spectral ordinates between periods of 0.05 and 3.0 seconds. 

In this figure, distinction is made only between targets computed for different source 

models, despite the fact that each individual source model / GMPE combination is shown. 

The objective is to highlight the significant differences in the mean and variance of 

‘target’ distributions computed for different logic-tree branches, rather than evaluating 

each of those, individually. 

A possible way to assess how the illustrated differences in ‘targets’ for ground 

motion selection propagate to discrepancies in fragility results is to evaluate what is the 

degree of ‘similarity’ between distributions of IMs in the resulting record sets. Therefore, 

in order to quantitatively compare conditional ‘target’ distributions of IMs, a statistical 

approach was implemented. For a given level of Sa(T1) and structural typology (and a 



122 Chapter 6 

 

certain logic-tree branch) one is able to evaluate what is the empirical distribution of each 

IMi. Therefore, the null hypothesis that the empirical distribution of IMi obtained for a 

branch i follows the same underlying normal distribution as that of branch j can be 

assessed using the two-sample Kolmogorov-Smirnov (KS) test (Ang & Tang, 2007). In 

practice, if the so-called p-value computed in the KS test is large, one cannot reject the 

null hypothesis of the two assessed samples being drawn from the same parent 

distribution. Conversely, if the p-values are smaller than the statistical significance level 

of interest (10% in the present case), the null hypothesis is rejected and the two empirical 

distributions are considered different at the statistical significance level adopted.  

 
Figure 6.5 – Target spectral ordinates of periods ranging between 0.05 and 3.0 seconds (solid 

lines correspond to the mean and dashed lines represent 16 and 84 percentiles, i.e., mean +/- 1 

standard deviation). Sites of Lisbon (upper) and Faro (lower), considering 2, 5 and 8-floor 

structures and a conditional Sa(T1)=0.5g. 

This exercise is illustrated in Figure 6.6, where the p-values obtained when 

comparing empirical distributions of HI computed for each of the logic-tree branches 

applicable to Lisbon are presented. Given the wide range of intensity measures considered 

in the process of record-selection, it would not be practical to demonstrate the results 

pertaining to the comparison of each individual IMi. For this reason, HI has been selected, 

as it is able to translate the differences in spectral ordinates at periods between 0.1 and 

2.5 seconds (HI is the integral of the pseudo-velocity over the period range of 0.1 to 2.5 

sec.). 

According to Figure 6.6, p-values lower than 10% are identified in approximately 

25%, 35% and 50% (respectively for 2, 5 and 8 floors classes) of the instances where 
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target distributions of HI are compared between branches i and j (with i,j ranging from 1 

to 15, i.e. from 1 to the total number of applicable source model /GMPE combinations, 

in Lisbon). In other words, ‘target’ distributions of HI are considered statistically different 

(at the 10% significance level), in approximately 25%, 35% and 50% of the different 

combinations of branch pairs, for structural classes of 2, 5 and 8 floors, respectively. 

Although not presented for the sake of synthesis, similar results have been obtained for 

the remaining IMi and conditional levels of Sa(T1), when considering the logic-tree 

branches applicable to both Lisbon and Faro.  

 
Figure 6.6 – p-values obtained with the KS test when comparing empirical distributions of HI 

computed for each of the logic-tree branches applicable to the site of Lisbon. Structural 

typologies of 2, 5 and 8-floors and conditional Sa(T1)=0.5g. p-values lower than 0.1 are plotted 

in black. 

Despite the fact that an extensive set of intensity measures has been considered for 

record selection (with that set including the IMs for which higher correlation with 

response quantities has been observed by Sousa et. al. (2014) in the analysis of similar 

structural models), the non-linear response of structures is a complex phenomenon that is 

influenced by ground motion properties that may not comprehensively be represented by 

the set of IMs considered herein. Therefore, despite the valuable insight provided by the 

results presented in Figure 6.6, a robust exercise requires further NLRHA and 

corresponding fragility and loss estimation, subsequently presented. 

6.3 Hazard-consistency of fragility functions  

The use of local criteria to define limit states in the context of building fragility 

analysis may not be appropriate, as highlighted in section 4.4. Therefore, in accordance 

with Chapter 3, Chapter 4 and Chapter 5, structural response is evaluated based on the 

maximum inter-story drift (ISD) and global drift (GD), considering four damage states: 

Slight Damage (SD), Moderate Damage (MD), Extensive Damage (ED) and Collapse 
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(Col). For the sake of synthesis, readers are referred to section 4.4.1 for details on the 

definition of damage state limits, as a function of ISD and GD response parameters. 

6.3.1 Fragility assessment 

For the purpose of fragility assessment, the methodology presented in Chapter 4 

(where similar structural models are analysed) is adopted. According to the latter, for a 

given limit state and structural class, instead of computing a single damage exceedance 

probability for each level of Sa(T1), one is interested in determining 60 ‘record-specific’ 

damage exceedance probabilities, conditioned on that same level of Sa(T1). Because 100 

numerical models are analysed for each of the 60 ground-motion records (per level of 

intensity), this is accomplished by deriving the probabilistic distribution of 100 EDPs for 

each of the records, as thoroughly explained in sections 4.4.3 and 4.4.4 and illustrated in 

Figure 6.7. 

