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Abstract 

Durability of concrete structures is currently viewed with great concern, representing a 

true challenge for the development of sustainable construction. Prevention of concrete 

degradation and steel corrosion has to be taken into account since the design stage, 

being especially important the development of concrete design approaches that ensure 

durability performance and contribute to extend service life of concrete structures. In 

this sense, present research work aims at contributing to an integrated view of 

durability, from the design phase, over the in-situ appraisal, towards a more realistic 

prediction of service life of the structure. 

This thesis provides a systematic methodology for a performance-based design of SCC 

exposed to severe marine environment, supported by numerical modelling and statistic 

design tools. In a first phase, a probabilistic durability modelling approach is performed 

to define concrete durability requirements and, in a second phase, a statistical 

experimental design is used to optimize concrete mix-proportions given the specified 

requirements. The statistical experimental design makes use of experimental techniques 

and statistical tools, such as factorial plans and analysis of variance (ANOVA), to 

mathematically model the relevant properties of concrete (fresh and hardened 

properties) and simplify optimization of concrete composition. This performance­based 

design methodology was applied to the particular case of a cruise terminal building 

demanding special requirements in terms of architecture (colour), fresh state 

(self­compactability) and hardened state (compressive strength and high durability). 

A multi-level approach has, undoubtedly, great advantages in performance-based design 

of concrete mixtures. In this sense, new developments and contributions to a 

multi­level concrete design are presented, particularly, linking fresh and durability 

properties of paste, mortar and concrete. A procedure, based on statistical experimental 

design was used to establish the link between fresh properties of paste and SCC mortar, 

for a set of materials. The derived numerical models were used to define an area, 

labelled by self­compacting zone at paste level (SCZ), where rheological properties of 

the paste enable the design of SCC mortar. In hardened state, the capacity of effective 

medium theories (EMT) to predict the influence of the aggregate on electrical resistivity 

and chloride ion diffusion properties of SCC was explored. Experimental results were 
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compared with the predictions provided by different models derived from the 

differential effective medium theories (D-EMT). A good approximation was also found 

with the predictions provided by the Hashin-Shtrikman lower bound. 

The durability performance-based design of SCC mixtures was articulated with the 

implementation, on site, of a durability monitoring system based on automatic data 

acquisition and embedded sensors (galvanic current sensors, reference electrodes and 

temperature sensors). The working principle and the methodologies of analysis and 

interpretation of the acquired data are discussed. Laboratory tests were conducted to 

establish the sensors measuring protocol, assess its behaviour towards temperature and 

humidity variations and appraise its performance to detect corrosion activity. This 

durability monitoring system was installed in two structures, the Lezíria Bridge and a 

yachting harbour structure. Data obtained from field monitoring, data collected in the 

continuous monitoring system and during periodic inspections, were used to update 

and validate the service life prediction of the yachting harbour structure performed 

during the design phase. 
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Resumo 

A durabilidade das estruturas de betão armado é actualmente encarada com grande 

preocupação, constituindo um verdadeiro desafio para o desenvolvimento de uma 

construção sustentável. A prevenção da degradação do betão e corrosão das armaduras 

deve ser tida em consideração desde a fase de dimensionamento das composições. 

Torna-se por isso particularmente importante que sejam desenvolvidas abordagens de 

dimensionamento que garantam o desempenho de durabilidade do betão e contribuam 

para aumentar o tempo de vida útil das estruturas. Neste sentido, o presente trabalho de 

investigação pretende dar um contributo para uma visão integrada da durabilidade das 

estruturas de betão, desde a fase de dimensionamento da composição passando pela 

avaliação em obra, com vista a uma previsão mais realista da vida útil das estruturas. 

A presente dissertação visa implementar uma metodologia sistemática de 

dimensionamento de composições de betão auto-compactável (BAC) expostas a 

ambiente marítimo, baseado no seu desempenho. A metodologia apresentada apoia-se 

em modelos numéricos e ferramentas estatísticas. Numa primeira fase, é realizada uma 

análise probabilística dos modelos degradação do betão para definir os requisitos de 

durabilidade da composição e, numa segunda fase, é usado um dimensionamento 

experimental estatístico para optimizar as composições de betão com base nos 

requisitos de desempenho definidos. O dimensionamento estatístico recorre a técnicas 

de experimentação e ferramentas estatísticas, como é o caso dos planos factoriais e a 

análise de variância (ANOVA), para modelar matematicamente as propriedades 

relevantes do betão (propriedades do estado fresco e endurecido), e desta forma 

facilitar o processo de dimensionamento da composição. Esta metodologia de 

dimensionamento de composições baseada em requisitos de desempenho foi aplicada 

ao caso particular de um edifício num terminal de cruzeiros com requisitos bastante 

exigentes em termos arquitectónicos (cor branca), propriedades do estado fresco (auto-

compactabilidade) e propriedades do estado endurecido (resistência à compressão e 

durabilidade). 

Uma abordagem multinível tem sem dúvida grandes vantagens no dimensionamento de 

composições de betão com base no seu desempenho. Neste âmbito, foram realizados 

alguns desenvolvimentos e dadas algumas contribuições para o dimensionamento de 
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composições de betão segundo uma abordagem em multinível, em particular, na forma 

de estabelecer a ligação entre pastas, argamassas e betões, ao nível das propriedades do 

estado fresco e de durabilidade. Para estabelecer a ligação entre as propriedades do 

estado fresco da pasta e uma argamassa com propriedades auto-compactáveis foi usado 

um procedimento baseado no dimensionamento experimental estatístico. Os modelos 

numéricos ajustados permitiram definir uma zona de auto-compactabilidade ao nível da 

pasta, onde as propriedades reológicas da pasta conduzem a argamassas adequadas para 

produzir um BAC. No estado endurecido, foi explorada a capacidade das teorias do 

meio efectivo para prever a influência do agregado nas propriedades do BAC, 

nomeadamente, resistividade elétrica e coeficiente de difusão aos cloretos. Os 

resultados de um estudo experimental realizado ao nível da pasta, argamassa e betão, 

foram comparados com as previsões fornecidas por diferentes modelos obtidos a partir 

da teoria diferencial do meio efectivo e com os limites inferior e superior da análise 

variacional de Hashin-Shtrikman.  

O dimensionamento de composições de BAC baseado no seu desempenho de 

durabilidade foi articulado com a implementação, em obra, de um sistema de 

monitorização da durabilidade com aquisição automática de dados e sensores de 

embeber no betão (sensores de corrente galvânica, eléctrodos de referência e sensores 

de temperatura). Neste trabalho são discutidos os princípios de funcionamento e as 

metodologias de análise e interpretação dos dados fornecidos pelos sensores. A nível 

laboratorial foi realizada uma campanha de ensaios com o intuito de estabelecer o 

protocolo de medição dos sensores, avaliar o seu comportamento face a variações de 

temperatura e humidade e a avaliar o seu desempenho na detecção do início da 

corrosão. Este sistema de monitorização de durabilidade foi instalado em duas 

estruturas, na Ponte da Lezíria e numa estrutura de suporte a barcos de recreio. Neste 

último caso, os dados obtidos pelo sistema de monitorização contínuo e por uma 

inspecção realizada à estrutura, foram utilizados para actualizar e validar a previsão do 

tempo de vida útil realizada durante a fase de dimensionamento. 
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Chapter 1 

1. Introduction 

1.1. Scope and motivation of the research 

Concrete industry has witnessed a huge growth in the last century. The world cement 

production stood around 3.6 billion tons in 2012 (CEMBUREAU, 2012) and this 

amount gets converted into around 30 billion tons of concrete. Within Europe it has 

been estimated that concrete structures represent approximately 50 % of the national 

wealth of most countries (Long et al., 2001). Civil engineering infrastructure is generally 

the most costly to create and develop, and thus an invaluable national asset for any 

country. While this remarkable growth has been occurring in concrete production, 

there is extensive evidence to show that concrete structures all over the world are 

deteriorating at an alarming and unacceptable rate (Swamy, 2007). 

In the more developed European countries approximately 50 % of the expenditures in 

the construction industry are devoted to repair and maintenance of existing structures 

(Bakhoum et al., 2010). The problem of unsatisfactory durability of structures causes 

not only economic impact, but also environmental and social problems, due to decrease 

of reliability and safety. In addition, we are also faced with an urgent need to ensure 

sustainable development and achieve an economic progress without damaging our 

environmental resources. Therefore it becomes clear that not only costs of a new 

building, but most of all integral costs, including maintenance, adaptation and 

demolition have to be considered (Walraven, 2009). In most cases, indirect costs due to 

traffic delays or loss of productivity, which can be higher than the direct costs of 

maintenance and repair, should also be allocated (Breugel, 2006). 
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Durability, and especially prevention of steel corrosion, has become a critical issue in 

management of reinforced concrete structures. Concrete structures designers are now 

aware that prevention of concrete degradation and steel corrosion has to be taken into 

account since the design stage. Worldwide efforts are being made to develop durability 

design approaches, that ensure the production of new concrete structures with 

improved and more controlled durability and long-term performance (Gjørv, 2010). In 

this sense, a performance-based approach seems particularly relevant for durability 

issues. This approach would allow a holistic durability design philosophy, in which 

performance requirements could integrate all aspects of concrete production, 

construction technology and maintenance. Indeed, performance-based approach is a 

response to an overall change in our society (AFGC, 2007), in particular, the use of new 

types of concrete such as high-performance concrete or self-compacting concrete, 

demanding the use of non-traditional constituents such as superplasticizers or mineral 

additions, and the growing concern for increasing performance at the least cost, while 

at the same time protecting the environment. Moreover, a performance-based design 

corresponds to the expectations of concrete industry, which already in many cases, 

“thinks” in terms of performance requirements, such as fresh and hardened concrete 

properties, concrete appearance or required service life.  

One of the most revolutionary steps of the last decades in terms of concrete 

technology, with decisive influence on the quality and durability of concrete structures, 

was self­compacting concrete (SCC). SCC, initially developed in Japan (Okamura et al., 

2000), corresponds to an advanced special concrete type as it leads to technological, 

economic and environmental benefits. The main advantage of this sustainable 

technology lies in the unneeded compaction during placing, leading to a homogeneous 

and more durable material. The selection of constituent materials and the design of 

mix­proportions are key factors to achieve adequate fresh properties of self-compacting 

concrete. However, the concrete mix-design process has become very complex due to a 

considerable increase in the variety of constituent materials available to produce 

concrete and of performance requirements that the composition must meet. Hence, the 

mix-design process involves a large number of variables, with individual and interaction 

effects on concrete properties, which makes mixture optimization much more difficult. 

The typical mixture optimization approach based on trial and error or “one factor at a 

time” approach needs to be replaced by a more systematic and scientifically supported 
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mix­design method that dealing with specific properties of constituent materials reaches 

an optimized concrete mixture for the defined performance requirements. 

Accomplishing this aim can be carried out through the use of factorial experimental 

design to mathematically model the influence of mixture parameters on relevant 

properties of paste, mortar and/or concrete (Khayat et al., 2000; Nehdi and Summer, 

2002; Sonebi, 2004; Nunes et al., 2006a; Nunes et al., 2009b). 

Unlike normal vibrated concrete, where fresh concrete behaviour is dominated by grain 

to grain contacts, SCC behaves like a suspension of aggregates in a paste (Flatt et al., 

2006). Paste plays a major role in concrete workability and therefore it is reasonable to 

expect that there is a direct relationship between paste and concrete flow behaviour 

(Hidalgo et al., 2008). Besides controlling concrete workability, paste composition also 

has a large influence on early-age and long term properties, including durability. The 

prediction of concrete behaviour based on properties of paste and aggregate facilitates 

design of a SCC with defined requirements, inasmuch as reduces the volume of material 

required for testing and takes advantage of the greater accuracy of paste testing results. 

This multi-level approach applied to concrete mix-design requires, however, that the 

link between paste and concrete has already been established. 

Durability of concrete structures is essentially controlled by the thickness and quality of 

concrete cover and cracking. The quality of concrete cover is determined not only by 

mix-design and material properties, but also by construction issues namely, execution 

and curing conditions. Upon completion of new concrete structures, the achieved 

construction quality always shows high scatter and variability. Since, much of the 

durability problems may be related with glitches occurred during construction and poor 

quality control, the issue of construction quality and variability must also be considered 

in the prediction models, in order to achieve a better control over durability (Gjørv, 

2010). In fact, some of the input data that are assumed in prediction models could be 

very different from reality and lead to inaccurate predictions, as some parameters are 

uncertain and can also vary widely in space and time (Cusson et al., 2011). In this sense, 

service life predictions, using probabilistic models updated with monitored field data 

can provide more reliable assessment of the probability of concrete structures 

degradation. 
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1.2. Research objectives 

Current challenges facing the construction sector refer to durability, sustainability and 

design for service life. In this sense, one of the main objectives of the current research 

work is to contribute to ensure durability of concrete structures through a 

performance-based design of SCC mixtures. On one hand, it is crucial to develop 

durability design approaches that leveraging the current state of knowledge on materials 

science and production technologies, lead to better controlled and enhanced durability 

of concrete structures. Therefore, an approach based on performance criteria seems to 

be particularly appropriate for durability design. On the other hand, SCC technology 

promotes not only incorporation of powdered materials (including industrial by-

products), but also has minimal dependence on available workmanship on site. Both 

truly contribute to improve concrete sustainability and quality and extend structure 

service life. 

To accomplish this objective, a systematic methodology for performance-based design 

of SCC mixtures considering environmental exposure was pursued. A method based on 

a probabilistic durability modelling approach to define concrete durability requirements 

and on a statistical experimental design methodology to optimize concrete 

mix­proportions given the specified requirements was adopted. Probabilistic methods 

applied to the concrete degradation models enables to take into consideration the 

variations of material properties, environmental action and the effect of the quality of 

the construction. The statistical design approach, conducted through a factorial 

experimental design, offers a valid basis for developing empirical models that express 

the relationship between the response (fresh and hardened concrete properties) and the 

design factors (mixture parameters). Empirical models can be manipulated 

mathematically for various proposes, including mixture optimization. These statistical 

experimental approaches, generally used to model concrete fresh properties (Nunes, 

2008), are now extended to durability properties. The capacity to mathematically model 

the influence of mixture parameters on durability variables was investigated. 

The prediction of concrete properties from cement paste behaviour has great 

advantages to design performance-based concrete mixtures. However it is required that 

the link between paste and concrete properties has been previously established, in fresh 

and hardened states. In fresh state, although mortar requirements that lead to SCC have 
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already been sufficiently well defined during the early development of SCC (Okamura et 

al., 2000), paste properties have not been fully determined. Bearing this in mind, 

another objective of this work is to define a self-compacting zone at paste level (SCZ), 

establishing the link between paste and mortar mixtures that exhibit adequate fresh 

properties (deformability and viscosity) to produce SCC. In hardened state, the 

presence of aggregate in a cement paste matrix has two opposite effects on the 

transport properties: firstly, the dilution and tortuosity effects that reduce the 

permeability; secondly, the presence of a porous interfacial transition zone (ITZ) 

between paste and aggregate that facilitates the movement of ions. In order to establish 

this link it is necessary to know how to predict the influence of the aggregate (aggregate 

content and aggregate skeleton) in the mixture properties. Taking advantage of effective 

medium theories (EMT), applied in several scientific areas to predict physical properties 

of heterogeneous media, it was intended to explore the use of these theories to predict 

the influence of the aggregate on some durability properties (electrical resistivity and 

chloride ion diffusion). Electrical resistivity, although still rarely considered in current 

standards, has arisen as a very promising durability indicator, and therefore was deeply 

worked throughout this research work. 

Implementation of durability monitoring systems can also be a useful tool to 

continuously assess and ensure durability performance of concrete and predict service 

life of structures more accurately. However, there still is a long way to go with regard to 

the reliability of the results, data interpretation and effective decision-making in terms 

of timely rehabilitation action. In this sense, the present research work included the 

implementation of a durability monitoring system based on automatic data acquisition 

and embedded sensors, namely, temperature, galvanic current and reference electrodes. 

It is intended, on one side, to discuss the working principle and the methodologies of 

analysis and interpretation of the data collected by the sensors, and, on the other side, 

to demonstrate the effective use of data obtained from field monitoring to update and 

validate the service life of concrete structures predicted during the design phase. 

In summary, this research work aims at contributing to an integrated view of durability, 

from the design phase, over the in-situ appraisal, towards a more realistic prediction of 

structures service life. In this sense, the following main goals were proposed: 



Chapter 1 

1.6 

• Implementing a systematic methodology for durability performance-based 

design of SCC mixtures exposed to severe marine environment; 

• Linking fresh properties of paste to SCC mortar; 

• Linking durability properties of paste to mortar and SCC; 

• Implementing a durability monitoring system to improve service life 

predictions. 

1.3. Research work program and outline of the thesis 

Emerging from the experience acquired during research project BACPOR (Figueiras, 

2006) (Nunes et al., 2005a; Nunes et al., 2005c), the present work began with the 

preparation and holding of a full-scale test in a precast factory. BACPOR was a 

research project funded by Adi-Agência de Inovação and in co-operation with national 

industry, namely, Grupo Mota-Engil, Sika and Maprel, to develop a robust technology 

for the production, transport and placement of SCC (Nunes et al., 2005b). The main 

goal of this full-scale test was to assess the efficiency and synergetic effect of two 

technologies that confer additional protection to concrete structures against the ingress 

of aggressive agents, Controlled Permeability Formwork (CPF) and Self-Compacting 

Concrete (SCC). Therefore, the research program of the full-scale test was designed to 

compare the performance of two CPF systems and to assess the combined effect of 

using CPF on SCC compared to conventional vibrated concrete. There was an 

additional intention to identify the most critical issues concerning implementation of 

these technologies under actual conditions at the precast factory. Despite the good 

performance exhibited by both technologies, this full­scale test highlighted some critical 

issues that became, to some extent, the main goals of the present PhD research work. 

The methodology used for SCC mix-design, a trial and error method based on the 

Japanese SCC-designing method, proved to be inappropriate for concrete with specific 

requirements (fresh and hardened requirements). For this particular application, SCC 

should exhibit the same strength class as conventional concrete in production at the 

precast factory, using the same constituent materials. This full-scale test also alerted to 

poor quality and high variability of concrete of the full size precast elements, when 
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compared with laboratory results or even with results obtained in specimens cast in-

situ. On the other hand, analysis of results obtained during this experimental campaign 

showed the great potential of electrical resistivity as a durability indicator. Main results 

of this full-scale test are presented in Chapter 2. 

The structure of the present thesis is shown in Figure 1.1. This research work was 

carried out at paste, mortar and concrete level and included laboratory tests, as well as 

full-scale applications. Each chapter, from 2 to 6, was written as an independent 

research work, corresponding to papers already published or submitted to scientific 

journals. Hence, the beginning of each chapter holds an introduction and the state of 

art on research topic and, at the end, a section with the most relevant conclusions is 

provided. Therefore in each chapter all the necessary information for clear 

comprehension of research work carried out is provided, thus some repetitions arise. 

 

Figure 1.1 – Structure of the thesis. 
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Chapter 3 presents a systematic methodology to design performance-based SCC 

exposed to severe marine environment. This methodology is based on a probabilistic 

durability modelling to define concrete durability requirements and uses a statistical 

experimental design approach to optimize concrete mix­proportions given the specified 

requirements. Limit values of the durability indicators are specified through a 

probabilistic calculation of the limit state functions, established on the basis of target 

service life, limit state criterion and degradation mathematical models. The statistical 

experimental design used to optimize concrete mixtures holds three phases: firstly, an 

experimental phase conducted according to a central composite design; second, a 

statistical analysis and model fitting of data collected during the experimental phase 

and; third, a numerical optimization of mixture parameters using the derived models. In 

order to simplify SCC design, the study was developed in a mortar and in a concrete 

level. This performance-based design methodology was applied to the particular case of 

a cruise terminal building demanding special requirements in terms of architecture, 

fresh state (self-compactability) and hardened state (compressive strength and high 

durability). The mix design for the cruise terminal building was further applied in-situ, 

in a yachting harbour structure, with assessment of durability performance (see Chapter 

6). 

In Chapter 4 and Chapter 5 new developments and contributions to the concrete 

performance-based design approach are presented, particularly in establishing the link 

between paste, mortar and concrete, in fresh and hardened state. In Chapter 4 two 

statistical experimental designs were carried out, one at paste level and the other at 

mortar level, to mathematically model the influence of mixture parameters on fresh and 

durability properties (electrical resistivity). The derived numerical models were used to 

define an area, labelled self­compacting zone at paste level (SCZ), where fresh 

properties of the paste (rheological and empirical) enable the design of SCC mortar, for 

a specific set of materials. Furthermore, in order to extend this link to durability 

properties, the effect of including aggregate in cement paste was evaluated by means of 

the electrical resistivity test.  

In Chapter 5 an experimental programme was conducted to assess the capacity of 

effective medium theories to predict the influence of the aggregate (aggregate content, 

aggregate skeleton and shape of aggregate particles) on the electrical resistivity and 

chloride ion diffusion properties of SCC. Different models derived from the differential 
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effective medium theories (D-EMT) were explored and predictions provided by the 

Hashin-Shtrikman bounds were assessed. 

Chapter 6 presents the implementation of a durability monitoring system based on 

automatic data acquisition and embedded sensors. The working principle and the 

methodologies of analysis and interpretation of the acquired data are discussed. 

Laboratory tests were conducted to establish the corrosion kit-sensor measuring 

protocol, assess its behaviour towards temperature and humidity variations and 

appraise its performance to detect corrosion activity. This durability monitoring system 

was installed in two structures, the Lezíria Bridge and a yachting harbour structure. 

Data obtained from field monitoring, collected in the continuous monitoring system 

and during periodic inspections, was used to update and validate the service life 

prediction of the yachting harbour structure performed during the design phase. 

Finally, Chapter 7 presents the global conclusions of the research work and some 

recommendations for extending its scope in the future are pointed out. 

The chapters of this thesis are based on the following journal papers: 

Chapter 2: Figueiras, H; Nunes, S; Sousa Coutinho, J.; Figueiras, J.; Combined effect of 
two sustainable technologies: Self-compacting concrete (SCC) and 
controlled permeability formwork (CPF); Construction and Building 
Materials Vol 23 (7): pp 2518-2526; 2009. 

 

Chapter 3: Figueiras,  H; Nunes, S; Sousa  Coutinho, J. ; Andrade, C.; Durability 
performance-based design of a SCC exposed to severe marine environment 
using a statistical design approach; (submitted for publication). 

 

Chapter 4: Figueiras, H; Nunes, S; Sousa Coutinho, J.; Andrade, C.; Linking fresh and 
durability properties of paste to SCC mortar; Cement and Concrete 
Composites Vol 45: pp 209-226; 2014. 

 

Chapter 5: Figueiras, H; Nunes, S; Sousa Coutinho, J.; Andrade, C.; Effective medium 
theories to assess aggregate influence on SCC properties: electrical resistivity 
and chloride diffusion; (submitted for publication). 

 

Chapter 6: Figueiras, H; Nunes, S; Sousa Coutinho, J.; Andrade, C.; Figueiras, J.; 
Durability monitoring to improve service life predictions of concrete 
structures; (submitted for publication). 
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Chapter 2 

2. Combined effect of two sustainable 
technologies: SCC and Controlled 
Permeability Formwork (CPF) 

2.1. Scope of the research 

The work presented in this chapter aims at contributing to sustainable construction 

through enhancement of durability of concrete structures. Full size precast elements 

were cast with both Self-Compacting Concrete (SCC) and conventional vibrated 

concrete (CC) using Controlled Permeability Formwork (CPF). SCC is known to impart 

a more homogeneous and finer microstructure, compared to conventional concrete, 

therefore leading to more durable reinforced and pre-stressed concrete structures. CPF 

enables, in fresh concrete, drainage of excess water and air besides retaining binder 

particles at the concrete surface, leading to a blow-hole free surface and enhanced 

quality of the outer layers. The research program developed was designed to compare 

performance of two different CPF systems and to assess the combined effect of using 

CPF on SCC compared to CC. 

2.2. Introduction 

It is needless to say that concrete has played an extremely important role in the 

construction of various structures for the improvement of our living environment. An 

enormous amount of concrete has been used as a construction material. There is no 
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doubt that its use as a major construction material will continue in the future (Sakai et 

al., 1999). Concrete for the future will have to be more durable, easier to apply, more 

predictable and greener. At the same time it will have to be more cost competitive 

(Shah et al., 1999). In fact there is extensive evidence to show that concrete materials 

and concrete structures all over the world are deteriorating at a rapid rate, and that it 

has not been possible to ensure their long-term durable service life performance. A 

durable, efficient and effective infrastructure system is fundamental for economic 

prosperity, social justice, political stability and the quality of human life.  However, 

sustainability in construction cannot be achieved if used materials and built structures 

cannot give durable service life.  In fact, material degradation and structural damage in 

service shows that the progress of damage involves many interactive and 

interdependent parameters, several of which are beyond the control of engineers, and 

indeed, not anticipated or fully appreciated at the design stage. The complex, highly 

unpredictable and extremely variable interactive effects of load, ageing, cracking, 

exposure conditions and climatic changes emphasize the limitations of what is 

understood of the performance of materials and structures in real life exposure 

conditions. Therefore to achieve durable service life performance, a holistic durability 

design philosophy must be used, this is, an integrated material and structural design 

strategy of strength through durability rather than of durability through strength, where 

materials are manufactured for durability rather than for strength, and structures are 

designed for ductility and structural integrity. Holistic design envisages a global 

approach to all aspects of concrete and construction technology from material 

selection, design, construction, and maintenance to service life, integrating material 

characteristics with in-situ performance (Swamy, 2007). 

In particular, durability of concrete structures depends primarily on permeability of the 

outer concrete cover which, generally, is a result of the production standard, casting 

conditions, compaction in heavily reinforced areas and curing conditions. The growing 

need to achieve durable service life performance may require considering additional 

protective measures which hinder corrosion and concrete degradation. In fact, using 

Controlled Permeability Formwork (CPF) or Self-Compacting Concrete (SCC) 

enhances quality of the concrete cover and therefore resistance to ingress of aggressive 

agents. 
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SCC, initially developed in Japan (Okamura et al., 2000), consists of a social, economic 

and environmental sustainable technology. SCC probably corresponds to the most 

revolutionary advance of the last decades, in terms of concrete technology. It involves a 

new production and casting process in where compaction is banned. This leads to 

reduction in casting costs, increased productivity and a more homogeneous product 

(Okamura et al., 2000; Skarendahl and Petersson, 2001). In fact, SCC compared to 

conventional concrete (CC) is free of local variation due to man-dependent poker 

vibration. Also, as SCC uses more powder materials than CC, imposed by fresh-state 

properties, this potentially leads to better durability performance. However, it is still 

uncertain whether the significant differences in the mix-proportions and in placing and 

compaction processes of the SCC and CC have a considerable effect on the transport 

properties and their relationships with the microstructural characteristics (RILEM-

Report 38, 2007). The refined pore structure and more uniform and denser interfacial 

transition zone (ITZ) in the SCC mixes are believed to be among the main contributors 

to enhanced resistance to fluid transport (RILEM-Report 38, 2007) and, therefore, SCC 

enables postponing and hindering deterioration.  

Controlled Permeability Formwork is one of the few techniques for directly improving 

the concrete surface zone. This technique reduces the near surface water/binder ratio 

and reduces the sensitivity of the concrete to poor site curing. CPF consists in the 

application of a textile liner on the usual formwork, allowing air bubbles and surplus 

water to drain out but retaining binder particles and so enabling the water-binder ratio 

of the outer layer to become very low and the concrete to hydrate to a very dense 

surface skin as the filter provides enough water available at the right time to activate 

optimum hydration. So CPF enhances durability by providing an outer concrete layer 

which is richer in binder particles, with a lower water/binder ratio, less porous and so 

much less permeable than when ordinary formwork is used (Sousa Coutinho, 2003). 

Although CPF has proved to improve the quality of concrete cover, it does not prevent 

CC problems resulting from poor compaction or aggregate nesting induced by lack of 

paste.  

Considering the advantages and limitations of both additional protective measures, SCC 

and CPF, it is possible that they will reveal a synergetic effect, thus further enhancing 

durability performance of concrete structures. Therefore the aim of this work is to 

assess the efficiency of two CPF systems on SCC and on conventional concrete (CC) 
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and compare the effect of each of the systems used. Two box-culverts, one with SCC 

and the other with CC, were cast using two different CPF systems. Mechanical and 

durability-related properties were compared for the CPF systems and for the 

box­culverts made of the different types of concrete thus enabling considerations on 

homogeneity of concrete throughout each element. In the particular case of assessing 

resistance of concrete to chloride penetration, two different tests were used, the CTH 

Rapid Method and the ASTM C1202 method. Therefore an analysis comparing test 

results of both methods is presented. 

2.3. Experimental program 

 Materials characterization 

Concrete was produced using Portland cement (CEM I 52.5 R) and a mineral addition 

(limestone filler), of specific gravity 3.12 and 2.70, respectively. The specific surface 

(Blaine) and the mean particle size of limestone filler were 5150 cm2/g and 4.52 µm, 

respectively. A polycarboxylate type superplasticizer of specific gravity of 1.05 and 

18.5 % solid content was used. Crushed calcareous aggregate, siliceous natural fine sand 

(sand 1) with a fineness modulus of 2.52 and a natural coarse sand (sand 2) with a 

fineness modulus of 3.27 were used, see Table 2.1. The specific gravity of the coarse 

aggregate, sand 1 and sand 2 were 2.61, 2.60 and 2.62, and absorption values 1.29%, 

0.68% and 0.51%, respectively, according to EN 1097-6 (IPQ, 2003a). 

Table 2.1 – Grading of aggregates. 

Sieve size (mm) 0.074 0.150 0.297 0.590 1.180 2.380 4.750 6.300 9.500 12.500 

Sand 1 1.00 6.70 19.40 44.90 78.00 99.00 100.00 100.00 100.00 100.00 

Sand 2 0.70 3.30 10.10 27.70 53.00 79.50 99.70 100.00 100.00 100.00 

Coarse aggregate 0.00 0.11 0.30 0.30 0.30 0.40 6.20 32.40 84.20 100.00 

 Self-compacting concrete mix-design 

A key phase when producing SCC lies on the design of mix-proportions so as to obtain 

adequate properties of fresh concrete. SCC in the fresh state must show filling ability, 
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resistance to segregation and passing ability (EFNARC, 2005). Several mix-design 

techniques have been proposed and some general recommendations can be taken into 

account for SCC proportioning (EFNARC, 2005), which mainly consist of limiting the 

coarse aggregate volume and maximum aggregate size, using low water to powder ratio 

and a superplasticizer. The “excess paste” should be the minimal quantity to create a 

“lubricating” layer around the aggregate particles and reduce the inter-particle friction 

necessary to achieve self-compactability (Walraven, 2005). Based on the Japanese 

SCC­designing method, the mix-design method used in this work consisted on a two 

level (mortar and concrete) optimization method and is described more in detail in 

(Nunes et al., 2005a). At mortar level, mortar flow and funnel tests were carried out to 

study the relation between both sands (fine aggregate was a combination of two sands) 

along with paste volume and volumetric water/powder ratio. Mortar properties 

adequate for SCC are sufficiently well defined at this level (Nunes et al., 2005a) and if 

target values are achieved, in the next stage, tests on concrete, although essential, are 

reduced to a minimum. Final trials at concrete level were necessary to quantify the 

amount of coarse aggregate, to adjust superplasticizer dosage (if necessary) and to 

confirm self-compactability of the designed concrete (Nunes et al., 2005a). Slump­flow, 

V-funnel and U-box tests were used to characterize SCC in the fresh state. The 

slump­flow test is used to evaluate deformation capacity, viscosity and also resistance to 

segregation of SCC by visual observation. This test enabled recording final slump flow 

diameter (Dflow) and time necessary for concrete to reach a 50 cm diameter (T50). The 

V-funnel test is used to assess viscosity and passing ability of SCC and this test enabled 

recording flow time (Tfunnel). With the U-box test it is possible to assess ability of 

concrete to pass through tight openings between reinforcing bars and filling ability. 

This test enabled recording filling height (H). Details of the equipment used for testing 

fresh concrete and test procedures used can be found in EFNARC (2005). 

Mix-proportions for both SCC and similar conventional concrete are presented in 

Table 2.2. The CC mix corresponded to the one being used at the prefabrication plant 

at the time and the SCC composition was designed to have similar strength to the CC 

composition, at 28 days. Full scale testing was carried out in winter, at a precast factory 

under normal working conditions. The paddle-mixer and the mixing procedure used for 

the SCC was the same as for conventional concrete, except for increased mixing time, 

about two times longer. Results concerning fresh SCC testing were Dflow=565 mm, 
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T50=5.6 s, Tfunnel=14.9 s and H=340 mm. The mixture exhibited good filling ability, 

high segregation resistance and enough deformability for this type of application. SCC 

filled up the entire mould, completely enclosing the reinforcement. After stripping the 

formwork a few blowholes were visible only on the horizontal parts. 

Table 2.2 – Mix-proportions of SCC and CC produced during full-scale tests. 

Constituent materials 
SCC CC 

(kg/m3) (kg/m3) 

Cement 387 350 

limestone filler 197 85 

sand 1 618 407 

sand 2 202 413 

coarse aggregate 829 938 

Water 138 171 

superplasticizer (liquid) 12.45 3.70* 

water/cement  (w/c)**  0.38 0.49 

water/binder (w/b) 0.25 0.40 

* different superplasticizer was used for conventional concrete                                 
** including water in superplasticizer 

 

The main differences between mix-proportions of the SCC and the CC, as can be 

observed in Table 2.2, concern in less coarse aggregate and more powder materials and 

superplasticizer. These differences led to higher cost of materials for SCC, about 18% 

higher. According to Juvas (2003), although materials for SCC are 15 % to 25 % more 

expensive than those of normal concrete of the same strength grade, the total costs will 

be 5 % to 15 % lower when all savings in work are included. The difference in costs of 

materials referred to, will be smaller, the higher the strength class. 

The motor vehicle, shown in Figure 2.1, used to transport concrete from the mixer to 

the casting area, includes an endless screw which drives concrete upwards from the 

tank and then discharges it into the formwork. This system presented several 

limitations such as the discharge height permitted, smaller than the elevation required 

for larger box-culvert moulds also handled in this factory. Conversely, if the mould is 

smaller, concrete drops from a high distance and air is entrapped during the fall. 

Another relevant limitation concerns the capacity of the tank which is smaller than the 

maximum capacity of the mixer. In fact this can delay SCC production since no waiting 



Combined effect of two sustainable technologies: SCC and Controlled Permeability Formwork (CPF) 

2.7 

period for vibration is required as when using conventional concrete. One of the main 

advantages of SCC is increased productivity. However, the construction site layout has 

to be optimized to achieve a more competitive production and reduce costs, in 

particular costs related to materials, to increased mixing time and to quality control 

(Nunes et al., 2006b). Production capacity and casting capacity on site should be 

balanced off so as to ensure that SCC is placed without breaks in supply and within 

flowability retention time. Discontinued SCC production will affect filling ability and 

may result in unwanted lift lines on vertical surfaces as well as possible bonding 

problems between layers. As mentioned before, full-scale tests carried out at this 

precast factory demonstrated that for SCC to be placed in one continuous pour, 

installations and equipment set for conventional concrete have to be adjusted. 

 

Figure 2.1 – Motor-vehicle used to transport and cast concrete. 

Conventional concrete elements were externally vibrated and as vibration is eliminated 

for SCC, for production of these elements work on site was far lighter and noise 

reduced. Environment on site was improved considerably with the use of SCC leading 

to a very positive attitude among workers and engineers. It is recommended that 

workers involved should be specially trained. 

As both concrete types are clearly different, both in terms of mix-proportions and in 

terms of casting procedures, it is important to analyse and compare hardened properties 

for each one (Klug and Holschemacher, 2003). Results concerning comparison and 

evaluation of hardened concrete properties of both, self-compacting concrete and 
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conventional concrete, obtained in moulded specimens, were presented in Figueiras 

(2006) and Nunes et al. (2009a). 

 Controlled permeability formwork systems 

Controlled Permeability Formwork (CPF) consists in the application of a textile liner 

on the usual formwork, allowing air bubbles and surplus water to drain out but 

retaining binder particles at the surface of concrete, thus reducing permeability of the 

outer layer, see Figure 2.2. CPF also enables the concrete surface to hydrate to a very 

dense surface skin as the filter makes enough water available at the right time to activate 

optimum hydration. Besides a blow-hole free surface and an enhanced quality cover 

concrete, that is durability, due to controlled reduction of the water/binder ratio, CPF 

reduces pressure on the formwork (Sousa Coutinho, 2005). An increased volume of a 

more impermeable and denser paste together with a reduction of the water/binder ratio 

at the concrete surface may lead to further reduced carbonation and chloride ion 

ingress as well as a higher resistance to freeze-thaw attack. 

 

Figure 2.2 – CPF – Schematic representation (Sousa Coutinho, 2005). 

One of the aims of this experimental program is to compare the performance of two 

CPF systems, from this point on named CPF-A and CPF-B. These systems were used 

on two elements, one cast with conventional concrete and the other with 

self­compacting concrete. CPF-A, classified as a Type II system according to the 

CIRIA Report (Price, 2000), consists of a single-layer fabric system that is placed over a 
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structural support and tensioned in situ. These systems are usually single-use products. 

As the fabric is not stiff, tensioning over the mould must be carried out during 

application to ensure no creases will form, leading to unsightly defects of the concrete 

surface. CPF-B is a Type III system consisting of a two-layer system combining a filter 

fabric bonded to a backing grid. This type does not need tensioning. The filter fabric is 

pre-tensioned in the manufacturing process and tension is maintained by the backing 

grid. This type may be used more than once. Properties of both CPF systems are 

shown in Table 2.3 and Figure 2.3 shows application at the site. 

Table 2.3 – Properties of CPF-A and CPF-B filter-drains. 

Properties CPF-A CPF-B 

Composition 100% polypropylene 100% polypropylene 

Thickness 1.2mm 2.0mm (±10%) 

Pore size <30µm <35µm 

Air permeability 0.1-0.5 m3/m2.sec < 3 m3/m2.sec 

 

     

(a) (b) 

Figure 2.3 – Application of the filter-drain on the formwork of the box-culverts outer 

side­walls A and B: (a) filter-drain A (CPF-A); (b) filter-drain B (CPF-B). 

Current cost for CPF-A filter drain is about 5.00 €/m2 and 10.00 €/m2 for CPF-B. The 

CPF-B filter/drain may be reused once or twice, therefore reducing overall cost. The 

application cost depends, not only on the system used, but also on the shape of the 

element. Anyway, the final application cost corresponds to the cost of the filter/drain 

plus the application cost. Nevertheless two costs must be deduced: the cost related to 
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the usual concrete surface repairs after stripping common formwork and the cost 

concerning releasing agent which must not be used with CPF. 

 Selected elements 

The precast concrete elements considered for this research were two identical shaped 

box-culverts (length=2.5 m; height=1.15 m; width=2.32 m; slab thickness=0.15 m; wall 

thickness=0.14­0.16 m). The box-culverts were cast, as mentioned before, one with 

SCC and the other with conventional concrete. Each side-wall of both box-culverts, 

SCC and CC, was cast with two different CPF systems. On the exterior side of the side-

wall A, CPF-A was used and on the exterior side of the side-wall B, CPF-B was used. 

To enable drilling cores from the box-culvert for further testing, three zones with no 

reinforcement were planned, one in the centre of each side wall and the third on the 

slab, as shown in Figure 2.4. These cores enabled assessment of concrete properties 

including the effect of both CPF systems considered.  

 

Figure 2.4 – Box-culvert element: reinforcement and location of test cores in side-wall A. 

2.4. Final Product 

Both box-culverts presented dense and blowhole free concrete on CPF faces, standing 

out against the traditionally cast faces, with the usual blow-holes and imperfections 

which result from air and water retained at the formwork surface during production. 

Faces showing these blemishes corresponded to the inner facades of both box-culverts. 

Nevertheless, they were more profuse in the CC box-culvert, compared to the SCC 

one, Figure 2.5. The CPF faces, though, had an inconsistent appearance with lighter 

coloured areas (Figure 2.6) which may have been due to a non-uniform concentration 

wall A 

slab 

wall-B 
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of limestone filler throughout the CPF cast surface. This did not occur at the 

traditionally cast surfaces. 

 

Figure 2.5 – Detail of concrete surfaces resulting from SCC and CC. 

 

 

Figure 2.6 – Concrete surfaces resulting from application of CPF-A on CC box-culvert and 

from application of CPF-B on CC box-culvert. 

SCC CC 

CPF-A 

CPF-B 



Chapter 2 

2.12 

2.5. Hardened properties 

 Mechanical properties 

2.5.1.1. Specific gravity and compressive strength 

Compressive strength of concrete was determined at 60 days on cores drilled from the 

top slab and side-walls of each box-culvert (wall A and wall B), see Figure 2.4. Cores 

drilled from the sides were loaded perpendicular to the casting direction whereas slab 

cores were loaded parallel to casting direction. The diameter of these cores was 94 mm 

and the height/diameter ratio varied between 1.58 and 1.72. Core strength was 

converted to the strength of corresponding standard cylinders (P=150 mm; 

h=300 mm) using the relations established by Mansur et al. (2002), dependent on the 

level of strength ranging from 20 to 100 MPa. Converted values from the mean 

compressive strength as well as the specific gravity results for both SCC and CC 

box­culvert elements are presented in Table 2.4. 

Table 2.4 – Specific gravity and converted compressive strength of cores. Average results and 

variation coefficient, in brackets. 

Concrete property Location Nº of cores SCC CC 

 

Specific gravity (kg/m3) Wall A 6 2339 (1.3%) 2380 (2.0%) 

Wall B 6 2329 (1.2%) 2345 (2.8%) 

Slab 6 2305 (0.8%) 2289 (0.6%) 

     
Compressive strength (MPa) Wall A 6 67.9 (3.1%) 67.5 (2.2%) 

Wall B 6 69.7 (3.0%) 66.3 (6.0%) 

Slab 6 70.7 (7%) 58.1 (8.0%) 
 

In spite of the lower coarse aggregate content, SCC exhibited a slightly improved 

compressive strength due to the lower water/cement ratio. Compressive strength and 

specific gravity results were consistent throughout the SCC box-culvert whereas for the 

conventional concrete box-culvert, compressive strength and specific gravity decreased 

considerably in the slab, due to lack of efficient compaction in the upper part of the 

mould. Therefore SCC led to a more homogeneous and isotropic material along the 

box-culvert. It should be notice that the mean compressive strength obtained for SCC 
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and CC cores (60 days) was lower compared to moulded specimens (28 days cylinders, 

(Nunes et al., 2009a)). 

2.5.1.2. Surface hardness 

The most used non-destructive test to estimate concrete strength is the hardness test 

using a portable Schmidt Hammer. This test assesses the uniformity of the concrete 

surface layers and also determines hardness which can be correlated to concrete 

strength. Schmidt Hammer tests following the procedure in EN 12504-2 (IPQ, 2003b) 

were carried out on 3 areas (0.15 m× 0.15 m), at mid-level of the 8 faces of the 

side­walls of the two box-culverts (SCC and CC), at 7, 14 and 28 days. Thus, 

assessment of the surface hardness was performed on each box-culvert for each 

side­wall: on side-wall A, on the outside face corresponding to the CPF-A surface and 

on the inside face corresponding to the control face, this is, the traditionally cast face, 

and on side-wall B, on the outside face corresponding to the CPF-B surface and on the 

inside face corresponding to the non-CPF face. Results for the SCC and CC 

box­culvert are shown in Table 2.5.  

Table 2.5 – Surface hardness of SCC and CC box-culvert walls. Median, average results and 

variation coefficient, in brackets. 