 

Figure 6.7 – Record-specific distributions of EDP and corresponding probabilities of 

exceedance of Extensive Damage, determined according to ISD limit state criteria for 8 story 

frames. Records selected and scaled for Sa(T1)=1.0g (previously presented as Figure 4.10) 

In brief, when the EDP of interest is ISD, any ‘record-specific’ probability of 

exceedance of a given limit state corresponds to the area shown in dark grey in Figure 6.7. 

In the case of GD criteria, on the other hand, a distinct approach is adopted. Unlike the 

ISD criteria, where damage state thresholds are similar for all the structures (black dashed 

line in Figure 6.7), GD criteria are specific to each sampled frame (see section 4.4.1). 

Therefore, probabilities of exceeding a given limit state are perceived as the number of 

‘successes’ (i.e. number of exceedances) in a sequence of 100 independent experiments 

that result in ‘success’ with identical probability (section 4.4.3.2). 

For illustration, Figure 6.8 shows sets of 60 record-specific probabilities of 

exceedance of SD, MD, ED and Col. conditioned on Sa(T1)=0.1g to 1.0g, as a function 

of GD and ISD. In this case, the site of Lisbon is selected and 5-story frames are 

considered.  
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Figure 6.8 – Record-specific probabilities of exceedance of SD, MD, ED and Col, as a function 

of GD (upper) and ISD criteria (lower). Site of Lisbon and 5-story buildings (previously 

presented as Figure 4.13). 

6.3.2 Fragility comparison 

As in Chapter 4, building fragility is herein characterized by intensity-specific 

distributions of (record-specific) damage exceedance probability. In other words, for a 

given level of Sa(T1) and limit state, the 60 corresponding ‘record-specific’ probabilities 

follow a certain probabilistic distribution that can be determined empirically. As a result, 

one can easily recognize that, in order to compare the fragility results obtained for two 

different logic-tree branches, one can assess the null hypothesis that intensity-specific 

distributions arising from branch i are identical to those corresponding to branch j, at a 

given significance level. 

For this purpose, the two-sample Kolmogorov-Smirnov (KS) methodology is used, 

since it allows also a helpful visual representation of the performed test. Loosely 

speaking, the null hypothesis that two data samples are drawn from the same parent 

distribution is tested by checking the largest discrepancy between the two empirical 

cumulative distributions (CDFs). Based on the significance level of interest (10% in the 

present case), a maximum allowed difference (Dm) is computed. If the largest discrepancy 

between CDFs is lower than Dm, one cannot reject the null hypothesis that the two 

samples share the same parent distribution. On the other hand, one considered the samples 

to be statistically different if the largest discrepancy is higher than Dm. 

In order to illustrate the aforementioned exercise, Figure 6.9 shows the visual 

representation of the KS test performed for 2, 5 and 8-story frames (GD criteria), when 
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comparing distributions of Collapse probability conditioned on Sa(T1)=0.5g, at the site 

of Lisbon.  

 
Figure 6.9 – KS test performed when comparing distributions of Col. probability conditioned 

on Sa(T1)=0.5g, at the site of Lisbon. Damage criteria of GD, and structural classes of 2, 5 and 

8-story buildings. 

In this case, the distributions corresponding to SA-AB10 are compared with the 

results from the remaining 14 branches. The illustrated differences between CDFs are in 

the order of magnitude of the allowable limit (Dm), leading to the rejection of the null 

hypothesis for several branches. Since Figure 6.9 reflects only a fraction of results, 

Figure 6.10 to Figure 6.12 present the p-values obtained when using the KS test to 

statistically compare all the branch-specific distributions of damage exceedance 

probability, for both the sites of Lisbon and Faro. Here, limit states of SD, MD, ED and 

Col. are considered, and damage criteria of ISD and GD are foreseen, at a conditional 

Sa(T1)=0.5g. 

According to Figure 6.10 and Figure 6.11, where the black squares correspond to 

the rejection of the hypothesis of two samples of 60 damage exceedance probabilities 

sharing the same parent distribution, discrepancies amongst branches tend to increase 

from SD to Collapse (for 5 and 8-story buildings). Evidently, this trend is related with the 

increase of non-linear excursions as the limit state severity increases. For more severe 

limit states, a higher degree of uncertainty in structural response and consequent 

disparities between any two particular branches are verified.  

In the case of 2-story frames, however, a distinct trend is exhibited. In this case, the 

number of discrepancies amongst branches is similar for limit states of SD, MD and ED, 

due to the higher influence of infill panel behaviour (in comparison with 5 and 8-story 

buildings). In the case of collapse, differences are much smaller than for prior limit states 

(for 2-story frames), because, unlike 5 and 8-story frames, the infill panels are still 

effective at high levels of deformation, resulting in values of collapse probability close to 

zero for virtually all the 60 records, irrespectively of the hazard branch.  
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Figure 6.10 – p-values obtained with the KS test when comparing empirical distributions of 

damage exceedance probability computed for each of the logic-tree branches applicable to the 

site of Lisbon. Structural typologies of 2 (left), 5 (middle) and 8-floors (right), conditional 

Sa(T1)=0.5g, and GD criteria. p-values lower than 0.1 are plotted in black. 

Moreover, it is also possible to conclude that (irrespectively of the limit state) 

differences in ‘branch-specific’ samples of damage exceedance probability increase with 

the number of floors of the assessed structural class (i.e. for a given limit state, not only 

p-values decrease in general with the increase of the number of floors, as the number of 

instances in which p-value<alpha increases as well). This finding is consistent with the 

results presented in Figure 6.6, where (similar) discrepancies between record selection 

‘targets’ from different branches are scrutinized within a similar statistical approach. 

It is interesting to note that the discrepancies described above seem to be influenced 

equally by the differences between seismic source and ground motion prediction models. 

In other words, there is no evidence that discrepancies amongst branches are more 

pronounced when changing the GMPE (for a given source model), when compared with 

the differences registered between different source models, for a given GMPE. 

For the sake of synthesis, only the results corresponding to GD criteria are presented 

in the case of Faro (in Figure 6.12). For the same reason, only Sa(T1)=0.5g has been 
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addressed in Figure 6.10 to Figure 6.12. However, results similar to those presented in 

this section have been verified for all the assessed levels of Sa(T1) and damage criteria 

(for locations of Lisbon and Faro). 

 
Figure 6.11 – p-values obtained with the KS test when comparing empirical distributions of 

damage exceedance probability computed for each of the logic-tree branches applicable to the 

site of Lisbon. Structural typologies of 2 (upper), 5 (middle) and 8-floors (lower), conditional 

Sa(T1)=0.5g, and ISD criteria. p-values lower than 0.1 are plotted in black. 

The aforementioned results corroborate the assumption made by the Author in the 

“Introduction” of this chapter, i.e. when the epistemic uncertainty of the hazard model is 

quantified through a logic-tree approach, fragility results are in fact “hazard-specific” (or 

“branch-specific”, for simplicity). One might argue that this is the direct result of the 

selected intensity measure - Sa(T1) – not being sufficient (Luco, 2002). In other words, if 

one were to use a sufficient intensity measure, in which sufficiency is understood as the 

independency of response from parameters other than Sa(T1), then the differences in 

record selection ‘targets’ among different hazard branches (see Figure 6.5) would not be 

propagated into structural response (i.e. only Sa(T1) would influence the response). On 

the other hand, because such a sufficient intensity measure arguably does not exist, IMs 

other than Sa(T1) do in fact influence structural response, and different probabilistic 
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distribution of these IMs are reflected into distinct (‘branch-specific”) and fragility 

results. 

 
Figure 6.12 – p-values obtained with the KS test when comparing empirical distributions of 

damage exceedance probability computed for each of the logic-tree branches applicable to the 

site of Faro. Structural typologies of 2, 5 and 8-floors, conditional Sa(T1)=0.5g, and GD criteria. 

p-values lower than 0.1 are plotted in black, and branches are numbered from 1 to 60. 

6.4 Epistemic uncertainty and probabilistic loss estimation 

In this section, the epistemic uncertainty of the hazard and fragility models (see 

previous section) is accounted for in a probabilistic loss estimation exercise in which 6 

distinct building portfolios are considered. 

6.4.1 Test-bed building portfolios 

Using the data from the Portuguese Building Census survey of 2011 (INE, 2015), 

three building portfolios referring to two, five, and eight-story reinforced concrete pre-

code buildings in the districts of Lisbon and Faro have been considered (resulting in a 
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total of 6 portfolios). Since the referred survey provides building counts at the parish-

level resolution, the aggregation of assets at a single location (e.g. the parish centroid) 

can introduce significant errors. This is particularly relevant in larger regions, where the 

spatial distributions of seismic hazard and building exposure tend to be significantly 

unbalanced, i.e. the ground motion at the point where buildings are 'lumped' is virtually 

always different from that at the actual location of the assets. As a result, the GEOSTAT 

2011 population distribution dataset (GEOSTAT, 2011), which provides the population 

count in a grid of 1 km2 resolution, has been used to distribute the number of buildings in 

each parish proportionally to the amount of population estimated at each grid cell, as 

illustrated in Figure 6.13 and Figure 6.14. 

 
Figure 6.13 – Total replacement value (EUR) of two (left), five (middle) and eight-story (right) 

reinforced concrete pre-code buildings located in the district of Lisbon, Portugal. Spatial 

resolution of 1km2 

 
Figure 6.14 – Total replacement value (EUR) of two (left), five (middle) and eight-story (right) 

reinforced concrete pre-code buildings located in the district of Faro, Portugal. Spatial 

resolution of 1km2. For the sake of visual clarity, only a part of the district is shown. 

Similarly to what has been performed in section 5.4.1, the information provided by 

Silva et al. (2015b) has been used to determine the economic value of each building class 

as the product of: a) the respective average number of dwellings per class (which is a 

function of the number of floors), b) the average area per dwelling determined for the 

interested region, in m2, and c) the average unit cost of replacement in EUR/m2. 
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6.4.2 Fragility and vulnerability models 

In order to assess the impact of propagating the uncertainty of the hazard model 

into the corresponding “branch-specific” fragilities, one is interested in determining what 

are the differences in risk estimates when considering: 

a) A distinct ‘branch-specific’ fragility model for each branch (Figure 6.15);  

b) A single model for all branches, as in state-of-the-art practice (e.g. (Pagani, 

et al., 2014)).  