Reference 
Age of 
concrete 

SCC CC 

Rs,median 

(MPa) 
Rs,average  

(MPa) 

Rs,median 

(MPa) 

Rs,average 

(MPa) 

      Wall A, CPF-A face  7 days 36.0 36.0 (4.2%) 34.0 34.7 (6.3%) 

14 days 38.0 37.9 (4.5%) 37.0 37.3 (6.1%) 

28 days 47.5 47.6 (8.2%) 42.0 42.1 (7.8%) 

      Wall A, non-CPF face 

 

7 days 33.0 32.8 (4.6%) 32.0 32.0 (5.0%) 

14 days 35.0 35.1 (5.9%) 34.0 34.2 (5.4%) 

28 days 42.0 41.7 (5.6%) 38.0 37.7 (5.8%) 

      Wall B, CPF-B face 7 days 36.0 35.4 (6.4%) 36.0 36.4 (4.1%) 

14 days 37.0 37.2 (4.8%) 38.0 37.6 (5.0%) 

28 days 42.0 42.1 (8.4%) 44.0 44.7 (11.0%) 

      Wall B, non-CPF face 

 

7 days 33.5 33.4 (6.9%) 32.0 32.5 (5.2%) 

14 days 37.0 36.2 (6.2%) 34.0 34.5 (5.8%) 

28 days 40.0 41.1 (8.9%) 38.0 38.0 (5.1%) 
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The graph presented in Figure 2.7 shows efficiency of SCC technology and CPF against 

conventional concrete in accordance with equation (2.1): 

 Efficiency	W%Y Z [� \ []][�� ^ 100 (2.1) 

where [� is the average surface hardness at 28 days when one or two technologies were 

used, this is, SCC, CPF or SCC combined with CPF, and []] is the average surface 

hardness at 28 days for CC (reference). Results lead to the conclusion that surface 

hardness of CPF cast concrete is higher than for the same concrete cast traditionally. 

Comparing results from both box-culverts, surface hardness for SCC is higher than for 

CC and SCC combined with CPF is 18.4% more efficient than using only CC. CPF-A is 

more efficient with SCC than with CC and CPF-B is more efficient with CC compared 

to SCC. 

 

Figure 2.7 – Efficiency of SCC, CPF and SCC with CPF systems on surface hardness. 

 Durability properties 

Transport properties of the near-surface concrete, which play a major role in durability 

of reinforced concrete, are controlled by three mechanisms, namely, capillary 

absorption, permeability and diffusion (Neville, 1998). Usually, the more resistant 

concrete is to the ingress of aggressive agents (pure water or carrying ions, oxygen and 

carbon dioxide) the more durable it will be (Neville, 1998). When testing concrete for 

durability each mechanism is considered separately, but naturally, in real structures 

these mechanisms act together and in certain periods one or another may play a 
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dominant role. In the present study water absorption by capillarity and two chloride 

migration tests were carried out to assess concrete durability. 

2.5.2.1. Water absorption by capillarity 

Water absorption by capillarity was assessed following the procedure described in 

RILEM TC 116-PCD (1999) slightly altered by suggestions in Sonebi et al. (2000). 

Cores with 75 mm diameter were extracted from each side-wall A and B of both 

box­culverts, from the CPF face right through to the non-CPF (control) face, and 

50 mm thick slices were sawn off from each end. These test-specimens were then put 

to dry in a ventilated heater at 40 ºC until the difference between two consecutive 

weights was less than 0.5 % of the original weight (constant mass). After cooling, the 

specimens were prepared and tested according to the RILEM recommendation. The 

uptake of water by capillary absorption was measured through the weight gain of each 

specimen at time intervals up to 24 hours from the start of the test (Sonebi et al., 2000). 

The absorption of water into concrete under capillary action is dependent on the 

square­root of time and may be modelled by the following equation (Sousa Coutinho, 

2003): 

 ` Z F, + A!,.D (2.2) 

where ` (g/m2) is the water absorption by unit area of concrete surface since the 

moment the core is dipped in water, A is the “Sorptivity” of the material, ! is the elapsed 

time and F, (g/m2) is the water absorbed initially by pores in contact with water. 

Sorptivity is a measure of the capillary forces exerted by the pore structure, it measures 

the unsaturated flow of fluids into concrete (Stanish et al., 1997). 

Water absorption data collected during the test led to the linear relations presented in 

Figure 2.8. Sorptivity results (g/(m2×min1/2)) are presented in Table 2.6 for core 

samples taken from the SCC box-culvert and CC box-culvert. Results of core 

specimens show that the rate of capillary absorption, indicated by the sorptivity 

parameter, is slightly lower for SCC, compared to CC, and is lower in cores from the 

CPF faces. Comparing sorptivity of core specimens from CPF faces, results indicate 

that cores taken from CPF-A face have a higher rate of capillary absorption than cores 

taken from CPF-B face. 
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Figure 2.8 – Water absorption (by capillarity) results of cores. 

Table 2.6 – Sorptivity (g/(m2×min1/2) of cores from SCC and CC box-culvert walls, average 

results and variation coefficient, in brackets. 

 Location Nº of cores Average (v.c.) 

SCC box-culvert  

Wall A, CPF-A face  3 45.07 (4.8%) 

Wall A, non-CPF face 3 52.94 (10.2%) 
   
Wall B, CPF-B face 2 38.44 (--) 

Wall B, non-CPF face 3 46.84 (0.1%) 

CC box-culvert 

Wall A, CPF-A face  3 69.60 (7.5%) 

Wall A, non-CPF face 3 76.04 (2.8%) 
   
Wall B, CPF-B face 2 60.73 (--) 

Wall B, non-CPF face 3 69.30 (--) 

 

Comparing sorpitivity of cube specimens, presented in Nunes et al. (2009a) and of cores 

taken from the box-culvert elements results indicate that the rate of capillary absorption 

is between 2 and 3 times higher for cores of SCC and conventional concrete. 

Furthermore, a larger variation of results was found with cores. This might be 

explained by the different curing conditions and/or any surface defects induced by the 

drilling machine. 

2.5.2.2. Resistance to chloride ion penetration 

Resistance to chloride ion penetration was assessed following ASTM C1202 (ASTM, 

1997), more popular in America, and the CTH Rapid method described in 
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NT BUILD 492 (NORDTEST, 1999). This last method was adopted in Portugal 

through a LNEC specification, E 463 (LNEC, 2004). Cores of approximately 100 mm 

diameter were drilled out from each side-wall of both box-culverts; the top 50 mm 

discs (moulded faces) were used. The conditioning of the concrete disc specimens for 

both test procedures consisted of: 1 hour air drying; 3 hours vacuum (pressure 

<600 mm Hg); 1 hour of additional vacuum with specimens under deaerated water, 

followed by 18 hours of soaking in water for the ASTM test and soaking in saturated 

calcium hydroxide solution for the CTH Rapid Method. 

ASTM C1202 method 

The method described in the ASTM C1202 (ASTM, 1997) consists of monitoring the 

amount of electric current passed through concrete specimen, when a potential 

difference of 60 V is maintained across the specimen for a period of six hours. Chloride 

ions are forced to migrate out of a NaCl solution subjected to a negative charge, 

through the concrete into a NaOH solution maintained at a positive potential. The total 

charge passed, in coulombs, is used as an indicator of the resistance of the concrete to 

the ingress of chloride ions, the lower it is, the more resistant is the concrete to chloride 

penetration.  

CTH Rapid Method 

The CTH Rapid Method is a non-steady state migration method based on a theoretical 

relationship between diffusion and migration, which enables the calculation of the 

apparent chloride diffusion coefficient from an accelerated test, equations (2.3) to (2.5). 

It is based on measuring the depth of colour change of a silver nitrate solution sprayed 

on specimens previously submitted to a migration test. 

Dclef = >Bgh9 ⋅ N( − JjN(!  (2.3) 

where, 

9 = k − 2l  (2.4) 
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J Z 2m >Bgh9 ⋅ n'opq r1 − 26(6, s (2.5)

where Dclns is the apparent diffusion coefficient obtained in a non-steady-state 

migration test (m2/s); > is the gas constant (>=8.314 J/(mol.K)); B is the average value 

of the initial and final temperatures in the anolyte solution (K); l is the thickness of the 

specimen (m); g is the absolute value of ion valence, for chloride (g=1); h is the Faraday 

constant (h=9.648×104 J/(V.mol)), k is the absolute value of the applied voltage (V); N( 

is the average depth of chloride penetration measured by using a colorimetric method 

(m); ! is the test duration (s); 6( is the concentration of free chloride at which the 

colour changes when using the colorimetric method to measure the chloride 

penetration depth (6( ≈0.07 N) and 6, is the concentration of free chloride in the 

catholyte solution (6, ≈2 N). 

Disc specimens were submitted to an electric current corresponding to a potential 

difference of 30 V, during 24 hours. After switching off the electrical field, the 

specimens were split in two halves and the depth of chloride penetration was measured 

using a colorimetric technique in which a silver nitrate solution is used as a colorimetric 

indicator. When a silver nitrate solution is sprayed on a concrete containing chloride 

ions, a chemical reaction occurs. The chlorides bind with the silver to produce silver 

chloride, a whitish substance. In the absence of chlorides, the silver instead bonds with 

the hydroxides present in the concrete, creating a brownish colour (Stanish et al., 1997). 

Results 

Results of ASTM C1202 test and CTH Rapid Method are presented in Table 2.7 and 

Table 2.8 for the core samples taken from the SCC box-culvert and CC box-culvert. 

Both tests results show that conventional concrete is less resistant to chloride ingress. 

Based on ASTM C1202 (ASTM, 1997), the SCC mixture can be classified as having 

moderate chloride ion penetrability while conventional concrete mixture presented high 

chloride ion penetrability. The lower water/cement ratio can be responsible for the 

improved behaviour of SCC. Besides, due to increased content and variety of fine 

materials (cement and limestone filler) and dispersing effect of superplasticizer, as well 

as, the absence of vibration, an improved microstructure can be obtained, related to 

higher packing density of paste and reduced size and porosity of the interfacial 
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transition zone (ITZ) (Klug and Holschemacher, 2003). According to the results the 

application of CPF systems on the formwork improves the resistance to chloride ion 

penetration. It should be noticed that in the case of resistance to chloride penetration 

tests, insignificant differences were found between core samples and cube specimen 

results, presented in (Nunes et al., 2009a). 

Table 2.7 – Resistance to chloride (ASTM C1202) in electrical charge (coulombs) of cores from 

SCC and CC box-culvert walls, average results and variation coefficient, in brackets. 

 Location Nº of cores Average (v.c.) 

SCC box-culvert 

Wall A, CPF-A face  4 2534 (4.6%) 

Wall A, non-CPF face 4 3068 (5.9%) 
   
Wall B, CPF-B face 4 2648 (3.3%) 

Wall B, non-CPF face 4 3191 (6.6%) 

CC box-culvert 

Wall A, CPF-A face  3 3915 (6.4%) 

Wall A, non-CPF face 3 4218 (5.0%) 
   
Wall B, CPF-B face 4 3868 (8.8%) 

Wall B, non-CPF face 4 4384 (11.6%) 
 

Table 2.8 – Resistance to chloride (CTH test) in apparent diffusion coefficient (cm2/s) of cores 

from SCC and CC box-culvert walls, average results and variation coefficient, in brackets. 

 Location Nº of cores Average (v.c.) 

SCC box-culvert 

Wall A, CPF-A face  4 9.6x10-8 (6.9%) 

Wall A, non-CPF face 4 10.0x10-8 (23.0%) 
   
Wall B, CPF-B face 4 9.6x10-8 (8.8%) 

Wall B, non-CPF face 4 11.4x10-8 (9.9%) 

CC box-culvert 

Wall A, CPF-A face  4 15.0x10-8 (4.3%) 

Wall A, non-CPF face 3 16.0 x10-8 (20%) 
   
Wall B, CPF-B face 3 13.6x10-8 (5.4%) 

Wall B, non-CPF face 4 15.6x10-8 (4.7%) 

 

Data provided by both tests, ASTM C1202 test and CTH Rapid Method, also enabled 

determining electrical conductivity in saturated conditions, as the specimens must be 

fully saturated prior to testing. Therefore, when current is imposed during the test, 

conductivity, inverse of resistivity, gives an indication on how easily electric current 



Chapter 2 

2.20 

flows through the saturated pore system. Conductivity can be determined according to 

equation (2.6): 

σ Z 1� = 1> ∙ l̀ = =lE` (2.6)

where � is the conductivity (S.m-1); ρ is the electrical resistivity (Ω.m); >, electrical 

resistance, (Ω); =, current (A); E, voltage (V); l, length (m), and ` (m2), the area of the 

cross section of test specimens. 

Mean conductivity and initial conductivity were determined and, in the case of initial 

conductivity determination, current = was taken after 15 minutes of the beginning of 

the CTH Rapid Test and after 5 minutes of the beginning of the ASTM C1202 test. 

Mean conductivity was determined using the electrical charged data collected during the 

tests. In fact, the current (=), measured in amperes (A), is defined as the amount of 

electric charge (w), measured in coulombs (C), flowing through the cross section of the 

test specimen, over time (t), see equation (2.7). Therefore, the total charge passed 

through a specimen, in coulombs, according to equation (2.6) and (2.7), enables 

determination of the mean conductivity of the specimen throughout the test. 

= = w!  (2.7)

Graphs presented in Figure 2.9 and Figure 2.10 illustrate correlation between initial 

conductivity, determined from initial electric current, and mean conductivity calculated 

from the total charge passed throughout the test. This analysis made it possible to 

conclude that initial and mean conductivity are well correlated, concerning both tests, 

with R2 of 0.94 and 0.96 for the CTH Rapid Test and the ASTM C1202 test, 

respectively. It was also possible to observe that for the CTH Rapid Test initial and 

mean conductivity values are practically the same (x=1.0326N) but for the 

ASTM C1202 test mean conductivity calculated from the total charge passed, is about 

15% higher than initial conductivity (x=0.8586N). 
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Figure 2.9 – Correlation between initial and mean conductivity, established using CTH Rapid 

Test results. 

 

Figure 2.10 – Correlation between initial and mean conductivity, established using 

ASTM C1202 test results. 

Indeed, considering ASTM C1202 test results, conductivity calculated from final 

electric current is approximately 20% higher than initial conductivity (x=0.8042N), see 

Figure 2.11. Some doubts have been expressed with regard to this test. The main 

criticisms of this technique are: (i) the current passed is related to all ions in the pore 

solution not just chloride ions, (ii) the measurements are performed before steady­state 

migration is achieved and (iii) the high voltage applied leads to an increase temperature, 
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especially for low quality concretes (Stanish et al., 1997). According to Feldman et al. 

(1999) the severe measurement conditions of this test may cause both physical and 

chemical change in the specimen, resulting in unrealistic values. However the ASTM 

C1202 test is versatile and rapid to conduct and provides results that are easy to 

interpret. 

 

Figure 2.11 – Correlation between initial and final conductivity, established using ASTM C1202 

test results. 

Regarding CTH Rapid Test results, also good correlation was found between mean 

conductivity and apparent diffusion coefficient (R2=0.95), see Figure 2.12. According 

to the Nernst­Einstein equation (equation (2.8)), for a given concrete with a given 

moisture condition, there is a general relationship between chloride diffusivity and 

electrical resistivity or conductivity (Gjørv, 2003). 

8) Z >B�!)g)yhy6) (2.8)

Where 8) is the diffusivity of species �, > is the universal gas constant, B is the absolute 

temperature, � is the conductivity of concrete, g is the ion valence of species �, h is 

Faraday constant, 6) is the concentration of species � and !) is the transference number 

of species �, which is defined as the proportion of current carried by this ion in relation 

to the current carried by the rest of the ions (Andrade, 1993; Lu, 1997). 
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In fact, when the transference number of an ion is known, in this case the chloride ion, 

the diffusivity of this ion in concrete can be obtained by measuring the total 

conductivity of the concrete. However, the calculation of the diffusion coefficient of 

the chloride ion, using conductivity measurements, doesn´t take into account the 

reaction of chlorides with cement phases and therefore, the values obtained correspond 

to the effective diffusion coefficient (Dcleff) and not to the apparent diffusion 

coefficient (Dclapp) (Andrade, 1993; Andrade et al., 2007). On the other hand the 

transference number of chloride ions is difficult to measure because is complex to 

quantitatively describe the ionic components of the pore solution that participate in the 

migration process (Gjørv and Zhang, 1998). If these difficulties could be solved, in 

routine testing, the resistance against chloride penetration could more easily be 

monitored by testing the conductivity or electrical resistivity. 

 

Figure 2.12 – Correlation between mean conductivity and Dclns, established using CTH Rapid 

Test results. 

2.5.2.3. Resistance to carbonation 

Resistance to carbonation was assessed in accordance with the procedure described in 

LNEC specification E 391 (LNEC, 1993) where specimens were exposed to 

5 %±0.1 % carbon dioxide, relative humidity of 60 %±5 % and temperature of 

23 ±3 ºC, in an accelerated carbonation chamber. Specimens used were sawn off at the 

ends of 94mm diameter cores extracted from the side-walls of the box-culverts. Results 

of this test are presented in Table 2.9 for SCC and CC core samples. In the case of 
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CPF-A with conventional concrete no results were obtained because specimens were 

damaged. According to the results, the application of CPF seems to have a clear 

beneficial effect in concrete resistance to carbonation. 

Table 2.9 – Resistance to carbonation in depth of carbonation (mm) of cores from SCC and 

CC box-culvert walls, average results and variation coefficient, in brackets. 

 Location Nº of cores Average (v.c.) 

SCC box-culvert 

Wall A, CPF-A face  3 4.0 (8.5%) 

Wall A, non-CPF face 3 6.8 (10.2%) 

   
Wall B, CPF-B face 2 5.0 (--) 

Wall B, non-CPF face 2 8.8 (--) 

CC box-culvert 

Wall A, CPF-A face  -- -- 

Wall A, non-CPF face 3 8.6 (7.5%) 

   
Wall B, CPF-B face 2 4.5 (--) 

Wall B, non-CPF face 2 10.0 (--) 

 Discussion 

Considering hardened SCC and conventional vibrated concrete of similar strength, it 

can be assumed that properties are comparable and any differences lie in the scattering 

range for conventional concrete. As it was shown in this study, it is possible to 

compensate for the lower aggregate content (or higher paste content) in the SCC 

mixtures with a denser paste to get similar or improved concrete properties. SCC is 

often produced with low water/cement ratio to get high segregation resistance. This 

provides potential for high early strength, earlier formwork stripping and quicker mould 

turnaround, which may be of high interest in precast industry. A positive effect of high 

segregation resistance of SCC is enhanced homogeneity. Indeed, in this study it was 

found that concrete strength measured at different locations of the box-culvert element 

disperses less than in a similar element with conventional concrete. Compaction 

resulting from external vibration is uneven depending on the vibration sources. SCC 

provides potential for a superior level of homogeneity for the structure. 

Results of the durability related properties considered, shown in Table 2.6 to Table 2.9, 

may be presented in terms of efficiency comparing effect of one or two technologies 

(SCC and CPF) with the effect on CC, Figure 2.13. Analysing these results makes it 
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possible to, on one hand, compare performance of SCC, CPF-A and CPF-B versus CC 

in terms of durability and on the other hand, evaluate the efficiency of each CPF 

system, CPF-A and CPF-B on SCC comparing it with CC. 

Figure 2.13 – Efficiency of SCC, CPF-A, CPF-B, SCC with CPF-A and SCC with CPF-B 

systems on durability properties. 

Concrete in the SCC box-culvert presented lower sorptivity, this is, absorption by 

capillarity, higher resistance to chlorides and to carbonation. Considering the first two 

parameters, SCC technology leads to a 30% enhancement whilst for carbonation 

resistance efficiency is around 16%. In theory, the factors controlling durability-related 

properties depend on the amount of paste, the pore structure and the interfacial 

aggregate/paste zone. The transport properties of concrete depend primarily on the 

paste volume, pore structure of the paste and ITZ between paste and aggregate 

particles Zhu et al. (2001). Although SCC has higher paste volume, the pore structure of 

the bulk paste and the ITZ are often improved due to the low water-cementitious 

materials ratios and the use of additions, but not all additions have the same effect. Zhu 

et al. (2001) found that chloride diffusivity was very much dependent on the type of 

addition used in concrete. Fresh SCC compared to CC is more stable and the extra 

powdered material used, together with the absence of vibration, leads to a more 
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homogeneous microstructure with denser interfacial zones. A very comprehensive and 

complete state-of-art concerning all relevant durability issues of SCC was prepared by 

the RILEM Technical Committee TC 205­DSC: Durability of Self-Compacting 

Concrete and is presented in RILEM-Report 38 (2007). 

Regarding CPF performance, all tests carried out confirmed that durability related 

parameters are improved with either CPF system. CPF-B, with a stiffer filter-drain 

compared to CPF-A, led to higher quality concrete cover in terms of absorption by 

capillarity (17.2%) and chloride ingress (approximately 12%). SCC technology seems 

more efficient for absorption by capillarity and resistance to chloride ingress whereas 

CPF reveals better performance in terms of resistance to carbonation. Using SCC 

together with controlled permeability formwork leads to 40-50% enhancement of 

properties in the concrete cover. Concerning absorption by capillarity and chloride ion 

results, CPF on SCC presents similar efficiency to CPF on CC. However, in some 

cases, CPF on SCC proved to be more effective than on CC, probably due to the 

higher powdered materials content in SCC composition, which in the concrete cover, as 

a result of CPF, are drawn and retained at concrete surface. 

It should be mentioned that the comparison of durability parameters was based on tests 

performed in specimens extracted only from the box-culvert side-walls. The slab, 

wherein the concrete compaction was less efficient in case of CC box-culvert (see 

2.5.1.1), was not considered in the analysis, otherwise, the beneficial effect of SCC and 

CPF would be expected to be greater. 

2.6. Conclusions 

Results obtained throughout the present research program carried out in actual on-site 

conditions, led to the following conclusions: 

• Innovative technologies such as SCC and CPF seem to be technically and 

economically viable when used on-site. 

• Precast concrete factories are especially suited for the use of self-compacting 

concrete but some adjustments in installations and equipment might be 
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necessary in order to optimize casting procedures and maximize benefit 

from this technology. 

• The differences between mix-proportions of the SCC and CC lead to 18 % 

increase of materials cost for SCC, but final cost will be reduced due to 

energy and work savings related to absence of compaction as well as savings 

related to enhanced durability. Full-scale tests carried out at this precast 

factory demonstrated that the installations and equipment set of for CC has 

to be adjusted to achieve a more competitive production of SCC. 

• In terms of CPF, costs may be reduced by suppression of releasing agents 

and of surface repairing. Overall costs will also be mitigated by reuse of 

certain CPF systems as well as enhanced durability. 

• In spite of the lower coarse aggregate content of SCC, when compared with 

CC, with a reduction in water/cement and water/fines ratios, better 

mechanical properties and resistance to ingress of aggressive agents were 

obtained. In generally, improved properties were found in moulded 

specimens than in cores drilled from different parts of the box-curverts, 

which may be explained by different curing conditions and in the case of 

CC, also, by different compaction efficiencies. 

• Properly proportioned, produced and placed SCC is generally more compact 

and homogeneous than equivalent vibrated concrete, thus leading to 

enhanced durability performance of concrete structures when made with 

SCC. 

• Concrete surfaces resulting from CPF application were blow-hole free with 

no blemishes and, on the contrary, the non-CPF faces, corresponding to the 

inner sides of the box-culverts side-walls, presented the usual blow-holes 

which were more prolific in the CC compared to SCC. 

• SCC and CPF enhance quality of the concrete cover, however efficiency of 

CPF technology depends on the system used. Using both technologies 
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together, controlled permeability formwork on SCC, durability-related 

parameters analysed improved 40-50%. 

• Efficiency of CPF on SCC is similar to efficiency on CC, however, in some 

cases, CPF on SCC promotes a synergetic effect in terms of quality of the 

concrete cover thus contributing to sustainable construction. 

• A more detailed analysis of the results collected from CTH Rapid Test and 

ASTM C1202 test led to the conclusion that measuring initial electrical 

conductivity or electrical resistivity may be a more rapid and economic way 

to predict resistance of concrete to chloride ion ingress, being, however 

necessary to know the reaction factor of chlorides with cement phases and 

the transference number of chloride ions in concrete. 
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Chapter 3 

3. Durability performance-based design of a 
SCC exposed to severe marine environment 

3.1. Synopsis 

The aim of this chapter is to present a systematic methodology to design 

performance­based self­compacting concrete (SCC) exposed to severe marine 

environment using a statistical experimental approach. This methodology was applied 

to the particular case of a cruise terminal building demanding special requirements in 

terms of architecture, fresh state (self-compactability) and hardened state (compressive 

strength and high durability). A performance-based design methodology, based on a 

probabilistic safety format, is presented and applied to define concrete durability 

requirements. A central composite design was carried out to identify the best mixture, 

given a set of constituent materials and performance requirements. 

3.2. Introduction 

Durability, and especially prevention of steel corrosion, has become a critical issue in 

the management of reinforced concrete structures. Insufficient attention on the 

durability of concrete structures has led to expensive repair and even demolition and 

replacement, with great impact on resources, environment and human safety (Walraven, 

2009; Gjørv, 2010). Indeed, durability of concrete structures is important from a 

technical and economical point of view, but also represents a challenge to achieve 

sustainable development in construction. Designers of reinforced concrete structures 
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are now aware that prevention of concrete degradation and steel corrosion has to be 

taken into account since the design stage. In the most recent regulations, the design for 

durability has attained the same significance as design for safety and serviceability. In 

particular, in the new fib-Model Code (CEB-FIP, 2012) service life design follows the 

same principle and framework as structural design. Using a performance-based 

approach, the structure is designed to perform as required during its life cycle. 

Generally, the performance requirements have to be defined and described in terms of 

three criteria: definition of the relevant limit state; duration of the relevant period and 

level of reliability for not passing the limit state during this period (Walraven and Bigaj-

van Vliet, 2008). Traditionally, durability design verification provided in standards is 

simply based on one of two approaches: avoidance of reaction approach or deemed-to-

satisfy approach. An avoidance of reaction approach implies that the design excludes 

the detrimental reaction, which can be achieved for instance by applying membranes or 

coatings or using non-reactive aggregate (Walraven and Bigaj-van Vliet, 2008). The 

deemed-to-satisfy approach, also designated by prescriptive approach, is mostly based 

on empirical requirements which are focused on material properties, material 

proportions and execution procedures. The design requirement is not explicitly 

formulated as a predicted service life. This approach has however shown its limitations, 

in particular with the increasing use of complex mixtures incorporating several types of 

additions and various organic and mineral admixtures (Baroghel-Bouny, 2002). In fact, 

when “new” materials are used, when a longer service life is required or under special 

conditions of aggressiveness, a specific design procedure is required. More recently, 

performance-based design methodologies based on a probabilistic safety format have 

been developed (DuraCrete, 2000; CEB-FIP, 2012). In this approach the environmental 

load is compared with the resistance of the structure, taking into account the influence 

of time and the probabilistic nature of the environmental aggressiveness, the 

degradation process and the material properties involved. A full probabilistic design is 

well suited to design structures with large relevance or to assess existing structures from 

which relevant data might be derived from (Walraven and Bigaj-van Vliet, 2008). For 

current structures a semi-probabilistic approach, also called partial safety factor 

approach, is sufficient. 

In fact, nowadays the concrete mix-design process has become very complex due to a 

considerable increase in the number of constituent materials used in the composition 
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and performance criteria that the composition must meet (e.g. self-compactability, 

compressive strength, chloride resistance and cost). Therefore, the typical mixture 

optimization based on trial and error or “one factor at a time” approaches are 

inefficient, costly and may not provide the best combination of materials at minimum 

cost. A statistical experimental design is a more scientific and efficient approach for 

establishing an optimized mixture for a given set of constraints, while minimizing the 

number of experimental data tests (Nehdi and Summer, 2002). The derived statistical 

models, established on the basis of a factorial design, enable a multi-parametric 

optimization with the user controlling the goal of the optimization and the significance 

of each experimental parameter. This mix-design approach was followed in the present 

work. 

The aim of this chapter is to present a systematic methodology to design a 

performance-based SCC exposed to severe marine environment using a statistical 

experimental design approach. The methodology will be applied to the particular case 

of a cruise terminal building demanding special requirements in terms of architecture 

(white concrete with a good quality surface finishing), fresh state (self­compactability) 

and hardened state (compressive strength and high durability). A performance­based 

design approach, based on a probabilistic safety format, is presented and applied to 

define concrete durability requirements. Limit values of the selected durability 

indicators (apparent chloride diffusion coefficient and electrical resistivity) were 

specified given the target service life, reliability level and limit state criterion established 

for the structure. Once the set of concrete requirements (fresh and hardened 

properties) was defined, mixture optimization was derived from numerical models 

established on the basis of a factorial central composite design. In order to simplify 

SCC design, the study was developed in two phases: first at mortar level and then at 

concrete level. 

3.3. Probabilistic performance-based durability design 

According to Tuutti’s model (Tuutti, 1982) for the deterioration process of structures, 

the service life of reinforced concrete structures depends on the length of two time 

periods: the initiation period and the propagation period. The initiation period is the 
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time required for the aggressive substance to reach the reinforcement and induce 

depassivation, while the propagation period is related to the evolution of different 

forms of deterioration after corrosion has been initiated (e.g. cracking or spalling of the 

concrete cover). Figure 3.1 presents a schematic representation of the service life and 

limit states considered for a reinforced concrete structure affected by corrosion, 

according to Tuutti’s model. 

 

Figure 3.1 – Service life and limit states with respect to reinforced concrete structures affected 

by corrosion according to Tuutti’s model (Tuutti, 1982). 

The performance-based design of a structure is generally based on the safety concept, 

expressed in terms of the limit state function (z). The limit state function defines safety 

as the requirement that resistance, >, is greater than or equal to the total action-effect, A, as translated by equation (3.1): 

 z Z > \ A { 0 (3.1) 

As for the structural safety, in the performance-based durability design, > and A 
functions have input parameters that are time-dependent and stochastic variables. 

Structure behaviour has uncertainties associated with the structural layout, material 

characteristics, execution conditions and environmental input. Hence, a probabilistic 

approach as opposed to a deterministic one is recommended to generate reliable 

predictions of the limit state function. In a probabilistic approach, the probability of 

exceeding the limit state, denoted probability of failure ($%), is compared with the target 

probability of failure ($����	�), according to equation (3.2). Once the limit state function 
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has been established, and the variables have been characterized, it is possible to 

determine the probability of failure by means of several reliability techniques such as 

First Order Reliability Methods (FORM), Second Order Reliability Methods (SORM) 

or simulation techniques (e.g. Monte Carlo method). 

 $%W!Y Z |}>W!Y ~ AW!Y� Z |W>W!Y \ AW!Y ~ 0Y Z |WzW!Y ~ 0Y � $����	� (3.2)

In fact, durability design of a structure can be presented in two different formats: the 

service period design format (expressed in equation (3.2)) and the lifetime design 

format (DuraCrete, 1999). In the lifetime design format the reliability of the structure is 

related to the probability that the design service life (!*) will be exceeded when 

compared with the target service life (!�), see equation (3.3). The service life is ended at 

the moment the limit state is reach. Although they have different formats, service 

period design and lifetime design use the same basic theoretical concepts and deliver 

exactly the same result (DuraCrete, 1999). A schematic representation of the problem is 

shown in Figure 3.2, for the service period design format and lifetime design format. 

 $%W!Y Z |}!* ~ !�� � $����	� (3.3)

 

Figure 3.2 – Durability design of a structure by two different formats: service period design and 

lifetime design (illustrative presentation) (DuraCrete, 1999). 

In contrast to a deterministic approach, a sufficient amount of statistical information on 

each model parameter should be available to characterize the parameters by probability 
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density distributions, mean value and standard deviation. The absence of reliable 

databases and the lack of knowledge to adequately characterize the condition and 

performance of a steel reinforced concrete structure, prevents the correct application of 

this level of calculation (Ferreira, 2007; Gulikers, 2007; Marques et al., 2012). Therefore, 

with the durability becoming a functional requirement in the same way as mechanical 

stability, some recommendations and normative documents have been proposing a 

modified formalization of the calculation rules able to allow the concept of durability 

and its associated uncertainty to be presented in the form of partial safety factor 

method (DuraCrete, 2000; LNEC, 2007; CEB-FIP, 2012). The method directs to a 

deterministic computation, using safety factors in order to introduce the probabilistic 

nature of the problem (semi-probabilistic approach), see equation (3.4), where !( is the 

service life value, L
 is the lifetime safety factor and !� is the target service life. 

!( Z L
 ⋅ !� (3.4)

A probabilistic performance­based service life design should be implemented in several 

steps: (i) defining the desired/required performance of the structure in terms of target 

service life, limit state criterion and reliability level (Section 3.4.1.1); (ii) identifying 

failure mechanism and corresponding degradation processes, selecting relevant 

durability indicators (Section 3.4.1.2); (iii) defining constituent materials, concreting 

practices and curing conditions (Section 3.4.1.3); (iv) establishing time dependant 

mathematical models for the selected durability indicators describing the degradation 

processes, and based on target service life, limit state criterion and established 

mathematical models, a limit state function is defined (Section 3.4.1.4); and 

(v) performing the probabilistic calculation of the limit state function to quantify limit 

values for the durability indicators (Section 3.4.1.5). 

3.4. Case study: concrete requirements 

A new cruise terminal building exhibiting a special architecture was designed to serve 

the north region of Portugal (see Figure 3.3). The external part of the structure consists 

of a spiral laminar element of white concrete (architectural requirement), which 

envelops the entire building. Besides its complex geometry this laminar element 

includes a significant density of reinforcement (prestressing and ordinary reinforcing 
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steel) and requires good quality of surface finishing, therefore SCC was considered for 

this specific application. Given these constraints, the SCC for the cruise terminal 

building should exhibit a slump flow diameter (Dflow,concrete) between 750.0 and 

850.0 mm, a flow time (Tfunnel,concrete) between 10.0 and 15.0 s, a relative filling height 

(H2/H1) higher than 0.90 and a segregation (Sr) lower than 15.0%. In addition to the 

requirements of self-compactability, the colour (white) and the good quality of surface 

finishing, performance requirements included compressive strength exceeding 70 MPa 

and high durability, due to the building location in a very aggressive environment. 

Durability requirements are specified in Section 3.4.1. 

 

Figure 3.3 – Three-dimensional representation of the cruise terminal building (APDL, 2012). 

 Durability performance-based specifications 

3.4.1.1. Limit state criterion, target service life and reliability level 

In some practical cases there is an implied agreement that the end of service life is 

achieved at the moment that the initially passive condition of the embedded reinforcing 

steel is lost due to the presence of an excessive amount of chlorides or the arrival of the 

carbonation front (Gulikers, 2007). In tidal or even splash zones of marine structures, 

as it is the case of the structure under analysis, the penetration of chloride ions 

(initiation period) is relatively slow, but as soon as the dissolution of the reinforcement 

passive layer occurs, corrosion can develop with considerable intensity because there is 

sufficient amount of moisture and oxygen (propagation period) (Andrade et al., 1993). 
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Therefore, in the present study, a serviceability limit state of depassivation (structure 

service life is equal to the initiation period) was considered for the durability 

requirements specification. 

According to the European standard NP EN 1990 (IPQ, 2009), the new cruise terminal 

building fits into the RC3 reliability class, concerning the high importance of the 

structure in terms of consequences after failure. Given the reliability class of the 

structure, the probability of failure for serviceability limit state should not exceed 

2.3x10-2, according to E 465 (LNEC, 2007), and the structure service life was 

established at 75 years (target service life), corresponding to the structural class S5 

(NP EN 1992­1­1 (IPQ, 2010b)). 

3.4.1.2. Degradation mechanisms and corresponding durability indicators 

Concrete structures in marine environment are exposed to the action of many physical 

and chemical deterioration processes, which may act simultaneously with mutual 

interdependence and synergistic effects (Liu, 1991; Mehta, 2003). The schematic 

diagram presented in Figure 3.4 illustrates how different degradation mechanisms can 

act on concrete structures in a marine environment depending on the exposure zone 

conditions, namely, the submerged zone, the tidal zone, which includes the splash zone, 

and the atmospheric zone.  

 

Figure 3.4 – Degradation mechanisms responsible for deterioration of a concrete structure 

exposed to sea water (Mehta, 2003). 
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The concrete mixture of the new cruise terminal was designed for the tidal and splash 

zone, exposure class XS3 according to NP EN 206-1 (IPQ, 2007), since this is the zone 

with more severe environmental conditions for reinforced concrete. 

The physical-chemical processes of sea water attack lead to disintegration of concrete 

or corrosion of steel. Disintegration of concrete in marine environments is mostly 

caused by chemical deterioration such as sulphate attack, magnesium attack, alkali-

aggregate reaction or leaching. Physical deterioration from crystallisation of soluble 

hydrated salts in pores of concrete, freezing and thawing, erosion and abrasion also 

promote further concrete disintegration. Although most of these deteriorating 

processes may represent potential durability problems, corrosion of embedded steel has 

been acknowledged as the most critical threat to durability and long-term performance 

of concrete structures in severe marine environments (Mehta, 2003; Gjørv, 2009). In 

general, experience has shown that most of these deterioration processes could be 

controlled or avoided by taking the necessary precautions in selecting material 

composition (Gjørv, 2009). Nevertheless, preventive measures should take into account 

the type of environment that the structure is exposed to, since their potential benefit 

depends on the combined action of the various existing degradation mechanisms. 

Since reinforcement corrosion due to chloride penetration is the main cause of concrete 

degradation in marine environment, concrete permeability, chloride content, availability 

of oxygen and moisture at the steel surface are the important factors controlling the 

phenomenon. Therefore, given the main degradation mechanism and the selected limit 

state (limit state of depassivation) corresponding to the period of chloride penetration, 

the design of the new cruise terminal building was based on the following durability 

indicators: apparent chloride diffusion coefficient measured by the migration test 

(Dclconcrete) and electrical resistivity of water saturated test specimens (�concrete). In fact, 

for the initiation period the electrical resistivity of concrete in saturated conditions can 

be correlated with the apparent chloride diffusion coefficient, as shown later. 

Nevertheless, these two durability indicators were considered as independent variables. 

Although not discussed in this work, shrinkage cracking is also a major problem in view 

of the durability of concrete structures, since if cracking occurs aggressive ions get open 

access to penetrate into concrete. Properties such as heat of hydration, autogenous 

shrinkage or early-age deformations, should in some cases be included as durability 
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indicators in the concrete performance specifications. Also, given the presence of large 

amounts of sulphates in seawater, sulphate attack would be expected. However, the 

formation of ettringite in a chloride rich environment is not accompanied by swelling 

of ettringite through water adsorption, rather than in an alkaline environment (Mehta, 

2003). 

3.4.1.3. Materials selection 

The selection of constituent materials, the design of mix-proportion and the 

appropriate concreting practices are essential factors to achieve the specified 

performance-based requirements, both at fresh and hardened states. The design of 

durable structures should focus on one hand, on the possibility of using additional 

protective measures, like the use of CPF (controlled permeability formwork) or/and 

SCC (Figueiras et al., 2009), that could delay the corrosion process and the deterioration 

of concrete, and on the other hand, the composition design should be appropriate for 

the exposure class. Sustainable design of highly durable concrete requires an adequate 

selection and combination of constituent materials, exploiting synergies between 

different cements and additions (Figueiras et al., 2011). Given all the specified 

requirements for the concrete of the new cruise terminal building (architectural, 

hardened and durability properties), the following materials were selected: white cement 

(CEM II/A­L 52.5N); two white mineral additions, metakaolin and limestone filler; 

polycarboxylate superplasticizer; and non-reactive aggregates.  

White Portland cement is especially used for applications where colour is one of the 

requirements (Neville, 1998). White cement differs from grey Portland cement by 

having lower content of Fe2O3 and Al2O3 and lower alkalis content. An often 

overlooked advantage of the much lower Fe2O3 content in white Portland cement is the 

higher relative volume of hydrate phases, and therefore a lower capillary porosity 

(Nielsen, 2004). Furthermore, white Portland cements have a low content of alkalis, 

which not only reduces the risk of alkali-silica reaction but also results in a higher 

degree of chloride binding, despite its lower content in Al2O3 (Nielsen, 2004). 

According to Nielsen (2004) the content of alkalis is the main governing parameter for 

the chloride binding capacity, and owing to the minor effect of Al2O3 on chloride 

binding, low-alkali low-aluminate Portland cements are expected to result in extended 

service life in marine environments, providing higher protection to both chloride 
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transport and sulphate attack. However, on the other hand, a study conducted by 

Andrade and Buják (2013) shows that in natural wet and dry chloride tests, reinforced 

concrete specimens produced with white cement depassivate first than specimens with 

ordinary Portland cement and, also, chloride threshold was found to be lower for white 

cement. 

Supplementary cementing materials, like limestone filler and metakaolin, are often used 

in concrete mixes to reduce cement content, improve workability and enhance 

mechanical or durability properties. Limestone filler is regularly used as mineral 

addition in SCC, which although relatively inert appears to contribute directly to 

concrete properties through three main mechanisms: particle packing effect which 

could improve mechanical and transport properties; nucleation effects, in which 

hydration products of traditional cement reactions are slightly accelerated; chemical 

reaction, which only occurs to a minor extent, producing carboaluminate phases 

(Schutter, 2011; Tennis et al., 2011). According to some studies, notwithstanding the 

positive effect of particle packing, a large amount of limestone filler in concrete could 

affect some concrete durability aspects, especially thaumasite sulphate attack (RILEM-

Report 38, 2007; Tennis et al., 2011). This however, should not be a degradation 

mechanism of great relevance in the case of the new cruise terminal building, since the 

expected average temperature is around 15ºC. High-reactive metakaolin is one of the 

more recent types of mineral additions that have been used to produce high-

performance concrete. Investigations carried out up to the present show that the use of 

metakaolin helps in enhancing mechanical and durability properties of concrete. The 

partial replacement of cement with metakaolin reduces water penetration into concrete 

by capillary action. Metakaolin modifies the pore structure of the cement matrix and 

significantly reduces permeability. Although total porosity may be increased by 

metakaolin blending, the process causes a refinement of the pore structure (Siddique 

and Klaus, 2009). The chloride ion permeability decreased considerably with increase 

content of metakaolin (Siddique and Klaus, 2009), but on the contrary, carbonation 

depth increases, which it is probably due to the fact that the replacement of cement by 

metakaolin decreases the content of Ca(OH)2 in hydrate products due to pozzolanic 

reaction (Siddique and Khan, 2012). Also, according to some researches (Siddique and 

Khan, 2012), metakaolin had been found effective in reducing concrete expansion by 
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sulphate attack. The use of metakaolin increases the heat evolved during hydration, 

which may lead to thermal stress cracking (Parande et al., 2009). 

The presence of a superplasticizer in concrete composition could also improve 

durability by a refinement of the pore structure. This tensio-active material gets 

adsorbed on cement particles, yielding a negative charge that causes the cement 

particles to repel each other. As a consequence, less cement particles remain unhydrated 

and a more homogeneous distribution of the hydration products is developed (RILEM-

Report 38, 2007). 

3.4.1.4. Degradation models and limit state functions 

The durability of concrete structures is determined by the transport of aqueous and 

gaseous substances in the pore system of concrete and their interaction with the 

hydrated paste matrix, aggregate or steel reinforcement. Chlorides can penetrate in 

hardened concrete by permeation, diffusion or capillary absorption and by mixed 

modes of transport mechanisms (CEB-FIP, 2012). In marine environment, when 

reinforced concrete is exposed to tidal or splash zones (XS3 exposure class) the main 

transport mechanisms of chlorides into concrete are diffusion and capillarity. Capillary 

suction occurs in concrete surface layers that are subjected to wetting and drying cycles 

affecting a thin outer layer of cover concrete (10-20 mm). Therefore, beyond this 

capillary suction zone, the diffusion process is the most important transport mechanism 

for the penetration of chlorides (Tuutti referred by Saassouh and Zoubir Lounis 

(2012)). If chloride penetration is diffusion-controlled, the Fick’s second law of 

diffusion can be used to predict the variation of chloride concentration in time for one 

dimensional flow. Under the assumption of homogeneous concrete, constant chloride 

concentration at the exposure surface, linear chloride binding, constant effect of co-

existing ions and one dimensional diffusion into semi-infinite space, the error function 

solution to Fick’s second law yields (Luping and Gulikers, 2007): 

6WN, !Y = 6, + (64 − 6,Y �1 − n'o N2j8���(!Y ⋅ !� (3.5)

where 6(N, !Y is the chloride content in percentage of cement by weight (%), at a 

distance N (m) from the concrete surface after being exposed for a period of time ! (s); 
64 is the chloride content on the concrete surface in percentage of cement by weight 
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(%); 6� is the initial chloride content in percentage of cement by weight (%); n'o is the 

error function; 8���W!Y is the apparent chloride diffusion coefficient in concrete as a 

function of exposure time (m2/s).  

The chloride content 64 at the concrete surface depends on geometrical and 

environmental conditions, and according to the specification of the Portuguese 

National Annex to the NP EN 206-1 (IPQ, 2007), E 465 (LNEC, 2007), 64 can be 

obtained using the following equation: 

 64 Z 67 ⋅ 2.5(- .⁄ Y ⋅ ��	�� ⋅ ���� ⋅ ��	�� (3.6)

where 67 is the surface chloride content in percentage (%) that accounts for the salinity 

of the seawater at the Portuguese coast (21g/l), seawater mean temperature (16±2)ºC 

and the environmental exposure classes (XS1, XS2 and XS3); -/. is the water/binder 

ratio; ��	�� and ���� are coefficients related to environmental exposure considering the 

concrete location with reference to sea level and its distance to sea coast, respectively; 

and ��	�� is the coefficient that accounts for concrete temperature. 