For the sake of consistency, it is important that approaches a) and b) are common in terms 

of the methodology used in their analytical derivation. Therefore, model b) is herein 

selected as the ‘branch-specific’ model that corresponds to the median hazard branch. It 

shall be highlighted that, in this context, the median branch is that associated with the 

median hazard curve. The ‘median’ is preferred over the ‘mean’ definition of hazard, 

since the computation of ‘mean hazard’ imparts several considerations regarding what 

the weights in the logic tree represent, in a probabilistic sense (Abrahamson & Bommer, 

2005), which is not the focus of this study. 

In Figure 6.15, an example of a ‘branch-specific’ fragility model is presented, along 

with the schematic illustration of how it is used to compute the corresponding 

vulnerability functions. More specifically, fragility results are characterized by what is 

commonly understood as the “true” value of exceedance probability of a limit state (lsi), 

previously designated as �̃�𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
 (section 4.4.4.1). According to state-of-the-art 

practice, rather than computing ‘record-specific’ probabilities of exceedance (as 

presented in the previous section), one can obtain  �̃�𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
 from the overall 

distribution of 6000 EDP values (60 ground motion records x 100 frames) for each level 

of Sa(T1). This is illustrated in Figure 6.15, where ‘record-specific’ exceedance 

probabilities of SD, MD, ED and Col. are plotted against the respective values of 

�̃�𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
. 

As a result, a cumulative lognormal density function can be fitted to the intensity-

dependent �̃�𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
 values, where the regression uncertainty is obtained by means of 

a bootstrap sampling method with replacement (Wasserman, 2004). In this framework, 

200 synthetic datasets are randomly generated from the original values of �̃�𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
, 

resulting in 200 corresponding bootstrapped fragility functions, as illustrated in 

Figure 6.15. In this context, the appropriate correlation between probabilities of 
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exceedance of different damage states is guaranteed by the consistency between bootstrap 

samples across different damage states, i.e. the indices of the values that are drawn from 

the original dataset of SD exceedance probabilities are considered in order to constitute 

the corresponding bootstrap samples of ED, MD and Collapse probabilities for a given 

Sa(T1)=a. 

 

Figure 6.15 – Example of a ‘branch-specific’ fragility model and corresponding vulnerability, 

using the damage-to-loss relationship proposed by Silva et al. (2015c) and the 2-story building 

class. In this case, branch AS-AB10 and the site of Lisbon are selected, and GD criteria are 

considered. For simplicity, ‘poE’ stands for ‘probability of exceedance’. 

 The damage-to-loss model used for combining fragility results into vulnerability 

functions is adapted from that previously in Chapter 5. Deterministic damage ratios (i.e. 

ratio between attained loss and replacement value of an asset) of 0.10, 0.30, 0.60 and 1.0 

are assumed for limit states of SD, MD, ED and Col., respectively. As a result, 200 

damage ratios can be computed for each level of Sa(T1) (one for each bootstrapped 

fragility), resulting in a distribution of DR that can be approximated by a Beta probability 

density function (Ross, 2009). 

6.4.3 Loss estimation methodology 

In the process of risk computations, several studies have demonstrated the 

importance of accounting for spatial cross-correlation of ground motion residuals in the 

evaluation of portfolio losses (e.g. Weatherill et al. (2015), Silva (2016)). Therefore, the 

so-called probabilistic event-based risk tool of the OpenQuake-engine has been used in 

this study. This calculator uses stochastic event sets and associated spatially correlated 

ground-motion fields (Pagani, et al., 2014) to compute loss exceedance curves for each 

asset contained in the exposure model, using the correlation model proposed by Jayaram 

and Baker (2009). 
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When the correlation of uncertainty of the vulnerability model is incorporated in 

loss estimation procedures, it is typically done such that when sampling the vulnerability 

of two assets with the same building class, the residuals are assumed to be either 

uncorrelated of perfectly correlated (Taylor, 2015). This is evidently done in order to 

provide two boundary condition to the problem. However, in cases such as the present 

one, where the variability of damage ratios is related to the uncertainty of the fragility 

regression, there is no evident physical meaning behind the assumption of any degree of 

spatial correlation between damage ratio residuals. For this reason, loss calculations are 

herein performed assuming that damage ratio residuals are perfectly uncorrelated. 

6.4.4 Loss assessment results 

The risk to earthquake action of a given building portfolio is commonly described 

through a loss exceedance curve that specifies the annual frequency of exceedance of a 

range of possible loss values. Therefore, these curves are used in order to compare loss 

results obtained when considering methods a) and b) for each branch of the logic-tree 

applicable to the building portfolios located in Lisbon and Faro (see section 6.4.1).  

Unquestionably, loss exceedance curves (and associated uncertainty) are extremely 

relevant to the comparison presented in this section, as illustrated in Figure 6.16, where 

the results of models a) and b) are shown for branch AS-AB10 of the logic tree applicable 

to the 5-story building portfolios located in Lisbon and Faro. However, comparing these 

curves may not be a straightforward matter, as doing so would require evaluating the 

differences in exceedance rates obtained for each of the possible loss values. Average 

Annual Loss values (Pagani, et al., 2014), on the other hand, while still encapsulating the 

information of the entire loss curve, are more concise and easily understandable outputs.  

 

Figure 6.16 – Loss exceedance curves obtained with models a) and b) for branch AS-AB10. 5-

story building portfolio located in Lisbon (left) and Faro (right), and GD criteria. 
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As a result, as shown in Figure 6.17 and Figure 6.18, loss exceedance curves (and 

associated uncertainty) are used to compute the corresponding AAL values, allowing one 

to determine the median, 16% and 84% percentile (absolute) differences between the 

results of approaches a) and b), for each logic-tree branch.  

According to Figure 6.17 and Figure 6.18, it is evident that approach b) (i.e. 

considering a single fragility model for all the logic-tree branches) is not capable of 

reflecting the ‘hazard-dependency’ of building fragility and associated epistemic 

uncertainty. As illustrated, absolute errors with respect to the ‘branch-specific’ model a) 

can range up to 1000% for portfolios of 5 and 8-story buildings located in the districts of 

Lisbon and Faro, irrespectively of damage criteria. In this context, it shall be noted that, 

for the sake of synthesis, only the results of the 5-story portfolio are presented in the case 

of Faro. However, the errors obtained for 8-story structures are similar to those illustrated 

for the 5-story buildings in this location.

 

Figure 6.17 – Median, 84% and 16% percentile absolute differences between EAL computed using models a) and 

b), for all the branches. 2 (left), 5 (middle) and 8-story (right) building portfolios located in Lisbon. 

 

Figure 6.18 – Median, 84% and 16% percentile absolute differences between EAL computed using models a) and 

b), for all the branches. 5-story building portfolio located in Faro. 



 

In the case of 2-story portfolios, on the other hand, errors tend to be one order of 

magnitude lower than those of 5 and 8-story buildings (Figure 6.17). This is consistent 

with the smaller discrepancies between ‘branch-specific’ fragilities exhibited in the case 

of the 2-story building class (see section 6.3.2 and Figure 6.10 to Figure 6.12). In other 

words, because differences between ‘branch-specific’ fragilities are generally lower in 

the case of 2-story buildings (especially for damage state of Col.), the discrepancies 

between fragility models a) and b) are also smaller than in the cases of 5 and 8-story 

buildings. Nonetheless, the errors attained are still in excess of 100% for most branches 

(Figure 6.17), which is clearly not satisfactory. 

6.5 Conditional fragility functions and hazard-consistent 

fragility 

It is clear that the only suitable way to appropriately propagate the epistemic 

uncertainty of the hazard model into the corresponding loss estimation results is by 

considering a fragility model that is consistent with each of the considered hazard-

modelling approaches. Unless a sufficient intensity measure is used, fragility results are 

dependent on the properties of the ground-motion records selected for each logic-tree 

branch, which, in turn, are distinct for different source model / GMPE combinations.  

In this framework, it is necessary to develop one fragility model per hazard logic-

tree branch, which imparts a very significant computational effort. Therefore, in this 

section, a methodology based on the concept of conditional fragility functions previously 

proposed (Chapter 4 and Chapter 5) is presented, allowing one to avoid the effort of 

performing record selection and NLRHA for each logic-tree branch, while ensuring that 

the fragility model considered is nonetheless ‘branch-specific’. 

6.5.1 Conditional fragility functions and its use in loss estimation 

As presented in Figure 6.8, building fragility is herein characterized by intensity-

specific distributions of (record-specific) damage exceedance probability. Therefore, for 

a given level of Sa(T1), if one assigns the record-specific values of each IMi determined 

in section 6.2.3.1 (denoted as 𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎) to the corresponding record-specific 

probabilities, a cumulative lognormal curve can be fitted to the resulting scatter. 

According to section 4.4.5, once the most efficient IMi is selected (i.e. the one for which 

the correlation with damage exceedance probabilities of SD, MD, ED and Col is higher), 
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the resulting conditional fragility functions provide a parametric relationship between 

𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎 and damage exceedance probabilities when records are selected and scaled 

for Sa(T1)=a (Figure 6.19). 

In Chapter 5, a loss estimation framework that features the simulation of conditional 

spatially correlated random fields of 𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎 is presented, in order to demonstrate 

the advantages of using conditional fragility functions within the context of loss 

estimation of building portfolios. More specifically, it is shown that conditional fragility 

functions are particularly relevant for the ‘hazard-consistent’ modelling of the uncertainty 

in fragility and its spatial correlation, which greatly influences the loss estimation of 

spatially distributed portfolios. For illustration, Figure 6.19 shows one example of a 

conditional fragility model, as well as the corresponding state-of-the-art approach of 

considering only the values of �̃�𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
.  

 

 
Figure 6.19 – Record-specific probabilities of exceedance of ED, as a function of GD criteria, 

and corresponding conditional fragility functions for the cases of Sa(T1)=0.5g, 1.2g and 2.0g, as 

well as the values of �̃�𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
 (black squares) and associated uncertainty determined by 200 

bootstrapped lognormal fragility curves, for 5-story buildings located in Lisbon (previously 

presented as Figure 5.13). 