The influence of curing and environmental conditions and the time dependence of 

8���(!Y are introduced, according to E 465 (LNEC, 2007), by the following equation: 

 8���(!Y = ��,� ⋅ ��,�� ⋅ ��,� ⋅ 8, ⋅ r!,! s�
 (3.7)

where ��,� is the factor that considers the influence of curing conditions; ��,�� and ��,� 

are coefficients related to the influence of relative humidity and temperature on the 

diffusion coefficient, respectively; 8, is the apparent diffusion coefficient (m2/s), 

obtained from migration laboratory tests performed at the reference age !,; and # is the 

concrete’s ageing factor, which represents the time dependence of the diffusion 

coefficient or the increasing ability of the concrete to resist chloride penetration over 

time. Several effects have been attributed to time dependence of the concrete chloride 

diffusion coefficient, mainly the evolution with time of the concrete pore refinement, 

changes in binding ability of cement phases towards chlorides and the possible changes 

of chloride surface concentration (Andrade et al., 2011). The # coefficient in equation 

(3.7) is a constant, and it depends on the type of cementitious materials used, the 

mixture proportions and the concrete exposure conditions. The way concrete’s ageing 
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factor is introduced has been discussed by the scientific community and there is still a 

need to clarify issues such as the solution of the differential equation of Fick’s second 

law when this factor is applied (Luping and Gulikers, 2007; Andrade et al., 2011) or the 

period of time that should be considered for the time dependence of chloride diffusion 

coefficient (Andrade et al., 2013). Given the lack of consensus on this issue, in the 

present work the solution of the Fick´s second law presented in equation (3.5) will be 

considered and the ageing factor will be applied to a period of time equal to the 

exposure period of time, ! in equation (3.7). 

Therefore, for concrete mixture design of new structures, the required chloride 

diffusion coefficient of the composition, Dclconcrete (Dclconcrete and 8, are the same 

parameter in the present work) can be determined using equation (3.8), developed from 

equations (3.5), (3.6) and (3.7), considering that N is the concrete cover thickness �, the 

initial chloride content (6�) is zero and, for the limit state of depassivation, which is the 

limit state considered for this structure, the exposure period of time ! is equal to the 

initiation period !) and 6WN, !Y is equal to the chloride threshold level necessary to 

depassivate reinforcing steel (6�). The depth of the capillary suction zone is also taken 

into account in the model by the parameter ∆N. The model uncertainty is taken into 

account by the parameter �. 

8�I�����	�	 =
�
�� (� − ∆NYy

4 ⋅ !) ⋅ �n'opq �64 − 6�64 ��y ⋅ ��,� ⋅ ��,�� ⋅ ��,� ⋅ �!,!) ���
�� ⋅ � (3.8)

Electrical resistivity limit value can be computed using the relationship between 

diffusivity and resistivity, based on the Nernst-Einstein equation and assuming the 

square root relation between diffusivity and penetration depth of the aggressive agent 

(Einstein´s theory to the Brownian motion of a particle) (Andrade et al., 2000). For the 

limit state of depassivation, where the service lifetime is equal to the initiation period !) 
and based on the model proposed by Andrade et al. (Andrade et al., 2000; Andrade et al., 

2013), the required electrical resistivity of the concrete could be obtained by equation 

(3.9): 

������	�	 = !) ⋅ ��

(� − ∆NYy ⋅ r!�+(�!, s� ⋅ '�
 ⋅ ��,� ⋅ ��,�� ⋅ ��,�

 (3.9)
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where �concrete (Ω.m) is the “effective” resistivity measured under saturated conditions at 

time !, (years); !) (years) is the exposure period of time equal to the initiation period; ��
 
is a factor which depends on the external ionic concentration; c (m) is the concrete 

cover thickness; ∆N (m) is the depth of the capillary suction zone; '�
 is a reaction or 

binding factor; & is the ageing factor of resistivity which can be deduced from the 

ageing factor # of chloride diffusion by means of an experimental expression (Andrade 

et al., 2011) (&=0.798#-0.0072); !�+(� (years) is the period of time the ageing factor 

should be applied in the electrical resistivity model (Andrade et al., 2013); ��,� is the 

curing factor; ��,�� is the humidity factor; and ��,� is the temperature factor. It should 

be noted that the period of time the ageing factor is applied in the chloride diffusion 

coefficient model is different to the electrical resistivity model. 

3.4.1.5. Limit values of selected durability indicators 

Limit values of the durability indicators selected for the design of the terminal cruise 

concrete were specified using the mathematical models (limit state functions) presented 

in the previous section, and adopting a full probabilistic approach for the concrete 

apparent chloride diffusion coefficient (Dclconcrete) and a partial safety factor approach 

for the concrete electrical resistivity (�concrete). 

The probabilistic analysis approach was implemented with a Latin Hypercube 

simulation method, using a commercial software (@Risk, 2013) and applying a set of 

105 simulations, thus ensuring a high accuracy of the result. The Kolmogorov-Smirnov 

test was performed to evaluate the quality of the generated samples. Table 3.1 shows 

the input parameters characterization of the chloride diffusion coefficient model. In the 

case of stochastic variables a statistical characterization is presented, namely the 

distribution type, the average and standard deviation. The values adopted for 

characterization of the model parameters were based on data provided by E 465 

(LNEC, 2007), fib-Model Code (CEB-FIP, 2012), DuraCrete (2000), Nokken et al. 

(2006) and Marques et al. (2012). 
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Table 3.1 – Parameters characterization of chloride diffusion coefficient model for a 

probabilistic analysis. 

Variable Distribution 
Mean 
value (µ) 

Stand. 
deviation (σ) 

Observations 

� normal 1 0.15  � lognormal 60 mm 7 mm �=���� according to NP EN 1992-1-1 (IPQ, 
2010b), value that should be considered for the 
construction project drawings and specifications, 
in order to take into account any expected 
deviation ∆N beta 8.901 mm 5.604 mm  !) deterministic 75 years - !)=!� for a serviceability limit state of 
depassivation !� deterministic 28 days -  ��,� deterministic 1.0 - corresponding to 7 days curing ��,�� deterministic 1.0 - corresponding to the exposure class XS3 ��,� normal 0.8 0.16 corresponding to a mean concrete temperature of 
15ºC # normal 0.54 0.06  6� normal 0.4% 0.048%  64 normal 3.24% 0.324%  67=3.0%    corresponding to 21g/l salinity, 16±2ºC and XS3 

-/.=0.36    maximum value of water/binder ratio expected 
for the concrete composition ��	��=1.0    corresponding to the exposure class XS3 

����=1.0    corresponding to a distance of the concrete 
surface from the coast of 0 km ��	��=1.2    corresponding to a mean surface concrete 
temperature of 15ºC 

 

In the case of electrical resistivity, a partial safety factor approach was carried out due to 

an insufficient amount of statistical information on some of the model parameters. The 

analysis was performed using a safety factor L=2.8, provided by E 465 (LNEC, 2007) 

for RC3 reliability class. The definition of the safety factor was based on the 

assumption that the lifetime of the structure is following a lognormal distribution with a 

coefficient of variation of 0.5 (LNEC, 2007). Table 3.2 shows the values adopted for 

the model parameters, which are based on Andrade et al. (2013), DuraCrete (2000), 

Nokken et al. (2006) and E 465 (LNEC, 2007). 
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Table 3.2 – Parameters characterization of electrical resistivity model, for a partial safety factor 

analysis. 

Variable Design value Observations 

� 50 mm �=��)�,(C�  is the characteristic value of the concrete 
cover ∆N 8.9 mm  !) 210 years !)=!�·L for a serviceability limit state of depassivation 
and RC3 reliability class (!�=75 years and L=2.8) !�+(� 10 years  !� 28 days  & 0.424  �]
 25000 Ω.cm3/year corresponding to the exposure class XS3 '�
 1.5  k�,� 1.0 corresponding to 7 days curing ��,�� 1.0 corresponding to the exposure class XS3 ��,� 1.25 corresponding to a mean concrete temperature of 
15ºC 

 

Figure 3.5 presents the variation of the two durability indicators, Dclconcrete and �concrete, 

as a function of nominal concrete cover (����), determined by a full probabilistic 

approach and a partial safety factor approach, respectively. Given all the constraints 

imposed to the structure and for a ���� of 60 mm (see Figure 3.5), concrete 

composition of the new cruise terminal building should exhibit a Dclconcrete lower than 

3.26x10-12 m2/s and �concrete higher than 210.5 Ω.m. Noteworthy that if a semi-

probabilistic approach had been performed to determine Dclconcrete, using the same 

safety factor used in electrical resistivity analysis and the characteristic value of the 

concrete cover, presented in Table 3.1, the threshold value would be higher than that 

obtained by a full probabilistic analysis (4.82x10-12 m2/s). Contrary to what would be 

expected, the safety factor approach was less conservative than the full probabilistic 

approach. According to Marques et al. (2012) in the performance-based approaches for 

chloride action, the statistical distribution of service life should be analysed considering 

a calibration of safety factors so that both approaches, probabilistic and safety factor, 

could converge. 
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Figure 3.5 – Dclconcrete and �concrete, for different nominal concrete cover values (����), 

determined by a full probabilistic approach and a partial safety factor approach, respectively. 

Despite probabilistic analysis can provide a more accurate analysis and, in some cases, 

even represent cost savings, minor changes in the values of model parameters (average 

or standard deviation) can lead to very different results. A probabilistic analysis needs 

to be supported by a sufficiently reliable database that allows confidence in the input 

data and in the corresponding model outcome. A careful characterization of the model 

parameters is very important to obtain realistic threshold values and a sensitivity 

analysis helps to define the most influential parameters, and therefore to take an 

additional care in the characterisation of these parameters (distribution type, average 

value and standard deviation). A sensitivity analysis of the main chloride diffusion 

coefficient model parameters was performed by analysing the model outcome in a 

probabilistic way, using the same probability of failure (2.3x10-2). Each parameter 

average value was varied of ±�� (standard deviation of parameter K) with respect to the 

reference average value, whereas keeping constant the respective standard deviation and 

the other model parameters (distribution type, average value and standard deviation). 

The sensitivity coefficient ��, determined according to equation (3.10), provides a 

measure of the significance of the stochastic model parameter on the model outcome 

(Dclconcrete). 
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�� Z �� �∆�∆��� = �� � ∆x x�⁄∆N� N�,,⁄ � = �� � (x�� − x,Y x,⁄}N�,�� − N�,,� N�,,� � (3.10) 

Where in �� is the coefficient of variation of the stochastic model parameter K; N�,, is the 

average value of model parameter K; N�,�� is the value of model parameter K, result of a 

change of the average value of ±ασ�, with α being equal to 1 in the present study; x, is 

the model outcome value performed in a probabilistic analysis and using the parameters 

characterization present in Table 3.1; x�� is the model outcome value performed in a 

probabilistic analysis and using the parameters characterization present in Table 3.1, 

except for the average value of parameter K which was replaced by N�,�� value. 

The normalized sensitivity coefficient ���	
 , is determined dividing �� by the maximum 

absolute value of the obtained sensitivity coefficients of the model parameters, ���� 

(equation (3.11)). 

 

���	
 = ������  (3.11) 

In Figure 3.6, the normalized sensitivity coefficients for positive and negative variation 

of each model parameters are presented. The most influential model parameters and, 

therefore, the most critical in a probabilistic performance-based design, are the 

concrete’s ageing factor (#) and the concrete cover thickness (�), while the least 

influential model parameters are the chloride threshold (6�) and the chloride content on 

the concrete surface (64). The influence of temperature (��,�) and model uncertainty (�) 
on Dclconcrete is considered to be significant. Similar results were obtained by Ferreira 

(2007), although using a different procedure to evaluate the sensitivity of the model 

parameters. 



Chapter 3 

3.20 

 

Figure 3.6 – Normalized sensitivity coefficient ���	
 for positive and negative variation of each 

model parameters (±��). 

3.5. Statistical experimental design 

Given the numerous factors affecting flow properties of SCC, the mixture design and 

production of this type of concrete can involve balancing several factors to achieve 

adequate fresh properties (Khayat et al., 1999). The mix-design process has become 

even more complex with the increasing variety of materials available to produce 

concrete, namely, several kinds of cements and mineral additions (including recycled 

waste materials) and a new generation of chemical admixtures (superplasticizers, 

viscosity agents, etc.). Therefore, to facilitate material selection and mixture 

optimization protocols, efforts have been developed to correlate the flow properties of 

SCC to those of mortar or paste (Okamura et al., 2000; Saak et al., 2001; Grünewald and 

Walraven, 2007; Erdem et al., 2009; Nunes et al., 2009b; Nunes et al., 2011; Figueiras et 

al., 2014). Indeed, SCC can be considered as a suspension of aggregates in paste (see 

Figure 3.7), where sufficient paste must be provided to fill the voids between the 

compacted aggregates and to form a thin layer of paste around the aggregate particles 

(excess paste). This excess paste layer lubricates aggregate particles, which reduces 

interparticle friction allowing their relative movement and increases flowability of the 

mixture (Grünewald and Walraven, 2007; Koehler and Fowler, 2007). The required 
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paste volume to achieve adequate fresh properties is determined by the rheological 

properties of cement paste and the aggregate volume fraction, packing density and 

surface area. 

 

Figure 3.7 – Schematic representation of concrete as a suspension of aggregate particles in 

paste (Koehler and Fowler, 2007). 

In fact, paste workability plays a major role in concrete and therefore it is reasonable to 

expect that there is a direct relationship between paste and concrete flow behaviour 

(Hidalgo et al., 2008). Besides controlling concrete workability, paste composition also 

has a large influence on the early-age and long-term properties, including durability. 

Using paste or mortar testing as a previous step in SCC design simplifies experimental 

work involved, mainly because concrete tests are reduced to a minimum and mortar or 

paste tests are easier to carry out, less time and material consuming (Okamura et al., 

2000; López et al., 2009). However, the prediction of concrete behaviour, based on 

paste properties, is not yet fully established, especially with regard to hardened 

properties. Fresh mortar properties adequate for SCC were well defined by Professor 

Okamura and his co-workers in the Japanese SCC-designing method (Okamura et al., 

2000). 

The SCC mixture design approach followed in this study is developed in two phases: in 

the first phase, at mortar level (mortar mix-design), paste mixture proportions are 

optimized, and in the second phase, at concrete level, mixture parameters related with 

the aggregate skeleton are adjusted (concrete mix-design). A flow chart of the statistical 

performance-based design approach used in this study is presented in Figure 3.8. 
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Figure 3.8 – Flow chart of the statistical performance-based design approach used in this study. 
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Mortar and concrete mixtures were designed based on statistical experimental design 

techniques that have been applied to self-compacting mortar and concrete (Khayat et 

al., 2000; Nehdi and Summer, 2002; Sonebi, 2004; Nunes, 2008). These techniques 

provide a way of planning experiments in order to collect the appropriate data to derive 

statistical models, evaluate individual and interaction effects of mixture parameters on 

fresh and hardened properties and optimize mix-proportions for a given set of 

constraints (fresh and hardened properties and economic constraints). Thereby, for 

mortar and concrete level the design methodology is developed in three steps: first step, 

definition and implementation of the experimental plan (see Section 3.5.1); second step, 

statistical data analysis and model fitting of data collected during the experimental phase 

(see Section 3.5.2); and, third step, the numerical optimization of mixture parameters, 

using the models derived in the previous phase (see Section 3.5.3). A brief outline of 

the overall methodology is presented herein and more detailed information can be 

found in Nunes (2008). 

 Definition and implementation of the experimental plan 

Based on the Japanese SCC-designing method (Okamura et al., 2000), SCC composition 

can be defined using the following independent variables: water to powder volume ratio 

(Vw/Vp); water to cement weight ratio (w/c); superplasticizer to powder weight ratio 

(Sp/p); sand to mortar volume ratio (Vs/Vm); and coarse aggregate to dry rodded 

coarse aggregate volume ratio (Vg/Vg,lim). Additional variables must be considered 

when fine aggregate is a combination of two sands (s1/s2) or whenever two or more 

types of additions (ad2/c) are used. The air content (Va) is generally set at 2%. The 

study conducted at mortar level, performed with standard sand, will permit determining 

variables of the optimized paste mix-proportions, namely, Vw/Vp, w/c, Sp/p and 

ad2/c. These paste mix-proportions are maintained at concrete level and only the 

parameters related with the aggregate content and aggregate skeleton (Vs/Vm, 

Vg/Vg,lim and s1/s2) are defined as variables. As will be discussed later, the volumetric 

ratio Vs/Vm set at mortar level will affect the total aggregate content of concrete, since 

it influences paste fresh properties. 

Mortar and concrete mix-designs were performed through a statistical experimental 

design, which allows to derive statistical models for mortar/concrete properties 
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(response variables) from mixture parameters (independent variables) (Montgomery, 

2001). Since expected responses, fresh and hardened properties of mortar and concrete, 

do not vary in a linear manner with the selected variables, experiments were designed 

according to a factorial central composite design (2k, where k is the number of 

independent variables N)) adequate to fit a second order model. When the number of 

factors (variables) in a 2k factorial plan increases, the number of experiments needed to 

perform the full factorial plan grows rapidly, becoming a very time consuming process. 

If the effect of higher order terms in the model is negligible in regard to lower order 

terms, it is possible to consider only part of the plan to establish response models, for 

example a 2k-1 fractional factorial plan. The effect of each factor is evaluated at five 

different levels, codified as −J, −1, 0, +1, +J. In order to make the design rotatable 

(i.e. the standard deviation of the predicted response is constant in all points at the 

same distance from the center of the design) the J value should be taken equal to #%1/4, 

where #% is the number of points in the factorial part of the design. The range of 

variables variation (-J to +J) was established based on a set of preliminary tests where 

extreme mixtures, least fluid mixture and most fluid mixture, were tested to ensure that 

it was possible to achieve their characterization in the fresh state. Some prior 

knowledge of the materials to be used and SCC proportioning helped to define the 

range of variables variation (Koehler and Fowler, 2007). The transformation of coded 

into absolute values is performed according to the following equation: 

F = F, + N ⋅ ∆� (3.12)

with F being the absolute value in normal units; F, being the absolute value of the 

variable at the centre of the design; N being the coded variable measured with the step 

like units; and ∆� the variable variation (in absolute values) corresponding to a unit 

change in the coded variable. Experimental programs also include central point 

replication in order to evaluate the experimental error associated to conditions and test 

procedures variability (Montgomery, 2001). 

 Data analysis and fitted response models 

In this work a commercial software (Design-Expert-Software, 2007) was used to 

analyse the results of each response variable, by examining summary plots of the data, 
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fitting a model by using regression analysis and analysis of variance (ANOVA), 

validating the model by examining the residuals for trends and outliers and interpreting 

the model graphically. 

For each response variable, a quadratic model can be estimated from the central 

composite design data. The generic form of a second order model is presented in 

equation (3.13), where: x is the response of the material; N) are the independent 

variables; �, is the independent term; �), �)) and �)� are the coefficients of independent 

variables and interactions, representing their contribution to the response; and ε is the 

random residual error term representing the effects of variables or higher order terms 

not considered in the model. 

x Z �, +��)N) +��))N)y +���)�N)N� + �)��
3
) q

3
) q  (3.13) 

The model parameters (�,, �), �)) and �)�) are estimated by means of a multilinear 

regression analysis. The significance of each factor on a given response can be 

evaluated using a Student’s t-test and a backward elimination was used in this work to 

eliminate non-significant terms in the regression model (Design-Expert-Software, 

2007), i.e. those terms associated with a p-value greater than the defined significance 

level (in this study, J=0.05). An analysis of variance is used to evaluate the regression 

model in several aspects, namely, the significance of regression, lack of fit and 

significance of each variable in the model. The hypothesis-testing procedure involved in 

regression analysis is based on the assumptions that the errors are independent and 

normally distributed with zero mean and constant variance. 

 Mixtures optimization 

The fitted numerical models are used to define mix-proportions (mortar or concrete) 

that meet certain performance requirements defined in advance. These requirements 

may be set in terms of fresh properties (deformability and viscosity), hardened 

properties (mechanical and durability properties) and economic requirements. A last 

constraint should be implemented in the optimization process due to the fact that the 

error function that is associated to each response model increases with the distance to 

the center of the modelled region (Dcenter). In the present work numerical optimization 
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was performed using a software developed in MATLAB 2011b, which is based on a 

subroutine provided by the program in the Optimization Toolbox Solvers (MATLAB 

2011b, 2011). In fact, this optimization process is a general problem of solving a system 

of non-linear multidimensional equations, with the same number of equality conditions 

as variables in the model. 

3.6. Experimental programme 

 Materials characterization 

The mortar and concrete mixes investigated in this study were prepared with white 

cement (CEM II/A-L 52.5N) according to EN 197-1 (IPQ, 2012) and two mineral 

additions, metakaolin and limestone filler, with a specific gravity of 3.04, 2.21 and 2.68, 

respectively. The mean particle size dimension of cement, metakaolin and limestone 

filler was 11.03 µm, 7.12 µm and 6.53 µm, respectively. A polycarboxylate type high 

range water reducing admixture was used having a specific gravity of 1.07 and 26.5% 

solid content. Standard sand (IPQ, 2006) used in mortar mixes is a siliceous round 

natural sand (0.08-2 mm) with a specific gravity of 2.63 and an absorption value of 

0.30%. Crushed calcareous aggregate, a siliceous natural fine sand (sand 1) with a 

fineness modulus of 2.01 and natural coarse sand (sand 2) with a fineness modulus of 

3.94 were used in concrete mixes (see Table 3.3). The specific gravity of the coarse 

aggregate, sand 1 and sand 2 were 2.68, 2.59 and 2.66, and the absorption values were 

0.60%, 0.80% and 0.20%, respectively, according to EN 1097-6 (IPQ, 2003a). Bulk 

density of compacted coarse aggregate was 1.54. 

Table 3.3 – Grading of aggregates. 

Sieve size (mm) 0.063 0.125 0.250 0.500 1.000 2.000 4.000 8.000 11.200 16.000 

Sand 1 3.97 9.23 28.37 65.92 95.57 99.63 100.00 100.00 100.00 100.00 

Sand 2 0.86 1.10 1.85 6.60 31.15 70.97 94.35 100.00 100.00 100.00 

Coarse aggre. 0.72 0.78 0.83 0.87 0.92 0.99 1.35 31.05 79.53 100.00 
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 Experimental design 

SCC mortar mix-proportions were established based on the following five variables N): 
Vw/Vp, w/c, Sp/p, Vs/Vm and metakaolin to cement weight ratio, mtk/c. At 

concrete level two independent variables were studied, namely, Vs/Vm and Vg/Vg,lim, 

keeping constant the ratio between the two sands (s1/s=0.400). This value was fixed 

following a set of preliminary tests carried out at mortar level, aimed at finding the 

weight ratio of sands leading to the greater spread flow area. Table 3.4 presents the 

experimental plans adopted to study mortar (MED) and concrete (CED) mixtures, 

namely the characterization of the factorial statistical design, independent variables and 

respective range of variation. Mix-proportions of mortars and concretes prepared in 

this study were obtained using the formulation presented in the Appendix. 

Table 3.4 – Mortar and concrete experimental designs characterization. 

Designation 
Experimental 
design 

Independent 
variables 

[-J; +J] 

Mortar Experimental Design 

(MED) 

 

25-1 J=2.000 #�=6 #%=16 #�=10 

 

Vw/Vp 

w/c 

Sp/p 

mtk/c  

Vs/Vm 

 

[0.800; 1.000] 

[0.360; 0.460] 

[0.680%; 0.720%] 

[3.0%; 15.0%] 

[0.400; 0.500] 

Concrete Experimental Design 

(CED) 

 

22 J=1.414 #�=4 #%=4 #�=4 

 

Vs/Vm 

Vg/Vg,lim 

 

[0.400; 0.480] 

[0.480; 0.580] 

#�: number of central points; #%: number of factorial points; #�: number of axial points 

 Mixing procedure, response variables and testing methods 

Mortar mixes were prepared in 2.42 l batches and mixed in a two-speed mixer 

complying the NP EN 196-1 (IPQ, 2006), according to the following procedure: (i) mix 

sand and powder materials (cement, limestone filler and metakaolin) with 0.80 of the 

mixing water during 60 s; (ii) stop the mixer to scrape material adhering to the mixing 

bowl; (iii) mixing for another 60 s; (iv) add the rest of the water with the 
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superplasticizer and mix for 60 s; (v) stop the mixer again to scrape adherent material; 

(vi) mix for 60 s; (vii) stop the mixer for 5 min; and (viii) mix mortar during 90 s. The 

mixer was always set at low speed except in the last 90 s of mixing sequence where it 

was set at high speed. Mortar tests using the flow cone and the V-funnel, with the same 

internal dimensions as the Japanese equipment, were then carried out to characterize 

fresh state (see Okamura and Ouchi (2003) for details on equipment and testing 

procedures). The mortar flow test (Dflow,mortar) was used to assess deformability by 

calculating the flow diameter as the mean of two diameters in the spread area and the 

V-funnel test was used to assess the viscosity and passing ability of the mortar. Test 

flow time was recorded (Tfunnel,mortar). After fresh mortar tests, specimens were moulded: 

three prisms (40x40x160 mm3) to evaluate electrical resistivity (�28d,mortar) and 

compressive strength (fc28d,mortar) at 28 days, and three cylinders (P=100 mm; 

h=50 mm) to evaluate chloride diffusion coefficient (Dclmortar). Mortar specimens were 

demoulded one day after casting and kept under water in a chamber under controlled 

environmental conditions (T=20ºC) until testing age. 

Concrete mixes were prepared in the laboratory in batches with total volume of 33 l 

using an open pan mixer with vertical axis. The mixing sequence was as follows: (i) mix 

both sands and coarse aggregate with 0.15 of the mixing water during 2.5 min; (ii) stop 

mixing for 2.5 min for aggregates absorption; (iii) add powder materials followed by the 

rest of water with the superplasticizer; (iv) mix for 5 min; (v) stop the mixer for 1 min 

to clean mixer paddles; and (vi) mix concrete during 3 min. Self­compacting properties 

were evaluated through the slump-flow, the V-funnel, the L-box and the segregation 

tests according to the standards NP EN 12350-8 (IPQ, 2010c), NP EN 12350-9 (IPQ, 

2010d), NP EN 12350-10 (IPQ, 2010e) and NP EN 12350-11 (IPQ, 2010f), 

respectively. The slump-flow test was used to evaluate the deformation capacity, with 

slump-flow diameter (Dflow,concrete) being recorded. The V-funnel test was used to assess 

viscosity and passing ability of SCC, with test flow time (Tfunnel,concrete) being recorded, 

and the L-box was used to assess the ability of concrete to pass through tight openings 

between reinforcing bars (filling ability), by recording a relative filling height (H2/H1). 

To assess concrete segregation resistance (Sr) the sieve segregation test was performed. 

After fresh concrete tests some specimens were moulded to characterize hardened 

concrete, namely, electrical resistivity (�28d,concrete), compressive strength (fc28d,concrete) and 

chloride diffusion coefficient (Dclconcrete). Concrete specimens were demoulded one day 
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after casting and kept under water in a chamber under controlled environmental 

conditions (T=20ºC) until testing age, 28 days.  

Mixtures from both experimental plans, MED and CED, were tested in a random 

order. Table 3.5 presents a summary of mortar and concrete properties that have been 

analysed and modelled (response variables, x¢) and x])), as well as, the followed 

standard, test equipment and/or specimens used. 

Table 3.5 – Mortar and concrete response variables: testing methods. 

 Test designation Test equipment and specimens 

Mortar response variable (x¢)Y 
Dflow,mortar Mortar flow test  

(Okamura and Ouchi, 2003) 

mini-slump flow cone  

Tfunnel,mortar Mortar V-funnel test 
(Okamura and Ouchi, 2003) 

mini-V-funnel 

fc28d,mortar Mortar compressive strength 
(IPQ, 2006) 

3 prisms (40x40x160 mm3) 

�28d,mortar Mortar electrical resistivity 
3 prisms (40x40x160 mm3) 

Dclmortar Mortar chloride diffusion coefficient 
(LNEC, 2004) 

3 cylinders (P=100mm; h=50mm) 

Concrete response variable (x])) 

Dflow,concrete Concrete slump-flow test 
(IPQ, 2010c) 

Abrams cone and plate 

Tfunnel,concrete Concrete V-funnel test 
(IPQ, 2010d) 

V-funnel 

H2/H1 L-Box test 
(IPQ, 2010e) 

L-box 

Sr Sieve segregation test 
(IPQ, 2010f) 

perforated plate sieve and balance 

fc28d,concrete Concrete compressive strength 
(IPQ, 2011) 

3 cubs (150x150x150 mm3) 

�28d,concrete Concrete electrical resistivity 
3 cubs (150x150x150 mm3) 

Dclconcrete Concrete chloride diffusion coefficient 
(LNEC, 2004) 

3 cylinders (P=100mm; h=50mm) 

   

Mortar and concrete electrical resistivity was assessed by the two electrodes technique, 

using stainless steel meshes embedded on opposite faces of the specimen to work as 

electrodes. Resistivity was assessed by imposing a current passing through the 

specimen, between the two electrodes, and measuring the potential difference. 

Electrical resistivity, inverse of conductivity, is a volumetric measurement of electrical 

resistance, which, by Ohm's law, is expressed as the ratio between the voltage and the 

applied current (see equation (3.14)). 
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> Z E= Z � ∙ rl̀s ⇒ � Z E ⋅ `= ⋅ l  (3.14)

where > is the electrical resistance, (Ω); =, current (Amp.); E, voltage (Volts); ρ, electrical 

resistivity (Ω⋅m); l, length between electrodes (m); and ` (m2) the cross­section area of 

the test specimen through which current passes. If all tested specimens are in the same 

moisture (saturated) and temperature conditions, electrical resistivity can be used to 

compare the porous structure, and therefore constitutes a measure of the amount and 

interconnectivity of the cementitious matrix pores. After completing the electrical 

resistivity test, the specimens were used to assess mortar or concrete compressive 

strength. Resistance to chloride ion penetration was carried out using a non­steady 

migration test, CTH Rapid Method (Chalmers University of Technology, Sweden) 

described in NT BUILD 492 (NORDTEST, 1999) and adopted in Portugal through a 

LNEC specification, E 463 (LNEC, 2004). The CTH Rapid Method is based on a 

theoretical relationship between diffusion and migration, which enables the calculation 

of the chloride diffusion coefficient (Dclmortar and Dclconcrete for mortar and concrete, 

respectively) from an accelerated test. 

3.7. Mortar mix-design 

 Mortar test results 

The coded values of the independent mix variables and the test results of the 32 mixes 

prepared in MED are summarized in Table 3.6. Concerning the tests conducted under 

this experimental plan, it was not possible to perform the V-funnel test of mixture 

MCC10, due to the excessive viscosity of this mixture, and the electrical resistivity tests 

of mixtures MC1 and MC5 were also not carried out, due to problems with the mesh 

embedded in the specimens. 
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Table 3.6 – Coded values of the independent mix variables and properties of fresh and hardened mortar specimens of MED. 

Mix 
number 

Ref. Vw/Vp w/c Sp/p Vs/Vm mtk/c Dflow,mortar 
(mm) 

Tfunnel,mortar 

(s) 
fc28d,mortar 

(MPa) 
�28d,mortar 
(Ω.m) 

Dclmortar 
(×10-12m2/s) 

1 MC1  0  0  0  0  0 268.3 6.95 86.5 *** *** 
2 MC2  0  0  0  0  0 297.5 6.10 89.6 168.5 *** 
3 MC3  0  0  0  0  0 270.8 7.31 90.2 167.2 *** 
4 MC4  0  0  0  0  0 269.8 6.97 86.2 165.5 3.18 
5 MC5  0  0  0  0  0 275.8 6.68 79.5(*) *** 3.08 
6 MC6  0  0  0  0  0 270.8 7.19 86.6 171.3 3.10 
7 MF1 -1 -1 -1 -1  1 143.3 37.45 91.3 290.8 1.40 
8 MF2  1 -1 -1 -1 -1 306.0 3.91 89.6 107.2 4.57 
9 MF3 -1  1 -1 -1 -1 343.5 4.24 82.2 87.9 6.59 
10 MF4  1  1 -1 -1  1 230.0 6.34 83.9 205.9 2.47 
11 MF5 -1 -1  1 -1 -1 336.8 5.19 89.9 105.2 4.83 
12 MF6  1 -1  1 -1  1 187.3 11.11 87.8 277.3 1.53 
13 MF7 -1  1  1 -1  1 244.8 8.84 85.0 217.6 2.28 
14 MF8  1  1  1 -1 -1 344.0 2.87 83.9   82.0 6.29 
15 MF9 -1 -1 -1  1 -1 278.5 8.10 90.6 133.0 4.28 
16 MF10  1 -1 -1  1  1 163.3 16.23 88.5 295.5 1.77 
17 MF11 -1  1 -1  1  1 223.0 11.25 85.7 228.2 2.65 
18 MF12  1  1 -1  1 -1 330.3 3.55 79.4 93.5 6.48 
19 MF13 -1 -1  1  1  1 140.5 38.08 89.9 336.7 1.27 
20 MF14  1 -1  1  1 -1 282.5 5.82 85.8 112.4 4.68 
21 MF15 -1  1  1  1 -1 333.5 5.74 81.7 102.8 6.65 
22 MF16  1  1  1  1  1 237.0 7.99 79.7 228.2 2.64 
23 MCC1 -2  0  0  0  0 292.0 7.95 90.4 155.2 3.47 
24 MCC2  2  0  0  0  0 273.5 4.56 83.1 154.5 3.31 
25 MCC3  0 -2  0  0  0 210.8 11.00 93.4 247.9 1.97 
26 MCC4  0  2  0  0  0 312.3 5.00 80.6 146.2 4.47 
27 MCC5  0  0 -2  0  0 260.0 7.08 84.3 176.0 3.56 
28 MCC6  0  0  2  0  0 305.0 5.73 84.5 158.0 3.64 
29 MCC7  0  0  0 -2  0 307.8 5.34 84.0 158.3 3.15 
30 MCC8  0  0  0  2  0 258.5 8.50 80.8 181.7 3.34 
31 MCC9  0  0  0  0 -2 340.8 3.35 80.0 49.0 10.21 
32 MCC10  0  0  0  0  2 101.8 ** 87.7 336.6 1.31 

* observation identified as an outlier; ** test not performed due to excessive viscosity; *** test not performed due to problems in the data-acquisition equipment 
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An overall statistical analysis of the test results concerning statistics of the results for 

the total points and central points, including minimum and maximum values, mean 

value, standard deviation and coefficient of variation is presented in Table 3.7. From 

these statistics it may be observed that the variations introduced in the independent 

variables of the experimental plan allow covering a wide range of mortars with 

Dflow,mortar ranging from 101.8 to 344.0 mm, Tfunnel,mortar ranging from 2.87 to 38.08 s, 

fc28d,mortar ranging from 79.4 to 93.4 MPa, �28d,mortar ranging from 49.1 to 336.7 Ω.m and 

Dclmortar ranging from 1.33 to 10.00×10-12 m2/s. As stated before (Section 3.5.1), central 

point replication is used to evaluate the experimental error associated to conditions and 

test procedures variability and the coefficient of variation, as a measure of the relative 

dispersion of data, can be used to make comparisons of repeatability and 

reproducibility of the tests. The highest coefficient of variation of the central points 

were associated to Dflow,mortar and Tfunnel,mortar, while �28d,mortar and Dclmortar exhibited the 

lower coefficient of variation. 

Table 3.7 – Statistics of the results for the total points and central points from MED. 

 Minimum Maximum Mean 
Stand. 

deviation 
Coeff. of 
variation 

Total points from MED 

Dflow,mortar (mm) 101.8 344.0 263.7 62.9 23.9% 

Tfunnel,mortar (s) 2.87 38.08 8.92 8.18 91.7% 

fc28d,mortar (MPa)* 79.4 93.4 85.9 3.84 4.5% �28d,mortar (Ω.m) 49.1 336.7 178.0 75.6 42.5% 

Dclmortar (×10-12 m2/s) 1.33 10.00 3.72 1.98 53.2% 

Central points from MED  

Dflow,mortar (mm) 268.3 297.5 275.5 11.1 4.0% 

Tfunnel,mortar (s) 6.10 7.31 6.87 0.43 6.3% 

fc28d,mortar (MPa)* 86.2 90.2 87.8 1.9 2.2% �28d,mortar (Ω.m) 165.5 171.3 168.1 2.5 1.5% 

Dclmortar (×10-12 m2/s) 3.08 3.18 3.12 0.06 1.8% 

*excluding the outlier 

 Mortar fitted models 

The results of the estimated models, including the residual error term, along with the 

correlation coefficient, are given in Table 3.8. 
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Table 3.8 – Fitted numerical models for response variables from MED (coded variables). 

 

 Dflow,mortar (mm) [Tfunnel,mortar (s)]-0.5 fc28d,mortar (MPa) log10[�28d,mortar (Ω⋅m)] log10[Dclmortar (×10-12 m2/s)] 

independent term 278.411 0.382 87.640 2.227 0.506 

Vw/Vp -0.021 (0%) 0.038 (15%) -1.341 (-14%) -0.010 (-3%) 0.006 (2%)  

w/c 27.125(18%) 0.047 (18%) -3.222 (-34%) -0.058 (-16%) 0.093 (22%) 

Sp/p 7.438 (5%) 0.005 (2%) -0.301 (-3%) -0.004 (-1%) -0.003 (-1%) 

Vs/Vm -10.229 (-7%) -0.026 (-10%) -0.787 (-8%) 0.022 (6%) NS 

mtk/c -61.000 (-40%) -0.094 (-36%) 0.997 (10%) 0.203 (56%) -0.225 (-54%) 

(Vw/Vp)×(w/c) NS NS NS NS -0.012 (-3%) 

(Vw/Vp)×(Sp/p) NS NS NS NS NS 

(Vw/Vp)×( Vs/Vm) NS NS -0.704 (-7%) NS NS 

(Vw/Vp)×( mtk/c) 5.969 (4%) NS NS NS 0.014 (3%) 

(w/c)×( Sp/p) NS NS NS NS NS 

(w/c)×( Vs/Vm) 4.375 (3%) NS NS NS NS 

(w/c)×( mtk/c) 9.563 (6%) 0.012 (5%) NS -0.009 (-3%) 0.019 (5%) 

(Sp/p)×( Vs/Vm) -5.719 (-4%) -0.012 (-5%) NS NS NS 

(Sp/p)×( mtk/c) NS NS NS 0.008 (2%) -0.012 (-3%) 

(Vs/Vm)×( mtk/c) NS 0.011 (4%) NS NS NS 

(Vw/Vp)2 NS 0.006 (2%) NS -0.008 (-2%) NS 

(w/c)2 -4.763 (-3%) NS NS 0.015 (4%) -0.011 (-3%) 

(Sp/p)2 NS NS -0.539 (-6%) NS 0.010 (2%) 

(Vs/Vm)2 NS NS -1.041 (-11%) NS NS 

(mtk/c)2 -14.826 (-10%) -0.009 (-4%) -0.678 (-7%) -0.028 (-8%) 0.011 (-3%) 

residual error, ε *      

Mean 0 0 0 0 0 

standard deviation 8.028 0.014** 1.374 0.013** 0.019** 

R2/ R2
adjusted 0.984 / 0.975 0.979 / 0.969 0.872 / 0.817 0.995 / 0.993 0.989/0.986 

NS non-significant terms; * error term is a random and normally distributed variable and no evidence of auto-correlation was found in the residues; ** corresponding value for Tfunnel,mortar, �28d,mortar and  

Dclmortar is 1.591, 5.076 and 0.1584, respectively; (%) relative influence of the variable on the response variation 

  

2 



Chapter 3 

3.34 

An analysis of variance showed that these models are significant when describing the 

effect of Vw/Vp, w/c, Sp/p, Vs/Vm and mtk/c on the modelled responses. Notice 

that the observed value of 79.5 in the variable fc28d,mortar (marked with * in Table 3.6) is 

not typical of the rest of the data. This value was identified as an outlier in the statistical 

analysis and has been excluded from the data when fitting the model. Residual analysis 

did not reveal any obvious model inadequacies or indicate serious violations of the 

normality assumptions, except in the cases of Tfunnel,mortar, �28d,mortar and Dclmortar. The 

problem was overcome after a variable transformation, as indicated in Table 3.8. 

Even though the majority of the fitted models presented considerably high correlation 

coefficients (see R2 and R2
adjusted in Table 3.8) their accuracy must be verified. The 

results of the central points included in the experimental design were analysed in order 

to estimate the experimental error and the accuracy of the derived models (see Table 

3.7). The estimated residual standard deviation (see Table 3.8) does not exceed the 

experimental error by far, so a good fitting can be expected. 

Based on the derived models, the relative influence of each variable on the response 

variation was computed and is presented (in brackets and italic) in Table 3.8. Naturally, 

higher values indicate greater influence of this parameter in the response and on the 

other hand, a negative value reflects a response decrease to an increase in this 

parameter. The results clearly show that w/c and mtk/c exhibit a great effect on all 

measured responses, being the only exception fc28d,mortar, where the relative influence of 

mtk/c does not exceed 10%. It should be noted, however, that these two variables have 

opposite effects on the response. In the case of �28d,mortar and Dclmortar, the variable 

mtk/c explains almost 50% of the variation of these responses. Besides w/c and mtk/c, 

the variable that most influences Tfunnel,mortar, was Vw/Vp. The aggregate content in 

mortar (Vs/Vm) has some influence in mortar response variables, except in the case of 

Dclmortar, where the range of variation introduced in Vs/Vm (0.400 to 0.500, see Table 

3.4) seems to have no major influence on mortar chloride ingress. Sp/p exhibits the 

lowest influence on mortar properties, as compared to other mixture parameters, which 

can be explained by the short variation range of Sp/p in the experimental plan (see 

Table 3.4) triggered by its strong dispersion action. Significant interaction and quadratic 

effects are found in all responses. 



Durability performance-based design of a SCC exposed to severe marine environment 

3.35 

 Mortar mix optimization 

After building the regression models that establish relationships between mix-design 

variables and responses, a numerical optimization technique (described in Section 3.5.3) 

was used to define mortar composition. Indeed, one of the key stages of the concrete 

mix-design approach presented in this work is the way in which mortar performance 

requirements should be defined to ensure a concrete composition that complies with 

the previously established requirements, fresh and hardened concrete properties (see 

Section 3.4). 

Mortar fresh requirements that lead to SCC were defined based on the values 

recommended by the Japanese SCC-design method (Okamura and Ouchi, 2003), the 

European Guidelines for SCC (EFNARC, 2005) and previous experience (Nunes et al., 

2009b). The values of Vw/Vp and Sp/p that lead to the optimum mixtures in fresh 

state, Dflow,mortar=260.0 mm and Tfunnel,mortar=10.0 s, were searched for each combination 

of (w/c, mtk/c, Vs/Vm). In a first stage, no restriction was established for the other 

response variables. Note that since the response models were expressed as a function 

of five independent variables, a multiple optimum will hardly occur. The use of the 

models was limited to an area bounded by coded values -2.5 to +2.5 (Dcenter). The range 

of mortar mixture parameters, defined in coded values, where deformability and 

viscosity coexist in a balanced manner to achieve self-compacting mortar, while the 

distance to center of the modelled region is less than 2.5, is presented in Figure 3.9. 

      

Figure 3.9 – Range of mixture variables, in coded values, for optimized self-compacting 

mortars. 
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This type of representation enables a more global picture of the solutions and a quick 

identification of the optimal solutions zone, its location and extension on the modelled 

region. The results were grouped in four values of Vs/Vm namely, 0.425, 0.450, 0.475 

and 0.500, corresponding in coded values to -1, 0, +1 and +2, respectively. No 

solutions were found for aggregate volume fraction of 0.400 (-2 in coded values), while 

the wider region of optimized solution are found for a Vs/Vm of 0.450 and 0.475. The 

parameter with lower variation in coded values within the region of optimized solutions 

was mtk/c, ranging between -0.78 and 0.64, corresponding, in absolute values, to a 

variation between 6.7% and 10.9%. The range of mixture parameters included in the 

region of optimized solutions varies with the aggregate content (Vs/Vm), where an 

increase of Vs/Vm seems to demand solutions with higher w/c and Vw/Vp and lower 

mtk/c. In fact, as the aggregate volume fraction increases the flowability of the paste 

should also increase, to ensure the same workability of the mortar (Dflow,mortar and 

Tfunnel,mortar) (Figueiras et al., 2014).  