6.5.2 Fragility models and loss estimation methodology 

Here, the matters of spatial correlation of fragility and vulnerability residuals 

studied in Chapter 5 will not be addressed in detail. Differently, the objective of the 

present section is to demonstrate how, through the use of conditional fragility functions, 

it is possible to ensure the ‘hazard-consistency’ of the fragility model, while avoiding the 

cumbersome NLRHA for each branch of the logic-tree. 
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In order to do so, it is important to highlight one of the most important 

characteristics of conditional fragility functions. As demonstrated in section 5.2, a single 

IMi used as abscissa of these functions is sufficient to account for all the explanatory 

variables (i.e. all the IMi) influencing the seismic response of the assessed structures, at 

a given level of Sa(T1). As a result, it follows that although the distributions of ‘record-

specific’ exceedance probability are clearly dependent on the hazard branch of interest 

(as demonstrated in section 6.3.2), the ‘shape’ of the conditional fragility functions fitted 

to these probabilities is, in theory, independent of the hazard branch. In other words, 

because 𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎 is sufficient, the ‘shape’ (i.e. the parameters) of the conditional 

fragility functions is independent of the source model / GMPE combination.  

With the aim of better understanding the statement above, one might think of the 

following analogy. Since the verified sufficiency implies that considering 𝐼𝑀|𝑆𝑎(𝑇1)=𝑎 

does not provide any additional information with respect to using simply 𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎, 

the values of exceedance probability for a given record depend only on the corresponding 

value of 𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎. Therefore, the trend according to which the increase of 

𝐼𝑀𝑖|𝑆𝑎(𝑇1)=𝑎 will increase the resulting damage exceedance probability depends only on 

the structural properties of the assessed buildings. This trend is thus established by the 

fitted conditional fragility function and, since it depends only on the properties of the 

assessed buildings, it is independent of the source model / GMPE combination 

considered.  

In this context, possible differences between conditional fragility functions (CFFs) 

obtained for different branches are (only) due to the uncertainty that is associated with 

the regression analysis used to fit the curves. Therefore, in order to verify the assumed 

independence of CFFs with respect to the source model / GMPE, as well evaluating the 

impact of possible differences between CFFs across branches (due to regression 

uncertainty), a loss estimation study is carried out. Here, similarly to the exercise 

presented in section 6.4, two distinct fragility models are considered: 

a) A distinct ‘branch-specific’ fragility model for each branch;  

b) A single model for all branches, as in state-of-the-art practice. 

In accordance with section 6.4.2, model b) is selected as the ‘branch-specific’ model 

that corresponds to the median hazard branch. However, the fragility models considered 

herein consist of the aforementioned conditional fragility functions, rather than ‘common’ 

fragility curves regressed over the �̃�𝑙𝑠𝑖|𝑆𝑎(𝑇1)=𝑎
 values (Figure 6.19). For the sake 
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synthesis, readers are referred to Chapter 5 regarding the theoretical details of the 

framework that resorts to conditional fragility functions for the probabilistic computation 

of losses, which is used herein. 

6.5.3 Loss estimation results and comparison 

As in Figure 6.17 and Figure 6.18 (section 6.4.4), Figure 6.20 and Figure 6.21 show 

the median, 16% and 84% percentile (absolute) differences between the AAL values 

obtained when using approaches a) and b), for each logic-tree branch and building 

portfolio. As illustrated, the errors obtained using the methodology proposed in the 

previous sections 6.5.1 and 6.5.2 present maximum values of approximately 10%, as 

opposed to 100% and 1000% verified in the case of ‘state-of-the-art’ fragility and loss 

estimation approach (section 6.4.4).

 
Figure 6.20 – Median, 84% and 16% percentile absolute differences between EAL computed using models a) 

and b), for all the branches. 2 (left), 5 (middle) and 8-story (right) building portfolios located in Lisbon. 

 
Figure 6.21 – Median, 84% and 16% percentile absolute differences between EAL computed using models a) 

and b), for all the branches. 5-story building portfolio located in Faro. 

The above findings are consistent with the verified sufficiency of the conditional 

fragility functions, which validates the proposed methodology as an alternative to the 

time-consuming evaluation of fragility for each logic-tree branch. More specifically, it is 
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demonstrated that, when using conditional fragility functions and the associated loss 

estimation methodology (Chapter 5), it is possible to use a single fragility model common 

to all the hazard branches (e.g. that of the ‘median’ hazard branch), and still ensure the 

‘hazard-consistency’ of results within a maximum error of 10%.  

6.6 Final remarks 

In this research, the subject of ‘hazard-dependency’ of building fragility has been 

addressed, through a methodology that incorporates: a) probabilistic seismic hazard 

analysis (PSHA) for the sites of Lisbon and Faro (Portugal), using a logic-tree approach 

that reflects 3 distinct seismological models and 20 combinations of ground motion 

prediction equations, b) hazard-compatible record selection and nonlinear response 

history analysis (NLRHA) for each logic-tree branch and each site, and c) fragility 

analysis and comparison between fragility functions obtained for each assessed hazard 

branch, at each site. According to the appraised results, it has been demonstrated that, 

when analytical methodologies are used to characterize both hazard and fragility 

components, the epistemic uncertainty of the hazard model shall be propagated into the 

fragility analysis. More specifically, it has been verified that fragility results are 

statistically different amongst logic-tree branches, which corroborates the proposed 

assumption that fragility functions are ‘hazard-specific’ (or ‘branch-specific’, for 

simplicity). 

In order to further evaluate the impact of the above findings in the context of seismic 

risk, the probabilistic loss estimation of 6 different building portfolios located in the 

districts of Lisbon and Faro has been performed. In this exercise, loss exceedance curves 

and corresponding Average Annual Losses were computed for each hazard branch (and 

each portfolio), using two distinct fragility assessment approaches: a) a distinct model for 

each logic-tree branch, consistent with each distinct hazard model, and b) a state-of-the-

art method in which only a single fragility model, common to all branches, is used. As a 

result, it was demonstrated that the errors associated with using a single fragility model 

(approach b)), can be as high as 1000%, when compared with the hazard-consistent 

approach a). 