Alternatively, the mixture parameters of optimized solutions in fresh state can be 

represented in contour plots as shown in Figure 3.10 for a Vs/Vm of 0.500, where the 

grey shading represents the distance to the center of the modelled region (Dcenter). The 

corresponding contour plots for estimated fc28d,mortar is presented in Figure 3.11 and for 

estimated ρ28d,mortar and Dclmortar are presented in Figure 3.12. 

 

Figure 3.10 – Range of mixture variables, in absolute values, for optimized self-compacting 

mortars containing 0.500 of Vs/Vm. 
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Figure 3.11 – Estimated values of fc28d,mortar for optimized self-compacting mortars containing 

0.500 of Vs/Vm. 

 

Figure 3.12 – Estimated values of �28d,mortar and Dclmortar for optimized self-compacting mortars 

containing 0.500 of Vs/Vm. 

Given the restrictions imposed on the concrete composition (see Section 3.4), mortar 

requirements may be set in terms of fresh state properties, but also in terms of 

hardened state properties, namely, compressive strength, electrical resistivity and 

chloride diffusion coefficient. A Vs/Vm=0.500 was set for the optimized mortar 

Vs/Vm = 0.500

2.5

3.0

3.5

0.360 0.380 0.400 0.420 0.440 0.460

w/c

0.820

0.840

0.860

0.880

0.900

0.920

V
w

/V
p

fc     (MPa)28d

Dcenter

Vs/Vm = 0.500

2.5

3.0

3.5

0.360 0.380 0.400 0.420 0.440 0.460

w/c

0.820

0.840

0.860

0.880

0.900

0.920

V
w

/V
p

ρ  Dcl        (x10    m /s)mortar
-12 2

28d,mortar (     .m)Ω
Dcenter



Chapter 3 

3.38 

solution, considering the fact that pastes corresponding to a higher sand content 

(Vs/Vm), in the optimized mortar mixtures, can lead to SCCs with higher aggregate 

surface (usually representing higher total aggregate content) and lower paste volume 

(Nunes, 2008; Figueiras et al., 2014). In fact, a composition with higher total aggregate 

content results in more economic SCC mixtures and also reduces the heat release due 

to cement hydration and shrinkage deformation, resulting in a lower cracking risk and 

therefore better durability of the structure. Furthermore, according to the adjusted 

models, the aggregate content (fine aggregate) seems to have little influence on Dclmortar 

but a positive effect in ρ28d,mortar, i.e. a greater volume of aggregate leads to compositions 

with higher electrical resistivity. The presence of aggregate in a cement paste matrix has 

two opposite effects on the transport properties: firstly, the dilution and tortuosity 

effects that reduce the permeability; and secondly, the presence of a porous interfacial 

transition zone (ITZ) between paste and aggregate that facilitates the movement of ions 

and increases mortar conductivity (Garboczi et al., 2000; RILEM-Report 38, 2007). In 

the presence of low water/cement ratios or fine mineral addition, like in SCC, some 

studies appear to indicate that the porosity and width of the ITZ is significantly smaller 

than in vibrated concrete (RILEM-Report 38, 2007). However, on the other hand, as 

the proportion of larger size aggregate increases in the mix, the local porosity at the 

ITZ increases and the overall durability decreases (Basheer et al., 2005). In the case of 

the apparent chloride diffusion coefficient, an additional effect shall be taken in 

consideration. This coefficient depends on the diffusivity of chloride ion in 

liquid­saturated concrete, as well as on the chloride binding capacity of the cement 

paste matrix, which can take place by chemical reaction with the hydration products of 

cement (such as C3A or C4AF) or physical adsorption. Thus, an increase in aggregate 

volume content represent, for the same mixture volume, a decrease in paste volume 

and therefore a reduction in the chloride binding capacity (higher apparent chloride 

diffusion coefficient). The influence of the aggregate content and aggregate skeleton on 

the durability behaviour of the mixture composition is therefore dictated by the balance 

between several effects. With regard to the electrical resistivity and diffusivity 

properties, one of the approaches that has begun to be used to establish this link 

between paste and concrete is through the Effective Medium Theory (EMT) (Garboczi 

and Berryman, 2000; Figueiras et al., 2013b). Additionally, by analysing the contour plot 

of estimated durability indicators for Vs/Vm=0.500, it is observed that the values 

estimated at mortar level are quite close to desired values at concrete level (Dclconcrete 
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lower than 3.26×10-12 m2/s and �28d,concrete higher than 210.5 Ω.m). Thus, in view of the 

durability performance requirements, mortar mix-proportions were optimized to satisfy 

the following criteria: minimize Dclmortar and maximize �28d,mortar. With regard to mortar 

compressive strength, and given the range of optimized solutions in the fresh state, this 

response variable does not vary significantly and always displays a value higher than the 

target value established for the concrete composition (70 MPa defined in Section 3.4), 

see Figure 3.11. Hence, no restriction was established for fc28d,mortar in the mortar 

optimization process. 

In summary, mortar mix-proportions were optimized to satisfy the following criteria: 

Dflow,mortar equal to 260.0 mm; Tfunnel,mortar equal to 10.0 s; Vs/Vm equal to 0.500; 

maximize �28d,mortar; minimize Dclmortar; Dcenter lower or equal to 2.5. Optimized mortar, 

marked in the contour plots of Figure 3.10 to Figure 3.12 has a Vw/Vp=0.851, 

w/c=0.435, Sp/p=0.700%, Vs/Vm=0.500 and mtk/c=10.4%, and it is expect to 

exhibits Dflow,mortar of 260.0 mm, Tfunnel,mortar of 10.0 s, fc28d,mortar of 81.7 MPa, �28d,mortar 

of 206.3 Ω.m and Dclmortar of 3.12×10-12 m2/s. 

3.8. Concrete mix-design 

The paste mixture proportions (Vw/Vp; w/c, Sp/p and mtk/c) optimized at mortar 

level were maintained at concrete level and a central composite design was carried out 

to mathematically model the influence of the two parameters, Vs/Vm and Vg/Vg,lim, 

and their coupled effects on Dflow,concrete, Tfunnel,concrete, H2/H1, Sr, fc28d,concrete, �28d,concrete 

and Dclconcrete. It should be noted that it was necessary to perform an adjustment of the 

superplasticizer content due to the lower mixing efficiency exhibited by the concrete 

mixer, when compared with the used mortar mixer. 

 Concrete test results 

The coded values of the independent mix variables and the test results of the 12 mixes 

prepared in CED are summarized in Table 3.9. Concerning the tests conducted under 

this experimental plan, it was not possible to perform the electrical resistivity test and 

the chloride migration test of mixture CC3, due to problems with the specimens. 
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Table 3.9 – Coded values of the independent mix variables and properties of fresh and hardened concrete specimens of CED. 

Mix 
number 

Ref. Vs/Vm Vg/Vg,lim Dflow,concrete 
(mm) 

Tfunnel,concrete 

(s) 
H2/H1 Sr 

(%) 
fc28d,concrete 

(MPa) 
�28d,concrete 
(Ω.m) 

Dclconcrete 
(×10-12m2/s) 

1 CC1 0        0 750.0 16.94 0.851 10.30 80.7 244.9 3.58 
2 CC2 0        0 772.5 18.00 0.927 11.30 77.6 246.1 3.53 
3 CC3 0        0 767.5 18.47 0.896 11.25 84.1 * * 
4 CC4 0        0 772.5 16.73 0.916 11.08 83.2 243.9 3.56 

5 CF1      -1       -1 845.0 10.97 0.966 27.91 82.8 212.7 3.54 
6 CF2 1       -1 722.5 23.85 0.842 6.78 82.6 231.0 3.63 
7 CF3      -1        1 792.5 17.00 0.989 18.29 84.3 227.5 3.69 
8 CF4 1        1 612.5 35.57 0.614 1.55 82.7 257.0 3.50 
9 CCC1   -1.414        0 827.5 10.30 0.971 31.24 80.6 235.7 3.34 
10 CCC2  1.414        0 627.5 32.45 0.658 2.43 77.8 267.3 3.37 
11 CCC3 0    -1.414 807.5 13.96 0.949 16.11 83.0 214.6 3.47 
12 CCC4 0     1.414 712.5 31.60 0.813 8.87 88.4 250.1 3.59 

* test not performed due to problems with the specimens 
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An overall statistical analysis of the response variables is presented in Table 3.10. With 

this experimental plan a wide range of SCC was covered, with Dflow,concrete ranging from 

612.5 to 845.0 mm, Tfunnel,concrete ranging from 10.30 to 35.57 s, H2/H1 ranging from 

0.614 to 0.989 and Sr ranging from 1.55% to 31.24%. On the contrary, hardened 

properties values varied little, being �28d,concrete the variable with the greater variation, 

ranging from 212.7 to 267.3 Ω.m. The highest coefficient of variation of the central 

points were associated to Tfunnel,concrete, H2/H1, Sr and fc28d,concrete while �28d,concrete and 

Dclconcrete exhibited the lower coefficient of variation. 

Table 3.10 – Statistics of the results for the total points and central points from CED. 

 Minimum Maximum Mean 
Stand. 

deviation 
Coeff. of 
variation 

Total points from CED 

Dflow,concrete (mm) 612.5 845.0 750.8 72.3 9.6% 

Tfunnel,concrete (s) 10.30 35.57 20.49 8.49 41.4% 

H2/H1 0.614 0.989 0.866 0.121 14.0% 

Sr (%) 1.55 31.24 13.09 9.09 69.4% 

fc28d,concrete (MPa) 77.6 88.4 82.3 2.9 3.6% �28d,concrete (Ω.m) 212.7 267.3 239.2 16.9 7.1% 

Dclconcrete (×10-12 m2/s) 3.34 3.69 3.53 0.10 2.9% 

Central points from CED  

Dflow,concrete (mm) 750.0 772.5 765.6 10.7 1.4% 

Tfunnel,concrete (s) 16.73 18.47 17.54 0.84 4.8% 

H2/H1 0.851 0.927 0.898 0.034 3.7% 

Sr (%) 10.30 11.30 10.98 0.47 4.2% 

fc28d,concrete (MPa) 77.6 84.1 81.4 2.9 3.6% �28d,concrete (Ω.m) 243.9 246.1 245.0 1.1 0.5% 

Dclconcrete (×10-12 m2/s) 3.53 3.58 3.56 0.02 0.7% 

 Concrete fitted models 

The results of the estimated models, including the residual error term, along with the 

correlation coefficient, are given in Table 3.11. Residual analysis did not reveal any 

obvious model inadequacies or indicate serious violations of the normality assumptions. 

The majority of the fitted models presented considerably high correlation coefficients 

except in the cases of fc28d,concrete and Dclconcrete. Variations introduced in Vs/Vm and 

Vg/Vg,lim yielded minor variations in these two response variables, whereby in this 

case the experimental average value provides a better fit to the experimental results. 
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Table 3.11 – Fitted numerical models for response variables from CED (coded variables). 
 

 Dflow,concrete (mm) Tfunnel,concrete (s) H2/H1 Sr (%) fc28d,concrete (MPa) �28d,concrete (Ω⋅m) Dclconcrete (×10-12 m2/s) 

independent term 763.250 17.535 0.892 11.380 80.655 245.716 3.581 

Vs/Vm -73.168 (-51%) 7.847 (41%) -0.118 (-44%) -9.827 (-59%) NS 11.555 (36%) -0.009 (-11%) 

Vg/Vg,lim -37.106 (-26%) 5.337 (28%) -0.049 (-18%) -3.139 (-19%) 1.143 (31%) 11.388 (36%) NS 

Vs/Vm×Vg/Vg,lim -14.375 (-10%) 1.423 (7%) -0.063 (-23%) 1.098 (7%) NS NS NS 

(Vs/Vm)2 -18.625 (-13%) 1.863 (10%) -0.039 (-14%) 2.570 (15%) NS NS -0.073 (-89%) 

(Vg/Vg,lim)2 NS 2.565 (13%) NS NS 2.506 (69%) -9.022 (-28%) NS 

residual error, ε *        

Mean 0 0 0 0 0 0 0 

standard deviation 7.050 0.888 0.019 0.855 1.957 4.947 0.086 

R2/ R2
adjusted 0.990 / 0.985 0.989 / 0.980 0.974 / 0.959 0.991 / 0.986 0.554 / 0.455 0.914 / 0.878 0.309 / 0.136 

(NS) non-significant terms; (*) error term is a random and normally distributed variable and no evidence of auto-correlation was found in the residues 
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It is expected that the established models are sufficiently accurate to predict Dflow,concrete, 

Tfunnel,concrete, H2/H1, Sr and �28d,concrete because the standard deviation measured on the 

central points (see Table 3.10) was always higher or close to the residual standard 

deviation. 

The relative influence of each variable on the response variation is presented, in 

brackets and italic, in Table 3.11. The results show that an increase in aggregate volume 

content increases the Tfunnel,concrete and decrease the Dflow,concrete, H2/H1 and Sr, being 

Vs/Vm the variable with the highest effect on all responses of the fresh state. As 

expected, higher aggregate volume content increases electrical resistivity values (positive 

values of Vs/Vm and Vg/Vg,lim), although the model shows that there is also a 

negative component associated with an increase in the volume of coarse aggregate, 

represented by the quadratic term (Vg/Vg,lim)2. In the case of Dclconcrete, as previously 

mentioned, the range of variation introduced in the aggregate content and skeleton 

seems to have no major influence on chloride ingress, which is in agreement with the 

results obtained at mortar level. Moreover, by comparing the average value obtained in 

concrete with the value of the optimized mortar, 3.53×10-12 and 3.12×10-12 m2/s, 

respectively, values are quite similar. The influence of the aggregate content and 

aggregate skeleton on the electrical resistivity and apparent chloride diffusion 

coefficient is discussed in more detail in Figueiras et al. (2013b). 

 Concrete mix optimization 

Concrete mix optimization was carried out using the same numerical technique applied 

for mortar mix optimization in order to meet requirements set out in Section 3.4. In 

summary, concrete composition for the new cruise terminal building should satisfy the 

following requirements: Dflow,concrete between 750.0 and 850.0 mm, Tfunnel,concrete between 

10.00 and 15.00 s, H2/H1 higher than 0.900, Sr lower than 15.00%, fc28d,concrete higher 

than 70 MPa, �28d,concrete higher than 210.5 Ω.m and Dclconcrete lower than 

3.26×10­12 m2/s. The use of the models was limited to an area bounded by coded values 

-2.0 to +2.0 (Dcenter). As previously mentioned, due to the fact the fitted models of the 

response variables fc28d,concrete and Dclconcrete are not sufficiently accurate, the 

experimental average values will be taken as the predictive responses, which according 

to the values presented in Table 3.10 are 82.3 MPa and 3.53×10­12 m2/s, respectively. 
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Despite the Dclconcrete requirement not being fully complied, it can be considered 

satisfactory since values are relatively close. Furthermore, it should be emphasised that 

the Portuguese specification E 465 (LNEC, 2007) is more restrictive than NP EN 1990 

(IPQ, 2009) or fib-Model Code (CEB-FIP, 2012) with respect to the minimum 

reliability index � associated with reliability class RC3 for the serviceability limit state. 

The range of SCC mix-proportions that satisfies concrete optimization requirements is 

given in Figure 3.13. It should be stressed that the target area presented in Figure 3.13 

will probably change if different paste mixture proportions are used or changes in the 

aggregate type are made. 

 

Figure 3.13 – Range of mix-proportions that satisfy concrete optimization requirements. 

Among the set of optimal solutions, the selected composition is pointed out in Figure 

3.13, which corresponds to Vs/Vm=0.439 and Vg/Vg,lim=0.493. Table 3.12 shows 

the final concrete optimized composition and the respective predicted values for fresh 

and hardened properties. The final composition was tested and the measured values of 

fresh and hardened properties are also presented in Table 3.12. Measured values are 

within the prediction intervals corresponding to a 95% confidence level. 
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Table 3.12 – Optimized mix-proportions and concrete properties, predicted and experimental 

values. 

Constituent materials (kg/m3) 
cement 416 

limestone filler 151 

metakaolin 44 

water 185 

superplasticizer 6.10 

sand 1 325 

sand 2 487 

coarse aggregate 744 

Fresh and hardened properties 
 Predicted [prediction interval]* Experimental 

Dflow,concrete (mm) 803.4 [792.2; 814.6] 805.0 

Tfunnel,concrete (s) 14.63 [13.01; 16.24] 13.96 

H2/H1 0.945 [0.914; 0.975] 0.927 

Sr (%) 14.90 [13.54; 16.26] 13.90 

fc28d,concrete (MPa) 82.3 80.4 �28d,concrete (Ω.m) 223.6 [216.6; 230.6] 220.3 

Dclconcrete (×10-12 m2/s) 3.53 3.54 

*prediction interval corresponding to a 95% confidence level 

3.9. Conclusions 

Based on the results previously presented, the following conclusions can be drawn: 

• The performance-based design methodology presented in this work enables 

the systematization of the mixture design process of SCC considering 

environmental exposure. Although the methodology has been developed for 

structures exposed to severe marine environment, its application to other 

types of environmental exposure is only limited by the accuracy of the 

mathematical models for modelling degradation mechanisms. 

• For an adequate specification of durability requirements it is crucial to carry 

out a correct identification of the major degradation mechanisms and to 

select most representative durability indicators. For structures in severe 

marine environment the reinforcement corrosion is the main degradation 

mechanism and a serviceability limit state of depassivation should be 

considered. In these cases the most often used durability indicator is the 
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apparent chloride diffusion coefficient measured by the migration test 

(Dclconcrete), although the electrical resistivity under saturated conditions 

(�concrete) turns out to be an interesting alternative. Assessment of �concrete is 

performed by a straightforward and non-destructive test, with good 

reproducibility and accuracy. However, to use �concrete as a durability 

indicator in the initiation period requires a prior knowledge of the chloride 

binding capacity of the mixture. 

• Limit values of the durability indicators were specified through a 

probabilistic calculation of the limit state functions, established on the basis 

of the target service life, limit state criterion and degradation mathematical 

models. In the case of �concrete, a partial safety factor approach was carried 

out due to insufficient statistical characterization of some model parameters. 

The limit value of Dclconcrete was determined adopting a full probabilistic 

analysis and a partial safety factor analysis. Contrarily to what would be 

expected, the Dclconcrete value obtained with the partial safety factor analysis 

was the least conservative. A careful characterization of the model 

parameters is very important to obtain realistic threshold values. A 

sensitivity analysis helps to define the most influential parameters, and 

therefore to take additional care in their characterisation (distribution type, 

average value and standard deviation). In Dclconcrete model, the most 

influential parameters are # and �, while the least influential parameters are 6� and 64. The influence of temperature (��,�) and model uncertainty (λ) on 

Dclconcrete was found to be significant. 

• Experimental factorial design provides a systematic methodology to identify 

optimal mixes given a set of constituents and performance constraints. Data 

collected during the experimental plan, conducted according to a central 

composite design, can be used to establish numerical models relating 

mixture parameters with fresh and hardened properties of mortar and 

concrete. Such numerical models provide an adequate representation of 

mixture properties (fresh, mechanical and durability properties) over the 

region of interest. 
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• This statistical experimental approach, generally used to model fresh 

properties, was extended to durability properties of paste, mortar and 

concrete. In this research work the methodology was extended to the 

chloride diffusion coefficient and electrical resistivity, however its 

application has also been validated to water absorption by capillarity, 

porosity accessible to water and carbonation. The ability to mathematically 

model the influence of mixture parameters on a given response variable, 

through an experimental design methodology, is determined mainly by the 

choice of the relevant factors, the range of variation of the response in the 

experimental plan, accuracy of test methods and experience of the operator 

performing tests. 

• The SCC mixture design was developed in a first phase at mortal level, in 

which paste mixture proportions were optimized, and in a second phase at 

concrete level, where the aggregate skeleton was adjusted. Using mortar tests 

as a previous step in SCC design greatly simplifies experimental work, 

however requires prior knowledge of the link between mortar/paste and 

concrete performance requirements. SCC mortar requirements in the fresh 

state are fairly well defined and in the hardened state, selection of values will 

be further optimized as knowledge on the link between paste/mortar and 

concrete durability properties is deepened. 

• Concrete mixture designed for the new cruise terminal building satisfied all 

the specified requirements. The final optimized mixture was tested and, as 

expected, the measured values of fresh and hardened properties were within 

the prediction intervals of the respective models. 
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4. Linking fresh and durability properties of 
paste to SCC mortar 

4.1. Synopsis 

In the last years many approaches to design SCC have been developed, but it remains a 

very complex process since it is necessary to manipulate several variables and 

understand their effects on concrete behaviour (fresh and hardened states). The 

prediction of concrete or mortar behaviour based on paste properties will be a 

significant contribution to simplify SCC design. With this purpose, two statistical 

experimental designs were carried out, one at paste level and the other at mortar level, 

to mathematically model the influence of mixture parameters on fresh and durability 

properties. The derived numerical models were used to define an area, labelled by 

self­compacting zone at paste level (SCZ), where fresh properties of the paste enable 

the design SCC mortar. Furthermore, in order to extend this link to durability 

properties, the effect of including aggregate in cement paste was evaluated by means of 

the electrical resistivity test. 

4.2. Introduction 

Durability of concrete structures is presently looked at with great concern as it 

represents a challenge to achieve sustainable development in construction. Self-

compacting concrete (SCC), initially developed in Japan, corresponds to an advanced 

special concrete type as it leads to technological, economic and environmental benefits. 
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The main advantage of this sustainable technology lies in the unneeded compaction 

during placing, thus leading to a homogeneous and more durable material. In the fresh 

state, SCC must show filling ability, resistance to segregation and passing ability 

(EFNARC, 2005). The selection of constituent materials and the design of 

mix­proportions are essential factors to achieve adequate fresh properties. To produce 

SCC, a good balance between deformability and resistance to segregation has to be 

accomplished, which can be made possible by the use of chemical admixtures 

(superplasticizers, viscosity agents, etc.) combined with high concentrations of fine 

particles (cement and mineral admixtures) (Okamura and Ouchi, 2003). In addition, the 

characteristics of fine and coarse aggregate are also very important. With the growing 

variety of materials available to produce concrete, the mix-design process has become 

complex since it is necessary to manipulate several variables and their interaction is 

difficult to predict. Indeed, to achieve the adequate performance in fresh and hardened 

states further work is needed to better understand the effect of mixture parameters 

governing material performance (Khayat et al., 2000). 

Several different mix-design methods have been developed by many academic 

institutions and construction industry companies, but still, there is no standard method 

for SCC mix-design (EFNARC, 2005). Typically, mixture optimization is based on a 

trial an error approach where each parameter is changed one at a time to assess its 

influence on concrete properties. This process does not permit to understand 

interactions of the mixture parameters, may involve carrying out a large and 

unpredictable number of trial batches and does not guarantee an optimal general 

solution. One of the methodologies that lately has been applied in the SCC mix-design 

is the statistical experimental design. The derived statistical models established on the 

basis of a factorial design, highlight not only the significance of the mixture parameters 

but also their interactions on concrete properties. Using such numerical models, a 

multi­parametric optimization can be carried out, with the user controlling the goal of 

the optimization and the significance of each experimental parameter. In fact, this 

approach increases the efficiency in selecting the optimum mix-proportions for a given 

set of constraints (related to fresh and hardened properties and economic limitations) 

based on a limited number of experimental data points (Khayat et al., 2000; Nehdi and 

Summer, 2002; Sonebi, 2004). An additional advantage of the factorial experimental 

design is that there is some freedom to define the mixture parameters (it can be applied 
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to paste, mortar or concrete) and to select the responses to be analysed (e.g. rheological 

parameters, empirical fresh tests results, durability properties, etc.) (Nunes, 2008). This 

mix-design approach was followed in the present work. 

Several different design methods found in the literature consider SCC as a suspension 

of aggregates in paste, separating optimization of the granular skeleton grading, paste 

volume and paste composition. In fact, paste plays a major role in concrete workability 

and therefore it is reasonable to expect that there is a direct relationship between paste 

and concrete flow behaviour (Hidalgo et al., 2008). The prediction of the concrete 

behaviour based on paste properties facilitates the design of SCC, reduces the volume 

of material required for testing and takes advantage of the greater accuracy and 

precision of paste rheology tests (Grünewald and Walraven, 2007; Hidalgo et al., 2008). 

The rheological behaviour of cement paste is controlled by the same factors that 

control any other suspension, namely, by macro-level factors such as particle size, size 

distribution, shape, texture, density, water content, etc., and by micro-level forces such 

as colloidal, Brownian and viscous forces. Depending on the size of the particles, on 

their volume fraction in the mixture and on external forces (applied stress or strain 

rate), one or several of these interactions dominate (Flatt referred by Roussel et al. 

(2010)). Colloidal particles forces dominate, to a large extent, the complex and time 

dependent behaviour of cement paste, while for most aggregate sizes, only viscous 

forces are relevant (Nunes, 2008). According to Wallevik and Wallevik (2011) rheology 

of fresh concrete or mortar is much simpler than rheology of cement paste, due to the 

fact that the time-dependent behaviour (thixotropy and structural breakdown) is more 

pronounced in cement paste because of the absence of aggregates, which act as a very 

effective grinder and/or dispersant. 

The objective of this chapter is therefore to establish a link between paste and mortar 

that exhibit adequate fresh properties (deformability and viscosity) to produce 

self­compacting concrete. Furthermore, in order to extend this link to durability 

properties, the effect of including aggregate in cement paste was evaluated by means of 

the electrical resistivity test. With this purpose, two statistical experimental designs were 

conducted, with the same set of materials, one at paste level and the other at mortar 

level (including reference sand). At paste level, numerical models were established 

relating mixture parameters to rheological properties (yield stress and plastic viscosity), 

empirical fresh properties (flow diameter and free water content) and to a durability 
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property (electrical resistivity). At mortar level empirical fresh properties (flow diameter 

and flow time), a mechanical property (compressive strength) and the same durability 

property evaluated in paste (electrical resistivity) were assessed. The mortar numerical 

models were used to find optimal solutions that satisfy SCC fresh requirements, i.e. to 

determine the range of mortar mixture parameters where deformability and viscosity 

coexist in a balanced manner. By using the mixture parameters of the optimized 

mortars and the derived numerical models to describe paste properties, it was possible 

to define an area, labelled by self-compacting zone at paste level, where the rheological 

properties of the paste enable the design a self-compacting mortar. Furthermore, the 

influence of the aggregate in the electrical resistivity of mortar was studied, which 

allowed to draw contour plots that aid in the design of SCC mortar with defined 

durability requirements, based on tests at paste level only. Additionally, the correlation 

between rheological and empirical tests results was discussed and the evolution of paste 

rheological behaviour during the hydration process was assessed. 

4.3. Experimental program 

 Materials characterization 

The mortar and paste mixes investigated in this study were prepared with ternary 

mixtures including white cement (CEM II/A-L 52.5N according to EN 197­1 (IPQ, 

2012)) and two mineral additions, metakaolin and limestone filler. The chemical 

composition and some physical properties of the cement and the two mineral additions 

are presented in Table 4.1. The particle size distribution performed by a laser 

diffraction granulometer is shown in Figure 4.1. A polycarboxylate type high range 

water reducing admixture was used having a specific gravity of 1.07 and 26.5 % of solid 

content. In mortar mixes a reference sand was employed, conforming to 

EN 196­1 (IPQ, 2006). Reference sand used is a siliceous round natural sand 

(0.08­2 mm) with a specific gravity of 2.63 and an absorption value of 0.30%. Distilled 

water was used for all paste and mortar mixes. 
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Table 4.1 – Chemical and physical properties of the cement, metakaolin and limestone filler. 

 CEM II/A-L 52.5N 
(white) * 

   Metakaolin      Limestone 
            filler* 

SiO2 (%) 18.80 52.00 -- 
Al2O3 (%) 2.23 45.00 -- 
Fe2O3 (%) 0.20 0.46 0.02 
CaO (%) 66.42 <0.50 -- 
MgO (%) 0.66 <0.50 -- 
SO3 (%) 2.17 <0.10 -- 
Na2O (%)  -- <0.50 -- 
Na2Oeq (%)  0.30 -- -- 
CaCO3 (%) -- -- 99.00 
MgCO3 (%) -- -- 0.30 
K2O (%) -- <0.50 -- 
TiO2 -- 1.50 -- 
MnO -- <0.30 -- 
P2O5 -- <0.30 -- 
Cl- (%) 0.03  <0.001 
S2- (%) --  <0.04 
Loss on ignition (%) 8.60 1.50 43.10 

Insoluble residue (%) 0.31 61 0.20 

    
Specific density (g/cm3) 3.04 2.21 2.68 

Blaine (cm2/g) 5011 31678 5150 

Residue 90 µm (%) 0.00 0.00 0.01 

Residue 45 µm (%) 1.80 1.09 2.44 

Residue 32 µm (%) 7.38 2.55 4.41 

Mean size (µm) 11.03 7.12 6.53 

    
Vicat test    
           initial set (min.) 154 -- -- 
           final set (min.) 214 -- -- 

*    information provided by the supplier 
 

 

Figure 4.1 – Particle size distribution curves of cement, metakaolin and limestone filler, in 

terms of volume. 
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 Experimental design 

The experiments were designed according to a statistical design approach known as 

two-level factorial design (2k). This is a process of planning experiments in order to 

collect appropriate data that can be analysed by statistical tools, such as analysis of 

variance, resulting in a valid basis for deriving an empirical numerical model that 

expresses the relationship between the input variables (e.g. mixture parameters) and 

response variables (e.g. fresh or hardened properties of paste/mortar). Factorial design 

is frequently used in experiments involving large number of parameters (input 

variables) and when it is important to study not only the isolated significance of each 

parameter in response but also their interaction (Montgomery, 2001). According to 

studies conducted by some authors (Sonebi, 2001; Yahia and Khayat, 2001b; Nehdi and 

Summer, 2002; Nunes et al., 2006b) the response surface of mortar and paste 

properties, fresh and hardened properties, exhibit some curvature. Therefore, in this 

study experiments were designed according to a factorial central composite design 

adequate to fit a second order model. The generic form of a second order model is: 

 x Z �, +��)N) +��))N)y +���)�N)N� + �)��
3
) q

3
) q  (4.1) 

where x is the response of the material; N) are the independent variables; �, is the 

independent term; �), �)) and �)� are the coefficients of independent variables and 

interactions, representing their contribution to the response and � is the random 

residual error term representing the effects of variables or higher order terms not 

considered in the model. 

To define paste composition, four independent variables N) were selected, namely, 

water to powder volume ratio (Vw/Vp), water to cement weight ratio (w/c), 

superplasticizer to powder weight ratio (Sp/p) and metakaolin to cement weight ratio 

(mtk/c). For mortar mixtures it was necessary to include an additional variable to 

define the composition completely, which was sand to mortar volume ratio (Vs/Vm). 

The selection of these parameters, used widespread in the design of SCC mixtures, was 

based on the method developed by Okamura and Ouchi (2003). A complete 24 factorial 

statistical design, corresponding to four factors at two levels, was selected for the 

studies carried out at paste level whereas for the study of mortar mixes a 25-1 fractional 
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factorial statistical design was adopted. The fractional factorial design was selected for 

mortar experimental design since it involves fewer runs than the complete set of 25=32 

runs, while it can still be used to obtain information on the main effects and on the 

two-factor interactions. Axial points and central points were added to both 

experimental designs (Central Composite Design), thereby allowing a second-order 

model fitting. The effect of each factor was evaluated at five different levels, codified in 

−J, −1, 0, +1 and +J. In order to make the design rotatable (i.e. the standard deviation 

of the predicted response is constant in all points at the same distance from the centre 

of the design) the J value should be taken equal to #%1/4, where #% is the number of 

points in the factorial part of the design (Montgomery, 2001; Sonebi, 2004). The 

absolute value of each variable corresponding to a given level depends on the variable 

itself and the specific experimental plan. For a given variable and a given experimental 

plan the transformation of coded into absolute values is of the form: 

 F = F, + N ∙ ∆F (4.2) 

with F being the absolute value in normal units; F, being the absolute value of the 

variable at the centre of the design; N being the coded variable measured with the step 

like units and ∆F the variable variation (in absolute values) corresponding to a unit 

variation in the coded variable. The range of variables variation (-α to +α) was 

established based on a set of preliminary tests where extreme mixtures, in terms of 

fresh state behaviour, were searched (least fluid mixture and most fluid mixture), but 

ensuring performance of characterization testing. Experimental programs also included 

central point replication in order to evaluate the experimental error associated to 

conditions and test procedures variability (six replicate central runs were prepared) 

(Montgomery, 2001). Table 4.2 presents the experimental plans adopted to study paste 

(PED) and mortar (MED) mixtures. 

SCC mix-proportions are generally established based on the volumetric composition of 

the mix, due to the SCC core concept of overfilling the voids between the aggregate 

skeleton (EFNARC, 2005). Mix-proportions of paste and mortar prepared in this study 

were obtained using the formulation presented in the Appendix. 
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Table 4.2 – Characterization of the experimental designs. 

Designation 
Experimental 
design 

Independent 
variables 

[-α; +J] 

Paste Experimental Design 
(PED) 

 

24 J =2.000 #�=6 #%=16 #�=8 

 

Vw/Vp 

w/c 

Sp/p 

mtk/c 

 

[0.783; 0.904] 

[0.364; 0.440] 

[0.682%; 0.724%] 

[6.44%; 10.89%] 

 

Mortar Experimental Design 
(MED) 

 

25-1 J	=2.000 #�=6 #%=16 #�=10 

 

Vw/Vp 

w/c 

Sp/p 

mtk/c  

Vs/Vm 

 

[0.800; 1.000] 

[0.360; 0.460] 

[0.680%; 0.720%] 

[3.00%; 15.00%] 

[0.400; 0.500] 

#�: number of central points; #%: number of factorial points; #�: number of axial points 

 Response variables 

Given the main objectives of this study, the selected response variables (x) of the paste 

experimental plan (PED) were: flow diameter (Dflow,paste), free water content (wfree), yield 

stress at 10 minutes (�0,10min), plastic viscosity at 10 minutes (
pl,10min), yield stress at 23 

minutes (�0,23min), plastic viscosity at 23 minutes (
pl,23min) and resistivity at 28 days 

(�28d,paste). In the mortar experimental plan (MED) assessed response variables were: 

flow diameter (Dflow,mortar), flow time with the V-funnel test (Tfunnel,mortar), resistivity at 28 

days (�28d,mortar) and compressive strength at 28 days (fc28d). A brief explanation of the 

tests performed on paste and mortar is presented below. 

4.3.3.1. Paste test methods 

Paste flow test 

The deformability of paste was assessed by the paste flow test, also known as 

mini­slump flow test. This test is carried out by using a truncated cone with 19 mm top 

diameter, 38 mm lower diameter and 57 mm height (Gomes, 2002). After filling the 

cone and lifting it vertically to let the paste flow freely, the paste flow diameter 

(Dflow,paste) was taken as the average of two perpendicular diameters of the spread area. 
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Centrifugal consolidation test 

The centrifugal consolidation test was used to determine the free water of the paste, i.e. 

the water that is not restricted by particles and can move around them (Grünewald, 

2004; Fennis, 2011). The paste is poured into four plastic containers of the centrifuge 

equipment (approximately 30 ml on each container) and centrifuging was carried out at 

3500 rpm during 15 min. During the centrifugal cylinder separation, the particles in the 

paste are compacted and the free water rises up to the surface of the paste, and is, 

removed with a pipette after the test. The weight of the containers before and after 

centrifuging was determined. The free water content (w0122) was calculated from, 

 -%�		 = -%)��
 − -)�)�)�
E��4�	  (4.3) 

where -)�)�)�
 and -%)��
 are the weight of containers before and after removing the 

surplus of water, respectively, and E��4�	 the volume of paste on each container. A 

strong relation between paste flow time assessed by the Marsh cone flow test and free 

water content (centrifuge test) was found by Nunes et al. (2011). Therefore, the 

centrifugal consolidation test is a promising substitute of the Marsh cone with the 

advantage of being equally precise for lower and higher fluidity pastes. 

Rheological test 

The rheological flow behaviour of viscoplastic non-Newtonian fluids such as cement 

paste is often characterized by the yield stress (�,) and plastic viscosity (
�
), in 

accordance with the Bingham model. More complex analytical rheological models have 

been applied to characterize cement paste behaviour with different degrees of success. 

In general, the use of the Bingham model offers a less favourable fitting for highly 

pseudoplastic mixtures or for tests performed in a wide range of shear rates, due to the 

inability to fit the nonlinear portion of the flow curve observed at low shear rates 

(Yahia and Khayat, 2001a; Ferraris, 2005). Despite all the shortcomings of the Bingham 

equation, it is still the most used method on account of its simplicity (a low number of 

adjustable parameters). In the present study, the Bingham model was selected to fit the 

flow curve data. According to this model, the relationship between shear stress and 

shear rate is of the form (equation (4.4)), 
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 � Z �, + 
�
LM  (4.4) 

where � (in Pa) is the shear stress applied to the material; �, is the yield stress (in Pa); 
�
 
(in Pa·s) is the plastic viscosity and LM  (in s-1) is the shear strain rate. The yield stress 

corresponds to the minimum required shear stress to initiate flow, while the plastic 

viscosity measures the resistance of the paste to flow under external stress. 

Rheological tests were carried out with a rotational rheometer, using a cone and plate 

geometry measuring device (cone with 40 mm diameter and 4º angle, providing a gap of 

150 µm). This geometry measuring device has the major advantage of imposing a 

constant shear rate through the entire sample, important in the case of time-dependent 

and non-Newtonian fluids such as cement paste (Chhabra and Richardson, 1999). 

However, according to Chhabra and Richardson (1999) the use of the cone and plate 

tool may be subject to some criticism, especially due to limitations of the maximum 

particle size. For this geometry (cone and plate 4º/40mm) the corresponding gap size is 

150 µm, allowing for a maximum particle size of 15 µm. The gap size must be at least 

10 times larger than the mean particles size (Bohlin Instruments Ltd., 1994), and this 

may conflict with the gap size required to ensure near constant shear rate. As can be 

observed in Table 4.1, the coarser powder materials have few particles with sizes as 

high as 35 µm, and the mean particle size is lower than 15 µm. Furthermore, a 

superplasticizer was always included preventing the formation of large floccules.  

A viscometry shear stepped test in shear rate control mode with controlled temperature 

(25 ± 0.1 ºC) was implemented to obtain equilibrium flow curves. The rheometer was 

programmed to perform a 12-step logarithmic increase of shear rate ranging from 0.1 

to 200 s­1 and back again to complete a full cycle. The complete testing sequence is 

illustrated in Figure 4.2. The descending part of the obtained flow curves were fitted to 

the Bingham model (see equation (4.4)) and the adjusted model parameters, �, and 
�
, 
were taken as the rheological test results for the present study. An example of the up- 

and down-flow curves of a cement paste tested in this study is presented in Figure 4.3. 
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Figure 4.2 – Testing sequence for the rheological tests. 

   

Figure 4.3 – Up- and down-flow curves of a cement paste during the rheological test. 

An important feature of cement paste flow behaviour is the extent of hysteresis that is 

generally observed between the up and down flow curves in a shear ramp test. This 

hysteresis reflects a reversible time-dependent behaviour of cementitious materials, 

called thixotropy. In the present study, thixotropy effects were mitigated, as can be 

observed in Figure 4.3 by appropriate pre-conditioning of samples (pre-shear was 

applied to the sample during 45 s at a shear rate of 200 s-1), shear stepped test and using 

only the down-curve data to adjust model parameters. A more detailed description of 
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the measuring sequence setup and of the procedure used to fit the flow-curves by the 

Bingham model is given in Nunes et al. (2011). 

Paste electrical resistivity at 28 days 

Electrical resistivity is an intrinsic property of the material that relates to the ability of 

cement paste to carry electric charge and it depends mainly on the hydration process 

(nature and topography of the pore structure), changes in pore solution composition 

and moisture and temperature conditions. Electrical resistivity was assessed by the two 

electrodes technique on cubic specimens (40×40×40 mm3) in which stainless steel 

meshes were embedded to work as electrodes. Applying Ohm's Law, as shown in 

equation (4.5), the relationship between the intensity of the applied current and the 

potential difference measured, gives the electrical resistance of the material. The 

resistivity is obtained applying to the electrical resistance a geometric factor, which 

depends on the dimensions of the specimen and the electrodes used. 

 > Z E= Z � ∙ rl̀s ⇒ � = E. `l. =  (4.5) 

where > is the electrical resistance (Ω); =, current (Amp.); E, voltage (Volts); �, electrical 

resistivity (Ω⋅m); l, length between electrodes (m) and ` (m2) the cross-section area of 

the test specimen through which current passes. The measurement was carried out at 

28 days old paste (�28d,paste). Paste cubes were demoulded one day after casting and kept 

under water in a chamber under controlled environmental conditions (T=20ºC) until 

testing. Since all the specimens were at the same moisture (saturated) and temperature 

conditions, resistivity can be used to compare the porous structure of various paste 

specimens and therefore, constitute a measure of the amount and interconnectivity of 

the cementitious matrix pores.  

In fact, according to Andrade (2004), electrical resistivity of water saturated specimens 

provides indications on the pore connectivity and therefore, on the concrete resistance 

to penetration of liquid or gas substances. Thus, resistivity is a parameter which 

accounts for the main key properties related to concrete durability. Regarding the 

influence of the chemical composition of the pore solution, Andrade (2004) stated that 

its impact in the total resistivity is small providing concrete remains alkaline. At high 

pH values the pore solution resistivity varies from 0.3 to 1.0 Ω.m, which is 
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comparatively very small taking into account that mortar resistivity after several days of 

hardening is in the range of few dozen Ω.m. Rajabipour and Weiss (2007) also found in 

their work that the pore connectivity, for saturated specimens, is the single most 

important parameter governing the overall conductivity of a cement paste specimen. 

However some authors (Shi et al., 1998) called attention to the fact that the replacement 

of Portland cement with supplementary cementing materials, such as silica fume, fly ash 

and ground blast furnace may have a significant effect on electrical conductivity of the 

pore solution, depending on the alkali content of the supplementary cementing 

material, replacement level and age. 

4.3.3.2. Mortar test methods 

Mortar flow and V-funnel tests 

The mortar flow test (Dflow,mortar) was used to assess deformability by calculating the 

flow diameter as the mean of two diameters in the spread area and the V-funnel test 

(Tfunnel,mortar) was used to assess the viscosity and passing ability of the mortar. The used 

flow cone and V­funnel have the same internal dimensions as the Japanese equipment 

(see (Okamura and Ouchi, 2003) for details on equipment and test procedures). 

Mortar electrical resistivity and compressive strength at 28 days 

Mortar resistivity (�28d,mortar) was assessed at 28 days on prismatic specimens 

(40×40×160 mm3), using the same technique used on paste specimens. Mortar 

specimens were demoulded one day after casting and kept under water in a chamber 

under controlled environmental conditions (T=20ºC) until testing. After completing the 

electrical resistivity test, a non-destructive test, the specimens were used to assess 

mortar compressive strength (fc28d). 

 Mixing and testing sequence 

Paste mixes were prepared in 0.31 l batches using a vertical paddle mixer, according to 

the following procedure: (i) powder materials were mixed with mixing water for 120 s 

at 750 rpm; (ii) superplasticizer was added and mixed during 120 s at 750 rpm; (iii) the 

mixer was stopped for 60 s and (iv) mixing was resumed for 120 s at 2000 rpm. Mortar 
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mixes were prepared in 2.42 l batches and mixed in a two­speed mixer complying to 

EN 196-1 (IPQ, 2006). The mixing sequence was as follows: (i) sand and powder 

materials were mixed with 0.80 of the mixing water during 60 s; (ii) the mixer was 

stopped to scrape material adhering to the mixing bowl and mixed for another 60 s; (iii) 

the rest of the water was added with the superplasticizer and mixed for 60 s; (iv) the 

mixer was stopped again to scrape material adhering to the bowl and mixed for 60 s; (v) 

the mixer was then stopped for 5 min and (vi) the mortar was mixed during a further 

90 s. The mixer was always set at low speed except in the last 90 s of the mixing 

sequence where it was set at high speed (as defined in EN 196­1(IPQ, 2006)). Mixtures 

(paste and mortar) from experimental plans were tested in a random order to reduce 

effects of extraneous variables not explicitly included in the experiment. Paste tests 

were performed according to the following sequence: (a) 0 min: paste mixing procedure 

was started; (b) 10 min: 1st rheological test in the rheometer; (c) 12 min: paste flow test; 

(d) 23 min: 2nd rheological test in the rheometer; (e) 26 min: centrifuge test and 

(f) 36 min: moulding of three cubic test specimens with embedded stainless steel 

meshes (40×40×40 mm3). Mortar testing sequence was approximately the following: 

(a) 0 min: mortar mixing procedure was started; (b) 10 min: mortar flow test; 

(c) 15 min: mortar V­funnel test and (d) 17 min: moulding of three prismatic test 

specimens with embedded stainless steel meshes (40×40×160 mm3). Before the 

beginning of each test the sample was re-mixed by hand with a paddle to destroy any 

structure formed during resting (thixotropic effects). 

4.4. Discussion of results 

 Tests results 

Test results of the mixes prepared in the PED and the MED are summarized in Table 

4.3 and Table 4.4, respectively. In the case of the MED it was not possible to perform 

the V-funnel test of mixture MCC10, due to the excessive viscosity of the mixture, and 

the electrical resistivity tests of mixtures MC1 and MC5 were also not carried out, due 

to problems with the mesh embedded in the specimens. 
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Table 4.3 – Coded values of the independent variables and fresh and hardened paste results. 

 

Mix 
number 

Ref. Vw/Vp w/c Sp/p mtk/c Dflow,paste 
(mm) 

wfree 

(kg/m3) 
�0,10min 

(Pa) 

pl,10min 

(Pa.s) 
�0,23min 

 (Pa) 

pl,23min 

(Pa.s) 
�28d,paste 

(Ω.m) 
1 PC1 0 0 0 0 191.0 59.25 0.240 0.240 1.084 0.283 68.7 
2 PC2 0 0 0 0 208.5 63.42 0.231 0.234 1.140 0.272 68.8 
3 PC3 0 0 0 0 197.3 67.17 0.210 0.222 0.946 0.270 72.0 
4 PC4 0 0 0 0 200.8 66.08 0.259 0.225 1.090 0.275 75.4 
5 PC5 0 0 0 0 206.0 63.67 0.197 0.242 1.330 0.248 65.6 
6 PC6 0 0 0 0 204.5 62.75 0.208 0.242 1.036 0.301 72.7 
7 PF1 -1 -1 -1 -1 194.8 57.56 0.294 0.264 1.398 0.305 68.4 
8 PF2 1 -1 -1 -1 191.8 65.67 0.205 0.246 1.319 0.282 67.4 
9 PF3 -1 1 -1 -1 210.8 69.33 0.098 0.205 0.547 0.232 53.2 
10 PF4 1 1 -1 -1 209.3 74.08 0.101 0.177 0.672 0.206 51.7 
11 PF5 -1 -1 1 -1 190.7 55.92 0.199 0.266 1.303 0.309 64.2 
12 PF6 1 -1 1 -1 195.5 69.33 0.148 0.215 1.057 0.268 66.3 
13 PF7 -1 1 1 -1 225.8 75.83 0.113 0.207 0.261 0.221 56.3 
14 PF8 1 1 1 -1 205.3 83.08 0.071 0.164 0.244 0.185 62.6 
15 PF9 -1 -1 -1 1 154.0 44.08 1.663 0.347 4.681 0.442 99.7 
16 PF10 1 -1 -1 1 170.0 53.17 0.942 0.296 3.249 0.396 93.4 
17 PF11 -1 1 -1 1 173.5 54.00 0.320 0.261 1.354 0.303 78.0 
18 PF12 1 1 -1 1 192.8 66.25 0.271 0.224 1.385 0.278 69.7 
19 PF13 -1 -1 1 1 163.5 45.08 1.335 0.279(*) 4.407 0.449 97.1 
20 PF14 1 -1 1 1 175.0 54.08 0.726 0.282 2.615 0.358 97.8 
21 PF15 -1 1 1 1 190.3 57.83 0.267 0.263 1.470 0.255 76.4 
22 PF16 1 1 1 1 201.5 72.83 0.145 0.217 0.779 0.227 74.8 
23 PCC1 -2 0 0 0 184.5 52.67 0.328 0.286 2.110(*) 0.364 76.0 
24 PCC2 2 0 0 0 209.0 76.50 0.183 0.198 0.679 0.222 71.9 
25 PCC3 0 -2 0 0 158.0 48.00 1.412 0.338 4.538 0.485 87.8 
26 PCC4 0 2 0 0 198.5 75.83 0.130 0.200 0.471 0.226 60.5 
27 PCC5 0 0 -2 0 193.5 61.83 0.230 0.255 1.264 0.295 76.8 
28 PCC6 0 0 2 0 213.8 67.83 0.199 0.232 0.755 0.259 66.3 
29 PCC7 0 0 0 -2 216.8 71.42 0.077 0.199 0.460 0.218 50.5 
30 PCC8 0 0 0 2 156.8 46.83 1.120 0.319 3.596 0.402 102.8 

* observation identified as an outlier  
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Table 4.4 – Coded values of the independent variables and fresh and hardened mortar results. 
 

Mix 
number 

Ref. Vw/Vp w/c Sp/p Vs/Vm mtk/c Dflow,mortar 

(mm) 
Tfunnel,mortar 

(s) 
fc28d 

 (MPa) 
�28d,mortar 

(Ω.m) 
1 MC1  0  0  0  0  0 268.3 6.95 86.5 *** 

2 MC2  0  0  0  0  0 297.5 6.10 89.6 168.5 
3 MC3  0  0  0  0  0 270.8 7.31 90.2 167.2 
4 MC4  0  0  0  0  0 269.8 6.97 86.2 165.5 
5 MC5  0  0  0  0  0 275.8 6.68   79.5(*) *** 

6 MC6  0  0  0  0  0 270.8 7.19 86.6 171.3 
7 MF1 -1 -1 -1 -1  1 143.3 37.45 91.3 290.8 
8 MF2  1 -1 -1 -1 -1 306.0   3.91 89.6 107.2 
9 MF3 -1  1 -1 -1 -1 343.5  4.24 82.2 87.9 
10 MF4  1  1 -1 -1  1 230.0  6.34 83.9 205.9 
11 MF5 -1 -1  1 -1 -1 336.8  5.19 89.9 105.2 
12 MF6  1 -1  1 -1  1 187.3 11.11 87.8 277.3 
13 MF7 -1  1  1 -1  1 244.8  8.84 85.0 217.6 
14 MF8  1  1  1 -1 -1 344.0  2.87 83.9   82.0 
15 MF9 -1 -1 -1  1 -1 278.5  8.10 90.6 133.0 
16 MF10  1 -1 -1  1  1 163.3 16.23 88.5 295.5 
17 MF11 -1  1 -1  1  1 223.0 11.25 85.7 228.2 
18 MF12  1  1 -1  1 -1 330.3   3.55 79.4 93.5 
19 MF13 -1 -1  1  1  1 140.5 38.08 89.9 336.7 
20 MF14  1 -1  1  1 -1 282.5 5.82 85.8 112.4 
21 MF15 -1  1  1  1 -1 333.5 5.74 81.7 102.8 
22 MF16  1  1  1  1  1 237.0 7.99 79.7 228.2 
23 MCC1 -2  0  0  0  0 292.0 7.95 90.4 155.2 
24 MCC2  2  0  0  0  0 273.5 4.56 83.1 154.5 
25 MCC3  0 -2  0  0  0 210.8 11.00 93.4 247.9 
26 MCC4  0  2  0  0  0 312.3  5.00 80.6 146.2 
27 MCC5  0  0 -2  0  0 260.0  7.08 84.3 176.0 
28 MCC6  0  0  2  0  0 305.0  5.73 84.5 158.0 
29 MCC7  0  0  0 -2  0 307.8  5.34 84.0 158.3 
30 MCC8  0  0  0  2  0 258.5  8.50 80.8 181.7 
31 MCC9  0  0  0  0 -2 340.8  3.35 80.0 49.0 
32 MCC10  0  0  0  0  2 101.8 ** 87.7 336.6 

* observation identified as an outlier; ** test not performed due to excessive viscosity; *** test not performed due to problems with the embedded mesh  
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An overall statistical analysis of the response variables, including minimum and 

maximum values, mean value, standard deviation and coefficient of variation is 

presented in Table 4.5 for PED and MED. From these statistics it may be observed 

that the variations introduced in the independent variables of the experimental plans 

allow covering a wide range of pastes and mortars with regard to the fresh and 

hardened states. For example, in the case of the mortar experimental design, Dflow,mortar 

ranged from 101.8 to 344.0 mm, Tfunnel,mortar between 2.87 to 38.08 s, fc28d between 79 

to 93 MPa and �28d,mortar between 49 to 337 Ω.m. 

Table 4.5 – Statistics of the results for the total points from PED and MED. 

 Minimum Maximum Mean 
Stand. 

deviation 
Coeff. of 
variation 

Paste Experimental Design (PED) 

Dflow,paste (mm) 154.0 225.8 192.8 18.6 9.7% 

wfree (kg/m3) 44.08 83.08 62.71 10.18 16.2% �0,10min (Pa) 0.071 1.663 0.397 0.437 109.9% 
pl,10min (Pa.s) 0.164 0.347 0.244 0.045 18.3% �0,23min (Pa) 0.244 4.681 1.556 1.287 82.7% 
pl,23min (Pa.s) 0.185 0.485 0.295 0.077 26.0% �28d,paste (Ω⋅m) 50.5 102.8 73.1 14.0 19.2% 

Mortar Experimental Design (MED) 

Dflow,mortar (mm) 101.8 344.0 263.7 62.9 23.9% 

Tfunnel,mortar (s) 2.87 38.08 8.92 8.18 91.7% 

fc28d (MPa) 79.4 93.4 85.9 3.8 4.5% �28d,mortar (Ω⋅m) 49.1 336.7 178.0 75.6 42.5% 

 Empirical vs. rheological paste test results 

The characterization and control of fresh state behaviour of SCC is critical for the final 

quality of the structure, and it is usually performed through some empirical tests such as 

the slump flow or the V-funnel. Although these methods are relatively inexpensive and 

practical to use in the field, the most accurate way to describe the behaviour of fresh 

concrete is through rheological tests. The use of rheometers or viscometers allow a 

quantitative characterization of the material behaviour in terms of fundamental physical 

measures, less dependent on the details of the apparatus and on the experience and 

ability of the operator for their implementation and interpretation (Wallevik and 

Wallevik, 2011). A rheological test is an excellent method to characterize cement-based 

materials since it describes the fresh properties with at least two parameters, i.e., yield 
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stress and plastic viscosity, in contrast to e.g., the slump test which measures the flow 

of a fluid under a single set of conditions (one point test) (Banfill, 2006). However, 

rheological test methods have some drawbacks, namely that they are more expensive, 

require a careful experimental procedure, are rather time consuming and not suited to 

use at construction sites. Given the advantages and limitations of empirical and 

rheological tests it is important to find suitable workability test methods for continuous 

use in the field, and calibrate them with rheological parameters (Utsi et al., 2003; Saak et 

al., 2004; Zerbino et al., 2009). 

In order to verify if the different test results obtained on pastes correlate with each 

other, in particular, empirical and rheological test results, a correlation matrix with the 

Spearman’s correlation coefficient was computed (see Table 4.6). Spearman’s 

correlation coefficient (�Spearman) is a non-parametric correlation coefficient that 

determines the degree to which a monotonic relationship exists between two variables 

(coefficient ranges between -1 and 1). This coefficient does not require the assumption 

that the relationship between variables is linear and is less sensitive to asymmetries or 

presence of outliers. It is important to note that if there is a strong correlation between 

two variables (absolute value of �Spearman is close to 1) merely indicates that variables are 

associated, not implying that one variable causes another (Sheskin, 2003). 

Table 4.6 – Spearman’s correlation matrix within PED results. 

 Dflow,paste wfree �0,10min 
pl,10min �0,23min 
pl,23min �28d,paste 
Dflow,paste  1.000 0.858 -0.858 -0.847 -0.880 -0.859 -0.810 

wfree   1.000 -0.907 -0.965 -0.924 -0.941 -0.773 �0,10min   1.000 0.888 0.933 0.906 0.880 
pl,10min    1.000 0.929 0.929 0.773 �0,23min     1.000 0.885 0.810 
pl,23min      1.000 0.781 �28d,paste       1.000 

all correlations are significant at the 0.01 level (two-tailed) 
 

Spearman’s correlation coefficients presented in Table 4.6 indicated on one hand that 

the empirical test results are related to each other to some degree, the �Spearman of spread 

flow (Dflow,paste) against free water results (wfree) was 0.858 with a significance at the 0.01 

level, and, on the other hand, a strong relation was found between empirical and 

rheological tests. The highest correlation was found between free water results (wfree) 
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and plastic viscosity at 10 minutes (
pl,10min) with a �Spearman of -0.965. In fact, empirical 

tests, to some extent, provide information about rheology, and this has been shown by 

many investigators. Several analytical models have been developed to relate slump, as 

well as spread flow (of concrete, mortar or paste) to yield stress (Saak et al., 2004; 

Roussel, 2005), but more recent studies seem to indicate that, especially at low viscosity, 

the final spread diameter is controlled by both yield stress and plastic viscosity (Esping, 

2007; Bouvet et al., 2010). According to Roussel and Roy (2005) the flow time of fresh 

paste tested in the Marsh cone can be directly linked to plastic viscosity and yield stress 

for Bingham fluids, which is a simple approximation of the fresh cement paste 

behaviour. The Spearman’s correlation coefficient computed with the data collected in 

the present work supports these conclusions. Actually Dflow,paste and wfree have a strong 

relation with plastic viscosity but also with yield stress (see Table 4.6). Similar 

correlation coefficients were found between empirical and rheological tests performed 

at 10 and 23 minutes. 

It is also noteworthy the relation found between paste electrical resistivity at 28 days 

and fresh paste properties (empirical and rheological), especially with yield stress and 

spread flow (�Spearman=0.882 and �Spearman=-0.810 for �0,10min and Dflow,paste, respectively) 

see Table 4.6, Figure 4.4(a) and Figure 4.4(b). A strong correlation between resistivity 

and spread diameter was also found from the results collected in the mortar 

experimental plan, with a �Spearman of -0.956 (see Figure 4.4(c)). 

(a) (b) (c) 

Figure 4.4 – Relation between (a) �0,10min and �28d,paste (�Spearman=0.882); (b) Dflow,paste and �28d,paste (�Spearman=-0.810); (c) Dflow,mortar and �28d,mortar (�Spearman=-0.956). 
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 Time-dependent rheological behaviour of cement pastes 

In order to assess the differences in the paste rheological behaviour during the 

hydration process, two rheological tests were performed in the PED, at 10 and 23 

minutes. The experimental results presented in the graphs below, show that yield stress 

(Figure 4.5) and plastic viscosity (Figure 4.6) measured at 23 minutes are higher than 

those measured at 10 minutes.  

 

Figure 4.5 – Relation between the �0 measured at 10 and 23 minutes in paste mixtures of the 

PED. 

 

Figure 4.6 – Relation between the 
pl measured at 10 and 23 minutes in paste mixtures of the 

PED. 
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As expected, this time-dependent behaviour is markedly more evident in yield stress 

than in plastic viscosity. For the range of paste mixtures studied in this PED, yield 

stress in some cases increased almost 6 times, whereas plastic viscosity increased less 

than 1.6 times. Early cement hydration increases both, yield stress and plastic viscosity, 

but it is yield stress that is particularly sensitive to hydration and its associated 

microstructural changes. The increase in paste yield stress reflects both the attractive 

colloidal forces between the cement and other submicron particles that cause them to 

flocculate, as well as the strength of these attractive interparticle forces (Struble and Lei, 

1995; Struble et al., 1996; Petrou et al., 2000). 

In cementitious materials, a reversible rheological behaviour is often observed during 

the dormant period of the hydration process. As long as the available mixing power is 

sufficient to break the chemical links between cement particles, the hydration process 

has a reversible macroscopic time-dependent behaviour referred to as thixotropy (Saak, 

2000; Roussel et al., 2012). Thixotropy is a reversible macroscopic phenomenon which 

is associated to reversible physico-chemical phenomena such as colloidal flocculation 

and de-flocculation of the cement particles in combination with the structural 

breakdown of the chemically formed linkages between the particles (Roussel, 2005; 

Wallevik, 2009; Roussel et al., 2012). However at a microscopic scale, it is a 

nonreversible chemical reaction that can create new bonds between particles, as long as 

the reservoir of chemical species is sufficient (Roussel et al., 2012). Besides the 

reversible time-dependent behaviour (thixotropy), cementitious materials also show a 

time-dependent irreversible behaviour. As stated before, in rheological tests performed 

in this experimental programme, thixotropy effects were mitigated by appropriate 

pre­conditioning of samples and shear stepped tests, therefore the observed differences 

in �0 and 
pl between 10 minutes and 23 minutes, corresponds mainly to the irreversible 

time-dependent behaviour of cement paste. This irreversible rheological transient 

behaviour observed in suspensions subjected to chemical reactions or particles 

absorptions is due to concurrent processes like the growth of hydration products and 

water consumption during cement hydration, the loss of water by evaporation and the 

loss of dispersing efficiency of the superplasticizer or other water reducing admixtures 

(Esping, 2007). 
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4.5. Response models 

In the present study a commercial software (Design-Expert-Software, 2007) was used 

to analyse the results for each response variable, by examining summary plots of the 

data, fitting a model using regression analysis and ANOVA, validating the model by 

examining the residuals for trends and outliers and, finally, interpreting the model 

graphically. 

 Fitted models 

For each response variable, a quadratic model can be estimated from the central 

composite design data (see equation (4.1) in Section 4.3.2). The model parameters (β,, 
β) and β)�) are estimated by means of a multilinear regression analysis. It may happen 

that, for some response variables, some of the terms in equation (4.1) may not be 

significant. The significance of each factor on a given response can be evaluated using a 

Student’s t-test. A backward elimination was used in this work to eliminate non-

significant terms in the regression model (Design-Expert-Software, 2007), i.e. those 

terms associated with a p-value greater than the chosen significance level (in this study, J=0.05). The results of the estimated models, including the residual error term, along 

with the correlation coefficients, are given in Table 4.7 and Table 4.8, for the PED and 

MED, respectively.  

Notice that the observed values marked with * in Table 4.3 and Table 4.4 (Section 

4.4.1) are not typical of the rest of the data. These values were identified as outliers in 

the statistical analysis and for this reason they have been excluded from the data when 

fitting the model. Residual analysis did not reveal any obvious model inadequacies or 

indicate serious violations of the normality assumptions, except in some cases such as �0,10min where the problem was overcome after a variable transformation of the form 

log10(x), as indicated in Table 4.7. 
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Table 4.7 – Fitted numerical models for response variables from PED (coded variables). 

 

 Dflow,paste (mm) wfree (kg/m3) log10[�0,10min (Pa)] 
pl,10min (Pa.s) [�0,23min (Pa)]0.5 [
pl,23min (Pa.s)]-0.5 �28d,paste (Ω⋅m) 

independent term 200.399 63.657 -0.654 0.237 1.035 1.907 72.086 

Vw/Vp 3.618 (8%) 5.272 (23%) -0.076 (-9%) -0.021 (-19%) -0.083 (-7%) 0.080 (17%) -0.739 (-3%) 

w/c 10.618 (23%) 6.834 (30%) -0.253 (-29%) -0.034 (-30%) -0.336 (-28%) 0.174 (36%) -7.759 (-29%) 

Sp/p 3.799 (8%) 1.744 (8%) -0.045 (-5%) -0.004 (-4%) -0.072 (-6%) 0.037 (8%) -0.293 (-1%) 

mtk/c -13.465 (-29%) -6.360 (-28%) 0.287 (32%) 0.030 (27%) 0.312 (26%) -0.135 (-28%) 12.556 (46%) 

(Vw/Vp)×(w/c) NS NS NS NS 0.046 (4%) NS NS 

(Vw/Vp)×(Sp/p) NS NS -0.025 (-3%) -0.004 (-4%) -0.040 (-3%) NS 1.548 (6%) 

(Vw/Vp)×(mtk/c) 4.885 (11%) NS -0.024 (-3%) -0.003 (-3%)  -0.067 (-6%) NS NS 

(w/c)×( Sp/p) NS 1.373 (6%) NS NS NS 0.027 (6%) NS 

(w/c)×(mtk/c) NS NS -0.082 (-9%) -0.004 (-4%) -0.082 (-7%) NS -2.912 (-11%) 

(Sp/p)×(mtk/c) NS NS NS NS NS NS NS 

(Vw/Vp)2 NS NS NS NS NS NS NS 

(w/c)2 -5.835 (-13%) NS 0.067 (8%) 0.008 (7%) 0.095 (8%) -0.029 (-6%) NS 

(Sp/p)2 NS NS NS NS NS NS NS 

(mtk/c)2 -3.710(-8%) -1.180 (-5%) 0.026 (3%) 0.005 (4%) 0.065 (5%) NS 1.254 (5%) 

residual error, ε *        
mean 0 0 0 0 0 0 0 
standard deviation 4.909 1.888 0.044** 0.006 0.051** 0.045** 2.980 

R2/ R2adjusted 0.930 / 0.908 0.966 / 0.958 0.986 / 0.980 0.984 / 0.977 0.988 / 0.981 0.960 / 0.949 0.955 / 0.941 

(NS) non-significant terms; (*) error term is a random and normally distributed variable and no evidence of auto-correlation was found in the residues; (**) corresponding value for �0,10min, �0,23min and 
pl,23min  is 0.045, 
0.108 and 0.015, respectively; (%) relative influence of the variable on the response variation. 
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Table 4.8 – Fitted numerical models for response variables from MED (coded variables). 

 Dflow,mortar (mm) [Tfunnel,mortar (s)]-0.5 fc28d (MPa) log10[�28d,mortar (Ω⋅m)] 

independent term 278.411 0.382 87.640 2.227 
Vw/Vp -0.021 (0%) 0.038 (15%) -1.341 (-14%) -0.010 (-3%) 
w/c 27.125 (18%) 0.047 (18%) -3.222 (-34%) -0.058 (-16%) 
Sp/p 7.438 (5%) 0.005 (2%) -0.301 (-3%) -0.004 (-1%) 
Vs/Vm -10.229 (-7%) -0.026 (-10%) -0.787 (-8%) 0.022 (6%) 

mtk/c -61.000 (-40%) -0.094 (-36%) 0.997 (10%) 0.203 (56%) 

(Vw/Vp)×(w/c) NS NS NS NS 

(Vw/Vp)×(Sp/p) NS NS NS NS 

(Vw/Vp)×( Vs/Vm) NS NS -0.704 (-7%) NS 

(Vw/Vp)×( mtk/c) 5.969 (4%) NS NS NS 

(w/c)×( Sp/p) NS NS NS NS 

(w/c)×( Vs/Vm) 4.375 (3%) NS NS NS 

(w/c)×( mtk/c) 9.563 (6%) 0.012 (5%) NS -0.009 (-3%) 

(Sp/p)×( Vs/Vm) -5.719 (-4%) -0.012 (-5%) NS NS 

(Sp/p)×( mtk/c) NS NS NS 0.008 (2%) 

(Vs/Vm)×( mtk/c) NS 0.011 (4%) NS NS 
(Vw/Vp)2 NS 0.006 (2%) NS -0.008 (-2%) 
(w/c)2 -4.763 (-3%) NS NS 0.015 (4%) 
(Sp/p)2 NS NS -0.539 (-6%) NS 
(Vs/Vm)2 NS NS -1.041 (-11%) NS 
(mtk/c)2 -14.826 (-10%) -0.009 (-4%) -0.678 (-7%) -0.028 (-8%) 

residual error, ε *     
mean 0 0 0 0 
standard deviation 8.028 0.014** 1.374 0.013** 
R2/ R2adjusted 0.984 / 0.975 0.979 / 0.969 0.872 / 0.817 0.995 / 0.993 

(NS) non-significant terms; (*) error term is a random and normally distributed variable and no evidence of auto-correlation was found in 
the residues; (**) corresponding value for Tfunnel,mortar and �28d,mortar is 1.591 and 5.076, respectively; (%) relative influence of the variable 
on the response.variation  
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 Accuracy of the proposed models 

Even though the majority of the fitted models presented considerably high correlation 

coefficients (see R2 and R2adjusted in Table 4.7 and Table 4.8) their accuracy must be 

verified. The results of the central points included in the experimental design were 

analysed in order to estimate the experimental error and the accuracy of the derived 

models. The corresponding minimum, maximum and mean value, standard deviation 

and coefficient of variation for PED and MED are presented in Table 4.9. The 

estimated residual standard deviation (see Table 4.7 and Table 4.8) does not exceed the 

experimental error by far, so a good fitting can be expected. 

It must be stressed that the highest coefficients of variation of the central points were 

associated to �0,10min and �0,23min, 10.4% and 11.7%, respectively. The yield stress was 

determined by the extrapolation of experimental shear stress vs. shear rate data to zero 

shear rate, using a numerical fitting to the Bingham model. In fact, the yield stress value 

obtained by this extrapolation technique is obviously more sensitive to small deviations 

of the shear stress measured values, which may explain the higher coefficient of 

variation. 

Table 4.9 – Statistics of the results for central points from PED and MED. 

 
Minimum Maximum Mean 

Stand. 
deviation 

Coeff. of 
variation 

Paste Experimental Design (n=6 central points) 

Dflow,paste (mm) 191.0 208.5 201.3 6.4 3.2% 

wfree (kg/m3) 59.25 67.17 63.72 2.77 4.4% �0,10min (Pa) 0.197 0.259 0.224 0.023 10.4% 
pl,10min (Pa.s) 0.222 0.242 0.234 0.009 3.7% �0,23min (Pa) 0.946 1.330 1.104 0.129 11.7% 
pl,23min (Pa.s) 0.248 0.301 0.275 0.017 6.2% �28d,paste (Ω⋅m) 65.6 75.3 70.5 3.49 5.0% 

Mortar Experimental Design (n=5 central points) 

Dflow,mortar (mm) 268.3 297.5 275.5 11.1 4.0% 

Tfunnel,mortar (s) 6.10 7.31 6.87 0.43 6.3% 

fc28d (MPa) 86.2 90.2 87.8 1.9 2.2% �28d,mortar (Ω⋅m) 165.5 171.3 168.1 2.5 1.5% 
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 Individual and interaction effects 

Based on the derived models, the relative influence of each variable on the response 

variation was computed and is presented (in brackets) in Table 4.7 and Table 4.8 for 

PED and MED, respectively. Naturally, higher values indicate greater influence of this 

parameter in the response and on the other hand, a negative value reflects a response 

decrease to an increase in this parameter. The results clearly show that w/c and mtk/c 

exhibited a great effect on all measured responses, being the only exception fc28d of 

MED where the relative influence of mtk/c does not exceed 10%. It should be noted, 

however, that these two variables have opposite effects on the response. In the case of �28d,paste and �28d,mortar, the variable mtk/c explains almost 50% of the variation of these 

responses. The partial replacement of cement by a pozzolanic material, like metakaolin, 

causes substantial changes on the pore structure of the paste and on the chemistry of 

the hydration products. Metakaolin contributes to the microstructure improvement by 

the filler effect (like limestone filler) and by the pozzolanic reaction of metakaolin with 

calcium hydroxide, and this is reflected in the resistivity values. According to some 

authors, although total porosity may be increased by metakaolin blending, the partial 

replacement of cement with metakaolin also causes a refinement of pore structure 

(Frı ́as and Cabrera, 2000). Metakaolin modifies the pore structure of the cement matrix 

and significantly reduces permeability, resulting in higher resistance to transportation of 

water and diffusion of harmful ions which lead to the deterioration of the matrix 

(Siddique and Klaus, 2009). 

Besides w/c and mtk/c, the variable that most influenced wfree, 
pl,10min and 
pl,23min on 

PED and Tfunnel,mortar on MED, was Vw/Vp. A global analysis of the distribution of the 

relative influence of each parameter on the variation of the response variables of fresh 

state on PED, has revealed a distribution quite similar to the responses Dflow,paste, �0,10min 

and �0,23min, as well as quite similar to the responses wfree, 
pl,10min and 
pl,23min. In the 

mortar experimental plan the variable Vs/Vm had some influence, but w/c e mtk/c 

remain the most prevalent variables in all measured responses. Significant interaction 

and quadratic effects were found in all responses. The interaction effects represent, on 

average, a weight of 13% on the variation of the responses and quadratic terms a 

weight of 11%. 
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4.6. SCC mortar design using paste rheological models 

 Influence of paste rheology on the workability of mortar 

The influence of the rheology of the cement paste matrix on the workability of fresh 

mortar can be assessed linking the two experimental designs results. In order to 

understand this influence, the values of independent variables that define the mixture 

composition of paste tested in the PED, were used in the mortar fitted numerical 

models to obtain the corresponding Dflow,mortar and Tfunnel,mortar. The paste mix 

proportions were maintained at the mortar level and only the mixture parameter related 

with the aggregate skeleton (Vs/Vm) was established. Figure 4.7 shows the flow chart 

used to assess the influence of paste rheology on the workability of mortar. 

 

Figure 4.7 – Flow chart used to assess the influence of paste rheology on the workability of 

mortar. 

In Figure 4.8(a) and Figure 4.8(b) the range of rheological parameters, �0,10min and 
pl,10min, were plotted against the corresponding mortar workability parameters, 

Dflow,mortar and Tfunnel,mortar, for a Vs/Vm=0.45. From these figures it is clear that there is 

a strong correlation between the parameters that define the fresh behaviour of paste 

and mortar. It is also noteworthy that, paste mixtures considered within the PED led to 

a wide range of mortars in the fresh state, with Dflow,mortar ranging between 328 mm and 

216 mm and Tfunnel,mortar ranging between 5.4 s and 16.0 s, for a Vs/Vm=0.45. 
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(a) (b) 

Figure 4.8 – Relation between: (a) �0,10min measured in paste and Dflow,mortar; (b) 
pl,10min 

measured in paste and Tfunnel,mortar, for Vs/Vm=0.45. 

The same procedure was performed for Vs/Vm values from 0.40 to 0.50, and the 

results are presented in Figure 4.9. For each paste mixture, the flow properties were 

described by the ratio of the rheological parameters (�0,10min/
pl,10min) and the workability 

of the corresponding mortar defined as the ratio of the empirical parameters 

(Dflow,mortar/Tfunnel,mortar). As observed in the previous figures, for each Vs/Vm there is a 

clear correlation between fresh properties of paste and mortar. As Vs/Vm used in 

mortar increases, the trend line shifts in the direction of lower values of the Dflow,mortar 

to Tfunnel,mortar ratio. Observing, for example PCC8, one can conclude that mortars with 

lower aggregate content exhibited a greater ratio (247.2 mm/10.28 s, with 

Vs/Vm=0.40), while mortars with higher aggregate content showed a lower ratio 

(194.4mm/20.26s, with Vs/Vm=0.50). 

 

Figure 4.9 – Relation between fresh properties of paste and mortar, for various Vs/Vm. 
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In fact, increasing 
pl,10min increases the value of Tfunnel,mortar, at an increasing rate of 

Vs/Vm, and increasing �0,10min decreases the value of Dflow,mortar, at an increasing rate of 

Vs/Vm. Similar results were also found by Ferrara et al. (2007), when trying to establish 

correlations between fresh properties of paste (paste mini-cone flow and paste 

viscosity), the average size and spacing of the solid skeleton particles and the fresh 

behaviour of the concrete (concrete slump flow and time needed to reach a 500 mm 

diameter spread, T50). According to these authors, increasing the paste viscosity 

increases the value of T50 in concrete, and decreasing paste mini-cone flow (higher yield 

stress values) decreases concrete slump flow, at decreasing rate of average aggregate 

spacing (increasing rate of aggregate content). 

 Self-compacting zone at paste level 

After building the regression models that establish relationships between mix-design 

variables and the responses (see Section 4.5), a numerical optimization technique was 

used to determine the range of mortar mixture parameters where deformability and 

viscosity coexist in a balanced manner to achieve self­compacting mortar, i.e. to 

determine the best mixtures which exhibit a spread flow of 260 mm and a flow time of 

10 s. Mortar fresh requirements that lead to self-compacting concrete were defined 

based on the values recommended by the Japanese SCC-design method (Okamura and 

Ouchi, 2003), the European Guidelines for SCC (EFNARC, 2005) and previous 

experience of other authors (Nunes et al., 2009b). In the present work, a slightly higher 

target spread flow value was adopted, when compared to the value recommended by 

the Japanese SCC-designing method (245 mm). 

Numerical optimization was performed using a software developed on MATLAB 

2011b, which is based on a subroutine provided by the program in the Optimization 

Toolbox Solvers (MATLAB 2011b, 2011). In fact, this optimization process is a general 

problem of solving a system of nonlinear multidimensional equations, with the same 

number of equality conditions as variables in the model. The values of Vw/Vp and 

Sp/p that lead to the optimum mixtures in fresh state (Dflow,mortar=260 mm and 

Tfunnel,mortar=10 s), were searched for each combination of (w/c, mtk/c, Vs/Vm). Note 

that since the response models were expressed as a function of five independent 

variables, a multiple optimum will hardly occur. A last constraint should be 
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implemented in the optimization process due to the fact that the error function that is 

associated to each response model increases with the distance to the center of the 

modelled region. Therefore, only solutions with a distance to the center of the 

modelled region (Dcenter) less than 2.5, defined in coded values, were accepted (Figure 

4.10 

 

Figure 4.10 – Flow chart used to determine fresh properties of paste to achieve SCC mortar 

(Dflow,mortar=260 mm and Tfunnel,mortar=10 s). 
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The range of paste mixtures that lead to compositions with self-compacting properties 

are established from the mortar optimized mixtures (solutions Si with variables defined 

in real values). Using the mixture parameters of optimized solutions, the corresponding 

paste fresh properties were determined using the fitted numerical models from PED. In 

the same way as performed with mortar models, the use of the paste models was 

limited to an area bounded by coded values -2.0 to +2.0 (Dcenter<2.0, see Figure 4.10), 

ensuring that the error in predicting the responses is not relevant. The rheological 

properties (�0,10min and 
pl,10min) of the optimized paste mixtures are plotted in Figure 

4.11. The results are grouped according to the aggregate content (Vs/Vm) of the 

mortars that gave rise to paste optimized solutions. 

 

Figure 4.11 – Rheological properties of paste mixtures to achieve SCC mortars 

(Dflow,mortar=260 mm and Tfunnel,mortar=10 s). 
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while lower aggregate contents require a paste with higher yield stress and viscosity 

(more viscous paste). Therefore, the rheological properties of the paste (yield stress and 
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1999) and applied by Oh et al. (1999) to SCC. This theory explained the fact that to 

reach sufficient workability, it is necessary to have not only enough cement paste to fill 

all the spaces between the particles, but a volume of cement paste that ensures a very 

thin lubricating layer around the particles, by virtue of which the friction between the 

particles is greatly reduced. This cement paste excess layer lubricates the relative 

movement of the aggregate particles, but also increases flowability of the mixture. 

Figure 4.12 shows the formation of the cement paste excess layer around the aggregate 

particles. In fact, the characteristics of SCC in the fresh state are affected by two 

factors: first, the rheological properties of cement paste, and second, the “relative” layer 

thickness, a parameter proposed by Oh et al. (1999) that depends on the excess paste 

volume and the diameter and surface area of the aggregate. It can however be noted 

that the cement paste layer thickness is in fact another way to express the average 

distance between aggregate particles, which is directly related to the aggregate volume 

fraction. This means that in a mortar with a given workability, as the aggregate volume 

fraction (Vs/Vm) increases, the paste layer thickness around aggregate decreases, and 

this reduction must be balanced with an increase in the paste flowability (lower yield 

stress and plastic viscosity) to ensure the same workability. 

 

Figure 4.12 – Excess paste theory (Oh et al., 1999). 

According to Figure 4.11, for a given aggregate content (Vs/Vm) it is possible to 

achieve self-compacting mortar from paste with different rheological properties, i.e., 

there are different combinations of �0,10min and 
pl,10min that can ensure the desired 

workability in mortar. However �0,10min and 
pl,10min cannot be varied independently, 

since for this set of materials, paste rheological properties should vary according to the 

trend line drawn in Figure 4.11 to ensure self-compacting mortar (in this case mortar 

with 260 mm and 10 s). The shape of the trend line reflects the need of compromise 

between yield stress and plastic viscosity, which seems to indicate that the increase in 
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aggregate content decreases the �0,10min to 
pl,10min ratio and decreases the influence of 

the plastic viscosity on the workability of the mortar as compared to yield stress. Similar 

conclusions can be found if, instead of rheological variables, empirical variables are 

used, in this case Dflow,paste and wfree, as shown in Figure 4.13. In fact others authors, 

using a different methodology, have reached similar conclusions (Bui et al., 2002). Bui et 

al. (2002) developed a segregation-controlled design methodology for SCC based on the 

paste rheology criteria, which include minimum apparent viscosity, minimum slump 

flow diameter, and optimum slump flow diameter to viscosity ratio. According to these 

authors the optimum slump flow diameter to viscosity ratio of paste is related to the 

average aggregate diameter and aggregate spacing (aggregate content), where higher 

aggregate spacing requires lower slump flow diameter to viscosity ratio. 

 

Figure 4.13 – Empirical fresh properties of paste mixtures to achieve SCC mortars 

(Dflow,mortar=260 mm and Tfunnel,mortar=10 s). 
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above to both situations, a very fluid self-compacting mortar (e.g. a mortar with 

Dflow,mortar=280 mm and Tfunnel,mortar=8 s) and a very  viscous self-compacting mortar 

(e.g. a mortar with Dflow,mortar=240 mm and Tfunnel,mortar=12 s), the respective trend lines 

can be computed as illustrated in Figure 4.14, which allows to define a self-compacting 

zone at paste level (SCZ), for the set of materials used in this study. 

 

Figure 4.14 – Self-compacting zone at paste level (SCZ) for the set of materials used in this 

study. 

This SCZ has a great applicability when producing SCC, since it allows an expeditious 
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(2001), allowed to conclude that there is a variation in the relative size and position of 
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superplasticizer could be assessed at the paste level based on this SCZ although it 
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 Mixture proportions of optimized SCC mortar 

The adjusted values of mtk/c and Sp/p for each pair of (w/c, Vw/Vp) were used to 

obtain the contour plots presented in Figure 4.15. The mixtures which exhibit a spread 

flow of 260 mm and a flow time of 10 s are marked with small (+). This figure shows 

that the increase in sand content led to an adjustment of the variable range where SCC 

mortars can be found, namely, the range of w/c and Vw/Vp move to higher values and 

the range of mtk/c move to lower values. 

Figure 4.15 – Range of mixture variables (absolute values) for optimized mortars, marked with 

(+) (Dflow,mortar=260 mm and Tfunnel,mortar=10 s). 
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After selecting the paste mix proportions, a SCC concrete mixture can be achieved 

substituting reference sand (sand used in this study) by real aggregates, fine and coarse 

aggregate. Tests on concrete are then necessary to optimize the aggregate skeleton and 

aggregate content. Paste mixtures corresponding to a higher sand content (Vs/Vm) in 

the optimized mortar mixtures can lead to SCCs with higher total aggregate content and 

lower paste volume, thus resulting in more economic mixtures (Nunes et al., 2009b). On 

the other hand, increasing the paste volume increases mixture robustness and allows 

the accommodation of poorly graded or poorly shaped aggregates (Koehler and Fowler, 

2007). 

4.7. Influence of aggregate content on the electrical resistivity 

With the purpose of evaluating the influence of aggregate on electrical resistivity, the 

correlation between paste and mortar resistivity was assessed, for different aggregate 

contents. The correlation was obtained based on the results provided by paste and 

mortar fitted models (see Section 4.5), applied to the experimental mixtures carried out 

on the paste experimental design (PED). Figure 4.16 shows the electrical resistivity 

results for paste mixtures and respective mortars with different aggregate contents, as 

well as the respective trend lines. 

 

Figure 4.16 – Relation between paste and mortar electrical resistivity as a function of Vs/Vm. 
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For each Vs/Vm a good correlation between paste and mortar resistivity was found, 

following a linear trend line with a correlation coefficient above 0.96. The trend line 

slope increases as more aggregate are added to the paste, which means that the 

aggregate contributes to increase mixture resistivity. 

Indeed, the inclusion of aggregates in the cement paste matrix has an effect of dilution 

(blocking) and tortuosity (redirecting). The dilution effect depends on the aggregate 

volume fraction, and it occurs because the aggregate conductivity (inverse of resistivity) 

is much lower compared with the cement paste conductivity. Paste electrical 

conductivity (���4�	=1/�28d,paste) is affected by the dilution effect, according to the 

equation (4.6): 

 ����������4�	 Z W1 − E@ E ⁄ ) (4.6) 

where ������� (1/�28d,mortar) is the electrical conductivity of the mortar. The tortuosity 

effect occurs due to the presence of these “insulating” elements, the aggregate particles, 

forcing a redirection of conduction around them, making the conduction paths more 

tortuous. 

The effect of including aggregates in the cement paste matrix can be predicted by the 

Differential Effective Medium Theory (D­EMT), also known as asymmetric 

Bruggeman formulation (Giordano, 2003b). For the case of a two-phase mixture 

(cement paste and aggregate), of not diluted dispersion of insulating spherical inclusions 

(aggregate) the D­EMT formulation leads to the formula presented in equation (4.7). 

This model also assumes that the inclusion of spherical particles (aggregate) does not 

change the matrix electrical conductivity (paste). 

 ����������4�	 = (1 − E@ E ⁄ )¦ y�  (4.7) 

In Figure 4.17 the �������/���4�	 results are plotted as a function of the volume fraction 

of aggregate, and are compared with the theoretical equations that express the dilution 

effect (equation (4.6)) and both the dilution and tortuosity effect (equation (4.7)). 
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Figure 4.17 – Comparison of experimental results with D-EMT formulation. 
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can be more ellipsoidal or aggregate particles could be packed in clusters that behave as 

individual ellipsoids. 

Once established this link between paste and mortar, it is possible to design mortar 

mixtures with the desired resistivity requirement, by simply conducting some trials at 

paste level. In Figure 4.18 the mortar resistivity predictions were added to the contour 

plot presented in Figure 4.15 (Section 4.6.3) for a Vs/Vm=0.475, allowing to simplify 

the test protocol required to optimize a given self-compacting mortar mixture with the 

desired durability requirement (resistivity). Although not presented in this work, it is 

important to emphasize that this link could be extended to concrete level. 

 

Figure 4.18 – Optimized mixture parameters for SCC mortars, marked with (+) 

(Dflow,mortar=260 mm; Tfunnel,mortar=10 s; Vs/Vm=0.475), and estimated values of �28d,mortar. 
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which seems to indicate that both types of tests can be used to characterize 

fresh paste behaviour. 

• Rheological tests performed at 10 and 23 minutes, after starting mixing, 

showed an increase of both, yield stress and plastic viscosity, but it is the 

yield stress that seems particularly sensitive due to the hydration reaction 

and associated microstructural changes, loss of water by evaporation and 

loss of dispersing efficiency of the superplasticizer. 

• Data collected during the experimental plan, conducted according to a 

central composite design, can be used to establish numerical models relating 

mixture parameters with fresh and hardened properties of paste and mortar. 

Such numerical models provide an effective mean to design paste and 

mortar mixtures by determining the influence of key parameters on the 

desired fresh and durability properties. 

• A link between fresh properties of paste and SCC mortar was established 

using paste and mortar fitted numerical models. Fresh properties of paste 

(rheological and empirical) have to be optimized with respect to aggregate 

content to obtain mortar with the desired flowability and stability 

characteristics. For a given aggregate content it is possible to achieve SCC 

mortar from paste mixtures with different rheological properties, although 

yield stress and plastic viscosity cannot be varied independently. For given 

mortar target properties (Dflow,mortar and Tfunnel,mortar) a trend line establishing 

the relationship between paste rheological parameters was computed. 

• The link established between fresh properties of paste and SCC mortar 

allowed the definition of a self-compacting zone at paste level (SCZ). This 

SCZ can simplify the test protocol required to optimize a given SCC 

mixture, reducing the extent of laboratory work, testing time and materials 

used.  

• Although the SCZ was defined for a specific set of materials, variations in 

material characteristics are expected to change the relative size of the SCZ. 
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Depending on the level of deviation, a limited number of mixtures can be 

prepared to adjust the final composition. The SCZ can also provide the 

basis for quality control and further behaviour assessment of new materials 

(addition, superplasticizer or viscosity agent). 

• A link between durability properties of paste and SCC mortar was 

established using electrical resistivity numerical models of paste and mortar. 