In light of the significance of the above results, it is clear that, in order to 

appropriately propagate the epistemic uncertainty of the hazard model into the 

corresponding loss estimation results, one shall define fragility models that are consistent 
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with each of the considered hazard-modelling approaches (or branches). The more 

evident way to accomplish this is by performing record-selection and nonlinear response 

history analysis (NLRHA) for each of the logic-tree branches, which is clearly time-

consuming and undesirable. Therefore, an alternative and innovative fragility assessment 

/ loss estimation methodology has been proposed. This framework ensures the hazard-

consistency of the fragility model, while avoiding the necessity to perform NLRHA for 

each branch (i.e. only a single fragility model is used). More specifically, this 

methodology is based on the concept of conditional fragility functions presented in 

Chapter 4, allowing the use of a single fragility model common to all the hazard branches 

(e.g. that of the ‘median’ hazard branch), while ensuring that the loss estimates computed 

for each branch are consistent with the corresponding hazard model, within a maximum 

error of 10%. 

 

 

 

 

 

 

 



 

Chapter 7 CONCLUSIONS AND FUTURE 

DEVELOPMENTS 

7.1 Conclusions 

The subjects addressed in this work can be divided into two main areas of research: 

the improvement of methods and tools for the development of exposure datasets of 

buildings of industrial use, at the European scale, and the treatment of aleatory and 

epistemic uncertainty in the stages of fragility, vulnerability and loss estimation of 

building portfolios.  

The proposed exposure modelling algorithm was implemented in an automated tool 

that provides the means to overcome the potential lack of input data in a statistically 

meaningful way, using Volunteered Geographic Information (VGI) and Open-Access 

data as the main sources of information. This procedure was validated using exogenously 

provided data on industrial buildings in three distinct regions in Europe, demonstrating 

the excellent agreement between real and inferred exposed areas. Following the 

application of this framework to 36 European countries, the spatial distribution of 

industrial buildings in Europe was coupled with probabilistic seismic hazard results, 

showing that Turkey and Italy are the two countries with the largest number of industrial 

assets located in medium and high seismicity areas. 

As an effort towards the study of uncertainty in seismic risk, possible advantages 

and limitations of considering approximate solutions to the problem of hazard-compatible 

record selection and subsequent analytical fragility and loss assessments were 

investigated. It was demonstrated that, within the wide range of structural properties, 

response parameters, seismic source modelling options, and ground motion prediction 

equations assessed, only an exact disaggregation method guarantees a satisfactory 
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outcome in terms of accuracy, when limit state criteria are not building-specific. In the 

case where limit state thresholds are building-specific, on the other hand, the main 

contribution of this study lies on the robust proposal of suitable levels of approximation 

recommended to be used by the research and practitioner communities. 

Regarding the study of aleatory and epistemic uncertainty of structural capacity and 

seismic demand, as well as its impact on the evaluation of fragility of building portfolios, 

the importance of the statistical significance of results was demonstrated with respect to: 

minimum number of selected ground motion records, and estimation of damage 

exceedance probabilities. The relevance of the resulting fragility model approach was 

further demonstrated within the context of loss estimation of building portfolios. The 

importance of the introduced concept of conditional fragility functions was verified in the 

context of its capability to consistently take into account record-to-record variability in 

the evaluation of fragility, while establishing the means by which spatial correlation 

between damage exceedance probabilities can be taken into account. 

Building upon the above findings, the aforementioned conditional fragility 

assessment methodology was extended to the derivation of vulnerability functions that 

reflect a non-parametric (site-specific) histogram of damage ratio per level of primary 

intensity measure. As one of the main scientific contributions of this thesis, this 

framework provides the link between vulnerability uncertainty and seismic hazard, such 

that when sampling the uncertainty in the vulnerability of spatially distributed assets, the 

correlation of its residuals is taken into account through an approach that is physically 

connected with reality. In addition, it was demonstrated that the proposed loss assessment 

framework leads to results that differ with respect to state-of-the-art methods in a 

consistent manner across different building classes and damage state definition criteria. 

More specifically, it was verified that state-of-the-art methodologies tend to overestimate 

the annual rate of exceedance of lower (i.e. more frequent) loss values, whereas the 

opposite trend is verified for higher aggregated losses. The latter was shown to be related 

with the more robust representation of the impact of record-to-record variability ensured 

by the proposed methodology, highlighting its strengths and contribution to the 

improvement of fragility, vulnerability and loss assessment of building portfolios. 

Finally, the subject of ‘hazard-dependency’ of building fragility was addressed, 

demonstrating that, when analytical methodologies are used to characterize both hazard 
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and fragility components, the epistemic uncertainty of the hazard model shall 

appropriately be propagated into the fragility analysis. More specifically, it was verified 

that fragility results vary with the selected hazard modelling options, which corroborates 

the hypothesis outlined in this thesis, i.e. that fragility functions are ‘hazard-specific’. As 

a result of this finding, it was demonstrated that the errors associated with neglecting the 

hazard-dependency of fragility models (which is common practice in the literature), can 

lead to errors as high as 1000% in terms of risk estimates, when compared with the 

proposed hazard-consistent approach. In light of the significance of these results, the 

previous findings and proposals of this thesis (with regard to the treatment of 

uncertainties) were combined into the development of an alternative and innovative 

fragility assessment / loss estimation methodology. The presented framework was proved 

to guarantee the hazard-consistency of fragility based on the concept of conditional 

fragility functions, while allowing different loss estimates to be in agreement with the 

corresponding hazard model. 