For each Vs/Vm a good correlation between resistivity of paste and mortar 

was found, showing that aggregate increases mixture resistivity. Comparing 

experimental data with D-EMT formulation, it seems that the ITZ has little 

influence on the electrical resistivity of SCC mortar and the main effect of 

aggregate is blocking and redirecting conductive flow. 
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Chapter 5 

5. Effective medium theories to assess 
aggregate influence on SCC resistivity and 
chloride diffusion 

5.1. Synopsis 

The possibility of predicting concrete properties from cement paste behaviour has great 

advantages, as it simplifies and makes easier the materials selection process and the 

performance-based design of concrete mixtures. In this work the ability of some of the 

effective medium theories to predict the influence of aggregate on the electrical 

resistivity and chloride ion diffusion properties of self-compacting concrete (SCC) is 

assessed. With this purpose an experimental programme was conducted, with 

self­compacting concrete and mortar mixes, designed based on four reference paste 

mixtures. Experimental results are compared with the values predicted by different 

models derived from the Differential Effective Medium Theory (D-EMT). A D-EMT 

formulation for insulating spherical inclusions and a D-EMT formulation for insulating 

ellipsoidal inclusions with an aligned orientation seems to predict fairly accurately the 

durability properties of self­compacting mortar and concrete, respectively. A good 

approximation has also been found with the predictions provided by the 

Hashin­Shtrikman lower bound. 
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5.2. Introduction 

SCC, initially developed in Japan, corresponds to an advanced special concrete type as it 

leads to technological, economic and environmental benefits. In fresh state, SCC has 

the ability to fill the form and consolidate under its own weight with no compaction. 

Several different design methods found in the literature consider SCC as a suspension 

of aggregates in paste, separating optimization of the granular skeleton grading, paste 

volume and paste composition. In fact, paste plays a major role in concrete workability 

and therefore it is reasonable to expect that there is a direct relationship between paste 

and concrete flow behaviour (Hidalgo et al., 2008). Therefore, to facilitate materials 

selection and mixture optimization protocols, efforts have been developed to correlate 

flow properties of SCC to those of mortar or paste (Okamura et al., 2000; Saak et al., 

2001; Grünewald and Walraven, 2007; Erdem et al., 2009; Nunes et al., 2009b; Nunes et 

al., 2011; Figueiras et al., 2014). Besides controlling concrete workability, paste 

composition also has a large influence on early-age and long-term properties, including 

durability. If in fresh state, mortar requirements that lead to self-compacting concrete 

are fairly well defined, in hardened state, the link between paste/mortar and concrete 

durability properties is still at an early stage. The presence of aggregate in a cement 

paste matrix has two opposite effects on the transport properties: firstly, the dilution 

and tortuosity effects that reduce the permeability; secondly, the presence of a porous 

interfacial transition zone (ITZ) between paste and aggregate that facilitates the 

movement of ions and increases conductivity (Garboczi et al., 2000; RILEM-Report 38, 

2007). In order to establish this link it is necessary to know how to predict the influence 

of the aggregate (aggregate content and aggregate skeleton) in the mixture. With regard 

to the resistivity and diffusivity properties, one of the approaches that has begun to be 

used to establish this link between paste and concrete is through the effective medium 

theories (EMT) (Garboczi and Berryman, 2000). The work developed by Garboczi and 

Berryman (2000) included the application of Differential Effective Medium Theory  

(D-EMT) formulation with insulating spherical inclusions for normal vibrated concrete. 

Indeed, there are many different effective medium theories, each of them being more 

or less accurate in different conditions. Nevertheless, all theories assume that a material 

composed by a mixture of distinct homogeneous media can be regarded as an 

homogeneous one at a sufficiently large observation scale (Giordano, 2003b). The 

EMT, which is a semi-analytic method, has been applied in many different areas to 
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describe the physical properties of diphasic or multiphasic materials starting from the 

knowledge of the physical property of each phase composing the mixture, as well as of 

the structural properties of the mixture itself (percentage, shape and distribution of 

each phase). Ideally, the aim is to construct a theory that employs general 

microstructural information to make some accurate property predictions (Giordano, 

2003b). EMTs are commonly used because of their relative simplicity compared to 

numerical computations, even though it is very important to establish the conditions of 

validity and the microstructures for which the theories yield accurate predictions 

(Giordano, 2003a). 

The objective of this work is to conduct an exploratory analysis to assess the ability of 

some of the EMTs to predict the influence of the aggregate on the electrical resistivity 

and chloride ion diffusion properties of SCC. With this purpose, an experimental 

programme was conducted with self-compacting concrete and mortar mixes, designed 

based on four reference paste mixtures. Mortar and concrete mixtures, which included 

aggregate with different granular skeleton grading, aggregate with different shapes and 

different aggregate volume contents, were assessed for electrical resistivity and the 

apparent chloride diffusion coefficient, obtained in a non-steady-state migration test. 

Experimental results were compared with the values predicted by different models 

derived from the D­EMT, which seems to be the EMT that best fits the concrete 

problem. The assessed models include: the D­EMT formulation for not diluted 

suspension of insulating spherical inclusions; the D­EMT formulation for not diluted 

suspension of insulating ellipsoidal inclusions with an aligned orientation; and the 

D­EMT formulation for not diluted suspension of insulating ellipsoidal inclusions with 

a random orientation. Besides the models derived from D­EMT, experimental results 

were also compared to the bounds provided by Hashin and Shtrikman variational 

analysis (Hashin and Shtrikman, 1962). 

5.3. Effective medium theories 

Prediction for physical properties of heterogeneous media has been attracting the 

attention of many scientific areas leading to the development of a number of different 

EMTs. Contrary to other numerical approaches, such as the finite element method 
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(FEM), which are based on an approximate discretization of the study medium, in 

EMTs it is assumed that the effect of heterogeneities existing in the study medium can 

be captured by a basic morphological unit that constitutes a representative elementary 

volume (Coenza et al., 2009). The direct consequence of this physical conceptualization 

is that EMTs do not explicitly account for the size of heterogeneities (inclusions) but 

rather for their shape (Coenza et al., 2009). According to Hashin (Hashin, 1983) the 

properties of a composite material are determined by the internal phase geometry, i.e. 

the phase interface geometry and the physical properties of the phases, i.e. their 

constitutive relations. Figure 5.1, presents for the case of a geomaterial sample 

(unsaturated soil), the scheme of these two sets of theoretical formulations (numerical 

modelling and effective medium theory by the Maxwell­Garnett rule) for modelling the 

relationships between electromagnetic properties and hydrological variables. 

 

Figure 5.1 – Schematic representation of numerical modelling and effective medium theory 

formulations applied to a geomaterial (unsaturated soil) (adapted from (Coenza et al., 2009)). 

While the discussion presented in this section will be in the context of electrostatics, it 

should be realized that the problems of electrostatics, thermal conduction, electrical 

conduction, magnetostatics and diffusion are mathematically analogous (Hashin, 1983). 

The different EMTs mainly differ by the way they account for the effect of spatial 

distribution, orientation and shape of inclusions, and by the way interactions between 

heterogeneities are considered, which is not explicitly considered in the representative 

elementary volume. Two different effective medium theories are presented, the 

Effective Medium Approximation (EMA) and the Differential Effective Medium 

Theory (D­EMT). The first EMA developed was the Maxwell-Garnett model, which is 
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an extension of the Clausius-Mossotti relation that connects the macroscopic property 

of a material (e.g. effective dielectric constant �	% of inhomogeneous medium) with a 

microscopic property (e.g. the polarizability of a inclusion, particle) (Choy, 1999). The 

Maxwell-Garnett formulation is based on the assumption that the dielectric constant of § particles disperse in a host material (matrix) is equal to an equivalent volume having 

the effective dielectric constant �	% (see Figure 5.2). If the spherical particles and the 

external medium (matrix) have dielectric constants �� and 	��, respectively, and 

considering �� the volumetric content of the particles, Maxwell-Garnett equation 

corresponds to expression (5.1), only valid for a strongly diluted suspension of spherical 

inclusions since the electromagnetic interactions between the heterogeneities are 

neglected. 

 

Figure 5.2 – Maxwell-Garnett equivalent principle (adapted from (Qin et al., 2005)). 

 

 
�	% \ ���	% + 2�� Z �� �� \ ���� + 2�� (5.1)

An alternative EMT is provided by the differential method, which derives from the 

mixture characterization approach used by Bruggeman, named the Differential 

Effective Medium Theory (D­EMT) approach or asymmetric Bruggeman formulation, 

also valid for less diluted suspensions (Giordano, 2003b). In the D­EMT procedure the 

initial low concentration is gradually increased by infinitesimal additions of the 

dispersed component. Given a known effective dielectric constant of the 

inhomogeneous material �	%, if a small additional volume of inclusions is embedded in 

the matrix, the change in the dielectric constant is approximately equal to that which 

would arise if an infinitesimal volume of inclusions were added to a uniform, 
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homogeneous matrix with dielectric constant �	% (Giordano, 2003b). Both theories, 

EMA and D­EMT, correspond to realizable microgeometries in which the composite is 

built up incrementally through a process of homogenization (Norris et al., 1984). In 

contrast with EMA, in the microgeometry of D­EMT one phase acts as a backbone 

which always percolates (Norris et al., 1984). For the case of a two-phase mixture of not 

diluted dispersion of spherical inclusions the D­EMT formulation leads to the formula 

presented in equation (5.2): 

�	% \ ���� \ �� ����	%�
q ¦� Z 1 − �� (5.2)

In the particular case of insulating spherical inclusions (�� = 0), equation (5.2) reduces 

to equation (5.3): 

�	% = ��(1 − ��)¦ y�  (5.3)

The D­EMT approach has been extended for a two-phase mixture of aligned ellipsoidal 

inclusions and randomly oriented ellipsoids, prolate and oblate ellipsoids. Giordano 

(2003b) has presented in his work the explicit relationships, translated by equations 

(5.4) to (5.7). For a two­phase mixture of aligned ellipsoidal inclusions with the external 

surface of the mixture being an ellipsoid with the same shape of the inclusions (see 

Figure 5.3(a)): 

�	%,� − ���� − �� � ���	%,���¨,©ª = 1 − ��												WK Z N, x, g) (5.4)

where �	%,� is the effective dielectric constant and J%,��  the depolarisation factor, along 

the N, x and g axes. The depolarization factor J%,��  for inclusions shaped as ellipsoids of 

revolution is computed as follows: 

J%,�� = J%,+� =
«¬­
¬® n4$¦ ¯2n$ + I# rn − $n + $s° 																						 )%		±q		W���
��			

)�4�)(Y	
n4&¦ ¯² \ 2n& − 2F'�!G rn&s° 											 )%		�q		W�7
��			

)�4�)(Y		  (5.5)
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 J%,³� Z
«¬­
¬® 12$¦ ¯n	I# rn + $n \ $s \ 2$°																																			 		)%		±q		W���
��			

)�4�)(Y
12&¦ ¯2& \ n² + 2n	F'�!G rn&s°																							 	)%		�q		W�7
��			

)�4�)(Y	  (5.6)

where n Z F³ F�� Z F³ F+� ; 		$ Z √ny \ 1 and 	& Z √1 \ ny, being F�, F+ and F³ the lengths 

of the ellipsoids semi-axes, with F� Z F+. For the case of insulating ellipsoidal inclusions 

(�� Z 0), equation (5.4) reduces to equation (5.7): 

 �	%,� Z ��W1 \ ��Yq Wqp�¨,©ª Y¶ 												WK Z N, x, gY (5.7)

 

            

(a) (b) 

Figure 5.3 – Structure of a dispersion of ellipsoids: (a) aligned ellipsoids; (b) randomly oriented 

ellipsoids (Giordano, 2003a). 

For a two-phase mixture of randomly oriented ellipsoidal inclusions with the external 

surface of the mixture being spherical (see Figure 5.3(b)): 

 

�	% \ ���� \ �� ����	%�
¦�·̈Wqpy�·̈Y/Wyp¦�·̈Y

^ ¸}1 + 3J%���� + W2 \ 3J%�Y��}1 + 3J%���	% + W2 \ 3J%�Y��º
y}¦�·̈pq�»/Wyp¦�·̈YWq¼¦�·̈Y Z 1 \ �� 

(5.8)

For insulating ellipsoidal inclusions (�� Z 0), equation (5.8) reduces to equation (5.9): 
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�	% Z ��W1 \ ��Y
q
�
�qp½¦�·̈�qpy�·̈�yp¦�·̈ 	¼	 y�¦�·̈pq�»Wyp¦�·̈YWq¼¦�·̈Y¾�

�¿
 

(5.9)

where J%� is the depolarisation factor along the N-axis or x-axis for randomly oriented 

ellipsoids of revolution, given by equation (5.5). 

The Bruggeman formulation of ellipsoids mixtures has been used to characterize the 

dielectric response of water-saturated rocks with a good agreement with Archie´s law, 

an empirical expression that relates the electrical conductivity of a brine-saturated 

sedimentary rock to its porosity (Giordano, 2003b; Coenza et al., 2009). In the concrete 

field, also Andrade and d'Andréa (2010) have been applying Archie´s law to estimate 

concrete electrical resistivity, based on the knowledge of the pore solution electrical 

resistivity, concrete porosity and a coefficient related to the connectivity and tortuosity 

of the porous network. The percolation theory has also been used to design numerical 

experiments and applied to transport processes in cement paste (Elsener et al., 2005) 

A fundamental result for effective properties of composite materials is given by the 

Hashin­Shtrikman variational analysis (Hashin and Shtrikman, 1962), which provides an 

upper and lower bound, irrespective of the microstructure (Giordano, 2003a). The 

Hashin-Shtrikman variational approach is an alternative representation of the effective 

energy of the heterogeneous medium in terms of suitably chosen polarization fields 

regarding a homogeneous comparison material (Duan et al., 2006). The multiphase 

material is replaced by a homogeneous and isotropic material, without changing the 

surface potential (the stored energy is equal). The permeability (or dielectric constant, 

conductivity, resistivity, etc.) of the homogeneous comparison material is defined as the 

effective permeability of the multiphase material (Hashin and Shtrikman, 1962). The 

Hashin-Shtrikman bounds were derived for a macroscopically homogeneous and 

isotropic multiphase material, in terms of volume fraction and permeability of the 

constituting phases (Hashin and Shtrikman, 1962). In particular, for a two-phase 

material the upper and lower dielectric constant bounds (�	%�  and �	%
 ) are given by two 

expressions of Maxwell type (equation (5.10). According to Hashin (1983) the 

variational approach is in a certain sense more powerful than the direct approach (exact 

calculation of effective properties) since it leads to bounds on effective properties when 

exact calculation is not possible. 
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«¬¬
­
¬¬®�	%

 Z �� + ��1�� \ �� + 1 \ ��3��
�	%� Z �� + W1 \ ��Y1�� \ �� + ��3��							

 (5.10) 

5.4. Experimental programme 

 Materials characterization 

The paste, mortar and concrete mixes investigated in this study were prepared with 

white cement (CEM II/A-L 52.5N according to EN 197-1 (IPQ, 2012)) and two 

mineral additions, metakaolin and limestone filler, with a specific gravity of 3.04, 2.21 

and 2.68, respectively. The mean size of the cement, metakaolin and limestone filler 

particles was 11.03 µm, 7.12 µm and 6.53 µm, respectively. A polycarboxylate type high 

range water reducing admixture was used having a specific gravity of 1.07 and 26.5% of 

solid content. 

The present work was developed within a study devoted for designing SCC 

compositions with defined requirements (fresh and hardened concrete properties) 

(Figueiras et al., 2013a). In order to simplify SCC design, the study was developed in 

two phases, first at mortar level and then at concrete level. At mortar level standard 

sand was employed, conforming to EN 196-1 (IPQ, 2006). Standard sand is a siliceous 

round natural sand (0.08-2 mm) with a specific gravity of 2.63 and an absorption value 

of 0.30%. Crushed calcareous aggregate, a siliceous natural fine sand (sand 1) with a 

fineness modulus of 2.01 and natural coarse sand (sand 2) with a fineness modulus of 

3.94 were used in concrete mixes. The specific gravity of the coarse aggregate, sand 1 

and sand 2 were 2.68, 2.59 and 2.66, and the absorption values were 0.60%, 0.80% and 

0.20%, respectively, according to EN 1097-6 (IPQ, 2003a). Bulk density of compacted 

coarse aggregate was 1.54. Figure 5.4 shows the particle size distribution curves, in 

terms of accumulated volume, of standard sand, sand 1, sand 2 and coarse aggregate. 



Chapter 5 

5.10 

 

Figure 5.4 – Aggregate particle size distribution curves in terms of accumulated volume. 

             

              

Figure 5.5 – Aggregates used in this study: standard sand; fine sand (sand 1); coarse sand 

(sand 2); and coarse aggregate. 
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With regard to the aggregate shape, it was considered that standard sand, fine sand 

(sand 1) and coarse sand (sand 2) are predominantly constituted by spherical particles, 

while coarse aggregate shape is closer to a prolate ellipsoid of revolution. The main 

differences in particle shape of aggregate used in this study can be observed in Figure 

5.5. The particles shape of the coarse aggregate, in particular the ratio of ellipsoids 

semi-axes lengths which will be used in the application of effective medium theories, 

was determined using a random sampling of 100 particles (see Figure 5.6). This 

sampling resulted in an average value for F³/F�, considering F³ À F� and F� Z F+, of 

2.319 with a standard deviation of 0.865. 

 

Figure 5.6 – Ratio of semi-axes lengths of coarse aggregate particles. 

 Mixture proportions 

The testing programme included 27 concrete, mortar and paste mixes. Self­compacting 

concrete and mortar mixes were designed based on four reference paste mixtures 

(A­P1, B­P1, C­P1 and D­P1). Sand volume content (Vs), coarse aggregate volume 

content (Vg) and total aggregate volume content (Vaggrtotal) used in the mixtures 

prepared under this study are presented in Table 5.1. At concrete level the ratio 

between both sands was kept constant, with s1/s been equal to 0.400. The 

experimental programme also included a few mixture replications in order to evaluate 
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the experimental error associated to variability of conditions and test procedures, A-M1 

to A-M4 at mortar level and B-C1 to B-C3 at concrete level. 

Table 5.1 – Aggregate volume content of mortar and concrete mixtures. 

Paste  Mortar  Concrete 

Mix 
reference 

 Mix 
reference 

Vs 
(m3/m3) 

 Mix 
reference 

Vs 
(m3/m3) 

Vg 
(m3/m3) 

Vaggrtotal 

(m3/m3) 

A-P1 

 A-M1 0.450  

- - - - 

 A-M2 0.450  
 A-M3 0.450  
 A-M4 0.450  
 A-M5 0.400  
 A-M6 0.500  

B-P1 

 

B-M1 0.500 

 B-C1 0.300 0.298 0.598 
  B-C2 0.300 0.298 0.598 
  B-C3 0.300 0.298 0.598 
  B-C4 0.289 0.279 0.567 
  B-C5 0.328 0.279 0.607 
  B-C6 0.272 0.318 0.591 
  B-C7 0.310 0.318 0.628 
  B-C8 0.273 0.318 0.571 
  B-C9 0.327 0.298 0.626 
  B-C10 0.312 0.270 0.583 
  B-C11 0.287 0.327 0.614 
  B-C12 0.303 0.302 0.605 

C-P1  C-M1 0.500  C-C1 0.309 0.278 0.587 
D-P1  D-M1 0.450  D-C1 0.259 0.298 0.557 

 

In the present study, the parameters used to design paste, mortar and self-compacting 

concrete mixtures, were based on the Japanese SCC-designing method (Okamura et al., 

2000). Paste mix-proportions were established based on the following four variables: 

water to powder volume ratio (Vw/Vp); water to cement weight ratio (w/c), 

superplasticizer to powder weight ratio (Sp/p) and metakaolin to cement weight ratio 

(mtk/c). Paste mix-proportions were maintained at mortar and concrete levels and only 

the parameters related to the aggregate content and aggregate skeleton were modified, 

namely, sand to mortar volume ratio (Vs/Vm) and coarse aggregate to dry rodded 

coarse aggregate volume ratio (Vg/Vg,lim). The mix-proportions of paste, mortar and 

concrete were established based on the mixture parameters values presented in Table 

5.2 and according to the formulation presented in the Appendix. 
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Table 5.2 – Paste, mortar and concrete mixture parameters and mix-proportions. 

 

Mix 
reference 

Vw/Vp w/c Sp/p 
 (%) 

mtk/c 
(%) 

Vs/Vm Vg/Vg,lim Wc 

(kg/m3) 
Wf 
(kg/m3) 

Wmtk 

(kg/m3) 
Ww 

(kg/m3) 
Wsp 

(kg/m3) 
Wsd,stan 

(kg/m3) 
Wsd1 

(kg/m3) 
Wsd2 

(kg/m3) 
Wgd 

(kg/m3) 
A-P1 0.900 0.410 0.70 9.00 - - 1155 265 104 466 10.67 - - - - 
A-M1 0.900 0.410 0.70 9.00 0.450 - 635 146 57 260 5.87 1184 - - - 
A-M2 0.900 0.410 0.70 9.00 0.450 - 635 146 57 260 5.87 1184 - - - 
A-M3 0.900 0.410 0.70 9.00 0.450 - 635 146 57 260 5.87 1184 - - - 
A-M4 0.900 0.410 0.70 9.00 0.450 - 635 146 57 260 5.87 1184 - - - 
A-M5 0.900 0.410 0.70 9.00 0.400 - 693 159 62 283 6.40 1052 - - - 
A-M6 0.900 0.410 0.70 9.00 0.500 - 578 133 52 237 5.34 1315 - - - 
B-P1 0.851 0.435 0.70 10.40 - - 1057 382 110 452 10.84 - - - - 
B-M1 0.851 0.435 0.70 10.40 0.500 - 528 191 55 230 5.42 1315 - - - 
B-C1 0.851 0.435 1.00 10.40 0.440 0.530 403 146 42 179 5.91 - 316 473 800 
B-C2 0.851 0.435 1.00 10.40 0.440 0.530 403 146 42 179 5.91 - 316 473 800 
B-C3 0.851 0.435 1.00 10.40 0.440 0.530 403 146 42 179 5.91 - 316 473 800 
B-C4 0.851 0.435 1.00 10.40 0.412 0.495 436 158 45 193 6.39 - 304 456 747 
B-C5 0.851 0.435 1.00 10.40 0.468 0.495 394 143 41 176 5.78 - 345 518 747 
B-C6 0.851 0.435 1.00 10.40 0.412 0.565 411 149 43 183 6.03 - 287 431 853 
B-C7 0.851 0.435 1.00 10.40 0.468 0.565 372 135 39 167 5.45 - 326 489 853 
B-C8 0.851 0.435 1.00 10.40 0.400 0.530 432 156 45 191 6.33 - 287 430 800 
B-C9 0.851 0.435 1.00 10.40 0.480 0.530 375 135 39 167 5.49 - 344 517 800 
B-C10 0.851 0.435 1.00 10.40 0.440 0.480 420 152 44 186 6.16 - 329 493 724 
B-C11 0.851 0.435 1.00 10.40 0.440 0.580 387 140 40 173 5.67 - 303 454 875 
B-C12 0.851 0.435 1.00 10.40 0.439 0.493 416 151 44 185 6.10 - 325 487 744 
C-P1 0.890 0.389 0.71 7.02 - - 1212 246 85 463 10.94 - - - - 
C-M1 0.890 0.389 0.71 7.02 0.500 - 606 123 43 235 5.47 1315 - - - 
C-C1 0.890 0.389 1.00 7.02 0.439 0.493 478 97 34 189 6.08 - 325 487 744 
D-P1 0.863 0.398 0.72 9.84 - - 1164 273 115 455 11.17 - - - - 
D-M1 0.863 0.398 0.72 9.84 0.450 - 640 150 63 254 6.14 1184 - - - 
D-C1 0.863 0.398 0.90 9.84 0.380 0.530 492 115 48 199 5.90 - 273 409 800 
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 Testing methods 

5.4.3.1. Electrical resistivity 

Electrical resistivity is an intrinsic property of the material that is related to the ability of 

cement paste to carry electric charge and it depends mainly on the hydration process 

(nature and topography of the pore structure), changes in the pore solution 

composition and moisture and temperature conditions. Electrical resistivity was 

assessed by the two electrodes technique, using stainless steel meshes embedded on 

opposite faces of a specimen to work as electrodes (see Figure 5.7). Applying Ohm's 

Law, as shown in equation (5.11), the relationship between the applied electrical voltage 

and the measured current intensity, gives the electrical resistance of the material. The 

resistivity is obtained by applying to the electrical resistance a geometric factor, which 

depends on the dimensions of the specimen and the electrodes used. 

> Z E= Z � ⋅ rl̀s ⇒ � Z E. `
l. =

 (5.11)

where 	> is the electrical resistance (Ω); =, current (Amp.); E, voltage (Volts); ρ, electrical 

resistivity (Ω⋅m); l, length between electrodes (m); and ` (m2) the cross-section area of 

the test specimen through which current passes. This equation is valid for a constant 

cross-section of the specimen along its length and for electrodes with the same 

cross­section as the test specimen. 

        

Figure 5.7 – Electrical resistivity test: schematic representation of the measuring set-up (left); 

mortar specimen during the test (right). 
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Paste electrical resistivity was assessed on cubic specimens with 40×40×40 mm3, 

mortar resistivity was assessed on prismatic specimens with 40×40×160 mm3 and 

concrete resistivity was assessed on cubic specimens with 150×150×150 mm3, 3 

specimens per mixture. Specimens were demoulded one day after casting and kept 

under water in a chamber with controlled environmental conditions (T=20ºC) until 

testing (28 days). Since all specimens were at the same moisture (saturated) and 

temperature conditions, resistivity can be used to compare the pore structure of various 

paste specimens, and therefore constitute a measure of the amount and 

interconnectivity of the cementitious matrix pores. 

5.4.3.2. Chloride ion penetration 

Resistance to chloride ion penetration was carried out using a non­steady migration 

test, CTH Rapid Method (Chalmers University of Technology, Sweden) described in 

NT BUILD 492 (NORDTEST, 1999) and adopted in Portugal through a LNEC 

specification, E 463 (LNEC, 2004). The CTH Rapid Method is based on a theoretical 

relationship between diffusion and migration, which enables the calculation of the 

chloride diffusion coefficient from an accelerated test. It is based on measuring the 

depth of colour change of a silver nitrate solution sprayed on specimens previously 

submitted to a migration test (disc specimens were submitted to an electric current 

during a certain time) and application of the following equations: 

Dclef Z >Bgh9 ⋅ N( − JjN(!  (5.12) 

where, 

 

9 = k − 2l  (5.13) 

 

J Z 2m >Bgh9 ⋅ n'opq r1 \ 26(6, s (5.14) 

where Dclns is the apparent chloride diffusion coefficient obtained in a non-steady-state 

migration test (m2/s); > is the gas constant (>=8.314 J/(mol.K)); B is the average value 
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of the initial and final temperatures in the anolyte solution (K); l is the thickness of the 

specimen (m); g is the absolute value of valence ion, for chloride (g=1); h is the Faraday 

constant (h=9.648×104 J/(V.mol)), k is the absolute value of the applied voltage (V); N( 
is the average depth of chloride penetration measured by using a colorimetric method 

(m); ! is the test duration (s); 6( is the concentration of free chloride at which the 

colour changes when using the colorimetric method to measure the chloride 

penetration depth (6(≈0.07 N); and 6, is the concentration of free chloride in the 

catholyte solution (6,≈2 N). Mortar and concrete chloride diffusion coefficient was 

assessed on cylinders specimens with P=100 mm and h=50 mm (3 specimens per 

mixture). Specimens were demoulded one day after casting and kept under water in a 

chamber with controlled environmental conditions (T=20ºC) until testing (28 days). 

 Mixing procedure 

Paste mixes were prepared in 0.31 l batches using a vertical paddle mixer, according to 

the following procedure: (i) powder materials were mixed with mixing water for 120 s 

at 750 rpm; (ii) superplasticizer was added and mixed during 120 s at 750 rpm; 

(iii) mixer was stopped for 60 s; and (iv) mixing was resumed for 120 s at 2000 rpm. 

Mortar mixes were prepared in 2.42 l batches and mixed in a two-speed mixer 

complying to EN 196-1 (IPQ, 2006). The mixing sequence was as follows: (i) sand and 

powder materials were mixed with 0.80 of the mixing water during 60 s; (ii) mixer was 

stopped to scrape material adhering to the mixing bowl and mixed for another 60 s; 

(iii) the rest of the water was added with the superplasticizer and mixed for 60 s; 

(iv) mixer was stopped again to scrape material adhering to the bowl and mixed for 

60 s; (v) mixer was then stopped for 5 min; and (vi) mortar was mixed during a further 

90 s. The mixer was always set at low speed except in the last 90 s of the mixing 

sequence where it was set at high speed (as defined in (IPQ, 2006)). 

Concrete mixes were prepared in the laboratory in batches with total volume of 33 l 

using an open pan mixer with vertical axis. The mixing sequence was as follows: 

(i) both sands and coarse aggregate were mixed with 0.15 of the mixing water during 

2.5 min; (ii) mixing was stopped for 2.5 min for aggregate absorption; (iii) powder 

materials were added followed by the rest of the water with the superplasticizer; 
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(iv) mixing was resumed for more 5 min; (v) mixer was stopped for 1 min to clean the 

mixer paddles; and (vi) concrete was mixed for a further 3 min. 

 Experimental results 

Experimental results of electrical resistivity and apparent chloride diffusion coefficient 

for the mixes prepared under the experimental programme are summarized in Table 

5.3. An overall statistical analysis of the results for the mixtures replication is presented 

in Table 5.4, including minimum and maximum values, mean value, standard deviation 

and coefficient of variation. 

Table 5.3 – Paste, mortar and concrete test results: electrical resistivity (�) and apparent 

chloride diffusion coefficient (Dclns). 

Paste  Mortar  Concrete 

Mix 
reference 

�exp,p 

(m.Ω) 
Dclns,p 

(x10-12 m2/s) 

 Mix 
reference 

�exp,m 

(m.Ω) 
Dclns,m 

(x10-12 m2/s) 

 Mix 
reference 

�exp,c 

(m.Ω) 
Dclns,c 

(x10-12 m2/s) 

A-P1 70.2 - 

 A-M1 168.5 3.08  

- - - 

 A-M2 167.2 -  
 A-M3 165.5 3.18  
 A-M4 171.3 3.10  
 A-M5 158.3 3.15  
 A-M6 181.7 3.34  

B-P1 73.1 - 

 

B-M1 206.3 3.12 

 B-C1 244.9 3.58 

  B-C2 246.1 3.53 

  B-C3 243.9 3.56 

  B-C4 212.7 3.54 

  B-C5 231.0 3.63 

  B-C6 227.5 3.69 

  B-C7 257.0 3.50 

  B-C8 235.7 3.34 

  B-C9 267.3 3.37 

  B-C10 214.6 3.47 

  B-C11 250.0 3.59 

  B-C12 223.6 3.54 

C-P1 53.0 -  C-M1 139.2 -  C-C1 148.9 - 

D-P1 88.9 -  D-M1 205.9 -  D-C1 232.0 - 
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Table 5.4 – Statistics of the results for the mixture replication. 

 Minimum Maximum Mean 
Stand. 

deviation 
Coeff. of 
variation 

Mortar Mixtures (A-M1 to A-M4) �exp,m (Ω.m) 165.5 171.3 168.1 2.5 1.5% 

Dclns,m (×10-12 m2/s) 3.08 3.18 3.12 0.05 1.7% 

Concrete Mixtures (B-C1 to B-C3) �exp,c (Ω.m) 243.9 246.1 245.0 1.1 0.5% 

Dclns,c (×10-12 m2/s) 3.53 3.58 3.56 0.02 0.7% 

 

As stated before, mixture replication can be used to evaluate the experimental error 

associated to the variability of conditions and test procedures, and the coefficient of 

variation, as a measure of the relative dispersion of data, can be used to make 

comparisons of repeatability and reproducibility of the tests. Coefficients of variation of 

both test results are relatively low, with the concrete test results exhibiting lower values. 

5.5. Appraisal of effective medium theories 

On a macro scale, concrete can be assumed as a composite material with at least three 

phases: cement paste matrix, aggregate grains of various sizes and a thin shell of altered 

matrix material surrounding each aggregate (ITZ) (Garboczi and Berryman, 2000). The 

ITZ is characterized, generally, by a higher concentration of calcium hydroxide and an 

increased porosity relative to the matrix paste (Garboczi et al., 2000), which facilitates 

the movement of ions and consequently increases conductivity. The volume and 

properties of the ITZ are influenced by the w/c ratio, addition of pozzolanic or inert 

fine particles, aggregate volume fraction and the stability of the fresh mix. In the 

presence of low water/cement ratios or fine mineral additions, like in SCC, some 

studies appear to indicate that the porosity and width of the ITZ is significantly smaller 

than in vibrated concrete (RILEM-Report 38, 2007). Furthermore, the ITZ formed 

around the aggregate increases locally the w/c ratio, but this is usually accompanied by 

a decrease of w/c ratio in the bulk matrix, and therefore by a decrease in the 

conductivity because of the lower porosity (Garboczi et al., 2000; RILEM-Report 38, 

2007). However, as the proportion of larger size aggregate increases in the mix, the 

local porosity at the ITZ increases and the overall durability decreases (Basheer et al., 
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2005). The volume of coarse aggregate used in SCC usually ranges between 30 to 34 % 

of the concrete volume. This is significantly less than typical values of 40 to 45 % for 

normal workability concrete (RILEM-Report 38, 2007). For these reasons it is expected 

that in the present study the ITZ has minor influence on mortar/concrete resistivity 

and diffusivity, and therefore the ITZ will be considered as part of the cement paste 

matrix, with the same properties. 

In the case of normal vibrated concrete, the application of EMTs can become a much 

more complicated problem, due to the greater influence that the ITZ may have on the 

final properties. In this case the ITZ may have to be considered as a third phase of the 

composite material, with the additional disadvantage of having a gradient of properties 

extending out its width (Garboczi and Berryman, 2000). Furthermore it should be taken 

into account that the ITZ regions could themselves percolate (Garboczi and Berryman, 

2000). 

In the present study the aggregate particles will be treated as insulating elements, with 

high resistivity and low diffusivity. In fact, although the aggregate is a conductive 

element, the high conductivity of cement paste allows to consider it as an insulating 

phase. The same simplification could be performed for the diffusivity since the 

diffusivity of cement paste is much higher than aggregate diffusivity. Mortar/concrete 

will be assumed as a composite material with two distinct phases, a cement paste matrix 

phase in which insulating aggregate particles of various sizes and shapes are embedded. 

Moreover, mortar/concrete can be regarded as a composite material consisting of 

discrete aggregate particles dispersed in a continuous cement matrix, i.e. inclusions are 

always discontinuities embedded in a continuous matrix (Garboczi and Berryman, 

2000). Therefore, to predict aggregate influence on mortar/concrete properties the 

D­EMT seems to be the EMT that best fits the concrete problem, once this 

formulation is used for materials in which one phase always percolates (Norris et al., 

1984) and it is also valid for less diluted suspensions (Giordano, 2003b). Besides the 

models derived from D­EMT, experimental results were also compared with the 

predictions provided by the Hashin­Shtrikman bounds. Thus, experimental results 

(electrical resistivity and apparent chloride diffusion coefficient) of mixtures prepared 

under the experimental programme were compared with the values predicted by the 

following models: 
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i. Model 1 – D-EMT formulation for not diluted suspension of insulating 

spherical inclusions, equation (5.3), considering spherical particles of sand 

and coarse aggregate; 

ii. Model 2 – D-EMT formulation for not diluted suspension of insulating 

ellipsoidal inclusions with an aligned orientation and electrical field aligned 

with N-axis or x-axis, equation (5.5) and equation (5.7), considering spherical 

particles of sand and ellipsoidal particles of coarse aggregate. The 

depolarization factor was determined from a weighted average taking into 

account the shape and volume of the inclusion phases; 

iii. Model 3 – D-EMT formulation for not diluted suspension of insulating 

ellipsoidal inclusions with an aligned orientation and electrical field aligned 

with g-axis, equation (5.6) and equation (5.7), considering spherical particles 

of sand and ellipsoidal particles of coarse aggregate. The depolarization 

factor was determined from a weighted average taking into account the 

shape and volume of the inclusion phases; 

iv. Model 4 – D-EMT formulation for not diluted suspension of insulating 

ellipsoidal inclusions with a random orientation, equation (5.5) and 

equation (5.9), considering spherical particles of sand and ellipsoidal 

particles of coarse aggregate. The depolarization factor was determined from 

a weighted average taking into account the shape and volume of the 

inclusion phases; 

v. Model 5a – Lower bound of the Hashin-Shtrikman variational analysis for 

insulating inclusions, equation (5.10); 

vi. Model 5b – Upper bound of the Hashin-Shtrikman variational analysis for 

insulating inclusions, equation (5.10). 

Mortar properties were compared with the values given by the D-EMT formulation for 

not diluted suspension of insulating spherical inclusions (equation (5.3)), which 

corresponds to Model 1. 
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 Effective medium theories to assess electrical resistivity 

The electrical resistivity of mortar mixtures was determined from the electrical 

resistivity of the corresponding reference cement paste matrix (denoted as �exp,p), using 

the D-EMT formulation for not diluted suspension of insulating spherical inclusions 

(Model 1). Experimental results of mortar electrical resistivity tests (�exp,m), as well as, 

the corresponding values obtained by means of Model 1 (�ef,m) are presented in Table 

5.5. The prediction error (∆�) is calculated according to equation (5.15) and is also 

presented in Table 5.5. 

Table 5.5 – Experimental results �exp,m, predicted values �ef,m and prediction error ∆�. 
Paste  Mortar 

Mix 
reference 

�exp,p 

(m.Ω) 

 Mix 
reference 

�exp,m 

(m.Ω) 
�ef,m 

(m.Ω) 

∆� 
(%) 

A-P1 70.2 

 A-M1 168.5 172.1 2.1 

 A-M2 167.2 172.1 2.9 

 A-M3 165.5 172.1 4.0 

 A-M4 171.3 172.1 0.5 

 A-M5 158.3 151.1 -4.6 

 A-M6 181.7 198.6 9.3 

B-P1 73.1  B-M1 206.3 206.8 0.2 

C-P1 53.0  C-M1 139.2 149.9 7.7 

D-P1 88.9  D-M1 205.9 218.0 5.8 
 

∆� Z �	%,� \ �	��,��	��,�  (5.15) 

The average of the prediction error (|∆�|average) is 4.1%, which seems to indicate that 

the D­EMT formulation for not diluted suspension of insulating spherical inclusions 

(Model 1) predicts fairly accurately the electrical resistivity of mortars based on the 

knowledge of �exp,p and aggregate volume content (��). It is worth emphasising that the 

experimental error associated to variability of conditions and test procedures is also 

included in the prediction error. According to Table 5.4, the coefficient of variation 

obtained for mortar mixtures replication was 1.5%, which already accounts for a 

significant share of the error. 

For the prediction of concrete electrical resistivity through the different effective 

medium theories, Model 1 to Model 5b, paste experimental results (�exp,p) were used as 
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the electrical resistivity of the cement paste matrix. Experimental results of concrete 

electrical resistivity tests conducted under the experimental plan (�exp,c), as well as the 

corresponding values obtained by each model (�ef,c) are presented in Figure 5.8. The 

prediction error (∆�) of each model is presented in Table 5.6, as well as the 

corresponding average (|∆�|average). According to Table 5.4, the coefficient of variation 

obtained for concrete mixtures replication was 0.5%, which means that the 

experimental error does not represent a significant share of the error. 

 

Figure 5.8 – Experimental data �exp,c and predicted values obtained by the models �ef,c. 

Table 5.6 – Models prediction error ∆� for concrete electrical resistivity. 

Mix 
reference 

∆�model 1 

(%) 

∆�model 2 

(%) 
∆�model 3 

(%) 
∆�model 4 

(%) 
∆�model 5a 

(%) 
∆�model 5b 

(%) 

B-C1  17.3 34.6 -5.2 19.8 -3.5 -25.7 
B-C2  16.7 34.0 -5.6 19.2 -3.9 -26.0 
B-C3  17.7 35.2 -4.8 20.3 -3.1 -25.4 
B-C4  20.9 37.1 -0.3 23.3 2.1 -20.5 
B-C5  28.4 46.6 4.4 31.0 4.9 -19.5 
B-C6  22.8 41.7 -1.2 25.7 1.7 -21.5 
B-C7  25.3 45.8 -0.6 28.3 0.4 -23.6 
B-C8  10.4 26.1 -9.8 12.8 -7.0 -27.7 
B-C9  19.4 37.8 -4.4 22.0 -4.1 -27.0 
B-C10  26.3 43.1 4.0 28.7 5.4 -18.4 
B-C11  21.9 41.9 -3.1 24.9 -1.0 -24.3 
B-C12  22.7 39.5 0.6 25.1 2.1 -21.0 
C-C1  34.1 52.5 9.9 36.7 11.5 13.8 
D-C1  29.9 48.0 6.7 32.7 10.6 13.5 

|∆ε|average 22.4% 40.0% 4.3% 25.0% 4.4% 22.0% 
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The model derived from D-EMT with the lowest prediction error was Model 3 

(|∆�|average=4.3%), a D­EMT formulation for ellipsoidal inclusions with an aligned 

orientation and electrical field aligned with g-axis (aligned according to the semi-major 

axis of the ellipsoids). On the contrary, Model 2, a D­EMT formulation for orientated 

ellipsoidal inclusions but with the electrical field aligned with a semi-minor axis of the 

ellipsoid (aligned according to N­axis or x­axis) exhibited the highest prediction error. 

Against to what might be expected, Model 3 correlates better with experimental data 

than the D­EMT formulation for ellipsoidal inclusions with a random orientation 

(Model 4). One possible explanation for the best fit presented by Model 3 could be 

closely linked to the way the specimens were cast, usually preformed from the faces, 

where the stainless steel meshes were positioned, towards the center of the specimen. 

Furthermore, the application of these models requires the knowledge/determination of 

paste electrical resistivity, which has an associated error with influence in the final error 

of each model. As expected, Model 1 does not predict, in an appropriate manner, the 

influence of aggregate volume and aggregate skeleton on resistivity (|∆�|average =22.4%), 

which could be associated to the fact that the model only assumes spherical inclusions. 

The lower and upper bounds established by the Hashin­Shtrikman variational analysis 

(Model 5a and Model 5b) cover a substantially wide range of resistivity values, 

nevertheless, experimental data are very close to the lower bound (|∆�|average =4.4%). 

In fact, according to Hashin (1983), if a random two-phase composite contains a small 

amount of highly conducting inclusions, the effective conductivity will be governed by 

the poorly conducting matrix and will be close to the lower bound. If the relative 

volume of conducting inclusions is increased it could start to form a continuous 

skeleton and thus the effective conductivity would increase dramatically and become 

close to the upper bound. In the case of the present study, if the relative volume of the 

highly resistive inclusions is small, the effective resistivity (inverse of conductivity) will 

be governed by the poorly resistive matrix and will be close to the lower bound 

(Model 5a). According to Torquato and Rubinstein (1991) the Hashin-Shtrikman 

variational analysis derived rigorous upper and lower bounds of the effective 

conductivity. However special care has to be taken on the limits of infinite contrast 

between the conductivity of the two phases (matrix and inclusions) for 

microgeometries in which one of the phases is not continuously connected (Torquato 

and Rubinstein, 1991). 
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 Effective medium theories applied to chloride diffusion 

coefficient 

The output of CTH test is a chloride diffusion coefficient calculated based on the 

chloride penetration depth of a specimen subjected to an ionic migration induced by an 

external electrical voltage. This chloride diffusion coefficient depends on the diffusivity 

of chloride ions in liquid-saturated concrete, as well as on the chloride binding capacity 

of the cement matrix, which can take place by chemical reaction with the hydration 

products of cement (such as C3A or C4AF) or physical adsorption (on the surface of 

CSH gel). Thus, the effective medium theories cannot be directly applied to predict the 

apparent or non­steady­state chloride diffusion coefficient obtained through the CTH 

test (8�I�4). Only the diffusivity, also called effective or steady-state chloride diffusion 

coefficient (8�I4) can be predicted. The relation between 8�I�4 and 8�I4 can be 

established through the reaction or binding factor '�
, according to equation (5.16). The '�
 represents the number of times the 8�I4 is apparently decreased due to the chloride 

binding effect. When establishing the relationship between 8�I4 and 8�I�4 it has to be 

considered that 8�I4 is referred to the concentration in the pore solution and 8�I�4 is 
referred to the aggressive ion concentration in the mass of concrete (Andrade et al., 

2013). 

8�I�4 Z 8�I4'�
  (5.16)

Therefore, the influence of aggregate on the 8�I�4 has in fact two opposite effects. On 

the one hand, the dilution and tortuosity effect that reduce the diffusion coefficient, 

apparently able to be predicted by EMTs and, on the other hand, the fact that an 

increase in aggregate volume content represents, for the same mixture volume, a 

decrease in paste volume and therefore a reduction in the chloride binding capacity. To 

derive the chloride binding capacity of a concrete mixture ('�
,�) from the chloride 

binding capacity of, for example, a mortar mixture ('�
,�), the differences in the water to 

cement weight ratio and cement content should be taken into account (Andrade, 2004), 

according to equation (5.17). 

'�
,� Z '�
,� W- �⁄ Y�W- �⁄ Y� ⋅ 6�6� (5.17)
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Where W-/�)� is the water to cement weight ratio in the concrete mixture; (-/�)� is the 

water to cement weight ratio in the mortar mixture; 6� is the cement content in the 

concrete mixture (kg/m3); and 6� is the cement content in the mortar mixture (kg/m3). 

In the present study, which aims to predict mortar or concrete behaviour based on a 

reference paste, the water to cement weight ratio of mortar and concrete are the same 

(same paste composition) and the relation between 6� and 6� is proportional to the 

corresponding paste volume content of the mixture. Thus, equation (5.17) can be 

simplified and written as equation (5.18): 

'�
,� = '�
,� (1 − ��,�)(1 − ��,�) (5.18) 

where ��,� is the aggregate volume fraction in the concrete mixture and ��,� is the 

aggregate volume fraction in the mortar mixture. Unlike the electrical resistivity study, 

no paste experimental tests were performed, whereby the experimental result of 

chloride diffusion coefficient of mortar in non-steady-state conditions (8�I�4,�), 

obtained through the CTH test, was used to determine the chloride diffusion 

coefficient in steady­state conditions of the cement paste matrix (matrix diffusivity). 

Thus, from 8�I�4,� experimental results presented in Table 5.3 and using equation 

(5.16) and equation (5.18), the mortar chloride diffusion coefficient in steady-state 

conditions (8�I4,�) was obtained through equation (5.19): 

8�I4,� = 8�I�4,� ⋅ '�
,� (1 − ��,�)(1 − ��,�)  (5.19) 

The paste chloride diffusion coefficient in steady-state conditions (8�I4,�) was then 

determined from 8�I4,� and using the D-EMT formulation for not diluted suspension 

of insulating spherical inclusions (Model 1), equation (5.20): 

8�I4,� = ���(	
,�}8�I4,�� = ���(	
,� �	8�I�4,� ⋅ '�
,� (1 − ��,�)(1 − ��,�) � (5.20) 

where ���(	
,� is a parameter that represents de application of Model 1 to obtain 8�I4,�. 

Thus, the chloride diffusion coefficient in steady-state conditions of a concrete mixture 

from the experimental programme (8�I4,�)) was predicted by applying equation (5.21), 
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where ���(	
,�) is a parameter that represents the application of the models (Model 1 to 

Model 5b) to the concrete composition �). 

8�I4,�) = ���(	
,�)}8�I4,�� = ���(	
,�) Â���(	
,� �	8�I�4,� ⋅ '�
,� (1 − ��,�)(1 − ��,�) �Ã  (5.21)

Finally, from 8�I4,�) value, the chloride diffusion coefficient obtained in 

non­steady­state conditions of the concrete mixture �) from the experimental 

programme (Dclns,ci) was determined by applying equations (5.16) and (5.17), adapted 

for the case of two concretes with the same w/c but different aggregate content (see 

equation (5.22)): 

Dclef,�Ä = 8�I4,�) ¸'�
,� (1 − ��,�))(1 − ��,�) º = ���(	
,�) Â���(	
,� �	8�I�4,� ⋅ W1 − ��,�)(1 − ��,�))�Ã�  (5.22)

where ��,�) is the aggregate volume fraction in a concrete mixture �) from the 

experimental programme. Therefore, according to equation (5.22), Dclns,ci can be 

obtained without assessing the binding capacity of the mixture. Experimental results of 

concrete chloride diffusion coefficient tests conducted under the experimental 

programme (Dclns,exp,ci), as well as the corresponding values predicted by means of each 

model (Dclns,ci) are presented in Figure 5.9. 

 

Figure 5.9 – Experimental data Dclns,exp,ci and predicted values obtained by the models Dclns,ci. 
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The prediction error (∆�) of each model is presented in Table 5.7, as well as the 

respective average (|∆�|average). According to Table 5.4 the coefficient of variation 

obtained for mortar and concrete mixtures replication was 1.7% and 0.7%, respectively, 

which already accounts for a significant share of the error in the case of Model 3 and 

Model 5a. 

Table 5.7 – Models prediction error ∆� for concrete chloride diffusion coefficient, obtained in 

non­steady­state conditions. 

Mix 
reference 

∆�model 1 

(%) 
∆�model 2 

(%) 
∆�model 3 

(%) 
∆�model 4 

(%) 
∆�model 5a 

(%) 
∆�model 5b 

(%) 

B-C1  -21.9 -32.0 -3.4 -23.5 -5.1 23.2 
B-C2  -20.8 -31.0 -2.1 -22.5 -3.8 25.0 
B-C3  -21.4 -31.6 -2.9 -23.1 -4.6 23.9 
B-C4  -18.0 -27.7 -0.6 -19.6 -2.9 24.6 
B-C5  -23.8 -33.3 -6.3 -25.3 -6.7 21.6 
B-C6  -23.5 -33.7 -5.0 -25.3 -7.7 19.6 
B-C7  -23.1 -33.9 -3.0 -24.9 -4.1 26.1 
B-C8  -13.5 -24.2 5.9 -15.3 2.8 32.1 
B-C9  -19.9 -30.6 0.1 -21.6 -0.3 30.9 
B-C10  -17.8 -27.5 -0.2 -19.4 -1.5 27.2 
B-C11  -23.6 -34.4 -3.9 -25.5 -6.0 22.9 
B-C12  -19.8 -29.5 -2.1 -21.3 -3.6 24.6 

|∆ε|average 20.6% 30.8% 3.0% 22.3% 4.1% 25.1% 

 

The behaviour of the models applied to the chloride diffusion coefficient proved to be 

very similar to that observed for electrical resistivity. The prediction errors of Models 3 

and 5a are relatively small, 3.0 and 4.1%, respectively, which seems to indicate that 

these two models can predict with fair accuracy the influence of the aggregate volume 

and aggregate skeleton in the concrete chloride diffusion coefficient of a SCC. 

Considering the precision and versatility of the models, Model 3 is suggested for 

prediction of the influence of aggregate volume and aggregate skeleton on SCC 

electrical resistivity and chloride diffusion coefficient. Nevertheless, the lower and 

upper bounds established by the Hashin-Shtrikman variational analysis (Hashin and 

Shtrikman, 1962) (Model 5a and Model 5b) can be a good guideline to select 

paste/mortar durability properties (electrical resistivity and chloride diffusion 

coefficient) that ensure a concrete composition with the previously established 

requirements. Despite Hashin-Shtrikman bounds cover a substantially wide range of 

values, this formulation has the advantage of only using as input parameters, paste 



Chapter 5 

5.28 

property (electrical resistivity or diffusivity) and aggregate volume content. In the 

present study, the lower bound (Model 5a) has provided a very similar prediction 

compared to experimental results. 

5.6. Conclusions 

The possibility of predicting concrete properties from cement paste behaviour has great 

advantages, as it facilitates the materials selection process and the performance-based 

design of concrete mixtures. In this work the possibility of using EMTs to establish the 

link between paste and self-compacting concrete was studied in terms of durability 

properties namely, electrical resistivity and chloride diffusion. Different models derived 

from the D-EMT were investigated and the predictions provided by the 

Hashin­Shtrikman bounds were also assessed. From the results presented in this 

chapter the following conclusions can be drawn: 

• EMT has been applied in many different areas to describe the physical 

properties of composite materials however it is still under exploitation in the 

field of concrete as a material. The EMTs allow determining the properties 

of a multiphasic material starting from the knowledge of the physical 

property of each phase composing the mixture, as well as, of the structural 

properties of the mixture itself (percentage, shape and distribution of each 

phase). 

• Self-compacting concrete and mortar were assumed as composite materials 

with two distinct phases, a cement paste in which insulating aggregate grains 

of various sizes and shapes are discontinuously embedded. Aggregate was 

considered as an insulating phase, given its high resistivity and low 

diffusivity compared with cement paste. It was considered that the ITZ has 

minor influence on SCC resistivity and diffusivity, and therefore the ITZ 

was assumed as part of the cement paste matrix, with the same properties. 

• To predict aggregate influence on mortar/concrete properties the D-EMT 

seems to be the EMTs that best fits the concrete problem, since this 
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formulation is used for materials in which one phase always percolates and is 

also valid for less diluted suspensions. 

• Mortar properties were predicted by the D-EMT formulation for not diluted 

suspension of insulating spherical inclusions (Model 1). The average 

prediction error was 4.1%, which seems to indicate that the model predicts 

fairly accurately the electrical resistivity of mortars based on the knowledge 

of paste electrical resistivity and aggregate volume content. 

• Considering the precision and versatility of the models, Model 3 is suggested 

for predicting the influence of aggregate volume and aggregate skeleton on 

SCC electrical resistivity and chloride diffusion coefficient, which is a 

D­EMT formulation for ellipsoidal inclusions with an aligned orientation 

and electrical field aligned according to the semi-major axis of the ellipsoids. 

The average prediction error was 4.3% for the electrical resistivity and 3.0% 

for the chloride diffusion coefficient. It should be noted that a share of the 

error concerns to the experimental error. 

• The lower bound established by the Hashin-Shtrikman variational analysis 

(Model 5a) has also provided prediction values very similar to experimental 

results. 

• Concrete resistance to chloride ion penetration is generally evaluated using a 

non­steady migration test. However, EMTs cannot be directly applied to 

predict the non­steady­state chloride diffusion coefficient. Only the 

diffusivity, also called steady­state chloride diffusion coefficient can be 

predicted. A relationship has been established to determine concrete 

non­steady­state chloride diffusion coefficient by EMTs, without the explicit 

assessment of the binding factor. 

• The applied formulations may also be extended to evaluate other SCC 

durability properties, transport properties, such as the oxygen permeability 

coefficient or the carbon dioxide coefficient. 
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Chapter 6 

6. Durability monitoring to improve service life 
predictions of concrete structures 

6.1. Synopsis 

In this chapter a durability monitoring system is presented and its working principle 

and the methodologies of analysis and interpretation of the acquired data are discussed. 

The monitoring system integrates a sensorial component (corrosion kit-sensor), a data 

acquisition component and a communication and data processing component. 

Laboratory tests were conducted to establish the corrosion kit-sensor measuring 

protocol, assess its behaviour with temperature and humidity variations and appraise its 

performance to detect corrosion activity. This durability monitoring system was 

implemented in two structures, the Lezíria Bridge and a yachting harbour structure. 

Results collected during the construction and service phase were analysed and 

interpreted in the light of available information on surrounding environmental 

conditions. Service life of the yachting harbour structure was predicted and validated 

using data collected by the continuous monitoring system and during a periodic 

inspection. 

6.2. Introduction 

After decades aiming at improving of concrete strength, today researchers, civil 

engineers and construction technicians are mainly concerned with durability-related 

issues. Insufficient attention at durability of concrete structures has led to expensive 
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repair and even demolition and replacement, with great impact on resources, 

environment and human safety (Walraven, 2009; Gjørv, 2010). An effective action in 

the prevention of degradation and maintenance of concrete structures becomes crucial 

to achieve longer service life with low maintenance costs. Implementation of durability 

monitoring systems in new and existing concrete structures could reduce costs by 

enabling a more rational approach for the assessment of repair options and scheduling 

of inspections and maintenance programmes (Chrisp et al., 2010). Also, important 

concrete infrastructures are increasingly being designed for long service life, by 

modelling the degradation process and using a probabilistic assessment of uncertainties 

(DuraCrete, 2000). However, aggressive loads or material resistance can, in reality, be 

very different from those assumed in the design phase. Hereupon monitoring of 

structure performance could provide added value for their management (Polder et al., 

2008b). The development of a probabilistic modelling approach supported by durability 

monitoring could improve service life predictions of concrete structures (Cusson et al., 

2011). 

Monitoring of concrete structures can be performed at three different levels designated 

as low, intermediate and high level (Jensen and Andersen referred by Bertolini et al. 

(2005)). The low-level procedure essentially integrates periodic visual inspections and is 

still the basis of most structures management programs. The intermediate level of 

monitoring combines periodic visual inspection with more detailed inspections using 

non-destructive or semi-destructive techniques. In the high-level monitoring procedure, 

embedded sensors are installed within the covercrete, during structure construction or 

after repair works. 

Monitoring of reinforced-concrete structures through embedded sensors has the 

disadvantage of providing a pre-set and more limited sampling. However, this allows 

resorting to automatic data acquisition systems which enable the collection of detailed 

information over long periods of time without access to the structure. Monitoring 

systems, eventually with continuous and automatic data acquisition, could be a key tool 

to achieve different objectives, such as: monitoring durability of a structure and its 

condition in order to make timely decisions for preventive and/or repair actions; 

monitoring the effect of preventive or repair actions; monitoring the condition of 

structures made of new materials and/or built with novel technologies; improving 



Durability monitoring to improve service life predictions of concrete structures 

6.3 

service life prediction models; and following the ageing effects in zones where access is 

difficult (Bertolini et al., 2005). 

In recent years a great progress has been accomplished concerning durability 

monitoring systems using embedded sensors and automatic data acquisition systems. 

However, monitoring objectives and strategy have to be clearly defined, otherwise 

heavily instrumented structures will produce large amount of data with little or no 

practical value (Bertolini et al., 2005). Furthermore, there is still a long way to go with 

regard to the results reliability, data interpretation and adequate decision in terms of 

timely rehabilitation actions. In this sense, this study aims at discussing the working 

principle and the methodologies of analysis and interpretation of data collected by the 

designated corrosion kit-sensor. The installation of this device in a structure provides 

measurements of galvanic current, corrosion potential and temperature, enabling to 

monitor the advance of aggressive agents into the concrete cover, to predict the time 

for corrosion initiation and to evaluate the corrosion state of the most external 

reinforcing bar. The durability monitoring system presented in this work includes, in 

addition to the sensorial component, a data acquisition component and a 

communication and data processing component. Laboratory tests were conducted to 

establish the corrosion kit-sensor measuring protocol, assess its behaviour for 

temperature and humidity variations and appraise its performance to detect corrosion 

activity. This durability monitoring system was installed in two structures, the Lezíria 

Bridge over the Tejo River and a yachting harbour structure implanted in Leixões Port. 

Results collected during the construction and service phase were analysed and 

interpreted in the light of available information on the surrounding environmental 

conditions. In order to demonstrate the effective use of the data obtained from field 

monitoring, the service life prediction of the yachting harbour structure was performed 

and updated using data collected in the continuous monitoring system and during a 

periodic inspections. 

6.3. Durability monitoring system 

Corrosion of a metal in an electrolytic medium, such as corrosion of reinforcement 

embedded in concrete (Figure 6.1), is an electrochemical reaction involving four 
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complementary partial processes (Bertolini et al., 2005): (i) the oxidation of iron (anodic 

process) that liberates electrons in the metallic phase and gives rise to                         

the formation of iron ions (Fe → Fe2+ + 2e-), and whose hydrolysis produces acidity 

(Fe2+ + 2H2O → Fe(OH)2 + 2H+); (ii) the reduction of oxygen (cathodic process) that 

consumes these electrons and produces alkalinity (O2 + 2H2O + 4e- → 4OH-); (iii) the 

transport of electrons within the metal from the anodic regions where they become 

available, to the cathodic regions where they are consumed and (iv) in order to 

complete the circuit, the flow of current inside the concrete from the cathodic to the 

anodic regions, transported by ions in the pore solution. Note that this is an idealized 

figure because, in fact, the corroding zone is never a pure anode, but rather is 

composed by several micro-anodes and micro-cathodes. 

 

Figure 6.1 – Schematic representation of corrosion of steel in concrete (Cao et al., 2013). 

The corrosion evaluation of a reinforced concrete structure, during the initiation and 

propagation periods, can be performed by measuring electrochemical parameters of 

steel and the physicochemical properties of concrete. Steel electrochemical parameters 

enable monitoring the corrosion process itself. Examples of such parameters are the 

corrosion potential, corrosion rate and galvanic current of the macrocell. The 

physicochemical parameters of the concrete, as the chloride content, pH, resistivity, 

temperature, humidity, are factors that control the corrosion process. As many factors 

contribute to the durability of a reinforced concrete structure, information from 

different corrosion evaluation techniques should be gathered for an accurate 

assessment of the state of corrosion-induced damage (Qian et al., 2003; Basheer et al., 

2009). Selection of parameters to be monitored should depend on the type of structure, 

exposure environment and whether it is a new structure or to be repaired, and, in this 

case, the type of intervention. 
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The first measurements of corrosion parameters in concrete were those of the electrical 

resistivity (Monfore, 1968), corrosion potential and polarization curves (Baumell, 1959; 

Gouda, 1970; Kaesche, 1973). The main interest was to know the effect of concrete 

humidity and of admixtures on corrosion. According to Gurulsamy and Geoghegan 

(referred by Pereira (2004)) the early applications of embedded sensors in concrete 

structures occurred at the end of the ‘70s with the introduction of reference electrodes 

to monitor corrosion potential in cathodic protection systems. Andrade and González 

(1978) were the first to apply the polarization resistance technique to quantify and 

monitor bars embedded in concrete, allowing the non-destructive assessment of the 

bars cross section loss (corrosion rate). Short et al. (1991) designed a laboratory device 

for detecting carbonation through the measurement of the galvanic current between a 

stainless steel bar and a ring of mild steel. This idea was later used by Schiessl and 

Raupach (1992) to develop a sensor based on the measurement of galvanic current in 

macrocells to continuously monitor corrosion risk of the reinforcement, depending on 

its distance from the concrete surface. This was followed by the development of 

sensors for in-depth measurements of concrete electrical resistivity (McCarter et al., 

1992; McCarter et al., 1995; Raupach and Schiessl, 2000), corrosion rate by 

electrochemical techniques (Videm and Myrdal, 1997; Broomfield et al., 2002), limiting 

current of oxygen reduction (Myrdal et al., 1997; Correia et al., 2006) and chloride 

content (Climent-Llorca et al., 1996; Zimmermann et al., 1997; Montemor et al., 2006). 

Well-documented reviews on the electrochemical techniques and sensors for corrosion 

assessment and their application to concrete structures are presented in Broomfield et 

al. (2002), McCarter and Vennesland (2004), Song and Saraswathy (2007), Basheer et al. 

(2009) and  Figueiras and Nunes (2010). Temperature and humidity sensors are 

currently used in corrosion monitoring applications given the nature of the corrosion 

process. In the last few years novel optical fiber sensor systems have been developed 

for monitoring concrete durability parameters, namely, temperature, humidity, pH, 

chloride content and corrosion of rebars (Basheer et al., 2009). 

Indeed, to be effective, a permanent monitoring system must include a number of 

sensors installed in the structure, but also a data acquisition and transfer system and an 

integrated software for analysis and processing of information (Comisu, 2005). In the 

next sections the durability monitoring system which has already been installed in some 

structures, will be described. The monitoring system integrates a sensorial component 
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(corrosion kit-sensor), a data acquisition component and a communication and data 

processing component, which are described in sections 6.3.1, 6.3.2 and 6.3.3, 

respectively. 

 Corrosion kit-sensor 

The corrosion kit-sensor (CKS) is a commercial device (Force Technology) that 

incorporates a galvanic current sensor (sensor 1), a reference electrode (sensor 2) and a 

temperature sensor (sensor 3), see Figure 6.2 and Figure 6.3. The installation of this 

device in a structure provides measurements of galvanic current, corrosion potential 

and temperature, enabling to monitor the advance of aggressive agents into the 

concrete cover, to predict the time for corrosion initiation and to evaluate the corrosion 

state of the outermost reinforcing bar. 

 

Figure 6.2 – Schematic representation of CKS (adapted from Cost Action 521 (2003)). 

 

Figure 6.3 – CKS installed in situ, before concrete casting. 
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6.3.1.1. Galvanic current sensor 

The operation principle of a galvanic current sensor is based on the measurement of 

electric current of a macrocell composed by two metals with different electrical 

potential, placed in contact through an electrolyte, such as concrete (see Figure 6.4). 

The magnitude of current flowing between the less noble metal (anode) and the more 

noble metal (cathode), is an indicative measure of the corrosion rate process. This 

current is known as galvanic current or macrocell current. 

 

Figure 6.4 – Simplified electric circuit model of a macrocell. 

Based on a simplified electric circuit model of a macrocell, the galvanic current =��
 
(electric macrocell current) circulating between anode and cathode is given by the 

driving voltage k	 (k	 Z k� \ k�) and the resistances of the corroding system, namely, 

the electrolyte resistance (>	
), the anode polarization resistance (>�) and the cathode 

polarization resistance (>�), as expressed in equation (6.1) (Andrade et al., 1992; 

Raupach, 1996): 

=��
 Z k� \k�>	
 + >� + >� Z k� \ k�� �� + '� `�� + '� `��  (6.1) 

where k� is the rest potential of the cathode (cathode equilibrium potential); k� is the 

rest potential of the anode (anode equilibrium potential); � is the specific resistance of 

the electrolyte (concrete); � is the cell constant geometry; '� and '� are the specific 

anodic and cathodic polarization resistances, respectively; and `� and `� are the 

anodically and cathodically acting steel surface area, respectively. This equation is valid 

to a face to face arrangement of anode and cathode. 
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The electrochemical interaction between steel regions with different steady­state 

potentials can be explained by polarization curves for the anodic and cathodic 

components (Evans­diagram) (Gulikers, 1996), see Figure 6.5. As a consequence of 

macrocell action the cathodic component potential is shifted towards less positive 

values (cathodic polarization) and the anodic component potential is shifted towards 

less negative values (anodic polarization). From the polarization curves and electrolyte 

resistance, the potentials of the coupled steel electrodes and the galvanic current can be 

derived. 

 

Figure 6.5 – Evans-diagram for a two-component macrocell (Gulikers, 1996). 

From equation (6.1) it can be found that current flowing in a macrocell depends on the 

anodic and cathodic process (k� \ k�), as well as the resistances of the anode, cathode 

and electrolyte. Therefore, the galvanic current may have very low values if the anode 

surface is not depassivated (>� → 	∞), if the availability of oxygen in the electrolyte is 

low (>� → 	∞) or if the concrete is totally dried out (� → 	∞) (Raupach, 1996). The 

intensity of the macrocell current in concrete structures is influenced by a large number 

of factors such as concrete quality (e.g. w/c, cement content and curing), chloride 

content, carbonation, environmental conditions and geometry of the corrosion cell. 

Thus, the prediction of the macrocell current is very difficult. Moreover, relationships 

between different influencing parameters and the anode, cathode and electrolyte 

resistances are not the same, e.g. the water saturation of the concrete leads to very low 
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electrolytic resistance but also to a high cathodic resistance (Raupach, 1996). Concrete 

quality or environmental conditions should be taken into consideration when designing 

the galvanic current sensor. 

By measuring the current flow between the anode and cathode and considering 

Faraday´s law, it is possible to determine the corrosion rate, i.e. the amount of corroded 

metal per unit of area and time. However, determining the reinforcement corrosion rate 

from galvanic current measurements is not correct. Galvanic current established 

between corroding and passive metal represents only part of total corrosion activity 

(Andrade et al., 1992; Cost Action 521, 2003). Galvanic current is a direct measure of 

the corrosion rate only when the corroding area is a pure anode, with no microcell 

activity, which only may happen in concrete with a completely oxygen-free atmosphere 

around the corroding areas, or when the corroding area is comparatively very small 

(Gulikers, 1996; Alonso et al., 2000). 

The principle of measuring galvanic current generated by a macrocell has been 

employed in the development of sensors for monitoring the depth of contaminated 

concrete with aggressive agents and thus assessing reinforcement corrosion risk. These 

sensors are essentially constituted by small carbon-steel anodes, placed at different 

depths of the concrete cover, and a more noble metal that will function as cathode, see 

Figure 6.2. By measuring the electric current that flows between each individual anode 

and the cathode, it is possible to know when depassivation of the carbon­steel anode 

occurs. In the course of time the deeper carbon-steel anodes will be depassivated one 

by one, enabling time to depassivation and critical depth of chlorides or carbonation 

front to be monitored (Cost Action 521, 2003; Bertolini et al., 2005). The relationship 

between critical depth of chlorides or carbonation and time, can be determined and 

used to predict, by extrapolation, time to reinforcement depassivation (Schiessl and 

Raupach, 1992). 

The galvanic current sensor used in the CKS comprises a circular polymer body on 

which four sandblasted carbon steel anodes are assembled using polymer spacers with 

different heights (see Figure 6.6). The area of the anodes is 21.3 cm2, 60 mm long and 

12 mm diameter. Around the circular polymer body a mixed-metal oxide coated 

titanium mesh (MMO­Ti) is assembled to function as cathode. Additionally, this sensor 

enables performing a connection to the reinforcement to assess its corrosion state. 
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When installed in new structures, this sensor is mounted on the outer reinforcement 

with the 4 anodes positioned in the cover concrete, between the outer reinforcement 

and the concrete surface (see Figure 6.3 and Figure 6.6). 

    

Figure 6.6 – Galvanic current sensor: schematic representation (Force Technology) (left); 

typical installation (right). 

6.3.1.2. Reference electrode 

The corrosion potential (Ecorr), which provides qualitative information of the actual 

corrosion state of steel in concrete, is measured as a difference of potential against a 

reference electrode (RILEM TC 154-EMC, 2003). The reference electrode can be either 

an external reference electrode placed over a wet sponge on the concrete surface or an 

embeddable reference electrode. 

Requirements for a reference electrode will depend mainly on the objective of the 

installation and the nature of the application. An electrode embedded in a concrete 

structure should exhibit stability, reversibility and reproducibility requirements, be 

adequately small, exhibit little sensitivity to changing variables inherent to concrete 

under service conditions and enabling passing of small currents with a minimum of 

polarization and hysteresis effects (referred by Ansuini and Dimond (Castro et al., 

1996)). 

Concerning the CKS, an embeddable reference electrode of manganese dioxide (MnO2) 

is coupled to the galvanic current sensor. The embeddable MnO2 electrode for use in 

concrete was developed in 1986 during the BRITE programme (Arup et al., 1997). This 

electrode is designed as a double junction electrode containing a MnO2 in a stainless 

steel housing with a NaOH gel of pH 13.5. The electrolytic contact with the concrete is 
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performed through a porous cementitious plug, which ensures a good bond to 

concrete, allows an intimate contact with the interstitial pore solution, and minimizes 

the junction potential (Arup et al., 1997), see Figure 6.7. Given the similarity between 

the pH of the solution inside the electrode (NaOH) and the pH of the interstitial pore 

solution, junction potential across the cementitious matrix is minimized. 

 

Figure 6.7 – Schematic representation of the MnO2 reference electrode (Force Technology). 

The typical potential value of the MnO2 electrode used in the present work, measured 

in a saturated Ca(OH)2 solution at 23 ºC versus a saturated calomel electrode (SCE) is 

of +175 mV, equal to +420 mV in hydrogen scale (NHE). The inclusion of the 

reference electrode in the CKS will enable automatic monitoring of corrosion potential 

of the reinforcement and of each of the anodes of the galvanic current sensor, see 

Figure 6.2. 

6.3.1.3. Temperature sensor 

Each CKS has also a temperature sensor to monitor concrete temperature at the level 

of the outermost reinforcing bar. The temperature detector used is made of platinum 

and presents a resistance of 100 Ω at 0 ºC, thus named Pt­100 sensor. Temperature 

sensors were encapsulated in small steel tubes sealed with epoxy resin. 

Temperature is an important parameter given its influence on concrete deterioration 

and reinforcement corrosion process, and therefore, in measurements of corrosion 

potential and galvanic current. Actually, the three environmental parameters, 

temperature, moisture and oxygen availability, have a significant influence on the 

progress of the reinforcement corrosion process. 



Chapter 6 

6.12 

 Automatic reading and data acquisition system 

An electronic equipment, designated by DURABOX@ (Veiga et al., 2011), was 

developed to enable automatic and continuous reading and data acquisition of CKS. 

This equipment comprises an acquisition module, a power module and corrosion and 

temperature reading modules. Corrosion modules operate simultaneously as a high 

impedance voltmeter and a zero resistance ammeter (ZRA), for corrosion potential and 

galvanic current readings, respectively. Each corrosion module enables measuring two 

CKSs, while the temperature module enables reading six temperature sensors. The data 

acquisition module deals with the process of measuring electrical values from corrosion 

and temperature modules and converts results into digital values, which can be read by 

the computer. As a modular system, DURABOX@ provides both the advantage of 

being adaptable to the type and number of sensors installed on the structure and also 

the ease of integrating new measuring modules. Communication with the computer is 

performed through Ethernet or RS232. The following figure presents a schematic 

representation of the overall architecture of DURABOX@. 

 

Figure 6.8 – DURABOX@: Schematic representation of the overall architecture. 
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 Database and remote access 

All data collected from the CKSs installed in the structure are sent to a database engine 

that runs on the open source software PostgreSQL. A web application was developed 

to provide access to the sensors data in quasi-real time. This application enables 

accessing monitoring results in the form of graphs and tables and complementarily, 

scheduling and automatic report generation with e-mail sending (Figueiras et al., 2008). 

Figure 6.9 shows some of the layouts from the web application developed for the 

monitoring system installed in the Lezíria Bridge. The software for storage 

management, analysis and access to the sensors data was developed by a technical team 

including software and civil engineers from FEUP/LABEST and NewMensus 

(Figueiras et al., 2008). 

Figure 6.9 – Layouts from the web application developed for the monitoring system installed in 

the Lezíria Bridge. 

6.4. Interpretation of CKS results 

 Galvanic current measurements 

The galvanic current flow between both electrodes, anode and cathode, is negligibly 

low as long as anode is in the passive state. Once anode corrosion is initiated, the 

electron flow between anode and cathode grows, causing a significant increase of the 

galvanic current. Figure 6.11 shows the galvanic current measured, in a laboratory test, 

between a cathode and an anode with no corrosion and an anode with corrosion, 

during a short circuit time of 300 s. Measurements were performed on the first anode 
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(A1 in Figure 6.2) of two CKSs installed on reinforcement concrete specimen panels 

(30×50×10 cm3), see Figure 6.10. Upon short circuiting cathode and anode, galvanic 

current decreases with time (non-steady state) and thus the moment of measuring after 

closing the circuit (short circuit time) is important to allow correct corrosion detection. 

 

Figure 6.10 – CKS installed on the reinforcement concrete specimen panel. 

(a) (b) 

Figure 6.11 – Galvanic current records collected in an anode with no corrosion activity and an 

anode with corrosion activity: (a) the whole test; (b) the first 50 s of test. 

According to the results it seems that all the studied short circuit times could be used to 

differentiate between the passive and active state, but for practical reasons, a short 

measuring time is the most convenient. In this work, the galvanic current was measured 

5 s after short circuiting the anode and cathode (see Figure 6.11). Also Raupach and 

Schießl (2001) have investigated the most suitable short circuit time between 1 and 30 s, 

and concluded that, generally, all selected times will allow to differentiate between the 

passive and active state. However, it should be realized that the galvanic current 
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observed after a small short circuit time is a strong overestimation of the real steady 

state corrosion current density (Polder et al., 2008a). 

Nonetheless, in some situations the galvanic current measurements 5 s after short 

circuiting may lead to erroneous conclusions regarding anode corrosion state. An 

example of this situation is shown in Figure 6.12, measurements performed on the first 

anode of a CKS installed on a reinforcement concrete specimen panel (30×50×10 cm3). 

The peak value of galvanic current and even the 5 s short circuiting value are relatively 

high (in absolute value), suggesting very active corrosion. However, the low value of 

galvanic current measure in steady-state condition (in absolute value) indicates that the 

anode may be corroding but with a low rate or with a small corroding area. In 

long­term monitoring these situations should be probed by a measure using longer 

short circuit time.  

(a) (b) 

Figure 6.12 – Galvanic current records collected in anode A1 of a CKS: (a) whole test; (b) the 

first 50 s of test. 

 Corrosion potential measurements 

The corrosion potential measurement gives information on the probability of 

corrosion, since the transition of the steel from passive to active state will shift the 

potential to increasingly more negative values. Ranges of expectable values for 

corrosion potential associated to the probability of corrosion activity in atmospherically 

exposed structures are presented in Table 6.1. Corrosion potential values are presented 

for the reference electrode CSE (Cu/CuSO4), as given by the ASTM 876­09 (ASTM, 
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2009), and for the reference electrode MnO2. To convert corrosion potential from 

mV vs CSE to mV vs MnO2, -105 mV were added to the corrosion potential values. 

Table 6.1 – Probability of corrosion activity on atmospherically exposed structures from 

potential measurements, as given by ASTM C876-09 (ASTM, 2009). 

Probability of corrosion activity Potential (mV vs CSE) Potential (mV vs MnO2)  

>90% probability of no corrosion occurring >-200 >-305 

Probability of corrosion uncertain -200 a -350 -305 a -455 

>90% probability of corrosion occurring <-350 <-455 

 

However, corrosion potential data can be misinterpreted and therefore lead to wrong 

or inadequate conclusions under some circumstances. To formulate conclusions 

concerning corrosion activity of embedded steel and its probable effect on the service 

life of the structure, it is often necessary to consider further data, such as chloride 

content, depth of carbonation or information on environmental exposure conditions 

(Uller et al., 2000; RILEM TC 154-EMC, 2003; ASTM, 2009). Some typical ranges of 

corrosion potential of steel in concrete for different conditions are given by RILEM TC 

154-EMC (2003) (see Table 6.2). 

Table 6.2 –Typical ranges of potential of carbon steel in concrete (RILEM TC 154-EMC, 

2003). 

Concrete condition Potential (mV vs CSE) 

dry concrete +200 to 0 

dry and carbonated concrete +200 to 0 

wet and carbonated concrete +100 to -400 

wet and chloride free concrete +100 to -200 

wet and chloride contaminated concrete -400 to -600 

water saturated concrete without oxygen -900 to -1000 

 

The carbonation-induced corrosion initiation is one of the situations where potential 

values should be analysed with special care. Passive steel in concrete reacts as an oxygen 

electrode on variations in pH of the concrete pore solution, thus corrosion potential 
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increases with pH decrease (Ç9 Ç$:⁄ =-60 mV, at 25ºC) (RILEM TC 154-EMC, 2003). 

This means that measured potentials in carbonated concrete are less negative (more 

noble). In the case of submerged or buried structures, as the restricted oxygen 

availability is restricted the maintenance of the passive film can be prevented and steel 

may corrode (Pereira, 2004). Under these circumstances, corrosion potential lies in the 

range between ­900 to ­1000 mV vs CSE. The humidity condition of the concrete has 

also influence on the potential readings. As the moisture content increases the 

corrosion potential shifts to more negative values. Thereby, it is important to analyse 

changes in potential over time and not over consider single potential value (Vennesland 

et al., 2007). 

 Temperature and humidity influence on CKS results 

To investigate short-term impact of temperature and humidity on the corrosion 

process, two reinforcement concrete specimen panels (30×50×10 cm3) instrumented 

with CKS were subjected to a set of tests with varying temperature and humidity.  

A first experimental test was carried out on a concrete specimen panel with all the CKS 

anodes in passive state. During the test, the specimen was kept at a constant ambient 

humidity (50 %RH) and the temperature was varied between 10 and 40 ºC, a cycle of 

rise and fall in steps of 5ºC. Due to the relatively short duration at each temperature 

step the moisture content in the concrete specimen panel, at the depth of the sensor 

anodes, was assumed not to be affected by these temperatures. Corrosion potential and 

galvanic current records collected during the experimental test are given in Figure 6.13. 

Analysing results, it can be observed that, as temperature increases, the corrosion 

potential and the galvanic current become more negative, decreasing on average 

1.5 mv/ºC and 0.0159 µA/cm2/ºC, respectively. Although variations are consistent 

with temperature, no considerable impact on the corrosion process of passive anodes 

was found. The temperature rise increases galvanic current (in absolute values) as it 

improves ion mobility through the electrolyte and increases the kinetics of the anodic 

and cathodic reactions. Variations observed in corrosion potential depend mainly on 

how temperature affects the nature, composition and distribution of the anode oxide 

layer. Moreover, reference electrode potentials change with temperature, both 
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electrochemical reactions and chemical solubility of the inner reference electrode 

solution are affected (Myrdal, 2007). 

   

Figure 6.13 – Temperature influence on CKSs records: corrosion potential and galvanic 

current. 

The durability parameters curves under the thermal action cycle on concrete specimen 

panel show some hysteresis, which is particularly evident in the case of corrosion 

potential. In addition, this parameter takes longer to reach a constant value at each 

temperature level than galvanic current. In fact, in the kinetics of electrochemical 

reactions of anode oxides layer, due to temperature variation, some reactions take place 

instantly while others will occur over time. 

The other experimental test was conducted on a reinforcement concrete specimen 

panel previously subjected to a wetting period (simulating a rain period) and wherein 

only the outermost anode of CKS displayed values indicating and active corrosion 

process. After the wetting period, the test specimen was submitted to a drying period 

including periods of constant temperature (40 ºC) and a period with temperature cycles, 

approximately between 7 and 36 ºC (simulating daily cycles). Corrosion potential and 

galvanic current records collected from one of passive anodes, anode A2, are shown in 

Figure 6.14. During the temperature cycles, a very consistent variation with temperature 

is observed again, where a temperature increase leads to more negative values of 

potential and galvanic current. Peak evolution during temperature cycles show that as 

concrete loses moisture, corrosion potential and galvanic current evolve into less 

negative values. Despite these variations with temperature and humidity, no 

considerable impact on the corrosion process of passive anodes was found during the 

test. Note that two systems may be distinguished in the concrete cover layer. An open 

system, corresponding to the outermost concrete layer (the first 3 cm depth 
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approximately), where humidity exchange occurs with the exterior, and a close system, 

in the innermost concrete cover layer, where fluctuations in water content due to 

temperature variations are reversible. In the innermost concrete the 

evaporated/condensed water due to temperature variations are not exchanged with the 

exterior. 

   

Figure 6.14 – Corrosion potential and galvanic current records collected in anode A2 of a CKS, 

during an experimental test with varying temperature and humidity. 

Figure 6.15 presents the corrosion potential and galvanic current values acquired in the 

outermost anode (A1) of the CKS during this experimental test. The results indicate 

that concrete moisture has a very significant influence on the durability parameters. 

Also temperature displays a more pronounced effect in the anode in active corrosion 

process, especially on the galvanic current values.  

   

Figure 6.15 – Corrosion potential and galvanic current records collected in anode A1 of a CKS, 

during an experimental test with varying temperature and humidity. 

Temperature and humidity induce variations on the nature and composition of the 

anode oxides layer, ion mobility through the electrolyte, kinetics of corrosion reactions 
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and oxygen availability. Thus, variations observed in corrosion potential and galvanic 

current depend mainly on how environmental parameters affect these factors. 

Predicting the influence of humidity and temperature on the corrosion process is, 

however, complex as they may have opposite effects. For example, a higher moisture 

content facilitates ion mobility but prevents oxygen access, or a higher temperature 

increases kinetics of the reactions but decreases condensation (Uller et al., 2000). This 

experimental test also highlights the importance of continuous monitoring, given the 

influence of environmental conditions on the corrosion process. Note that, corrosion 

potential and galvanic current values observed in the outermost anode at the beginning 

and at the end of the test are clearly different. 

 Corrosion detection on CKS 

As long as the ingress of critical chlorides or carbonation has not reached the position 

of the outer anode, galvanic current between the anodes and the cathode is in the range 

of typical currents for passive state, i.e. very small. In this phase, variations in the 

galvanic current and corrosion potential values are mainly due to changes in the 

environmental conditions, such as temperature, concrete moisture and oxygen 

availability. As soon as the critical chloride content or carbonation reaches the surface 

of the outer anode (A1 in Figure 6.2), and if sufficient moisture and oxygen are 

available, galvanic current and corrosion potential will decrease significantly (Raupach 

and Schiessl, 1997). Figure 6.16 presents the results of a CKS, installed on a 

reinforcement concrete specimen panel (30×50×10 cm3), during an accelerated 

corrosion test conducted in the laboratory. The concrete specimen panel was subjected 

to wetting-drying cycles, using a 10 % NaCl solution, and under a constant temperature 

of 40 ºC. 
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Figure 6.16 – CKS records acquired during an accelerated corrosion test: corrosion potential 

and galvanic current. 

As would be expected, corrosion starts from the outermost anodes to the innermost 

anodes, and is detected by a significant and almost simultaneously variation of 

corrosion potential and galvanic current. According to the results the outer anode, 

anode A1, and the following anode, anode A2, seem to start corroding practically at the 

same time, which can be explained by two main reasons. On one hand, a solution with 

a very high chloride content was used, which may have greatly accelerated the corrosion 

process, especially in the outermost concrete cover layers. On the other hand, concrete 

has heterogeneities that, depending on the type of heterogeneity, may delay or 

accelerate chloride penetration in certain areas of the structure. 

During the experimental test, galvanic current of active anodes shows greater 

fluctuations than corrosion potential. The wetting-drying cycles of the concrete or the 

passivation of a pit (localized corrosion) are situations that shall, in principle, be 

detected sooner in the galvanic current records. The galvanic current depends 

essentially on the rate of electron transfer reactions, wherefore a change in concrete 

electrical resistivity and cathode potential due to wetting-drying cycles or the 

occurrence of localized corrosion, has influence on its value. 
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6.5. Lezíria Bridge – Durability monitoring during the 

construction and exploration stages 

 Durability monitoring system 

Lezíria Bridge, with a total length of 11670 m, comprises three concrete substructures 

with structural solutions adapted to the characteristics of each crossing area: the 

northern approach viaduct with 1700 m long; the main bridge crossing the Tejo River 

with a total length of 970 m; and the southern approach viaduct with 9160 m long 

(COBA-PC&A-CIVILSER-ARCAIS, 2005). The northern approach viaduct is 

constituted by a beamed slab deck cast in-situ over launching girders and supported by 

piers on piles. The main bridge comprises eight spans, six 130 m long and two 95 m 

long spans. The bridge deck, a box girder of variable inertia, was built by the balanced 

cantilever method using a movable scaffolding system. The concrete piers are 

constituted by four identical plates, with constant thickness and variable width, resting 

on pile caps. The southern approach viaduct is a partially precast structure composed 

by 22 elementary viaducts with a mean span length of 36 m. The viaduct deck is 

constituted by precast slabs and precast box girders monolithically connected to the 

piers. Figure 6.17 shows an overview of the Lezíria Bridge and a closer view of each of 

the three substructures. 
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(a) (b) (c) 

Figure 6.17 – An overview of the Lezíria Bridge and each of the three structures: (a) northern 

approach viaduct; (b) main bridge; (c) southern approach viaduct. 

In regard to the environmental aggressiveness where the Lezíria Bridge is implanted, 

the presence of a rather close thermoelectric power station and a railway line must be 

pointed out. Chemical analyses performed on the water of Tejo River indicated that it is 

generally not aggressive (Portugal et al., 2006), although, soil water proved to be 

aggressive. The bridge is implanted in the east-west direction about 50 km away from 

the sea. 

A monitoring system based on a limited number of sensors installed in a few sections 

of the structure requires a careful definition of their locations in order to gather 

information representing, as much as possible the global behaviour of the structure. 

The selection of the instrumented locations must take into account the environmental 

exposure conditions and specific aspects of structural design, in particular the geometry 

and structural behaviour of the elements. Specific aspects of construction practices 

such as casting joints or areas with high reinforcement density should also be taken into 

consideration. In the Lezíria Bridge 15 CKSs were installed in three distinct zones, 

namely, one section of the northern approach viaduct, one section of the main bridge 
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and two sections of the southern approach viaduct. For conciseness, only the results of 

the CKSs installed on the northern approach viaduct will be presented. The layout of 

the CKSs in the cross section of the northern approach viaduct is presented in Figure 

6.18. CKSs anodes were placed along the concrete cover layer at the depth of: anode A1 

at 1.3 cm; anode A2 at 1.8 cm; anode A3 at 2.3 cm and anode A4 at 2.8 cm (on average). 

 

Figure 6.18 – Layout of the CKSs in the cross section of the northern approach viaduct. 