7.2 Future developments 

All the tools, methods and theoretical assumptions proposed in this thesis were 

presented with the level of detail necessary to be used, replicated and disseminated by the 

research and practitioner communities. However, in order to enhance its reach, 

applicability, and ease of use, one of the immediate future developments consists of the 

implementation of the proposed frameworks (specifically those of Chapter 2, Chapter 4, 

Chapter 5 and Chapter 6) into public and transparent open-source tools. Moreover, in 

order to engage researchers into the study and further development of the subjects 

addressed in Chapter 4, Chapter 5 and Chapter 6, the second further objective foresees 

the development of alternative solutions that, without hampering the robustness and 

accuracy of the proposed fragility, vulnerability and loss estimation methodologies, 

guarantees an increased efficiency in terms of computational demand. 

With respect to the exposure model algorithm presented in Chapter 2, in particular, 

the proposed methodology will be improved in order to foresee not only the evaluation 

of the spatial distribution of industrial areas in Europe, but also the characterization of 

building vulnerability. More specifically, methods that allow the characterization of the 

identified building portfolios in terms of construction type and associated vulnerability 
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will be implemented. This is a crucial step towards the applicability of the proposed 

framework, as it will allow the direct use of its results in probabilistic loss estimation 

studies. Furthermore, efforts will be carried out towards the extension of the methodology 

to other regions in the world. For this purpose, the availability of similar datasets to those 

used in the European case will be assessed, keeping in mind the intended open-access 

nature of the tool.  

In the study presented in Chapter 3, current limitations may be identified with 

respect to the range of structural classes considered and structural response uncertainty. 

Therefore, the variability of structural capacity of the models used in this work will further 

be addressed through a simulation procedure similar to that of Chapter 4, where 100 

building models per construction class are studied. Moreover, additional building classes 

and locations will be addressed, so as to investigate the validity of the presented 

assumptions in the context of more comprehensive ranges of structural response and site 

hazard conditions.  

As one of the limitations previously identified in Chapter 3, the level of accuracy 

of the different approximate solutions is determined by the increase of magnitude and 

distance bins, in equal proportion. As such, an ongoing development consists of adopting 

additional approximate solutions in which magnitude and distance bins are increased 

independently (i.e. increase of distance intervals for a given magnitude value, and vice-

versa). This study will be performed in order to study the relative importance of the 

accuracy of each parameter when compared with the exact solution. 

Following the findings presented in Chapter 3, the exact formulation derived for the 

computation of hazard disaggregation is currently being implemented in a web tool that 

will be capable of performing ground motion selection fully compatible with the hazard 

at a given site of interest. This tool will be able to, upon user input, provide ready-to-use 

selection of natural ground motion records for nonlinear response history analysis of 

buildings located in any site within Europe, using the SHARE results as the default hazard 

model. In addition, it will be possible to perform identical task for any additional site 

outside Europe, upon introduction of an additional hazard model by the user (in the format 

used by the OpenQuake engine). When epistemic uncertainty is taken into account (such 

as the case of the built-in SHARE hazard model), it will furthermore be possible to select 

which hazard output is of interest to the user, for ground motion selection (i.e. mean, 

median, or any fractile result). The most appropriate ground motion prediction model and 
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applicable soil type will automatically be assigned by the tool, in accordance with the 

selected site. However, all the aforementioned options will be available for manual 

configuration by advanced users. 

With respect to the fragility, vulnerability and loss estimation methodologies 

proposed in Chapter 4, Chapter 5 and Chapter 6, the extension of the loss estimation 

procedure presented in Chapter 6 will be performed in the immediate future, in order for 

it to be applicable to portfolios containing multiple building classes. Based on the 

theoretical formulation presented in the aforementioned chapter, the necessary 

computation of conditional cross-correlated ground motions fields is currently only 

possible for a single intensity measure at a time (which imparts the inability to consider 

portfolios where distinct intensity measures are used for different building classes). In 

order to make it possible to consider multi-class portfolios, an innovative model for the 

analytical characterization of the conditional spatial cross-correlation between distinct 

intensity measures will be developed. For this purpose, cooperation with engineering 

seismology experts is currently being outlined, in order to develop a methodology that 

(continues to) ensure a robust link between seismic hazard and building response. 

Once the aforementioned objectives are achieved, the subsequent task is the 

development of a comprehensive conditional fragility and vulnerability model for the 

entire Portuguese building stock. This will further allow the calibration and enhancement 

of the aforementioned open-source tools, so as to encourage researchers to apply this 

methodology in other regions in the world. As a result of these efforts, it will be possible 

to apply the updated vulnerability model and conditional loss estimation framework in 

the computation of probabilistic seismic losses and evaluation of meaningful event risk 

scenarios in Portugal (and other parts of the world, through cooperation with engaged 

researchers and practitioners).  
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