The monitoring system installed in the Lezíria Bridge integrates, in addition to the 

durability monitoring system, a structural monitoring system comprising sensors to 

monitor structural parameters (strain, rotation, displacement), dynamic parameters 

(acceleration) and scour parameters (Figueiras et al., 2007; Figueiras et al., 2008). All the 

sensors are interrogated by automatic acquisition systems installed in selected points of 

the structure. Acquisition points communicate through a fibre optic local network and 

the information is recorded in a central acquisition unit (Figueiras et al., 2007; Figueiras 

et al., 2008). Remote access to the bridge monitoring system is established through the 

central acquisition unit. 

 Monitoring results during the early age phase 

During the bridge construction, namely during concrete casting operations and 

concrete hardening (first 34 days), the corrosion potential and temperature of some 

CKSs installed in the northern approach viaduct were collected. Monitoring corrosion 

potential during an initial phase allows, from the outset, to verify good functioning of 

the CKSs and assess the passivation process evolution of the sensor anodes and most 

external reinforcing bar. Figure 6.19 and Figure 6.20 show the corrosion potential and 

temperature measurements of CKS­V2N­1S and CKS­V2N­1I respectively, acquired 

during concrete casting and in the following 34 days. In each CKS three potentials were 

monitored, namely the potential of the outermost anode (P1), the second outermost 
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anode (P2) and the most external reinforcing bar (P5). Deck casting was performed on 

29th December around 7 a.m. and striking only occurred on 19th January. During this 

period, three power interruptions occurred, which prevented data acquisition for a few 

days (see Figure 6.19 and Figure 6.20). 

 

Figure 6.19 – Corrosion potential records collected in CKS­V2N­1S during concrete casting 

and within the following 34 days. 

 

Figure 6.20 – Corrosion potential records collected in CKS­V2N­1I during concrete casting 

and within the following 34 days. 

Temperature results in the early hours after concrete casting showed a significantly 

different heat evolution in the two instrumented zones, as expected, given the location 

of the CKSs in the structure. The maximum temperature observed in CKS­V2N­1S 

was 32.8 ºC, 15.5 hours after concrete casting, while in CKS­V2N­1I it was recorded 
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47.6 ºC, 21.5 hours after concrete casting. These temperatures were obtained at the 

level of the reinforcement bar nearest to the surface. 

Regarding corrosion potential evolution, the concrete hardening stage can be basically 

divided into two periods. The first 3 a 7 days after concrete casting is a period where 

potential values undergo significant variations, whereas in the second period the 

average potential increases slightly becoming approximately constant, varying only with 

daily cycles. The minimum corrosion potential recorded by CKS­V2N­1S occurred 

about 14 hours after concrete casting, reaching ­745.2 mV for anode A1, -929.3 mV for 

anode A2 and -958.8 mV for the reinforcing bar (vs MnO2). The evolution of these 

potentials in the early hours after concrete casting seems to follow the temperature 

pattern. In the outermost anode of CKS­V2N­1I (P1) the potential evolution was 

similar to that observed in the CKS­V2N­1S anodes. In contrast, P2 and P5 potential 

recorded by CKS­V2N­1I reached more negative values, which remained over about 4 

days, but like the other potential curves, evolved rapidly into values between ­300 to 

­200 mV vs MnO2. Also, temperature recorded by CKS­V2N­1I evolves more slowly 

until reaching values close to the external temperature. Based on results presented in 

Section 6.4, temperature alone is not likely to be responsible for the observed changes 

in corrosion potential however it can probably be a contributing factor. Indeed, some 

factors have been pointed out to explain potential changes in the first days after 

concrete casting. Pore solution of Portland cement concrete is mainly constituted by 

saturated Ca(OH)2, but also Na+ and K+, which increases pH to more than 13 

(Andrade et al., 1995). This high alkalinity allows steel to develop a stable passive film as 

soon as fresh concrete involves the reinforcement, conferring a nobler corrosion 

potential, i.e., a less negative potential to the steel. However, temperature also plays an 

important role in the passive film development, since some of the oxides only will be 

formed when temperature drops to certain values. In addition to temperature and 

chemical structure changes of the reinforcement surface, humidity and oxygen 

availability also undergoes great transformations during the early days. 

These results seem to indicate that CKSs, CKS­V2N­1S and CKS­V2N­1I, are 

providing a coherent response to daily cycles and, corrosion potential was within the 

range of expected values for a passive state. 
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 Monitoring results during the exploration phase 

Considering the CKS behaviour during the exploration or service phase, Figure 6.21 

shows the results of the two innermost anodes of CKS-V2N-5I over an observation 

period of approximately 2 years. Along with corrosion potential and galvanic current 

values, Figure 6.21 presents the temperature records collected by CKS-V2N-5I and the 

daily precipitation records collected by a meteorological station located relatively near 

the structure. 

 

 

Figure 6.21 – Precipitation and long-term records of temperature, corrosion potential and 

galvanic current collected in CKS­V2N­5I. 

Given the range of collected values, it seems that the two anodes of CKS-V2N-5I have 

remained passive during these two years of observation, i.e. low corrosion probability. 

It is also clear a good agreement between temperature and both durability parameters. 
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The seasonal and daily changes in temperature are in accordance with corrosion 

potential and galvanic current variations, registering more negative values during warm 

seasons (spring and summer) and less negative values during cold seasons (autumn and 

winter). However, durability parameters curves seem to diverge from the temperature 

evolution during periods of intense precipitation, this is, during autumn and winter 

seasons. This effect is particularly noticeable in the periods between December­10 to 

April­11 and November­11 to February­12. For more frequent and intense 

precipitation periods, corrosion potential and galvanic current become more negative, 

even if temperature decreases. The most important characteristic of the rain periods is 

not the amount of water but their length and frequency because each concrete has a 

maximum absorption capacity (Andrade et al., 2002). In the periods with no significant 

precipitation, corrosion potential and galvanic current decreased on average 1.6 mv/ºC 

and 0.01 µA/cm2/ºC, respectively. These values are fairly similar to those observed in 

the laboratory (see Section 6.4). 

An example of a CKS where records indicate a high corrosion probability of one of the 

anodes is presented in Figure 6.22. In order to assist the interpretation of results, the 

daily precipitation records are also presented. The continuous record of the durability 

parameters collected by CKS-V2N-1S seems to indicate that the three innermost 

anodes are passivated. In contrast, the outermost anode displays typical values of some 

corrosion activity, especially during periods of intense precipitation. In dry periods, the 

potential and galvanic current climbs up to typical values of low corrosion probability. 

It is interesting to observe that the precipitation records are almost mirrored with the 

corrosion potential and galvanic current curves.  

These results show the great advantage of a continuous record in durability monitoring 

of concrete structures – an advanced warning in existing corrosion and corrosion 

development, which is difficult through discrete inspections, even with a careful 

selection of periods and areas to be inspected. 
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Figure 6.22 – Precipitation and long-term records of temperature, corrosion potential and 

temperature collected in CKS­V2N­1S. 

6.6. Yachting harbour structure – Durability monitoring to 

improve service life prediction 

 Durability monitoring system 

The main structure of the yachting harbour implanted in Leixões Port consists in a 

22 m long and 30 cm thick curved wall (plan view). The wall is reinforced on each face 

with a Ø10//0.15 (horizontal) by Ø12//0.15 (vertical) mesh. Considering marine 

exposure, the lower part of the structure is a submerged zone, the middle part is in the 
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tidal zone, while the upper part corresponds to a splash and spray zone. Figure 6.23 

shows an overview of the yachting harbour structure. 

  

Figure 6.23 – An overview of the yachting harbour structure, including location of the 

instrumented areas (zone A and B). 

Two areas located on the outer face of the wall, about 20 cm above maximum tide, 

were instrumented, zone A and B (see Figure 6.23). Each area was instrumented with a 

CKS and two vibrating wire strain gauges, one in the vertical alignment and the other in 

the horizontal alignment, see Figure 6.24. Concrete deformation given by the strain 

records will enable assessing concrete cracking risk. The measurements collected by the 

vibrating wire strain gauges must be corrected to eliminate the effect of the free thermal 

deformation of the wire and the concrete. For this purpose the strain gauges have an 

internal thermistor, which was used to measure concrete temperature. All sensors are 

interrogated by an automatic acquisition system installed in a central data acquisition 

point. 
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Figure 6.24 – Internal view of the instrumented areas in the yachting harbour structure (zone A 

and B). 

In order to evaluate the influence of the reinforcement density in concrete 

deformations due to shrinkage, as well as, the behaviour concerning the advance of 

aggressive agents through the concrete cover and reinforcement corrosion, two wall 

models with a different amount of reinforcement were cast in-situ. The wall models 

were instrumented likewise the yachting harbour structure, with one CKS and two 

vibrating wire strain gauges (see Figure 6.23 right/below). These results are not 

presented in this work, for clarity’s sake. 

 Concrete characterization 

Concrete composition used in the yachting harbour structure was in fact, specifically 

designed, as an alternative solution, for the new cruise terminal building, also implanted 

within Leixões Port. The concrete to be used in the building was required to have 

special features in terms of architecture (white concrete with a good quality surface 

finishing), fresh state (self-compactability) and hardened state (compressive strength 

and high durability). A performance-based design approach, based on a probabilistic 

safety format, was applied to define concrete durability requirements subsequently, a 

central composite design was carried out to identify the best mixture, given a set of 

constituent materials and performance constraints (Figueiras et al., 2013a). Concrete 

mix-proportions are presented in Table 6.3. 
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Concrete was produced, under normal working conditions, in a concrete plant located 

about 15 km from Leixões Port. Some differences in the fresh behaviour between 

mixes produced in the laboratory and on site were observed. Possible causes for these 

differences are mixing efficiency, consistency variations over time, material weighing 

errors, miss determination of humidity content in the aggregate and variation of 

materials characteristics. Regarding concrete hardened properties, slightly higher values 

of compressive strength and electrical resistivity and lower values of shrinkage and 

chloride migration coefficients were obtained compared to results of the laboratory 

study (see Table 6.3). Although concrete produced in-situ provided a slightly improved 

performance, results of tests performed with samples collected in­situ presented higher 

variation. 

Table 6.3 – Concrete mix proportion and hardened properties characterization. 

Constituent materials (kg/m3) 
Cement (CEM II/A-L 52.5N white) 416 
limestone filler 151 
Metakaolin 44 
Water 185 
superplasticizer 6.10 
sand 1 325 
sand 2 487 
coarse aggregate 744 

Hardened properties characterization 
 Laboratorial (28 days) In situ (28 days)*  

fcm [MPa] 80.4(a) 74.9(b) 
fct,m [GPa] -- 5.8 
Ecm [GPa] -- 44.1 
Shrinkage 90d 345×10-6 299×10-6 
Sorptivity [g/(m2.min1/2)] -- 51.11 
Resistivity [Ω.m] 220.3 326.4 

Dcl [m2/s] (c) 3.54×10-12 2.88×10-12 
* tests were carried out on specimens casted in situ 
(a) tests were carried out on cubes (150x150x150 mm3)  
(b) tests were carried out on cylinders (ø=150 mm; h=300 mm) 
(c) concrete chloride migration coefficient was determined according to LNEC E 463 (LNEC, 2004) 

 Monitoring results 

Figure 6.25 and Figure 6.26 present corrosion potential, galvanic current and 

temperature records collected in the CKSs installed in the yachting harbour structure, 

during the service phase over a 2.5 years period. During this period, due to problems in 

the electric power supply of the acquisition system, some signal failures were observed. 



Durability monitoring to improve service life predictions of concrete structures 

6.33 

A relatively significant variation in corrosion potential and galvanic current towards less 

negative values is observed in the early months. This increase is a consequence of 

variations of environmental conditions, but also should be related with the passive film 

development on the anodes and the variations in the moisture conditions of concrete 

(variations that are more pronounced in the early months). The exception is the 

galvanic current measured at CKS­B that starts with positive values and then tends 

toward negative values, near zero. The development of Fe3+ oxides on the surface of 

CKS anodes could justify this galvanic current evolution. These oxides, generally 

developed on steel exposed to a dry environment, may have arisen on the anodes 

before CKS installation in the structure. In atmospheric corrosion the proportion of 

Fe2+ and Fe3+ containing species is of major importance, as more Fe3+ is present in the 

rust a greater contribution of the Fe2+/Fe3+ redox couple to the whole process is 

expected. This greater amount of rust (Fe3+ species) gives an extra source of cathodic 

reaction in dry conditions (Alonso et al., 1998). 

 

 

Figure 6.25 – Long-term records of temperature, corrosion potential and galvanic current 

collected in CKS­A. 
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Figure 6.26 – Long-term records of temperature, corrosion potential and galvanic current 

collected in CKS­B. 
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probability). However, in CKS-B a sudden change of corrosion potential and galvanic 
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observation period values close to ­2.5 µA/cm2 were read. After depassivation of the 

first anode, variations observed in corrosion potential and galvanic current 

measurements were more significant, highlighting the greater influence of 

environmental conditions on the corrosion activity. 

Indeed, results of the vibrating wire strain gauges may partially explain these differences 

in the behaviour of the CKSs installed in zone A and B. Besides the typical trend due to 

shrinkage and creep of concrete, results presented in Figure 6.27 show, from the outset, 

a clearly different behaviour of the vibrating wire strain gauge installed in zone A, in the 

horizontal direction. The strain evolution recorded by W-H-A is typically observed with 

the occurrence of a vertical crack (or a crack with a component in the vertical direction) 

close to the sensor head but outside its measurement field. In fact, given the adopted 

construction phasing, some cracks of this type it was expected to develop. 

 

 

Figure 6.27 – Strain records collected by the vibrating wire strain gauge installed in zone A and 

B, during de service period. 
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Although, the pattern evolution of the strain measurements observed on the others 

strain gauges seems similar, values collected by strain gauges installed in zone B, W­B­H 

and W­B­V, are lower than those collected by the vertical strain gauge installed in 

zone A, W­A­V. The lowest values observed in W­B­H and W­B­V suggest that in 

zone B the concrete is under a greater constraint, which in this case could be provided 

by the higher reinforcement density. Actually, the instrumented zone B corresponds to 

a reinforcement overlapping zone, see Figure 6.24, and hence with a higher 

reinforcement density. This greater constraint might be the cause of some 

microcraking, not directly detected by the strain gauges. Microcraking, which usually 

takes place in a very wide area of the structure, facilitates the ingress of aggressive 

agents into concrete, which may justify the early corrosion detection in the first anode 

of CKS-B. It is important to consider the role of cracks in concrete, as they may reduce 

the effective capacity of the concrete cover layer and thereby reduce the service life of 

the structure, allowing a faster penetration of aggressive agents into concrete. 

 Service life prediction 

Considering uncracked concrete and the spray zone where CKSs are installed, chloride 

penetration is essentially diffusion-controlled. Thus, the Fick’s second law of diffusion 

can be used to predict the time variation of chloride concentration for one dimensional 

flow (Luping and Gulikers, 2007). Furthermore, in tidal or even splash and spray zones 

of marine structures, as the structure under analysis, service life is mainly determined by 

the initiation phase, since chloride induced corrosion rates can be very high (Andrade et 

al., 1993). Therefore, in the present study, a serviceability limit state of depassivation 

was considered (structure service life equal to the initiation period). The limit state 

function with respect to chloride ingress and for a limit state of depassivation, can be 

defined by equation (6.2), according to fib­Model Code (CEB-FIP, 2012) and LNEC 

specification E 465 (LNEC, 2007): 

!* Z !) Z
�
��ÊÂ2� n'opq r1 \ 6� \ 6,64 \ 6,sÃ

py 1��,� ⋅ ��,�� ⋅ ��,� ⋅ 8, ⋅ !,�Ë
qqp�

�
�� ⋅ � (6.2)
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where !) is the initiation period equal to the design service life (!*); � is the concrete 

cover (m); n'o is the error function; 6� is the chloride threshold level necessary to 

depassivate reinforcing steel, in percentage of cement by weight (%); 64 is the chloride 

content on the concrete surface, in percentage of cement by weight (%); 6� is the initial 

chloride content, in percentage of cement by weight (%); ��,� is the factor that 

considers the influence of curing conditions; ��,�� and ��,� are coefficients related to 

the influence of relative humidity and temperature on the diffusion coefficient, 

respectively; 8, is the apparent diffusion coefficient (m2/s), obtained from migration 

laboratory tests performed at the reference age !, (s); # is the concrete’s ageing factor, 

which represents the time dependence of the diffusion coefficient or the increasing 

ability of the concrete to resist chloride penetration over time; and � is the model 

uncertainty. The chloride content 64 at the concrete surface depends on geometrical 

and environmental conditions, and according to the specification of the Portuguese 

National Annex of the NP EN 206-1 (IPQ, 2007), E 465 (LNEC, 2007), 64 can be 

obtained using the following equation (equation (6.3)): 

64 Z 67 ⋅ 2.5W- .⁄ Y ⋅ ��	�� ⋅ ���� ⋅ ��	�� (6.3) 

where 67 is the surface chloride content in percentage (%) that accounts for the salinity 

of the seawater at the Portuguese coast (21 g/l), seawater mean temperature (16±2)ºC 

and the environmental exposure classes (XS1, XS2 and XS3); -/. is the water/binder 

ratio; ��	�� and ���� are coefficients related to environmental exposure considering the 

concrete location related to sea level and distance to sea coast, respectively; and ��	�� is 

the coefficient that accounts for concrete temperature. 

Table 6.4 shows the input parameters characterization use in the concrete mix-design 

phase and presented in detail in Figueiras et al. (2013a). In the case of stochastic 

variables a statistical characterization is presented, namely the probability distribution 

type, the average and standard deviation. The values adopted for characterization of the 

model parameters were based on data provided by E 465 (LNEC, 2007), fib-

Model Code (CEB-FIP, 2012), DuraCrete (2000), Nokken et al. (2006) and Marques et 

al. (2012). 
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Table 6.4 – Parameters characterization of chloride diffusion coefficient model for a 

probabilistic analysis. 

Variable Distribution Mean value  

(µ) 

Stand. deviation 
(σ) 

Observations 

� normal 1 0.15  

� lognormal 60 mm 7 mm design value 8� normal 3.54×10-12 m2/s 2.00×10-14 m2/s value obtained in laboratory tests !� deterministic 28 days -  ��,� deterministic 1.0 - corresponding to 7 days curing ��,�� deterministic 1.0 - corresponding to the exposure class XS3 ��,� normal 0.8 0.16 corresponding to a mean concrete temperature 
of 15 ºC # normal 0.54 0.06  6� normal 0.4% 0.048%  64 normal 3.19% 0.319%  67=3.0%   corresponding to 21 g/l salinity, 16±2 ºC and 
XS3 -/.=0.354    ��	��=1.0   corresponding to the exposure class XS3 ����=1.0   corresponding to a distance of the concrete 
surface from the coast of 0 km ��	��=1.2   corresponding to a mean surface concrete 
temperature of 15 ºC 

 

As some parameters are uncertain and can also vary widely in space and time, some of 

the input data that are assumed in prediction models could be very different from 

reality and lead to inaccurate predictions. Service life predictions using probabilistic 

models updated with monitored field data can provide more reliable assessment of the 

reinforcement corrosion probability compared to the deterministic models. Such 

updated probabilistic models can help to optimize intervention strategies, thus 

improving life cycle performance, extending service life and reducing life-cycle cost 

(Cusson et al., 2011). Field data can be obtained through periodic inspections, using 

non-destructive or limited destructive techniques, and from a long-term continuous 

monitoring durability system, as the system installed in this yachting harbour structure. 

Two parameters considerably affected by the exposure conditions and with clear time 

dependence, are the concrete diffusion coefficient and the surface chloride content 

(Costa and Appleton, 1999; Cusson et al., 2011). The time dependence of the diffusion 

coefficient is already taken into consideration in the prediction model presented in 
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equation (6.2) through the concrete ageing factor #. However an accurate assessment of 

this parameter is critical due to its dependence on the type of cimentitious materials 

used, the mixture proportions and the concrete exposure conditions. Another concrete 

parameter with influence on service life is the chloride threshold, which is also highly 

uncertain as it depends on environmental conditions and properties of concrete and 

steel (Cusson et al., 2011). According to Cusson et al. (2011) the use of deterministic 

parameters assessed in the structure at the age of 10 years could provide comparable 

estimates of service life to models using probabilistic values. Concrete cover thickness 

is a structure parameter, which is relatively easy to assess, and has a substantially 

importance in the service life prediction (Figueiras et al., 2013a). 

In order to initiate the update of the service life prediction model established during the 

concrete mix-design phase, some specimens were moulded in-situ to assess the 28 days 

hardened properties of the concrete used in the yachting harbour. Furthermore, an 

inspection was carried out on the structure after 820 days of exposure (approximately 

2.2 years). During this inspection a local survey of concrete cover thickness was carried 

out on the structure and some cores were drilled from the wall models (see Figure 6.23) 

to evaluate the chloride diffusion coefficient and the surface chloride. 

The apparent chloride diffusion coefficient obtained from migration tests performed at 

28 days in specimens moulded in-situ was of 2.88×10-12 m2/s with a standard deviation 

of 4.80×10­13 m2/s (see Table 6.3). From the tests performed on the cores drilled after 

820 days of exposure, a value of 8.88×10-13 m2/s and 0.273% was obtained for the 

apparent chloride diffusion coefficient and the surface chloride content, respectively. 

These values do not enable in itself an accurate assessment of the time dependence of 

both the apparent chloride diffusion coefficient and the surface chloride content. This 

assessment will only be possible by providing more data from future inspections over 

time. The data of the cover thickness survey, presented in Figure 6.28, were adjusted to 

a normal probability density function with a mean of 48.81 mm and a standard 

deviation of 6.05 mm. It should be stressed that although cover thickness data does not 

strictly meet the normality tests (Kolmogrov­Smirnov and Shapiro­Wilk tests) a normal 

distribution was assumed. 
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Figure 6.28 – Relative frequency of concrete cover thickness and the corresponding fitted 

normal probability density function. 

Two service life predictions using probabilistic analysis were performed: the first 

analysis was performed using the available data in the design phase, data provided in 

Table 6.4; and the second analysis using the data of the design phase but updating the 

apparent chloride diffusion coefficient at 28 days and the concrete cover thickness. The 

probabilistic analysis were implemented through the Latin Hypercube simulation 

method, using a commercial software (@Risk, 2013) and applying a set of 105 

simulations, thus ensuring a high accuracy of the result. The Kolmogorov­Smirnov test 

was performed to evaluate the quality of the generated samples. According to the 

European standard NP EN 1990 (IPQ, 2009), the yachting harbour structure fits into 

the RC1 reliability class, which means that the probability of failure for serviceability 

limit state should not exceed 12x10-2 (E 465 (LNEC, 2007)). The predictions of the 

penetration depth of the critical chloride content obtained by both analyses are 

presented in Figure 6.29. The results show less conservative predictions after this initial 

model update, although both analyses indicate that the reinforcement depassivation 

only occurs after 120 years of exposure. Both analyses also show that chloride ions 

soon reached 20 mm cover depth and thereafter concrete cover thickness plays a 

significant influence on the structure service life. 



Durability monitoring to improve service life predictions of concrete structures 

6.41 

 

Figure 6.29 – Predictions of the critical chloride penetration over time. 

The great advantage of long-term monitoring, using sensors like those presented in this 

work, is to provide permanent information of the real concrete critical depth 

(depassivation front). According to the records collected by CKS-B the depassivation 

front has reached, in the assessed area, the depth of 1 cm (depth of the first anode) 

after 1.9 years (see Figure 6.29). Nevertheless, records collected by CKS-A indicate that 

after 2.5 years the penetration depth of the critical chloride content has not yet reached 

1 cm. It is therefore concluded, in the light of the monitoring results, that the 

predictions performed in the design stage and after first inspection are quite 

conservative. The results from the durability monitoring system installed in the 

structure could also be used to improve service life prediction of the structure however, 

further data will be necessary. 

It should be noted that the great advantage of long-term monitoring, using sensors like 

those presented in this research work, is to provide permanent information of the real 

concrete critical depth (depth of the critical chloride content). As the critical chloride 

contents for reinforcement corrosion depends on many factors this information is a 

great advantage that cannot be replaced by data from chloride profiles obtained from 

the structures. 
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6.7. Conclusions 

This chapter presented a durability monitoring system which integrates a sensorial 

component, a data acquisition component and a communication and data processing 

component. The sensorial component comprises corrosion kit-sensors that incorporate 

a galvanic current sensor, a reference electrode and a temperature sensor. The CKS 

provides information on the galvanic current and corrosion potential of small anodes 

placed along the concrete cover layer and of the most external reinforcing bar. Based 

on the results presented along this chapter the following conclusions can be drawn: 

• This durability monitoring system enables monitoring the advance of 

aggressive agents into the concrete cover, predict the time to corrosion 

initiation and evaluate the corrosion state of the most external reinforcing 

bar. Implementation of this type of durability monitoring systems can be 

useful to assess concrete durability, predict service life more accurately and 

to take in due time, the decision on adequate protection. 

• The great advantage of long-term monitoring, using sensors like those 

presented in this work, is to provide permanent information of the real 

concrete critical depth (depth of the critical chloride content). As the critical 

chloride content for reinforcement corrosion depends on many factors this 

information is a great advantage that cannot be replaced by chloride profiles 

obtained from the structure. 

• Galvanic current and corrosion potential measurements are quite simple to 

perform and, as no external current is applied, anodes potential are always in 

the range of natural potential of the respective metal, which is an advantage 

compared with measuring certain durability parameters that require prior 

external polarization. Although galvanic current observed after a short 

circuit time is a large overestimation of the real steady state corrosion 

current density, for practical reasons, a short measuring time is the most 

convenient. 
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• Laboratory tests showed that galvanic current and corrosion potential are 

sensitive to environmental conditions (temperature and humidity), especially 

when CKS anodes are under active corrosion process. Temperature and 

humidity induce variations on the nature and composition of the anode 

oxides layer, ions mobility through the electrolyte, kinetics of corrosion 

reactions and oxygen availability. Thus, variations observed in corrosion 

potential and galvanic current depend mainly on how environmental 

parameters affect these factors. 

• In a short-term temperature test, as temperature increases, the corrosion 

potential and the galvanic current become more negative, however corrosion 

potential takes longer to reach a constant value. In the kinetics of 

electrochemical reactions of the anode oxide layer, due to temperature 

variation, some reactions take place instantly while others will occur over 

time. The durability parameters curves corresponding to heating and cooling 

of concrete show some hysteresis. 

• The accelerated corrosion test conducted in the laboratory demonstrated the 

good performance of the CKS against the advance of aggressive agents into 

the concrete cover. 

• Laboratory and in-situ results highlight the importance of continuous 

monitoring, given the influence of environmental conditions on the 

corrosion process. The CKS, when installed in real structures, also proved to 

be quite sensitive to the environmental conditions and corrosion activity of 

the anodes. 

• The durability monitoring systems presented in this work enable an 

automatic and continuous acquisition of CKSs measurements. After a 

proper processing, raw data collected by the monitoring systems can be 

provided through a website. Noteworthy that during these first years of 

service, the durability monitoring systems installed in two different 

structures, have presented a good electrical performance. 
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• The installation of concrete deformation transducers, e.g. vibrating wire 

strain gauges, along with the CKSs proved to be very useful since it enables 

assessing cracking risk, which may indicate possible reduction of the 

effective capacity of the concrete cover layer and thereby a cutback of the 

structure service life. 

• Service life predictions performed during the design phase should be 

validated and updated by the effective use of data obtained from field 

monitoring, during periodic inspections or in long­term continuous 

monitoring systems. Some of the input data that are commonly assumed in 

the design phase, even those selected from the literature, may be quite 

different from reality and can also vary widely in space and time. Monitoring 

results from yachting harbour structure seems to indicate that the 

predictions performed in the design stage and after the first inspection are 

conservative. 
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7. Conclusions and future research 

7.1. Conclusions and main contributions 

The present research work has been directed to contribute to performance-based 

design of SCC ensuring durability of concrete structures. The main purposes were to 

explore an integrated view of durability of concrete structures, to ensure durability and 

to predict service life of structures more accurately. In this sense, developments were 

performed in the concrete design phase, as well as, in the field assessment of concrete 

performance. Following the sequence of the four main objectives previously stated in 

Chapter 1, the main contributions and more relevant conclusions achieved by the 

current PhD research are the following: 

 

Durability performance-based design 

The performance-based design methodology presented in this research work enables 

the systematization of the mixture design process of SCC exposed to severe marine 

environment. Limit values of the durability indicators were specified through a 

probabilistic calculation of the limit state functions, established on the basis of target 

service life, limit state criterion and degradation mathematical models. Once the set of 

concrete requirements (fresh and hardened properties) was defined, mixture 

optimization was derived from numerical models established on the basis of a factorial 

central composite design. In order to simplify SCC design, the study was developed in 
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two phases: first at mortar level and then at concrete level. Based on the presented 

experimental studies and result analyses the following conclusions can be drawn: 

• Although the methodology has been applied for a structure exposed to 

severe marine environment, application to other types of environmental 

exposure is only limited by the accuracy of the mathematical models for 

modelling relevant degradation mechanisms. 

• For structures in severe marine environment, reinforcement corrosion is the 

main degradation mechanism and a serviceability limit state of depassivation 

should be considered. In these cases the most current durability indicator is 

the apparent chloride diffusion coefficient measured by the migration test, 

although the electrical resistivity under saturated conditions turns out to be 

an interesting alternative.  

• Electrical resistivity proved to be a more rapid and economic method to 

predict resistance of concrete to chloride ion ingress. However, it requires a 

prior knowledge of the reaction factor of chlorides with cement phases and 

the transference number of chloride ions in concrete. Assessment of 

electrical resistivity is performed by a straightforward and non-destructive 

test, with good reproducibility and accuracy. 

• In a full probabilistic analysis a careful characterization of the model 

parameters is very important to obtain realistic threshold values. A 

sensitivity analysis helps to define the most influential parameters, and 

therefore to take additional care in their characterisation (distribution type, 

average value and standard deviation). It was found that in the chloride 

diffusion coefficient model, the most influential parameters are the ageing 

factor (n) and the concrete cover thickness (c), while the least influential 

model parameters are the chloride threshold (C1) and the chloride content on 

the concrete surface (Cf).  
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• In the case of electrical resistivity, a partial safety factor approach was 

carried out due to an insufficient amount of statistical information on some 

of the model parameters. 

• An experimental plan conducted according to a central composite design 

provides a systematic methodology to identify optimal mixes given a set of 

constituents and performance constraints. Data collected during the 

experimental plan can be used to establish numerical models relating 

mixture parameters with fresh and hardened properties of paste, mortar and 

concrete. 

• This statistical experimental approach, generally used to model fresh 

properties, was extended to durability properties of paste, mortar and 

concrete. In this research work the methodology was extended to the 

chloride diffusion coefficient and electrical resistivity, however its 

application has also been validated to water absorption by capillarity, 

porosity accessible to water and carbonation. The ability to mathematically 

model the influence of mixture parameters on a given response variable, 

through an experimental design methodology, is determined mainly by the 

choice of the relevant factors, the range of variation of the response in the 

experimental plan, accuracy of test methods and experience of the operator 

performing tests. 

• Using mortar testing as a previous step in concrete design, greatly simplifies 

experimental work, however it requires prior knowledge of the link between 

mortar/paste and concrete performance requirements (fresh and hardened 

properties). 

 

Linking fresh properties of paste and SCC mortar 

A procedure, based on statistical experimental design, was used to establish the link 

between fresh properties of paste and SCC mortar, for a given set of materials. The 

statistical experimental design allows deriving numerical models relating mixture 
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parameters with fresh properties of paste and mortar. The derived numerical models 

were used to define an area, labelled by self­compacting zone at paste level (SCZ), 

where fresh properties of the paste enable the design of SCC mortar. From this study 

the following main conclusions can be drawn: 

• As expected, empirical tests performed in paste (Dflow,paste and wfree) correlate 

with the rheological parameters of paste, namely, yield stress and plastic 

viscosity, which seems to indicate that both types of tests can be used to 

characterize fresh paste behaviour. 

• Rheological tests performed at 10 and 23 minutes, after starting mixing, 

showed an increase of both, yield stress and plastic viscosity, but it is the 

yield stress that seems particularly sensitive due to the hydration reaction 

and associated microstructural changes, loss of water by evaporation and 

loss of dispersing efficiency of the superplasticizer. 

• Trend lines establishing the relationship between paste rheological 

parameters and mortar target properties (Dflow,mortar and Tfunnel,mortar) were 

computed. The shape of the trend line reflects the need of compromise 

between yield stress and plastic viscosity, which seems to indicate that the 

increase in aggregate content required an increase of yield stress to plastic 

viscosity ratio and decreases the influence of the plastic viscosity on the 

workability of the mortar as compared to yield stress. Similar conclusions 

were found when empirical tests were used to characterize paste fresh 

properties. 

• Higher aggregate contents, which correspond to a shorter average distance 

between aggregate particles, demand a paste with lower yield stress and 

lower plastic viscosity (more fluid paste), while lower aggregate contents 

require a paste with higher yield stress and viscosity (more viscous paste). 

For a given aggregate content in mortar it is possible to achieve 

self­compacting mortar from paste with rheological properties within a 

certain range, however, these properties should vary according to the 

established trend line. 
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• The defined SCZ can simplify the test protocol required to optimize a given 

SCC mixture, reducing the extent of laboratory work, testing time and 

materials used. The SCZ was defined for a specific set of materials, and 

therefore, variations in material characteristics are expected to change the 

relative size of the SCZ. Depending on the level of deviation, a limited 

number of mixtures can be prepared to adjust the final composition. The 

SCZ can also provide the basis for quality control and further behaviour 

assessment of new materials (addition, superplasticizer or viscosity agent). 

 

Linking durability properties of paste, mortar and SCC 

Effective Medium Theories were used to predict the influence of the aggregate 

(aggregate content, aggregate skeleton and aggregate shape) on some durability 

properties, namely, electrical resistivity and chloride diffusion coefficient. Different 

models derived from the D-EMT were explored and the predictions provided by the 

Hashin-Shtrikman bounds were also assessed. Based on the experimental study and 

result analyses, the following conclusions can be drawn: 

• Self-compacting concrete and mortar were assumed as a composite material 

with two distinct phases, a cement paste phase in which insulating aggregate 

grains of various sizes and shapes are discontinuously embedded. Aggregate 

was considered as an insulating phase, given its high resistivity and low 

diffusivity compared to cement paste. The influence of ITZ on SCC 

durability properties was considered to be minor, and therefore the ITZ was 

assumed as part of the cement paste matrix, with the same properties. 

• To predict aggregate influence on mortar/concrete properties the D-EMT 

seems to be the EMTs that best fits the concrete problem, once this 

formulation is used for materials in which one phase always percolates and is 

also valid for less diluted suspensions. 

• For each Vs/Vm a good correlation between resistivity of paste and mortar 

was found, showing that aggregate increases mixture resistivity. Comparing 
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experimental data with D-EMT formulation, it seems that the ITZ zone has 

little influence on the electrical resistivity of self-compacting mortar and the 

main effect of aggregate is blocking and redirecting conductive flow. The 

D­EMT formulation for not diluted suspension of insulating spherical 

inclusions predicts electrical resistivity fairly accurately (average error 

prediction was 4.1%). 

• A D­EMT formulation for ellipsoidal inclusions with an aligned orientation 

and electrical field aligned according to the semi-major axis of the ellipsoids 

was the model that best fitted the experimental results of electrical resistivity 

and chloride diffusion coefficient. The average prediction error was 4.3% 

for the electrical resistivity and 3.0% for the chloride diffusion coefficient. 

Concrete casting direction affects aggregate alignment in the cement paste, 

therefore this effect should be considered when selecting the most 

appropriate model to predict concrete properties. 

• The lower bound established by the Hashin-Shtrikman variational analysis 

has also provided a very similar prediction compared to experimental results. 

A prediction error of 4.4% and 4.1% was achieved for the electrical 

resistivity and chloride diffusion coefficient, respectively. 

• EMTs cannot be directly applied to predict the non­steady­state chloride 

diffusion coefficient, therefore, a relationship has been established to 

determine concrete non­steady­state chloride diffusion coefficient by EMTs, 

without the explicit assessment of the binding factor. 

• The applied formulations may also be extended to evaluate other SCC 

durability properties, such as the oxygen permeability coefficient or the 

carbon dioxide diffusion coefficient. 

Monitoring to improve service life predictions 

A durability monitoring system integrating a sensorial component, a data acquisition 

component and a communication and data processing component was implemented. 

The sensorial component comprises corrosion kit-sensors that incorporate a galvanic 
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current sensor, a reference electrode and a temperature sensor. The CKS provides 

information on the galvanic current and corrosion potential of small anodes placed 

along the concrete cover layer and of the most external reinforcing bar. The durability 

monitoring system was installed in two structures, the Lezíria Bridge and a yachting 

harbour structure. Given the results obtained in the laboratory and in-situ, the main 

following conclusions can be drawn: 

• The implemented durability monitoring system enables to monitor the 

advance of aggressive agents into the concrete cover, predict the time to 

corrosion initiation by extrapolation and evaluate the corrosion state of the 

most external reinforcing bar. Implementation of this type of durability 

monitoring systems can be useful to assess concrete durability, predict 

service life more accurately and to take in due time, the decision on adequate 

protection. 

• The great advantage of long-term monitoring, using sensors like those 

presented in this research work, is to provide permanent information of the 

real concrete critical depth (depth of the critical chloride content). As the 

critical chloride contents for reinforcement corrosion depends on many 

factors this information is a great advantage that cannot be replaced by data 

from chloride profiles obtained from the structures. Furthermore, galvanic 

current and corrosion potential measurements are quite simple to perform 

and as no external current is applied, anodes potential are always in the 

range of natural potential of the respective metal. 

• Laboratory and in-situ results highlighted the importance of continuous 

monitoring, given the influence of environmental conditions on the 

corrosion process, especially when CKS anodes are in an active corrosion 

process. Temperature and humidity induce variations on the nature and 

composition of the anode oxides layer, ions mobility through the electrolyte, 

kinetics of corrosion reactions and oxygen availability. Thus, variations 

observed in corrosion potential and galvanic current depend mainly on how 

environmental parameters affect these factors. 
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• Short-term temperature tests show that in passive state, as temperature 

increases, the corrosion potential and the galvanic current become more 

negative, decreasing on average, only, ­1.6 mv/ºC and 0.0159 µA/cm2/ºC, 

respectively. It was also observed that corrosion potential takes longer to 

reach a constant value at each temperature level than galvanic current. In 

fact, variations observed in corrosion potential depend mainly on how 

temperature affects the nature, composition and distribution of the anode 

oxide layer. In the kinetics of electrochemical reactions of the anode oxide 

layer, due to temperature variation, some reactions should take place 

instantly while others will occur over time. 

• Noteworthy that during these first years of service, the durability monitoring 

systems installed in two different structures, have presented a good electrical 

performance. 

• The installation of concrete deformation transducers, e.g. vibrating wire 

strain gauges, with the CKSs proved to be very useful since it enables 

assessing cracking risk, which may indicate possible reduction of the 

effective capacity of the concrete cover layer and thereby a reduction of the 

structure service life. 

• Service life predictions performed during the design phase should be 

updated and validated by the effective use of data obtained from field 

monitoring, during periodic inspections or in long­term continuous 

monitoring systems. Some of the input data that are commonly assumed in 

the design phase, even those selected from the literature, may be quite 

different from reality and can also vary widely in space and time. Monitoring 

results from yachting harbour structure seems to indicate that the 

predictions performed in the design stage and after the first inspection are 

conservative. 
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7.2. Future work 

Possible directions in which the present research work can be extended are pointed out 

below. 

The selection of constituent materials, the design of mix-proportion and the 

appropriate casting practices are essential factors to achieve specified 

performance­based requirements. Furthermore, sustainable design of highly durable 

concrete requires an adequate selection and combination of constituent materials, with 

exploitation of synergies between cement and additions. Thus, in order to simplify the 

sustainable design of a concrete mixture and ensure the required durability, it would be 

important to define performance ranges, in terms of durability indicators, for “new” 

additions or combination of additions. These performance ranges will allow selecting, at 

the outset, the combination of materials that ensure compliance of the defined 

requirements. Furthermore, within the material combinations that satisfy the 

established requirements, performance ranges enable the selection of the material 

combination that will lead to the most economical concrete composition. The link 

established between paste, mortar and concrete is undoubtedly a great advantage given 

the possibility of carrying out studies at paste level. 

Concerning the prediction of transport properties of concrete from cement paste 

behaviour using the effective medium theories, studies conducted in the present 

research work show the great potential of these theories in this field. However, more 

parametric studies should be performed with a wide range of aggregate shape and 

aggregate orientation. 

There are many aspects in which further research is needed to improve prediction of 

service life. Some of the main issues are pointed out below: 

• A deeper and more exhaustive characterization of environmental actions 

that induce damage, with data collection and respective probabilistic 

analysis.  

• An extensive study of materials performance, with a probabilistic analysis, to 

better quantify the related parameters on degradation models. Considering 

the results of the sensitivity analysis performed in the present research work 
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and the lack of available data, concrete´s ageing factor seems to be the 

parameter in the chloride diffusion model that most urgently needs 

thorough characterization. Furthermore, until now data collected in real 

structures enabling a better characterization of the models parameters has 

been lacking. 

• Construction quality and variability must be considered in service life 

prediction. In this sense, establishing effective plans for collecting field data, 

adapted to each structure and exposure environment, seems to be essential 

to ensure accuracy of the service life prediction of concrete structures. 

• Data collected by the durability monitoring systems in real structures 

provide important information. However interpretation of this data and 

incorporation into degradation models and structure management programs 

need further development. In this regard, more pilot structures, in actual 

environments, must be deployed, allowing to compare monitoring data with 

data collected in detail and thorough inspection campaigns. 
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A.1 

 
Appendix: Mixtures formulation 

Mix proportions of paste, mortar and concrete prepared in this research work were 

obtained using the following universal formulation. The volumetric composition of 

concrete, by cubic meter, is given by: 

E@ + EGH + E$ + E- + EF Z 1 ¦ (A.1) 

where E@ is the sand volume, EGH the coarse aggregate volume, E$ the powder volume, E- the water volume and EF the air content. For a given solid volume EF$            
(EF$ Z EG/EG, I� ) and a defined EF, the coarse aggregate volume can be obtained 

from: 

EGH Z EG EG, I� � ^ EG, I� ^ W1 \ EFY (A.2)

For a given value of (E@/E ), volume of mortar (E ) and sand volume (E@), can be 

defined as: 

E Z 1 \ EF \ EGH (A.3)

 

E@ Z E@ E � ^ E  (A.4)

And for a given value of (E-/E$), the powder volume (E$) and the water volume (E-) 

can be defined as: 

E� Z E \ E@1 + E- E$�  (A.5)

1 



Appendix: Mixtures formulation 

A.2 

E- Z E- E$� ^ E$ (A.6)

Finally, from the E$ and E- values the weight values of water (-5), cement (-�), 
metakaolin (-��3) and limestone filler (-%) can be determined as follows: 

-5 Z E- ^ �5 (A.7)

 

-� Z -5- �⁄  (A.8)

 

-��3 Z  !� �� ^ -�  (A.9)

 

-% Z rE$ \ -��� \-��3���3s ^ �% (A.10)

where �5, ��, ���3 and �% represent the specific gravity of water, cement, metakaolin 

and limestone filler, respectively, -/� is the water to cement weight ratio and  !�/� is 
the metakaolin to cement weight ratio. From the superplasticizer to powder weight 

ratio (A$/$) and the weight values of cement, metakaolin and limestone filler the liquid 

weight of superplasticizer (-4�) is given by: 

-4� Z A$ $� ^ }-� +-��3 +-%� (A.11)

Since aggregates used in this work were made of a mixture of two sands and gravel, the 

dry aggregate contents (-�(, -4(q, -4(y) can be obtained as follows: 

-�( Z EGH ^ ��( (A.12)

 

-4( Z E@@q @��4(q + }1 \ @q @� ��4(y
 

(A.13)

 

-4(q Z @q @� ^ -4( (A.14)

 



Appendix: Mixtures formulation 

A.3 

-4(y Z }1 \ @q @� � ^ -4( (A.15)

where ��(, �4(q, �4(y represent the specific gravity of coarse aggregate, sand 1 and sand 

2, respectively. The water added to the mixture has to be corrected (-5�) by subtracting 

the water content of the superplasticizer and adding the water needed for saturating the 

aggregate, from a dry state, as follows: 

-5� Z -5 \-O� ^ }1 \ LO�� +�W-4() ^ `4()Yy
) q +-�( ^ `�( (A.16)

where L4�, `4() and `�( represent the solid content of superplasticizer (%), the 

absorption coefficient of sand (%) and the absorption coefficient of coarse aggregate 

(%), respectively. 


